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ABSTRACT 

Introduction: The selective pressure imposed by the misuse and overuse of antibiotics 

has led to the emergence and dissemination of methicillin resistant Staphylococcus 

aureus (MRSA), forcing a re-evaluation of therapeutic approaches to the treatment of 

MRSA infections. Epicatechin gallate (ECg), a constituent of the tea plant Camellia 

sinensis, has the capacity to abrogate the resistance of MRSA to β-lactam antibiotics 

and may be useful as an adjunct to conventional chemotherapy. Current evidence 

suggests that ECg sensitises resistant strains to β-lactam agents by disruption of the 

penicillin binding protein (PBP) complex PBP2/PBP2a at the septal site of cell division 

following its intercalation into the cytoplasmic membrane (CM) bilayer.  

Methods: Styrene maleic acid lipid co-polymer (SMALP) was used to solubilise and 

extract PBP2/PBP2a membrane complexes from the CM of EMRSA-16 and ECg-

exposed cells. Cell walls were partially digested and membrane proteins excised and 

solubilised with hydrolysed styrene maleic acid (SMA). SMALP particles were 

visualised by TEM and size distribution determined by dynamic light scattering. 

Membrane protein complexes were cross-linked within SMALPs, protein complexes 

recovered by co-immunoprecipitation and the constituents determined by Western 

blotting and flow cytometry.  

Results: PBP2/PBP2a complexes were identified in both ECg-exposed and control 

EMRSA-16 cells when SMALPs were pulled down with anti-PBP2 and anti-PBP2a 

antibodies. Fewer complexes were recovered from ECg exposed cells. Co-

immunoprecipitation of SMALPs with antibody against the division scaffold protein 

FtsZ led to the identification of FtsZ/PBP2/PBP2a complexes. ECg displaced PBP2a 

from this complex. The PBP2/PBP4 complex was also identified, however there was no 

difference observed following ECg exposure. 

Conclusion: Intercalation of ECg into the MRSA phospholipid palisade led to partial 

disruption of PBP2a from PBP2/PBP2a and FtsZ/PBP2/PBP2a complexes. The data 

suggest that ECg-mediated conversion of MRSA to β-lactam susceptibility may in part 

be related to loss of functional integrity of the cellular replication machinery. The 

therapeutic approach with the use of antibiotic resistance modifying agent, such as ECg, 

in combination with a previously ineffective β-lactam antibiotic, presents a novel 

therapy to combat antibiotic resistance in MRSA. 
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Bacteria have existed for over 3.8 billion years. Over this time they have been involved 

in an evolutionary arms race with other forms of life in order to compete for the 

resources which they require to survive and replicate (Bush et al., 2011). The 

development of resistance mechanisms that allow bacteria to survive the effects of 

bioactive molecules produced by fungi, plants and other microorganisms is an important 

aspect of this evolutionary process. For approximately seventy years, mankind has been 

playing a direct role in this process through the widespread use of antimicrobial 

chemotherapy. This has dramatically reduced the burden of bacterial disease in the 

human population; however, many clinically important bacterial species have adapted to 

this selective pressure by evolving resistance to antimicrobial agents. Understanding the 

mechanisms that underpin this resistance and finding new ways to overcome them is 

crucial if we are to maintain our ability to combat bacterial disease.      

1.1 Beginning of the golden era of antimicrobial 

chemotherapy 

The antimicrobial era began in 1904 with Paul Ehrlich who discovered that a dye, 

trypan red, was effective in the treatment of mice infected with African trypanosomes 

however resistance quickly developed (Ehrlich and Shiga, 1904). In 1905 he moved 

onto aminophenyl arscenic acid with the commercial name of atoxyl as a therapeutic 

agent against the parasite Trypanosoma brucei, which causes African sleeping sickness. 

In 1908 Ehrlich, together with the Japanese scientist Sahachiro Hata, successfully tested 

the arsenic-containing substance arsphenamine against syphilis. This became known as 

the ‘magic bullet’ for the treatment of syphilis under the trade name Salvarsan 

(Abraham, 1948). It was not until the 1920s that the first naturally occurring antibiotic 

was discovered.  

Antibiotics, translated from Greek to mean ‘against life’, are naturally occurring low-

molecular weight microbial products that are able to inhibit the growth of susceptible 

bacteria at low concentrations (Lancini et al., 1995; Willey et al., 2008). Alexander 

Fleming discovered penicillin, a naturally occurring antibiotic produced by the fungus 

Penicillium notatum, in 1928 (Fleming, 1929). Fleming noticed a zone of inhibition on 

an old Petri dish of Staphylococcus aureus (S. aureus) caused by the accidental growth 

of the fungus on the plate and concluded that the substance had antibacterial properties, 

http://en.wikipedia.org/wiki/Trypanosoma_brucei
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however he was not able to purify the active substance (Fleming, 1929). More than ten 

years later a research group at Oxford University headed by Howard Florey and Ernst 

Chain successfully purified penicillin with the help of the biochemist Norman Heatley 

(Abraham and Chain, 1940; Abraham et al., 1941). In 1945 Florey, Chain and Fleming 

won the Nobel Prize for the discovery of penicillin (Nobelprize.org, 2013). These 

findings, together with the discovery of sulphonamides by Gerhard Domagk from a red 

dye synthesised by Bayer AG and streptomycin from Streptomyces griseus by Selman 

Waksman, began the golden age of antibiotics along with the subsequent rise in 

antibiotic resistance (Clardy et al., 2009).   

A chronology of the introduction of new antibiotic classes in the golden era and the 

emergence of resistance is depicted in figure 1-1. Following the development of the 

early antibiotics, the 1950s saw a surge in the discovery and clinical application of 

antibacterial agents. Tetracyclines, chloramphenicol, aminoglycosides (neomycin and 

kanamycin), erythromycin, vancomycin, cephalosporin and rifamycin were all produced 

during this period (Hopwood, 2007). Unfortunately, the rate of discovery of new 

antibiotics did not continue into the 1960s; for example, carbapenems were not 

discovered until the 1970s (Kahan et al., 1979). 

 

Figure 1-1 Important milestones in the discovery and development of antibiotics and the 

emergence of resistance that encompassed the golden era of antibiotic development: focus on S. 

aureus 

Following these discoveries, new antibiotics brought to market were primarily semi-

synthetic derivatives of previous antibiotics as well as the introduction of wholly 

synthetic quinolones in 1962 (Lesher et al.). During more recent phases of antibacterial 

drug discovery, pharmaceutical companies diverted their efforts from natural product 
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screening to synthetic chemistry and target driven screening with a relatively poor 

output compared to the golden years (Hopwood, 2007). 

The discovery and use of antibiotics and antibacterial agents went hand in hand with the 

development and rise in bacterial resistance mechanisms to the major classes of 

antibiotics.  In 1940, prior to the introduction of penicillin as a therapeutic agent, a 

bacterial enzyme able to degrade penicillin (penicillinase) was identified (Abraham and 

Chain, 1940). The discovery of this resistance determinant before the therapeutic 

application of antibiotics set the scene for the subsequent co-evolution of antibiotics and 

the bacterial resistance mechanisms (Davies and Davies, 2010). Resistance of S. aureus 

to penicillin was observed in 1947 and later to erythromycin in 1955 following the 

introduction of erythromycin only three years earlier (Spink and Ferris, 1947; Maccabe 

and Gould, 1956). Similar trends were seen with other bacteria-drug combinations, such 

as the spread of penicillin resistant Neisseria gonorrhoea that began in 1967 and with 

penicillin-resistant Enterococcus faecium from 1983 onwards. The spread of drug-

resistant pathogens has accelerated over time with essential medicines failing to treat 

basic infections and the pool of effective therapeutics rapidly shrinking. Today, many 

epidemic-associated human bacterial pathogens have become multidrug resistant 

(MDR), for example MDR Mycobacterium tuberculosis and methicillin resistant S. 

aureus (MRSA), due to the widespread use and misuse of antibiotics (Davies and 

Davies, 2010). In 2011, the importance of addressing antibiotic resistance was 

highlighted by the World Health Organization (WHO), with World Health Day focusing 

on combating drug resistance (WHO, 2011). The organization emphasised that the 

production of new antibiotics has failed to keep up with the spread of resistance and the 

world may be heading towards a post-antibiotic era. 

“At the time of multiple calamities in the world, we cannot allow the loss of 

essential medicines – essential cures for many millions of people – to 

become the next global crisis” (WHO, 2011).  

The importance and value of antibiotics cannot be underestimated: there is an urgent 

need to control the spread of antibiotic resistance and find new methods of treatment. 

These include the development of new antibiotics and the robust evaluation of new 

therapeutic modalities such as the application of agents that reduce the capacity of 
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pathogens to express antibiotic resistance genes or virulence effectors during the course 

of infection. In order for this to happen we must first understand the basic mechanisms 

of action behind conventional antibiotics as well as bacterial resistance mechanisms.  

1.2  Antibacterial agents 

Antibacterial agents can be classified into five classes dependent on their primary site of 

action; cell wall synthesis, protein synthesis, nucleic acid synthesis, metabolic pathways 

and cell membrane function (Goering et al., 2013). Bacterial susceptibility to low 

antibiotic concentrations is governed by a limited number of factors. Firstly, the target 

must be essential for bacterial viability or replication. Secondly, the target must be 

accessible to the antibiotic molecule. Lastly, the antibiotic must be able to reach the 

target without being inactivated or degraded. Resistance occurs when one or more of 

these factors is compromised (Goering et al., 2013).  

1.2.1 Inhibitors of cell wall synthesis 

The bacterial cell wall represents an ideal target for antibacterial drugs by interfering 

with cell wall biosynthesis or integrity. The peptidoglycan (PG) of bacterial cell walls 

are unique structures and thus drugs acting against this macromolecule can exhibit a 

high target specificity and favourable therapeutic index (Bush, 2013). PG is composed 

of covalently cross-linked units of N-acetylglucosamine (NAM) and N-acetlymuramic 

acid (NAG) (Figure 1-2) (Worke, 1957). The synthesis of PG involves multiple steps 

from synthesis of cell wall precursors in the cytoplasm to the production of new cell 

wall subunits attached to lipid carriers in the cytoplasmic membrane and finally the 

attachment of the new cell wall units to the growing PG chain (Goering et al., 2013). 

The two major classes of cell wall synthesis inhibitors are β-lactams agents and 

glycopeptides which act on different steps of PG synthesis (Goering et al., 2013). β-

lactams are able to acylate the transpeptidase (TPase) (cross-linking) site of the enzymes 

that catalyse the links between the PG precursor subunits whereas glycopeptides bind to 

the D-Alanine-D-Alanine (D-Ala-D-Ala) terminus of the PG precursors, preventing 

incorporation of further PG subunits (Figure 1-2). 
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Figure 1-2 The formation of bacterial cell wall PG showing the sites of cell wall synthesis and 

the steps inhibited by glycopeptide and β-lactam antibiotics 

1.2.1.1 β-lactams 

The β-lactam antibiotic class consists of a range of natural, semi-synthetic and synthetic 

molecules that have been developed over the last 40 to 60 years (Llarrull et al., 2010). 

They consist primarly of penicillins, cephalosporins, and carbapenems that target the 

penicillin binding proteins (PBPs) that control the final step of PG synthesis (Drawz and 

Bonomo, 2010). β-lactam antibacterial activity stems from their structural analogy to D-

Ala-D-Ala, the natural substrate of the PBPs (Chambers, 2003). β-lactams such as 

penicillin, oxacillin and methicillin acylate the TPase active site of the PBPs, blocking 

their interaction with D-Ala-D-Ala (Goffin and Ghuysen, 1998). Initially, the β-lactam 

antibiotic (or D-Ala-D-Ala) associates non-covalently with the PBPs to form a 

Michaelis complex (Chambers, 2003). Subsequently, the complex can either dissociate 

or go through an irreversible acylation reaction where the PBP covalently binds to the 

β-lactam antibiotic, causing cleavage of the cyclic amide bond in the β-lactam ring and 

causing rapid deacylation of the cell wall substrate (Goffin and Ghuysen, 1998; 

Reynolds, 1989). Penicillins, cephalosporins, and carbapenems all feature a β-lactam 



General introduction 

 

 Chapter one  

 

29 

ring (Figure 1-3),which is a cyclic amide formed of a four atom ring (Greenwood et al., 

2007b). 

 

Figure 1-3 Chemical structure of the β-lactam ring and general structure of penicillins, 

carbapenem and cephalosporins 

Penicillins and carbapenems can be distinguished from cephalosporins by the ring 

attached to the β-lactam ring. This is a five-atom ring in penicillins and carbapenems 

and a six-atom ring in cephalosporins. Most derivatives of β-lactam agents currently in 

use were obtained by chemical modification of the lateral chain at position 6 of 

penicillins and position 7 of cephalosporins (Lancini et al., 1995). The first β-lactams 

developed, typified by penicillin G, were limited to the treatment of infections caused 

by Gram-positive bacteria; however, later semi-synthetic penicillins and cephalosporins 

such as cephalosporin C were designed to be active against Gram-negative bacteria, 

including Enterobacter and Klebsiella strains (Lancini et al., 1995; Goering et al., 

2013). Cephalosporins in general have a broader spectrum of activity than penicillins 

but they lack activity against enterococci. Clavulanic acid, a naturally occurring β-

lactam with no intrinsic antibacterial activity from Streptomyces clavuligerus, can be 

given in combination with β-lactams to render β-lactam antibiotics to be effective 
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against some β-lactamase producing bacteria due to its capacity to acylate the TPase 

active site (Wise et al., 1978); β-lactamases are enzymes that inactivate β-lactam 

antibiotics by hydrolysing the β-lactam ring (Kelly et al., 1986). Novel β-lactams 

including cabapenems such as ampicillin exhibit broad spectrum activity against both 

Gram-positive and Gram-negative bacteria as well as being relatively stable to most β-

lactamases (Sutherland and Rolinson, 1964; Greenwood et al., 2007a).  

1.2.1.2 Glycopeptides 

In contrast to β-lactam agents, glycopeptide antibiotics bind with high affinity to the D-

Ala-D-Ala terminus of the extracellular precursor PG (Figure 1-2), resulting in steric 

hindrance of the PBP-substrate reaction (Reynolds, 1989). This activity inhibits 

transglycosylation and prevents incorporation of new PG subunits (Goering et al., 

2013). The principal glycopeptides vancomycin and teicoplanin are large, complex 

structures that are mainly active against Gram-positive bacteria, as their large size 

restricts their capacity to penetrate the outer membrane of most Gram-negative bacteria 

(Denyer et al., 2011). Vancomycin was introduced in 1959 and is still widely used to 

treat MRSA infections as well as exhibiting activity against other Gram-positive 

bacterial species such as S. epidermidis, Clostridium difficile and Enterococcus faecalis 

(Geraci and Hermans, 1983). Teicoplanin was introduced into the market in the early 

1990s and differs from vancomycin in that is possesses additional fatty acid side chains 

resulting in a more hydrophobic nature and thus able to penetrate tissue further 

compared to vancomycin (Williams and Grüneberg, 1984).    

1.2.2  Inhibitors of protein synthesis 

Selective toxicity of antibacterial agents that target protein synthesis is possible due to 

structural differences between eukaryotic (80S) and prokaryotic (70S) ribosomes 

(Goering et al., 2013). Mechanisms of action include binding to the 30S (small) or 50S 

(large) ribosomal subunit as well as inhibition of some critical stages of protein 

synthesis, such as amino-acyl transfer ribonucleic acid (tRNA) binding, peptide bond 

formation, messenger RNA (mRNA) translation and translocation (Figure 1-4).  
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Figure 1-4 Inhibitors of protein synthesis 

The main inhibitors of proteins synthesis include aminoglycosides, chloramphenicol, 

tetracyclines, lincosamides, macrolides, streptrogramins, oxazolidinones, mupirocin and 

fusidic acid (Greenwood et al., 2007a). The first aminoglycoside discovered was 

streptomycin in 1943 and in general aminoglycosides are potent, broad spectrum 

bactericidal agents that have activity against most Gram-negative bacilli and 

staphylococci (Schatz et al., 1944). They inhibit the formation of the ribosomal 

initiation complex by altering the shape of the 30S ribosomal ribonucleic acid (rRNA) 

as well as causing misreading of the mRNA (Luzzatto et al., 1968).  Tetracyclines have 

broad spectrum bacteriostatic activity against most Gram-positive and Gram-negative 

bacteria by preventing the binding of tRNA to the ribosome (Figure 1-4) (Chopra, 

1985). 

Chloramphenicol is the sole member of a third group of protein synthesis inhibitors and 

possess broad spectrum bactericidal activity against Gram-positive and Gram-negative 

bacteria (Greenwood et al., 2007a). This antibiotic inhibits peptidyl transferase activity, 

preventing peptide bond formation (Hahn et al., 1954). The first macrolide (represented 

by erythromycin) was discovered in 1952; they were initially reserved for treatment of 

staphylococcal infections when resistance to penicillin was increasing (Hobson, 1954, 
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Greenwood et al., 2007a). Macrolides inhibit the binding of rRNA to the ribosome 

preventing translocation and have strong activity against staphylococci and streptococci 

(Schmid, 1971).   

1.2.3 Inhibitors of nucleic acid synthesis 

Another class of antibacterial agents, comprised mainly of synthetic compounds, inhibit 

nucleic acid synthesis, either indirectly by interruption of metabolic pathways leading to 

nucleic acid synthesis or directly by inhibition of deoxyribonucleic acid (DNA) or RNA 

synthesis by interfering with the action of DNA polymerase, DNA helicase or RNA 

polymerase (Greenwood et al., 2007b). Sulphonamides and diaminopyrimidines affect 

DNA synthesis by inhibiting folic acid metabolism, which is essential for the one-

carbon transfers involved in nucleotide synthesis. Sulphonamides directly block an early 

stage of folate synthesis leading to a failure to synthesise purine nucleotides (adenine 

and guanine) and thymidine (McCullough and Maren, 1973; Willey et al., 2008). They 

are broad spectrum, primarily bacteriostatic agents that inhibit growth slowly because 

they gradually deplete folate (Greenwood et al., 2007a). Diaminopyrimidines inhibit 

dihydrofolate reductase, an enzyme that reduces dihydrofolate to tetrahydrofolate 

(Baccanari and Kuyper, 1993). Sulphonamides and trimethoprim, the most important 

diaminopyrimidine, are often given in combination as they act at different points of the 

same metabolic pathway (Reeves, 1982). Another family of antibacterial agents that 

inhibit nucleic acid synthesis are the quinolones. The first quinolone, nalidixic acid, was 

introduced in 1962 for use in treating uncomplicated urinary tract infections (Lesher et 

al., 1962). Quinolones are bactericidal and act by inhibiting bacterial DNA gyrase and 

topoisomerase II, two enzymes involved in maintaining the integrity of the supercoiled 

DNA helix during replication and transcription (Hooper, 1993). DNA gyrase introduces 

a negative twist in the DNA helix to effect separation of the strands and the 

topoisomerase II untangles DNA further during replication (Willey et al., 2008). Other 

nucleic acid inhibitors include nitroimidazoles, which causes DNA strand breakage 

(Edwards, 1980), novobicin, which acts on the β subunit of the DNA gyrase (Sugino et 

al., 1978), and rifamycins, which inhibit transcription from RNA to DNA by binding to 

the β subunit of RNA polymerase (Floss and Yu, 2005). Inhibitors of nucleic acid 

synthesis are not as selective as previous antibiotic groups due to the fact that 

prokaryotes and eukaryotes do not differ in their nucleic acid synthesis pathways 
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however they are still selective due to the difference in the subunit structure of the RNA 

polymerase (Willey et al., 2008) 

1.2.4  Inhibitors of cell membrane function  

Cell membrane integrity is vital for cell survival and thus inhibitors of cell membrane 

function are highly toxic. Polymxins act as cationic detergents by binding to the cell 

membrane to elicit disruption of the phospholipid cell membrane and consequent 

leakage of cytoplasmic contents (Newton, 1956). Polymyxin B and polymyxin E 

(colistin) show potent activity against Gram-negative bacteria and are primarily used to 

treat pseudomonas infections (Tam et al., 2005; Michalopoulos and Falagas, 2008). 

Another class of semi-synthetic compounds that inhibit membrane function are the 

bactericidal lipopeptides. One example is daptomycin which is used in the treatment of 

MDR Gram-positive cocci such as vancomycin resistant Enterococcus faecalis and E. 

faecium as well as MRSA and S. epidermidis (Carpenter and Chambers, 2004). The 

bactericidal effect of daptomycin is thought to be due to the insertion of lipophilic 

daptomycin tails into the membrane causing membrane depolarisation and potassium 

ion efflux. This eventually results in the inhibition of DNA, RNA and protein synthesis 

leading to cell death (Steenbergen et al., 2005). 

The important factors for antibiotic susceptibility are a vital and accessible target for the 

antibacterial agent to be effective at low concentration without being inactivated prior to 

reaching the target. Antibiotic resistance occurs when one or more of these factors are 

compromised (Greenwood et al., 2007a). Some bacteria, such as MRSA, have become 

resistant to multiple classes of antibacterial agents and are classified as MDR; treatment 

of infections due to these pathogens is a major cause for concern (Tenover, 2006). 

1.2.5 Mechanisms of antibiotic resistance 

Bacterial resistance to any antibiotic is partly determined by the structure of the 

bacterial cell envelope. The dual membrane structure of the Gram-negative cell 

envelope is more complex than the envelope of Gram-positive bacteria (Figure 1-5) 

(Glauert and Thornley, 1969).  
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Figure 1-5 Gram-positive and Gram-negative cell envelopes 

The Gram-negative outer membrane limits accessibility of antibiotics such as 

penicillins, glycopeptides and macrolides to the periplasmic PG and inner membrane. 

Antibiotic resistance mechanisms unrelated to cell envelope structure can be broadly 

grouped into three functional categories: 1) inactivation of the antibiotic before reaching 

its target; 2) exclusion of the antibiotic from the target by efflux or other mechanisms; 

3) modification of the target (McCallum et al., 2010).  

Inactivation of the antibiotic is the most common mechanism of resistance to 

penicillins, cephalosporins and other β-lactam agents (Greenwood et al., 2007a). 

Bacteria can produce several enzymes that can inactivate or degrade the antibacterial 

agent. These include β-lactamases, aminoglycoside-modifying enzymes and 

chloramphenicol acetyl transferase (Willey et al., 2008). β-lactamases inactivate β-

lactam antibiotics by hydrolysis of the β-lactam ring (Waley, 1988). To date, more than 

200 β-lactamases have been identified. They are generally plasmid-encoded and are 

more frequently associated with Gram-negative bacteria (Bush, 1989; Greenwood et al., 

2007a).  

Exclusion of an antibiotic from its target may be mediated by efflux pumps, which 

actively transport the drug from the bacterium, or by modifying the permeability of the 

cell wall to the antibiotic molecule (Willey et al., 2008). These mechanisms are an 

important cause of resistance to tetracyclines, β-lactam agents and quinolones 

(Greenwood et al., 2007a). Tetracycline resistance is mediated by efflux pumps in both 

Gram-negative and Gram-positive bacteria (Schnappinger and Hillen, 1996). On the 

other hand, resistance to β-lactam agents is primarily due to reduction in the internal 

diameter of the porin channel, preventing the antibiotic from penetrating the cell 
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envelope (Heesemann, 1993). Both overexpression of efflux pumps and impermeability 

of the membrane also govern quinolone resistance (Ruiz, 2003) 

Target modification is another common mechanism of antibiotic resistance. This form 

of resistance can result from a mutation in the gene encoding the target, resulting in 

lower affinity for the antibiotic. Alternatively, bacteria may acquire the ability to 

produce a molecule which performs the same function as the target but is not 

susceptible to the antibiotic (Tenover, 2006). Drugs that are primarily affected by this 

resistance mechanism are β-lactams, rifampicin and quinolones (Greenwood et al., 

2007a).  Specific examples of both forms of this resistance mechanism have been 

observed in the β-lactam target proteins, the PBPs. These include modification of the 

pneumococcal PBP2b and acquisition of an alternative PBP (PBP2a) by MRSA 

(McManus, 1997).  

Bacterial antibiotic resistance mechanisms may be acquired by chromosomal mutation 

and selection (vertical mutation) or by transfer of genetic material from another resistant 

organism (horizontal mutation) by conjugation, transduction and transformation 

(Tenover, 2006). Natural selection ensures that resistance determinants are maintained 

and expanded within bacterial populations in response to the selective pressure of 

widespread antibiotic use (Tenover, 2006). This has clearly been the case with the 

evolution of MRSA, which has become a significant medical problem both in hospital 

and community settings. 

1.3 MRSA 

S. aureus is a Gram-positive, facultative anaerobe, approximately 0.5 – 1.0 µm in size 

with an ideal growth temperature of 35 °C that forms grape-like clusters of cocci 

(Foster, 1996; Anderson et al., 2005b). It has a low G + C content and is a member of 

the Bacillus-Lactobacillus-Streptococcus phylogenetic cluster (Foster, 1996). Antibiotic 

pressure and a strong tendency to accumulate antibiotic resistance genes has aided the 

rapid vertical spread of resistance within S. aureus populations, resulting in the 

widespread rise in MRSA isolates (Anderson et al., 2005b). Methicillin resistance is due 

to the addition of the mecA gene, which may have originated from Staphylococcus 

sciuri (S. sciuri), which encodes for an additional 78-kDa PBP, designated PBP2a, that 
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confers resistance to β-lactam agents (Gordon and Lowy, 2008). MRSA is resistant to a 

wide spectrum of ß-lactam antibiotics, including methicillin, oxacillin and flucloxacillin 

(Anderson et al., 2005b).  

1.3.1 Epidemiology 

Penicillin resistance was first observed in S. aureus only seven years after the 

commercialisation of penicillin as a therapeutic in the 1940s (Figure 1-1) (Hopwood, 

2007). The first three cases of MRSA were reported in 1961, two years after the 

introduction of methicillin into clinical practice; the minimum inhibitory concentration 

(MIC) of methicillin ranged from 3.1 to 25 µg/ml (Chambers, 1988). The first isolate 

came from a patient with eczema, the second from the infected finger of a nurse and the 

third from a surgical wound of one of the nurse’s patients (Chambers, 1988). In 1963, 

the first epidemic involving an MRSA strain was described, followed by further 

outbreaks in the United States and Europe in the 60s and 70s (Chambers, 1988). The 

first MRSA strain isolated in the United Kingdom (UK) was in 1960 (Deurenberg and 

Stobberingh, 2008). In the late 1970s, gentamicin-resistant MRSA emerged and 

persisted in several countries until the 1980s (Johnson, 2011).  The prevalence of 

MRSA greatly increased in the 1990s and included the emergence of epidemic MRSA 

strains (EMRSA), primarily EMRSA-15 and EMRSA-16 (Johnson, 2011). These two 

strains were predominantly resistant to erythromycin and ciprofloxacin in addition to β-

lactam antibiotics (Johnson, 2011). 

The two most common EMRSA clones in the UK are EMRSA-15 of multi-locus 

sequence type (MLST) clonal complex (CC) 22 and sequence type (ST) 22, and 

EMRSA-16 of CC30, (ST36) (Johnson et al., 2001). In 1999-2000, these two strains 

accounted for 95.6% of all cases of MRSA bacteraemia in the UK, with EMRSA-15 

accounting for a higher percentage than EMRSA-16 (60.2% and 35.4% respectively) 

(Johnson et al., 2001). EMRSA-15 and EMRSA-16 were first isolated in the UK; 

however, EMRSA-15 eventually became widespread in Europe, Australia, the Middle 

East and Asia, whereas EMRSA-16 was mostly restricted to the UK (Ellington et al., 

2010). In a study of 374 MRSA cases in the UK between 2001 and 2007, approximately 

90% were either EMRSA-15 or EMRSA-16, with EMRSA-15 the more dominant 

MRSA lineage over this period (Ellington et al., 2010). The majority of these isolates 

were resistant to macrolides and fluoroquinolones, but had low resistance to gentamicin 
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(EMRSA-15: 3 %, EMRSA-16: 24%) and tetracyclines (3% for both) (Ellington et al., 

2010). MRSA accounted for 2% of S. aureus infections in hospital intensive care units 

in 1974, rising to 22% in 1995 and 64% in 2004 (Chambers and DeLeo, 2009). In 2005, 

it was one of the leading cause associated with death in the UK from a single pathogen 

and was associated with approximately 19,000 deaths (Chambers and DeLeo, 2009). 

There was also a significant rise in MRSA cases in the USA, with 60% of hospital-

acquired S. aureus infections and 30-62% of bloodstream infections attributed in 2002 

(Boyce et al., 2005). Additionally, in 2005 S. aureus (primarily MRSA) was reported as 

the most significant cause of serious infection in the USA, causing 90,000 invasive 

infections (Schlievert et al., 2010). 

At the same time as hospital-acquired MRSA (HA-MRSA) infections were on the rise, 

the late 1990s saw the emergence of community-acquired MRSA (CA-MRSA) 

(Carleton et al., 2004). The first isolation of CA-MRSA was recognised in Western 

Australia (Chambers, 1988). CA-MRSA and HA-MRSA differ both phenotypically and 

genetically. Pulsed-field gel electrophoresis (PFGE) and MLST analyses indicated that 

isolates from both groups comprised two distinct lineages (Deurenberg and 

Stobberingh, 2008). Genetic analysis of CA-MRSA isolates revealed acquisition of a 

unique mec element (primarily type IV, V or VII) and expression of the Paton-Valentine 

leukocidin (PVL) virulence factor encoded by the lukS-lukF genes (Chambers, 1988). 

PVL is a S. aureus-specific leukocidin exotoxin that creates pores in host cell 

membranes. Infections with PVL-positive strains often present as severe skin and soft 

tissue infections ranging from furuncles to necrotising fasciitis and pneumonia 

(Deurenberg and Stobberingh, 2008; Köck et al., 2010).  The most successful CA-

MRSA strain in the USA is PFGE profile USA300 (MLST ST8) which expresses PVL 

(Köck et al., 2010). This strain is also prevalent in European countries, along with CA-

MRSA strain ST80 (Deurenberg et al., 2007).  

European health services have taken significant steps towards the control of MRSA 

infections. Target-driven measures in England resulted in a 62% reduction in cases of 

bacteraemia due to MRSA from Fiscal Year (FY) 2003-2004 to 2008-2009 (HPA, Sept 

2009). France saw a 30% reduction in surgical site MRSA infections and a 20% 

decrease in MRSA bacteraemia as a result of implementation of additional infection 

control measures (Köck et al., 2010). In the UK, the incidence of MRSA bacteraemia 

has been reduced further, with a 22% decrease from Fiscal Year (FY) 2009/2010 (1989 
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cases) to FY 2010/2011 (1481 cases) (HPA, June 2011). However, MRSA is still 

isolated from approximately five percent of healthcare-associated infections in the UK 

and the National Audit Office estimates the cost of MRSA infections to total one billion 

Great British Pounds (GBP) per year (WHO, 2011). In the USA the cost of MRSA 

infections was higher, at eight billion dollars per year (Zeller et al., 2007). Although the 

global incidence of MRSA infections is falling, there remains a need for alternative 

treatments, as the pathogen continues to be a health threat. 

1.3.2 Infections caused by MRSA 

MRSA has become the most common cause of nosocomial infections worldwide and 

was previously believed to be solely an opportunistic agent. MRSA now accounts for a 

large proportion of CA-MRSA infections, which present distinct clinical symptoms 

compared to HA-MRSA (Memmi et al., 2008; Watkins et al., 2012). The primary site 

of colonisation of S. aureus in humans is the anterior nares, with approximately 20% of 

individuals colonised at any given time (Berger-Bachi, 2002). Other sites of frequent 

colonisation include the armpit, groin and gastrointestinal tract (Gordon and Lowy, 

2008). Colonisation can be commensal or pathogenic in character. Once established the 

bacterium is most likely to cause overt infection when host defences are breached and 

the bacterium is able to enter the body through open wounds, cuts and medical devices 

such as indwelling catheters (Gordon and Lowy, 2008). Diseases caused by S. aureus 

include superficial infections such as skin abscesses and impetigo or more serious 

invasive infections including endocarditis, septic arthritis and osteomyelitis (Morell and 

Balkin, 2010).  A study by Von Eiff et al. (2001) showed that 80% of all patients with 

MRSA bacteraemia had the same blood and nasal isolate, indicating that most infections 

were caused by the same colonising strain. In hospitalised patients, HA-MRSA 

infections commonly occur in patients who have undergone surgery or have a 

suppressed immune system (Gordon and Lowy, 2008). These infections are most 

commonly associated with pneumonia, bacteraemia, and invasive infections, including 

septic arthritis (Watkins et al., 2012). On the other hand, infections caused by CA-

MRSA primarily consist of skin and soft tissue infections (90%) as well as more severe 

infections such as necrotising pneumonia, sepsis, osteomyelitis and necrotising fasciitis 

(Foster, 2005; Watkins et al., 2012).    
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1.3.3 Pathogenesis 

The pathogenicity of MRSA is multi-factorial and, as stated above, the bacterium is 

both a pathogen and a commensal (Berger-Bachi, 2002; Gordon and Lowy, 2008). The 

primary mode of transmission is human to human via skin contact with a colonised 

source or fomite (Morell and Balkin, 2010). A weakened immune system or break in the 

skin barrier is a predisposition for infection of a colonised host (Morell and Balkin, 

2010). The bacterium is able to adhere to host tissue structures such as mucus, epithelial 

cells, plasma proteins, endothelial cells and the extracellular matrix (ECM) as well as to 

prosthetic devices. Adherence is mediated through strain-specific microbial surface 

components that recognise adhesive matrix molecules (MSCRAMMs) (Figure 1-6) 

(Speziale et al., 2009; Morell and Balkin, 2010). MSCRAMMs are able to bind to the 

majority of ECM and blood plasma proteins including collagen, fibronectin and 

fibrinogen (Gordon and Lowy, 2008). The most common members of the MSCRAMM 

family are protein A (SpA), fibronectin-binding proteins (FnBP) A and B, collagen-

binding protein (CNA) and clumping factors (Clf) A and B (Figure 1-6) (Speziale et al., 

2009).  

 

Figure 1-6 Virulence factors associated with S. aureus, surface and secreted proteins involved 

in virulence. A cross section of the envelope shows PBPs involved in replication and antibiotic 

resistance and β-lactamase (Morell and Balkin, 2010). 

Protein A binds to the Fc region of IgG and plays a role in the evasion of phagocytosis 

by the host’s immune system (Foster, 2005). Clumping factors A and B bind to 



General introduction 

 

 Chapter one  

 

40 

fibrinogen and fibrinogen-coated substances respectively, causing coagulation of blood 

plasma and other solutions containing fibrinogen (Speziale et al., 2009). The adhesins 

FnBP A and B bind to fibrinogen, elastin and fibronectin which play a key role in 

attachment to, and colonisation of, host tissues (Speziale et al., 2009). Lastly, CNA is 

required for collagen attachment and is expressed in over 90% of S. aureus strains 

isolated from patients with bone and join infections (Speziale et al., 2009).  

Another set of adherence-related proteins are the secretable expanded repertoire 

adhesive molecules (SERAMs) that effect colonisation of host tissue (Speziale et al., 

2009). Other cell-surface virulence factors include the capsular polysaccharide that 

forms a protective layer during systemic invasion; it has antiphagocytic properties and 

plays a role in biofilm formation (Speziale et al., 2009). Others include iron-regulator 

proteins and polysaccharide intercellular adhesins (Schlievert et al., 2010). The 

bacterium is able to secrete a number of exoenzymes that include proteases, 

hyaluronidase, lipase and nuclease that elicit tissue destruction and enable bacterial 

dissemination (Foster, 2005). Secreted enzymes also include inflammatory cytolysins 

(e.g. PVL and α, β, γ and δ toxins), exfolative toxins A and B (leading to scalded skin 

syndrome) and superantigens (SAgs). PVL is a two-component cytolytic toxin, which 

has a high affinity for human leukocytes and is often associated with severe skin 

infections and necrotising pneumonia caused primarily by CA-MRSA (Bohach and 

Foster, 1999; Gillet et al., 2002). An additional toxin, toxic shock syndrome toxin-1 

(TSST-1), is associated with hypotension, desquamation, septic shock and multiple 

organ failure (Foster, 2005; Schlievert et al., 2010).  

The regulation of virulence genes is controlled by two component systems (Gordon and 

Lowy, 2008). In general, MSCRAMMS are produced primarily in the logarithmic phase 

and secreted proteins in the stationary phase (Gordon and Lowy, 2008). Regulators of 

these virulence factors include the accessory gene regulator (agr), a quorum sensor 

primarily involved in reduction of expression of cell surface proteins and secretion of 

virulence factors during progression from late exponential to stationary phase (Yarwood 

and Schlievert, 2003). Other virulence regulators include ArlR and ArlS (Cheung et al., 

1994), SaeRS (Liang et al., 2006), Rot (Saïd-Salim et al., 2003)  and mgr (Luong et al., 

2003). 
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S. aureus both attacks and evades the host immune response mechanisms. Cytolytic 

toxins target components of the innate immune system such as neutrophils (Voyich et 

al., 2005). The bacterium secretes immunomodulatory proteins that induce a humoral 

and cell-mediated host response. However, antibody (Ab) levels in the host are usually 

too low to combat a secondary infection and repeated infections are common (Foster, 

2005). Other host immune evasion mechanisms include bacterial resistance to killing by 

antimicrobial peptides and lysozyme as well as the capacity for survival in phagosomes 

following engulfment by neutrophils and macrophages (Sieprawska-Lupa et al., 2004, 

Bera et al., 2005). As a primary infection may fail to protect against subsequent 

infections as the bacterium is able to prevent the host from mounting a strong Ab 

response, this restricts preventative treatment (Foster, 2005). Instead we must look 

towards understanding the replication machinery of MRSA in order to determine 

alternative treatment options that could include modulation of the bacterial replication 

and resistance machinery. 

1.3.4 Cell Division 

S. aureus replication is dependent on the formation of a division septum that separates 

the nascent daughter cells (Margolin, 2009). During growth and cell separation, the 

cocci form clusters (or packets) because the division plane alternates from generation to 

generation, resulting in cell division on orthogonal planes in three dimensions 

(Margolin, 2009; Turner et al., 2010). As S. aureus divides in three proscribed planes, 

this produces clusters of cells often described as bunches of grapes. This contrasts with 

bacteria that divide on two proscribed planes such as Pediococcus (Figure 1-7) (Turner 

et al., 2010). 

 

Figure 1-7 Division in multiple planes; (A) three proscribed planes as seen in S. aureus, 

leading to clusters of bacteria and (B) two proscribed planes leading to tetrads in Pediococcus 

(Turner et al., 2010) 
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As S. aureus cells divide, they form a ring of nascent PG at the septum followed by 

hemispherical split of the two daughter cells in X and Y conformation; however, a 

partial attachment remains between daughter cells, creating cell clusters (Tzagoloff and 

Novick, 1977). The next division plane is created in orthogonal fashion to the previous 

two, resulting in three planar division (Turner et al., 2010). S. aureus does not undergo 

an elongation phase, as is the case with rod shaped bacteria such as Bacillus subtilis (B. 

subtilis), as nascent PG synthesis occurs solely at the septum (Errington et al., 2003; 

Pinho and Errington, 2003; Steele et al., 2011). During cell division new septa are 

formed perpendicular to completed septa with the cells remaining predominantly 

spherical or elliptical until the formation of a completely transverse septum (Tzagoloff 

and Novick, 1977). The septum, once cleaved, becomes the nascent hemispherical poles 

of the two daughter cells (Steele et al., 2011).  

1.3.4.1 PG structure 

S. aureus cellular integrity, shape and ability to replicate are dependent on a functional 

cell wall of more than 20 linear glycan chains in which the sugar residues N-

acetlyglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) alternate. Chains 

are cross-linked by flexible pentaglycine cross-bridges (Figure 1-8) (Schneider et al., 

2004).  

 

Figure 1-8 PG cross-linking in S. aureus. Alternating subunits of GlcNAc (G) and MurNAc (M) 

cross-linked through a pentaglycine cross-bridge linking stem peptides (Schneider et al., 2004) 

The pentaglycine cross-bridges that connect PG strands connect stem peptides from 

adjacent PG layers, allowing a high degree of cross-linking (up to 90%) (Wilkinson, 
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1997). Initially GlmS/M/U convert fructose-6-P to uridine diphosphate (UDP)-GlcNac, 

which is further converted to UDP-MurNac through MurA/Z/B enzymes. UDP-MurNac 

is linked to the active undecaprenyl-phosphate, C55-P, lipid carrier by the translocase 

MraY, resulting in lipid I, which is then sequentially linked to UDP-GlcNAc by MurG 

to form lipid II (Münch et al., 2012).  For cross-linking to occur between glycan strands 

the MurNAc glycan chain is substituted for a stem peptide consisting of L-Alanine (L-

Ala)- D-Glutamate (D-Glu)- L-Lysine (L-Lys)- D-Ala-D-Ala. A pentaglycine bridge is 

formed between the ɛ-amino group of the L-Lys of one stem peptide and the D-Ala at 

the fourth position of another MurNAc stem peptide (Schneider et al., 2004). The 

nonribosomal peptidyl transferase family FemABX synthesises the pentaglycine 

interpeptide utilising glycyl-tRNA as a glycine donor (Hubscher et al., 2007). FemX is 

responsible for the addition of the first glycine (Gly) (essential for cell viability) 

followed by Gly 2,3 and Gly 4,5 synthesised by FemA and and FemB respectively 

(Maidhof et al., 1991; Strandén et al., 1997; Rohrer et al., 1999). Modified lipid II with 

the interpeptide bridge is translocated across the cytoplasmic membrane by FtsW and 

the glycan strands are then cross-linked by the PBPs (Mohammadi et al., 2011). The 

stem peptides that are not cross-linked carry an additional D-Ala, which is cleaved 

during cross-linking (Giesbrecht et al., 1998). The resulting PG allows for a strong, but 

elastic structure that protects the cytoplasmic membrane, shown in figure 1-9 from lysis 

due to high internal osmotic pressure (Scheffers and Pinho, 2005).  

 

Figure 1-9 The cell wall and cytoplasmic membrane of S. aureus that maintain cell integrity 

The thick cell wall (approximately 20 to 40 nm) of S. aureus and other Gram-positive 

bacteria contains covalently linked charged polymers that include wall teichoic acid 

(WTA) and cell membrane associated lipoteichoic acids (LTAs) as well proteins 

anchored to the cell wall (Giesbrecht et al., 1998; Scheffers and Pinho, 2005). WTAs 

constitute 50% of the total cell wall mass and are covalently linked to the muramic acid 

of the cell wall by phosphodiester bonds (Atilano et al., 2010). The typical cell 

membrane of S. aureus is comprised of three major phospholipids: negatively charged 
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phosphatidylglycerol, cardiolipin and the positively charged lysyl-phosphatidylglycerol 

(Short and White, 1971; Bernal et al., 2010).    

1.3.4.2 Division machinery 

During cell division, nascent PG synthesis is dependent on the macromolecular division 

machine, the divisome (Figure 1-10).  

 

Figure 1-10 Proposed proteins of the divisome recruited to the division septum of MRSA during 

cell division (representation) 

This complex is composed primarily of membrane-bound proteins but also includes 

cytoplasmic components. As mentioned in section  1.3.4.1, the nascent glycan strands 

are synthesised from the lipid II precursor, which undergoes polymerisation catalysed 

by PBPs (Barreteau et al., 2008). 

PBPs transglycosylate and cross-link nascent glycan strands through transpeptidation 

reactions concominant with hydrolysis of the terminal D-Ala residue of the stem peptide 

by DD-carboxypeptidation or hydrolysis of the interpeptide bonds (endopeptidation) 

(Sauvage et al., 2008). For division to occur, the divisome is first established at the 

septum. The function of different divisome components in S. aureus has been 
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established experimentally or predicted by observation of the function of homologous 

components in related bacteria, notably B. subtilis. 

Cell division is initiated by polymerisation of the cytosolic tubulin homologue protein 

FtsZ, a self activating guanosine triphosphatase (Adams and Errington, 2009). To 

enable subsequent cell division, FtsZ first polymerises into a filamentous Z-ring 

structure at a mid-cellular location (Errington et al., 2003). FtsZ is a scaffold protein for 

the divisome machinery, which is tethered to the Z-ring by a second cytoplasmic 

protein, FtsA that helps to stabilise initial Z-ring formation (Adams and Errington, 

2009). Another cytoplasmic protein, SepF, has an overlapping role with FtsA as it is 

required for correct septum morphology and acts as a “molecular tape measure” by 

forming ring polymers that organise FtsZ protofilaments into higher order structures 

(Adams and Errington, 2009; Gündoğdu et al., 2011). A second scaffold protein 

important for cell division is the membrane counterpart of FtsZ, EzrA (Singh et al., 

2007). Although EzrA is not directly involved in PG synthesis it is proposed to 

negatively regulate FtsZ and also acts as a secondary divisome scaffold protein 

(Kirkpatrick and Viollier, 2011). Steele et al. (2011) showed that depletion of EzrA 

resulted in delocalisation of the division machinery from the septum and delocalisation 

of GpsB, a protein required for transition between the division and elongation phases of 

division in Gram negative bacteria. 

FtsZ subsequently recruits further divisome proteins to the septum. In methicillin 

sensitive S. aureus  (MSSA), this includes PBP2 which is either directly or indirectly 

anchored to the cell division machinery by FtsZ (Pinho and Errington, 2003). Other 

proteins directly associated with the C-terminal peptide of FtsZ are ClpX and MinC, 

which regulate the Z-ring in B. subtilis (Erickson et al., 2010). ClpX helps to maintain 

the cytoplasmic pool of FtsZ, where as MinC is a negative regulator of FtsZ recruited 

by MinD (Erickson et al., 2010). Following initial recruitment of these proteins, 

membrane proteins are recruited to advance the division process. These include 

DivIC/DivIB/FtsL and the PBPs (PBP1/PBP2/PBP3/PBP4) as well as PBP2a in the case 

of MRSA (Tan et al., 2012). It has been suggested that FtsL helps to stabilise the 

divisome at the septum in S. aureus, as it does in B. subtilis, as well as interacting 

directly with EzrA (Kawai and Ogasawara, 2006; Steele et al., 2011). Following 

assembly of the divisome, cross-linked PG is undertaken by membrane bound PBPs, 

which catalyse the terminal reactions of PG (Llarrull et al., 2009).  
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1.3.4.3 PBPs 

The PBPs are conveniently grouped into either low molecular weight (LMW) or high 

molecular weight (HMW) PBPs (Ghuysen, 1991). LMW PBPs have only a penicillin 

binding domain where as HMW PBPs are multi-domain proteins that are grouped into 

classes A and B. HMW Class A PBPs are bi-functional enzymes that possess an N-

terminal domain that catalyses transglycosylase (TGase) reactions and a C-terminal 

penicillin binding domain that catalyses TPase reactions (Ghuysen, 1991; Goffin and 

Ghuysen, 1998). Class B HMW PBPs contain a functional C-terminal TPase domain, 

but lack the N-terminal TGase-associated motif (Goffin and Ghuysen, 1998). In S. 

aureus the PBPs are localised at the outer surface of the cytoplasmic membrane via 

membrane anchors (FtsZ and EzrA) and catalyse both TGase and TPase activity 

(Llarrull et al., 2009). In S. aureus there are four PBPs involved in PG replication; 

PBP1, PBP2, PBP3 and PBP4, with an additional PBP, PBP2a, in MRSA (Pinho and 

Errington, 2005). The numbering system of the PBPs arose historically from their 

migration during sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) separation (Yoshida et al., 2010). The three HMW PBPs (PBP1, PBP2, PBP3) 

are essential whereas the LMW PBP (PBP4) is less important; however, it is responsible 

for the unusually high cross-linking found in S. aureus (Navratna et al., 2010).  

The penicillin binding domain of the PBPs has one of three unique motifs (SXXK, 

(S/Y) XN and (K/H) (S/T) G) that characterise the active site for the serine penicillin-

recognising enzyme family (Zapun et al., 2008). The SXXK motif enables the catalytic 

activity involved in cross-linking the stem peptides of two glycan strands. The serine of 

the SXXK motif attacks the penultimate D-Ala of the stem peptide, causing the release 

of the terminal D-Ala to form a covalent acyl-enzyme complex (Figure 1-11) (Zapun et 

al., 2008). This complex is sequentially attacked in the TPase step by a primary amine, 

which is itself linked to the third residue of another stem peptide, forming a peptide 

bridge between the two peptide stems as depicted in figure 1-11 (Zapun et al., 2008). β-

lactam antibiotics are able to irreversibly acylate the catalytic serine in the TPase active 

site of PBPs and impair their function by forming a covalent acyl-enzyme complex that 

is hydrolysed very slowly, preventing further PG synthesis (Zapun et al., 2008). 
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Figure 1-11 Role of PBPs in cell wall synthesis where they display TGase and TPase activity 

(Zapun et al., 2008)   

The four PBPs in MSSA are present in the following approximate proportions: PBP1 

(17.1%), PBP2 (42.8%), PBP3 (13.7%) and PBP4 (26.4%) (Pucci and Dougherty, 

2002). Pucci and Dougherty (2002) found a re-shuffling of these proportions in MRSA 

strain RN450M, with the additional PBP2a making up a large proportion of PBP 

molecules (42.6%), followed by PBP2 (23.3%), PBP3 (10.2%), PBP4 (15.4%) and 

finally PBP1 (8.6%) .  

PBP1 is a native, mono-functional enzyme with regard to PG synthesis that belongs to 

HMW class B and is essential for staphylococcal growth. It possesses TPase function 

and is involved in septum formation and cell separation at the end of the division cycle 

(Pereira et al., 2007; Atilano et al., 2010). PBP1 is recruited to the septum by the GspB 

cytoplasmic protein (Claessen et al., 2008). Pereira et al. (2007) showed that, in the 

absence of PBP1, an incomplete septum was formed during division, producing cells of 

increased size and envelope thickness. It is speculated that both PBP1 and PBP2 are 

essential for cellular division in MSSA strains; however, in MRSA, division is 

dependent primarily on PBP2 and, in the presence of β-lactam agents, PBP2a (Pereira et 

al., 2009). 

PBP2 is a HMW class A bi-functional PBP with spatially well separated TGase and 

TPase domains (Llarrull et al., 2009). The TGase domain is responsible for catalysing 

the polymerization of the carbohydrate chain of PG and the TPase domain drives the PG 

cross-linking reaction (Llarrull et al., 2009). It is an essential PBP localised to the 

septum in a substrate-dependent manner, as it recognises the D-Ala-D-Ala terminus of 

translocated PG muropeptides (Atilano et al., 2010). At the septum, PBP2 interacts with 
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the division anchors FtsZ and EzrA as well as with PBP4 (Leski and Tomasz, 2005; 

Pinho and Errington, 2005; Steele et al., 2011). In the absence of PBP2, two 

monofunctional transglycosylases (MGT and SgtA) can normally take over the TGase 

function. MGT, but not SgtA, is essential for cell viability, as only MGT acts in 

isolation (Lovering et al., 2007). However, in MRSA cells exposed to a β-lactam 

antibiotic, MGT cannot replace the PBP2 TGase activity; thus, the PBP2 TGase 

function is essential for expression of the resistant phenotype of MRSA (Lovering et al., 

2007). 

PBP3 and PBP4 are not essential for MSSA cell viability and division (Atilano et al., 

2010). There is a lack of information on the functionality of the class B PBP3 in S. 

aureus; however, it has been shown to have 44% homology with PBP2a from B. subtilis 

where it is involved in cell elongation (Murray et al., 1997; Pinho et al., 2000). Deletion 

of PBP3 in MRSA cells produced abnormal growth in the absence of β-lactams, the 

presence of septation defects and an increase in resistance to methicillin (Pinho et al., 

2000). PBP4 on the other hand is a LMW class B PBP (Atilano et al., 2010). It is the 

only type-5 PBP that is not a strict DD-carboxypeptidase and is able to catalyse TPase 

reactions, producing the unusually high cross-linking seen in the PG of S. aureus 

(Matsuhashi et al., 1979). It has been speculated that PBP4 restricts the availability of 

pentapeptides from MurNAc strands for PG synthesis, removes the terminal D-Ala from 

the stem peptide and cross-links glycan chains through terminal D-Ala-D-Ala moieties 

(Sauvage et al., 2008). A study by Sieradzki et al. (1999) established that loss of PBP4 

leads to distortion of PG, resulting in increased chain length of glycan strands as well as 

decreased susceptibility to the PG hydrolase, lysostaphin. PBP2a is a fifth PBP found in 

MRSA and participates in one of two resistance mechanisms with respect to β-lactam 

antibiotics. 

1.3.5 MRSA resistance determinants 

Resistance of MRSA to β-lactam antibiotics is mediated primarily through a low-

affinity PBP, PBP2a, as well as through the expression of a β-lactamase with the 

capacity to hydrolyse methicillin and other β-lactam agents; there is also a lowering of 

affinity of endogenous PBPs for β -lactams (Figure 1-12) (Stapleton and Taylor, 2002).  
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Figure 1-12 Antibiotic resistance mechanisms in MRSA. (A) Decreased binding affinity of 

PBP2a for β-lactam antibiotics and (B) β-lactamases that hydrolyse antibiotics to an inactive 

form 

Staphylococci produce plasmid-encoded exo-enzymes that hydrolyse benzylpenicllin, 

ampicillin and the majority of other penicillins (Greenwood et al., 2007a). However, for 

MRSA, β-lactam resistance is primarily due to PBP2a; this protein is encoded by an 

exogenous DNA element staphylococcal cassette chromosome mec (SCCmec) 

containing the mecA operon (Berger-Bächi and Rohrer, 2002). A mecA homologue, 

mecC, has recently also been identified in MRSA isolates (Harrison et al., 2013). It has 

been suggested that the mecA-containing operon originated from S. sciuri, as a close 

homologue of PBP2a has been found in the species (Pinho et al., 2001b). The mecA-

containing operon is found within SCC, a large mobile element, which is able to 

integrate rapidly into the S. aureus chromosome in a site-specific manner at a location 

near the origin of replication (Llarrull et al., 2009). mecA is highly conserved in MRSA 

(>90 %) and PBP2a has less than 21% sequence homology with endogenous PBPs in S. 

aureus (Lim and Strynadka, 2002). β-lactam antibiotics acylate PBP2a at a rate one to 

three orders of magnitude slower than comparable acylation rates in native PBPs and it 

is this difference that confers β-lactam resistance (Pinho et al., 2001b). Elucidation of 

the crystal structure of PBP2a has provided an indication of a higher acylation 

efficiency (KD) for the non-covalent β-lactam-PBP2a complex and a lower rate of serine 

acylation following binding of members of this antibiotic class (Llarrull et al., 2009). A 

higher KD reflects a reduction in the accessibility of the PBP2a active site to β-lactam 

agents due to the blocking action of a loop (Llarrull et al., 2009). Another factor that 
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contributes to PBP2a resistance is a serine residue 403 in the protein’s narrow groove 

active site leading to the formation of an acyl intermediate, which in turn makes 

irreversible acylation reaction less favourable (Chambers, 2003). PBP2a lacks TGase 

activity and must functionally cooperate with PBP2 to continue PG synthesis in the 

presence of β-lactam antibiotics (Pinho et al., 2001b).  

Vancomycin has for a long time been the drug of last resort for the treatment of MRSA 

infections. However, both vancomycin intermediate (VISA) and vancomycin resistant 

(VRSA) S. aureus isolates have emerged in recent years, which has increased the need 

to develop novel therapeutic options (CDC, 2002). VRSA (MIC 16 mg/L) is associated 

with the expression of vanA resulting in reduced susceptibility to vancomycin and 

teicoplanin (Moubareck et al., 2009). This gene was most likely acquired from an 

enterococcus and it catalyses the synthesis of PG precursors terminating in D-Ala-D-

Lactate (D-Ala-D-Lac) rather than D-Ala-D-Ala, the target for vancomycin (Moubareck 

et al., 2009). 

Other treatment options for MRSA include linezolid and daptomycin (Liu et al., 2011), 

however resistance to both antibiotics has emerged. Linezolid resistance is associated 

with both a mutation in the 23S rRNA and a plasmid-mediated rRNA methyltransferase 

(Ziglam et al., 2005). Daptomycin is used primarily for the treatment of severe skin and 

soft tissue infections caused by MRSA; resistance has developed in some MRSA 

clinical isolates (Hayden et al., 2005). Daptomycin non-susceptible MRSA (MIC > 1 

mg/L) exhibit thicker cell walls, increased positive surface charge and altered 

membrane function, resulting in reduced surface binding of daptomycin (Hayden et al., 

2005). Additional treatment options include clindamycin and trimethoprim-

sulfamethoxazole; however, clinical data is lacking for these treatment options and 

clindamycin resistance has been detected (Liu et al., 2011). These resistance scenarios 

highlight the need for a re-evaluation of therapeutic approaches for the treatment of 

MRSA infections.  

1.4 Plant-derived alternative therapeutics 

With a decrease in recent screening for novel drug targets and drug discovery (Sams-

Dodd, 2005), an increased interest in the potential of plant derived products with 
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antimicrobial activity has been observed (Gibbons, 2004; Saleem et al., 2010). For over 

100 years chemical compounds have been isolated from medicinal plants as well as 

plant-derived medicines used to treat a variety of medical conditions (Shaw, 1998), 

including bacterial (Dixon, 2001) and parasitic infections (Paddon et al., 2013). 

However, the MICs of most plant derived extracts against bacteria remains high (>100 

mg/L) (Naz et al., 2012; Mohamed et al., 2013). Thus, attention has shifted to the study 

of synergism between antibacterial drugs and plant extracts and the ability of plant 

extracts to modify bacterial phenotypes (Betoni et al., 2006). One such plant extract, 

epicatechin gallate (ECg), a constituent of the green tea plant Camellia sinensis (C. 

sinensis), has the capacity to abrogate the resistance of MRSA to β-lactam antibiotics 

and may be useful as an adjunct to conventional chemotherapy (Stapleton et al., 2004).  

1.4.1 Green tea and its components 

C. sinensis was first cultivated in China and Japan and spread to the west by European 

traders in the 15
th

 and 16
th

 century (Forrest, 1985). A study conducted in 1985 indicated 

that tea was the most widely consumed beverage in the world after water (Graham, 

1992). Green tea and black tea stem from the same plant; however, unlike black tea, 

green tea is non-fermented and contains a higher concentration of pharmacologically 

active components (Lin et al., 2003). Green tea contains polyphenols that include 

flavanoids such as flavanols (e.g. catechins) and phenolic acids (Wang and Ho, 2009). 

Catechins, phenol-derived flavanoids, make up approximately 30% of the dry weight of 

green tea. Many health benefits have been associated with these compounds including 

antioxidative, anticarcinogenic and antimicrobial benefits (Graham, 1992; Taylor et al., 

2005).  

The main polyphenolic catechins in green tea are (+)-catechin, (+)-gallocatechin, (-)-

epicatechin, (EC) and (-)-epigallocatechin (EGC). Galloyl catechins present in the green 

tea leaf include (-)-epicatechin gallate (ECg), (-)-epigallocatechin gallate (EGCg), (-)-

catechin gallate (Cg) and (-)-gallocatechin gallate (GCg) (Taylor et al., 2005). The core 

structure of these catechins consists of two phenolic aromatic rings (designated A and 

B) substituted with hydroxyl groups (Figure 1-13). Structural variation is due to the 

presence or absence of a galloyl moiety and the number of hydroxyl groups on the B-

ring (Minoda et al., 2010). The A-ring is the site of carbonyl trapping, whereas the B-

ring is the preferred site of oxidation (Wang and Ho, 2009). 
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Figure 1-13 Structure of EC, EGC, ECg and EGCg 

There is good evidence that EC, EGC, ECg and EGCg are absorbed intestinally, as 

catechins ingested by rats were found to be concentrated in the portal vein (Okushio et 

al., 1996). Following absorption, catechins are rapidly metabolised. In rats, EGCg and 

ECg are excreted primarily in bile, whereas EGC and EC are excreted in both bile and 

urine (Chen et al., 1997). Overall, catechins have poor oral bioavailability due, in part, 

to the rapid degradation of the compounds caused by protonation of hydroxyl groups, 

release of the galloyl group by hydrolysis and further modifications including 

methylation and sulfonation (Chen et al., 2001; Lu et al., 2003; Manach and Donovan, 

2004). There are, however, health benefits associated with the consumption of green tea. 

1.4.2 Health benefits of green tea 

1.4.2.1 Antioxidant effect of catechins 

Green tea flavanoids protect cells and tissues from oxidative stress by a combination of 

iron chelation and free radical scavenging (Salah et al., 1995). Cellular oxidative stress 

is due to increased production of free radicals, leading to an imbalance between 

EC ECg 

EGC EGCg 
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oxidants and antioxidants that may result in cell damage and, in severe cases, apoptosis 

(Sies, 1991). Reactive oxygen species (ROS) are a common form of intracellular free 

radical. Catechins act as hydrogen donors, reducing ROS such as superoxide, peroxyl 

radicals and singlet oxygen (Guo et al., 1999). They also chelate metal ions such as 

copper and iron, preventing transition redox-active metals from catalysing free radical 

formation (Rice-Evans and Miller, 1996). Sung et al showed a significant increase in 

plasma antioxidant levels in patients who drank 300 mL of green tea containing 5 g of 

dry tea leaves (2000). Further, Langley-Evans (2000) showed that green tea possessed a 

2.5 fold greater antioxidant activity than black tea and both possessed higher antioxidant 

activity against peroxyl radicals than vegetables such as spinach and garlic. EGCg and 

ECg have the highest radical scavenging activity (Henning et al., 2003).  

1.4.2.2 Effects on cardiovascular diseases 

Green tea may have a beneficial impact on cardiovascular diseases (CVDs). CVDs are a 

major cause of morbidity and mortality worldwide and are often associated with obesity 

(WHO, 2013). A study in 2000 revealed that green tea consumption significantly 

reduced the risk of CVD-related mortality; especially within the male study cohort 

(Nakachi et al., 2000). A more recent study in Japan quantified the green tea effect on 

CVDs in a population of 40,530 adults and showed that consumption of five or more 

cups of green tea daily reduced CVDs by 26%, with the strongest reduction in the 

occurrence of strokes (-37%), particularly cerebral infarctions (-51%) (Kuriyama et al., 

2006). The inverse relationship between green tea consumption and CVDs remained as 

significant after adjustment for age, physical activity, diet, education and job status 

(Kuriyama et al., 2006).    

1.4.2.3 Anti-carcinogenic effects of catechins  

Another potential health benefit associated with green tea resides is the capacity of 

catechins to suppress tumour cell growth in vitro and in vivo. Treatment of carcinoma 

cell lines with EGCg has shown that exposure initiates apoptosis and cell cycle arrest in 

the G0/G1 phase (Gupta et al., 2000). Furthermore, EGCg inhibits protein kinase C-α, 

inhibiting cell proliferation. It also inhibits transcription factors such as nuclear factor-

kB and suppresses vascular endothelial growth factors, leading to inhibition of 

angiogenesis (Livneh and Fishman, 1997; Gupta et al., 2000; Adhami et al., 2003). 
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Tumor cell suppression by catechins has been demonstrated in prostate (Adhami et al., 

2003), esophageal (Gao et al., 1994), stomach (Vainio and Hemminki, 1989), skin 

(Meeran et al., 2009), breast (Bigelow and Cardelli, 2006), ovarian (Spinella et al., 

2006), lung (Lu et al., 2008) and pancreatic cancers (Qanungo et al., 2005).  

1.4.2.4 Antimicrobial effects of catechins 

Catechins possess antibacterial, antiviral and antifungal activities. Weak antibacterial 

properties of catechins, in particular, EC, ECg, EGC and EGCg have been demonstrated 

against Gram-positive and Gram-negative bacteria (Hamilton-Miller, 1995; McKay and 

Blumberg, 2002; Cho et al., 2008). For example, weak in vitro activity (MIC50 8-16 

mg/L) against Helicobacter pylori (Stoicov et al., 2009) and the inhibition of 

Pseudomonas aeruginosa growth by EGCg has also been observed. Catechins have also 

been investigated for potential synergy with antibiotics for the treatment of MRSA 

infections (Zhao et al., 2001; Liu et al., 2013). ECg sensitise MRSA to β-lactam 

antibiotics by disruption of the resistance machinery (Bernal et al., 2010).  

The antiviral effect of catechins has been explored in human immunodeficiency virus 

(HIV) and influenza virus infections. Fassina et al. (2002) demonstrated that EGCg 

caused inhibition of HIV infection and viral replication by inactivation of casein kinase 

II, which is responsible for the phosphorylation and activation of HIV-1 reverse 

transcriptase. A combination of EGCg and ECg inhibits replication of influenza virus by 

suppression of RNA synthesis (Song et al., 2005). In addition, catechins possess activity 

against the yeast Candida albicans and sensitise resistant fungi to amphotericin B 

(Hirasawa and Takada, 2004). 

1.5 Effect of ECg on MRSA  

Yam et al. (1998) analysed the capacity of green tea extracts to sensitise MRSA to β-

lactam antibiotics and observed that the extracts were able to reverse methicillin 

resistance. The study suggested that the synergistic effect of the green tea extracts and 

β-lactam agents is due to catechin-mediated inhibition of PBP2a synthesis and β-

lactamase secretion. However, later studies indicated that ECg has a more complex and 

multi-factoral effect on MRSA (Stapleton et al., 2007; Bernal et al., 2010).  
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12.5 mg/L of ECg reduces the oxacillin MIC of MRSA strains, including EMRSA-16, 

to below the therapeutic breakpoint (Stapleton et al., 2006). This is in contrast to non-

galloylated catechins that do not reduce the MIC as significantly, which may be 

explained by the difference in ability to penetrate the staphylococcal membrane. ECg 

along with EGCg intercalate deep into the cytoplasmic membrane with ECg penetrating 

deeper into the membrane than EGCg (Hashimoto et al., 1999). On the other hand non-

galloylated catechins, such as EC, remain at a superficial location within the membrane 

bilayer (Stapleton et al., 2006). The affinity of catechins for the MRSA membrane is 

dependent on the galloyl moiety and the number of hydroxyls on the B-ring, with fewer 

hydroxyl groups resulting in a more lipophilic compound facilitating deeper 

intercalation into the membrane (Minoda et al., 2010). The binding capacity of ECg to 

the MRSA membrane can be enhanced by the presence of EC; however EC exposure 

alone had no effect on the bacterium (Caturla et al., 2002; Stapleton et al., 2006). 

Exposure of MRSA cells to ECg has a significant impact on the cellular morphology of 

MRSA. The cells are transformed from round, loosely clumped cocci with a smooth 

surface to larger, clumped cells with a rougher exterior surface (Figure 1-14) (Bernal et 

al., 2009). A further study with radiolobelled ECg, showed that 58% of the label was 

associated with the cytoplasmic membrane and 31% with the cell wall. Membrane 

intercalation of ECg produced an initial decrease in membrane fluidity followed by an 

increase in fluidity as the cells overcompensated (Bernal et al., 2009). Intercalation also 

led to tighter acyl chain packing and a reorganisation of the cell membrane with a 

reduction in lysophosphotidyl glycerol (6.5% to 1.5%) and an increase in branched 

chain fatty acid moieties of the membrane phospholipids (Bernal et al., 2010).  

Further effects of ECg on EMRSA-16 cell wall composition include a 5-10% reduction 

in PG cross-linking as well as and a 50% decrease in D-Ala substitution of WTA 

(Stapleton et al., 2007; Bernal et al., 2009). Furthermore, ECg reduced the net positive 

charge of the cells, leading to inhibition of biofilm formation as a consequence of 

electrostatic repulsion (Stapleton et al., 2007) as well as an increased retention of 

autolysins in the cell wall (Bernal et al., 2010).  
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Figure 1-14 (a and b) SEM and (c and d) TEM of control (a and c) EMRSA-16 and (b and d)  

EMRSA-16 exposed to 12.5 mg/L ECg. EMRSA-16 were grown to mid-logarithmic phase (from 

Bernal et al., 2009) 

MRSA responds to ECg exposure by attempting to preserve or repair the cell wall and 

membrane. Up-regulation of 103 genes and down-regulation of a further 166 genes 

following bilayer intercalation of ECg has been noted (Bernal et al., 2010). Up-

regulated genes included those for cation transport and binding, electron transport, β-

lactamase expression, shape determination and pathogenesis proteins. Additionally, 

ECg induced expression of genes belonging to the general cell wall stress stimulon 

governed by vraR/vraS. Furthermore, genes encoding osmotic shock proteins, 

membrane export proteins, ion transport proteins, lipoproteins and multiple 

pathogenesis associated proteins were down regulated (Bernal et al., 2010).  

1.5.1 Effect of ECg on MRSA division proteins  

Intercalation of ECg into the staphylococcal cytoplasmic membrane alters the lipid 

environment in which the divisome proteins reside. ECg does not bind to PBPs; 

however, it elicits indirect effects on these proteins (Bernal et al., 2010). There is a 

small reduction in the expression of PBP1 and PBP3 and delocalisation of PBP2 (Bernal 

et al., 2010). Previous studies revealed that PBP2a expression is still detected when 
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MRSA cells are sensitised to β-lactams with ECg. It has therefore been hypothesised 

that this reversal of resistance is due to either displacement of PBP2a, along with PBP2, 

from the division septum or that there is a functional disruption of the PBP2/PBP2a 

resistance complex (Stapleton et al., 2004; Bernal et al., 2010).  

1.6  Membrane proteins 

In order to study the effect of ECg on the functional integrity of the PBP2/PBP2a 

resistance complex, the membrane protein complexes first need to be isolated and 

detected. PBP2/PBP2a is a theoretical, highly unstable and transient complex. Current 

methods to solubilise membrane proteins primarily involve surfactants that are not ideal 

for solubilising membrane proteins in a functional state.  

Membrane proteins make up 30% of the total cell protein content and account for more 

than 50% of current drug targets (Hong et al., 2011). A frequent obstacle encountered 

when working with membrane proteins is the difficulty in solubilising the protein in a 

functional state. Most membrane proteins possess highly hydrophobic exterior domains 

that are associated with lipids and hydrophilic interior domains that often act as ion 

channels and transporters (Jamshad et al., 2011). The relative hydrophobicity of the 

different domains regulates correct protein folding, function and stability by controlling 

the interactions of the protein with the aqueous membrane exterior, the hydrophobic 

membrane interior and the charged membrane lipid head groups (Jamshad et al., 2011). 

However, this property also means that membrane proteins do not stay in a functional 

monomeric form in aqueous buffer due to the tendency of hydrophobic moieties to 

minimise the number of water molecules associated with the hydrophobic domains, 

leading to protein aggregation and precipitation (Popot, 2010).  

1.6.1 Surfactant-mediated protein extraction 

Surfactants are amphipathic substances with a hydrophilic head group and a 

hydrophobic tail that disintegrate the lipid bilayer while incorporating the proteins into 

surfactant micelles (Helenius and Simons, 1975). In order for this to occur, protein-lipid 

and protein-protein interactions that anchor membrane proteins to the membrane are 

disrupted and replaced with surfactant molecules that disrupt membrane protein 

complexes (Popot, 2010). Surfactants accomplish this disruption by stressing the 
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membrane-water interface, leading to the planar membrane structure becoming 

unfavourable and subsequently dispersing the membrane constituents into multiple 

micelles (Popot, 2010).  

The major problem with the use of surfactants for membrane protein solubilisation is 

the large difference between the conformation of the protein in micellar environments as 

opposed to their native membrane environment (Rajesh et al., 2011). Small changes in 

the nature of head groups and acyl chains within phospholipid bilayer have significant 

effects on the physical properties of the membrane, which directly affect the embedded 

proteins and their functional interactions (Debnath et al., 2011). Individual membrane 

proteins are normally associated with specific lipids in the membrane for maintenance 

of correct folding and function (Lee, 2005). In a surfactant micellar environment, the 

absence of normally bound lipids as well as a diminished lateral pressure, may affect the 

stability and functionality of membrane proteins leading, to rapid inactivation (Zhou et 

al., 2001).  

 

Figure 1-15 Protein encapsulation methods produce: (A) bicelles, (B) amphipols and (C) 

nanodiscs.  Lipids bilayer in blue with bicelles, amphipols and nanodisc membrane scaffold 

proteins in red (from Jamshad et al., 2011) 

As a consequence, alternative methods have been developed to create a less 

destabilising environment after surfactant extraction; these include adopting procedures 

to decrease the concentration of surfactant or transfer of membrane proteins to less 

aggressive environments, including bicelles, amphipols and nanodiscs, depicted in 

figure 1-15.  

1.6.2 Bicelles  

Bicelles are a mix of surfactants such as DMPC or CHAPS with short chain lipids that 

form highly curved discoidal structures (Sanders and Prosser, 1998). At optimised lipid 

A B C 
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to surfactant ratios, disc-like structures form with a lamella lipid layer surrounded by 

non-bilayer forming lipids as depicted in figure 1-15 (Jamshad et al., 2011). The draw-

back to this method of extraction is that it is not possible to form bicelles directly from 

biological membranes; instead, a surfactant extraction step is necessary prior to bicelle 

formation (Jamshad et al., 2011). 

1.6.3 Amphipols 

A second encapsulation method for membrane proteins are amphipols: amphipathic 

polymers containing hydrophobic side chains with a hydrophilic backbone (Popot, 

2010). Amphipols are milder than surfactants and proteins are usually in a more stable 

form after encapsulation in an amphipol compared to surfactant solutions; however, 

surfactant extraction is still required before encapsulation in most cases (Popot, 2010). 

The method is highly dependent on precise concentrations and very small errors can 

result in amphipol aggregation and thus insufficient protein solubilisation (Picard et al., 

2006). A second problem concerning amphipols is that they can cause functional 

inhibition of proteins as demonstrated by Picard et al. (2006); they demonstrated that 

amphipols interfered with the intrinsic ATPase activity of the eukaryotic sarcoplasmic 

reticulum Ca
2+

-ATPase protein. 

1.6.4 Nanodiscs 

Nanodiscs have been used to stabilise membrane proteins after surfactant removal 

(Bayburt and Sligar, 2002). Nanodiscs are discoidal nanometer-sized phospholipid 

bilayers encircled by an engineered amphipathic, helical membrane scaffold protein 

(Figure 1-15), which self-assembles to reconstitute membrane proteins within a semi-

native membrane (Bayburt and Sligar, 2002; Borch and Hamann, 2009). The nanodisc 

membrane environment is believed to better reflect that of complex biological 

membranes, allowing easier integration of membrane proteins and maintenance of the 

folded structure (Shaw et al., 2004). Further advantages of nanodiscs over other 

methods are that they have a more monodisperse and consistent size and are more stable 

over time due to the presence of the protein belt (Shaw et al., 2004). However, 

nanodiscs are expensive to produce, membrane proteins must first be solubilised with 

surfactants and once the membrane proteins are captured it is difficult to remove them 
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for experimentation (Jamshad et al., 2011). The major advantages and disadvantages of 

membrane protein solubilisation methods described are listed below in table 1-1.  

Table 1-1 Advantages and disadvantages of membrane protein solubilisation studies 

Solubilisation 

method 
Advantage Disadvantage 

Surfactants Size homogeneity 

Causes for decrease in lateral 

pressure 
 

Can lead to inactivation of 

membrane proteins 
 

Associated lipids are disrupted 
 

Concentrations below CMC 

results in membrane protein 

aggregation 

Bicelles Suitable for many 

biophysical studies  

Surfactant solubilisation needed 

prior to membrane protein 

insertion 

 

Limited choice of lipid 

combinations  

Amphipols 
Size homogeneity 
 

Maintains membrane 

protein lateral pressure 

Surfactant solubilisation needed 

prior to insertion of membrane 

proteins 

Nanodiscs 

Size homogeneity  
 

Native lipid environment 
 

Maintains membrane 

protein lateral pressure 

Membrane scaffold protein 

(MSP) can interfere with 

functional studies of membrane 

proteins 
 

Surfactant solubilisation needed 

prior to formation 

 

Despite the above listed drawbacks, these methods have greatly improved the field of 

membrane protein research; however, a method that both extracts and solubilises 

membrane proteins in a semi-native state for downstream analysis is yet to be widely 

available. A recent development that addresses this issue is the use of styrene maleic 

acid lipid co-polymer or ‘SMALPs’ (Knowles et al., 2009) 
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1.7 Use of SMALPs to solubilise membrane proteins 

Poly (styrene-co-maleic acid) (SMA) (Figure 1-16) has been used widely in the 

engineering of plastic film coverings and has received limited use in cosmetic products 

such as UV radiation protection and anti-aging products (Tonge, 2006; Pompe et al., 

2003). However, in recent years the use of low molecular weight SMA for membrane 

solubilisation has been adopted (Tonge and Tighe, 2001; Tonge, 2006; Knowles et al., 

2009).  

 

Figure 1-16 Styrene/maleic acid co-polymer (Tonge, 2006) 

SMA is an amphipathic polymer composed of alternating maleic acid (hydrophilic) and 

styrene (hydrophobic) moieties that are soluble in water at neutral and alkaline pH but 

insoluble at a lower pH due to protonation of the maleic acid moiety (Tonge, 2006; 

Jamshad et al., 2011). Thus, SMA is a hypercoiling polymer that is sensitive to 

environmental pH (on/off switch) due to the balance between charge repulsion and 

hydrophobic interaction, enabling the polymer to transition from a charged extended 

state at low pH to a collapsed uncharged coil structure at neutral or higher pH (Tonge 

and Tighe, 2001). These properties enable SMA to auto-assemble at neutral or alkaline 

pH into a biological membrane to form discoidal structures around membrane proteins 

and their associated lipids (Tonge, 2006). Abundant membrane proteins including 

bacteriorhodopsin (bR) and PagP, have been successfully solubilised in SMA to 

produce SMALPs containing membrane proteins (Knowles et al., 2009). The 

solubilised membrane proteins exhibited native function and correct folding as 

determined by circular dichroism, analytical ultracentrifugation and differential 

scanning calorimetry (Knowles et al., 2009).   

The SMALPs method is superior to previous membrane protein solubilising procedures 

as it effects solubilisation of membrane proteins and protein complexes in a semi-native 
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state together with associated lipids to maintain correct folding and function without the 

use of surfactants. The method is still in early development with very few proteins 

(primarily from Gram-negative bacteria) solubilised thus far. However, it has great 

potential for solubilising single membrane proteins and may have potential for the 

extraction of functional membrane protein complexes such as the transient PBP2/PBP2a 

complex in MRSA. 
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1.8 Aims and Objectives 

MRSA infections remain a significant health concern, both in hospital and community 

settings. The development of truly novel antibiotics has slowed significantly over the 

last half-century and we should consider alternative treatment strategies in order to 

overcome bacterial resistance to antibiotics. The use of compounds such as ECg to 

sensitise resistant organisms, including MRSA, to existing antibiotics is a strategy that 

is worthy of investigation. A deeper understanding of the mode of action of ECg with 

respect to its capacity to abrogate β-lactam resistance will underpin efforts to develop 

this molecule, or one of its bioactive analogues (Anderson et al., 2011) as a ‘modifier’ 

to be used in combination with a conventional antibiotic. At present, it is not possible to 

fully account for the ECg-induced MRSA phenotype, in particular the restoration of full 

β-lactam susceptibility. For this profound change to occur, it is assumed that the cell 

replication machinery is directly compromised. In the presence of oxacillin, MRSA 

replication continues through the cooperative action of PBP2 and PBP2a which, it has 

been speculated, forms part of a multi-enzyme complex (Bernal et al., 2009; Bernal et 

al., 2010). The intercalation of ECg into the cell membrane of MRSA may disrupt 

PBP2/PBP2a functionality and disperse the protein complex. Bernal et al. (2010) 

showed that ECg does not interfere with PBP2a directly but partially delocalises PBP2 

from the site of replication. The native membrane environment is altered by 

intercalation of ECg, inducing changes in the lipid composition of the cell membrane, 

and thus may provide an incompatible environment for the maintenance of the multi-

enzyme replication machinery. If the PBP2/PBP2a complex is disrupted this could, at 

least in part, account for the sensitisation of MRSA to oxacillin by ECg. 

The overall aim of this study was to increase understanding of the mechanism of MRSA 

sensitisation to β-lactams by ECg. The objectives of this work were to: 1) develop a 

method utilising SMA to probe and capture the PBP2/PBP2a complex in a semi-native 

state inside SMALPs; 2) investigate if ECg disrupts the functionality of the complex 

and other relevant proteins involved at the site of division that may be involved in ECg-

mediated MRSA sensitisation to oxacillin. 
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2.2 Introduction 

Yam et al. (1998) noted the sensitisation of MRSA to β-lactams by aqueous extracts of 

green tea, demonstrating a decrease in the MIC of β-lactam antibiotics. MRSA cells 

show significant morphological change after exposure to ECg, as described in section 

1.4; failure of daughter cells to separate normally after cell division may be indicative of 

changes to the environment within the membrane surrounding the division proteins. 

Markedly reduced β-lactam resistance may also indicate alterations in PBP2a function 

to confer β-lactam resistance on strains bearing this protein. Bernal et al. (2010) 

demonstrated partial displacement of PBP2 from the division septum after sensitisation 

by ECg. These data suggest that ECg physically disrupts the PBP2/PBP2a component of 

the PG biosynthetic machinery and forms the basis of current hypotheses to account for 

the action of ECg. 

2.2.1  The PBP2/PBP2a complex 

Induction with a β-lactam antibiotic such as oxacillin may be necessary to ensure full 

functional expression of the PBP2/PBP2a complex (Bernal et al., 2010). In the presence 

of oxacillin, PBP2 and PBP2a functionally cooperate to continue replication after the 

active site of the TPase domain of PBP2 has been acylated by the antibiotic (Pinho and 

Errington, 2005). 

 

Figure 2-1 Cooperative function of PBP2 and PBP2a in the presence of oxacillin. Oxacillin 

binds to the active site of PBP2 and inhibits TPase activity; PBP2a, with a low affinity for 

oxacillin, cooperates with the TGase domain of PBP2 to allow continued cell replication 
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As described in section 1.2.5, PBP2a has low affinity for β-lactam antibiotics due to 

structural features around the active site that include a groove and a loop that cover the 

active site as shown in figure 2-1, allowing TPase activity to continue in the presence of 

β-lactam agents (Pinho and Errington, 2005). In the absence of β-lactam agents, PBP2 

alone can provide TPase and TGase activity for cell replication (Pinho and Errington, 

2005). This chapter describes the optimisation of oxacillin treatment of MRSA in order 

to observe PBP2/PBP2a complex formation. 

2.2.2 Use of surfactant to probe for the PBP2/PBP2a complex 

Surfactants provide inexpensive and widely available reagents for protein solubilisation 

to study membrane proteins, including PBP2 and PBP2a (see 1.5.1). Surfactants possess 

both hydrophobic and hydrophilic groups and enable solubilisation of membrane 

proteins; however, they have a higher degree of hydrophilicity compared to biological 

membranes (Helenius and Simons, 1975). Triton X-100 (octylphenol ethylene oxide 

condensate) is an inexpensive, nonionic, surfactant widely used in protein 

solubilisation; it has a critical micelle concentration (CMC) of 0.3 (Smith, 2011).  

Below the CMC, detergent penetrates into the lipid bilayer but cannot form micelles; 

above the CMC the detergent disrupts the bilayer to form mixed micelles (Luckey, 

2008). In order to rule out the use of simple surfactants for the capture of the 

PBP2/PBP2a complex, Triton X-100-induced membrane protein solubilisation was 

undertaken. 

2.3 Material and methods 

2.3.1 Bacterial strains and reagents 

EMRSA-16 was provided by Jeremy Hamilton-Miller of the Royal Free University 

College London Medical School (RFUCMS). CA-MRSA strain USA-300 (ATCC 

BAA-1556) was purchased from the American Type Culture Collection and MSSA 

strain BB255 from the National Collection of Type Cultures (NCTC 8325). E. coli 

BL21 over-expressing his6-tagged PBP2 was a gift from Simon Foster (University of 

Sheffield, UK) and ECg was a gift from Mitsui Norin (Tokyo, Japan). Anti-PBP2a Ab 

was purchased from My Biosource (San Diego, CA, USA). 
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2.3.2 Growth requirements 

The bacteria were grown in Mueller-Hinton Broth (MHB) (Oxoid Ltd., Basingstoke, 

UK) with aeration and constant agitation at 37 °C. ECg was dissolved in 50% ethanol 

and added to MHB to a final concentration of 6.25, 12.5 or 25 mg/L, depending on the 

application. 

2.3.3 MIC 

The microbroth dilution protocol from the Clinical and Laboratory Standards Institute 

(CLSI) guidelines (CLSI, 2008) was used for susceptibility testing. The microbroth 

dilution assay was favoured over the macrodilution procedure: it is undertaken in U-

shaped 96-well plates and requires smaller volumes of test compound. Broth 

microdilutions were performed in 96-well U microtitre plates (Bibby Sterlin Ltd., Stone, 

UK) and the plates incubated overnight at 37 °C.   All stock concentrations of 

antibiotics were sterilised with a 0.22 µm syringe filter (Millipore Corporation, 

Billerica, MA, USA). 

Figure 2-2 U-shaped 96 well plate for MIC determination of test antibiotic oxacillin (OXA). In 

the first column, medium control: 200 µL MHB was added, control of OXA: 200 µL of OXA 

with no bacteria, and in control for bacteria: 100 µL bacterial solution with 100 µL of 

antibiotic at a concentration known to kill the bacteria 

For each experiment, stock solutions of antibiotics or catechins were diluted to the 

required concentration (double the starting MIC in the twelfth column as indicated in 

 

uμL 

LL 
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(Figure 2-2) in MHB supplemented with 2% NaCl to enhance expression of β-lactam 

resistance: 200 µL of the desired concentration of antibiotic or ECg was dispersed into 

column twelve (Figure 2-2). One hundred microlitres of MHB was added to the 

remaining wells in columns two to eleven. Two-fold serial dilutions of oxacillin or ECg 

were prepared over the ranges 1 - 1024 mg/L or 0.0625 - 32 mg/L.  

Bacterial suspensions were grown to an optical density equivalent to 0.5 McFarland 

(BioMerieux SA, Marcy l’Etoile, France) at 37 °C as outlined in the CLSI guidelines. 

The inoculum was diluted to a final density of approximately 5 x 10
5
 CFU/mL and 100 

µL added to the wells (final volume of 200 µL). The plates were sealed with a plastic lid 

and incubated overnight at 37 °C. The final inoculum density (CFU/mL) was verified 

by culture of serial dilutions on MH agar (MHA) plates with overnight incubation at 37 

°C.   

The MIC was determined as the lowest concentration of compound that prevented 

visible bacterial growth after 16 - 20 h (Swenson and Ferraro, 2008).  Various 

concentrations of ECg and salt (1 - 2% NaCl) were tested and experiments were 

performed in triplicate.  

2.3.4 Morphology 

For electron microscopy (EM), bacteria from 50 mL mid-logarithmic phase cultures 

were collected by centrifugation (5,000 g, 10 min, 4 °C), washed twice with PBS, fixed 

with 1.5% glutaraldehyde (VWR, Leicestershire, UK) and incubated at RT for 2 h. 

Samples were washed with 1 mL of 70% ethanol followed by 1 mL 100% ethanol then 

500 µL of 100% ethanol. Cells were gold-coated and examined with a FEI XL30 

scanning electron microscope (SEM) (Philips Electron Optics, Eindhoven, 

Netherlands). EM was undertaken with guidance and advice from Mr David McCarthy 

(UCL School of Pharmacy, London).  

2.3.5 Nascent PG investigation 

To examine septal cell wall synthesis in EMRSA-16, fluorescent (FL) labelled 

vancomycin was used to label the nascent cell wall. In Gram-positive cocci, cell wall 

synthesis occurs only at the septum, and once the septum is formed, it is subsequently 



Antibiotic susceptibility, cell morphology and surfactant protein extraction 

 

 Chapter two 69   

  

cleaved to establish the new hemispherical poles of the daughter cells (Pinho and 

Errington, 2003). There is evidence that ECg alters the division of EMRSA-16 cells and 

this assay was designed to investigate alterations to the site of division. 

FL vancomycin (Bodipy FL) preferentially labels nascent cell wall by binding to D-Ala-

D-Ala residues at the carboxy terminus of the PG precursor (Pinho and Errington, 

2003). The problem with using Bodipy FL is that the S. aureus cell wall contains a large 

number of D-Ala-D-Ala residues in the mature cells, resulting in fluorescent labelling of 

the entire cell wall and septum of exponential S. aureus, confounding identification of 

nascent PG. EMRSA-16 nascent PG was labelled according to Pinho and Errington 

(2003) as follows: bacteria were grown in MHB containing 0.125 M D-serine (Sigma, 

Dorset, UK) in order to replace the carboxy terminal D-Ala residue of PG precursors 

with D-serine. This procedure does not alter the muropeptide composition of PG, except 

for a decrease in the level of highly-linked oligomerised peptides, which has little effect 

on cell growth (Pinho and Errington, 2003).  

Fifty millilitres of this growth medium were inoculated from an overnight culture; in 

some experiments, 12.5 mg/L ECg was added. Cells were grown at 37 °C with constant 

agitation until the OD600 reached 0.6, harvested by centrifugation (5000 x g, 10 min, 4 

°C) and suspended in fresh MHB without D-serine, allowing incorporation of D-Ala into 

the cell wall and enabling identification of nascent PG with Bodipy FL. Cells were 

incubated for 30 min at room temperature (RT) and 1 mL of culture incubated in the 

dark with 0.15 mg/L Bodipy FL vancomycin (Sigma) for 10 min at 37 °C. Cells were 

washed twice with MHB, suspended in 100 µL MHB and vortexed to ensure 

homogeneous distribution of cells; 2 µL was then injected into a drop of 1% overlay 

agarose (Bio-Rad, Hecules, CA, USA) on a polylysine slide (VWR), a coverslip placed 

over the suspension and bacteria examined with a Zeiss Axio Observer fluorescent 

microscope (Zeiss, Oberkochen, Germany). Images were analysed with AxioVision 

software (Zeiss). 

2.3.6 Expression of recombinant PBP2 in E. coli for Ab generation 

As a commercial PBP2 Ab is not available, purified PBP2 protein was produced from 

anti-serum against this protein in a rabbit. E. coli BL21 cells, containing a his6-tagged 
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PBP2 construct (plasmid pGL600) (figure 2-3), were grown to mid-log phase in MHB 

containing 50 mg/L ampicillin at 37°C with constant aeration.  

 

Figure 2-3 Gene map of plasmid pGL600 with the AmpR resistance gene and PBP2 gene 

PBP2 expression was induced by addition of isopropyl-β-D-thiogalactopyranoside 

(IPTG) (Melford, Suffolk, UK), a synthetic analogue of lactose that inactivates the lac 

repressor on the operator and induces expression of his6-tagged PBP2. IPTG was added 

to a final concentration of 1 mM and the mixture incubated for 4 h at 37°C. Cells were 

harvested by centrifugation (5000 g, 10 min) at 4 °C. The pellet was frozen and 

subsequently suspended in Buffer A (20 mM Na2-PO4, 300 mM NaCl pH 7.4), 

sonicated (3 x 10 sec) and centrifuged at 18,000 rpm for 25 min (Beckman JA20 rotor, 

Beckman Coulter, High Wycombe, UK). The pellet was suspended in Buffer A 

containing 8 M urea and, following centrifugation (12000 rpm, 4 °C, 30 min), the 

supernatant (cell lysate) was sterilised with a 0.22 μm syringe filter (Millipore 

Corporation, Billerica, MA, USA) and subjected to IMAC midi purification (Pro-Chem 

Inc, MA, USA) following manufacturer’s instructions.    
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Pre-packed Ni-imidazole resin midi plug was inserted into the Proteus spin column 

barrel and the columns equilibrated with 10 mL binding buffer (50 mM Na2-PO4, 300 

mM NaCl, 10 mM imidazole, 8M urea, pH 7.4) by centrifugation (500 g, 4 °C, 3 min) 

(Beckman Coulter). Twenty millilitres of the filtered cell lysate was dispensed into the 

spin column, which was centrifuged (150 g, 4 °C, 30 min). The column was washed 

three times with 10 mL wash buffer (50 mM Na2-PO4, 300 mM NaCl, 30 mM 

imidazole, 8M urea, pH 7.4) by centrifugation (500 g, 4 °C, 3 min) to remove non-

tagged proteins that lack affinity for the immobilized Ni-imidazole metal resin. His6-

tagged PBP2 was eluted from the resin into a new centrifuge tube with 10 mL elution 

buffer (50 mM Na-PO4, 300 mM NaCl, 300 mM imidazole, 8M urea, pH 7.4) by 

centrifugation (500 g, 4 °C, 3 min). Elution was performed twice for each column. 

Elution buffer containing the protein was filtered through a 3,000 mw 20 mL viva spin 

column (Sartorius AG, Göttingen, Germany) at 3000 g for intervals of 15 min at 4 °C 

with the addition of 50 mM Na2-PO4 buffer containing 300 mM NaCl at pH 7.4 to 

remove imidazole and any residual metal ions that may cause irreversible precipitation 

of the protein when stored at -20 °C. Finally, the solution was concentrated to 1 mL by 

centrifugation and the purity of purified PBP2 confirmed by SDS-PAGE. This 

procedure was repeated until a 2 mg/mL solution of PBP2 was attained. Antiserum 

against the purified PBP2 was commercially generated by Bioserv Ltd (University of 

Scheffield, UK) using 2 mg/mL protein concentration per rabbit for the production of 

anti-serum. 

2.3.7 Membrane protein solubilisation with Triton X-100 

Steps were taken to minimise deleterious effects to the proteins. As membrane proteins 

have a low abundance, relatively large volumes of bacterial culture are required to 

obtain adequate amounts of protein (Van Jagow et al., 1994). Due to their hydrophobic 

nature, aggregation of membrane proteins is likely to occur and relatively high 

concentrations of surfactants, usually in the range 0.5 - 5% (v/v), are required 

(Schimerlik, 2001). Further, following protein solubilisation, membrane proteins are 

prone to protease degradation. Addition of metal chelators such as ethylenediamine 

tetraacetic acid (EDTA), an inactivator of metalloproteases (protease enzymes with 

catalytic activity dependent on the presence of metals) through the removal of zinc that 

is essential for their activity, will aid minimisation of protein degradation. Another 

protease inhibitor, phenylmethyl sulfoncyl fluoride, an inhibitor of serine proteases, 
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may also be employed. Purification at 4 °C and addition of sodium azide to minimise 

proteolysis as a result of microbial growth will also aid recovery of intact membrane 

proteins (Smith, 2011).      

One litre of EMRSA-16 was grown to late exponential phase (OD600 ~ 0.8) in MHB at 

37 °C with constant shaking and aeration. For PBP complex analysis, 4 mg/L of 

oxacillin was added to the culture for 10 min once the desired OD600 was reached in 

order to induce the resistance complex. Cells were collected by centrifugation (5,000 g, 

10 min, 4 °C), washed once with PBS (Oxoid Ltd) and suspended in 1 - 4 mL of ice-

cold distilled water. The cells were disrupted using a fast prep cell distribution system 

FP120 (Thermo Fischer Scientific) (40 s, power setting 6) and cell wall debris removed 

by centrifugation (5000 rpm, 10 min, 4 °C). The cytoplasmic membrane fraction was 

recovered by ultracentrifugation (Beckman Optima MAX ultracentrifuge) of the 

supernatant at 130,000 g for 1 h at 4 °C and the pellet suspended in 200-1000 µL of 10 

mM Tris-HCl, pH 7 containing 2% (v/v) Triton X-100 (Sigma), depending on the size 

of the starting culture, to release membrane proteins. Protein concentration was 

determined using the Bradford Protein Assay (Bio-Rad). Briefly, Bradford reagent was 

diluted 1:5 in water and bovine serum albumin (BSA) standards prepared over the 

concentration range 0.1 - 1 mg/mL. Samples (20 µL) were added to 1 mL of diluted 

Bradford reagent and mixed twice by inversion. After five min at RT, absorbance was 

determined at 595 nm and protein concentration calculated from the BSA standard 

curve. 

2.3.8 PBP analysis 

2.3.8.1 Cross-linking with 3,3´Dithiobis [sulfosuccinimidylpropionate] 

(DTSSP) and 1% formaldehyde 

Two cross-linkers, DTSSP (Thermo Fischer Scientific) and formaldehyde (BDH 

Laboratory Supplies, Poole, UK), were used in attempts to recover PBP2/PBP2a 

complexes from EMRSA-16. DTSSP is a reversible homo-functional thiol-cleavable 

cross-linker that reacts with primary amines, forming bonds that result in the release of 

N-hydroxysuccinimide (Vollmer, 2006). The advantage of DTSSP over the functionally 

related cross-linker dithiobis (succinimidylpropionate) is its water solubility (Vollmer, 

2006). DTSSP cross-links closely associated proteins by virtue of a 12 Å spacer arm 
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and establishes an internal disulfide bond between two proteins in proximity of less than 

1.2 nm. The cross-linker is cleavable with 5% β-mercaptoethanol (Sigma). Cell 

membrane proteins prepared as described in section  2.3.7 were cross-linked with 

DTSSP prior to protein-protein pull down assays. DTTSP was dissolved to a final 

concentration of 10 mM in 200 µl of protein solution (~ 1.0 mg/mL protein) and 

incubated at 4 °C for 30 min. The cross-linking reaction was quenched by addition of 

2.5 µL of 1 M Tris, pH 7.5 and the mixture incubated for 15 min at 4 °C (Bennett et al., 

2000). Prior to loading the protein sample for SDS-PAGE, the cross-linker was cleaved 

by addition of 5% β-mercaptoethanol in sample buffer. 

The low molecular mass of formaldehyde allows rapid penetration of the membrane and 

subsequent fixation of membrane proteins. Cross-linking is also reversible, allowing 

separation of protein complexes by boiling prior to SDS-PAGE (Müller et al., 2011). 

The procedure described in section  2.3.7 was used with minor alterations; 1 L cultures 

of EMRSA-16 were grown to OD600 = 0.6 at 37 °C with constant agitation and aeration 

and then exposed to 4 mg/L oxacillin for 10 min to induce the resistance complex. At 

this point, 1% formaldehyde was added to the culture and the cells incubated for 5 - 20 

min at 37 °C to enable cross-linking of proteins. Cross-linking was arrested by addition 

of 0.05 M glycine followed by incubation for 5 min at RT. Cells were harvested and 

membrane proteins collected as described in section  2.3.7. 

2.3.8.2 Probing for the PBP2/PBP2a complex 

To probe for protein complexes, a Dynabeads co-immunoprecipitation kit (Life 

Technologies Ltd. Paisley, UK) was used: Dynabeads M-270 epoxy (10 mg) were 

washed with 1 mL of C1 buffer followed by coupling of 10 µg of Ab (anti-PBP2) to the 

Dynabeads in C1 (500 µL/ 1 µL of Ab) and C2 (500 µl) buffer to a total volume of 1 

mL. Ab coupling was performed overnight on a roller at 37 °C and the coupled 

Dynabead-Ab washed with HB buffer followed by LB buffer and two short washes with 

SB. Finally, the Dynabeads were washed with SB at RT for 15 min on a roller and the 

beads suspended in fresh SB buffer to give a final bead-Ab concentration of 10 mg/mL. 

Protein samples were centrifuged; ~ 0.05 g of cross-linked membrane proteins extracted 

with Triton X-100 were suspended in 0.45 mL immune precipitation (IP) buffer (PBS, 

100 mM NaCl, pH 7.0) and added to the beads prior to incubation on a roller at 4 °C for 

30 min. Subsequently, beads were washed three times with IP buffer and once with 
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LWB. The protein complexes were eluted from the dynabeads with 60 µL EB (0.1 M 

citrate pH 2.0 - 3.0). Protein content of the eluents was determined using the Bradford 

assay and protein complexes investigated by SDS-PAGE and Western blotting.   

2.3.9 Detection of proteins with 1D gel electrophoresis  

Total membrane protein or protein complexes were investigated by SDS-PAGE on a 

10% (w/v) acrylamide/bis-acrylamide gel matrix. Under denaturing conditions that 

dissociate the proteins into individual polypeptide subunits, proteins may be separated 

on a polyacrylamide gel (Shapiro et al., 1967). SDS is bound to proteins, resulting in 

protein unfolding to generate random rod-like chains and masking the intrinsic charge 

of the proteins (Gallagher, 2006). Denatured polypeptides are bound by SDS in 

proportion to the molecular weight of the polypeptide, resulting in negatively-charged 

SDS-protein complexes with a charge to mass ratio inversely proportional to molecular 

weight. The resolution of the polyacrylamide gel is governed by the polyacrylamide 

concentration and the degree of bisacrylamide-dependent cross-linking. The size of the 

gel pores is inversely dependent on the bisacrylamide: acrylamide ratio, with a ratio of 

1:29 able to resolve polypeptides with size differences below 3% (Gallagher, 2006).  

Membrane samples were adjusted to 20 µg of protein in 10 µL volume with PBS and 

combined with an equal amount of 2x Laemmli sample buffer (4% (w/v) SDS, 20% 

(v/v) glycerol, 10% (v/v) β-mercaptoethanol, 0.0004% (w/v) bromophenol blue, 0.125 

M Tris-HCl, pH 6.8), followed by protein denaturation at 95 °C for 5 min; samples were 

then loaded onto the gel. Gels were run at 100 Volts (V) constant V until the 

bromophenol blue dye reached the bottom of the gel. Proteins were visualised with 

Coomassie brilliant blue (Sigma) or silver stain (Invitrogen Ltd., Paisley, UK) with a 

limit of detection of 0.2 μg and 0.002 μg protein respectively. Coomassie brilliant blue 

(3 g/L Coomassie brilliant blue R250: 10% acetic acid: 40% methanol) was added to 

distilled water-washed gels for 1 h, followed by de-staining for 2 h with 10% Acetic 

Acid: 40 % methanol. For silver staining, gels were washed with ultrapure water for 10 

min followed by fixation in 30% ethanol: 10% acetic acid overnight at 4 °C. Gels were 

washed twice in 10% ethanol for 5 min. Gels were then incubated in sensitizer working 

solution (1 part silver stain sensitizer: 500 part ultrapure water) from the kit for 1 min 

followed by two washes in ultrapure water for 1 min. Subsequently, gels were incubated 

in stain working solution (1 part silver stain enhancer: 50 part silver stain) for 30 min 
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followed by two 20 s washes in water. Developer working solution (1 part silver stain 

enhancer: 50 parts silver stain developer) was added until protein bands appeared and 

5% acetic acid solution added to terminate the development. 

2.3.10 Western blot 

Proteins were identified by Western blotting (Towbin et al., 1979). The 

immunodetection of proteins by Western blotting is a powerful tool for the study of 

individual proteins and is highly compatible with proteins of low abundance. Proteins 

are electrophoretically transferred from a post-electrophoresis SDS-PAGE gel to an 

adsorbent polyvinylidene membrane and proteins bound to the membrane detected with 

Ab probes (Kurien and Scofield, 2006). 

Proteins were transferred to polyvinylidene flouride (PVDF) microporous membranes 

(Millipore) with a uniform pore structure of 0.45 µM pores to enable a high binding 

capacity of proteins with a molecular mass greater than 10 kDA. Migration of proteins 

is dependent on Ohm’s law V = I x R; V is generated across the electrodes is equal to 

the current (I) applied to the system multiplied by the resistance (R) generated by the 

transfer buffer, filter papers, gel and membrane.  

The electrophoretic transfer was performed as a wet transfer utilizing a Mini Trans-Blot 

cell (Bio-Rad) with a blotting area of 10 x 7.5 cm. Prior to transfer, the membrane was 

prepared by soaking in 100 % methanol for 15 s, followed by 2 min in de-ionized water 

and a minimum of five min in transfer buffer (25 mM Tris, 192 mM glycine, pH 8.3). 

The gel and membrane sandwich was put in place (Figure 2-4), held together by a gel 

holder cassette and inserted into the buffer tank together with an ice block to avoid over 

heating of the membrane leading to protein degradation and insufficient transfer. 
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Figure 2-4 Electrophoretic transfer 

After complete submersion of the membrane sandwich in transfer buffer, a standard stir 

bar was added to maintain even buffer temperature and ion distribution. Transfer was 

performed at 100 V (Constant V) for 1 h at RT followed by membrane blocking for 1 h 

at RT with 40 mL Western blotting solution (TBST) (20 mM Tris pH 7.4, 0.15 M NaCl, 

0.1% Tween, 1% skimmed milk powder) on a shaker. Membranes were then incubated 

with the appropriate primary Ab (anti-PBP2 and -PBP2a) in 30 mL Western blotting 

solution at optimised concentration and incubated overnight at 4 °C on a shaker. 

Membranes were washed four times for five minutes with 40 mL TBST followed by 

incubation of membranes with an appropriate volume of monoclonal secondary Ab 

conjugated to horseradish peroxidase (HRP) in 20 mL Western blotting solution for one 

hour at RT on a shaker. After four washes of five minutes with TBST, protein bands 

were detected with 3,3’,5,5’-tetramethylbenzidine (TMB) (Bio-Rad), a solution 

containing a peroxide substrate. The protein bands were scanned using the Molecular 

Imager FX (Bio-rad) and examined using Quantity One Advanced software. 
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2.4 Results  

2.4.1 Effect of ECg on MRSA 

2.4.1.1 Sensitisation of MRSA to oxacillin with ECg 

The growth of MSSA (BB255) and EMRSA-16 was examined in the presence and 

absence of 12.5 mg/L ECg to determine if exposure altered bacterial growth kinetics. 

OD600 was determined over 24 h as shown in figure 2-5. No differences observed in the 

growth of either strain when cells were exposed to ECg. 

 

 

Figure 2-5 Growth of MSSA (BB255) and EMRSA-16 in MHB containing 12.5 mg/L ECg 

To investigate the capacity of ECg to sensitise MRSA to β-lactam agents, the MIC for 

oxacillin was determined in the presence of various concentrations of ECg (0, 6.25, 12.5 

and 25 mg/L) in 1 and 2% NaCl. Oxacillin MICs for EMRSA-16 are shown in table 2-

1. The MIC of oxacillin for EMRSA-16 is 512 mg/L. Increasing concentrations of ECg 

reduced the MIC; NaCl enhanced this sensitisation and 12.5 and 25 mg/L ECg reduced 

the MIC to levels below 1 mg/L. 
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Table 2-1 MICs of oxacillin against EMRSA-16
a
 

NaCl  

concentration 

in MHB 

Oxacillin MIC (mg/L) 

ECg (mg/L) 

0 6.25 12.5 25 

1% 512 16 1 0.125 

2% 512 4 0.5    <0.06 
a
 Assays were performed in triplicate; no variation was noted 

2.4.1.2 Antibiotic treatment optimisation  

Pinho and Errington (2005) proposed that PBP2 and PBP2a cooperate only in the 

presence of β-lactam agents. ECg sensitises MRSA to β-lactams; therefore, conditions 

allowing maximum recovery of intact bacterial cells after ECg and β-lactam exposure 

were investigated. Control and ECg-exposed EMRSA-16 cells were grown to mid-

logarithmic phase and exposed to 4 mg/L of oxacillin. CFU/mL was determined at 10 

min intervals for 1 h following addition of the antibiotic as seen in figure 2-6.  

 

Figure 2-6 Viability of mid-logarithmic phase EMRSA-16 after exposure to 4 mg/L 

oxacillin after 4 hours of growth. Bacteria were either grown in MHB or MHB 

supplemented with 12.5 mg/L ECg. The red circle indicates the optimal time point for 

recovery of cells (10 min post-induction)  
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The optimum length of exposure to the antibiotic prior to cell collection was determined 

to be 10 min; after this time point, viable cell numbers were substantially reduced, also 

seen microscopically. Exposure of EMRSA-16 cells to 12.5 mg/L of ECg caused a 

delay in the lag phase of growth.  

2.4.1.3 The effect of oxacillin on MRSA morphology 

The morphology of 12.5 mg/L ECg-grown and control cells after 10 min of 4 mg/L 

oxacillin induction was examined by SEM (Figure 2-7).  

 

Figure 2-7 SEM of EMRSA-16 cells grown to mid-logarithmic phase (A and B) in the absence 

or (C and D) presence of 12.5 mg/L ECg either in the (A and C) absence or (B and D) presence 

of 4 mg/L oxacillin 

There were no obvious differences in the morphology of bacteria exposed to ECg, aside 

from a glossy coating of the cell exterior following oxacillin exposure.  
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2.4.1.4 Impact of ECg on nascent PG synthesis 

The effect of ECg on PG synthesis at the division septum was analysed by visualisation 

of newly incorporated D-Ala-D-Ala residues by the labelling with Van-FL (Figure 2-8) 

according to Pinho and Errington (2003).  

    

Figure 2-8 Localisation of nascent PG (D-Ala-D-Ala) in (A) control and (B) ECg-exposed 

EMRSA-16 following Van-FL labelling and fluorescence microscopy. Scale bar: 2 μm 

There was no discernible difference observed for nascent PG between EMRSA-16 

grown in the presence of ECg and control cells. Nascent PG was found primarily at the 

division septum or in a ring structure in both instances. The only difference observed 

was an increase in clumping of cells following exposure to ECg. 

B 

A 
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2.4.2 Probing for the PBP2/PBP2a complexes 

2.4.2.1 Anti-PBP2 and PBP2a Abs 

In order to generate anti-PBP2 antiserum, recombinant PBP2 was expressed in, and 

purified from, E.coli BL21.  

 

Figure 2-9 SDS-PAGE of the first and second elution of PBP2 recovered from E. coli BL21. 

Positive control of total EMRSA-16 membrane proteins solubilised with triton X-100 

Purified protein was assessed by SDS-PAGE (Figure 2-9). Eluents were pooled to a 

final protein concentration of 2 mg/L and sent to Bioserv for commercial rabbit anti-

serum production. Specificity of the Bioserv PBP2 Ab and the commercially available 

anti-PBP2a Ab was examined against MSSA (BB255) and EMRSA-16 membrane 

proteins with SDS-PAGE and Western blotting as shown in figure 2-10.  
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Figure 2-10 Western blots of MSSA (BB255) and EMRSA-16 total membrane proteins using (A) 

Bioserv anti-PBP2 Ab or (B) commercially available anti-PBP2a Ab 

PBP2 was detected in EMRSA-16 and MSSA membrane preparations at the expected 

molecular weight of approximately 78 kDa. PBP2a was detected in EMRSA-16 but not 

in MSSA cells. However, an additional band at approximately 50 kDa was also found in 

all preparations, suggesting a degree of non-specific binding. The molecular mass of the 

non-specific band was that expected for protein A, a secreted S. aureus protein that 

binds to the Fc region of Abs.  

2.4.2.2 Surfactant membrane protein solubilisation for detection of 

PBP2/PBP2a complexes 

Subsequently, the capacity of surfactant Triton X-100 to solubilise intact PBP2/PBP2a 

complexes was assessed by co-immunoprecipitation. Solubilised membrane proteins 

were cross-linked with 1% formaldehyde (5 or 20 min) or DTSSP (30 min) and 

subjected to immunoprecipitation using columns coated with anti-PBP2 Ab through 

affinity attachment. Immunoprecipitation eluents were separated by SDS-PAGE and 

probed by Western blotting with PBP2 and PBP2a Abs. PBP2 was detected in all three 

samples; PBP2a was not found (Figure 2-11) indicating that PBP2/PBP2a complexes 

could not be detected by Triton X-100 solubilisation. It was not possible to co-purify 

PBP2/PBP2a complexes with the detergent used.  
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Figure 2-11 Anti-PBP2 Ab co-immunoprecipitation of cross-linked EMRSA-16 

membrane proteins solubilised with surfactant Triton X-100. Enriched proteins were 

separated by SDS-PAGE and Western blots probed with (A) anti-PBP2 and (B) anti-

PBP2a antiserum. PBP2a was not found complexed with PBP2 

A
 

B
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2.5 Discussion 

PBP2 and PBP2a are essential for division of MRSA cells in the presence of β-lactam 

agents. PBP2 and PBP2a are class A and class B PBPs, respectively, and probably 

cooperate within a multi-enzyme complex (Pinho et al., 2001b). There have been 

several studies in other bacterial species that provide evidence for interactions between 

class A and class B PBPs. Examples include Haemophilus influenza (Alaedini and Day, 

1999) and B. subtilis (Simon and Day, 2000). These studies employed protein cross-

linking to establish the presence of PBP complexes. Alaedini and Day (1999) used a 

cyanogen cross-linker specific for salt bridges to identify two multi-enzyme PBP 

complexes of PBPs by chromatographic profiling of PBPs labelled with dansyl-

penicillin, which reacts with primary amino groups in aromatic amines to emit a 

fluorescent signal. Following cross-linking, two prominent peaks of approximately 400 

and 600 kDa molecular weight replaced the seven initial PBP peaks, indicating the 

presence of complexes following cross-linking. The same cross-linker was used in a 

study by Simon and Day (2000) to identify covalently-linked PBP complexes in B. 

subtilis. 

In S. aureus, Pinho et al. (2001b) speculated that PBP2 and PBP2a form a complex in 

MRSA. Inactivation of the PBP2 TGase domain resulted in loss of β-lactam resistance, 

demonstrating that this domain is absolutely required for expression of the resistant 

phenotype and was indicative of an interaction between the PBP2 TGase and the PBP2a 

TPase domains. A second study by Pinho and Errington (2005) went one step further to 

show that PBP2 localisation to the site of division at the septum is dependent on the 

interaction with non-acylated PBP2a in the presence of oxacillin. PBP2 required 

substrate availability (D-Ala-D-Ala) for correct localisation, which is blocked in the 

presence of oxacillin, leading to dispersal of PBP2 throughout the cell membrane. 

However, in the presence of PBP2a, normal localisation of PBP2 at the septum was 

observed, suggesting substrate binding to PBP2a. This observation implies that PBP2 

and PBP2a form a multi-enzyme complex in the presence of β-lactams, both for 

cooperation of TPase and TGase domains as well as functional localisation dependent 

on substrate recognition (Pinho and Errington, 2005). In order to probe for hypothetical 

PBP2/PBP2a complexes and determine if ECg disrupts complex formation, oxacillin 

induction of complex formation was necessary. As discussed, previous PBP complex 
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research indicated that cross-linking was desirable to facilitate co-immunoprecipitation 

and capture of the unstable complex (Pinho and Errington, 2005).  

ECg causes for an initial delay of the lag phase of EMRSA-16 growth, most probably 

due to the cells adjusting to the intercalation of ECg into the cell walls as cells first 

display a less fluid cell wall following one hour as the cells overcompensate followed 

by a more fluid cell wall (Palacios et al., 2014). The MIC of EMRSA-16 to 12.5 mg/L 

ECg is 128 mg/L (data not shown); however, at concentrations of 12.5 and 25 mg/L in 

2% NaCl (CLSI guidelines for β-lactam resistance), MICs of oxacillin dropped below 

0.5 and <0.06 mg/L for the two
 
respective ECg concentrations, consistent with previous 

data from Stapleton et al. (2004). An ECg concentration of 12.5 mg/L was employed in 

all subsequent work. The impact of oxacillin on ECg-grown cells was not instantaneous 

and I therefore allowed at least 10 min exposure to the antibiotic prior to the collection 

of cells. As PBP2/PBP2a complexes only form in the presence of β-lactams (Pinho and 

Errington, 2005); 10 min exposure to the antibiotic should induce complex formation 

and allow its capture and analysis.  

The morphology of EMRSA-16 cells exposed to ECg confirmed the observations of 

Bernal et al. (2009). Clumping was evident and cells appeared slightly larger with a 

rougher surface compared to controls but, orthogonal division planes, characteristic of 

bacteria grown in standard media, were clearly observed (Figure 2-12). 

 

Figure 2-12 SEM of (a) EMRSA-16 and (b) ECg-exposed EMRSA-16 cells grown to mid-log 

phase (from Bernal et al., 2009) 

In a study by Bernal et al. (2010) demonstrated that ECg caused delocalisation of PBP2 

from the septum; these investigators suggested that this was due to either disruption of 

the PBP2/PBP2a complex or dislocation of the division septum, resulting in dispersed 
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PG synthesis. The data showed that nascent PG synthesis was evident at the division 

septum in ECg treated cells, indicating that the latter is not the case. Previous studies 

have shown that PBP2 localises within a ring structure (two fluorescent dots) around the 

future division plane and, as the septum closes, the ring forms a border across the cell 

corresponding to the established division septum (Figure 2-13).  

 

Figure 2-13 Fluorescence imaging of GFP-PBP2 localising PBP2 during cell division in 

RNpPBP2-31. Initially, (A) two spots are visible corresponding to localisation of PBP2 to the 

ring surrounding the future division site and (B) a border at mid-cell that appears as the septum 

closes across the disc containing co-localised PBP2; (C) the process continues as daughter 

cells are formed. Scale bar: 2 μM (from Pinho and Errington, 2005). 

A similar phenomenon is observed with EMRSA-16 grown in medium containing ECg 

(Figure 2-8) suggesting that cellular division is not disrupted at the septum by ECg. 

Taken together with data from Bernal et al. (2010) this observation suggests at least 

partial displacement of PBP2/PBP2a components of the division complex.   

Two-hybrid or affinity enrichment methods are frequently used to investigate protein-

protein interactions. The two-hybrid system is prone to false positives and does not take 

into account temporal and local separations within cells. Affinity enrichment frequently 

results in failure to detect weak interactions due to stringent washing or false positives 

due to employment of less stringent conditions. Another method widely used in this 

context is epitope tagging but is limited to investigation of stable complexes. A 

promising technique for the study of weak and/or transient protein-protein interactions 

is the use of cross-linkers to fix proteins in close proximity to each other. DTSSP is a 

soluble, reversible cross-linker with a 12 Ǻ spacer arm that reacts with primary amines. 
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This reagent has been used to detect interactions between PBP1B and PBP3 in E. coli 

with data confirmed by two-hybrid methodology (Bertsche et al., 2006). Thus, proteins 

were cross-linked with DTSSP and solubilised with Triton X-100 prior to co-

immunoprecipitation. An alternative cross-linker, formaldehyde, was also used to cross-

link proteins within whole cells prior to isolation of membranes and solubilisation of 

membrane proteins. Formaldehyde has a spacer arm of 2.3 - 2.7 Ǻ and represents an 

alternative to DTSSP (Vasilescu et al., 2004). Formaldehyde is used for histological 

fixation and at low concentrations (0.5 - 2%) with short fixation times (5 - 30 min) can 

be used for investigation of protein-protein interactions (Hall and Struhl, 2002). 

Formaldehyde readily penetrates cells due to its low molecular mass and charge 

characteristics, is stable (Vasilescu et al., 2004) and inactivates enzymes, “freezing” 

cells to give a snapshot of interactions at time of addition. However, use of DTSSP and 

formaldehyde did not lead to the co-purification of PBP2 and PBP2a from Triton X-100 

solubilised membranes. One explanation for the capture of PBP2/PBP2a complexes 

unsuccessful with DTSSP cross-linking was because the cross-linker was added prior to 

extraction of the proteins.  

In summary, I adjusted procedures to optimise the number of viable cells likely to 

express PBP2/PBP2a complexes. Exposure of EMRSA-16 to ECg reduced β-lactam 

resistance and altered cell morphology but did not disrupt nascent PG synthesis. The 

surfactant Triton X-100 was not suitable for solubilisation of detectable PBP2/PBP2a 

multi-enzyme complexes in EMRSA-16 cells. These results accord with previously 

published data.  
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3.1 Introduction 

3.1.1 Membrane protein solubilisation 

Membrane proteins play a fundamental role in cellular processes and are important 

targets for drugs. They are embedded in a mosaic lipid bilayer, a complex, 

heterogeneous and dynamic environment that limits standard biophysical techniques for 

structural and functional studies (Seddon et al., 2004). They are not soluble in aqueous 

milieu, requiring synthetic systems for extraction. Membrane proteins belong to two 

classes, peripheral and integral (Luckey, 2008). Peripheral proteins may be purified by 

exploiting changes in ionic strength or pH, whereas removal of integral proteins from 

bilayers requires physical disruption of the membrane with chemical agents such as 

surfactants (Luckey, 2008). The major disadvantage in the use of traditional surfactants 

for solubilisation of membrane proteins is the fundamental difference between the 

native environment of the protein, the dynamic cell membrane and a micellar 

environment (London and Khorana, 1982).  

Native biological membranes consist of bilayer and non-bilayer lipids that aid the 

stabilisation of membrane proteins, creating lateral pressure and curvature (Lee, 2003). 

Synthetic lipids may support the investigation of membrane proteins by mimicking their 

native membrane environment (Botelho et al., 2002); and solubilisation methods have 

been developed in which lipids are employed along with surfactants. However, the 

presence of surfactants remains a limiting factor as they strip away lipids surrounding 

the embedded proteins, altering the protein environment (Rajesh et al., 2011).  

There are three forms of lipids; lipid bilayers, annular lipids and lipid co-factors, which 

in sum play a role in maintaining membrane proteins in their native state (Luckey, 

2008). The lipid bilayer provides lateral pressure on the proteins and affects protein 

folding (Lee, 2003; Seddon et al., 2008). Annular lipids encircle the proteins and 

influence function; lipid co-factors are found tightly bound between protein subunits 

and are likely to be involved in protein function (Luckey, 2008). The addition of 

synthetic lipids during solubilisation of membrane proteins mimics the native 

membrane environment, reflecting their functions as discussed above. The absence of 

bound lipids and reduced lateral pressure as a consequence of surfactant solubilisation 
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drastically hinders investigation of the functional state of proteins and this is almost 

certainly the case for the PBP2/PBP2a complex.  

Hydrophobically associating polymer systems provide one potential solution for 

membrane protein solubilisation in which protein-protein and protein-lipid interactions 

are maintained. Several polymer systems have been developed and were described in 

section 1.6; these include amphipols and SMA. Amphipols are amphipathic polymers 

with a hydrophilic backbone and grafted hydrophobic side chains (Seddon et al., 2004). 

Membrane proteins are stabilised in a semi-native state in amphipols but initial 

surfactant protein extraction is required, limiting their use (Popot, 2010). On the other 

hand, the amphipathic polymer SMA has shown great potential for the study of 

membrane proteins, both for extraction and for down-stream investigations (Knowles et 

al., 2009). SMA is the primary focus of the work in this chapter and has been applied to 

the study of the PBP2/PBP2a complex.  

3.1.2 Solubilisation of membrane proteins with SMA co-polymer 

SMA may be used to solubilise membrane proteins in a semi-native environment; the 

co-polymer consists of alternating styrene and maleic units (Tonge, 2006) (Figure 1-16). 

The styrene pendant groups provide the hydrophobic moiety and together with maleic 

acid form a hypercoiling polymer that self assembles to form nanostructures (SMALPs) 

in the presence of lipids and/or proteins (Tonge and Tighe, 2001). The structure 

dissociates at pH 4 due to ionization of the maleic group and re-associates at a pH above 

6.5 (Figure 3-1). 

Malvern Cosmesceutics initially developed the polymer as a delivery method for 

hydrophobic agents using a styrene: maleic acid ratio of 3:1 (Knowles et al., 2009). 

SMA has also been used at a ratio of 1:1 in de-pigmentation and anti-aging cosmetic 

products as well as in cosmetics to protect skin from UV radiation and sunburns 

(Tonge, 2006). 
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Figure 3-1 Formation of SMALP nanostructure around an integral membrane protein and 

associated lipids in an environment above pH 6.5 

The polymer has a transparent appearance with high heat resistance and dimensional 

stability and solubilises proteins in alkaline solutions due to the reactivity of the 

anhydride group in the maleic acid/anhydride component (Tonge, 2006). Knowles et al. 

(2009) integrated recombinant PagP (8 stranded β-barrel) and bacteriodopsin (bR) (7 

transmembrane α-helices) within SMALPs with radii of 9.0 ± 1.1 nm as determined by 

dynamic light scattering (DLS), which increased to 11.2 ± 1.4 nm after PagP 

incorporation (Knowles et al., 2009). Circular dichroism (CD) and nuclear magnetic 

resonance (NMR) indicated correct folding of PagP and 90% greater stability compared 

to surfactant-solubilised PagP (Knowles et al., 2009).  

Biophysical investigation of SMALPs, or ‘lipodisqs’, revealed a close association 

between SMA and DMPC lipids (Orwick et al., 2012). SMALPs extended lateral 

pressure on lipid tails without perturbing the core (Orwick et al., 2012). The diameter of 

empty SMALPs determined by DLS was 12 nm, 3 nm greater than reported by Knowles 

et al. (2009). This work indicates that SMALPs may vary in diameter and membrane 

proteins solubilised within the SMALPs remain correctly folded, active and 

thermostable, providing a new avenue for the study of membrane proteins and protein 

complexes.  
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Another approach for measuring cell size and complexity is the use of flow cytometry. 

The method was first used in microbiological assays in 1977 for the separation of 

bacterial cells (Bailey et al., 1977; Paau et al., 1977). It was used to study cell numbers, 

cell size, membrane potential and fluorescence staining (Steen, 2000).  More recently, 

flow cytometry has been employed to investigate smaller particles approximately 100 

nm in size through use of fluorescence triggers (van der Vlist et al., 2012). 

Flow cytometry measures the light scattering signal and fluorescence emission of cells 

or particles in suspension as a single particle passes through the beam of light emitted 

from a laser (Figure 3-2). 

 

Figure 3-2 Cells and/or particles analysed by flow cytometry. Particles pass through the beam 

of light emitted by the laser and are scattered according to cell size (forward scatter (FSC)) or 

complexity (side scatter (SSC)). A second parameter, the addition of fluorescent signals, can be 

detected. Two-parameter dot plots of FSC vs. SSC or fluorescent signal vs. light-scattering 

parameters can be created from the data. Adapted from abcam, flow cytometry guide  

Cells or particles are detected by FSC, which is associated with size; SSC is correlated 

with particle complexity. Two-parameter dot plots of FSC vs. SSC indicate changes in 

population size and complexity. Further two-parameter dot plots of a light scatter 

parameter (FSC or SSC) and fluorescence emission can be used to control for 

fluorescence emission. Bi-variant fluorescent plots can be used for determination of two 
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fluorescence parameters simultaneously from one sample (Radcliff and Jaroszeski, 

1998). 

Utilising SMA, I developed a method for the solubilisation of MRSA membrane 

proteins from whole cells in order to capture and solubilise the native PBP2/PBP2a 

complex; I also investigated the capacity of ECg to physically disrupt the complex.  
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3.2 Material and methods 

3.2.1 Bacterial strains and reagents 

MRSA strain COL (BB568) was provided by Brigitte Berger-Bächi, University of 

Zurich, Switzerland. COL lacks chromosomal or plasmid-born regulatory elements that 

control transcription of mecA, resulting in constitutive expression of PBP2a. Strain 

SH1000 was  Hydrolysed SMA polymer was supplied by Timothy Dafforn, 

Birmingham University; the polymer contained styrene and maleic acid in a ratio of 2:1. 

1,2-dimyristoyl-sn-glycerol-3-phosphocoline (DMPC) was purchased from Avanti 

Polar Lipids, Inc. (Alabaster, Alabama, USA).  

3.2.2 Cell preparation 

3.2.2.1 Membranes 

EMRSA-16 protoplasts were prepared using a modification of the methods described by 

Kaback (1971) and Chopra et al. (1974). EMRSA-16 was grown as described in 

Chapter 2; PBP2a was induced with 4 mg/L oxacillin, cells harvested by centrifugation 

(5000 g, 4 °C, 10 min) and washed twice with PBS. The cell pellet was suspended in 

digestion buffer (20% (w/v) sucrose, 0.05 M Tris-HCl, 0.145 M NaCl, pH 7.6) to a final 

concentration of 40-50 mg/mL wet weight. The cell wall was digested with 20 µg of the 

glycine-glycine endopeptidase lysostaphin (Sigma) in the presence of 25 µg DNase I for 

45 min at 37 °C. Protease inhibitor (Roche Complete Mini, EDTA-free) was then added 

to a final concentration of 10 mM and incubation continued for 15 min. Bacterial 

membranes were collected by centrifugation (20,000 rpm; 15 min; 4 °C).  

3.2.2.2 Whole cells 

Cells was grown in MHB as described in section 3.2.2.1; the PBP2/PBP2a complex was 

induced with 4 mg/L oxacillin for 10 min. Alternatively, cells were grown in MHB 

supplemented with 0.125 mg/L oxacillin. COL cells did not require oxacillin induction; 

however, the same procedure was performed for consistency. The cell pellet was 

suspended in 3 mL digestion buffer.   
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3.2.2.3 Preparation of hydrolysed SMA 

A 5 % (w/v) stock of SMA polymer was prepared in 1.0 M sodium hydroxide by reflux 

for 2 h followed by 48 h incubation at 4 °C.  Samples were dialysed extensively in 50 

mM Tris pH 8 to remove traces of sodium hydroxide. The structure of the lyophilised 

product was determined by Fourier transform infrared spectroscopy.  

3.2.2.4 SMALP solubilisation of DMPC lipids 

Hydrolysed SMA was added to 3 mL of digestion buffer at a 2.5% (v/v) concentration, 

and DMPC lipids added to give a final concentration of 0.5 - 1% and incubated for 1 h 

at 37 ˚C. The solution was sonicated for 1 min (15 sec on, 20 sec off; 4 µ amplitude) to 

produce small unilamellar vesicles and incubated for 14 - 16 h at 37 ˚C with constant 

shaking. DMPC SMALPs were collected by ultracentrifugation at 100,000 g 1 h at 37 

˚C; supernatant contained the SMALPs. 

3.2.3 Solubilisation of membrane proteins from membranes 

To solubilise membrane proteins from MRSA protoplasts, the same methodology as for 

DMPC lipids was used with slight alterations. SMA was added at a 2.5% concentration 

to the membrane sample of cells described in section  3.2.2.1. Additional DMPC lipids 

were added at a 0.5 - 1% concentration to stabilise the membrane proteins within the 

SMALPs. The membrane and SMALPs solution was sonicated, incubated overnight and 

collected by ultracentrifugation as described in section  3.2.2.4. 

3.2.4 Solubilisation of membrane proteins from whole cells 

Initially the protoplast method described in section  3.2.2.1 was adapted for the use of 

SMALPs with whole cells, following the preparation of whole cells as described in 

section  3.2.2.2. The cell wall (from 2 L culture) was digested with 80 µg lysostaphin in 

the presence of 25 µg DNase I and 1 x HALT (protease and phosphatase inhibitor, 

Sigma) for 10 min at 37 °C in digestion buffer to a final volume of 3 ml. SMA (2.5%) 

was added for a further 50 min. A growth curve was constructed to determine the 

optimum lysostaphin incubation period prior to the addition of SMA. Following 

incubation, the SMALP solution was sonicated (section 3.2.2.4). The SMALPs were 
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collected through ultracentrifugation and the supernatant containing the SMALPs 

removed for further investigation. 

3.2.5 Optimisation steps of SMALPs solubilisation method 

The impact of oxacillin induction, temperature, lysostaphin digestion and sonication of 

SMALPs was determined. Cells were induced with oxacillin from onset of growth with 

0.5, 0.25 and 0.125 mg/L oxacillin. Following collection of the cells and suspension of 

the cell pellet in digestion buffer, membrane proteins were solubilised with SMA at 37 

°C and 4 °C. For lysostaphin digestion three different conditions were used; addition of 

lysostaphin for 10 min followed by SMA for 50 min, SMA directly added to the cells 

for 1 h at 37 °C without lysostaphin, and finally SMA and lysostaphin added 

simultaneously for 1 h. After SMALP solubilisation, SMALPS were either sonicated 

prior to collection, or directly collected by ultracentrifugation.  

3.2.6 Optimised SMALPs method 

A culture was grown to mid-log together with 0.125 mg/L oxacillin. The cells were 

harvested through centrifugation and the cell pellet suspended in 3 mL digestion buffer; 

incubated with 80 μg lysostaphin in the presence of 25 µg DNase I and 1x HALT for 10 

min at 37 °C followed by the addition of SMA (2.5%) for 50 min. The SMALPs were 

collected through ultracentrifugation and the supernatant containing the SMALPs 

removed for further investigation by SDS-PAGE and Western blot. 

3.2.6.1 Tricine SDS-PAGE  

N-[2-hydroxy-1,1-bis(hydroxymethyl) ethyl] glicine (Tricine) modification to 1D SDS-

PAGE was used to avoid aggregation of membrane proteins as described by Schägger 

and von Jagow (1987). Samples were added to an equal amount of double-strength 

Tricine sample buffer (900 mM Tris-HCl, 24% (v/v) glycerol, 4% (w/v) SDS, 0.0005% 

(w/v) Coomassie blue, 0.0004% (w/v) phenol red, pH 6.8) supplemented with 5% (v/v) 

β-mercaptoethanol for 15 min at 37 °C. Samples in Tricine sample buffer were loaded 

on to a 10% Tricine-SDS gel (Table 3-1), which separates proteins over the range 1-100 

kDa. 
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Table 3-1 Components of Tricine-SDS-PAGE for one gel 

10% resolving gel 

(volumes) 
Components 

4% stacking gel 

(volumes) 

1.75 mL H20 1.95 mL 

2.5 mL 3M Tris-HCl/SDS, pH 8.45 0.775 mL 

2.5 mL 29:1% acrylamide: bis-acrylamide 0.4 mL 

0.75 mL 100% glycerol - 

7 µL 30% APS 7 µL 

7 µL TEMED 7 µL 

 

Anode buffer (0.2 M Tris-HCl, pH 8.9) and cathode buffer (0.1 M Tris-HCl, 0.1 M 

Tricine, 0.1 M SDS, pH 8.25) were added to the tank as the lower and upper electrode 

buffers and Tricine-SDS gels run at 30 V until the samples entered the resolving matrix 

and the remainder of the run performed at 100 V. Protein bands were visualised with 

Coomassie brilliant blue or silver stain, or transferred to a membrane by Western 

blotting for protein identification. Gels were scanned using a Molecular Imager FX and 

examined using Quantity One Advanced software. 

3.2.7 Imaging of SMALPs 

3.2.7.1 Transmission electron microscopy (TEM) 

Dilutions (1, 1:10, 1:100) of SMALPs in wash buffer (50 mM Tris-HCl, 300 mM NaCl, 

pH 8.0) were mounted onto a Cu grid and washed twice with the same buffer. A drop of 

2% uranyl acetate was added and the images visualised with a CM 120 Bio-Twin 

transmission electron microscope (Philips Electron Optics) operated at 120 kV. I was 

assisted in this procedure by David McCarthy (UCL School of Pharmacy) and images 

analysed using ATM software. Bacteria were also visualised during the solubilisation 

process; prior to lysostaphin digestion of the bacterial culture, following the addition of 

lysostaphin for 10 min, and following 50 min incubation with SMA after lysostaphin 

digestion.  
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3.2.7.2 SEM 

SMALPs were freeze-dried overnight. Gold-coated samples were prepared under 

vacuum and images collected with a FEI XL30 scanning electron microscope (Philips 

Electron Optics) with assistance from David McCarthy. 

3.2.7.3 Confocal fluorescence microscopy 

In order to co-localise PBPs and SMA lipids, confocal microscopy was used to detect 

the fluorescence emission of fluorescently labelled samples. PBPs were labelled with 

Bocillin FL (Sigma) and the membranes/SMA labelled with Nile Red dye (Molecular 

Probes) with excitation and emission wavelengths of 485/530 and 552/636 nm 

respectively. Nile Red is a fluorescent lipid probe that does not fluoresce in water and 

polar solvents but undergoes large absorption and emission shifts in non-polar 

environments that are greater for lipids than proteins (Greenspan and Fowler, 1985).  

SMALP (20 µL; approx 500 µg protein) were incubated with 0.8 µL Bocillin FL for 30 

min at 30 °C prior to placing the sample onto a poly-L-lysine slide. Subsequently, 2 µL 

of 1 mM Nile red dye (final concentration 2 µM) was added and the mixture incubated 

for 15 min at RT. The slide was washed twice in wash buffer and dried overnight at RT. 

Either one drop of vectashield hard set mounting medium or 20 µL 0.1% agarose was 

applied to the sample prior to mounting the cover-slip. The samples were examined by 

confocal fluorescence microscopy. 

3.2.8 Size distribution of SMALPs 

3.2.8.1 Dynamic light scattering (DLS) 

The molecular size distribution of SMALPs was measured by DLS with a Zetasizer 

Nano ZS (Malvern, Worcestershire, UK). DLS measures the fluctuation of scattering 

intensity, with the fluctuations dependent on the diffusion coefficient of the molecule, 

which in turn is dependent on the size of the molecule. As intensity is proportional to 

mass, the sensitivity is relatively high; however, DLS assumes that molecules are 

spherical, which may not be the case with SMALP molecules. Thus, approximations are 

made with respect to hydrodynamic diameter measurement (Malvern).  
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SMALPs (1 mL) were placed in a disposable polystyrene cuvette (Semi-micro PS) 

(Fischer Scientific Inc.) and equilibrated at 25 °C for 5 min. Size was determined in 

triplicate with 16 measurements per sample and data analysed with the Malvern DLS 

software. 

3.2.8.2 Flow cytometry 

Flow cytometry was used to investigate changes in FSC and SSC of EMRSA-16 

SMALPs when EMRSA-16 cells were exposed to ECg before membrane protein 

solubilisation. A reduction in size may be indicative of membrane protein complex 

disruption. The size and complexity of SMALPs were determined with a MACS quant 

flow cytometer (Miltenyi Biotec Ltd.). SMALPs were suspended in digestion buffer in 

1:100 dilutions and 500 µL stained with 60 µM Nile Red probe in the dark for 30 min 

prior to flow cytometry analysis. Samples were gated for B2 (361V); the red fluorescent 

channel (trigger 3.0) (250V FSC and 400V SSC) and subsequently back-gated for SSC 

and FSC. Twenty thousand events were measured for each sample and data analysed 

using the MACS Quantify™ Software (Miltenyi). 
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3.3 Results  

3.3.1 Membrane proteins from protoplasts solubilised in SMALPs 

Membrane proteins from EMRSA-16 and ECg-exposed cells were solubilised with 

SMA after enzymatic lysis of the cell wall with lysostaphin. Efficiency of solubilisation 

compared with surfactant-extracted proteins were compared by SDS-PAGE. More 

proteins were revealed by silver stain compared to Coomassie-stained gels (Figure 3-3).  

 

Figure 3-3 SDS-PAGE of membrane proteins stained with (A) Coomassie brilliant blue or (B) 

silver stain. MSSA and EMRSA-16 surfactant-solubilised proteins were separated in the gels 

along with SMALP-solubilised membrane proteins from EMRSA-16 and ECg-exposed EMRSA-

16 
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Membrane protein bands are generally broader than water-soluble proteins and often 

stain poorly with Coomassie (Schägger, 2006). To overcome this, SMALP preparations 

were concentrated (Figure 3-4), as detection of low abundance PBP2/PBP2a complexes 

will require high initial membrane protein concentrations.   

 

Figure 3-5 EMRSA-16 membrane proteins solubilised in SMALPs. Samples were concentrated 

using 10,000 molecular weight cut-off Vivaspin columns to 25 mg/mL, samples run on a 0.75 

mm and 1.00 mm 10% SDS-PAGE and stained with silver stain. Red boxes indicated the 

SMALP samples (concentrated) that were used for future experiments 

SMALP samples were concentrated to a final concentration of 25 mg/mL as determined 

by Nanodrop A280 absorbance assay. Equal amounts of EMRSA-16 and ECg-exposed 

EMRSA-16 solubilised membrane proteins were added to capacity of a 0.75 mm and a 

1.00 mm gel. The most intense bands were found with EMRSA-16 SMALPs run in a 

1.00 mm gel. There was a general decrease in band intensities in both gels of proteins 

from ECg-exposed EMRSA-16 cells compared to controls.  

Protein-containing SMALPs were also separated using Tricine-SDS-PAGE, suitable for 

the separation of proteins in the range 1-100 kDa; the proteins of interest, PBP2, and 

PBP2a, have molecular weights of 80 and 78 kDa respectively. Tricine migrates faster 
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than glycine and tricine gels tolerate overloading, which is beneficial for detection of 

low abundance membrane proteins (Schägger and von Jagow, 1987). Further, it is not 

necessary to boil samples to achieve separation of individual proteins (Schägger, 2006), 

avoiding the irreversible aggregation that commonly occurs with SDS; samples are held 

at 37 °C for 30 min (Schägger, 2006). Cultures (1 L) of EMRSA-16 grown to mid-

logarithmic phase with and without ECg yielded approximately 3.5 g (wet weight) of 

cells. Following solubilisation of membrane proteins from protoplasts in SMALPs, both 

concentrated and non-concentrated SMALPs were separated on Tricine-SDS-PAGE 

gels and Western blots probed for proteins of interest (Figure 3-5).  

 

Figure 3-5 (A) Tricine-SDS-PAGE and (B) Western blot using anti-PBP2 Ab of EMRSA-16 and 

ECg-exposed EMRSA-16 membrane proteins extracted from protoplasts with SMA. A protein-

enriched EMRSA-16 SMALP sample was also examined 

No protein aggregation was observed in Tricine-SDS-PAGE gels and PBP2 was 

identified by Western blotting, following the modified protein denaturation method. 

SMALP samples were also probed in Western blots with PBP2a and FtsZ antiserum; 

both proteins were readily detected (Figure 3-6). 
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Figure 3-6 Western blot with (A) anti-PBP2a and (B) anti-FtsZ antiserum of EMRSA-16 and 

ECg-exposed SMALPs. Arrows indicate proteins of interest. Triton X-100 solubilised EMRSA-

16 membrane proteins are also shown 

A single band (~50 kDa) representing FtsZ was detected along with an additional band 

that is probably attributable to Ab binding to protein A. The molecular mass (~75 kDa) 

of the PBP2a band was marginally lower than predicted (78 kDa).  

3.3.2 Solubilisation of membrane proteins from intact cells 

To investigate the effect of ECg exposure on the PBP2/PBP2a complex, a method was 

developed to closely represent the native environment. Initially, protoplasts from viable 

bacteria were used as a source for extraction of membrane proteins with SMA. However 

whole cells were subsequently utilised in order to minimise disruption to membrane 

architecture prior to solubilisation by SMA; in particular, removal of the cell wall may 

disrupt the anchored septal divisome complex (Pinho and Errington, 2003).  
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3.3.2.1 Enzymatic disruption of the cell wall 

Initially, one-litre batches were grown to mid-logarithmic phase, collected by 

centrifugation and SMA added together with DNase I (experiment 1; in table 3-2). 

SMALPs were collected and the hydrodynamic diameter determined by DLS. 

 

Figure 3-7 Distribution of the hydrodynamic diameter determined by DLS of SMALPS from 

(red) EMRSA-16 and (green) ECg-exposed EMRSA-16 SMALPs. Lysostaphin was not employed 

for this experiment; SMALPs collected by centrifugation 

Knowles et al. (2009) showed that the mean diameter of SMALPs incorporating a 

single PagP protein molecule was 11.2 ± 1.4 nm. In the current study, SMALPs 

obtained by addition of SMA to intact cells exhibited diameters of approximately 2.8 

for EMRSA-16 and 1.8 nm for ECg-exposed EMRSA-16 SMALPs (Figure 3-7). In 

experiment 1, only low concentrations of protein were captured by SMA from EMRSA-

16 bacteria and only faint protein bands were detected following SMA extraction of 

ECg-exposed bacteria (Figure 3-8a). A blue smear accompanied the protein bands at the 

bottom of the Tricine-SDS-PAGE, corresponding to smearing of the SMA polymer as 

visualised in figure 3-8b. Consequently, in further experiments, 80 μg lysostaphin was 

added to whole cells for 10 min at 37 °C prior to addition of SMA to aid access of SMA 

to the proteins.  
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Figure 3-8 (A) Coomassie brilliant blue-stained Tricine-SDS-PAGE of total protein of EMRSA-

16 and ECg exposed EMRSA-16  solubilised in SMALPs. Washed cell pellets were suspended in 

digestion buffer and SMA for 1 h at 37 °C, no lysostaphin. SMALPs were then sonicated and 

incubated overnight at 37 °C. (B) SMA with and without digestion buffer; Tricine-SDS-PAGE 

gel stained with Coomassie brilliant blue 

 

Mean SMALP size distribution was 13 nm for EMRSA-16 and 8 nm for ECg-exposed 

EMRSA-16 (Figure 3-9).  

A B 

25-250 kDa 
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Figure 3-9 Hydrodynamic diameter of SMALPs from (red) EMRSA-16 and (green) ECg-

exposed EMRSA-16 determined by DLS; lysostaphin was added to the preparations for 10 min 

followed by addition of SMA for 50 min 

 

TEM images of EMRSA-16 (± 12.5 mg/L ECg) and COL were examined before and 

after 10 min exposure to lysostaphin and following exposure to SMA for 50 min. There 

was little apparent cell disruption of EMRSA-16 (Figure 3-11) or COL (Figure 3-14) 

after 10 min exposure to lysostaphin, although some damage to cell walls was evident at 

higher magnification disruption (Figure 3-12). Images for ECg-exposed EMRSA-16 

were comparable, but the images were sometimes difficult to interpret due to 

accumulation of electron-opaque cell debris (Figure 3-13).  
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Figure 3-10 TEM of A-C: low magnification and D-F: high magnification, of (A, D) EMRSA-16 

in digestion buffer, (B, E) digested with lysostaphin for 10 min, and (C, F) 50 min after addition 

of SMA 

 

 

Figure 3-11 TEM (930000x magnification) of an EMRSA-16 cells after 10 min exposure to 

lysostaphin  
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Figure 3-12 TEM of A-C: low magnification and D-F: high magnification, of ECg-exposed 

EMRSA-16 cells in (A, D) digestion buffer, (B, E) digested with lysostaphin for 10 min, and (C, 

F) after addition of SMA and incubation for 50 min 

 

Figure 3-13 TEM of A-C: low magnification and D-F: high magnification, of COL (A, D) in 

digestion buffer, (B, E) digested with lysostaphin for 10 min, and (C, F) after addition of SMA 

and incubation for 50 min 



SMALPs: method development 

 

 Chapter three 109   

  

Exposure to lysostaphin (10 min) followed by addition of SMA and incubation for a 

further 50 min led to further cell disruption and the appearance of large amounts of cell 

debris (Figure 3-10, figure 3-12 and figure 3-13). At 65000x magnification, formation 

of SMALPs could be detected at this point (Figure 3-14). 

 

Figure 3-14 TEM (65000x magnification) of an EMRSA-16 after 10 min lysostaphin digestion 

followed by addition of SMA and incubation for 50 min. Two SMALPs (37.9 nm and 32.8 nm) 

can be seen 

 

Figure 3-15 Hydrodynamic diameter, determined by DLS, of SMALPs from EMRSA-16 

following (red) concomitant addition of SMA, lysostaphin and DNase1 and incubation for 60 

min in comparison to (green) SMALPs obtained by addition of lysostaphin and DNase1 (10 

min) followed by addition of SMA and incubation for a further 50 min 
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In a further series of experiments, lysostaphin and SMA were added together and the 

mixture incubated for 60 min; smaller nanoparticles were obtained (Figure 3-15). 

3.3.2.2 Overnight incubation of SMALPs  

Following solubilisation of membrane proteins with SMA, SMALPs were sonicated and 

incubated with agitation at 37 °C for 14 - 16 h prior to collection by ultracentrifugation 

(Experiment 2, in table 3-2). Size distribution of SMALPs from EMRSA-16 (Figure 3-

16) and ECg-exposed EMRSA-16 (Figure 3-17), determined by DLS, indicated that this 

modification produced particles with increased hydrodynamic diameter. 

 

Figure 3-16 Hydrodynamic diameter of EMRSA-16 SMALPs with the (red) presence or (green) 

absence of 14 - 16 h incubation of SMALPs at 37 °C with agitation prior to collection, 

measured by DLS   

The mean diameter (n=3) of EMRSA-16 and EMRSA-16 membrane protein SMALPs 

exposed to 12.5 mg/L ECg without 14 - 16 h incubation were 20.06 ± 2.28 nm and 

14.32 ± 1.48 nm respectively. The DLS images displayed are a representation of one of 

the DLS data indicating an increase in average SMALPs sizes following 14 – 16 h 

incubation. There was a variation in sizes measured, however the trend in the increase 

in size remained the same. Stronger total protein bands were detected by Tricine-SDS-

PAGE Membrane proteins of SMALPs derived from ECg-exposed and control cells 

were subjected to Tricine-SDS-PAGE, with a stronger total protein bands detected with 

the exclusion of overnight incubation (Figure 3-18). Transfer of hydrophobic membrane 

proteins from the gel can be achieved with this system through use of high-ionic 
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strength buffers, low voltage and extended transfer time (Schägger and von Jagow, 

1987; Schägger, 2006).  

 

Figure 3-17 Hydrodynamic diameter of ECg-exposed EMRSA-16 SMALPs (red) with or (green) 

without 14-16 h incubation at 37 °C with agitation prior to collection as measured by DLS 

 

Figure 3-18 Tricine-SDS-PAGE of total protein from EMRSA-16 and ECg-exposed cells 

solubilised in SMALPs. Lysostaphin and SMA were added and bacteria incubated for 1 h at 37 

25-250 kDa 
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°C. SMALPs were then sonicated and either (a) incubated overnight (14 - 16 h) at 37 °C or (b) 

processed without overnight incubation 

3.3.2.3 Sonication 

After solubilisation of membrane proteins with SMA, the nanoparticles were dispersed 

with a probe tip sonicator prior to SMALP collection. Sonication enables reformation of 

vesicles by insertion of energy. This step could lead to disruption of the PBP2/PBP2a 

complex. Sonication of SMALPs containing EMRSA-16 membrane proteins generated 

smaller nanoparticles compared to SMALPs prepared without sonication (Figure 3-19). 

Sonication had no impact on the membrane protein profile of EMRSA-16 (Figure 3-20). 

 

Figure 3-19 Size distribution (hydrodynamic diameter) of EMRSA-16 SMALPs (red) after 

sonication prior to collection by ultracentrifugation, or (green) without sonication; measured 

by DLS 

 

 Total SMALP proteins captured and investigated by Tricine-SDS-PAGE and 

Coomassie staining showed a lack of a visible difference in membrane protein band 

intensity following SMALP solubilisation with and without sonication (figure 3-21). 
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Figure 3-20 Tricine-SDS-PAGE of total membrane proteins from EMRSA-16 solubilised in 

SMALPs. Washed cell pellets were suspended in digestion buffer and digested with lysostaphin 

(10 min) prior to addition of SMA (50 min). Subsequently SMALPs were sonicated or not 

3.3.2.4 The effect of temperature on SMALP development 

SMA solubilisation of EMRSA-16 membrane proteins was investigated at 4 °C and 37 

°C. A significant decrease in size distribution was observed when SMALPs were 

formed at 4 °C compared to 37 °C (Figure 3-21). The same held true for ECg exposed 

EMRSA-16 SMALPs (data not shown).   

The optimisation steps for the development of the SMALPs procedure adopted in this 

study are shown in table 3-2 along with comments comparing methods. The optimal 

method (Experiment 9, in table 3-2) was employed to probe for the PBP2/PBP2a 

complex in EMRSA-16 and to investigate the effect of ECg on the integrity of the 

complex.  
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Figure 3-21 The hydrodynamic diameter of EMRSA-16 SMALPs formed at (red) 4 °C and 

(green) 37 °C before sonication and ultracentrifugation as determined by DLS 
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Table 3-2 Optimisation of the SMALPs procedure for solubilisation of MRSA membrane 

proteins 

 

(A) 10 min lysostaphin solubilisation of cell wall prior to addition of SMA for a further 50 

min 

(B) Lysostaphin and SMA added and incubated for 60 min 

 * Optimised procedure for membrane protein solubilisation in MRSA with SMALPs 
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3.3.3 Optimal SMALP conditions 

A two litre culture of EMRSA-16 (± 12.5 mg/L ECg) containing 0.125 mg/L oxacillin  

was grown to mid-logarithmic phase at 37 °C. Cells were collected by centrifugation 

and the pellet suspended in digestion buffer containing 80 μg lysostaphin and DNase1 

for 10 min at 37 °C prior to the addition of 2.5% SMA. SMA was added and the 

mixture incubated for 50 min; SMALPs were collected by ultracentrifugation.  

 

Figure 3-22 Tricine SDS-PAGE of EMRSA-16 and SH1000 membrane proteins solubilised with 

Triton X-100 or SMA. Proteins were resolved in a 10% Tricine-SDS-PAGE gel 
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In order to evaluate the enhanced efficacy of SMA solubilisation compared to surfactant 

solubilisation, equal amounts of membrane protein preparations from a 400 mL culture 

(EMRSA-16 and SH1000) were solubilised with Triton X-100 or SMA. After 

concentration of the samples, equal amounts were separated by Tricine-SDS-PAGE 

(Figure 3-22). Fewer proteins with decreased band intensity were found after SMA 

solubilisation as compared to surfactant extraction.  

3.3.3.1 Examination of size distribution of SMALPs by TEM  

 

Figure 3-23 TEM images of (A) DMPC lipids solubilised within SMALPs and (B) SH1000 (C) 

EMRSA-16 and (D) ECg exposed EMRSA-16 membrane proteins solubilised in SMALPs 

SMA-derived nanoparticles from SH1000, EMRSA-16 and ECg-exposed EMRSA-16 

were examined by TEM; homogeneous preparations were noted for each sample (Figure 
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3-23). Mean diameters were determined from the micrographs:  DMPC lipid SMALPs 

(12 ± 2 nm) (Figure 3-23a) < SH1000 (18 ± 3 nm) (Figure 3-23b) < EMRSA-16 

SMALPs (24 ± 4 nm) (Figure 3-23c) (n=75 for all). A decrease was observed following 

exposure of EMRSA-16 to ECg (17 ± 4 nm) (Figure 3-23d).  

A large proportion of EMRSA-16 SMALPs sized in the range 16-20 nm (25.7%), 

whereas ECg exposed EMRSA-16 SMALPs were smaller (11-15 nm; 43.1%) (Figure 3-

24). It was not possible to meaningfully resolve SMALPs by SEM due to their 

nanoparticulate nature. 

 

 

Figure 3-24 TEM size distribution of SMALPs of (A) EMRSA-16 membrane protein SMALPs 

and (B) ECg exposed EMRSA-16 membrane protein SMALPs 
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3.3.3.2 Examination of size distribution of SMALPs by DLS and flow 

cytometry 

The diameter distribution of EMRSA-16 and ECg-exposed EMRSA-16 SMALPs 

utilising DLS method 9 showed a shift to smaller particles (mean measurements (n=3); 

14.22 nm to 11.50) following exposure to ECg. SMA and digestion buffer SMALPs 

measured 1.33 nm (Figure 3-25). Again there was variation in DLS sizes measured, 

with the mean stated above, however every experiment showed the same trend with a 

shift in the size following ECg exposure.  

 

Figure 3-25 Hydrodynamic diameter of (red) EMRSA-16 and (green) ECg-exposed EMRSA-16 

SMALPs; (blue) digestion buffer and (black) SMA, measured by DLS 

This shift in size distribution due to ECg exposure was also observed for the COL 

MRSA isolate. An overlap in size distribution was observed between COL and 

EMRSA-16 SMALPs grown in the presence and absence of ECg as is shown in figure 

3-26 as a representative of one experiment on one day. Measurements were taken on 3 

separate days and the mean displayed in figure 3-7. 
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Figure 3-26 Size distribution (hydrodynamic diameter) of (red) EMRSA-16 and (green) ECg-

exposed EMRSA-16 SMALPs; (blue) MRSA COL; (black) ECg-exposed COL determined by 

DLS. EMRSA-16 and COL SMALPs overlap in a size range from 15 to 45 nm and ECg-exposed 

SMALPs from 10 to 40 nm 

Hydrodynamic diameters of EMRSA-16 and COL SMALPs were determined as 26.8 ± 

1.72 nm and 31.0 ± 3.44 nm respectively. ECg-exposed EMRA-16 SMALPs measured 

18.0 ± 3.47 nm and COL SMALPs exposed to ECg measured 20.3 ± 5.33 nm (Figure 3-

27). All samples had a high polydispersity index (0.60 - 0.89) indicative of the 

polydisperse SMALP diameters with a large standard deviation. Due to the preliminary 

nature of these experiments and with a variation in SMALP sizes observed on 

consequent days, the results obtained are an indication of a general reduction in SMALP 

sizes following ECg exposure as opposed to a definitive size difference.   

The size distribution of SMALPs derived from SH1000 and EMRSA-16, determined by 
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Figure 3-27 Size distribution of SMALPs and impact of growth in ECg (n=3) 
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DLS also indicated a general decrease in SMALP sizes between EMRSA-16 membrane 

protein SMALPs and SH1000 (MSSA) membrane protein SMALPs  (Figure 3-28).  

 

Figure 3-28 Hydrodynamic diameter of (red) EMRSA-16 and (green) SH1000 SMALPs 

determined by DLS 

The decrease in overall SMALP diameter induced by exposure to ECg was also 

examined by flow cytometry. SMALPs were stained with Nile Red (60 µM) to 

determine size (FSC) and complexity (SSC). Nile Red-labelled SMALPs from EMRSA-

16 and ECg exposed EMRSA-16 could be readily resolved and were distinct from 

unstained SMALPs (Figure 3-29).  

Twenty thousand events were collected while triggering for red fluorescence (B2; red 

fluorescent channel). The fluorescence of Nile Red-stained EMRSA-16 SMALPs was 

11.04 AU compared to ECg-exposed EMRSA-16 SMALPs (10.73 AU). SSC of the 

SMALPs was similar for EMRSA-16 and ECg-exposed EMRSA-16 (56.59 AU and 

56.77 AU respectively; Figure 3-30a). 
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Figure 3-29 Fluorescence intensity of (red and green) 60 µM Nile Red-staining for lipids in 

SMALPs compared to (black) non-fluorescence SMALPs. AU, arbitrary units 

 

Figure 3-30 Flow cytometry of (A) EMRSA-16 and (B) ECg-exposed EMRSA-16 SMALPs 

(labelled with 60 µM Nile Red); by size (FSC-A) and complexity (SSC-A) 

A 

B 
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Figure 3-31 Change in FSC and SSC values determined by flow cytometry of EMRSA-16 

SMALPs following exposure to ECg and incubation with 60 µM Nile Red for 30 min (n=3) 

In accord with TEM and DLS, an overall decrease (p = 0.007) in EMRSA-16 SMALP 

FSC was observed (46.05 to 32.31 AU) as a result of growth in the presence of ECg 

(Figure 3-30b). The reduction in size is shown in figure 3-30b.  SMALPs derived from 

EMRSA-16 exhibited a 30.9% decrease in FSC and 10.0% decrease in SSC as a result 

of growth in ECg (Figure 3-31); a comparable decrease induced by ECg exposure was 

found with COL and complemented DLS (Figure 3-32c). 
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Figure 3-32 Single parameter histogram of light measurements of SMALP particles by flow 

cytometry stained with 60 µM Nile Red. (A) FSC-A and (B) SSC-A measurements of EMRSA-16, 

EMRSA-16 exposed to ECg and DMPC. (C) FSC-A of EMRSA-16, COL and ECg exposed 

SMALPs 

3.3.3.3 Co-localisation of PBPs  

After SMA solubilisation of membrane proteins, any co-localisation of PBPs and 

SMALP lipid was examined by confocal microscopy. PBPs and lipid were detected 

with bodipy FL and Nile Red. Co-localisation of these markers was observed (Figure 3-

33). 

C 
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Figure 3-33 Confocal fluorescence microscopy of EMRSA-16 SMALPs labelled with (A and D) 

bocillin FL and (B and C) Nile Red detecting PBPs and lipid SMALPs. C and F are merged 

confocal images 
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3.4 Discussion 

Knowles et al. (2009) demonstrated that recombinant bR and PagP were integrated into 

SMALPs to produce nanoparticles with a mean diameter of 11 nm. In the current study, 

a method was developed utilising SMA to solubilise membrane proteins directly from 

the cytoplasmic membrane following removal of the staphylococcal cell wall. SMALPs 

trapped membrane proteins that were amenable to investigation by SDS-PAGE and 

their protein content was low, necessitating concentration of the preparations prior to 

analysis. However, following successful protein solubilisation, further modifications 

were made to reduce the degree of disruption to the cell and internal environment prior 

to protein extraction in an attempt to maximise recovery.  

A method was developed for the solubilisation of membrane proteins from whole cells. 

To allow access of SMA to the cytoplasmic membrane, it became apparent that 

lysostaphin was required to facilitate minimal degradation of the cell wall through 

cleavage of pentaglycine cross-bridges. Ten minutes incubation of cells with 

lysostaphin allowed minimal disruption of the cell wall for SMA to gain access to the 

membrane proteins. SMA solubilisation after incubation with lysostaphin resulted in 

SMALPs with a higher mean diameter, in comparison to preparations obtained when 

SMA and lysostaphin were employed together.  

Jamshad et al. (personal communication) had employed an overnight incubation step at 

optimal temperature following SMA solubilisation in order to increase protein capture. 

In the current study, omission of the overnight incubation step resulted in SMALPs with 

a lower mean diameter; however, investigation of SMA-solubilised proteins showed 

that absence of the overnight step resulted in a larger number of protein bands (Figure 

3-19) Therefore, overnight incubation was omitted to reduce the number of steps in the 

procedure and to reduce the potential for membrane protein complex disruption  

A gentle sonication step introduced by Jamshad and co-workers to disperse SMALPs 

prior to collection by ultracentrifugation was also found to be unnecessary for 

solubilisation of staphylococcal membrane proteins. Sonication disrupts vesicles and 

subsequent vesicle reformation may result in damage and/or disruption of 

macromolecules, as demonstrated for fragmentation of DNA (Sambrook and Russell, 
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2006a). The sonication step could, therefore, result in disruption of PBP2/PBP2a 

complexes and possible denaturation of proteins. Analysis of the size distribution of 

SMALPs without omission of the sonication step produced particles with higher mean 

diameter and more extensive size distribution (Figure 3-19). In this comparison, there 

was no decrease in protein band intensity, providing justification for omission of the 

sonication step. 

The optimised method for SMA solubilisation of membrane proteins from intact cells 

encompassed a two litre culture volume, SMALP collection at 37 °C and the 

modifications described above (Table 3-2, experiment 9). For reasons of scale and 

economy, in particular the cost of lysostaphin, cultures larger than two litre could not be 

employed. Key elements of the method employed are as follows; 

 Large starting culture (2 L) 

 Suspension of cell pellet in 20% (w/v) sucrose to stabilise membrane proteins 

 Digestion of cell wall with lysostaphin for 10 min prior to addition of SMA 

 SMA solubilisation at 37 °C 

 Collection of SMALPs at 100,000 g for 1 h 

 Concentration of SMALP samples to 1 ml with Vivaspin columns at 4 °C 

 Analysis of membrane proteins using Tricine-SDS-PAGE 

 Denaturation of proteins at 37 °C for 30 min prior to gel electrophoresis 

 

Knowles et al. (2009) and Orwick et al. (2012) visualised SMALPs by negative stain 

TEM (Figure 3-14). SMALPs obtained in their studies were not uniformly cylindrical in 

nature and there was some variation in size. The size of SMALPs derived from DMPC 

were approximately 9 nm in diameter whereas SMALPs containing PagP or bR were 

~10.2 nm in diameter (Knowles et al., 2009; Orwick et al., 2012).  

EMRSA-16 membrane proteins solubilised by SMA displayed a denser and higher 

resolution surface of SMALPs compared to SMALPs by Orwick et al. (2012) with an 

average size range between 16 and 20 nm (Figure 3-24a). Their mean diameters were 5-

9 nm greater than those of Knowles et al. (2009) and this may be due to encapsulation 

of protein complexes rather than molecules of one protein species. 



SMALPs: development of the method 

 Chapter three 128   

 

 

Figure 3-34 TEM of uranyl acetate stained preparations of (A) DMPC SMALPs (also termed 

lipodisqs) from Orwick et al. (2012) and (B) SMALPs containing PagP or bR with the insert 

showing a single SMALP particle (Knowles et al., 2009) 

After exposure of EMRSA-16 to ECg, average size diameters fell within 11 - 15 nm 

(Figure 3-24b), representing an overall size decrease compared to unexposed EMRSA-

16 SMALPs. The size range of the ECg-exposed SMALPs may be comparable to that of 

particles containing single protein species and this may reflect disruption of protein 

complexes following exposure to ECg.  

Similar size distribution data was observed using DLS, with reductions in diameter after 

exposure of EMRSA-16 to ECg. Due to the preliminary nature of these experiments and 

that a difference in SMALP sizes was observed on consequent days, at this stage, the 

data is indicative of an overall reduction in SMALP sizes following ECg exposure. The 

dimensions measured by DLS were also greater that those obtained by TEM and could 

be due to the fact that DLS determinations take into account the hydrodynamic diameter 

of particles. DLS measures the hydrodynamic diameter of a hypothetical hard spheres 

that diffuses in the same manner as the SMALPs; TEM shows that these nanoparticles 

are not perfectly spherical and measurement of the hydrated/solvated particle results in 

an overestimation of true particle size (Malvern). In practice, intensity distributions 

determined by DLS are converted to volume distribution using Mie theory to compare 

relative proportions of SMALP preparations dependent on volume rather than scatter. 
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Flow cytometry, was also employed to compare EMRSA-16 and ECg-exposed 

EMRSA-16 membrane protein SMALPs. An overall reduction (p = 0.007) in size (FSC) 

was found when EMRSA-16 cells were exposed to ECg. This data accords with 

changes in the dimensions of SMALPs measured by TEM and DLS. Due to their small 

size, SEM images and SSC measurements determined by flow cytometry did not 

provide significant findings.  

After SMA solubilisation of EMRSA-16 membrane proteins to form approximately 

spherical particles, PBPs co-localised with SMALP lipids. Previous work by Jorge et al. 

(2011) localised PBPs within S. aureus cells labelled with bocillin FL. Atilano et al. 

(2010) also demonstrated that the membrane dye Nile Red can be used to visualise S. 

aureus membranes. In the current study, Nile Red and bocillin FL were combined in 

order to examine the propensity for co-localisation of lipids together with PBPs to take 

place within SMALPs. PBPs and lipids could be co-localised in SMALPs derived from 

EMRSA-16 and ECg-exposed EMRSA-16 when confocal microscopy was employed 

together with bocillin FL (PBPs) and Nile Red (SMALPS) fluorescent staining. The 

particles were too small to allow for resolution of structural detail. These data provide 

some evidence that PBPs, including PBP2/PBP2a complexes, were successfully 

incorporated within SMALPs.  
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4.1 Introduction 

Following solubilisation of EMRSA-16 membrane proteins with SMA and co-

localisation of PBPs and SMALP nanoparticles, the integrity of the PBP2/PBP2a 

complex was investigated.    

Immunoprecipitation, co-immunoprecipitation and Ab affinity chromatography are key 

tools for the investigation of single proteins and protein-protein interactions (Qoronfleh 

et al., 2003). Immunoprecipitation is a immunochemical technique for antigen 

characterisation, molecular weight determination, rates of synthesis or degradation, 

posttranslational modifications and interactions with proteins, nucleic acids or ligands 

(Williams, 2000). On the other hand, co-immunoprecipitation and Ab affinity 

chromatography are commonly employed to study in vivo protein interactions and to 

identify interacting protein partners (Yamauchi et al., 1995) and receptor-ligand (Shi et 

al., 2000) and enzyme-substrate (Honda et al., 1997) interactions in suspension 

(Sambrook and Russell, 2006b). These procedures are limited by the availability of high 

affinity Abs and the capacity to detect physiological levels of the target protein 

(Ransone, 1995). Ab affinity chromatography is dependent on the chemical binding or 

coupling of the affinity ligand (e.g. Ab) to a solid, chromatographic matrix (stationary 

phase); the target proteins and protein partners in solution (mobile phase) interact with 

the ligand (Urh et al., 2009). Unbound proteins are removed by washing and the target 

proteins recovered (Urh et al.). Co-immunoprecipitation, in similar fashion to Ab 

affinity chromatography, involves the capture and detection of a specific protein with a 

ligand of choice along with additional proteins in the complex independent on whether 

they are bound directly or indirectly (Yang et al., 2008). If a suitable Ab is available, 

co-immunoprecipitation and Ab affinity chromatography more rapidly detect protein 

interactions than other commonly used methods such as epitope tagging and glutathione 

s-transferase (GST) pull down (Yang et al., 2008).  

Epitope tagging of proteins (e.g. His6 or calmodulin binding peptides), enables rapid 

and reliable procedures for the study of protein-protein interaction, as genetic tagging is 

usually more straightforward than raising a high quality Ab (Yang et al., 2008). Protein 

complexes are purified in gentle conditions with a commercial kit and bait proteins 

over-expressed to compensate for the low abundance of some proteins. However, the 
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addition of a tag may compromise protein folding, function or protein-protein binding; 

this may limit its use for the study of PBP2/PBP2a complexes (Yang et al., 2008).  

GST pull down assays are primarily employed to identify interacting partners of a 

known protein or to confirm protein-protein interactions observed using two hybrid-

systems (Ren et al., 2003). GST-protein fusions are expressed in E. coli, immobilised 

on a solid support (e.g. glutathione sepharose beads) and interacting proteins pulled 

down with the GST-tagged protein (Yang et al., 2008). A frequent shortcoming of the 

method is the inability to over-express all proteins in soluble form in E. coli. Further, 

the fusion proteins often lack posttranslational modifications required for interactions 

with other proteins.  

In this chapter, Ab affinity chromatography and co-immunoprecipitation were employed 

to investigate potential interactions between SMA-solubilised PBP2 and PBP2a from 

EMRSA-16, together with the impact of exposure of the bacteria to ECg  (Figure 4-1).  

 

Figure 4-1 Co-immunoprecipitation for protein-protein interactions  

Abs for the proteins of interest were bound to an immobilised protein G matrix. The 

suitability of protein A or G matrices is dependent upon the source and class of the Ab 

used; protein A is generally less expensive but protein G binds to a wider range of Abs, 
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including those from mice and rabbits. Membrane proteins solubilised with SMA were 

cross-linked and probed for the presence of PBP2/PBP2a complexes with Ab-protein G 

solution (Qoronfleh et al., 2003). Proteins interacting with Ab-protein G were 

precipitated from the matrix and examined by SDS-PAGE (Figure 4-1); interacting 

protein partners are then detected by Western blotting or flow cytometry (Qoronfleh et 

al., 2003). 

Western blotting (Figure 4-2) is essential for the discrimination of PBP2 (80 kDa) and 

PBP2a (78 kDa). This method can also identify other proteins that interact in situ with 

PBP2 and PBP2a. If PBP2 and PBP2a form a physical complex, both proteins will be 

found in co-immunoprecipitation eluents following individual Western blotting (Figure 

4-3). This procedure could be confounded by low abundance partner proteins, present in 

concentrations below the threshold of detection. 

 

Figure 4-2 Gel mapping of PBP2, PBP2a, PBP2/PBP2a complexes and multi-protein 

complexes 
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Figure 4-3 Predicted Western blots for individual or complexed proteins captured by SMALPs 

and purified by co-immunoprecipitation 
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4.2 Materials and methods 

4.2.1 Bacterial strains and reagents 

Polyclonal rabbit anti-PBP2a serum was produced and purchased from BioServ 

(Sheffield University, UK). Rabbit anti-FtsZ Ab was donated by Jeff Errington 

(Newcastle University, UK).  

4.2.2 Anti-PBP2a polyclonal Ab affinity purification 

Rabbit anti-PBP2a serum was produced commercially by BioServ with 2 mg/mL 

purified PBP2a protein supplied by David Roper (University of Warwick). Abs from 

600 μL antiserum was purified utilising a protein G HP SpinTrap column (GE 

Healthcare Life Sciences); the column contained protein G Sepharose with a high 

affinity for the IgG Fc region. Column storage solution was removed by centrifugation 

(100 g, 1 min, 4 °C) and columns washed three times with 400 μL Tris-buffer saline 

(TBS) (50 mM Tris, 150 mM NaCl, pH 7.5). After column equilibration, 600 μL of 

anti-PBP2a serum was incubated with the protein G agarose for 5 min at 4 °C with 

agitation. The protein G-IgG complex was washed five times with 400 μL TBS. 

Purified anti-PBP2a IgG was then eluted from the affinity matrix with 400 μL 0.1 M 

citrate (pH 2 - 3) by centrifugation at 70 g; 30 μL 1 M Tris-HCl pH 9.0 added to restore 

the pH to physiological levels.  

4.2.3 Cross-linking of proteins in SMALPs 

DTSSP was dissolved to 10 mM in 500 µL of concentrated SMALP solution (~25 

mg/mL) and the mixture incubated at 4 °C for 30 min. The cross-linking reaction was 

quenched as described in section 2.3.8.1. Prior to loading the protein sample onto an 

SDS-PAGE, the cross-linker was cleaved with 5 % β-mercaptoethanol (Sigma) in 

Tricine sample buffer.  

4.2.4 Protein pull down assays for complex identification 

Ab affinity chromatography and co-immunoprecipitation were employed with Abs for 

PBP2 and PBP2a. Samples were normalised to equal concentrations of protein SMALPs 

(~25 mg/mL). Equal amounts (~500 µL) were added to all affinity matrix-Ab solutions, 
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equivalent amounts of eluent (8 - 10 µL) separated with 2-3 SDS-PAGEs and proteins 

identified by Western blotting.  

The bicinchoninic acid method, a modification of the Lowry method (Smith et al., 

1985), and the Bradford assay could not be employed for the quantification of protein 

within particles due to the presence of SMA polymer and lipids, which caused SMALP 

precipitation and aggregation. Instead, the Nanodrop A280 absorbance assay was 

employed, with an absorbance maximum in the near-UV (280 nm) due to the aromatic 

amino acids tyrosine and tryptophan (Nelson and Cox, 2000; Hunte et al., 2003). 

Protein content of SMALPs (2 mL) was determined in this assay at 280 nm (A280) in 

triplicate, with A260/A280 also measured. Values with a A260/A280 ratio of <0.5 were 

included to minimise nucleic acid contamination error (Atiken and Learmonth, 2002). 

Protein concentrations were measured in mg/mL. 

4.2.4.1 Ab affinity chromatography 

Protein G HP spintrap columns with a Sepharose matrix of 6% highly cross-linked 

agarose with 2 mg protein G/mL medium were used. The storage solution (20% 

ethanol) was removed by centrifugation (150 g, 1 min) and the columns washed three 

times with 400 µL of TBS to equilibrate the matrix. Two hundred µL of Ab (anti-PBP2, 

-PBP2a or -FtsZ) solution (0.5 - 1.0 mg/mL Ab in TBS) was added to the columns, 

which were incubated at RT for 1 h with gentle agitation. Excess unbound Ab was 

removed by centrifugation and the matrix washed with 400 µL TBS. Cross-linked 

SMALPs were added to the columns (maximum volume 500 µL). The spin columns 

were placed on a shaker and incubated at 4 °C for 1 h. The protein-IgG complex bound 

to the matrix was washed five times with TBS. The IgG-protein complexes were eluted 

with 100 µL 0.1 M glycine (pH 2.5), centrifuged for 1 min (1000 g, 4 °C) and the pH 

restored as described in section 4.2.2.     

4.2.4.2 Co-immunoprecipitation 

The Dynabead protein G immunoprecipitation kit (Life Technology ltd.) was utilised. 

Dynabeads suspended in PBS + 0.09% (w/v) sodium azide were homogenously 

distributed through pipetting and 50 µL Dynabeads transferred to one Eppendorf tube 

for each co-immunoprecipitation assay. Tubes were placed on a magnet and the 
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supernatant removed.  The Dynabeads were suspended in 200 µL Ab binding and wash 

buffer containing 8-10 µg of either anti-PBP2 or anti-PBP2a Ab. The Dynabead-Ab 

solution was incubated for 1 h at RT with agitation, the Dynabead-Ab complex 

collected and washed with 200 µL Ab binding and wash buffer. Cross-linked SMALPs 

(~500 µL) were added to the Dynabeads and incubated for 2 h at 4 °C with agitation. 

The Dynabead-Ab-protein complex was washed three times in 200 µL wash buffer, the 

Ab-protein complex eluted with 20 µL of elution buffer and the pH restored to 

physiological levels as mentioned in section 4.2.2.  

Conditions for elution of precipitated proteins from the affinity matrix often result in 

release of the Ab, contaminating the sample and leading to background noise that can 

interfere with the detection of protein bands (Yang et al., 2008). Ab in solution was 

coupled to the affinity matrix with dimethyl pimelimidate x 2HCl (DMP), a water-

soluble and membrane-permeable homo-bifunctional imidoester cross-linker (Deleault 

et al., 2005). The Dynabead-Ab complex was washed twice with 1 mL 0.2 M 

triethanolamine (pH 8.2), suspended in 1 mL 20 mM DMP in 0.2 M triethanolamine 

(pH 8.2) and incubated at 20 °C for 30 min with gentle agitation. After removal of the 

Dynabead-Ab complex with a magnet, the beads were suspended in 1 mL 50 mM Tris 

(pH 7.5) and incubated for 15 min at RT. The supernatant was discarded and the cross-

linked Dynabeads washed three times with 1 mL PBS (0.01 - 0.1% Tween-20). After 

cross-linking, SMALPs (~500 µL) were added to the beads and the co-

immunoprecipitation procedure continued as described previously.  

4.2.5 Identification of protein complexes 

4.2.5.1 1D SDS-PAGE 

Samples were normalised using the A280 absorbance assay prior to protein pull down 

and equal amounts of eluent in 2x sample buffer added to each 10% SDS-PAGE (25 

μL) or 10% Tricine-SDS-PAGE (15 μL) slot. Proteins were transferred to a membrane 

by Western blotting for protein identification.  
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4.2.5.2 Western blotting 

Western blotting was undertaken as described in section 2.3.1.0 Equivalent volumes of 

eluent were run on separate SDS-PAGEs resulting in two or three separate Western 

blots to identify PBP2, PBP2a and FtsZ in co-immunoprecipitation eluents. Transfer 

was performed at 100 V (Constant V) for 1 h at RT followed by membrane blocking for 

1 h at RT with agitation using 40 mL Western blotting solution. Membranes were then 

incubated with primary Ab (anti-PBP2, -PBP2a or -FtsZ) in 30 mL Western blotting 

solution at optimised concentration for detection and incubated overnight at 4 °C with 

agitation. Dilutions for primary Ab were 1:500, 1:10,000 and 1:10,000 for anti-PBP2, -

PBP2a and -FtsZ respectively. Membranes were washed four times for 5 min with 40 

mL tris buffer saline with tween 20 (TBST) followed by incubation with secondary 

HRP-conjugated monoclonal Ab at 1: 10,000 dilution in 20 mL Western blotting 

solution for 1 h at RT. After four washes of 5 min each with TBST, protein bands were 

detected with TMB or supersignal West pico chemiluminescent substrate (Thermo 

Scientific). For chemiluminescent detection, 2 mL of luminol enhancer solution was 

mixed with 2 mL of stable peroxidase solution and the membrane submerged in the 

solution in the dark for 5 min with gentle agitation. Protein bands were visualised with a 

Molecular Imager Gel Doc XR (Bio-Rad). 

4.2.5.3 2D gel electrophoresis 

SMALPs (125 µL; 25 mg/L) were rehydrated overnight at RT on 7 cm IPG ReadyStrips 

pH 7 - 10 (Bio-Rad). Isoelectric focusing of proteins was undertaken using Protean IEF 

Cell (Bio-Rad) at 20 °C with an accumulated total of 10,000 V-h and a final voltage of 

4000 V. Focused strips were stored at -80 °C prior to 2D SDS-PAGE. For 2D 

separation, IPG strips were equilibrated in buffer (6M Urea, 2% SDS, 0.05 M Tris-HCl 

pH 8.8, 20% glycerol) containing 1% Dithiothreitol (DTT) (Sigma) for 15 min and then 

in the same buffer containing 2.5% iodoacetamide (Sigma) and no DTT for 15 min. 

Strips were transferred to a 10% Tris-SDS-PAGE gel, electrophoresed at 110 V 

(constant V) for 80 min and protein bands visualised with silver stain.  
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4.2.5.4 Flow cytometry 

Proteins recovered by co-immunoprecipitation were detected with the primary and 

secondary fluorescence-conjugated Abs described above by flow cytometry in a MACS 

Quant
®
 Analyser (Miltenyi Biotec Ltd.). Primary Abs were mouse anti-PBP2a and 

rabbit anti-PBP2. Co-immunoprecipitation eluents (5 μL) were suspended in 495 μL 

digestion buffer, labelled with primary anti-PBP2 (1:500) or PBP2a (1:10,000) Ab for 1 

h at RT with gentle agitation. After, they were incubated with 1:10,000 dilution 

fluorescein-isotheocyanate (FITC) conjugated secondary Ab (goat anti-rabbit and rabbit 

anti-mouse) and 60 μL Nile Red for 30 min in the dark. Twenty thousand Nile Red 

fluorescence events were gated (B2, trigger 3.0) as described in section 3. Co-

immunoprecipitation eluents of SMALPs enriched with anti-PBP2 Ab were probed for 

PBP2a in the B3 green fluorescent channel (330V, trigger 2.0) after back gating of the 

20,000 Nile Red events. Eluents from co-immunoprecipitation with anti-PBP2a Ab 

were probed in the same manner for PBP2. Data was analysed using the MACS 

Quantify™ Software (Miltenyi Biotec Ltd.). 
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4.3 Results 

Expression of PBP2a and PBP2 by EMRSA-16 was investigated following exposure to 

ECg (12.5 and 25 mg/L); membrane proteins solubilised in SMALPs. A decrease in 

both PBP2a and PBP2 expression was observed following growth in 25 mg/L ECg 

(Figure 4-4) and was subject to limits of detection of the Western blotting procedure 

and the specificity and sensitivity of the Ab used.  

 

Figure 4-4 Detection in SMALPs of PBP2a and PBP2 from EMRSA-16 after growth in ECg 

 

Membrane proteins solubilised in SMALPs were separated with 2D gel electrophoresis 

using IPG strips focusing over the pH range 7-10. Some protein spots from EMRSA-16 

SMALPs were detected but gels of proteins from bacteria exposed to ECg showed a 

high degree of “smearing” (data not shown). 

 

Western blot anti-PBP2a Ab 

Western blot anti-PBP2 Ab 
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4.3.1 Protein complexes 

4.3.1.1 FtsZ/PBP2/PBP2a 

The PBP2/PBP2a complex was initially isolated along with the FtsZ division anchor; 

employing anti-FtsZ Ab affinity chromatography and interacting protein partners 

detected with anti-PBP2, -PBP2a and -FtsZ Ab (Figure 4-5). 

 

Figure 4-5 (A) Western blot and (B) schematic of the anti-FtsZ affinity chromatography eluent 

showing the presence of FtsZ/PBP2/PBP2a and FtsZ/PBP2 complexes in EMRSA-16 and ECg 

exposed SMALPs. The colour of the boxes corresponds to the protein colour in the schematic 

PBP2a was not detected together with FtsZ/PBP2 in EMRSA-16-derived SMALPS 

after exposure of bacteria to 12.5 mg/L ECg. FtsZ/PBP2/PBP2a complexes were not 

detected using anti-PBP2 and PBP2a Ab as the affinity ligand (data not shown), in all 

likelihood due to the sensitivity of the detection method and the affinity of the Ab used.   
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To minimise ligand Ab leaching from the support matrix during protein pull down, the 

anti-FtsZ Ab was cross-linked to the protein G matrix with DMP and compared to Ab 

captured in non-covalent fashion by protein G. A more prominent FtsZ band was 

observed without DMP cross-linking in both SDS-PAGE gels (Figure 4-6a) and 

Western blots (Figure 4-6b).  

 

Figure 4-6 (A) Tricine-SDS-PAGE (silver stain) and (B) anti-FtsZ Ab Western blot of purified 

FtsZ from EMRSA-16 SMALPs; chemical cross-linking is compared to the conventional 

methodology 

4.3.1.2 PBP2/PBP2a complexes 

A culture volume of 500 mL was used for investigation of PBP2/PBP2a complexes by 

Ab affinity chromatography, employing anti-PBP2 and anti-PBP2a Ab as the affinity 

ligands. PBP2/PBP2a complexes were detected in control EMRSA-16 SMALPs (Figure 

4-7). Proteins were precipitated with anti-PBP2 polyclonal Ab and detected with anti-
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PBP2 (polyclonal) and anti-PBP2a (monoclonal) Ab. Complexes were not detected in 

ECg-exposed cells or when anti-PBP2a Ab was employed as the affinity ligand (Figure 

4-7). Comparatively, the complex was investigated with surfactant solubilisation, 

complexes were not evident after solubilisation of EMRSA-16 membrane proteins with 

Triton X-100, although both PBP2 and PBP2a were detected, as described in section 2 

(Figure 2-10), indicating the enhanced capacity of the SMALP solubilisation method for 

complex extraction. 

 

Figure 4-7 Western blot detection of PBP2 and PBP2a interacting proteins following affinity 

chromatography with (A) anti-PBP2 and (B) anti-PBP2a Ab. The PBP2/PBP2a complexes were 

detected in EMRSA-16 SMALPs. The colour of the boxes corresponds to the protein colour in 

the schematic 

 

PBP2/PBP2a complexes could also be recovered from MRSA COL strain (Figure 4-8). 

PBP2/PBP2a complexes were only detected in Western blots when anti-PBP2a Ab was 

employed as the affinity ligand. More sensitive methods of detection of protein bands in 

Western blots were therefore investigated; TMB and chemiluminescence substrates for 

HRP. Co-immunoprecipitated PBP2 yielded a stronger band following 

chemiluminescence detection in this manner (Figure 4-9). 
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Figure 4-8 Western blot of affinity chromatography eluents from assays utilising (A) anti-PBP2 

and (B) -PBP2a Ab. PBP2/PBP2a complexes were observed in COL SMALPs 
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Figure 4-9 Detection of PBP2 in Western blots from co-immunoprecipitation eluents with anti-

PBP2 Ab (A) super signal West pico chemiluminescence or (B) TMB detection. The box 

indicates the position of PBP2 protein of two samples of EMRSA-16 membrane proteins 

solubilised in SMALPs 

A reduction in PBP2 and PBP2/PBP2a complexes was observed following ECg 

exposure, likely to be indicative of a degree of complex disruption. However the data is 

still very preliminary and variations in the level of detection of the complex was seen as 

can be seen when comparing figure 4-10 and 4-11. Also an accurate comparison of data 

between samples could only be inferred due to the low sensitivity of the functional 

normalisation method used (A280). The heavy chain of the anti-PBP2 and PBP2a Ab 

precipitated from the affinity matrix during co-immunoprecipitation in all samples, 

indicating that co-immunoprecipitation was mediated through Ab binding (Figure 4-10). 

 

Figure 4-10 Western blots employing (A) anti-PBP2a and (B) anti PBP2 Ab of co-

immunoprecipitation eluents from SMALPs recovered with anti-PBP2 and -PBP2a Abs. Protein 

bands detected by chemiluminescence  

PBP2/PBP2a complexes were also detected by Western blotting after purification of 

SMALPs with anti-PBP2 Ab (Figure 4-11); inferring a partial complex disruption after 

ECg exposure (12.5 mg/L). Precipitation of Ab heavy chains from Dynabeads was 
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detected in all samples in the anti-PBP2 Western blot. Variations in levels of 

PBP2/PBP2a complex detection following ECg exposure varied to lack of a complex or 

lower levels of protein complex bands being detected. This stems from the preliminary 

nature of these results and further investigation is needed.  

 

Figure 4-11 Detection of PBP2 and PBP2a in EMRSA-16 and ECg-exposed EMRSA-16 

SMALPs following co-immunoprecipitation with anti-PBP2 and -PBP2a Ab. Protein bands 

detected by chemiluminescence 

Light chain of Ab 

PBP2 

PBP2a 

PBP2/PBP2a 

complex 
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Subsequently, a native gel was employed to probe for PBP2/PBP2a complexes in COL. 

A higher molecular weight band than the proteins of interest in the Western blot 

following co-immunoprecipitation was detected, indicative of the PBP2/PBP2a 

complex. This band was also found in blots of proteins from SMALPs obtained from 

ECg-exposed cells when probed with anti-PBP2a Ab (Figure 4-12). A native gel is 

more sensitive to membrane protein complex detection as the proteins are not 

denatured. This data indicates a base level of PBP2/PBP2a complexes still present 

following ECg exposure, which is below of the level of detection of denaturing SDS-

PAGEs. The heavy chain of the co-immunoprecipitation Ab was detected in all 

samples. 

 

Figure 4-12 Western blots with anti- (A) PBP2 and (B) PBP2a Ab of SMALPs from COL and 

ECg-exposed COL co-immunoprecipitation eluents using anti-PBP2 and anti-PBP2a Ab. 

Samples were run on a Tricine-SDS-PAGE under native conditions. The PBP2/PBP2a complex 

was detected in COL and ECg-exposed COL SMALPs  
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Purified polyclonal rabbit anti-PBP2a and polyclonal rabbit anti-PBP2 Abs were used to 

probe gels under denaturing SDS-PAGE conditions for the presence of PBP2/PBP2a 

complexes. PBP2/PBP2a complexes were observed in EMRSA-16 membrane protein 

SMALPs when employing both Abs as co-immunoprecipitation ligands (Figure 4-13), 

however the complexes were not found in ECg-exposed SMALPs (data not shown). 

 

Figure 4-13 Western blots with polyclonal (A) anti-PBP2a and (B) anti-PBP2 Ab of co-

immunoprecipitation eluents from EMRSA-16 SMALPs. Protein bands detected with 

chemiluminescence 

4.3.2 Complex detection by flow cytometry  

Co-immunoprecipitation eluents were analysed by flow cytometry to investigate the 

association between PBP2 and PBP2a embedded within SMALPs. Samples (labelled 

with 60 μM Nile Red) were gated for 20,000 SMALP fluorescence events and the 

fluorescence intensity of the FITC-labelled PBP component (either PBP2 or 2a) 

quantified in the green fluorescence channel (Figure 4-14).  

As shown in Figure 4-14a, PBP2/PBP2a complexes were purified within SMALPs 

using anti-PBP2a Abs and then probed with anti-PBP2 and FITC-conjugated secondary 

Ab. A 1.63 ± 0.18 fold decrease in fluorescence was observed following ECg exposure 

A 

B 
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(Figure 4-15). When anti-PBP2 Abs were used to purify SMALPs from ECg-exposed 

bacteria (Figure 4-14b) and gels probed with anti-PBP2a Ab, a 1.33 ± 0.14 fold 

reduction was found (Figure 4-16). 

 

Figure 4-14 Flow cytometry for detection of PBP2/PBP2a complexes after co-

immunoprecipitation of SMALPs with (A) anti-PBP2a or (B) anti-PBP2 Abs. Eluent was 

labelled with (A) anti-PBP2 or (B) anti-PBP2 Ab and a fluorescent secondary Ab. The eluent 

was gated for 20,000 Nile Red events and the fluorescence intensity of the secondary Ab 

conjugated to FITC measured (AU) 



Effect of exposure to ECg on the PBP2/PBP2a complex  

150                                                                                    Chapter four 

 

Figure 4-15 Co-immunoprecipitation eluents of SMALPs obtained from (A) EMRSA-16 and (C) ECg-exposed EMRSA-16 by precipitation with anti-PBP2a Ab were 

gated for 20,000 Nile Red events and (E) the FSC change determined. After fluorescence labelling of the partner protein in the complex (PBP2) with secondary 

FITC conjugated Ab, the fluorescence intensity was determined for SMALPs from (B) EMRSA-16 and (D) ECg-exposed EMRSA-16. Changes in fluorescence 

intensity are shown (G & H). F shows the fluorescence intensity of Nile Red labelled SMALPs. Values in AU 
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Figure 4-16 Co-immunoprecipitation eluents of SMALPs from (A) EMRSA-16 and (C) ECg-exposed EMRSA-16 SMALPs after purification with anti-PBP2 Ab were 

gated for 20,000 Nile Red events and (E) FSC changes determined. After fluorescence labelling of the partner protein in the complex (PBP2a) with secondary FITC 

conjugated Ab, the fluorescence intensity of FITC was determined for (B) EMRSA-16 and (D) ECg-exposed EMRSA-16. Changes in fluorescence intensity are 

shown (G & H). F shows the fluorescence intensity of Nile Red labelled SMALPs. Values in AU 
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Flow cytometry data from duplicate experiments are shown in table 4-1. 

Table 4-1 Changes in fluorescence intensity (AU) of PBP2 and PBP2a after exposure of 

EMRSA-16 to ECg, co-immunoprecipitation and flow cytometry 

 
PBP2/PBP2a content of SMALPs  

normalised to 20,000 Nile Red gated events  

 

Scenario A 

Co-immunoprecipitation PBP2a 

FITC PBP2 

Scenario B 

Co-immunoprecipitation PBP2 

FITC PBP2a 

Experiment 1 

Experiment 2 

-1.43 -1.76 

-1.23 -1.50 

Mean-fold change -1.33 ± 0.14 -1.63 ± 0.18 

 

Flow cytometry data was also normalised to the FITC fluorescence of the recovery 

protein (PBP2a in scenario A and PBP2 in scenario B; figure 4-15). In A (Figure 4-15a), 

a 1.18 fold decrease was observed and, in B, 1.89 (Figure 4-15b). Although the values 

obtained are dependent on the normalisation method employed and the specificity of the 

Abs, a reduction in the relative number of PBP2/PBP2a complexes was determined by 

flow cytometry after exposure of bacteria to ECg.  However, further investigation is 

needed as the data is still very preliminary at this point.  
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4.4  Discussion 

In 1961, an MRSA isolate was recovered; its β-lactam resistance was independent of 

penicillinase activity, as had been observed previously (Jevons, 1961). Rather it 

possessed intrinsic resistance to β-lactam antibiotics (Dyke et al., 1966; Seligman and 

Hewitt, 1966). Brown and Reynolds (1980) investigated the presence of a novel low-

affinity PBP (PBP2a) confirming, at least in part, the intrinsic resistance observed. It 

was hypothesised that the PBPs in MRSA may act together in a manner similar to the 

multi-enzyme complex involved in cell wall biosynthesis in E. coli (Höltje, 1996); the 

proteins were later identified as PBP1b and PBP3 (Bertsche et al., 2006).   

Pinho et al. (2001a) recognised that intrinsic methicillin resistance is dependent on co-

operation between native PBP2 and acquired PBP2a. In pbp2 mutant MRSA cells, 

PBP2a was shown to replace essential functions of PBP2 in the absence of β-lactam 

antibiotics, but not in the presence of the antibiotic (Pinho et al., 2001b). Following 

MRSA exposure to β-lactam agents, the TPase function of PBP2 is abrogated by β-

lactam acylation; acquired PBP2a substitutes this function and in co-operation with the 

TGase domain of PBP2 maintains cell wall synthesis (Fuda et al., 2004). In this study I 

have demonstrated for the first time that PBP2 and PBP2a form a physical complex in 

an epidemic MRSA strain, EMRSA-16 and I observed that exposure to ECg disrupts the 

integrity of the complex, at least in part, which may contribute to re-sensitisation to β-

lactam agents.  

The PBP2/PBP2a complex was identified by membrane protein solubilisation in 

SMALPs. Subsequently, proteins were cross-linked and the complex purified by Ab 

affinity chromatography and co-immunoprecipitation; the individual components were 

identified by Western blotting and flow cytometry. Previous studies to identify the 

direct or indirect function and interaction of PBP2 and PBP2a primarily investigated 

recombinant proteins in a non-native system, resulting in an unfavourable environment 

for complex formation. In contrast, the work presented in this chapter employed a 

method that confers a semi-native environment for the capture of membrane protein 

complexes from whole cells.  
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Initially, PBP2/PBP2a complexes were identified with FtsZ, the cytoplasmic divisome 

anchor at the septum (Figure 4-5); the two proteins were recovered after probing for 

FtsZ with anti-FtsZ polyclonal Ab and the protein constituents identified by Western 

blotting (anti-PBP2, -PBP2a and -FtsZ Abs). Equivalent data was not obtained when 

anti-PBP2 or -PBP2a Abs were used as affinity ligands. FtsZ is a highly abundant, 

constitutively expressed protein (Lu et al., 1998) conserved across bacterial species 

(Margolin, 2000; Lock and Harry, 2008). E. coli has approximately 15,000 FtsZ 

monomers per cell and this number remains constant throughout the cell cycle (Rueda et 

al., 2003). Its constitutive expression and relatively high abundance can in part explain 

recovery of FtsZ/PBP2/PBP2a complexes with a polyclonal anti-FtsZ Ab.  

To address low abundance of the target proteins, a two litre starting culture was used in 

order to enable detection of the complex by Tricine-SDS-PAGE and Western blotting. 

PBP2/PBP2a complexes were identified in EMRSA-16 (Figure 4-5) and COL (Figure 

4-8). In EMRSA-16, complexes were initially identified when co-immunoprecipitation 

was performed with polyclonal anti-PBP2 Ab as the affinity ligand; they could not be 

recovered with monoclonal anti-PBP2a Ab as the ligand, which was also examined. On 

the other hand, with the COL strain, in which PBP2a is constitutively expressed, the 

complex was isolated with monoclonal anti-PBP2a Ab and identified in Tricine-SDS-

PAGE gels run under both denaturing (Figure 4-8) and non-denaturing (figure 4-12) 

conditions. There was a variation in levels of PBP2/PBP2a complex disruption detected 

from one experiment to the next due to the preliminary nature of the data. A reduction 

in protein bands was always detected following ECg exposure, however the degree of 

reduction varied. Further investigation is needed as well as a larger starting volume to 

examine further the disruption of the complex with ECg. 

Polyclonal Abs recognise multiple epitopes on a single antigen, which can amplify the 

signal of the target protein, in this case the target protein purified through co-

immunoprecipitation, allowing for enhanced detection of low abundance proteins 

(Abcam). In contrast, monoclonal Abs, although more specific, detect a single epitope 

on an antigen, limiting detection if the protein binding site is sheltered or altered 

(Abcam). ECg may have the capacity to induce small conformational changes on the 

target proteins; thus, polyclonal Abs should prove superior for detection of proteins, 

although non-specific binding and false positives are more common. Subsequently, a 
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polyclonal anti-PBP2a Ab was made to probe for the complex. Anti-PBP2a serum was 

affinity-purified, as the serum contained a heterogeneous population of Abs with 

diverse affinities (data not shown).  

Following the optimisation steps shown below, PBP2/PBP2a complexes were identified 

in EMRSA-16 cells with both anti-PBP2 and PBP2a polyclonal Abs for purification and 

detection (Figure 4-13):  

 Cross-linked membrane proteins with DTSSP  

 Incubated Ab with Dynabeads for 30 min (RT) followed by incubation of 

SMALPs with Dynabead-Ab complex for 1 h (4 °C) 

 Performed co-immunoprecipitation, SDS-PAGE and Western blot transfer 

on same day 

 Employed Tricine-SDS PAGE for protein separation  

 Denatured proteins prior to SDS-PAGE at 30°C for 30 min 

 Incubated Western blot with primary Ab overnight (4 °C) and the 

secondary Ab for 2 h (RT) 

 Detected protein band with chemiluminescence  

 

The capacity of ECg to uncouple PBP2/PBP2a in MRSA was investigated. Polyphenols 

have been shown to affect division proteins in E. coli, a bacterium commonly used to 

study prokaryotic cell division, with polyphenols in curcumin de-stabilising FtsZ (Rai et 

al., 2008). Further, carboxybiphenylindole, an inhibitor of the interaction between FtsZ 

and ZipA in E. coli, was also identified (Sutherland et al., 2003). I hypothesised that 

similar effects occur for ECg with the PBP2/PBP2a complex in MRSA. Previous 

studies of MRSA exposure to ECg identified phenotypic changes indicative of partial 

disruption of the complex (Stapleton et al., 2007; Bernal et al., 2010). Bernal et al. 

(2010) speculated incomplete uncoupling of the complex, as PBP2 was partially 

displaced from the FtsZ bound division septum. In the current study, I observed that 

PBP2a was displaced from the FtsZ/PBP2 components of the division complex and I 

have speculated that, although PBP2 is displaced from the septum, sufficient numbers 

of PBP2 molecules remain coupled to FtsZ to enable detection by Ab affinity 

chromatography and Western blotting. On the other hand, PBP2a was uncoupled from 

the complex at higher rate, limiting its detection. Bernal et al. (2010) did not localise 

PBP2a in the cell following ECg exposure. In summary, the results presented in this 

chapter, combined with previous observations, indicate that both PBP2 and PBP2a are 
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partially displaced from the FtsZ-anchored division septum during cell division of 

MRSA in the presence of ECg, restricting cell wall biogenesis and leading to a re-

sensitisation to β-lactam antibiotics.   

ECg exposure did not alter the expression of PBP2 and PBP2a at 12.5 mg/L, but did so 

at 25 mg/L. Thus, changes observed with 12.5 mg/L ECg exposure are primarily 

dependent on displacement of the complex rather than a decrease in abundance of the 

complex constituents. In both EMRSA-16 and COL, disruption of PBP2/PBP2a 

complexes was inferred following purification of the complex with polyclonal anti-

PBP2 Ab. However variation in the level disruption of the complex was observed 

stemming from the preliminary nature of the data, and further investigation is needed. 

Using a more sensitive Western blot detection method involving chemiluminescence, 

sufficient resolution was achieved to indicate displacement of the complex by ECg 

(figure 4-11). No cross-reactivity was observed (data not shown) as a consequence of 

differences in Ab source (rabbit: PBP2, mouse: PBP2a).  

Due to working at the limit of detection of Western blots, a native gel was employed to 

investigate the degree of displacement of PBP2/PBP2a complexes following ECg 

exposure. The native gel indicated an incomplete uncoupling of the complex (Figure 4-

13). These results were subsequently confirmed by flow cytometry (Figure 4-15 and 4-

16). A direct comparison between PBP2 and PBP2a expression from the flow cytometry 

data was limited due to the nature of the Abs used; polyclonal and monoclonal. Thus, 

the same Ab conditions were used to evaluate the complex content between EMRSA-16 

and ECg-exposed EMRSA. After co-immunoprecipitation of complexes with anti-

PBP2a Ab and detection with anti-PBP2 Ab, a 1.63 ± 0.18 fold decrease in complex 

recovery was observed following ECg exposure. Purification with anti-PBP2 Ab and 

detection with anti-PBP2a Ab showed a 1.33 ± 0.14 fold decrease. These results suggest 

an overall decrease in the abundance of PBP2/PBP2a complexes induced by ECg, 

indicating a partial uncoupling of the complex in accord with native gel observations. A 

second normalisation was applied to the flow cytometry data; normalising to the total 

abundance of protein 1 in the complex rather than to 20,000 SMALP events. A 1.18 

(co-immunoprecipitation: PBP2a, flow cytometry: PBP2) and 1.89 (co-

immunoprecipitation: PBP2, flow cytometry: PBP2a) fold decrease was observed 

following ECg exposure. In summary, the flow cytometry results, regardless of the 
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normalisation method used, infer a decrease in the number of PBP2/PBP2a complexes 

recovered following ECg exposure.  

The data presented in this chapter contain two limitations; first, the normalisation 

method used for protein content quantification within SMALPs. The A280 absorbance 

assay was employed as the BCA and Bradford methods could not used due to SMALP 

precipitation and aggregation in the reagents. This allowed for direct comparison intra-

sample, but only an inferred comparison inter-sample due to the possibility of 

measurement error resulting from contamination. The same observation was made in a 

study by Lin (2011). To reduce this error, absorbance readings were only utilised if the 

ratio 260 nm/280 nm was <0.5; this limited nucleic acid contamination. For future 

studies, the CBQCA protein quantification kit should be used, as employed by Lin ( 

2011), where SMA and lipid interference did not occur. A second limitation involved 

the limit of detection of Western blotting and the availability of high quality Ab. 

However, the combined results presented in this chapter indicate that ECg, at least in 

part, un-couples PBP2/PBP2a resistance complexes in MRSA. Complex disruption 

undoubtedly plays a major role in the multifactorial impact of ECg on the re-

sensitisation of MRSA to β-lactam agents.  

 The SMALPs solubilisation method was successfully employed to 

isolate protein complexes. 

 The FtsZ/PBP2/PBP2a protein complex was identified, and it was 

inferred that PBP2a is partially displaced from the complex following 

EMRSA-16 exposure to 12.5 mg/L ECg. 

 The PBP2/PBP2a protein complex was identified and partial 

displacement of the complex was observed following ECg exposure. 
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5. EFFECT OF EXPOSURE TO ECG ON OTHER PBPS 
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5.1 Introduction 

Increasing evidence indicates that PBP2a is not the sole resistance determinant for β-

lactam resistance in MRSA (Memmi et al., 2008). Additional PBPs, in particular PBP4, 

have been shown to play a key role in β-lactam resistance in CA-MRSA strains 

(Memmi et al., 2008). PBP4, is a LMW PBP, and the only type-5 PBP that is not a strict 

DD-carboxypeptidase; instead it catalyses TPase reactions and is involved in secondary 

cross-linking of the highly cross-linked S. aureus PG (Matsuhashi et al., 1979). The 

cooperative function of PBP4 and PBP2 is critical for resistance (Memmi et al., 2008), 

along with the vital cooperation between PBP2 and PBP2a (Pinho et al., 2001a). In a 

study by Leski and Tomasz (2005), inactivation of pbpD, the structural gene for PBP4, 

resulted in a reduction from 45% to 22% of highly cross-linked components of the 

muropeptides. In CA-MRSA, loss of PBP4 also impacts on PBP2 transcription 

following exposure of cells to oxacillin, leading to a decrease in PG cross-linking. The 

same phenomenon was not observed with HA-MRSA COL (Memmi et al., 2008).  

Additional resistance determinants that have been described include auxiliary gene 

products involved in cell division. In particular genes involved in PG metabolism 

(associated with femABCD) (de Lencastre and Tomasz, 1994), synthesis, including 

murE (Gardete et al., 2004) and murF (Sobral et al., 2003), and vraSR, encoding a two-

component stress stimulon involved in PG regulation (Kuroda et al., 2003).  

As the effect of ECg on the susceptibility of EMRSA-16 to β-lactam agents is 

multifactorial (section 1.5), leading to a phenotypic alteration of the cell, it is possible 

that the other resistance determinants described above are also affected. Regarding 

expression of PBPs, ECg elicits an indirect effect but does not bind to these proteins 

(Bernal et al., 2010). ECg exposure led to reduced expression of PBP1 and PBP3 and 

de-localised PBP2 from the division septum. (Bernal et al., 2010) Further, a 5-10% 

reduction in PG cross-linking was observed, which may be attributed to a change in 

PBP2 and/or PBP4, as they are required for primary and secondary cross-linking of the 

PG respectively (Stapleton et al., 2007).  

In this chapter the inhibition of specific PBPs and the effect of ECg exposure on this 

inhibition was investigated. Four β-lactam agents were chosen, following a study by 
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Dumitrescu et al. (2011), that selectively bind to the PBPs of interest: imipenem (PBP1) 

(Yang et al., 1995), cefotaxime (PBP2) (Georgopapadakou et al., 1986), cefaclore 

(PBP3) (Georgopapadakou et al., 1982), and cefoxitin (PBP4) (Curtis et al., 1980). 

Vital PBPs involved in the ECg-mediated re-sensitisation of MRSA to β-lactam agents 

were revealed and further investigated. 
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5.2 Materials and methods 

5.2.1 Bacterial strains and reagents 

EMRSA-16 and exposure to 12.5 mg/L ECg were employed. Cefaclore and cefotaxime 

were purchased from Envo Life Sciences (Farmingdale, NY, USA), and imipenem and 

cefoxitin from Sigma. Rabbit anti-PBP4 Ab was a gift from Mariana G. Pinho 

(Universidade Nova de Lisboa, Portugal).  

5.2.2 MICs of PBP inhibition by β-lactam agents 

The susceptibility of EMRSA-16 and ECg-exposed cells to cefaclore, cefotaxime, 

imipenem and cefoxitin was determined by the CLSI microbroth dilution method 

described in section 2.3.3. All MICs were performed at 37 °C for 14 - 16 h in MHB 

supplemented with 2% NaCl. 

5.2.3 Detection of PBP2/PBP4 complexes 

The PBP2/PBP4 complex were investigated with SMALPs (section 3) derived from 2 L 

cultures grown in MHB supplemented with 0.125 mg/L oxacillin at 37 °C; 8 - 10 µg of 

anti-PBP2 Ab was used to purify PBP2/PBP4 complexes from the SMALPs with 

protein G Dynabeads, following the method described in section 4.2.4.2, after DTSSP 

cross-linking. All steps were performed at 4 °C apart from initial attachment of the Ab 

to the protein G matrix, which was performed at RT.  

5.2.4 Analysis of protein complexes with 1D Tricine-SDS-PAGE and 

Western blotting 

A 1 mm thick Tricine-SDS-PAGE followed by Western blotting was utilised as 

described in section 4.2.5.1 and 4.2.5.2. A 1:200 dilution of primary anti-PBP4 Ab, and 

1:500 of anti-PBP2 Ab were used together with a 1:10,000 dilution of the secondary 

Ab, HRP-conjugated goat anti-rabbit IgG (Sigma). PBP2 and PBP4 expression in 

SMALP-derived nanoparticles was also investigated.  
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5.3 Results 

MICs of the four β-lactam agents (imipenem, cefotaxime, cefaclore and cefoxitin) for 

EMRSA-16 and EMRSA-16 exposed to ECg are shown in table 5-1.  

Table 5-1 EMRSA-16 MICs of four β-lactam agents with selective binding to PBPs 1-4 

EMRSA-16 MIC (mg/L) 

Imipenem Cefotaxime Cefaclore Cefoxitin 

*(PBP1) *(PBP2) *(PBP3) *(PBP4) 

- 
12.5 mg/L 

ECg 
- 

12.5 mg/L 
ECg 

- 
12.5 mg/L 

ECg 
- 

12.5 mg/L 
ECg 

16 0.25 1024 256 512 256 256 4 

n=3  n=4  n=4  n=4  
 * PBP selectivity of β-lactam agents from Dumitrescu et al. (2011) 

A 12-fold decrease in MICs following ECg exposure was observed for imipenem (16 to 

0.25 mg/L) and cefoxitin (256 to 4 mg/L). On the other hand, a 4-fold and 2-fold 

decrease was noted for cefotaxime (1024 to 256 mg/L) and cefaclore (512 to 256 mg/L) 

respectively.  

As I found a significant reduction in MICs of β-lactam agents that bind selectively to 

PBP1 and PBP4 after ECg exposure, PBP4 was further investigated. PBP4 is required 

for highly cross-linked PG, of which a 5 - 10% reduction is observed in ECg exposed 

cells. Memmi et al. (2008) determined that PBP4 co-operates with PBP2, either in 

complex or indirectly. Therefore, EMRSA-16 was examined for the presence of 

PBP2/PBP4 complexes after co-immunoprecipitation as described in section 4; the 

effect of ECg on the complex was also investigated.  

Initially, expression of individual proteins was investigated by Tricine-SDS-PAGE and 

Western blotting (Figure 5-1). A decrease in PBP4 (~50 kDa) band intensity was 

observed following ECg exposure. However, this was not the case for PBP2 (~76 kDa). 

In subsequent gels, a minor reduction in PBP2 was observed, as is evident from Figure 

5-1.  
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Subsequently, PBP2/PBP4 complexes were identified by anti-PBP2 Ab co-

immunoprecipitation and the protein constituents identified with anti-PBP2 and -PBP4 

Abs (Figure 5-2). The heavy chains of the PBP2 Ab, which leached from the protein G 

affinity matrix, were detected in all samples, indicating that co-immunoprecipitation 

was effective.  

PBP2/PBP4 complexes were identified in SMALPs from both EMRSA-16 and ECg-

exposed bacteria; a small decrease in PBP2 was observed. Protein bands were detected 

by chemiluminescence detection of HRP-conjugated secondary Ab. 

 

 

Figure 5-1 Western blot of protein expression of (A) PBP2 and (B) PBP4 by EMRSA-16 and 

ECg-exposed cells 
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Figure 5-2 Detection of PBP2/PBP4 complexes by Western blot with (A) anti-PBP2 and (B) 

anti-PBP4 Ab using co-immunoprecipitation (affinity ligand: anti-PBP2 Ab) eluent of EMRSA-

16 and ECg SMALPs. Proteins detected by chemiluminescence 
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5.4 Discussion  

Evidence for the involvement of additional β-lactam resistance determinants in MRSA 

has recently increased, in particular to support the role of the non-essential LMW PBP4 

as a resistance determinant (Chambers et al., 1994); in this study, over-expression of the 

protein led to increased β-lactam resistance (Henze and Berger-Bächi, 1996). Further 

work has identified the essential role of PBP2 together with PBP4 for highly cross-

linked PG, a characteristic of S. aureus (Memmi et al., 2008).  

The susceptibility of EMRSA-16 and ECg-exposed EMRSA-16 to β-lactam agents that 

bind selectively and irreversibly to PBPs 1, 2, 3 and 4 was investigated. ECg had an 

impact on beta-lactam inhibitor MICs specific for PBP1 and PBP4. PBP1 is an essential 

PBP in S. aureus and is involved in septum formation and cell separation during cell 

division (Pereira et al., 2007; Atilano et al., 2010). On the other hand, PBP4 is 

nonessential and is involved in secondary cross-linking. A decrease in cross-linking has 

been previously observed in ECg-exposed EMRSA-16 cells (Stapleton et al., 2007). 

The hypersensitivity of EMRSA-16 to cefoxitin, which irreversibly binds to PBP4, was 

further investigated.  

Leski and Tomasz (2005) identified that suboptimal levels of PBP2 function in a ZOX3 

S. aureus strain resulted in hypersensitivity to cefoxitin. This was also observed after 

ECg exposure of EMRSA-16 in the current study. PBP2 is affected by ECg, as it is 

partially displaced from the division septum during cell division (Bernal et al., 2010), 

and I have provided further evidence for the partial disruption of PBP2/PBP2a 

complexes (section 4). When EMRSA-16 cells were exposed to ECg, a 12-fold decrease 

in cefoxitin susceptibility was observed, which may be explained through a functional 

change of PBP2, leading to suboptimal activity. Alternatively, there may be an 

alteration in its co-operative functionality with PBP4, and this hypothesis was 

subsequently examined.   

Prilimary data suggests the PBP2/PBP4 complexes were detected. Although the MICs 

of PBP4 indicated that it may play a role in ECg-mediated sensitisation to β-lactam 

agents, through a possible conformational change, a significant decrease in PBP2/PBP4 

complexes was not observed.  
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The results do not indicate disruption of PBP2/PBP4 complexes in ECg-mediated re-

sensitisation to β-lactam agents.  

 PBP1 and more significantly PBP4 were shown to play an important 

role in ECg sensitisation of MRSA to β-lactam agents 

 

 PBP2/PBP4 complexes were found in EMRSA-16, although a 

significant reduction in the number of complexes was not observed 

following ECg exposure as indicated by preliminary SMALPs 

investigation 
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CHAPTER SIX 

6. GENERAL DISCUSSION 
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This thesis describes the use of surfactants for the solubilisation of membrane proteins 

and the development of a novel method for the isolation of membrane proteins in a 

semi-native environment. The experimental sections described the development of the 

method, its application for the isolation of the resistance complex from MRSA and an 

evaluation of the effect of ECg exposure on the integrity of the complex. At this point 

the data is still very preliminary in its nature, and further investigation is needed. This 

chapter will provide an overview of the results as well as a more in depth discussion of 

the use of ECg, in combination with currently ineffective β-lactams, as a novel 

therapeutic approach against MRSA infections, by modulation of the bacterial 

phenotype and disruption of the resistance mechanism. Suggestions for future 

investigation of both the application of the method for MRSA membrane proteins and 

the use of ECg as a potential combinatorial therapy are also included. 

The first membrane protein structure, the Rhodopseudomonas viridis photosynthetic 

reaction centre, was published in 1985 (Deisenhofer et al.). However, since then the 

study of these cellular constituents has been limited by the inability to produce high 

yields of functional proteins and their complexes. Thus, membrane proteins only 

account for less than one percent of the sequences deposited into protein data banks 

(White, 2004). The relatively small number of studies of the structure and function of 

membrane proteins stems primarily from the lack of a universal protocol for the 

solubilisation of these proteins from their native environment while maintaining their 

native structure and function (Mackenzie, 2006; Moore et al., 2008, Langosch and 

Arkin, 2009).  

Membrane proteins constitute 30% of the proteome of Homo sapiens, E. coli and 

Saccharomyces cerevisae; however, very little is known of their structure and function 

within the membrane bilayer (Seddon et al., 2004). This has limited the study of 

bacterial membrane proteins as potential targets for novel antibacterial agents (Seddon 

et al., 2004)  

Recent advances, including the use of liposomes, amphipols, nanodiscs and bicelles, 

have aided the study of membrane proteins. However, methods based on these reagents 

have major limitations, primarily the requirement for membrane protein extraction with 

surfactants. Thus it is imperative to develop novel methods for protein extraction in a 
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native-like environment without the use of surfactants that are compatible with down-

stream experiments.  

The use of SMA for the surfactant-free solubilisation of membrane proteins in a native-

like environment represents a novel method to address the limitations of previous 

studies. This method has already been used for the isolation of the abundant bacterial 

proteins PagP and bR (Knowles et al., 2009). In my work, a method was developed for 

the isolation of membrane protein complexes within SMALPs from whole cells, which 

may pave the way for future studies of membrane protein complex in a more natural 

environment. The isolation of membrane proteins in SMALPs limits the disruption of 

native protein interactions, both stable and transient. The method was applied to the 

investigation of the mechanism of action of ECg, a constituent of the green tea plant C. 

sinensis, for the modification of MRSA resistant phenotypes based primarily on the 

membrane protein complex PBP2/PBP2a.  

The antibacterial properties of green tea and specifically the green tea catechin ECg 

have been widely documented. However, the mechanism of action in relation to 

abrogation of the β-lactam resistance of MRSA is only partially understood. The effect 

of ECg on MRSA is believed to be multifactorial, as described in chapter one. 

Intercalation of ECg into the S. aureus bilayer causes a reduction in membrane fluidity 

followed by an increase in fluidity as the cell responds by incorporation of a higher 

proportion of branched chain fatty moieties into membrane phospholipids and tighter 

acyl chain packing (Bernal et al., 2009; 2010). The membrane bilayer asymmetry 

remains unaltered (H. Rosado and P.W. Taylor unpublished observation). Intercalation 

of ECg also affects the membrane-anchored protein MprF, which is responsible for the 

attachment of lysine residues to phosphatidylglycerol and the subsequent translocation 

of positively charged lysophosphotidyl glycerol to the outer leaflet of the membrane 

(Ernst et al., 2009). There is a large reduction in the levels of lysophosphotidyl glycerol 

in ECg-exposed MRSA (Bernal et al., 2010). Taken together, these observations 

suggest that a more fluid and negatively charged MRSA membrane may alter the 

environment of the membrane proteins, including those involved in cell wall synthesis. 

In this study, the mechanism of action of ECg on the MRSA division complex 

PBP2/PBP2a was assessed. The use of SMALPs enabled the isolation of PBP2 and 
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PBP2a together with other proteins. SMA was also used to investigate if ECg uncouples 

additional associated proteins (PBP4 and FtsZ).   

After exposure to 12.5 mg/L ECg, PBP2/PBP2a complexes were partially uncoupled 

and there was a partial displacement of PBP2a from the septum anchor complex 

FtsZ/PBP2/PBP2a. The degree of displacement of the complex varied between strains 

and between experimental days stemming back to the preliminary nature of the 

experiments. However, these results suggest that β-lactam agents and ECg may work in 

tandem on distinct bacterial targets. β-lactam agents target and irreversibly acylate 

PBP2, whereas ECg induces reconfiguration of the membrane (Palacios et al., 2014), 

leading to partial uncoupling of FtsZ/PBP2/PBP2a and PBP2/PBP2a complexes. As a 

consequence, PBP2a is no longer able to compensate for the loss of the PBP2 TPase 

activity following its acylation by β-lactam agents; this event results in cell death. ECg, 

in combination with β-lactams, may represent a novel therapeutic approach for the 

treatment of MRSA infections by modulation of resistance to β-lactam agents. 

The data presented in this thesis, utilising the novel SMALP solubilisation method, 

should enable further investigation of the MRSA divisome. The high quality of the anti-

FtsZ Ab together with the relative abundance of this scaffold protein emphasise the 

attraction of this protein as the best target for SMALP extraction of the divisome 

complex. Although the capacity of SMALP to extract complex protein assemblages has 

not been explored in this study, it is possible that the polymer may capture the entire 

divisome comprising FtsZ and the partner proteins FtsA/FtsL, SepF, EzrA, GpsB, 

DivIC/DivID and PBP1/PBP2/PBP3/PBP4. The assemblage could be purified by co-

immunoprecipitation with FtsZ Ab and other components subsequently identified by 

Western blotting. Another protein that could be exploited for protein pull down is EzrA, 

a membrane anchor that serves a similar role to FtsZ but is membrane-embedded rather 

than located in the cytoplasm. Thus, SMALP solubilisation may facilitate the 

identification of novel membrane protein interacting partners both in MRSA and other 

Gram-positive and Gram-negative bacteria and may aid the identification of novel 

therapeutic targets.  

Antibiotic resistance is a major health threat and constitutes an important agenda on a 

national and international scale. Increases in the frequency of isolation of community 
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and hospital-acquired resistant bacteria such as staphylococci, enterococci, gonococci, 

enterobacteriae, Pseudomonas and Acinetobacter species and MDR M. tuberculosis 

have received much recent attention (Carlet et al., 2011; Gagliotti et al., 2011; Piddock, 

2012). In the USA, in FY 2011 - 2012, approximately 2 million infections were caused 

by drug resistant bacteria, with 23,000 attributed deaths and an extra 20 billion US 

dollars in health care costs (CDC, 2013). Of these infections, approximately 90,000 

were caused by MRSA, resulting in 11,285 deaths annually (CDC, 2013). In Europe, 

MDR resistant bacteria caused 400,000 infections in 2007, resulting in 25,000 deaths 

and 1.5 million euro in extra hospital costs and productivity losses (ECDC and EMEA, 

2009).  

There has been a steady decrease in the incidence of MRSA infections in recent years in 

the wealthier European countries such as Germany, France and UK due to the 

implementation of control programs; however, they remain a serious health threat, as 

the percentage of infections reported in European Union/European Economic Area 

(EU/EEA) by the ECDC in 2012 is 17.8% (EARS-Net, 2013). As is evident from figure 

6-1, 7/30 reporting countries still have an infection rate of >25% and an uneven 

distribution is seen throughout EU/EEA, with the majority of the highest percentages 

reported by Southern European countries such as Portugal and Greece (EARS-Net, 

2013). 

 

 

Figure 6-1 Proportion of MRSA cases in EU/EEU countries in 2012 surveyed by the European 

Antimicrobial Resistance Surveillance Network (EARS-Net) 
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The EU/EEA has also seen a rise in antibiotic resistance and MDR resistance in Gram-

negative bacteria, such as extended β-lactamase-producing E. coli, carbapenem resistant 

Enterobacteriaciae and the emergence and spread of the New Delhi metallo-β-lactamase 

1 (EARS-Net, 2013).  

The above paragraphs highlight that urgent action is needed against the threat of 

antibiotic resistance, which has been reiterated by the CDC; 

 “Antimicrobial resistance is one of our most serious health threats…the 

loss of effective antibiotics will undermine our ability to fight infectious 

diseases and manage the infectious complications common in vulnerable 

patients undergoing chemotherapy for cancer, dialysis for renal failure, and 

surgery, especially organ transplantation, for which the ability to treat 

secondary infections is crucial” (CDC, 2013). 

Without effective antibiotics, infection-related mortality rates could return to those of 

the early 20
th

 century prior to the golden era of antibiotics. In response, combating 

antibiotic resistance has become a global agenda; Antibiotic Awareness days have been 

organised annually in Europe and Canada and alliances such as the EARS-Net and the 

Transatlantic Task for Antimicrobial Resistance have also been established (WHO, 

2013). In the UK, antibiotic resistance is a priority, with a cross-governmental strategy 

launched in 2013 (Howard et al., 2013). One of the key elements on the health 

initiatives agenda is ‘the development of new drugs and better funding of research in 

antimicrobial resistance’ (Howard et al., 2013). However, the antibiotic pipeline is 

drying up, with antibiotic development less favourable to pharmaceutical companies 

due to the expense of this time-consuming process. In 2008, 167 new drug candidates 

were discovered, of which only 15 portrayed a novel mechanism of action for potential 

treatment of MDR infections (ECDC and EMEA, 2009). Thus, the lack of a surge in 

new antibiotics has prompted research into alternative approaches, including new 

preventative vaccines and new therapeutic interventions such as the use of 

bacteriophages (Hanlon, 2007), antimicrobial peptides (Eckert, 2011) and anti-toxins 

(Hotchkiss and Opal, 2010) as well as combination therapy including antibiotics and/or 

natural products (Geddes et al., 2007). 
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Traditional antibiotic therapy exposes bacteria to selective pressure and may lead to the 

evolution of new resistance mechanisms required for survival (Figure 6-2a). In addition, 

the use of drug combinations, such as suflamethoxazole-trimethoprim with rifampicin 

for the treatment of MRSA, rather than monotherapy, have shown to have superior 

efficacy against MDR bacteria (Yamaoka, 2007). A further example is the use of 

clavulanic acid, a β-lactamase inhibitor discovered in 1981 (Geddes et al.), which is still 

used today in combination with β-lactam agents. However, resistance has also emerged 

against these combination therapies (Entenza et al., 2010).  

An alternative approach to combination therapy is the use of natural compounds and 

secondary metabolites (phytochemicals) derived from plants in combination with 

conventional antibiotics. These include tannins, alkaloids, terpenoids and polyphenols, 

which are effective against both Gram-positive and Gram-negative bacteria (Cowan, 

1999; Tegos et al., 2002; Soe et al., 2010).  

 

Figure 6-2 Modulation of bacterial resistance phenotype by natural products. A) Classic 

scenario selecting for antibiotic resistant bacteria as a consequence of treatment with 

antibiotics. B) Novel therapeutic approach using natural products to modulate the resistance 

phenotype, resulting in ‘less fit’ bacteria that are cleared by the host or become susceptible to 

previously ineffective antibiotics 
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In general, the MICs of such phytochemicals are higher (100 – 500 mg/L) than 

conventional antibiotics and they are therefore not as effective in monotherapy. 

However, in combination they can potentiate the activity of antibiotics by increasing 

their efficacy (Tegos et al., 2002). Examples include the synergism of piperine with 

ciprofloxacin (Khan et al., 2006) and ethyl gallate with fusidic acid (Soe et al., 2010) 

for the treatment of MRSA infections. Several phytochemicals also have the capacity to 

modulate or modify complex bacterial resistance phenotypes resulting in ‘less fit’ 

bacteria, allowing previously ineffective antibiotics or the host’s immune system to 

clear the infection (Figure 6-2b) (Taylor, 2013). 

Natural compounds have been shown to modify bacterial resistance mechanisms, 

including inhibition of efflux pumps (Sudano Roccaro et al., 2004), down-regulation of 

resistance virulence factors and gene expression (Lee et al., 2009), as well as the 

inhibition of antibiotic modifying enzymes (Zhao et al., 2001). Pertinent to the 

treatment of MRSA infections, a study by Smith et al. (2007) showed inhibition of the 

NorA efflux pump, responsible for the influx of broad-spectrum antibiotics including 

fluoroquinolones, by a phenolic totarol from Chamaecyparis nootkatensis. Reversal of 

oxacillin resistance in MRSA has been reported after use of the antibiotic in 

combination with manuka honey (Jenkins and Cooper, 2012), Salvia miltiorrhiza (red 

sage) (Lee et al., 2007), Glycyrrhiza uralensis (Chinese liquorice) (Lee et al., 2009) and 

C. sinensis (Stapleton et al., 2004). In a study by Jenkins and Cooper (2012), a 10% 

(v/v) solution of manuka honey reversed oxacillin resistance in EMRSA-15; at sub-

inhibitory concentrations  there was a three-fold down-regulation of mecR1, which 

encodes the two-component system regulating PBP2a expression. Studies by Lee et al. 

(2007; 2009) with Salvia mitliorrhiza and Glycyrrhiza uralensis reported a re-

sensitisation of MRSA to oxacillin following exposure to the hexane fraction from both 

natural products. The mechanism of action of the Salvia mitliorrhiza hexane fraction 

was inhibition of expression of mecA, mecR1 and femA (Lee et al., 2007). A further re-

sensitisation of MRSA to oxacillin using ECg, a polyphenol catechin found in C. 

sinensis, has been described in previous publications and in this thesis.  

As mentioned previously, ECg intercalates into the cytoplasmic membrane and re-

sensitises MRSA to β-lactam agents through a multi-factorial process that includes the 

partial displacement of PBP2/PBP2a complexes. Furthermore, interactions between 
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ECg and the MRSA cytoplasmic membrane can be enhanced by structural modification 

of the compound (Figure 6-3) (data not presented in this thesis); the analogues show 

equal or greater antibacterial activity which may be indicative of a further modification 

of the MRSA resistance complex (Anderson et al., 2011).  

 

Figure 6-3 Structures of (-)-ECg, (-)-EGCg and analogues 1-6 synthesised by Anderson et al. 

(2011) 

Chemical modification of the ester bond as well as the hydroxylation of the B-ring are 

important in the synthesis of more stable compounds with greater affinity for the 

cytoplasmic membrane (Anderson et al., 2011). In vivo studies have shown that ECg 

rapidly degrades to inactive products because of the presence of esterase-susceptible 

linkage groups. The presence of an amide bond in analogue 3 (Figure 6-3) in place of an 

ester linkage resulted in a more stable compound. Furthermore, intercalation of ECg 

into the bilayer is believed to be due to its hydrophobicity, with this compound 

penetrating further into the membrane bilayer compared to EGCg (Caturla et al., 2002). 

It was hypothesised that analogues with a reduction in the hydroxylation of the B-ring 

would penetrate deeper into the membrane due to their increased lipophilic nature, 

resulting in increased antimicrobial activity (Anderson et al., 2005a).  

Analogues 1 and 2, with a mono-hydroxylated 3-hydroxy and a di-hydroxylated 3,5-

dihydroxy B ring respectively (Figure 6-3), showed equivocal anti-staphylococcal 

activity compared to ECg (MIC 128 mg/L) and an equal re-sensitisation of MRSA to 

oxacillin (MIC 1 mg/L) following exposure to 12.5 mg/L of the natural compound. For 

synthesis of analogue 4, all hydroxyls were removed from the B-ring; this compound 

displayed greater anti-staphylococcal activity (MIC 64 mg/L) and further re-sensitised 
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MRSA to oxacillin (MIC 0.25 mg/L) without increased bacteriostatic or bactericidal 

effects as was observed for analogues 5 and 6 (MIC <0.25 mg/L).  

From the above observations, analogue 4 containing an amide bond for further stability 

(Anderson et al., 2011), may represent a promising modifying agent for treatment of 

MRSA infections due to its enhanced anti-staphylococcal activity in combination with 

β-lactams and negligible bacteriostatic and bactericidal properties. This is an important 

factor for development of resistance modifying agents to combat the rise in antibiotic 

resistance. The mechanism of action of these analogues is currently under evaluation; 

use of SMALP solubilisation in combination with co-immunoprecipitation may shed 

light on the degree of displacement of PBP2/PBP2a complexes, in particular following 

exposure to analogue 4. Future in vivo testing for assessment of the stability and 

bioavailability of these analogues is required for assessment of their potential as 

therapeutics.  

There is a need for a paradigm shift for treatment of bacterial infections to counteract 

increased antibiotic resistance and the lack of new antibiotics in pharmaceutical 

company pipelines. A change in the use of conventional antibiotics with more emphasis 

on combination therapy, which benefits from synergy between natural secondary 

metabolites and currently ineffective antibiotics, is one possible approach. The results 

presented here indicate that ECg and its analogues have the potential to be used in 

combination with first and second-generation β-lactam agents, modifying the MRSA 

resistance mechanism and providing opportunities for the treatment or prevention of 

community and hospital-acquired infections.    
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