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Abstract. Prostate cancer diagnosis involves the highly subjective and
time-consuming Gleason grading process. This paper proposes the use
of Max-Margin Conditional Random Fields (CRFs) towards the aim of
creating an automatic computer-aided diagnosis system. Unlike previous
methods, this approach enables us to fuse information from multiple clas-
sifiers while leveraging CRFs to model spatial dependencies. We perform
grading on superpixels which reduce redundancy and the size of data.
Probabilistic outputs from independent classifiers are passed as input to
a Max-Margin CRF, which then performs structured prediction on the
biopsy core, segmenting the image into regions of benign tissue, Gleason
grade 3 adenocarcinoma and Gleason grade 4 adenocarcinoma. The sys-
tem achieves an accuracy of 83.0% with accuracies of 83.6%, 86.9% and
77.1% reported for benign, grade 3 and grade 4 classes respectively.

1 Introduction

Gleason grading prostate tumour biopsies is a vital part of the prostate can-
cer diagnostic process. A histopathologist performing Gleason grading first mi-
croscopically examines a hematoxylin and eosin (H&E) stained biopsy core at
low magnification to indentify regions of interest (ROIs) before inspecting each
ROI at a higher magnification to assign it a Gleason grade. Despite being the
predominant prostate tumour grading system for nearly 50 years, the Gleason
system has its shortcomings. For instance, the method is very subjective with a
high degree of intra- and inter-observer variability[9]. Gleason grading is also an
incredibly time-consuming process. Considering approximately 60-70% of biop-
sies are benign, this suggests most of a histopathologist’s time is spent sifting
through benign tissue[3]. Consequently, there is a need for computer-aided diag-
nosis (CAD) to improve the accuracy and efficiency of the grading process.

A significant body of research has been dedicated towards this task. Monaco
et al.[8] use a probabilistic Markov Random Field (MRF) prior called a Proba-
bilistic Pairwise Markov Model (PPMM) in a gland segmentation framework to
enforce spatial dependencies during classification. Doyle et al.[3] and Gorelick
et al.[5] both employ AdaBoost to learn meta-classifiers that aggregate informa-



Table 1: Overview of the proposed method in comparison to closely related work
Method Classification

Algorithm
Meta-
classification

Spatial De-
pendencies

Task

Doyle
et al.[3]

AdaBoost Yes No Segment an image into benign
and cancerous regions

Gorelick
et al.[5]

AdaBoost Yes No Grade images of manually identi-
fied ROIs

Monaco
et al.[8]

PPMM No Yes Segment and classify glands as
benign or cancerous

Proposed
method

Max-Margin
CRF

Yes Yes Segment an image into benign,
Gleason 3 and Gleason 4 regions

tion from multiple weak ‘i.i.d. classifiers’1 to produce a strong classifier. [3] uses
AdaBoost in a multi-resolution pixel-wise framework to segment an image into
benign and cancerous regions. On the other hand, [5] uses AdaBoost to (i) clas-
sify superpixels as one of nine tissue components and (ii) grade an image based
on the distribution of tissue components. Besides these, most studies focus on
feature selection, using i.i.d. classifiers such as Support Vector Machines (SVMs)
and k-Nearest Neighbours (k-NN) with some combination of colour, texture and
morphometric features to segment or classify images[14, 11].

This paper presents a method that segments H&E stained biopsy cores into
regions of benign tissue, Gleason grade 3 adenocarcinoma and Gleason grade
4 adenocarcinoma. Table 1 compares the proposed method to the closest in
previous literature. We use Max-Margin Conditional Random Fields (CRFs) to
perform multi-class meta-classification on the outputs of two multi-class i.i.d.
classifiers while incorporating spatial dependencies into the process. Like [3] we
perform classification on every region in an image (i.e. not just on segmented
glands), enabling the algorithm to function even in highly cancerous regions
which often have poorly defined glands[4]. However, we use superpixels to over-
segment an image prior to performing classification. This significantly reduces
redundancy and the size of data.

2 Proposed Method

Our solution uses machine learning and computer vision algorithms to segment
and grade H&E stained biopsy cores. The method employs Simple Linear Iter-
ative Clustering (SLIC)[1] to over-segment an image into superpixels. We then
extract colour and texture features from each superpixel to perform classification
in two stages. In the first stage, we use a k-NN and an SVM to obtain individ-
ual class probabilities for each superpixel. A Max-Margin CRF then acts as a
meta-classifier, combining information from the first stage classifiers while incor-

1 We define an ‘i.i.d. classifier’ as a classifier that assumes data points are independent
and identically distributed (the i.i.d. assumption).



Fig. 1: Overview of the proposed method.

porating spatial dependencies into the prediction process. The following sections
describe and motivate the selection of each individual algorithm in more detail.

2.1 Pre-processing

The computational complexity of performing inference on a general CRF in-
creases with the number of vertices and edges in the graph. Our method groups
perceptually similar pixels to form superpixels. This reduces the number of ver-
tices in the CRF, thus reducing the computational complexity of inference. We
use SLIC[1] to do this as the algorithm is simple, fast and memory efficient. Given
a superpixel size S, SLIC clusters an image I in the colour and spatial domains

using an algorithm similar to k-means clustering to form k = |I|
S2 superpixels.

Next, we extract colour and texture features from each superpixel. A 17-bin
histogram of RGB pixel intensities and the mean RGB pixel intensity represent
the colour of a superpixel while histograms of Local Binary Patterns (LBP)[12]
describe its texture. We use the ‘uniform’ variant of LBP as it is both greyscale-
and rotation-invariant. For each pixel c, we construct a P -bit binary number
with the indicator function I[gi ≥ gc], i = 1, . . . , P where gc is the greyscale
pixel intensity of c and gi are the greyscale pixel intensities of P points at a
radius R around c. The LBP label for uniform patterns (i.e. there are, at most,
two 0/1 transitions in the P -bit number) is the number of 1s in the P -bit number
while the label for non-uniform patterns is P+1. We then construct a (P+2)-bin
histogram of LBP labels to obtain a texture descriptor for each superpixel.

2.2 Classification

At this stage it is possible that some superpixels may not contain enough useful
information to distinguish between the three classes. A histopathologist looking
at the same region would consider the information in surrounding regions to
make a decision. Structured prediction offers the ability to do this by incorpo-
rating spatial dependencies between superpixels into the prediction process. We
perform structured prediction with a function f : X → Y from the input domain
X to a structured output domain Y where

fw(X) = arg max
Y ∈Y

gw(X,Y ), X ∈ X (1)

for some cost function gw(X,Y ) that describes the compatibility of structured
output Y with input X as parameterised by w. In our case, the input X is



the probabilistic output from our first stage classifiers, a CRF G encodes the
structure of the output and we use max-margin learning to find the optimal w.

First Stage Classifiers. The first stage classifiers are a k-NN and an SVM that
output class probabilities for each superpixel. The k-NN calculates class prob-
abilities for each data point as the proportion of the k closest points belonging
to each class. The SVM uses a modified version of Platt scaling[6] to provide
class probabilities given the decision function outputs of a non-linear SVM. The
output from this stage is a 6× 1 vector of class probabilities for each superpixel.

Conditional Random Fields. The graph G = (V, E) is a pairwise CRF that
models the conditional probability of a structured output Y as a combination of
unary and pairwise terms. We define G such that each vertex v ∈ V represents
a superpixel and edges eu,v ∈ E connect two adjacent superpixels u, v ∈ V. The
energy or cost of a given labelling Y ∈ Y is then expressed as

E(Y ) =
∑
v∈V

U(v) +
∑

eu,v∈E
P (u, v) (2)

where U(v) is the unary term and P (u, v) is the pairwise term. U(v) encodes
the compatibility of a given labelling yv ∈ Y with the inputs xv ∈ X at vertex
v. To use the CRF as a meta-classifier, we model U(v) as a linear combination
of the class probabilities from the first stage classifiers xv. This is written as

U(v) = 〈wU
yv
,xv〉 (3)

where wU
yv

are the unary parameters for the class yv learnt during training.
P (u, v) represents the compatibility of the labelling yu and yv for the adjacent
vertices u and v. This is learnt directly during training and is written as

P (u, v) = wP
yu,yv

(4)

where wP
yu,yv

is the symmetric pairwise parameter for the classes yu and yv learnt
during training. Performing ‘prediction’ on the CRF amounts to performing in-
ference on the graph G to find the optimal solution Y ? that minimises the energy
function E. The general pairwise CRF is usually a loopy graph which renders
exact inference intractable. However, good approximations of the solution can
be obtained using a variety of methods. Here we use Alternating Directions
Dual Composition (AD3)[7] as it gives us better performance compared to other
algorithms such as graph cuts.

Max-Margin Learning. Our method uses the Structured SVM (SSVM) for-
mulation by Tsochantaridis et al.[15] to do max-margin learning. This formula-
tion is particularly appealing as it enables the use of arbitrary loss functions. In
this case we have chosen to use per-superpixel 0-1 loss, expressed as

∆(Ŷ , fw(X)) =
∑
v∈V

I[Ŷv 6= fw(X)v] (5)



where I[a] is an indicator function and Ŷ the ground truth. The SSVM minimises
the following empirical risk function to learn the optimal parameters w?:

w? = arg min
w

1

2
‖w‖2+

C

|N |
∑
n∈N

∆(Ŷ n, fw(Xn))−gw(Xn, Ŷ n)+gw(Xn, fw(Xn))

(6)
Here N is the set of ground truth images.

2.3 Experimental Setup

Our experimental setup uses open source implementations of the above meth-
ods[1, 2, 10, 13, 16] to make it easily reproducible. The data set contains images
of H&E stained biopsy cores collected from 122 patients. These were graded by
two experienced histopathologists, each with 10 years experience in genitouri-
nary pathology. We select ten biopsy cores for each of the Gleason scores 3+3,
3+4, 4+3 and 4+4, ensuring each core contains a continuous Gleason pattern at
least 0.4mm in length. From these, we extract 146 images of tissue segments at
20× magnification: 90 for training and 56 for testing. We create ground truth by
labelling the superpixels in these images. Where there are two or more classes
of pixels within a superpixel, we select the higher Gleason grade as the label.

3 Results & Discussion

The Jaccard Index (JI) quantifies the overall performance of the method. We
define it as the fraction of superpixels that are correctly labelled, expressed as

JI =
|L̂ ∩ L|
|L̂ ∪ L|

(7)

where L̂ is the set of predicted superpixel labels and L is the corresponding
ground truth. We compare the performance of i.i.d. classifiers (Table 2) against
our method (Figure 2), each using different combinations of normalised input
features (i.e. colour/texture features only or both colour and texture features).

Table 2 shows i.i.d. classifiers struggle to perform classification at superpixel
level. The two best i.i.d. classifiers are the SVM and k-NN that use both sets
of features, achieving JIs of 0.604 and 0.583 respectively. In contrast, the worst
variant of our method achieves a JI of 0.666. Figure 3 compares sample output
from an SVM against our method, revealing its advantages over i.i.d. classifica-
tion. The output of our method is a lot smoother and more consistent with the
ground truth compared to the SVM. Figure 2 shows the JI of our method as we
vary the input features to the first stage classifiers. When the first stage k-NN
uses both sets of features, the difference in JI as we vary the features of the
SVM is negligible. Similarly, there is an insignificant difference in JI when the
SVM uses either texture or both sets of features. This tells us that using the best
i.i.d. classifiers does not necessarily lead to better overall performance. Instead,



Table 2: Jaccard Index for i.i.d. classifiers with different combinations of features.
Classifier SVM SVM SVM k-NN k-NN k-NN

Input Features colour texture both colour texture both

Jaccard Index 0.562 0.545 0.604 0.547 0.530 0.583

k−NN (both) k−NN (colour) k−NN (texture)
0.5

0.6

0.7

0.8

0.9

 

 

0.747
0.759 0.751

0.775

0.666

0.767

0.714

0.830

0.723

SVM (both)

SVM (colour)

SVM (texture)

Fig. 2: Comparison of Jaccard Indices for Max-Margin CRFs using different com-
binations of input features to the first stage classifiers.

(a) Ground truth

(b) Output from a SVM (both) (c) Output from our method

Fig. 3: This visualisation demonstrates the advantages of structured prediction.
The output of the Max-Margin CRF is clearly a lot smoother and closer to the
ground truth data than that of the SVM.



Table 3: Confusion matrix for the max-
margin CRF using SVM (colour) and k-
NN (texture) as input.

Predicted
Benign Grade 3 Grade 4 Total

A
ct

u
a
l Benign 1988 301 90 2379

Grade 3 252 2875 182 3309
Grade 4 194 370 1902 2466
Total 2434 3546 2174 8154

Table 4: Confusion matrix to evalu-
ate the performance of the best clas-
sifier on the separation between be-
nign and cancerous regions.

Predicted
Cancerous Benign Total

A
ct

u
a
l Cancerous 5329 446 5775

Benign 391 1988 2379
Total 5720 2434 8154

the method performs best when we use weaker first stage classifiers. The results
also indicate that texture features are weighted higher than colour features in
an SVM trained on both sets of features. Consequently, dropping colour features
and training the SVM with texture features only has little effect on performance.
We also notice the method performs best when each of the first stage classifiers
use different features. We suggest that this is because each classifier provides the
Max-Margin CRF with a different insight into the data.

The confusion matrix of the best performing classifier for the three-class
grading problem (Table 3) indicates good grading accuracy for each individual
class. The method performs worst on Gleason grade 4 regions, classifying these
correctly only 77.1% of the time. These regions were most often misclassified as
Gleason grade 3 (15% of the time). While not ideal, this balance of classification
error is preferable to the converse. This is more evident when we consider the
confusion matrix for the separation between benign and cancerous regions (Table
4). The results indicate that the proposed method has a sensitivity of 92.3% and
a specificity of 83.6% for separation between benign and cancerous regions. This
balance of misclassification is desirable as we would rather overdiagnose than
underdiagnose in a CAD system. Otherwise the system could miss cancerous
regions, resulting in the disease being completely undiagnosed in some patients.

4 Conclusion & Future Work

This paper presented a novel approach to grading prostate tumour biopsies
for CAD. Max-Margin CRFs were used both as a meta-algorithm and a struc-
tured prediction mechanism to provide an accurate segmentation and labelling
of prostate tissue images. In this case only colour and texture features were
extracted from each superpixel. Using more first stage classifiers on different
features (e.g. morphometric features like nuclei density) could improve the sys-
tem. Specifically, we aim to capture characteristics to distinguish grade 4 from
grade 3 tissue. Another weakness to address in future work is the inability to tune
the trade-off between sensitivity and specificity for separation between benign
and cancerous regions. We also intend to perform pixel-wise evaluation using a
larger data set to enable more accurate quantification of performance.
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