
Pidgin Crasher : Searching for Minimised
Crashing GUI Event Sequences

Haitao Dan, Mark Harman, Jens Krinke, Lingbo Li, Alexandru Marginean and
Fan Wu

CREST, Department of Computer Science,
University College London, Malet Place, London, WC1E 6BT, UK.

Abstract. We present a search based testing system that automatically
explores the space of all possible GUI event interleavings. Search guides
our system to novel crashing sequences using Levenshtein distance and
minimises the resulting fault-revealing UI sequences in a post-processing
hill climb. We report on the application of our system to the SSBSE
2014 challenge program, Pidgin. Overall, our Pidgin Crasher found 20
different events that caused 2 distinct kinds of bugs, while the event
sequences that caused them were reduced by 84% on average using our
minimisation post processor.

1 Introduction

Graphical User Interface (GUI) programs react to non-deterministic event se-
quences, with the engineering consequence that the functionalities provided by
the software may be invoked in unexpected ways, possibly leading to faults. In
addition, software engineers need to protect the functionalities from complex
user inputs including malicious attacks. This challenges testers to find unusual
test sequences that may expose critical defects before they are experienced by
users or exploited.

Current GUI testing primarily relies on manual and record-playback tech-
niques [9, 12]. Even with a record-playback tool, GUI testing remains a time
consuming procedure, as it is human-centric: testers need to manually search for
interesting test sequences. Another problem is that the quality of the tests de-
pends on the testers’ experience and understanding of the program. The nature of
GUI programs requires testers to explore an exponential number of interleavings
of test sequences. This is usually impossible, so testers rely upon assumptions
about the way the software will be used to constrain the test sequences that
need to be explored.

In this paper we focus on automated search-based GUI testing for the SSBSE
Challenge program Pidgin. Pidgin is a popular instant messaging program [11].
It is developed as an open framework, for which others can develop plugins to
enrich its functionalities. Of course, such an open and pluggable architecture
may also introduce security vulnerabilities, because plugins could be embedded
with malware and exploited by attackers.

2

We introduce and present a system testing tool, Pidgin crasher, that is em-
bedded in Pidgin and complements existing human-centric GUI testing. Pidgin
crasher is a GUI testing tool in which search-based algorithms are applied in
both on-the-fly test generation and in a post-processing test reduction phase.
In order to generate effective crash sequences to reveal potential bugs, Pidgin
crasher selects the next valid event to send by maximizing the Levenshtein dis-
tances to all previously discovered crashing sequences. This selection technique
generates shorter sequences that reveal more bugs in Pidgin compared to a ran-
dom sequence generation process.

In order to generate test sequences for Pidgin, we use a combination of a
Greedy search and a simple hill climbing post processing phase. The Greedy
phase generates incrementally longer test sequences, guided by the measurement
of Levenshtein distance to previously encountered sequences. The hill climbing
phase is a cleanup operation, similar to those used in Genetic Improvement to
reduce the edit sequence [8]. It seeks to minimise the length of the crashing test
sequences found in the Greedy phase. The overall approach promotes diversity
among the set of crashing sequences found by our approach.

We compare our Greedy search with a random approach and a ‘tabu random’
(that is forbidden to revisit previously encountered sequences, but is not guided
by Levenshtein distance). We call this tabu random approach Blocked since it is
blocked from considering previously encountered sequences.

In our experiments, we run Pidgin crasher 1005 times on each of the three
different configurations: Random, Blocked and Greedy. In every execution we
found at least one crashing UI sequence. On average, crash sequences generated
by our greedy approach are shorter than those generated by the blocked approach
(17.5 vs 58.4 UI events).

Overall, we identified 20 different crashing points triggered by 12 different
UI events. Further analysis shows that these crashes are caused by two different
types of bugs which we term Type-1 and Type-2. Type-1 faults are those caused
by failure to check for NULL pointers passed as actual parameters, while Type-2
are those faults caused by Pidgin requiring the existence of some non-existent
resource (e.g. a window or widget). Finally, in our crash sequence reduction
experiments, we found that the hill climber reduces crashing sequences with an
average reduction factor of 4.88-7.50 (84% on average).

Related work: To apply the search-based testing, a UI model representing the
behaviour of the application under test is usually used to initialise the original
tests. Much of the previous work focusses on automating GUI testing [1–4, 7, 10]
with a model (manually generated or automatically synthesised), which is used
to guide the test generation to follow common user patterns. The closest related
work is the EXSYST approach [5]. Like EXSYST we use search-based tech-
niques to find input sequences. However, we target crashing behaviour, whereas
EXSYST targets coverage. Furthermore, EXSYST is guided by a state-based
model, whereas Pidgin crasher does not require a model. In the way that new
test sequences are derived from previous crash sequences, our approach is also
similar to the concept of test regeneration proposed by Yoo and Harman [13].

3

2 Test Generation, Execution and Reduction

Pidgin crasher simply targets crashing behaviour, so it does not require a test
oracle [6]. It is designed as an automatic testing plugin for Pidgin based on
GTK+, which is a multi-platform toolkit for creating GUIs used by Pidgin. We
are using low-level APIs so that the framework not only works on Pidgin, but
can also be easily adapted to other GTK+ based programs.

On-the-fly GUI testing: Pidgin crasher conducts testing of GUI programs at
the system level. We implement three different on-the-fly UI sequence generation
approaches: Blocked and Greedy search to compare with Random search.

In the Blocked approach (Algorithm 1), Pidgin crasher repeats a procedure
of randomly selecting a GTK+ widget (a UI element such as a menu or button
from the GTK+ framework) and sending a random but valid signal1 to Pidgin
until a crash is observed. The whole process is dynamic, meaning the number of
windows varies over time and the window-selecting step adapts to the changing
number of windows. In order to avoid previously discovered crashing points, a
block list is loaded at the beginning of the random search process. The algorithm
records the crashing sequence by writing every emitted signal into a log file.

LoadBlockList();
victim = SelectTopWindow() ;
repeat

Randomly keep victim or execute victim = SelectTopWindow() ;
target = SelectWidget(victim) ;
sig = SelectSignal(target) ;
if not IsBlocked(sig) then

WriteCrashSequence(sig);
SendSignalByName(target, sig, ...);

end

until a crash ;

Algorithm 1: Random search with block list

The Greedy search approach, on the other hand, uses the previously generated
sequences to guide the selection of new signals. More specifically, suppose we
have a set of signals, S, and a set of crashing sequences previously generated
P = {S1, ...Sn} and each sequence Si is an ordered string of signals Si = si1si2 ...,
sij ∈ S. When Sc = s1...sk is the current sequence of signals we have sent so far
(but for which we have yet to encounter a crash), we select the next signal sk+1

by computing the furthest Levenshtein distance between the current sequence
after the signal is appended and all previous sequence in P. More formally,

∀si∈S : M(P, s1...sksi) ≤M(P, s1...sksk+1)

where M(P, S) = minSi∈P{D(Si, S)} and where D(x, y) is the Levenshtein dis-
tance between x and y.

1 Events from the X server are turned into GTK-specific signals by GTK.

4

3 Experiments and Results

In this paper, we answer the following Research Questions (RQs):

RQ1 How effectively can Pidgin crasher find potential bugs?
RQ2 What are the coverage of crash points, convergence and redundancy of

the sequences found by each of the three versions of Pidgin crasher?
RQ3 What are the kinds of faults found by Pidgin crasher?

We use Pidgin crasher to generate crashing sequences in each of its three
different modes: Random, Blocked, Greedy search. In the Random mode, the
next signal to send is randomly selected from all available signals, while the
other two are those approaches described in Section 2.

Pidgin crasher is continuously invoked to produce 201 crashing sequences
in each mode. We repeat the procedure 5 times, so Pidgin crasher is run for
a total of 3015 (201 × 5 × 3) times. The sequences so-produced are minimised
by our Hill Climbing process to remove redundancy. In the experiments, we
repetitively send signals to trigger different functionalities via the special API call
g signal emit by name(GtkObject *object, const gchar *name, ...) to
which we pass the selected widget in object, the selected signal in name, and all
arguments in the variable argument list are passed NULL. All experiments were
run on Ubuntu 13.04 with debug versions of GTK+ 2.24.17 and Glib 2.38.0.

Answer to RQ1: According to the top-right table in Figure 1, the average
lengths of the crashing sequences generated by the Random, Blocked and Greedy
modes are 14.5, 58.4 and 17.5, respectively. In the same order, the maximum
lengths are 131, 673 and 135. All three modes can find the shortest possible
sequence with length 1 (Column Min). In the last column, it is shown that,
on average, Greedy mode spends more time to generate 201 crashing sequences
due to the calculations of Levenshtein distance. In summary, Pidgin crasher can
effectively crash Pidgin in all three modes.
Answer to RQ2 (Coverage): The bottom table in Figure 1 lists the crashing
points found by all runs of Pidgin crasher. Of the 9 columns in this table, columns
6, 7 and 8 report the number of times each crash point is discovered. In the
Random approach, 11 out of 20 crashing points are covered, whereas blocked
covers 13 and greedy covers 19. So both the Blocked and the Greedy search have
a better coverage than the Random approach, while the Greedy search achieves
the highest overall coverage, finding all but one of the crashing points found by
all approaches.
Answer to RQ2 (Convergence): Figure 1 top-left shows the growth of the
number of different crashing points found (average of 5 runs). Even though both
Blocked and Greedy search find more crashing points than the Random approach,
the Greedy search clearly converges more quickly than the Blocked approach.
Answer to RQ2 (Redundancy): In order to compare the redundancy of
the crashing sequences generated by these approaches, we use the simple Hill
Climbing to remove any irrelevant signals from the sequences. The results show
that the crashing sequences from Random, Blocked and Greedy search can be

5

Rnd Blk Grd

add_room_to_blist_cb GtkLabel move-cursor gtkroomlist.c:250 1 1 3 2

gtk_editable_insert_text GtkEntry insert-at-cursor gtkeditable.c:170 0 2 13 1

gtk_label_activate_link GtkLabel activate-link gtklabel.c:5838 45 116 206 1

gtk_menu_set_child_property GtkMenu move-scroll gtkmenu.c:926 0 1 0 1

gtk_notebook_real_switch_page GtkNotebook switch-page gtknotebook.c:6142 20 39 52 1

gtk_path_bar_scroll_down GtkMenu move-scroll gtkpathbar.c:803 0 0 1 2

gtk_path_bar_scroll_down GtkButton clicked gtkpathbar.c:803 0 0 1 2

gtk_real_menu_item_toggle_size_request GtkMenuItem toggle-size-request gtkmenuitem.c:1452 811 681 435 1

gtk_tree_model_get_valist GtkTreeView row-activated gtktreemodel.c:1470 5 12 11 2

join_button_cb GtkMenuItem activate gtkroomlist.c:265 0 0 1 2

join_button_cb GtkButton clicked gtkroomlist.c:265 0 0 1 2

location_button_toggled_cb GtkToggleButtontoggled gtkfilechooserdefault.c:4662 0 0 1 1

menu_add_pounce_cb GtkMenuItem activate gtkconv.c:1169 4 14 41 2

menu_add_pounce_cb GtkMenuItem activate-item gtkconv.c:1169 6 18 51 2

menu_invite_cb GtkMenuItem activate gtkconv.c:1250 12 7 46 2

menu_invite_cb GtkMenuItem activate-item gtkconv.c:1250 12 5 49 2

purple_blist_node_get_type GtkTreeView row-collapsed blist.c 0 0 1 1

purple_blist_node_set_bool GtkTreeView row-collapsed blist.c 0 0 3 2

regenerate_options_items GtkMenuItem activate-item gtkconv.c:3343 49 52 43 2

regenerate_options_items GtkMenuItem activate gtkconv.c:3343 40 57 46 2

TypeCrashed Function Widget Signal Crash Location
#Crash

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200

Random Blocked Greedy

Avg Min Max Factor Time (Sec.)

Random 14.5 1 131 4.88 1356

Blocked 58.4 1 673 7.50 2120

Greedy 17.5 1 135 5.91 4650

Fig. 1: Experimental Results – The upper lefthand subfigure shows convergence
of the three approaches. The upper righthand figure reports summary statistics for
the average, minimum and maximum sequence length and the average execution time
produced by each of the three approaches and, in the fourth column, it reports the
reduction in sequence length produced by the post-processing hill climb. The lower,
larger, table reports the numbers, types and locations of faults found by each approach.

reduced by a factor of 4.88, 7.50 and 5.91 respectively. The Blocked approach
generated the longest sequences with the highest redundancy (i.e. the greatest
potential for minimisation).
Answer to RQ3: We inspected Pidgin to understand the reason for each crash.
As a result, we manually categorised all crashing points into two types that reflect
two difference classes of reason why Pidgin crashes at these points. These two
‘types’ of fault are reported in the the last column of the lower (larger) table in
Figure 1.

A Type-1 crash happens in the call-back function directly uses a NULL-
pointer from the passed arguments to access memory without checking to ensure
it is non-NULL. Type-2 crashes also happen in call-back functions that makes an
invalid assumption about the resources available in the current state. For exam-
ple, function menu add pounce cb opens a conversation window using a pointer
fetched from function X which may return NULL. As there is no NULL check
in the call-back function, X is assumed to always return a valid pointer, which,
however, is violated in some scenarios, where the resource is simply unavailable.

6

4 Conclusions and Actionable Findings

Using Pidgin crasher, we identified two types of bug found caused by 20 dif-
ferent UI signals. According to our findings, we suggest that Pidgin return
values from any function that may return NULL-pointers should be checked,
and that GTK+ signal-emitting APIs that take variable argument lists such as
g signal emit by name should be deprecated.

References

1. Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. Reverse
Engineering Finite State Machines from Rich Internet Applications. 15th Working
Conference on Reverse Engineering, October 2008.

2. Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De
Carmine, and Gennaro Imparato. A toolset for GUI testing of Android applica-
tions. In 28th IEEE International Conference on Software Maintenance (ICSM),
September 2012.

3. Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De
Carmine, and Atif M. Memon. Using GUI ripping for automated testing of An-
droid applications. In 27th IEEE/ACM International Conference on Automated
Software Engineering, 2012.

4. Fevzi Belli, Christof J. Budnik, and Lee White. Event-based modelling, analy-
sis and testing of user interactions: approach and case study. Software Testing,
Verification and Reliability, 16(1), March 2006.

5. Florian Gross, Gordon Fraser, and Andreas Zeller. EXSYST: Search-based GUI
testing. In 34th International Conference on Software Engineering, June 2012.

6. Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. A comprehen-
sive survey of trends in oracles for software testing. Technical Report Research
Memoranda CS-13-01, Department of Computer Science, University of Sheffield,
2013.

7. Casper S. Jensen, Mukul R. Prasad, and Anders Møller. Automated testing with
targeted event sequence generation. In International Symposium on Software Test-
ing and Analysis, 2013.

8. William B. Langdon and Mark Harman. Optimising existing software with genetic
programming. IEEE Transactions on Evolutionary Computation (TEVC), 2014.
To appear.

9. A.M. Memon. GUI testing: pitfalls and process. Computer, 35(8), August 2002.
10. A.M. Memon and Qing Xie. Studying the fault-detection effectiveness of GUI test

cases for rapidly evolving software. IEEE Transactions on Software Engineering,
31(10), October 2005.

11. Pidgin, the universal chat client. http://www.pidgin.im/, Accessed in 2014.
12. Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang

Zhai. Bug characteristics in open source software. Empirical Software Engineering,
June 2013.

13. S Yoo and M Harman. Test data regeneration: generating new test data from
existing test data. Software Testing, Verification and Reliability, 22(3), May 2012.

