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Abstract 

 

The search for novel biomarkers and therapeutic targets is a continuous process in 

the fight against disease. In this project, target identification and validation 

approaches were used towards the discovery of protein targets related to distinct, 

but equally relevant diseases. 

The first approach involved the use of proteomics to identify protein targets in 

infertility. An affinity-enrichment proteomic method was developed and 

successfully applied to the identification of protein targets of a clinically utilised 

compound, which is known to cause reversible, dose-dependent male infertility in 

certain mouse strains. 

The second approach demonstrated the versatility of proteomics in an attempt to 

answer a completely different question. In this study, it was applied to the discovery 

of protein targets of chemoresistance in ovarian cancer, using human ovarian 

cancer cell lines and tissue biopsies. Once again, this method was successful in 

identifying some very promising un-regulated protein targets and pathways 

involved in cancer resistance. 

Finally, a more assay development orientated approach aimed for the functional 

characterisation of Hsp90 targeted compounds. The combined use of a native gel 

binding assay and an Hsp90 ATPase assay proved to be a convenient and robust 

method to characterise Hsp90 inhibitors and will aid the development of Hsp90 

targeted anti-cancer drugs. 

In summary, the work undertaken confirmed the recognised advantages of 

proteomics in the comparative study of un-regulated proteins connected to disease. 

It equally showed how two distinct techniques could be used in synergy to 

accomplish more valuable answers, in the screening of inhibitors of a known protein 

target. 
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1.1 Drug discovery 

Drug discovery is defined as the process by which new candidate medicines are 

discovered. Historically, drugs were discovered through the identification of the 

active ingredients in traditional remedies. Later, screening of chemical libraries of 

synthetic small molecules and natural products, using intact cells or whole 

organisms, was how new medicines were identified. This phase was followed by the 

use of high throughput screening (HTS) of large compound libraries against 

biological targets, before efficacy was tested in cells and animals. Modern drug 

discovery involves the identification of screening hits, followed by medicinal 

chemistry and, finally, the optimisation of those hits to improve potency, affinity, 

selectivity, stability and bioavailability. When a compound fulfils all the previous 

requirements, it may enter the drug development process that anticipates clinical 

trials (Drews, 2000). 

The drug discovery process used to be driven mainly by chemistry, but is nowadays 

increasingly guided by pharmacology and the clinical sciences. It has hugely 

contributed to the progress of medicine, aided by the profound impact that the 

advent of molecular biology, in particular, of genomic sciences, has had on drug 

research. In the past, taking medicines constituted by recombinant proteins or 

monoclonal antibodies would be unthinkable; yet, today, there is an increasing 

number of treatment options available for the majority of the diseases. Genomic 

sciences, combined with bioinformatic tools, allow the study of the genetic basis of 

multifactorial diseases, so that the most suitable targets for future medicines can be 

determined (Rask-Andersen et al., 2011). 

The biotech industry has established itself as the discovery arm of the 

pharmaceutical industry, bridging the gap between academia and large 

pharmaceutical companies, with the aim of facilitating knowledge transfer. 

Nevertheless, drug discovery is still a lengthy, difficult and expensive process with a 

low rate of new therapeutic discovery. It has been reported that in 2010 the 
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research and development cost of each new molecular entity was approximately US 

$1.8 billion (Paul et al., 2010). 

The drug discovery process includes several stages, from target discovery to clinical 

trials and therapeutic use, through which a drug candidate has to pass before it 

becomes a commercially available drug. These stages are summarised in Figure 1.1.  

 

 

 

 

 

Figure 1.1 Possible stages in the drug discovery process. 

 

The studies conducted in this project are part of the first stage of drug 

development, target discovery, which includes target identification through 

proteomics, target validation and assay development. 
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1.2 Target discovery 

1.2.1 Target identification – Proteomics 

The term proteomics results from the abbreviation of the words protein and 

genomics. The first protein studies that can be called proteomics began in 1975 

with the introduction of the two dimensions (2D) gel by O’Farrell (1975), Klose 

(1975) and Scheele (1975), who started mapping proteins from E. coli, mouse, and 

guinea pig, respectively. 

The word proteomics appeared for the first time in 1997 to describe the changes in 

all proteins expressed by a genome (James, 1997). Basic proteomic research is 

designed to further understand the molecular mechanisms underlying dysfunction 

in human disease. Clinical proteomics is the application of proteomic techniques to 

the medical field. The main aim of this methodology is to identify proteins involved 

in pathological processes and to understand how illness can lead to altered protein 

expression. Clinical proteomics offers the opportunity and the potential to develop 

new diagnostic and prognostic tests, to identify novel therapeutic targets, and 

eventually to allow the design of individualised patient treatment, through the 

application of proteomics in the drug development pipeline. More recently, 

proteomics has been used as a component of clinical trials (Azad et al., 2006). The 

results of proteomic studies are dedicated to the discovery and validation of 

diagnostic and prognostic disease biomarkers (Dominguez et al., 2007, Dunn, 2011). 

Proteomics may also be classified as expression proteomics and functional 

proteomics. Expression proteomics seeks to recognise proteins that are 

differentially exhibited in tissues, and can be used as markers for disease detection, 

diagnosis and in the development of novel treatments; whereas functional 

proteomics involves the study of interactions of proteins with each other, with DNA 

and RNA, or as apparatus of bigger complexes. The ability to identify these 
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interactions is crucial for the characterisation of cellular processes (Joshi et al., 

2011). 

1.2.1.1 Importance and advantages of proteomics 

Proteomics is one of a variety of approaches currently in use for the identification of 

molecular changes related to the progression of neoplastic disease. It has been 

widely used and strongly complements gene expression approaches (Righetti et al., 

2005). 

Proteome analysis is a direct measurement of proteins in terms of their presence 

and relative abundance (Wilkins et al., 1996). The overall aim of a proteomic study 

is the characterisation of the complex network of cell regulation. Neither the 

genomic DNA code of an organism nor the amount of mRNA that is expressed for 

each gene product (protein) yields an accurate picture of the state of a living cell 

(Lubec et al., 1999), which can be altered by many conditions, such as chemicals or 

drugs and radiation. Proteome analysis is required to determine which proteins 

have been conditionally expressed, how strongly, and whether any post-

translational modifications (PTM) are affected. Two or more different states of a cell 

or an organism, for example healthy and diseased tissue, can be compared and an 

attempt made to identify specific qualitative and quantitative protein changes 

(Westermeier et al., 2008). 

A fundamental scientific rationale for proteomics is that expression of a gene 

transcript is often a good indicator, but not equivalent to functional protein 

expression or activity. There are growing examples, which collectively show that the 

mRNA transcript level may not accurately reflect the true expression level of a 

functional protein, which is subjected to further translational and post-translational 

regulation (Westermeier et al., 2008). Proteomic approaches have the advantage of 

identifying changes in protein isoforms and PTM that are common in cancer and go 

undetected by microarray analyses of RNA expression (McCaw et al., 2007). 
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1.2.1.2 Top-down and bottom-up proteomics 

Several sophisticated techniques including two-dimensional electrophoresis, 

imaging, mass spectrometry, and bioinformatics are used in proteomics to identify, 

quantify, and characterise proteins (Dominguez et al., 2007). In a proteomics study, 

two different approaches can be used: top-down proteomics and bottom-up 

proteomics. 

Top-down proteomics is a method of protein identification that uses an ion trapping 

mass spectrometer to store an isolated protein ion for mass measurement and 

tandem mass spectrometry analysis (Sze et al., 2002, Kelleher, 2004). Proteins are 

typically ionised by electrospray ionisation and trapped in a Fourier transform ion 

cyclotron resonance (Bogdanov and Smith, 2005) or quadrupole ion trap mass 

spectrometer. 

Bottom-up proteomics is a common method to identify proteins and characterise 

their amino acid sequences and PTM by proteolytic digestion of proteins, prior to 

analysis by mass spectrometry (Aebersold and Mann, 2003, Chait, 2006). The 

proteins may first be purified by a method such as gel electrophoresis, resulting in 

one or a few proteins in each proteolytic digest. Alternatively, the crude protein 

extract is digested directly, followed by one or more dimensions of separation of 

the peptides by liquid chromatography coupled to mass spectrometry, a technique 

known as shotgun proteomics (Washburn et al., 2001, Wolters et al., 2001). By 

comparing the masses of the proteolytic peptides, or their tandem mass spectra, 

with those predicted from a sequence database, peptides can be identified and 

multiple peptide identifications assembled into a protein identification. 

1.2.1.3 Applications of proteomics 

Researchers have long acknowledged that changes in genes or gene activity lead to 

cancer. However, it was difficult to understand the function of such specific genes 

and their interaction in communication networks. Their protein products have 

direct influence on the development of cancer, as it fundamentally arises due to 

aberrant signalling pathways. Identifying and understanding these changes is the 
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primary aim of cancer proteomics, also termed oncoproteomics. Its ultimate 

objective is to adapt proteomic technologies for regular use in clinical laboratories, 

for the purpose of diagnostic and prognostic categorisation of disease, as well as in 

assessing drug toxicity and effectiveness (Joshi et al., 2011). 

The alterations in protein profiling, if specific for a certain cancer type, may serve as 

biomarkers for screening the disease in individuals. Alternatively, they may be used 

to design specific antibodies or fragments for disease treatment, or applied in 

diagnostic screenings. In combination with diagnosis chips, the direct proteome 

approach can save valuable time and resources in medical research and drug design 

(Wittmann-Liebold et al., 2006). 

An important area in current cancer research is directed towards improving the 

molecular classification of cancer. Various subtypes exist for cancers arising in many 

organs, each with different histopathology and ultimately very different clinical 

outcomes. Here the task is to find markers, which can be used to differentiate 

cancers, with respect to organ of origin and benign versus aggressive behaviour, on 

the basis of its protein expression profile (Jones et al., 2002, Zhu et al., 2006). 

Conventional diagnosis of cancer has been based on examination of the 

morphological appearance of stained tissue specimens in the light microscope. This 

method is subjective and depends on highly trained pathologists. Protein arrays and 

other proteomic approaches offer hope that cancer diagnosis could be objective 

and highly accurate, which can provide important information to clinicians 

regarding the most suitable treatment. 

Proteomic analysis of cancers by using biomarker discovery techniques have 

provided new insights into the changes that occur in the early phases of 

tumourigenesis and represent a new resource for early-stage disease detection 

(Ornstein and Tyson, 2006). Identification of a sensitive and specific biomarker or a 

panel of biomarkers for the early detection of ovarian cancer could greatly increase 

the survival rate. In addition, these markers may present themselves as prognostic 

indicators or novel targets for cancer treatment (Asadollahi et al., 2010). 
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Evaluation of drug targets not only provides insights into the primary mechanism of 

action of a drug, but also the understanding of the side effects or toxicity, as a result 

of off-target interactions. It will further provide the rationale for optimisation of 

drug design to minimise toxicity. A better understanding of the long-term actions of 

anticancer drugs at the molecular level will definitely provide a broadened, 

informative and effectual approach (Joshi et al., 2011). 

The identification of novel biomarkers that correlate with treatment response 

would allow therapy to be tailored on an individual patient basis. Ultimately, those 

patients, unlikely to respond to a particular treatment strategy, would be spared 

from serious life-threatening side effects for no therapeutic gain. Biomarkers may 

also provide information on new drug targets for future therapeutic intervention. 

Overcoming resistance to chemotherapy and radiotherapy would represent a major 

advance in the effective management of cancer (Smith et al., 2006). 

1.2.1.4 Complete workflow of a proteomics experiment 

A typical proteomic experiment, such as protein expression profiling, can be broken 

down into a series of steps (Figure 1.2). First, the experiment is designed so that the 

key parameters of the study have been vetted, transcribed and reviewed. Second, 

extraction, fractionation and solubilisation of proteins from a cell line, tissue or 

organism are carried out. Third, the levels of high-abundance proteins are reduced 

and weakly expressed proteins are enriched, to reduce the dynamic range in protein 

homogenates and increase the number of identified proteins. In the forth step, gel-

based separation of proteins in mixtures is followed by imaging and analysis to 

allow isolation and relative quantification of proteins. The gel extraction of protein 

spots is followed by identification by mass spectrometry (MS) and, finally, functional 

characterisation of the identified proteins is conducted (Taylor et al., 2008).  
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Figure 1.2 Complete workflow of a typical proteomics experiment. 
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extensively developed for molecular separations. As an analytical tool, 

electrophoresis is simple and relatively rapid. It is used predominantly for analysis 

and purification of very large molecules such as proteins and nucleic acids, but can 

also be applied to simpler charged molecules, including charged sugars, amino 

acids, peptides, nucleotides, and simple ions. Highly sensitive detection methods 

have been developed to monitor and analyse electrophoretic separations (Hames 

and Rickwood, 1990). 

Electrophoresis of macromolecules is normally carried out by applying a sample to a 

solution stabilised by a porous matrix. Under the influence of an applied voltage, 

different species of molecules in the sample move through the matrix at different 

speeds. At the end of the separation, the different species are detected as bands at 

different positions in the matrix. A matrix is required because electric current 

passing through the electrophoresis solution generates heat, which causes diffusion 

and convective mixing of the bands in the absence of a stabilising medium 

(Instruments, 1994). 

The matrix can be composed of a number of different materials, including paper, 

cellulose acetate, or gels made of polyacrylamide, agarose, or starch. 

Polyacrylamide and agarose gels are the most common stabilising media used in 

research laboratories, and polyacrylamide is the most common matrix for 

separating proteins. In acrylamide and agarose gels, the matrix also acts as a size-

selective sieve in the separation. At the end of the run the separated molecules can 

be detected in position on the gel by staining or autoradiography (Instruments, 

1994). 

Agarose and polyacrylamide gels are cross-linked, sponge-like structures in which 

the size of the pores is similar to the sizes of many proteins and nucleic acids. As 

molecules are forced through the gel by the applied voltage, larger molecules are 

retarded by the gel more than are smaller molecules. Gels can be tailored to sieve 

molecules of a wide range of sizes by appropriate choice of matrix concentration. 

The average pore size of a gel is determined by the percentage of solids in the gel 
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and, for polyacrylamide, the amount of cross-linker and total amount of 

polyacrylamide used (Hames and Rickwood, 1990). 

Polyacrylamide, which makes a small-pore gel, is used to separate most proteins, 

ranging from <5,000 Da to >200,000 Da, and polynucleotides from <5 bases up to 

~2,000 base pairs in size. Because the pores of an agarose gel are large, agarose is 

used to separate macromolecules such as nucleic acids, large proteins, and protein 

complexes (Instruments, 1994). 

Polyacrylamide gel forms when a dissolved mixture of acrylamide and cross-linker 

monomers polymerise into long chains which are covalently cross-linked. The gel 

structure is held together by the cross-linker. The most common cross-linker is N-

N’-methylenebisacrylamide (Instruments, 1994). 

Atmospheric oxygen is a free-radical scavenger that can inhibit polymerisation. To 

avoid contact between oxygen and the gel, the acrylamide monomer solution is 

deaerated by purging it with an inert gas or by exposing it to a vacuum for a few 

minutes. Preparing solutions with a minimum of stirring, which introduces air, will 

reduce oxygen inhibition problems as well (Hames and Rickwood, 1990). 

When the gel solution is poured into a mould, the top of the solution forms a 

meniscus. If the meniscus is ignored, the gel will polymerise with a curved top, 

which will cause the separated sample bands to have a similar curved pattern. To 

eliminate the meniscus and leave the upper surface of the gel flat, a thin layer of 

water or water-saturated n-butanol is carefully floated on the surface of the gel 

mixture before it polymerises. The layer of water or water- saturated n-butanol also 

excludes oxygen, which would otherwise inhibit polymerisation on the gel surface 

(Alberts et al., 2002). Alternatively, a flat-edged form, such as a comb, can be 

inserted into the top of the solution to give a mechanically flat surface (Hames and 

Rickwood, 1990). 

Polymerisation of acrylamide gel can be initiated either by a chemical peroxide or 

by a photochemical method. The most common method uses ammonium 



CHAPTER 1 – INTRODUCTION 

Isa Nobre da Cruz 33 

persulphate as the initiator peroxide and the quaternary amine, N,N,N’,N’-

tetramethylethylenediamine (TEMED) as the catalyst (Instruments, 1994). 

Rapid polymerisation of acrylamide can generate too much heat, causing 

convection inconsistencies in the gel structure and occasionally breaking glass 

plates. This is a particular problem for high concentration gels. To prevent excessive 

heating, the concentration of initiator-catalyst reagents should be adjusted so that 

complete polymerisation requires 20 to 60 minutes (Hames and Rickwood, 1990). 

SDS-PAGE 

In SDS polyacrylamide gel electrophoresis (SDS-PAGE) separations, migration is 

determined by molecular weight. Sodium dodecylsulfate (SDS) is an anionic 

detergent that denatures proteins by wrapping around the polypeptide backbone. 

In so doing, SDS confers a net negative charge to the polypeptide in proportion to 

its length. When treated with SDS and a reducing agent, such as dithiothreitol (DTT), 

the polypeptides become rods of negative charges with equal ‘charge densities’ or 

charge per unit length (Alberts et al., 2002). 

SDS-PAGE can resolve complex mixtures into hundreds of bands on a gel. The 

position of a protein along the lane gives a good approximation of its size, and, after 

staining, the band intensity is a rough indicator of the amount present in the 

sample. The ability to estimate size and amount of a protein leads to the various 

applications of SDS-PAGE: estimating purity and level of expression, 

immunoblotting, preparing for protein sequencing, and generating antibodies 

(Instruments, 1994). 

Native-PAGE 

Native-PAGE is an electrophoretic technique that is performed under non-

denaturing conditions, i.e. in the absence of denaturing agents such as SDS, DTT and 

heat, unlike what happens in SDS-PAGE. Proteins in their denatured state assume a 

primary, linear structure, making it impossible to study conformational changes.  
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In native-PAGE, proteins keep their original structure and are separated on the basis 

of their size, shape and charge. While native-PAGE does not provide direct 

measurement of molecular weight, the technique can provide useful information 

about protein charge, conformation, self-association or aggregation, and the 

binding of other proteins or compounds. Since the protein retains its folded 

conformation, its size and mobility on a native gel will also vary with the nature of 

this conformation; more compact conformations will show higher mobility and 

larger structures will move slower (Robyt and White, 1987). 

2D-PAGE 

For many years there has been an increasing awareness of the limitations of one-

dimensional electrophoretic separations for the analysis of complex protein 

mixtures. Proteins that have been resolved into perhaps 35 bands in a one-

dimensional gel run may be further resolved into hundreds of components when 

separated in the second-dimension run (Gorg et al., 2000). 

Since the recognition of the importance of 2D gel electrophoretic methods a great 

deal of work has been carried out to refine both the methodology of the separation 

technique itself and, equally important, to improve the analysis of two-dimensional 

gels. There has been increasing emphasis on the separation and characterisation of 

polypeptides on the basis of their isoelectric point and molecular mass. Gels have 

tended to become smaller and staining methods more sensitive thus allowing the 

analysis of much smaller samples (Hames and Rickwood, 1990). 

All two-dimensional methods should be designed so that the polypeptides are 

separated on the basis of a different molecular property in each dimension. The 

commonest two-dimensional electrophoresis method for analysing mixtures of 

polypeptides is to separate the proteins in the first dimension on the basis of charge 

(isoelectric point) by isoelectric focusing and then to separate the polypeptides in 

the second dimension in the presence of SDS (SDS-PAGE) which, in most cases, gives 

a separation primarily on the basis of molecular weight of the polypeptides 

(O'Farrell, 1975). 
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One of the key problems of working with two-dimensional gels is the analysis and 

comparison of what can be very complex patterns that vary in only a relatively small 

area of the gel. Analysis of two-dimensional gels in its simplest form can be carried 

out by superimposing one photographic image over another. However, better 

results can usually be obtained by computer analysis of the gels. Although two-

dimensional gel electrophoresis is a very powerful technique it is by no means 

infallible. Even after two-dimensional gel electrophoresis, some proteins may 

comigrate because either they are very similar proteins or because they are bound 

together very tightly. In addition, it is possible for protein mixtures to appear more 

heterogeneous than they really are as a result of artefactual changes during the 

preparation of the sample (Hames and Rickwood, 1990). Still, it is a remarkably 

sensitive and reproducible method and a valuable research tool (Westermeier et al., 

2008). 

The method of sample preparation depends on the aim of the research and is 

fundamental to the success of the experiment. Factors such as the solubility, size, 

charge, and isoelectric point (pI) of the proteins of interest enter into sample 

preparation. Sample preparation is also important in reducing the complexity of a 

protein mixture. The protein fraction to be loaded on a 2D-PAGE gel must be in a 

low ionic strength denaturing buffer that maintains the native charges of proteins 

and keeps them soluble (Bjellqvist et al., 1993). 

Isoelectric Focussing 

Proteins are charged molecules made up of amphoteric amino acids, which make 

them act as both acids and bases, depending on the pH of the local environment. 

Proteins often contain charged prosthetic groups such as phosphate or modified 

sugars. The net charge of a protein is the sum of the negative and positive charges 

on the molecule. For every protein, there is a pH at which its net charge is zero. This 

represents the isoelectric point (pI) of the protein (Instruments, 1994). 

Proteins show considerable variation in pI, although pI values usually fall in the 

range of pH 3-12, with the majority falling between pH 4 and pH 7. A protein is 

positively charged in solution and is forced toward the cathode at pH values below 
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its pI. On the other hand, a protein is negatively charged and is driven toward the 

anode at pH values above its pI (Garfin and Heerdt, 2001). 

When a protein is placed in a medium with a pH gradient and subjected to an 

electric field, it will initially move toward the electrode with the opposite charge. 

During migration through the pH gradient, the protein will either pick up or lose 

protons and its net charge and mobility will decrease and the protein will slow 

down until it reaches the pH equal to its pI. There, being uncharged, it will stop 

migrating. Factors that affect the pI of a protein include ionic strength, cofactors, 

temperature, and native or denaturing conditions. The sum of these factors results 

in a unique migration termination point (i.e., pI) that is visualised in a gel as a 

sharply focused band. Isoelectric focusing is the method used to accomplish this 

separation (Figure 1.3) (Garfin and Heerdt, 2001, Instruments, 1994). 

 

 

 

 

 

 

Figure 1.3 Isoelectric focussing of proteins. 
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Thin gels made of either agarose or polyacrylamide are used as the support matrix 

for the migration and focusing (Instruments, 1994). Proteins are separated in the 

first dimension using slab gels, which have the advantage of all the samples being 

separated in the same gel and thus under identical conditions giving more 

reproducible separations. Irrespective of the format of the gel chosen for the first 

dimension, it is essential that the gel is sufficiently strong to withstand the 

manipulations required in preparing it for the second dimension (Hames and 

Rickwood, 1990). Charge-carrying molecules, either carrier ampholytes or 

acrylamido buffers, are mixed with the gel before pouring the gel and, in response 

to an electric field, establish the pH gradient in the gel (Instruments, 1994). 

More recently, many proteomics laboratories are using immobilized pH gradient 

(IPG) strips to performed 2D-PAGE. The IPG method has numerous advantages over 

the older method (Gorg et al., 2004). A stable, linear, and reproducible pH gradient 

is crucial to successful IEF. IPG strips offer the advantage of gradient stability over 

extended focusing runs (Bjellqvist et al., 1982). IPG strips are much more difficult to 

cast than carrier ampholyte gels (Righetti, 1990); however, they are commercially 

available in a wide variety of pH ranges. Use of broad-range strips (for example, pH 

3–10) allows the display of most proteins in a single gel, but with narrow-range and 

micro-range overlapping gradient strips, resolution is increased by expanding a 

small pH range across the entire width of a gel. Because proteins outside the pH 

range of the strip are excluded, more total protein amount can be loaded per strip, 

allowing more proteins to be detectable (Garfin and Heerdt, 2001). 

The transition from first-dimension to second-dimension gel electrophoresis 

involves two steps. The first step is the equilibration of the resolved IPG strips in 

SDS reducing buffer. This process reduces disulfide bonds and alkylates the 

resultant sulfhydryl groups of the cysteine residues. Simultaneously, proteins are 

coated with SDS for separation on the basis of molecular weight. On the second 

step the equilibrated IPG strips are placed on top of the second-dimension gel and 

fixed with molten agarose solution to ensure good contact between the gel and the 

strip (Westermeier et al., 2008). 
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Second dimension – SDS-PAGE 

Second-dimension separation is based on protein molecular weight, using SDS-PAGE 

(Figure 1.4). The proteins resolved in IPG strips in the first dimension are applied to 

second-dimension gels and separated by molecular weight perpendicularly to the 

first dimension (Garfin and Heerdt, 2001). 

The pores of the second-dimension gel sieve proteins according to size because SDS 

coats all proteins essentially in proportion to their mass. The net effect is that 

proteins migrate as ellipsoids with a uniform negative charge-to-mass ratio, with 

mobility related logarithmically to mass (Westermeier et al., 2008). 

 

 

 

 

 

 

Figure 1.4 SDS-PAGE separation of proteins. 

 

The choice for the SDS-PAGE second-dimension gel depends on the protein 

molecular weight range to be separated, as for SDS-PAGE. Single-percentage 

acrylamide gels generally give excellent resolution of sample proteins that fall 

within a narrow molecular weight range. On the other hand, gradient gels have 

some advantages: they allow proteins with a wide range of molecular weight to be 

analysed at the same time and the decreasing pore size along the gradient functions 

to sharpen the spots (Garfin and Heerdt, 2001). 
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also easier to keep cool during electrophoresis. It is extremely important to ensure 

efficient cooling of the gel in order to obtain distortion-free and reproducible gel 

patterns (Hames and Rickwood, 1990). 

The ability to run many gels at the same time and under the same conditions is 

important for the purpose of gel-to-gel comparison. 

Staining 

After the electrophoresis run is complete, the gel must be analysed qualitatively or 

quantitatively to answer analytical or experimental questions. Since most proteins 

and all nucleic acids are not directly visible, the gel must be processed to determine 

the location and quantity of the separated molecules (Instruments, 1994). 

The most common analytical procedure is staining. The choice of staining method is 

determined by several factors, including desired sensitivity, linear range, ease of 

use, expense, and the type of imaging equipment available. The sensitivity that is 

achievable in staining is also determined by a number of factors, such as the 

amount of stain that binds to the proteins; the intensity of the coloration; the 

difference in coloration between stained proteins and the residual background in 

the body of the gel. Unbound stain molecules can be washed out of the gels without 

removing much stain from the proteins (Garfin and Heerdt, 2001). 

All stains interact differently with different proteins. At present there is no ideal 

universal stain; no stain will stain all proteins in a gel in proportion to their mass. 

The only observation that seems to hold for most stains is that they interact best 

with basic amino acids. Sometimes proteins are detected after transfer to a 

membrane support by western blotting. For critical analysis, replicate gels should be 

stained with two or more different stains (Garfin and Heerdt, 2001). 

Proteins are usually stained with Coomassie Brilliant Blue in a fixative solution, or, 

after fixation, with silver by a photographic-type development. Once the gel is 

stained, it can be photographed or dried on a transparent backing for a record of 

the position and intensity of each band (Instruments, 1994). 
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Coomassie blue staining 

Coomassie Brilliant Blue R-250 appears to stain the broadest spectrum of proteins 

and is the most common stain for protein detection in polyacrylamide gels. 

Coomassie Brilliant Blue R- 250 and G-250 are wool dyes that have been adapted to 

stain proteins in gels (Garfin and Heerdt, 2001). Coomassie Blue staining is able to 

detect about 1 μg of protein in a normal band. This staining method is based on 

non-specific binding of Coomassie Blue dye to proteins. Separated proteins are 

simultaneously fixed and stained in the gel, and then destained to remove the 

background prior to drying and photographing. The proteins are detected as blue 

bands on clear background. Absolute sensitivity and staining linearity depend on 

the proteins being stained (Instruments, 1994). 

Silver staining 

The silver stain systems are about 100 times more sensitive than Coomassie Blue 

staining, detecting about 10 ng of protein. Silver staining is based on binding of 

silver ions to sulfhydryl and carboxyl groups of the separated proteins. After 

electrophoresis, the proteins are fixed, exposed to silver nitrate, and developed to 

form a black precipitate of silver. The degree of development of the protein bands 

can be controlled with the amount of time the gel is exposed to the developer 

(Blum et al., 1987). 

There are also some fluorescent stains for proteins, such as the SYPRO Ruby 

fluorescent staining, which is an endpoint stain with little background staining, it is 

sensitive and easy to use. This protein stain is sensitive to 1-10 ng, it is compatible 

with mass spectrometry and allows detection of proteins that are not stained well 

by other stains. Though, in order to visualise the proteins, specific equipment is 

required: UV or blue-light transilluminators (Garfin and Heerdt, 2001).  
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1.2.1.4.2 Mass spectrometry analysis 

Once interesting proteins are selected by differential analysis or other criteria, they 

can be excised from gels and digested to release peptides for detailed sequence 

analysis by MS, leading to protein identification. The ability to precisely determine 

molecular weight by MS and to search databases for peptide mass matches has 

made high-throughput protein identification possible (Wilkins et al., 1996). 

2D electrophoresis has the virtually unique capability of simultaneously displaying 

several hundred gene products. 2D gels are an ideal starting point for protein 

chemical identification and characterisation. Peptide mass fingerprint or sequence 

data can be derived following 2D electrophoresis with MS or amino acid sequence 

analysis (Ducret et al., 1996). The sensitivity of currently available instruments 

makes 2D electrophoresis an efficient ‘preparative’ analytical method. Most current 

protein identification depends on MS of proteins excised from gels or blots (Wilkins 

et al., 1996). 

One of the most used methods to characterise biopolymers is the determination of 

molecular weight. Before the 1980s, the techniques that used to provide this 

information were electrophoresis, chromatography or ultracentrifugation and the 

results obtained were not very precise, because these methodologies depended 

also on characteristics other than the molecular weight, such as conformation and 

hydrophobicity. Therefore, the only chance of knowing the exact molecular weight 

of a macromolecule was its calculation based on the chemical structure (Hoffmann 

and Stroobant, 2007). 

Ionisation methods 

The development of MS, particularly the desorption ionization methods, allowed a 

first breakthrough for MS in the field of biomolecular analysis. In the 1990s, two 

new ionization methods, which were capable of analysing high-mass singly charged 

ions with good sensitivity and resolution, were developed and continue to 

revolutionise the role of MS in biological research. These methods are the 

electrospray ionization (ESI) (Fenn et al., 1989) and the matrix-assisted laser 
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desorption/ionization (MALDI) coupled to time-of-flight (TOF) analysers (Karas and 

Hillenkamp, 1988) and they allow the high-precision analysis of biomolecules of 

very high molecular weight (Hoffmann and Stroobant, 2007). 

Mass analysers 

There are four basic types of mass analyser currently used in proteomic research. 

These are ion trap, TOF, Q and Fourier Transform ion cyclotron analyser. 

MS/MS combines two mass analysers and a collision cell to collect structural 

information for individual peptides. In this method, the first mass analyser acts to 

scan all the precursor ions from the ionisation source. The spectrum is used to 

select those ions of a particular m/z value. Such ions can be isolated and are 

dissociated by a process known as collision-induced dissociation (CID). CID 

energetically activates ions to dissociate. The selected ions enter a collision cell and 

are subjected to low energy collisions with neutral gas atoms, such as argon or 

nitrogen. As the ions become excited, covalent bonds fragment in a predictable 

manner. The fragmentation process predominates primarily along the mass 

spectrometer (Smith et al., 2006). 

A TOF instrument is one of the simplest mass analysers. The m/z value is measured 

by determining the time required for the ions to traverse the length of the flight 

tube and strike a detector. Some TOF mass analysers include an ion mirror at the 

end of the flight tube, which reflects ions back through the flight tube to a detector. 

In this way, the ion mirror serves to increase the length of the flight tube. The ion 

mirror also corrects for small energy differences among ions. Both of these factors 

contribute to an increase in mass resolution (Graves and Haystead, 2002). 

In recent years, several hybrid mass spectrometers have emerged from the 

combination of different ionisation sources with mass analysers. One example is the 

Q-TOF mass spectrometer. In this machine, the first Q and the Q collision cell of a 

triple-Q instrument have been combined with a reflector TOF section for measuring 

the mass of ions (Aebersold and Mann, 2003). 



CHAPTER 1 – INTRODUCTION 

Isa Nobre da Cruz 43 

Ions pass through the mass analyser and are detected by an instrument, such as an 

electron multiplier, and the magnitude of current produced at the detector is used 

to determine the m/z value of the ion. MS data are recorded as spectra, which 

display ion intensity versus their m/z value. 

This feature allows large analytes, such as proteins, to be measured in a mass 

analyser within a limited mass range. Current ESI-TOF instruments are able to 

measure proteins up to 80 kDa with 100-400 ppm mass accuracy by surveying only 

a mass range from 0-5000 m/z (Smith et al., 2006). 

Applications of MS 

MS has become one of the most extensively used analytical techniques in the life 

sciences, able to analyse different classes of biomolecules, such as peptides, 

proteins, nucleic acids, oligosaccharides and lipids (Siuzdak, 2003, Burlingame, 

2005). It not only allows the precise determination of the molecular mass of 

peptides and proteins but also the determination of their sequence, especially if 

used with tandem mass techniques. Sequence information resultant from peptides 

and proteins fragmentation can be used for protein identification, de novo 

sequencing, and identification and localisation of post-translational or other 

covalent modifications (Aebersold and Mann, 2003). 

In the study of peptides and proteins the most commonly used ionization methods 

are ESI and MALDI, both capable of forming stable ions and no fragments. ESI 

produces multiply charged ions, which allow the detection of large molecules with 

conventional mass spectrometers such as quadrupole, ion trap and magnetic 

instruments. Its detection limit depends on several factors, for example the nature 

of the sample, its preparation and purity, the instrument used and the skill of the 

operator. The detection limit for peptides and proteins is situated between 

femtomoles and picomoles (Hoffmann and Stroobant, 2007).  
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Limitations of MS 

Concentration of the sample and complexity of the contaminants are two factors 

that play an important role in both sensitivity and the mass accuracy. Biological 

samples are often diluted solutions of peptides or proteins containing a great 

number of contaminants. These two problems, dilution and contaminants, are not 

easy to handle, particularly when the total amount of sample is low, such as 

picomoles. These contaminants can reduce the abundance of the ions from the 

compound of interest or even totally suppress them. They can also result in the 

formation of adduct ions, further reducing the sensitivity by distribution of the ion 

current over various species and they may complicate or reduce the accuracy of the 

molecular mass determination (Hoffmann and Stroobant, 2007). The low 

concentration of the compound of interest is also an important problem in 

biological samples, because it has a marked influence on the observed spectra. The 

volumes needed for the analysis are very low, in the microliter range, and only part 

of it is actually consumed during the analysis (Siuzdak, 2003). 

In order to minimise these problems, a separation method should be used for both 

purification and separation of the sample. The classical method for peptides and 

proteins is a reverse-phase liquid chromatography preparation of the sample before 

the MS analysis. The use of separation methods on-line with the mass spectrometer 

are often preferred. The most frequent separation methods coupled to electrospray 

ionization/mass spectrometry (ESI-MS) are micro- or nano-HPLC systems (Siuzdak, 

2003). 

1.2.1.4.3 Global bioinformatics 

Mass spectrometry data 

MS can generate two types of data, which can be used for protein identification. A 

characteristic mass spectrum is known as a peptide mass fingerprint, which is a list 

of masses for the peptides in a sample. The peptide fingerprint obtained is 

compared with the predicted masses of peptides from the theoretical digestion of 

all proteins in a database. If enough peptides from the real mass spectrum and the 
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theoretical spectrum match in mass, the protein can be identified. Unfortunately, a 

single peptide is rarely unique to one protein, thus several peptides (more than 

three) that are derived from the same protein are typically required for 

identification. PMF is currently a method of choice for identification, because it 

combines a conceptually simplistic approach with robust high-throughput 

instrumentation (usually MALDI-TOF MS). 

Unfortunately, there are several limitations in technique application. Peptide mass 

redundancy results in ambiguity of protein identification. Post-translationally 

modified proteins also reduce the success of PMF, since peptides from a modified 

protein will not match the masses of the peptides from the unmodified protein in 

the database. The presence of contaminants, such as keratin and peptides from the 

autolysis of trypsin, may also be problematic. Moreover, not all proteins are able to 

be identified by PMF alone. The full lengths of a large percentage of human proteins 

are not represented in databases. In addition, small proteins may not yield a 

sufficient number of peptides from the tryptic digest, which leads to an ambiguous 

identification. In such cases, it is preferable to subject selected ions to further 

fragmentation, which can provide the amino acid sequence of the peptide. 

The amino acid sequence for a specific peptide can be deduced by MS/MS. A higher 

level of confidence can be assigned to protein identification when searching 

databases with MS/MS data (Smith et al., 2006). 

Database searching 

The goal of database searching is to be able to quickly and accurately identify large 

numbers of proteins. The success of database searching depends on the quality of 

the data obtained in the mass spectrometer, the quality of the database searched 

and the method used to search the database. 

The most specific type of database searching for protein identification uses peptide 

amino acid sequence. If the amino acid sequence of a peptide can be identified, it 

can be used to search databases to find the protein from which it was derived. One 

method which uses this information is peptide mass tag searching. In this method, a 
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partial amino acid sequence is obtained by interpretation of the MS/MS spectrum 

(the sequence tag). That information is combined with the mass of the peptide or 

the masses of the peptides on either side of the sequence tag, when the sequence 

is not known. Also included in the search is the type of protease used to produce 

the peptides.  

In addition, one of the biggest advantages of using MS/MS to obtain peptide amino 

acid sequence is that, unlike PMF, it is compatible with protein mixtures (Graves 

and Haystead, 2002). The major disadvantage of performing MS/MS is that the 

process is not easily automated. 

MS is the most efficient way to identify proteins. This is achieved by comparison of 

the data obtained from the MS with those predicted for all the proteins contained 

in a database. The efficiency of the method results from the development of MS 

into a rapid and sensitive method to analyse peptides and proteins and also from 

the availability of larger and larger databases (Lin et al., 2003, Kolker et al., 2006). 

The widely used strategy for protein identification is depicted in Figure 1.5. In this 

strategy, the protein is cleaved using an enzyme such as trypsin and the mixture 

then is analysed by MS to obtain the molecular masses of the largest possible 

number of peptide sequences resulting from MS/MS. In this approach, based on 

MS/MS, the observed masses of fragment ions are compared with those expected 

for the various proteolytic peptides deduced from each protein contained in the 

database. This method uses the SEQUEST or MASCOT algorithms for this 

comparison and is called peptide fragmentation fingerprinting (PFF). The partial 

sequence information that is contained in a tandem mass spectrum of a peptide is 

more specific than the information based on the precise molecular mass of this 

peptide. In fact, two peptides with the same amino acid contents but different 

sequences have the same molecular mass but different fragmentation patterns 

(Hoffmann and Stroobant, 2007).  
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Figure 1.5 Protein identification by MS/MS. [A] Proteins from Plasmodium falciparum were resolved 
on a one-dimensional gel electrophoresis (1-DE), excised and in-gel digested with trypsin. The 

resulting peptides were ionised by ESI and analysed by a Q-TOF mass spectrometer. [B] The MS 
spectrum produced was scanned and a parent ion of 678.8 was selected for fragmentation. 

Enlargement of the parent ion peak at 678 is shown. [C] A mass difference between the peaks of 0.5 
Da indicates that the peptide is doubly charged. [D] MS/MS scan of the 678 parent ion and analysis 

of the daughter ions produced. All y-ions (except for y-11) produced from fragmentation of the 
peptide are shown. [E] Identification of rhoptry-associated protein-2 using BioAnalyst software. 

(Graves and Haystead, 2002) 
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1.2.2 Target validation 

Target validation is a crucial step in the drug discovery process and has been 

proposed as the major reason for the later failure of drug candidates. Most drugs 

are inhibitors that block the action of a particular protein target. However, the only 

way to be completely certain that a protein is instrumental in a given disease is to 

test the hypothesis in humans. Though, for obvious reasons such clinical trials 

cannot be used for initial drug discovery, which means that a potential target must 

undergo a validation process (Metcalf and Dillon, 2006). 

1.2.2.1 Methods of target validation 

Computer models are a fast, relatively cheap choice for initial screening of both 

targets and potential drugs. These models usually focus on how the two types of 

candidate structures interact with each other. Another route to target validation 

hinges on disrupting gene expression to reduce the amount of the corresponding 

protein, and so identify the physiological role of the target. However, one 

disadvantage of doing target validation at the genetic level is that many genes 

produce several different proteins with different functions. Proteomics overcomes 

this drawback, making it easier to distinguish and target just one specific form of a 

protein (Metcalf and Dillon, 2006). 

Western blotting is a widely used technique for the detection and analysis of 

proteins based on their ability to bind to specific antibodies. It was first described by 

Towbin et al. in 1979 and has since become one of the most commonly used 

methods in life science research. This technique is accomplished rapidly, using 

simple equipment and inexpensive reagents, which makes it a good option for 

target validation. The specificity of the antibody-antigen interaction enables for a 

target protein to be identified in the midst of a complex protein mixture (Mahmood 

and Yang, 2012). 
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1.2.3 Assay development 

Once a biological target for drug discovery has been validated, an assay format 

needs to be developed. The aim of the assay is to enable characterisation of novel 

compounds and obtain potency of these compounds against the target in question. 

With the information gained from the potency assays and using similar clusters of 

compounds, structure activity relationships (SAR) can be determined. This will drive 

the production of future lead compounds for the target and further optimisation. 

1.2.3.1 Methods for assay/screen development  

The type of assay format to use has to be carefully determined depending on a 

variety of factors. The primary factor is the choice of target itself and the type of 

activity that is required to be measured. Another factor in assay choice depends on 

the number of compounds that will be screened. Libraries of compounds can vary 

from tens to millions of compounds, particularly within big pharmaceutical 

companies (Sittampalam et al., 2004, Vogel, 2002). 

Before an assay can be used in a screening method, it has to be proven to be 

sensitive with respect to the target, for example known inhibitors have to show 

reproducibility to literature values. Kinetic parameters have to be determined to 

ensure that the assay is functioning correctly. The assay should have a robust signal 

change to enable detection of activity, when compared to background noise. It has 

to be stable to allow practicable numbers of compounds to be tested within a set 

timeframe. The cost of the reagents required is also an important factor, combined 

with the consumption of the target protein, which can be very time consuming and 

costly to produce and purify. All these factors have to be balanced when 

determining the most suitable assay format to use (Sittampalam et al., 2004). 

There are many different types of assay format available, such as biophysical, 

biochemical and cell based assays. Typically multiple assay formats are combined 

together to build a screening sequence or cascade. The types of technology and 

techniques used for assay development vary considerably, with examples including 

fluorescent, luminescent, radioactive and absorbance methods (Vogel, 2002).  
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1.3 General Aims & Objectives 

The general aims of this project were to develop, optimise and apply method 

approaches capable of aiding target identification, validation and assay 

development, in order to discover novel protein targets directly related to disease 

and screen inhibitors of known protein targets. 

With these aims in mind, the first objectives were to understand the importance of 

proteomics in research, recognise its different applications in biomarker and target 

discovery and know various techniques frequently used in proteomic studies. These 

were followed by the development and optimisation of the proteomic method of 

choice: a 2D-PAGE protein separation proceeded by identification by LC-MS/MS and 

database searching. Another objective of this project was to acknowledge the use of 

Western blotting as a validation method for protein targets and biomarkers. 

Furthermore, this project also aimed to appreciate the need for a continuous assay 

development as a powerful tool in the drug discovery process. As a result, the 

development and optimisation of a robust and reliable screening assay for inhibitors 

of a widely recognised protein target in cancer research was another objective of 

this project. The optimised method approaches would, therefore, be applied to the 

following research purposes: 

– Elucidation of a focused subsection of the proteome hypothetically relevant to 

mammalian reproduction, using a glycomimetic affinity-enrichment proteomic 

strategy applied to the study of mouse testis tissue; 

– Identification of protein targets of chemoresistance in ovarian cancer by 

comparison of the protein expression profile of sensitive and resistant human 

ovarian cancer cell lines and tissues; 

– Development of a screening assay for the functional characterisation of Heat 

Shock Protein 90 targeted compound. 
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This chapter includes a detailed description of all the major techniques utilised in 

the different studies presented. Optimisation and troubleshooting strategies for 

sample preparation and methods of protein separation, visualisation and 

identification can be found in Appendix. 

2.1 Chemicals and reagents 

Chemicals and reagents were purchased as mentioned below, unless stated 

otherwise in the methods description. The source of all the equipment used in the 

following experiments is specified after each one of them in the descriptions ahead. 

Tris, urea, DTT, Triton X-100, glycerol, bromophenol blue, iodoacetamide, 

acrylamide/bisacrylamide, SDS, ammonium persulphate, TEMED, agarose, 

trichloroacetic acid, acetic acid, sodium thiosulphate, silver nitrate, formaldehyde, 

EDTA disodium salt, glycine, sodium chloride (NaCl), Tergitol-type NP-40 (NP-40), 

phenylmethanesulfonyl fluoride (PMSF), aprotinin, leupeptin, sodium 

orthovanadate (Na3VO4) and sodium cholate were purchased from Sigma-Aldrich 

(UK). CHAPS, methanol, ethanol, acetone, sodium carbonate, formic acid, water, 

hydrochloric acid and acetonitrile were from Fisher Scientific (UK). Thiourea, 

ampholytes solution and ammonium bicarbonate were obtained from Fluka (UK). 

All solvents used for mass spectrometry analysis were HPLC grade. The water used 

in all the experiments was ultrapure water.  



CHAPTER 2 – MATERIALS & METHODS 

Isa Nobre da Cruz 53 

2.2 Biological samples 

Several different types of biological samples were used in the various experiments 

performed. 

On a first stage, canine liver and lung tissues were used to develop and optimise the 

2D-PAGE method. Normal and tumour tissue pairs from the same animal were 

collected during biopsy by Dr. Stephen Baines’ group at The Royal Veterinary 

College, University of London. Tissue samples were snap frozen in liquid nitrogen. 

Upon arrival, samples were weighted and randomly cut into 100 mg portions, which 

were stored at -80 °C until used. 

For the proteomics study of infertility, mouse testes from C57BL/6 male mice aged 

8-10 weeks were obtained with the help of Dr. Schatzlein’s group. Mice were 

sacrificed by elevating CO2 concentration. All animal studies were performed in 

accordance with the UK Home Office Animals (Scientific Procedures) Act 1986. 

Mouse testes were dissected and immediately frozen in liquid nitrogen until further 

use. 

Ovarian cancer cells and tissue protein samples were kindly supplied by Dr. Helen 

Coley from the Faculty of Health and Medical Sciences, University of Surrey, for the 

proteomics study of ovarian cancer. The parental ovarian cancer cell line model 

PEO1 was used as drug sensitive reference cell line. Novel drug resistant models, 

derived from the parental line, with in vitro acquired resistance to paclitaxel (taxol) 

– PEO1 TaxR – and carboplatin – PEO1 CarbR – were used alongside their respective 

drug sensitive parental counterparts. The ovarian tissues – SOV-1, SOV-2, SOV-3, 

SOV-4, SOV-5 – represented 5 different patients, 4 of which were diagnosed with 

ovarian cancer and 1 suffered from endometriosis, a benign gynaecologic condition. 

For the functional characterisation of Hsp90 targeted compounds, human Caucasian 

breast adenocarcinoma (MCF-7) cells were obtained from the European Collection 

of Cell Cultures (ECACC), cultured and treated with Hsp90 inhibitors by Dr. 

Schatzlein’s group from the Department of Pharmaceutical and Biological Chemistry 

of the UCL School of Pharmacy.  
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2.3 Sample preparation 

Sample preparation is one of the most important steps of every method. It refers to 

the ways in which a sample is treated prior to its analysis, in order to isolate the 

analyte from other interfering species and to prepare it for the technique being 

used. In biochemistry, sample preparation involves extraction and purification or 

concentration of proteins prior to their separation and further analysis. The method 

of protein extraction depends on the type of biological sample used and is different 

whether the proteins are extracted from mammalian cells or mammalian tissues. In 

turn, the method of purification or concentration depends upon the level of protein 

purity required, the complexity of the sample and the type of contaminants 

present, as well as on the compatibility of the solvent or buffer system with the 

subsequent techniques (Westermeier et al., 2008). The following sections include a 

few techniques frequently used in sample preparation for protein analysis. 

2.3.1 Protein extraction from mammalian cells 

Prior to the extraction of proteins from mammalian cell lines, cells were harvested 

from the cell culture flasks. Cell harvesting and protein extraction procedures are 

described below. 

2.3.1.1 Cell harvesting 

Cell confluence was checked using a light microscope before harvesting. The growth 

medium was aspirated and the cell monolayer was rinsed twice with phosphate-

buffered saline (PBS, Oxoid, UK). Cells were harvested by trypsinization with 0.05 % 

Trypsin-EDTA solution (Gibco, Invitrogen, UK) by adding the trypsin solution and 

incubating at 37 °C for a few minutes. Alternatively, cells can be scraped using a 

sterile plastic scraper with washing of the slurry using PBS. The trypsin solution was 

neutralised with complete tissue culture medium and cells were collected into 1.5 

mL sterile microfuge tubes. Cells were pelleted by centrifugation at 13,000 rpm for 

10 min at room temperature in a Technico Maxi centrifuge (Fisher Scientific, UK). 
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Supernatants were discarded and pellets were washed 3 times with ice cold PBS, 

before being stored dried at -80 °C until further use. 

2.3.1.2 Protein extraction from mammalian cells – Method 1 

Stored dried pellets were thawed and resuspended in 200 μL lysis buffer (50 mM 

Tris-HCl pH 8.3; 0.5 % SDS) containing protease inhibitor cocktail (Amersham 

Biosciences, UK). The cellular mixtures were boiled for 10 min at 100 °C and spun at 

13,000 g for 30 min at 4 °C in a Biofuge Fresco centrifuge (Heraeus, UK). The 

supernatants with dissolved proteins were transferred to clean microfuge tubes and 

protein concentrations of cell lysate samples were determined. 

2.3.1.3 Protein extraction from mammalian cells – Method 2 

Stored dried pellets were defrosted and homogenised in 200 μL lysis buffer (50 mM 

Tris-HCl pH 7.5, 150 mM NaCl, 1 % NP-40, 0.2 % SDS, 1 mM PMSF, 10 μg/mL 

aprotinin, 10 μg/mL leupeptin, 1 mM sodium orthovanadate (Na3VO4); lysis buffer 

should be freshly prepared each time and used within approximately 30 min), 

disaggregating the pellets using the pipette tip and leaving on ice for 10 min. Cells 

were further lysed using a 23 gauge needle or using a tip sonicator, holding the tube 

in ice and avoiding excessive frothing. Cell lysates were left on ice for a further 20-

30 min. Tubes were spun down at 500 g for 10 min at 4 °C to remove nuclei and 

unbroken cells and the supernatants were transferred to fresh tubes and labelled 

appropriately. Protein concentrations of the whole cell lysate samples were 

determined lysates were stored at -80 °C until further use. 

2.3.2 Protein extraction from mammalian tissues 

Proteins were extracted from mammalian tissues using distinct extraction methods, 

depending on the animal and tissue type under study. 
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2.3.2.1 Protein extraction from canine lung and liver tissues 

Approximately 100 mg of normal lung/liver and tumour lung/liver tissues were 

homogenised separately using an Ettan sample grinding kit (Amersham Biosciences, 

UK). Samples were firstly washed with extraction solution (40 mM Tris-HCl, pH 8.0) 

to remove blood. After removing as much of the liquid as possible from the grinding 

resin pellet by centrifugation at 14,000 rpm, samples were put into contact with the 

grinding resin and homogenised in 200 μL of extraction solution (40 mM Tris-HCl, 

pH 8.0) containing Ettan protease inhibitor mixture (EDTA-free, Amersham 

Biosciences, UK), using a pestle to thoroughly grind the samples for about 20 min. 

Samples were vortex mixed and incubated for 30 min on ice. Lysis buffer (100 μL; 

9.5 M urea, 4 % CHAPS, 5 mM DTT, 0.1 % Triton X-100) was added thereafter and 

samples were homogenised and incubated for 1 h on ice, followed by centrifugation 

to remove resin and cellular debris at 13,000 g for 30 min at 4 °C in a Biofuge Fresco 

centrifuge (Heraeus, UK). Supernatants were carefully transferred to clean tubes 

and stored at -80 °C until further use. 

2.3.2.2 Protein extraction from mouse testis tissues 

Mouse testis tissue (161.6 mg) was homogenised with a sample grinding kit 

(Amersham Biosciences, UK), using one grinding tube per 100 mg of tissue sample. 

The grinding tubes were briefly centrifuged at maximum speed to pellet the 

grinding resin and the liquid was removed from the grinding resin pellet. Each piece 

of solid tissue of up to 100 mg was placed into a 1.5 mL tube and washed with cold 

PBS, after which it was transferred to a grinding tube. Testis tissue was 

homogenised in 1 mL PBS containing 0.5 % sodium cholate and 1 % protease 

inhibitor (Amersham Biosciences, UK), using a pestle to thoroughly grind the sample 

for 15 to 60 min on ice. Tissue homogenates were lysed by 3 cycles of 

freeze/thawing (dry ice/37 C). In order to remove insoluble materials, 

homogenates were spun at 13,000 g for 20 min at 4 C in a Biofuge Fresco 

centrifuge (Heraeus, UK). Supernatants were collected and transferred to clean 

tubes. Solubilised proteins were loaded on to the affinity columns immediately. 
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2.3.2.3 Protein extraction from human ovarian tissues 

Ovarian tissues were individually weighed and washed with 40 mM Tris-HCl, pH 8.0 

to remove excess blood. Tissue samples were cut into 2-5 mm pieces, which were 

placed into microfuge tubes on ice and a suitable volume of modified lysis buffer 

(9.5 M urea, 4 % CHAPS, 0.1 % Triton X-100, 5 mM DTT) containing protease 

inhibitor cocktail (Amersham Biosciences, UK) was added to each tube. Tissues were 

homogenised using steal beads in a TissueLyser (Qiagen, UK) for 2 x 2 min at a 

frequency of 30.0 cycles 1/s. After homogenisation, tissue lysates were transferred 

to clean tubes, followed by centrifugation to remove cellular debris at 13,000 g for 

30 min at 4 °C in a Biofuge Fresco centrifuge (Heraeus, UK). The supernatants were 

carefully transferred to other tubes and stored at -80 °C until further use. 

2.3.3 Determination of protein concentration 

Protein concentrations of all cell and tissue lysate samples were determined using 

the RCDC Protein Assay Kit (Bio-Rad, UK). Bovine plasma γ-globulin (Bio-Rad, UK) 

was used as standard and serial dilutions were prepared from the initial stock 

concentration of 1.5 mg/mL, using the same buffer as for the samples, in order to 

build a standard curve. A blank without protein was prepared in parallel with the 

samples for instrument calibration. The assay was performed in triplicate and in 

accordance to the manufacturer’s instructions. 

Briefly, an aliquot of 25 μL of each standard and sample was added to 125 μL of RC 

reagent I and the mixture was homogenised. After 1 min incubation at room 

temperature, 125 μL of RC reagent II were added to each tube and the mixture was 

homogenised again. Mixtures were centrifuged at 14,000 rpm for 5 min and the 

supernatants were discarded. Reagent A’, prepared by adding 5 μL of DC reagent S 

to each 250 μL of DC reagent A that would be needed for the run, was used to 

resuspend the pellets. A volume of 127 μL of that reagent was added to standards 

and samples, and the mixtures were vortex mixed and incubated at room 

temperature for 5 min, or until precipitate was completely dissolved. 
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Finally, and after homogenising the mixtures once again, 1 mL of DC reagent B was 

added to each tube and vortex mixed immediately, followed by incubation at room 

temperature for 15 min. Absorbance values were measured at 750 nm in a 

spectrophotometer (Biochrom Libra S22), and the linear regression and protein 

concentrations calculated using Excel 2007. 

2.3.4 Protein precipitation 

For protein precipitation, two different approaches were followed, although they 

share some common points. The detailed procedures are presented below. 

2.3.4.1 Trichloroacetic acid and acetone precipitation of proteins 

Prior to 2D-PAGE, samples were subjected to treatment with trichloroacetic acid 

(TCA) in order to remove contaminants and concentrate proteins of interest. 

Samples were thawed and mixed with 4 volumes of 20 % TCA. The mixtures were 

incubated on ice for 1 h and then centrifuged at 13,000 rpm for 10 min, at room 

temperature, to pellet the precipitate. TCA was removed and pellets were washed 

with 300 μL of 90 % ice cold acetone and centrifuged at 13,000 rpm for a further 10 

min, at room temperature. Acetone was then removed. This washing/centrifugation 

step was repeated to completely remove TCA and, finally, pellets were allowed to 

air-dry. 

2.3.4.2 2D clean-up kit 

In alternative to trichloroacetic acid and acetone precipitation of proteins, before 

2D-PAGE, cell and tissue lysates were pre-treated with the ReadyPrep 2-D Clean Up 

Kit (Bio-Rad, UK) to remove contaminants, such as salts, lipids, carbohydrates and 

nucleic acids, and concentrate proteins. Protein samples (50 μg) were transferred to 

1.5 mL microfuge tubes and distilled water was added to obtain a final volume of 

100 μL per sample. 

Precipitation was started by adding 300 μL of precipitating agent 1, mixing well and 

incubating the protein samples on ice for 15 min. Then, 300 μL of precipitating 



CHAPTER 2 – MATERIALS & METHODS 

Isa Nobre da Cruz 59 

agent 2 were added to the mixtures and mixed well. Tubes were centrifuged at 

13,000 g for 5 min to form a tight pellet and, without disturbing the pellets, 

supernatants were removed and discarded. Tubes were centrifuged once again for 

a few seconds to collect any residual liquid at the bottom of the tubes, which was 

carefully discarded. Pellets were washed with 40 μL of wash reagent 1 and tubes 

were centrifuged for 5 min at 13,000 g. After removing and discarding the 

supernatants, 25 μL of distilled water were added on top of the pellets, which were 

quickly washed by vortex mixing. A volume of 1 mL of wash reagent 2, pre-chilled at 

-20 °C for at least 1 h, was added to the mixtures, followed by 5 μL of wash 2 

additive. Tubes were homogenised for 1 min and incubated at -20 °C for 30 min, 

during which mixtures were homogenised for 30 sec every 10 min. 

After the incubation period, tubes were centrifuged as before at 13,000 g for 5 min, 

the supernatants were discarded, and the centrifugation was repeated for a few 

seconds and any remaining wash was removed. Pellets were allowed to air-dry at 

room temperature for no more than 5 min and were resuspended in an appropriate 

volume of 2D rehydration buffer. 
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2.4 Methods of protein separation 

Depending on the aim of each study, proteins were separated according to one of 

the following electrophoretic methods: SDS-PAGE, native-PAGE and 2D-PAGE. Their 

procedures are described in the sections ahead. 

2.4.1 SDS-PAGE 

Samples were prepared by adding 1x SDS sample buffer (60 mM Tris-HCl pH 6.8, 2 % 

SDS, 10 % glycerol, 0.01 % bromophenol blue) (Laemmli, 1970) and 10 mM DTT to 

the protein samples previously diluted in distilled water. The concentration of 

sample in the solution should be such as to give a sufficient amount of protein in a 

volume not greater than the size of the sample well. Blanks were prepared in the 

same manner, but containing only 1x SDS sample buffer, 10 mM DTT and distilled 

water. All sample and blank mixtures were homogenised and incubated at 95 °C for 

10 min. Samples and blanks, as well as a molecular weight marker (Precision Plus 

Protein Standards, Bio-Rad, UK), were loaded into the wells of an SDS-

polyacrylamide gel prepared in advance. An example of the composition of a 10 % 

SDS-polyacrylamide gel is illustrated in Table 2.1. 

Table 2.1 Example of the composition of an SDS-polyacrylamide gel. Gel formed by a 10 % resolving 
gel and a 6 % stacking gel. Volumes used for the preparation of one gel. 

Components of the gel 10 % Resolving gel 6 % Stacking gel 

Distilled water 3.8 mL 2.9 mL 

40 % Acrylamides solution 2 mL 0.75 mL 

Resolving buffer 

1.5 M Tris-HCl pH 8.8 
2 mL ― 

Stacking buffer 

0.5 M Tris-HCl pH 6.8 
― 1.25 mL 

10 % SDS 80 μL 50 μL 

10 % Ammonium persulphate 80 μL 50 μL 

TEMED 8 μL 5 μL 

 8 mL 5 mL 

 

The resolving gel was prepared by pouring 4.5 mL of the resolving gel solution 

between two glass plates (spacer plate and short plate) fixed in a casting frame and, 
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immediately after, by adding distilled water on top of the gel to the top of the glass, 

and leaving it to set for 1 h. After this period of time, the overlaying water was 

drained off and the stacking gel solution was poured onto the top of the set gel. The 

comb was placed taking care not to form air bubbles, and the gel was left to set for 

30 min, after which it was ready to load. Precast gels, Mini-Protean TGX Precast Gel, 

any kD, 10-well comb, 30 μL/well (Bio-Rad, UK) were sometimes used as an 

alternative to handcast gels. 

After standing the gel vertically in the electrophoresis cell and filling the reservoirs 

with 1x Tris-Glycine-SDS running buffer (0.025 M Tris-HCl, 0.192 M glycine, 0.1 % 

SDS at pH 8.3; Bio-Rad, UK), 10 μL of each sample, blank and the molecular weight 

marker were loaded into the wells of the gel. Electrophoresis was then started and 

carried out using a Mini-Protean II Tetra Cell System (Bio-Rad, UK) at 40 V until the 

blue dye had reached the main gel, and then increased to 100-150 V until the dye 

front had reached the bottom of the gel. The migration of bromophenol blue, 

present in the sample buffer, was used to monitor the electrophoresis progress. 

2.4.2 Native-PAGE 

Two glass plates (spacer plate and short plate) per gel were thoroughly cleaned and 

dried, fixed in a casting frame and clamped in an upright, level position. The 

separating gel mixture was prepared as shown in Table 2.2, mixed gently and 

immediately poured into the glass chamber without generating air bubbles. As no 

stacking gel was used, the separating gel solution was poured until the top of the 

chamber and the well-forming comb was inserted. Gel was left to polymerise for 1 

h.  
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Table 2.2 Example of the composition of a native-polyacrylamide gel. Gel formed by an 8 % 
separating gel and no stacking gel. Volumes used for the preparation of one gel. 

Components of the gel 8 % Separating gel 

Distilled water 5.5 mL 

40 % Acrylamides solution 2 mL 

Resolving buffer 

1.5 M Tris-HCl pH 8.8 
2.5 mL 

Stacking buffer 

2.5 M Tris-HCl pH 6.8 
― 

10 % Ammonium persulphate 50 μL 

TEMED 10 μL 

 10 mL 

 

While the gel was polymerising, samples were prepared. Diluted protein samples 

were mixed with the same volume of 2x sample buffer (2.5 M Tris-HCl pH 6.8, 20 % 

glycerol, 0.02 % bromophenol blue), or dry samples were dissolved in 1x sample 

buffer. Blanks were prepared just with 1x sample buffer. When the separating gel 

had polymerised, the comb was removed without distorting the shapes of the wells 

and the gel was released from the casting frame and installed in the electrophoresis 

apparatus. The reservoirs were filled with reservoir buffer (0.192 M glycine, 0.025 

M Tris-HCl pH 8.3) and 10 μL of each sample, blank and the molecular weight 

marker (Precision Plus Protein Standards, Bio-Rad, UK) were loaded into the wells of 

the gel. Electrophoresis was then started and carried out using a Mini-Protean II 

Tetra Cell System (Bio-Rad, UK) at 4 °C and 150 V, until the dye front had reached 

the bottom of the gel. The migration of bromophenol blue, present in the sample 

buffer, was used to monitor the electrophoresis progress. 

2.4.3 2D-PAGE 

Proteins were separated by 2D-PAGE on immobilised pH gradient (IPG) strips and 

according to their isoelectric point in the first dimension, followed by separation 

based on the molecular weight using SDS-PAGE in the second dimension. The 

detailed procedures are given below. 
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2.4.3.1 First dimension: isoelectric focussing (IEF) 

Isoelectric focussing was performed using Protean IEF Cell (Bio-Rad, UK) with 7 and 

11 cm ReadyStrips, pH 4-7, pH 5-8, pH 3-10 and pH 3-10 non-linear (Bio-Rad, UK). 

Pellets resulting from the pre-treatment were resuspended in rehydration buffer I 

(7 M urea, 2 M thiourea, 4 % CHAPS, 0.5 % ampholytes solution, pH 3-10) or in 

rehydration buffer II (7 M urea, 2 M thiourea, 4 % CHAPS, 20 mM DTT, 0.5 % 

ampholytes solution, pH 3-10) to a total volume of 125 or 200 μL, depending on the 

size of the strip (7 or 11 cm, respectively). Mixtures were centrifuged at 14,000 rpm 

for 5 min at room temperature and the supernatants were loaded into a 

rehydration tray or a focussing tray, depending on the type of rehydration 

performed (passive or active, respectively). The IPG strips were placed above the 

mixtures with the gel side facing down, making sure the entire strips were wetted 

and without air bubbles, which could interfere with the even distribution of the 

sample in the strip. The liquid was allowed to distribute for about 1 h before 

covering the strips with mineral oil (Bio-Rad, UK), to prevent evaporation of the 

samples, and rehydration was started. 

The rehydration procedure was performed with no voltage applied (passive 

rehydration) or at 50 V (active rehydration) for 12-16 h (overnight). After 

rehydration was complete, two electrode wicks per strip were wetted with 5-8 μL of 

ultrapure water and placed below the IPG strips, covering each electrode of the 

focussing tray. In case of passive rehydration, before starting the focussing steps, 

the IPG strips were removed from the rehydration tray with a pair of forceps, placed 

on a dry tissue paper with the gel side facing up and covered with wet tissue paper, 

in order to remove any excess mineral oil from the surface. The IPG strips were then 

positioned on the focussing tray with the gel side facing down, on top of the 

electrode wicks, and completely covered with mineral oil. Focussing was then 

started. Both rehydration and focussing took place at 20 °C and were carried out in 

the Protean IEF Cell equipment, according to Table 2.3.  
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Table 2.3 Rehydration and focussing conditions used in the first dimension of 2D-PAGE. 

Conditions 

Isoelectric Focussing Step 

Rehydration 
Focussing 

Linear ramp Rapid ramp 

Passive Active Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 

A 

Voltage 0 V 

 

4000 V 

     
Duration 16 h 

20,000 

V/h 

B 
Voltage 0 V 

 
250 V 4000 V 4000 V 

   
Duration 16 h 15 min 2 h 20,000 V/h 

C 
Voltage 

 
50 V 250 V 4000 V 4000 V 

   
Duration 12 h 15 min 2 h 20,000 V/h 

D 

Voltage 

 

50 V 

   

250 V 8000 V 8000 V 

Duration 12 h 15 min 2 h 
40,000 

V/h 

 

After IEF, IPG strips were promptly removed from the tray, placed on dry tissue 

paper with the gel side facing up and covered with wet tissue paper to remove any 

excess mineral oil from the surface. The IPG strips were then transferred to a clean 

rehydration tray with the gel side facing up and either immediately prepared for the 

second dimension or stored at -80 °C. 

2.4.3.2 Equilibration, reduction and alkylation 

The reduction and alkylation step was performed after isoelectric focussing and 

before SDS-PAGE. IPG strips were washed 3 times with equilibration buffer (0.375 

M Tris-HCl pH 8.8, 6 M urea, 20 % glycerol, 2 % SDS) and then incubated in 55 mM 

DTT solution in equilibration buffer for 1 h at room temperature with constant 

shaking. After incubation, the DTT solution was discarded and 100 mM 

iodoacetamide solution in equilibration buffer was added to the strips to alkylate 

the free thiol groups. The strips were then incubated in the dark for 1.5 h at room 

temperature with constant shaking, after which the iodoacetamide solution was 

discarded. The alkylation process was stopped by washing the strips with an equal 
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volume of rehydration buffer without DTT (7 M urea, 2 M thiourea, 4 % CHAPS) for 

10 min at room temperature. 

2.4.3.3 Second dimension: SDS-PAGE 

After the reduction and alkylation process was complete, the equilibrated IPG strips 

were removed from the rehydration/equilibration tray using forceps and dipped 

briefly into a graduated cylinder containing 1x Tris-Glycine-SDS running buffer (Bio-

Rad, UK). Each strip was transferred to the top of a 12.5 % SDS-polyacrylamide gel, 

previously prepared. No stacking gel was used. Gel preparation is described in 

section 2.4.1. Alternatively, strips were transferred to the top of precast gels, Mini-

Protean TGX Precast Gels, any kD, IPG well comb, 7 cm IPG strip (Bio-Rad, UK), or 

Criterion TGX Precast Gels, any kD, IPG + 1 well comb, 11 cm IPG strip (Bio-Rad, UK), 

used instead of handmade gels. A molecular weight marker was loaded into the 

single well of the 11 cm precast gels. 

The strips were laid, with the gel side facing out, onto the back plate of the SDS-

PAGE gels above the IPG well, pushing each strip against the gel to remove air 

bubbles. The IPG strips were fixed to the second dimension gels with 1 % low 

melting agarose in stacking buffer (0.5 M Tris-HCl pH 6.8) with a trace of 

bromophenol blue. The agarose solution was melted in a microwave oven and 

layered into the IPG well on the gel, filling the well to the top of the inner gel plate, 

and left to set. After allowing the agarose to solidify for 5 min, gels were placed in 

the electrophoresis cassette, the reservoirs were filled with 1x Tris-Glycine-SDS 

running buffer, and electrophoresis was started. This process was carried out using 

a Mini-Protean Tetra Cell System or Criterion Cell System (Bio-Rad, UK) at 40 V until 

the blue dye had reached the main gel, and then increased to 100-150 V until the 

dye front had reached the bottom of the gel. The migration of bromophenol blue, 

present in the overlaying agarose, was used to monitor the electrophoresis 

progress. Gels were stained immediately after the second dimension. 
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2.5 Methods of protein visualisation 

At the end of the electrophoresis run, gels were carefully removed from the 

cassette and placed in clear plastic staining trays. Two distinct methods of protein 

staining were used. 

2.5.1 Coomassie blue staining 

Coomassie blue staining was used preferably to stain 1D gels. After a few washes in 

ultrapure water, gels were stained with Instant Blue Solution (Expedeon, UK) or Bio-

Safe Coomassie Stain (Bio-Rad, UK) for 1 h with constant shaking. The background 

was destained overnight in ultrapure water with constant shaking. After staining, 

gels were stored in water at 4 °C. 

2.5.2 Silver staining 

This staining method was used preferably to stain 2D gels. Silver staining was 

performed according to the modified silver staining method of Blum et al. (Blum et 

al., 1987). Gels were fixed in a fixation solution (50 % water, 40 % methanol, 10 % 

acetic acid) for at least 1 h, or overnight, and then washed 3 times with 50 % 

ethanol for 20 min. Gels were sensitised in 0.8 mM sodium thiosulphate for 1 min, 

rinsed with ultrapure water 3 x 20 sec and incubated for 20 min in 0.2 % silver 

nitrate with 0.02 % (v/v) formaldehyde. Gels were then rinsed with ultrapure water 

2 x 20 sec and soaked in developing buffer (3 % sodium carbonate with 0.05 % (v/v) 

formaldehyde and 0.01 mM sodium thiosulphate) for 3 to 5 min. The development 

was stopped in 1.4 % EDTA disodium salt solution for 10 min, after rinsing the gels 

once again with water for 2 x 2 min. Finally, gels were washed with 50 % methanol 

for at least 20 min and stored in the same solution at 4 °C. 

Alternatively, gels were silver stained using the Pierce Silver Stain Kit (Thermo 

Scientific, UK) according to the manufacturer’s instructions. Briefly, gels were 

washed in ultrapure water twice for 5 min and fixed in fixation solution (60 % water, 

30 % ethanol, 10 % acetic acid) for 2 x 15 min or overnight. Gels were then washed 

in 10 % ethanol solution twice for 5 min and ultrapure water 2 x 5 min, followed by 
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incubation in sensitizer working solution (1 part silver stain sensitizer with 500 parts 

ultrapure water) for exactly 1 min, and then washed with two changes of ultrapure 

water for 1 min each. Gels were incubated in stain working solution (1 part silver 

stain enhancer with 50 parts silver stain) for 30 min, after which they were quickly 

washed with two changes of ultrapure water for 20 sec each. Immediately after, 

developer working solution (1 part silver stain enhancer with 50 parts silver stain 

developer) was added and gels were incubated in this solution for 2-3 min, until 

protein bands appeared. When the desired band intensity was achieved, developer 

working solution was replaced with stop solution (5 % acetic acid in ultrapure 

water), and gels were first washed briefly and then incubated for 10 min in the 

same solution. Gels were stored in stop solution at 4 °C. 

2.5.3 Gel image analysis 

Gel images were obtained with a digital photographic camera and/or using the 

camera device of EXQuest Spot Cutter (Bio-Rad, UK), and analysed using PDQuest 

Advanced software version 8.0.1 (Bio-Rad, UK). Spots of interest were selected 

either visually or using PDQuest Advanced software. 

  



CHAPTER 2 – MATERIALS & METHODS 

Isa Nobre da Cruz 68 

2.6 Methods of protein identification 

Protein identification was attained by two different methods: liquid 

chromatography coupled to tandem mass spectrometry (LC-MS/MS) and Western 

blotting. Both methods comprise a first stage of protein/peptide separation (liquid 

chromatography in LC-MS/MS and electrophoresis in Western blotting) in order to 

make protein identification more effective and accurate. 

2.6.1 LC-MS/MS 

In this method, proteins were firstly subjected to in-gel trypsin digestion, and then 

peptides were extracted from the gel pieces and analysed by LC-MS/MS, followed 

by data processing and database searching for protein identification. The respective 

procedures are described in the following sections. 

2.6.1.1 Spot excision, washing and in-gel trypsin digestion 

Spots of interest were excised from the gels and cut into 1-2 mm3 gel pieces, either 

manually or using an EXQuest Spot Cutter (Bio-Rad, UK) with a picker head of 1.5 

mm, and placed into 0.6 mL siliconised tubes or 96-well microplates, for the manual 

and automated excisions respectively. Gels pieces were stored without any liquid at 

-80 °C until further use. 

Gel pieces were thawed, transferred to 0.6 mL siliconised tubes in case they had 

been stored in 96-well microplates, and rinsed twice with 190 μL of wash solution 

(50 % methanol, 45 % water, 5 % acetic acid) at room temperature for 3 h and 

overnight, respectively. Gel pieces were then dehydrated in 190 μL of acetonitrile at 

room temperature for 5 min, after which the samples were dried in a vacuum 

centrifuge (SpeedVac RC 1022, Jouan, UK) for 3 min at 40 °C. Sample reduction was 

performed with 30 μL of 10 mM DTT in 100 mM ammonium bicarbonate solution at 

room temperature for 30 min, followed by alkylation with the same volume of 100 

mM iodoacetamide in 100 mM ammonium bicarbonate solution at room 

temperature for another 30 min. Samples were dehydrated again in 190 μL of 

acetonitrile at room temperature for 5 min, and dried in a vacuum centrifuge for 3 
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min at 40 °C. Gel pieces were rehydrated in 190 μL of 100 mM ammonium 

bicarbonate at room temperature for 10 min, and then dehydrated in acetonitrile 

and dried in a vacuum centrifuge another time. 

Finally, samples were rehydrated on ice, for 10 min, with 20 μL of trypsin solution 

(20 ng/μL sequencing grade modified porcine trypsin (Promega, UK) in ice cold 50 

mM ammonium bicarbonate pH 8.0) with occasional vortex mixing. Samples were 

spun down for 30 sec and excess trypsin solution was removed. An aliquot of 10 μL 

of 50 mM ammonium bicarbonate solution was added to the gel pieces to prevent 

dehydration and proteins were digested overnight at 37 °C. 

2.6.1.2 Peptide extraction from gel pieces 

After digestion, 30 μL of 50 mM ammonium bicarbonate solution were added to 

each tube containing the gel pieces and the mixtures were vortex mixed for 10 min, 

after which supernatants were collected and transferred to new tubes. Peptides 

were firstly extracted from the gel pieces with 30 μL of extraction buffer I (50 % 

acetonitrile, 45 % water, 5 % formic acid) for 10 min. A second extraction was 

performed with 30 μL of extraction buffer II (85 % acetonitrile, 10 % water, 5 % 

formic acid) for another 10 min. Supernatants were collected after each extraction 

and combined with the previous fraction. The volume of the extracts was reduced 

to <10 μL by evaporation in a vacuum centrifuge at 40 °C. The final dried extracts 

were re-dissolved in 7 µL of 99.9 % water + 0.1 % formic acid, sonicated in ice cold 

water for 10 min, centrifuged for 5 min and transferred to MS compatible vials. 

2.6.1.3 MS analysis 

LC-MS/MS analysis of the extracted peptide mixtures was performed on a Waters 

CapLC system coupled to the front end of a Waters Micromass Q-ToF Premier. The 

Waters CapLC comprised an autosampler and an LC-pump system that was 

connected directly to the mass spectrometer through a switching valve. Depending 

on the intensity of the spot on the 2D gel, 1-5 µL were injected per sample. The 

total run time for each injection was 63 min. 
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As the sample was injected through the sample loop, it was subjected to a pre-wash 

in the pre-column (5 mm x 0.3 mm, 5 µm, PepMap C18 Guard Column, Dionex, UK) 

by pump C (0.1 % formic acid), where salt and other small molecules were removed 

and led to the waste. Desalting took approximately 3 min at a flow rate of 15 

µL/min and in stream select position 1. After desalting, the stream select valve 

switched to position 2 to allow pumps A (95 % water, 5 % acetonitrile, 0.1 % formic 

acid) and B (95 % acetonitrile, 5 % water, 0.1 % formic acid) to flow through the pre-

column at a flow rate of 1 µL/min. Once 53 min of run were completed, stream 

select valve switched back to position 1 to re-equilibrate the pre-column before 

loading the following sample. 

Upon switching of the stream select valve, the flow from the pre-column moved 

through to the analytical nano-column (150 mm x 0.075 mm i.d., 3 µm, C18, Dionex) 

and into the mass spectrometer. Peptides were eluted from the columns with a 

mixture of mobile phases A and B, according to the 63 min gradient LC method 

shown in Figure 2.1. 

 

Run Time 

(min) 

Mobile Phase 

Composition 

% A % B 

0.10 95.0 5.0 

3.00 95.0 5.0 

40.0 72.0 28.0 

49.0 20.0 80.0 

52.0 20.0 80.0 

53.0 95.0 5.0 

63.0 95.0 5.0 

 

Figure 2.1 Representation of the 63 min gradient LC method used in MS analysis. Mobile phase A = 
95 % water, 5 % acetonitrile, 0.1 % formic acid; mobile phase B = 95 % acetonitrile, 5 % water, 0.1 % 

formic acid. 

The gradient formed by the mixture of A and B contained less than 50 % organic 

solvent for the most part of the run, as these are the optimal conditions for the 

elution of most of the peptides from the column. Initial flow from the CapLC was at 
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6 µL/min, which was split before the column by the LC system incorporated flow 

splitting device, so the flow through the analytical column to the mass spectrometer 

was only 200 nL/min. Two blank runs were incorporated after each group of five 

samples to establish that there was no significant carry-over of the previous 

samples. Peptides eluted from the column were directly sprayed into the mass 

spectrometer for analysis. 

MS and MS/MS data were acquired using a Waters Micromass Q-ToF Premier 

equipped with a nanospray source attached to the LC outflow for increased 

sensitivity, as it allows lower injection volumes, operating at 1.8 kV. The acquisition 

and processing software used was Waters MassLynx Version 4.1. Table 2.4 displays 

the general experiment setup for the MS/MS method.  
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Table 2.4 Parameters for the analysis of samples on the Waters Micromass Q-ToF Premier. 

Waters Micromass 

Q-ToF Premier 
Parameters  

ACQUISITION 

Survey start time 3.0 min 

Survey end time 60.0 min 

Survey ion mode ES V mode 

Survey polarity Positive 

MS SURVEY 

Survey start mass 400 Da 

Survey end mass 1700 Da 

Intensity threshold 10 counts/sec 

Survey scan time 0.5 sec 

Survey inter-scan time 0.1 sec 

Survey data format Continuum 

Survey use tune page cone voltage Yes 

Survey cone voltage 35 V 

MS/MS 

MSMS start mass 50 Da 

MSMS end mass 1700 Da 

Number of components 4 

MSMS to MS switch criteria Intensity falling below threshold 

MSMS switchback threshold 3 counts/sec 

Use MSMS to MS switch after time Yes 

MSMS switch after time 5 sec 

MSMS scan time 1 sec 

MSMS inter-scan time 0.1 sec 

MSMS data format Continuum 

MSMS use tune page cone voltage Yes 

MSMS cone voltage 35 V 

PEAK DETECTION 

Peak detection window 3 Da 

Use include by charge state Yes 

Charge states 2, 3, 4 

Number of include components 60 

Charge state tolerance window 3 Da 

Charge state extraction window 2 Da 

Discard survey data No 

COLLISION ENERGY 

Use charge state recognition Yes 

Maximum charge state 4 

Charge state 1 filename Default_CS_1 

Charge state 2 filename Default_CS_2 

Charge state 3 filename Default_CS_3 

Charge state 4 filename Default_CS_4 

EXCLUDE 

Detected precursor inclusion Using real time exclusion 

Detected precursor inclusion Include after time 

Include after time 60 sec 

Use exclude mass list No 

Exclude window +/- 1.5 Da 

Exclude retention time window 10 sec 

 



CHAPTER 2 – MATERIALS & METHODS 

Isa Nobre da Cruz 73 

MS was monitored over a m/z range of 400-1700 Da and MS/MS was monitored 

over a m/z range of 50-1700 Da. Spectra were acquired in MS mode and the 

software was configured to enable scanning of multiple channels, in order to 

simultaneously fragment up to 4 individual co-eluting peptides per MS scan, and 

collect fragmentation data from each. 

The mass spectrometer was programmed to automatically switch to MS/MS mode 

and to generate fragmentation data, whenever a peptide with an associated charge 

of 2+, 3+ or 4+ was detected above a pre-set threshold signal. Multiply charged 

masses were fragmented by the mass spectrometer once their intensity reached 10 

counts/sec or above, and fragmentation occurred for a total of 5 seconds or until 

the intensity fell below 3 counts/sec. That particular mass and a window of 1.5 Da 

around it were excluded for 60 seconds, allowing the mass spectrometer to 

fragment as many different components as possible during the run time. A pre-set 

range of collision voltages was applied, so that each peptide was fragmented as 

efficiently as possible. 

Calibration of the instruments was performed prior to analysis. In order to ensure 

optimal sensitivity of the mass spectrometer and for calibration purposes, a 

reference solution containing a peptide of known mass was used. Glu-

Fibrinopeptide (Glu-Fib, peptide sequence EGVNDNEEGFFSAR, Sigma-Aldrich, UK) 

was sprayed into the mass spectrometer at a concentration of 100 fmol/µL and a 

flow rate of 0.3 µL/min. A calibration file was prepared by fragmenting the [M+2H]2+ 

ion of Glu-Fib, and the resulting fragment ions were processed and compared to a 

theoretical fragment ion peak list for calibration. In addition, other parameters of 

the instrument, listed on Table 2.5, were also checked.  
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Table 2.5 System checks and instrument calibration parameters for the Waters Micromass Q-ToF 
Premier. 

Parameters  

Backing pirani 1.94 x 10
0
 mbar 

Collision cell 4.07 x 10
-3

 mbar 

Quadrupole 2.75 x 10
-8

 mbar 

TOF 9.64 x 10
-7

 mbar 

Collision gas 
Approx. 0.36 (to give 

pressure reading above) 

Source temperature 80 °C 

Test sample MS 

LM/HM/CE 

0.1 pmol GluFib 0.3 µL/min 

4.9/15/5 

400-1700, 1sec/scan 

MS signal/scan 
200 counts on 785/scan 

50-1700, 1sec/scan 

MS/MS signal/scan 

100 counts on 785 (5 eV) 

20 counts on 684 (30 eV) 

MS profile 

400 10 10 

500 10 70 

600 

Detector voltage MCP 1700-2100 

Calibration file 131225GFPQT1165 

m/z measured 785.8426 

Resolution > 10,000 on 785.8 

Capillary/S Cone/E Cone 2.8-3.3(1.8)/35/3.0 

Trigger/Signal/Veff 700/60/5535.2 

 

Subsequently, to guarantee the LC-MS system was correctly optimised, pre-digested 

bovine serum albumin (BSA, Waters, UK) at a concentration of 100 fmol was 

injected into the LC-MS, and the base peak chromatogram generated to ensure 

satisfactory performance (resolution and sensitivity). To accept the system is 

running normally, peak width at half height must be less than 0.3 min and retention 

times must not differ by more than 0.5 min from the last BSA run. Additionally, a 

BSA search using the data resulting from this analysis on an online search engine 

must result in over 35 % coverage of BSA. 

2.6.1.4 Data processing and database searching 

Raw LC-MS/MS data were processed using MassLynx ProteinLynx version 4.1 

(Waters, UK). The system was set up using Peptide Auto and the parameters used 

were from the file Process.mlp. Processing parameters comprised combining all 
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sequential scans with the same precursor and processing all combined scans. Mass 

measurement of the combined scans involved spectral smoothing, which was 

performed twice, using the Savitzky Golay method with a 3.00 channel window. A 

centroid peak list was then created using the top 80 % of the peak with a minimum 

peak width at half height of 4. After the data had been processed, it was combined 

into a single pkl file that could then be used for searching against databases. PKL is 

an extension for a text file created by MassLynx, which lists all the MS data (m/z and 

charge) and MS/MS data associated with that m/z and charge. 

These files were used to perform database searches using two online search 

engines. Primary searches were done using the online version of MASCOT (Matrix 

Science, version 2.4) (Perkins et al., 1999). This is a probability based search engine 

that can utilise any available database in FASTA format. The principle of MASCOT is 

based on calculation of the probabilities that an observed match between an 

experimental spectrum and a theoretical spectrum from a sequence entry is a 

random event. These probabilities are calculated based on P<0.05, however they 

are listed as a score that is calculated by -10logP. Accordingly, the lower the 

probability of a random match, the higher the score would be. The match with the 

lowest probability of being a chance event is in fact the best match, although the 

significance of that match depends on the size of the used database of theoretical 

spectra (Simpson, 2003). 

When performing a search, entering the appropriate searching parameters is 

fundamental. The parameters used for MASCOT searches are depicted in Figure 2.2. 
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Figure 2.2 Parameters used in MASCOT searches. 

 

MASCOT takes into account post-translational modifications and missed cleavage 

sites, as well as the peptide and MS/MS error windows. These values must be 

carefully judged, as too small windows might miss valid matches and too large 

windows increase randomness (Simpson, 2003). 

Depending on the origin of the sample analysed, SwissProt databases were chosen 

to look for canine proteins (taxonomy ― Mammalia or Canis familiaris), mouse 

proteins (taxonomy ― Mus musculus), or human proteins (taxonomy ― Homo 

sapiens). Searches were performed without restriction of protein molecular mass or 

pI, but with variable modifications such as carbamidomethylation of cysteines and 

oxidation of methionine residues. One trypsin missed cleavage was allowed. 

Peptide and fragment mass tolerances were set to 100 ppm and ± 0.1 Da, 

respectively, and peptide charge to 2+, 3+ and 4+. The instrument type chosen was 

ESI-QUAD-TOF. 
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A second online search engine, X!Tandem (The GPM, version 2012/10/19) (Craig 

and Beavis, 2004) was used to search the data, using the pkl files generated by 

MassLynx 4.1. The parameters used for X!Tandem searches were similar to the ones 

used for MASCOT searches and are shown in Figure 2.3. Data resulting from both 

searches were manually inspected and compared to each other. 

 

 

 

 

 

 

 

 

 

Figure 2.3 Parameters used in X!Tandem searches. 

 

Decoy databases were used to determine the false-positive rates of identification. 

Decoy databases contain the forward-normal sequences with the amino acid 

sequences reversed. The parameters used for this search were the same as for the 

original search. For each analysis it was required a less than 5 % false-positive rate. 

In addition, some fragmentation data were analysed manually. 

Scaffold 3 software (Proteome Software, USA, version 3.6.4) was used to validate 

MS/MS based peptide and protein identification. This software also allowed 

combining and comparing proteins identified among different biological samples 

and grouping proteins by biological relevance and molecular function. Peptide 
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identifications were accepted if established at greater than 95 % probability, as 

specified by the Peptide Prophet algorithm (Keller et al., 2002). In turn, protein 

identifications were accepted if established at greater than 99 % probability and 

contained at least 2 assigned peptides, as specified by the Protein Prophet 

algorithm (Nesvizhskii et al., 2003). Proteins that contained similar peptides and 

could not be differentiated based on MS/MS analysis alone were grouped together 

to satisfy the principles of parsimony (minimal set of protein sequences which 

explain the maximum number of identified peptides). 

2.6.2 Western blotting 

In this method, proteins were initially separated by electrophoresis, and then 

transferred to nitrocellulose membranes, which were probed with antibodies, 

followed by protein band detection and visualisation for protein identification. The 

respective procedures are described in the following sections. 

2.6.2.1 Electrophoretic separation  

A minimum of 10 µg of protein per well was loaded onto precast gels, Mini-Protean 

TGX precast gels, any kD, 10-well comb, 30 µL/well (Bio-Rad, UK) and proteins were 

separated by SDS-PAGE as described in section 2.4.1. Gels were run in duplicate, so 

that one of the replicates could be stained and the presence of protein bands could 

be confirmed, and the other was kept in Tris-glycine buffer (25 mM Tris, 192 mM 

glycine, 20 % methanol, 80 % water) to be used for blotting. A pre-stained 

molecular weight marker (ColorPlus prestained protein marker, broad range, New 

England BioLabs, UK) was used in order to verify the transfer of proteins from the 

gel to the membrane after the blotting procedure. 

2.6.2.2 Protein transfer to nitrocellulose membranes 

For each blot, one nitrocellulose membrane (9.5 cm x 6.5 cm, Hybond-C Extra, 

Amersham Biosciences, UK), two pieces of 3 mm paper (10 cm x 7 cm), and two 

fibre pads were pre-wetted in Tris-glycine buffer. When making the sandwich, the 

various components were mounted in the cassette on the black (negative) side in 
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the following order: one fibre pad, one 3 mm paper, SDS-PAGE gel, nitrocellulose 

membrane, one 3 mm paper, one fibre pad. All the components were kept moist 

while assembling and all air bubbles were removed from between the gel and the 

membrane. The sandwich was closed and placed inside the Mini Trans-Blot Transfer 

Cell (Bio-Rad, UK) according to the manufacturer’s instructions (black to black and 

clear to red). The ice block was placed at the front of the electroblotting apparatus 

and the reservoirs were filled with Tris-glycine buffer. Proteins were transferred 

onto the nitrocellulose membrane for 1 h at 100 V. 

2.6.2.3 Blocking and antibody probing 

When the electroblotting was finished, the membrane was placed in a small 

staining tray and blocked in 1 % bovine serum albumin (BSA, Sigma-Aldrich, UK) or 1 

% milk (dried skimmed milk, Marvel) in Tris-buffered saline (TBS; 1 % of 1 M Tris-HCl 

pH 7.0, 3 % of 5 M NaCl, 96 % of water) buffer for 1 h at room temperature or 

overnight at 4 °C on a rocker. The choice of blocking agent depended on the 

manufacturer’s recommendations for each particular antibody. After blocking, the 

blocking solution was discarded and the membrane was probed with primary 

antibody, diluted in blocking solution, overnight at 4 °C on a rocker. The primary 

antibody was then removed and the membrane was washed a few times for 10 min 

with TBS buffer containing 0.05 % Igepal (Sigma-Aldrich, UK) or 0.05 % Tween 20 

(Sigma-Aldrich, UK). The membrane was subsequently incubated for 1.5 h at room 

temperature on a rocker with secondary antibody diluted in blocking solution. After 

incubation, the membrane was washed again with TBS buffer containing 0.05 % 

Igepal or Tween 20 for 10 min a few times. 

2.6.2.4 Protein band detection and visualisation 

Protein bands were developed using a Pierce Enhanced Chemiluminescence (ECL) 

Western Blotting Substrate or a SuperSignal West Pico Chemiluminescent Substrate 

(Thermo Scientific, UK) according to the manufacturer’s instructions. Briefly, 

substrate working solution was prepared by mixing equal parts of detection 

reagents 1 and 2 immediately before use. A volume of 0.125 mL working solution 
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per cm2 of membrane was used. The membrane was incubated with working 

solution for 1 min, or 5 min for the SuperSignal substrate, at room temperature, 

after which it was removed from the working solution and placed in a plastic sheet 

protector or clear plastic wrap, removing excess liquid and pressing out any 

bubbles. 

Protein bands were visualised with the GeneGnome chemiluminescence imaging 

system, using the GeneSnap software (SynGene Bio Imaging, UK). Band 

quantification was performed by densitometry using the GeneTools software 

(SynGene, UK). Alternatively, protein bands were visualised with a Bio-Rad gel 

imager, using Image Lab software (Bio-Rad, UK). The western blot assay was 

performed at least two times for each antibody. 
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3.1 Introduction 

3.1.1 Carbohydrate-active proteins (CAP) 

Approximately 2-3% of most genomes are devoted to carbohydrate-active proteins 

(CAP) (Coutinho et al., 2003). These include lectins that bind carbohydrates, 

glycosidases (glycosylhydrolases) that degrade them, and glycosyltransferases that 

construct them (http://www.cazy.org) (Cantarel et al., 2009). The biosynthesis of 

carbohydrates and polysaccharides is of extreme biological importance, as these 

molecules control a diverse range of cellular functions, including energy storage, 

cell-wall structure, cell-cell interactions and signalling, host-pathogen interactions, 

and protein glycosylation (Rudd et al., 2001, Wells et al., 2001). 

Deficiencies of CAP can lead to pathological states, such as congenital muscular 

dystrophies (Blake et al., 2002), virus infection of HIV, influenza, tumour metastasis 

and lysosomal storage disorders (Kajimoto and Node, 2009) among others. CAP are 

implicated in a range of host-pathogen interactions that lead to disease (Gattegno 

et al., 1992, Kannagi et al., 2004). 

Therefore, agents that control the activities of glycosidases and glycosyltransferases 

could have therapeutic effects against some of the above mentioned diseases. In 

fact, many efforts have been made to synthesise inhibitors of carbohydrate-related 

enzymes, either using natural products or synthetic compounds designed on the 

basis of information obtained from studies on mechanisms of the enzymes (Asano 

et al., 2000, Lillelund et al., 2002). 

Despite these vital roles, most current strategies for determining CAP interactions 

(e.g. arrays or assays), whilst powerfully allowing the determination of in vitro 

specificities, do not permit widescale probing of cellular or organismal samples. 

Affinity strategies have rarely been used to identify novel binding partners or profile 

the carbohydrate-active proteome (Lin et al., 2008). One such conceivable strategy 

http://www.cazy.org/
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is to use clinically utilised compounds to identify novel binding partners. This would 

advantageously allow the repurposing of pre-approved drugs and, hence, facilitate 

rapid translation and application. 

One glycomimetic suitable for this purpose is the iminosugar n-

butyldeoxynojirimycin (NB-DNJ) (Figure 3.1). 

 

 

 

 

Figure 3.1 Structure of NB-DNJ/Miglustat/Zavesca®. 

3.1.2 The iminosugar glycomimetic NB-DNJ 

Iminosugars are naturally occurring polyhydroxylated alkaloids with a structure 

resembling that of monosaccharides, characterised by the presence of a nitrogen 

replacing the oxygen of the ring (Watson et al., 2001). Alkylated deoxynojirimycin 

(DNJ) compounds are a type of iminosugar with an alkyl chain branching from the 

nitrogen atom of the ring. It has been reported that the N-alkylated DNJ can inhibit 

the N-glycan processing glycolipid metabolic enzymes, including ceramide 

glucosyltransferase (CGT; glucosylceramide synthase, GCS/UGCG) (Platt et al., 

1994a), glucosylceramidase (β-glucocerebrosidase; lysosomal acid β-glucosidase 1, 

GBA) (Platt et al., 1994b), glucosylceramidase 2 (non-lysosomal glucosylceramidase; 

β-glucocerebrosidase 2; β-glucosidase 2, GBA2) (Walden et al., 2007), lysosomal -

glucosidase (acid -glucosidase, GAA) and neutral -glucosidase (Saunier et al., 

1982, Elbein, 1987). 

Structural similarities between alkylated iminosugars and the substrates of N-glycan 

processing enzymes have been described (Butters et al., 2000). Figure 3.2 illustrates 

the structure of the N-butyl-DNJ (NB-DNJ), also known as miglustat, and its 

interaction with two substrates of N-glycan processing enzymes. NB-DNJ overlays 
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with the head and part of the N-acyl chain of ceramide, where a glucose is added by 

ceramide glucosyltransferase. NB-DNJ also overlaps with the terminal glucose 

residue of Glc3Man9GlcNAc2, which is a substrate of acid -glucosidase (Butters et 

al., 2000, Butters et al., 2003). 

 

Figure 3.2 Structure relationships between NB-DNJ and the substrates of ceramide 

glycosyltransferase and acid -glucosidase. (A) Miglustat (NB-DNJ) structure based on NMR studies 
and molecular modelling. (B) One possible overlay of miglustat and ceramide. Ceramide structure 

was taken from the crystal structure of galactosylceramide. (C) Superimposition of miglustat and the 

terminal glucose residue of Glc3Man9GlcNAc2, which is removed by acid -glucosidase. Adapted 
from (Butters et al., 2000). 

NB-DNJ was approved by the FDA in 2002 as a therapeutic under the commercial 

name Zavesca®. This compound is prescribed for the treatment of inherited 

lysosomal storage disorders such as type 1 Gaucher disease and Niemann-Pick type 

C disease, to reduce the accumulation of glycosphingolipids in patients (Aerts et al., 

1985, Aerts et al., 1986, van der Spoel et al., 2002). 

Gaucher disease is the most common of the lysosomal storage disorders. It is a 

genetic condition characterised by dysfunctional metabolism of glycosphingolipids, 

which accumulate in cells and certain organs, causing the symptoms of the disease. 

Gaucher disease is caused by a hereditary partial deficiency of the enzyme 

glucocerebrosidase, whose main role is to eliminate the toxic fatty acid 

glucosylceramide. When glucocerebrosidase is defective, glucosylceramide 

A B C 
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accumulates in vital organs such as the liver, kidneys, lungs and brain, and in the 

macrophage system (Pastores et al., 2004). 

The chosen treatment for most Gaucher disease patients is enzyme replacement 

therapy (ERT), using mannose-terminated recombinant human glucocerebrosidase 

(alglucerase and imiglucerase). Despite the success of ERT, several drawbacks 

encouraged the search for other treatment approaches. The fact that some 

complications of Gaucher disease may remain refractory to ERT, that this treatment 

option does not appear to pass the blood-brain barrier and that ERT requires 

regular intravenous infusion and continued patient compliance, led to a new 

treatment alternative known as substrate reduction therapy (SRT) (Bruni et al., 

2007, Cox et al., 2003).  

SRT is a different method to decrease the accumulation of toxic storage material. In 

this approach, instead of replacing the defective enzyme, partial inhibition of the 

enzyme that produces the toxic products (CGT) is required to treat the 

accumulation of glycosphingolipids in Gaucher disease patients. The residual 

enzyme activity of the impaired glucocerebrosidase will then be enough to 

catabolise stored and incoming lysosomal substrate. NB-DNJ is the molecule of 

choice for SRT. Its main advantages are that it is orally bioavailable, it can pass 

through the blood-brain barrier and it is generally well tolerated in humans (Cox et 

al., 2003, Bruni et al., 2007). 

Other treatment options include bone marrow transplantation, although this carries 

significant risk and is rarely performed in Gaucher patients, splenectomy and blood 

transfusion. Several lysosomal storage disorders have recently become a target of 

chaperone therapy, a technique used to stabilise the defective enzymes produced 

by the patients using orally administered drugs that operate at a molecular level. 

Gene therapy may offer a cure in the future (Bruni et al., 2007). 

Alkylated iminosugars present different potency for inhibiting the glycolipid 

metabolic enzymes, as the drug effect can vary depending on the dose administered 

and the affinity, IC50 and inhibition constant (Ki) of the inhibitor (Platt et al., 1994b, 

Butters et al., 2003). Taking NB-DNJ as an example, its IC50 for the known enzyme 
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targets can be as low as 0.14 μM for GBA2, while the IC50 for CGT, the drug target 

for treating Gaucher disease, is approximately 20 μM (Platt et al., 1994b, Walden et 

al., 2007, Li et al., 2008a). 

This powerful glycomimetic is therefore an archetype of modulation of glycobiology 

by small molecules. 

3.1.3 NB-DNJ induces infertility in male mice 

One of the most remarkable properties of NB-DNJ is that in certain mouse strains 

from the C57-lineage (Beck et al., 2000), e.g. C57BL/6, AKR/J and BALB/c, it induces 

reversible, dose-dependent male infertility at very low dosage (15 mg/kg/day; 

serum level 0.3-1.7 μM) (van der Spoel et al., 2002, Bone et al., 2007). In contrast, 

other mouse strains from the Swiss Castle lineage, such as FVB/N (Wang et al., 

2012a), display a phenotype insensitive to NB-DNJ-induced infertility (Bone et al., 

2007). In mouse studies, NB-DNJ is typically administered at 2400 mg/kg/day, with a 

serum concentration around 56.8 μM (Platt et al., 1997). It is likely that the drug 

target(s) related to the induced infertility have a higher affinity for NB-DNJ. 

Studies with C57BL/6 x FVB/N interstrain hybrid mice have suggested multiple 

genes and, thus, multiple protein targets contribute to this striking function 

(infertility) induced by NB-DNJ (Bone et al., 2007). This raises the intriguing 

possibility that modulation of the carbohydrate-active proteome may be intimately 

linked to reproduction, as the induction of infertility after NB-DNJ treatment might 

be caused by a change in the glycosphingolipid metabolism. There are some early 

indications of the origins of this exciting effect. Mice treated with NB-DNJ displayed 

lower sperm counts and abnormal sperm morphologies, with deformed or no 

acrosomes and non-falciform nuclei (van der Spoel et al., 2002, Bone et al., 2007), 

rendering them incapable of binding the zona pellucida to initiate fertilisation 

(Suganuma et al., 2005). However, the exact protein targets that are responsible for 

the strain differences in drug susceptible strains remain unknown, providing a 

suitably challenging test for a glyco-affinity strategy. 
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As mentioned before, NB-DNJ is known to inhibit intracellular enzymes including β-

glucosidase 2 (GBA2), lysosomal acid β-glucosidase 1 (GBA) and glucosylceramide 

synthase (GCS/UGCG) (Li et al., 2008a, Platt et al., 1994a, Walden et al., 2007, Platt 

et al., 1994b). Knockout of GBA2 impairs mouse fertility and results in sperm 

abnormalities (Yildiz et al., 2006). The epididymal spermatozoa of NB-DNJ-

insensitive strains only display minor morphological imperfections and, 

consequently, these mice are normally fertile (Bone et al., 2007). Nonetheless, all 

mouse strains show similar elevated level of glucosylceramide when treated with 

NB-DNJ. This suggests no direct link to glycosphingolipid metabolising enzymes 

GBA/GBA2 and/or GCS/UGCG and implicates instead the differences in genetic 

background and other protein partners. 

In fact, to date, no comprehensive study of the cellular targets of NB-DNJ has been 

conducted and the proteins involved in induced male infertility remain unknown. 

This study reports the investigation of possible as yet unknown NB-DNJ targets by 

an affinity-enrichment proteomics method. 

3.1.4 Affinity chromatography principle 

Biomolecules are separated using separation techniques that function according to 

differences in specific properties. Affinity chromatography separates or purifies 

proteins on the basis of a reversible interaction between a protein or group of 

proteins and a specific ligand coupled to a chromatography matrix. Biorecognition 

(ligand specificity) is the property used by affinity chromatography, which makes 

this technique unique in separation technology, since it enables the purification of a 

biomolecule on the basis of its biological function or individual chemical structure 

(Uhlen, 2008, Urh et al., 2009). 

Affinity chromatography is a relatively simple, yet quite effective technique that 

offers high selectivity, hence high resolution, and usually high capacity for the 

protein(s) of interest. Purification can be achieved in the order of several thousand-

fold and recoveries of active material are generally very high. Examples of 
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biomolecules that can be separated using this technique are antibodies/antigens, 

enzymes/substrates, or ligands/receptors (Hage, 1999). 

The main materials required for an affinity chromatography procedure are 1) a gel 

matrix, 2) a ligand, 3) a solution containing the substrate to be isolated, 4) a wash 

solution to elute the non-bound impurities in the solution, and 5) a final elution 

solution to extract the bound substrate from its ligand (Urh et al., 2009).  

The ligand must bind specifically and reversibly to the substrate and should be 

capable of covalently bonding to the matrix without disrupting its binding ability. 

This is usually facilitated by the placement of spacer arms between the ligand and 

the matrix, so that in case the active site is buried deep within the ligand, it is not 

physically hidden from its binding substrate (Cuatrecasas, 1970). 

In summary, during an affinity chromatography procedure, the following steps take 

place (Urh et al., 2009): 

1) Binding of the selected ligand to the matrix and the ligand-matrix gel is 

loaded into an elution column; 

 2) The mixture containing the substrate to isolate is poured into the elution 

column and the solution is pulled through the gel by gravity. The substrate of 

interest binds to the ligand-matrix complex and the impurities remain 

unbound in the gel column (Figure 3.3); 

3) Unbound impurities are removed by a wash of extreme pH, salt 

concentration or temperature (Figure 3.3); 

4) The substrate of interest is eluted from the ligand-matrix complex by a 

stronger second wash, which relies on the reversible binding properties of 

the ligand, allowing the bound proteins to dissociate from their ligand 

(Figure 3.3).  
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Figure 3.3 Affinity chromatography procedure. 

3.1.5 Affinity-enrichment proteomics 

In this chapter, a comprehensive affinity-enrichment proteomics (AeP) study, 

utilising an immobilised glyco-affinity probe to identify proteins that interact with 

NB-DNJ and are potentially responsible for its contraceptive activity, is reported. 

In order to achieve binding of NB-DNJ to enzyme targets using affinity 

chromatography, a resin matrix with maximal structural similarity to NB-DNJ was 

synthesised. Firstly, the DNJ ring was preserved in the resin matrix, as the 

protonated DNJ mimics the charge of sugar substrates during hydrolysis and is, 

therefore, of great importance for inhibiting glucosidases (Butters et al., 2000). 

Secondly, the alkyl chain length was synthesised to be butyl (CH3-CH2-CH2-CH2-) or 

longer, since only DNJ compounds with these characteristics are able to inhibit CGT 

(Mellor et al., 2002). Thus, the alkyl chain was designed to be longer than four 

carbons and the gel matrix was linked to the end of the alkyl chain. The structure 

and potential binding sites of the glyco-affinity resin matrix obtained, and shown in 

Figure 3.4, were as similar to NB-DNJ as possible.  
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Figure 3.4 Structure of the glyco-affinity resin matrix. 

Work conducted in collaboration with the University of Oxford provided protein 

samples from C57BL/6 mouse testis, which were enriched by DNJ-resin treatment. 

The mouse testis lysate was incubated with the DNJ-resin and washed to remove 

non-specifically bound proteins. A second wash with NB-DNJ-containing buffer 

eluted the proteins that had been retained by the resin. A control sample was 

obtained through the same procedure but using an unmodified agarose gel. 

Proteins in the enriched and control samples were then separated by two-

dimensional polyacrylamide gel electrophoresis (2D-PAGE), followed by in-gel 

trypsin digestion and liquid chromatography coupled to tandem mass spectrometry 

(LC-MS/MS) analysis. Protein database searches performed with the resulting mass 

spectrometry data led to protein identification. 

Immobilised iminosugars have previously been used for simple glycosidase affinity 

chromatography (Bernotas and Ganem, 1990, Faridmoayer and Scaman, 2004, 

Matern et al., 1997, Scudder et al., 1990). Though, in this study it is shown in a 

proof-of-concept method, how this model glycomimetic can allow proteomics 

directed towards its interactome. 

Unlike designed purification methods, which intentionally exploit a known protein-

ligand partnership for affinity, NB-DNJ was chosen in this study as a clinically 

approved probe molecule that is known to induce phenotypic changes, but in the 

absence of any such clear partnership(s). In this way, the glyco-AeP method has the 

potential to identify unanticipated protein-ligand interactions that may be 

important in a therapeutically relevant phenotype and so, reveal a relevant focused 

subset of the carbohydrate-active proteome, previously not considered. 

  

hydrolysis and is therefore has a great importance for inhibiting glucosidases 

(Butters et al., 2000b). In addition, miglustat (NB-DNJ) was found to be more 

potent compared to NB-DGJ at inducing infertility (van der Spoel et al., 2002). 

Second, the alkyl chain length was synthesised to be butyl or longer. Only DNJ 

compounds with butyl or longer alkyl chain are inhibitory to CGT (Mellor et al., 

2002). Therefore the alkyl chain was designed to be longer than four carbons 

and the gel matrix linked to the end of the alkyl chain. The structure and 

potential binding sites of the column matrix was as close to miglustat as we 

could achieve (Fig 4.2).

                          

4.1.4  Research Aim

• Synthesised alkylated DNJ affinity column matrix mimicking the structure  

of miglustat. 

• Use alkylated DNJ affinity chromatography to isolate miglustat-binding 

proteins. 

• Identify the isolated proteins by gel-based liquid chromatography-mass 

spectrometry.

• Perform proteomic analysis on the protein hits.

                                                                         Chap ter 4 Proteomic Discovery of Imino Sugar Targets

101

Fig 4.2 Structure of alkylated DNJ column matrix.
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3.2 Aims & Objectives 

The main aim of this study was to develop and apply an affinity-enrichment 

proteomic (AeP) method to identify protein targets of NB-DNJ, with the future goal 

of potential drug development of a male contraceptive. 

To this end, a glyco-affinity resin mimicking the structure of NB-DNJ was firstly 

synthesised and validated. Then, testis tissue was collected from NB-DNJ-sensitive 

mice (C57BL/6) and the protein fraction was analysed using the synthesised affinity 

resin, by a glyco-affinity chromatography followed by proteomics method, in order 

to find protein targets of NB-DNJ possibly responsible for the infertility phenotype. 
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3.3 Materials & Methods 

All chemicals used in the following experiments were purchased from Sigma-Aldrich 

(UK) or Fisher Scientific (UK), unless stated otherwise in the descriptions below or 

mentioned previously. A schematic diagram summarising the experiments carried 

out in this study is represented in Figure 3.5.  

 

Figure 3.5 Schematic diagram summarising the experiments done in this study. 

3.3.1 Affinity resin synthesis 

The iminosugar affinity resin was synthesised in a few consecutive steps as detailed 

in the following sections. These works were done by Dr. Conor Barry and Prof. 

Benjamin Davis from the Department of Chemistry of the University of Oxford. 

Synthesis	of	methyl	
6-oxohexanoate	

Synthesis	of	methyl	
6-((2R,3R,4R,
5S)-3,4,5-

trihydroxy-2-
(hydroxymethyl)pipe

ridin-1-yl)hexanoate	

Prepara on	of	DNJ-
affinity	gel	 Control	sample	 Enriched	sample	

Sample	A	 Sample	B	

Unmodified	agarose	
matrix	

DNJ-modified	affinity	
matrix	

Mouse	(C56BL/6)	tes s	 ssue	
collec on	and	homogenisa on	

DNJ-affinity	chromatography	with	mouse	tes s	
ssue	homogenate	

Ceredase	ac vity	
assay	

DNJ-affinity	
chromatography	
with	Ceredase	

Wessel-Flugge	
protein	precipita on	

SDS-PAGE	

Silver	staining	

Compara ve	2D-PAGE	

Protein	iden fica on	
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3.3.1.1 Synthesis of methyl 6-oxohexanoate 

 

 

 

Figure 3.6 Synthesis of methyl 6-oxohexanoate. 

Synthesis of methyl 6-oxohexanoate (Figure 3.6) was achieved according to the 

literature (Schreiber et al., 1982). A detailed description of the procedure followed 

by Dr. Conor Barry can be found in the electronic supplementary information of the 

paper in Appendix (Cruz et al., 2013a). 

3.3.1.2 Synthesis of methyl 6-((2R,3R,4R,5S)-3,4,5-trihydroxy-2-

(hydroxymethyl)piperidin-1-yl)hexanoate 

Figure 3.7 Synthesis of methyl 6-((2R,3R,4R,5S)-3,4,5-trihydroxy-2-(hydroxymethyl)piperidin-1-
yl)hexanoate. 

Synthesis of methyl 6-((2R,3R,4R,5S)-3,4,5-trihydroxy-2-(hydroxymethyl)piperidin-1-

yl)hexanoate (Figure 3.7) was attained according to the literature (Bernotas and 

Ganem, 1990). Step-by-step guidance of the procedure followed by Dr. Conor Barry 

can be found in the electronic supplementary information of the paper in Appendix 

(Cruz et al., 2013a). 

3.3.1.3 Preparation of DNJ-affinity gel 

A scheme of the preparation of DNJ-affinity gel is represented in Figure 3.8. The 

detailed description of the procedure followed by Dr. Conor Barry for this step can 
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also be found in the electronic supplementary information of the paper in Appendix 

(Cruz et al., 2013a). 

 

Figure 3.8 Preparation of DNJ-affinity gel. 

Affi-Gel 102 was chosen as the solid matrix upon which to support the DNJ-tag. This 

is an agarose gel modified with an amino group at the end of a short hydrophilic 

chain. The modified gel was collected by gravity filtration and washed with distilled 

water to give the final immobilised glyco-affinity probe. The initial flow through was 

concentrated and analysed by proton nuclear magnetic resonance (1H NMR) 

spectroscopy to allow the loading of the gel to be determined. 

3.3.2 Affinity resin validation 

The synthesised glyco-affinity resin was validated using a commercial preparation of 

acid β-glucosidase 1 (GBA)/alglucerase/Ceredase®, a known target of NB-DNJ. The 

affinity resin validation was done by Dr. Celeste Chuang, Prof. Aarnoud van der 

Spoel and Prof. Frances Platt from the Department of Pharmacology of the 

University of Oxford. 

3.3.2.1 Ceredase activity assay 

Ceredase activity assay was one of the methods used to validate the affinity resin. A 

complete description of the procedure followed by Dr. Celeste Chuang can be found 

in Dr. Chuang’s PhD thesis (Chuang, 2010) or in the electronic supplementary 

information of the paper in Appendix (Cruz et al., 2013a). 

1 
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3.3.2.2 DNJ-affinity chromatography with Ceredase 

The other method used to validate the affinity resin was DNJ-affinity 

chromatography with Ceredase. A comprehensive description of the procedure 

followed by Dr. Celeste Chuang can be found in Dr. Chuang’s PhD thesis (Chuang, 

2010) or in the electronic supplementary information of the paper in Appendix 

(Cruz et al., 2013a). 

3.3.2.3 Wessel-Flugge protein precipitation 

Proteins from column fractions were precipitated as described previously (Wessel 

and Flugge, 1984). The full Wessel-Flugge protein precipitation procedure followed 

by Dr. Celeste Chuang can be found in Dr. Chuang’s PhD thesis (Chuang, 2010) or in 

the electronic supplementary information of the paper in Appendix (Cruz et al., 

2013a). 

3.3.2.4 SDS-PAGE 

Precipitated proteins were analysed by SDS-PAGE. The SDS-PAGE procedure 

followed by Dr. Celeste Chuang can be found in Dr. Chuang’s PhD thesis (Chuang, 

2010). 

3.3.2.5 Silver staining 

Proteins separated by SDS-PAGE were visualised on the gels using silver staining. 

The detailed silver staining procedure followed by Dr. Celeste Chuang can be found 

in Dr. Chuang’s PhD thesis (Chuang, 2010). 

3.3.3 Affinity resin assay 

Once validated, the glyco-affinity resin was used to carry out affinity 

chromatography with mouse testis tissue homogenate and test the hypothesis of 

this study. 
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3.3.3.1 Mouse testis tissue collection and homogenisation 

Mouse testes from C57BL/6 male mice aged 8-10 weeks were obtained with the 

help of Dr. Schatzlein’s group. Mice were sacrificed by elevating CO2 concentration. 

All animal studies were performed in accordance with the UK Home Office Animals 

(Scientific Procedures) Act 1986. Mouse testes were dissected and immediately 

frozen in liquid nitrogen until further use. 

Mouse testis tissue was homogenised with a sample grinding kit (Amersham 

Biosciences, UK) and proteins were extracted according to the procedure described 

in section 2.3.2.2. 

3.3.3.2 DNJ-affinity chromatography with mouse testis tissue homogenate 

The DNJ-affinity column matrix (1 mL) was loaded on to a 5 mL solid phase 

extraction cartridge. The column was equilibrated with 4 x 4 mL water and 2 x 4 mL 

washing buffer (PBS containing 0.5 % sodium cholate). Solubilised proteins were 

added on to the column and the column was sealed. Proteins and column matrix 

were incubated on a roller bank at 4 C overnight to allow maximum binding. 

Washing buffer (12 x 4 mL) was applied to remove non-column-binding proteins. 

The flow- through was collected along with the washing fraction. Bound proteins 

were incubated with 4 mL miglustat buffer (PBS containing 10 mM miglustat and 0.5 

% sodium cholate) for 4 h at 4 C, and competitively eluted with 11 x 4 mL miglustat 

buffer and collected as the eluate fraction. 

The column was cleaned with 5 x 4 mL 1 M acetic acid (pH 2.4), 2 x 4 mL water and 

5 x 4 mL 3.5 M magnesium chloride. The flow-through was collected in the cleaning 

fraction. The column was stored in water supplemented with 1 μM sodium azide at 

4 C. 

The flow-through of the washing, eluting and cleaning steps was collected in 

separate fractions and concentrated by 15 mL centrifugal filter units (3 kDa 

molecular weight cut-off, Amicon-Ultra, Millipore, MA, USA) at 3,700 g for 

approximately 60 min, and further reduced to 50-100 μL by 500 μL centrifugal units 
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(3 kDa molecular weight cut-off, Millipore) at 14,000 g for 20-30 min. Each fraction 

was added with 1 % protease inhibitor (Amersham Biosciences, UK) and stored at -

80 C. 

A control sample was obtained through the same procedure but using an 

unmodified agarose gel instead of the DNJ-affinity gel. 

3.3.4 Proteomics analysis 

The eluting fractions, resulting from affinity chromatography carried out in parallel 

with the DNJ-resin and the agarose gel (control), were then subjected to proteomics 

analysis in order to separate and identify the proteins. 

3.3.4.1 Protein precipitation 

TCA and acetone precipitation of proteins was used to remove contaminants and 

concentrate proteins in the samples, prior to separation by 2D-PAGE. This 

precipitation method was performed as described in section 2.3.4.1. 

3.3.4.2 2D-PAGE 

Protein separation was achieved through 2D-PAGE, which was performed according 

to the following steps. 

3.3.4.2.1 First dimension: isoelectric focussing (IEF) 

Isoelectric focussing was performed using Protean IEF Cell (Bio-Rad, UK) with 7 cm 

ReadyStrips, pH 3-10 (Bio-Rad, UK), according to the description in section 2.4.3.1. 

Pellets resulting from TCA and acetone precipitation were resuspended in 

rehydration buffer II to a total volume of 125 μL. Mixtures were centrifuged and the 

supernatants were loaded into a focussing tray. The rehydration procedure took 

place at 50 V (active rehydration) for 12 h (overnight). Focussing was then started 

and carried out on a linear ramp according to the following steps: 250 V for 15 min, 

4000 V for 2 h, 4000 V until 20 000 V/h (Table 2.3, focussing conditions C). 
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3.3.4.2.2 Equilibration, reduction and alkylation 

The equilibration, reduction and alkylation step was performed in accordance to 

section 2.4.3.2. 

3.3.4.2.3 Second dimension: SDS-PAGE 

Each strip was transferred to the top of a precast gel, Mini-Protean TGX Precast 

Gels, any kD, IPG well comb, 7 cm IPG strip (Bio-Rad, UK), as described in section 

2.4.3.3. Electrophoresis was carried out using a Mini-Protean Tetra Cell System (Bio-

Rad, UK) at 40 V until the blue dye had reached the main gel, and then increased to 

150 V until the dye front had reached the bottom of the gel. 

3.3.4.2.4 Gel staining: silver staining 

The Pierce Silver Stain Kit (Thermo Scientific, UK) was used to visualise the proteins 

on the 2D gels, according to the details given in section 2.5.2. 

3.3.4.3 Gel image analysis 

Gel images of the DNJ-resin gel and the control gel were obtained with a digital 

photographic camera and using the camera device of EXQuest Spot Cutter (Bio-Rad, 

UK), and analysed using PDQuest Advanced software version 8.0.1 (Bio-Rad, UK). 

The Multi-Channel Viewer tool was used to overlap the two gel images. 

3.3.4.4 Protein identification 

Protein identification was attained by in-gel trypsin digestion, followed by LC-

MS/MS analysis. The respective procedures are depicted in the subsequent 

sections. 

3.3.4.4.1 Spot excision, washing and in-gel trypsin digestion 

Spots of interest were manually excised from the gels, cut into 1-2 mm3 gel pieces 

and placed into 0.6 mL siliconised tubes. The subsequent washing steps and in-gel 

trypsin digestion were performed as described in section 2.6.1.1. 
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3.3.4.4.2 Peptide extraction from gel pieces 

Peptides were extracted from the gel pieces in accordance to the procedure 

described in section 2.6.1.2. The final dried extracts were re-dissolved in 95 % water 

+ 5 % acetonitrile + 0.1 % formic acid, sonicated in ice cold water for 10 min, 

centrifuged for 5 min and transferred to MS compatible vials. 

3.3.4.4.3 LC-MS/MS analysis 

Peptide samples were analysed in two distinct instruments. The analytical 

conditions and equipment details can be found according to the information below. 

The initial analysis was conducted with the collaboration of Dr. Holger Kramer from 

the Department of Physiology, Anatomy and Genetics of the University of Oxford. A 

detailed description of the procedure for the initial analysis of in-gel digested 

protein material followed by Dr. Holger Kramer can be found in the electronic 

supplementary information of the paper in Appendix (Cruz et al., 2013a). 

LC-MS/MS confirmation analysis was performed on a Waters CapLC system coupled 

to the front end of a Waters Micromass Q-ToF Premier, as described in section 

2.6.1.3. 

3.3.4.4.4 Data processing and database searching 

For the initial analysis dataset, raw LC-MS/MS data were processed and MASCOT 

compatible files created using DataAnalysis 4.0 software (Bruker Daltonics) with the 

help of Dr. Holger Kramer. Parameters used for database searching can be found in 

the electronic supplementary information of the paper in Appendix (Cruz et al., 

2013a). 

For the confirmation analysis dataset, raw LC-MS/MS data were processed using 

MassLynx ProteinLynx version 4.1 (Waters, UK) and searches were done using the 

online version of MASCOT, as described in section 2.6.1.4. SwissProt databases 

were chosen to look for mouse proteins (taxonomy ― Mus musculus). The search 
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parameters used were the ones listed in the same section of Chapter 2, with the 

exception of the peptide and fragment mass tolerances, which were set to ± 0.3 Da. 

3.3.5 Pathways analysis 

All interactions of HYOU1 protein were analysed using Pathway Studio 9 software 

(Elsevier). 

3.3.6 Single-nucleotide polymorphism (SNP) analysis 

SNP analysis was applied to the genes encoding for the 6 most interesting proteins 

identified, examining differences between NB-DNJ-sensitive strain C57BL/6 and 

insensitive strain FVB/N. This analysis was performed by Dr. Sarah Lloyd from the 

MRC Prion Unit of the UCL Institute of Neurology. 

The SNP differences between C57BL/6 and FVB/N were downloaded from the 

Sanger Centre ftp site (ftp://ftp-mouse.sanger.ac.uk/REL-1206-FVBNJ/, data file: 

2012-0612- snps+indels_FVBNJ_annotated.vcf). The genes and chromosome 

positions that were used are listed in Table 3.1. Annotated gene sequences were 

searched 5 kb both upstream and downstream. All SNP data come from the Sanger 

Institute sequence data and all base position numbers refer to NCBI Build 37. 

 

Table 3.1 Parameters used in the SNP analysis. 

Gene Name Chromosome Start Start–5000 End End+5000 

Hyou1 9 44187573 44182573 44200452 44205452 

Hspa2 12 77505357 77500357 77507923 77512923 

Jup 11 100239403 100234403 100259053 100264053 

Set 2 29922246 29917246 29927314 29932314 

Cct6a 5 130293261 130288261 130322231 130327231 

Anp32a 9 62189150 62184150 62226609 62231609 

Anp32b 4 46463989 46458989 46485395 46490395 
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3.4 Results & Discussion 

The following scheme illustrates the different steps in which this study was divided 

and summarises the experiments performed (Figure 3.9). 

  

 

 

 

 

 

 

 

Figure 3.9 General scheme of the study. 
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Approximately 2-3% of most genomes are devoted to the so-called 

carbohydrate-active proteins (CAP).
[1]

 These include the lectins that 

bind carbohydrates, the glycosylhydrolases that hydrolyse them and 

the glycosyltransferases that construct them (www.cazy.org).
[2]

 

Deficiencies of CAP can lead to pathological states, such as 

congenital muscular dystrophies
[3-5]

 and lysosomal storage 

disorders
[6]

, and CAP are implicated in a range of host-pathogen 

interactions that lead to disease.
[7, 8]

 Despite this prevalence of 

carbohydrate-binding proteins, affinity strategies have rarely been 

used to identify novel binding partners or profile the carbohydrate-

active proteome.
[9]

 One such conceivable strategy is to use 

clinically-utilized compounds to identify novel binding partners 

which, advantageously would allow the re-purposing of pre-

approved drugs and hence facilitate rapid translation and application. 

One glycomimetic suitable for this purpose is the alkylated 

iminosugar n-butyldeoxynojirimycin (NB-DNJ), which was 

approved by the FDA in 2002 under the trade name Zavesca
®

 

(Miglustat). NB-DNJ is prescribed for the treatment of type 1 

Gaucher disease, an inherited lysosomal storage disorder and 

Niemann-Pick type C disease;
[10-12]

 in humans, NB-DNJ is generally 

well-tolerated.  

This powerful and tolerated glycomimetic is therefore 

somewhat of an archetype of modulation of glycobiology by small 

molecules. One of the most remarkable properties of NB-DNJ is that 

in certain mouse strains from the C57-lineage,
[13]

 e.g. C57BL/6, 

AKR/J and BALB/c, it induces reversible, dose-dependent male 

infertility at very low doses (15 mg/kg/day).
[12, 14-16]

 In contrast, 

other strains of the Swiss Castle lineage, such as FVB/N
[17]

 display a 

phenotype insensitive to NB-DNJ-induced infertility.
[14]

 Studies 

with C57BL/6´FVB/N interstrain hybrid mice have suggested that 

multiple genes (and hence multiple protein targets) are likely to 

contribute to infertility induced by NB-DNJ.
[14]

 This raises the 

intriguing possibility that modulation of the carbohydrate-active 

proteome may be intimately linked to reproductive function. There 

are some early indications of the origins of this exciting effect. Mice 

treated in this manner display lower sperm counts and abnormal 

sperm morphologies including deformed or no acrosomes and non-

falciform nuclei
[12, 14]

 rendering them incapable of binding the zona 

pellucida to initiate fertilisation.
[18]

 However, the exact protein 

targets are unknown. NB-DNJ is known to inhibit the endoplasmic 

reticulum resident β-glucosidase II (GBA2) in addition to lysosomal 

acid β-glucosidase I (GBA) and glucosylceramide synthase 

(GCS/UGCG).
[19-21]

 Knockout studies of GBA2 in male mice have 

resulted in phenotypes with impaired fertility, presenting sperm 

with acrosomal and nuclear abnormalities.
[16]

 It would be 

convenient to ascribe the contraceptive properties of NB-DNJ to 

inhibition of one of the glycosphingolipid metabolising enzymes 

GBA/GBA2 and/or GCS/UGCG. However, NB-DNJ-insensitive 

mouse strains display similar morphological defects upon treatment 

with Miglustat but show no statistically significant decrease in 

fertility.
[14]

 In fact, no comprehensive study of the cellular targets of 

NB-DNJ has been conducted and the protein(s) with which it 

interacts to cause male infertility are unknown.  
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Figure 1. Synthesis of immobilized glycoaffinity probe. 

We report a comprehensive affinity-enrichment proteomic (A
e
P) 

study utilising an immobilized glycoaffinity probe to identify 

proteins that interact with NB-DNJ and are potentially responsible 

for its contraceptive properties. Immobilised iminosugars have 

previously been utilised for simple glycosidase affinity 

chromatography applications,
[22-25]

 however, here we show in a 

proof-of-concept study how this archetypal glycomimetic can be 

used to enable proteomics directed towards its interactome. This 

type   of   glyco-A
e
P  can  be   used   as  a   powerful   technique  for 
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3.4.1 Affinity resin synthesis 

With the collaboration of Dr. Conor Barry from the Department of Chemistry of the 

University of Oxford, a carboxyl-bearing probe ligand 1 derived from DNJ (Paulsen 

et al., 1967) was prepared in a two-step protecting-group-free synthesis, employing 

methanolytic ozonolysis of cyclohexene (Schreiber et al., 1982) followed by 

reductive alkylation of DNJ. The glyco-affinity probe 1 was immobilised on amino-

terminated agarose support through EDAC (1-ethyl-3-(3-dimethylaminopropyl)-

carbodiimide)-mediated amide bond formation. A simplified scheme of the glyco-

affinity probe synthesis and preparation of the glyco-affinity resin is shown in Figure 

3.10.  

 

Figure 3.10 Glyco-affinity probe synthesis and preparation of the glyco-affinity resin. 

During the coupling reaction of DNJ-probe and Affi-Gel, DMSO was added as an 

internal standard to allow the loading of the gel to be determined by 1H NMR 

spectroscopy. When the coupling reaction was complete, the modified gel was 

collected by gravity filtration and washed through with water to elute any unbound 

DNJ-probe. The flow-through was collected, concentrated and analysed by 1H NMR 

spectroscopy. Comparison of the integrals of the DMSO peak and one of the 6-HH 

signals of the DNJ-probe in the 1H NMR spectrum indicated a loading of 40.6 μmol 

DNJ-probe per mL of gel (Cruz et al., 2013a).  
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3.4.2 Affinity resin validation 

The binding ability of the resulting glyco-AeP probe matrix was validated with a 

clinically utilised acid β-glucosidase 1 (GBA)/Ceredase® preparation (Platt et al., 

1994a, Alfonso et al., 2005, Platt et al., 1994b). Ceredase® is used in enzyme 

replacement therapy to treat type 1 Gaucher patients. It is a modified form of 

glucosylceramidase (glucocerebrosidase), which is moderately inhibited by NB-DNJ. 

Therefore, Ceredase® is a known target of NB-DNJ. 

In the Ceredase® activity assay, performed by Dr. Celeste Chuang from the 

Department of Pharmacology of the University of Oxford, the glucosylceramidase 

activity was compared between Ceredase® and fractions eluted from DNJ-affinity 

gel loaded with Ceredase®. The results of this assay showed that control Ceredase® 

released 2.7 and 0.5 pmol 4-MU per min for 0.16 and 0.016 U of Ceredase®, 

respectively. The activity of the fractions eluted from DNJ-affinity gel loaded with 

Ceredase® was reduced to 38.9 % (0.16 U) and 11.4 % (0.016 U), suggesting a 

significant amount of Ceredase® was bound to the DNJ-affinity probe (Chuang, 

2010). 

In order to confirm the binding of Ceredase® to the glyco-affinity probe, 0.16 U of 

Ceredase® were incubated with the DNJ-affinity resin for 2 h at 4 C. The DNJ-resin 

was then washed, eluted and cleaned as described earlier. The flow-through of the 

washing, eluting and cleaning steps was collected in separate fractions, 

concentrated and analysed by SDS-PAGE (Chuang, 2010). An image of the gel 

obtained is depicted in Figure 3.11.  
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Figure 3.11 SDS-PAGE of Ceredase® and fractions eluted from DNJ-affinity gel loaded with 
Ceredase®. DNJ-affinity gel (1 mL) was equilibrated with water and washing buffer (PBS, 0.5 % 

sodium cholate), then incubated with 0.16 U Ceredase® for 2 h at 4 C. The gel column was washed 
with 50 mM sodium acetate (1); eluted with 10 mM NB-DNJ in washing buffer (2); and cleaned with 
1 M acetic acid (3), water, 3.5 M magnesium chloride (4). Gel was stained with silver staining. This 

assay was performed by Dr. Celeste Chuang (Chuang, 2010). 

In Figure 3.11, protein bands of control Ceredase® are shown, the major band being 

the one between 50 and 75 kDa, which corresponds to the active ingredient 

alglucerase. From the observation of Figure 3.11, it is possible to conclude that the 

majority of Ceredase® was eluted with 10 mM miglustat buffer, as fraction 2 

presented a protein band between 50 and 75 kDa, corresponding to alglucerase. A 

minor amount of Ceredase® was visualised in the washing buffer fraction (fraction 

1) and no detectable protein bands were present in the acid (fraction 3) and high 

salt concentration (fraction 4) cleaning steps (Chuang, 2010). 

These results confirmed the binding of Ceredase® to the DNJ-affinity resin and that 

Ceredase® can be completely eluted with a high concentration of miglustat buffer. 

The negligible amounts of Ceredase® in the washing fraction demonstrated that 

binding of Ceredase® to the DNJ-affinity probe could withstand stringent washes 

(Chuang, 2010). 

These validation experiments importantly confirmed functional utility of the glyco-

AeP probe matrix through extraction of a known protein partner. The unknown 
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targets of NB-DNJ that are related to the infertility phenotype are likely to have high 

affinity to NB-DNJ. The interaction between Ceredase® and NB-DNJ is known to be 

weak at submillimolar levels. The fact that Ceredase® could be isolated by DNJ-

affinity chromatography under Ceredase®-optimised buffer conditions suggested 

that decent bindings between the glyco-AeP probe matrix and NB-DNJ target 

proteins can be expected. 

After validation of the glyco-AeP probe matrix, tissue was collected from a mammal 

with relevant phenotype (mouse testis from NB-DNJ-sensitive male C57BL/6 mice) 

to identify proteins contributing to inducible infertility. Protein fraction from 

homogenised tissue was split into two and interrogated with either glyco-AeP probe 

matrix or unmodified agarose (control). Washing removed unbound and non-

specifically bound fractions. The many selected or enriched binding proteins were 

eluted from the respective matrices with NB-DNJ-containing buffer and were 

concomitantly further fractionated and directly visualised by comparative 2D-

polyacrylamide gel electrophoresis (2D-PAGE), detected by silver staining.  
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3.4.3 2D-PAGE gels 

Approximately 70 g of protein for the control sample and 60 g of protein for the 

enriched sample were separated by 2D-PAGE, using pH 3-10 IPG strips for the first 

dimension and precast gels for the second dimension (SDS-PAGE). Gels were stained 

with silver staining, which allows the observation of lower concentration proteins, 

and then photographed. Images of the resulting 2D gels are shown in Figure 3.12. 

 

 

Figure 3.12 Comparative 2D-PAGE analysis of C57BL/6 mouse testis passed through unmodified 
control (A) and DNJ-modified affinity (B) matrices. pI scale 3-10. Middle: molecular weight marker. 

Gels were stained with silver staining. All 81 labelled spots were analysed by LC-MS/MS. 

 

In Figure 3.12 individual protein spots are visible in both gels, indicating that pH 3-

10 strips successfully separated proteins in this pH range. Some protein spots 

showed intensity differences between the control and the enriched sample, a 

number of which were even only present in one of the gels, suggesting the presence 

of proteins with different affinity for the modified resin. The most interesting 

proteins would be the ones that were present in the enriched sample and absent 

from the control sample, since these proteins may have a stronger affinity to the 

DNJ-resin and, consequently, interact more closely with NB-DNJ. One of these 

proteins which were unique to the enriched gel, might be a specific target of NB-

DNJ and be responsible for the reduction of male fertility in particular mouse 

strains. 
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In order to identify these proteins, all 81 labelled spots were excised, subjected to 

in-gel trypsin digestion, and the peptides were extracted from the gel matrix and 

analysed by proteomic LC-MS/MS. A control for trypsin efficiency was analysed in 

parallel. MS/MS data were used to perform database searches, employing a 

licenced search engine – MASCOT (Perkins et al., 1999), with suitable search 

parameters and choice of SwissProt database to look for mouse proteins (taxonomy 

– Mus musculus). 

3.4.4 Selection of proteins identified 

Firstly, two very common contaminants abundantly seen in proteomics analysis 

were eliminated from the hits list of each spot. Those two contaminants were 

keratin, a constituent of skin, hair and nails from a family of fibrous structural 

proteins, and trypsin, an enzyme widely used in in-gel digestion (Keller et al., 2008). 

Keratin is usually inadvertently introduced by the operator and trypsin, which is 

used in excess to guarantee that all the proteins in a specific spot are digested, 

suffers autolysis and its peptides can be detected by MS. 

From 351 proteins identified, 64 that were also identified in the control were 

discounted from the glyco-AeP screen (Figure 3.13). 

 

 

 

 

 

 

Figure 3.13 Venn diagram of glyco-A
e
P proteins identified with a MASCOT score > 20. 
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The following strategy was applied to minimise the chances of false-positive 

identification of contaminant proteins: 

Only significant (P-value cut-off < 0.05) protein identifications were accepted 

throughout all searches; 

Protein hits in the enriched sample were only considered if identified twice 

(in replicates 1 and 2); 

At the same time, all protein hits which were found in either replicate of the 

control sample (replicate 1 or 2) were discarded and not considered as 

potential interaction proteins. 

This generated a focused list of 18 proteins reliably identified through glyco-AeP 

probing (but not in controls) as strong carbohydrate-active candidates (Table 3.2). 

Cross-validation of theoretical molecular weights and isoelectric points allowed 

further narrowing of this focus group and reduced the protein cohort to 6 proteins 

with plausible function roles. These 6 most significant proteins are highlighted in 

Figure 3.14 and Table 3.2.  

Figure 3.14 Six most significant proteins highlighted in comparative 2D-PAGE analysis of C57BL/6 
mouse testis passed through unmodified control (A) and DNJ-modified affinity (B) matrices. pI 

scale 3-10. Middle: molecular weight marker.
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Table 3.2 Significant proteins identified from mouse testis with putative NB-DNJ affinities using glyco-A
e
P. 

Spot 
(a)

 Accession Number Protein Name Protein Code Score Mr (Da) pI % Coverage 

73 Q9JKR6 Hypoxia up-regulated protein 1 HYOU1 291 111 340 5.12 68 

54 Q02257 Junction plakoglobin JUP 65 82 490 5.75 37.3 

77 P17156 Heat shock-related 70 kDa protein 2 HSPA2 92 69 884 5.51 51 

45 O35381 Acidic leucine-rich nuclear phosphoprotein 32 family member A ANP32A 86 28 691 3.99 23.9 

49 Q9EQU5 Protein SET SET 49 33 358 4.22 29.1 

60/61 P80317 T-complex protein 1 subunit zeta CCT6A 45 58 424 6.63 51.8 

50 P70670 Nascent polypeptide-associated complex subunit alpha NACA 104 221 277 9.39 49.1 

62 P80314 T-complex protein 1 subunit beta CCT2 60 57 783 5.96 13.8 

56 Q059Y8 DC-STAMP domain-containing protein 1 DCST1 41 85 646 9.42 37.8 

71 Q8BJQ2 Ubiquitin carboxyl-terminal hydrolase 1 USP1 38 88 314 5.33 41.6 

77 P17879 Heat shock 70 kDa protein 1B HSPA1B 60 70 418 5.53 44.1 

46 Q63ZV0 Insulinoma-associated protein 1 INSM1 46 55 042 9.24 41.5 

54 P01643 Ig kappa chain V-V region MOPC 21 - 40 15 063 6.26 38.2 

54 Q52KB6 C2 domain-containing protein 3 C2CD3 38 257 281 6.52 37.8 

77 Q6A068 Cell division cycle 5-related protein CDC5L 37 92 361 7.98 37.3 

52 A2ARV4 Low-density lipoprotein receptor-related protein LRP2 27 537 628 4.94 18.6 

54 Q8VHJ7 Peroxisome proliferator-activated receptor gamma coactivator 1 PPARGC1B 26 113 773 4.92 25 

45 Q8C9J3 Sperm flagellar protein 2 SPEF2 23 199 477 5.65 35.6 

(a) Spots in bold and italic indicate proteins unique to the enriched sample; spots in bold indicate enriched proteins. 
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Gel images were also obtained using the camera function of EXQuest Spot Cutter 

and analysed using PDQuest Advanced software. The Multi-Channel Viewer tool of 

the software allows overlapping of up to three gel images, assigning a different 

filter/colour to each individual image. This tool was used to overlap the two gel 

images (unmodified control gel – A and DNJ-modified gel – B), which are 

represented in blue and orange, respectively, in Figure 3.15. The 6 most relevant 

proteins identified are highlighted in the overlapped image. 

 

 

 

 

 

 

 

Figure 3.15 Overlapped gel image of DNJ-modified and unmodified control gel images. Spots in the 
control gel are represented in blue and spots in the DNJ-modified gel can be seen in orange. 
Overlapped spots are shown in a darker colour. The six most relevant proteins identified are 

highlighted in the image (HYOU1, HSPA2, JUP, SET, CCT6A, ANP32A). 

The overlapped image in Figure 3.15 confirms the importance and uniqueness of 

the protein focus group, as it is possible to observe that the spots in which those 6 

proteins were identified are only present in the DNJ-modified gel (orange). 

Interestingly, for one of the 6 selected proteins – JUP, which was identified in spot 

54, the theoretical molecular weight and isoelectric point do not correspond to the 

observed values. In fact, spot 54 on the DNJ-modified gel image has an observed 

molecular weight of 25-37 kDa and isoelectric point of 8-9, which are quite different 

from the theoretical values of 82.5 kDa and 5.75, respectively (Table 3.2). Despite 

these discrepancies, JUP has been selected to integrate the protein focus group, as 

literature search revealed interesting functions and a possible relationship of this 
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protein with infertility. The disparities in the observed values are consistent with 

the possible presence of a post-translational modified form of the same protein. 

Most proteins undergo some form of modification following translation. These 

modifications result in molecular weight and/or isoelectric point changes that are 

detected during MS analysis (Mann and Jensen, 2003). Further studies would be 

needed to confirm this hypothesis. 

It should be noted that the identification of some membrane bound CAP 

glycosidases and glycosyltransferases has required bespoke separation methods, 

such as sucrose gradient for Golgi membranes (Lin et al., 2008), and this may lead to 

a potential under-representation of these proteins in the broad-ranging glyco-AeP 

strategy that was employed in this study. 

For a minority of spots, protein identification results were unsatisfactory, since 

there were only a few and not very intense peaks in the chromatograms, resulting 

in insufficient MS/MS fragmentation data, which did not permit the identification of 

possible proteins. This could most likely have been caused by experimental errors, 

such as incorrect handling of samples that could result in loss of pieces of the gel 

spot, or inappropriate instrument sensitivity to detect very low abundance proteins. 

Intriguingly, some proteins were identified in more than one spot. Examples of 

those were serum albumin; Arf-GAP with SH3 domain, ANK repeat and PH domain-

containing protein 2; glial fibrillary acidic protein; AT-rich interactive domain-

containing protein 5A; tyrosine-protein phosphatase non-receptor type 1. 

The proteins listed above were identified in more than one spot that had been 

excised from both the control and the enriched gel, which is in line with the possible 

presence of different post-translational modified forms of the same proteins. As 

mentioned before, the majority of proteins undergo some form of modification 

following translation, which may result in molecular weight and/or isoelectric point 

changes that are detected during MS analysis (Mann and Jensen, 2003). Further 

studies would be needed in order to corroborate this hypothesis. 
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On the other hand, proteins are identified on the basis of peptide sequence 

matching with a database. The smaller in number of amino acids the sequences 

identified are, the lower is the probability of identifying specific proteins with a high 

score. In addition, several small amino acid sequences are shared among many 

proteins, whereas unique peptide sequences are characteristic of a specific protein. 

Therefore, if those proteins were identified based on small non-unique peptide 

sequences, it is possible that these sequences were present in more than one spot, 

regardless of the gel from which they were cut (Hoffmann and Stroobant, 2007). 

Furthermore, the proteins mentioned above were probably present in high 

abundance in both samples, masking lower concentration proteins. Serum albumin, 

for example, as a major constituent of plasma, is present in blood. The samples 

analysed were tissue homogenates, which were likely to be contaminated with 

blood, explaining the presence of serum albumin (You et al., 2005). 

It should be noted that there might be inherent variability in tissue sample, 

phenotypic state and through handling variations. Still, it is noteworthy that the 

glyco-AeP method showed apparent robustness in this regard, since an additional 

glyco-AeP experimental round using testis tissue, successfully identified with high 

significance five out of the six proteins identified in the primary rounds. Preliminary 

experiments using brain tissue did not identify these proteins. 

Moreover, the methods of data analysis performed in this study, using the MOWSE 

scoring system as implemented by MASCOT (Perkins et al., 1999), will have a 

profound effect upon initial agreements on identified proteins (Figure 3.16). At low 

thresholds (score > 20) there is a lower initial overlap between enriched sets, 

whereas at higher thresholds (score > 50) there is almost complete overlap (all non-

excluded proteins in set 2 are also found in set 1). Notably, all of the proteins listed 

in Table 3.2 have a score significantly above the threshold of 33 (> 45, in fact) that 

has been recommended for mammalian tissue samples (Koenig et al., 2008). 
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Figure 3.16 Venn diagrams of the outcomes at different levels of protein score thresholds and 
different use of either (A) ‘combined exclusion’ or (B) ‘overlap exclusion’. Different protein scores 

from the MASCOT software lead to different outcomes in the excluded and overlapped sets of 
identified proteins. As the score threshold increases, as would be expected, the agreement between 

sets also increases. 
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3.4.5 Most interesting protein identifications 

Two Hsp70 proteins, Heat shock-related 70 kDa protein 2 (HSPA2) and Hypoxia up-

regulated protein 1 (HYOU1), were identified. The 70 kDa heat shock proteins 

(Hsp70s) are a family of ubiquitously expressed proteins that stabilise pre-existent 

proteins against aggregation, and mediate the folding of newly translated 

polypeptides in the cytosol as well as within organelles, in cooperation with other 

chaperones (Tavaria et al., 1996, Morano, 2007, Zakeri et al., 1988). Members of 

the Hsp70 family are strongly up-regulated by heat stress and toxic chemicals, and 

participate in the disposal of damaged or defective proteins (Luders et al., 2000). In 

addition to improving overall protein integrity, Hsp70s directly inhibit apoptosis 

(Beere et al., 2000), hence having a recognised role in cancer (Ricaniadis et al., 

2001, Ramp et al., 2007). 

The testis functions on the brink of hypoxia (Lysiak et al., 2000) and low oxygen 

levels in the testis are required for spermatogenesis (Gruber et al., 2010). Proteins 

that are up-regulated by low oxygen concentrations, such as HYOU1, also known as 

Grp170, may play key roles in spermatogenesis. Additionally, HYOU1 directly 

regulates insulin (INS) (Kobayashi and Ohta, 2005) and vascular endothelial growth 

factor (VEGF) (Semenza, 2001), as demonstrated in Figure 3.17. Abnormal VEGF 

levels in seminal plasma correlate with IVF (in vitro fertilisation) pregnancy success 

(Obermair et al., 1999). Insulin affects reproductive function in humans and animals 

at multiple levels by effecting endocrine control of spermatogenesis, as well as on 

mature ejaculated spermatozoa (Lampiao et al., 2009). 
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Figure 3.17 Pathways focussed on HYOU1 protein. Pathway analysis performed using Pathway 
Studio 9 (Elsevier). 

The second Hsp70 protein, HSPA2, is a testis-specific form in mice, where it is 

regulated developmentally and expressed in spermatogenic cells (Eddy, 1999). It 

has a unique role during germ cell differentiation (Vos et al., 2008) and is necessary 

for progression of meiosis in mouse germ cells (Eddy, 1999, Dix et al., 1996). 

Regarding the relationship between HSPA2 and human male infertility, a study 

performed in men undergoing testicular biopsy during an investigation of 

subfertility demonstrated that decreased expression of this protein is associated 

with the pathogenesis of male infertility (Feng et al., 2001). 

Junction plakoglobin (JUP, desmoplakin 3) is a junctional plaque protein involved in 

the formation of desmosomes and tight junctions (Kowalczyk et al., 1998). Mice 

with impaired ability to form tight junctions (e.g. Epas1-/-) display higher testicular 

oxygen levels, which interferes with spermatogenesis (Gruber et al., 2010). It is 

conceivable that desmosome disruption by NB-DNJ may affect spermatogenesis by 

such a mechanism. Indeed reversible male infertility has been demonstrated by 
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unrelated small molecules that disrupt adherens junctions in the testis (Mruk et al., 

2006). 

A somewhat intriguing discovery in this study was protein SET, also designated as 

template activating factor 1β, a histone chaperone for nucleosome assembly (Kato 

et al., 2011) and as I2PP2A (Li et al., 1996). I2PP2A inhibits multifunctional protein 

phosphatase PP2A. Notably, I2PP2A binds sphingolipids, including ceramide and 

PTY720, a clinical sphingosine analogue (Saddoughi et al., 2013). Given that NB-DNJ, 

in its inhibition of GCS, competitively inhibits ceramide binding, it may be possible 

that NB-DNJ binds SET/I2PP2A in a similar manner (Butters et al., 2000).  

Interestingly, several of the discovered proteins are chaperones. Not only HYOU1, 

HSPA2 and SET, but also T-complex protein 1 subunit zeta (CCT6A), which is a 

chaperone protein involved in the folding of tubulin and actin and other proteins 

(Gao et al., 1992). Curiously, NB-DNJ-sensitive strains (C57BL/6) showed decreased 

levels of acrosomal proteins after treatment with miglustat, when compared with 

non-sensitive strains (FVB/N) (Bone et al., 2007). It is possible that NB-DNJ 

impairment of chaperone protein function may be responsible for this phenotype. 

Some of the selectively identified partners have no obvious potential role. The 

acidic leucine-rich nuclear phosphoprotein 32 family members (ANP32), identified 

in spot 45, have been implicated in a number of cellular processes including cell 

cycle progression, differentiation and apoptosis (Reilly et al., 2011). However, gene 

disruption studies of ANP32A produced mouse strains which were both viable and 

fertile (Opal et al., 2004), suggesting that these proteins are not directly implicated 

in NB-DNJ induced male infertility and potentially highlight a functionally unrelated 

interaction. 

Together these data implicate a glycomimetic-interactome (Hsps, junctional 

proteins, chaperones and ceramide binders) that would not have been readily 

predicted, but that suggest functionally plausible pathways for investigation, such 

as the effects of chaperones and tight junction assembly on spermiogenesis. In a 

near future, these results could lead to validated drug targets for contraception.  
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3.4.6 Single-nucleotide polymorphism (SNP) analysis results 

Single-nucleotide polymorphism (SNP) is a DNA sequence variation occurring when 

a single nucleotide  A (adenine), T (thymine), C (cytosine) or G (guanine)  differs 

between members of a biological species or between a pair of chromosomes in a 

human. For example, two sequenced DNA fragments from distinct individuals, 

AAGCCTA to AAGCTTA, contain a difference in a single nucleotide (Brookes, 1999). 

SNPs are the most common type of genetic variation among humans. They occur 

with a frequency of 1 in every 300 nucleotides on average. The genomic distribution 

of SNPs is not homogeneous. Most commonly, these variations are found in the 

DNA between genes, in non-coding regions, and they can be used as biological 

markers to highlight the location of genes that are associated with diseases. 

However, when SNPs occur within a gene or in a regulatory region near a gene 

(coding region), they may play a more direct role in disease by affecting the gene’s 

function. Gene’s function is only affected if an SNP within a coding region changes 

the amino acid sequence of the protein that is produced, which does not necessarily 

happen due to the degeneracy of the genetic code (Varela and Amos, 2010, 

Nachman, 2001). 

The vast majority of SNPs have no effect on health or development. Nevertheless, 

some of these genetic differences have proven to be very important in the study of 

diseases. Moreover, SNPs may help predict an individual’s response to certain 

drugs, susceptibility to environmental factors such as toxins, and risk of developing 

particular diseases. They can also be helpful to track the inheritance of disease 

genes within families (Ginsburg and McCarthy, 2001, Sachidanandam et al., 2001). 

Inspection of the genetic differences that code for the identified proteome between 

sensitive and insensitive mice allows identification of SNPs. In this study, SNP 

analysis was used in order to investigate the occurrence of genetic differences 

between NB-DNJ-sensitive and insensitive mice that would explain this phenotypic 

distinction. 
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With the help of Dr. Sarah Lloyd from the MRC Prion Unit of the UCL Institute of 

Neurology, SNP analysis was applied to genes encoding for the proteins identified 

using the glyco-AeP strategy, examining differences between NB-DNJ-sensitive 

strain C57BL/6 and insensitive strain FVB/N (Wang et al., 2012a). Annotated gene 

sequences were searched 5 kb both upstream and downstream. 

Among the focus group of the 6 most promising proteins, no SNPs were found in 

the respective genes for Hyou1, Jup or Set, but were found for Cct6a (180), Hspa2 

(57 in total) and Anp32a (367) (Table 3.3).  
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Table 3.3 Single-nucleotide polymorphism (SNP) analysis results. SNP analysis was applied to genes 
encoding for the 6 most relevant proteins identified using the glyco-AeP strategy, examining 

differences between NB-DNJ-sensitive strain C57BL/6 and insensitive strain FVB/N. Detailed SNP 
results for Cct6a. 

Single-nucleotide Polymorphisms 

(SNPs) 

 

Gene 
name 

Non-coding regions 
(including 3’UTR) 

Coding region 
Total 
SNPs 

No change in amino acid Change in amino acid 

Hyou1     

Hspa2 54 3  57 

Jup     

Set     

Cct6a 174 5 1 180 

Anp32a 367   367 

 

Chr Location Base pair C57BL/6 FVB/N 

  …   
5 Ex4 coding gcg-gcc – A152A 130295812 G C 
  …   

5 Ex6 coding act-acg – T232T 130297427 T G 
  …   

5 Ex9 coding gag-ggg – E348G 130299586 A G 
  …   

5 Ex11 coding tcg-tca – S471S 130320911 G A 
5 Ex11 coding tcc-tcg – S473S 130320917 C G 
  …   

5 Ex12 coding gct-gcc – A489A 130321475 T C 
  …   

 

In Cct6a (NM_009838) the majority of the SNPs were found in non-coding regions, 

including the 3’ untranslated region (3’UTR). Nevertheless, six changes were found 

in the coding region, five of which do not change the corresponding amino acid. 

One, in exon 9, Chr5 position 130299586, has the SNP designation rs13470985 and 

changes amino acid 348 from E/glutamic acid in C57BL/6 to G/glycine in FVB/N. 

C57BL/6	 FVB/N	

VS	
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In Hspa2 (NM_001002012) again non-coding region SNPs were the majority, 

including the 3’UTR. Three SNPs were identified in the coding region, but these do 

not change the corresponding amino acids. 

In Anp32a (NM_009672) only SNPs in non-coding regions, including the 3’UTR, were 

found. As well as the single CCT6A-E348G difference identified, it cannot be 

discounted that the identified non-coding changes may affect gene regulation. SNPs 

that are not located in protein-coding regions may still affect gene splicing, 

transcription factor binding, messenger RNA degradation, or the sequence of non-

coding RNA. However, in the absence of microarray analysis of FVB/N testis tissue, 

it is not yet possible to compare expression levels. 
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3.5 Conclusions & Future Work 

3.5.1 Conclusions 

Synthetic oligosaccharides and glycoconjugates provide materials for correlating 

structure with function. Natural and synthetic mimics of the complex assemblies 

found on cell surfaces can modulate cellular interactions and small molecule 

inhibitors of carbohydrate biosynthetic and processing enzymes can block the 

assembly of specific oligosaccharide structures. These are currently under 

development as therapeutic agents, although it can be very long until they are 

approved as medicines. 

The repurposing of an existing therapeutic is a potentially strong strategy for probes 

with wide-ranging utility, since it creates a more direct route to in vivo function. 

While strategies in some key areas of biology have followed this logic (Albrow et al., 

2012, Aye et al., 2009, Dadvar et al., 2009, Ong et al., 2009), the detailed 

examination of the modulation of glyco-biological function has not, until now, 

scrutinised such valuable interactomes. In other words, widescale evaluation of 

interacting partners for carbohydrates is an underexploited area. Exploring the 

glyco-interactome has particular relevance given the lack of direct genetic control of 

glycoconjugate biosynthesis. 

In this study the archetypal glycomimetic iminosugar and therapeutic NB-

DNJ/miglustat/Zavesca was utilised in a glycomimetic affinity-enrichment 

proteomics (glyco-AeP) strategy to elucidate a focused subsection of the proteome 

hypothetically relevant to mammalian reproduction. Because miglustat passed the 

safety tests to be approved for the treatment of Gaucher disease in humans, it 

appears to hold promise as a male birth control pill. However, further studies in 

humans are needed. 

The discovered binding partners (Hsps, junctional proteins, chaperones, ceramide 

binders) and the associated genomic analysis implicate a subset of proteins as 
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important in male fertility. These new interactions would not have been readily 

predicted and might define the mechanisms by which NB-DNJ causes male 

infertility. 

The success of the strategy used suggests a general approach to discovering 

carbohydrate-active partners in biology. 

The work reported in this chapter has been published (Cruz et al., 2013a) and the 

article can be found in Appendix. 

3.5.2 Future work 

While traditional hormonal contraceptive methods have focused on women, 

hormonal and non-hormonal male contraception is an attractive alternative. The 

biological basis for male contraception was established long ago and some 

promising breakthroughs have been achieved. Nevertheless, and despite the 

financial burden families increasingly bare due to better enforcement of child 

support policies, no viable alternative to the widely used barrier device, the 

condom, has been brought to the market. Up until now, men who wish to control 

Key Findings 

Comprehensive study utilising an immobilised glyco-affinity probe to identify proteins 
that interact with NB-DNJ and are potentially responsible for its contraceptive 

properties. 

Glyco-AeP Proteins Identified 

Powerful technique for identifying 
unforeseen protein-ligand interactions in a 

therapeutically relevant phenotype 

Elucidated a focused subsection of the 
proteome hypothetically relevant to 
mammalian reproduction – HYOU1, 
HSP2A, SET, CCT6A, JUP, ANP32A/B 

Repurposing of an existing therapeutic is a powerful strategy to develop a probe with 
wide-ranging utility since it creates a more direct link to in vivo function. 
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their fertility must rely on barrier methods, female compliance with contraceptives, 

vasectomy or abstinence. 

Over the last decade, the pharmaceutical industry has abandoned most of its 

investment in the field, due to uncertain estimates of market demand allied to the 

need for critical funds to demonstrate the safety of existing candidate products. 

However, survey data indicate strong interest on both women and men in having 

more male options for fertility control (Heinemann et al., 2005). This strongly 

supports the development of studies like the one reported in this chapter. 

The next logical step to further develop this particular study would be to validate 

the identified targets. Several methodologies can be used for target validation, 

including western blotting using antibodies against the proteins identified, to 

confirm their presence in the glyco-affinity enriched sample and absence from the 

control. 

The following step would be to perform animal studies, which should include NB-

DNJ sensitive and insensitive mouse strains to further investigate interstrain 

differences. Each mouse strain group should be split into two sub-groups: the study 

group, whose mice are treated with low doses of NB-DNJ to cause infertility, and 

the control group with non-treated mice. Following treatment, a 2D-PAGE followed 

by MS approach could be used to compare the protein profile of the testis tissue of 

both groups. The presently identified proteins should be found solely in the treated 

group. 

Another useful approach for target validation would be the use of knockout studies 

in NB-DNJ sensitive and insensitive mouse strains to explore the effect of the 

identified protein targets on fertility. These studies could shed light not only on the 

individual role of each gene, but also of combined genes, on fertility by using 

multiple knockouts. 

Ultimately, the contraceptive effect of NB-DNJ should be tested in humans. In a 

small-scale study involving five human subjects, miglustat has shown to cause no 

apparent effect on spermatogenesis (Amory et al., 2007). Yet, apart from the small 
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number of individuals participating in this study, a fixed oral dose of NB-DNJ was 

administered and all participants were followed over the same period of time (6 

weeks). Further longitudinal studies with a greater number of participants and 

several dose regimens are needed to better conclude on the effect of NB-DNJ on 

human fertility. 

Moreover, the application of the developed glyco-AeP strategy to other 

glycomimetics would certainly result in the discovery of more interesting 

carbohydrate-active partners. Remarkably, the primary probe used in this study is a 

derivative of the natural product nojirimycin (Inouye et al., 1966). The increasing 

utility of both functionalised natural products (Hegde et al., 2011) and therapeutics 

as two classes of small molecules that have been selected in contrasting manners 

for protein interaction, suggests that future affinity strategies might also be usefully 

based on their exploitation. To this end, extension of the glyco-AeP strategy to other 

small molecule, natural product glycomimetics is currently under exploration. 
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4.1 Introduction 

4.1.1  Ovarian cancer 

Cancer is a generic term for a large group of genetic diseases that can affect any 

part of the body. In this type of disease, the control mechanisms of cell growth are 

deficient or lost, leading to the formation of a solid mass of cells known as tumour 

or neoplasm. The initial tumour becomes life threatening when it invades 

surrounding tissues, obstructing vessels or organs, or spreads through the 

bloodstream to one or more sites in the body (metastasis). In the early stages of 

tumour growth, cancer cells usually resemble the original cells from which they 

derive; however, they can lose their appearance and function during the multi-step 

tumourigenesis process (Thurston, 2007). 

Every cell in our body goes through a cell cycle to divide and produce new cells. In a 

healthy individual the cell division is carefully controlled by a combination of 

regulatory proteins, such as cyclin-dependent kinases, and checkpoint proteins, 

such as p53, which cause cell cycle arrest and possible apoptosis in response to DNA 

damage. Loss of this regulation due to mutations can therefore lead to uncontrolled 

cell proliferation, tumour formation and cancer. Mutations in two particular classes 

of genes are the most common. Firstly, mutations in oncogenes, which code for 

proteins promoting cell proliferation, result in tumour formation and growth. 

Secondly, mutations in tumour suppressor genes, which code for proteins normally 

involved in causing cell cycle arrest, prevent the inhibition of cell division 

(Vermeulen et al., 2003). 

The defining characteristics of cancer include continuous signalling, which promotes 

cell growth and proliferation, and while normal cells have limited replication, cancer 

cells have not. They also have the ability to avoid apoptosis and growth suppression 

signalling. Additionally, cancer cells are able to develop vasculature by inducing 

angiogenesis, allowing a constant supply of nutrients to meet their metabolic 
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needs, as well as providing them with means to spread to other parts of the body by 

metastasis (Hanahan and Weinberg, 2011). 

Cancer is a leading cause of death worldwide and accounted for 7.6 million deaths 

(around 13 % of all deaths) in 2008, according to the World Health Organization 

(WHO, 2013). This means that cancer remains a major public health challenge, 

although there has been remarkable progress in detection and therapy strategies in 

the latest years. 

Ovarian cancer is a nonspecific term used to designate a variety of cancers that 

originate in the ovary. It is characterised by an uncontrolled growth of abnormal 

cells within the ovary, forming a tumour. Cancerous ovarian tumours can spread to 

nearby structures such as the fallopian tubes and the uterus, or even to other parts 

of the body such as the liver, lungs and bowel, if not diagnosed and treated. As 

ovarian cancers display a significant morphological and biological heterogeneity, the 

WHO categorises most of the human ovarian tumours based on the presumed 

histogenesis of the normal ovary (Scully, 1987, Serov et al., 1973). 

4.1.1.1 Types of ovarian cancer 

According to tumour histology, ovarian cancer is classified into three major 

categories: epithelial ovarian tumours, germ cell tumours and sex-cord stromal 

tumours. The type of ovarian cancer dictates many aspects of clinical treatment, 

management and prognosis (Scully, 1987, Serov et al., 1973). 

Epithelial ovarian cancer is the most common type of ovarian cancer, corresponding 

to approximately 90 % of all ovarian cancer cases. It includes serous, the most 

frequent subtype, endometrioid, clear cell, mucinous and undifferentiated or 

unclassifiable. Epithelial ovarian tumours develop on the surface layer covering the 

ovary and so far they have all been treated in a similar way (Kaku et al., 2003). 

About 10 to 20 % of epithelial ovarian neoplasms are borderline or low malignant 

potential (LMP) tumours, which are characterised by a higher degree of cellular 

proliferation than benign tumours, but in the absence of stromal invasion (Scully, 
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1987, Hart, 1977). Among the invasive epithelial ovarian cancers, about 75 to 80 % 

are serous, 10 % are endometrioid and 10 % are mucinous (Holschneider and Berek, 

2000). 

Serous tumours occur most frequently in women aged 40-60 years old and account 

for 25-40 % of epithelial tumours. Endometrioid tumours are approximately 20 % of 

epithelial tumours and occur primarily in women who are between 50 and 70 years 

of age. In these tumours, cells resemble those in endometrial carcinoma, which 

affects the lining of the uterus (endometrium, womb). About 5 % of endometrioid 

tumours are connected to endometriosis, a non-cancerous disorder of the 

endometrium, and around a fifth of the cases occur in women who have also been 

diagnosed with endometrial carcinoma. Clear cell tumours make up 6 % of epithelial 

tumours and are mainly diagnosed in women aged 40 to 80. Approximately 50 % of 

these tumours are associated with endometriosis. Clear cell carcinoma is 

considered an aggressive form of ovarian cancer. Mucinous tumours are most 

common in women between 30 and 50 years old and correspond to roughly 1 % of 

epithelial ovarian tumours. In this subtype of tumour, cells are similar to those of 

the mucinous membrane of the cervical canal. Undifferentiated tumours are those 

that do not fit into any of the above categories and represent around 10-15 % of 

epithelial ovarian malignancies (Serov et al., 1973, Kaku et al., 2003). 

Germ cell ovarian cancer is less common, accounting for 5-10 % of all ovarian cancer 

cases, and is more frequent in younger women. These tumours develop from cells 

within the ovary that form the eggs. Most germ cell tumours are benign ovarian 

teratomas. The prognosis of this subtype of ovarian cancer is overall favourable, 

with 90 % of cases successfully treated, although it depends on the specific 

histology of germ cell tumour. Types of germ cell tumours include teratomas; 

dysgerminomas, the most frequent of all germ cell tumours; endodermal sinus 

tumours; embryonal carcinomas and choriocarcinomas. There are also mixed germ 

cell tumours, which consist of combinations of germ cell tumours and are rare 

(Serov et al., 1973, Kaku et al., 2003). 
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Sex-cord stromal tumours are also less common, affecting 5-10 % of women 

diagnosed with ovarian cancer, independently of their age group. These originate in 

the connective tissue that holds the ovaries together and produce female 

hormones. Most of these tumours are either benign or confined to the ovary when 

diagnosed. Granulosa cell tumours; thecomas; fibromas, the most common sex-

cord tumour; Sertoli-Leydig cell tumours; sex-cord tumours with annular tubules; 

lipid cell tumours and gynandroblastomas are different types of sex-cord stromal 

tumours (Serov et al., 1973, Kaku et al., 2003). 

4.1.1.2 Stages of ovarian cancer 

The stage of a cancer gives an indication of how much the cancer has grown and 

how far it has spread at the time of diagnosis. Treatment options are influenced by 

the stage of the cancer. The International Federation of Gynaecological Oncologists 

created the FIGO staging system for classification of ovarian cancer according to 4 

different stages: stage I, stage II, stage III and stage IV. This classification system 

uses information obtained after surgery (Pecorelli et al., 1999). 

Borderline tumours are not included in this classification, as they are not real 

cancers because they rarely invade deeper layers of tissue. These tumours are made 

up of abnormal cells formed in the covering of the ovary, which usually grow in a 

slow and controlled way. They may become cancer, yet most do not. Most women 

with borderline tumours are diagnosed at an early stage and are generally cured 

with surgery alone (Yancik, 1993). 

In ovarian cancer stage I, the cancer is confined to the ovaries. Stage I is divided into 

3 sub-sections: stage Ia, in which the cancer is confined to one ovary, there is no 

fluid accumulation (ascites) and no tumour on the external surface of the ovary, 

which is intact; stage Ib, similar to stage Ia, but the cancer is contained inside both 

ovaries; stage Ic, where the cancer is similar to stages Ia or Ib, though it is also 

characterised by the presence of cancer cells on the surface of at least one ovary, or 

in the fluid taken from inside the abdomen during surgery, or there are ovary 

ruptures before or during surgery (Pecorelli et al., 1999). 
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Stage II ovarian cancer is characterised by the existence of cancer cells outside the 

ovaries, although the cancer has not spread further than the pelvic region. There 

are 3 sub-sections in stage II: stage IIa, in which the cancer has spread into the 

fallopian tubes or the uterus or both; stage IIb, where the cancer has expanded into 

other tissues in the pelvis, such as the bladder or rectum; stage IIc, similar to stages 

IIa or IIb, yet it is also characterised by the presence of cancer cells on the surface of 

at least one ovary, or in ascites taken from inside the abdomen during surgery, or 

there are tumour ruptures before or during surgery (Pecorelli et al., 1999).  

Ovarian cancer stage III occurs when one or both ovaries are involved and the 

cancer has spread beyond the pelvic region into the abdominal cavity, excluding the 

liver, and/or to nearby lymph nodes. In stage III there are also 3 sub-sections: stage 

IIIa, where tumours are found in one or both ovaries and the pelvis, but cancer cells 

can be visualised under the microscope in tissue collected from the lining of the 

abdomen, and lymph nodes are negative for cancer; stage IIIb, similar to stage IIIa, 

although there are confirmed small tumour growths (with less than 2 cm in 

diameter) on the lining of the abdomen; stage IIIc, characterised by the presence of 

tumour growths larger than 2 cm on the lining of the abdomen and/or cancer cells 

on the lymph nodes, in addition to the aspects mentioned for the previous stages 

(Pecorelli et al., 1999). 

Stage IV ovarian cancer implies that cancer cells have spread to other parts of the 

body such as the lungs, liver and brain (Pecorelli et al., 1999). 

The AJCC/TNM staging system includes 3 categories for ovarian cancer: T, N and M. 

This system describes the extent of the primary tumour (T), the absence or 

presence of metastasis to nearby lymph nodes (N), and the presence or absence of 

distant metastasis (M). The T category is divided into sub-categories, classified 

according to the place where the tumour has developed and how far it has spread. 

The N and M categories are also divided into sub-categories, according to the 

absence or presence of metastasis to nearby lymph nodes and distant metastasis. 

The AJCC stages correspond to the FIGO stages. For example, stage T1a+N0+M0 in 

the AJCC system corresponds to stage Ia in the FIGO system; stage T2c+N0+M0 in 
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the AJCC system corresponds to stage IIc in the FIGO system and Any T+ Any N+M1 

in the AJCC system corresponds to stage IV in the FIGO system (Pecorelli et al., 

1999). 

4.1.1.3 Grades of ovarian cancer 

The microscopic visual aspect of cancer cells determines the grading of cancers. The 

grading gives an indication of how quickly cancer cells are likely to grow and the 

cancer to develop, by comparison of the tumour cells with normal cells. The more 

similar cancers are to normal tissue, the less likely to grow and spread quickly they 

tend to be. Ovarian cancer can be divided into 4 grades: Grade 0 (zero) or 

borderline, Grade 1 or well differentiated, Grade 2 or moderately differentiated, 

Grade 3 or poorly or undifferentiated. Treatment options depend on the tumour 

grade (Pecorelli et al., 1999, Coukos et al., 2008). 

Grade 0 tumours are the least aggressive, unlikely to spread, look very much like 

normal tissue and, thus, are usually easy to treat and cure. They are also known as 

tumours of low malignant potential and represent around 15 % of epithelial ovarian 

tumours. Grade 1 tumours also look very similar to normal tissue and tend to grow 

slowly. They are commonly recognised as low-grade tumours. Grade 2 tumours are 

often referred to as intermediate grade tumours, because they do not look like 

normal tissue and grow moderately fast. Grade 3 tumours are the most aggressive; 

they grow quickly and in a disorganised way and do not look similar to normal tissue 

(Coukos et al., 2008). 

Results of recent molecular genetic studies have suggested that high-grade and low-

grade serous ovarian cancers are distinct and have classified them into two 

categories. Type I cancers are low-grade, slowly developing ovarian carcinomas 

(including endometrioid, mucinous and low-grade serous carcinomas). These are 

commonly associated with KRAS, BRAF, PTEN and B-catenin mutations and 

frequently associated with endometriosis. Type II cancers are high-grade serous 

carcinomas, which are more aggressive and develop rapidly, and are characterised 

by TP53 mutations (Gilks, 2010, Kurman and Shih Ie, 2010). 
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4.1.1.4 Epidemiology 

In 2008, the number of new cases of ovarian cancer worldwide was estimated to be 

225,000, accounting for approximately 4 % of all cancers diagnosed in women. The 

world age-standardised incidence rate for the more developed regions (9 per 

100,000) is estimated to be nearly twice as high as the incidence rate for the less 

developed countries (5 per 100,000). The regions of the world with the highest 

ovarian cancer incidence rates are Northern, Central and Eastern Europe, followed 

by Western Europe and Northern America, whereas the lowest incidence rates are 

recorded in Africa and Asia. In 2008, over 21,500 new cases were estimated to be 

diagnosed in the USA and more than 65,000 in Europe (Holschneider and Berek, 

2000, CRUK, 2013). In terms of mortality, in 2008 more than 140,000 women died 

from ovarian cancer worldwide (Jemal et al., 2010). 

Within Europe, ovarian cancer incidence varies by approximately 40 %, with 

estimated European age-standardised rates ranging from 17 per 100,000 women in 

Northern Europe to 12 per 100,000 in Southern Europe, in 2008. The countries with 

the highest incidence rates were Latvia and Lithuania (19 per 100,000) and the 

countries with the lowest were Cyprus and Portugal (7 per 100,000). Out of the 27 

countries in the European Union, the UK was 7th. In 2008, ovarian cancer caused 

around 29,000 deaths in Europe (CRUK, 2013). 

In 2011, ovarian cancer was the 5th most common cancer among women in the UK 

and the second most common gynaecological cancer, with around 7,116 women 

being diagnosed in that year. In the UK, ovarian cancer is responsible for more 

deaths than all the other gynaecological cancers combined. Yet, ovarian cancer 

mortality has slightly decreased in the UK, according to the latest statistics. There 

were 4,272 deaths from ovarian cancer in 2011, accounting for 6 % of all female 

deaths from cancer. Nevertheless, in the same year, ovarian cancer was still the 4th 

most common cause of cancer death among females in the UK (CRUK, 2013). 

Ovarian cancer is mainly diagnosed in peri-menopausal and post-menopausal 

women with over 80 % of cases in women over 40 years old. The malignant forms 
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generally appear after menopause, in the sixth decade, when the ovary has no 

physiological role and, consequently, its abnormal function causes no symptoms. As 

a result of this factor, early stages of the disease are difficult to diagnose. Owing to 

the anatomical location of the ovaries, deep in the pelvis, the symptoms only 

appear when the tumour reaches a large size or has disseminated (Yancik, 1993, 

Jacobs and Menon, 2004). 

There are very significant differences in the survival data from distinct countries 

worldwide, including Australia, Canada, Norway, Sweden and the UK. Discrepancies 

in data quality and coding practices across the world may contribute to some of the 

variation. Several studies are being undertaken to investigate the factors underlying 

these differences within Europe (CRUK, 2013). 

With respect to survival by age, even after discounting the higher background 

mortality in older people, relative survival for ovarian cancer is higher in younger 

women. This is similar to what is observed in other cancers and the reasons for this 

are likely to comprise a combination of earlier diagnosis, more effective response to 

treatment and better general health in younger people in general. As an example, 

the five-year relative survival rates for ovarian cancer in England for the period 

2005-2009 ranged from 87 % in the 15-39 age group, 53 % in the 50-59 year olds, to 

16 % in the 80-99 age group (CRUK, 2013). 

The stage of the disease at diagnosis is one of the most important factors 

influencing ovarian cancer survival. Data from the Anglia Cancer Network for 

women diagnosed during 2004-2008 has indicated that five-year relative survival 

rates are above 90 % for early stage ovarian cancers, but decrease drastically to 

below 10 % for late stage cases. The majority (60 %) of women are diagnosed with 

stage III or IV disease, with only around 30 % of women being diagnosed at the 

earliest stage (CRUK, 2013, Jacobs and Menon, 2004). Another study, conducted in 

Munich, Germany, has also shown that most of the long-term improvement in 

ovarian cancer survival has occurred in women diagnosed with stage I or II disease 

(Engel et al., 2002). 
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4.1.1.5 Causes and risk factors 

The etiology of ovarian cancer is multifactorial, but remains poorly understood until 

today. In most cases, the exact cause of ovarian cancer remains unknown. It is 

thought that genetic, environmental and endocrinal factors are directly or indirectly 

related to carcinogenesis. Based on previous studies, there are several theories 

regarding this subject. 

The incessant ovulation theory, proposed by Fathalla (Fathalla, 1971), hypothesises 

that the repetitive disruption and repair of the ovarian surface epithelium may lead 

to a higher probability of spontaneous mutations and, thus, increase the risk of 

ovarian cancer. However, this model does not explain why infertility, often caused 

by hypo- or anovulation, is associated with an increased risk of ovarian cancer. This 

led to the theory that gonadotropin stimulation of the ovary contributes to the 

ovarian cancer risk (Choi et al., 2007a). A third proposal by Parmley and Woodruff 

(Parmley and Woodruff, 1974) suggests that epithelial ovarian malignancies might 

arise from transformation of the surface epithelium of the ovary exposed to pelvic 

contaminants and carcinogens. This theory has been supported by observations 

that the use of talc in genital hygiene may increase the risk of ovarian cancer. 

Theories apart, nowadays it is known that neoplastic transformation is a product of 

an accumulation of genetic changes in a variety of different classes of genes, leading 

to the activation of oncogenes and loss of function of tumour suppressor genes. 

At least 15 oncogenes, 16 candidate tumour suppressor genes and more than 7 

signalling pathways have been implicated in ovarian cancer. As an example, PI3KCA 

has been suggested as an oncogene involved in ovarian carcinogenesis (Shayesteh 

et al., 1999) and K-ras is overexpressed in up to 30 % of tumours, particularly in 

mucinous tumours (Enomoto et al., 1991). HER-2/neu oncogene is overexpressed in 

up to 34 % of ovarian cancers (Berchuck et al., 1990). 

With respect to tumour suppressor genes, it has been suggested that BRCA1 plays a 

role in DNA repair. This gene was found to be mutated in 30 % of familial and 10 % 

of non-familial ovarian cancers. Its loss of function increases the propagation of 
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DNA errors (Scully et al., 1997). Mutations on the p53 gene are found in about 30 % 

of human ovarian cancers, with p53 overexpression reported in about 50 % of the 

cases (Okamoto et al., 1991, Marks et al., 1991). These alterations lead to 

aberrations in cell proliferation, apoptosis, autophagy and changes in cell adhesion 

and motility, all contributing to disease development and metastasis. 

A number of factors can influence the risk of developing ovarian cancer. The main 

risk factors include: family history/genetics, age, obesity, reproductive history, 

hormone replacement therapy (CRUK, 2014). 

Ovarian cancer can be hereditary. Over 10 % of ovarian cancers result from an 

inherited faulty gene (BRCA1 or BRCA2 mutation), which increases a women’s risk 

of developing ovarian and breast cancer. Women who carry this gene mutation 

have a 35-60 % chance of developing ovarian cancer. Research has shown that 

women who descend from Dutch, Polish, Ashkenazi Jewish, Pakistani, Norwegian 

and Icelandic families are more likely to carry this mutation. Thus it is important to 

know the family’s medical history, as women who have two or more relatives on 

one side of their family with ovarian, or ovarian and breast cancer, may be at higher 

risk of developing ovarian cancer, when compared to the general population (Risch 

et al., 2006). 

The following factors contribute to a woman having an increased risk of developing 

ovarian cancer: having a first generation relative (daughter, sister, mother) and a 

second generation relative (grandmother, aunt) who has had ovarian cancer; having 

a first generation relative who has suffered from ovarian cancer and a second 

generation relative (male or female) with breast cancer under the age of 50 or two 

or more second generation relatives with breast cancer under the age of 60; having 

relatives who are known BRCA1 or BRCA2 gene carriers; having three or more 

relatives with either colon, stomach, ovarian, endometrial or small bowel cancer; 

having a first generation relative with both breast and ovarian cancer (Boyd and 

Rubin, 1997). 
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Age is another risk factor for developing ovarian cancer, since the majority of 

ovarian cancer cases are diagnosed in women over the age of 40. Nevertheless, 

some types of ovarian cancer do occur in younger women from the age of 20 

(CRUK, 2014). 

Obesity can also be associated with an increased risk of developing ovarian cancer, 

as women with a body mass index above 30 may be at an increased risk (CRUK, 

2014). 

A woman’s reproductive history plays an important role in the risk of developing 

ovarian cancer as well. Women who have never given birth, had their first child 

after the age of 30, have never taken oral contraceptives, started menstruating at a 

young age (before 12 years old), experienced menopause at a late age (after 50 

years of age), did not breast feed are at an increased risk of developing ovarian 

cancer. Infertile women and those who suffer from endometriosis are also at an 

increased risk of developing ovarian cancer (Collaborative Group on Epidemiological 

Studies of Ovarian et al., 2008, CRUK, 2014). 

Hormone replacement therapy can be a risk factor, as women using oestrogen only 

may have a slightly higher risk of developing ovarian cancer (Collaborative Group on 

Epidemiological Studies of Ovarian et al., 2008, CRUK, 2014). 

4.1.1.6 Symptoms 

On early stages of ovarian cancer, signs and symptoms are frequently absent. When 

existent they may be subtle and usually persist for several months before being 

recognised and diagnosed. The most common symptoms include: difficulty eating, 

bloating, abdominal or pelvic pain, and urinary symptoms. If these symptoms have 

started recently and occur with a frequency over 12 times per month diagnosis 

should be considered (CRUK, 2014). 

Other signs and symptoms comprise abnormal vaginal bleeding, an abdominal 

mass, accumulation of fluid in the abdominal cavity (ascites), involuntary weigh loss, 
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back pain, tiredness, constipation and a variety of other non-specific symptoms 

(CRUK, 2014). 

Ovarian cancer is associated with age, family history of ovarian cancer (9.8-fold 

higher risk), appetite loss (5.2-fold higher risk), weight loss (2-fold higher risk), 

postmenopausal bleeding (6.6-fold higher risk), rectal bleeding (2-fold higher risk), 

anaemia (2.3-fold higher risk), abdominal pain (7-fold higher risk) and abdominal 

distension (23-fold higher risk) (CRUK, 2014). 

4.1.1.7 Importance of early diagnosis, prognosis and screening 

Ovarian cancer mortality, and cancer mortality in general, can be reduced if cases 

are detected and treated early. Early diagnosis and screening are the two 

components of early detection efforts. It is extremely important to pay attention to 

early signs and symptoms in order to diagnose cancers and treat them before the 

disease becomes advanced, as early detection is generally associated with improved 

outcomes. Early diagnosis programmes are particularly significant in low-resource 

countries in which the majority of diagnoses are made in very late stages and where 

there is no screening. 

According to the WHO, screening is defined as the systematic application of a test in 

an asymptomatic population in order to identify individuals with abnormalities that 

suggest a specific cancer or pre-cancer, and refer them promptly for diagnosis and 

treatment (WHO, 2013). Ovarian cancer fulfils some of the criteria required for the 

introduction of population screening and tests such as ultrasound and tumour 

marker detection have demonstrated to be able to detect a significant proportion of 

ovarian cancers pre-clinically. These screening tools have been shown to extend 

median survival when used as sequential screening tests. However, potential 

screening tests for ovarian cancer have not yet been shown to reduce mortality 

(CRUK, 2014). 

In the UK, two population screening studies are currently being conducted. On one 

hand, the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) is carrying 
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out a very large randomised controlled trial, aiming to recruit 200,000 post-

menopausal women, in order to assess the cost, acceptability and mortality benefit 

of population screening. In this study women have been randomly assigned to three 

groups: no treatment (control group); annual multimodal screening (MMS; CA125 

followed by transvaginal ultrasound as a second-line test); or annual ultrasound 

(UUS). Preliminary results show that large scale population screening is viable and 

does detect ovarian cancer in women without symptoms. The biobank of 

information collected will help in understanding the natural history of ovarian 

cancer and assist the search for better biomarkers for early detection. Final results 

of this study are expected in 2015 (CRUK, 2014). 

On the other hand, the UK Familial Ovarian Cancer Screening Study (UKFOCSS) is 

being conducted with 5,000 women aged over 35 with a significant family history of 

ovarian cancer. This study assesses the utility of CA125 measurement and 

ultrasound as annual screening. Furthermore, blood samples are being collected 

every 4 months for retrospective analysis of existing and novel tumour markers 

(CRUK, 2014). 

4.1.1.8 Treatment strategies 

The vast majority of women with diagnosed epithelial ovarian tumours will require 

a debulking surgery, followed by a chemotherapy combination regimen. 

An exploratory laparotomy is usually done for histological confirmation, staging and 

tumour debulking. The standard surgical approach consists of a total abdominal 

hysterectomy and bilateral salpingo-oophorectomy along with examination of all 

peritoneal surfaces, an infracolic omentectomy, biopsies of pelvic and para-aortic 

lymph nodes and clinically uninvolved areas, and peritoneal washings. The amount 

of surgery will depend on the stage and type of cancer (CRUK, 2014). For example, 

patients with LMP ovarian tumours treated with surgical resection do not require 

chemotherapy. On the other hand, many patients diagnosed with advanced-stage 

disease require adjuvant chemotherapy after the surgery to destroy the remaining 

tumour cells. Several studies have been carried out in order to define the standard 
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regimen in the initial chemotherapeutic management of advanced disease (Skeel, 

2007). 

Results of clinical trials done over the past thirty years have identified the 

combination of a platinum drug (carboplatin or cisplatin) and a taxane 

(paclitaxel/taxol or docetaxel), given intravenously as the best standard treatment 

(Aabo et al., 1998, Piccart et al., 2000, Neijt et al., 2000, du Bois et al., 2003, Vasey 

et al., 2004). In 2005, the Gynecologic Cancer Intergroup Consensus Meeting 

defined the standard of care as carboplatin plus taxol, every 21 days, for 6 to 8 

cycles. 

4.1.1.8.1 Platinum drugs 

The platinum-based compounds have the coordination complex cisplatin, cis-

diamminedichloroplatinum(II), as their lead molecule (Figure 4.1). It was discovered 

in 1845, but only about one century later, some in vitro studies conduced in 

Escherichia coli (E. coli) demonstrated its cytotoxic effects (Rosenberg et al., 1965, 

Rosenberg et al., 1969). 

 

 

 

 

 

Figure 4.1 Chemical structures of the two most used platinum compounds in ovarian cancer 
treatment. (A) Cisplatin, (B) Carboplatin. 
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binds to the N7 position of the imidazole ring of the purine bases — guanine and, in 

a lower extent, adenine — to form either monofunctional (via one leaving group) or 

bifunctional (via both leaving groups) adducts. Most adducts occur on the same 

DNA strand, involve bases adjacent to one another and are, therefore, known as 

intrastrand adducts or crosslinks (Thurston, 2007, Kelland, 2007). 

These adducts cause distortions in the DNA around the adduct site, including 

unwinding and bending, and are recognised by several surveillance enzymes, some 

of which are involved in DNA-repair pathways (Thurston, 2007). 

The final cellular outcome is generally apoptotic cell death, although the pathway(s) 

through which platinum–DNA binding leads to apoptosis remains incompletely 

elucidated. The platinum–DNA adducts can impede cellular processes, such as 

replication and transcription, that require DNA-strand separation in different 

extents. Signal-transduction pathways that control growth, differentiation and 

stress responses have also been implicated (Kelland, 2007, Siddik, 2003). 

Carboplatin, cis-diammine-[1,1-cyclobutanedicarboxylato]platinum(II), is a second-

generation analogue of cisplatin. Introduced in the 1980s, it incorporates a 

cyclobutyl substituted hexa dilactone ring, a more stable leaving group. Carboplatin 

has the same mechanism of action as cisplatin and a similar spectrum of activity, 

but is better tolerated in terms of toxic effects. Although myelosuppression 

(thrombocytopenia) is more pronounced and dose limiting, it is now preferred for 

the treatment of ovarian cancers (Thurston, 2007, Harrap, 1985). 

4.1.1.8.2 Taxanes 

Taxol is the most well known molecule of the taxanes group. It is a highly complex 

tetracyclic diterpene (Figure 4.2) found in the needles and bark of the tree Taxus 

brevifolia. The compound was isolated in 1966 and its structure published in 1971, 

but it only appeared in clinical practice in the 1990s. Docetaxel is a more recently 

introduced semi-synthetic analogue with similar therapeutic and toxicological 

properties (Thurston, 2007).  
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Figure 4.2 Chemical structures of the two most used taxanes in ovarian cancer treatment. (A) 
Taxol, (B) Docetaxel. Ac, acetyl; Ph, phenyl. 

 

These drugs are antimitotic agents, but have a mechanism of action distinct from 

colchicine or vinca alkaloids. It involves the promotion of microtubule assembly by 

stabilising the microtubule complex and inhibiting their depolymerisation to free 

tubulin. This action shifts the microtubule equilibrium in favour of the polymeric 

form (Dumontet and Sikic, 1999). 

Taxol has the ability to polymerise tubulin in the absence of guanosine triphosphate 

(GTP), which under normal conditions is an absolute requirement for microtubule 

polymerisation. Microtubules formed in the presence of the drug possess unusual 

stability and resist to depolymerisation by Ca2+, cold temperature and dilution. The 

drug binds to the β-tubulin subunit in the microtubules, specific and reversibly, and 

this interferes with the chromosomes ability to separate during cell division. Cells 

are prevented from progressing from metaphase to anaphase, causing cell cycle 

arrest and inducing apoptosis (Thurston, 2007, Orr et al., 2003). 

4.1.2 Chemoresistance 

The effectiveness of many chemotherapeutic agents used in cancer therapy is 

limited by drug resistance. The acquisition of resistance constitutes a serious 

impediment to improved healthcare and is one of the biggest challenges in cancer 

treatment nowadays. The resistance phenomena may be intrinsic or acquired 
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during the course of treatment. In the case of acquired drug resistance, tumours 

may become resistant to drugs other than those initiating the resistance, despite 

the fact that these drugs may have different mechanisms of action and not be 

structurally related (Fojo and Menefee, 2007). 

Tumours usually consist of mixed populations of malignant cells, some of which are 

drug-sensitive while others are drug-resistant. Chemotherapy kills drug-sensitive 

cells, but leaves behind a higher proportion of drug-resistant cells. As the tumour 

begins to grow again, chemotherapy may fail because the remaining tumour cells 

are now resistant (Gottesman, 2002). 

Disease management in patients with ovarian cancer exemplifies this problem: 

some patients have an excellent response at the beginning of the treatment, 

followed by the evolution of fatal drug resistance (Kaye, 2008). Following debulking 

surgery, patients with advanced ovarian cancer generally receive chemotherapy, 

with response rates of 70-80 %. However, a subset of 20-30 % of patients either 

progress during chemotherapy or relapse within six months of treatment (ESMO, 

2001). These tumours have low response rates to re-challenge with second-line 

agents and a poor prognosis, with only an approximately 30 % 5-year survival rate 

(Agarwal and Kaye, 2006, Agarwal and Kaye, 2003). 

Varied mechanisms can give rise to the resistance phenomenon. They can be 

grouped in two classes: non-cellular and cellular mechanisms. Those in the first 

class are related with factors inherent to the host, the tumour itself or the 

anticancer drug, such as changes in absorption, distribution, metabolism and 

excretion of drug or insufficient vascularisation of the tumour cells. The second 

ones are related to biochemical and molecular changes that occur within tumour 

cells (Gottesman, 2002). 

Since chemoresistance is an extremely complex and vast theme, in this brief 

introduction only the resistance mechanisms correlated to the drugs used in ovarian 

cancer treatment will be approached, since they are directly connected with the 

background of this study. 
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4.1.2.1 Mechanisms of resistance to platinum drugs 

Soon after the initial promising clinical trial data with cisplatin, and later with 

carboplatin, attention shifted to determining how tumour resistance was acquired 

during courses of therapy and why some tumours were intrinsically resistant. This 

knowledge has largely arisen from studies that have been carried out in cell lines. 

These models have been established, primarily, by repeatedly exposing drug-

sensitive cells to chemotherapeutic drugs in vitro (Roberts et al., 2005). 

Although the molecular basis for platinum resistance remains largely undefined, it is 

considered multifactorial and numerous mechanisms seem to be involved. They can 

be divided in two distinct groups: first, an insufficient amount of platinum to reach 

the DNA, limiting the formation of platinum-DNA adducts, and second, failure to 

achieve cell death after platinum-DNA adduct formation and drug-induced damage. 

More specifically, the first group includes decreased drug uptake and increased 

drug inactivation, while the second group includes increased repair of platinum-

DNA adducts and increased platinum-DNA damage tolerance (Siddik, 2003). 

Some of these mechanisms may be specific to the type of platinum drug used, 

whereas others may be pleiotropic, which means they are related to a few drugs of 

the same class. Many resistant cells show a pleomorphic phenotype, which consists 

of various altered pathways involving drug uptake, DNA-damage recognition and 

repair, and apoptosis (Kelland, 2007). 

4.1.2.1.1 Resistance through insufficient DNA binding 

The formation of DNA adducts by cisplatin can be limited by reduced accumulation 

of the drug, enhanced drug efflux and cisplatin inactivation by coordination to 

sulphur-containing proteins, including metallothioneins, whose production may be 

increased as a result of cisplatin treatment (Brabec and Kasparkova, 2002). 

In contrast to the mechanism of multidrug resistance (MDR), which is reported in 

several natural product-based drugs, it is generally decreased uptake, rather than 
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increased efflux, that predominates in platinum-drug resistance (Brabec and 

Kasparkova, 2002). 

Mechanisms that reduce drug uptake prevent therapeutic levels of the drug from 

being reached in the target cells. These include limited blood flow to the site of 

action, high extracellular pH, binding with plasma proteins and a decrease in 

transporters (Stewart, 2007). 

Platinum might enter cells using either transporters, a significant one being the 

copper transporter-1 (CTR1), or by passive diffusion. Loss of CTR1 results in less 

platinum entering cells and, consequently, a decreased cytotoxic effect, leading to 

drug resistance. Both copper and cisplatin cause a rapid down-regulation of CTR1 

expression in human ovarian cancer cell lines. This occurs through the 

internalisation of CTR1 from the plasma membrane by macropinocytosis, followed 

by proteasome-based degradation (Holzer and Howell, 2006). 

Once inside cells, cisplatin is activated by the addition of water molecules to form 

chemically reactive aqua species. In the cytoplasm, the activated aqua species 

preferentially react with species containing high sulphur levels. There is extensive 

evidence implicating increased levels of cytoplasmic thiol-containing species as 

causative of acquired and inherited resistance to cisplatin or carboplatin, as well as 

to other DNA-damaging drugs. These species, such as the tripeptide glutathione 

(GSH) and metallothioneins, are rich in the sulphur-containing amino acids cysteine 

and methionine and lead to detoxification. Activated platinum avidly binds to 

sulphur and is effectively arrested in the cytoplasm before DNA binding can occur, 

thereby causing resistance (Holzer and Howell, 2006). 

Finally, active export of platinum from the cells through the copper exporters 7A/7B 

(ATP7A and ATP7B), as well as through the glutathione S-conjugate export (GS-X) 

pump can contribute to platinum drug resistance. The conjugation of cisplatin with 

GSH might be catalysed by glutathione S-transferases (GSTs), which makes the 

compound more anionic and more readily exported from cells by the adenosine 

triphosphate (ATP)-dependent GS-X pump (Kelland, 2007). 
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The efflux of cisplatin from target cells through transporters such as the lung 

resistance-related protein (LRP) also confers resistance (Wang et al., 2004b), 

however unlike the anti-tubulin drugs, there is no cross resistance due to increased 

expression P-glycoprotein (Kaye, 2008). 

4.1.2.1.2 Resistance mediated after DNA binding 

After platinum-DNA adducts have been formed, cellular survival, and therefore 

tumour drug resistance, can occur either by removal of these adducts and DNA 

repair or by tolerance mechanisms. 

An increased repair of platinum-DNA adducts is considered the most significant 

event of platinum resistance (Thurston, 2007, Brabec and Kasparkova, 2002). Many 

cisplatin-resistant cell lines derived from various tumour types have shown 

increased DNA-repair capacity in comparison to their sensitive counterparts 

(Johnson et al., 1994). Nucleotide-excision repair (NER) is the major pathway known 

to remove cisplatin lesions from DNA. Increased NER is mainly due to increased 

activity of the endonuclease protein ERCC1 (excision repair cross-complementing 1), 

which is considered to be able to remove incorrect nucleotide sequences and thus 

protect the cell from apoptosis (Kelland, 2007). In ovarian cancer this protein was 

found overexpressed, increasing the ability of cancer cells to repair DNA damage 

(Dabholkar et al., 1992). 

Increased tolerance to platinum-induced DNA damage can also occur through loss 

of function of the mismatch repair (MMR) pathway. During MMR, cisplatin-induced 

DNA adducts are recognised by the MMR proteins MutS homolog 2/3/6 (MSH2, 

MSH3 and MSH6) (Zdraveski et al., 2002). It is postulated that cells, after 

undergoing several unsuccessful repair cycles, finally trigger an apoptotic response. 

Loss of MMR results in reduced apoptosis and, consequently, drug resistance. 

Another tolerance mechanism involves enhanced replicative bypass, whereby 

certain DNA polymerases, such as β and η, can bypass cisplatin-DNA adducts by 

translesion synthesis. Polymerase η has shown to have a role in cellular tolerance to 

cisplatin and carboplatin (Albertella et al., 2005). 
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At last, tolerance to platinum might occur through decreased expression or loss of 

apoptotic signalling pathways, either the mitochondrial or death-receptor 

pathways, mediated through various proteins such as p53, anti-apoptotic and pro-

apoptotic members of the Bcl-2 family, and JNK35 (Kelland, 2007). 

The p53 protein is considered to have many important roles including DNA repair in 

response to damage, functions within the apoptotic pathway and as a transactivator 

in the expression of the bax gene (Gottlieb and Oren, 1998). Evidence suggests that 

mutations in the p53 gene result in p53 overexpression, which is related to the 

development of chemoresistance. There is also a loss of p53 protein function, 

resulting in a reduction in the expression of bax, a pro-apoptotic protein. These 

mutations also result in cross-resistance with a number of other cytotoxic agents 

including melphalan (Perego et al., 1996). Moreover, the expression of the mutant 

p53 gene may be responsible for resistance to taxol, which is also thought to induce 

apoptosis through a p53-dependent pathway. The loss of function of the p53 

protein therefore compromises this pathway. Nonetheless, the significance of this 

mechanism is not clear, as taxol is considered to induce apoptosis through a p53-

independent pathway as well (Dumontet and Sikic, 1999). This is supported by a 

study that revealed that taxol was able to induce apoptosis in cisplatin resistant cell 

lines (Perego et al., 1998). 

4.1.2.2 Mechanisms of resistance to taxanes 

Since its approval by the Food and Drug Administration in 1992 for the treatment of 

ovarian cancer, the use of taxol has dramatically increased. Despite the 

improvement verified in duration and quality of life for some patients, drug 

resistance represents a major obstacle to improve the overall response and survival 

(Orr et al., 2003). 

In the case of taxol, several potential mechanisms have been proposed to explain 

the resistance observed in human tumours and tumour cell lines. Drug resistance 

may occur at the cell level, due to evasion of apoptosis or changes in the target 

protein. It may also occur as a consequence of poor pharmacologic accessibility of 
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the drug, due to changes in the rate of transport in and out of the cell or in drug 

metabolism (Fojo and Menefee, 2007). 

Taxanes resistance appears to develop owing to changes in the expression of 

proteins with important anti-apoptotic effects and roles in stress response. These 

include certain isoforms of heat shock protein, superoxide dismutase, which is 

involved in the formation of redox species, and endoplasmic reticulum ATPase. 

Changes in the β-tubulin binding site prevent the binding of taxol and exertion of its 

cytotoxic effects, also resulting in resistance (Di Michele et al., 2009). 

4.1.2.2.1 Multidrug resistance (MDR) 

MDR due to overexpression of the P-glycoprotein (P-gp) pump or multidrug 

resistant protein 1 is possibly the most extensively researched and well-understood 

resistance mechanism. P-gp is an ATP-dependent drug transporter located in the 

cellular membrane and belongs to the ATP-binding cassette (ABC) superfamily. 

Overexpression of P-gp is often the cause of resistance to antimitotic agents, 

including the taxanes, as demonstrated in vitro, in preclinical models and in patients 

(Gottesman, 2002).  

P-gp works as an efflux pump which actively transports the drugs that reach the 

intracellular compartment to the extracellular medium (Krishna and Mayer, 2000). 

By preventing intracellular drug accumulation, its cytotoxic effect is drastically 

reduced and tumour cells remain viable, instead of being destroyed (Nobili et al., 

2006). Among the MDR related proteins, P-gp is arguably the most important of the 

ABC transporters, since it confers the strongest resistance to the widest variety of 

compounds. 

4.1.2.2.2 Resistance through altered microtubule dynamics 

There is another large group of mechanisms directly related to the microtubule and 

alterations verified in its dynamics. It includes tubulin mutations, that affect either 

longitudinal or lateral interactions, tubulin isotype selection, altered binding of taxol 
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to its cellular target, post-translational modifications and altered expression of 

microtubule-associated proteins (MAPs) (Orr et al., 2003). 

Several reports have described tubulin mutations as etiologic in drug resistance. 

Some of these mutations have shown to alter drug binding or binding of regulatory 

proteins, while others have been observed to cause shifts in the equilibrium of the 

tubulin dimer and microtubule polymer. In the latter case, a shift in the equilibrium 

to a more soluble tubulin dimer and less stable microtubule polymer has shown to 

result in increased resistance to taxanes (Cabral and Barlow, 1989). 

A detailed analysis of class I β-tubulin mutations in taxol-resistant chinese hamster 

ovary cell line revealed a cluster of mutations at leucines 215, 217 and 228. It was 

concluded that resistance in these cells was a result of mutations that altered 

microtubule dynamics by affecting the lateral-longitudinal interactions, important 

for microtubule assembly. By destabilising the microtubules, these mutations 

apparently counteract the stabilising effects of taxol (Gonzalez-Garay et al., 1999). 

There have been numerous reports of altered expression of individual β-tubulin 

isotypes, especially class III and IVa, in cells that have been selected for resistance to 

antimitotic agents. This hypothesis is supported by the analysis of tubulin isotypes 

in cells not selected for drug resistance. Altered expression of β-tubulin isotypes 

confers altered sensitivity to microtubule-targeting agents, with both in vitro and 

clinical data implicating the microtubule composition as important in cell drug 

sensitivity. Thus, for example, expression of class III β-tubulin in non-small cell lung 

cancer is correlated with resistance to taxane chemotherapy (Fojo and Menefee, 

2007). 

Yet, another hypothesis suggests that altered expression of β-tubulin isotypes may 

not be directly related to the resistant phenotype, but represents a secondary 

effect that may require the participation of additional isotype-specific regulatory 

proteins (Orr et al., 2003). 

Since it is known that some MAPs bind to the highly divergent, but isotope-specific, 

C-terminal region of tubulin, it would be expected that such regulatory proteins 
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exist and are co-ordinately expressed along with their respective isotype upon drug 

selection. This scenario would explain why simple overexpression of tubulin 

isotypes in drug-sensitive cells cannot produce a resistance phenotype (Orr et al., 

2003). 

Proteins that regulate microtubule dynamics, by interacting with tubulin dimers or 

polymerised microtubules, clearly have the potential to modulate the sensitivity of 

a cell towards taxol. Stathmin, a microtubule destabiliser, and MAP4, a microtubule 

stabiliser, represent such proteins (Poruchynsky et al., 2001). 

The overexpression or activation of stathmin and/or the down-regulation or 

inactivation of MAP4 should increase the dynamicity and decrease the stability of 

microtubules. Such changes in cancer cells could reduce the microtubule-stabilising 

potency of taxol and confer a mechanism of resistance to the drug. For example, 

MAP4 phosphorylation and dissociation from microtubules was correlated with a 

decrease in taxol sensitivity in taxol-resistant ovarian cancer cell lines (Poruchynsky 

et al., 2001). 

4.1.2.2.3 Drug resistance through altered signalling pathways 

Key proteins that mediate various signalling pathways are often localised in 

microtubules (Gundersen and Cook, 1999, Hollenbeck, 2001, Cardone et al., 2002), 

and microtubule-targeting drugs, such as taxol, have the potential to modulate 

these pathways. 

One well-documented example of a signalling pathway that interacts with 

microtubules involves the extracellular signal regulated kinases 1/2 (ERK1 and 

ERK2), components of the mitogen-activated protein kinase (MAPK) family. It has 

been proposed that MAPK activation inhibits microtubule stabilisation, causing 

resistance (Shinohara-Gotoh et al., 1991). 

A particular challenge in the ovarian cancer therapy will be to identify the different 

factors related to platinum drugs and taxanes resistance, as it is very likely that they 
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will not be the same, and modulation approaches will ultimately need to consider 

that clinical drug resistance is a multifactorial phenomenon (Kaye, 2008). 

4.1.2.3 Overcoming drug resistance 

The identification of specific genes and pathways involved in chemoresistance will 

hopefully lead to new strategies to treat platinum and taxane-refractory tumours or 

prevent resistance from emerging. Clinical investigations are already exploring 

alternative pharmacologic means of resistance reversal, either that acquired during 

therapy cycles, as occurs in patients with ovarian cancer, or intrinsic resistance, as 

that seen in patients with colorectal, prostate, lung or breast cancer (Kelland, 2007). 

Considering platinum resistance, the major ongoing strategies to circumvent it are 

related to improvements in drug delivery, reversal of the phenomenon with 

resistance modulators and use of new chemotherapeutic drugs, which do not 

develop resistance. 

In order to increase the levels of platinum reaching the tumour, some research 

groups have tried to use liposomal and co-polymer platinum products. The use of 

intraperitoneal administration, instead of the conventional intravenous injection, is 

another approach that was used to improve drug delivery. Other approaches are 

related to the combination of existing platinum drugs with molecularly targeted 

drugs, for example, the antibodies bevacizumab and trastuzumab (Kelland, 2007). 

The use of platinum resistance modulators, either alone (for example, TLK286) or in 

combination (for example, decitabine), aims to exploit platinum-mediated 

resistance mechanisms (Kelland, 2007). Clinical combination studies using platinum 

drugs with resistance modulators or new molecularly targeted drugs are underway. 

These include the demethylation approach, which was capable of reversing 

resistance to carboplatin in an appropriate ovarian cancer xenograft, and is the 

basis of an ongoing randomised trial involving decitabine. This DNA 

methyltransferase inhibitor reverses platinum drug resistance by reducing the 
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methylation of various genes that are silenced by methylation during tumour 

development (Plumb et al., 2000, Appleton et al., 2007). 

With respect to new platinum drugs, oxiplatin, satraplatin and picoplatin are the 

main examples. They constitute an alternative in cisplatin and carboplatin-resistant 

tumours, since in some studies it was observed that tumour cells do not seem to 

develop resistance mechanisms against them (Gore et al., 2002, Treat et al., 2002). 

Approaches to overcome taxanes resistance include the use of MDR modulators, if 

the resistance correlates to P-gp overexpression, molecularly targeted agents and 

novel cytotoxic molecules, developed on the basis of activity in taxol-resistant 

models. 

A promising strategy to overcome MDR seems to be the use of inhibitors or 

modulators of the efflux pumps, in conjunction with anticancer therapy. These 

compounds interact with P-gp and block the transmembrane transport, thus leading 

to a sufficient intracellular drug accumulation (Wiese and Pajeva, 2001). 

Combination therapy of cytotoxic agents with MDR modulators results in remission 

of tumours and increases life expectancy in some animal models. Untill now, several 

compounds that demonstrated MDR modulator activity have been identified. They 

can be categorised in three generations. The first generation includes lipophilic 

compounds, which have previously been used in the treatment of distinct diseases, 

such as verapamil, a known calcium channel blocker (Nobili et al., 2006). The second 

generation comprises compounds similar to the first generation, but obtained by 

chemical modification, such as cyclosporin A. They seem to have greater potency 

and selectivity for MDR, reducing adverse side effects (Wiese and Pajeva, 2001). 

Finally, the last generation includes molecules rationally developed by 

combinatorial chemistry with the aid of quantitative structure-activity relationships. 

These modulators have a higher affinity for their target and less significant 

pharmacokinetic interactions (Fujimori et al., 2006). The compound tariquidar is an 

example of this class. It is selective and an extremely potent modulator, having 

additionally a longer duration of action (Teodori et al., 2006). 
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With respect to new cytotoxic molecules, the epothilones are the most advanced 

molecules in development among the microtubule-stabilising agents, with several 

being investigated in clinical trials. These compounds can be distinguished from the 

taxanes by several biologic and chemical criteria. The most important is that 

epothilones are not susceptible to P-gp-mediated efflux. It was demonstrated that 

P-gp overexpression only minimally affects their in vitro cytotoxicity. Hence, 

epothilones represent a new strategy for overcoming MDR (Larkin and Kaye, 2006). 

In addition, they are functional and structurally distinct from the taxanes and 

exhibit a greater potency (Fojo and Menefee, 2007). 

In resistance to taxanes, as well as platinum, targets for modulation include 

components of the PI3K/AKT pathway. Amplification of the gene encoding the key 

catalytic subunit of AKT, P110α, is seen in 40 % of ovarian cancers (Shayesteh et al., 

1999) and mutations are also present (Campbell et al., 2004). Increased activity of 

this pathway leads to growth promotion and inhibition of drug-induced apoptosis, 

with consequent resistance to both taxanes and platinum drugs. Reversal of this 

resistance pathway may be achieved by various agents, several of which are now in 

phase I trials. Examples include novel inhibitors of both PI3K and PKB/AKT, as well 

as established inhibitors of the mammalian target rapamycin and of the molecular 

chaperone heat shock protein 90 (Hsp90) (Sain et al., 2006). Other relevant targets 

to overcome taxane resistance include the SRC oncogene (Chen et al., 2005) and the 

endothelin receptor family (Rosano et al., 2007). In both cases, overexpression in 

ovarian cancer and experimental reversal of taxane resistance has been reported, 

and specific inhibitors are now under clinical evaluation. 

Phenoxodiol is an inhibitor of the anti-apoptotic XIAP family and experimental 

reversal of resistance to both platinum and taxanes has been demonstrated with 

this agent (Mor et al., 2006). A randomised trial involving this drug is ongoing in 

platinum-resistant ovarian cancer patients. 

Other apoptosis regulators, including those of the Bcl-2 family, are promising 

candidates as targets for resistance modulation and appropriate clinical trials are 

under consideration. 
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There has been various and extensive research into the mechanisms of resistance 

and, increasingly, into identifying potential biomarkers of resistance, which would 

allow patients to receive more effective treatment faster. However, although 

various proteins have been identified and many mechanisms, such as those 

mentioned, hypothesised, the biggest drawback in this area is the lack of clinical 

evidence. This is because much of the research has been conducted on in vitro cell 

lines rather than on actual tumour tissue (Agarwal and Kaye, 2003). The main 

reason for this is the difficulty in obtaining large enough tissue samples from 

patients to be able to derive significant data. There are possible, although not ideal, 

alternative sources, such as ascitic tumour cells and free tumour DNA and RNA from 

blood samples (Kaye, 2008). Still, to develop a real understanding of the 

development of chemoresistance, tissue samples that feature in the actual tumour 

microenvironment are needed. 

Similarly, more research is required into characterising tumour stem cells, in order 

to better understand their ability to remain dormant and their role in developing 

drug resistance (Kaye, 2008). This is because many cytotoxic drugs, such as 

vinblastine, are cell cycle specific, and tumours with a low mitotic index have a 

greater proportion of cells that are not dividing and, therefore, display 

chemoresistance. They also appear to reduce the efficacy of some non-cell cycle 

specific drugs such as cisplatin, possibly owing to an enhanced ability to repair DNA 

damage. Furthermore, tumour regions occupied by these stem cells tend to have an 

inadequate blood supply due to their low metabolic demand, thus sub-therapeutic 

levels of the cytotoxic agents are achieved (Mellor et al., 2005). 

There have been impressive advancements in quantifying and analysing proteins. 

However, whereas with DNA microarray gene expression can be extensively 

monitored, proteomic technology is limited. As a result, better proteomic methods 

need to be developed with increased sensitivity (to allow monitoring of low 

abundance proteins), efficiency and better reproducibility (Kabuyama et al., 2004). 
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4.2 Aims & Objectives 

The first aim of this study was to develop and optimise a proteomics approach for 

the discovery of protein targets of resistance to chemotherapy in ovarian cancer. 

This would be achieved by comparing the protein profile of human ovarian cancer 

cell lines, which are sensitive or resistant to the ovarian anti-cancer chemotherapy 

of choice – taxol and carboplatin. 

The second aim of this study was to apply the same optimised method to compare 

the protein profile of human ovarian tissue biopsies, including control/non-cancer 

tissue and ovarian cancer tissues of different histology and their clinical history. The 

main objective was to confirm the ovarian cancer protein targets of resistance to 

chemotherapy identified with the previous samples, and to identify ovarian cancer 

protein targets of diagnosis and histological type. 

The third aim of this study was to endeavour to build the in-vivo/in-vitro 

connection, through the analysis and comparison of the proteins identified in each 

of the previous studies and their relevance.  
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4.3 Materials & Methods 

The supplier of all the chemicals and equipment used in the following experiments 

is specified after each one of them in the descriptions below, unless mentioned 

previously. A schematic diagram summarising the experiments carried out in this 

study is represented in Figure 4.3. 

  

Figure 4.3 Schematic diagram summarising the experiments done in this study. 
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4.3.1 Biological samples 

Ovarian cancer cells and tissues were kindly supplied by Dr. Helen Coley from the 

Faculty of Health and Medical Sciences, University of Surrey, for the proteomics 

study of ovarian cancer. 

The human epithelial ovarian carcinoma cell line used in this study was PEO1. This 

cell line was originally developed by Langdon et al. and was derived from the ascites 

of patients with poorly differentiated serous ovarian adenocarcinoma (Langdon et 

al., 1988). 

The parental ovarian cancer cell line model PEO1 was used as drug sensitive 

reference cell line in this study. Novel drug resistant models, derived from the 

parental line, with in vitro acquired resistance to taxol – PEO1 TaxR – and 

carboplatin – PEO1 CarbR – were used alongside their respective drug sensitive 

parental counterparts. 

The ovarian tissues – SOV-1, SOV-2, SOV-3, SOV-4, SOV-5 – were obtained by biopsy 

from 5 different patients, 4 of which were diagnosed with ovarian cancer and 1 

suffered from endometriosis, a benign gynaecologic condition. Relevant clinical 

information about the patients, tissue histology, stage of disease and response to 

chemotherapy for each sample are shown in Table 4.1.  
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Table 4.1 Clinical information from 5 different patients and their respective ovarian tissue biopsies. 
 denotes death; Pre- or Post-chemotherapy denotes drug therapy timing in relation to sample 

taken; N/A – not applicable. 

Sample Histology 
Stage of 

Disease 

Pre- or Post-  

Chemotherapy 

Response to 

Chemotherapy 

Survival 

Time 
Notes 

SOV-1 Endometriosis N/A N/A N/A 
Alive & 

well 

Non-

malignant 

condition 

SOV-2 
Serous 

adenocarcinoma 
IVa 

Previously 

treated – interval 

debulking sample 

No response, 

progressive 

disease 

38 

months 

 

 

SOV-3 
Serous 

adenocarcinoma 
IIIc 

No previous 

chemotherapy, 

primary surgery 

Complete 

response 

60 + 

(alive & 

well) 

 

SOV-4 
Clear cell 

adenocarcinoma 
IVa 

No previous 

chemotherapy, 

primary surgery 

Partial 

response 

34 

months 

 

 

SOV-5 
Serous 

adenocarcinoma 
IIb 

No previous 

chemotherapy, 

primary surgery 

Partial 

response 

106 

months 

 

BRCA1 

mutant 

 

4.3.2 Sample preparation 

Ovarian cancer cell line and tissue samples were subjected to the following sample 

preparation steps prior to separation and identification of their proteins. 

4.3.2.1 Cell culture 

PEO1 ovarian cancer cells were cultured by Dr. Helen Coley according to the 

procedure described in the literature (Coley et al., 2006). Briefly, cells were cultured 

as monolayers in RPMI-1640 medium supplemented with 10 % fetal calf serum 

(FCS, heat inactivated; Invitrogen, UK) and 2 mM L-glutamine. Cells were grown at 

37 C in a CO2 independent incubator and passaged 12 times. 

In order to obtain the resistant cell lines PEO1 TaxR and PEO1 CarbR, PEO1 cells 

were split and grown in the presence of a maintenance dose of 8 nM taxol and 2 

µM carboplatin, respectively, until a stable resistance phenotype was acquired. This 
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resulted in the PEO1 TaxR cell line with approximately 15-fold resistance, which was 

passaged 42 times, and PEO1 CarbR cell line with approximately 8-fold resistance to 

both carboplatin and cisplatin, which was passaged 41 times. 

4.3.2.2 Cell harvesting 

After checking confluence, cells were harvested from the culture flasks as detailed 

in section 2.3.1.1. 

4.3.2.3 Protein extraction from PEO1 ovarian cancer cells 

Proteins were extracted from the PEO1 ovarian cancer cells according to the 

procedures described in sections 2.3.1.2 and 2.3.1.3. 

4.3.2.4 Protein extraction from ovarian tissue samples 

The complete procedure followed to extract proteins from the ovarian tissue 

samples can be found in section 2.3.2.3. 

4.3.2.5 Protein concentration assay 

Protein concentrations of all cell and tissue lysate samples were determined in 

triplicate using the RCDC Protein Assay Kit (Bio-Rad, UK), according to the 

description given in section 2.3.3. Before starting the experiment, all cell line 

protein samples were diluted 2x and all tissue protein samples were diluted 25x to 

allow them to fit the calibration curve. 

4.3.3 Proteomics analysis 

Quantified protein mixtures obtained from lysis and homogenisation of the ovarian 

cancer cells and tissues were then subjected to proteomics analysis in order to 

separate and identify the proteins. 
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4.3.3.1 SDS-PAGE 

Proteins extracted from the PEO1 cells and the ovarian tissue samples were 

separated by SDS-PAGE under denaturing and reducing conditions, in the presence 

of SDS and DTT as described in section 2.4.1. For the PEO1 cells, two different 

amounts of protein (10 and 20 g) were tested for each sample. For the ovarian 

tissue samples, 10 g of protein were examined for each sample. Precast gels, Mini-

Protean TGX Precast Gel, any kD, 10-well comb, 30 μL/well (Bio-Rad, UK) and 12.5 % 

SDS-PAGE handmade gels were used for the separation of proteins extracted from 

the PEO1 cell lines. Tissue proteins were separated using 10 % SDS-PAGE handmade 

gels. 

Protein band visualisation was achieved through Coomassie blue staining, as 

explained in section 2.5.1. 

4.3.3.2 Protein precipitation 

Prior to 2D-PAGE, cell and tissue lysates (with 50 g protein per sample) were 

subjected to treatment with the ReadyPrep 2-D Clean Up Kit (Bio-Rad, UK) to 

remove interfering agents, such as excess salts, and to concentrate proteins. The 

comprehensive protocol for the use of the 2D clean-up kit can be found in section 

2.3.4.2. 

4.3.3.3 2D-PAGE 

Proteins extracted from the PEO1 cells and the ovarian tissue samples were also 

separated by 2D-PAGE, which was performed according to the following steps. To 

ensure the reproducibility of 2D-PAGE experiments, each cell sample was analysed 

twice. Unfortunately, this was not possible for the tissue samples, as there was not 

enough protein. 
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4.3.3.3.1 First dimension: isoelectric focussing (IEF) 

Isoelectric focussing was performed using Protean IEF Cell (Bio-Rad, UK) with 11 cm 

ReadyStrips, pH 3-10 non-linear (Bio-Rad, UK), according to the description in 

section 2.4.3.1. Pellets resulting from the treatment with the 2D clean-up kit were 

resuspended in rehydration buffer II to a total volume of 200 μL. Mixtures were 

centrifuged and the supernatants were loaded into a focussing tray. The 

rehydration procedure took place at 50 V (active rehydration) for 12 h (overnight). 

Focussing was then started and carried out on a rapid ramp according to the 

following steps: 250 V for 15 min, 8000 V for 2 h, 8000 V until 40 000 V/h (Table 2.3, 

focussing conditions D). 

4.3.3.3.2 Equilibration, reduction & alkylation 

After the first dimension separation and before the second dimension separation, 

proteins were equilibrated, reduced and alkylated in accordance to section 2.4.3.2. 

4.3.3.3.3 Second dimension: SDS-PAGE 

Each strip was transferred to the top of a precast gel, Criterion TGX Precast Gels, 

any kD, IPG + 1 well comb, 11 cm IPG strip (Bio-Rad, UK), as described in section 

2.4.3.3. A molecular weight marker was loaded into the single well of the precast 

gel. Electrophoresis was carried out using a Criterion Cell System (Bio-Rad, UK) at 40 

V until the blue dye had reached the main gel, and then increased to 150 V until the 

dye front had reached the bottom of the gel. 

4.3.3.3.4 Gel staining: silver staining 

Separated proteins were visualised on the 2D gels using the Pierce Silver Stain Kit 

(Thermo Scientific, UK), according to the details given in section 2.5.2. 

4.3.3.4 Gel image analysis 

Gel images were obtained with a digital photographic camera and/or using the 

camera device of EXQuest Spot Cutter (Bio-Rad, UK), and analysed using PDQuest 
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Advanced software version 8.0.1 (Bio-Rad, UK). The comparative analysis of the 

spots present on the gels and the selection of the spots of interest was performed 

either visually or using PDQuest Advanced software. 

4.3.3.5 Protein identification 

Protein identification was achieved by in-gel trypsin digestion, followed by LC-

MS/MS analysis. The respective procedures are depicted in the following sections. 

4.3.3.5.1 Spot excision, washing and in-gel trypsin digestion 

Spots of interest were excised from the gels and cut into 1-2 mm3 gel pieces, either 

manually or using an EXQuest Spot Cutter (Bio-Rad, UK) with a picker head of 1.5 

mm, and placed into 0.6 mL siliconised tubes or 96-well microplates, for the manual 

and automated excisions respectively. The subsequent washing steps and in-gel 

trypsin digestion were performed as described in section 2.6.1.1. 

4.3.3.5.2 Peptide extraction from gel pieces 

Peptides were extracted from the gel pieces in accordance to the procedure 

described in section 2.6.1.2. 

4.3.3.5.3 MS analysis 

LC-MS/MS analysis of the extracted peptide mixtures was performed on a Waters 

CapLC system coupled to the front end of a Waters Micromass Q-ToF Premier, as 

described in section 2.6.1.3. 

4.3.3.5.4 Data processing and database searching 

Raw LC-MS/MS data were processed using MassLynx ProteinLynx version 4.1 

(Waters, UK) and searches were done using two online search engines, MASCOT 

and X!Tandem, as described in section 2.6.1.4. SwissProt databases were chosen to 

look for human proteins (taxonomy ― Homo sapiens). The search parameters used 

were those listed in the same section of Chapter 2. 
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Scaffold 3 software version 3.6.4 (Proteome Software, USA) was used to confirm 

protein identifications, combine and compare proteins identified among different 

biological samples and to group proteins by biological relevance and molecular 

function. Parameters of analysis using Scaffold 3 can be found in the same section 

of Chapter 2. 

4.3.4 Pathway analysis 

Pathway analysis was performed using Ingenuity Pathway Analysis (IPA) software 

(Ingenuity Systems, Quiagen, CA, USA). 

4.3.5 Target validation – Western blotting 

A total of 20 µg of protein per well was loaded onto precast gels, Mini-Protean TGX 

precast gels, any kD, 10-well comb, 30 µL/well (Bio-Rad, UK). Proteins were 

separated by SDS-PAGE and transferred onto nitrocellulose membranes (Hybond-C 

Extra, Amersham Biosciences, UK) using a Mini Trans-Blot Transfer Cell (Bio-Rad, 

UK) for 1 h at 100 V, as described in section 2.6.2. 

After blocking with 1 % BSA (Sigma-Aldrich, UK) or 1 % milk (dried skimmed milk, 

Marvel) in TBS buffer for 1 h at room temperature, the membranes were probed 

with rabbit polyclonal primary antibodies, diluted in blocking solution, overnight at 

4 °C. A list of the primary antibodies used, their supplier and respective product 

code, as well as the dilution and blocking agent used for each antibody is shown in 

Table 4.2.  
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Table 4.2 List of the primary antibodies used for target validation in the ovarian cancer study. The 
suppliers and respective product codes, dilutions and blocking agents used for each antibody are 

also shown. 

Antibody Dilution Blocking Agent Supplier (UK) Product Code 

Anti-14-3-3 antibody 1:1000 Milk Abcam ab9063 

Anti-MMS2 antibody 1:100 Milk Abcam ab13906 

Anti-PGAM1 antibody 1:500 Milk Abcam ab96622 

Anti-TRX antibody 1:1000 Milk Abcam ab86255 

Anti-UBE2K antibody 1:1000 Milk Sigma-Aldrich SAB2102623-50UG 

Anti-Actin antibody 

(loading control) 
1:100 BSA Abcam ab1801 

 

The membranes were then washed 4x with TBS buffer containing 0.05 % Tween 20 

(Sigma-Aldrich, UK) and subsequently incubated for 1.5 h at room temperature with 

a horseradish peroxidase (HRP)-conjugated donkey anti-rabbit secondary antibody 

(ab16284, Abcam, UK) at a dilution of 1:2000, in the same blocking solution as the 

primary antibody. After incubation with secondary antibody, membranes were 

washed again with TBS buffer containing 0.05 % Tween 20. Protein bands were 

developed using a SuperSignal West Pico Chemiluminescent Substrate (Thermo 

Scientific, UK) and visualised with a Bio-Rad gel imager using Image Lab software 

(Bio-Rad, UK). The western blot assay was performed at least twice for each 

antibody.  
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4.4 Results & Discussion 

Ovarian cancer has been studied for many years and the phenomenon of resistance 

to chemotherapy is widely recognised as one of the main reasons for treatment 

failure and, as a result, poor prognostic and low survival rates in ovarian cancer. 

However, the mechanisms underlying drug resistance and the protein targets 

responsible for such phenomenon are poorly understood and reliable ovarian 

cancer biomarkers are yet to be identified. Therefore, the main aim of this study 

was to identify protein targets of resistance to chemotherapy in ovarian cancer 

through a proteomic approach. 

In order to achieve this task, three groups of PEO1 ovarian cancer cells were used in 

this study: PEO1 sensitive cell line and two resistant counterparts originated from 

the sensitive cell line, taxol resistant ‘PEO1 TaxR’ and carboplatin resistant ‘PEO1 

CarbR’. In addition, five ovarian tissue biopsies, SOV-1, SOV-2, SOV-3, SOV-4 and 

SOV-5, collected from five different patients with distinct diagnosis and clinical 

history, were used in this study. 

The work was divided in four phases. Firstly, a 2D-PAGE technique to separate the 

proteins previously extracted from the cells and tissue biopsies was used. Secondly, 

the gels obtained were compared and some of the spots with different intensities, 

in at least two of the gels, were selected for further analysis. The isolated spots 

were analysed using LC-MS/MS and the proteins were identified by comparison 

with a human protein database. After that, the identified proteins and their 

differences in expression between samples were used for pathway analysis and the 

results were compared to the literature, so that possible targets of resistance to 

chemotherapy could be suggested. Finally, one representative protein from each of 

the top 6 identified pathways was selected for validation using western blotting. 

Furthermore, proteins identified in the tissue samples and their expressions were 

used not only for confirmation of the results obtained with the PEO1 cell lines, but 
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they were also compared between the tissue samples themselves, in order to 

suggest possible protein targets of diagnosis and ovarian cancer histological type. 

4.4.1 Preliminary observations and assays 

4.4.1.1 Ovarian tissue biopsies 

Ovarian tissue biopsies were weighed and visually observed prior to treatment. 

Visual observations are recorded in Table 4.3. 

Table 4.3 Visual observations and weights of ovarian tissue biopsies analysed. The ovarian tissues – 
SOV-1, SOV-2, SOV-3, SOV-4, SOV-5 – were obtained by biopsy from 5 different patients, 4 of which 

were diagnosed with ovarian cancer and 1 suffered from endometriosis, a benign gynaecologic 
condition. 

Sample Histology Visual Observation Weight (mg) 

SOV-1 Endometriosis (non-cancer) White-stained tissue, solid, haemorrhagic 700 

SOV-2 Serous adenocarcinoma Bloodstained, flap sample 500 

SOV-3 Clear cell adenocarcinoma White-stained tissue, solid, dense 500 

SOV-4 Serous adenocarcinoma Bloodstained, flap sample 100 

SOV-5 Serous adenocarcinoma Bloodstained, flap sample 100 

 

All ovarian cancer biopsies studied were epithelial ovarian tumours 

(adenocarcinomas), the most frequent type of ovarian cancer. Ovarian cancer 

tissues SOV-2/4/5 were all macroscopically similar, described as bloodstained, flap 

samples, which corroborates the fact that all of them were serous 

adenocarcinomas, according to the histological classification. SOV-3 was visually 

different from the other cancer tissues, described as a white-stained, solid, dense 

tissue, yet it was similar to SOV-1, the non-cancerous tissue sample. This is in line 

with the fact that SOV-3, according to histology, was categorised as a different type 

of ovarian cancer, clear cell adenocarcinoma, and this type of ovarian carcinoma is 

the most related to endometriosis. In fact, approximately 50% of these tumours are 

associated with endometriosis (Serov et al., 1973, Kaku et al., 2003). 
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Endometriosis is a gynaecological condition in which cells from the lining of the 

uterus (endometrium) grow in other areas of the body, most commonly in the 

pelvic region. These endometrial-like cells respond to hormones in the same way as 

the cells of the uterine cavity, but with no outlet it can cause inflammation, scarring 

and adhesions, leading to severe pain and many other symptoms (Brosens and 

Benagiano, 2011). 

The link between endometriosis and ovarian cancer is well recognised and has 

intrigued physicians for a long time. Epidemiological studies have suggested a 

specific link with non-serous ovarian carcinomas such as endometrioid and clear-

cell carcinomas, however there is no firm evidence supporting endometriosis as an 

ovarian cancer precursor lesion (Nezhat et al., 2008). A recent study by a team of 

researchers from the Ovarian Cancer Association Consortium (OCAC) confirmed 

that women with history of endometriosis have increased reports of clear-cell 

carcinoma and endometrioid ovarian cancer (Pearce et al., 2012). The study also 

shows for the first time that endometriosis is associated with low-grade serous 

ovarian carcinomas, and that its risk is doubled in women who suffer from that 

condition. Nevertheless, the authors showed no relationship between 

endometriosis and high-grade serous carcinomas or other subtypes of ovarian 

cancer. 

In addition, endometriosis has been related to a chronic inflammatory state leading 

to cytokine release, which can lead to unregulated mitotic division, growth and 

differentiation, and migration or apoptosis similar to malignant mechanisms 

(Nezhat et al., 2008). 

Despite similarities in name and location, endometriosis has not been associated 

with endometrial cancer to date. 

Notwithstanding its limitations, in this study, SOV-1 was used as a non-cancerous 

control and compared with the ovarian cancer tissues, although the ideal control 

would be normal ovarian tissue, which for numerous reasons is difficult to obtain 

for research purposes. 
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4.4.1.2 Protein concentration assay 

Protein concentration of the cells and tissues was tested using a commercial kit. 

Firstly, a calibration curve was generated with absorbance values versus the 

corresponding concentrations of the standard bovine plasma γ-globulin, which were 

prepared by serial dilutions from the initial stock concentration of 1.5 mg/mL. Then, 

a linear regression was applied to the calibration curve and protein concentrations 

were calculated using the equation obtained. 

4.4.1.2.1 Protein concentration assay of PEO1 cell lines 

PEO1 cell line samples were diluted 2x in order to fit the calibration curve. Figure 

4.4 illustrates an example of calibration curve used in this experiment and its 

respective equation. Table 4.4 shows the calculated protein concentrations of the 

different ovarian cancer cell lines. 

 

 

 

 

 

 

 

 

 

Figure 4.4 Protein concentration assay calibration curve. Protein concentration assay was 
performed using a commercial kit according to the manufacturer’s instructions. Bovine plasma γ-

globulin was used as standard in the following concentrations: 0.125, 0.25, 0.5, 0.75, 1.0, 1.5 mg/mL. 
Equation of the linear regression is shown in the graph. 
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Table 4.4 Protein concentration of the three ovarian cancer cell line samples. Protein concentration 
assay was performed using a commercial kit according to the manufacturer’s instructions. The 

concentrations were calculated using the equation displayed in Figure 4.4. 

Cell line sample 
Mean Absorbance 

at 750 nm 

Dilution 

Factor 

Protein Concentration 

(mg/mL) 

PEO1 0.362 

X 2 

2.44 

PEO1 TaxR 0.416 2.83 

PEO1 CarbR 0.359 2.42 

 

The calculated concentration values were multiplied by 2 to obtain the protein 

concentrations of the original cell line samples, since samples had been diluted. 

As shown in Table 4.4, all the samples had similar concentrations of protein, with 

PEO1 TaxR cell line being the most concentrated. For further experiments, similar 

volumes of sample would be needed, which considerably facilitates sample 

preparation for gel electrophoresis. 

4.4.1.2.2 Protein concentration assay of tissue biopsies 

The ovarian tissue samples were diluted 25x in order to fit the calibration curve. 

Figure 4.5 shows an example of calibration curve used in this experiment and its 

respective equation. Table 4.5 depicts the calculated protein concentrations of the 

different ovarian tissue samples. 
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Figure 4.5 Protein concentration assay calibration curve. Protein concentration assay was 
performed using a commercial kit according to the manufacturer’s instructions. Bovine plasma γ-

globulin was used as standard in the following concentrations: 0.125, 0.25, 0.5, 0.75, 1.0, 1.5 mg/mL. 
Equation of the linear regression is shown in the graph. 

 

Table 4.5 Protein concentration of the five ovarian tissue samples. Protein concentration assay was 
performed using a commercial kit according to the manufacturer’s instructions. The concentrations 

were calculated using the equation displayed in Figure 4.5. 

Tissue sample 
Mean Absorbance 

at 750 nm 

Dilution 

Factor 

Protein Concentration 

(mg/mL) 

SOV-1 0.215 

X 25 

21.85 

SOV-2 0.230 23.34 

SOV-3 0.346 35.16 

SOV-4 0.191 19.41 

SOV-5 0.051 5.23 

 

As samples had been diluted, the calculated concentration values were multiplied 

by 25 to obtain the protein concentrations of the original tissue samples. 

According to the data shown in Table 4.5, all the samples had reasonable and 

similar concentrations of protein apart from SOV-5, which only had 5.23 mg/mL. 
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This might be related with the fact that the weight of SOV-5 tissue sample was 

lower than most of the others, as shown in Table 4.3, resulting in lower protein 

content after extraction. However, the amount of SOV-4 tissue sample was identical 

to SOV-5 and SOV-4 did not present such a low protein concentration. Therefore it 

was imperative to conduct the experiments careful and efficiently in order to 

minimise any further potential loss of protein. As expected, overall the ovarian 

tissue samples were significantly more concentrated than the PEO1 cell line 

samples.  
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4.4.2 Proteomics analysis 

4.4.2.1 SDS-PAGE gels 

Protein profiles of PEO1 sensitive and resistant cell lines and the tissue biopsy 

samples were examined by SDS-PAGE. These experiments aimed to verify the 

quality of the samples, by confirming the presence of proteins and therefore the 

success of the extraction procedure, and search for initial protein expression 

differences between the studied samples. The experiments were performed only 

once. 

4.4.2.1.1 SDS-PAGE gels of the PEO1 cell lines 

Approximately 10 and 20 μg of protein for each of the PEO1 cell lines were 

separated by SDS-PAGE using a 12.5 % handmade SDS-PAGE gel and a precast gel. 

Gels were stained with Coomassie blue and photographed. Figure 4.6 exhibits two 

representative images of the obtained gels. 

 

 

Figure 4.6 SDS-PAGE gel images of PEO1 sensitive, PEO1 TaxR and PEO1 CarbR resistant cell lines. 

Proteins (10 and 20 g) extracted from PEO1 sensitive and resistant cell lines were separated by SDS-
PAGE at 150 V. The resulting gels were stained with Coomassie blue. (A) 12.5 % SDS-PAGE handmade 

gel. (B) Mini-Protean TGX Precast Gel, any kD, 10-well comb, 30 L/well. MWM: molecular weight 
marker. 
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In Figure 4.6, it is possible to see the distinct intensity of the sample lanes, as the 

strongest ones have twice the amount of protein. Additionally, it is possible to 

observe that protein bands are much better resolved in the precast gel. This fact is 

probably owing to the existence of a polyacrylamide concentration gradient in that 

gel, which does not exist in the handmade one. In the precast gel, clear differences 

in protein band intensity between the sensitive and resistant cell lines or between 

both resistant cell lines can be visualised. These differences are particularly evident 

in the range of molecular weights between 37 and 75 kDa. 

4.4.2.1.2 SDS-PAGE gels of the tissue biopsies 

Approximately 10 μg of protein for each of the five ovarian tissue samples were 

separated by SDS-PAGE using a 10 % SDS-PAGE handmade gel. The gels was stained 

with Coomassie blue and photographed. Figure 4.7 displays a representative image 

of the obtained gel. 

 

 

 

 

 

 

 

 

 

Figure 4.7 SDS-PAGE gel images of SOV-1, SOV-2, SOV-3, SOV-4 and SOV-5 ovarian tissues. Proteins 

(10 g) extracted from ovarian tissue biopsies were separated by SDS-PAGE at 150 V on a 10 % SDS-
PAGE handmade gel. The resulting gel was stained with Coomassie blue. MWM: molecular weight 

marker. 
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The gel illustrated in Figure 4.7 shows well resolved bands, with a particularly strong 

band between 50 and 75 kDa for all the five tissue samples. This band is probably 

related to high levels of contamination with human serum albumin, which has a 

molecular weight of approximately 69 kDa and is abundant in the human serum. 

Albumin is a common contaminant in the analysis of tissue lysates (Walsh, 2002). 

Moreover, considering that cancer cells promote angiogenesis and spread through 

the blood, this high level of contamination by a serum protein was expected. In 

these cases, the use of protein precipitation techniques prior to protein separation 

helps remove contaminants such as albumin, which are likely to hide other less 

abundant proteins. 

Interestingly, SOV-5 presents a much stronger band at approximately 150 kDa than 

the other samples, despite the same amount of protein being loaded for each 

sample. This possibly indicates differences in the expression of specific proteins 

among different samples. 

As SDS-PAGE only allows separation of proteins according to their molecular weight, 

the concentrated bands observed at the bottom of the gel may be a mixture of low 

molecular weight proteins that migrated quickly. These bands could be better 

separated using 2D-PAGE. 

Overall, the 10 % SDS-PAGE handmade gel used in this experiment seemed to 

resolve the tissue proteins more efficiently than the 12.5 % SDS-PAGE handmade 

gel used for the separation of the cell line proteins. Gels that are more concentrated 

in acrylamides have smaller pore size, hindering the migration of proteins and 

sometimes resulting in poorly separated bands, when complex protein mixtures are 

under investigation (Hames and Rickwood, 1990). 

 

All samples analysed were pre-treated with the 2D clean-up kit prior to 2D-PAGE in 

order to remove contaminants and minimise as much as possible the presence of 

albumin in the tissue samples.  
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4.4.2.2 2D-PAGE gels 

2D-PAGE separation was carried out with protein samples of the three cell lines and 

five ovarian tissue biopsies in order to obtain a better protein separation, which 

permitted a more accurate identification of the proteins and the study of potential 

protein expression differences between samples. Only precast gels were used in 

these experiments. After silver staining, the gels were photographed, scanned and 

analysed using PDQuest Advanced software. Gel images were edited to crop out the 

marker protein bands on the right hand side to facilitate automatic spot selection. 

The experiments were performed twice for the three PEO1 cell lines and only once 

for the ovarian tissues, due to insufficient amount of sample.  

4.4.2.2.1 2D-PAGE gels of the PEO1 cell lines 

Approximately 50 μg of protein for each of the PEO1 cell lines were separated by 

2D-PAGE using pH 3-10 non-linear 11 cm IPG strips for the first dimension and 

precast gels for the second dimension. Gels were stained with silver stain and 

photographed. Figure 4.8, Figure 4.9 and Figure 4.10 depict representative images 

of the replicate gels obtained for each of the studied cell lines. 

Figure 4.8 Representative 2D-PAGE silver stained gels of the PEO1 sensitive ovarian cancer cell 
line. Proteins (approximately 50 µg) were separated on pH 3-10 non-linear 11 cm IPG strips in the 
first dimension (IEF) and by precast gels (Criterion TGX Precast Gels, any kD, IPG + 1 well comb, 11 

cm IPG strip) in the second dimension (SDS-PAGE). Resulting gels were silver stained. 
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Figure 4.9 Representative 2D-PAGE silver stained gels of the PEO1 TaxR ovarian cancer cell line. 
Proteins (approximately 50 µg) were separated on pH 3-10 non-linear 11 cm IPG strips in the first 

dimension (IEF) and by precast gels (Criterion TGX Precast Gels, any kD, IPG + 1 well comb, 11 cm IPG 
strip) in the second dimension (SDS-PAGE). Resulting gels were silver stained. 

 

 

Figure 4.10 Representative 2D-PAGE silver stained gels of the PEO1 CarbR ovarian cancer cell line. 
Proteins (approximately 50 µg) were separated on pH 3-10 non-linear 11 cm IPG strips in the first 

dimension (IEF) and by precast gels (Criterion TGX Precast Gels, any kD, IPG + 1 well comb, 11 cm IPG 
strip) in the second dimension (SDS-PAGE). Resulting gels were silver stained. 

 

One of the limitations of 2D-PAGE is reproducibility, i.e. the difficulty in generating 

identical gels when replicates of the same sample are analysed (Voss and Haberl, 

2000, Lilley et al., 2002, Rabilloud et al., 2010). This is in great part owing to the 

multiple steps of the technique that are controlled by the operator. Preparation of 

the second dimension separation, in particular positioning of the IPG strip on the 

second dimension gel, and silver staining are examples of two steps of the 2D-PAGE 
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method that heavily influence image quality and are largely dependent on the 

operator. Most of the times protein spots can still be visible despite eventual 

streaking defects present on the gels; however, if reproducibility is compromised, 

the comparative analysis of spot intensity for protein regulation assessment will 

also be affected. 

The PEO1 sensitive and PEO1 TaxR gels, shown in Figure 4.8 and Figure 4.9 

respectively, are examples of replicates of the same sample that did not generate 

identical gels. This was possibly a result of over-staining of the first replicates (on 

the left), which were run and stained in parallel. The over-staining effect was most 

probably caused by an excessive colour development time (3 minutes). However, 

this fact allowed visualisation of some less concentrated protein spots that would 

not be visible otherwise and, in fact, could not be seen on the second replicate gels, 

where the colour development time was 2 minutes only. In any case, it is possible to 

observe individualised protein spots on all four replicate gels. 

In the PEO1 sensitive and PEO1 TaxR gels a few horizontal streaks are visible on the 

right hand side, close to the MWM. This might have been caused by an incorrect 

loading of the MWM or, more likely, by an excessive volume of MWM loaded into 

the MWM wells. Probably, during the application of the overlay agarose solution 

that fixes the IPG strip to the second dimension gel, some MWM solution migrated 

out of its well and ran in the same well as the sample, creating this effect. 

With respect to the PEO1 TaxR cell line, the number of spots present on the second 

replicate gel (on the right) seems to be significantly lower than on the first replicate 

gel obtained with the same sample. This fact can be justified by an incomplete 

solubilisation of the pellet after the protein precipitation assay, which may have 

resulted in less amount of protein loaded on the first dimension strip. Ideally, 

protein concentration should be confirmed after the precipitation assay and before 

starting IEF to prevent these situations. However, in practical terms, this is not 

possible for several reasons. Firstly, a larger amount of sample would have to be 

used to allow for the determination of its protein concentration. Secondly, the 

protein pellet would have to be resuspended in a different buffer, since the 
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constituents of the rehydration buffer severely interfere with the usual methods to 

assess protein concentration (Olson and Markwell, 2007). Yet, a different 

resuspension buffer would compromise the success of the first dimension 

separation. Even using the rehydration buffer to resuspend the protein pellet and 

then diluting it, so that the interference would be minimal, would also dilute the 

proteins in the sample to a level where they would be difficult to quantify.  

In turn, the PEO1 CarbR gels, portrayed in Figure 4.10, represent replicate similarity 

that is closer to the ideal situation. The two replicates of the same sample depict 

many well-individualised protein spots and are similar, although some differences 

can still be observed. The staining development time in this case was 2 minutes for 

both replicates. It is possible to observe that the right hand side horizontal streaking 

caused by the MWM is less apparent on these gels than on the gels of the other cell 

lines. It is so, because a lower volume of MWM was loaded into the MWM wells in 

order to avoid the horizontal streaks previously observed. 

All the gels show consistent horizontal streaking on the far left and right hand sides, 

generally more evident on the left hand side. This may be a result of inadequate 

focussing of the proteins, preventing efficient transfer of proteins to the second 

dimension gel. Additionally, it could suggest that too much sample was loaded onto 

the strip, overloading it, or that the proteins had not been adequately solubilised 

due to inadequate pellet resuspension or incorrectly prepared buffers. Protein 

absorption into the IPG strip gel matrix may also have been hindered by the 

presence of bound nucleic acids, which require digestion with an endonuclease and 

should have been removed by the 2D clean-up kit. There is also some background 

vertical streaking, more visible in the first replicate gels than the others, which 

suggests contamination of the gel or sample with dust or some particles present in 

the water supply (Garfin and Heerdt, 2001, Rabilloud, 2000). 

The lack of reproducibility of 2D gels has been widely recognised to the point of 

affecting the credibility of 2D-PAGE applications in the field of proteomics. As a 

result, in an effort to restore credibility, Bio-Rad Laboratories, Novartis Institutes for 

BioMedical Research and Nonlinear Dynamics coordinated an initiative called the 
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‘Fixing Proteomics Campaign’, initiated during the 6th HUPO (Human Proteome 

Organization) Annual World Congress in Korea in October 2007. The main goal of 

this initiative was to develop standards and validated protocols that ensure 

reproducibility of 2D gel experiments. After Phase I and II of the campaign, 

participant laboratories proved that it was possible to generate gel images that fell 

within a 95 % confidence level in an inter-laboratory study (Bio-Rad, 2009). 

In order to evaluate the level of reproducibility of an experiment, a number of 

replicates of the same sample are needed, so that a statistical test can be applied 

and the similarity/difference between replicates can be quantified. In the particular 

case of 2D-PAGE, a large number of replicate gels should be generated due to the 

great variation observed between gels. Unfortunately, in this experiment it was not 

possible to produce enough replicate gels to allow statistical evaluation of 

reproducibility, owing to the limited amount of samples available. 

Nonetheless, after visual comparison of the 2D gels obtained for PEO1 sensitive and 

resistant cell lines, gels images were analysed using PDQuest Advanced software 

and spots relative abundance was compared between gels. 

4.4.2.2.2 2D-PAGE gels of the tissue biopsies 

Approximately 50 μg of protein for each of the five ovarian tissue biopsies were 

separated by 2D-PAGE using pH 3-10 non-linear 11 cm IPG strips for the first 

dimension and precast gels for the second dimension. Gels were stained with silver 

stain and photographed. Figure 4.11 displays representative images of the replicate 

gels obtained for each of the studied tissue samples. 
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Figure 4.11 Representative 2D-PAGE silver stained gels of the five ovarian tissue biopsies. Proteins 
(approximately 50 µg) were separated on pH 3-10 non-linear 11 cm IPG strips in the first dimension 
(IEF) and by precast gels (Criterion TGX Precast Gels, any kD, IPG + 1 well comb, 11 cm IPG strip) in 

the second dimension (SDS-PAGE). Resulting gels were silver stained. 

In all tissue gels represented in Figure 4.11 it is possible to visualise a vast number 

of well-resolved protein spots and the gel images show good quality overall, 

evidencing a successful separation of the tissue protein mixtures by 2D-PAGE. 

As for the ovarian cancer cell line gels, all the tissue gels in Figure 4.11 display 

consistent horizontal streaking on the far left and right hand sides, as well as some 
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faint background vertical streaking. The reasons that could explain these effects 

were mentioned earlier. Nonetheless, when compared to the cell line gels as a 

whole, tissue gels display improved image quality, demonstrating a better technical 

control of the 2D-PAGE technique. 

SOV-1 gel shows fewer spots than the other gels and this could have been due to a 

number of procedural errors, since the same amount of protein was loaded onto all 

gels. Proteins from SOV-1 tissue sample may have been unable to migrate into the 

IPG strip gel matrix during rehydration, because they were not adequately 

solubilised, owing to the reasons previously mentioned. Since SOV-1 and SOV-5 2D 

gels were run simultaneously and SOV-5 gel shows a greater number of spots, the 

problems in SOV-1 gel are most likely caused by inadequate rehydration, rather 

than IPG strip orientation or ineffective staining (Garfin and Heerdt, 2001, 

Rabilloud, 2000). 

SOV-2 and SOV-3 gels depict a large number of clearly visible spots throughout the 

gels with some degree of streaking as previously described. These two gels look 

very similar, which is in line with the fact that they both result from serous epithelial 

ovarian cancer samples. 

SOV-4 and SOV-5 gels also show a great number of well-resolved protein spots. 

These gels present a slightly darker background than the other gels and this may be 

due to an increased incubation time during the colour development step of the 

silver stain, which is a very precise technique. 

SOV-5 gel displays the greatest degree of streaking of all tissue gels, which could be 

caused by the reasons previously given. Its spots also appear to show greater 

intensity than the other spots on the other gels, despite the same amount of 

protein being loaded onto all gels. This is most likely owing to the increased 

incubation time during the colour development step of the silver stain mentioned 

above. 

As mentioned before for the cell line gels, the reproducibility of the technique 

should have been assessed by means of a statistical test to quantify the 
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similarity/difference between gels. If a greater amount of sample had been 

available for each one of the ovarian tissues analysed, all gels should have been 

repeated at least twice more, in order to increase reliability on the 2D gels obtained 

and evaluate the reproducibility of this experiment. This would be particularly 

advantageous for SOV-1 tissue sample, to allow better analysis and evaluation, as 

SOV-1 gel was the most defective of the gels.  
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4.4.2.3 Gel image analysis 

After visual comparison of the 2D gels obtained for the PEO1 sensitive and resistant 

cell lines and for the ovarian tissues, gel images were analysed using PDQuest 

Advanced software and spots’ presence and relative abundance was compared 

between gels. This would ultimately allow the study of differences in regulation of 

the proteins identified after this stage. 

Spot intensity was the method of semi-quantitation (relative quantitation) used. 

This method compares the intensity of the spots in which a specific protein was 

identified among the different gels that correspond to different samples. The size 

(area and intensity) of protein spots changes in parallel with the expression level of 

proteins, thus 2D-PAGE can achieve quantitative comparison between multiple 

samples (Palagi et al., 2006). 

The background was subtracted and resolved protein spots were located and 

quantified. The total gel image optical density (OD) and the total number of spots 

were used to normalise individual protein abundance, allowing the quantity of each 

protein to be defined as ppm of the total integrated OD. A master image containing 

a match-set of all the 2D gel images was created after constructing a reference 

pattern, and pattern matching was achieved by landmarking prominent protein 

spots represented in each gel pattern. This enabled qualitative and quantitative 

analysis of differentially expressed proteins through parameters set within the 

PDQuest software and fold changes (Bio-Rad, 2004). 

For each gel obtained, more than 200 spots could be individually visualised. In order 

to facilitate analysis and focus on relevant proteins, spots were selected according 

to the following criteria: exclusive presence in only one gel, 2-fold and 5-fold change 

in intensity in at least one of the gels when compared to the others. Spots located in 

the same place on different gels were assigned the same SSP number, which is a 

unique sample spot protein number assigned by the PDQuest software. 

In Figure 4.12, two examples of the spot selection process using PDQuest Advanced 

software are given. The histogram graphs can be used to quickly compare spot 
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quantity among gels. A brief look at a histogram can give a sense of the general 

trends in spot quantitation. They are also useful as tools for detecting problems 

such as mismatched spots and spots whose quantitation is suspiciously off the 

average. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Examples of spot selection using PDQuest Advanced 8.0.1. Histograms on the upper left 
show quantity bars for the corresponding spot in each of the different gels, SOV-2/3/4/5/1 (bars 

from left to right). 

Each bar on a spot histogram represents the spot’s quantity in a gel. In Figure 4.12, 

the bars from the left to the right represent SOV-2/3/4/5/1 gels, respectively. The 

Standard Spot (SSP) number is displayed beneath the histogram. The number in the 

upper right of the histogram is the quantitation of the maximum bar in the graph. 

The other bars are drawn in proportion to the highest bar. The normalisation units 

are displayed below the maximum quantitation. Normalisation is a process by which 

quantitative data from different gels are adjusted so that different samples can be 

compared to one another (Bio-Rad, 2004). 
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4.4.2.3.1 Gel image analysis of the PEO1 cell lines 

PDQuest software was not available when the first replicates of the cell line gels 

were analysed. Therefore, all well-resolved protein spots on those gels were excised 

for further analysis to avoid misjudging of spot intensity differences. For the second 

replicate, spot intensity analysis was performed for spot selection and only the 

spots that followed the selection criteria (exclusive presence, 2-fold and 5-fold 

change in intensity) were excised. Spots in the PEO1 sensitive and resistant cell line 

gels that were selected for excision and further analysis by LC-MS/MS with the aim 

of identifying the proteins are highlighted in Figure 4.13.  

 

Figure 4.13 Spots in the ovarian cancer cell line gels that were selected for excision and further 
analysis by LC-MS/MS. All well-resolved protein spots on the first replicates (left) were excised for 
further analysis. For the second replicate, spot intensity analysis was performed for spot selection 

and only the spots that followed the selection criteria (exclusive presence, 2-fold and 5-fold change 
in intensity) were excised. 
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4.4.2.3.2 Gel image analysis of the tissue biopsies 

Spots were selected for excision according to the selection criteria mentioned 

earlier. Figure 4.14 shows the spots in the ovarian tissue gels that were selected for 

excision and further analysis by LC-MS/MS with the aim of identifying the proteins. 

 

 

 

 

 

Figure 4.14 Spots in the ovarian tissue gels that were selected for excision and further analysis by 
LC-MS/MS. Spot intensity analysis was performed for spot selection and only the spots that followed 

the selection criteria (exclusive presence, 2-fold and 5-fold change in intensity) were excised. 
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4.4.2.4 Selection of protein hits 

Mass spectrometry data were used for the protein identification searches in two 

ways. Firstly, database searches were performed manually using two online search 

engines, MASCOT (Matrix Science) (Perkins et al., 1999) and X!Tandem (The GPM) 

(Craig and Beavis, 2004). In order to minimise the chances of false-positive 

identification of contaminant proteins, protein hits were accepted if: 

MASCOT protein score > 100 and at least one of the theoretical MW and pI values 

matched the experimental value. Experimental MW and pI were estimated based 

on relative positions to MW markers and corresponding vertical alignment to pH 

values on 2D gels. 

OR 

MASCOT protein score < 100 and the theoretical MW and pI values were both 

similar to the experimental values. 

OR 

MASCOT protein score < 100 and at least one of the theoretical MW and pI values 

was similar to the experimental values. 

AND 

First hits in the MASCOT search result corresponded to the same first hits in the 

X!Tandem search results or the protein identified belonged to the same family 

(isoforms). 

For all the selected protein hits Min # Peptides identified was ≥ 2. This generated a 

focused list of 151 proteins reliably identified. 

Secondly, searches and analysis were performed using Scaffold 3 (Proteome 

Software), and the criteria used for protein hit selection was: Min Peptide – 95 %, 

Min # Peptides – 2, Min Protein – 99 % and 1 % false discovery rate (FDR) (Keller et 
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al., 2002, Nesvizhskii et al., 2003). This search method resulted in a list of 189 

proteins reliably identified. 

In both sets of results, two very common contaminants abundantly seen in 

proteomics analysis were removed from the hits list of each spot – keratin and 

trypsin (Keller et al., 2008).  

Two protein lists were then generated and checked for proteins that were present 

in both and proteins that were absent from one of the lists. A total of 25 proteins 

were found in the 151-manual-protein-list but not in the 189-Scaffold-3-protein-list 

(Figure 4.15). The majority of proteins missing from the 189-Scaffold-3-protein-list 

are proteins with low confidence identification (% coverage < 20), and/or they 

belong to the same family or are similar to the ones found in the mentioned list 

(isoforms). A total of 63 proteins were found in the 189-Scaffold-3-protein-list but 

not in the 151-manual-protein-list. The criteria used for accepting a protein hit in 

the manual searches case, which generated the 151-manual-protein-list, were 

stricter than the criteria used for the other list. In fact, most of those 63 missing 

proteins are indeed present in the data; however they were not selected, as they do 

not comply with the criteria previously mentioned. 

 

 

 

 

Figure 4.15 Venn diagram of the protein lists generated using the two protein database search 
approaches: manual search and Scaffold 3 software search. 

 

For the above reasons, the list with more protein hits, 189-Scaffold-3-protein-list, 

was the one used for further analysis and is shown in Table 4.6. 

 

126	
25	

63	

Scaffold	3	
protein	list	

(189)	

Manual	
protein	list	

(151)	
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Table 4.6 Proteins identified in the ovarian cancer cell lines (sensitive – PEO1 and resistant – PEO1 TaxR, PEO1 CarbR) and/or in the ovarian tissue biopsies (control – 
SOV-1 and cancer – SOV-2/3/4/5). Proteins shown in the table (189) were identified by LC-MS/MS after in-gel trypsin digestion of the selected protein spots. Criteria used 

for protein hit selection was Min Peptide – 95 %, Min # Peptides – 2, Min Protein – 99 % (Scaffold 3 Software, version 3.6.4). SSP, sample spot protein number; MW, 
molecular weight; pI, isoelectric point; N/A, not applicable; R, resistant; S, sensitive; P, partially resistant/sensitive. 

Protein Name 
Accession 
Number 

MW 
(kDa) 

pI 

% Coverage 

Ovarian Tissue Biopsies Ovarian Cancer Cell Lines 

N/A R S P P S R R 

SOV-1 SOV-2 SOV-3 SOV-4 SOV-5 PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

14-3-3 protein beta/alpha 1433B_HUMAN 28 4.76 
      

17% 
 

14-3-3 protein theta 1433T_HUMAN 28 4.68 
     

4.90% 7.30% 
 

14-3-3 protein zeta/delta 1433Z_HUMAN 28 4.73 
     

4.90% 17% 
 

26S protease regulatory subunit 4 PRS4_HUMAN 49 5.87 
     

5.00% 2.70% 13% 

60 kDa heat shock protein, mitochondrial CH60_HUMAN 61 5.24 
  

9.90% 8.20% 16% 
 

2.10% 36% 

60S acidic ribosomal protein P0 RLA0_HUMAN 34 5.7 
     

23% 17% 
 

78 kDa glucose-regulated protein GRP78_HUMAN 72 5.01 
       

28% 

Abhydrolase domain-containing protein 
10, mitochondrial 

ABHDA_HUMAN 34 6.29 
     

8.50% 
  

Actin, cytoplasmic 1 ACTB_HUMAN 42 5.29 
  

5.60% 
  

14% 15% 16% 

Adenosylhomocysteinase SAHH_HUMAN 48 5.92 
     

2.50% 
 

6.20% 

Adenylosuccinate synthetase isozyme 2 PURA2_HUMAN 50 6.13 
     

4.80% 
  

Adenylyl cyclase-associated protein 1 CAP1_HUMAN 52 8.26 
       

26% 

ADP-sugar pyrophosphatase NUDT5_HUMAN 24 4.87 
     

12% 
  

A-kinase anchor protein 12 AKA12_HUMAN 191 4.37 
     

1.50% 
  

Alcohol dehydrogenase 1B ADH1B_HUMAN 40 8.63 
    

6.10% 
   

Aldehyde dehydrogenase family 1 AL1A3_HUMAN 56 7.12 
       

21% 
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Protein Name 
Accession 
Number 

MW 
(kDa) 

pI 

% Coverage 

Ovarian Tissue Biopsies Ovarian Cancer Cell Lines 

N/A R S P P S R R 

SOV-1 SOV-2 SOV-3 SOV-4 SOV-5 PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

member A3 

Aldehyde dehydrogenase X, mitochondrial AL1B1_HUMAN 57 5.96 
       

14% 

Alpha-1-antichymotrypsin AACT_HUMAN 48 5.32 4.50% 
       

Alpha-actinin-4 ACTN4_HUMAN 105 5.27 
       

5.70% 

Alpha-enolase ENOA_HUMAN 47 6.99 
  

6.20% 6.50% 9.20% 6.50% 35% 57% 

Annexin A1 ANXA1_HUMAN 39 6.64 
  

3.20% 7.80% 
 

29% 29% 44% 

Annexin A11 ANX11_HUMAN 54 7.53 
       

5.00% 

Annexin A2 ANXA2_HUMAN 39 7.56 17% 10% 17% 18% 42% 
 

6.20% 39% 

Annexin A3 ANXA3_HUMAN 36 5.63 
      

28% 
 

Annexin A5 ANXA5_HUMAN 36 4.93 
     

14% 2.80% 
 

Apolipoprotein A-I APOA1_HUMAN 31 5.27 
    

9.40% 
  

8.60% 

Aspartate aminotransferase, 
mitochondrial 

AATM_HUMAN 48 8.98 
     

6.70% 
  

ATP synthase subunit alpha, mitochondrial ATPA_HUMAN 60 8.28 
       

29% 

Bifunctional purine biosynthesis protein 
PURH 

PUR9_HUMAN 65 6.27 
       

9.00% 

C-1-tetrahydrofolate synthase, 
cytoplasmic 

C1TC_HUMAN 102 6.89 
       

2.10% 

Calreticulin CALR_HUMAN 48 4.29 
     

13% 18% 21% 

Calumenin CALU_HUMAN 37 4.46 
     

23% 13% 
 

Caprin-1 CAPR1_HUMAN 78 5.14 
       

9.30% 

Cathepsin D CATD_HUMAN 45 5.6 
     

4.60% 2.20% 
 



CHAPTER 4 – PROTEOMICS APPROACH TO IDENTIFY PROTEIN TARGETS OF CHEMORESISTANCE IN OVARIAN CANCER  

Isa Nobre da Cruz 190 

Protein Name 
Accession 
Number 

MW 
(kDa) 

pI 

% Coverage 

Ovarian Tissue Biopsies Ovarian Cancer Cell Lines 

N/A R S P P S R R 

SOV-1 SOV-2 SOV-3 SOV-4 SOV-5 PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

Chloride intracellular channel protein 4 CLIC4_HUMAN 29 5.45 
     

13% 6.30% 
 

Cofilin-1 COF1_HUMAN 19 8.26 
     

26% 18% 36% 

Coiled-coil-helix-coiled-coil-helix domain-
containing protein 3, mitochondrial 

CHCH3_HUMAN 26 8.5 
      

8.40% 
 

Complement component 1 Q 
subcomponent-binding protein, 
mitochondrial 

C1QBP_HUMAN 31 4.32 
     

5.00% 5.00% 
 

Cytosol aminopeptidase AMPL_HUMAN 56 8.03 
       

27% 

D-3-phosphoglycerate dehydrogenase SERA_HUMAN 57 6.31 
       

12% 

Delta(3,5)-Delta(2,4)-dienoyl-CoA 
isomerase, mitochondrial 

ECH1_HUMAN 36 5.99 
      

7.60% 
 

Desmoplakin DESP_HUMAN 250 6.44 
     

0.80% 
  

Dihydrolipoyllysine-residue 
succinyltransferase component of 2-
oxoglutarate dehydrogenase complex, 
mitochondrial 

ODO2_HUMAN 49 5.9 
     

6.80% 3.10% 7.30% 

DnaJ homolog subfamily C member 9 DNJC9_HUMAN 30 5.58 
      

13% 
 

EF-hand domain-containing protein D2 EFHD2_HUMAN 27 5.15 
     

22% 
  

Elongation factor 1-alpha 1 EF1A1_HUMAN 50 9.1 
 

2.40% 5.00% 5.00% 12% 5.80% 
 

8.40% 

Elongation factor 1-delta EF1D_HUMAN 31 4.9 
     

8.50% 
 

12% 

Elongation factor 1-gamma EF1G_HUMAN 50 6.27 
     

7.60% 
  

Elongation factor Tu, mitochondrial EFTU_HUMAN 50 6.31 
  

2.70% 5.80% 2.70% 
 

20% 24% 

Endoplasmin ENPL_HUMAN 92 4.73 
       

4.40% 



CHAPTER 4 – PROTEOMICS APPROACH TO IDENTIFY PROTEIN TARGETS OF CHEMORESISTANCE IN OVARIAN CANCER  

Isa Nobre da Cruz 191 

Protein Name 
Accession 
Number 

MW 
(kDa) 

pI 

% Coverage 

Ovarian Tissue Biopsies Ovarian Cancer Cell Lines 

N/A R S P P S R R 

SOV-1 SOV-2 SOV-3 SOV-4 SOV-5 PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

Enoyl-CoA hydratase, mitochondrial ECHM_HUMAN 31 5.88 
      

15% 
 

Eukaryotic initiation factor 4A-I IF4A1_HUMAN 46 5.32 
     

2.50% 
 

11% 

Eukaryotic translation initiation factor 5A-
1 

IF5A1_HUMAN 17 5.08 
     

26% 
  

F-actin-capping protein subunit beta CAPZB_HUMAN 31 5.36 
      

14% 
 

Far upstream element-binding protein 1 FUBP1_HUMAN 68 7.33 
       

20% 

Fatty acid-binding protein, epidermal FABP5_HUMAN 15 6.82 26% 
    

6.70% 24% 
 

Fructose-bisphosphate aldolase A ALDOA_HUMAN 39 8.39 
  

6.90% 6.90% 19% 3.80% 
 

36% 

Fumarate hydratase, mitochondrial FUMH_HUMAN 55 6.99 
       

11% 

Galectin-1 LEG1_HUMAN 15 5.3 
     

5.90% 21% 
 

Galectin-7 LEG7_HUMAN 15 7.02 12% 
    

10% 22% 
 

GIPC PDZ domain containing family, 
member 1 

GIPC1_HUMAN 36 5.9 
     

11% 
  

Glucosidase 2 subunit beta GLU2B_HUMAN 59 4.33 
     

18% 
  

Glutathione S-transferase omega-1 GSTO1_HUMAN 28 6.23 
     

17% 14% 
 

Glutathione S-transferase P GSTP1_HUMAN 23 5.44 
    

9.00% 15% 15% 
 

Glyceraldehyde-3-phosphate 
dehydrogenase 

G3P_HUMAN 36 8.58 8.70% 14% 13% 14% 27% 8.70% 8.70% 50% 

G-rich sequence factor 1 GRSF1_HUMAN 53 5.11 
      

4.00% 
 

GTP-binding nuclear protein Ran RAN_HUMAN 24 7.2 
     

10% 6.00% 
 

Guanine nucleotide-binding protein 
subunit beta-2-like 1 

GBLP_HUMAN 35 7.6 
     

8.50% 35% 
 



CHAPTER 4 – PROTEOMICS APPROACH TO IDENTIFY PROTEIN TARGETS OF CHEMORESISTANCE IN OVARIAN CANCER  

Isa Nobre da Cruz 192 

Protein Name 
Accession 
Number 

MW 
(kDa) 

pI 

% Coverage 

Ovarian Tissue Biopsies Ovarian Cancer Cell Lines 

N/A R S P P S R R 

SOV-1 SOV-2 SOV-3 SOV-4 SOV-5 PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

Heat shock 70 kDa protein 1A/1B HSP71_HUMAN 70 5.48 
       

14% 

Heat shock cognate 71 kDa protein HSP7C_HUMAN 71 5.37 
       

39% 

Heat shock protein beta-1 HSPB1_HUMAN 23 5.98 
      

8.80% 
 

Hemoglobin subunit beta HBB_HUMAN 16 6.81 67% 46% 8.80% 8.80% 51% 28% 
  

Heterogeneous nuclear ribonucleoprotein 
D0 

HNRPD_HUMAN 38 7.61 
     

2.80% 
 

6.80% 

Heterogeneous nuclear ribonucleoprotein 
F 

HNRPF_HUMAN 46 5.37 
       

6.50% 

Heterogeneous nuclear ribonucleoprotein 
H 

HNRH1_HUMAN 49 5.89 
     

28% 13% 6.00% 

Heterogeneous nuclear ribonucleoprotein 
H3 

HNRH3_HUMAN 38 6.37 
     

8.40% 2.60% 3.50% 

Heterogeneous nuclear ribonucleoprotein 
K 

HNRPK_HUMAN 51 5.39 
   

2.60% 
 

8.90% 13% 37% 

Heterogeneous nuclear ribonucleoprotein 
L 

HNRPL_HUMAN 64 8.46 
       

15% 

Heterogeneous nuclear ribonucleoprotein 
Q 

HNRPQ_HUMAN 70 8.68 
     

11% 
  

Heterogeneous nuclear 
ribonucleoproteins A2/B1 

ROA2_HUMAN 37 8.97 
   

7.40% 
 

9.90% 
 

22% 

Heterogeneous nuclear 
ribonucleoproteins C1/C2 

HNRPC_HUMAN 34 4.95 
     

13% 2.90% 10% 

High mobility group nucleosome-binding 
domain-containing protein 5 

HMGN5_HUMAN 32 4.5 
     

3.50% 1.60% 4.10% 
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Protein Name 
Accession 
Number 

MW 
(kDa) 

pI 

% Coverage 

Ovarian Tissue Biopsies Ovarian Cancer Cell Lines 

N/A R S P P S R R 

SOV-1 SOV-2 SOV-3 SOV-4 SOV-5 PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

Histidine-tRNA ligase, cytoplasmic SYHC_HUMAN 57 5.73 
     

14% 7.10% 19% 

Histone H2B type 1-M H2B1M_HUMAN 14 10.32 
       

6.70% 

Hypoxanthine-guanine 
phosphoribosyltransferase 

HPRT_HUMAN 25 6.24 
     

12% 17% 
 

Ig gamma-1 chain C region IGHG1_HUMAN 36 8.46 8.80% 
     

13% 
 

Inosine-5'-monophosphate 
dehydrogenase 2 

IMDH2_HUMAN 56 6.46 
       

7.80% 

Isoform 2 of Shootin-1 
A0MZ66-

2|SHOT1_HUMA
N 

53 5.27 
       

4.60% 

Lactoylglutathione lyase LGUL_HUMAN 21 5.12 
     

14% 16% 
 

Lamin-B1 LMNB1_HUMAN 66 5.11 
       

7.80% 

Leukocyte elastase inhibitor ILEU_HUMAN 43 5.9 
      

10% 
 

LIM and SH3 domain protein 1 LASP1_HUMAN 30 6.61 
       

8.80% 

L-lactate dehydrogenase A chain LDHA_HUMAN 37 8.46 
       

30% 

L-lactate dehydrogenase B chain LDHB_HUMAN 37 5.72 
     

15% 43% 20% 

Macrophage-capping protein CAPG_HUMAN 38 5.82 
     

14% 8.00% 3.70% 

Malate dehydrogenase, cytoplasmic MDHC_HUMAN 36 6.89 
      

8.70% 
 

Malate dehydrogenase, mitochondrial MDHM_HUMAN 36 8.54 
  

13% 
 

16% 5.60% 
 

19% 

Microtubule-associated protein 4 MAP4_HUMAN 121 5.32 
     

3.40% 
  

Microtubule-associated protein RP/EB 
family member 1 

MARE1_HUMAN 30 5.02 
     

10% 
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Protein Name 
Accession 
Number 

MW 
(kDa) 

pI 

% Coverage 

Ovarian Tissue Biopsies Ovarian Cancer Cell Lines 

N/A R S P P S R R 

SOV-1 SOV-2 SOV-3 SOV-4 SOV-5 PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

Myosin light polypeptide 6 MYL6_HUMAN 17 4.56 
     

21% 22% 
 

Myristoylated alanine-rich C-kinase 
substrate 

MARCS_HUMAN 32 4.46 
     

19% 
  

Nascent polypeptide-associated complex 
subunit alpha 

NACA_HUMAN 23 4.52 
     

13% 26% 
 

Neutral alpha-glucosidase AB GANAB_HUMAN 107 5.58 
       

3.50% 

Nitrilase homolog 1 NIT1_HUMAN 36 7.91 
      

6.40% 
 

Nuclear autoantigenic sperm protein NASP_HUMAN 85 4.26 
       

2.30% 

Nucleolin NUCL_HUMAN 77 4.6 
      

1.30% 5.90% 

Nucleophosmin NPM_HUMAN 33 4.64 
      

3.10% 29% 

Nucleoporin p54 NUP54_HUMAN 55 6.53 
       

5.70% 

Nucleoside diphosphate kinase A NDKA_HUMAN 17 5.82 
      

47% 
 

Nucleosome assembly protein 1-like 1 NP1L1_HUMAN 45 4.34 
     

5.60% 2.60% 5.40% 

Paraspeckle component 1 PSPC1_HUMAN 59 6.26 
       

7.50% 

PDZ and LIM domain protein 1 PDLI1_HUMAN 36 6.55 
       

39% 

Peptidyl-prolyl cis-trans isomerase A PPIA_HUMAN 18 7.68 
     

33% 28% 45% 

Peptidyl-prolyl cis-trans isomerase FKBP4 FKBP4_HUMAN 52 5.35 
      

17% 
 

Peroxiredoxin-1 PRDX1_HUMAN 22 8.27 
    

5.50% 11% 18% 22% 

Peroxiredoxin-2 PRDX2_HUMAN 22 5.67 
 

9.10% 
 

9.10% 9.10% 19% 19% 15% 

Peroxiredoxin-5, mitochondrial PRDX5_HUMAN 22 6.73 
      

8.90% 
 

Peroxiredoxin-6 PRDX6_HUMAN 25 6.02 
     

8.50% 31% 
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Protein Name 
Accession 
Number 

MW 
(kDa) 

pI 

% Coverage 

Ovarian Tissue Biopsies Ovarian Cancer Cell Lines 

N/A R S P P S R R 

SOV-1 SOV-2 SOV-3 SOV-4 SOV-5 PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

Phosphoglycerate kinase 1 PGK1_HUMAN 45 8.3 
  

12% 3.60% 20% 12% 
 

34% 

Phosphoglycerate mutase 1 PGAM1_HUMAN 29 6.75 
     

27% 7.10% 13% 

Platelet-activating factor acetylhydrolase 
IB subunit gamma 

PA1B3_HUMAN 26 6.33 
     

7.80% 7.40% 
 

Poly(rC)-binding protein 1 PCBP1_HUMAN 37 6.66 
      

3.10% 11% 

Poly(rC)-binding protein 2 PCBP2_HUMAN 39 6.33 
      

9.90% 
 

Polymerase I and transcript release factor PTRF_HUMAN 43 5.5 
      

6.70% 
 

Prelamin-A/C LMNA_HUMAN 74 6.57 
       

16% 

Profilin-1 PROF1_HUMAN 15 8.47 
     

20% 53% 
 

Prohibitin PHB_HUMAN 30 5.57 
     

34% 11% 
 

Prohibitin-2 PHB2_HUMAN 33 9.83 
     

7.70% 
  

Proliferating cell nuclear antigen PCNA_HUMAN 29 4.57 
      

29% 12% 

Proliferation-associated protein 2G4 PA2G4_HUMAN 44 6.12 
     

8.40% 
 

3.00% 

Proteasome subunit alpha type-1 PSA1_HUMAN 30 6.15 
      

16% 
 

Proteasome subunit alpha type-3 PSA3_HUMAN 28 5.19 
     

7.50% 4.70% 
 

Proteasome subunit alpha type-6 PSA6_HUMAN 27 6.34 
     

14% 12% 
 

Proteasome subunit alpha type-7 PSA7_HUMAN 28 8.6 
      

27% 
 

Proteasome subunit beta type-3 PSB3_HUMAN 23 6.12 
     

7.80% 4.40% 
 

Proteasome subunit beta type-6 PSB6_HUMAN 25 4.91 
      

13% 
 

Proteasome subunit beta type-7 PSB7_HUMAN 30 5.61 
     

7.90% 7.20% 
 

Protein disulfide-isomerase PDIA1_HUMAN 57 4.69 
       

29% 
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Protein Name 
Accession 
Number 

MW 
(kDa) 

pI 

% Coverage 

Ovarian Tissue Biopsies Ovarian Cancer Cell Lines 

N/A R S P P S R R 

SOV-1 SOV-2 SOV-3 SOV-4 SOV-5 PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

Protein disulfide-isomerase A3 PDIA3_HUMAN 57 5.61 
  

2.20% 
 

6.90% 14% 21% 29% 

Protein DJ-1 PARK7_HUMAN 20 6.32 
     

9.00% 16% 
 

Protein S100-A7 S10A7_HUMAN 11 6.26 38% 
  

20% 11% 11% 11% 
 

Protein S100-A8 S10A8_HUMAN 11 6.5 12% 
    

25% 31% 12% 

Protein S100-A9 S10A9_HUMAN 13 5.71 13% 
  

25% 
 

45% 31% 28% 

Protein SET SET_HUMAN 33 4.22 
     

7.20% 3.80% 
 

Purine nucleoside phosphorylase PNPH_HUMAN 32 6.45 
      

9.70% 
 

Pyruvate kinase isozymes M1/M2 KPYM_HUMAN 58 7.95 
       

54% 

Ran-specific GTPase-activating protein RANG_HUMAN 23 5.19 
     

11% 5.50% 
 

Rho GDP-dissociation inhibitor 1 GDIR1_HUMAN 23 5.01 
     

22% 18% 
 

Serine hydroxymethyltransferase, 
mitochondrial 

GLYM_HUMAN 56 8.11 
       

20% 

Serine protease HTRA2, mitochondrial HTRA2_HUMAN 49 6.12 
     

9.80% 
  

Serine/arginine-rich splicing factor 1 SRSF1_HUMAN 28 10.37 
     

9.30% 4.80% 
 

Serpin B3 SPB3_HUMAN 45 6.35 6.90% 
    

9.50% 5.10% 
 

Serpin B4 SPB4_HUMAN 45 5.86 6.90% 
    

6.90% 9.70% 
 

Serpin B5 SPB5_HUMAN 42 5.72 
     

2.40% 5.60% 
 

Serum albumin ALBU_HUMAN 69 5.67 2.50% 2.30% 2.30% 5.90% 2.50% 4.90% 7.40% 9.00% 

Serum deprivation-response protein SDPR_HUMAN 47 5.14 
       

7.10% 

Single-stranded DNA-binding protein, 
mitochondrial 

SSBP_HUMAN 17 8.24 
     

16% 
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Protein Name 
Accession 
Number 

MW 
(kDa) 

pI 

% Coverage 

Ovarian Tissue Biopsies Ovarian Cancer Cell Lines 

N/A R S P P S R R 

SOV-1 SOV-2 SOV-3 SOV-4 SOV-5 PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

Stress-70 protein, mitochondrial GRP75_HUMAN 74 5.44 
   

3.70% 
   

18% 

Stress-induced-phosphoprotein 1 STIP1_HUMAN 63 6.4 
       

18% 

Superoxide dismutase [Mn], 
mitochondrial 

SODM_HUMAN 25 6.86 
    

17% 10% 
  

T-complex protein 1 subunit beta TCPB_HUMAN 57 6.02 
       

5.80% 

T-complex protein 1 subunit eta TCPH_HUMAN 59 7.55 
       

16% 

T-complex protein 1 subunit theta TCPQ_HUMAN 60 5.41 
      

1.80% 5.80% 

Thioredoxin THIO_HUMAN 12 4.82 
     

12% 21% 
 

Thymidylate kinase KTHY_HUMAN 24 8.43 
      

14% 5.20% 

Transgelin-2 TAGL2_HUMAN 22 8.45 
     

6.00% 
 

31% 

Transitional endoplasmic reticulum 
ATPase 

TERA_HUMAN 89 5.14 
       

28% 

Translationally-controlled tumor protein TCTP_HUMAN 20 4.84 
      

22% 
 

Trifunctional enzyme subunit beta, 
mitochondrial 

ECHB_HUMAN 51 9.24 
   

2.70% 6.10% 
   

Triosephosphate isomerase TPIS_HUMAN 31 5.65 
  

10% 23% 29% 40% 51% 53% 

tRNA-splicing ligase RtcB homolog RTCB_HUMAN 55 6.77 
       

5.00% 

Tropomyosin alpha-1 chain TPM1_HUMAN 33 4.69 
      

3.50% 19% 

Tropomyosin alpha-3 chain TPM3_HUMAN 33 4.68 
      

12% 
 

Tryptophan-tRNA ligase, cytoplasmic SYWC_HUMAN 53 5.83 
       

5.70% 

Tubulin alpha-1A chain TBA1A_HUMAN 50 4.94 
     

7.30% 25% 14% 

Tubulin alpha-1B chain TBA1B_HUMAN 50 4.94 
      

31% 20% 
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Protein Name 
Accession 
Number 

MW 
(kDa) 

pI 

% Coverage 

Ovarian Tissue Biopsies Ovarian Cancer Cell Lines 

N/A R S P P S R R 

SOV-1 SOV-2 SOV-3 SOV-4 SOV-5 PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

Tubulin alpha-4A chain TBA4A_HUMAN 50 4.93 
      

29% 20% 

Tubulin beta chain TBB5_HUMAN 50 4.78 
     

4.30% 30% 17% 

Tubulin beta-6 chain TBB6_HUMAN 50 4.77 
      

15% 
 

Ubiquitin-conjugating enzyme E2 K UBE2K_HUMAN 22 5.33 
     

24% 5.00% 
 

Ubiquitin-conjugating enzyme E2 variant 2 UB2V2_HUMAN 16 8.05 
     

6.90% 13% 6.90% 

UDP-glucose 6-dehydrogenase UGDH_HUMAN 55 6.73 
       

4.00% 

UMP-CMP kinase KCY_HUMAN 22 5.44 
     

11% 6.60% 
 

Uroporphyrinogen decarboxylase DCUP_HUMAN 41 5.77 
     

12% 
  

UV excision repair protein RAD23 
homolog B 

RD23B_HUMAN 43 4.77 
     

2.20% 2.20% 20% 

Vimentin VIME_HUMAN 54 5.05 
     

2.40% 15% 5.20% 

Voltage-dependent anion-selective 
channel protein 1 

VDAC1_HUMAN 31 8.63 
   

11% 4.20% 
   

Voltage-dependent anion-selective 
channel protein 2 

VDAC2_HUMAN 32 7.66 
     

12% 22% 
 

Xaa-Pro dipeptidase PEPD_HUMAN 55 5.64 
     

1.80% 7.10% 7.10% 
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A common observation in 2D-PAGE separations is the presence of a protein in more 

than one spot of the same 2D gel. In this study, this was no exception, as it was 

observed that several of the proteins shown in Table 4.6 were identified in a few 

spots belonging to the same gel. Two examples of this are illustrated in Figure 4.16. 

 

1 - Prohibitin 

2 – Glutathione S-transferase P 

3 – Triosephosphate isomerase 

 

 

 

 

4 – Alpha-enolase 

 

 

 

 

Figure 4.16 Examples of proteins that were identified in more than one spot on the same gel and 
the respective spots where they were identified. 

 

Identification of a single protein in different spots of the same gel might be a result 

of cross-contamination (handling errors, very abundant protein that binds to other 

proteins, carry over during LC-MS/MS run); poor gel resolution resulting from 

inefficient separation of the protein mixture; or post-translational modifications, 

pH	3	 pH	10	

PEO1	

1	

2	
3	

PEO1	CarbR	

pH	3	 pH	10	

4	
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which might change the MW (for example glycosylation) and/or pI (for example 

phosphorylation) of the proteins, as explained in Chapter 3. Further studies would 

be necessary in order to investigate the cause of this problem. 

To avoid errors in the interpretation of spot intensity data, which would influence 

the analysis of differences in protein expression between distinct samples, spot 

intensity was studied using two different approaches. Firstly, considering the spot 

position on the gel, where only spots located in the same position on different gels, 

in which a certain protein was identified, were used for quantitative purposes. 

Theoretically, spots located in the same place on different gels correspond to the 

same protein and are given the same SSP number. In this case, only spots with the 

same SSP number were compared between samples. 

Secondly, ignoring the spot position on the gel, where all the spots on one gel, in 

which a certain protein was identified, were considered for quantitation purposes. 

In this case, the total presence of a protein in a gel or sample was considered as a 

sum of the intensities of all the spots in which this protein was identified. The total 

intensity values were then compared between samples. 

With the aim of identifying differentially expressed proteins that could possibly be 

related to resistance, for either of the semi-quantitative approaches described, fold 

regulation was calculated for each protein using the corresponding spot intensity 

data as follows: 

Quantity value of the spot/protein in the resistant sample 

Quantity value of the spot/protein in the sensitive (control) sample 

Five results were possible: 

Fold regulation = -1000 (or 0) – not found in the resistant sample considered 

Fold regulation < 0 (or >0, <1) – down-regulated in the resistant sample 

Fold regulation = 1 – no change in expression or not found in any of the samples 

considered 
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Fold regulation > 1 – up-regulated in the resistant sample 

Fold regulation = +1000 – not found in the sensitive sample 

Fold regulation was validated by confirmation with the gel images. As an example, 

for a protein identified in the three cell line samples, if that protein was up-

regulated in the resistant cell lines (TaxR and CarbR), then the corresponding spots 

on the resistant gels should be more intense than the one on the sensitive gel. 

Nevertheless, for proteins that were identified in many spots on the same 

gel/sample, this confirmation was not possible. 

Table 4.7 shows the number of up-regulated, down-regulated and 

unchanged/inexistent proteins in the resistant samples, when compared to the 

sensitive samples, for the cell line and tissue proteins. This determination was done 

using spot intensity data considering and ignoring the spot position on the gel. 

Table 4.7 Protein fold regulation using two methods of spot intensity analysis. Spot intensities 
considering and ignoring the spot position on the gel were used to determine the number of up-

regulated, down-regulated and unchanged/inexistent proteins in the resistant samples, when 
compared to the sensitive samples. 

Fold Regulation 
Considering Spot Position Ignoring Spot Position 

TaxR/ 
Sens 

CarbR/ 
Sens 

SOV-2/ 
SOV-3 

TaxR/ 
Sens 

CarbR/ 
Sens 

SOV-2/ 
SOV-3 

Not found in 
resistant 

-1000 33 63 10 31 59 10 

Down-regulated in 
resistant 

< 0 5 6 2 6 7 4 

No change/Not 
found 

1 42 24 21 42 24 21 

Up-regulated in 
resistant 

> 1 65 34 3 69 40 1 

Not found in 
sensitive 

+1000 40 58 2 37 55 2 

Total 185 185 38 185 185 38 

 

Regarding the tissue samples, SOV-1, SOV-4 and SOV-5 were not used in the 

primary analysis of protein targets of resistance owing to the fact that SOV-1 was a 

non-cancerous sample, and SOV-4 and SOV-5 were described as partially 
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resistant/sensitive, which would make them less suitable for comparison with the 

resistant cell lines. 

Proteins in the cell line and tissue samples that were found differentially regulated, 

or only present in the sensitive or resistant samples were the possible targets of 

resistance to chemotherapy. Therefore, those were the proteins further analysed. 

Proteins that were reported as ‘not found’ in one or more of the samples might 

have been missed, because the gel was not excised in that specific place (not a well 

resolved spot, smearing/streaking area), or they were not present in a high enough 

concentration for the mass spectrometer to detect them. However, this does not 

mean that these proteins were not present in the sample at all. 

Despite not hugely significant, there were a few differences in the number of up-

regulated, down-regulated and not found proteins when spot intensity was 

calculated considering or ignoring the spot position on the gel. This was only 

observed for the proteins that were identified in more than one spot. One way of 

overcoming this problem would be to analyse more replicates of the same sample, 

to check if the same proteins would be identified in more than one spot and decide 

upon the best method to calculate their fold regulation. As in this study it was not 

possible to analyse more replicates, another method of validation for the protein 

identification and fold regulation would be needed. 

A literature review on proteins reported with an association with ovarian cancer or 

ovarian cancer resistance was performed. The information collected was compared 

to the identifications and fold regulation data obtained for the proteins in this 

study. A summary of the literature review can be found in Table 4.8. 
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Table 4.8 Results of a literature review on proteins reported with an association with ovarian 
cancer or ovarian cancer resistance. The information collected was compared to the identifications 

and fold regulation data obtained for the proteins in this study. 

Protein 
Accession 
Number 

SwissProt 
ID 

References 

Up-regulated in ovarian cancer Down-regulated in ovarian cancer 

TaxR Cells CarbR Cells Tissue TaxR Cells CarbR Cells Tissue 

1433B_HUMAN P31946 
     

4* 

1433T_HUMAN P27348 
    

4 
 

1433Z_HUMAN P63104 
 

4 9 
   

PRS4_HUMAN P62191 10* 4 
 

10* 4 
 

CH60_HUMAN P10809 10 1, 4* 11* 
   

RLA0_HUMAN P05388 
   

10* 
  

GRP78_HUMAN P11021 
  

9 
 

4* 
 

ABHDA_HUMAN Q9NUJ1 
      

ACTB_HUMAN P60709 10 1 
   

5*, 6 

SAHH_HUMAN P23526 
      

PURA2_HUMAN P30520 
      

CAP1_HUMAN Q01518 
 

4 
    

NUDT5_HUMAN Q9UKK9 
      

AKA12_HUMAN Q02952 
      

ADH1B_HUMAN P00325 
     

11* 

AL1A3_HUMAN P47895 10* 
     

AL1B1_HUMAN P30837 
      

AACT_HUMAN P01011 
      

ACTN4_HUMAN O43707 
 

4* 
  

4* 
 

ENOA_HUMAN P06733 10 1, 4* 11* 
 

1, 4* 
 

ANXA1_HUMAN P04083 
 

4 
    

ANX11_HUMAN P50995 
   

10 4 
 

ANXA2_HUMAN P07355 
 

1 
   

11 

ANXA3_HUMAN P12429 
      

ANXA5_HUMAN P08758 
 

4 
   

11 

APOA1_HUMAN P02647 
  

6*, 9 
  

5*, 11 

AATM_HUMAN P00505 10 
     

ATPA_HUMAN P25705 10* 
     

PUR9_HUMAN P31939 
      

C1TC_HUMAN P11586 
      

CALR_HUMAN P27797 
  

11 
   

CALU_HUMAN O43852 
      

CAPR1_HUMAN Q14444 
      

CATD_HUMAN P07339 10 
 

11* 
 

4* 9 

CLIC4_HUMAN Q9Y696 
 

1* 
    

COF1_HUMAN P23528 
  

11 
   

CHCH3_HUMAN Q9NX63 
      

C1QBP_HUMAN Q07021 10 
 

9*, 11* 
  

9*, 11* 

AMPL_HUMAN P28838 
  

11* 
   

SERA_HUMAN O43175 
    

4 
 

ECH1_HUMAN Q13011 
      

DESP_HUMAN P15924 
      

ODO2_HUMAN P36957 10* 
     

DNJC9_HUMAN Q8WXX5 10* 4* 
    

EFHD2_HUMAN Q96C19 
      

EF1A1_HUMAN P68104 
 

4 11 
   

EF1D_HUMAN P29692 
  

11* 10* 
  

EF1G_HUMAN P26641 
      

EFTU_HUMAN P49411 
  

11 
   

ENPL_HUMAN P14625 10 
     

ECHM_HUMAN P30084 10 
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Protein 
Accession 
Number 

SwissProt 
ID 

References 

Up-regulated in ovarian cancer Down-regulated in ovarian cancer 

TaxR Cells CarbR Cells Tissue TaxR Cells CarbR Cells Tissue 

IF4A1_HUMAN P60842 
 

4 
    

IF5A1_HUMAN P63241 10* 
  

10* 4* 
 

CAPZB_HUMAN P47756 
      

FUBP1_HUMAN Q96AE4 
 

1 
  

1 
 

FABP5_HUMAN Q01469 
  

11 
   

ALDOA_HUMAN P04075 
  

9 
   

FUMH_HUMAN P07954 
      

LEG1_HUMAN P09382 
 

4 
   

11 

LEG7_HUMAN P47929 
 

1 
    

GIPC1_HUMAN O14908 
      

GLU2B_HUMAN P14314 
 

4 
  

4 
 

GSTO1_HUMAN P78417 
     

11* 

GSTP1_HUMAN P09211 
   

10 
  

G3P_HUMAN P04406 
  

9, 11 
   

GRSF1_HUMAN Q12849 
      

RAN_HUMAN P62826 
      

GBLP_HUMAN P63244 10* 1* 
  

1* 
 

HSP71_HUMAN P08107 
 

4 
 

10* 1, 4 11* 

HSP7C_HUMAN P11142 
 

4 11* 
 

4 
 

HSPB1_HUMAN P04792 
 

4 
  

4 
 

HBB_HUMAN P68871 10* 
    

5*, 11 

HNRPD_HUMAN Q14103 
     

11* 

HNRPF_HUMAN P52597 
      

HNRH1_HUMAN P31943 
    

1 
 

HNRH3_HUMAN P31942 10 
     

HNRPK_HUMAN P61978 
 

4 
  

4 
 

HNRPL_HUMAN P14866 
      

HNRPQ_HUMAN O60506 
      

ROA2_HUMAN P22626 
 

1*, 4* 11* 10* 4* 11* 

HNRPC_HUMAN P07910 
      

HMGN5_HUMAN P82970 
     

11* 

SYHC_HUMAN P12081 
      

H2B1M_HUMAN Q99879 10* 4* 
  

4* 11* 

HPRT_HUMAN P00492 
      

IGHG1_HUMAN P01857 
      

IMDH2_HUMAN P12268 
      

SHOT1_HUMAN A0MZ66 
      

LGUL_HUMAN Q04760 
     

11 

LMNB1_HUMAN P20700 
 

1* 
  

4 11* 

ILEU_HUMAN P30740 
      

LASP1_HUMAN Q14847 
   

10 1 
 

LDHA_HUMAN P00338 
 

1 11* 
 

1 
 

LDHB_HUMAN P07195 
  

11 
   

CAPG_HUMAN P40121 
      

MDHC_HUMAN P40925 
    

4 
 

MDHM_HUMAN P40926 10 
     

MAP4_HUMAN P27816 
 

1* 
 

10* 
  

MARE1_HUMAN Q15691 
   

10 
  

MYL6_HUMAN P60660 
 

4* 
 

10* 
 

5*, 11* 

MARCS_HUMAN P29966 
      

NACA_HUMAN Q13765 
      

GANAB_HUMAN Q14697 
      

NIT1_HUMAN Q86X76 
      

NASP_HUMAN P49321 
    

1* 
 

NUCL_HUMAN P19338 
      

NPM_HUMAN P06748 
 

4 11* 
 

4 
 

NUP54_HUMAN Q7Z3B4 
 

1 
  

1 
 

NDKA_HUMAN P15531 
 

4 
  

4 
 

NP1L1_HUMAN P55209 
 

4* 
  

4* 
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Protein 
Accession 
Number 

SwissProt 
ID 

References 

Up-regulated in ovarian cancer Down-regulated in ovarian cancer 

TaxR Cells CarbR Cells Tissue TaxR Cells CarbR Cells Tissue 

PSPC1_HUMAN Q8WXF1 
      

PDLI1_HUMAN O00151 
      

PPIA_HUMAN P62937 10* 
  

10* 4 
 

FKBP4_HUMAN Q02790 10* 
   

4* 
 

PRDX1_HUMAN Q06830 
   

10 
  

PRDX2_HUMAN P32119 
  

9 
   

PRDX5_HUMAN P30044 10* 
     

PRDX6_HUMAN P30041 
      

PGK1_HUMAN P00558 
    

1, 4 
 

PGAM1_HUMAN P18669 
   

10 
  

PA1B3_HUMAN Q15102 
   

10 
  

PCBP1_HUMAN Q15365 
  

11 
   

PCBP2_HUMAN Q15366 
      

PTRF_HUMAN Q6NZI2 
     

11* 

LMNA_HUMAN P02545 
      

PROF1_HUMAN P07737 
  

11 
   

PHB_HUMAN P35232 
 

4 
  

4 
 

PHB2_HUMAN Q99623 
  

11* 
   

PCNA_HUMAN P12004 
 

4 
 

10 
  

PA2G4_HUMAN Q9UQ80 
      

PSA1_HUMAN P25786 
     

5*, 11* 

PSA3_HUMAN P25788 
      

PSA6_HUMAN P60900 
      

PSA7_HUMAN O14818 
      

PSB3_HUMAN P49720 10* 
     

PSB6_HUMAN P28072 
      

PSB7_HUMAN Q99436 
    

1* 
 

PDIA1_HUMAN P07237 
  

11 
 

4* 
 

PDIA3_HUMAN P30101 10* 
 

11 
 

4* 
 

PARK7_HUMAN Q99497 
      

S10A7_HUMAN P31151 
  

11* 
   

S10A8_HUMAN P05109 
  

9 
   

S10A9_HUMAN P06702 
  

9 
   

SET_HUMAN Q01105 
      

PNPH_HUMAN P00491 
      

KPYM_HUMAN P14618 
  

11* 
   

RANG_HUMAN P43487 
      

GDIR1_HUMAN P52565 10 
 

7 
 

4 
 

GLYM_HUMAN P34897 10 4* 
  

4* 
 

HTRA2_HUMAN O43464 
    

12* 
 

SRSF1_HUMAN Q07955 10* 
     

SPB3_HUMAN P29508 
      

SPB4_HUMAN P48594 
      

SPB5_HUMAN P36952 
 

4* 
  

4* 
 

ALBU_HUMAN P02768 
     

9, 11* 

SDPR_HUMAN O95810 
      

SSBP_HUMAN Q04837 
      

GRP75_HUMAN P38646 10 
 

11 
   

STIP1_HUMAN P31948 
      

SODM_HUMAN P04179 
 

2, 4, 8 
   

11* 

TCPB_HUMAN P78371 
  

11* 
   

TCPH_HUMAN Q99832 
      

TCPQ_HUMAN P50990 10 
     

THIO_HUMAN P10599 10* 4 
 

10 1* 
 

KTHY_HUMAN P23919 
      

TAGL2_HUMAN P37802 
 

4* 
    

TERA_HUMAN P55072 
      

TCTP_HUMAN P13693 
      

ECHB_HUMAN P55084 10 
    

11* 
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Protein 
Accession 
Number 

SwissProt 
ID 

References 

Up-regulated in ovarian cancer Down-regulated in ovarian cancer 

TaxR Cells CarbR Cells Tissue TaxR Cells CarbR Cells Tissue 

TPIS_HUMAN P60174 
 

4 9, 11* 
 

1*, 4 
 

RTCB_HUMAN Q9Y3I0 
      

TPM1_HUMAN P09493 
      

TPM3_HUMAN P06753 
 

4* 
  

1* 
 

SYWC_HUMAN P23381 
      

TBA1A_HUMAN Q71U36 
      

TBA1B_HUMAN P68363 
      

TBA4A_HUMAN P68366 10* 3, 4* 
    

TBB5_HUMAN P07437 
      

TBB6_HUMAN Q9BUF5 
      

UBE2K_HUMAN P61086 
      

UB2V2_HUMAN Q15819 
   

10* 
  

UGDH_HUMAN O60701 
      

KCY_HUMAN P30085 
  

11* 
   

DCUP_HUMAN P06132 
    

1 
 

RD23B_HUMAN P54727 
      

VIME_HUMAN P08670 10 1 
   

11 

VDAC1_HUMAN P21796 
      

VDAC2_HUMAN P45880 
      

PEPD_HUMAN P12955 
      

  Consistent to what was observed in this study 

  Contrary to what was observed in this study 

  Not found in this study 

* Different isoform or similar protein 

1 (Brown et al., 2007) 

2 (Brown et al., 2009) 

3 (Burkhart et al., 2001) 

4 (Fitzpatrick et al., 2007) 

5 (Huang et al., 2012b) 

6 (Huang et al., 2012a) 

7 (Jones et al., 2002) 

8 (Kim et al., 2010) 

9 (Kristjansdottir et al., 2013) 

10 (Tian et al., 2009) 

11 (Wang et al., 2012b) 

12 (Yang et al., 2005) 

 

It is worth noting that not all the papers searched reflect studies done with the 

same cell line/tissue histology, chemotherapeutic agent and experimental 

conditions as those in this study. As a result, the information on this protein 

literature review (if the protein is either up or down-regulated) is just an indication 

to allow comparison between this study and what has been done. 
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4.4.3 Pathway analysis 

Fold regulation data obtained using spot intensity calculated considering and 

ignoring the spot position on the gel were used for pathway analysis. Only fold 

regulation data obtained for the ovarian cancer cell lines was used for pathway 

analysis, as the number of proteins identified for these samples was greater than 

the number of proteins identified for the tissue samples, increasing, this way, the 

chance of finding a relevant pathway. All proteins identified in the tissue samples 

were also identified in the cell line samples, with the exception of 4 proteins. 

Pathway analysis was performed with Ingenuity Pathway Analysis (IPA) software 

and the fold regulation data uploaded can be found in Appendix. 

IPA helps understand complex ‘omics data at multiple levels by integrating data 

from a variety of experimental platforms and providing insight into the molecular 

and chemical interactions, cellular phenotypes, and disease processes. It helps 

discover hidden causal connections in a dataset by delivering a rapid assessment of 

the signalling and metabolic pathways, molecular networks, and biological 

processes that are most significantly perturbed in a dataset of interest (Ingenuity, 

2013). 

In IPA, relationships between molecules are represented by canonical pathways, 

which display the molecules of interest within well-established signalling or 

metabolic pathways. Each relationship between molecules is created using scientific 

information contained in the Ingenuity Knowledge Base and molecules of interest 

are related to known biological functions and disease states (Ingenuity, 2013). 

The stacked bar charts displayed in Figure 4.17 illustrate the pathways most 

associated with the genes that codify for the proteins in the analysed datasets. The 

canonical pathways involved in this analysis are displayed along the x-axis. The y-

axis displays the percentage of the number of molecules identified in a given 

pathway, relative to the total number of molecules that make up that pathway. The 

line graph shows -log (p-value), which indicates the overlap of the analysis with the 

canonical pathway. The graph exhibits the various pathways presented from 
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smallest p-value to largest p-value. The colours of the bars display the number of 

up-regulated (red), down-regulated (green), and unchanged molecules (grey) in 

each canonical pathway for the TaxR vs Sensitive and CarbR vs Sensitive datasets, 

respectively (Ingenuity, 2013). 

 

 

Figure 4.17 Stacked bar charts illustrating the pathways most associated with the genes that codify 
for the proteins in the analysed datasets. Canonical pathways are displayed along the x-axis. The y-

axis displays the percentage of the number of molecules identified in a given pathway, relative to the 
total number of molecules that make up that pathway. The line graph shows -log (p-value), 

indicating the overlap of the analysis with the canonical pathway. The colours of the bars display the 
number of up-regulated (red), down-regulated (green), and unchanged molecules (grey) in each 

canonical pathway for the TaxR vs Sensitive and CarbR vs Sensitive datasets, respectively. Pathway 
analysis was performed using IPA software. 

TaxR vs Sensitive 

CarbR vs Sensitive 
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Results of this analysis revealed that there were not many changes in fold 

regulation for the proteins involved in the 10 canonical pathways most related to 

the genes that codify for the proteins in the datasets, when fold regulation was 

calculated considering or ignoring the spot position on the gel. As a result, the 

pathway analysis results shown are related to the fold change data obtained 

considering the spot position on the gel. 

In Figure 4.17, it is possible to observe that the main pathways are common to both 

datasets used for the analysis (ratio TaxR/Sensitive and ratio CarbR/Sensitive). 

However, the regulation of most genes/proteins is different; the number of up-

regulated, down-regulated and unchanged molecules in each canonical pathway is 

distinct between the two datasets. This indicates that possibly the mechanisms of 

resistance, developed by these cancer cell lines against the two chemotherapeutic 

agents, are not the same and do not involve the same genes/proteins. 

 

Table 4.9 contains the 5 canonical pathways most related to the genes that codify 

for the proteins in the analysed datasets, which could possibly be involved in the 

phenomenon of resistance to chemotherapy.  
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Table 4.9 Top 5 canonical pathways most related to the genes that codify for the proteins in the 
analysed datasets. Protein fold change was calculated using spot intensity data of the proteins 

identified in the sensitive and resistant ovarian cancer cell lines. Pathway analysis was performed 
using IPA software. Statistical significance was determined by using Fisher’s exact test (P<0.001). 

Arrows next to each gene name indicate up- or down-regulation, = indicates no change or not found. 

Ingenuity 
Canonical Pathway 

P-value Ratio 
Proteins 

TaxR CarbR 

Glycolysis I < 0.001 
7/22 

(0.318) 

ALDOA, TPIS, G3P, 

PGK1, PGAM1, ENOA, 

KPYM= 

ALDOA, TPIS, G3P, 

PGK1, PGAM1, ENOA, 

KPYM 

Gluconeogenesis I < 0.001 
7/22 

(0.318) 

MDHC, MDHM, ENOA, 

PGAM1, PGK1, G3P, 

ALDOA 

MDHC=, MDHM, ENOA, 

PGAM1, PGK1, G3P, 

ALDOA 

Protein 

Ubiquitination 

Pathway 

< 0.001 
16/263 

(0.061) 

UB2V2, DNJC9, ENPL=, 

CH60, GRP75=, GRP78=, 

HSPB1, HSP7C=, PSA1, 

PSA3, PSA6, PSA7, 

PSB3, PSB6, PSB7, 

PRS4 

UB2V2, DNJC9=, ENPL, 

CH60, GRP75, GRP78, 

HSPB1=, HSP7C, PSA1=, 

PSA3, PSA6, PSA7=, 

PSB3, PSB6=, PSB7, 

PRS4 

Remodelling of 

Epithelial Adherens 

Junctions 

< 0.001 
9/66 

(0.136) 

TBA1A, TBA1B, TBA4A, 

TBB5, TBB6, ACTB, 

ACTN4=, NDKA, MARE1 

TBA1A, TBA1B, TBA4A, 

TBB5, TBB6=, ACTB, 

ACTN4, NDKA=, MARE1 

14-3-3-mediated 

Signalling 
< 0.001 

10/118 

(0.085) 

PDIA3, VIME, 1433B, 

1433T, 1433Z, TBA1A, 

TBA1B, TBA4A, TBB5, 

TBB6 

PDIA3, VIME, 1433B=, 

1433T, 1433Z, TBA1A, 

TBA1B, TBA4A, TBB5, 

TBB6= 

 

It is worth noting that some of the up-regulated proteins were defined as up-

regulated, because the protein was not found in the sensitive cell line. In a similar 

way, some of the down-regulated proteins were not found in the resistant cell line. 

Moreover, most of the ‘not changed’ or ‘not found’ proteins, identified with ‘=’ in 

Table 4.9, were not found in both the sensitive and resistant cell lines under 

comparison. As explained earlier, the fact that these proteins were not found does 

not necessarily indicate they were truly absent, but rather that they were not 

identified in this study. 

In the top 5 canonical pathways, only two proteins presented a change in fold 

regulation, when this was calculated considering or ignoring the spot position on 

the gel. Those proteins were Actin cytoplasmic 1 (ACTB), involved in the 
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Remodelling of Epithelial Adherens Junctions pathway, and 26S protease regulatory 

subunit 4 (PRS4), involved in the Protein Ubiquitination pathway. When fold 

regulation was calculated ignoring the spot position on the gel, ACTB and PRS4 

appeared up-regulated in both resistant cell lines. Hence, there was a change from 

down-regulated (not found) in the CarbR cell line to up-regulated. This can be 

explained by the fact that these proteins were identified in matching spots present 

in the sensitive and TaxR gels (SSP 3001 – ACTB and SSP 3604 – PRS4), but these 

spots were not seen in the CarbR gel. Yet, ACTB and PRS4 were identified in other 

non-matching spots of the CarbR gel. Therefore, when fold regulation was 

calculated considering matching spots, these proteins were not found in the CarbR 

cell line; while when other non-matching spots were used for the same calculation, 

ACTB and PRS4 were found up-regulated in the same cell line. 

Prior to drawing any conclusion on the possible involvement of these pathways and 

their respective genes/proteins in ovarian cancer resistance to taxol and 

carboplatin, the presence and expression of a few of the proteins associated with 

the top pathways identified was validated.  
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4.4.4 Target validation 

4.4.4.1 Western blotting assay 

Western blotting was used to validate some of the possible protein targets of drug 

resistance identified in the ovarian cancer cell lines by 2D-PAGE and LC-MS/MS. 

Validation was considered fundamental as a result of the lack of reproducibility of 

the 2D gel system, which could have generated results with questionable reliability. 

For this analysis, proteins for validation were chosen from the group of proteins 

involved in the pathways mostly associated with the evaluated dataset. 

Proteins were selected to be validated through Western blotting on the basis of two 

main criteria. Firstly, if no study had been found reporting the relationship of that 

protein with ovarian cancer or resistance in ovarian cancer. Secondly, if that protein 

had already been connected to ovarian cancer or resistance in ovarian cancer, but 

the information reported was contradictory to what was found in this study. 

Accordingly, for the glycolysis I and gluconeogenesis I pathways, which share a 

similar group of proteins identified in the cell line dataset, PGAM1 was the selected 

protein. All the 7 proteins in the group have already been described in association 

with ovarian cancer and/or ovarian cancer resistance. Furthermore, the majority of 

them presented fold regulation results in this study that are comparable to what 

was found in the literature, although these particular resistant cell lines have never 

been studied in a similar approach. However, PGAM1 was found up-regulated in 

both resistant cell lines in this study, while it has been reported down-regulated in 

taxol resistant cell lines (Tian et al., 2009). 

In the protein ubiquitination pathway, among the 16 proteins linked to this 

pathway, UB2V2 was selected for further investigation. This protein has been 

reported to be down-regulated in taxol resistant ovarian cancer cell lines (Tian et 

al., 2009). Nevertheless, in this study it was found up-regulated both in PEO1 TaxR 

and PEO1 CarbR. Most of the remaining 15 proteins presented similar fold 

regulation results to the findings reported in the literature. In addition, UBE2K was 



CHAPTER 4 – PROTEOMICS APPROACH TO IDENTIFY PROTEIN TARGETS OF CHEMORESISTANCE IN OVARIAN 

CANCER  

Isa Nobre da Cruz 213 

also tested, since it is another ubiquitin-conjugating enzyme that belongs to the 

same family as UB2V2 and the antibody was available. 

In the remodelling of epithelial adherens junctions pathway, the fold regulation 

changes observed for most of the 9 proteins in this study that matched this 

pathway were confirmed with literature findings. The only two exceptions were 

NDKA, for which the reports found were not conclusive, and ACTB. As explained 

earlier, ACTB was one of the proteins for which fold regulation changed according 

to the method used for its calculation, owing to the fact that it was identified in 

several non-matching spots. For this reason, ACTB was a good target for validation 

and, therefore, it was selected. 

In the 14-3-3-mediated signalling pathway, the only proteins from the matched 

dataset (10 proteins) whose fold regulation was conflicting to what was found in the 

literature were the 14-3-3 proteins. As a result, they were scrutinised through 

Western blotting, using an antibody that recognised all 14-3-3 protein forms.  

A final protein from the NRF2-mediated oxidative stress response pathway was 

chosen for validation. This protein was THIO and it was selected for having shown 

fold regulation results (up-regulated in PEO1 TaxR and down-regulated in PEO1 

CarbR), which were totally inconsistent to literature reports (Fitzpatrick et al., 2007, 

Tian et al., 2009). 

The choice of a loading control proved to be a challenge in this experiment. Proteins 

that had been identified only in matching spots and that presented similar 

expression among the sensitive and both resistant cell lines were rare. Therefore, 

despite its variation in fold regulation, actin was chosen as the loading control, 

mainly because it is one of the most widely used loading controls for Western 

blotting and it has been vastly used in that role in ovarian cancer studies (Altomare 

et al., 2004, Gritsko et al., 2003, Yuan et al., 2000). Additionally, actin was the 

representative protein selected for the remodelling of epithelial adherens junctions 

pathway for having shown controversial results. 
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A preliminary test with anti-actin antibody was conducted, in order to confirm the 

suitability of this protein as a loading control in this experiment. The result revealed 

that there was no apparent change in expression for the three cell lines used, and 

consequently, actin was adopted as loading control. The differences in fold 

regulation previously observed were probably not large enough to be detected on a 

Western blot, which is not more than a semi-quantitative method. 

After the choice of proteins for evaluation, a Western blotting assay was performed 

using a new batch of protein lysates extracted from freshly cultured PEO1 ovarian 

cancer cell lines. The results of this experiment are presented in Table 4.10. 
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Table 4.10 Results of target validation through Western blotting assay. Ovarian cancer cell line proteins (20 µg per well from PEO1, PEO1 TaxR and PEO1 CarbR) were 
separated by SDS-PAGE using precast gels and transferred onto nitrocellulose membranes. Membranes were blocked, probed with primary and secondary antibodies and 

developed using a chemiluminescent substrate. A list of the antibodies, supplier, product code, dilution and blocking agent used is shown in Table 4.2. The experiment was 
carried out at least twice for each antibody. +, presence; ++, up-regulation; -, absence; --, down-regulation. 

Protein 
(Antibody) 

MW 
(kDa) 

Spot Intensity/MS Results 

WB Results 
Considering Spot Position 

on the Gel 
Ignoring Spot Position on 

the Gel 

PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

PEO1 
PEO1 
TaxR 

PEO1 
CarbR 

Blots 

PGAM1 
(Anti-PGAM1) 

29 - + + + ++ ++ + ++ ++ 
  

~29 kDa 

UBE2K 
(Anti-UBE2K) 

22 + ++ - + ++ - 
+ + - 

 

~30 kDa 
 

~22 kDa + ++  -- 

UB2V2 
(Anti-MMS2) 

16 + ++ ++ + ++ ++ + ++ ++ 
 

~16 kDa 

1433B 
1433T 
1433Z 

(Anti-14-3-3) 

28 

- + - - + - 
+ ++ ++ 

 

~28 kDa 
 

~22 kDa 
+ ++ - + ++ - 

+ ++ - + ++ - + ++ -- 

THIO 
(Anti-TRX) 

12 + ++ - + ++ - + ++ -- 
 

~12 kDa 

ACTB 
(Anti-Actin, 

loading 
control) 

42 + ++ - + ++ ++ + + + 
 

~42 kDa 
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Overall, WB results confirmed the results obtained by MS and spot intensity, in 

terms of the presence and expression of the selected proteins. WB is characterised 

by its high level of specificity, for recognising specific proteins among complex 

protein mixtures. In this study, it also proved to be more sensitive than MS in some 

cases, where the protein had not been found using MS but it was found using WB. 

This might as well have been a result of the amount of protein present on the WB 

membrane, when compared to the amount present on the sample that was 

analysed by MS. The number of fractionation steps carried out from the original cell 

lysate until the peptides are solubilised and ready to be identified by MS is a lot 

higher than this number for the WB procedure. Consequently, it is likely that the 

concentration of protein found in the blots was higher than the concentration of 

protein in the MS run. 

In the WB results, PGAM1 appeared up-regulated in both ovarian cancer cell lines, 

confirming the previous MS/spot intensity results. The blot probed with anti-UBE2K 

antibody presented two sets of bands, probably owing to cross-reaction with 

another ubiquitin-conjugating enzyme in the samples. In any case, the bands with 

approximately 22 kDa, which should correspond to UBE2K, confirmed the results 

obtained with MS/spot intensity. UB2V2 was no exception, as its up-regulation in 

the resistant cell lines shown in the blots also corroborated the MS/spot intensity 

results previously obtained. 

The anti-14-3-3 antibody used could recognise any 14-3-3 protein isoform. In fact, 

two sets of bands appeared in the blots and they possibly correspond to the three 

different forms identified by MS, 1433B, 1433T and 1433Z. According to the fold 

regulation, the top bands at approximately 28 kDa could correspond to either or 

both the 1433T and/or 1433Z, as they showed up-regulation in the resistant cell 

lines. In turn, the bottom bands at approximately 22 kDa could relate to 1433B, as 

they showed up-regulation in PEO1 TaxR and down-regulation in PEO1 CarbR. 

Finally, the presence and fold regulation of THIO was also confirmed by the WB 

results. It had been identified in the PEO1 and PEO1 TaxR cell lines, where it was up-
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regulated. WB results revealed its presence in all three cell lines, and its up-

regulation in PEO1 TaxR and down-regulation in PEO1 CarbR. 
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4.4.5 Protein targets of chemoresistance in ovarian cancer 

4.4.5.1 Proteins identified in the ovarian cancer cell lines 

The main classes of proteins identified in this study are related to cytoskeleton and 

cell structure, detoxification and stress response, and cellular metabolism, such as 

several enzymes involved in the glycolytic pathway and nucleic acid synthesis. 

Some of these proteins were common to all the cell lines, others only appeared in 

the sensitive or resistant cell lines, and finally, a few specific proteins were present 

in only one of the three cell lines. Some of the most relevant proteins in line with 

the aims of this study are grouped according to their major function and discussed 

in the following sections. The majority of them were found over 10-fold up or down-

regulated at least in one of the resistant cell lines. The information in the sections 

ahead may be supplemented with the literature review table found in Table 4.8. 

Cellular metabolism 

Over several decades, it has been shown that tumours have altered metabolic 

profiles, displaying high rates of glucose uptake and glycolysis to generate ATP. 

Although these metabolic changes are not the fundamental defects that cause 

cancer, they might confer a common advantage on many different types of cancers, 

which allows the cells to survive and invade (Dang and Semenza, 1999). Warburg 

(1956) observed that cancer cells depend largely on the glycolytic metabolic 

pathway to achieve their required energy levels. This metabolic alteration was 

attributed to malfunction of mitochondrial respiration and to hypoxia in tumour 

environment, and is frequently associated with resistance to therapeutic agents. 

The glycolysis I and gluconeogenesis I pathways have been extensively described to 

be connected to cancer (Hanahan and Weinberg, 2011, Bongaerts et al., 2006). 

Targeting glycolysis has proven to be an attractive way for therapeutic intervention 

in cancer and several preclinical investigations have indeed demonstrated the 

effectiveness of this therapeutic approach (Ganapathy-Kanniappan and Geschwind, 

2013). These pathways have also been particularly associated with ovarian cancer, 
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and there are even studies reporting ways of inhibiting glycolysis and improving the 

results obtained with the standard treatment regimen in advanced ovarian cancer 

(De Lena et al., 2001). 

Triosephosphate isomerase is a glycoprotein involved in the glycolytic pathway. It 

catalyses the reversible interconversion of the triose phosphate isomers 

dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate (Wierenga et al., 

2010). Alterations in cell metabolism, mostly consisting in an increase in glycolysis 

and an enhanced lactate production have been described in cancer cells. These 

changes include an altered expression of metabolic enzymes, such as 

triosephosphate isomerase. In fact, this protein was found to be modulated in 

ovarian (Alaiya et al., 1997) and other types of tumour, such as breast (Zhang et al., 

2005) and pancreatic cancer (Mori-Iwamoto et al., 2007). Overexpression of this 

enzyme may also be related to the increased requirements of both energy and 

protein synthesis/degradation pathways in rapidly growing tumours. Furthermore, 

triosephosphate isomerase has already been found to be modulated in resistance to 

several chemotherapeutic agents. The protein showed to be down-regulated in 

vincristine-resistant gastric cancer cell lines (Wang et al., 2008), whereas it was up-

regulated in taxol-resistant A2780 ovarian cancer cell line, when compared to the 

sensitive counterpart (Cicchillitti et al., 2009). 

In the present study, triosephophate isomerase was identified in all three ovarian 

cancer cell lines and it was found up-regulated in PEO1 TaxR and PEO1 CarbR cell 

lines, when compared to its sensitive counterpart. These results confirm the taxol-

resistant A2780 ovarian cancer cell line study previously described. 

Lactate dehydrogenase (LDH) is the enzyme responsible for the NADPH-dependent 

conversion of pyruvate to lactate in the last step of the cellular glycolytic process. 

This reaction mainly takes place in the absence of oxygen. 

It has been shown that LDHA plays a key role in glycolysis, growth properties and 

tumour maintenance of breast cancer cells (Zhou et al., 2010). With respect to non-

small cell lung cancer, the overexpression of LDH5 was reported in cancer tissues 
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and was suggested to be linked to tumour hypoxia, angiogenic factors production 

and poor prognosis (Koukourakis et al., 2003). 

In the present study, L-lactate dehydrogenase A chain was identified in the resistant 

cell lines, but not in the sensitive PEO1 cell line. On the other hand, L-lactate 

dehydrogenase B chain was identified in the three ovarian cancer cell lines and 

showed up-regulation in PEO1 TaxR and down-regulation in PEO1 CarbR. Literature 

findings are controversial for this protein, as LDHA is reported up- and down-

regulated in the same study, in two distinct 2D gel spots (Brown et al., 2007). 

4.4.5.1.1 Cytoskeleton and cell structure 

Actin constitutes a framework of the cytoskeletal machinery and plays an important 

role in apoptosis. This protein is degraded by caspases during the execution phase 

of apoptosis, thus promoting disruption of required mechanical tension and leading 

to signals that may facilitate cell detachment (White et al., 2001). There has been 

increasing evidence that a decrease in actin turnover triggers cell death through an 

apoptosis-like pathway, accompanied by an increase of caspase-3 activation (Posey 

and Bierer, 1999). Actin has also been involved in resistance to taxol and other 

microtubule agents (Verrills et al., 2006). Di Michele and co-workers (2009) 

described that actin was down-regulated in resistant A2780 ovarian cancer cell 

lines, and this protein has also been found up-regulated in vinblastine-resistant 

SKOV-3 cell line (Brown et al., 2007). Nonetheless, there are no studies about actin 

expression in platinum-resistant cell lines. 

In the present study, actin was identified in all three cell lines. However, this protein 

was found in several spots on the same gel, making it difficult to determine its fold 

change between resistant and sensitive cell lines. In turn, the WB results revealed 

similar protein expression among the three cell lines. For this reason, it is not 

possible to draw further conclusions about actin’s expression in the studied cell 

lines, as more research would be needed to confirm these results. 

Cofilin-1 is an intracellular actin regulatory protein, which depolymerises 

filamentous actin and inhibits the polymerisation of monomeric actin (Bamburg, 
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1999). Cofilin has also been found to play a key role in apoptosis. A study showed 

that the active form of this protein (dephosphorylated) is targeted to mitochondria 

after initiation of apoptosis and induces cytochrome C release from the 

mitochondria (Chua et al., 2003). 

Yan et al. (2007) described the overexpression of cofilin-1 in cisplatin- and 

carboplatin-resistant A2780 ovarian cancer cell lines, while the same protein was 

down-regulated in SKOV-3 cell lines, when selected against the same agents and 

compared with their respective sensitive counterparts. Another study revealed that 

cofilin was down-regulated in taxol-resistant A2780 cell line (Cicchillitti et al., 2009). 

It is speculated that cofilin may exert its platinum-resistance role through 

modulating actin turnover and inhibiting apoptosis, in response to 

chemotherapeutic agents. 

In the present study, cofilin-1 was identified in all the studied cell lines. Fold 

regulation analysis revealed that this protein was up-regulated in PEO1 TaxR and 

PEO1 CarbR. This could mean that cofilin-1 might be involved in a resistance 

mechanism that is not drug specific, but rather related to both taxol and carboplatin 

resistance. 

Profilin-1 is a small ubiquitous protein that regulates actin polymerisation by 

binding to and sequestering the monomeric actin. This protein has already been 

described as involved in the tumourigenesis process of renal cell carcinoma, where 

it appeared overexpressed (Minamida et al., 2011), and has been identified in the 

ascites of patients with ovarian cancer (Gortzak-Uzan et al., 2008). 

In this study, profilin-1 was identified in PEO1 and PEO1 TaxR cell lines, and it was 

found up-regulated in the latter. In PEO1 CarbR, this protein was not found, 

suggesting a possible down-regulation. 

Tropomyosins are a family of proteins that participates in the regulation of the 

vertebrate skeletal muscle. Tropomyosin physically blocks the myosin binding site of 

actin in the absence of Ca2+, avoiding the contraction of muscle cells (Chalovich et 

al., 1981). 
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Suppression or down-regulation of tropomyosins is a prominent feature of many 

transformed cells. Raval et al. (2003) reported the suppression of tropomyosin-1 in 

human breast carcinoma and suggested its involvement in the neoplastic 

transformations that cells undergo during tumourigenesis. However, the pathway 

involved is barely known. 

Tropomyosin has been suggested as a biomarker of oesophageal squamous 

carcinoma and appeared down-regulated in both adenoma and colorectal cancer 

(CRC) tissues (Luo et al., 2009). Although tropomyosin-3 was reported as 

overexpressed in cisplatin-resistant ovarian cancer cell lines (Fitzpatrick et al., 

2007), the same protein was found down-regulated in vinblastine-resistant SKOV-3 

cell line (Brown et al., 2007). The pathway by which this protein family could lead to 

drug resistance remains poorly understood. 

In the present study, tropomyosin alpha-1 chain was identified in PEO1 TaxR and 

PEO1 CarbR cell lines and tropomyosin alpha-3 chain was only identified in PEO1 

TaxR cell line. 

Myosins are actin-dependent Mg2+ ATPases that use the energy derived from ATP 

hydrolysis to move along the actin filaments within the cell (Berg et al., 2001). 

The overexpression of myosin VI was reported in prostate cancer cells and it is 

believed that it enhances prostate specific antigen and vascular endothelial growth 

factor secretion (Puri et al., 2010). Yoshida et al. (2004) described the involvement 

of myosin VI in migration of ovarian cancer cells. In a Drosophila model, they 

observed that the inhibition of this protein prevented ovarian cancer cells from 

migrating and invading surrounding tissues. Yet, no additional relationship with 

chemoresistance mechanisms has already been described for this protein. 

In this study, myosin light chain polypeptide 6 was identified in PEO1 and PEO1 

TaxR, but not in PEO1 CarbR. Moreover, the protein was found up-regulated in 

PEO1 TaxR. 
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4.4.5.1.2 Detoxification and stress response 

Glutathione S-transferase P (GSTP) was identified in PEO1 and PEO1 TaxR cell lines. 

This protein is related with the cell response to stress. GST is a family of phase II 

detoxification enzymes that catalyse the conjugation of GSH with a wide variety of 

xenobiotics and noxious compounds. It has already been described that, in KB 

carcinoma and leukemia cells, the conjugation with GSH inhibits the formation of 

cisplatin-DNA adducts, leading to drug resistance. This happens because GSH 

covalently binds to platinum agents and the conjugate formed is transported out of 

the cell by the ATP-dependent pump (Kelland, 2007, Chen et al., 1998, Ishikawa and 

Ali-Osman, 1993). This type of proteins also inhibit the conversion of monoadducts 

to crosslinks, thereby reducing the cytotoxic potential of cisplatin adducts. 

The overexpression of GSTO1-1, a member of the omega class, was reported as 

being involved in drug resistance. Cicchillitti et al. (2009) studied SKOV-3 and A2780 

platinum-resistant cell lines, against cisplatin and carboplatin, and described the 

overexpression of GSTO1-1 in both cisplatin-resistant cell lines, but not in SKOV-3 

carboplatin resistant cell line. 

This fact contradicts the results obtained in the present study, since GSTP1 and 

GSTO1 were both not identified in the PEO1 CarbR cell line. In turn, these two 

proteins were found up-regulated in the taxol resistant cell line. Nevertheless, 

another study has revealed that GSTP1 was down-regulated in SKOV-3 taxol 

resistant cell line (Tian et al., 2009). 

Peroxiredoxin-1, 2, 5 and 6 were also identified in this study. The peroxiredoxin 

family is associated with cellular detoxification as well. Its function is related to the 

protection against oxidative stress. Proteins such as peroxiredoxin-2, 3 and -6 have 

already been identified in taxol resistant ovarian cancer cell lines (Di Michele et al., 

2009). The hypoxia observed in cancer cells may explain their changed expression. 

Hypoxia environment tends to originate a high number of reactive species. In 

normal cells, the increase of cellular stress usually triggers an apoptotic cell death. 
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However, the increased expression of detoxification proteins helps the tumour cells 

to survive, by removing those reactive species. 

The presence of peroxiredoxin-2, as well as other members of the same family, was 

described in sensitive to chemotherapy IGROV1 ovarian cancer cell line (Le Moguen 

et al., 2006). 

In this study, peroxiredoxin-1 and 2 were identified in all three ovarian cancer cell 

lines studied and appeared up-regulated in PEO1 TaxR and PEO1 CarbR. 

Peroxiredoxin-5 was only found in the PEO1 TaxR cell line, and peroxiredoxin-6 was 

also found in the sensitive and taxol resistant cell lines, but not in the carboplatin 

resistant cell line. Peroxiredoxin-6 showed up-regulation in PEO1 TaxR as well. 

As suggested before for cofilin-1, peroxiredoxin-1 and 2 seem not to be specific 

resistance markers, as they are likely to be involved in a common pathway present 

in sensitive, as well as in resistant PEO1 ovarian cancer cell lines. This pathway is 

possibly altered in the resistant cells. 

4.4.5.1.3 Multifunctional proteins 

Three isoforms of the 14-3-3 protein were identified in the ovarian cancer cell lines, 

1433B, 1433T and 1433Z. They belong to the 14-3-3 class of proteins and fit into a 

number of functional categories (Hodgkinson et al., 2012). This is a class of 

multifunctional, acidic proteins, which act as regulators of a vast array of cellular 

pathways, including cell growth and neuronal development. Although they were 

initially thought to be found only in the brain, it has now been established that they 

are present in almost every tissue, and in eukaryotes are found largely in the 

cytoplasm (Fu et al., 2000). 

There are seven isoforms of the 14-3-3 proteins and all undergo dimerisation to 

form a cleft, which recognises and binds, although not exclusively, to 

phosphorylated residues of 14-3-3 ligands (Robinson, 2010). There is a great degree 

of cross over between the isoforms, with a number of ligands being able to bind to 

more than one isoform (Fu et al., 2000). 
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An important pathway that these proteins regulate is that of apoptosis, by binding 

to the proapoptotic protein BAD. BAD causes apoptosis by inhibiting antiapoptotic 

proteins, including Bcl-2; however when it is bound to 14-3-3 in the cytosol, it is 

unable to bind to its target proteins in the mitochondria and is, therefore, 

inactivated (Zha et al., 1996). Another 14-3-3 target protein involved in apoptosis is 

apoptosis signal-regulating kinase 1 (ASK1). This protein is an important component 

of a signal transduction pathway, which can be activated by tumour necrosis factor 

α (TNF-α), Fas, oxidative stress (Ichijo et al., 1997) and the cytotoxic drugs cisplatin 

and taxol (Zhang et al., 1999). The binding of ASK1 to different isoforms of 14-3-3 

proteins has been shown to inhibit its proapoptotic activity (Zhang et al., 1999) and, 

thus, it can be inferred that it reduces the cytotoxic activity of the drugs cisplatin 

and taxol. 

Additionally, the isoform 14-3-3 theta was found to be up-regulated in 

chemotherapy resistant breast cancer cells (Hodgkinson et al., 2012). The same 

isoform also has a stabilising effect by binding to some proapoptotic proteins, such 

as E2F1, which is important when DNA damage has occurred. Thus, the down-

regulation of 14-3-3 protein theta results in a loss of proapoptotic proteins and 

promotes cell survival. As drugs such as cisplatin induce apoptosis through DNA 

damage, this suggests that down-regulation may also infer resistance (Wang et al., 

2004a). In fact, 14-3-3 protein theta was found down-regulated in cisplatin resistant 

ovarian cancer cells in a previous proteomics study (Fitzpatrick et al., 2007). 

This is supported by the cell line results, as one of the three 14-3-3 protein isoforms 

was found down-regulated in the PEO1 CarbR cell line, possibly 1433B. Moreover, 

all three isoforms identified were found up-regulated in PEO1 TaxR. This different 

behaviour for different chemotherapy agents suggests distinct mechanisms of drug 

resistance for the two drugs. 

Nucleoside diphosphate kinase A was identified only in the PEO1 TaxR cell line, 

suggesting that this protein is related to drug resistance mechanisms that are 

present/activated specifically in taxol resistant cell lines, while they are possibly 

absent/repressed in the other two cell lines. 
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These proteins have several biological functions and play important roles in cell 

differentiation, regulation of signal transduction, cell survival, DNA recombination 

and cell transformation (Fitzpatrick et al., 2007). The isoform A is associated with 

nucleic acid synthesis, where it is responsible for the synthesis of most non-ATP 

nucleoside triphosphates. Nucleoside diphosphate kinase is encoded by the NM23 

gene, known as an antimetastatic factor, whose expression is correlated inversely 

with tumour metastatic potential in murine melanoma cell lines (Steeg et al., 1988). 

In addition to the antimetastatic property, this gene has been shown to be 

associated with sensitivity to cisplatin in breast and ovarian carcinomas (Scambia et 

al., 1996). 

Nucleoside diphosphate kinase A was described as overexpressed in taxol resistant 

ovarian cancer cell lines (Cicchillitti et al., 2009). It is thought that it can modulate 

taxol resistance in tumour cells, allowing faster DNA repair. Its increased expression 

is associated with resistance to initial chemotherapy, but further studies are 

required to confirm this hypothesis. 

Eukaryotic transcription is regulated predominantly by the PTM of the participating 

components. One such modification is the cis-trans isomerisation of peptidyl-prolyl 

bonds, which results in a conformational change in the protein involved. The 

enzyme responsible for this reaction is peptidyl-prolyl cis-trans isomerase (Shaw, 

2007). 

Peptidyl-prolyl cis-trans isomerase A, also known as cyclophilin A, belongs to the 

family of peptidyl-prolyl cis-trans isomerase proteins (PPIases). Found mainly in the 

cytoplasm, they are ubiquitous, multifunctional proteins, which are thought to be 

involved in protein folding, transport, cell adhesion and signalling (Galat, 1993). 

Cyclophilin A is also a well known cytokine, which activates the CD147 receptor, and 

is secreted from cells in response to environmental stresses (Obchoei et al., 2009). 

It is inhibited by the immunosuppressant drug cyclosporine A, which is administered 

to prevent graft rejection following transplant surgery (Gothel and Marahiel, 1999). 
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Owing to its multifunctional and ubiquitous nature, there is not yet a complete 

understanding of all cyclophilin A’s substrates and actions (Obchoei et al., 2009). 

Various proteomic studies have shown it to be over-expressed in a number of 

cancers, including pancreatic adenocarcinoma (Mikuriya et al., 2007), lung cancer 

(Campa et al., 2003) and endometrial carcinoma (Li et al., 2008b). Cyclophilin A has 

been found to promote cell proliferation, protect against apoptosis (Li et al., 2008b) 

and contribute to the metastatic activity of cancer cells (Zhang et al., 2011). 

Nevertheless, cyclophilin A is also thought to have pro-apoptotic activity, which 

therefore makes it a candidate for down-regulation in resistant cancer cells 

(Obchoei et al., 2009). Although the mechanism is not clearly understood, it is 

known that cyclophilin A is modulated in cancer drug resistance. Overexpression of 

cyclophilin A has been found to confer cisplatin resistance to a number of different 

cancer cells, including prostate carcinoma and cervical carcinoma cells (Choi et al., 

2007b). The down-regulation of this protein was reported in taxol resistant BT549 

breast cancer cells (Balasubramani et al., 2011), as well as in cisplatin resistant 

ovarian cancer cell lines (Fitzpatrick et al., 2007). Cyclophilin A was also found to be 

down-regulated in cisplatin resistant cervix squamous carcinoma (Castagna et al., 

2004). Though, it was found to be up-regulated in a gemcitabine resistant human 

pancreatic adenocarcinoma cell line (Kuramitsu et al., 2010). 

Peptidyl-prolyl cis-trans isomerase A was identified in all three ovarian cancer cell 

lines studied and was found markedly up-regulated in PEO1 TaxR and PEO1 CarbR 

cell lines. The results obtained do not corroborate those previously described for 

taxol resistant breast cancer cell lines and cisplatin resistant ovarian cancer cell 

lines. Additional studies are, therefore, required in order to confirm these results 

and further understand the mechanism by which peptidyl-prolyl cis-trans isomerase 

leads to drug resistance. 

Nucleophosmin was present in both resistant cell lines in this study and absent from 

the sensitive cell line. This protein is an abundant multifunctional phosphoprotein 

present in the nucleoli. Nucleophosmin is also active in many cellular functions, 

including ribosome biogenesis, histone assembly, regulation of DNA integrity, cell 
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proliferation, and regulation of tumour suppressors (Park et al., 2009). In normal 

cells, it plays an essential role in embryonic development and, particularly, in the 

control of centrosome duplication and genomic stability (Grisendi et al., 2006). 

However, nucleophosmin is frequently overexpressed, mutated, rearranged and 

deleted in human cancer. Traditionally regarded as a tumour marker and a putative 

proto-oncogene, it has now also been attributed with tumour-suppressor functions, 

contributing to the tumourigenesis process through many mechanisms (Grisendi et 

al., 2006). It has been suggested that nucleophosmin has an anti-apoptotic function 

via BAX binding and that its polymerisation, by transglutaminase-2, can also be 

correlated with the drug resistance of cancer cells (Park et al., 2009). 

Wang et al. (2009) reported the expression of nucleophosmin in both cisplatin 

sensitive (C0C1) and resistant (C0C1/DDP) ovarian cancer cell lines. These findings 

corroborate the results obtained in the present study, where nucleophosmin was 

identified in a carboplatin resistant cell line, a therapeutic agent structural and 

functionally related to cisplatin. 

4.4.5.2 Proteins confirmed in the tissue biopsies 

According to the clinical information provided for each tissue sample, SOV-2 was 

described as resistant to the standard drug treatment for ovarian cancer. In turn, 

SOV-3 was described as sensitive, as it showed a complete response to treatment. 

SOV-4 and SOV-5 behaved as partially resistant/sensitive, as they showed only a 

partial response to chemotherapy. 

In order to identify the un-regulated proteins in the resistant tissue samples, fold 

regulation was calculated in a similar way as for the resistant cell lines. In this case, 

spot intensities in the SOV-2 resistant tissue gel were directly compared with the 

corresponding spot intensities in the SOV-3 sensitive tissue gel. In addition, spot 

intensities in the SOV-4 and SOV-5 partially resistant tissue gels were compared 

with the corresponding spot intensity values in the sensitive tissue gel. When fold 

regulation of the tissue proteins was known, it was compared to the same 

information on the cell line proteins. The results of this comparison revealed a 
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group of un-regulated proteins in the cell line samples that were similarly un-

regulated in the tissue samples. This group of proteins includes potential protein 

targets of chemoresistance confirmed in the clinical samples and is shown in Table 

4.11. 

Table 4.11 Possible protein targets of chemoresistance in ovarian cancer. Un-regulated proteins 
identified in the ovarian cancer cell line resistant samples (PEO1 TaxR and PEO1 CarbR) that were 

found similarly un-regulated in the resistant (SOV-2) and partially resistant (SOV-4 and SOV-5) tissue 
samples. 

Un-regulated proteins confirmed in the clinical samples 

Resistant/Sensitive Partially resistant/Sensitive 

SOV-2/SOV-3 
vs 

TaxR/Sens, CarbR/Sens 

SOV-4/SOV-3, SOV-5/SOV-3 
vs 

TaxR/Sens, CarbR/Sens 

Up-regulated Down-regulated Up-regulated Down-regulated 

ANXA2, PRDX2, SPB4 
(TaxR), ALBU 

ANXA1 (CarbR), ALDOA 
(TaxR), MDHM (TaxR), 

PGK1 (TaxR) 

CH60, ENOA, ANXA2, 
APOA1 (CarbR), CATD 
(TaxR), EFTU, ALDOA 

(CarbR), GSTP1 (TaxR), 
G3P, HNRPK, ROA2 

(CarbR), MDHC (TaxR), 
MDHM (CarbR), 

PRDX1, PRDX2, PGK1 
(CarbR), RANG (TaxR), 

GRP75 (CarbR) 

MDHM (TaxR), PGK1 
(CarbR) 

 

A great number of the un-regulated proteins confirmed in the clinical samples are 

involved in the glycolysis I and gluconeogenesis I pathways, which supports the 

pathway analysis results obtained in this study. It is also in line with previous 

studies, which have demonstrated that chemoresistant cell lines have elevated 

aerobic glycolysis, indicating a biochemical link between resistance and glycolysis 

(Zhou et al., 2012). 

Most of the un-regulated proteins confirmed in the clinical samples were up-

regulated in the resistant or partially resistant samples. The up-regulation of CH60, 

ENOA, CATD, EFTU, G3P and GRP75 was also reported in a quantitative proteome 

analysis of ovarian cancer and normal ovarian epithelial tissues using an iTRAQ 
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approach (Wang et al., 2012b). APOA1 and PRDX2 have also been found up-

regulated in ovarian cyst fluid of patients diagnosed with advanced serous ovarian 

adenocarcinoma (Kristjansdottir et al., 2013). 

Additionally, studies conducted in taxol and platinum resistant ovarian cancer cell 

lines have reported CH60, ENOA, ANXA2, CATD, HNRPK and ROA2 to be up-

regulated in the resistant cells, when compared to their sensitive counterparts 

(Brown et al., 2007, Fitzpatrick et al., 2007, Tian et al., 2009). These studies further 

support the claim that the un-regulated proteins confirmed using clinical samples 

could be potential targets of resistance in ovarian cancer. 

Comparing the tissue sample results with the cell line results has provided some 

interesting conclusions. The clinical information allowed a better understanding of 

these findings, since each sample could be related to a specific response to 

chemotherapy, allowing more effective and accurate comparisons. Furthermore, 

the comparison with the proteins identified in the tissue samples has brought a 

much higher impact to the cell line results, as the majority of findings on 

chemoresistance in ovarian cancer are based on research that has been conducted 

on cell lines. 

Therefore, to have these findings confirmed in ovarian cancer tissue samples 

provides more solid clinical evidence, which can then be used for further research 

into the development of chemoresistance. In addition, even for the up and down-

regulation confirmed in cancer tissue, there will inevitably be differences in the 

degree of differentiation, owing to the heterogeneity of cancer tissue and the 

tumour microenvironment, when compared to the homogeneity of cancer cell lines. 

The list of proteins presented is a good starting point for further studies on specific 

protein targets of chemoresistance in ovarian cancer. 
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4.4.6 Other protein targets in ovarian cancer 

4.4.6.1 Protein targets of ovarian cancer diagnosis 

Early detection remains the most promising approach to improve long-term survival 

of patients with ovarian cancer. As a result, biomarkers for the detection of early 

stage ovarian cancer are the most sought by the scientific community. 

Taking advantage of the availability of a non-cancerous tissue sample among the 

samples analysed in this study, the presence of un-regulated proteins between the 

SOV-1 non-cancerous tissue and SOV-2, SOV-3, SOV-4 and SOV-5 ovarian cancer 

tissues was evaluated. For that matter, fold regulation was calculated using the 

ratios SOV-2/SOV-1, SOV-3/SOV-1, SOV-4/SOV-1 and SOV-5/SOV-1. Only proteins 

that were similarly un-regulated in the four ovarian cancer tissues were accepted as 

potential protein targets of ovarian cancer diagnosis. 

Nine proteins in total were found differentially regulated in a similar way among the 

four ovarian tissues. Out of those 9 proteins, 6 (AACT, FABP5, LEG7, HBB, IGHG1 and 

SPB3) were down-regulated in the cancer tissues. The other 3 proteins (EF1A1, G3P, 

ALBU) were up-regulated in cancer. 

Wang and co-workers (2012b) have reported EF1A1 and G3P to be up-regulated in a 

quantitative proteome analysis of ovarian cancer tissues, while HBB was down-

regulated. Their results strongly support the results of this study and suggest that a 

potential biomarker of diagnosis in ovarian cancer might be among them. 

Other studies have been carried out with the aim of discovering novel biomarkers 

for the diagnosis of ovarian cancer. Several biomarkers have been suggested, 

including haptoglobin and transferrin (Ahmed et al., 2005), kallikrein 10 (Luo et al., 

2003), osteopontin (Kim et al., 2002), apolipoprotein A1, truncated form of 

transthyretin and cleavage fragment of inter--trypsin inhibitor heavy chain H4 

(Zhang et al., 2004). 
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4.4.6.2 Protein targets of ovarian cancer histologic subtype 

Research has suggested that the association of biomarker expression with survival 

varies substantially between subtypes of epithelial ovarian cancer. Some scientists 

even say that ovarian carcinoma subtypes are different diseases and, therefore, 

should be reflected in clinical research study design. 

A retrospective study assessed the protein expression of 21 candidate tissue-based 

biomarkers (CA 125, CRABP-II, EpCam, ER, F-Spondin, HE4, IGF2, K-Cadherin, Ki-67, 

KISS1, Matriptase, Mesothelin, MIF, MMP7, p21, p53, PAX8, PR, SLPI, TROP2, WT1) 

and reported that, when analysed by subtype, only 3 of the candidates (MMP7, 

WT1, Ki-67) remained prognostic indicators in the serous and none in the clear cell 

subtype (Kobel et al., 2008). 

A study by Cloven et al. (2004) to determine whether there is a relationship 

between histologic subtype of epithelial ovarian cancer and chemoresistance, 

detected a significantly higher expression of HER-2 neu in clear cell carcinomas and 

higher expression of mP53 in papillary serous carcinomas. 

In the present study, despite the limited number of samples, there was a possibility 

of investigating the existence of un-regulated proteins between the SOV-4 clear cell 

ovarian carcinoma tissue and SOV-2, SOV-3 and SOV-5 serous ovarian cancer 

tissues. For this purpose, fold regulation was calculated using the ratios SOV-2/SOV-

4, SOV-3/SOV-4 and SOV-5/SOV-4. Only proteins that were similarly un-regulated in 

the three serous carcinoma tissues were accepted as potential protein targets of 

ovarian cancer subtype. 

A total of 12 proteins were found differentially regulated in a similar way among the 

three serous tissues. Out of those 12 proteins, 11 (CH60, ENOA, EF1A1, EFTU, 

HNRPK, ROA2, PRDX2, RANG, GRP75, ECHB and VDAC1) were down-regulated in the 

serous tissues. The only up-regulated protein was ANXA2. 

Although the un-regulated proteins identified have not yet been particularly 

associated with a specific ovarian carcinoma subtype, they might still be useful as 
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the basis of further studies aiming the discovery of new biomarkers of ovarian 

cancer subtype. 

 

Another interesting study would be the investigation of potential protein targets of 

disease stage, in order to understand the molecular basis of metastasis. However, in 

this study, it was not possible to undertake such analysis, since the ovarian cancer 

samples studied were all from an advanced stage of the disease. 
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4.5 Conclusions & Future Work 

4.5.1 Conclusions 

Proteomics has proven to be a powerful approach to better understand the 

complex signalling pathways involved in drug resistance of ovarian cancer cells and 

tissues, and to identify potential resistance biomarkers. 

In this study, taxol and carboplatin resistance-associated proteins were identified by 

MS, after comparing the protein expression profile of sensitive and resistant cell 

lines and different ovarian cancer tissues, through 2D-PAGE. The 2D gels clearly 

showed a large number of protein spots and allowed comparison between all the 

samples. The PDQuest software aided this comparison, proving particularly helpful 

in the comparison between the cell line and the tissue results, which gave an 

indication of the clinical relevance of the cell line findings. 

A total of 189 proteins were identified with high confidence in at least one of the 

three cell lines or five tissues studied. Among them were proteins belonging to 

different classes and responsible for distinct functions within the cell, such as 

cytoskeleton and cell structure, detoxification and stress response and cellular 

metabolism. This demonstrated that the development of resistance is indeed a 

multi-factorial process, involving various biological pathways. 

The pathways most highly associated with the un-regulated proteins identified were 

also discovered in this study, using fold regulation data calculated with the spot 

intensity for each of the proteins identified. 

Furthermore, validation of a few key proteins that participate in the top pathways 

and presented fold regulation results conflicting with the literature, was undertaken 

using a Western blotting assay, and their identities and fold regulations were 

confirmed. 
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Similar studies have been carried out by other groups. However, they only provide 

the resistance profile of one chemotherapeutic drug or two that are structural and 

functionally related. This work shows promising utility, as it was the first time cell 

lines that are resistant to two non-related drugs, carboplatin and taxol, were 

studied in parallel. Apart from the proteins that were differentially expressed in one 

resistant cell line, this work also aimed to identify common targets and pathways 

involved in both types of resistance. 

One of the biggest limitations of research into the development of chemoresistance 

in ovarian cancer is that the majority of studies has been conducted on cell lines 

rather than actual human tissue. This was the first study of its kind, which analysed 

protein expression in different samples of ovarian cancer tissue. Therefore, it has 

great potential for determining the significance of data obtained from cell line 

research in human ovarian cancer tissue. 

Ultimately, significant differences in the expression of certain proteins in both the 

cell lines and tissues may lead to the discovery of specific resistance biomarkers. In 

addition, significant similarities may lead to better understanding of resistance 

biomarkers, which confer resistance to both classes of drugs and may play a role in 

the development of cross-resistance. As carboplatin and taxol constitute the first-

line treatment for advanced-stage ovarian cancer patients, the results obtained in 

this study can be useful in the prognostic of treatment response to both agents 

simultaneously, and for further studies of resistance mechanisms. 

The clinical data regarding the ovarian tissue samples, allowed a more in depth and 

accurate analysis, as samples corresponded to different histological subtypes and 

stages of ovarian cancer, apart from having shown distinct responses to treatment. 

Discrepancies in protein expression among the tissue samples have revealed a 

relationship between the different subtypes and stages and chemoresistance. 

Furthermore, possible protein targets of ovarian cancer diagnosis and subtype have 

also been suggested in this study. 
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Nevertheless, the results obtained in this study should only be regarded as a 

starting point for more studies in this field, as the main aim was to screen for 

possible protein targets of chemoresistance in ovarian cancer. Moreover, the 

limitations of this study, mainly related to the insufficient number of samples that 

did not permit the creation of a reproducible 2D gel system, must be overcome by 

extensive validation of the suggested protein targets. Further studies are also 

required in order to better understand the altered pathways and the mechanisms 

involved in the development of the resistance phenomenon, as well as to confirm 

the potential targets of ovarian cancer diagnosis and histologic subtype suggested. 

 

Key Findings 

Protein targets of 
chemoresistance 

2D-PAGE + 
LC-MS/MS 

+ spot 
intensity 
analysis 

PEO1 ovarian cancer cell lines 
Ovarian cancer 

tissues 

Over 70 % 
proteins un-
regulated in 
PEO1 TaxR 

Over 80 % 
proteins un-
regulated in 
PEO1 CarbR 

Over 40 % proteins 
un-regulated in 
resistant tissue 

(SOV-2) 

Pathway 
analysis 

Top 6 altered pathways: glycolysis I, gluconeogenesis 
I, protein ubiquitination pathway, remodelling of 
epithelial adherens junctions, 14-3-3-mediated 

signalling, NRF2-mediated oxidative stress response 

WB 
Validation 

ID and fold regulation reported for 6 key proteins 
associated with top 6 pathways confirmed by WB 

Clinical 
Validation 

Subset of un-regulated proteins confirmed in the 
tissue samples are potential protein targets of 

chemoresistance 

Protein targets 
of diagnosis 
and subtype 

Potential protein targets of ovarian cancer diagnosis and subtype 
suggested. Further studies needed. 
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4.5.2 Future work 

Many of the identified proteins have already been related to cancer development 

and/or drug resistance. Some of them have already been associated with resistance 

pathways in other ovarian cancer cell lines, which means they have a great potential 

of becoming resistance biomarkers in the near future. These proteins could have an 

important application in screening, early diagnosis and prognosis of the disease 

through the design of marker panels. Other interesting applications for these 

markers are related to personalised treatment, by choosing an appropriate and 

individualised treatment for each cancer patient, and discovery of new molecular 

targets and alternative treatments, by identifying disruptive cellular pathways. 

It would be interesting to compare the protein profile of the resistant cell lines used 

in this study, which were derived from the sensitive PEO1 cell line, with resistant 

cell lines that are actually isolated from patients. For example, the known PEO4 and 

PEO6 cell lines (Langdon et al., 1988), which are both resistant to chemotherapy, 

could be a good option. 

Another useful comparison in the study of ovarian chemoresistance would be 

against a cell line that is simultaneously resistant to carboplatin and taxol. This 

would allow a more accurate comparison with the resistant ovarian tissues, since it 

is very likely that the same tumour contains some cells resistant to taxol and others 

resistant to carboplatin. In addition, this would allow the study of cross-resistance. 

The resistance profile of the cell lines used in this study could also be analysed 

against other combinations of chemotherapeutic drugs involved in ovarian cancer 

treatment, such as cisplatin-taxol, cisplatin-docetaxel and carboplatin-docetaxel, 

with the aim of identifying simultaneous or exclusive abnormal protein expression 

and altered molecular pathways. 

Another interesting approach could be the use of different ovarian cancer resistant 

cell lines, perhaps in other stages of the disease or with a distinct degree of 

differentiation (for example, PEO1, PEO4 and PEO6), in order to investigate if the 
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differentially expressed proteins identified in this study are similarly altered in those 

conditions. 

A further option would be to use the same proteomic approach to compare ovarian 

cancer cell lines with acquired and innate resistance. 

A different approach for further experiments with these cell lines would be to 

conduct pathway inhibition studies, in order to investigate the possibility of 

inhibiting one or more of the top pathways identified. This would not only validate 

the pathway previously found, but would also provide additional information on the 

behaviour of resistant cells in the presence of an inhibitor and the therapeutic 

agent. A quick way of testing this would be the use of MTT assays, for example. 

An important limitation of this study was the small number of ovarian cancer tissue 

samples analysed. In general, it is difficult to obtain cancer tissue samples from 

patients, owing to the related ethical issues, and when available they are usually 

very small in size. This significantly limits the number of experiments that can be 

conducted with the tissues. Nevertheless, although the results demonstrated that 

cancer cell lines are good models to study cancer, it is essential to confirm findings 

obtained with cell lines using tissue samples, since there might be differences 

between what occurs in the cancer tissue microenvironment and what is found in 

cell lines. 
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5.1 Introduction 

5.1.1 Heat shock proteins (Hsps) 

In 1962, an Italian geneticist Ferruccio Ritossa took the first step in the identification 

of the heat shock proteins (Hsps), when he reported that heat and the metabolic 

uncoupler 2,4-dinitrophenol induced a characteristic puffing pattern in the 

chromosomes of Drosophila melanogaster (Ritossa, 1962). Increased synthesis of 

selected proteins in Drosophila cells as a result of stresses such as heat shock was 

first reported in 1974 (Tissieres et al., 1974). 

Since then, a great number of researchers have demonstrated that the heat shock 

response is ubiquitous and highly conserved, as it is present in all organisms from 

bacteria to plants and animals. The heat shock response is an essential defence 

mechanism existent in cells for their protection against a wide variety of harmful 

environmental conditions, such as heat shock, oxidative stress, heavy metals, or 

pathological conditions, including inflammation, tissue damage, infection, and 

mutant proteins associated with genetic diseases (Lindquist, 1986).  

Exposure of cells to acute and chronic stress results in the inducible expression of 

Hsps. However, some Hsps are constitutive and are expressed in non-stress 

conditions. These are involved in protein folding and translocation of polypeptides 

across membranes and, therefore, have been named molecular chaperones. 

Molecular chaperones are a family of proteins that function in protein folding, 

translocation and refolding of intermediates, which are generated during cell stress, 

to prevent misfolded or damaged molecules. This way, Hsps contribute to restore 

protein homeostasis and promote cell survival by repairing damaged proteins or by 

degrading them (Georgopoulos and Welch, 1993). 

There are several methods of classification for Hsps; one of the most widely used is 

according to their molecular weight (De Maio, 1999). Heat shock protein 90 (Hsp90) 

is named as such owing to its molecular weight being approximately 90 kDa. 
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5.1.2 Hsp90 characteristics and functions 

As the majority of Hsps, Hsp90 plays a key role in cellular stress response, assisting 

the folding of nascent polypeptides and assembly of multimeric protein complexes. 

Nevertheless, Hsp90 also has an important regulatory role in normal physiological 

conditions. Hence, Hsp90 is responsible for the stabilisation and maturation of over 

100 proteins, which are called Hsp90 client proteins (Stravopodis et al., 2007). 

These can be divided into three groups: steroid hormone receptors, 

serine/threonine or tyrosine kinases, and other apparently unrelated proteins such 

as mutant p53 and the catalytic subunit of telomerase hTERT. All mentioned 

proteins play key regulatory roles in many physiological and biochemical processes 

in the cell (Maloney and Workman, 2002). 

In humans, four genes compose the highly conserved Hsp90 family: the cytosolic 

HSP90α and HSP90β isoforms (Hickey et al., 1989), GRP94 in the endoplasmic 

reticulum (Argon and Simen, 1999) and HSP75/tumour necrosis factor receptor 

associated protein 1 (TRAP1) in the mitochondrial matrix (Felts et al., 2000). All 

genes share a similar mode of action, but bind to different client proteins according 

to their localisation within the cell. 

Three domains form the Hsp90 monomer: a 25 kDa amino terminal region (N-

terminal), a charged linker region (M-domain) and a 55 kDa carboxyl terminal (C-

terminal). All three termini are reported to bind to substrate polypeptides, including 

client proteins and co-chaperones. The N-terminal contains the ATP-binding pocket, 

where ATP hydrolysis occurs, and a drug-binding site with co-chaperone-interacting 

motifs. The M-domain participates in forming the active ATPase. The C-terminal 

contains a second drug-binding region and mediates the formation of dimers, which 

are the dominant Hsp90 forms in physiological conditions (Pearl and Prodromou, 

2000). 

Research revealed that Hsp90 is an ATP-dependent molecular chaperone 

(Prodromou et al., 1997) and that dimerisation of the nucleotide-binding domains is 
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vital for ATP hydrolysis, which in turn is necessary for chaperone function 

(Prodromou et al., 2000, Wayne and Bolon, 2007). 

Although some facts about Hsp90 remain unclear, it is undisputed that the ATP 

binding site localised at the N-terminal plays an essential role in Hsp90’s function. It 

is believed that ATP binding and hydrolysis offer energy to cells and trigger 

substantial conformational changes in Hsp90 caused by binding of client proteins. 

Consequently, the majority of studies aim at ATP binding towards Hsp90.  

The following model (Figure 5.1) represents the Hsp90 chaperone cycle, showing 

the conformational changes that result from ATP binding. 

 

 

 

 

 

Figure 5.1 Hsp90 chaperone cycle. ATP binding triggers the Hsp90 chaperone cycle. Hsp90 starts as 
a monomer and when ATP binds to the N-terminal there is a structural rearrangement, leading to 

dimerisation and the ‘closed and twisted’ conformation of Hsp90. After ATP hydrolysis, Pi (inorganic 
phosphate) and ADP are released, and Hsp90 returns to its initial open structure. N, amino-terminal 

domain; M, middle domain; C, carboxy-terminal domain. Adapted from (Trepel et al., 2010). 

5.1.3 Hsp90’s role in cancer 

Cell stress and cell death are connected, such that molecular chaperones induced in 

response to stress appear to have a key regulatory function in the control of 

apoptosis. As a result, it is not surprising that the heat shock response and 

molecular chaperones have been implicated in the control of cell growth and, 

therefore, are seen as potential targets for cancer diagnosis and treatment (Jolly 

and Morimoto, 2000). 

Dimerisation ATP binding 

Closed and twisted 
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Owing to its protective role, Hsp90 is overexpressed in the stressful environment 

characteristic of tumour cells (Neckers, 2007). Hsp90 is responsible for the 

conformational maturation of a number of enzymes involved in many different 

cancer pathways often referred to as the six hallmarks of cancer (Hanahan and 

Weinberg, 2000). In addition, research suggests that Hsp90 may also play a role in 

buffering against the effects of mutation, by correcting the inappropriate folding of 

mutant proteins, helping them to survive (Rutherford and Lindquist, 1998). 

Therefore, targeting Hsp90 represents a powerful tool against a broad array of 

cancers. A few specific examples of how Hsp90 assists cancerous cells in becoming 

self-sufficient and promoting genetic variation are described ahead. 

Hsp90 is accountable for stabilising the structure and maintaining the active 

conformation of proteins such as EGFR (epidermal growth factor receptor) and 

signal transduction proteins PI3K and Akt, which are found overexpressed in cancer 

cells (Sawai et al., 2008, Basso et al., 2002). The PI3k/Akt/mTOR pathway is 

responsible for cellular survival, proliferation and mobility of tumour cells. Research 

has proved that inhibition of proteins involved in this pathway may trigger 

apoptosis (Morgensztern and McLeod, 2005). One of the reasons why these 

proteins are able to preserve their functions when they are overexpressed is that 

Hsp90 contributes to the stability of their structure (Zhang et al., 2012). 

Consequently, Hsp90 inhibition is associated with cancer cells apoptosis (Saturno et 

al., 2013). 

During the process of tumour growth, oxygen often becomes insufficient in cancer 

tissues. When this occurs, the de novo angiogenesis process is initiated by the 

activation of several proteins, including vascular endothelial growth factor (VEGF) 

and nitric oxide synthase (NOS). It has been shown that Hsp90 contributes to this 

activation, helping tumours to become self-sufficient, and that when Hsp90 is 

inhibited, VEGF and NOS expression is also suppressed (Garcia-Cardena et al., 1998, 

Pritchard et al., 2001, Sun and Liao, 2004). 

Numerous proteins participate in cell transformation and mutation. Products of 

oncogenes BCR/ABL, SRC, mutant p53 are examples of mutant proteins involved in 
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cell transformation, which are stabilised by Hsp90 (Lee et al., 2010, Whitesell et al., 

1994). The tumour suppressor protein p53, for example, is found mutated in about 

55 % of tumour cells, resulting in the loss of its function. Previous studies suggest 

that mutant p53 remains extremely stable when binding to Hsp90 and that 

inhibition of Hsp90 leads to degradation of this mutant protein (Peng et al., 2001). 

Tumour cells exhibit higher Hsp90 activity and accumulate Hsp90 inhibitors to a 

larger extent than normal cells, which may allow targeting of this protein by 

tumour-selective inhibitors (Kamal et al., 2003, Porter et al., 2010). 

In summary, inhibition of Hsp90 has been shown to cause selective degradation of 

key signalling proteins involved in cell proliferation, cell cycle regulation and 

apoptosis, which are fundamentally important processes that are frequently 

deregulated in cancer (Isaacs, 2005, Powers and Workman, 2006). In contrast to 

traditional cancer therapeutics directed against one molecular target, disruption of 

the Hsp90 machinery is thought to simultaneously inhibit multiple therapeutic 

targets and pathways critical to tumour survival. This is why evaluation of Hsp90 

inhibitors is a current focus of drug discovery. 

5.1.4 Hsp90 inhibitors 

5.1.4.1 Hsp90 N-terminal inhibitors 

The search for new anticancer drugs that interact with Hsp90 identified the 

benzoquinone ansamycin family of antibiotics, which act by inhibiting cell 

proliferation and reversing oncogenic transformation (Whitesell et al., 1992, Uehara 

et al., 1986). These compounds are natural products and were isolated for the first 

time in the 1970s from actinomycete broths (DeBoer et al., 1970).  
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Figure 5.2 Hsp90 N-terminal inhibitors. Model of Hsp90 N-terminal inhibition: inhibitor represented 
in black preventing ATP binding. Example of an N-terminal inhibitor: geldanamycin. Adapted from 

(Trepel et al., 2010). 

Geldanamycin (Figure 5.2), a well-characterised member of the ansamycins, targets 

the amino-terminal ATP-binding domain of Hsp90, resulting in the competitive 

inhibition of ATPase activity (Prodromou et al., 1997, Stebbins et al., 1997). This 

prevents the formation of mature multimeric Hsp90 complexes capable of 

chaperoning client proteins, which in turn are targeted for degradation via the 

ubiquitin proteasome pathway. Although geldanamycin presented activity in human 

tumour xenograft models, unacceptable levels of hepatotoxicity at doses required 

for therapeutic activity stopped the progression of this compound to clinical trials 

(Supko et al., 1995).  

In an effort to overcome geldanamycin drawbacks, a range of analogues was 

screened and 17-AAG was discovered. This compound showed significantly less 

hepatotoxicity than geldanamycin (Page et al., 1997), yet retaining the property of 

Hsp90 inhibition, which resulted in client protein depletion and anti-tumour activity 

in cell culture and xenograft models (Schulte and Neckers, 1998, Kelland et al., 

1999). While 17-AAG appeared to be the most promising member of the 

benzoquinone ansamycin family, continuous efforts have been made to develop 

additional analogues with improved pharmaceutical properties, such as solubility 

and oral bioavailability, and different pharmacological behaviour (Drysdale et al., 

2002). 

  

Inhibition of ATP binding 
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Radicicol is an antifungal agent that also binds to Hsp90’s N-terminal domain, 

inhibiting chaperone activity and suppressing transformation by the SRC and RAS 

oncogenes (Sharma et al., 1998). The potency to inhibit Hsp90 ATPase activity is 

higher for radicicol than for geldanamycin and 17-AAG, even though they have 

similar growth inhibitory effects on tumour cells (Roe et al., 1999). This compound 

binds to all Hsp90 family members, although it has higher binding affinity to the 

cytosolic Hsp90 isoforms than to GRP94 or TRAP1 (Schulte et al., 1999). Similarly to 

17-AAG, the structure of radicicol has been subjected to some changes in order to 

eliminate undesirable features that could lead to unfavourable metabolism, without 

losing the important interactions required for Hsp90 inhibition. The unstable 

chemical nature of radicicol results in lack of anti-tumour activity in vivo. However, 

a few derivatives of this compound have been synthesised, which retain the Hsp90 

inhibitory activity and exhibit in vivo anti-tumour activity in human tumour 

xenograft models (Soga et al., 1999). 

5.1.4.2 Hsp90 C-terminal inhibitors 

Despite the majority of Hsp90 inhibitors under clinical evaluation disrupts the 

chaperone cycle by replacing ATP in the N-terminal domain nucleotide-binding 

pocket, the Hsp90 C-terminal domain can also be targeted by drugs (Figure 5.3). 

 

 

 

Figure 5.3 Hsp90 C-terminal inhibitors. Model of Hsp90 C-terminal inhibition: inhibitor represented 
in black preventing dimerisation. Example of a C-terminal inhibitor: novobiocin. Adapted from 

(Trepel et al., 2010). 

As mentioned previously, the C-terminal domain of Hsp90 is involved in the 

formation of dimers, which is crucial for promoting changes at the N-terminal and 

consequent ATP binding and hydrolysis. Therefore, inhibition of the C-terminal 

 

Inhibition of dimerisation 
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results in reduced ATPase activity, as well as failure of client proteins’ folding and 

subsequent ubiquitination and degradation (Donnelly and Blagg, 2008). 

Compounds from the coumarin family of antibiotics, such as novobiocin, clorobiocin 

and coumermycin A1, are known to bind to the C-terminal of Hsp90 (Marcu et al., 

2000a). This has resulted in inhibition of Hsp90 function and degradation of Hsp90-

chaperone signalling proteins (Marcu et al., 2000b). 

An example of the therapeutic importance of inhibiting the C-terminal of Hsp90 is in 

hormone-dependent breast and prostate cancers. Research has revealed that the 

level of glucocorticoid receptor protein in HeLa cells may be effectively reduced by 

novobiocin and its family derivative coumermycin A1. Furthermore, the same study 

has shown that TPR immunophilins may be influenced by novobiocin, as their 

receptor, MEEVD, is located at the C-terminal of Hsp90 (Allan et al., 2006). 

Initially, these compounds were not seen as clinically useful Hsp90 inhibitors, due to 

their poor affinity for Hsp90 and their higher affinity for type II topoisomerases 

(Donnelly and Blagg, 2008). Additionally, poor water solubility and absorption 

contributed to their poor bioavailability. However, recent advances have been 

made to improve their properties. Compound F-4 is an example, which 

demonstrated superior efficacy to 17-AAG in inducing apoptosis in prostate cancer 

cell lines (Matthews et al., 2010). Another novobiocin derivative, KU135, also 

proved more potent than 17-AAG in inhibiting cell proliferation and promoting 

apoptosis (Shelton et al., 2009). Other studies have evaluated a set of novobiocin 

derivatives and have identified various promising compounds with anti-proliferative 

activity in several cancer cell lines (Radanyi et al., 2009). Glycosylation has recently 

proved to be an effective method to enhance inhibitory activity and increase 

selectivity. Glycosylated analogues of novobiocin exhibited 100-fold improved 

activity against breast, brain, pancreatic, lung and ovarian cancers as well as an 

increase in selectivity (Patel et al., 2011). 

These findings strongly support further medicinal chemistry development and 

preclinical evaluation of C-terminal Hsp90 inhibitors in cancer. 
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Although Hsp90 has emerged as a promising target for anticancer therapy, its 

presence in normal cells under physiological conditions may present a 

disadvantage, as it is expected that drugs targeting Hsp90 will have side effects on 

normal cellular function. This issue of therapeutic selectivity can only be resolved by 

evaluating Hsp90 inhibitors in preclinical models and ultimately in clinical trials. 

To date, there are 17 Hsp90 inhibitors undergoing clinical evaluation for multiple 

cancer indications (Barrott and Haystead, 2013). Although there are currently no 

approved Hsp90-targeted drugs, there has been considerable progress on several 

areas. One of the most important advances has been in the drug design, for 

example, 17-AAG started Phase III evaluation with an improved formulation that 

overcomes several toxicity problems common in earlier trials (Kim et al., 2009). 

Other chemically distinct Hsp90 inhibitors have also entered clinical evaluation with 

improved properties, including oral bioavailability. Another field of advance is the 

choice of the appropriate indication, in which recent studies have enlightened some 

key points to take into account in the future development of Hsp90 inhibitors 

(Workman et al., 2007). 

5.1.5 Methods to study Hsp90 inhibition 

Although there are various assays to test Hsp90 activity, there is no standardised 

method to ascertain Hsp90 inhibition (Jhaveri et al., 2012). There is also no standard 

assay to specifically distinguish a C- or N-terminal inhibitor. Research has previously 

demonstrated a combined enzymatic/chemical glycosylation strategy for the 

discovery of Hsp90 inhibitor analogues with a 2.7 x 104 increased selectivity of 

anticancer activity compared with the antimicrobial effect (Patel et al., 2011). While 

formerly reported Western blot methods (Burlison et al., 2006) are able to 

demonstrate general Hsp90 binding of such candidates, they do not allow the 

pharmacologically critical distinction between inhibition of the C- and N-terminal 

domains. 

The few currently available methods developed to determine whether a drug is a C- 

or N-terminal inhibitor have significant limitations. The original affinity gel method 
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(Marcu et al., 2000a, Marcu et al., 2000b) is not convenient and the cytotoxicity test 

(Burlison et al., 2006) is convenient, but only an indirect test. 

In this chapter, a native gel binding assay (nGBA) that not only allows qualitative 

distinction of the C- and N-terminal inhibitors, but also permits full quantitative 

characterisation with reliable binding constants is reported. Furthermore, an Hsp90 

ATPase assay is used in combination with the nGBA to analyse the inhibition pattern 

of each inhibitor and calculate the inhibitors’ dissociation constants. 

Native gel electrophoresis, or non-denaturing electrophoresis, is the technique 

behind the nGBA. It is a type of electrophoresis used for separating and analysing 

proteins that is similar to SDS-PAGE, but performed under non-denaturing 

conditions, i.e. in the absence of SDS, DTT and heat. Under such conditions proteins 

keep their original structure and properties, which means the mobility of proteins in 

native gels will depend on both the protein’s charge and its hydrodynamic size. The 

main advantage of this separation technology is that it allows the study of the 

structure and conformational changes of proteins (Robyt and White, 1987). 

Therefore, this was the method chosen to distinguish C- and N-terminal inhibitors of 

Hsp90, as they may lead to changes in Hsp90’s structure when interacting with it. 

As mentioned before, Hsp90 hydrolyses ATP, functioning like an ATPase. As a 

consequence of this behaviour, Hsp90 and the effect of its inhibitors can be studied 

in the same way enzymes are, according to enzyme kinetics and enzyme inhibition 

patterns. A section on enzyme kinetics and enzyme inhibition patterns can be found 

in Appendix. 
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5.2 Aims & Objectives 

The main aim of this study was to develop and optimise a robust method for anti-

cancer drug discovery, which allowed rapid screening and functional 

characterisation of heat shock protein 90 targeted compounds.  

On one hand, the chosen approach should allow qualitative distinction between C- 

and N-terminal inhibitors of Hsp90. 

On the other hand, the method should also permit full quantitative characterisation 

of each inhibitor with reliable binding constants. 

Moreover, the technique should be relatively easy to master to facilitate 

reproducibility, suitable for the chemical properties of the majority of inhibitors, 

and as rapid and inexpensive as possible. 

With the previous key points in mind, a native gel binding assay was developed and 

optimised. This method was then used in combination with an ATPase activity assay 

to fully characterise known C- and N-terminal inhibitors of Hsp90, as well as a novel 

novobiocin glycosylated derivative – glucosyl-novobiocin. 
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5.3 Materials & Methods 

The source of all the chemicals and equipment used in the following experiments is 

specified after each one of them in the descriptions below, unless mentioned 

previously. A schematic diagram summarising the experiments carried out in this 

study is represented in Figure 5.4. 

 

Figure 5.4 Schematic diagram summarising the experiments conducted in this study. 

5.3.1 Western blot study of MCF-7 breast cancer cells treated with 

novobiocin analogues 

5.3.1.1 Cell culture, treatment with novobiocin analogues and harvesting 

These experiments were done with the collaboration of Dr. Schatzlein’s group from 

the Department of Pharmaceutical and Biological Chemistry of the UCL School of 

Pharmacy. MCF-7 breast cancer cells (Human Caucasian breast adenocarcinoma) 

were obtained from the European Collection of Cell Cultures (ECACC) and cultured 

in Dulbecco’s Modified Eagle Medium (DMEM, Gibco, Invitrogen, USA) 

supplemented with 10 % fetal bovine serum (Biosera, UK), 2 mM L-glutamine and 1 
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% non-essential amino acids (Gibco, Invitrogen, USA). Cells were grown at 37 C in a 

5 % CO2, 95 % humidity incubator and passaged 2-3 times a week.  

The day before the experiment, cells were seeded in 25 cm2 flasks (4x104 cells/cm2) 

to a total volume of 5 mL. The growing medium was then replaced by 1 mL of fresh 

culture medium and 50 µL of the compound of interest (previously dissolved in 

methanol) were subsequently added to each flask. Considering the dose-dependent 

activity of the compounds, concentrations were selected based on the previously 

reported IC50 values (Patel et al., 2011). Cells were exposed to increasing 

concentrations of novobiocin (Nov, Calbiochem, USA), glucosyl-novobiocin (Glc-

Nov) and galactosyl-novobiocin (Gal-Nov), 0.1, 1, 5, 10 and 40 µM. Glc-Nov and Gal-

Nov were synthesised by a colleague in our group. A batch of non-treated cells was 

used as control. After 24 h of continuous drug exposure, cells were washed and 

harvested for total protein extraction. 

5.3.1.2 Protein extraction from cells 

Cells were harvested and their protein content was extracted as described in 

section 2.3.1.2.  

Protein concentrations of all cell lysate samples were determined using the RCDC 

Protein Assay Kit (Bio-Rad, UK), according to the description in section 2.3.3. 

5.3.1.3 Western blot assay 

A total of 10 µg of protein per well was loaded onto precast gels, Mini-Protean TGX 

precast gels, any kD, 10-well comb, 30 µL/well (Bio-Rad, UK). Proteins were 

separated by SDS-PAGE and transferred onto nitrocellulose membranes (Hybond-C 

Extra, Amersham Biosciences, UK) using a Mini Trans-Blot Transfer Cell (Bio-Rad, 

UK) for 1 h at 100 V, as described in section 2.6.2. 

After blocking with 1 % BSA (Sigma-Aldrich, UK) in TBS buffer for 1 h at room 

temperature, the membranes were probed with rabbit polyclonal primary 

antibodies against Hsp90 (ab13495, Abcam, UK), diluted 1:1000; Raf1 (SAB4300291, 
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Sigma-Aldrich, UK), diluted 1:100; and Actin (A2066, Sigma-Aldrich, UK), diluted 

1:100, in blocking solution overnight at 4 °C. The membranes were washed 4x with 

TBS buffer containing 0.05 % Igepal (Sigma-Aldrich, UK) and subsequently incubated 

for 1.5 h at room temperature with a horseradish peroxidase (HRP)-conjugated anti-

rabbit secondary antibody (NA934, GE Healthcare, UK) at a dilution of 1:2000, in 

blocking solution. After incubation with secondary antibody, membranes were 

washed again with TBS buffer containing 0.05 % Igepal. Protein bands were 

developed using a Pierce ECL Western Blotting Substrate (Thermo Scientific, UK) 

and visualised with the GeneGnome chemiluminescence imaging system, using the 

GeneSnap software (SynGene Bio Imaging, UK). The western blot assay was 

performed at least three times for each antibody. 

5.3.2 Hsp90 binding assay – native-PAGE 

Prior to incubation of Hsp90 with the various inhibitors at different concentrations, 

the purity of the commercially acquired protein was tested by SDS-PAGE and native-

PAGE. For SDS-PAGE, three amounts of protein were used (2.5, 1.25, 0.625 µg) and 

for native-PAGE 1.25 µg of protein were tested. Both techniques were performed 

according to sections 2.4.1 and 2.4.2. Protein band visualisation was achieved 

through Coomassie blue staining, as described in section 2.5.1. 

5.3.2.1 Qualitative assay 

Hsp90 protein (1 mg/mL, 1.25 µg, Abcam, UK) was incubated with novobiocin, 

glucosyl-novobiocin and geldanamycin (InvivoGen, UK) at 1/10, 1 and 10 times the 

IC50, i.e. 70 µM, 700 µM and 7 mM for novobiocin; 1 µM, 10 µM and 100 µM for 

glucosyl-novobiocin; 5 nM, 50 nM and 500 nM for geldanamycin. The total mixture 

volume was 5 µL. Suitable stock solutions were prepared so that the volume added 

of each of the inhibitors at different concentrations was 3.75 µL. The same volume 

of distilled water was added to the control without inhibitor. Samples were 

incubated overnight at 37C before analysis by native polyacrylamide gel 

electrophoresis. 
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5.3.2.2 Quantitative assay 

Hsp90 protein (1 mg/mL, 1.25 µg, Abcam, UK) was incubated with novobiocin at 0, 

70, 140, 350, 700, 1400, 3500 and 7000 µM. The total mixture volume was 5 µL. 

Suitable stock solutions were prepared so that the volume added of each of the 

inhibitors at different concentrations was 3.75 µL. The same volume of distilled 

water was added to the control without inhibitor. Samples were incubated 

overnight at 37C before analysis by native-PAGE. 

The same procedure was followed using glucosyl-novobiocin, for 9 different 

concentrations at 0, 0.1, 1, 2, 5, 10, 20, 50 and 100 µM. Furthermore, 8 different 

concentrations of geldanamycin at 0, 0.5, 5, 10, 25, 50, 100 and 250 nM; and 9 

different concentrations of geldanamycin at 0, 1 nM, 10 nM, 50 nM, 100 nM, 500 

nM, 1 µM, 5 µM, and 10 µM were incubated with Hsp90 as described above. 

5.3.2.3 Native-PAGE 

After incubating all the controls and mixtures of Hsp90 + inhibitor overnight at 37 

C, 2x native sample buffer was added to each sample tube and the mixtures were 

loaded into the wells of 8 % native polyacrylamide gels, without stacking gel. All gels 

were prepared and run in triplicate. Proteins were separated in the absence of SDS 

by native gel electrophoresis and visualised with Coomassie Blue stain (Instant Blue, 

Expedeon, UK) followed by silver stain (Pierce Silver Stain Kit, Thermo Scientific, 

UK), as described in sections 2.4.2, 2.5.1 and 2.5.2. 

5.3.3 Hsp90 ATPase assay 

The following experiments were performed by Miss Yixi Zhang, an MRes student at 

the time in our group. 

5.3.3.1 Protein expression and purification 

Human Hsp90α was a generous gift from Prof. Houry in the University of Toronto, 

Canada. The procedure was followed according to the literature (Zhao et al., 2010, 
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Panaretou et al., 1998). Briefly, the plasmid was transformed in E. coli strain BL21-

CodonPlus (DE3)-RIL (Agilent Technologies, UK). A single colony was grown at 37 C 

until OD600 reached 0.4-0.7. Proteins were induced for 5 h at 30 C by adding 0.1 

mM isopropyl β-D-1-thiogalactopyranoside (IPTG, Sigma-Aldrich, UK). Cells were 

harvested by centrifugation and broken by sonication. Proteins were purified using 

HisTrap FastFlow crude columns (GE Healthcare, UK) and were stored in storage 

buffer (25 mM Tris-HCl, pH7.5; 150 mM KCl; 10 % glycerol; 0.5 mM DTT). 

5.3.3.2 ATPase activity assay 

The ATPase activity assay was based on a coupled enzyme assay, where the ADP 

hydrolysed by Hsp90 is regenerated by phosphokinase in the presence of 

phosphoenolpyruvate. The reaction was monitored through the disappearance of 

NADH at 340 nm (Zhao et al., 2010, Panaretou et al., 1998). The reaction mixture 

was set up in a final volume of 100 µL containing 100 mM Tris-HCl pH 7.4 (Sigma-

Aldrich, UK), 20 mM KCl (Sigma-Aldrich, UK), 6 mM MgCl2 (Fisher Scientific, UK), 3 

mM phosphoenolpyruvate acid monopotassium salt (Sigma-Aldrich, UK), 0.2 mM β-

nicotinamide-adenine dinucleotide disodium salt (Fisher Scientific, UK), 18-28 U/mL 

lactate dehydrogenase (Sigma-Aldrich, UK), 12-20 U/mL pyruvate kinase (Sigma-

Aldrich, UK) and 10 µL of Hsp90. The concentrations of ATP (Sigma-Aldrich, UK) and 

inhibitors varied in different experiments, which are illustrated respectively below. 

The decrease in NADH absorbance at 340 nm was recorded continuously for 1 h 

using a spectrophotometer (Pherastar, BMGLabtech, UK). 

ATP concentrations were fixed at 0, 10, 20, 50, 100 and 250 µM. Novobiocin 

concentrations varied at 0, 100, 300, 500 and 700 µM. Glucosyl-novobiocin 

concentrations varied at 0, 1, 5, 10, 20, 50, and 100 µM. Geldanamycin 

concentrations varied at 0, 10 and 20 nM. Native hydrolysis of ATP was measured 

under the same conditions, but without Hsp90 and inhibitors.  
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5.4 Results & Discussion 

This study was divided in three parts: western blot assay, binding assay and ATPase 

assay. The first part was a preliminary experiment, which consisted in a western 

blot assay using a cancer cell line and appropriate antibodies to detect Hsp90 and 

one of its client proteins, Raf-1. Prior to the assay, cells were treated with increasing 

concentrations of different Hsp90 inhibitors, namely novobiocin and two 

derivatives, glucosyl-novobiocin and galactosyl-novobiocin. The aim of this 

experiment was to demonstrate the binding of these two novobiocin analogues to 

Hsp90, similarly to novobiocin itself, resulting in inhibition of Raf-1. This proof of 

inhibitory activity would support the use of the analogues in the subsequent 

experiments. 

The second part included the Hsp90 binding assay, through which it was possible to 

distinguish the binding site of inhibitors interacting with Hsp90, and accordingly 

differentiate C-terminal from N-terminal inhibitors. The use of a wide range of 

inhibitor concentrations also allowed to calculate the IC50 value of each inhibitor 

using their dose-response curves. 

Finally, in the third part of this study, the Hsp90 ATPase assay was performed to 

characterise the inhibition pattern of the C- and N-terminal inhibitors tested by 

comparison with known inhibition patterns. The inhibition constant, Ki, of each 

inhibitor was also calculated in this experiment using their Lineweaver-Burk plots. 

Detailed results and discussion of the mentioned three parts are presented in the 

following sections.  
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5.4.1 Western blot study of MCF-7 breast cancer cells treated with 

novobiocin analogues 

Western blot is a technique used to detect specific proteins in a given sample of 

cell/tissue homogenate. In the first stage, it involves gel electrophoresis to separate 

proteins either in their native state or denatured; then the proteins are transferred 

to a membrane; and finally, antibodies specific to the target proteins are used to 

detect the protein bands (Renart et al., 1979, Towbin et al., 1979). Usually, the 

detection process occurs with a modified antibody, which is linked to a reporter 

enzyme; when exposed to an appropriate substrate, this enzyme drives a 

colorimetric, chemiluminescent or fluorimetric reaction, producing a colour or 

fluorescence (Hames and Rickwood, 1990). The intensity of the protein bands can 

then be compared among different samples for relative quantitative purposes. 

In order to relatively quantify the abundance of a specific protein among distinct 

samples, it is crucial to make sure the disparities in the intensity of the bands 

visualised on the blots are due to different amounts of that protein in those 

samples, and not due to loading differences. To guarantee that the same total 

protein amount for each sample was loaded into the wells of the SDS-PAGE gel, 

prior to protein separation and Western blot assay, each protein homogenate was 

subjected to a protein concentration assay. 

5.4.1.1 Protein concentration assay 

Protein concentration was tested using a commercial kit. Firstly, a calibration curve 

was generated with absorbance values versus the corresponding concentrations of 

the standard bovine plasma γ-globulin, which were prepared by serial dilutions 

from the initial stock concentration of 1.5 mg/mL. Then, a linear regression was 

applied to the calibration curve and protein concentrations were calculated using 

the equation. Figure 5.5 displays an example of calibration curve used in this 

experiment and its respective equation. Table 5.1 shows the calculated protein 

concentrations of the various MCF-7 breast cancer cell line samples treated with the 

three inhibitors in different concentrations.  
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Figure 5.5 Protein concentration assay calibration curve. Protein concentration assay was 
performed using a commercial kit according to the manufacturer’s instructions. Bovine plasma γ-

globulin was used as standard in the following concentrations: 0.125, 0.25, 0.5, 0.75, 1.0, 1.5 mg/mL. 
Equation of the linear regression is shown in the graph. 

Table 5.1 Protein concentration of the various MCF-7 breast cancer cell line samples treated with 
the three inhibitors in different concentrations. Protein concentration assay was performed using a 

commercial kit according to the manufacturer’s instructions. The concentrations were calculated 
using the equation displayed in Figure 5.5. 

Inhibitor 
Inhibitor Concentration 

(μM) 

Protein Concentration 

(mg/mL) 

Control (no inhibitor)  0.354 

Novobiocin 

0.1 0.139 

1 0.233 

5 0.185 

10 0.185 

40 0.305 

Glucosyl-novobiocin 

0.1 0.126 

1 0.113 

5 0.181 

10 0.105 

40 0.168 

Galactosyl-novobiocin 

0.1 0.147 

1 0.143 

5 0.229 

10 0.231 

40 0.065 
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5.4.1.2 Western blot assay 

Previously developed assays for the characterisation of Hsp90 inhibitors include a 

Western blot assay, which has been able to demonstrate general binding of the 

inhibitors to Hsp90 (Burlison et al., 2006). Based on that, the present experiment 

was designed to test Hsp90 binding of a known and two novel Hsp90 inhibitors. 

In this experiment, three Hsp90 inhibitors were used: novobiocin (Nov), which is a 

known inhibitor of Hsp90, and the two derivatives glucosyl-novobiocin (Glc-Nov) 

and galactosyl-novobiocin (Gal-Nov), obtained by modification of novobiocin’s 

structure. These analogues have been enzymatically/chemically synthesised 

through the addition of sugars to the coumarin core of novobiocin with the aim of 

improving their physicochemical properties and their anti-cancer effect (Patel et al., 

2011). 

MCF-7 is a widely studied breast cancer cell line isolated from a 69-year-old 

Caucasian woman in 1970. The origin of the cells was a pleural effusion from an 

invasive breast ductal carcinoma. They possess oestrogen and progesterone 

receptors and present a proliferative response to oestrogen (Soule et al., 1973, 

Levenson and Jordan, 1997). This particular cell line was selected for the Western 

blot assay owing to results obtained in previous studies, in which the anti-cancer 

activity of novobiocin and the analogues mentioned above was tested using various 

cancer cell lines. The results revealed that among all the cancer cell lines tested, 

glucosyl-novobiocin and galactosyl-novobiocin exhibited the highest anti-

proliferative activity against the MCF-7 breast cancer cell line (Patel et al., 2011). 

Hsp90 appears to be crucial for the correct folding, stability, localisation and 

function of a subset of proteins that are heavily involved in creating and 

maintaining the malignant phenotype. These include Raf-1, which is a key player in 

the Ras-Raf-MEK-ERK signalling pathway (Schulte et al., 1996), among others such 

as Akt (Basso et al., 2002), EGFR (Sawai et al., 2008), HER-2 (Solit et al., 2002), v-Src 

(Whitesell et al., 1994). Depletion of these oncogenic kinases is readily seen with 

Hsp90 inhibitors. In this experiment, Hsp90 client Raf-1 was chosen to confirm the 

efficacy of the inhibitors under assessment. 



CHAPTER 5 – FUNCTIONAL CHARACTERISATION OF HEAT SHOCK PROTEIN 90 TARGETED COMPOUNDS 

Isa Nobre da Cruz 260 

After exposing MCF-7 breast cancer cells to increasing concentrations of the three 

inhibitors, 0 (control), 0.1, 1, 5, 10 and 40 µM, their total protein content was 

extracted and Western blot assays were performed, using an anti-Hsp90 antibody 

and an anti-Raf-1 antibody to assess the abundance of these proteins in each cell 

lysate. An anti-Actin antibody was used as control. The results are shown in Figure 

5.6. 

 

 

 

a)   

 

 

 

b) 

 

 

 

c) 

 

 

Figure 5.6 Western blot study of MCF-7 breast cancer cells treated with novobiocin analogues. a) 
Novobiocin, b) Glucosyl-novobiocin (Glc-Nov), c) Galactosyl-novobiocin (Gal-Nov). Unit: µM. 

Expression of Hsp90 dependent Raf-1 protein reduced at 5 µM (Glc-Nov) and 10 µM (Gal-Nov), but 
not Hsp90 itself and Hsp90 independent Actin. This indicates that both Glc-Nov and Gal-Nov bind to 

Hsp90 as novobiocin does. 

Concentration of inhibitor (µM) 
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The analysis of the Western blot assay results revealed that the expression of Hsp90 

dependent Raf-1 protein reduced at 5 µM, when MCF-7 breast cancer cell lines 

were treated with glucosyl-novobiocin, and 10 µM, when they were treated with 

galactosyl-novobiocin. However, no change in expression of Raf-1 was observed 

when the breast cancer cells were treated with novobiocin. These results are all 

consistent with the IC50 values calculated for these inhibitors in a former study, 

based on which the range of inhibitor concentrations used in this experiment was 

established (Patel et al., 2011). 

In addition, neither Hsp90 itself nor Hsp90 independent Actin showed a reduction in 

expression. This indicates that both glucosyl-novobiocin and galactosyl-novobiocin 

bind to Hsp90 as novobiocin does, resulting in inhibition of Hsp90 client protein Raf-

1. 

Hsp90 inhibition induces degradation of Hsp90 client proteins, leading to a 

combinatorial inhibition of multiple oncogenic signalling pathways with consecutive 

growth arrest and apoptosis. A study done in various cell lines has demonstrated 

the efficacy of the Hsp90 inhibitor SNX-2112, which led to degradation of several 

Hsp90 client proteins and abrogation of Ras/Raf/MEK/MAPK and PI3K/Akt 

signalling, also using a Western blot assay (Bachleitner-Hofmann et al., 2011).  
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5.4.2 Hsp90 binding assay – native-PAGE 

The method chosen to analyse the interaction between Hsp90 and different 

inhibitors, allowing distinction of the binding site (C- or N-terminal) of the inhibitors 

was a native gel binding assay (nGBA). Native-PAGE is an electrophoretic technique 

that is performed under non-denaturing conditions, i.e. in the absence of 

denaturing agents such as SDS, DTT and heat, unlike what happens in SDS-PAGE. 

Proteins in their denatured state assume a primary, linear structure, making it 

impossible to study conformational changes. 

In native-PAGE, proteins keep their original structure and are separated on the basis 

of their size, shape and charge. While native-PAGE does not provide direct 

measurement of molecular weight, the technique can provide useful information 

about protein charge, conformation, self-association or aggregation, and the 

binding of other proteins or compounds. Since the protein retains its folded 

conformation, its size and mobility on a native gel will also vary with the nature of 

this conformation; more compact conformations will show higher mobility and 

larger structures will move slower (Robyt and White, 1987). 

Thus, native-PAGE allows the visualisation of Hsp90’s different structures. As 

mentioned in the introduction of this chapter, Hsp90 exists in two forms: monomer 

(84 kDa) and dimer (168 kDa), which may be separated on native gels, since the 

monomer migrates faster than the dimer. In line with the fact that the C-terminal 

domain of Hsp90 is responsible for its dimerisation, incubation of Hsp90 with C-

terminal inhibitors leads to an increase in intensity of the monomer band. In 

opposition, incubation of Hsp90 with N-terminal inhibitors does not result in a 

change of intensity of the monomer band. Moreover, for C-terminal inhibitors and 

using the intensity of the monomer bands and the concentration of inhibitor, it is 

possible to build dose-response curves, through which the IC50 value for each 

inhibitor can be determined. 

In this experiment, Hsp90 was incubated overnight at 37C with different 

concentrations of a known C-terminal inhibitor, novobiocin (Nov), and a known N-
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terminal inhibitor, geldanamycin (Geld), after which the protein-inhibitor mixtures 

were analysed by native-PAGE. 

Additionally, a novel novobiocin derivative, glucosyl-novobiocin (Glc-Nov) (Figure 

5.7), was tested to prove that glycosylation could enhance the inhibitor’s affinity to 

Hsp90, as previous research suggested (Patel et al., 2011). 

 

 

 

 

Figure 5.7 Structure of glucosyl-novobiocin (Glc-Nov). 

Native gels in this experiment were handmade without stacking gel to prevent the 

Hsp90 monomers from dimerising during the migration process in the stacking gel. 

This could be owing to the fact that the pore size of the stacking gel (4-6 % 

acrylamides) is relatively larger than the pore size of the resolving gel (8 % 

acrylamides), causing monomers and dimers to migrate at a similar speed. In the 

resolving gel, since the pore size is smaller, monomers (84 kDa) migrate faster than 

dimers (168 kDa) and there is less chance for dimerisation. Hence, clear 

conformational changes can be detected. 

For this part of the study, Hsp90 was obtained from a commercial supplier (Abcam, 

UK), since protein structure was vital for this experiment and that was the purest 

source. In order to guarantee its purity and viability, the protein was analysed by 

SDS-PAGE and native-PAGE. 

5.4.2.1 Commercial Hsp90 purity test 

Figure 5.8 illustrates the commercial Hsp90 SDS-PAGE and native-PAGE analysis. 

The SDS-PAGE gel, a), showed a single band between 75 and 100 kDa, which 

corresponds to the Hsp90 monomer. Under denaturing conditions, such as the 
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presence of SDS, DTT and heat characteristic of SDS-PAGE, no dimer was present. 

The native-PAGE gel, b), confirmed the presence of the Hsp90 monomer, between 

75 and 100 kDa, and the Hsp90 dimer, between 150 and 250 kDa. In the absence of 

SDS, DTT and heat, proteins retained their native conformations. These results 

ratified the purity of the commercial Hsp90 and its suitability for the nGBA, as no 

other bands were visible on the gels. 

In addition, the use of three different Hsp90 loading amounts for SDS-PAGE, made it 

possible to conclude that 1.25 µg was the most appropriate loading amount to carry 

out the nGBA. 

 

Figure 5.8 Commercial Hsp90 gel analysis. a) 5 % SDS-PAGE gel. 1, marker. 2-4, commercial Hsp90 (1 
mg/mL) 2.5 µg, 1.25 µg and 0.625 µg, respectively. b) 10 % Native-PAGE gel. 1, marker. 2, 

commercial Hsp90 (1 mg/mL) 1.25 µg. Gels were stained by Coomassie stain. The SDS-PAGE gel 
showed a single band between 75 and 100 kDa, which corresponds to the Hsp90 monomer. No 

dimer was present when the protein was denatured. The native-PAGE gel confirmed the presence of 
the Hsp90 monomer, between 75 and 100 kDa, and the Hsp90 dimer, between 150 and 250 kDa. 

5.4.2.2 Qualitative assay 

Firstly, a qualitative assay was designed with a narrow range of inhibitor 

concentrations to test the inhibitor binding site. The three inhibitors studied were 

incubated with Hsp90 in the following concentrations: 1/10, 1 and 10 times the IC50. 

Reported IC50 values are 700 µM for novobiocin (Burlison et al., 2006), 10 µM for 

glucosyl-novobiocin (Patel et al., 2011) and 50 nM for geldanamycin (Patel et al., 

2004). 

According to the mechanism by which the C-terminal inhibitors interact with Hsp90, 

darker monomer bands were expected to be observed when increasing 

concentrations of novobiocin and glucosyl-novobiocin were incubated with Hsp90. 

a) b) 
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On the contrary, no change in the intensity of the monomer bands was expected for 

the incubation of Hsp90 with geldanamycin. 

Figure 5.9 shows the native gel obtained with protein-inhibitor mixtures after 

overnight incubation at 37 °C. Hsp90 monomer bands are represented on the gel at 

a molecular weight between 75 and 100 kDa, and the dimer bands between 150 

and 250 kDa. Regardless of the inhibitor concentration, there was clearly higher 

abundance of Hsp90 dimer than monomer, as the dimer bands were much darker 

than the monomer bands, which is in line with the fact that the dimer corresponds 

to the most common form of Hsp90 in physiological conditions (Wayne and Bolon, 

2007). As expected, it was possible to visualise an increase in intensity of the 

monomer bands with increasing concentrations of the C-terminal inhibitors 

novobiocin and glucosyl-novobiocin. No change in the relative intensity of the 

monomer bands could be observed for the N-terminal inhibitor geldanamycin. 

 

 

Figure 5.9 Native polyacrylamide gel analysis to probe Hsp90 C- and N-terminal binding targets. 1, 
marker. 2-11, commercial Hsp90 with different concentrations of inhibitors. 2, control (no inhibitor); 

3-5, with novobiocin at 1/10, 1 and 10 times the IC50 (700 µM), respectively; 6-8, with Glc-Nov at 
1/10, 1 and 10 times the IC50 (10 µM), respectively; 9-11, with geldanamycin at 1/10, 1 and 10 times 

the IC50 (50 nM), respectively. Protein-inhibitor mixtures were analysed by native gel 
electrophoresis after overnight incubation at 37 °C. Gel was stained by silver stain. 

5.4.2.3 Quantitative assay 

In order to verify the results of the qualitative assay and have enough data to build 

dose-response curves to determine the IC50 values of the inhibitors, a wider range 

of inhibitor concentrations was used in the quantitative assay. 

Nov Glc-Nov Geld 
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This time, novobiocin was incubated with Hsp90 under the same conditions used in 

the qualitative assay, but at 0, 1/10 (70 µM), 1/5 (140 µM), 1/2 (350 µM), 1 (700 

µM), 2 (1400 µM), 5 (3500 µM) and 10 (7000 µM) times the IC50 (700 µM). The 

native gel obtained and the corresponding response curve are depicted in Figure 

5.10. 

 

 

 

 

 

 

 

 

Figure 5.10 Native polyacrylamide gel analysis to probe novobiocin IC50. a) Hsp90 binding assay. 1, 
marker. 2-9, commercial Hsp90 with different concentrations of novobiocin. 2, control (no inhibitor); 

3-9, novobiocin at 1/10, 1/5, 1/2, 1, 2, 5 and 10 times the IC50 (700 µM), respectively. Protein-
inhibitor mixtures were analysed by native gel electrophoresis after overnight incubation at 37 °C. 

Gel was stained by silver stain. b) Response curve of novobiocin. Abs was obtained from gel a). This 
aligned with the fact that novobiocin is an Hsp90 C-terminal inhibitor. IC50 = 813 ± 149 µM. 

Once more, it could be observed that the monomer bands became darker with 

increasing concentrations of inhibitor. Therefore, it could be confirmed that 

novobiocin influenced Hsp90 dimerisation, as it prevented the formation of dimers, 

supporting the fact that novobiocin is a C-terminal inhibitor of Hsp90. 

a) 

b) 

Nov 
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IC50 determination from the dose-response curve was 813 ± 149 µM, which was 

similar to the IC50 value previously reported for novobiocin (700 µM) (Burlison et al., 

2006). This result proved that the quantitative assay was reliable. 

As a novobiocin derivative, glucosyl-novobiocin was anticipated to share similar 

inhibition mechanism as novobiocin and be a C-terminal inhibitor. Thus, an increase 

in intensity of the monomer bands was predicted for higher concentrations of 

inhibitor. In addition, when the intensity of the monomer bands remained constant, 

it could be concluded that the inhibitory concentration had achieved its maximum, 

allowing the determination of the IC50 value through the dose-response curve. 

In fact, darker monomer bands were seen for increasing concentrations of glucosyl-

novobiocin, after overnight incubation at 37 °C of Hsp90 with that inhibitor at 0, 

1/100 (0.1 µM), 1/10 (1 µM), 1/5 (2 µM), 1/2 (5 µM), 1 (10 µM), 2 (20 µM), 5 (50 

µM) and 10 (100 µM) times the IC50 (10 µM). The results are illustrated in Figure 

5.11. From the native gel analysis it could be inferred that glucosyl-novobiocin 

shared the same binding site as novobiocin, i.e. the Hsp90 C-terminal domain. 

Moreover, the IC50 value calculated from the dose-response curve was 34.7 ± 2.8 

µM, which is approximate to the value reported in the literature for glucosyl-

novobiocin (10 µM) (Patel et al., 2011). This IC50 value proved that glucosyl-

novobiocin has stronger binding ability to Hsp90 than novobiocin, whose IC50 is 

much higher, also confirming the results of previous research (Patel et al., 2011).  
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Figure 5.11 Native polyacrylamide gel analysis to probe glucosyl-novobiocin IC50. a) Hsp90 binding 
assay. 1, marker. 2-10, commercial Hsp90 with different concentrations of Glc-Nov. 2-9, Glc-Nov at 
1/100, 1/10, 1/5, 1/2, 1, 2, 5 and 10 times the IC50 (10 µM), respectively; 10, control (no inhibitor). 
Protein-inhibitor mixtures were analysed by native gel electrophoresis after overnight incubation at 
37 °C. Gel was stained by silver stain. b) Response curve of glucosyl-novobiocin. Abs was obtained 

from gel a). This proved that Glc-Nov is an Hsp90 C-terminal inhibitor. IC50 = 34.7 ± 2.8 µM. 

As mentioned earlier, geldanamycin is a known N-terminal inhibitor that interacts 

with Hsp90 at the ATP binding pocket, having little or no effect on dimerisation. 

Hence, the intensity of Hsp90 monomer bands on a native gel should be constant 

and independent of the concentration of inhibitor. 

The native gels presented in Figure 5.12 were obtained after overnight incubation 

at 37 °C of Hsp90 with geldanamycin at 0, 1/100 (0.5 nM), 1/10 (5 nM), 1/5 (10 nM), 

1/2 (25 nM), 1 (50 nM), 2 (100 nM) and 5 (250 nM) times the IC50 (50 nM) and at 1, 

10, 50, 100, 500, 1000, 5000 and 10000 nM. Either representing a narrower (a)) or a 

broader (c)) range of inhibitor concentrations, both gels show that the intensity of 

the monomer bands remained relatively constant. 

a) 

b) 

Glc-Nov 



CHAPTER 5 – FUNCTIONAL CHARACTERISATION OF HEAT SHOCK PROTEIN 90 TARGETED COMPOUNDS 

Isa Nobre da Cruz 269 

Nonetheless, in gel c), lane 2 (1 nM) showed a different pattern probably due to 

experimental error. Lane 10 (control, no inhibitor) also performed differently as 

observed previously. The maximum concentration of geldanamycin (10 µM) nearly 

reached its maximum solubility in water (20 µM). In summary, it could be concluded 

that geldanamycin did not bind the C-terminal domain to mediate the formation of 

Hsp90 dimers, which corroborates that it is an N-terminal inhibitor. 

 

 

 

 

 

 

Geld 

a) 

b) 
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Figure 5.12 Native polyacrylamide gel analysis to probe geldanamycin IC50. a) Hsp90 binding assay. 
1, marker. 2-9, commercial Hsp90 with different concentrations of geldanamycin. 2-8, geldanamycin 

at 1/100, 1/10, 1/5, 1/2, 1, 2, 5 times the IC50 (50 nM), respectively; 9, control (no inhibitor). 
Protein-inhibitor mixtures were analysed by native gel electrophoresis after overnight incubation at 

37 °C. Gel was stained by silver stain. b) Response curve of geldanamycin. Data showed that 
monomer stayed relatively stable. Abs was obtained from gel a). c) The same experiment with 

broader geldanamycin concentrations. 1, marker, 2-9, geldanamycin at 1, 10, 50, 100, 500, 1000, 
5000 and 10000 nM, respectively; 10, control (no inhibitor). No obvious increase of monomer 

observed. Lane 2 (1 nM) showed a different pattern probably due to experimental error. Control 
(lane 10) also performed differently as observed previously. The maximum concentration of 

geldanamycin (10 µM) nearly reached its maximum solubility in water. This proved that 
geldanamycin is an N-terminal inhibitor. 

In conclusion, the nGBA demonstrated to be a convenient, robust approach, which 

not only allowed distinction of the C- or N-terminal binding site of the inhibitors, but 

also permitted the IC50 value calculation for each individual inhibitor. Although a 

variety of assays have been reported to test Hsp90 activity in previous research, up 

until now there was no standardised method to ascertain Hsp90 inhibition. nGBA 

offers a reliable alternative for overcoming the problem of the study of Hsp90 

inhibitors. 

Geld 

c) 

d) 
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However, the nGBA presents a weakness in the fact that it does not allow the 

determination of the IC50 value for an N-terminal inhibitor, since there is no real 

dose-response curve, as a result of the relatively constant intensity of the monomer 

bands. 

Furthermore, glucosyl-novobiocin proved to be a C-terminal inhibitor with higher 

affinity for Hsp90 than novobiocin and, thus, a potentially better anti-cancer drug 

candidate. This illustrates the importance of glycosylation in drug discovery. 

Glycosylated derivatives exhibit good clinical use, as carbohydrate moieties affect 

drugs’ physicochemical properties, thermal stability and reactivity with receptors. 

Consequently, glycosylation represents an effective route for modification and 

optimisation of compounds (Kawasaki et al., 2009).  
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5.4.3 Hsp90 ATPase assay 

Unlike for the nGBA, the Hsp90 used in the ATPase assay was expressed from 

Human Hsp90α plasmid, pProEX HTa Hsp90α, a kind gift from Prof. Houry in the 

University of Toronto. This was owing to the fact that the commercial Hsp90 

presented very low activity when tested and, thus, there would be a need for very 

high amounts of protein to carry out the ATPase assay, which would become 

extremely costly. 

In the process of purification of the expressed Hsp90, the elution buffer used 

contained imidazole, which is known to block Hsp90 activity. As a result, it was 

necessary to change the buffer and Hsp90 was finally stored in a storage buffer (25 

mM Tris-HCl, pH7.5; 150 mM KCl; 10 % glycerol; 0.5 mM DTT) used in previous 

research (Zhao et al., 2010). 

As for the commercial Hsp90 used in the nGBA, this expressed and purified Hsp90 

was analysed by SDS-PAGE prior to its use in the ATPase activity assay. 

5.4.3.1 Expressed Hsp90 purity test 

Figure 5.13 illustrates the SDS-PAGE analysis of the expressed and purified Hsp90. 

Lanes 5, 6 and 7 of the SDS-PAGE gel showed a stronger band between 75 and 100 

kDa, which corresponds to the Hsp90 monomer. Fractions matching these lanes 

were then combined for the ATPase activity assay. It could be clearly seen that 

there was more than one band in the lanes containing purified Hsp90. This might be 

a result of protein degradation during SDS-PAGE and/or, more likely, low 

purification efficiency. For improved purification efficiency, size-exclusion 

chromatography could be used to purify proteins according to their molecular 

weight, as previously reported (Zhao et al., 2010). Although not 100 % pure, these 

results confirmed the suitability of the expressed Hsp90 for the ATPase activity 

assay.  
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Figure 5.13 Expressed Hsp90 SDS-PAGE analysis. 1, marker. 2, protein mixture before purification. 3, 
proteins in the flow-through fraction after washing with binding buffer. 4, proteins in the flow-

through fraction after washing with wash buffer. 5-7, purified Hsp90 protein. 10 % SDS-PAGE gel. Gel 
was stained by Coomassie stain. The SDS-PAGE gel showed a stronger band between 75 and 100 

kDa, which corresponds to the Hsp90 monomer. 

5.4.3.2 ATPase activity assay 

Dimerisation, ATP binding and hydrolysis are essential to Hsp90’s function 

(Panaretou et al., 1998). Previously developed assays for the characterisation of 

Hsp90 inhibitors include a high-throughput firefly luciferase assay (Galam et al., 

2007), a Western blot assay (Burlison et al., 2006), and an ATPase assay (Wayne and 

Bolon, 2007, Zhao et al., 2010, Richter et al., 2006). Quantification of the inhibition 

of the ATPase activity provides direct information not only on the type of binding, 

but also on the inhibitor’s dissociation constant (Ki). 

In this particular study, ATPase assay was considered a suitable method for testing 

the inhibition pattern of Hsp90 inhibitors, because by hydrolysing ATP, Hsp90 

mimics the effect of ATPase in this coupled assay. If inhibitors are added into the 

mixture, a slow change in NADH absorbance will be observed. Subsequently, the 

NADH depletion curve can be used for the analysis of Hsp90 kinetics. Additionally, 

as the ATP binding site, the N-terminal domain of Hsp90 is seen as an active site. 

Therefore, if an N-terminal inhibitor is used, it will compete against ATP for the 

same binding site, resulting in a competitive inhibition pattern. On the other hand, 
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if a C-terminal inhibitor is used, it will affect Hsp90’s structure, preventing 

dimerisation and making it impossible for ATP to bind to its pocket. However, it will 

not compete directly to the same binding site as ATP, resulting in a non-competitive 

inhibition pattern. 

In Lineweaver-Burk plots, a competitive inhibition pattern is characterised by an 

intersection on the same point of the y-axis of the curves obtained with different 

concentrations of an inhibitor. When the curves intersect on the same point of the 

x-axis, the inhibitor tested is a non-competitive inhibitor. 

So far, only Sti1 has been identified as a non-competitive inhibitor using an Hsp90 

ATPase assay (Richter et al., 2003). Nevertheless, a corresponding Lineweaver-Burk 

plot has not been previously published. 

Before studying the inhibition patterns of the chosen inhibitors, Hsp90’s kinetics 

was firstly tested without inhibitor. In order to do so, Hsp90 was incubated with 

different concentrations of substrate (ATP) and the decrease in the concentration of 

NADH was plotted over time. The reaction rate of Hsp90 was then plotted against 

different concentrations of substrate and, finally, Lineweaver-Burk plots were 

obtained. 

It is worth noting that the substrate ATP suffers spontaneous hydrolysis, causing 

NADH consumption. This hydrolysis was measured in the control group, which 

contained no inhibitor and no Hsp90, and subtracted from the concentration of 

NADH in each experiment. 

After the first test without inhibitor, the same procedure was applied for Hsp90 

with the various inhibitors in different concentrations. For each specific 

concentration of a certain inhibitor, a Lineweaver-Burk plot was obtained. In the 

end, all plots for that inhibitor were combined, analysed and the inhibitor constants 

were calculated. 

Similarly to what was done in the nGBA, Hsp90 was incubated with different 

concentrations of three inhibitors: a known C-terminal inhibitor, novobiocin (Nov); a 



CHAPTER 5 – FUNCTIONAL CHARACTERISATION OF HEAT SHOCK PROTEIN 90 TARGETED COMPOUNDS 

Isa Nobre da Cruz 275 

novobiocin derivative, glucosyl-novobiocin (Glc-Nov); and a known N-terminal 

inhibitor, geldanamycin (Geld). 

ATP concentrations were fixed at 0, 10, 20, 50, 100 and 250 µM for all inhibitors. 

For the C-terminal inhibitor novobiocin, concentrations varied within the following 

range: 0, 100, 300, 500 and 700 µM. Figure 5.14 represents the combination of the 

Lineweaver-Burk plots obtained for novobiocin. 

Figure 5.14 Inhibition of novobiocin (Nov) to Hsp90. The pattern showed that novobiocin is a non-
competitive inhibitor, which aligns with the fact that it binds to the Hsp90 C-terminal domain. Ki = 

226 ± 71 µM. 

For the novobiocin derivative glucosyl-novobiocin, concentrations varied within the 

following range: 0, 1, 5, 10, 20, 50, and 100 µM. Figure 5.15 illustrates the inhibition 

pattern of glucosyl-novobiocin. 

Figure 5.15 Inhibition of glucosyl-novobiocin (Glc-Nov) to Hsp90. The pattern showed that glucosyl-
novobiocin is a non-competitive inhibitor, which aligns with the fact that it binds to the Hsp90 C-

terminal domain. Ki = 18.5 ± 12.9 µM. 
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For the N-terminal inhibitor geldanamycin, concentrations varied within the 

following range: 0, 10 and 20 nM. Figure 5.16 elucidates the inhibition pattern of 

geldanamycin. 

Figure 5.16 Inhibition of geldanamycin (Geld) to Hsp90. The pattern showed that geldanamycin is a 
competitive inhibitor, which aligns with the fact that it binds to the Hsp90 N-terminal ATP hydrolysis 

pocket. Ki = 10 ± 6.5 nM. 

From the analysis of the above figures, it is possible to conclude that novobiocin 

presented a non-competitive inhibition pattern, which is consistent with the fact 

that it is a C-terminal inhibitor. Novobiocin’s glycosylated derivative, glucosyl-

novobiocin, revealed a similar inhibition pattern to novobiocin, confirming its 

characteristics of C-terminal inhibitor as well. The known N-terminal inhibitor 

geldanamycin exhibited the expected competitive inhibition pattern, corroborating 

the suitability of this ATPase assay for the study of the inhibition pattern of Hsp90 

inhibitors. 

Although the possibility that glucosyl-novobiocin could bind allosterically on Hsp90 

cannot be fully excluded, owing to the fact that it is an analogue of a known C-

terminal inhibitor and it behaved similarly to novobiocin, one may conclude that it 

functions as a C-terminal inhibitor. 

The Hsp90 ATPase assay also allowed the calculation of the inhibitor constant, Ki, 

for each inhibitor from its Lineweaver-Burk plots. The Ki value is related to the 

dissociation between the enzyme and the inhibitor, thus, lower Ki values correspond 

to higher affinity of the inhibitor for the enzyme and vice versa (Roberts, 1977). In 
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this experiment, the Ki values obtained for each inhibitor studied were Ki (Nov) = 

226 ± 71 µM, Ki (Glc-Nov) = 18.5 ± 12.9 µM and Ki (Geld) = 10 ± 6.5 nM, which were 

similar to those reported in the literature (Burlison et al., 2008, Patel et al., 2004). 

Glucosyl-novobiocin showed a more powerful inhibition effect than novobiocin, as 

its Ki value was much lower than novobiocin’s, offering another proof that 

glycosylation plays an important role in the enhancement of anti-cancer drug effect. 

In conclusion, the Hsp90 ATPase assay developed in this study presented a new 

method for the analysis of Hsp90 inhibition patterns. Previous research has 

demonstrated that inhibitors influence Hsp90’s ATPase properties (Zhao et al., 

2010), however no accurate quantitative analysis of that effect has been proposed. 

This approach has permitted to overcome those pitfalls. Furthermore, since this 

assay may be performed in a micro scale, using micro plates containing a vast 

number of samples in different conditions that can be analysed simultaneously, this 

method may be used as high-throughput screening of Hsp90 target inhibitors in the 

future.  
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5.5 Conclusions & Future Work 

5.5.1 Conclusions 

Hsp90 has become a very attractive target in anti-cancer drug discovery and, as a 

result, many inhibitors have been suggested. By simultaneously tackling all the 

hallmark traits of cancer cells, Hsp90 inhibitors have the potential to deliver a one-

step combinatorial attack on multistep oncogenesis. This offers the ability for a 

powerful anti-tumour effect across a broad range of cancers and may make it more 

difficult for a cancer cell to develop drug resistance. 

Both strategies – aiming to inhibit ATPase activity at the N-terminal domain and 

targeting Hsp90 dimerisation via the C-terminal domain – have yielded promising 

drug candidates. Yet, to fully explore the potential of compounds for Hsp90 

inhibition, convenient and robust assays are required to allow qualitative and 

quantitative characterisation of C- or N-terminal inhibition potential. 

This study aimed to develop a reliable and reproducible method capable of 

analysing Hsp90’s inhibition patterns. Two methods used in combination were 

reported in this chapter: native gel binding assay (nGBA) and Hsp90 ATPase assay.  

The nGBA was used to distinguish C-terminal and N-terminal inhibitors of Hsp90, 

through the observation of conformational changes of the protein caused by the 

binding of an inhibitor, which could be visualised on a native gel. This not only 

provided qualitative information about the inhibitors, but also quantitative, as their 

IC50 values could be obtained from the dose-response curves.  

On the other hand, the Hsp90 ATPase assay was used to qualitatively predict the 

inhibition pattern of an inhibitor through the study of its Lineweaver-Burk plot, also 

distinguishing C- and N-terminal inhibitors. In terms of quantitative information, this 

technique allowed to calculate the Ki value for each inhibitor. 
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In conclusion, the combined use of these two methods proved to be a convenient 

and robust approach to characterise Hsp90 inhibitors and will aid the development 

of Hsp90 targeted anti-cancer drugs. 

Moreover, the analysis of a novel novobiocin analogue, glucosyl-novobiocin, 

through these techniques showed improved anti-cancer activity for the analogue 

when compared with novobiocin, demonstrating that glycosylation is a good way to 

enhance the anti-cancer properties of compounds. 

The work reported in this chapter has been published (Cruz et al., 2013b) and the 

article can be found in Appendix. 

 

5.5.2 Future work 

The developed native nGBA combined with the Hsp90 ATPase assay can be used to 

screen more Hsp90 possible inhibitors, which will present a new prospect to the 

study of Hsp90, making it possible to create libraries of fully characterised 

compounds. Information in these libraries will then help to predict the behaviour of 

these drugs in the human body, facilitating metabolic studies and the anticipation of 

possible side effects. 

An important step further would be to discover the exact binding site of the 

inhibitors in the Hsp90 structure. For that purpose, a new PhD project undergoing in 
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our group combines protease fingerprinting and photo-affinity labelling utilising LC-

MS/MS to further identify and reveal Hsp90 C-terminal binding site of novobiocin 

and its derivatives. Photo-reactive azide moieties placed in the p-, o- or m- positions 

are used in the Tolyl side chain to mimic the sugar group, which is present in 4-

position of the coumarin ring in novobiocin and its analogues. A recombinant His-

tagged Hsp90 C-terminal construct will be incubated in the presence or absence of 

these compounds followed by UV-irradiation. Subsequent MALDI-TOF analysis will 

give information on the exact binding area. The identified site will then be 

characterised by molecular modelling and molecular dynamics to give a 

computational model of bioactive conformation. On the other hand, the 

comparison within different modifications of novobiocin will also enlighten upon 

optimisation of novobiocin’s structure to achieve enhanced efficiency. 

Further optimisation might allow some of the limitations identified so far in the 

inhibitors to be overcome. Structure-activity relationships with the known drug 

analogues will shed more light on the chemical features required for Hsp90 

inhibitory activity. Gene expression profiling of Hsp90 inhibitors from the different 

chemical classes may be used to distinguish target-specific molecular effects from 

changes uniquely due to the chemical backbone of these compounds. 

In the development of novel Hsp90 inhibitors, an option is to discover completely 

new chemical classes of Hsp90 inhibitors, which can be identified by high-

throughput screening of diverse compound libraries using both cell-free 

biochemical assays and also cell-based methods. Another interesting possibility 

would be to design compounds that introduce a higher degree of molecular 

selectivity to the Hsp90 inhibitory activity in terms of the client proteins affected, by 

targeting specific co-chaperones, or specific members of the Hsp90 family. 
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The use of proteomics proved to be a powerful approach to identify un-regulated 

proteins and to help decipher the complex signalling circuitry or pathways involved 

in various biological processes. In particular, the use of 2D-PAGE allowed the 

identification and analysis of various proteins simultaneously, with the advantage of 

enabling their immediate visualisation, through separation and staining. This not 

only allowed the comparison of protein expression between pairs of samples with 

different characteristics, i.e. non-enriched/enriched, sensitive/resistant, non-

cancer/cancer, it also allowed patterns in expression to be identified. 

Nevertheless, the use of 2D-PAGE would not be as valuable without the 

complement of MS techniques capable of identifying the differentially expressed 

proteins. Recent technical advances in MS-based proteomics have made it possible 

to identify proteins with greater ease and sensitivity than previously. Subcellular 

organellar proteomic studies have further provided detailed mapping of the 

constituent proteins of various organelles. Therefore, protein spots showing 

different intensities between samples of the same pair are the most likely to 

contain proteins of interest. These protein spots should then be excised, digested 

and identified by MS, aiming the discovery of protein biomarkers, which can be 

targets for future medicines or help in the diagnosis and prognosis of diseases. 

In this project, as part of a target discovery approach, proteomics was fundamental 

for the identification of protein targets in two distinct studies.  

The first study used the archetypal glycomimetic iminosugar and therapeutic NB-

DNJ/miglustat/Zavesca in a glyco-AeP strategy to elucidate a focused subsection of 

the proteome, hypothetically relevant to mammalian reproduction. The discovered 

binding partners and the associated genomic analysis implicate a subset of proteins 

as important in male fertility. These new interactions would not have been readily 

predicted and might define the mechanisms by which NB-DNJ causes male 

infertility. Since miglustat passed the safety tests to be approved for the treatment 

of Gaucher disease in humans, and is already available on the market, it might lead 

to the discovery of a male birth control pill. However, further studies in humans are 

needed. 
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In the second study, taxol and carboplatin resistance-associated proteins were 

identified by MS, after comparing the protein expression profile of sensitive and 

resistant cell lines and different ovarian cancer tissues, through 2D-PAGE. A number 

of proteins, belonging to different classes and responsible for distinct functions 

within the cell, such as cytoskeleton and cell structure, detoxification and stress 

response and cellular metabolism, were identified in at least one of the three cell 

lines or five tissues studied. This demonstrated that the development of resistance 

is indeed a multi-factorial process, involving various biological pathways. The 

pathways most highly associated with the un-regulated proteins identified were 

also discovered in this study and validation of a few key proteins undertaken. 

Despite its numerous advantages, proteomics also presents limitations. Ideally, 

proteomics should allow the identification of an entire proteome with 100 % 

protein sequence coverage. In reality, the large dynamic range and complexity of 

cellular proteomes results in over-sampling of abundant proteins, while peptides 

from low abundance proteins appear under-sampled or remain undetected. 

Mechanisms that contribute to increase the quantity of peptides identified and the 

quality of MS/MS spectra acquired have long been a challenge and are currently 

under development. Proteome equalisation technology has proven to be a 

promising methodology to improve low abundance protein identification 

confidence, reproducibility, and sequence coverage in proteomics experiments. This 

important step opened a new avenue of research for improving proteome coverage 

(Fonslow et al., 2011). 

A study by Di Michele et al. (2010) used multiplexed proteomics technology, 

whereby 2D separation was followed by sequential staining with two different dyes 

(2D-DIGE), allowing both the glycoprotein expression profile as well as the total 

protein expression profile to be obtained. This was combined with Multi-lectin 

Affinity Chromatography (MAC) to allow detection of low-abundance glycoproteins 

by removing larger non-glycosylated proteins. It, therefore, resulted in the 

identification of chemoresistant biomarkers, which could not be observed by 

standard analysis due to their low concentration. 
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Just as the previously mentioned study used dyes that bind specifically to sugar 

residues on the proteins, ICAT (isotope-coded affinity tag) labelling, which labels 

specific amino acid residues on protein lysates, can also be used to reduce the 

complexity of samples and allow the quantification of low abundance proteins, 

without limiting the sample to a small population (Stewart et al., 2006). 

Any proteome has a highly dynamic nature. It may vary in different cells and tissue 

types of the same organism and in different growth and developmental stages. It is 

also dependent on environmental factors, disease, drugs and stress conditions. 

Even small changes in experimental conditions can have significant effects on the 

expression, folding and activity of proteins (Taylor et al., 2008). This might affect 

reproducibility, which represents another limitation of proteomics. In order to 

minimise it, a sufficient number of sample replicates should be used in each 

experiment to ensure, as much as possible, that the detected changes are indeed 

related to the condition under analysis, and not a result of intra-sample variation. 

One of the greatest challenges in the diagnosis and treatment of human disease is 

the identification of biomarkers for disease detection at an early and still treatable 

stage, and for the molecular definition of disease progression, to allow for 

implementation of more effective treatments. Numerous gene expression array and 

proteomic studies on cells and tissues have shown, over the years, that such 

markers do exist and can be associated with pathological changes in the disease and 

its prognosis.  

However, the fact that most tissues are not readily accessible for routine screening, 

often requiring invasive procedures for sample collection, and that the affected 

cells/tissue segments might be difficult to identify in the first place, are just some of 

the drawbacks of using cells and tissues.  

Therefore, it has been observed a rising interest in blood plasma as a potentially 

rich source of biomarkers, since this body fluid is readily accessible and thought to 

acquire proteins secreted, shed, or otherwise released from the tissues through 

which blood circulates. Biomarkers identified in plasma give an indication of the 
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status of the different organs and tissues in our body, making it interesting to 

identify and quantify them (Omenn et al., 2005). 

To this end, recent substantial efforts in technology development, especially MS-

based analytical methodologies, have significantly increased the ability to 

investigate the plasma proteome. Nevertheless, a major obstacle for the success of 

efforts to discover cell and/or tissue-derived changes in the blood plasma protein 

profile has been its extreme complexity. Blood plasma consists of tens of thousands 

of different molecular species that span a concentration of at least 10 orders of 

magnitude, being dominated by highly abundant proteins such as albumin 

(Anderson and Anderson, 2002). 

Still part of the target discovery approach embraced by this project (but with a 

completely different purpose), a reliable and reproducible assay was developed for 

the screening of Hsp90 targeted compounds. In this study, a method able to 

qualitatively and quantitatively distinguish C-terminal and N-terminal inhibitors of 

Hsp90 (nGBA), and a method capable of analysing Hsp90’s inhibition patterns 

(Hsp90 ATPase assay) were developed. The combined use of these two methods 

proved to be a convenient and robust approach to characterise Hsp90 inhibitors 

and will aid the development of Hsp90 targeted anti-cancer drugs. 

The development of assays for the screening of inhibitors of proteins that have 

already been recognised as important drug targets, such as the anti-cancer drug 

target Hsp90, is of extreme importance for the progress of these targets in the drug 

discovery process. 
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