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Abstract 

Background: Retinal optical coherence tomography (OCT) permits quantification of retinal layer 

atrophy relevant to assessment of neurodegeneration in multiple sclerosis (MS). Measurement 

artefacts may limit the use of OCT to MS research. 

Objective: An expert task force convened with the aim to provide guidance on the use of validated 

quality control (QC) criteria for the use of OCT in MS research and clinical trials. 

Methods: A prospective multi-centre (n=13) study. Peripapillary ring scan QC rating of a OCT training 

set (n=50) was followed by a test set (n=50). Inter-rater agreement was calculated using kappa 

statistics. Results were discussed at a round table after the assessment had taken place. 

Results: The inter-rater QC agreement was substantial (kappa=0.7). Disagreement was found 

highest for judging signal strength (kappa=0.40). Future steps to resolve these issues were 

discussed. 

Conclusion: Substantial agreement for QC assessment was achieved with aid of the OSCAR-IB 

criteria. The task force has developed a website for free online training and QC certification. The 

criteria may prove useful for future research and trials in MS using OCT as a secondary outcome 

measure in a multi-centre setting. 
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Introduction 

Retinal OCT is increasingly used in multiple sclerosis (MS) research as a tool to quantify 

changes of retinal layer thickness [1]. Following MS associated optic neuritis (MSON) there may be 

severe atrophy of the peripapillary retinal nerve fibre layer (pRNFL).  Importantly, a small degree of 

pRNFL atrophy can also be observed in patients with MS who never experienced a clinical episode 

of MSON [1]. In addition to these cross-sectional data, longitudinal data from time-domain OCT 

suggests that the annual loss of pRNFL in MS accounts for as little as 1-2 µm compared to about 

0.1 µm among healthy individuals [2]. This degree of pRNFL atrophy is within the measurement 

range of recently introduced spectral-domain OCT devices from a number of manufactures. 

Therefore longitudinal spectral-domain OCT assessments of the retina in patients with MS may 

emerge as a surrogate for neurodegeneration, even in the absence of MSON. In this context it is 

important to recognise that the magnitude of localised measurement artifacts introduced by a poor 

OCT scanning technique can be significant, measuring up to 40 µm when caused by off-centre 

placement of the measurement beam [3]; over 3.4 µm when due to displacement of the peripapillary 

ring-scan [outside an elipse of  200 µm (horizontal shift) and 600 µm (vertical shift)]; [4] and up to 10 

µm when arising from poor signal quality alone [5]. Therefore, OCT scans containing such 

measurement artifacts should be excluded from clinical studies or trials as they may obscure the 

detection and interpretation of the much smaller degree of retinal layer atrophy expected from 

longitudinal studies [2]. 

 

In addition to these quantitative considerations there are qualitative reasons to reject peripapillary 

OCT scans which may contain inherent inaccuracies. These comprise boundary line errors or 

algorithm failures and poorly centered  ring scans [6]. Poor illumination and obvious protocol 

violations are other reasons for OCT scans to be deemed poor in quality.  In a previous study we 

developed a set of quality control (QC) criteria which address all of these issues [7]. In a multi-centre 

validation approach we found a substantial inter-rater agreement (kappa 0.61) for the seven criteria 

that we named the OSCAR-IB QC crtieria [7].   

 

The present study aimed to test the practicability and reliability of the OSCAR-IB criteria in a world-

wide multi-centre setting. To this end we created a training- (n=50) and a test set (n=50) of retinal 

OCTs from healthy subjects and patients with MS. Trained OCT readers from 13 centres 

participated. The group of participating experts from MS clinics, ophthalmology, and statistics  

convened in Lyon, France, to discuss the data and make recommendations for future OCT QC 

reading in MS research.  
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Methods 

Retinal images were obtained using a Spectral Domain (SD)–OCT device (Heidelberg Spectralis, 

Software version 1.1.6.3) with the eye tracking function (EBF) enabled. All OCT scans were recorded 

from MS patients and healthy subjects who gave written informed consent for participation at the MS 

Centre in Amsterdam. In all subjects a peripapillary ring scan (diameter 12º) around the optic nerve 

head (ONH) was recorded. All scans were anonymised, randomised and split into a training (n=50) 

and test (n=50) set. 

The training set was rated individually by two trained OCT readers (LB, AP) with an inter-rater kappa 

of 1.0. A slide presentation was prepared which first showed the scans and then the dichotomised 

QC results: accept or reject. In case of rejection the reason for rejection was detailed. This could be 

one single out of the seven OSCAR-IB critera [7] or, more frequently, a combination of several criteria 

(e.g. a poor signal strength can also lead to an algorithm failure). The training set was sent to each 

of the participating OCT readers.  

Next, another slide presentation was prepared, containing the test set. This time only the OCT scan 

was shown without giving any more information on QC rating. For this new technology expert centres 

were defined as those who have published in the field (see references in [1]) and were either of 

ophthalmological or neurological background. First and corresponding authors of these papers were 

approached either by email or personal contact. In addition, contact was made with established OCT 

reading centres.  The raters from those 13 centres who had agreed to participate were asked to 

indicate if a scan was accepted or rejected in a spreadsheet document. In case of rejection the raters 

were also asked to fill in which one(s) of the OSCAR-IB criteria was (were) missed. This information 

was then sent back to the MS Centre in Amserdam for statistical evaluation. 

 

Data analysis 

Kappa statistics for multiple raters were calculated to assess the inter-centre agreement using the 

magree macro in SAS software (V9.3) [8]. The level of agreement was rated as slight (0-0.2), fair 

(0.2-0.4), moderate (0.4-0.6), substantial (0.6-0.8) or almost perfect (0·8-1) [9].  Results were 

presented at a joint meeting of the participating centres at the 2012 ECTRIMS meeting in Lyon, 

France. Sources of disagreement were identified and discussed. 
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Results 

A total of 13 centres participated in the study (Table 2). Most centres (n=9) provided data for a single 

rater. Data from multiple raters were provided by 4 centres (Table 2). 

Equipped with the OSCAR-IB criteria (Table 1), all raters participated in a training set (n=50) prior to 

performing their own rating (n=50) subject to statistical analysis (Figure 1).  

Two raters had to be excluded because the order of scans rated got irretrievably mixed up. The inter-

rater level of agreement for the overall accept-reject classification was substantial (kappa 0.7, 

p<0.0001). 

 

The average rejection rate was 55% of scans (range 48-74%; see Table 2).   

Raters had the right to accept-reject based on one or more of the OSCAR-IB criteria. In order to  

evaluate the relative utility of individual features individual inter-centre kappas were calculated. The 

individual kappa values were lower compared to the overall accept-reject kappa (Table 3). The data 

demonstrates that a scan poorly centered at the optic disc was a clear reject for most (highest kappa 

0.579). A comparable level of agreement was found for the R- (kappa 0.543), I- (kappa 0.565) and 

B-criteria (kappa 0.549). Disagreement between raters was largest for the S- (kappa 0.404), O- 

(kappa 0.434) and A-criteria (kappa 0.482). 

 

The consensus discussion at the round table meeting  included scans like the one exemplified in 

Figure 2. This scan of a patient with MSON showing severe thinning of the pRNFL was rejected by 

a number of readers for the I-criterion. The shadow seen on the bottom right of the infrared fundus 

image was cast by a floater. However, the illumination of the scan is acceptable, the contrast of the 

pRNFL in the OCT B-scan is good and there is no algorithm failure. Such an image should be 

accepted because the quantitative data is reliable. In contrast, Figure 3 shows a scan with truly poor 

illumination that should be rejected based on the I-criterion. 

 

Another point of discussion related to the B-criterion that was not intuitively clear to each reader. The 

two scans in the supplementary Figure illustrate the problem of an off-centered beam-placement in 

different directions for a baseline and follow-up scan in the same subject. It can be readily seen that 

in the first scan the signal intensity is lowest in the ONL/OPL inferonasally, highest at the opposite 

part of the ring scan (located clockwise to sectors 7 o’clock and 1 o’clock. The localised 

measurement error is illustrated by the red/green shaded areas in the summary image. Such a scan 

should thus be rejected.  
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Discussion 

OCT is a promising new imaging technique that allows rapid and reliable quantification of retinal 

structures[1; 2]. To date, pRNFL thickness has been the OCT measurement most commonly used 

in tracking longitudinal changes in optic neuritis (ON) and MS patients. A recent meta-analysis of 

time domain OCT studies (14 studies [2,063 eyes]) demonstrated that RNFL values are reduced 

between 5 to 40 μm in MSON eyes [1], . Based upon the wealth of information derived from the OCT 

studies to date, pRNFL thickness changes may open a real window of opportunity for patient friendly 

assessment of neuro-axonal degeneration in ON and MS [1,2,13,14].  

 

As with each new technique entering the clinical arena, quality control becomes an issue. In absence 

of any consensus guidelines on QC rating of retinal OCT scans we recently developed and validated 

a set of seven criteria (OSCAR-IB) addressing major sources of artifacts causing inaccurate 

measurements. The intent was to guarantee high quality image acquisition and interpretation for 

multicenter OCT studies in which reading was to be done at a central site. The aim of the current 

study was to build on this experience and extend the validation of the OSCAR-IB criteria to a multi-

reading centre setting. Twenty independent raters from thirteen international OCT expert centres 

participated in the trial. Results were discussed during a round table meeting in Lyon in order to 

provide further guidance for the use of the OSCAR-IB criteria in clinical trial settings.   

 

In a set of test scans consisting of 50 optic nerve head ring scans (12°), the OSCAR-IB criteria 

proved to work better than in the pilot study with a substantial level of agreement reaching an inter-

centre kappa of 0.7 with an average rejection rate of 55% of scans (range 48-74%). This seeming 

high rejection rate is due to the fact that the dataset was put together with the intention to have a 

balanced number of good versus poor scans. It needs to be highlighted that none of the readers was 

aware that the intended rejection rate was 48%. In line with our previous experience, OCT scans 

were rejected for several reasons. 

  

For the first of the OSCAR-IB criteria, “Obvious” [O], scans were rejected for highly apparent issues 

including severe lens opacities or vitreous hemorrhage. Likewise, rejection also occurred based on 

a protocol violation such as deliberately not averaging several B-scans by turning off the ART mode. 

As the rejection rate based on this criterion was overall low our expert panel expressed no new 

concerns regarding the use of this criterion.  

 

For the second trial criterion, “Signal strength” [S], we arbitrarily defined a cut off of 15 dB in the pilot 

study [7] based on our experience and published evidence suggesting that poor signal strength 

decreases the signal-to-noise ratio of RNFL measures [10-12]. However, scans with poor signal 

strength (defined as < 15 dB) but relatively good contrast between layers allowing for proper image 

post-processing and segmentation do exist. This might also be reflected by the fact that the S-

criterion had the lowest inter-rater agreement in our study (inter-centre kappa 0.404). In the absence 

of any FDA approved retinal layer segmentation algorithm and corresponding normal control 

databases it is currently not possible to systematically test the relative contribution of signal strength 

and number of averaged A-scans to the final B-scan image quality. The contrast level between the 

retinal layer interfaces is likely to become a major criterion to judge the quality of OCT scans in ON 

and MS patients. In the future, this warrants further systematic studies. We opted to leave the cut off 

of 15 dB unchanged until such data is being provided.  

 

The third criterion, a correctly  “Centered” ring scan [C] remains an important issue [4]. More recent 

scanning algorithms from the Heidelberg Spectralis device are centering the ring scans after defining 

the borders of the Bruch´s membrane opening (new Nsite protocol; e.g. used in the PASSOS trial; 
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NCT01705236). Preliminary experience with new protocols suggests that a perfectly centered ring-

scan may not be required. The C-criterion is therefore not fully applicable to scans obtained using 

the Nsite protocol. However, as a change of position (vertical or horizontal) at follow-up scans may 

introduce relevant measurement artifacts [4] it is crucial to set the baseline scans as reference and 

use the device’s follow-up setting to assure consistency of scan placement during longitudinal 

investigations.  

 

Admittedly, “Algorithm” failures [A] remain a problem. In selected cases it may be possible to correct 

such errors by image post-processing techniques such as manual correction. However, this 

procedure is time-consuming when analyzing large collectives. A decision may be made on 

individual scans. Whilst this criterion should be handled rather strictly on the baseline scan in order 

to ensure optimal settings for longitudinal studies, we accept that a minor, manually correctable 

algorithm failure on a valuable follow-up scan should not necessarily lead to immediate rejection. 

 

As a fifth criterion, “Retinal pathology” [R] unrelated to MS can independently influence RNFL 

measures and should thus be taken into account. Previously, we listed a number of pathologies that 

should be considered when it comes to OCT scan interpretation [7] (supplementary Table). Such a 

list will naturally grow with further experience generated by the use of OCT in different disease 

models as with the improvement of the technology per se. Of note, a number of recent OCT studies 

have provided evidence that retinal pathology other than RNFL thinning exists in MS [13-16], 

including  microcystic macular oedema (MMO) predominantly affecting the inner nuclear layer (INL) 

of the retina.  In the studies to date, MMO (and INL thickening) appear to be associated with higher 

degrees of MS-related disability [14, 17-18]. Hence, we do not recommend rejecting OCT scans 

showing evidence of MMO because this may be a clinically relevant finding in the disease and the 

impact of MMO on RNFL quantification is low.    

 

Poor “Illumination” of scans [I] raised some discussion between experts. Scans displaying shadow 

casts on the retina by large vitreous floaters were rejected by some raters based on the I-criterion 

whereas these scans were accepted by others. Although floaters were identified as potential cause 

of shadowing, they were not listed as a general exclusion criterion in the original OSCAR-IB 

manuscript. In most cases the contrast of retinal layers underneath the shadow cast was expected 

to remain of sufficient quality to enable accurate retinal layer segmentation by automated algorithms. 

 

In contrast, poor illumination by a sub-optimal placement of the laser beam causes partial illumination 

of the retina with just about acceptable B-scan quality in some areas and very dark B-scans from 

poorly illuminated areas. Typically, the poorly illuminated areas are located at the border of the 

infrared image. Clearly, in poorly illuminated areas the signal may drop to such low levels that no 

image post-processing can be performed. In summary, causes for shadows such as floaters, 

cataracts, long eye lashes, etc. should not be considered a general reason for exclusion by the I-

criterion in cases where A- and B-scan quality is good. 

 

The relevance of the “B” (beam placement) criterion was not intuitively obvious to all raters. It is 

important to keep the OCT scan in the live window horizontally orientated whenever possible. 

Problems arise when a scan is tilted in one direction at baseline and to the opposite direction at 

follow-up, because, as a consequence, measurement errors in the range of 9-40 um can be 

introduced [3]. Scans with sub-optimal beam placement as described, should be rejected.  In some 

cases the anatomy of the retina or refraction anomalies such as astigmatism may make it difficult to 

achieve a perfectly horizontally aligned OCT. In this context, the QC rating of the follow up scan will 

ensure that the same direction of tilting is repeated, thus ensuring consistency. The principle of the 
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B-criterion is that the direction of tilt causes a characteristic, reproducible, robust signal pattern in 

the outer plexiform- (OPL) and outer nuclear layers (ONL). This sign allows tracing back possible 

errors due to off-centre beam placement. Notably, a post-hoc analysis of the present data excluding 

all cases that were rejected based on the B-criterion resulted in a comparable kappa as the original 

analysis. 

 

A limitation of the OSCAR-IB criteria is that they are entirely based on the pRNFL measures from 

the Spectralis device (Heidelberg Engineering). There is a need to test the criteria also on other 

machines on the market.  As segmentation algorithms will certainly be used in multi-centre OCT-

studies in MS in the near future as soon as the necessary post-processing software becomes more 

broadly available, we cannot be sure about limitations to such measures’ quality that in turn impact 

on the inter-rater agreement of segmentation analyses. While data on inter-rater- and agreement 

between different segmentation algorithms has been provided [20], sources of disagreement due to 

poor quality have not yet been identified. As for peripapillary ring scans, a sharp and good contrast 

between layers is likely to be the core pre-requisite for the segmentation of macular volume scans 

as well. This is covered by the O-, S-, R-, I- and B-criteria of the OSCAR-IB criteria. For a reading 

center working with a large number of sites and photographers the criteria may be rather strict. In 

our experience the initial rejection rate may be as high as 43% [7]. It is therefore recommended that 

OCT technicians are specifically trained to comply with the OSCAR-OB criteria, and pass a 

certification procedure before starting to include patients into clinical trials. In order to evaluate the 

influence of the QC criteria for the “real” world one would need to test their impact by power 

calculations, ideally from ongoing studies. Probably some pragmatism will be needed to permit for 

reasonable sample size estimates in a “real” world multi-centre setting. 

 

In summary, the OSCAR-IB QC have shown substantial inter-rater agreement in hands of 

experienced OCT raters in this multi-centre validation study. Experts participating in the  meeting 

agreed that making the training set more broadly available would be helpful in order to guarantee 

rigorous QC in future clinical OCT trials in MS and other diseases. Rigorous QC will be particularly 

important for longitudinal clinical studies were only a small degree of retinal layer atrophy can be 

expected. The training and test set of this manuscript can be accessed for free on www.oscar-ib.org. 

Likewise, revisions to the criteria might become necessary as the use of OCT technology grows and 

scanning protocols continue to evolve.  We would like to reach out and invite other centres in the 

field to join forces. 

http://www.oscar-ib.org/
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Table 1. The OSCAR-IB quality control criteria for retinal OCT scans. 

 

Item criteria 

O Obvious problems not covered by items below.  

Please document for discussion + consensus agreement 

S Is the OCT signal sufficient?   

Signal strength > 15 (ring and volume scans) with appropriate 

averaging of multiple scans (ART activated). 

C Is the ring scan correctly centred?   

for circular discs: ONH must not cross more than two colours of the 

RAF logo (outer ring of RAF adjusted to outer ring of scan either by 

paper or electronically). In contrast to the ONH ring scan, post-hoc 

readjustment is possible for the macular volume scan. 

A Is there an algorithm failure?   

Red lines correctly identify the superior and inferior RNFL border (ring 

scan); Red lines correctly identify the retinal borders (volume scan) 

R Is there visible retinal pathology which may potentially impair the 

RNFL reading?   

See Table 2 (note some of these conditions are also exclusion criteria 

for OCT studies in MS) 

I Is the fundus well illuminated?   

Retinal structures visible (ring and volume scans) 

B Is the measurement beam placed centrally?   

Homogeneous ONL reflectivity (ring and volume scans) 
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Table 2: Participating centers in alphabetical order, specifying the respective clinical specialty, 

number of raters and overall QC acceptation rate. 

 

Centre Speciality Number of raters QC accept (%) 

Amsterdam Neurology 3 52 

Baltimore Neurology 1 39 

Berlin Neurology 1 38 

Bern Ophthalmology 4 52 

Calgary Neurology 1 38 

Copenhagen Neurology 1 44 

Düsseldorf Neurology 1 52 

Lille Neurology 1 50 

London Neurology 1 52 

Philadelphia Ophthalmology 1 48 

Sydney Ophthalmology 1 26 

UTSW Neurology 2 39 

Zurich Neurology 

Ophthalmology 

1 

1 

50 
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Table 3: Inter-centre kappas for each of the individual OSCAR-IB QC criteria. Note that individual 

kappas are lower compared to the overall kappa of 0.7 because raters had the right to reject a 

scan based on one OSCAR-IB criterion alone, also several may apply simultaneously. 

  

QC criterion kappa 

O 0.434 

S 0.404 

C 0.579 

A 0.482 

R 0.543 

I 0.565 

B 0.549 
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Figure Legends 

 

Figure 1. Study design. 

 

Figure 2. Example of an OCT scan rejected by some raters for the I-criterion. Shadow seen on the 

bottom right of the fundus image is cast by a floater. 

 

Figure 3. Example of a scan to be rejected due to truly poor illumination (I-criterion). 

 

Supplementary Figure. Two scans originating from the same healthy control subject scanned with 

EBF activated and use of the follow-up function within 1 minute which illustrates the problem of a 

systematic error introduced by off-centre beam-placement (failed B-criterion), for a ring scan well 

centered on the ONH (passed C-criterion) [3]. (A) shows the IR image OD. The blue line indicates 

the position of the ONH and foveola. The green circle indicates the area of the OCT B-scan shown 

in (B) the pRNFL is the bright layer between the red and green lines determined by automated layer 

segmentation. There is a bright signal for the OPL/ONL for the papilomacular bundle (PMB) indicated 

by a yellow arrow, which turns darker in for the more nasally located OPL/ONL indicated by the 

magenta arrow. The corresponding quantitative data are shwon in (C) with a global average pRNFL 

of 106 µm, a PMB RNFL of 51 µm and a nasal RNFL of 96 µm. (D) A change of the beam-placement, 

whilst keeping the ring scan on precisely the same position causes a change of the OCT B-scan in 

the live image which is only visible to the OCT operator and lost in the summary image uploaded to 

an OCT reading center (fore more detailed see serial live images in reference [3]). However, what 

remains clearly visible is the change of the OPL/ONL signal in (E). Compared to the earlier OCT B-

scan shown in (B) the OPL/ONL appear relatively darker (magenta arrow) below the PMB and 

relative brighter (yellow arrow) below the nasal RNFL. Closer inspections shows that subsequent 

automated layer segmentation performs different. Consequently the data shown in (F) is different 

compared to the data in (C) with an averaged pRNFL of 102 µm, a PMB of 54 µm and a nasal RNFL 

of 87 µm. To better appreciate the local differences in automated layer segmentation caused by off-

center beam placement on overlay of both RNFL profiles are shown in (G) with the blue line 

corresponding to the OCT B-scan in (B) and the magenta line corresponding to the OCT B-scan in 

(E). Please note that in addition to the systematic error introduced by off-center beam placement 

there are also non systematic segmentation artifacts related to the void signal caused by the retinal 

vasculature.  

 

 

 


