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Abstract  

This thesis combines neuroimaging and epidemiological techniques to investigate the 

hypothesis that late-life depressive symptoms are partially caused by vascular risk factors. 

Magnetic resonance imaging (MRI) was used to study the structural brain changes associated 

with depressive symptoms, major depressive disorder and long-term exposure to vascular risk 

factors (hypertension, dyslipidaemia, diabetes, smoking and Framingham stroke risk). This was 

complemented by an epidemiological approach to investigate whether vascular risk factors are 

associated with depressive symptoms. 

 

A sample of participants from the Whitehall II study were invited to take part in the Whitehall 

Imaging sub-study at the University of Oxford. Participants recruited between April 2012 and 

June 2013 (n=229, mean age 69, age range 60-82 years, 83% male) underwent detailed 

cognitive testing, a clinical interview and a multi-modal 3 Tesla MRI brain scan. Depressive 

symptoms were measured at previous Whitehall II phases, and again in 2012-2013 using a 

structured assessment for DSM-IV mood disorder and a self-report questionnaire. Long-term 

exposure to vascular risk factors was measured at five collection phases between 1985 and 

2009. 

 

Ten percent of participants (n=23) had current depressive symptoms and 13% (n=29) had late-

onset depressive symptoms (depression onset after age 60). Current and late-onset depressive 

symptoms were associated with reduced white matter integrity in frontal-subcortical areas. 

Study of the MRI correlates of vascular risk factors also showed an association between long-

term exposure to high fasting glucose (mean across five examinations between 1985 and 

2009) and reduced white matter integrity in frontal-subcortical areas. However, long-term 

exposure to other vascular risk factors was not significantly associated with depressive 

symptoms. 

 

In conclusion, while vascular risk factors were not consistently related to late-life depressive 

symptoms, long-term exposure to high glucose levels and depressive symptoms were both 

associated with reduced white matter integrity in frontal-subcortical areas.  
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Chapter 1.   Background 
 

1.1 Introduction 

This thesis examines the hypothesised vascular origins of depressive symptoms using a 

combination of neuroimaging and epidemiological methods. As such, it spans the disciplines of 

psychiatry, neuroscience and epidemiology. Chapter 1 provides an overview of each of these 

areas to set the research in context and to establish the value of this inter-disciplinary 

approach.  

 

1.2 Depression 

Depression is the leading cause of disability worldwide and is a major contributor to the global 

burden of disease (1). Depressive symptoms span a broad spectrum, ranging from normal 

sadness in response to a difficult life event, through mild symptoms that have limited effect on 

daily activities, to severe symptoms that cause a profound change in an individual’s ability to 

function. The gold standard method for diagnosing depression is through clinical interview, 

informed by standard classification criteria based on the World Health Organisation’s 

International Classification of Diseases or the American Psychiatric Association’s Diagnostic 

and Statistical Manual of Mental Disorders (Table 1) (2, 3). Regardless of age at onset, the core 

features of depression are similar and include low mood and anhedonia (loss of pleasure); the 

number of additional symptoms allows the severity of depression to be classified (Table 1).  

 

Depression is a common condition seen in people of all ages and cultures. Population-based 

epidemiological studies have shown that the prevalence of major depression is 10 - 15% (4, 5). 

The prevalence of depression tends to decrease with age, from 20% in mid-life (30 to 44 years) 

to 10% in those over 60 years (5, 6). While the percentage of older patients suffering 

depression is smaller, the absolute numbers are increasing because of demographic changes. It 

is thus an important condition to understand, prevent and treat. Certain groups have an 

increased risk of depression. For example, depressive symptoms have been shown to increase 

after the age of 75 years (7), and the prevalence of depression in older adults living in 

institutions is approximately 25% (8). Late-life depression is particularly important given its 

association with increased morbidity, reduced quality of life, delayed recovery from physical 

illness, cognitive impairment and increased mortality (9-14). People developing depression in 

later life frequently have somatic symptoms, increased anxiety, psychomotor retardation, 
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reduced interest in activities and executive dysfunction compared with younger age groups 

(10, 15). 

 

Table 1. Diagnostic criteria for depression 

 ICD-10 (2) DSM-IV (3) 

 

Core criteria 
 

Symptoms present most of the time for at least two weeks; 
not secondary to drug or alcohol misuse, medication, medical 
disorder or bereavement* 
 

 

Symptoms 
 

Depressed mood, anhedonia, weight change, reduced appetite, 
disturbed sleep, psychomotor agitation or retardation, loss of 
energy, reduced libido, feelings of worthlessness and guilt, poor 
concentration, indecisiveness, thoughts of death or suicide, 
delusions, hallucinations 
 

 

Severity 
 
 
 
 
 

 

Mild  
2-3 symptoms; able to 
continue with daily activities 
 
Moderate 
≥ 4 symptoms; difficult to 
continue daily activities 
 
Severe 
Several symptoms which are 
marked and distressing; 
ordinary activities impossible, 
psychotic symptoms may be 
present 

 

Minor 
≥ 2 symptoms, with minimal effect 
on function 
 
Major 
≥ 5 symptoms, with clinically 
significant distress or impairment 
in functioning 
 

*Bereavement exclusion clause removed in DSV-5 

 

In studies the age cut-off for late-life depression has varied from 50 to 65 years, but is 

generally thought of as occurring over the age of 60, either for the first time or as part of a 

recurring pattern of mood disorder (16). The precise value is less important than the principle 

that late-life depression may have a different aetiology to depression occurring earlier in life. 

Depression can be precipitated by increasing age and age-related chronic conditions, altered 

social circumstances (including retirement, bereavement and reduced independence), and 

psychological adaptations related to role transition and lack of resilience to stress (17-20). 

However, some studies have found that those developing late-life depression are less likely to 

have had recent adverse life events, including bereavement (21) or pre-disposing psychological 



16 

 

factors (e.g. low self-esteem, perfectionism and poor resilience to stress), or a family history of 

depression (22, 23). Indeed, for many people later life is associated with fewer risk factors for 

depression than middle age – that is, it represents a period of financial and social stability, with 

increased freedom to explore new interests without the constraints imposed during working 

life. For these reasons, psychological and social factors are not sufficient to explain the 

aetiology of late-life depression, and biological factors are thought to make a significant 

contribution to aetiology (10).  

 

Vascular pathology has been proposed as particularly relevant to the aetiology of late-life 

depression. Existing studies suggest that vascular disease may affect brain structure and 

function, increasing individual susceptibility to depression (24). Clinical observations were the 

starting point for the development of this concept, which followed the recognition that stroke 

and cardiovascular disease could lead to depression, and that people with depression had 

higher rates of cardiovascular illness (25, 26). Vascular damage may affect the brain, disrupting 

structures or neural circuits, thereby precipitating depression. However, some studies suggest 

that depression itself could cause pathological changes that increase the risk of vascular 

disease (27). Therefore, the association between depression and cardiovascular disease might 

be bi-directional, perhaps mediated by common physiological and behavioural mechanisms 

(28). Furthermore, the later the onset of depression, the greater the contribution from co-

morbid organic brain disease (29).   

 

In addition to cardiovascular disease, other biological factors such as inflammatory markers 

may be involved in the neurobiological changes found in late-life depression (24, 30-33). The 

effects of genetics and family history may become less important in older people, compared to 

younger adults (22, 23). Late-life depression is associated with a high prevalence of cognitive 

impairment (24, 34), specifically with reductions in processing speed and executive function 

(35). Changes in cognitive function have prompted scientists to explore structural brain 

changes in depression using MRI. 

 

A large body of research supports the notion that late-life depression is accompanied by 

changes in brain structure and function. Grey matter structural changes include ventricular 

enlargement (36) and regional atrophy in frontal, temporal, hippocampal (36, 37) and caudate 

regions (38). White matter changes are particularly prominent in late-life depression (34, 39). 

These changes are thought to be of vascular aetiology (40, 41) consistent with the vascular 
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hypothesis of depression (24). However, doubt has recently been cast on the association 

between vascular risk factors and white matter hyperintensities, given evidence that vascular 

risk factors and large-artery atheroma have only a small effect on white matter 

hyperintensities (42). Depression is also associated with changes in brain function. Frontal 

hypoperfusion is common and may explain reductions in executive function noted in cognitive 

testing (43).  

 

One limitation is that these studies have tended to focus largely on comparisons between 

participants with clinical late-life depression and healthy controls; they frequently fail to 

consider those who have depressive symptoms, but who do not qualify for a diagnosis of 

clinical depression. Sub-syndromal depressive symptoms are common in the general 

population, and may be associated with functional disability and medical comorbidity to a 

degree similar to major or minor depression (44, 45). Those with high scores on a depression 

rating scale only, also show brain atrophy and white matter lesions (46). This suggests that 

depressive symptoms, as well as depressive disorder, may be associated with structural 

changes, but this aspect requires further detailed investigation. The use of participants drawn 

from the Whitehall II study, who exhibit a wide-range of depressive symptoms, provides a 

further opportunity to investigate this. Additionally, this provides the opportunity to draw on 

long-term data on depressive symptoms to facilitate investigation of whether the associations 

between depression and brain structure are causal or explained by some other factors. 

 

1.3 Standard vascular risk factors 

Vascular risk factors, such as hypertension and smoking, increase the risk of vascular disease, 

affecting the heart, brain and other major organs such as the kidneys. Vascular disease (e.g. 

myocardial infarction or stroke) is the leading cause of mortality worldwide (47). The impact of 

vascular risk factors and disease on the brain, in terms of depression and dementia, is now 

increasingly recognised as important for increasing morbidity and mortality (48). According to 

the American Heart Association (http://www.heart.org/HEARTORG/) and the World Health 

Organisation (47), the most important modifiable risk factors for cardiovascular diseases are: 

hypertension, dyslipidaemia, diabetes mellitus, smoking, physical inactivity and obesity.  

Other risk factors, such as increasing age, male sex and family history are also important, but 

cannot be modified. Individual vascular risk factors contribute to vascular disease, but in order 

to evaluate their combined effect, a composite algorithm based on validated risk predication 
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tools such as QRISK (well calibrated to the UK population), ASSIGN or the Framingham score 

(49-51) can be used. 

 

The pathology most commonly linking vascular risk factors to vascular disease is 

atherosclerosis (52). In atherosclerosis, lipid deposits in the endothelium of vessels lead to 

structural and functional changes, such as an irregular, narrowed vessel lumen, and altered 

blood flow. Lipid deposits within the endothelium are prone to rupture, leading to a 

thrombotic event and end organ ischemia. This is particularly significant if it occurs in the 

coronary arteries (leading to myocardial infarction) or the brain (leading to a stroke). Of 

interest is whether the effects of vascular damage to small vessels in the brain can precipitate 

depression in those without a previous history of depressive symptoms, or perpetuate 

depression in those who are already vulnerable. 

 

Blood pressure 

Hypertension is the leading cardiovascular risk factor (47). It is defined as blood pressure 

≥140/90 mm Hg, with further classifications of severity that can be made in accordance with 

National Guidelines (Table 2) (53). The prevalence of hypertension rises with age, and in  the 

UK, over half of adults over the age of 65 have hypertension, making this a significant and 

important risk factor (Table 3) (54). Hypertension has a significant association with mortality: 

at age 40 to 69 years, each increment of 20 mm Hg in systolic blood pressure (approximately 

equivalent to 10 mm Hg diastolic blood pressure) is associated with a two-fold increase in 

mortality from stroke, ischaemic heart disease and other vascular causes (55).  

 

The effects of hypertension are mediated by local changes in blood vessels, and the increased 

strain placed on the heart (47). Persistently raised blood pressure damages the endothelium of 

blood vessels contributing to the development of atherosclerosis; weakened vessel walls are 

more prone to the development of aneurysms. Higher blood pressures can damage small 

vessels by causing them to rupture, particularly if vessels are already weakened through 

atherosclerosis. This can lead to end organ damage in the brain, the heart or kidneys. Higher 

blood pressures require greater force from the heart and the increased force required can lead 

to the development of hypertrophy in the left ventricle, ultimately contributing to heart 

failure.  
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Table 2: Classification of hypertension  
Based on NICE guidelines, 2011 (53) 

 

Classification Definition 

Stage 1 hypertension Systolic/diastolic blood pressure ≥140/90 mm Hg in clinic 

and 

Subsequent ambulatory or home monitoring is ≥135/85 mm Hg  

Stage 2 hypertension Blood pressure ≥160/100 mmHg in clinic 

and 

Subsequent ambulatory or home monitoring is ≥150/95 mm Hg 

Severe hypertension Systolic blood pressure ≥180 mm Hg in clinic 

or  

Diastolic blood pressure ≥110 mm Hg in clinic 
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Table 3: Prevalence of vascular risk factors in England 
Based on Coronary Heart Disease Statistics published by the British Heart Foundation, 2012  (54). 

 

 
Prevalence of vascular risk factors by age 

Age range, years 55 – 64 65 – 74 75 + 

High blood pressure, % a 

              Men 

             Women 

 

51 65 79 

47 63 79 

Dyslipidaemia, %*b  

              Men 

              Women 

 

70 53 39 

83 75 66 

Diabetes, %a 

              Men 

              Women 

 

11 15 16 

8 12 13 

Coronary Heart Disease, % d 

              Men 

              Women 

 

11 21 29 

4 10 19 

Smoking, % c 

              Men 

              Women 

 

14 

15 

a
 2010 data, 

b
 2008 data, 

c
  2004 data, 

d
 2006 data 

*Dyslipidaemia is the presence of abnormal levels of blood lipids; different lipid components may be 

either too high, or too low 

 

Cholesterol  

Cholesterol is an important component of cell structures and is needed for the synthesis of 

hormones and vitamins (56). It is transported in the body by lipoproteins. High serum levels 

make a significant contribution to the development of atherosclerosis and therefore of 

cardiovascular disease (47). There is a log-linear relationship between raised total cholesterol 

and risk of coronary heart disease (51). High cholesterol is usually defined as ≥5.0 mmol/L for 

total cholesterol (51). However, it is also important to consider the components of total 

cholesterol. Low-density lipoprotein (LDL) transports cholesterol from the liver to other parts 

of the body and LDL cholesterol levels ≥3.0 mmol/L are considered high. High-density 

lipoprotein (HDL) transports cholesterol from the body back to the liver, enabling it to be 
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broken down and excreted. HDL cholesterol is therefore protective and levels should be ≥1.0 

mmol/L. The ratio of total cholesterol to HDL cholesterol can be used to estimate 

cardiovascular risk. Triglyceride levels are also important; triglycerides are the main form of fat 

in the body and are transported by lipoproteins. Triglyceride levels are defined as high if they 

are ≥2.0 mmol/L.  

 

Dyslipidaemia is common. It is found in over 50% of adults in high income countries (47), which 

is consistent with prevalence rates in England. Interestingly, the prevalence reduces in men 

and women over the age of 75 (Table 3) (54). This may be due to a reduction in LDL synthesis 

due to decreased liver function with increasing age (56), as well as a healthy survivor effect 

(i.e. those with severe dyslipidaemia are more likely to have fatal cardiovascular disease and 

drop out from studies compared to those with normal lipid levels). Dyslipidaemia is important 

to recognise because it is a modifiable risk factor, and its effects and health implications can be 

minimised through attention to diet, increased exercise and use of lipid-regulating medication 

(51). Decisions regarding treatment (e.g. use of statins) are not based solely on blood 

cholesterol levels, but should take into account the overall risk of developing cardiovascular 

disease (51). This has been highlighted by recent American Heart Association guidelines which 

confirm that statin treatment should be offered to those with elevated cardiovascular risk, and 

not only based on cholesterol levels (57, 58). 

 

Diabetes 

Diabetes mellitus is a metabolic disorder characterised by hyperglycaemia and insufficient 

insulin production, or lack of response to insulin. In type 1 diabetes, which usually starts in 

childhood, insulin is not produced. In type 2 diabetes, commonly developing later in life, there 

is reduced insulin secretion, or reduced insulin sensitivity. The diagnosis is made based on 

clinical history and plasma glucose concentration: random plasma glucose ≥11.1 mmol/L, or 

two-hour post load glucose ≥11.1 mmol/L,  or fasting plasma glucose ≥7.0 mmol/L on two 

occasions (59, 60) or Haemoglobin A1c (HbA1c) concentration ≥6.5% (61). In pre-diabetes,  

glycaemic indices are higher than normal, but do not meet criteria for a diagnosis of diabetes. 

It is defined using the same tests as follows: random plasma glucose 7.8-11.0 mmol/L, or two-

hour post load glucose 7.8-11.0 mmol/L, or fasting plasma glucose 5.5-6.9 mmol/L (59, 60) or 

HbA1c 5.7-6.4% (61). 
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The prevalence of diabetes increases with age and is found in approximately 10-15% of older 

adults in the UK (Table 3) (54). The risk of cardiovascular events, particularly stroke, is two to 

three times higher in those with type 1 or type 2 diabetes (47). Adverse cardiovascular effects 

are mediated by chronic hyperglycaemia, recurrent hypoglycaemia and metabolic changes 

which can cause endothelial dysfunction, inflammation, dyslipidaemia and changes in blood-

brain barrier permeability (62). These microvascular and macrovascular changes cause end 

organ damage in multiple systems, including the brain (62). This means not only that 

macrovascular problems such as stroke are common, but also that cognitive impairment and 

depression may be more likely in those with diabetes. Lastly, there is increasing evidence of 

the harm caused to end organs by the presence of pre-diabetes (63).  

 

Smoking 

Smoking is associated with a substantial increase in mortality rates from cardiovascular disease 

(64-67). Its mechanism of action is through increased atherosclerosis, caused by heightened 

response to vascular injury and raised inflammatory markers (65). With greater awareness of 

its adverse effects, the prevalence of smoking in Great Britain has steadily decreased from 

nearly half the adult population in 1972 to approximately 20% in 2010 (54). Smoking 

prevalence is lower in older adults (currently about 15% in men and women, Table 3) and in 

those of higher socio-economic status (54). Despite these trends it remains an important 

modifiable vascular risk factor for which a number of secondary prevention therapies are 

available (68).  

 

1.4 Cardiovascular diseases 

The most common presentations of cardiovascular diseases are coronary heart disease and 

stroke; both are discussed here.  

 

Coronary heart disease  

Coronary Heart Disease (CHD) leads to clinical conditions such as angina and myocardial 

infarction (MI). It is usually caused by atherosclerosis in the coronary arteries that supply the 

myocardium. As atherosclerotic plaques develop, coronary arteries become narrowed, leading 

to reduced perfusion and clinical symptoms of angina, or become blocked, causing MI. 

Diagnosis of angina and MI is based on clinical history, electrocardiogram (ECG), and 

sometimes other investigations, such as coronary angiography. Coronary heart disease is 
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common, particularly in men, and exhibits increasing prevalence with age (Table 3). It is a 

leading cause of death and disability in the UK as well as globally (47). In view of the many 

modifiable risk factors for CHD, primary and secondary prevention is a major public health 

focus nationally and internationally (47, 69). Encouragingly, there is emerging evidence that 

age-standardised mortality rates have been decreasing since the 1980s, which may be partly 

due to significant efforts towards prevention (70).  

 

Stroke 

Stroke is diagnosed when there is evidence of cerebral haemorrhage or ischemia, associated 

with a change in neurological functioning. After ischaemic heart disease it is the second most 

common cause of death worldwide (47). A Transient Ischemic Attack (TIA) is similar, however, 

in a TIA there is temporary cerebral ischemia associated with a brief change in neurological 

function that resolves within 24 hours (and usually resolves in less than two hours) (71). 

Atherosclerosis makes a major contribution to the aetiology of stroke and TIA, particularly for 

ischaemic stroke. Risk factors for stroke are similar to those for coronary heart disease, and 

include: increasing age, hypertension (particularly for haemorrhagic stroke), dyslipidaemia, 

atrial fibrillation, smoking and diabetes (47). Improved management of modifiable risk factors 

can lead to substantial reductions in the incidence of stroke (72). Stroke is associated with 

significant mortality (approximately 50% mortality within one year of a stroke), as well as 

increased morbidity resulting from physical, cognitive and neuropsychiatric changes (72, 73). 

Early treatment can lead to improved outcomes (72).  

 

There is already a well-established literature describing the association between stroke and 

increased risk of depression (74-77). At least one third of patients will develop post-stroke 

depression, and these people have increased morbidity and mortality, including cognitive 

impairment (77, 78). The pathology and mechanisms associated with these conditions are 

linked to lesion location, cognitive changes and psychosocial adjustment related to disability 

and loss of role (74). A previous history of depression and anxiety, as well as disability, 

cognitive impairment, stroke severity and vascular risk factor burden, are predictors of post-

stroke depression (78-83).  

 

MRI is used clinically and in research to identify the extent, location and type of stroke (71, 

84). As well as major lesions, it can detect small lesions which may not have caused noticeable 

clinical symptoms, but nevertheless indicate cerebrovascular disease or a previous TIA. The 
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effect of stroke in terms of macroscopic damage to grey and white matter provides an obvious 

mediating anatomical pathway leading to depression through damage to cortical circuits 

involved in monoamine production and mood regulation (85). Frontal lobe atrophy 

subsequent to ischemic stroke may have a role in the development of depressive symptoms 

(86). Periventricular white matter hyperintensities predict poorer functional outcomes after 

stroke (87). While gross anatomical changes in regions that regulate mood can lead to 

depression, these macroscopic changes are accompanied by important microscopic sub-

cortical changes, including lacunas and deep white matter hyperintensities, which play an 

important role in post-stroke depression (85, 88).  

 

The strength of evidence linking stroke and depressive symptoms means that the investigation 

of stroke and depression using MRI in this thesis would not constitute a novel approach: the 

association with depression is not controversial, unlike the association with other vascular risk 

factors. Furthermore a previous stroke or TIA may reduce the effectiveness of MRI processing 

and analysis. For these reasons, stroke is not explored further in this thesis. However, the 

thesis does make use of the Framingham Stroke Risk Score (FSRS), as this composite measure 

of vascular risk has been less thoroughly investigated and provides another angle from which 

to explore the associations between vascular risk factors and depression. 

 

1.5 Methodological approaches 

The associations between depression, vascular risk factors and vascular disease are 

investigated using neuroimaging and epidemiological methods. This section provides an 

introduction to the principles underlying the MRI and epidemiological methods employed in 

this thesis. It also reviews the literature relating to previous studies that have employed this 

dual methodological approach. 

 

1.5.1 Magnetic Resonance Imaging (MRI) 

What is MRI? 

Magnetic Resonance Imaging (MRI) is a non-invasive technique that uses principles of nuclear 

magnetic resonance to visualise body structures, including the brain. It provides excellent 

spatial and temporal resolution, and is able to detect subtle changes in brain structure and to 

investigate brain function. It has been used extensively in clinical practice and research, 
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offering reliable, validated protocols for data acquisition and analysis. While other techniques 

(e.g. magnetoencephalography, MEG) may provide superior temporal resolution, MRI provides 

excellent spatial resolution (e.g. better than Computed Tomography, CT), and, unlike Positron 

Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) 

scanning, does not require an intravenous tracer. It therefore provides an excellent 

compromise in its ability to provide in vivo detailed structural and functional imaging data.  

 

Crucial for its use in a research setting, MRI has an excellent safety record, with the advantage 

of being a non-invasive technique, which does not use ionising radiation. It is, however, not 

suitable for people with implanted metal devices (e.g. pacemakers), or those with a previous 

injury involving metal, in case metal fragments have been retained in the body. This is because 

ferromagnetic objects have the potential to cause serious injury through attraction, torque 

and heating effects within the strong magnetic field. Therefore, safety guidelines need to be 

carefully adhered to. MRI is very well tolerated by the majority of people, although the space 

limitation and noisy environment within the scanner may be difficult for a minority, including 

those with claustrophobia.  

 

What are the principles behind MRI? 

The human body comprises many millions of hydrogen nuclei, largely within water molecules. 

Hydrogen nuclei are usually orientated in random directions; however, when placed in a 

strong magnetic field (B0) they tend to align with the field, precessing (spinning) at a frequency 

(ω), proportional to the magnetic field applied (Figure 1) (89-91). This frequency is called the 

Larmor frequency and can be represented using the following equation:   

ω = γ B0 

ω, Larmor frequency; γ, constant; B0, main magnetic field strength 

 

The alignment of nuclei with the main magnetic field (B0) leads to a small change in the net 

magnetisation (magnetic moment). In order to measure this change in magnetisation a 

second, much smaller, magnetic field (B1) is applied for a short period, at an angle to the first 

field, using a radio-frequency (RF) transmitter coil. This excites a proportion of the nuclei so 

that they flip out of alignment with B0, precessing at an angle to it (Figure 2). The time that 

nuclei spend in this new energy state varies depending on the local environment, e.g. whether 
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the hydrogen nuclei are situated within cerebrospinal fluid (CSF), grey matter or white matter. 

When nuclei relax from their second position, back to their original position in alignment with 

the main magnetic field (B0), they release energy in the form of a radio-frequency (RF) pulse, 

which can be detected and measured. The differential relaxation time that occurs in different 

tissues allows the generation of images that show contrasts between different tissue types. In 

order to acquire spatial information, i.e. information about the location of protons (and 

therefore of different tissue types), a magnetic field gradient is used. This field gradient 

provides graded variation in the magnetic field so that nuclei in different locations precess at 

different frequencies; the detection of different frequencies thus provides information about 

proton location.  

The MRI scanner accordingly consists of a series of coils which generate a) the main magnetic 

field (B0); b) the second magnetic field (B1); and c) the magnetic field gradient. Additional shim 

coils, are used to improve field homogeneity, to help prevent artefacts. 
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Figure 1. Alignment of nuclei with main magnetic field 

This figure is adapted from FMRIB resources and re-produced with permission of the author (92). 

 

M=direction of magnetic moment; B0=direction of main magnetic field 

 

 

Figure 2. Excitation of nuclei 

This figure is adapted from FMRIB resources and re-produced with permission of the author (92). 

 

 

RF=radio frequency; ω0=Larmor frequency 
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Structural imaging 

Several different sequences can be used to investigate different aspects of brain structure. This 

thesis uses sequences for T1-weighted imaging, T2-weighted imaging and Diffusion Tensor 

Imaging. 

 

 T1-weighted imaging shows the density and type of brain tissue, providing a standard 

structural image that can be used to identify lesions (e.g. tumours) and atrophy, calculate 

whole-brain volumes, segment different tissue types (grey matter, white matter and CSF), 

investigate structure and shape of subcortical structures, and investigate cortical surfaces and 

thickness. While this can provide a great deal of information about brain structure, the 

disadvantages are that T1-weighted imaging does not measure tissue type directly, contrasts 

poorly between bone and air, and is susceptible to artefacts and “noise”. 

 

T1-weighted imaging uses a gradient echo sequence with short repetition times. T1 refers to 

the time it takes for nuclei to return to alignment in the B0 direction, more specifically, the 

time it takes 63% of the longitudinal magnetisation to recover in the tissue (91). In T1-

weighted structural scans, areas with high water molecule content (e.g. CSF) have a long T1 

and appear dark in T1-weighted images. Grey and white matter have different T1 relaxation 

times: the shorter T1 in white matter means that it appears brighter than grey matter. By 

adjusting the repetition time for the RF pulse, it is possible to achieve different T1 weighting, 

providing different types of contrast.  

 

T1-weighted MRI can be used to study structural changes in grey matter using a variety of 

analytic methods. Region of interest analysis can be used to assess the volumes of a-priori 

defined cortical and subcortical structures. While this provides an effective method of 

investigating structural brain changes, it is limited by the need for operator defined regions 

(volumes) of interest. This is intrinsically less reliable than considering changes in the whole 

brain and increases the risk of type II statistical error, where significant differences occurring 

outside or including only a part of these pre-defined volumes may not be identified. An 

alternative is to investigate the location and nature of changes in subcortical structures based 

on their shape. However, this approach has not been widely applied to investigation of 

depressive symptoms or disorder (93). A further option is to investigate grey matter across the 

whole brain using voxel based morphometry (VBM). This rapid, automated approach was 

chosen for this study, because it has the advantage of being able to assess global changes in 
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brain structure, does not require prior selection of regions of interest, and has been shown to 

be effective in studies of depression (36). The analysis pipeline for T1-weighted imaging using 

VBM involves brain extraction, segmentation of tissue type, segmentation of tissue structures, 

registration (alignment) and statistical comparisons to assess local changes between different 

groups.  

 

The T2-weighted sequence measures the magnetic resonance signal after a longer period for 

decay of the signal than that used in T1-weighted imaging (i.e. longer repetition time). 

Modifications to the T2-weighted sequence provide Fluid Attention Inversion Recovery (FLAIR) 

images that suppress the high CSF signal, providing enhanced white matter contrast in regions 

adjacent to CSF, enabling pathology such as white matter hyperintensities to be seen more 

clearly (91). T2-weighted MRI or FLAIR images can be used to study brain structural changes in 

white matter (e.g. white matter hyperintensities) using visual or automated methods. Visual 

methods such as the Fazekas scale (94), have the advantage of not requiring further 

processing, that they can be used by trained clinicians or neuroscientists, and that they can be 

easily applied to individual data, making them potentially useful in clinical practice. However, 

they retain an element of subjectivity and do not provide the precision available with 

automated methods in terms of quantity and location of changes. Automated methods (e.g. 

FreeSurfer http://surfer.nmr.mgh.harvard.edu/) may be quicker to apply to large numbers of 

subjects and provide specific, objective and quantifiable data. However, there have been 

concerns about their ability to accurately determine white matter hyperintensities from other 

brain structures, and in separating periventricular from deep white matter changes (95, 96). In 

this study both methods are used, and the results between them are compared to more fully 

elucidate the advantages and disadvantages of each method. 

  

Diffusion tensor imaging (DTI) investigates white matter structure and connectivity by 

considering the integrity and direction of fibres (97, 98). It does this by modelling the diffusion 

of water using a tensor model. If diffusion of water molecules is unrestricted, water molecules 

will spread out equally in all directions, in which case diffusion is termed isotropic and can be 

modelled as a sphere. However, in white matter tracts (axons) water molecules are 

constrained by myelin sheaths and the parallel direction of fibres. In this case a restricted 

pattern of diffusion would be expected, with more diffusion along the axon, and less diffusion 

across the axon. If diffusion of water molecules is restricted in any direction, the diffusion is 

termed anisotropic and is modelled as an ellipsoid. When water diffusion is constrained within 
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white matter tracts, the degree of anisotropy provides information about the structure and 

orientation of the white matter fibres. 

 

The principal measures of diffusion used in DTI are fractional anisotropy (FA) and mean 

diffusivity (MD), which are used to measure the average diffusion in a group of white matter 

tracts. FA measures how elongated the ellipsoid model is, and is a measure of fibre integrity.  

In CSF, where there is free diffusion, FA would be very low (i.e. close to zero); in white matter 

tracts such as the corpus callosum, where diffusion is constrained and highly directional, FA 

would be higher (i.e. close to one). Mean diffusivity is a measure of the mean direction of 

diffusion averaged over all directions, and provides information about white matter 

microstructure. Mean diffusivity can be considered separately in its component parts: radial 

diffusivity (RD) and axial diffusivity (AD). If there is reduced white matter integrity, then tracts 

that would normally be expected to show highly directional patterns of diffusion may reveal 

more variable patterns. For example, FA may be reduced (closer to zero), and MD may be 

increased (closer to one). A disadvantage of DTI is that it is difficult to assess the diffusion 

patterns in regions where there are crossing fibres. This can lead to difficulties in interpreting 

the DTI measures of FA and MD. Additionally, since DTI uses fast echo planar imaging to 

acquire sufficient data, it is sensitive to artefacts such as distortion and eddy currents (98). 

These can be anticipated and compensated for during acquisition (e.g. by using field maps) and 

analysis (e.g. by using motion correction). 

 

Diffusion Tensor Imaging data can be analysed using region of interest analysis. However, 

similar to use with T1-weighted imaging this has the disadvantage that a pre-defined region of 

interest is required, making it dependent on the operator and potentially failing to identify 

significant changes outside or only covering part of these regions. Another option is to use 

tractography; this provides the ability to reconstruct white matter tracts based on their 

direction and orientation. However, yet again user bias is a possibility as the operator needs to 

start by defining a seed or target region (99, 100). Voxel based analysis can be used to 

investigate white matter diffusivity, but is limited by confounding factors related to image 

registration and spatial smoothing of the data (101). A further option, and the one chosen for 

this study, is tract based spatial statistics (TBSS),  a powerful, yet relatively conservative 

analysis tool for use with DTI (101). This technique assesses white matter integrity globally, 
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comparing voxel 1 by voxel differences across ‘skeleton tracts’ of the whole brain. It projects all 

participants’ FA data onto a mean FA skeleton tract before applying voxelwise statistics. This 

approach ensures that values from the centre of the tract are compared between participants, 

therefore minimising the effects of misalignment and making it a more robust tool compared 

to other approaches, such as voxel based analysis (101). .  

 

1.5.2 Epidemiological approaches 

Epidemiology uses quantitative methods to study the distribution and determinants of disease 

in human populations (102). This provides information about the frequency, aetiology, and 

prognosis of a disease, informing strategies for prevention. Epidemiological studies focus on 

defined populations, based on e.g. geographical region, occupation, or disease status. Studies 

can be purely descriptive, exploring the patterns of disease or risk factors in a population using 

a case-control or cohort approach, either cross-sectionally or longitudinally. Alternatively, they 

may be analytical, either observing associations between risk factors, or observing the effect of 

an intervention. 

 

Case-control studies are used to estimate the relative risk of disease associated with a given 

exposure. This is a particularly useful study design when the cases are relatively rare, since it 

allows retrospective identification of cases, which can be matched with controls. The validity 

of such a design relies on accurate identification of cases and controls (who are representative 

of an identified population from which the cases arise), accurate assessment of the exposure 

variable, and the ability to control for confounding factors. In a case-control study, 

comparability of cases and controls is crucial. For this reason the sample may focus on a 

complete population sample, or a random sample of a population, termed a ‘population-based 

case-control study’ (103). Alternatively, cases and controls can be drawn from a cohort study 

(a ‘nested case-control study’). This has the advantage of ensuring that controls are drawn 

from the same population from which the cases arise.  

 

                                                           

1
 A voxel represents a unit of three dimensional volume. A three-dimensional object such as the brain 

can be divided into voxel units using a grid pattern, allowing comparison between subjects and groups. 
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A cohort study can be used to investigate the relationship between an exposure and the 

development of disease. It focuses on a defined sample (e.g. by population, geography or 

occupation) that is identified at the outset. Each participant is classified as exposed, or not 

exposed to a risk factor; follow-up assesses further exposure to this risk factor and the effect 

on incidence of a disease or outcome variable. The cohort can be identified prospectively and 

followed for several years, or defined retrospectively and followed up using previous records. 

Prospective identification allows the outcome to be defined and detected accurately using a 

systematic protocol, and is likely to be the best substitute where a true experiment is not 

possible (103). Data can be collected that may not be readily available in a participant’s 

medical records (e.g. someone without hypertension is unlikely to have regular primary care 

records of blood pressure). The disadvantage of this type of study is the length of time over 

which studies take place, especially if there is a time lag between the risk factor (e.g. smoking) 

and the outcome (e.g. lung cancer). This has significant cost implications for the running of a 

study, and from a scientific perspective risks exposing the sample to potential bias through 

differential drop-out related to the exposure of interest. A further issue is that the variables of 

interest need to be clearly defined at the outset, and cannot be added or amended later. 

Retrospective cohort studies can be quicker to undertake, making use of data that has been 

previously collected. However, the reliance on previous data collection may limit the scope of 

the investigation, and may impair data accuracy since information pertaining to risk factor 

exposure and disease outcome may not be standardised. 

 

In contrast to case-control and cohort studies, observational and experimental studies offer 

the possibility of intervening to change outcomes, for example, to establish the effects of 

interventions (103). Observational studies involve observing outcomes in patients who are, or 

are not, exposed to a specific variable. Similar to cohort studies, the advantage of 

observational studies is the ability to systematically collect data studying a range of risk 

factors; on the other hand, the disadvantage is that the risk of bias within different groups will 

lead to incorrect interpretation of results. In experimental studies, or clinical trials, selection of 

participants, treatment groups, follow-up and measurement of outcomes are all highly 

controlled, allowing careful investigation of the effect of treatment (103). The advantage of 

this rigorous methodology is that it is most likely to lead to conclusive results, provided a 

representative sample has been used. The disadvantages are the cost and logistics of 

organising such a study, and the potential for bias and confounding factors when dealing with 

a large number of people. 
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The Whitehall II Study follows an occupationally based cohort of civil servants; it is an 

observational, prospective cohort study in which risk factors are measured, and associations 

between risk factors and outcomes analysed (104). This study design is well suited to the 

present investigation of depression and vascular disease because it uses measurable outcomes 

that have an impact on health, and are informative of strategies to prevent disease and 

develop health policy (102). Depression and vascular disease are both complex conditions 

correlated with a range of biological, psychological and social factors; use of a well 

characterised epidemiological cohort such as Whitehall II enables investigation of their multi-

factorial aetiology, and the bi-directional relationship between conditions. There are several 

reasons why depression and vascular risk factors lend themselves to this population approach. 

Firstly, risk factors leading to depression and cardiovascular disease have a significant impact 

on health, and can be measured and quantified. Secondly, risk factors may be present for a 

long time and the use of longitudinal methodology helps to determine the cumulative effect 

on outcome. Thirdly, depression and vascular diseases are both common conditions with a 

high prevalence, so they will be represented within a general population. Of interest from an 

epidemiological perspective is that the conditions will be present with a range of severity, 

allowing investigation of a spectrum of risk factors and outcomes.  

 

1.5.3 Combined MRI and epidemiological approaches 

There are a number of longitudinal population cohort studies with an observational, 

prospective design that investigate depression and vascular risk factors (105), but fewer 

studies that combine these data with MRI measures. Other cohort studies investigating 

depression using MRI include the Cardiovascular Health Study, Framingham Study, LADIS 

Study, Rotterdam Study and Three-City Study (106-112). In terms of diagnosing depression, 

most other epidemiological studies measure depressive symptoms according to the Centre for 

Epidemiological Studies Depression rating scale (CES-D), using either the standard 20 item 

version, or short 10 item version (106-108, 110-112); some studies additionally report use of 

antidepressant medication (107, 108, 110-112). The Rotterdam Study adopts a comprehensive 

approach to diagnosis of depression: participants scoring as CES-D cases undergo a more 

detailed assessment using the Schedule for Clinical Assessment in Neuropsychiatry (SCAN) 

interview, and in addition, medical records are searched (110, 111). 

 
There are similarities between the Whitehall Imaging sub-study and these previous studies – 

for example, data is available on a similar range of cardiovascular risk factors and measures of 
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depressive symptoms. Compared with previous studies, the present study has the advantage 

of a particularly detailed characterisation of participants over a long follow-up period (28 

years), combined with an MRI protocol that includes structural and functional methods using a 

higher strength (3 Tesla) scanner (106-112).   

 
 

1.6 Summary 

Depression is common and can have a significant adverse effect on individuals and their 

families. It has a multi-factorial aetiology based on biological, psychological and social factors. 

In those over 60 years old, depression is associated with cardiovascular disease, brain 

abnormalities and cognitive impairment. Relatively little is known about the effects of long-

term exposure to vascular risk factors, and whether or not these lead to the development of 

depressive disorder and depressive symptoms. Combined imaging and epidemiological 

approaches provide a powerful tool with which to investigate the vascular aetiology of 

depression, offering potential insights into the long-term effect of vascular risk factors on 

clinical outcome, as well as on brain structure. Use of multi-modal MRI enables subtle effects 

on grey and white matter to be carefully considered. 
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Chapter 2.   Review of MRI in relation to vascular risk 
and depression 

 

2.1 Introduction 

Chapter 2 provides a more detailed introduction and literature review of the key areas of 

investigation in this thesis. It focuses on vascular risk and depression, the MRI correlates of 

vascular risk factors and the MRI correlates of depression. This literature review will be used to 

highlight the gaps in current research in order to develop a rationale for the aims and 

hypotheses in this thesis, which will be described in Chapter 3. 

 

2.2 Vascular risk and depression 

Clinical observations that cardiovascular diseases including stroke and myocardial infarction, 

lead to an increased risk of depression were important in the development of the ‘vascular 

depression hypothesis’ (113, 114). This hypothesis proposes that vascular diseases may 

predispose to, precipitate or perpetuate depression. Older people, who are more likely to have 

vascular disease and multiple vascular risk factors, are particularly vulnerable (24). There may 

be a number of social and psychological factors which could explain the association between 

vascular disease and depression. However, the discovery that these relationships were bi-

directional, and that elevated vascular risk factors (even in the absence of vascular disease) 

may also increase the risk of depression, strengthened the argument that vascular risk factors 

are an important component in the aetiology of depression.   

 

A recent meta-analysis of cohort and case-control studies has provided a useful review of 

vascular risk factors and  depression in later life (74). While individual studies investigating 

vascular risk and depression showed mixed and inconsistent results, overall the meta-analysis 

found that smoking, diabetes, cardiovascular disease and stroke were associated with 

increased risk for depression (Table 4). For diabetes, cardiovascular disease and stroke, some 

studies controlled for the effects of chronic illness; while controlling for this attenuated the 

effect-size, it still remained statistically significant. Other vascular risk factors including 

hypertension, dyslipidaemia and the Framingham Stroke Risk Score (FSRS) were not associated 

with a statistically significant increased risk of depression (Table 4) (74). This suggests that 

current vascular disease may be more important in the development of depression than 

generic vascular risk factors, or that depression may be related to severity of vascular disease 
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rather than to isolated cardiovascular risk factors. Alternatively, it may not be vascular disease 

itself which leads to depression, but rather a non-specific effect of being diagnosed with a 

serious progressive disease, such as cancer, arthritis, or neurological disorder. This possibility 

forces attention onto a consideration of alternative mechanisms leading to depression. For 

example, what is the effect of on brain structure and function, and what is the final common 

pathway (if any) leading to depression? In addition, do vascular risk factors increase 

vulnerability to depression, or are other precipitants needed in order for the clinical symptoms 

to develop? 

 

From an epidemiological perspective, longitudinal follow-up of over 5000 participants in the 

Whitehall II cohort study found that diagnosed vascular disease was associated with an 

increased risk for depressive symptoms (odds ratios 1.5-2.0) (115). In this study, amongst 

participants without manifest vascular disease at baseline, none of the cardiovascular risk 

prediction scores in middle age were significantly associated with new-onset depressive 

symptoms in those aged over 65 (odds ratios 0.8-1.2) (115). Epidemiological studies are, 

however, limited by the lack of clinically-defined measures of depression, and this limitation 

may contribute to the discrepancy between case-control and prospective cohort studies.  
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Table 4. Vascular risk factors for depression 
Adapted from Valkanova and Ebmeier, 2012 (74) with the authors permission 

 

 
Number of 

studies 

Odds 

Ratio* 

95% CI p-value Heterogeneity 

Q p I2 

Hypertension 14 1.14 0.94 to 1.40 0.19 32.7 0.002 60.3 

Dyslipidaemia 10 1.08 0.91 to 1.28 0.40 15.3 0.08 41.0 

Framingham 

Stroke Risk 

Score 

5 1.25 0.99 to 1.57 0.06 7.2 0.12 44.6 

Smoking 10 1.35 1.00 to 1.81 0.05 27.1 0.001 36.5 

Diabetes 15 1.51 1.30 to 1.76 <0 .001 18.7 0.18 25.0 

Diabetes † 5 1.46 1.14 to 1.86 0.003 6.3 0.18 36.5 

Cardiovascular 

disease 

10 1.76 1.52 to 2.04 <0 .001 12.1 0.21 25.7 

Cardiovascular 

disease † 

6 1.40 1.08 to 1.80 0.01 10.6 0.06 53.0 

Stroke 10 2.11 1.61 to 2.77 <0.001 21.9 0.01 58.9 

Stroke† 5 1.80 1.24 to 2.62 0.002 7.3 0.12 45.4 

* Pooled random-model odds ratio 
†
 Studies which control for the effects of chronic illness 

 

Blood pressure 

In their meta-analysis Valkanova and Ebmeier (2013) (74) identified 14 studies comparing the 

prevalence or incidence of late-life depression in people with and without hypertension (116-

129). When combined, these studies showed that there was no significant association 

between hypertension and increased risk of depression. However, other studies have found an 

association, and population studies demonstrate that patients with major depressive disorder 

have a higher prevalence and incidence of hypertension compared with the general population 

(130). In a large cross-sectional population study, people with controlled hypertension had an 

increased risk of depression (131). This effect was mediated by an increased burden of 

vascular disease, and not necessarily related to hypertension. Mid-life hypertension has been 

associated with depressive symptoms in late life, particularly in those with blood pressure 

variability (132). Although hypertension may be a marker of cardiovascular disease this could 

also suggest that it is variability in blood pressure which is important; hypotension, as well as 
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hypertension, could also lead to structural and functional brain changes.  Finally, hypertension 

is an important component of risk prediction models that seek to identify individuals at risk of 

post-stroke depression (133). Therefore, there is conflicting evidence for the relationship 

between hypertension and depression, and this is a key vascular risk factor that warrants 

further investigation. 

  

Cholesterol 

A meta-analysis did not support an association between dyslipidaemia and increased risk of 

depression in the ten studies identified (74). This finding is disputed in a more recent single 

study (134). However, an investigation of 3564 people recruited through the Rotterdam study 

found no association between atherosclerosis and incident depressive disorder (135).  This was 

a longitudinal study with a six-year follow up and the results support the theory that 

depression itself may contribute to vascular disease, rather than vice versa. In addition, a study 

of 5000 participants from the Gutenberg Health Study found no association between 

atherosclerosis (measured by intima-media thickness and carotid plaques) and depressive 

symptoms, again failing to support the vascular depression hypothesis (136).  Taking these 

studies together, the relationship between atherosclerosis and dyslipidaemia as risk factors for 

depression seems doubtful. It is likely that there are complex mechanisms linking these two 

conditions, including dysfunction in the autonomic nervous system and the hypothalamic-

pituitary axis as well as underlying vascular causes promoting  chronic inflammation, 

endothelial dysfunction and platelet activation and aggregation (137). Given that there are 

relatively few previous studies in this area, this common risk factor would benefit from further 

investigation, utilising prospective data from the Whitehall II study to fully investigate 

longitudinal associations with depression. 

 

Diabetes 

There is likely to be a bi-directional relationship between depression and diabetes, but the 

exact mechanisms are unclear and a relative lack of longitudinal studies makes it difficult to 

confirm causality. Meta-analysis of 15 studies supports an association between diabetes and 

depression (74), however, only five of these studies adjusted for the effects of chronic illness.   

Depression is twice as common in people with type 2 diabetes compared to controls, and even 

pre-diabetes is associated with a small but significant association with increased rates of 

depression (138, 139). The association could be mediated by vascular changes, by the 
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psychological effects of living with a chronic disease, or by the effect that depression has on an 

individual’s ability to monitor and manage a chronic disease. 

 

Smoking 

Smoking increases the risk of developing depression (74) (Table 4). There are several theories 

of how this effect might be mediated. For example, it may be that smoking causes increased 

atherosclerosis, thus increasing vascular risk and leading to depression. If this is the case it is 

an important modifiable risk factor for depression. However, the association may be due to 

confounding factors related to smoking, for example shared genetic risk (140) or 

environmental factors. Alternatively, some longitudinal studies have shown a direct causal link 

between smoking and depression (141, 142).  

 

Framingham Stroke Risk Score 

Framingham Stroke Risk Score has been associated with incident depressive symptoms in one 

study (127). In a further study, although FSRS was associated with depressive symptoms after 

one year of follow-up, this result became non-significant after controlling for medical co-

morbidities (143). Other studies have not supported an association between depressive 

symptoms and FSRS (115, 117, 144), and overall it seems unlikely that there is an association 

between this composite risk score and depressive symptoms or disorder (74). 

 

Coronary heart disease  

Cardiovascular disease increases the risk of major depressive disorder (74) (Table 4). Single 

cardiovascular events such as myocardial infarction increase the risk of depression, and people 

who develop depression following myocardial infarction have an increased risk of all-cause 

mortality and cardiovascular events (114). There is also a modest association between lifetime 

coronary artery disease and major depression (odds ratio 1.3) (26), with evidence to suggest 

that lower cardiovascular fitness at age 18 is associated with an increased risk of depressive 

disorder in adulthood (145). Young people with a family history of depression, but no personal 

history of depression show altered cardiovascular risk profiles even in the absence of 

depressive symptoms, suggesting that vulnerability to vascular risk and depression starts many 

years before clinical symptoms become apparent (146). Given that there is substantial 

evidence linking coronary heart disease and depression, it is surprising that atherosclerosis 

does not appear to increase the risk of incident depression in older adults (135). This places 
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doubt on the nature of the common pathway linking these conditions. If it is not related to 

pathophysiology, its effects could be mediated through other psychological or social factors; 

alternatively it could be due to shared risk factors for cardiovascular disease itself, and not for 

atherosclerosis. A further reason for doubting the association between cardiovascular disease 

and depression is that the persistence and recurrence of depressive symptoms is not 

influenced by the presence of cardiovascular disease (147).  

 

The predictive association of CHD with major depression is much stronger than that of 

depression with CHD (26), although depression is associated with an increased risk of 

myocardial infarction and cardiovascular disease (148, 149). It is possible that the relationship 

between these conditions is bi-directional, and even mutually re-enforcing (28, 150). A meta-

analysis of longitudinal cohort and case-control studies of depression and cardiovascular 

diseases suggests that depression may be an independent risk factor for cardiovascular 

diseases (151). There was substantial heterogeneity between studies, especially for those 

including participants with depressive symptoms. 

 

2.3 MRI correlates of vascular risk factors 

If vascular disease and risk factors lead to increased risk of depressive disorder, it is plausible 

that changes in brain structure and function may mediate this association. This section reviews 

research on the MRI brain changes associated with vascular risk factors and diseases to 

explore the evidence related to this hypothesis. 

 

Blood pressure 

There have been relatively few studies considering the effect of hypertension on brain 

structure within non-clinical populations. There is some evidence that older, hypertensive 

subjects have smaller whole-brain volumes compared to normotensive individuals (152), and 

possibly an increased rate of whole-brain atrophy (153). In addition, subjects with untreated, 

raised blood pressure may have an increased risk for hippocampal atrophy (154, 155), 

although this is not a universal observation (152, 156). Hypertension also seems to be linked to 

age-related white matter changes, (157, 158) increased white matter lesion load (159-161), 

increased white matter hyperintensity volume (153, 162, 163) and reduced white matter 

integrity (164-167). However, these associations continue to be debated because of several 

shortcomings in the evidence: many studies are based on cross-sectional data (158, 162, 164) 
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or with short follow-up periods (155, 168); use small samples (166) or younger subjects with, 

due to their age, limited exposure to the effects of hypertension (164, 165); ignore the 

potential effects of antihypertensive drug treatment (152, 159, 162); use low-resolution MRI 

(159), without a fully automated MRI analysis technique (154), or focus only on white matter 

(157).  

 

Dose-response patterns provide support for a causal association, but few studies have 

examined whether a longer exposure to hypertension is associated with greater changes in 

brain structure. Hypertension in mid-life is related to thinner cortex in several brain areas, 

including insular, frontal, and temporal cortices nearly 30 years later (169), a well as increased 

rate of progression of vascular brain injury, global atrophy and hippocampal atrophy (160). In a 

four year longitudinal study, subjects with hypertension at baseline had a significantly 

increased risk of severe white matter hyperintensities at follow-up (170). There is evidence 

that the effects of systolic blood pressure on white matter integrity are present even in young 

adults (164), and use of longitudinal data on hypertension, such as that available through the 

Whitehall II Study is therefore important to fully understand this association.  

 

Cholesterol 

Some studies have identified an association between reduced HDL levels and grey matter 

volume reductions in temporal regions (171) and the hippocampus (172). However, this is not 

a well-replicated finding: a further study found an association with hippocampal volume 

reductions in men but not in women (173), with other studies finding no association between  

grey matter volume and HDL cholesterol (174, 175). Cortical thickness has been used to 

investigate changes in global grey matter volume, and in a population sample of elderly people 

high HDL levels were associated with decreased cortical thickness (176). This finding contrasts 

with previous studies, and given that higher HDL levels are thought to be beneficial for 

cardiovascular health, is somewhat unexpected.  

 

White matter hyperintensity volume is not generally associated with LDL cholesterol levels 

(177); however, increased HDL cholesterol and decreased LDL cholesterol are associated with 

progression of white matter lesions on serial MRI scans (178). One study reports that 

dyslipidaemia is associated with a lower risk of small vessel disease identified through MRI 

brain scans; however, this study did not account for the effects of medication, which are likely 

to significantly affect the results (179).  
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Familial hypercholesterolaemia is associated with increased white matter lesions and 

investigation of this patient group has provided further insights into the effect of dyslipidaemia 

on brain white matter. People with familial hypercholesterolaemia on high dose statin therapy 

are much less likely to develop increased white matter changes (180), even when plasma 

cholesterol levels remain high (181). This suggests that treatment can be effective in reducing 

the effect of raised cholesterol on the brain, but the fact that structural brain changes can be 

ameliorated even when plasma levels stay high indicates that the relationship between raised 

cholesterol and brain structure is far from straightforward.  

 

Metabolic syndrome (comprising at least three of the following: hypertension, 

hyperglycaemia, hypertriglyceridemia, low HDL levels and central obesity) is associated with 

microstructural abnormalities in white matter, particularly in the frontal lobe (182). Research 

using neuropathological techniques supports an association between atherosclerosis and 

microvascular changes in frontal white matter (183). However, it still remains unclear to what 

extent this relationship is driven by dyslipidaemia rather than other vascular risk factors. In 

view of the findings described above, is seems more likely that the association is strongly 

influenced by hypertension rather than by dyslipidaemia.  

 

There is a strong association between dyslipidaemia and cardiovascular disease. However, the 

relationship with cerebrovascular disease is disputed, and there is no clear consensus about 

the association between dyslipidaemia and MRI structural changes. The relationship is 

complicated by the protective and adverse effects of different types of cholesterol which lead 

to reduced and increased cardiovascular risk, respectively.  It is further complicated by the 

widespread use of medication, and the confounding effects of multiple vascular risk factors. 

Finally, while dyslipidaemia may contribute directly to cerebrovascular pathology, its effects 

could be mediated through other factors, such as inflammation. If the relationship is indirect it 

may explain some of the discrepant results in the literature.  

 

Diabetes 

Cortical atrophy, hippocampal atrophy and increased ventricular size are more common in 

patients with type 2 diabetes mellitus, compared to controls (175, 184-191). Hippocampal 

atrophy is also found in people with elevated fasting blood glucose that does not meet the 

criteria for diabetes, suggesting that metabolic and vascular changes are a causal component 

of hippocampal atrophy (192). It is likely that macrovascular and microvascular factors (e.g. 
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fasting serum glucose and duration of hyperglycaemia) contribute to the extent of brain 

atrophy (193). Atrophy is more prominent in type 2, rather than type 1 diabetes, likely owing 

to the characteristics of patients with type 2 diabetes, who are older and have increased rates 

of co-morbidity, macrovascular disease and reduced insulin sensitivity (62). Type 2 diabetes is 

an independent risk factor for medial temporal lobe atrophy (156). However, observations 

from a longitudinal cohort found evidence for a causal relationship between alterations in 

glycaemic control and blood pressure, and subsequent brain ischemic and atrophic changes 

(194). 

 

Although diabetes is related to increased brain atrophy, there is conflicting evidence about 

whether this is independent of depression and other vascular risk factors (195, 196), or 

exacerbated in those with depression in addition to diabetes (197). Those with diabetes have 

increased rates of cognitive decline (198, 199) and an increased incidence of dementia (200, 

201). Accelerated cognitive decline in patients with type 2 diabetes is associated with 

progressive changes on brain MRI, including global atrophy and vascular damage (202).  

 

White matter lesions and microstructural abnormalities in white matter tracts, thought to be 

due to vascular risk factors, are increased in people with type 2 diabetes (62, 187, 188). Deep 

white matter lesions are more common than periventricular lesions in patients with type 2 

diabetes (203). However, despite biological plausibility, there have been a number of negative 

studies, and the relationship between type 2 diabetes and white matter lesions remains 

unresolved (189, 190). 

 

Smoking 

MRI studies have demonstrated significant grey matter abnormalities in cigarette smokers 

(204, 205) including ventricular enlargement, generalised atrophy, reduced grey matter 

density and sulcal enlargement (206-208). In a longitudinal study of cognitively intact adults 

(mean age 76 years), smokers showed greater atrophy in multiple brain regions (209). The 

prefrontal cortex, left dorsal anterior cingulate cortex, right cerebellum and corpus callosum 

are particularly affected (206, 210, 211). There is cross-over in the brain regions affected by 

smoking and those affected in early Alzheimer’s disease (212).  These structural changes may, 

therefore, explain why smokers show cognitive changes including impaired executive function, 

verbal learning, processing speed and working memory (205). On stopping smoking, grey 

matter volumes in regions related to habit learning and visual processing can increase, but 
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those related to long-term memory do not change (213). The length of smoking history, and 

number of cigarettes smoked contributes to grey matter changes and both are independent 

risk factors for MRI-defined small vessel disease (214). Smoking greatly increases the risk of 

cerebral and cardiovascular events in people aged over 75 years (215). 

 

Smoking is associated with white matter changes with some, but not all, studies reporting 

greater periventricular white matter hyperintensities in smokers (204, 216). More recently, 

there has been a greater focus on the effect of smoking on white matter microstructure. A 

small case control study (n=20) showed that smoking is associated with reduced micro-

structural integrity in white matter within the body and splenium of the corpus callosum (217). 

Smokers also show abnormal white matter integrity in the anterior corpus callosum, which is 

related to the duration of smoking (218).  

 

Functional MRI studies have been used to demonstrate that smokers show greater activation 

than controls in regions linked to attention and motivation, in response to smoking related 

cues (216, 219, 220).  The intensity of smoking craving is correlated with activation in frontal 

regions including the orbitofrontal cortex, dorsolateral prefrontal cortex and cingulate gyrus 

(216).  The anterior and posterior cingulate cortex, medial and lateral orbitofrontal cortex, 

ventral striatum, amygdala, thalamus and insula are involved in the maintenance of smoking 

and nicotine withdrawal (221).  

 

Smoking seems to be associated with reduced grey matter volumes, reduced white matter 

integrity and functional brain changes related to attention and motivation. The majority of 

studies in this field are small, and many are cross-sectional. However, longitudinal data is 

important, since length of exposure makes a difference to MRI measures. 

 

Framingham Stroke Risk Score 

There is a limited literature investigating the MRI correlates of the FSRS in otherwise healthy 

individuals. However, two studies arising from the Framingham study itself suggest that 

elevated FSRS is associated with reduced total cerebral brain volume (222) and increased total 

white matter hyperintensity volumes (223). 



45 

 

Coronary heart disease 

Coronary heart disease has a major effect on the cerebrovascular system and the brain is an 

important end organ of cardiovascular disease (48). A history of CHD indicates significant 

atherosclerosis, which would be expected to affect the cerebrovascular system. Indeed, 

cortical grey matter changes, increased silent brain infarcts and increased white matter 

hyperintensities are all commonly associated with CHD (224, 225). Extensive white matter 

hyperintensities are particularly  associated with symptomatic vascular disease (226). People 

who already have substantial white matter disease before a cardiovascular event would be 

expected to have a worse prognosis than those without established cerebrovascular changes 

prior to cardiovascular event (227). CHD and vascular risk factors may also have an effect on 

cerebral blood flow and vascular reactivity. One study found that the Framingham 

Cardiovascular Risk Profile was negatively correlated with vasoreactivity to hypercapnia (228). 

This suggests that elevated vascular risk is associated with changes in blood flow and reactivity 

throughout the cortex, and in the hippocampus in particular. This, and other studies have 

helped to highlight the links between CHD, altered brain structure and cognitive impairment 

(160, 229). 

 

2.4 MRI correlates of depression 

Magnetic resonance imaging has been used to investigate depression, particularly late-life 

depression where structural brain changes may be more common compared to depression 

with onset at younger ages. This section reviews the previously published literature which 

used MRI to identify structural changes in those with depressive symptoms and depressive 

disorder. This review of the literature provides the background to the development of the 

hypotheses pertinent to this thesis. 

 

Grey matter 

Depression is characterised by reduced grey matter brain volumes in areas involved in 

emotional processing and memory, including the frontal cortex, orbitofrontal cortex, 

subgenual cingulate cortex, hippocampus and striatum (38, 230-233). In late-life depression, 

grey matter abnormalities tend to be more widespread, and many studies report volume 

reductions in the orbitofrontal cortex, amygdala, hippocampus, putamen, and thalamus (36, 

52, 234). In older subjects even sub-threshold depressive symptoms have been associated with 

frontal-temporal volume reductions (235). While many studies find widespread changes in 
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grey matter, some case-control studies of late-life depression find no differences in grey 

matter volumes (16). Differing imaging methodology and analysis, as well as variations in 

current symptoms, may explain the conflicting results. Overall, previous studies support the 

notion of regional grey matter reductions in depressive disorder in areas related to emotional 

processing and memory. The latter is of particular interest in late-life depression as this may 

explain the association with cognitive impairment and increased risk for the development of 

dementia (236). 

 

White matter 

Cross-sectional analyses show that increased white matter hyperintensity volumes are found 

in people with unipolar depression (230). This finding is well replicated in older people, with 

several studies finding that white matter hyperintensities in frontal and temporal regions are 

correlated with late-life depressive symptoms (237-239). Late-life depression is characterised 

by more frequent and severe white matter abnormalities, compared to early-onset 

depression, suggesting that aetiology may differ depending on age at onset (240). Given that 

white matter hyperintensities can be ischaemic in origin, these studies offer support for the 

theory that vascular disease and risk factors are more likely to contribute to the development 

of depression later in life (40, 41, 241). Deep white matter hyperintensities (affecting the 

frontal-subcortical circuits), rather than periventricular white matter hyperintensities, are 

more important in the aetiology of late-life depression (39, 41, 242).  

 

The longitudinal data on white matter hyperintensities and depression are less consistent, with 

some studies showing that the progression of white matter hyperintensities is greater in those 

with depression at baseline (239), and others finding that baseline depressive symptoms, 

development of depressive symptoms and greater duration of depressive symptoms do not 

have an impact on white matter hyperintensities (240, 243, 244). The relationship between 

white matter hyperintensities and depressive symptoms therefore remains uncertain.  

 

Imaging data on white matter hyperintensities has helped to support the vascular depression 

hypothesis. However, these use visual ratings that give an indication of lesion severity, but do 

not quantify lesion load precisely, and also lack anatomical specificity. The advent of more 

sophisticated techniques to investigate white matter structure (e.g. DTI using Tract Based 

Spatial Statistics) has provided tools which are more sensitive and better suited to detecting 

and quantifying subtle structural differences and their location (245). In meta-analyses of DTI 
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studies of affective disorders, reduced FA within frontal and temporal lobes is a consistent 

finding (246, 247). This suggests that abnormalities within white matter tracts connecting the 

pre-frontal cortex within cortical and subcortical areas underlie the network dysfunction in 

major depressive disorder (246, 247). In major depressive disorder, as well as late-life 

depression, white matter integrity is widely reduced within the limbic system, frontal cortex 

and the thalamus, when compared to controls (16, 245, 248). Changes in white matter 

integrity are evident in major depressive disorder and are associated with increasing severity 

of depressive symptoms (249). 

 

2.5 Limitations of published research related to vascular risk, depression and 

MRI 

There is a good deal of evidence for the vascular depression hypothesis. However, individual 

studies continue to show inconsistent results, particularly in relation to vascular risk factors 

such as hypertension and dyslipidaemia. It is surprising that there is limited evidence in 

support of these risk factors, because if micro-vascular changes are relevant to depression 

then these may represent common pathways by which CHD, diabetes and stroke exert their 

effects. Vascular risk factors therefore warrant further investigation, particularly to consider 

whether they may affect brain structure, and thereby predispose to increased vulnerability to 

depression.  

 

Many studies considering vascular risk and depression are cross-sectional, or based on only a 

short follow-up period. This means that it is not possible to distinguish between short-term 

and long-term exposure to vascular risk factors. This approach may underestimate the 

association with vascular risk factors and depression, which would be expected to have a 

cumulative effect on the risk of depression if present over a period of years. While some 

results indicate that current vascular disease may be more important in the aetiology of 

depression than previous disease, only the use of prospective, longitudinal data is capable of 

measuring the cumulative effect on depression and brain structure. Many studies have 

focussed specifically on patient groups; by contrast, the use of a prospective cohort such as 

the Whitehall II Study offers the valuable opportunity to consider the effects of vascular risk 

factors amongst a population sample, rather than a sample specifically selected for 

depression, or cognitive impairment. 



48 

 

There are relatively few studies focussing specifically on the MRI correlates of vascular risk 

factors, partly because of the difficulty in controlling for confounding variables. It seems 

important to fully understand the effect and contribution of vascular risk on brain structure 

and function before drawing conclusions linking vascular risk and depression. Thorough 

investigation of the MRI correlates of vascular risk factors might confirm that there are 

anatomical changes underlying the association, or (if these are absent) stimulate investigation 

into alternative mechanisms.  

 

Few studies have used data on vascular risk and depression collected across the adult life-

course, in conjunction with high-resolution MRI. Many MRI studies utilise small sample sizes, 

and are cross-sectional in nature, without robust longitudinal data. Some studies of depression 

utilise a clinical diagnosis, whereas many measure depressive symptoms only, which may or 

may not equate to a clinical diagnosis. One strength of the present study using participants 

from the Whitehall II cohort study is the opportunity it affords of comparing DSM-IV diagnosis 

of depression with use of rating scales for depressive symptoms, to investigate whether both 

are identifying similar neurobiological changes through structural and functional imaging. 

 

2.6 Summary 

There may be a bi-directional relationship between vascular risk and depression, with the 

strongest evidence for associations with cardiovascular disease, stroke, smoking and diabetes. 

These effects are most evident in late life. There are inconsistent results for other vascular risk 

factors including hypertension and dyslipidaemia, and their associations with depression, and 

these warrant further investigation. The mechanisms linking vascular disease and depression 

are still unclear; use of neuroimaging would allow investigation of changes in brain structure to 

determine both risk and resilience factors.  

 

There have been relatively few studies focussing on the effects of individual vascular risk 

factors on brain structure. There has been most investigation of hypertension and smoking, 

with studies suggesting that these factors are associated with increased whole-brain atrophy, 

regional atrophy and white matter changes. There are more studies considering the effects of 

diabetes, stroke and CHD on brain structure, but apart from a few large trials, these are limited 

by being largely cross-sectional, or of limited longitudinal duration.  
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There is a wide range of literature describing the MRI correlates of depression, which include 

reduced grey matter volumes in areas involved in emotional processing and memory, and 

white matter changes. Depression is associated with increased white matter hyperintensities 

and reduced white matter integrity, particularly in frontal-limbic regions.  
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Chapter 3.   The present study 
 

3.1 Study aims  

The principal aim of this study is to explore the vascular aetiology of depression and depressive 

symptoms using neuroimaging and epidemiological methods. This combined approach 

addresses important limitations in previous studies (for example, cross-sectional designs with 

short-term exposure to vascular risk factors and low-resolution MRI, or lack of sophisticated 

analysis techniques) by analysing a large data-set of (3 Tesla (T)) MRI scans with sophisticated 

analysis measures, and combining this with high-quality cross-sectional and prospective 

longitudinal data collected over a 28-year period, relating to depression and vascular risk. 

Participants included in this study are recruited from the Whitehall II Study conducted at 

University College London (UCL) and represent the first phase of the Whitehall Imaging sub-

study being conducted at the University of Oxford. Given that all participants are over the age 

of 60, where depressive symptoms and cardiovascular disease are common but rates of 

dementia and frailty remain low, this represents an ideal window of opportunity to explore the 

vascular aetiology of depression. 

 

3.2 Study objectives and hypotheses 

The objectives of this thesis are to examine the following questions: 

1. Are long-term vascular risk factors associated with changes in grey and white matter 

brain structure? 

2. Are current and previous depressive symptoms associated with changes in grey and 

white matter brain structure?  

3. Are there common MRI correlates for vascular risk and depression that could explain 

the mechanisms linking these conditions? 

4. Do long-term vascular risk factors lead to increased risk of depressive disorder 

(defined using DSM-IV criteria) and depressive symptoms (defined using CES-D)?  

 

An additional focus for this thesis consists of two methodological elements. First, to compare 

visual and automated MRI analysis techniques, to consider whether visual techniques can be 

useful in quantifying structural brain changes in an epidemiological sample over the age of 60, 

and used to distinguish mood-related structural brain changes. Second, to compare whether 

depression diagnosed using a self-reported rating scale, and DSM-IV criteria have similar 
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underlying anatomical correlates. If these are similar, this would strengthen the rationale for 

using self-reported measures to diagnose depression in the context of epidemiological studies. 

 

Following the literature review in Chapter 2 the study hypotheses are as follows: 

1. Visual rating scales for global atrophy, hippocampal atrophy and white matter 

hyperintensities can provide objective and reliable measures of brain structure in this 

cohort. 

2. Visual and automated techniques can be cross-validated and used to distinguish 

structural brain changes and cognitive changes in an occupationally-based sample. 

3. Long-term exposure to vascular risk factors (hypertension, dyslipidaemia, diabetes, 

smoking and Framingham Stroke Risk Score) are associated with reduced grey matter 

volumes and reduced white matter integrity particularly in frontal-subcortical regions.  

a. White matter brain changes are more pronounced than grey matter changes.  

b. Specifically, diabetes, smoking and coronary heart disease will have the most 

significant effects on brain structure; dyslipidaemia the least. Hypothesis 

generation is more difficult for hypertension and FSRS due to inconsistencies 

in previous findings and the limited previous studies (see Chapter 2). 

4. Depressive symptoms and depressive disorder are associated with reduced grey 

matter volumes (e.g. in the hippocampus) and reduced white matter integrity, 

particularly in frontal-subcortical regions. 

a. Correlations with brain structure will be more pronounced in those with 

persistent depressive symptoms.  

5. Common brain structures are affected by exposure to long-term vascular risk factors 

and to depressive symptoms. 

6. Long-term exposure to vascular risk factors is associated with increased prevalence of 

depressive disorder and depressive symptoms, in accordance with the vascular 

depression hypothesis. 
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3.3 Summary 

Compared to previous work, the advantages of the present study are the use of a large sample 

size, with 28 years of prospective data over the adult life-course relating to vascular risk 

factors and depressive symptoms, coupled with high resolution, multi-modal imaging. This will 

enable exploration of the hypotheses that vascular risk factors and disease are associated with 

MRI brain changes, and that depressive symptoms and depressive disorder are associated with 

MRI brain changes. This will ultimately allow the identification of common structural MRI 

correlates between depression and vascular risk. 



53 

 

Chapter 4.   Whitehall Imaging sub-study: methods 
 

4.1 Introduction 

The ongoing Whitehall Imaging sub-study, based at the University of Oxford, is recruiting 800 

participants who are already enrolled in the Whitehall II Study, UCL.  Recruitment and 

participant testing for this sub-study will take place over a four year period (2012 – 2016) with 

participants having detailed characterisation of brain and behavioural measures underlying 

cognitive and physical functioning in ageing. This thesis is based on phase 1 of the Whitehall 

Imaging sub-study which recruited over 200 participants in the period April 2012 – June 2013. 

Chapter 4 describes how these participants were recruited, introduces the study protocol, and 

outlines the study measures which are relevant to investigation of vascular risk and depression 

used later in this thesis. 

 

The overall aim of the Whitehall Imaging sub-study is to explore the brain-related factors 

linked to risk and resilience in ageing, and common mental disorders in late-life. This will be 

achieved by combining longitudinal, prospective data collected over 28 years, with high-

resolution MRI brain measures, detailed cognitive testing, and clinical measures. Investigations 

arising from this study will focus on, amongst others, depression, cognitive impairment, 

resilience and stress. 

 

Utilising data obtained during phase 1 of the Whitehall Imaging sub-study, in conjunction with 

previous longitudinal data, this thesis explores the structural brain changes associated with 

vascular risk factors and depression. This will enable common MRI correlates for vascular risk 

and depression to be identified, in order to explore the biological mechanisms linking these 

conditions. There are two key methodological elements to be investigated as part of this 

study: first, whether clinically applicable, visual ratings are comparable with automated 

measures used in research; second, whether clinical measures of depression are comparable 

with simple depression rating scales commonly used in research.  
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Table 5. Summary of prospective data collected through the Whitehall II Study  

Measures  Phase 1 
1985-88 

Phase 2 
1989-90 

Phase 3 
1991-93 

Phase 4 
1995-96 

Phase 5 
1997-99 

Phase 6 
2001 

Phase 7 
2003-04 

Phase 8 
2006 

Phase 9 
2007-09 

Phase 10 
2011 

Phase 11*  
2012-13 

Oxford 
2012-13 

Age range, years  35 – 55 
 

37 – 59 39 – 62 42 – 64 45 – 67 48 – 70 50 – 72 53 – 75 55 – 77 58 – 80 60 – 85 60 - 82 

Participants  10308 8133 8637 8629 7830 7344 6967 7180 6755 277 6035 229 

Social circumstances and behaviours  

Social circumstances  x x x x x x x x x x x x 

Smoking, alcohol X X X  X  X X X X x X 

Exercise, sleep x  x  x  x  x  x x 

Diet    x  x  x  x  x x 

Biological measures  

BP, BMI, waist, lipids, 
glucose, insulin 

X  X  X  X  X  x BP and 
BMI only 

Inflammatory markers   x    x  x  x x 

Genetic material        x  x    

MRI brain scan            X 

Health outcomes  

CHD, stroke, diabetes, 
cancer, mortality 

X X X X X X X X X X x X 

Medications X X X X X X X X X X x X 

Psychosocial factors  

Social support & work x x x  x  x x x x x x 

Employment status x  x x x x x x x x x x 

Functioning  

Questionnaire x x x x x x x x x x x x 

Cognitive tests     X  X  X  x X 

CES-D / GHQ X  X  X  X  X  x X 

* Phase 11 data were not available at the time this thesis was prepared   Measures used in this thesis are highlighted in red with a capital X
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4.2 Participants 

4.2.1 The Whitehall II study 

All participants have taken part in the Whitehall II Study, UCL since 1985 (104). The Whitehall II 

Study is a prospective longitudinal cohort originally established to investigate the social 

gradient in health and disease (250). All civil servants age 35-55 working in the London offices 

of 20 Whitehall departments in 1985-1988 were invited to participate. The response rate was 

73% and a sample of 10 308 people (6895 men, 3413 women) was recruited. Although they 

represent a group of people in established employment, who may have more favourable risk 

factor profiles and disease incidence compared with the general population, standard risk 

factor-cardiovascular disease associations are in close agreement with those observed in a UK-

wide general population study (British Regional Heart Study) and the community-based 

Framingham study (251). In addition, these participants were employed in a wide variety of 

roles from clerical work, through to senior administration grades (salaries ranging from £7 387 

to £87 620), reflecting a diverse social gradient as seen in the general population (104).  

 

Extensive data were collected through face-to-face contact with all participants at phases 1 

(1985-1988), 3 (1991-1993), 5 (1997-1999), 7 (2003-2004), 9 (2007-2009) and 11 (2012-2013); 

intervening phases consisted of postal questionnaires, or face-to-face contact with a smaller 

proportion of the total sample (Table 5). Ethical approval for this study was provided by the 

UCL/UCLH Committees on the Ethics of Human Research (Committee Alpha, reference: 

85/0938) with written informed consent obtained from each participant at each phase of data 

collection. 

 

The original focus of the Whitehall II Study was to investigate the social and occupational 

influences on health and illness, with data collected on a range of measures including 

cardiovascular risk, psychological and social functioning, and quality of life (104). Investigation 

of this well-characterised cohort has made an important contribution to research, as well as to 

national and international public health policy (252, 253). As the cohort has aged, the focus of 

Whitehall II has shifted from ‘stress and health’, to a study investigating normal ageing, as well 

as risk and resilience factors for common mental illness of late-life. The extensive prospective 

longitudinal data means that the Whitehall II Study is ideally placed to investigate mid-life 

antecedents to ageing. In particular, previous data collection regarding cardiovascular illness 

and risk factors means that the cohort can be used to determine whether cardiovascular 
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disease and risk factors result in increased prevalence of depression and greater cognitive 

dysfunction, and whether there is an interaction between these two outcomes. Since phase 10 

(2011), all participants are over 58 years of age, providing an ideal window of opportunity to 

explore the association between vascular disease and risk factors, with common mental 

disorder in later life.  

 

4.2.2 The Whitehall Imaging sub-study 

For the Whitehall Imaging sub-study, based in Oxford, participants are recruited from phases 

10 and 11 of the Whitehall II Study. Participants from Whitehall phase 10 (2011) represent an 

enriched sample, selected for the presence of late-onset depressive symptoms. They were 

identified as having normal Centre for Epidemiological Studies Depression Scale (CES-D) and 

General Health Questionnaire (GHQ) scores at age <60 and late-onset depressive symptoms 

with high scores at age ≥60 (254-257). Participants from phase 11 (2012-13) were selected at 

random from the whole Whitehall cohort. The Whitehall Imaging sub-study plans to recruit 

800 participants over four years from 2012 to 2016. Phase 1, of the Whitehall Imaging sub-

study took place from April 2012 to June 2013, with just over one quarter of the total number 

of participants recruited.  All participants recruited during phase 1 of the Whitehall Imaging 

sub-study in Oxford are included in this thesis. Ethical approval for this study was provided 

through the Oxford NHS Research Ethics committee (Reference: 10/H0606/71) and the Central 

University Research Ethics Committee (Reference: MSD/IDREC/C1/2011/71).  

 

4.3 Recruitment for the Whitehall Imaging sub-study 

The recruitment and assessment protocol is summarised in Figure 3. During phase 10, a pilot 

study for the new measures due to be used at phase 11, participants gave consent to be 

approached by researchers to discuss an MRI brain imaging study. Participants who agreed to 

be approached were provided with written and verbal information about the study, gave their 

contact details, and were re-contacted one year later by phone. The majority of participants 

were recruited from Whitehall phase 11. During the phase 11 clinic participants were asked to 

give their consent to be contacted about an MRI brain imaging study. Those who agreed to this 

were randomised, and each month a list of participants was sent to the Whitehall Imaging sub-

study research team in Oxford; in total a list of 1380 names was sent. This oversampling was 

designed to allow for those who declined to participate, or were unable to participate because 

safety reasons precluded participation in the MRI scan. 
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Where possible, participants were contacted by phone within one month of the Whitehall 

phase 11 visit to confirm their interest in the study, to provide them with further information 

about it, and to invite them to participate. An MRI safety screening was conducted by phone. 

As required by standard MRI safety protocols, individuals with contraindications to MRI 

scanning were excluded, including those with pacemakers, certain metallic implants, previous 

metallic injury to the eye or a history of claustrophobia. Those who agreed to participate were 

sent written confirmation of their appointment, a consent form, details of practicalities (e.g. 

travel directions) and the questionnaire. Participants were phoned a second time one or two 

days prior to their visit to Oxford to confirm their travel arrangements and answer any 

questions. Table 6 provides further detail about the number of participants identified from 

Whitehall II at UCL, and the numbers included and excluded up to the end of June 2013. The 

most common reasons for exclusions related to MRI safety concerns, or participants choosing 

not to take part in the MRI sub-study. 

 

 

Table 6. Participant recruitment for the Whitehall Imaging sub-study 2012-2013 

 Phase 10 Phase 11 Total 

Number of participants,  n 

Identified 51 1380 1431 

Included 29 200 229 

Excluded 22 98 120 

Pending for 

subsequent 

phases of 

Whitehall Imaging 

sub-study 

0 

 

 

1082 

- 20 phone screened, 

appointment offered 

- 15 phone screened, 

no appointment  

- 13 awaiting phone 

screening 

- 1034 will be re-

contacted in 1 year 

1082 
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Figure 3. Summary of Whitehall Imaging sub-study recruitment and assessment protocol 

 

Participant  
identification 

•  UCL phase 10 - Participants who consent to be approached are 
identified during the phase 10 clinic. 

•  UCL phase 11 - Participants who consent to be contacted are 
randomised. A list of those randomised is sent to the Whitehall Imaging 
sub-study on a monthly basis. 

Phone screening 

•  Phase 10 participants contacted 1 year after initial screening 

•  Phase 11 participants contacted 3 months after initial screening 

•  Verbal information about the study provided 

•  MRI safety screening performed 

Confirmation 
letter  

•  Appointment details 

•  Consent form 

•  Questionnaire 

Reminder 
phone call 

•  Confirm participant travel arrangements 

Data collection, 
Oxford 

•  Consent 

•  Cognitive assessment 

•  Cinical interview and brief examination 

•  MRI safety check and brain scan 

Thank you letter 

•  Including details of reimbursing expenses 
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4.4 Data acquisition for the Whitehall Imaging sub-study 

All participants were assessed at the FMRIB Centre (Functional Magnetic Resonance Imaging of 

the Brain, http://www.fmrib.ox.ac.uk/), University of Oxford using an assessment protocol that 

lasted approximately four hours. On arrival participants were asked to provide written 

consent. The questionnaire was reviewed with the participant to ensure it had been 

completed accurately. After this, basic demographic details were documented, and a detailed 

cognitive assessment was performed. A brief physical examination followed, taking blood 

pressure and heart rate, before performing a structured clinical interview. Participants were 

briefed about the MRI scan and the MRI safety screening was repeated prior to the scan.  

 

4.4.1 Questionnaire 

Participants were asked to complete the questionnaire (see Appendix 1) in the week prior to 

their visit to Oxford. This included questions in five domains: background (including education 

and employment), medical history, mood and life events, activity and sleep. Background 

information included details of past education and employment; medical history focussed on 

past medical history, current prescribed and non-prescribed medication, drug, alcohol and 

smoking history. The mood and life events section included the CES-D, which has been used 

previously in Whitehall II Study phases 7, 9, 10 and 11.  

 

4.4.2 Cognitive assessment 

All participants had a comprehensive cognitive assessment administered by trained psychology 

graduates and psychiatrists. The choice of cognitive tests was informed by a systematic review 

and previous experience within the Department of Psychiatry in testing participants of this age 

group (16, 35). Table 7 lists the cognitive tests performed, in the order they were 

administered. These covered the following cognitive domains: processing speed, executive 

function, visuospatial memory, visuospatial skills, verbal learning, episodic memory, semantic 

memory and language skills (Table 8).  
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Table 7. List of tests performed during Whitehall Imaging sub-study cognitive assessment 

 Cognitive Test Abbreviated 
name 

Maximum 
score 

Normal      
cut-off † 

1.  Montreal Cognitive Assessment MOCA 30 ≥26 

2.  Trail Making Test A and B  TMT A 

TMT B 

- 

 

- 

3.  Rey-Osterrieth Complex Figure – 

copying 

RCF Copy 36 - 

4.  Category Fluency (animals)  - - ≥11 

5.  Rey-Osterrieth Complex – 

immediate recall*  

RCF Immediate 36 - 

6.  Hopkins Verbal Learning Test 

Revised – immediate recall  

HVLT Immediate 

 

36 ≥19 

7.  60-item Boston Naming Test 

 

BNT 60 - 

8.  Digit Span Forward 

Digit Span Backward 

Digit Span Sequencing  

DSFW 

DSBW 

DSS 

14 

14 

14 

- 

9.  Digit Coding  DC 135 - 

10.  Test of Pre-morbid Functioning  TOPF 70 - 

11.  Hopkins Verbal Learning Test 

Revised – delayed recall  

HVLT Delay 12 - 

12.  Hopkins Verbal Learning Test 

Revised – recognition  

HVLT Recognition 12 - 

13.  Rey-Osterrieth Complex – 

delayed recall*  

RCF Delay 36 - 

14.  Rey-Osterrieth Complex – 

recognition  

RCF Recognition 24 - 

15.  Cambridge Neuropsychological 

Test Automated Battery Reaction 

Time  

CANTAB RTI 

 

- - 

*Total score on RCF delayed and immediate recall <40 indicates impairment 
† 

Where applicable 

 

The Montreal Cognitive Assessment (MOCA) is a 30-point cognitive screening test which 

includes measures of executive function, verbal recall, lexical fluency (with letter F), attention 

and naming (258, 259). The Trail Making Test requires participants to “join the dots” between 

consecutive numbers (TMT A), and then to alternating numbers and letters (TMT B) as rapidly 

as possible (260, 261). In the Rey-Osterrieth Complex Figure (RCF), participants are asked to 
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copy a complex geometric design; they are asked to repeat this from memory twice more, 1 

minute and 10 minutes later (262, 263). Finally, they are shown composite parts of the 

complex design, together with similar shapes, and are asked to recognise which components 

formed part of the original figure. In category fluency, participants are asked to name as many 

animals as possible in 1 minute (264). For the Hopkins Verbal Learning Test Revised (HVLT), 

participants are asked to recall a list of 12 words; this is repeated 3 times (265). In the second 

part of the HVLT, a list of 24 words is read to the participant, and they are asked if they 

recognise the 12 words included in the original list. For the 60-item Boston Naming Test (BNT) 

participants are shown pictures of 60 objects and are asked to name them (266, 267). In the 

digit span tasks participants are read a list of numbers and asked to recall them forwards (digit 

span forwards, DSFW), backwards (digit span backwards, DSBW) and then by rearranging them 

in ascending order (digit span sequencing, DSS); in each case the task increases in difficulty by 

using a longer list of digits each time (268). In digit coding (part of the Wechsler Adult 

Intelligent Scale-IV), participants have to transcribe as many numbers as possible using the 

appropriate symbol from a key; this is done under time pressure with participants asked to 

complete as much as possible of the task in 2 minutes (269). During the Cambridge 

Neuropsychological Test Automated Battery Reaction Time participants have to touch a series 

of crosses and circles on the screen (270, 271). This computerised task measures both speed 

and accuracy of completion. In the Test of Pre-morbid Functioning (TOPF) participants are 

asked to read a list of written words, and are scored according to their pronunciation (272). 

The raw TOPF score, together with age, sex and years of education is used to estimate the pre-

morbid IQ. 
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Table 8. Cognitive domains tested during Whitehall Imaging sub-study 

Cognitive domain Test 

Cognitive screening Montreal Cognitive Assessment MOCA 

 

Processing speed Trail Making Test A 

Digit Span Sequencing 

Digit Coding 

Cambridge Neuropsychological Test 

Automated Battery Reaction Time  

 

TMT A 

DSS 

DC 

CANTAB 

 

Executive function Trail Making Test B 

Digit Span Forward 

Digit Span Backward 

Digit Span Sequencing 

 

TMT B 

DSFW 

DSBW 

DSS 

Visusospatial skills Rey-Osterrieth Complex Figure RCF copy 

 

Visuospatial memory Rey-Osterrieth Complex Figure  RCF immediate 

RCF delay 

RCF recognition 

 

Verbal learning and 

episodic memory 

Hopkins Verbal Learning Test Revised HVLT total 

HVLT immediate 

HVLT delayed   

HVLT recognition 

 

Semantic memory and 

language skills 

Category fluency 

60-item Boston Naming Test 

 

Category fluency 

BNT 

Estimate of pre-morbid 

intelligence 

Test of Pre-morbid Functioning TOPF 

 

4.4.3 Structured clinical interview 

A structured clinical interview was administered using screening and mood disorders modules 

from the Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID), non-patient 

version (273). The interview lasted approximately 30 minutes and enabled the identification of 

participants with a current or previous diagnosis of a DSM-IV mood disorder.  
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4.4.4 Brain MRI 

Multi-modal MRI brain scans were acquired at the FMRIB centre, University of Oxford with a 3 

Tesla, Siemens Verio scanner with a 32-channel head coil, using a sequence which lasted less 

than one hour (Table 9). This state-of-the-art sequence was designed to rapidly acquire data 

relating to brain structure. The protocol included T1-weighted, Fluid Attenuated Inversion 

Recovery (FLAIR) and diffusion tensor imaging sequences, which are considered in this thesis. 

In addition, T2*, resting state functional and magnetic resonance spectroscopy sequences 

were acquired; these are beyond the scope of this thesis but are described elsewhere (274) .  

 

 

Table 9. MRI Protocol for Whitehall Imaging sub-study 

Purpose Sequence Time taken 
(min:secs) 

Anatomical reference points for 

sequences 

Localizer 1 00:13 

Localizer 2 (MOCO) 00:29 

T1-weighted Structural 06:12 

FLAIR FLAIR 04:14 

T2* T2* 04:17 

Resting State functional MRI MB6 Resting 10:10 

MB1 00:07 

Fieldmap 01:11 

Magnetic Resonance 

Spectroscopy 

MRS 08:48 

MRS_Water_suppressed 00:46 

Diffusion tensor imaging DTI 1st direction 09:56 

DTI 2nd direction 00:36 

 

 

T1-weighted structural images were acquired using a high-resolution three-dimensional rapid 

gradient echo sequence with repetition time 2530 ms, echo time 7.37 ms, flip angle 7°, field of 

view 256mm and voxel dimensions 1.0mm isotropic (275, 276). FLAIR, used to characterise 

white matter lesions or hyperintensities, used the following parameters: repetition time 9000 

ms, echo time 73.0 ms, flip angle 150°, field of view 220 mm and voxel dimensions 0.9x0.9x3.0 

mm. Diffusion tensor images were acquired with an echoplanar imaging sequence (60 
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directions, b-value 1500 s/mm2) with the following parameters: repetition time 8900ms, echo 

time 91ms, field of view 192mm and voxel dimensions 2.0mm isotropic. Different sequences 

were used with regard to motion correction (MOCO) and this parameter was added as a co-

variate in analysis. This ensured that differences in image quality did not affect the final 

results. Acquisition of DTI data employed a recently developed sequence with complementary 

information included in pairs of diffusion images acquired with reversed phase-encoding 

directions, enabling estimation of susceptibility-induced distortions to correct images for 

artefacts (especially motion–related artefacts) (274, 277). 

 

4.5 Measures used 

This section describes measures of depression and vascular risk used during the Whitehall 

Imaging sub-study, as well as those used in the Whitehall II Study (Table 10). Data in this thesis 

is based on phases 1-9; phase 11 data was not available at the time of writing. 

 

4.5.1 Depressive symptoms 

The widespread prevalence of depression makes it amenable to investigation using population 

and epidemiological studies. However, unlike a condition such as diabetes which can be 

diagnosed through quantitative blood measures, there is no objective investigation that can be 

used to provide a rapid, objective diagnosis. The gold-standard diagnostic tool, an 

unstructured clinical assessment, is often too time-consuming to form part of an 

epidemiological approach. Investigation of depression in a large group of people is best 

performed using a structured assessment, with high inter-rater reliability. Structured 

diagnostic instruments such as the Structured Clinical Interview for DSM-IV diagnosis (SCID) or 

Schedules for Clinical Assessment in Neuropsychiatry (SCAN) have good evidence for their 

reliability, but may still be too time-consuming and labour intensive when applied to large 

population studies. For this reason, large cohort studies frequently employ shorter, structured 

questionnaires to elicit depressive symptoms, such as the Center for Epidemiologic Studies 

Depression (CES-D) questionnaire. This is a validated measure (278), but does not equate to a 

clinical diagnosis. Thus, it is not clear whether a high CES-D score indicates similar underlying 

neurobiological and structural changes on MRI to those identified in people with a clinical 

diagnosis of depression. This is an issue which will be explored in this thesis.  
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Current depressive symptoms 

As part of the Whitehall Imaging sub-study current depressive symptoms are measured using 

the CES-D, a 20-item self-reported questionnaire measuring the frequency of depressive 

symptoms during the previous week on a four-point ordinal scale (254, 278) (see appendix 1). 

The CES-D focuses on six domains: mood, guilt and worthlessness, helplessness and 

hopelessness, psychomotor retardation, loss of appetite and sleep disturbance. The maximum 

score is 60, and those scoring ≥16 are categorised as cases with clinically significant depressive 

symptoms (254). The questionnaire used as part of the Whitehall Imaging sub-study asked 

details of current medication. Current use of antidepressant medication (British National 

Formulary, (BNF), chapter 4.3) was recorded as an additional indicator of current depressive 

disorder. 

 

History of depressive symptoms 

In order to confirm lifetime diagnosis of DSM-IV mood disorder the SCID semi-structured 

clinical interview was used. This has good reliability between interviewers and good validity 

compared to gold-standard clinical interview techniques (279). It includes demographic details, 

screening questions for mental disorder and mental illness, and detailed questions in relation 

to past mood disorders (including depressive symptoms, hypomania and mania) and 

associated clinical symptoms. This enables an accurate diagnosis of mood disorder to be 

reached, including the DSM-IV categories of: dysthymia, minor depressive disorder, major 

depressive disorder, recurrent major depressive disorder, hypomania (current or previous), 

mania (current or previous) and bipolar disorder. 

 

Previously, the presence of depressive symptoms has been measured through Whitehall II 

Study data collection using the CES-D rating scales at phases 7 and 9. CES-D score was also 

measured at phase 10 for a small number of individuals, and at phase 11. At previous phases 

the General Health Questionnaire (GHQ), has also been used (255, 256). This is a self-

administered questionnaire which is a well-validated screening tool to identify those with 

symptoms of depression or anxiety (278). It is scored out of 30, and those scoring ≥5 are 

considered cases. Although caseness does not equate to a diagnosis of depression, it does 

provide a measure of psychological distress. 
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4.5.2 Vascular risk factors and disease 

Vascular risk factors were measured prior to the MRI scan as part of the Whitehall Imaging 

sub-study (Oxford). Long-term exposure to vascular risk factors was recorded during face-to-

face data-collection phases as part of the Whitehall II Study (UCL), with further details given 

below. 

 

Blood pressure 

a) Whitehall Imaging sub-study 

The Whitehall Imaging sub-study measured blood pressure using an OMRON HEM 907 

sphygmomanometer. Systolic and diastolic blood pressure was measured twice in the sitting 

position after five minutes of rest and the average of the two readings recorded. High blood 

pressure was defined as systolic blood pressure ≥140 mm Hg, or diastolic blood pressure ≥90 

mm Hg. The postal questionnaire asked for self-report of hypertension, and current 

medication. This meant that use of anti-hypertensive medication (BNF, chapter 2.5) could be 

documented as an additional indicator of hypertension. 

 

b) Whitehall II Study 

Data relating to long-term exposure to high blood pressure was acquired during past phases of 

the Whitehall II Study. Systolic and diastolic blood pressure was measured twice in the sitting 

position after five minutes of rest with the Hawksley random-0 sphygmomanometer (phases 1, 

3 and 5) and OMRON HEM 907 (phases 7 and 9). The average of the two readings was taken to 

be the measured systolic and diastolic blood pressure. High blood pressure was defined as 

systolic blood pressure ≥140 mm Hg, or diastolic blood pressure ≥90 mm Hg. At all phases of 

the Whitehall II Study self-reported data on doctor-diagnosed hypertension and use of anti-

hypertensive medication was recorded.  

 

When considering long-term exposure to elevated blood pressures, the ‘Mean Arterial 

Pressure’ (MAP) was calculated. This combines systolic and diastolic blood pressures into a 

single composite measure using the formula: mean arterial pressure = ((2*mean diastolic 

pressure) + mean systolic blood pressure))/3. 
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Cholesterol 

a) Whitehall Imaging sub-study 

The Whitehall Imaging sub-study postal questionnaire asked for self-report of dyslipidaemia, 

and current medication. Use of lipid-regulating medication (BNF, chapter 2.12) was recorded 

as an additional indicator of dyslipidaemia. 

 

b) Whitehall II Study 

The Whitehall II Study measured blood cholesterol levels following a venous blood sample at 

phases 1, 3, 5, 7 and 9 and was classified according to standardised criteria: high triglycerides 

≥2 mmol/L and low HDL as <1.0 mmol/L.  

 

Diabetes and fasting glucose 

a) Whitehall Imaging sub-study 

The Whitehall Imaging sub-study postal questionnaire asked for self-report of diabetes and 

current medication. Current use of diabetic medication (BNF, chapter 6.1) was documented as 

an additional indicator of diabetes. 

 

b) Whitehall II Study 

Diabetes was investigated at phases 3, 5, 7 and 9 of the Whitehall II Study following a fasting 

venous blood sample, and a standard two-hour oral glucose tolerance test using 75g oral 

glucose. Diabetes was defined as fasting glucose ≥7.0 mmol/L or a two-hour, post-load glucose 

≥11.1 mmol/L. Fasting glucose was measured in non-diabetic participants who had fasted for 

at least five hours. Glucose samples were drawn into fluoride monovette tubes and 

centrifuged on site within one hour. Blood glucose was measured using the glucose oxidase 

method (280). Participants who self-reported doctor-diagnosed diabetes or use of diabetic 

medication were classified as having diabetes, regardless of their blood test results.  

 

Smoking 

a) Whitehall Imaging sub-study 

Self-reported smoking status (yes, no, occasional) was recorded using the Whitehall Imaging 

sub-study postal questionnaire. 
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b) Whitehall II Study 

Data on cigarette smoking was recorded following self-report on a questionnaire at Whitehall 

II Study phases 1, 3, 5, 7 and 9. Participants were classified into three groups: current smoker, 

ex-smoker or never smoked, at baseline and at phase 9 follow-up. 

 

Framingham Stroke Risk Score 

a) Whitehall Imaging sub-study 

The Whitehall Imaging sub-study used the FSRS as a measure of cardiovascular disease (281-

283). This was calculated for all participants based on their age, systolic blood pressure, 

diabetes mellitus status, smoking status, prior cardiovascular disease, atrial fibrillation, left 

ventricular hypertrophy, and use of hypertensive medication (281). These data were obtained 

by self-report, apart from blood pressure which was measured as described above.  

 

b) Whitehall II Study 

The FSRS was recorded at phases 1, 3, 5, 7 and 9 using the criteria defined above, and data 

collected at each face-to-face data-collection phase. Atrial fibrillation and left ventricular 

hypertrophy were recorded following ECG measurements. 

 

Coronary heart disease 

a) Whitehall Imaging sub-study 

Coronary heart disease was measured cross-sectionally using the Whitehall Imaging sub-study 

postal questionnaire. This asked for self-report of history of coronary heart disease including 

myocardial infarction and angina.  

 

b) Whitehall II Study 

Coronary heart disease measurements recorded for the Whitehall II Study were not used as 

part of this thesis. 
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Table 10. Summary of measures used to identify depression and vascular risk 

 Whitehall Imaging sub-study, 

Oxford 

Whitehall II Study, 

London 

Depression 

Current depressive 

symptoms 

CES-D 

Antidepressant medication use 

CES-D 

GHQ 

Lifetime depressive 

disorder 

SCID - 

Vascular risks 

    Blood pressure Systolic ≥140 mm Hg,  

or diastolic ≥90 mm Hg 

Medication use 

Systolic ≥140 mm Hg,  

or diastolic ≥90 mm Hg 

Medication use 

    Cholesterol Medication use 

Self-reported dyslipidaemia 

 

Triglycerides ≥1.7 mmol/L 

HDL as <1.0 mmol/L (men) 

or <1.2 mmol/L (women) 

    Diabetes Medication use 

Self-report 

Fasting glucose ≥7.0 mmol/L 

or a two-hour, postload 

glucose ≥11.1 mmol/L 

Medication use  

Self-report 

    Smoking Self-report Self-report 

    CHD Self-report - 

 

 

4.6 Data processing and analysis 

4.6.1 Questionnaire and cognitive assessment 

Data from questionnaires, cognitive assessments and clinical interviews were inputted into a 

study-specific online database. Data checking was performed at the end of phase 1 Whitehall 

Imaging sub-study data collection to ensure accuracy. All data were analysed using IBM SPSS 

version 20 for PC (284) or SAS software version 9.2 for PC (285). 
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4.6.2 Brain MRI  

MRI data were analysed using automated and visual methods (see Table 11 for summary). 

Automated analysis used FSL tools (FMRIB Software Library, www.fmrib.ox.ac.uk/fsl), a 

comprehensive library of analysis tools for MRI (286-288). Visual MRI assessments used 

standardised visual rating scales.  

 

Table 11. Summary of analysis measures for structural MRI data 

MRI Sequence Automated analysis Visual analysis 

T1-weighted Voxel based morphometry 

(VBM) 

General atrophy  

Scheltens scale 

FLAIR - Fazekas scale 

 

Diffusion tensor imaging Tract based spatial 

statistics  

(TBSS) 

- 

 

Structural MRI  

Structural T1-weighted images were processed using the anatomical processing script, fsl_anat 

(beta version) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat) which provides a pipeline for 

processing T1-weighted scans. This uses standard FSL tools, but has improved bias-field 

correction, which is useful for high-field scanners. In this pipeline the images are reoriented to 

the standard MNI (Montreal Neurological Institute) orientation, automatically cropped, bias 

field corrected, registered to standard space using linear (FLIRT) and non-linear registration 

(FNIRT) and brain-extracted before applying tissue-type segmentation (289, 290). FIRST 

(FMRIB's Integrated Registration and Segmentation Tool) was used to segment sub-cortical 

structures and calculate hippocampal volumes (291). Differences in grey matter were analysed 

with FSL-VBM (Voxel Based Morphometry), an optimised VBM protocol (292). Statistical 

analysis was applied using a voxelwise general linear model using permutation-based non-

parametric testing, correcting for multiple comparisons across space using the threshold-free 

cluster enhancement option.  
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Diffusion-weighted images were processed using TBSS to assess FA and MD, measures of white 

matter connectivity. This technique allows voxelwise statistical analysis of the FA data (288), 

thereby avoiding the problems of registration and smoothing associated with voxel-based 

approaches (101). First, FA images were created by fitting a tensor model to the raw diffusion 

data using FMRIB’s Diffusion Toolbox, and then brain-extracted using BET (289). All subjects' 

FA data were then aligned into a common space using the nonlinear registration tool FNIRT 

(293, 294) , which uses a b-spline representation of the registration warp field (295). Next, the 

mean FA image was created and thinned to create a mean FA skeleton representing the 

centres of all tracts common to the group. Each subject's aligned FA data was then projected 

onto this skeleton and the resulting data fed into voxelwise cross-subject statistics. 

 

White matter hyperintensity segmentation was undertaken using FreeSurfer software version 

5.2.0 (https://surfer.nmr.mgh.harvard.edu/). This provides a fully automated pipeline for 

segmentation and calculation of white matter hyperintensity volumes (296). This open source 

software provides a series of tools that can be used for sub-cortical segmentation as well as 

other methods for processing and analysing brain MRI.  

 

Visual rating scales for MRI measures 

In order to bridge the gap between the computerised, automated measures used in research, 

and clinically applicable methods of analysis that can be utilised in practice, three visual rating 

scales were used to assess MRI data. Scales chosen had been previously validated, had high 

inter- and intra-rater reliability, and adopted a straightforward approach which could be used 

by those with minimal training as well as by experienced raters. T1-weighted images were 

assessed for global and medial temporal lobe atrophy; FLAIR images were assessed for white 

matter hyperintensities. For each scale, ratings were made by three independent raters 

(Charlotte Allan, Anya Topiwala and Vyara Valkanova) blind to participant demographics. 

Raters used reference images to increase consistency; where there were discrepancies 

between ratings, the modal value was used. If this was not possible the scans were reviewed 

again in conjunction with a fourth rater (Klaus Ebmeier) to reach a final rating score. For all 

visual ratings a higher score represents increased severity of structural brain changes. When 

using visual ratings in analysis no adjustments were made for total brain size or white matter 

volume, as these are automatically taken into account when looking at the images visually. 
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Global atrophy was assessed on axial and coronal sections of T1-weighted images. It was 

measured on a four-point ordinal scale from 0-3 (Figure 4), based on a rating scale used for 

analysis of regional atrophy (297, 298). Medial temporal lobe atrophy was assessed on coronal 

sections of T1-weighted images measured using the Scheltens’ scale (299). This is a composite 

score based on width of the choroid fissure, width of the temporal horn and height of the 

hippocampal formation, measured using a five-point ordinal scale from 0-4 (Figure 5). Left and 

right sides were rated separately. White matter hyperintensities were assessed using axial 

FLAIR images, measured using the Fazekas’ scale (94). This rates periventricular and deep 

white matter hyperintensities separately, each based on a four-point ordinal scale from 0-3 

(Figure 6). These two ratings were summed, leading to the total Fazekas score, which is an 

integer from 0-6. This was done to enable comparison with the automated measure of white 

matter hyperintensities, which does not distinguish between periventricular and deep white 

matter changes. 
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Figure 4. Visual rating of global atrophy 

Score Global atrophy Coronal view Axial view 

 
0 

 
Absent 

 
 

 
1 

 
Mild 

  
 

2 
 

Moderate 

  
 

3 
 

Severe 
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Figure 5. Visual rating of medial temporal lobe atrophy based on Scheltens scale  

The Scheltens scale is discussed in more detail by Scheltens et al., 1992 (299). 

 

Score Width of 
choroid 
fissure 

Width of 
temporal 
horn 

Height of 
hippocampal 
formation 

Coronal view 

 
0 

 
Normal 

 
Normal 

 
Normal 

 
 

1 
 

Slight 
increase 

 
Normal 

 
Normal 

 
 

2 
 

Moderate 
increase 

 
Slight 

increase 

 
Slight decrease 

 
 

3 
 

Severe 
increase 

 
Moderate 
increase 

 
Moderate decrease 

 
 

4* 
 

Severe 
increase 

 
Severe 

increase 

 
Severe decrease 

 
 
 
 

*There were no participants with a rating of 4 on the Schelten’s scale  
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Figure 6. Visual rating of white matter hyperintensities based on Fazekas scale 

The Fazekas scale is discussed in more detail by Fazekas et al., 1987 (94). 

  

Score Periventricular white matter 
hyperintensities 

Deep white matter hyperintensities 

 
0 

 
Absent 

  

 
Absent 
 

 
 
1 

 
Caps or pencil- 
thin lining 

 

 
Punctate foci 
 

 

 
2 

 
Smooth halo 

 

 
Beginning 
confluence of 
foci 
 

 
 
3 

 
Irregular, 
extending to 
the deep 
white matter 

 

 
Large 
confluent 
areas 
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4.7 Summary 

The ongoing Whitehall Imaging sub-study aims to recruit 800 participants from the Whitehall II 

Study (2012-2016) who have over 25 years of longitudinal data available from phases 1 – 9 

inclusive. Phase 1 of the Whitehall Imaging sub-study was completed in June 2013 for 229 

participants, with information collected about their medical history, cognitive function and 

brain structure; this group of participants is studied in this thesis. Data-collection has been 

based on a questionnaire, cognitive assessment, clinical interview and multi-modal MRI scan. 

This allows detailed characterisation of current and previous mood disorder, as well as 

vascular disease and risk factors, complementing prospective data previously acquired through 

the Whitehall II Study. 
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Chapter 5.   Sample description 
 

5.1 Introduction 

Chapter 5 presents an overview of the sample of participants recruited during phase 1 of the 

Whitehall Imaging sub-study (2012-2013), who are studied in this thesis. The key demographic 

data and characteristics of the sample relating to cognitive measures, depressive symptoms 

and vascular risk factors are outlined. These data are used for analysis in subsequent chapters. 

 

5.2 Participant demographics 

Between April 2012 and June 2013 the Whitehall Imaging sub-study recruited 229 participants, 

and excluded 120 participants. This represents approximately one quarter of participants 

expected to be recruited to the Whitehall Imaging sub-study (2012 to 2016). The mean age of 

participants was 69.2 ± 5.3 years and the majority were male (82.5%) (Table 12). This is, on 

average, a well-educated sample with above-average IQ. In comparison with the original 

Whitehall II sample (Table 13), the mean age at baseline was similar; however, the Whitehall 

Imaging sample had a greater proportion of men, and a greater proportion of people with 

higher occupational status at baseline. 

 

Table 12. Participant demographics: phase 1 Whitehall Imaging sub-study  

 n % Mean ± SD Min. Max. 

Recruitment 

Phase 10 29 12.7 - - - 

Phase 11 200 87.3 - - - 

Sex  

Men 189  82.5 - - - 

Women 40 17.5 - - - 

Age, years 229 - 69.2 ± 5.3 60.3 82.0 

Education, years 229 - 14.1 ± 3.1 7.0 23.0 

Pre-morbid IQ* 229 - 118.0 ± 10.0 78.0 146.2 

*Estimated from the Test of Premorbid function (TOPF), education and sex 
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Table 13. Baseline (1985-1988) characteristics of participants in the present study and of all 

Whitehall II study participants 

Baseline characteristic 

in 1985-1988 

Whitehall Imaging sub-
study sample (Phase 1) 

(n=229) 

Whitehall II sample          

         
(n=10 308) 

Age, years, mean (SD), range 43.2 (5.3), 35-55 44.4 (6.1), 35-55 

Sex, n (%)   

Women 40 (17.5) 3413 (33.1) 

Men 189 (82.5) 6895 (66.9) 

Occupational group, n (%)   

      Administrative 102 (44.5) 3028 (29.4) 

      Professional/executive 112 (48.9) 4942 (47.7) 

      Clerical/support 15 (6.6) 2337 (22.7) 

 

5.3 Cognitive assessment 

A complete cognitive assessment was performed on 98% of participants. The mean scores 

confirm that this is a group without significant cognitive impairment (mean MOCA 27 ± 2.4), as 

would be expected from a population sample in which participants are required to travel a 

significant distance to participate in research (Table 14). However, the range of scores across 

tests of processing speed, executive function, visuospatial skills, visuospatial memory, verbal 

learning and episodic memory, and semantic memory and language skills indicate that this is a 

population exhibiting significant variation, despite having above-average pre-morbid 

intelligence. Scores at the lower end of the ranges are consistent with symptoms of clinically 

significant mild-moderate cognitive impairment. 
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Table 14. Summary results of cognitive testing, phase 1 Whitehall Imaging sub-study 

 n Mean SD Min. Max. 

Cognitive screening 

MOCA 229 27.0 2.4 17.0 30.0 

Processing Speed 

TMTA, secs 227 32.0 13.6 13.0 125.0 

DSS 229 10.2 2.7 0.0 16.0 

CANTAB_RTI 224 341.5 48.8 257.9 585.9 

CANTAB_MOT 224 287.4 75.7 122.8 598.0 

Executive Function 

TMTB, secs 226 67.9 34.2 27.0 289.0 

DSFW  229 10.9 2.3 6.0 16.0 

DSBW 229 9.8 2.6 4.0 16.0 

DC 228 61.4 14.2 13.0 98.0 

Visuospatial skills 

RCF copy 228 30.0 4.6 7.0 36 

Visuospatial memory 

RCF immediate 

recall 

228 14.6 6.4 0.0 32.0 

RCF delayed 

recall 

228 14.1 6.2 1.0 27.0 

RCF recognition 227 10.0 1.7 2.0 12.0 

Verbal learning and episodic memory 

HVLT 

immediate 

recall 

229 26.9 5.0 10.0 36.0 

HVLT delayed 

recall 

229 8.9 3.0 0.0 12.0 

HVLT 

recognition 

229 10.5 1.6 2.0 12.0 

Semantic memory and language skills 

Category 

fluency 

229 21.5 5.9 3.0 40.0 

BNT 229 57.1 5.0 15.0 60.0 

Estimate of pre-morbid intelligence 

TOPF 229 61.0 9.5 17.0 70.0 
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5.4 Depressive symptoms 

Within the total sample (n=229) 10% had significant current depressive symptoms, as defined 

by CES-D score (Table 15). In participants randomly selected from Whitehall II phase 11 the 

prevalence of elevated CES-D scores was 8.5%. In the phase 10 group the prevalence of 

elevated CES-D scores was 20%. Previous studies have found the prevalence of depression in 

older adults to be in the range 10-15% (4-6). The prevalence in the randomly selected phase 11 

group is slightly lower than might be expected for participants of this age; that in the phase 10 

group slightly higher. This is to be expected given the recruitment criteria: phase 10 

participants were an enriched group selected for having elevated CES-D scores at age >60 

years. There was a statistically significant difference (p=0.002) between the mean CES-D score 

in phase 11 and phase 10 participants. In both groups the proportion of participants taking 

antidepressant medication was lower than the proportion with significant depressive 

symptoms as defined by CES-D score. Given that depressive symptoms as defined by CES-D do 

not equate to an exact diagnosis of minor or major depressive disorder, and that 

antidepressants should lower the CES-D score, this discrepancy is also to be expected.  

 

One third of participants had a lifetime diagnosis of DSM-IV mood disorder, with a higher rate 

(38%) amongst phase 10 participants (Table 16). Major and minor depressive disorders were 

the most common, with a much smaller proportion having recurrent depressive disorder or 

other conditions (e.g. bipolar disorder). There was a significant correlation between use of 

antidepressant medication and depressive symptoms defined using CES-D (p=0.003) and DSM-

IV criteria (p<0.001).  

 

Participants recruited at phase 10 had later onset of DSM-IV mood disorder (mean age 53 ± 

16.5 years), compared to phase 11 (mean age 39 ± 14.4 years). This difference was significant 

(p=0.006) and reflects recruitment criteria (phase 10 participants were selected on the basis of 

late-onset depressive symptoms). However, it shows that selection on the basis of CES-D 

symptoms alone does not detect all previous mood episodes. This is to be expected given that 

the CES-D reviews mood-related symptoms in the week prior to completion of the 

questionnaire. There was a significant correlation between current depressive symptoms 

defined using CES-D and a past history of mood disorder diagnosed using DSM-IV criteria 

(p<0.001). This suggests that participants selected for having late-onset depressive symptoms, 

may also have had previous depressive symptoms that were not diagnosed by CES-D, but 

which could be identified using the SCID.  
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Table 15. Frequency of current depressive symptoms, phase 1 Whitehall Imaging sub-study 

 Total 

n=229 

Phase 10 

n=29 

Phase 11 

n=200 

CES-D score    

Mean ± SD 5.9 ± 6.8 9.7 ± 7.5 5.39 ± 6.6 

Range 0 to 39 0 to 32 0 to 39 

CES-D cases  

% 10.0 20.7 8.5 

n 23 6 17 

Antidepressant use 

% 7.0 10.3 6.5 

n 16 3 13 

 

 

Table 16. Frequency of lifetime DSM-IV diagnosis, phase 1 Whitehall Imaging sub-study 

 
Total 

n=229 

Phase 10 

n=29 

Phase 11 

n=200 

%  

(n) 

%  

(n) 

%  

(n) 

Any DSM-IV diagnosis 31.4  

(72) 

37.9 

(11) 

30.5 

(61) 

Mood disorder 30.6  

(70) 

37.9 

(11) 

29.5 

(59) 

Dysthymia 0.9  

(2) 

3.4 

(1) 

0.5 

(1) 

Minor depressive 

disorder 

9.6 

 (22) 

13.8 

(4) 

9.0 

(18) 

Major depressive 

disorder 

16.6  

(38) 

13.8 

(4) 

17.0 

(34) 

Recurrent major 

depressive disorder 

2.6  

(6) 

3.4 

(1) 

2.5 

(5) 

Bipolar disorder 0.9  

(2) 

3.4 

(1) 

0.5 

(1) 

Other 0.9  

(2) 

0 

(0) 

1.0 

(2) 
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5.5 Vascular risk 

Vascular risk factors are common amongst participants of the Whitehall Imaging sub-study, as 

would be expected in a sample of people with mean age of 69 years. Over half the sample had 

hypertension defined as systolic blood pressure ≥140 mm Hg, and one third of participants 

were on treatment for hypertension (Table 17). This is slightly lower than the prevalence of 

hypertension in this age group nationally (Table 3), reflecting a group from an occupational 

cohort likely to be more health-conscious and able to modify vascular risk factors after over 25 

years of regular follow-up through the Whitehall II Study. Cholesterol was not measured 

directly in this sample, but self-reported information shows that 54% have a history of 

dyslipidaemia, with 34% using lipid-regulating medication (Table 17), similar to national 

prevalence rates.  

 

Rates of diabetes (approximately 10% of the sample) and smoking (approximately 6% of the 

sample) are lower than the national average (Table 17; Table 3) again reflecting a bias toward 

health promotion and prevention. A small number of participants reported having suffered a 

previous stroke or TIA (4.4%); half of these cases were definitely TIAs, resulting in only 2.2% of 

participants having had a possible stroke. The proportion with CHD was much lower than the 

national average (Table 3). 
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Table 17. Frequency of vascular risk factors, phase 1 Whitehall Imaging sub-study 

 
n % 

(n) 
Mean SD Range 

Min. Max. 

Blood pressure 

Systolic BP, mm Hg 228 - 142.6 17.7 99.0 195.0 

Diastolic BP, mm Hg 227 - 77.9 9.9 56.0 114.0 

Systolic BP  

≥140 mm Hg 

228 54.8  

(125) 

- - - - 

Diastolic BP  

≥90 mm Hg 

227 11.5 

(26) 

- - - - 

Anti-hypertensive 

medication 

229 33.6 

(77) 

- - - - 

Cholesterol 

Self-reported 

dyslipidaemia 

229 54.1% 

(124) 

- - - - 

Lipid-regulating 

medication 

229 34.1 

(78) 

- - - - 

Diabetes 

Self-reported 

diabetes 

229 9.6 

(22) 

- 

 

- - - 

Diabetic medication 229 12.7  

(29) 

- 

 

- - - 

Smoking 

Smoker 13 5.7  

(13) 

- 

 

- - - 

Non-smoker 216 94.3 

(216) 

- 

 

- - - 

FSRS 

FSRS, % risk per 10yr 229 - 10.7 3.9 4.0 24.0 

Coronary Heart Disease 

Yes 229 6.1 

(14) 

- 

 

- - - 

No 229 93.9 

(215) 

- 

 

- - - 
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5.6 Summary 

This thesis is based on data collected during phase 1 of the Whitehall Imaging sub-study, which 

recruited 229 participants between April 2012 and June 2013. This sample of older adults has a 

mean age of 69 years, is predominantly male and has above average IQ. Mild cognitive 

impairment was common, with a small proportion scoring within the range for moderate 

impairment on cognitive tests. Current depressive symptoms were present in 10% of the total 

sample, and 20% of the Phase 10 group who were selected to be at higher risk of late-onset 

depression. Over 30% of the total sample had a lifetime diagnosis of DSM-IV mood disorder, 

predominantly major and minor depressive disorders. Elevated vascular risk factors were 

widespread, particularly hypertension and dyslipidaemia. Overall, however, prevalence rates 

for vascular risk factors were lower than population averages, likely reflecting a more health-

conscious cohort who had participated in regular health screening over the course of their 

adult life. 
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Chapter 6.   Study of agreement between visual and 
automated MRI measures 

 

6.1 Introduction 

Visual and automated approaches to MRI analysis can be used to investigate global atrophy, 

hippocampal atrophy and white matter hyperintensities. However, there is little research to 

bridge the gap between these methods of interpreting MRI brain scans. Clinicians report 

individual MRI images qualitatively – and also sometimes quantitatively – using standardised 

visual rating scales. If visual rating scales prove to be comparable with high-precision 

automated techniques then the use of visual rating scales in clinical practice would be further 

supported, to assist clinicians in reporting the degree of observed changes (rather than the 

simple presence of a change). Visual rating scales that identify and describe early structural 

changes, regardless of patient age, could be genuinely useful to clinicians, since reduced brain 

volumes and white matter brain changes have clinical significance in terms of progression to 

mild cognitive impairment and dementia (300-302). Furthermore, using quantitative 

descriptions of brain changes that are usually labelled ‘normal for age’ (303-306) (307-309), 

may start adding useful diagnostic information to the overall clinical assessment (310).  

 

Automated assessments of MRI scans provide precise assessments of brain structure, but are 

not routinely used in clinical settings. These techniques have been developed over a number of 

years, with validation work based on comparisons with expert manual labels to confirm 

accuracy of automated techniques (311). They may therefore be viewed as the gold-standard 

approach to MRI analysis. Automated analysis techniques are usually used for groups of 

people, rather than for individuals. Although they have been simplified for ease of use, they 

still require a certain amount of technical expertise. For these reasons, their use is largely 

confined to research settings. It remains unclear how well an ‘automated assessment of global 

brain atrophy’ correlates with a ‘clinical radiological report of global brain atrophy’.  

 

This chapter considers the utility of visual methods of rating MRI scans in relation to their 

automated equivalents. Using the Whitehall Imaging sub-study data enables investigation of 

two hypotheses: first, that visual rating scales for global atrophy, hippocampal atrophy and 

white matter hyperintensities can be used meaningfully in this cohort, providing objective and 

reliable measures; second, that both visual and automated techniques can be cross-validated 
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and used to distinguish structural brain changes and cognitive changes in an occupationally-

based sample. 

 

6.2 MRI methods 

Visual MRI ratings were performed as described in Chapter 4.6, in order to assess global 

atrophy, medial temporal lobe atrophy and white matter hyperintensities.  

 

Automated analysis methods were selected which assessed similar structural differences to 

these visual ratings, and used well-validated MRI processing and analysis techniques. Global 

atrophy was estimated by measuring total cerebrospinal fluid volume normalised to whole-

brain volume, as a measure of the amount of whole-brain atrophy. Values were obtained after 

partial volume segmentation, using FMRIB's Automated Segmentation Tool (FAST), which 

segments a 3D image of the brain into different tissue types (grey matter, white matter, CSF), 

as well as correcting for spatial intensity variations (291). Medial temporal lobe atrophy was 

calculated by segmenting sub-cortical structures using ‘FIRST’, a fully automated, model-based 

segmentation and registration tool, based on multivariate Gaussian assumptions (290) (i.e. the 

automated measure of medial temporal lobe atrophy equated to hippocampal volume). Right 

and left hippocampal volumes were calculated separately, and were normalised for whole-

brain volume. White matter hyperintensity volume was calculated using FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu/), a fully automated method of segmenting white matter 

hyperintensities, allowing calculation of total white matter hyperintensity volume. White 

matter hyperintensity volumes were normalised for total white matter volume.  

 

6.3 Results 

6.3.1 Reliability of visual measures 

The first step in use of visual scales was to perform a reliability analysis to confirm inter- and 

intra-rater reliability, to justify use of these scales. To determine consistency between the 

three raters, inter-rater reliability analysis used a single-measures Intra-Class Correlation 

Coefficent (ICC) with a two-way random-effects model with absolute agreement. This can be 

used instead of a weighted-kappa which is usually used for ordinal variables, and provides 

increased flexibility when comparing three or more variables (312, 313).  To determine the 

internal consistency of raters an intra-rater reliability analysis was performed based on repeat 
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measures of a random 10% of the total sample. Scans were selected for re-assessment by 

generating a list of random numbers. Repeat ratings were made blind to the original score and 

demographic details, and were compared using an ICC. These (and other) correlations were 

classified as follows: weak correlation, 0.10 to 0.29; moderate correlation, 0.30 to 0.49; strong 

correlation, >0.50 (314). 

 

For visual rating scales the inter-rater and intra-rater reliability comparing all three raters 

showed strong agreement for global atrophy, medial temporal lobe atrophy and white matter 

hyperintensities (Table 18).  

 

Table 18. Reliability of visual MRI ratings 

 

6.3.2 Sample overview 

Of 229 participants recruited through the Whitehall Imaging sub-study, 190 were included in 

this analysis. Participants were excluded due to conditions that would affect MRI registration 

or analysis. The following exclusions were made: neurological conditions including stroke and 

TIA (n=25), incomplete MRI data (n=7), and inadequate MRI processing or grey matter 

segmentation (n=7). Similar to participant demographics in the Whitehall Imaging sub-study, 

this sample had mean age 69.3 ± 5.4 years, the majority were male, and were not cognitively 

impaired (Table 19). There were no significant differences between included and excluded 

participants.  

 

 
Inter-rater reliability Intra-rater reliability  

ICC 95% CI p ICC 95% CI p 

Global atrophy 0.71 0.65 to 0.77 <0.001 0.75 0.61 to 0.87 <0.001 

Medial temporal lobe atrophy 

Left 0.64 0.56 to 0.71 <0.001 0.67 0.51 to 0.82 <0.001 

Right 0.63 0.55 to 0.71 <0.001 0.75 0.61 to 0.87 <0.001 

White matter hyperintensities 

     Total 0.72 0.65 to 0.77 <0.001 0.78 0.65 to 0.88 <0.001 

     Periventricular 0.53 0.45 to 0.62 <0.001 0.68 0.52 to 0.82 <0.001 

     Deep 0.73 0.67 to 0.79 <0.001 0.71 0.57 to 0.85 <0.001 
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Table 19. Participant demographics: visual and automated MRI measures study 

 Whole sample Inclusions Exclusions p-value*  

n 229 190 39 - 

Sex, males 

n (%) 

189  

(82.5%) 

155  

(81.6%) 

34  

(87.2%) 

0.40† 

Age, years 

Mean ± SD 

69.2 ± 5.3 69.3 ± 5.4 68.8 ± 4.6 0.60 

Education, years  

Mean ± SD 

14.1 ± 3.1 14.1 ± 3.2 14.2 ± 2.9 0.91 

Pre-morbid IQ 

Mean ± SD 

118.0 ± 10.0 117.9 ± 9.8 118.1 ± 11.3 0.93 

MoCA  

Mean ± SD 

27.0 ± 2.4 26.9 ± 2.4 27.2 ± 2.3 0.43 

HVLT 

Mean ± SD 

26.9 ± 5.0 26.7 ± 5.1 27.5 ± 4.3 0.39 

CES-D score 

Mean ± SD 

5.9 ± 6.8 6.1 ± 7.2 5.0 ± 4.7 0.35 

SCID diagnosis (any) 

n (%) 

72  

(31.4%) 

59  

(31.1%) 

13  

(33.3%) 

0.78† 

* Comparing inclusions (n=190) and exclusions (n=39) using t-test for continuous variables 
† Chi-squared used for ordinal variables 

 

Visual and automated measures of global and hippocampal atrophy were approximately 

normally distributed (Figure 7). Visual and automated measures of white matter 

hyperintensities were positively skewed (Figure 7). There were no participants with the most 

severe visual rating of medial temporal lobe atrophy (a score of 4), yet despite this the scores 

could still be used to distinguish participants with mild-moderate brain changes, suggesting 

that these scales are useful even in a population sample for which most ratings were in the 

lower mid-range of scores. Images included in Figures 4, 5 and 6 demonstrate that the visual 

ratings in this study were consistent with previous studies.  
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Figure 7. Distribution of visual and automated MRI measures 

Visual measures (blue)    Automated measures (orange) 
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MRI measures were correlated with age using Pearson’s correlations with two-tailed 

significance. Visual ratings were significantly correlated with age for global atrophy (r=0.42, 

p<0.001), medial temporal lobe atrophy (left, r=0.41, p<0.001; right, r=0.44, p<0.001) and total 

white matter hyperintensities (r=0.27, p<0.001). Likewise, automated ratings were significantly 

correlated with age for global atrophy (r=0.59, p<0.001), medial temporal lobe atrophy (left, 

r=-0.20, p=0.007; right, r=-0.21, p=0.004) and total white matter hyperintensities (r=0.31, 

p<0.001). For visual ratings of white matter hyperintensities, deep and periventricular changes 

were rated separately. Deep white matter hyperintensities (r=0.32, p<0.001), but not 

periventricular white matter hyperintensities (r=0.14, p=0.06), were significantly correlated 

with age. 

 

6.3.3 Comparison between visual and automated MRI analysis 

Visual and automated measurements of global atrophy, medial temporal lobe atrophy and 

white matter hyperintensities were correlated using Pearson’s correlations (with two-tailed 

significance). Visual and automated methods were significantly correlated for global atrophy 

(r=0.71, p<0.001), medial temporal lobe atrophy (left r=-0.35, p<0.001; right, r=-0.29, p<0.001) 

and white matter hyperintensities (r=0.56, p<0.001). This demonstrates that increased global 

and hippocampal atrophy measured with visual scales is related to lower automated brain 

volumes, and that increased severity of white matter hyperintensities is related to increased 

automated white matter hyperintensity volumes. Graphical comparison using scatterplots to 

review the distribution of scores (Figure 8) confirms this relationship, but also highlights the 

range of automated volumes corresponding to each visual measure, revealing that automated 

methods are not linearly associated with the visual assessments made by trained clinical 

raters. 

 

Visual and automated measures were correlated with selective cognitive tests (MOCA, HVLT-R, 

TMTA and TMTB) using uncorrected Pearson’s correlations. These cognitive measures were 

chosen for their clinical applicability. Visual and automated MRI measures both showed 

significant correlations with cognitive tests (Table 20). Most correlations were weak in 

strength, though some were moderate.  Visual rating scales showed greater sensitivity to 

differences in cognitive tests. Visual ratings of deep white matter hyperintensities were 

significantly correlated with cognitive tests, in contrast to periventricular hyperintensity 

scores, which were not correlated. Consequently, the correlation with total white matter 

hyperintensity volume was weaker, and less significant, although still present.  



91 

 

Figure 8. Scatterplots to compare visual and automated MRI measures 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

  

 

 

 

 

 

 



92 

 

Table 20. Cognitive correlates of visual and automated MRI measures 

 Visual measures 

Correlation, Pearson’s r 

Automated measures 

Correlation, Pearson’s r 

MoCA HVLT TMT A TMT B MoCA HVLT TMT A TMT B 

Global atrophy -0.20  
p=0.007 

-0.22 
p=0.002 

0.28 
p<0.001 

0.06 
p=0.44 
 

-0.27 
p<0.001 

-0.24 
p=0.001 

0.29 
p<0.001 

0.08 
p=0.26 

Medial temporal lobe atrophy 

Left* -0.17 
p=0.02 

-0.20 
p=0.01 

0.07 
p=0.32 

0.04 
p=0.58 
 

0.11 
p=0.13 

0.08 
p=0.29 

-0.05 
p=0.54 

0.03 
p=0.68 

Right * -0.24 
p=0.001 

-0.26 
p<0.001 

0.18 
p=0.01 

0.06 
p=0.40 
 

0.18 
p=0.01 

0.16 
p=0.03 

-0.02 
p=0.77 

-0.06 
p=0.45 

White matter hyperintensities 

Total † -0.16 
p=0.03 

-0.21 
p=0.003 

0.16 
p=0.03 

0.07 
p=0.34 

-0.12 
p=0.08 

-0.20 
p=0.005 

0.19 
p=0.008 

0.04 
p=0.60 

Periventricular -0.05 
p=0.51 

-0.06 
p=0.41 

0.03 
p=0.67 

0.03 
p=0.73 

Deep -0.22 
p=0.002 

-0.31 
p<0.001 

0.25 
p=0.001 

0.10 
p=0.19 

* Automated measures normalised for whole-brain volume 
† Automated measures normalised for total white matter volume 
 
Significant results highlighted in bold 
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6.4 Discussion  

Synopsis 

In this sample of older adults from the Whitehall Imaging sub-study, visual rating scales for 

global atrophy, medial temporal lobe atrophy and white matter hyperintensities could be used 

effectively and had acceptable reliability. Visual and automated methods could be used to 

identify structural brain changes and cognitive changes. Visual ratings were closely related to 

automated ratings and provided a valid measure for quantifying subtle changes in brain 

structure, which were associated with impairment in cognitive tests. This study comparing 

visual and automatic measures therefore demonstrates a clear link between rating scales that 

are readily used in clinical practice, and sophisticated, automated measures used in 

quantitative research.  

 

Comparison with previous studies 

The reliability of visual ratings was comparable to (306, 315-317), and in some cases higher 

than previous studies (298, 318, 319), possibly due to use of higher resolution MRI and a larger 

sample size. Agreement between ratings for medial temporal lobe atrophy was lower than for 

other measures; however, values were similar to a previous population study of older adults 

(315). One reason for this might be that visual assessments of medial temporal lobe atrophy 

utilised coronal sections only, whereas the automated assessment measured the whole 

hippocampal volume.  

 

Visual ratings of deep white matter hyperintensities were associated with impaired function 

on cognitive tests; this was not replicated with periventricular scores. Deep white matter 

hyperintensities have a stronger association with physical decline (320, 321) and depression, 

compared with periventricular white matter hyperintensities (39). These results are consistent 

with previous studies that have found an association between subcortical white matter lesions 

and memory performance (322, 323), but are at odds with others that show that 

periventricular white matter hyperintensities, but not deep white matter hyperintensities, are 

associated with reduced cognitive performance (321, 324, 325).  Mild periventricular changes 

alone are thought to reflect ageing phenomena (326); as white matter hyperintensities 

develop they become more confluent, making differentiation between deep and 

periventricular changes difficult in those with severe changes. This may help to explain the lack 

of correlation between periventricular scores and cognitive measures. While automated 
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measures of white matter hyperintensities behaved similarly to Fazekas total white matter 

intensity, if functional changes are largely driven by deep white matter changes, the ability of 

visual scales to distinguish between the two offers an advantage over automated measures.  

  

Strengths and weaknesses 

Strengths of this study include the use of 3 Tesla MRI in a large sample of older adults. Visual 

ratings were performed using validated, clinically relevant scales, by three independent raters 

who had received training in these instruments and used them with good inter and intra-rater 

reliability. The automated techniques involved complex computerised techniques, but have 

the advantage of being objective and non-operator dependent, as well as being able to 

generate large amounts of data analysis rapidly. The automated techniques in this study were 

chosen to map closely onto the visual ratings employed, but are not as sensitive as other 

analysis methods, particularly for white matter where DTI may be preferable in terms of 

describing white matter tract integrity and connectivity. The study was limited by focussing on 

only three measures of structural brain changes: global atrophy, hippocampal atrophy and 

white matter hyperintensities. While visual ratings can be usefully used for these and other 

aspects of brain structure, they lack the range and variety of analysis techniques that can be 

employed using automated measures. When considering correlations between brain structure 

and cognitive changes, the focus of this study was to compare visual and automated methods; 

therefore these analyses were not adjusted for age, sex or other variables, which would be 

necessary if associations with functional changes were to be considered in more detail. 

 

Conclusion 

These results show that visual MRI assessments can be used in this sample to quantify 

structural brain changes. While these measures are more subjective than automated 

measures, this study shows that they can be used with a high degree of reliability. It is 

therefore justifiable to use these visual measures in further analyses in relation to depression 

and vascular risk factors. 

 

More widespread use of visual rating scales of MRI scans in clinical practice has the potential 

to increase accurate communication between clinicians, and to aid clinical diagnosis. 

Importantly for clinicians without routine access to MRI scans, these visual scales can be used 

to assess CT brain scans for both grey and white matter changes (297). More systematic, 
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widespread use of such scales across clinical services could be valuable in helping to increase 

consistency and to improve quality and standards of neuroimaging reporting, particularly in 

memory clinics.  

 

6.5 Summary 

Visual rating scales can be used effectively and have acceptable inter- and intra-rater 

reliability. This justifies their further use in analyses relating to depression and vascular risk 

factors. Visual and equivalent automated measures were significantly correlated and both 

provided a valid measure for quantifying structural changes, which were associated with 

impairment in cognitive tests. Visual ratings had the advantage of differentiating deep from 

periventricular white matter hyperintensities, which was not possible using automated 

measures. Visual ratings of MRI scans could be useful in clinical practice when automated 

measures are not available. They would allow clinicians to quantify structural brain changes in 

older adults and bridge the gap between sophisticated, computerised methods and routine 

clinical practice. 
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Chapter 7.   Study of MRI correlates of vascular risk 
 

7.1 Introduction 

Chapter 7 investigates the structural MRI correlates of individual vascular risk factors that have 

been determined prospectively at five data-collection phases between 1985 and 2009. This 

use of prospective data enables vascular risk factors to be identified accurately and with 

confidence over several decades of the adult life-course. In addition, the chapter considers the 

cross-sectional association between coronary heart disease, identified at the time of the MRI 

scan, and structural brain changes. Combining these data on vascular risk factors and vascular 

disease with high-resolution MRI enables evaluation and localisation of any associations with 

structural changes in grey and white matter. 

 

The aim of this chapter is to identify structural brain changes (using visual techniques as well 

as detailed automated MRI techniques) that are associated with longitudinal vascular risk 

factors and coronary heart disease. If similar brain regions prove to be affected by vascular risk 

and disease, and by depression, then this would provide support for the vascular depression 

hypothesis. If this is the case, then common structural changes may represent a mediating 

mechanism that could account for why these conditions commonly co-exist. The hypotheses 

are that elevated vascular risk factors will be associated with reduced grey matter volumes and 

reduced white matter integrity, particularly in frontal-subcortical regions. Based on the 

literature review in Chapter 2, hypertension and diabetes would be expected to have the most 

significant effects on brain structure, particularly on white matter.  

 

7.2 Methods 

For this analysis participants were drawn from phase 1 of the Whitehall Imaging sub-study. Of 

229 participants recruited for this phase, exclusions were made on the basis of neurological 

conditions (n=25), incomplete MRI data (n=7), and inadequate MRI processing or grey matter 

segmentation (n=7). Therefore, 190 participants were considered for inclusion in this analysis 

(the same sample as described in Chapter 6). Details and reasons for further exclusions are 

discussed below. 

 

The continuous variables (blood pressure, cholesterol, fasting glucose and FSRS) were 

investigated by considering the correlations with brain structure across the whole group of 
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participants. Ordinal variables (presence or absence of diabetes, smoking status, and presence 

or absence of coronary heart disease) were investigated using a case-control approach. 

 

For continuous variables, to assess long-term exposure to vascular risk factors the mean of 

each score was calculated incorporating data from each of the five data collection phases 

between 1985 – 2009. This effectively incorporated all available data, allowing it to be used as 

a continuous variable in regression models with visual and automated MRI variables as 

outcomes. An alternative method would have been to use area under the curve analysis, 

which takes into account the time interval between repeat measurements. However, since the 

data collection phases were approximately equally spaced (every five years) in the Whitehall II, 

the simple mean of the measures is likely to correlate reasonably well with the area under the 

curve method as a measure of ‘risk factor load’. A further possibility is to dichotomise 

participants’ data at each time point (e.g. hypertensive or not hypertensive) and to sum the 

total score based on each of the five data collection phases. However, when modelling 

continuous vascular risk factors this approach would have reduced the statistical power 

compared to the use of the simple mean of measures. 

 

7.2.1 Assessment of long-term exposure to vascular risk factors 

All participants were required to have complete MRI data of good quality, and no major 

neurological conditions. Participants meeting these criteria were considered for inclusion 

based on long-term exposure to vascular risk. Further inclusion and exclusion criteria are 

detailed below. 

 

Blood pressure 

Blood pressure was measured at phases 1 (1985-1988), 3 (1991-1993), 5 (1997-1999), 7 (2003-

2004) and 9 (2007-2009). When considering longitudinal associations the Mean Arterial 

Pressure (MAP) was calculated. This combines systolic and diastolic blood pressures into a 

single, composite measure using the formula: mean arterial pressure = ((2*mean diastolic 

pressure) + mean systolic blood pressure))/3. The MAP from each of these five phases was 

combined to form a single measure that was included as a continuous variable and correlated 

with structural MRI measures. Further exclusions were made on the basis of incomplete blood 

pressure data.  
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Cholesterol 

Total cholesterol was measured at phases 1, 3, 5, 7 and 9. The mean total cholesterol level 

from each of these five phases was included as a continuous variable and correlated with 

structural MRI measures. Further exclusions were made on the basis of incomplete data on 

total cholesterol. 

 

Diabetes and fasting glucose 

Fasting glucose was measured across phases 3 to 9 (i.e. four times between 1991 and 2009) in 

those who did not already have a diagnosis of diabetes. The mean fasting glucose level from 

each of these phases was calculated and these measures were combined to form a single 

measure which was included as a continuous variable and correlated with structural MRI 

measures. Further exclusions were made on the basis of incomplete data on fasting glucose.   

 

Type 2 diabetes was measured as a categorical variable (present or absent) in those who 

developed diabetes in the follow-up period i.e. from phase 5 onwards. Participants with type 2 

diabetes were classed as cases, and were compared to controls drawn from the cohort. 

Controls were systematically excluded on the basis of age range and mean age, mean years of 

education and mean TOPF score, to create a comparable group to the cases. 

 

Smoking 

Smoking status was measured as a categorical variable. Participants who were smokers at the 

follow-up study (phase 9) were classed as cases. Controls were systematically excluded on the 

basis of age range and mean age, mean years of education and mean TOPF score, to create 

comparable groups to the cases. 

 

Framingham Stroke Risk Score 

The FSRS was measured at phases 1, 3, 5, 7 and 9. The mean score from each of these five 

phases was combined to form a single measure that was included as a continuous variable and 

correlated with structural MRI measures. Further exclusions were made on the basis of 

incomplete FSRS data.  
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Coronary heart disease 

Coronary heart disease was defined on the basis of the presence or absence of angina and/or 

previous myocardial infarction. Control participants were required to have no history of 

coronary heart disease (including: angina, MI, hypertension, arrhythmias) according to 

definitions in ICD-10 Chapter IX (diseases of the circulatory system) (2). These data on CHD 

were obtained from participants’ self-reported medical history using the questionnaire (see 

Appendix 1). Controls were systematically excluded on the basis of age range and mean age, 

mean years of education and mean TOPF score, to create comparable groups to the cases. 

 

7.2.2 Brain MRI analysis 

MRI analysis investigated the correlation between long-term exposure to vascular risk factors 

and differences in MRI brain structure using clinical, visual techniques and equivalent 

automated measures as described previously (Chapter 6.2 MRI methods). More detailed MRI 

analysis explored correlations using VBM and TBSS, both applied to whole-brain data. 

Continuous variables were correlated with structural MRI brain measures; categorical variables 

were investigated using a case-control approach. 

 

Structural differences in grey matter were analysed using FSL-VBM (292), 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM), an optimised VBM protocol (327) which uses FSL 

tools (288). First, structural images were brain-extracted and grey matter-segmented before 

being registered to the MNI152 standard space using FMRIB’s Non-linear Image Registration 

Tool (FNIRT) (293, 294). The resulting images were averaged and flipped along the x-axis to 

create a left-right symmetric, study-specific grey matter template. Second, all native grey 

matter images were non-linearly registered to this study-specific template and modulated to 

correct for local expansion (or contraction) due to the non-linear component of the spatial 

transformation. The modulated grey matter images were then smoothed with an isotropic 

gaussian kernel with a sigma of 3mm. Finally, voxelwise statistics were applied using 

‘randomise’, a permutation-based method (using 5000 permutations) for non-parametric 

testing, which corrects for multiple comparisons across space. The significance threshold for 

group differences was set at p<0.05 using the threshold-free cluster enhancement (TFCE) 

option. The TFCE option maintains the sensitivity benefits of cluster-based thresholding, but 

avoids the problem of needing to pre-define an initial cluster-forming threshold, or to carry 

out a large amount of data-smoothing. It provides greater sensitivity than other methods, and 

richer, more interpretable output than cluster-based thresholding (328). For continuous 
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variables age, years of education (defined as years of continuous full-time education) and sex 

were included as confound regressors. For categorical variables, cases and controls were 

matched for age, years of education (defined as years of continuous full-time education) and 

sex. For both continuous and ordinal variables motion correction (MOCO) was included as a 

confound regressor, as this was used for some (but not all) scans, and can affect the structural 

images.  

 

Changes in white matter were investigated using DTI and analysed using TBSS. TBSS is part of 

FSL (288) and allows voxelwise statistical analysis of the FA and MD data (101). First, FA images 

were created by fitting a tensor model to the raw diffusion data using FMRIB’s diffusion 

toolbox, and then brain-extracted using BET (289). All participants' FA data were then aligned 

into a common space using the nonlinear registration tool FNIRT (293, 294), which uses a b-

spline representation of the registration warp field (295). Next, the mean FA image was 

created and thinned to create a mean FA skeleton representing the centres of all tracts 

common to the group. Each subject's aligned FA data was then projected onto this skeleton 

and the resulting data fed into voxelwise cross-subject statistics. The latter stages were 

repeated using measures of MD, RD, and AD. Finally, voxelwise statistics were applied using 

‘randomise’, a permutation-based non-parametric testing (using 5000 permutations), which 

corrects for multiple comparisons across space. The significance threshold for group 

differences was set at p<0.05, using the TFCE option. Group differences in FA, MD, RD and AD 

were investigated across the whole skeleton. For continuous variables, age, years of education 

(defined as years of continuous full-time education) and sex were included as confound 

regressors. For categorical variables cases and controls were matched for age, years of 

education and sex.  

 

To examine whether prevalent coronary heart disease explained the associations between risk 

factors and MRI parameters further analysis was undertaken where there were positive 

associations between vascular risk and MRI brain changes. For any positive findings, the main 

analyses were repeated after excluding participants who had a current or previous diagnosis of 

coronary heart disease.  
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7.3 Results 

7.3.1 Blood pressure 

From the sample of 190 participants from the Whitehall Imaging sub-study, a further four 

exclusions were made due to lack of DTI data, and a further 15 exclusions were made on 

account of poor-quality MRI data which would have prevented analysis with VBM or TBSS. 

Therefore, in this analysis 171 participants were included. All had data on hypertension 

collected at phases 1, 3, 5, 7 and 9. The majority of participants were male with mean age 69.4 

± 5.5 years, with above-average mean IQ of 118. There were no significant differences in 

demographic data between included and excluded participants (Table 21). The MAP was 89.8 ± 

8.2 mm Hg (Table 22). 
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Table 21. Participant demographics for analysis of blood pressure and cholesterol 

 
Included cases Excluded cases p-value* 

n 

(%) 

Mean ± SD n 

(%)  

Mean ± SD 

Sex, male 139       

(81.3%) 

- 50   

(86.2%) 

- 0.40 

Age, years 171 69.4 ± 5.5 58 68.6 ± 4.7 0.26 

TOPF 171 60.8 ± 9.5 58 61.7 ± 9.5 0.56 

Education, years 171 14.1 ± 3.3 58 14.1 ± 2.7 0.94 

MOCA 171 26.9 ± 2.5 58 27.2 ± 2.1 0.43 

* p-value from chi-squared test (sex) or analysis of variance (all other variables) 
 
 
 

Table 22. Long-term vascular risk factors  

Vascular risk factor n Mean ± SD 

Mean arterial pressure, mm Hg 171 89.8 ± 8.2 

Mean total cholesterol, mmol/L 171 5.76 ± 0.8 

Mean fasting glucose, mmol/L 155 5.15 ± 0.36 

Mean FSRS, % risk per 10 years 169 2.1 ± 1.8 

 

Visual measures 

Visual and equivalent automated measures were correlated with MAP across the whole 

sample using Pearson’s correlation. There was a weak but significant association with left and 

right medial temporal lobe atrophy; this was not replicated using the equivalent automated 

measures (Table 23). Automated measures showed a weak but significant correlation between 

MAP and measures for general atrophy and white matter hyperintensities.  
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Table 23. Correlation between MRI measures and mean arterial pressure  

 Mean arterial pressure (n=171) 

Pearson’s correlation, r p-value  

Visual measures  

Global atrophy 0.07 0.35 

Medial temporal lobe atrophy 

Left 0.17 0.03 

Right  0.27 <0.001 

White matter hyperintensities 

     Total 0.09 0.27 

     Periventricular 0.02 0.822 

     Deep 0.13 0.10 

Automated measures  

Global atrophy 0.16 0.04 

Medial temporal lobe atrophy  

Left -0.12 0.11 

Right  -0.10 0.18 

White matter hyperintensities 0.20 0.01 

 

Grey matter 

For grey matter using VBM, there were no significant correlations with longitudinal MAP at the 

threshold of p<0.05 using TFCE.  

 

White matter 

For white matter using TBSS, there were no significant correlations with longitudinal MAP in 

FA, MD, RD or AD, at the threshold of p<0.05 using TFCE. Values for FA and AD approached, 

but did not reach significance.  
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7.3.2 Cholesterol 

From the sample of 190 participants from the Whitehall Imaging sub-study, a further four 

exclusions were made due to lack of DTI data, and a further 15 exclusions were made due to 

poor-quality MRI data which would have prevented analysis with VBM or TBSS. Therefore, in 

this analysis 171 participants were included. All had data on total cholesterol collected at 

phases 1, 3, 5, 7 and 9. Participant demographic details are displayed in Table 21. The majority 

of participants were male with mean age 69.4 ± 5.5 years and above-average mean IQ of 118. 

There were no significant differences in demographic data between included and excluded 

participants (Table 21). The mean total cholesterol level was 5.76 ± 0.8 mmol/L (Table 22). 

 

Visual measures 

Visual and equivalent automated measures were correlated with mean total cholesterol level 

across the whole sample using Pearson’s correlation. There was a weak but significant 

association with global atrophy, but this was not replicated using the equivalent automated 

measures (Table 24). There were no other significant correlations for visual or automated 

measures.  

 

Grey matter 

For grey matter using VBM, there were no significant correlations with longitudinal mean total 

cholesterol at the threshold of p<0.05 using TFCE.  

 

White matter 

For white matter using TBSS, there were no significant correlations with longitudinal mean 

total cholesterol in FA, MD, RD or AD, at the threshold of p<0.05 using TFCE.  
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Table 24. Correlation between MRI measures and mean total cholesterol  

 Mean total cholesterol (n=171) 

Pearson’s correlation, r p-value 

Visual measures 

Global atrophy 0.16 0.04 

Medial temporal lobe atrophy 

Left 0.03 0.66 

Right  -0.002 0.98 

White matter hyperintensities 

Total 0.01 0.87 

Periventricular -0.9 0.24 

Deep 0.11 0.16 

Automated measures 

Global atrophy 0.12 0.12 

Medial temporal lobe atrophy  

Left -0.02 0.81 

Right  -0.12 0.12 

White matter hyperintensities 0.14 0.08 
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7.3.3 Diabetes 

From the sample of 190 participants from the Whitehall Imaging sub-study, a further four 

exclusions were made due to lack of DTI data, and a further 15 exclusions were made due to 

poor-quality MRI data which would have prevented analysis with VBM or TBSS. Lack of data on 

fasting blood glucose led to a further 16 exclusions. Therefore, when investigating mean 

fasting glucose level 155 participants were included. The majority of participants were male 

with mean age 69.3 ± 5.5 years, with above-average mean IQ of 119. There were no significant 

differences in demographic data between included and excluded participants (Table 25). The 

mean fasting glucose level was 5.15 ± 0.36 mmol/L. 

 

Table 25. Participant demographics for analysis of mean fasting glucose   

 Included cases (n=155) Excluded cases (n=74) p-value* 

n 

(%) 

Mean ± SD n  

(%) 

Mean ± SD 

Sex, male 128    

(82.6%) 

- 61 

(82.4%) 

 0.98 

Age, years 155 69.3 ± 5.5 74 69.1 ± 4.9 0.83 

TOPF 155 61.2 ± 9.2 74 60.7 ± 10.0 0.70 

Education, years 155 14.2 ± 3.3 74 13.9 ± 2.8 0.39 

MOCA 155 27.0 ± 2.3 74 26.8 ±2.6 0.64 

*
 
p-value from chi-squared test (sex) or analysis of variance (all other variables) 

 

When investigating participants with type 2 diabetes compared to controls, cases were drawn 

from the same sample (i.e. the original 190 participants minus those excluded due to lack of 

DTI data and poor-quality MRI data, n=171). From this sample 12 cases were identified. 

Further exclusions were made in order to create a control group with comparable 

characteristics to the cases. Exclusions were made on the basis of lack of data related to 

diabetes status (n=8), age (n=50), education (n=11), sex (n=15). Therefore, 75 controls were 

included. The majority of cases were male, with mean age of 71.1 ± 4.7 years, mean IQ of 110. 

Demographic characteristics in both groups were similar (Table 26). 
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Table 26. Participant demographics for analysis of type 2 diabetes  

 
Diabetic cases (n=12) Controls (n=75) p-value* 

n 

(%) 

Mean ± SD n 

(%)  

Mean ± SD 

Sex, male 8 

(66.7%) 

- 63     

(84.0%) 

- 0.15 

Age, years 12 71.1 ± 4.7 75 70.9 ± 4.2 0.85 

TOPF 12 54.3 ± 11.5 75 61.3 ± 8.9 0.07 

Education, years 12 13.3 ± 2.6 75 13.5 ± 3.0 0.86 

MOCA 12 24.8 ± 4.0 75 26.9 ± 2.2 0.10 

*
 
p-value from chi-squared test (sex) or analysis of variance (all other variables) 

 

Visual measures 

There was no correlation between mean fasting glucose and visual or equivalent automated 

measures (Table 27). When comparing cases with diabetes and controls, there were no 

significant differences between groups for visual or automated measures (Table 28). 

 

Grey matter 

For grey matter using VBM, there were no significant correlations with longitudinal mean 

fasting glucose at the threshold of p<0.05 using TFCE. For type 2 diabetes, there were no 

significant differences between cases and controls.  
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Table 27. Correlation between MRI measures and mean fasting glucose  

 
Mean fasting glucose (n=155) 

 

Pearson’s correlation, r p-value 

Visual measures 

Global atrophy 0.002 0.98 

Medial temporal lobe atrophy 

Left 0.07 0.38 

Right  0.07 0.36 

White matter hyperintensities 

     Total -0.12 0.14 

     Periventricular -0.13 0.10 

     Deep -0.07 0.36 

Automated measures 

Global atrophy -0.02 0.79 

Medial temporal lobe atrophy  

Left 0.02 0.80 

Right  0.08 0.31 

White matter hyperintensities -0.05 0.52 
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Table 28. Group differences in MRI measures: type 2 diabetes and controls 

 Cases (n=12) Controls (n=75) p-value*
 

 n (%) Mean ± SD  n (%) Mean ± SD 

Global atrophy 

0 (absent) 1 (8.3) - 0 (0.0) -  

0.62† 
1 (mild) 4 (33.3) - 32 (42.7) - 

2 (moderate) 5 (41.7) - 37 (49.3) - 

3 (severe) 2 (16.7) - 6 (8.0) - 

Automated  - 27.7 ± 3.8 - 26.3 ± 2.4 0.09† 

Left medial temporal lobe atrophy  

0 (normal)  2 (16.7) - 18 (24.0) -  

0.48† 
1 (slight increase) 8 (66.7) - 36 (48.0) - 

2 (mod. increase) 2 (16.7) - 20 (26.7) - 

3 (severe increase) 0 (0.0) - 1 (1.3) - 

Automated - 0.25 ± 0.03 - 0.24 ± 0.04 0.23† 

Right medial temporal lobe atrophy 

0 (normal)  2 (16.7) - 19 (25.3) -  

0.76 
1 (slight increase) 7 (58.3) - 42 (56.0) - 

2 (mod. increase) 3 (25.0) - 14 (18.7) - 

3 (severe increase) 0 (0.0) - 0 (0.0) - 

Automated - 0.25 ± 0.03 - 0.24 ± 0.03 0.59† 

Deep white matter hyperintensities (DWM) 

0 (absent)  0 (0.0) - 1 (1.3) -  
0.67† 1 (punctate foci) 7 (58.3) - 44 (58.7) - 

2 (beginning confluence  
of foci) 

5 (41.7) - 26 (34.7) - 

3 (large confluent 
areas) 

0 (0.0) - 4 (5.3) - 

Periventricular white matter hyperintensities (PVWM) 

0 (absent)  0 (0.0) - 0 (0.0) -  
0.50 1 (caps or pencil thin 

lining) 
6 (50.0) - 50 (66.7) - 

2 (smooth halo) 5 (41.7) - 22 (29.3) - 

3 (irregular and 
extending to DWM) 

1 (8.3) - 3 (4.0) - 

Total white matter hyperintensities (sum of DWM and PVWM) 

0 0 (0.0) - 0 (0.0) -  

0.78† 
1 0 (0.0) - 1 (1.3) - 

2 5 (41.7) - 36 (48.0) - 

3 3 (25.0) - 20 (26.7) - 

4 3 (25.0) - 13 (17.3) - 

5 1 (8.3) - 4 (5.3) - 

6 0 (0.0) - 1 (1.3) - 

Automated - 0.68 ± 0.65 - 0.45 ± 0.43 0.11 

* p-value from chi-squared test (categorical variables) or analysis of variance (automated variables)  
† 

For chi-squared test, categories with very low frequencies have been combined 
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For white matter using TBSS, there were significant correlations between long-term exposure 

to high fasting glucose and reduced FA within the right posterior corona radiata, right 

corticospinal tract, and in the splenium and body of the corpus callosum, at the threshold of 

p<0.05 using TFCE (Figure 9). For AD there was a very small, significant cluster in the posterior 

limb of the internal capsule.  

 

There were significant correlations between long-term exposure to high fasting glucose and 

increased RD in multiple regions, including those where reduced FA was observed. There was 

increased RD within the right superior longitudinal fasciculus, right superior and anterior 

corona radiata, right and left posterior corona radiata, right corticospinal tract, and in the 

splenium and body of the corpus callosum, when using the threshold of p<0.05 using TFCE 

(Figure 9). Given that there were minimal changes in AD, correlations with MD were seen to a 

lesser degree. However, significant clusters were again seen in regions where reduced FA was 

observed, including the splenium and body of the corpus callosum as well as within the right 

superior corona radiata. The correlation between longitudinal mean fasting glucose and white 

matter changes is further illustrated in Figures 10 and 11. These scatterplots show the 

correlation between longitudinal mean fasting glucose and significantly different FA and RD 

values (p=<0.05). 

 

TBSS results for mean fasting glucose were re-analysed following exclusion of CHD cases (n=8). 

This resulted in 147 participants (mean age 69.2 ± 5.4 years, 83% male, mean education 14.2 ± 

3.3 years, mean TOPF score 61.1 ± 9.4). Again, using thresholds of p<0.05 and TFCE, FA 

remained significantly reduced in the right posterior corona radiata, and in the splenium and 

body of the corpus callosum. There were no significant differences in AD. RD was significantly 

increased within similar regions, including the right superior corona radiata, left posterior 

corona radiata, and in the splenium and body of the corpus callosum. There were fewer 

correlations with MD, but there were significant clusters in the right superior corona radiata, 

left posterior corona radiata, and in the splenium and body of the corpus callosum. 

 

For type 2 diabetes there were no significant differences between cases and controls in FA, 

MD, RD or AD at the threshold of p<0.05 using TFCE.  
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FA 

MD 

RD 

AD 

R L P A 
Figure 9. Correlation between long-

term exposure to elevated fasting 

glucose and white matter    

Regions in which there are significant 

correlations in Fractional Anisotropy 

(red), Mean Diffusivity, Radial Diffusivity 

and Axial Diffusivity (blue) at a threshold 

of p<0.05, overlaid on the mean FA 

skeleton (green). Significant regions are 

dilated for illustrative purposes. 

R=right; L=left; P=posterior; A=anterior 

 

Slice locations:  

X 84, Y 94, Z 89 and Z 99 
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Figure 10. Scatterplot to show the correlation between mean fasting glucose and fractional 

anisotropy in regions of statistically significant difference (p<0.05) 

 
 

 
Figure 11. Scatterplot to show the correlation between mean fasting glucose and radial 

diffusivity in regions of statistically significant difference (p<0.05) 
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7.3.4 Smoking 

From the sample of 190 participants from the Whitehall Imaging sub-study, a further four 

exclusions were made due to lack of DTI data, and a further 15 exclusions were made due to 

poor-quality MRI data which would have prevented analysis with VBM or TBSS. From this 

sample of 171 participants there were 14 current smokers who were included as cases. Further 

exclusions were made in order to create a control group with comparable characteristics to 

the cases. Exclusions were made on the basis of age (n=12) and education (n=27). Controls 

who were smokers at baseline (n=9) were also excluded. Therefore, 109 controls were 

included. The majority of cases were male with mean age 68.2 ± 4.9 years and with mean IQ of 

115. Cases and controls were well matched for demographic characteristics, with no significant 

differences between groups (Table 29). 

 

Table 29. Participant demographics for analysis of smoking status 

 
Cases (n=14) Controls (n=109) p-value* 

n 

(%) 

Mean ± SD n 

(%)  

Mean ± SD 

Sex, male 11         

(78.6%) 

- 88     

(80.7%) 

- 0.85 

Age, years 14 68.2 ± 4.9 109 68.6 ± 5.1 0.82 

TOPF 14 62.1 ± 5.1 109 60.0 ± 10.2 0.21 

Education, years 14 12.9 ± 2.1 109 13.1 ± 2.7 0.68 

MOCA 14 27.3 ± 1.8 109 27.1 ± 2.5 0.72 

*
 
p-value from chi-squared test (sex) or analysis of variance (all other variables) 

 
 

Visual measures 

Visual and equivalent automated measures were compared between cases and controls. For 

visual measures there was a significant group difference for left medial temporal lobe atrophy; 

this was not replicated using the equivalent automated measures (Table 30). There were no 

significant group differences for other visual measures or equivalent automated measures.  
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Grey matter 

For grey matter using VBM, there were no significant group differences between cases and 

controls in terms of their smoking status, using a threshold of p<0.05 with TFCE.  

 

White matter 

For white matter using TBSS there were no significant group differences between cases and 

controls in terms of smoking status for FA, MD, RD or AD, at the threshold of p<0.05 using 

TFCE.  
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Table 30. Group differences in MRI measures: smoking status 

 Cases (n=14) Controls (n=109) p-value*
 

 n (%) Mean ± SD  n (%) Mean ± SD 

Global atrophy 

0 (absent) 0 (0.0) - 4 (3.7) -  

0.72 
1 (mild) 6 (42.9) - 52 (47.7) - 

2 (moderate) 7 (50.0) - 50 (45.9) - 

3 (severe) 1 (7.1) - 3 (2.8) - 

Automated  - 26.4 ± 2.9 - 25.5 ± 2.6 0.23† 

Left medial temporal lobe atrophy  

0 (normal)  4 (28.6) - 38 (34.9) -  

0.01 
1 (slight increase) 3 (21.4) - 55 (50.5) - 

2 (mod. increase) 7 (50.0) - 16 (14.7) - 

3 (severe increase) 0 (0.0) - 0 (0.0) - 

Automated - 0.23 ± 0.04 - 0.24 ± 0.03 0.20† 

Right medial temporal lobe atrophy 

0 (normal)  3 (21.4) - 37 (33.9) -  

0.08 
1 (slight increase) 6 (42.9) - 58 (53.2) - 

2 (mod. increase) 5 (35.7) - 14 (12.8) - 

3 (severe increase) 0 (0.0) - 0 (0.0) - 

Automated - 0.25 ± 0.03 - 0.25 ± 0.03 0.92† 

Deep white matter hyperintensities (DWM) 

0 (absent)  0 (0.0) - 3 (2.8) -  
0.70 1 (punctate foci) 9 (64.3) - 72 (66.1) - 

2 (beginning confluence 
of foci) 

5 (35.7) - 29 (26.6) - 

3 (large confluent 
areas) 

0 (0.0) - 5 (4.6) - 

Periventricular white matter hyperintensities (PVWM) 

0 (absent)  0 (0.0) - 0 (0.0) -  
0.66 1 (caps or pencil thin 

lining) 
9 (64.3) - 64 (58.7) - 

2 (smooth halo) 5 (35.7) - 39 (35.8) - 

3 (irregular and 
extending to DWM) 

0 (0.0) - 6 (5.5) - 

Total white matter hyperintensities (sum of DWM and PVWM) 

0 0 (0.0) - 0 (0.0) -  

0.69† 
1 0 (0.0) - 3 (2.8) - 

2 7 (50.0) - 52 (47.7) - 

3 4 (28.6) - 28 (25.7) - 

4 3 (21.4) - 17 (15.6) - 

5 0 (0.0) - 8 (7.3) - 

6 0 (0.0) - 1 (0.9) - 

Automated - 0.43 ± 0.39 - 0.39 ± 0.35 0.71† 

*p-value from chi-squared test (categorical variables) or analysis of variance (automated variables) 
† 

For chi-squared test, categories with very low frequencies have been combined 
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7.3.5 Framingham Stroke Risk Score 

From the sample of 190 participants from the Whitehall Imaging sub-study, a further four 

exclusions were made due to lack of DTI data, and a further 15 exclusions were made due to 

poor-quality MRI data which would have prevented analysis with VBM or TBSS. Lack of 

complete data on FSRS led to a further two exclusions. Therefore, in this analysis 169 

participants were included. The majority of participants were male with mean age 69.5 ± 5.5 

years and above-average mean IQ of 118. There were no significant differences in 

demographic data between included and excluded participants (Table 31). The mean FSRS was 

2.1 ± 1.8. 

 

Table 31. Participant demographics for analysis of Framingham Stroke Risk Score 

 
Included cases (n=169) Excluded cases (n=60) p-value* 

n 

(%) 

Mean ± SD n 

(%)  

Mean ± SD 

Sex, male 138           

(81.7 %) 

- 51   

(85.0%) 

- 0.56 

Age, years 169 69.5 ± 5.5 60 68.5 ± 4.6 0.20 

TOPF 169 60.8 ± 9.5 60 61.8 ± 9.4 0.48 

Education, years 169 14.2 ± 3.2 60 13.9 ± 2.8 0.62 

MOCA 169 26.9 ± 2.5 60 27.2 ± 2.1 0.35 

* p-value from chi-squared test (sex) or analysis of variance (all other variables)  

 

Visual measures 

Visual and equivalent automated measures were correlated with FSRS across the whole 

sample using Pearson’s correlation. Using visual measures there were significant correlations 

with global atrophy, right and left medial temporal lobe atrophy and with deep white matter 

hyperintensities (Table 32). This was replicated using equivalent automated measures. When 

correlations with visual measures were additionally adjusted for age most became non-

significant, apart from left medial temporal lobe atrophy (r=0.16, p=0.04). When correlations 

with automated measures were additionally adjusted for age, most remained statistically 

significant (global atrophy r=0.23, p=0.002; left medial temporal lobe atrophy r=-0.16, p=0.04; 

right medial temporal lobe atrophy r=-0.19, p=0.02), although that with total white matter 
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hyperintensities attenuated to the null (r=0.06, p=0.46). These findings suggest that 

longitudinal FSRS is unlikely to be associated with structural changes in grey and white matter.  

 

 
Table 32. Correlation between MRI measures and Framingham Stroke Risk Score  

 
Mean FSRS (n=169) 

 

Pearson correlation, r p-value 

Visual measures  

Global atrophy 0.33 <0.001 

Medial temporal lobe atrophy 

Left 0.33 <0.001 

Right  0.32 <0.001 

White matter hyperintensities 

Total 0.15 0.05 

 Periventricular 0.07 0.40 

 Deep 0.20 0.01 

Automated measures  

Global atrophy 0.48 <0.001 

Medial temporal lobe atrophy 

Left -0.26 0.001 

Right  -0.27 <0.001 

White matter hyperintensities 0.23 0.002 

 

Grey matter 

For grey matter using VBM, there were no significant correlations with longitudinal mean FSRS 

at the threshold of p<0.05 using TFCE.  

 

White matter 

For white matter using TBSS, there were no significant correlations between longitudinal FSRS 

and FA, MD, RD or AD, at the threshold of p<0.05 using TFCE.  
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7.3.6 Coronary heart disease 

From the sample of 190 participants from the Whitehall Imaging sub-study, a further four 

exclusions were made due to lack of DTI data, and a further 15 exclusions were made due to 

poor-quality MRI data which would have prevented analysis with VBM or TBSS. From this 

sample of 171 participants there were 10 people with CHD (five with angina, four with 

previous MI and one with angina and a previous MI). The majority of cases were male with 

mean age 71.5 ± 6.9 years and mean IQ of 117. The remaining 161 participants were 

considered for inclusion in the control group. From this group 71 participants were excluded 

due to the presence of CHD as defined by ICD-10 Chapter IX (diseases of the circulatory 

system) (2) and 22 were excluded based on age in order to create a control group with 

comparable characteristics to the cases. Therefore, in total there were 68 controls. Cases and 

controls were well matched for demographic characteristics, with no significant differences 

between groups (Table 33). 

 

Visual measures 

Visual and equivalent automated measures were compared between cases and controls. There 

were no significant group differences for visual measures or equivalent automated measures 

(Table 34).  

 

Grey matter 

For grey matter using VBM, there were no significant group differences in grey matter 

between cases and controls, using a threshold of p<0.05 with TFCE.  

 

White matter 

For white matter using TBSS there were no significant group differences between cases and 

controls for FA, MD, RD or AD at the threshold of p<0.05 using TFCE.  
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Table 33. Participant demographics for analysis of coronary heart disease 

 
Cases (n=10) Controls (n=68) p-value* 

n 

(%) 

Mean ± SD n 

(%)  

Mean ± SD 

Sex, male 7           

(70.0%) 

- 49      

(72.1%) 

- 0.89 

Age, years 10 71.5 ± 6.9 68 70.2 ± 5.0 0.47 

TOPF 10 60.9 ± 7.3 68 60.3 ± 11.0 0.86 

Education, years 10 14.2 ± 2.7 68 14.4 ± 3.5 0.83 

MOCA 10 25.7 ± 2.0 68 26.9 ± 2.6 0.15 

*
 
p-value from chi-squared test (sex) or analysis of variance (all other variables) 
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Table 34. Group differences in MRI measures: coronary heart disease 

 
Cases (n=10) Controls (n=68) p-value* 

 n (%) Mean ± SD  n (%) Mean ± SD 

Global atrophy 

0 (absent) 0 (0.0) - 2 (2.9) -  

0.62† 

 

1 (mild) 4 (40.0) - 24 (35.3) - 

2 (moderate) 4 (40.0) - 35 (51.5) - 

3 (severe) 2 (20.0) - 7 (10.3) - 

Automated  - 26.9 ± 3.4 - 26.3 ± 2.8 0.53† 

Left medial temporal lobe atrophy  

0 (normal)  1 (10.0) - 26 (38.2) -  

0.21† 
1 (slight increase) 6 (60.0) - 26 (38.2) - 

2 (mod. increase) 3 (30.0) - 15 (22.1) - 

3 (severe increase) 0 (0.0) - 1 (1.5) - 

Automated - 0.24 ± 0.03 - 0.24 ± 0.03 0.73† 

Right medial temporal lobe atrophy 

0 (normal)  2 (20.0) - 22 (32.4) -  

0.63† 
1 (slight increase) 5 (50.0) - 33 (48.5) - 

2 (mod. increase) 3 (30.0) - 12 (17.6) - 

3 (severe increase) 0 (0.0) - 1 (1.5) - 

Automated - 0.24 ± 0.02 - 0.25 ± 0.03 0.90† 

Deep white matter hyperintensities (DWM) 

0 (absent)  0 (0.0) - 0 (0.0) -  
0.79 1 (punctate foci) 7 (70.0) - 44 (64.7) - 

2 (beginning confluence 
of foci) 

3 (30.0) - 21 (30.9) - 

3 (large confluent 
areas) 

0 (0.0) - 3 (4.4) - 

Periventricular white matter hyperintensities (PVWM) 

0 (absent)  0 (0.0) - 0 (0.0) -  
0.79 1 (caps or pencil thin 

lining) 
5 (50.0) - 41 (60.3) - 

2 (smooth halo) 4 (40.0) - 23 (33.8) - 

3 (irregular and 
extending to DWM) 

1 (10.0) - 4 (5.9) - 

Total white matter hyperintensities (sum of DWM and PVWM) 

0 0 (0.0) - 0 (0.0) -  

0.92† 
1 0 (0.0) - 0 (0.0) - 

2 5 (50.0) - 34 (50.0) - 

3 2 (20.0) - 17 (25.0) - 

4 2 (20.0) - 12 (17.6) - 

5 1 (10.0) - 3 (4.4) - 

6 0 (0.0) - 2 (2.9) - 

Automated - 0.53 ± 0.42 - 0.51 ± 0.67 0.92† 

*p-value from chi-squared test (categorical variables) or analysis of variance (automated variables) 
† 

For chi-squared test, categories with very low frequencies have been combined 
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7.4 Summary 

For visual MRI measures there were correlations between long-term exposure to vascular risk 

factors (mean arterial pressure, mean total cholesterol, smoking status and mean FSRS) and 

structural MRI correlates, particularly for left medial temporal lobe atrophy (Table 35). 

However, most of the significant correlations were weak in strength. It is possible that a more 

robust association would be seen with a larger sample size, particularly for type 2 diabetes and 

smoking status, which both had small numbers of cases. Framingham Stroke Risk Score was 

the only variable to have a significant association with visual measures of global atrophy, 

medial temporal lobe atrophy and deep white matter hyperintensities. Although these results 

were replicated using equivalent automated measures, correlations with visual measures did 

not remain significant following adjustment for age. However, it may be the case that this 

composite measure is better able to predict structural MRI brain changes than the single 

vascular risk factors. 

 

On the basis of associations with visual measures, it was hypothesised that grey matter 

changes would also be found using more sensitive analysis of grey matter using VBM. 

However, contrary to this hypothesis, long-term exposure to vascular risk factors was not 

correlated with VBM measures of grey matter.  

 

Analysis of associations between long-term exposure to vascular risk factors and white matter 

integrity using TBSS produced largely negative results. However, mean fasting glucose was 

associated with significant differences in white matter, particularly in FA and RD. Reduced FA 

and increased RD was seen in the splenium and body of the corpus callosum, right posterior 

corona radiata and right corticospinal tract. RD was increased in other frontal-subcortical areas 

including right superior and anterior corona radiata and right superior longitudinal fasciculus.  

Contrary to the original hypothesis, hypertension did not have a significant effect on white 

matter. 
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Table 35. Summary of significant MRI correlates of vascular risk 

Vascular risk / 

disease 

MRI measure 

Visual Grey matter (VBM) White matter (TBSS) 

Blood pressure Left and right medial 

temporal lobe 

atrophy 

- - 

Cholesterol Global atrophy - - 

Diabetes / fasting 

glucose 

- - Reduced FA and 

increased RD in 

corpus callosum, 

increased RD in other 

frontal-subcortical 

tracts including 

posterior corona 

radiata and right 

corticospinal tract 

Smoking Left medial temporal 

lobe atrophy 

- - 

FSRS Global atrophy 

Left and right medial 

temporal lobe 

atrophy 

Deep white matter 

hyperintensities 

- - 

CHD - - - 
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Chapter 8.   Study of MRI correlates of depression 
 

8.1 Introduction 

Chapter 8 focuses on the structural MRI correlates of depressive symptoms, identified using 

the CES-D rating scale, and depressive disorder, following diagnosis using the SCID in 

accordance with DSM-IV criteria. This allows MRI correlates of depressive symptoms to be 

identified based on: current depressive symptoms (current CES-D score), late-onset depressive 

symptoms (raised CES-D score over the age of 60), lifetime diagnosis of DSM-IV major 

depressive disorder (using the SCID), and long-term exposure to depressive symptoms 

(cumulative CES-D score). 

 

The aim of this chapter is to identify structural brain changes associated with depressive 

symptoms using visual techniques as well as detailed automated MRI techniques. The different 

approaches to defining depressive symptoms taken by CES-D and DSM-IV diagnosis is of 

particular interest, and one aim of this study is to determine whether these different clinical 

methods for identifying symptoms are associated with similar underlying pathophysiological 

changes. This is an important question in the context of epidemiological studies: if depressive 

symptoms identified using the CES-D equate to neurobiological changes associated with major 

depression, then this strengthens the case for using this simple and straightforward measure, 

particularly when there are constraints on time. The longitudinal nature of the data 

additionally allows investigation of whether late-onset depressive symptoms are associated 

with MRI brain changes, and whether persistent depressive symptoms over the course of adult 

life lead to increased structural brain changes later in life. The hypotheses were that there 

would be group differences between controls and participants with current depressive 

symptoms, late-onset depressive symptoms, or a previous DSM-IV diagnosis of major 

depressive disorder, who would show reduced grey matter volumes (particularly in the 

hippocampus) and reduced white matter integrity, particularly in frontal-subcortical regions. 

Furthermore, it was hypothesised that long-term exposure to depressive symptoms would 

show a more pronounced correlation with structural brain changes.  
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8.2 Methods 

The investigations of current depressive symptoms, late-onset depressive symptoms and 

major depressive disorder each adopt a case-control approach with all participants drawn 

from phase 1 of the Whitehall Imaging sub-study. Investigation of long-term exposure to 

depressive symptoms considers the correlation between depressive symptoms and structural 

MRI measures across the whole group. Criteria for defining these groups are summarised in 

Table 36. 

 

8.2.1 Current depressive symptoms 

Current depressive symptoms were measured using the self-reported CES-D scale. Cases were 

classified as participants with a CES-D score ≥16, which equates to clinically significant 

depressive symptoms (254). Participants in this category were compared with controls who 

had a score <16 on CES-D, had no history of depression (measured using CES-D and SCID), and 

were not currently using antidepressant medication. Exclusions were made on the basis of 

incomplete or poor-quality MRI data and major neurological conditions including stroke and 

TIA. Additionally, controls were excluded systematically on the basis of age to ensure that 

mean age and age range, mean years of education and mean TOPF scores were similar, in 

order to create comparable groups.  

 

8.2.2 Late-onset depressive symptoms 

Cases were identified during phase 10 of the Whitehall II Study on the basis of normal CES-D 

and GHQ scores at age <60 and high CES-D scores at age ≥60, indicating late-onset depressive 

symptoms.  Controls had current and previous CES-D symptoms <16 and were not taking 

antidepressant medication. SCID diagnosis of major depressive disorder was not used as an 

inclusion or exclusion criterion, since the aim was to determine whether changes could be 

identified purely on the basis of CES-D score alone. Both cases and controls were required to 

have complete MRI data of good quality, and no major neurological conditions. Controls were 

systematically excluded on the basis of age range and mean age, mean years of education and 

mean TOPF score to create comparable groups.  
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8.2.3 Major depressive disorder 

Cases were identified on the basis of a clinical diagnosis of major depressive disorder identified 

through the SCID semi-structured interview performed at the time of the MRI scan. Controls 

had no current or previous SCID diagnosis of mental illness (including major depressive 

disorder, mood disorder not otherwise specified, dysthymia and bipolar disorder), no 

significant current or previous depressive symptoms as measured by CES-D (CES-D<16), and 

were not taking antidepressant medication. Both cases and controls were required to have 

complete MRI data of good quality, and no major neurological conditions. Controls were 

systematically excluded on the basis of age range and mean age, mean years of education and 

mean TOPF score to create comparable groups.  

 

8.2.4 Long-term exposure to depressive symptoms 

The effects of long-term exposure to elevated depressive symptoms were studied to 

determine whether persistently elevated depressive symptoms in mid-life might alter brain 

structure in late-life, therefore predisposing to late-life depression. The ‘cumulative CES-D 

score’ was calculated by summing the CES-D scores from phase 7 (2003 - 2004), phase 9 (2007 

– 2009) and the Whitehall Imaging sub-study (2012 – 2013), and calculating the mean. The use 

of CES-D provides a continuous measure of depressive symptoms, and therefore CES-D scores 

of all participants were used to correlate depressive symptoms and MRI measures. To 

investigate the spectrum of depressive symptoms, all participants were included, and a range 

of depressive symptoms identified using CES-D (and therefore with a range of diagnoses 

identified using the SCID interview). Exclusions were made only on the basis of major 

neurological conditions, incomplete MRI data or poor-quality MRI data. 

 

8.2.5 Brain MRI analysis 

For current depressive symptoms, late-onset depressive symptoms and major depressive 

disorder, MRI analysis used a case-control approach to identify group differences. This utilised 

clinical, visual techniques and equivalent automated measures as described previously 

(Chapters 4.6 and 6.2). Further MRI analysis explored group differences in grey matter using 

VBM and TBSS as described in Chapter 7.2.  
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For long-term exposure to depressive symptoms, the cumulative CES-D score was correlated 

with structural measures: visual measures, VBM and TBSS. Analysis of MRI correlations for this 

continuous variable used the same methods as described in Chapter 7.2.2.  

 
Table 36. Criteria used to define depressive symptoms and disorder 

 CES-D score DSM-IV diagnosis  Current          
antidepressant 
medication 

Current depressive symptoms (n=20) 

Cases ≥16 at MRI scan   

Controls <16 at MRI scan 

No previously elevated 

CES-D scores 

None  

 

None 

Late-onset depressive symptoms (n=26) 

Cases ≥16 at age ≥60 

normal CES-D and scores at 

age <60 

  

Controls current and previous CES-D 

score <16 

 

 None 

Major depressive disorder (n=32) 

Cases - DSM-IV criteria for major 

depressive disorder 

 

Controls current and previous CES-D 

score <16 

 

No previous DSM-IV 

diagnosis  

 

None 

Long-term exposure to depressive symptoms (n=171) 

Inclusions Mean of CES-D scores at 

three phases from  

2003 - 2013 

- - 
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8.3 Results 

8.3.1 Current depressive symptoms 

In Chapter 6 a group of 190 participants was identified who did not have major neurological 

conditions and had adequate-quality MRI data. This group included 21 participants with 

current depressive symptoms (CES-D ≥16). One participant was excluded due to missing DTI 

data, leaving 20 cases and a potential 169 controls. Further exclusions were made in the 

control group on account of a previous SCID diagnosis (n=30), previous high CES-D score 

(n=27), missing previous CES-D score (n=1), current use of antidepressant medication (n=8) 

and incomplete or poor-quality MRI data (n=15). Five further participants were excluded on 

the basis of age, to ensure that the control group was comparable with the cases. At this stage 

the control group was comparable with cases for age, as well as for years of education and 

TOPF score; no further exclusions were necessary in relation to the latter two variables. The 

final control group included 83 participants. 

 

The mean CES-D score within the cases was 22.5 ± 7.0, and within the controls was 3.0 ± 3.1. 

There were no significant differences between cases and controls for age, years of education, 

and TOPF, although the proportion of men among the cases was lower (Table 37). 

Performance on cognitive assessments was similar between groups. The only significant 

difference was on the TMTB (this remained significant when making additional adjustment for 

the effect of gender).  

 

Visual measures 

Visual, ordinal measures were compared using the chi-squared test; equivalent automated, 

continuous measures were compared using independent samples t-tests. Visual measures of 

MRI brain structure showed no differences between groups. However, there was a significant 

difference using equivalent automated measures for total white matter hyperintensity volume 

(p=0.02) (Table 38). 
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Table 37. Participant demographics: current depressive symptoms and controls 

 Cases (n=20) Controls (n=83) p-value 

n (%) Mean ± SD n (%) Mean ± SD 

Demographics 

Sex, male 13 (65.0%)  71 (85.5%)  0.03 

Age, years - 70.4 ± 5.5 - 69.3 ± 5.0 0.41 

Education, 

years 

- 14.5 ± 4.2 - 13.8 ± 3.0 0.38 

TOPF - 61.9 ± 11.2 - 60.3 ± 8.9 0.51 

Pre-morbid 

IQ* 

- 116.8 ± 12.5 - 116.6 ±9.9 0.94 

Cognitive testing 

MOCA - 26.7 ± 3.0 - 27.1 ± 2.4 0.47 

HVLT - 25.3 ± 6.4 - 27.1 ± 5.0 0.19 

TMTB, secs - 84.7 ± 62.3 - 62.5 ± 26.9 0.02 

DSFW - 10.4 ± 2.5 - 11.3 ± 2.3 0.10 

DSBW - 10.2 ± 3.1 - 9.9 ± 2.7 0.70 

DC - 55.9 ± 14.7 - 62.9 ± 14.3 0.05 

Depressive symptoms 

CES-D - 22.5 ± 7.0 - 3.0 ± 3.1 <0.001 

Current 

antidepressant 

medication 

3 (15.0 %) - 0 (0 %) - <0.001 

* Estimated from the Test of Premorbid function (TOPF), education and sex 
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Table 38. Group differences in MRI measures: current depressive symptoms and controls 

 Cases (n=20) Controls (n=83) p-value* 

n (%) Mean ± SD  n (%) Mean ± SD 

Global atrophy 

0 (absent) 1 (5.0) - 0 (0.0) -  
0.99† 1 (mild) 8 (40.0) - 36 (43.4) - 

2 (moderate) 10 (50.0) - 43 (51.8) - 

3 (severe) 1 (5.0) - 4 (4.8) - 

Automated  - 25.8 ± 2.5 - 25.9 ± 2.7 0.84† 

Left medial temporal lobe atrophy  

0 (normal)  8 (40.0) - 21 (25.3) -  
0.31† 1 (slight increase) 7 (35.0) - 44 (53.0) - 

2 (mod. increase) 5 (25.0) - 17 (20.5) - 

3 (severe increase) 0 (0.0) - 1   (1.2) - 

Automated - 0.25 ± 0.04 - 0.24 ± 0.04 0.28† 

Right medial temporal lobe atrophy 

0 (normal)  6 (30.0) - 22 (26.5) -  
0.74† 1 (slight increase) 9 (45.0) - 45 (54.2) - 

2 (mod. increase) 4 (20.0) - 16 (19.3) - 

3 (severe increase) 1 (5.0) - 0 (0.0) - 

Automated - 0.25 ± 0.04 - 0.25 ± 0.03 0.79† 

Deep white matter hyperintensities (DWM) 

0 (absent)  0 (0.0) - 2 (2.4) -  
0.22† 1 (punctate foci) 11 (55.0) - 55 (66.3) - 

2 (beginning confluence 
of foci) 

6 (30.0) - 22 (26.5) - 

3 (large confluent 
areas) 

3 (15.0) - 4 (4.8) - 

Periventricular white matter hyperintensities (PVWM) 

0 (absent)  0 (0.0) - 0 (0.0) -  
0.60 1 (caps or pencil thin 

lining) 
9 (45.0) - 47 (56.6) - 

2 (smooth halo) 9 (45.0) - 31 (37.3) - 

3 (irregular and 
extending to DWM) 

2 (10.0) - 5 (6.0) - 

Total white matter hyperintensities (sum of DWM and PVWM) 

0 0 (0.0) - 0 (0.0) -  
0.41† 1 0 (0.0) - 2 (2.4) - 

2 7 (35.0) - 39 (47.0) - 

3 6 (30.0) - 21 (25.3) - 

4 3 (15.0) - 14 (16.9) - 

5 3 (15.0) - 6 (7.2) - 

6 1 (5.0) - 1 (1.2) - 

Automated - 0.70 ± 0.7 - 0.43 ± 0.4 0.02† 

*p-value from chi-squared test (categorical variables) or analysis of variance (automated variables) 
† 

For chi-squared test, categories with very low frequencies have been combined 
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Grey matter 

For grey matter using VBM, there were no significant group differences between those with 

current depressive symptoms and controls, at the threshold of p<0.05 using TFCE.   

 

White matter  

For white matter using TBSS, the patient group showed reduced FA compared with the control 

group in parts of the right corticospinal tract, indicating less uniform patterns of diffusion in 

these areas in the patient group (i.e. better white matter integrity in the controls) (Figure 12). 

The patient group showed increased MD in widespread regions, indicating reduced white 

matter integrity in the patient group, compared with the controls. The difference in MD was 

driven by changes in RD (Figure 12) that showed significant differences in the body of the 

corpus callosum, bilaterally within the corticospinal tract, superior longitudinal fasciculus and 

anterior thalamic radiation, and in the right posterior and superior corona radiata. The patient 

group showed smaller areas of AD which were significantly different. Clusters were 

significantly different bilaterally in the superior longitudinal fasciculus, in the left inferior 

frontal-occipital fasciculus, left anterior thalamic radiation, left uncinate fasciculus and right 

corona radiata.  

The correlation between current depressive symptoms and white matter changes is further 

illustrated in Figures 13 and 14. These scatterplots show the correlation between current 

depressive symptoms and significantly different FA and RD values (p=<0.05) for cases and 

controls. 
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Figure 12. Group differences in white 

matter: current depressive symptoms 
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Figure 13. Scatterplot to show the correlation between current depressive symptoms and 

fractional anisotropy in regions of statistically significant difference (p<0.05) 

 
 

 
 

Figure 14. Scatterplot to show the correlation between current depressive symptoms and 

radial diffusivity in regions of statistically significant difference (p<0.05) 
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8.3.2 Late-onset depressive symptoms 

In Chapter 6 a group of 190 participants was identified who did not have major neurological 

conditions and had adequate-quality MRI data. From this sample 26 subjects were identified as 

phase 10 participants with late-onset depressive symptoms identified through elevated CES-D 

scores over the age of 60 years. All were included as cases. There were 164 potential controls. 

Participants were excluded from the control group on account of current depressive symptoms 

(n=15), current use of antidepressant medication (n=6), previous depressive symptoms (n=12), 

missing previous CES-D data (n=1) and incomplete or poor-quality MRI data (n=6). Further 

exclusions were made on the basis of age, years of education and TOPF score (n=47) to create 

a group of controls who were comparable with the cases. In total, there were 87 exclusions; 

therefore, 77 participants were included in the control group. 

 

Cases had significantly higher current depressive symptoms and use of antidepressant 

medication, compared to controls. Compared to the group with current depressive symptoms 

(section 8.3.1), CES-D scores were lower (10.5 ± 7.4, compared to 22.5 ± 7.0) but use of 

antidepressant medication was similar (13.0% compared to 15.0%). Table 39 shows that there 

were no significant differences between the case and control groups based on age, sex, 

education or TOPF score. There were significant differences between groups based on 

cognitive assessments including the MOCA (p=0.04), HVLT for short-term verbal recall 

(p<0.001), and for two measures of executive function (DSFW, p=0.05; DSBW, p=0.03).  

 

Visual measures 

There were no significant group differences between cases and controls using visual or 

automated measures (Table 40).  
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Table 39. Participant demographics: late-onset depressive symptoms and controls 

 Cases (n=26) Controls (n=77) p-value  

 n (%) Mean ± SD n (%) Mean ± SD 

Demographics 

Sex, male 21 (80.8%) - 67 (87.0%) - 0.44 

Age, years  73.3 ± 5.6  71.3 ± 4.6 0.10 

Education, 

years 

 13.8 ± 3.1  13.7 ± 3.1 0.87 

TOPF  59.5 ± 11.4  61.3 ± 8.6 0.46 

Pre-morbid 

IQ* 

 117.3 ± 8.3  118.0 ± 9.7 0.69 

Cognitive testing 

MOCA  25.5 ± 3.0  26.9 ± 2.4 0.04 

HVLT  21.9 ± 4.0  26.7 ± 5.1 <0.001 

TMTB, secs  76.1 ± 30.3  67.2 ± 28.0 0.21 

DSFW  10.1 ± 2.3  11.1 ± 2.1 0.05 

DSBW  8.4 ± 2.2  9.6 ± 2.4 0.03 

DC  56.0 ± 14.8  59.6 ± 13.1 0.29 

Depressive symptoms 

CES-D  10.5 ± 7.4  3.1 ± 3.0 <0.001 

Current 

antidepressant 

medication 

3 (13.0%) - 0 (0.0%)  0.002 

* Estimated from the Test of Premorbid function (TOPF), education and sex 
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Table 40. Group differences in MRI measures: late-onset depressive symptoms and controls 

 Cases (n=26) Controls (n=77) p-value* 

 n (%) Mean ± SD  n (%) Mean ± SD 

Global atrophy 

0 (absent) 1 (3.8) - 1 (1.3) -  

0.17† 
1 (mild) 6 (23.1) - 26 (33.8) - 

2 (moderate) 13 (50.0) - 43 (55.8) - 

3 (severe) 6 (23.1) - 7 (9.1) - 

Automated  - 27.6 ± 3.2 - 26.6 ± 2.8 0.11† 

Left medial temporal lobe atrophy  

0 (normal)  9 (34.6) - 18 (23.4) -  

0.25† 
 

1 (slight increase) 8 (30.8) - 38 (49.4) - 

2 (mod. increase) 9 (34.6) - 19 (24.7) - 

3 (severe increase) 0 (0.0) - 2 (2.6) - 

Automated - 0.23 ± 0.04 - 0.23 ± 0.04 0.64† 

Right medial temporal lobe atrophy 

0 (normal)  8 (30.8) - 16 (20.8) -  

0.21† 
1 (slight increase) 10 (38.5) - 45 (58.4) - 

2 (mod. increase) 7 (26.9) - 15 (19.5) - 

3 (severe increase) 1 (3.8) - 1 (1.3) - 

Automated - 0.24 ± 0.03 - 0.24 ± 0.03 0.84† 

Deep white matter hyperintensities (DWM) 

0 (absent)  1 (3.8) - 1 (1.3) -  
0.09† 1 (punctate foci) 8 (30.8) - 44 (57.1) - 

2 (beginning confluence 
of foci) 

15 (57.7) - 26 (33.8) - 

3 (large confluent 
areas) 

2 (7.7) - 6 (7.8) - 

Periventricular white matter hyperintensities (PVWM) 

0 (absent)  0 (0.0) - 0 (0.0) -  
0.28 1 (caps or pencil thin 

lining) 
16 (61.5) - 42 (54.5) - 

2 (smooth halo) 10 (38.5) - 28 (36.4) - 

3 (irregular and 
extending to DWM) 

0 (0.0) - 7 (9.1) - 

Total white matter hyperintensities (sum of DWM and PVWM) 

0 0 (0.0) - 0 (0.0) -  

0.49† 
1 1 (3.8) - 1 (1.3) - 

2 7 (26.9) - 33 (42.9) - 

3 9 (34.6) - 18 (23.4) - 

4 7 (26.9) - 16 (20.8) - 

5 2 (7.7) - 6 (7.8) - 

6 0 (0.0) - 3 (3.9) - 

Automated - 0.78 ± 0.8 - 0.52 ± 0.6 0.09† 

*p-value from chi-squared test (categorical variables) or analysis of variance (automated variables) 
† 

For chi-squared test, categories with very low frequencies have been combined 
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Grey matter 

For grey matter using VBM, there were no significant group differences between those with 

late-onset depressive symptoms and controls at the threshold of p<0.05 using TFCE.  

 

White matter  

For white matter using TBSS, the patient group showed reduced FA compared to controls in a 

small number of regions including the splenium of the corpus callosum, left forceps major and 

the left anterior thalamic radiation (Figure 15).This indicates impaired white matter integrity in 

these areas in patients compared to controls.  

 

The patient group showed increased MD bilaterally in multiple regions, including the superior 

longitudinal fasciculus, corticospinal tract, superior corona radiata, anterior thalamic radiation 

and the body of the corpus callosum. This indicates reduced white matter integrity in the 

patient group compared to controls. Significant differences in RD were seen bilaterally in the 

superior corona radiata, anterior corona radiata, the right corticospinal tract and the body of 

the corpus callosum. Significant differences in AD were seen bilaterally in the superior corona 

radiata, anterior corona radiata, posterior corona radiata and anterior limb of the internal 

capsule, and in the right corticospinal tract (Figure 15).  

 

A correlation was performed between CES-D scores in the patient group (n=26) and measures 

of white matter integrity (FA, MD, RD, AD) to see whether these were significantly associated. 

There were no significant correlations in FA. For MD, RD and AD there were small clusters 

representing areas of significant difference, which might explain some (but certainly not all) of 

the variance between groups. For MD there were small clusters in the left posterior and 

superior corona radiata, left corticospinal tract, left superior longitudinal fasciculus and the 

body of the corpus callosum. There were small clusters for RD in the left superior longitudinal 

fasciculus and for AD in the left superior longitudinal fasciculus and left posterior corona 

radiata.  

 

The correlation between current depressive symptoms and white matter changes is further 

illustrated in Figures 16 and 17. These scatterplots show the correlation between late-onset 

depressive symptoms and significantly different FA and RD values (p=<0.05), for cases and 

controls.  



137 

 

 

 

 

  

 

FA 

MD 

RD 

AD 

 

 

R L P A 

Regions in which there are significant 

group differences in Fractional 

Anisotropy (red), Mean Diffusivity, 

Radial Diffusivity and Axial Diffusivity  

(blue) at a threshold of p<0.05, 

overlaid on the mean FA skeleton 

(green). Significant regions are dilated 

for illustrative purposes. 

R=right; L=left; P=posterior; A=anterior 

 

Slice locations:  

X 74, Y 136, Z 92 and Z 120 

 

Figure 15. Group differences in white 

matter: late-onset depressive symptoms 



138 

 

Figure 16. Scatterplot to show the correlation between late-onset depressive symptoms and 

fractional anisotropy in regions of statistically significant difference (p<0.05) 

 

  
 

 

 
Figure 17. Scatterplot to show the correlation between late-onset depressive symptoms and 

radial diffusivity in regions of statistically significant difference (p<0.05) 
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8.3.3 Major depressive disorder 

In Chapter 6 a group of 190 participants was identified who did not have major neurological 

conditions and had adequate-quality MRI data. From this group, 36 subjects were identified as 

potential cases, with a diagnosis of DSM-IV major depressive disorder according to the SCID. 

Four cases were excluded due to lack of DTI data, and therefore 32 cases were included. There 

were 154 potential controls. Participants were excluded from the control group on account of 

a previous SCID diagnosis of mental illness (n=23), current depressive symptoms (n=7), current 

use of antidepressant medication (n=2) and incomplete or poor-quality MRI data (n=9). 

Further exclusions were made to create a group of controls who were comparable with the 

cases on the basis of mean age and age range, mean years of education and mean TOPF score 

(n=19). In total, there were 60 exclusions. Therefore 94 participants were included in the 

control group. 

 

Despite being selected on the basis of previous depressive episodes, cases exhibited 

significantly increased current depressive symptoms compared with controls, with a similar 

mean CES-D score to the group with late-onset depressive symptoms (section 8.4.2). Table 41 

shows that there were no significant differences between the case and control groups based 

on age, sex, education or TOPF score. There were no significant differences between the 

groups based on MOCA or HVLT score, in contrast to the group identified in Chapter 8.3.2 with 

late-onset depressive symptoms. For tests of executive function, digit coding scores were 

significantly different between groups, and digit span forward scores approached, but did not 

reach, significance.  

 

Visual measures 

There were no significant group differences between cases and controls using visual or 

automated measures (Table 42).  
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Table 41. Participant demographics: major depressive disorder and controls 

 
Cases (n=32) Controls (n=94) p-value 

 n (%) Mean ± SD n (%) Mean ± SD 

Demographics 

Sex, male 25 (78.1%) - 82 (87.2%) - 0.21 

Age, years  68.9 ± 5.7  69.2 ± 5.3 0.83 

Education, 

years 

 14.1 ± 3.7  14.0 ±3.0 0.94 

TOPF  63.3 ± 5.6  63.2 ± 4.9 0.95 

Pre-morbid 

IQ* 

 119.6 ± 8.4  119.5 ± 8.2 0.97 

Cognitive testing 

MOCA  26.8 ± 2.7  27.3 ± 2.0 0.38 

HVLT  26.9 ± 5.1  27.0 ± 4.8 0.97 

TMTB, secs  64.1 ± 22.0  60.2 ± 25.2 0.42 

DSFW   10.7 ±2.2  11.5 ± 2.3 0.07 

DSBW  9.9 ± 2.5  10.7 ± 2.6 0.71 

DC  58.6 ± 12.2  64.5 ± 12.8 0.02 

Depressive symptoms 

CES-D  10.3 ± 9.1  3.2 ± 3.5 <0.001 

Current 

antidepressant 

medication 

4 (14.3 %) - 0 (0%) - <0.001 

*Estimated from the Test of Premorbid function (TOPF), education and sex 
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Table 42. Group differences in MRI measures: major depressive disorder and controls 

 
Cases (n=32) Controls (n=94) p-value* 

n (%) Mean ± SD n (%) Mean ± SD 

Global atrophy 

0 (absent) 2 (6.3) - 0 (0.0) -  
0.87† 1 (mild) 15 (46.9) - 43 (45.7) - 

2 (moderate) 11 (34.4) - 45 (47.9) - 

3 (severe) 4 (12.5) - 9 (6.4) - 

Automated  - 25.9 ± 2.9 - 25.9 ± 2.7 0.96† 

Left medial temporal lobe atrophy  

0 (normal)  9 (28.1) - 27 (28.7) -  
0.94† 1 (slight increase) 16 (50.0) - 44 (46.8) - 

2 (mod. increase) 6 (18.8) - 23 (24.5) - 

3 (severe increase) 1 (3.1) - 0 (0.0) - 

Automated - 0.23 ± 0.04 - 0.24 ± 0.03 0.24† 

Right medial temporal lobe atrophy 

0 (normal)  5 (15.6) - 28 (29.8) -  
0.23† 1 (slight increase) 21 (65.6) - 47 (50.0) - 

2 (mod. increase) 5 (15.6) - 19 (20.2) - 

3 (severe increase) 1 (3.1) - 0 (0.0) - 

Automated - 0.24 ± 0.04 - 0.24 ± 0.03 0.21† 

Deep white matter hyperintensities (DWM) 

0 (absent)  1 (3.1) - 1 (1.1) -  
0.27† 1 (punctate foci) 21 (65.6) - 61 (64.9) - 

2 (beginning confluence 
of foci) 

7 (21.9) - 29 (30.9) - 

3 (large confluent 
areas) 

3 (9.4) - 3 (3.2) - 

Periventricular white matter hyperintensities (PVWM) 

0 (absent)  0 (0.0) - 0 (0.0) -  
0.79 1 (caps or pencil thin 

lining) 
19 (59.4) - 54 (57.4) - 

2 (smooth halo) 10 (31.3) - 34 (36.2) - 

3 (irregular and 
extending to DWM) 

3 (9.4) - 6 (6.4) - 

Total white matter hyperintensities (sum of DWM and PVWM) 

0 0 (0.0) - 0 (0.0) -  
0.64† 1 1 (3.1) - 1 (1.1) - 

2 15 (46.9) - 43 (45.7) - 

3 9 (28.1) - 27 (28.7) - 

4 3 (9.4) - 16 (17.0) - 

5 2 (6.3) - 6 (6.4) - 

6 2 (6.3) - 1 (1.1) - 

Automated - 0.54 ± 0.72 - 0.44 ± 0.4 0.31† 

*p-value from chi-squared test (categorical variables) or analysis of variance (automated variables) 
† 

For chi-squared test, categories with very low frequencies have been combined 
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Grey matter 

For grey matter using VBM, there were no significant group differences between those with 

major depressive disorder and controls at the threshold of p<0.05 using TFCE.  

 

White matter  

For white matter using TBSS, there were no significant differences in FA, MD, RD or AD 

between those with major depressive disorder and controls using the threshold p<0.05 and 

TFCE.  

 

8.3.4 Long-term exposure to depressive symptoms 

In Chapter 6 a group of 190 participants was identified who did not have major neurological 

conditions and had adequate-quality MRI data. From this group a further 19 subjects were 

excluded on the basis of poor-quality MRI data or lack of DTI data, resulting in a sample of 171 

participants for this analysis. There were therefore 58 exclusions from the total sample 

(n=229); there were no significant differences between included and excluded participants in 

terms of age, gender, years of education and pre-morbid cognitive function (Table 43). On 

cognitive assessment, the only significant difference was in performance on HVLT; 

performance on other cognitive tests was not significantly different. 

 

The majority of included participants were male, with a mean age of 69.4 years and above-

average mean IQ of 118. Mean cognitive test scores were high (26.9 ± 2.5 for MOCA and 26.5 ± 

5.1 HVLT). The cross-sectional and cumulative CES-D score was below the cut-off for significant 

depressive symptoms, although in both cases the range of scores included individuals with 

significant depressive symptoms (cross-sectional CES-D range=0 - 39; cumulative CES-D 

range=0 - 31). Over 30% of participants had a history of DSM-IV mood disorder, yet less than 

6% of the sample were currently using antidepressant medication. 
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Table 43. Participant demographics: long-term exposure to depressive symptoms 

 
Included cases (n=171) Excluded cases (n=58) p-value*  

n  

(%) 

Mean ± SD n  

(%) 

Mean ± SD 

Demographics 

Sex, male 139 

(81.3%) 

 50  

(86.2%) 

- 0.40 

Age, years  69.4 ± 5.5  68.6 ± 4.7 0.26 

Education, 

years 

 14.1 ± 3.3  14.1 ± 2.7 0.94 

TOPF  60.8 ± 9.5  61.7 ± 9.5 0.56 

Pre-morbid IQ †  117.9 ± 10.1  118.1 ± 10.1 0.93 

Cognitive testing 

MOCA  26.9 ± 2.5  27.2 ± 2.1 0.43 

HVLT  26.5 ± 5.1  28.0 ± 4.4 0.03 

TMTB, secs  66.9 ± 33.4  70.8 ± 36.7 0.48 

DSFW  11.0 ± 2.3  10.5 ± 2.2 0.19 

DSBW  9.8 ± 2.7  10.0 ± 2.5 0.65 

DC  61.4 ± 13.9  61.2 ± 15.2 0.93 

Indicator of long-term exposure to depressive symptoms 

CES-D  6.3 ± 7.4   4.8 ± 4.6 0.14 

Current 

antidepressant 

medication 

10.0  

(5.8%) 

 6.0  

(10.3%) 

 0.25 

Longitudinal 

CES-D, mean‡ 

 7.4 ± 6.4  6.2 ± 5.0 0.21 

History of 

mental illness  

55  

(32.2%) 

 17.0 

(29.3%) 

 0.69 

History of mood 

disorder ** 

54  

(31.6%) 

 16.0 

(27.6%) 

 0.57 

*
  

p-value from analysis of variance (continuous variables), chi-squared (ordinal variables) 
†
 Estimated from the Test of Premorbid Function (TOPF), education and sex 

‡
 Calculated as mean score across 3 phases (phase 7, phase 9 and Imaging sub-study) 

**  SCID diagnosis of major depressive disorder, minor depressive disorder or dysthymia 

 

 

Visual measures 

Visual and equivalent automated measures were correlated with CES-D score across the whole 

sample using Pearson’s correlation. For cross-sectional measures there was a weak but 

significant association with right medial temporal lobe atrophy; this was not replicated using 
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the equivalent automated measure, or by using longitudinal data (Table 44). Given that no 

corrections were made for multiple comparisons, this suggests that visual or equivalent 

automated MRI measures detect very few differences in brain structure. 

 

Table 44. Correlation between MRI measures and depressive symptoms 

 
Cross-sectional CES-D 

score (n=171) 
Longitudinal CES-D  

score (n=171)*  

Pearson’s 

correlation, r 

p-value 

 

Pearson’s 

correlation, r 

p-value  

Visual measures 

Global atrophy 0.03 0.66 0.05 0.56 

Medial temporal lobe atrophy  

Left 0.02 0.84 0.00 0.97 

Right  0.15 0.05 0.10 0.18 

White matter hyperintensities 

Total 0.06 0.41 0.00 0.98 

Periventricular 0.01 0.95 -0.08 0.32 

Deep 0.10 0.18 0.07 0.36 

Automated measures 

Global atrophy 0.07 0.35 0.09 0.22 

Medial temporal lobe atrophy 

Left 0.05 0.55 -0.01 0.93 

Right  -0.01 0.86 -0.03 0.72 

White matter 

hyperintensities 

0.13 0.09 0.09 0.23 

* Calculated as mean score across 3 phases (phase 7, phase 9 and Imaging sub-study) 
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Grey matter 

For grey matter using VBM, there were no significant correlations with long-term exposure to 

depressive symptoms at the threshold of p<0.05 using TFCE.  

 

White matter 

For white matter using TBSS, there were no significant correlations with long-term exposure to 

depressive symptoms for FA, MD, RD or AD using the threshold of p<0.05 and TFCE.  

 

8.4 Summary 

There were no significant differences in grey matter between cases and controls using VBM. 

However, significant differences were identified in white matter using TBSS (Table 45). Analysis 

of current and late-onset depressive symptoms revealed reduced FA in patient groups, albeit 

in relatively small areas; there were more widespread increases in MD, RD and AD within the 

patient groups. These findings indicate reduced white matter integrity in participants with 

current and late-onset depressive symptoms (both defined using the CES-D score). Frontal-

subcortical tracts were particularly affected, including the superior longitudinal fasciculus, 

corona radiata, anterior thalamic radiation, corticospinal tract and corpus callosum. In general 

the greatest differences were seen in RD, rather than AD. The fact that many of these changes 

were seen bilaterally, and that there was overlap between affected regions in both current and 

late-onset groups, adds further weight to these results. Participants with a history of major 

depressive disorder had no significant group differences in white matter identified using TBSS. 

Longitudinal depressive symptoms were not correlated with structural changes using VBM or 

TBSS. 

The most widespread differences were seen in the group with current depressive symptoms 

identified using CES-D. Interestingly, although the mean CES-D score was similar for the late-

onset depression and major depression groups, the former showed significant differences in 

cognitive function and white matter, whereas the latter did not. This indicates that there may 

be something specific about the brain structural changes associated with late-onset depressive 

symptoms, compared to symptoms manifesting at earlier ages. 

Visual measures, and their equivalent automated measures, did not reveal statistically 

significant group differences, or a correlation with depressive symptoms.   
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Table 45. Summary of statistically significant MRI correlates of depressive symptoms 

Depressive 
symptoms 

MRI measure 

Visual Grey matter (VBM) White matter (TBSS) 

Current - - Widespread changes 

in MD, RD, AD: 

superior longitudinal 

fasciculus, corona 

radiata, anterior 

thalamic radiation, 

corticospinal tract, 

corpus callosum 

Late-onset - - Widespread changes 

in MD, RD, AD: 

superior longitudinal 

fasciculus, corona 

radiata, anterior 

thalamic radiation, 

corticospinal tract, 

corpus callosum 

Major depressive 

disorder 

- - - 

Long-term exposure 

to depressive 

symptoms  

- - - 
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Chapter 9.   Common MRI correlates for vascular risk 
and depression 

 

9.1 Introduction 

Chapter 9 reviews previous literature, focussing on structural MRI brain changes associated 

with vascular risk factors in people with depression. The second part of this chapter 

summarises the results of MRI analysis from Chapters 7 and 8. By presenting the key MRI 

findings together, this chapter provides a summary of structural MRI brain correlates related 

to vascular risk and depression. 

 

9.2 Previous literature using MRI to investigate vascular factors and 

depression  

Blood pressure 

A previous study found that older, depressed, hypertensive participants had significantly more 

white matter hyperintensities compared with normotensive participants with and without 

depression (162). An increased volume of white matter hyperintensities has been associated 

with a drop in orthostatic blood pressure in a cross-sectional study of older people with major 

depressive disorder (329). The white matter changes were thought to be driven by changes 

within the deep white matter, and the findings suggested that systolic blood pressure had a 

greater effect than diastolic blood pressure on associated structural brain changes. In a 

longitudinal study, the Cardiovascular Health Study,  increased white matter hyperintensity 

volumes have also been associated with hypertension and depressive symptoms (measured 

using the CES-D scale) (330). In a study of older people (mean age 70 ± 6 years) being treated 

for depressive disorder, there were significant associations between FA and blood pressure 

throughout the anterior cingulate and in multiple frontostriatal and frontotemporal regions 

(331), suggesting that hypertension is associated with microstructural white matter 

abnormalities. However, this study had a relatively small number of participants, did not have 

a control group, and used less-sophisticated MRI methodology and analysis than that 

employed in the present study.  
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Cholesterol 

There is a limited literature investigating the associations between cholesterol and 

atherosclerosis, and depressive symptoms using MRI. In one small cross-sectional study, older 

adults with depression had poorer endothelial function, increased risk of atherosclerosis, and a 

greater risk of brain white matter hyperintensities (332). However, increases in white matter 

hyperintensities in the patient group were not statistically significant. Two longitudinal studies 

have investigated atherosclerosis and lipid levels, and the association with depressive 

symptoms. The Rotterdam study, a longitudinal population-based study, found that 

atherosclerosis did not increase the risk of incident depression in older adults (135). The Esprit 

study found that the clinical level of depression was associated with higher atherosclerosis risk 

in women and a lower risk in men (333). Neither of these studies presented MRI data in their 

papers, although both used MRI in their protocols. 

 

Diabetes 

Previous studies have identified grey matter differences in those with diabetes and depression. 

A study of grey matter volumes in diabetic patients with and without depression showed that 

both groups had smaller whole-brain volumes compared to controls, with no significant 

difference between them on neuroimaging measures (196). In a study comparing patients with 

type 1 diabetes mellitus, with and without depressive symptoms, both groups had reduced 

pre-frontal grey matter cortical thickness compared to controls (334). A similar study 

compared patients with type 2 diabetes mellitus, with and without depressive symptoms. Both 

patient groups showed reduced cortical grey matter thickness in the left anterior cingulate 

region when compared to controls (197). Additionally, participants with type 2 diabetes and 

depression showed significant cortical grey matter decreases in bilateral prefrontal areas 

(197). In a community-dwelling sample, diabetes has been found to be associated with 

increased brain atrophy (but not with differences in white matter or white matter 

hyperintensity volumes), independent of either depression or vascular risk factors (195).  

 

In patients with type 2 diabetes and depression, differences in pre-frontal white matter have 

been demonstrated, with reduced FA and increased RD in the right anterior limb of the 

internal capsule, compared to controls (335).  
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Smoking 

As previously described in Chapters 2.2 and 2.3, smoking has been linked to increased risk of 

depressive disorder, and to grey and white matter brain changes. There are few studies 

investigating the combined effects of smoking and depression on MRI outcomes, partly 

because many studies control for this variable rather than investigating it specifically. Smoking 

has been linked to decreased grey matter density in the posterior cingulum, precuneus, right 

thalamus and frontal cortex, regions associated with incipient Alzheimer’s disease that have an 

overlap with regions affected in late-onset depression (212). Smoking has an important role in 

the pathophysiology of late-onset major depressive disorder, and is highly correlated with 

white matter lesion load (117). The location of lesions is important: lesions within the superior 

longitudinal fasciculus and right frontal projections of the corpus callosum may have a greater 

association with depressive symptoms than total lesion volume (117).  

 

Framingham Stroke Risk Score 

Elevated FSRS has been associated with greater white matter hyperintensities in deep and 

periventricular regions in middle-aged and older adults with major depressive disorder (336). 

More specifically, the FSRS has been associated with reduced white matter integrity in patients 

with depression within the corpus callosum and corticospinal tract (337). This finding is 

consistent with the hypothesis that raised cardiovascular risk may be a modifiable risk factor 

for late-onset depression, mediated by observable brain changes. 

 

Coronary heart disease 

In a study of over 3000 people with CHD at baseline, persistence of depressive symptoms 

across two consecutive time points was associated with small basal ganglia lesions and large 

cerebral cortical white matter lesions (338). These findings suggest that cerebrovascular 

disease at baseline is related to depressive symptoms over time. A further study of CHD and 

major depression found that participants with both conditions had decreased grey matter 

volumes in the bilateral orbitofrontal cortex, bilateral amygdala/parahippocampal gyrus and 

right insula, compared to controls, supporting the hypothesis that brain regions involved in 

emotional regulation may be relevant to the relationship between CHD and major depressive 

disorder (339). 
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Depressive symptoms, which are common after acute coronary syndrome, are associated with 

vascular brain changes including reduced FA in the anterior cingulate cortex and increased 

deep white matter changes (340). However, many of these effects do not remain significant 

after controlling for cardiovascular morbidity or modifiable cardiac risk factors.  

 

 

9.3 Common MRI correlates identified for vascular risk and depression 

This section describes the common MRI correlates for long-term exposure to vascular risk and 

depressive disorder, which have been identified through the present study and were 

presented in Chapters 7 and 8 respectively. These common MRI correlates are summarised in 

Table 46.  

 

Blood pressure 

Using clinical visual measures, mean arterial pressure was significantly associated with bilateral 

medial temporal lobe atrophy. This finding was not replicated for depressive symptoms. Visual 

measures did not find increased white matter hyperintensities related to hypertension or 

depressive symptoms. However, using equivalent automated measures, increased white 

matter hyperintensities were associated with both mean arterial pressure and current 

depressive symptoms. There were no common MRI correlates using VBM and TBSS.  

 

Cholesterol 

There were no common MRI correlates in relation to cholesterol score and depressive 

symptoms. The previous literature (135, 332, 333) helps to explain why the present study did 

not find an association between MRI correlates of mean total cholesterol level and MRI 

correlates of depression. If there is an effect, it seems likely to be a modest effect that requires 

large samples in order to have adequate power. The current sample may not be large enough 

to detect a significant difference, especially if an effect is most likely in women, given that in 

this sample over 80% of participants are men. 
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Diabetes  

There were no common MRI correlates in relation to mean fasting glucose or type 2 diabetes 

status and depressive symptoms using visual measures, equivalent automated measures or 

VBM. However, long-term exposure to high fasting glucose was associated with widespread 

differences in white matter integrity (reduced FA, increased RD) within frontal-subcortical 

regions. These changes overlapped with reductions in white matter integrity observed in 

participants with current and late-onset depressive symptoms. There were no differences in 

white matter in those with type 2 diabetes, possibly owing to the small sample size.  

 

Smoking 

There were no common MRI correlates in relation to smoking status and depressive 

symptoms. The sample of smokers was small, which is likely to have reduced the power to 

detect a significant difference. 

 

Framingham Stroke Risk Score 

The present study found significant correlations between FSRS and visual MRI measures for 

global atrophy, medial temporal lobe atrophy and deep white matter hyperintensities, as well 

as for their automated equivalents. However, these results had minimal overlap with visual 

MRI correlates of depressive symptoms. There were no common MRI correlates using VBM 

and TBSS. 

  

Coronary heart disease 

There were no common MRI correlates in relation to CHD and depressive symptoms. However, 

the number of participants with CHD as defined by previous MI and/or current angina was 

small, and this element of the study was underpowered. Furthermore, CHD was investigated 

as a cross-sectional variable and did not take into account disease duration or severity. 
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Table 46. Common MRI correlates for vascular risk and depression 

MRI measures Vascular risk factors Depressive symptoms 

BP Chol DM Smoke FSRS CHD Current  Late Major  Long 

Clinical measures 

Global atrophy -  - -  - - -  - 

Medial temporal lobe atrophy 

Left  - -   - - - - - 

Right  - - -  - - - -  

White matter hyperintensities 

Total - - - - - - - - - - 

Peri- 
ventricular  

- - - - - - - - - - 

Deep white 
matter  

- - - -  - - - - - 

Automated measures 

Global atrophy  - - -  - - - - - 

Medial temporal lobe atrophy 

Left  - - - -  - - - - - 

Right  - - - -  - - - - - 

White matter 
hyperintensities 

 - - -  -  - - - 

Grey matter (VBM) 

 - - - - - - - - - - 

White matter (TBSS) 

Superior 
longitudinal 
fasciculus 

- -  - - -   - - 

Corona radiata - -  - - -   - - 

Anterior 
thalamic 
radiation 

- -  - - -   - - 

Corticospinal 
tract 

- -  - - -   - - 

Corpus 
callosum 

- -  - - -   - - 

 

Abbreviations 
Vascular risk factors: BP=blood pressure; Chol=total cholesterol; DM=diabetes mellitus; Smoke=smoking 
status; FSRS=Framingham Stroke Risk Score; CHD=coronary heart disease;  
Depressive symptoms: Current=current depressive symptoms; Late=late-onset depressive symptoms; 
Major=major depressive disorder; Long=long-term exposure to depressive symptoms 
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9.4 Summary 

For visual MRI measures there were some associations with vascular risk factors, but few 

overlapping MRI correlates with depressive symptoms. For equivalent automated measures 

the findings were similar: neither visual nor automated measures were able to distinguish a 

pattern of common MRI correlates for vascular risk factors and depressive symptoms. Use of 

more sophisticated analysis techniques enabled analysis of grey matter using VBM and white 

matter using TBSS. Neither vascular risk factors nor depressive symptoms showed significant 

differences in grey matter. For white matter, diabetes (measured as mean fasting glucose), as 

well as current and late-onset depressive symptoms, showed common MRI changes with 

reduced white matter integrity in the corpus callosum and frontal-subcortical tracts. For mean 

fasting glucose the structural changes were largely on the right-hand side, whereas for 

depressive symptoms the structural changes were largely bilateral. No other vascular risk 

factors showed significant MRI correlates with depressive symptoms. 
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Chapter 10.   Study of vascular risk and depression 
 

10.1 Introduction 

Chapter 10 explores whether long-term exposure to vascular risk factors and vascular disease 

are associated with the development of depressive disorder (defined according to DSM-IV 

criteria) and depressive symptoms (defined as a CES-D score of ≥16). To this end, this chapter 

combines prospective data on long-term exposure to vascular risk acquired since 1985, with 

clinical measures related to depression acquired during phase 1 of the Whitehall Imaging sub-

study in Oxford.  

 

The aim of this chapter is to use an epidemiological approach to investigate whether lifetime 

vascular risk factors (blood pressure, cholesterol, diabetes, smoking, Framingham Stroke Risk 

Score) and vascular disease (coronary heart disease) lead to increased risk of depressive 

disorder and depressive symptoms. The hypothesis is that elevated vascular risk factors and 

the presence of vascular disease are associated with increased prevalence of depressive 

disorder and depressive symptoms, in line with the vascular depression hypothesis (24).  

 

10.2 Methods 

Long-term exposure to vascular risk factors was calculated based on prospective data collected 

from 1985 to 2009 (i.e. from the Whitehall II Study phases 1, 3, 5 and 9). Continuous measures 

were used wherever possible, as these provided greater power for statistical modelling. Mean 

arterial pressure, total cholesterol (baseline and mean), fasting glucose (baseline, mean and 

follow-up) and FSRS were calculated at each phase, and the overall mean calculated. 

Additionally, dichotomised ordinal variables were used to investigate the presence of type 2 

diabetes and smoking status. Coronary heart disease was defined cross-sectionally on the basis 

of the presence or absence of angina and/or previous myocardial infarction, as recorded in the 

participants’ self-reported medical histories using the Whitehall Imaging sub-study 

questionnaire (see appendix 1). 

 

Outcome measures were based on SCID diagnosis of major depressive disorder, defined as 

none, minor depressive disorder or major depressive disorder. Significant depressive 

symptoms were also defined using the CES-D score. The distribution of CES-D scores was 

skewed towards scores at the lower end of this range. Therefore, scores were dichotomised to 
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reflect CES-D caseness: no significant depressive symptoms (CES-D <16) and significant 

depressive symptoms (CES-D ≥16). 

  

Statistical analysis used SAS software version 9.2 (SAS Institute, Cary, NC, USA). To study the 

longitudinal association a model was computed based on each continuous vascular risk factor, 

with depressive disorder or symptoms as the dependent variable. For analysis of ordinal 

variables, logistic regression was used. All analyses were adjusted for age and sex. Reported p-

values are 2-tailed; p-values ≤0.05 were considered to indicate statistical significance.  

 

10.3 Results 

190 participants were included in this analysis (the same sample as described in Chapter 6). A 

DSM-IV diagnosis of minor depression was documented in 19 (10.0%) participants; a diagnosis 

of major depression was documented in 36 (18.9%) participants. Current depressive symptoms 

as defined by CES-D score were present in 21 (11.1%) participants.  

 

10.3.1 Blood pressure 

Table 47 shows that mean arterial pressure was not associated with depressive disorder 

(p=0.47) or depressive symptoms (p=0.80).  

 

 
Table 47. Mean arterial pressure 1985-2009 and depressive symptoms in 2012-2013 

 SCID diagnosis CES-D depressive symptoms 

n None Minor Major n None Present 

Mean arterial 

pressure,  

mm Hg 

187 90.1 88.1 90.9 190 90.1 90.5 

 p-value* 0.47 0.80 

* Test of heterogeneity 
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10.3.2 Cholesterol  

Table 48 shows that mean total cholesterol across all phases and mean baseline total 

cholesterol were not associated with depressive disorder (p=0.15 and p=0.71 respectively) or 

depressive symptoms (p=0.59 and p=0.89 respectively).  

 

 

Table 48. Mean cholesterol level 1985-2009 and depressive symptoms in 2012-2013 

 
SCID diagnosis CES-D depressive symptoms 

n None Minor Major n None Present 

Mean total 

cholesterol, 

mmol/L 

187 5.73 6.10 5.71 190 5.77 5.67 

p-value* 0.15 0.59 

Baseline total 

cholesterol, 

mmol/L 

186 5.72 5.91 5.76 189 5.75 

 

5.72 

p-value* 0.71 0.89 

 
 

10.3.3 Diabetes 

Table 49 shows that mean fasting glucose across all phases, baseline fasting glucose and 

follow-up fasting glucose were not significantly associated with depressive disorder (p=0.81, 

p=0.52, p=0.98 respectively) or depressive symptoms (p=0.07, p=0.30, p=0.18 respectively). 

The model for mean fasting glucose and CES-D depressive symptoms was the only measure 

that approached, though still did not reach, significance. 

 

It was not possible to compute a model to investigate the frequency of type 2 diabetes and 

depressive symptoms on account of small group sizes, and therefore lack of power. This is 

illustrated in Table 50: no participants with diabetes had minor depressive disorder, only five 

had major depressive disorder and only two had significant depressive symptoms as measured 

by CES-D. 
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Table 49. Mean fasting glucose levels 1985-2009 and depressive symptoms in 2012-2013 

 
SCID diagnosis CES-D depressive symptoms 

n None Minor Major n None Present 

Mean fasting 

glucose, 

mmol/L 

165 5.17 5.13 5.13 164 5.18 5.02 

p-value*    0.81 0.07 

Baseline fasting 

glucose, 

mmol/L 

158 5.21 5.10 5.27 148 

 

5.20 5.07 

p-value* 0.52 0.30 

Follow-up 

fasting glucose, 

mmol/L 

154 5.17 5.15 5.15 145 5.17 

 

4.99 

p-value* 0.98 0.18 

 

 

Table 50. Proportion of participants with depressive symptoms amongst diabetic cases and 

controls 

 
SCID diagnosis CES-D depressive symptoms 

None Minor  Major  None Present 

Diabetic cases, 

% (n) 

70.6 (12) 0.0 (0) 29.4 (5) 88.2 (15) 11.8 (2) 

Controls, 

% (n) 

71.0 (115) 11.1 (18) 17.9 (29) 90.3 (149) 9.7 (16) 
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10.3.4 Smoking  

It was not possible to compute a model to investigate smoking status (at baseline or follow-up) 

with depressive disorder or depressive symptoms on account of the low frequency of 

participants who were smokers, and who had depressive symptoms (Table 51). 

 

 

Table 51. Proportion of participants with depressive symptoms amongst smokers and non-

smokers 

 
SCID diagnosis CES-D depressive symptoms 

None Minor  Major  None Present 

Smoking status at baseline 

Smoker, 

% (n) 

73.7 (14) 10.5 (2) 15.8 (3) 89.5 (17) 10.5 (2) 

Non-smoker, 

% (n) 

70.2 (118) 10.1 (17) 19.6 (33) 88.9 (152) 11.1 (19) 

Smoking status at follow-up 

Smoker, 

% (n) 

86.7 (13) 0.0 (0) 13.3 (2) 100 (15) 0.0 (0) 

Non-smoker, 

% (n) 

69.5 (116) 10.8 (18) 19.8 (33) 88.2 (150) 11.8 (20) 
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10.3.5 Framingham Stroke Risk Score 

Table 52 shows that Framingham Stroke Risk Score was not associated with depressive 

disorder (p=0.14) or depressive symptoms (p=0.11).  

 

 

Table 52. Mean Framingham Stroke Risk Score 1985-2009 and depressive symptoms in 2012-

2013 

 
SCID diagnosis CES-D depressive symptoms 

n None Minor Major n None Present 

FSRS,  

% risk per 10 yr 

185 2.22 1.49 2.03 188 2.16 1.57 

p-value* 0.14 0.11 

* Test of heterogeneity 

 

10.3.6 Coronary heart disease 

It was not possible to compute a model to investigate CHD and depressive disorder or 

depressive symptoms because of the low frequency of participants with a history of angina 

and/or MI. This is illustrated in Table 53: only one case had minor depressive disorder, three 

had major depressive disorder, and one had depressive symptoms.  

 

 

Table 53. Proportion of participants with depressive symptoms amongst participants with a 

history of coronary heart disease and controls 

 
SCID diagnosis CES-D depressive symptoms 

None Minor  Major  None Present 

CHD case, 

% (n) 

63.6 (7) 9.1 (1) 27.3 (3) 90.9 (10) 9.1 (1) 

No history of 

CHD, 

% (n) 

71.0 (125) 10.2 (18) 18.8 (33) 88.8 (159) 11.2 (20) 
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10.4 Summary 

Long-term exposure to vascular risk factors (blood pressure, cholesterol, fasting glucose and 

FSRS) is not associated with the development of depressive disorder or depressive symptoms 

in this cohort. It was not possible to compute models for type 2 diabetes, smoking or coronary 

heart disease, due to small group sizes. Replication of these analyses with a greater number of 

participants would provide increased power to detect any small, but significant associations 

between vascular risk factors and depressive disorder. This will be possible when the Whitehall 

Imaging sub-study is completed in 2016. The present analyses indicate that there are no major 

associations between longitudinal vascular risk factors and development of depression. 

 

  



161 

 

Chapter 11.   Discussion 
 

11.1 Introduction 

The vascular depression hypothesis proposes that cardiovascular disease and risk factors pre-

dispose to and precipitate depressive disorder. However, several studies have shed doubt on 

the strength or frequency of this association. In this thesis the combination of epidemiological 

and neuroimaging techniques has provided a powerful method for investigating the vascular 

depression hypothesis further. This thesis has used MRI to investigate the association of 

vascular risk factors with brain structure, and the association of depressive symptoms and 

depressive disorder with brain structure. The aim has been to identify common structural 

changes in both conditions, in order to gain a better understanding of the anatomical 

mechanisms by which these conditions may be associated. This final chapter summarises the 

main results and critically appraises the findings, considering how the results help to explain 

the underlying mechanisms linking vascular risk factors and depression, and the clinical 

implications. 

 

11.2 Synopsis of main results 

This thesis is based on a study of a sample of 229 participants from the Whitehall II Study, UCL, 

who were recruited for the Whitehall Imaging sub-study, University of Oxford. The sub-study 

extended the scope of investigation with respect to the original Whitehall II analyses, through 

use of detailed clinical and neuropsychological assessment as well as multi-modal magnetic 

resonance brain imaging. Over 80% of participants were male, with a mean age of 69.2 ± 5.3 

years, and above-average pre-morbid IQ. Individuals who had experienced a stroke or TIA 

were not included in the study sample. While participants were generally not cognitively 

impaired, the range of cognitive abilities included those with a level of impairment that could 

indicate clinically significant cognitive impairment (mean MOCA 27.0 ± 2.4; range 17.0 – 30.0). 

Depressive symptoms were common in this sample: one-third of participants had a lifetime 

diagnosis of DSM-IV mood disorder, 10% met criteria for significant current depressive 

symptoms defined by the CES-D scale, and 7% currently used antidepressant medication. 

Vascular risk factors were highly prevalent: 55% of participants had hypertension, 54% had 

dyslipidaemia and 10% had diabetes. Less than 6% of participants were current smokers.  
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The brain MRI analysis used visual measures, which were shown to be reliable, and 

comparable to equivalent automated techniques, confirming hypotheses one and two. These 

findings suggest that visual measures deserve wider usage by clinicians to quantify structural 

brain changes in older adults and to bridge the gap between sophisticated computerised 

methods and clinical practice. Here, the use of visual MRI measures throughout the thesis has 

helped to maintain a clinical focus, integrating the methods used by clinicians for reporting 

MRI scans with the more complex analysis techniques used in research settings to analyse 

group data. In addition to these visual MRI measures, this thesis has employed more-

sophisticated MRI analysis techniques using FSL tools to investigate grey matter (using VBM) 

and white matter (using TBSS). 

 

The focus of this thesis has been to investigate brain MRI correlates of depression and vascular 

risk. The study of MRI correlates of long-term exposure to vascular risk has focussed on blood 

pressure, cholesterol, diabetes, smoking and, Framingham Stroke Risk Score. This has utilised 

data collected through the Whitehall II Study (1985 – 2009), combined with MRI measures. 

The cross-sectional association between coronary heart disease (measured at the time of the 

MRI scan) and structural brain changes was also investigated. Contrary to hypothesis three, 

there proved to be minimal changes in grey matter using visual measures, and none using 

VBM.  As hypothesised, white matter brain changes were more pronounced than grey matter 

changes. However, in contrast to predictions, significant white matter changes were only 

found for the mean fasting glucose variable and not for the other vascular risk factors. Using 

TBSS to investigate structural changes in white matter, long-term exposure to high fasting 

glucose proved to be associated with reduced white matter integrity in frontal-subcortical 

tracts (corona radiata, right corticospinal tract, right superior longitudinal fasciculus, and the 

splenium and body of the corpus callosum), with reduced FA and increased RD. These changes 

suggest reduced myelin integrity (341, 342). This demyelination has previously been suggested 

as secondary to cerebrovascular changes (27).  

 

The study of MRI correlates of depressive symptoms and depressive disorder considered the 

association with current depressive symptoms, late-onset depressive symptoms and 

longitudinal depressive symptoms (presence of major depressive disorder, and persistent 

depressive symptoms identified using the CES-D). In contrast to hypothesis four, there proved 

to be no statistically significant association with structural differences in grey matter, and 

white matter changes were prominent only in those with current and late-onset depressive 
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symptoms, not in the group with persistent depressive symptoms. Current depressive 

symptoms were associated with increased volume of white matter hyperintensities. Current 

and late-onset depressive symptoms were associated with reduced white matter integrity in 

widespread regions, particularly in frontal-subcortical tracts (corticospinal tract, superior 

longitudinal fasciculus, anterior thalamic radiation, right corona radiata and body of the corpus 

callosum) where there was reduced FA and increased RD and AD. Again, these changes suggest 

reduced myelin integrity, which could be linked to cerebrovascular changes (27).There prove 

to have been no statistically significant associations between MRI correlates and longitudinal 

measures of depressive symptoms. 

 

As predicted in hypothesis five, the results show overlap in the structural brain changes 

associated with exposure to long-term vascular risk factors and to depressive symptoms. 

However, this was only true for long-term exposure to mean fasting glucose, and current and 

late-onset depressive symptoms. For these variables there was a reduction in white matter 

integrity in fontal-subcortical tracts. 

 

The study of vascular risk and depression adopted an epidemiological approach to investigate 

whether long-term exposure to vascular risk factors is associated with the development of 

depressive disorder and depressive symptoms. In contrast to hypothesis six, neither elevated 

blood pressure, high total cholesterol, high mean fasting glucose nor high FSRS were shown to 

be associated with increased risk of major depressive disorder (identified using SCID) or 

depressive symptoms (identified as CES-D ≥16). There were insufficient numbers of 

participants to investigate the association with type 2 diabetes, smoking, or CHD. 

 

11.3 Comparison with previous studies 

MRI correlates of vascular risk 

Previously published literature has found an association between hypertension, and altered 

grey matter structures, reduced whole-brain volumes and hippocampal atrophy (152, 154, 

155); however, this is not a universal finding (152, 156). The present study has found that 

clinical measures of medial temporal lobe atrophy and automated measures of global atrophy 

show a weak association with mean arterial pressure. This was not replicated using VBM, 

implying that these results represent a small effect at best. They tend to support previous 

negative findings that have not found an association between hypertension and global or 
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regional brain atrophy. However, it is possible that using a larger sample these results may be 

better replicated across clinical and automated measures. Previously published literature has 

suggested an association between hypertension and increased white matter hyperintensities 

(159, 177), and also with reduced white matter integrity (164, 166). While automated 

measures of white matter hyperintensities showed a significant association, no significant 

changes in white matter integrity were identified using TBSS, at the conventional threshold of 

p<0.05. Again, it seems that any association between hypertension and MRI structural changes 

represents a small effect at best. In this study mean arterial pressure has been used as a 

measure of longitudinal hypertension. It may be that a greater effect would be evident if 

systolic (329) or diastolic blood pressures were investigated separately. 

 

Studies on cholesterol and associations with structural brain changes are not consistent. The 

present study supports those studies that found no association between dyslipidaemia and 

reduced grey (174, 175) and white matter volumes (177). The fact that familial 

hypercholesterolaemia has been associated with white matter brain changes (180, 181) 

suggests that individuals with severe dyslipidaemia may develop structural brain changes. 

However, this group is not well represented in a population-based sample such as the one 

used in the present study. 

 

Literature focussing on type 2 diabetes and elevated fasting glucose tends to support an 

association with global and regional atrophy. In the present study there were no significant 

correlations between long-term exposure to elevated fasting glucose and grey matter changes 

using either visual measures or VBM. This is in contrast to previous studies (62, 192, 194) in 

which grey matter changes, particularly hippocampal atrophy, were noted at an early stage of 

disease. For white matter, while there were no significant associations using visual and 

equivalent automated measures, with TBSS there were widespread differences in white matter 

integrity related to mean fasting glucose levels. This is consistent with previous studies that 

have found changes in the posterior corona radiata (62) and decreased FA in bilateral frontal 

white matter, mainly caused by an increase in RD (343). In this sample there proved to be no 

association between type 2 diabetes and structural brain changes. It seems most likely that the 

small numbers of subjects with type 2 diabetes (n=12) meant that the present study lacked 

power to detect a difference. However, given the positive findings for mean fasting glucose 

levels, with greater numbers of diabetic participants, case-control analysis would be expected 
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to replicate the detected reductions in white matter integrity, in relation to mean fasting 

glucose levels. 

 

Smoking has been reported to be associated with significant grey (204, 209, 210) and white 

matter brain changes, particularly within the corpus callosum (217, 218). The present study did 

not replicate these findings, but was limited by the small number of cases (n=14). Given that 

this is a largely health-conscious cohort subject to regular physical health assessments, it is 

possible that the smokers may be well aware of their adverse cardiovascular risk profile and 

may use other strategies (e.g. medication, diet, exercise) to ameliorate the adverse effects of 

smoking. 

 

The Framingham Stroke Risk Score has been associated with reduced total grey matter volume 

and thickness (344), increased volume of white matter hyperintensities, and changes to white 

matter microstructure (337, 345). The results of the present study are in line with these earlier 

studies. Visual and equivalent automated measures show weak correlations with structural 

brain changes. Visual correlations did not remain significant following adjustment for age, 

which may explain the discrepancy with other MRI measures (VBM and TBSS) which were 

adjusted for the effects of age. 

 

In patients with cardiovascular disease (coronary heart disease or stroke), reductions in 

regional grey matter volume have been reported (346, 347), a finding that contrasts with those 

of the present study. However, these changes may have been mitigated by exercise training 

(346). Indeed, the fact that such changes can be reversed by exercise suggests they are 

modifiable. Therefore, in the present study of stroke-free participants, where there may also 

have been a significant time delay between a previous MI and the MRI scan, the negative 

findings are not unexpected, particularly since while patients with CHD do show reductions in 

grey matter volume and increases in white matter hyperintensity volume, the changes are less 

pronounced than in those with established cerebrovascular disease (348). In terms of white 

matter changes, several studies have identified an association between CHD and increased 

white matter hyperintensity volume, but few have investigated this using TBSS  (349). 

 

MRI correlates of depression 

Individual studies and meta-analyses have identified reduced grey matter volumes in 

depression, particularly in late-life depression (36, 230, 231). The present study found no 
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significant group differences for depressive symptoms or depressive disorder in grey matter 

structures, in contrast to these previous studies. Although many studies have found changes in 

grey matter volume, shape and cortical thickness, the present study’s results are in keeping 

with some previous studies of late-life depression, which also found no significant group 

differences in grey matter (16, 350-355). 

 

The finding of increased white matter hyperintensities is well replicated in studies of late-life 

depression (237, 238, 356); deep white matter changes are particularly common in depression 

(39). The present study found significantly increased white matter hyperintensities, using 

automated measures, in the group with current depressive symptoms. There was no 

association between clinical measures and late-onset depressive symptoms or longitudinal 

depressive symptoms. Some previous studies have shown no significant group differences in 

white matter hyperintensity volume (16), and it may be that lesion location is more relevant to 

depression than lesion volume (329).  In one study of participants with depressive symptoms 

but not clinical depression, scores on the Geriatric Depression Scale were not significantly 

correlated with white matter hyperintensities, but were significantly correlated with DTI 

measures of MD and FA (245), similar to the results obtained in this study. The association 

between longitudinal data on depression and white matter hyperintensities is less consistent, 

and provides a context for the lack of association with longitudinal diagnosis of depression and 

depressive symptoms in this study (239, 240, 243). 

 

Studies of late-life depression consistently support an association with reduced white matter 

integrity within the limbic system, frontal cortex and the thalamus (16, 246-248). The results 

for the current and late-onset depressive symptom groups are consistent with these previous 

findings of reduced white matter integrity within frontal-subcortical regions, driven by radial, 

rather than axial diffusivity (16). Of particular interest in the present study, which defines 

depressive symptoms using the CES-D scale, is that the underlying neurobiological changes in 

white matter are similar to those identified in patient studies when a clinical diagnosis of 

major depressive disorder has been made (16). This finding is of particular pertinence to the 

design of epidemiological studies investigating depression, and suggests that use of CES-D 

caseness as a proxy marker of depressive symptoms is not only a time-efficient way of 

gathering data, but is also capable of identifying depressive symptoms severe enough to be 

associated with structural brain changes. Depressive symptoms defined using the CES-D scale 
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are also associated with functional impairment, on a spectrum of changes seen in people with 

a diagnosis of major depressive disorder (44, 45). 

 

For longitudinal depressive symptoms, it seems curious that there were no significant group 

differences in white matter when groups were distinguished using DSM-IV criteria for major 

depressive disorder, identified using the SCID interview. Previous studies defining cases 

according to these criteria have found significant group differences (16, 246). One reason 

might be that white matter changes are more frequent amongst those with current or late-

onset symptoms (24, 29, 240), and would therefore be less pronounced in the two longitudinal 

groups where the age at onset of depressive symptoms was more frequently below, rather 

than above, the age of 60. Markers of vascular brain disease (i.e. white matter changes) have 

been previously associated with depression cross-sectionally, but not longitudinally (244), a 

finding which mirrors the results of the present study, with its longer follow-up period. The 

previous study’s authors suggest that one reason for the lack of association may be that 

vascular disease and risk factors might cause depression, rather than vice versa. However, 

evaluation of vascular risk trajectories in the present study suggest that this hypothesis is 

unlikely. 

 

Vascular risk and depression 

The vascular depression hypothesis developed in response to findings that cardiovascular 

diseases (e.g. stroke and myocardial infarction) were associated with depressive disorder (24, 

113, 114). Although there is good evidence for an association with cardiovascular disease, 

evidence for an association with vascular risk factors is less clear. One previous meta-analysis 

found significant variation in individual studies, and showed that hypertension, dyslipidaemia 

and the FSRS were not associated with a statistically significant increased risk of depression 

(74). While individual studies were largely cross-sectional in nature, these results are 

consistent with the present study, which did not find an association between major depressive 

disorder or depressive symptoms and long-term exposure to vascular risk factors (mean 

arterial blood pressure, mean total cholesterol, and FSRS).  

 

The same meta-analysis found that smoking, diabetes, cardiovascular disease and stroke were 

associated with increased risk of depression (74). While some studies have suggested a causal 

association between depression and diabetes, meta-analyses show a modestly sized bi-

directional association between depression and type 2 diabetes (357). Unfortunately, the 
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present study lacked power to investigate smoking, diabetes and stroke. However, there was 

no association with mean fasting glucose despite an association between this variable and 

reduced white matter integrity. This is an interesting finding, given that patients with 

increased mean fasting glucose are known to develop distinct cardio-metabolic risks before a 

diagnosis of type 2 diabetes is made (358). 

 

Therefore, even if these vascular risk factors do have an effect on brain structure (e.g. FSRS 

and white matter (337)), they may not necessarily be associated with the development of 

depressive symptoms. It is possible that the association between these vascular risk factors 

and depressive symptoms is not causal, or alternatively that there are structural or functional 

resilience factors preventing development of depression. Importantly, there may be a role for 

psychological and social factors, which could increase risk of depression in those who develop 

cardiovascular disease and elevated vascular risk factors. A previous study within the Whitehall 

II Cohort assessed vascular risk using the Framingham cardiovascular, coronary heart disease, 

and stroke risk scores. While clinically diagnosed CHD and stroke were associated with an 

increased risk for depressive symptoms, for participants without manifest vascular disease, 

none of the risk scores predicted new-onset depressive symptoms in those aged ≥65 years 

(115). 

 

Other considerations include the effect of publication bias, although one meta-analysis did not 

find evidence of publication bias except for the association between diabetes and late-life 

depression (74). A further issue is whether the measures used in the present study are 

sufficiently accurate. For example, would systolic blood pressure have been a better measure 

than mean arterial pressure, or would LDL cholesterol levels have been a better measure than 

total cholesterol? While these alternative measures could have been used, the measures used 

in the present study were obtained accurately, using prospective data, and are also consistent 

with measures used in previous cross-sectional and longitudinal analyses (117, 330, 333, 337, 

338).  

 

Taken together, results of the present study and several previous studies appear to suggest 

that there is no strong association between vascular risk factors and major depressive disorder 

or depressive symptoms. It is still possible that there is a small effect, and the most promising 

candidate risk factors are diabetes, mean fasting glucose and smoking status, all of which could 



169 

 

be explored with greater power in 2016 when the Whitehall Imaging sub-study has recruited a 

larger number of participants. 

 

11.4 Underlying mechanisms 

The results of the present study suggest that long-term exposure to vascular risk factors has a 

limited association with structural brain changes, since an association was only shown for 

mean fasting glucose. This suggests that vascular risk factors are themselves unlikely to have a 

causal role, mediated through structural brain changes, in the development of late-life 

depressive symptoms. This study confirmed that current and late-onset depressive symptoms 

are also associated with reduced white matter integrity (reduced FA and increased RD), 

without associated changes in grey matter. Reductions in white matter integrity were 

identified in similar anatomical locations for these variables (mean fasting glucose, current 

depressive symptoms and late-onset depressive symptoms). This suggests that vascular risk 

factors and depression could affect common anatomical substrates, but in view of the lack of 

evidence from other vascular risk factors, and from longitudinal depressive symptoms, this is 

by no means certain. Further doubt is placed on the vascular depression hypothesis given that 

the epidemiological approach used here showed that lifetime vascular risk factors did not lead 

to increased risk of depressive disorder or depressive symptoms. 

 

Based on the results of the present study, the evidence for an association between vascular 

risk factors and depressive disorder or depressive symptoms is weak. If such an association 

does exist, previous studies have hypothesised that it may be mediated by cerebral 

microvascular damage (359), platelet dysfunction, blood pressure variability, unhealthy 

lifestyle choices, or elevated cortisol levels in the brain (leading to glucocorticoid-mediated 

neurotoxicity) (244). Another theory is that focal vascular damage and white matter lesions 

may contribute to the development of late-life depression by disrupting functional 

connectivity in regions related to mood and cognition (27, 360). Alternatively, other relevant 

mechanisms have been proposed as potential links between cognitive impairment and 

depression: vascular disease, glucocorticoid levels, hippocampal atrophy, beta-amyloid 

deposition, inflammatory changes and deficits of neurotrophic factors (361). 

 

Where there is reduced white matter integrity (due to either depression or vascular risk 

factors), functional connectivity may show reduced coherence in the default mode network 

(362). However, some individuals may have biological functional changes in the brain capable 
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of compensating for structural brain changes, thereby increasing resilience to the effects of 

vascular risk factors and depression. Successful ageing involves synaptogenesis and 

neurogenesis, and some individuals (e.g those with high pre-morbid IQ or education level) may 

be able to increase frontal activation with age – a marker of an adaptive brain in which 

capacity for plasticity and reorganisation is maintained (362). Hypoperfusion may also affect 

cognition and mood regulation, without demonstrable effects on brain structure: functional 

resilience may be impaired by reduced cerebral blood flow, or influenced by orthostatic 

changes and blood pressure variability (27).  

 

Studies of vascular risk and depression that control for the presence of chronic illness show an 

attenuated effect size (74). It therefore seems possible that in addition to brain-related 

factors, personality and psychological factors (e.g. high tolerance of stress) and social factors 

(e.g. varied social network, financial stability) may provide alternative coping strategies. 

Psychosocial factors may make an important contribution to resilience, but may also represent 

additional risk factors for the development of depressive disorder. It is possible that such 

psychosocial factors could also contribute to an effect on structural brain measures. 

 

There is still the issue that late-onset depression is associated with organic brain disease (29, 

240), a high prevalence of cognitive impairment, including executive deficits (24, 34, 338), and 

overall a reduced contribution from psychological and social risk factors (10, 21). Yet, if there is 

an effect mediating these factors, the contribution from vascular risk factors towards 

development of depression is likely to be small. Consistent with previous studies that show an 

association between brain changes and late-life depression, but a weak or absent link between 

vascular risk factors and late-life depression (127, 239, 244, 363), the main findings of this 

thesis confirm that participants with late-onset depressive symptoms have structural brain 

changes in white matter that do not have a robust link with previous vascular risk factors.  

 

This casts doubt on the theory that there is a direct, causal relationship between vascular risk 

factors and depression. However, vascular risk may still be relevant to the aetiology of late-life 

depression with other factors potentially contributing to, or mediating this relationship. For 

example, depression and depressive symptoms could themselves drive vascular damage, 

leading to white matter structural changes (235, 237, 332, 359). An alternative explanation for 

the weak association between vascular risk factors and depression is that that the mechanisms 

are mediated by processes that are more difficult to measure, for example blood pressure 
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variability, or orthostatic blood pressure changes (329, 364-367). Genetic factors, though 

hypothesised to be less important, may still have a role in the aetiology of late-life depression, 

with polymorphisms in brain-derived neurotrophic factor, serotonin transporter genes, and 

the hypothalamic pituitary adrenal axis potentially influencing vulnerability to depression 

(368). A further interesting hypothesis is that polymorphisms in genes related to the renin-

angiotensin system (and therefore controlling blood pressure variability) may contribute to the 

development of depression and structural brain changes: this explanation is in agreement with 

the vascular depression hypothesis (27, 369-372). 

 

It has also been proposed that raised inflammatory markers might themselves lead to 

depressive disorder. This theory is not incompatible with the vascular depression hypothesis, 

since raised inflammatory markers may mediate the interaction between vascular risk factors 

and depression. This seems plausible, since ageing and disease-related states are pro-

inflammatory, and inflammation can exacerbate atherosclerosis, CHD and stroke (27, 373). 

Ageing results in increased peripheral immune responses, impaired communication between 

peripheral and central nervous systems, and a shift of the central nervous system towards a 

pro-inflammatory state, hypothesised to lead to changes in the function of brain networks 

relevant to late-life depression (33). In cross-sectional and longitudinal meta-analyses, raised 

inflammatory markers, particularly C-reactive protein and interleukin-6, are associated with 

development of depressive disorder and depressive symptoms (30-32, 374). The hypothesis 

that inflammation and inflammatory disorders might lead to depression could explain why 

depression is more common in those with chronic illnesses, such as arthritis (375, 376).  

 

Inflammation not only causes mood changes, but also has an effect on brain structure and 

function. One study showed that in response to an inflammatory stimulus, participants 

developed increased activity in the subgenual anterior cingulate cortex, a region previously 

implicated in depressive disorder (377). Microstructural white matter changes are affected in 

the early stages of cognitive impairment (378), suggesting shared mechanisms with 

depression. Increased levels of pro-inflammatory cytokines could act by reducing plasticity and 

neurogenesis, thus providing a common mechanism which could predispose to both 

depression and dementia (378). Greater understanding of the effects of inflammatory 

pathways on mood regulation and the development of depression may provide an important 

translational approach to increasing treatment-response to current antidepressant therapies, 

and to introducing strategies for prevention of depressive disorder (379). 
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Late-life depression is a heterogeneous disorder, and it is unlikely that a single mechanistic 

theory will explain the link between brain structure and clinical phenotype. There is evidence 

from clinical and neuroimaging studies for an association between major cardiovascular 

disease (e.g. stroke and myocardial infarction) and depression, but in keeping with some 

previous studies, this thesis casts doubt on the importance of individual vascular risk factors to 

the aetiology of depression. When considered in the light of previous literature, vascular risk 

factors seem likely to have only a small effect, relevant to only some individuals. Most 

importantly, the lack of substantial findings in this field should prompt future research to 

explore alternative theories and mechanisms. 

 

11.5 Strengths and limitations 

The key strengths of this study relate to the combination of epidemiological and imaging 

methodologies. The Whitehall II Cohort provides access to prospective, longitudinal data 

collected five times over a 25-year period. The particular advantage of this unique data set is 

the possibility it gives of identifying mid-life antecedents to late-life depressive symptoms and 

structural brain changes. The MRI acquisition techniques using a 3 Tesla scanner and a multi-

modal sequence, and the use of FSL analysis techniques, place the imaging methodology at the 

forefront of research.  

 

Access to the Whitehall II Cohort has provided the possibility of selecting a large sample for 

MRI imaging. The Whitehall Imaging sub-study aims to recruit 800 participants over a four year 

period 2012 – 2016.  A limitation of the present study is that it only included data from the 

first phase of this study (n=229). While this yielded a large amount of MRI data, in excess of 

the sample sizes frequently used to investigate late-life depression (36, 246), it follows that 

there was reduced power to investigate some variables (e.g. smoking and diabetes). It also 

meant that it was not possible to further sub-divide groups (e.g. to consider hypertensive and 

depressed participants, compared to hypertensive and euthymic participants). It has been 

recognised that the average statistical power of studies in the neurosciences, and 

neuroimaging in particular, is low, leading to a low probability of finding true effects, 

overestimates of effect size and low reproducibility of results (380, 381). While the numbers 

used in this study increase the power compared to many smaller studies, a further advantage 

of the present study is the opportunity to replicate analyses using a much larger sample on 

completion of the Whitehall Imaging sub-study. 
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Further analysis with a larger number of participants would present certain advantages. 

However, it is important to emphasize the advantages of the detailed analysis performed in 

this thesis, based on the first 229 participants. The hypotheses investigated in this thesis have 

provided a valuable opportunity to test and evaluate the study protocol and data-collection 

systems at a stage when modifications to the protocol are still possible, and before a much 

larger set of data is acquired. Second, the present study has been important in determining 

future hypotheses worthy of investigation, and therefore the direction of future analysis. The 

work presented in this thesis therefore represents an important learning phase in the 

Whitehall Imaging sub-study, based on the first phase of data collection, as well as providing 

meaningful results in its own right.  

 

Within the Whitehall II Cohort, the majority of participants were men (67 % at baseline), 

reflecting the sex distribution in the workforce at the time of recruitment. A limitation of the 

sample used for the present study is that the proportion of men is even higher (>80%), limiting 

the generalisation of the findings. Whitehall participants were originally recruited as part of an 

occupational cohort, from all grades of the civil service; however, the present study has a 

greater proportion of participants with higher socio-economic status. Despite the breadth of 

employment grades and social class, the sample remains of above-average intelligence (mean 

IQ 118 ± 10). Continuing participation in the Whitehall II Study and the associated regular 

physical health checks mean that this is in general a health-conscious cohort, with, for 

example, a lower percentage of smokers compared to the national population (Table 3).  

 

The ability to measure long-term exposure to vascular risk factors is a strength of this study. 

Since analysis for this thesis was begun, the Whitehall II Cohort has completed data collection 

for phase 11 (2012-2013); however, at the time of writing this data was not available for 

analysis, and vascular risk factors are therefore calculated from data collected between phases 

1 and 9 only. On completion of the Whitehall Imaging sub-study in 2016, longitudinal data will 

be available from phase 11 and possibly phase 12 as well (2014-2016). The availability of 

additional data relating to vascular risk, and a reduction in the intervals between data-

collection phases will further increase the analysis possibilities. 

 

In the present study, two main measures were used to define depressive symptoms: major 

depressive disorder using DSM-IV criteria (following a SCID interview), and the presence of 
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depressive symptoms as defined by CES-D caseness (≥16). This provided both a clinical 

diagnosis, and one based on a self-administered questionnaire. A key finding in this thesis is 

that current CES-D caseness is associated with similar changes in white matter integrity 

compared to those expected in people with clinically diagnosed depression. Use of the CES-D 

as a longitudinal measure is likely to be more problematic, for two reasons. Firstly, participants 

may have had significant depressive symptoms before the first phase of data collection; and 

secondly, the CES-D only asks about depressive symptoms in the week prior to data collection, 

meaning that there are long intervals that are not accounted for, during which participants 

could have had depressive symptoms. Conversely, an individual with a recent adverse event 

may have an uncharacteristically elevated score. These limitations of the CES-D mean that it is 

important to combine this measure with records of current antidepressant medication use to 

help identify or exclude those with significant depressive symptoms, or those who are 

currently euthymic but have had significant depressive symptoms previously. 

 

Previous literature suggests that structural brain abnormalities are more common in those 

developing depression in later life, typically over the age of 60. Late-onset depressive 

symptoms as defined using CES-D were used to investigate this, but owing to low numbers of 

people with major depressive disorder that developed for the first time at age ≥60 (n=8), 

further analysis relating to this variable could not be undertaken. This would be an interesting 

analysis to undertake in the larger sample, particularly in view of the widespread white matter 

differences that were identified in the group with late-onset depressive symptoms. 

 

The analysis of vascular risk factors for depression (Chapter 10) used the same sample as that 

used elsewhere in this thesis. The purpose of doing so was to ensure that associations with 

major depressive disorder could be investigated; this data was only available for Whitehall 

Imaging sub-study participants who had had a more detailed clinical interview. There would 

have been greater power to investigate the association between long-term exposure to 

vascular risk factors and depressive symptoms if these were only defined using CES-D. 

However, the negative results identified in the present study were consistent with previous 

results from analysis of Whitehall data (115), suggesting that increasing the power would be 

unlikely to alter the results.  
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11.6 Clinical implications 

These findings indicate that patients with single vascular risk factors are unlikely to have 

increased risk of depressive disorder; however, clinicians should be aware that people 

presenting with hyperglycaemia (raised fasting glucose or HBA1c) may be at increased risk of 

depressive disorder. This is a particularly important finding for clinicians working within 

primary care services who may be able to modify risk factors with the aim of preventing 

depression. Consistent with previous literature (115), the data presented in this thesis suggests 

that public health measures to improve vascular risk status will influence the incidence of late-

life depressive symptoms via reduced rates of manifest vascular disease, rather than by a 

direct effect on individual vascular risk factors. For psychiatrists who are likely to treat patients 

with a clinical diagnosis of depression, the results emphasise earlier findings that even mild 

depressive symptoms can have an adverse effect on brain structure, which may reduce the 

efficacy of antidepressant treatment (27).  

 

In this study, use of visual methods of MRI analysis rarely proved able to distinguish effectively 

between participant groups. This evidence fails to support the utility of these visual measures 

in clinicians’ evaluation of MRI scans in depressive disorder. They may, however, be used to 

detect changes associated with cognitive impairment, particularly global and hippocampal 

atrophy (as described in Chapter 6). 

 

11.7 Future directions 

The present study has focused on MRI correlates of depression and vascular risk factors to 

interrogate the vascular depression hypothesis in detail. Several unanswered questions 

remain, and the results obtained suggest opportunities for further analysis and research. 

 

The most obvious future direction for this research is to replicate the current analyses using a 

larger sample once the Whitehall Imaging sub-study has recruited 800 participants, a 

recruitment target that is anticipated to be complete in 2016. This would be particularly 

interesting in terms of identifying the MRI correlates of smoking and type 2 diabetes, as well as 

providing further scope to consider the MRI correlates of late-onset major depressive disorder. 

A larger sample size would make it possible to investigate the MRI correlates of depression 

plus another vascular risk factor (e.g. by comparing those with depression and hypertension, 

to those with depression and normotension, to euthymic individuals with hypertension, and to 
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controls without depression or hypertension). It would be sensible to undertake such a sub-

group analysis for vascular risk factors such as mean fasting glucose, where the current results 

suggest there is more likely to be a positive association.  

 

A further way of investigating brain structure in the context of the vascular depression 

hypothesis would be to identify a sub-group of individuals with severe white matter changes 

(e.g. Fazekas score ≥4), and then return to the clinical and neuropsychological data to identify 

any associations with increased depressive symptoms or cognitive impairment. Selecting such 

a subgroup would enable investigation of risk factors that significantly affect structural brain 

changes. Based on the current results, factors other than depressive symptoms would be 

expected to contribute to these changes. 

 

This thesis has focused on structural brain changes associated with vascular risk and 

depression. There are still unanswered questions about how these risks affect brain function 

and neural circuitry (382-384). Data acquired through the Whitehall Imaging sub-study include 

sequences relating to resting-state functional connectivity (385), which would be interesting to 

analyse, with the hypothesis that there would be increased connectivity within the default-

mode network, and reduced connectivity within the executive control and affective networks. 

 

The ongoing nature of the Whitehall II cohort study, and the quality of the MRI methods 

employed within the Whitehall Imaging sub-study mean that there are several possibilities for 

participant follow-up:  

1. Identification of individuals with more severe white matter changes, with the 

hypothesis that this group will be more likely to develop depressive symptoms and 

cognitive impairment compared to those with minimal structural changes. 

2. Follow-up of individuals with significant depressive symptoms or major depressive 

disorder, with the hypothesis that these individuals will have increased rates of 

cognitive impairment (386, 387).  

3. Identification of common risk factors for depression and dementia, with the 

hypothesis that these might include: cardiovascular disease, inflammatory changes 

and glucocorticoid levels (361).   
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11.8 Conclusions 

The results of the present study suggest that long-term exposure to vascular risk factors is not 

significantly associated with changes in grey matter structure, but that individual risk factors 

may be associated with changes in white matter integrity. In this study, mean fasting glucose 

measured repeatedly over time was associated with reduced white matter integrity in frontal 

and subcortical regions. This study found no association between major depressive disorder or 

depressive symptoms and changes in grey matter structure. However, current and late-onset 

depressive symptoms were associated with reduced white matter integrity in frontal and 

subcortical regions, which overlapped with the regions affected by mean fasting glucose. The 

present study also demonstrates that lifetime vascular risk factors are not a major driver for 

increased risk of late-life depressive disorder or depressive symptoms. 

 

An additional focus of this thesis was to consider two methodological elements. Visual 

measures of MRI analysis were shown to be replicable and reliable in relation to equivalent 

automated measures. However, they were not useful in distinguishing mood-related structural 

brain changes. The analysis of MRI correlates of depressive symptoms using CES-D showed 

that this non-clinical approach to defining symptoms identified a group of individuals with 

similar underlying neurobiological changes to those expected in individuals with a clinical 

diagnosis of major depressive disorder. Therefore the use of the CES-D scale in epidemiological 

studies of depression appears to be a reasonable way of defining symptoms when financial 

and time constraints preclude use of the gold-standard method of psychiatric interview. 

 

In summary, this thesis does not support the hypothesis that vascular risk factors have a key 

role in the aetiology of depressive disorder. This implies that to understand the aetiology of 

late-life depression more fully, and to develop effective treatment strategies, research needs 

to advance beyond the vascular depression hypothesis, to explore alternative mechanisms 

such as the effects of inflammation. 
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Appendix 1. Questionnaire for the Whitehall Imaging sub-study 
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