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Abstract 
This thesis focuses on the Aerosol Assisted Chemical Vapour deposition 

(AACVD) of titanium dioxide (TiO2) thin films using titanum (IV) 

isopropoxide (TTIP) and also reports the deposition of tungsten oxide via 

AACVD using tungsten hexacarbonyl [W(CO)6] in different solvents 

including methanol and ethanol.  

Chapter 1 of this thesis gives an overview of TiO2, including its properties and 

functions and the motivation for this project. In chapter 2 brief descriptions are 

provided of the main characterisation techniques used throughout this thesis.  

The substrate and solvent effect on the phase of TiO2 obtained by AACVD is 

outlined in chapter 3 and 4. TiO2 was deposited via the AACVD of TTIP in 

different solvents including methanol, ethanol and other solvents.  The films 

deposited showed some substrate dependent morphology and properties. In 

particular at 550°C the films on steel show needle and rod like particles. XRD 

and Raman spectra of the TiO2 films showed that on steel or titanium 

substrates only the rutile form could be obtained, whereas on glass either 

anatase, anatase-rutile mixtures or rutile could be obtained depending on 

substrate temperature. Using methanol as the carrier solvent produced 

exclusively the rutile films on steel and predominantly rutile on glass 

substrates while the use of the other solvents produced exclusively the anatase 

phase on the steel under the same conditions. TiO2 was also deposited by 

AACVD from a mixture of ethanol and methanol solvents. As little as 15% of 

methanol in ethanol produces rutile as the predominant phase. The 

photocatalytic properties and the hydrophilicity of the films deposited are also 

reported.  
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X-ray absorption spectroscopy (XAS) was used to map across the surface of 

the TiO2 films deposited as described in chapter 5. The X-ray absorption near 

edge structure (XANES) was used to determine the phase of TiO2 present at 

each point on the substrate.  

The AACVD deposition tungsten oxide using tungsten hexacarbonyl 

(W(CO)6) in methanol and ethanol is reported in chapter 6. Preferred 

orientation was observed when using either ethanol or methanol as the carrier 

solvent. 

In chapter 7 insitu work was attempted to investigate the mechanism of the 

deposited titania and tungsten oxide films. A new reactor vessel was designed, 

constructed and tested to allow synchrotron radiation in and out using a kapton 

window. The XANES pattern recorded during in-situ deposition were not of 

high enough to resolve the mechanism. The in-situ work carried out has great 

potential in the growth study of thin film deposition and can in the future help 

control the phase and composition of deposited films to produce more 

desirable properties. 
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Chapter 1: Introduction 

1.1. Introduction to metal oxide materials 
Metal oxides have become technologically important and are now used in 

many fields. They have found various uses in the chemical industry; transition 

metal oxides display properties such as, catalytic activities and mutiferroic 

effects. They are are used in electrochemical reactions as electrode materials 

and also used in conducting and insulating films in the electronics industry.  

The use of metal oxides as catalysts has been the focus of much research.
1,2

 

The improvement in characterisation techniques, instrumentation and 

experimental techniques has enabled the in-depth study of metal oxides as 

catalysts.
1
 

Metal oxides are used as catalysts in various chemical processes including the 

oxidation of SO2 to SO3, and also used in CO reduction in emission control. 

Metal oxides are used in the production of hydrogen in the water-gas shift 

reaction. One of the most researched areas of metal oxides is photocatalysts. 

The photocatalysts are able to chemically break down dirt on the surface of the 

material; this property has lead to development of self-cleaning glasses and 

also in surfaces used to reduce microbial contamination. 
1
 

The properties of the surface chemistry of metal oxides are very important in 

their application as catalysts. The surface of a metal oxide catalyst is involved 

in the reaction of an absorbate on the surface. It has become increasingly 

important to understand both the physical and the chemical properties of the 

surfaces of metal oxides. 
1
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The presence of dopant cations and anions on the surface of metal oxide 

catalysts and their stoichiometric ratio has been studied together with the 

presence of cationic and anionic vacancies. 
1,2

 

Several metal oxides have found wide spread interest for self-cleaning 

applications, water-splitting, gas-sensing, waveguides and solar-cell devices. 

These metal oxides include zinc oxide, tungsten oxide, and titanium dioxide.
2-4

 

Amongst these metal oxides titanium dioxide is one of the most studied metal 

oxide materials because of its diverse applications in commercial self-cleaning 

glasses, in the photo-assisted splitting of water and in gas sensing. TiO2 has a 

wide range of desirable functional properties which includes mechanical 

durability, chemical stability and high refractive index.
5
 Titanium dioxide thin 

films on glass have excellent adhesion and durability. These properties have 

led to a variety of applications including antireflective coatings and 

waveguides.
6
 One of the most important functional properties of titania is its 

ability to act as a photo-catalyst
7
 which has found widespread commercial 

application as a self-cleaning coating, for example Pilkington Activ
TM

.
5
 

Potentially of greater importance for titanium dioxide is its ability to harness 

sunlight to split water into hydrogen and oxygen.
 

It is very important to study the growth of titanium dioxide films because the 

phases produced have a great effect on properties and the applications of the 

films. To enhance the functional properties of titania films we have to 

understand the growth stages of the films. 
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1.2. Titanium dioxide 

1.2.1. History of TiO2 

Titanium dioxide is also referred to as titania (TiO2) and is a naturally 

occurring oxide of titanium in its pure state, it is a brilliant white in colour 

(figure 1.1). TiO2 is one of the most important materials for forming thin 

films. Titanium was discovered in 1791 by William Gregor in a black sandy 

mineral that he named menachanite. Four years later Martin H. Klaproth 

isolated the new element from the mineral and he named it titanium. He was 

not able to make it completely pure but was able to produce titanium dioxide 

from it.
8
 

 

 

Figure 1.1. TiO2 in the powder form. 

 

 

 

 

 

http://upload.wikimedia.org/wikipedia/commons/a/a5/Titanium(IV)_oxide.jpg
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1.2.2. Structure of TiO2 

There are three main polymorphs of TiO2; rutile, anatase and brookite. The 

most thermodynamically stable and common is the rutile phase followed by 

anatase and then brookite.
9
 Because of the thermodynamic stability of the 

rutile and anatase phases, their structures have been extensively studied.  In 

both anatase and rutile the titanium atom is surrounded by six oxygen atoms in 

a distorted octahedral configuration.  

Studies have shown that the rutile form of TiO2 has three main crystal faces, 

two that are low in surface energy and are important and desired for practical 

polycrystalline and powdered materials.
10

 The faces are (110) and (100), 

(001).  The (110) has the lowest energy and hence is the most thermally stable 

and has been the most studied. The (001) face is thermally less stable, and has 

been reported to change structure at a temperature 475 °C.
11

 The rutile 

structure is made up of edge sharing TiO6 chains. The Ti is tetragonal and 6-

coordinate.  
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Figure 1.2. Schematic representations of selected low-index faces of rutile: (a) 

(110); (b) (100); and (C) (001).
10

 
 

 

Anatase has two low energy surfaces, (101) and (001) which are common for 

the natural crystal.
12

 The (101) surface has alternating rows of 5-coordinate Ti 

atoms and bridging oxygens, which are at the edges of the corrugations. The 

(001) surface is rather flat and can be reconstructed into forming another 

structure. The (100) surface is less common but is observed on rod-like 

anatase grown hydrothermally under basic conditions.
13

 This surface has 

double rows of 5-coordinate Ti atoms alternating with double rows of bridging 

oxygen atoms. 
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Figure 1.3. Schematic representations of selected low-index faces of anatase: 

(a) (101); (b) (100); and (C) (001).
10

 

 

Brookite is orthorhombic; the titanium is coordinated to six central oxygen 

atoms and each oxygen atom to three titanium atoms. In brookite the titanium 

atoms are displaced from the centres of the TiO6 octahedral. The brookite 

phase, is rare and more challenging to prepare, the (100) is most stable crystal 

face of brookite followed by (110) and (010).
14

 

 

 
 

http://www.sciencedirect.com/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6TVY-4TXDXCN-1&_image=B6TVY-4TXDXCN-1-6&_ba=&_user=125795&_coverDate=12/15/2008&_rdoc=1&_fmt=full&_orig=search&_cdi=5547&_pii=S0167572908000757&view=c&_isHiQual=Y&_acct=C000010182&_version=1&_urlVersion=0&_userid=125795&md5=b0d1111c18eea98daa62e14e59d88797
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Figure 1.4.  Schematic representation of the brookite structure 
14

 

1.3. Properties and application of TiO2 

1.3.1. Properties 

Titanium dioxide is one of the most important materials for forming thin 

films.
15

It has a variety of desirable functional properties including mechanical 

durability, chemical stability and high refractive index.
16

 Titanium dioxide thin 

films have excellent adhesion and durability on glass.  These properties have 

led to extensive applications as anti-reflective coatings and 

waveguides.
17

Table 1.1 shows the shows the properties of TiO2. 

Table 1.1. A table of the properties of TiO2 

Properties Ti 

Atomic Number 22 

Electron Configuration [Ar]3d
2
4s

2
 

Appearance White solid 

Density 4.23 g/cm
3
 

Boiling Point 2972
o
C 

Melting Point 1843
o
C 

Refractive Index Anatase (nD) 2.488 

Refractive Index Rutile (nD) 2.609 

Crystal Structure (Anatase and Rutile) Tetragonal 

 

http://www.sciencedirect.com/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6TVY-4TXDXCN-1&_image=B6TVY-4TXDXCN-1-6H&_ba=&_user=125795&_coverDate=12/15/2008&_rdoc=1&_fmt=full&_orig=search&_cdi=5547&_pii=S0167572908000757&view=c&_isHiQual=Y&_acct=C000010182&_version=1&_urlVersion=0&_userid=125795&md5=eeb5a8e2c0d2ceef2792504597f9bd58
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1.3.2. Application of TiO2 

TiO2 has a variety of applications; the most important ones are reviewed 

below. 

1.3.3. Pigment 

TiO2 is one of the most widely used white pigments. The reason titania is used 

as a pigment is because of its brightness and its high refractive index (n = 

2.488 for anatase and 2.609 for rutile). The high refractive index of titania 

determines its opacity.
18

 TiO2 is used as an opacifier in glass, cosmetics, 

sunscreens, paper, and paints. One of the main advantages of TiO2 when used 

as a pigment is its ability to resist discoloration under UV light.19 The material 

is also used as a white food colouring; TiO2 is often used to increase the 

palatability of skimmed milk.
20

 

Both the rutile and anatase polymorphs are suitable as white pigments. The 

anatase has a better transparency in the UV but rutile is the most preferred 

pigment, this is because rutile has a higher refractive index and a lower photo-

activity hence it is better and has greater durability as a pigment.
21

 

 

1.3.4. Self-cleaning 

Self-cleaning glasses are desirable for use as windows and general glazing 

application. Self-cleaning glasses have been commercialised by various 

companies. Pilkington activ
TM 

Glass was commercialised in 2001 as the 

world’s first self-cleaning window. TiO2 is currently the thin film coating on 

glasses used for this application.  TiO2 thin films are hydrophillic in nature and 

their photocatalytic ability enables thin film TiO2 to chemically break down 

organic dirt.  

http://en.wikipedia.org/wiki/Food_coloring
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The self-cleaning ability of TiO2 coated on glass works by absorbing readily 

available solar light and ultraviolet light (UV). The band gap of anatase titania 

is 3.2 eV which corresponds to a wavelength 390 nm in the near UV region. 

The titania is able to absorb energy that is equal to its band gap or greater, this 

results in the generation of an electron (e
-
) and a positive hole (h

+
). A model of 

this theory is shown in figure 5.
22

 Most of the e
-
 and h

+
 generated recombine 

but some charges migrate to the surface where the h
+
 can oxidise adsorbed 

organic molecules and the e
-
 can combine with oxygen in the air to produce 

superoxide radicals and these radicals can also go on to break down nearby 

organic molecules (dirt). This results in effective “cold combustion” where the 

organic molecules are converted to carbon dioxide and water and other 

molecules.
23

 When thin film TiO2 is irradiated with UV light the surface 

becomes super-hydrophillic,
24

 so the water-contact angle of the films on glass 

becomes very low under the action of sunlight, this causes rain water to form a 

sheet on the glass surface rather than droplets. These sheets of water are able 

to wash down the dirt from the surface uniformly. The photocatalysis 

properties and the processes for titania acting as a photocatalyst have been 

well studied and reported.
25
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Figure 1.5. Upon irradiation of TiO2 by ultra band gap light, the 

semiconductor undergoes photo-excitation. The electron and the hole that 

result can follow one of several pathways: (a) electron–hole recombination on 

the surface; (b) electron–hole recombination in the bulk reaction of the 

semiconductor; (c) electron acceptor A is reduced by photogenerated 

electrons; and (d) electron donor D is oxidised by photogenerated holes.
24

 

 

The self-cleaning properties of TiO2 are due to irradiation of the surface using 

UV-light which is also referred to as photo-induced hydrophilicity (PIH). The 

photogenerated holes are able to oxidise oxygen on the surface of the material 

to evolve O2, this creates oxygen vacancies that can be filled by adsorbed 

water. This process produces surface hydroxyl groups that makes wetting of 

the surface easier by bonding with water molecules through hydrogen 

bonding, lowering the water contact angle to near 0
o
 after irradiation.

22
 The 

self-cleaning properties of TiO2 are dependent on the absorption of the ultra 

band gap light and the generation of electron and hole pairs. The position of 

the conduction and valance bands are related to key redox potentials.
26
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Researchers have focused on improving the self-cleaning properties of titania 

by doping and coupling composites. TiO2 has been coupled with other 

semiconductors such as tungsten oxide with a lower band gap this increases 

the charge separation and helps to reduce the recombination of generated holes 

and electrons.
27

 The band gap of TiO2 lies in the UV region and efforts has 

been made to change the band structure and to lower so as to shift the 

absorption into the visible light region of the electromagnetic spectrum. To do 

this TiO2 has been doped with a variety of materials including nitrogen, 

sulphur and carbon. 
28

 

1.3.5. Photocatalytic water-splitting 

Semiconductor photocatalysis was detailed in the review by Mills et al.
24,18 

The review shows that one of the most important properties of TiO2 is its 

ability to split water and act as a photocatalyst. Fujishima and Honda were the 

first to report the first photochemical cell for water splitting using rutile TiO2 

photoanode and platinum counter electrode.
29

 They reported that in the 

photoelectochemical cleavage of water, the use of TiO2 as the anode and 

platinum at the cathode, when irradiated with light, hydrogen was evolved at 

the Pt electrode, while oxygen was produced at the TiO2 electrode. A 

conventional water splitting photodiode consists of a metal substrate and an 

oxygen catalyst deposited on the top of the substrate and a hydrogen catalyst 

deposited on the reverse. The device is then placed between two water sources 

connected electrically by a photon membrane. The photocatalyst absorbes the 

light and generates an electron and hole pairs in the semiconductor. The holes 

can oxidise water to oxygen (equation 1.1), and the electrons are transferred  

through the substrate to the hydrogen catalyst on the reverse where they 

reduce water (equation 1.2).
10

 The separation of the reduction and oxidation 
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steps reduces the back reaction and increases the effectiveness of the water 

splitting device as shown in figure 6.
30

  

Equation 1.1. 2H2O + 4h
+
        O2 + 4H

+
 

Equation 1.2. 2H2O + 2e
+
       H2 + 2OH

-
 

Titanium dioxide is an n-type extrinsic semiconductor as the oxygen atoms are 

able to supply extra electrons to the titanium.  To activate the semiconductor 

photocatalyst the material absorps a photon of ultra band gap energy, this 

results in the promotion of an electron from the valence band to the conduction 

band. This generates an electron and a hole in the valence band. In the 

photodiode the holes tend to migrate to the surface of the titania where they 

can oxidise water and evolve oxygen and the electrons migrate to the reverse 

metal side where they can reduce water and evolve hydrogen.  The photodiode 

essentially enables vectoral charge separation and could form the basis for 

hydrogen generation to enable a zero-emission hydrogen economy. 

 

Figure 1.6. Diagram of a TiO2/Metal/Pt photodiode, and a schematic of the 

band structure of the device
31,

 
20
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For TiO2 to be an effective photocatalyst the recombination of the electron and 

the hole must be ineffective.
10 

TiO2 has been reported to satisfy the 

requirement to be an effective semiconductor. 
31

 

Recombination of the generated positive holes and electrons are also a 

limitation in water-splitting and the need to block this process is high. Noble 

metals (Pt, Pd, Ni, Cu and Ag) have been employed to improve the 

photocatalysis of TiO2 as they have a lower Fermi-level compared to TiO2.
32,33

 

In these systems the photo-excited electrons can be transferred from the 

conduction band of titania into the metal particles on the surface of the titania 

and the holes can remain in the titania reducing the electron and hole 

recombination process. This process results in the effective separation of the 

holes and electrons and increases the photocatalytic reaction.  

 

1.3.6. Antimicrobial 

TiO2 has been reported to act as a light-activated antimicrobial surface.
34

 

There has been widespread research and development in antimicrobial 

surfaces. Antimicrobial surfaces are important in maintaining an acceptable 

level of hygiene in hospitals and may help reduce hospital-acquired infections.  

 

 

Figure 1.7. Reactive radical species generated by TiO2 photocatalysis
23,33
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Figure 1.7 shows the process where reactive species are produced at the 

surface of the catalyst. The hydroxyl groups produced are highly reactive and 

are able to oxidise most organic compounds at the surface. This makes them 

extremely effective biocides.
34-36

 

1.4. TiO2 thin-film synthesis 
The properties of TiO2 and therefore its uses depend on the form; rutile or 

anatase and the method of preparation.
16 

In this section we will review 

methods by which TiO2 has been synthesised and the morphology and phases 

of the films produced. 

TiO2 has been synthesised by various methods. This includes atmospheric 

pressure chemical vapour deposition (APCVD), which is one of the most 

common methods as it allows synthesis of films that are durable and can 

control the microstructure.
37

 Other methods include sol-gel methods,
 38

 metal-

organic chemical vapour deposition (MOCVD)
 39

, atomic layer deposition 

(ALD)
 40

 and chemical spray pyrolysis.
41 

The most common routes to 

synthesise TiO2 thin films are chemical vapour deposition (CVD) and sol-

gel.
42

 

1.4.1. Sol gel 

The sol-gel method is carried out when the substrate is dipped into a sol of the 

precursor mixture, left to dry and annealed at different desired temperatures. 

The sol-gel method is an important method for producing various functional 

films. 
43

 This is because of its low processing temperature and the ease of 

coating large surfaces, it also forms porous films which show good 

photocatalysis.
44

 Sol-gel dip-coating methods have been used to prepare TiO2 

semiconducting oxide films. The properties of the films are affected by the 
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pore characteristics, surface area, and surface state of the film. The properties 

of the film produced are dependent on the sol-gel process conditions and this 

includes the solvent and annealing temperatures. 
45

 

The variation of structural and optical properties of TiO2 thin films synthesised 

by the sol-gel method was studied by Y.U. Ahn et al. They found that the TiO2 

thin films prepared on quartz glass by the sol-gel process are amorphous, and 

they transform into the anatase phase at 400–600 °C, and into a mixture of 

anatase–rutile phases at 800 °C, further heating to 1000 °C causes the anatase 

films to completely transform into the rutile polymorph. The report shows that 

higher temperatures are required to form the more thermodynamic stable 

phase of TiO2 rutile. The SEM of the films produced are typical of what is 

produced by sol-gel methods. This is shown in figure 1.8. 

The SEM results show that the rutile polymorph of TiO2 is denser than the 

anatase phase.  At lower temperatures the films formed from sol-gel are almost 

spherical in shape. An increase in temperature results in more dense particles 

that have non-spherical shape. 

 

Figure 1.8. SEM  of TiO2 thin films: (a) 400 °C, (b) 600 °C, (c) 800 °C, (d) 

1000 °C.
 28

 (reproduced with permission)   
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Other studies have been carried using sol-gel methods to synthesise TiO2 

films. Rath et al reported that above 400°C anatase is produced via sol gel 

methods using titanium isopropoxide (TTIP) precursor. They also reported 

that the conversion of anatase to rutile phase occurs at temperatures between 

700–800°C. However the rutile film produced at this temperature still has 

some anatase phase present. Most studies of sol-gel processes have reported 

that only above 1000°C is rutile the exclusive phase.
46,47 

1.5. Chemical vapour deposition (CVD) 
Chemical vapour deposition (CVD) is one of the most important and most 

used deposition techniques for the production of thin films in the materials 

industry. It has been employed for a variety of commercially available 

products including self-cleaning glasses, gas-sensing materials and optical-

coatings. It is a low cost and fast technique and it is suitable for large scale 

production. 

CVD processes involve the transportation of one or more volatile precursors in 

the gaseous state to a reaction vessel where the precursors react on a heated 

substrate and in the process deposit films and produce volatile by products. 

CVD makes use of either a single precursor, where all the elements required to 

deposit a film comes from one precursor, or it uses dual precursors where the 

elements required to form the films come from multiple precursors. There are 

different types of CVD including atmospheric pressure chemical vapour 

deposition (APCVD) and aerosol assisted chemical vapour deposition 

(AACVD). These will be referred to and employed throughout this thesis.  

The CVD process can be broken down into four important steps as shown in 

figure 1.10. The first is to provide a pathway for the molecule to be vaporised 
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into the gaseous phase and transported into the CVD reactor vessel. The 

second is the precursors in the gas phase undergoing the correct reaction path 

to form small molecules that will be part of the deposited film and are 

absorbed onto the surface. The precursor molecules then react on the surface 

and produce a film with low contamination and the fourth stage is the removal 

of by products through the exhaust. An efficient production process is when 

the substrate is fully covered by the deposited film. 

In traditional low pressure CVD, the precursors are vaporised by heating to 

high temperatures where they exhibit a significant vapour pressure. Liquid 

precursors which are highly volatile are preferred. In CVD depositing a film at 

lower deposition temperatures is favourable as this allows the use of a wide 

variety of substrates such as glass substrates and plastics.  

Atmospheric pressure chemical vapour deposition (APCVD) is one of the 

most employed CVD process used in depositing thin films. This is because 

APCVD depositions are fast and avoid the installation and maintenance of the 

vacuum systems as required by traditional low pressure CVD. However it does 

require more volatile precursors than low pressure CVD. Aerosol assisted 

chemical vapour deposition (AACVD) was employed in the work outlined in 

this thesis. The main difference between AACVD and other CVD techniques 

is that AACVD uses a liquid aerosol to transport the precursor to the substrate. 

AACVD is cost-effective and uses a humidifier to produce the mist of the 

precursor, removing the need for high vacuum or high precursor volatility. 

AACVD is a solution based process and allows for the reaction to be 

monitored in situ as the precursors are mixed in solution before reaching the 

reactor vessel without decomposing before entering the reactor.  
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1.5.1. Atmospheric pressure CVD (APCVD) 

Atmospheric pressure CVD (APCVD) is a technique used in coating thin-

films on various substrates, such as glass, steel, and the film thickness is 

usually in the nanometre to micron range.  The APCVD experiment is 

performed on an apparatus consisting of a horizontal-bed cold-wall reactor 

connected to an arrangement of stainless-steel heated pipes, valves and 

bubblers. The apparatus and APCVD technique is well described in various 

papers. 
48

 

This technique is currently used to produce the commercialised self- cleaning 

glasses such as Pilkington Activ,
49 

it is also used to synthesise metal nitrides 

and many other films for a variety of application. This application includes 

semi-conductors, microelectronic devices and many more. 
50

 

APCVD has an advantage over other routes of synthesising TiO2 because it is 

inexpensive, and is easy to commercialise as it can be incorporated into the 

float-glass system in industry. APCVD has been used to synthesis TiO2 and 

also doped TiO2.  Parkin et al have been one of the major research groups to 

report on the use of APCVD to synthesise TiO2 thin films on glass.
51,52 

Parkin at el reported that depositing TiO2 via APCVD of TiCl4 and an oxygen 

precursor, an alcohol or water, at 500–650°C on glass produces exclusively 

anatase films of good quality on glass substrates. They also reported that even 

though the rutile is thermodynamically the more stable form, the anatase TiO2 

is the most desirable form for self-cleaning purposes as it has the most 

effective photo-catalytic response and a low water contact angle. The SEM of 

the films produced from the study shows that the films are uniformed and 

granular, and the morphology is consistent with an island growth mechanism. 



38 
 

The SEM of the films deposited is shown in figure 1.9 and has a typical 

morphology of a TiO2 film deposited via APCVD. The films produced by the 

APCVD methods are hydrophilic and on irradiation with UV-light they 

become super-hydrophilic. 

The APCVD route produces faster growth rates and under optimum conditions 

forms uniform films with no contamination. It also produces TiO2 thin-films 

that are very mechanically robust and do not have the haze associated with 

large particle sizes.
52,54 

 

 

Figure 1.9 SEM micrographs of the films produced from the APCVD of (a) 

TiCl4 and 
i
PrOH (15 s deposition time at 500 

o
C) and (b) TiCl4 and MeOH (15 

s deposition time at 500 
o
C).

49 
(Reproduced with permission) 
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1.5.2. Aerosol-assisted chemical vapor deposition (AACVD) 

 

AACVD is a method that has been employed when the conventional 

atmospheric pressure CVD precursor proves involatile or is thermally 

unstable.
55

 In this process the precursor is placed in a nebulizer sitting on an 

ultrasonic humidifier. The humidifier produces micron and sub-micron sized 

droplets from the liquid surface. These aerosol particles are then carried by an 

inert gas to the heated reactor vessel, where evaporation and decomposition 

occurs and leads to a CVD reaction. AACVD technique does not require 

precursors to be volatile, but needs them to be soluble in any solvent from 

which the aerosol can be generated. Figure 1.10 and figure 1.11 show the 

schematics of an AACVD reactor vessel and the process of AACVD 

deposition respectively.  

 

Figure 1.10. AACVD schematic 
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Figure 1.11. AACVD Process 

 

AACVD has advantages over conventional CVD processes, because it offers 

better capability and flexibility than the conventional CVD process. The 

AACVD process is not expensive and relatively environmentally friendly 

chemicals can be used as precursors in the AACVD process, this is important 

for large-scale or mass production.
56

 Ionic precursors and metal oxide clusters 

have been used in aerosol assisted depositions as alternative routes to thin 

films.
57

 AACVD has also been used to synthesise nanoparticle precursors as a 

route to nanocomposite thin films. 
57,58 

 

Synthesis of TiO2 thin films on glass and metal substrates using AACVD has 

not been previously reported at the onset of this research. This is a novel idea 

and this thesis focuses on the synthesis TiO2 films using aerosol assisted 

chemical vapor deposition. 
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Chapter 2: Characterisation techniques 
 

This research employed different characterization techniques to analyse the 

deposited films particularly X-ray diffraction (XRD), Raman spectroscopy, 

and X-ray absorption spectroscopy. A brief introduction of the techniques used 

in this thesis is provided in this chapter. In particular this chapter describes in 

some detail a range of synchrotron based techniques. This is because this 

thesis reports the first application of XANES mapping and CVD growth using 

central facilities.  

 

2.1. X-ray diffraction (XRD) 
 

XRD is a technique used to characterise materials with long range order. Low 

angle X-ray diffraction has been widely reported as a technique for the 

investigation of thin films. XRD is a convenient and effective technique for 

crystalline phase identification.  

  

The wavelength of X-rays is in the range from 0.5 – 2.5 Å. X-ray scattering 

generates a unique pattern for each type of crystalline material. The 

wavelength of X-rays is of a similar degree to the spacing between atoms and 

so is most suitable wavelength for probing the structural properties of a variety 

of inorganic materials. 

 

Diffraction is the interference caused by an object in the path of the 

electromagnetic wave, and occurs when the dimensions of the object are 
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similar to the wavelength of the radiation. The wavelengths of X-rays are 

similar to the spacing of atoms/ions in crystals, and are therefore diffracted by 

them. During diffraction, the waves can interfere either constructively 

(increasing the wave amplitude) or destructively (decreasing the wave 

amplitude) and when they are detected, they show up as regions of enhanced 

or diminished intensity. This is due to the intensity being proportional to the 

amplitude. Two X-ray beams will interfere constructively if AB + BC (the 

difference in their path lengths) is equal to an integral number of wavelengths. 

The pattern of varying intensity as a function of diffracted angle 2 is called a 

diffraction pattern. 
1
 By analysing the diffraction pattern, a detailed picture of 

the crystal structure can be produced. The way the diffraction works in a 

crystal system can be explained using the following figure 2.1. 
3
 

 

 

 

Figure 2.1. Diffraction of an X-ray by an ordered crystal lattice. 
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The horizontal lines in figure 2.1 represent planes of atoms in a crystal from 

which the waves are diffracted. The diffracted waves are detected and their 

glancing angle (2θ (theta)) is recorded. The separations of the planes (d) are 

calculated using Bragg’s Law:  

Equation 2.1.                

Equation 2.1. Bragg’s law: where λ is the wavelength of the radiation used 

and n is an integer determined by the order of the diffracted beam.  

 

One of the most used X-ray diffraction techniques for characterizing materials 

is Powder XRD. The powder is dominated by randomly orientated crystallites 

of the sample of interest. So in powder XRD a 2-D diffraction pattern is 

collected that shows concentric rings of reflections related to the different d-

spacing in the crystal lattice. The positions of the peaks in the pattern and their 

intensities are then used to identify the structure or phase of the material. This 

technique has been used to identify and solve structures of a range of 

crystalline systems that includes inorganic, organic and biological systems. 
4
 

 

Thin film diffraction is a form of XRD technique used to characterise thin 

films deposited on a substrates.
3
 In thin film analysis using XRD the X-ray’s 

penetrate through the layers of the film and are able to measure both the 

structural properties of the as deposited films and the substrate. The analysis of 

thin film samples using XRD is usually done at low angles of incidence using 

glancing angle X-ray diffractometers.   
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In this study thin film X-ray diffraction was employed to identify the phases of 

the materials deposited using aerosol assisted chemical vapour deposition 

(AACVD). Bruker-Axs D8 general area diffraction detector system (GADDS) 

was used in this project at an incident angle of 5
o
. GADDS uses a large 2D 

area X-ray detector. The diffraction data collected with this technique 

produces a good signal to noise ratio and was collected in a short amount of 

time. The XRD pattern of a film is determined by the atomic arrangement 

within its crystal lattice, so the films deposited will have the diffraction pattern 

that is characteristic of its component compounds or phases which can then be 

identified by comparing it with the standard patterns available from the ICDD 

reference database. 
2 

 

2.2. Raman spectroscopy 
Raman spectroscopy is one of the most used techniques in analysing molecular 

motion and fingerprinting of a material. It is concerned with the shift in 

wavelength of inelastic or Raman scattered radiation from a monochromatic 

light source, usually from a laser, it provides chemical and structural 

information of a material. The energy range of Raman spectroscopy is 

between 200 - 4000 cm
–1

.
5 

The selection rules in Raman spectroscopy 

complement the selection rules in infra-red spectroscopy. Unlike IR 

spectroscopy where molecules have to have a dipole moment, vibrational 

Raman spectra can be recorded for non-polar molecules such as N2.  To be 

Raman active a molecule needs to have anisotropic polarizability. That means 

that for a molecule to be Raman active the polarizability of the molecule must 

change during vibration. When an electric field is applied to a molecule the 

electron cloud around the molecule is distorted and the extent of the distortion 
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is termed the polarizability of the molecule. Anisotropic polarizability is when 

the polarizability is direction dependent. 
8 

 

Laser light interacts with the molecular vibrations in the material. These result 

in the energy of the laser photons to be shifted up or down and this shift in 

energy gives information about the vibrational modes present in the material.   

When a photon excites a molecule it promotes the vibrational ground state to a 

virtual energy state and when the molecule relaxes it emits a photon and it is 

returned to a different vibrational state. This is termed the ‘Raman effect’ and 

is inelastic. When the emitted photon returns to the same state it is elastic and 

this state is Rayleigh scattering. The difference between the original state and 

the final state after absorption causes a shift in the emitted photon’s frequency. 

This shift in frequency is known as the Stokes shift. Figure 2.2 describes the 

energy level states involved in Raman spectroscopy.   

 

 

Figure 2.2 Energy level states involved in Raman spectroscopy. 
6 

 

Stokes shifts occur when the final vibrational state of the molecule has more 

energy than the initial state and the photon is shifted to a lower frequency to 

balance the total energy of the system. The Anti-Stokes shift occurs when the 
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final vibrational state of the molecule has less energy than the initial state and 

a photon is shifted to a higher frequency than the original state. So in other 

words Stokes radiation happens at lower energy which is at longer wavelength 

than Rayleigh radiation and anti-Stokes has higher energy which is shorter 

wavelength that Rayleigh radiation as described in figure 2.3. Because 

molecular energy levels are quantised this distinct lines can be produced from 

the molecule.
6
 

 

 

Figure 2.3 describes the Stokes and Anti-stokes phenomenon. 
6
 

 

Figure 2.4 shows the selection rules that is allowed in Raman spectroscopy. 

Raman: ΔJ = 0, ±2, Stokes is J + 2 and anti-Stokes is J - 2. 7 

 

 

Figure 2.4 The selection rules that is allowed in Raman spectroscopy. 
7
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Raman spectroscopy is widely used in chemistry to provide fingerprint 

identification of materials as the vibrational information corresponds to the 

chemical bonds and the symmetry of molecules and solids. In this project 

Raman spectroscopy is mostly used alongside XRD for phase determination of 

the as deposited thin films. 

 

2.3. Scanning electron microscopy (SEM) 
 

SEM is a type of electron microscopy and is an important characterisation 

technique and was employed throughout this project. SEM works by using a 

beam of electrons to illuminate a sample and magnify the surface on the 

sample upto 250,000 times. In SEM microscopy an image is produced on a 

particular point on a sample. SEM works by generating an electron beam from 

an electron gun; the electrons are then accelerated through an electric field and 

are focused on a single point on the sample using electromagnetic lenses. 

Deflector plates scan the beam across a rectangular surface of the sample.  The 

electron beam produced causes the emission of secondary electrons from the 

sample. Back scattered electrons can also occur due to reflected electron beam 

caused by elastic scattering. These back scattered electrons are higher in 

energy than the secondary electrons. Secondary electrons gives rise to high 

resolution images that provide an insight into the morphology of a given 

sample. Although back-scattered electrons produce lower resolution images, 

the strong intensity of the back-scattered electron images is related to the 

atomic number of the sample and is useful in providing information about the 

distribution of heavier and different elements in a given sample.  
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2.4. X-ray absorption spectroscopy (XAS) 
 

XAS has been increasingly useful in the study of a wide range of materials 

including amorphous and liquid state systems and has been used to determine 

the chemical state of important species mostly those with low concentration. 

XAS has been recognised as a powerful analytical technique due to the 

availability of synchrotron radiation.  

 

2.4.1. Synchrotron radiation 

 

Synchrotron radiation occurs when an electric field is applied to accelerate 

ultrarelativistic particles to near the speed of light in a storage ring. 

Synchrotron radiation is generated when the magnetic field used in the storage 

ring causes the accelerated electrons to change direction and lose energy in the 

form of a ‘white’ light called synchrotron. The word synchrotron originated 

from the synchronised way the applied magnetic field is increased in strength 

in time and the increase in energy of the particles as they accelerate through 

the circular path in the storage ring. Synchrotron radiation allows different 

wavelengths to be used because the accelerated electrons emit radiation 

continuously with various wavelengths and strengths.  

An illustration of the synchrotron components is shown in figure 2.5. The 

Synchrotron includes different features including an electron gun that 

produces electrons, a linear accelerator (LINAC) where the electrons produced 

are accelerated to high energy, a booster ring that accelerates the electrons to 

near ultrarelativistic speed, a storage ring where the electrons with sufficient 



53 
 

energy to produce light are circulated and bending magnets which are present 

on the curved point in the storage rings are able to focus the electrons round 

the storage ring. 

 

 

 

Figure 2.5. A schematic diagram of synchrotron radiation source.  

 

Due to the intensity of the X-rays generated synchrotron radiation has many 

advantages over conventional X-rays produced by laboratory X-ray tubes.  

Synchrotron radiation sources are able to produce higher intensity than X-ray 

tubes and so allow data to be collected at a much faster rate than in the 

laboratory. This allows chemical processes to be recorded in situ whilst an 

experiment is being conducted. High intensity and tuneable energy are 

important properties of synchrotron radiation and these properties allow 

synchrotron radiation to be used for resonant scattering methods and X-ray 

absorption spectroscopy. Synchrotron radiation has a high degree of 

collimation allowing more efficient and angularly precise experiments to be 

carried out with greater resolution. Synchrotron radiation techniques have 

7 

1. Electron gun 

2. LINAC  

3. Booster ring 

4. Storage ring 

5. Experimental Hutch 

6. Control station 

7. Synchrotron 

radiation 
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been a valuable tool to determine the structure of a range of materials 

including thin film metal-oxide layers in semiconductors.   

 

2.4.2. X-ray absorption spectroscopy (XAS) technique  

XAS characterisation technique is concerned with the study of local 

environment of an element of interest within a system. XAS has an energy of 

about 10
4
 eV which corresponds to wavelengths of about 1 Angstrom. The 

wavelength of 1 Angstrom is of a similar order of magnitude as the atom to 

atom separation in a molecular structure so it is able to provide information on 

the local environment of the coordinated atom including its coordination 

number, oxidation state of the element and relative bond distances. XAS has 

been a useful tool in gaining structural information of non-porous and 

organometallic materials. XAS unlike XRD is able to provide information on 

amorphous materials and crystallised materials because long range order is not 

required in XAS and thus can be used to analyse materials in low 

concentrations. Data collection using XAS can be done in a very short time 

allowing for in situ studies to be performed. 

 

An X-ray absorption spectrum contains two parts: (1) X-ray absorption near 

edge structure (XANES) and (2) extended X-ray absorption fine structure 

(EXAFS). XAS is concerned with the measurement of X-ray absorption of a 

material as a function of the incident X-ray energy. When an X-ray hits a 

material, atoms in the material absorbs some of the photon and this decreases 

the transmitted X-ray beam.  
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A rise in absorption is caused at a specific energy as a characteristic of each 

atom type. This edge is called the absorption edge; the absorption indicates the 

excitation of an electron from the core level into a fully or partially 

unoccupied level or the continuum. Figure 2.6 shows a representation of the 

ejection of an electron from the core level into an unoccupied level. 

 

 

Figure 2.6. An illustration of X-ray absorption. Showing the process when a 

material is hit with X-ray and an electron is excited from the core level into 

the continuum.
9
 

 

XAS is a technique concerned with the measurement of the X-ray absorption 

coefficient μ(E) of a material. μ(E) provides the probability that an X-ray will 

be absorbed by the material in accordance with Beer’s law as shown in 

equation 2.2 and shown in figure 2.7. 

 

Equation 2.2.                   I = I0e
-μx   
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In the equation I represents the transmitted intensity (the intensity going 

through the material), I0 represents the intensity of the incident X-ray, μ(E) is 

the absorption coefficient and x is the sample thickness.  

 

Figure 2.7. Schematic showing the transmission of X-rays through a material 

where I0 is the -ray intensity and I represents the transmitted X-ray Intensity.   

 

When the absorption coefficient is plotted against the energy, three interesting 

features are observed. There is an overall decrease in X-ray absorption with an 

increase in energy. A sharp increase in the absorption coefficient known as the 

absorption edge at a specific energy is also observed as the energy increases. 

Also, just above the edge a series of oscillations is seen. This is shown in 

figure 2.8. 
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Figure 2.8. The variation in absorption coefficient as a function of X-ray 

energy, the K and L edges. K represents transitions to Fermi level from1s, L1 

is from the 2s level, L2 is from the 2p (1/2) level and L3 is from the 2p level 

(3/2). 
10

 

 

The absorption spectrum of an atom consists of three features: the pre-edge 

and post-edge region of the spectrum is referred to as the X-ray absorption 

near edge structure (XANES) region and beyond the post edge the series of 

oscillations observed is termed the extended X-ray absorption fine structure 

(EXAFS) region as shown in figure 2.9. 
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Figure 2.9. Different regions in the X-ray absorption spectrum 

 

The XANES region which is includes any pre-edge is sensitive to the 

oxidation state and coordination environment of the atom. The EXAFS region 

gives information of the inter-atomic distances and the details of neighbouring 

species of an atom. 

 

When an atom absorbs a photon it becomes excited and this means that an 

electron is promoted to a higher energy level leaving an electron level empty. 

The empty state can decay either by X-ray fluorescence or Auger emission. If 

X-ray fluorescence occurs a core electron in a higher energy will fill the core 

hole and this results in the emission of an X-rays with defined energy levels. 

When a higher energy level core electron drops to fill the core hole and an 
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electron is emitted this is referred to an Auger emission. X-ray fluorescence 

mostly happens when hard X-rays are used and Auger emission occurs when 

lower energy X-rays are used. 

 

 

2.4.3. XANES 

X-ray absorption near edge structure (XANES) is the region in the absorption 

spectrum around 50 eV just before the edge (E0) (pre-edge) or just the 

absorption edge and extends to ca. 100 eV. The peaks in the pre-edge are 

caused by electronic transitions into partially filled states and these transitions 

give an indication of the oxidation states in an element. The dipole selection 

rule Δl =±1 governs the absorptions in the XANES region. This allows 

primary K-edge absorption transitions of s → p (1s core electron) and L1 edge 

(2s core electron) (s → p) and L2, 3 edges ( (2p½) and L3 (2p3/2) edges) (p → 

d). Each element has a specific absorption edge that represents the allowed 

transition and these transitions are very sensitive to the element’s oxidation 

state. For instance an element with higher oxidation state will need more 

energy to remove the same electron from its core shell.  XANES has been 

employed to provide the oxidation state of redox metals in material science.
11

 

 

 

2.4.4. EXAFS 

Extended X-ray absorption fine structure (EXAFS) is the region in the 

absorption spectrum where oscillations are seen. The observed oscillations 

occur due to the scattering of the emitted photoelectron by the neighbouring 

atoms of the excited atom. The photoelectron is emitted as spherical waves 
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and backscattering happens when the photoelectron interacts with a 

neighbouring atom and the wave is bounced back towards the probed 

absorbing atom. The EXAFS region starts from ca. 50 eV to 1000 eV and 

beyond above the absorption edge. Figure 2.10 shows an illustration of the 

excited photoelectron wave and how backscattering occurs.  

Figure 2.10. Picture showing the outgoing and backscattered photoelectron 

waves, and the possibility of interference between them.
12

 

 

The sum of the outgoing and backscattered incoming waves μ(E) is observed 

in the absorption coefficient variations with energy in an EXAFS spectrum. 

Equation 2.3 describes EXAFS observations. 
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Equation 2.3.  μtotal = μ0 [1 + XEX) 

 

Where: μtotal is the absorption coefficient above the edge, μ0 represents the 

atomic background and XEX is the sum of the outgoing and backscattered 

wave (the EXAFS fine-structure function). 

 

XEX also known as EXAFS fine-structure function is described in terms of a 

wave vector. The X-ray energy is converted to k, the wavenumber of a 

photoelectron. χ(k) is therefore used to describe the oscillatory frequencies 

corresponding to different near neighbour coordination shells and is calculated 

as shown in the equation 2.4. 

Equation 2.4. 

Equation 2.4. Nj =number of neighbouring atoms (the coordination number), 

Rj = the inter-atomic distance, δ
2
 = the mean square displacement from the 

disorder in the neighbour distances, fj(k) and δj(k) = scattering properties of 

the atoms close to the excited central atom.
12 

 

Although the EXAFS technique is widely used to determine local structure, in 

this thesis only the XANES part of the data is used to determine the phase 

compositions of the TiO2 present in the system. 
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XANES interpretation is however complicated due to the fact that there is no 

analytic description presented from XANES, however the XANES signals are 

much stronger than those of EXAFS, which is an advantage. The challenge in 

analysing XANES is due to the limitation in the EXAFS equation, as it breaks 

down at low k due to the 1/k in the equation and the fact there is an increase in 

the mean free path at low k. Nonetheless the data is recorded in the XANES 

region is still chemically very useful as XANES provides the oxidation state of 

atoms which will be very challenging to prove experimentally and it also 

provides useful coordination environment of an atom.
13

 EXAFS data is 

recorded over a longer period of time compared to XANES making XANES a 

much quicker technique to use. XANES recording allows fast collection 

allowing insitu recording to be carried out.  

 

The XANES region is also used as a simple phase identification technique 

(fingerprint) to identify the presence of a specific chemical species. XANES 

techniques are used extensively in this project to identify the phase of TiO2 

deposited on glass and steel substrates; whether anatase or rutile. The XANES 

technique was used to map the as-deposited films both on glass and steel 

substrate in chapter 5 and an insitu study of the deposition of TiO2 and 

tungsten oxide was also attempted and reported in chapter 7 of this thesis.  
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2.4.5. Data collection 

The XAS data reported in this thesis was collected at Diamond light source in 

Didcot Oxfordshire beamline I18. A schematic diagram of the beamline is 

shown in figure 2.11. 

 

 

 

Figure 2.11. Schematic diagram of beamline I18 at Diamond light source.  

 

XANES data can be collected in transmission or fluorescence mode. The 

absorption coefficient μ(E) is measured in the transmission mode by the 

equation 2.5 shown below. 

 

Equation 2.5.  μ(E) = Log (I0/It) 

 

Equation 2.5. The measurement of the absorption coefficient in the 

transmission mode, where It represents the intensity of the transmitted X-ray.  

 

http://www.diamond.ac.uk/dms/Images/beamlines/I18/schematic_I18.jpg
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Transmission mode is the measurement of μ(E) and the data  is recorded with 

the use of ion-chambers which are airtight and contain a carefully measured 

mixture of inert gases separating two highly (oppositely) charged parallel 

plates. X-ray transparent windows allow X-rays to enter the chambers. When 

X-rays enter they ionize the gases causing an ionization current which is then 

recorded. Ion chambers are placed before the incident X-ray beam and after 

the sample in the path of the X-ray beam to record the difference in the 

currents in either side of the sample. This is then related to a change in the X-

ray intensity. 

 

Fluorescence data in XAS are collected using highly sensitive detector arrays 

and in this case a 9 element solid state detector system optimised for energies 

above 5 keV. These detectors record the X-rays emitted from the sample when 

a high energy electron fills the core hole. Fluorescence data are particularly 

used in recording XAS when samples analysed contain dilute amount of the 

element of interest. The fluorescence mode does not directly measure the 

absorption coefficient, however the fluorescence yield is proportional to the 

absorption cross-section as shown in equation 2.6. 

 

Equation 2.6.      μ(E) ∝ Log (If/I0) 

 

Equation 2.6. The measurement of the absorption coefficient in the 

fluorescence mode, where If represents the monitored intensity of the 

fluorescence line.  
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 In this thesis all the data was collected using the fluorescence mode due to the 

thin nature of the thin films of titania and tungsten oxide studied.  

 

 

 

2.4.6. Data analysis 

 

XANES is a very useful technique to analyse the quantity of specific phases in 

a mixture and it is also very useful to follow in-situ experiments. The most 

used method of analysing XANES is the least squares linear combination 

analysis and principal component analysis.  

 

The principal component method is the traditional approach that involves 

choosing a pure model standard and then fitting the edge to the standards. It is 

a technique based on linear algebra and it aims to find the number of 

components that can reproduce the experimental spectra. The limitation in 

using the principal component method is determining the number of standard 

required and difficulty in knowing a realistic model.
14

 

 

In this thesis the least square linear combination analysis method of analysing 

XANES spectra was used. In this method a linear combination of reference 

samples is used which allows the amount of species in a multiple component 

deposition to be determined from their fingerprint in the XANES region. This 

method is easy to implement providing good quality spectra of the reference 

compounds are available and if these were recorded under similar conditions. 
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The initial step in XAS data analysis is to subtract the pre-edge of the data 

collected from the background. The background is removed by fitting a 

smooth line to the pre-edge slope and when subtracted help remove any 

instrumental background and absorption from other edges. In this work the 

Athena program is used and an example of data from sample 56457 is shown 

in figure 2.12a and 2.12b.
15

 XANES normalisation is achieved by normalising 

the edge jump increase μ(E) from 0 to 1. The maximum derivative of μ(E) is 

usually at the mid-point of the edge jump is referred to as the threshold energy 

E0.  
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Figure 2.12. Background removal procedure; (a) pre-edge background, post-

edge and background, and (b) the normalised data. 

a 

b 
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In this thesis the XANES data are analysed using linear combination analysis 

using the Athena software. By carrying out a linear combination fit (LCF) it 

was possible to determine the phase of TiO2 present (either anatase or rutile) 

and quantities of this phases present in the as deposited files using standards of 

both phases. 

Steps to complete a LCF: 

 

 Choose LCF from the Athena menu 

 Choose the standards (μ(E) of anatase and rutile) 

 Select the normalised μ(E) of the data and fit marked groups 

 

These steps produce typical spectra as shown in figure 2.13 and also produce a 

table that can be exported and plotted to show the percentage of each phase 

present. This procedure is discussed in more detail in chapter 5. 

Figure 2.13. An example of the LCF of a µXANES spectra showing best fit, 

individual components and difference. 
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While all the techniques described in this chapter were used predominantly to 

characterise the thin film samples, other routine characterisation methods, in 

particular FTIR and NMR were also used for specific characterisation and are 

not described here.  Further individual details of the experiments are given in 

respective chapters. 
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Chapter 3 
Aerosol assisted chemical vapour deposition and 

characterization of titanium dioxide thin films 

3.1. Chapter overview  
This chapter details the AACVD and characterisation of as deposited TiO2 thin 

films on different substrates at a range of deposition temperatures. Titanum 

(IV) isopropoxide (TTIP) was used as a single source precursor in methanol. 

This chapter will detail the phase of TiO2 deposited with both temperature and 

the substrate type. The properties of the films will also be explored and the 

focus will be on the hydrophillicity, and photocatalytic activities of the films 

deposited.  

3.2 Introduction  
Titanium dioxide thin films have one of the best adhesion and durabilities on 

glass compared to other materials.  These properties have led to extensive 

applications as antireflective coatings and waveguides.
1
 One of the most 

important functional properties of titanium dioxide is its ability to act as a 

photocatalyst
 
which has found widespread commercial application as a self-

cleaning coating, for example Pilkington Activ.
2 

Potentially of greater 

importance for titanium dioxide is its ability to harness sunlight to split water 

into hydrogen and oxygen.  The latter can be accomplished by a photodiode 

that consists of a thin layer of titanium dioxide or modified titanium dioxide 

on a metal surface encased in a water tank.
2
 The action of sunlight on the 

titania surface generates an electron and positive hole.
3
 In the photodiode the 

holes tend to migrate to the surface of the titania where they can oxidise water 

and evolve oxygen and the electrons migrate to the reverse metal side where 
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they can reduce water and evolve hydrogen.  The photodiode essentially 

enables vectoral charge separation and could form the basis for hydrogen 

generation to enable a zero-emission hydrogen economy.   What is important 

for titania to act as a photocatalyst to photomineralise bacteria or viruses
3,4

 or 

to act as the functional layer in a photodiode is that the morphology of the film 

is controlled and that there is a degree of phase control between the two most 

common polymorphs of titanium dioxide- anatase and rutile.  
5
 

TiO2 thin films have been formed by a wide range of techniques, the most 

common of which are physical vapour deposition, chemical vapour deposition 

and sol-gel routes as detailed in chapter 1. The phase of titanium dioxide 

synthesised has been generally reported to be temperature dependent, with 

temperatures above 650°C tending to favour the more thermodynamically 

stable rutile form, whilst lower substrate temperatures favour the deposition of 

anatase the kinetically formed phase.  However precursor chemistry also plays 

a role, Sheel et al showed that APCVD of titanium tetraisopropoxide on steel 

substrates at 500°C formed exclusively rutile titanium dioxide yet exclusively 

anatase from titanium tetrachloride and ethylacetate under comparable 

conditions.
6,7

 Furthermore Hitchman showed that rutile titania could be 

formed exclusively at temperatures as low as 300°C using titanium 

tetraisobutoxide.
8
 It is probable that the growth rate of the titanium dioxide 

plays a role in phase formation with very slow growth as observed by 

Hitchman enabling rutile to be formed at unexpectedly low temperatures.  This 

cross over from anatase to rutile is of key importance for functional properties.  

Although both common polymorphs of titanium dioxide are photocatalysts, 

either pure anatase or anatase-rutile mixes, such as the ubiquitous unofficial 
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comparative standard Degussa P25 (30/70: rutile/anatase) often show the best 

performance.
9 

The aerosol technique has commonly been used for precursors that have very 

low vapour pressure but that can be dissolved in a carrier solvent.  Hence the 

volatility requirement transfers to the solvent enabling a much wider range of 

materials to be used in deposition.  The aerosol can also have an effect on the 

microstructure of the thin films formed, often encouraging films composed of 

interlocking spheres- indicating that the process has at least partially occurred 

in the gas phase. 

3.2.1 Deposition of TiO2 using TTIP 

Titanum (IV) isopropoxide (TTIP) is an alkoxide of Ti(IV) and has been 

employed in organic synthesis and material science. In the AACVD deposition 

of TiO2 thin films as reported here TTIP is used as the precursor in an excess 

of methanol solvent. The mechanism of this process is complicated and is not 

yet fully understood.  

3.3 Experimental  
TiO2 thin films were synthesised using aerosol assisted chemical vapour 

deposition (AACVD) on either glass (SiO2 coated float-glass of dimensions 45 

x 90 mm), titanium foil (Goodmans, 100 m thickness) or stainless steel 

substrates (Goodmans, 250 m thickness) of dimension 25 x 25 mm. Titanum 

(IV) isopropoxide (TTIP) (97% Aldrich) and methanol (Fisher, reagent grade) 

were used without any purification. Deposition was carried out on a cold-wall 

horizontal-bed CVD reactor that contains a graphite block heated by a 

Whatman cartridge heater. The glass substrate was provided by Pilkington- 

NSG. Deposition of thin film was carried out on SiO2 barrier layer to prevent 
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migration of ions from the glass bulk into the film. A glass top-plate was 

positioned parallel above the substrate, and the whole set up was contained 

within a quartz tube. TTIP (0.60 ml) was added to methanol (50 ml) and an 

aerosol was generated at room temperature using a Pifco ultrasonic humidifier. 

The aerosol was carried into the reactor with carrier gas flow of oxygen free 

nitrogen gas at 1 Lmin
-1

 (BOC). The gas flow was continued until the entire 

precursor was used up. Films were then cooled and stored in air. 

A series of depositions on glass-substrates were carried out at substrate 

temperatures of 400°C, 500°C, and 550°C.  Variation in film thickness was 

achieved by growing the film for 15, 30, 45 or 75 minutes from the same 

concentration of precursor solution. 

Deposition was carried out under an identical set of conditions on steel and 

titanium foils to investigate the affect of substrate on film phase and 

morphology.  These foils were placed on top of a glass substrate which in turn 

was placed on top of the carbon heater block. 

Atmospheric pressure chemical vapour deposition (CVD) was used to make 

thin titania films on glass, steel and titanium at 550°C using a cold-walled 

reactor. Titanium tetra-isopropoxide was used as the single source precursor, 

heated in a brass bubbler to 108°C and transported using a flow rate of 1 Lmin
-

1
 of oxygen free nitrogen gas (BOC).  Prior to entry to the reactor the 

precursor gas stream was diluted with a further 10 Lmin
-1

 of oxygen free N2. 

Deposition was carried out for 180 seconds. 
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3.4 Characterisation of deposited films 
Thin film X-ray diffraction (XRD) measurements were carried out using a 

Bruker D8 Discover instrument fitted with GADDS area detector and Cu 

K1+2 source. Diffraction patterns were recorded and collected for 30 minutes 

per sample, using a fixed incident angle of 10
o
 for glass and 5

o
 for steel and 

titanium plates. Scanning electron microscopic (SEM) measurement was 

carried out on the films to determine surface morphology using a JEOL JSM-

6301F field emission SEM at an accelerating voltage of 5 KeV. Raman spectra 

were obtained with a Renishaw Invia raman microscope with a wavelength of 

515.5 nm and 50x microscope objective 

The rate at which the titania films photo-oxidise water in a sacrificial system 

was measured using a Rank Brothers oxygen electrode. The device includes a 

50 mm diameter glass chamber consisting of a water cooling jacket at the base 

which is a Clark cell consisting of a platinum working electrode. For water 

splitting measurements on steel and titanium substrates platinum was sputtered 

on the reverse side to improve performance. This was carried out using a 

sputter coater with an argon pressure of 0.1 Torr, and a current of 25 mA for 5 

minutes. 

The FTA 1000 instrument was used to measure the water contact angles of the 

films. This instrument uses “drop-shape” analysis to make measurements. It 

captures video images of liquid droplets (water) on the surface to analyse their 

shape and size to determine the contact angle. 
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An intelligent ink based on the dye Resazurin (Rz) was prepared in the same 

way as described previously by Mills et al.
10

 The ink is made up of 3 g of a 

1.5 wt. % aqueous solution of HEC polymer, 0.3 g of glycerol and 4 mg of Rz. 

The titania films formed on glass at 400°C and 500°C were sprayed with an 

aerosol spray-gun which was filled with the indicator ink solution to form an 

even ink-coating. The films were subsequently irradiated with a 365 nm lamp. 

The photocatalytic reduction was monitored via UV-visible absorption 

spectroscopy and digital photographic methods. The films change colour from 

blue to pink in indicating photoreduction of reazurin (blue) to rezofurin (pink). 

Further degradation of the dye induces a colourless state, showing the 

complete reduction of rezofurin.  

  

 

 

3.5 Results and Discussion 

3.5.1 Synthesis and Characterisation- Films formed by AACVD. 

TiO2 thin films were grown on glass, steel and titanium substrates by AACVD 

using TTIP in methanol at 400-550°C, Table 3.1, Figure 3.1. The films were 

adhesive, passing the Scotch tape test.  They resisted scratching with a 2H 

pencil and a brass stylus but could be scratched by a stainless steel or diamond 

tipped scalpel.  The films were impervious to common solvents and 2M 

mineral acid but could be slowly dissolved by 2M NaOH.  The films on glass 

were transparent (>75% transmission over the visible region) but did show a 

slight white haze when viewed off angle (ca 5% haze measurement dependent 
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on specific film).  Some evidence for interference colours was noted across the 

film indicating slight variation in film thickness; this is a common 

phenomenon for high refractive index films and was used to ascertain film 

thickness.  The thicknesses were actually fairly uniform with variations which 

ranged from ca 300 nm to 500 nm across the majority of the films with the 

thickest portions formed at the centre of the substrate. 

Table 3.1 XRD Results of as deposited TiO2 on different substrate and at 

different temperatures 

 

Substrate 

 400°C 500°C 550°C 

Glass 

 Anatase mix of both 

More rutile + 

anatase 

Steel 

 Rutile Rutile Rutile 

Titanium 

 Rutile Rutile Rutile 
 

 

 
 

X-ray diffraction patterns of the films deposited on glass at a substrate 

temperature of 400°C showed the anatase form of TiO2, using the AACVD of 

TTIP in methanol whereas for the films prepared at 500°C both anatase and 

rutile forms are present (figure 13(a)) and at 550°C the rutile phase is mostly 

seen (deposition time 75 minutes) this goes to support that higher temperature 

favours the thermodynamic phase of TiO2 the rutile phase. XRD patterns of 

the titania films deposited on titanium and steel plates show only rutile phase 

formation at all three substrate temperatures, this observation is surprising as it 

shows that even at low temperatures the rutile phase is still favourable on 

metal substrates and whilst on glass substrate temperature has a greater effect 
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on phase deposited. The characteristic bands seen in Raman spectra, shown in 

Figure 3.2 support the findings by XRD, with only rutile noted for all 

depositions on steel and titania subtrates. The anatase phase is observed at 

400°C, anatase-rutile mixtures at 500°C and purely rutile formation at 550°C 

on glass; the Raman spectra were identical to those in the literature for the 

respective polymorphs of titania.
10

 The TiO2 anatase peaks were observed at 

143, 396, 516 and 639 cm
-1

 and the rutile TiO2 peaks at 144, 232, 447 and 609 

cm
-1

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1(a). XRD pattern of as deposited TiO2 film from the AACVD 

reaction of TTIP in methanol on glass substrate at 500°C, showing the peaks 

that correspond to anatase (x) and rutile (o). 

 

 

 

 

 



79 
 

 

 

 

 

 

 

 

 

 

Figure 3.1(b). XRD pattern of as deposited TiO2 film on titanium substrate 

from the AACVD reaction of TTIP at 500°C in methanol solvent, showing the 

peaks that correspond to anatase (x) and rutile (o). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1(c). XRD pattern of as deposited TiO2 Film on steel substrate from 

the AACVD reaction of TTIP at 500°C in methanol solvent, showing the 

peaks that correspond to anatase (x) and rutile (o). 
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Figure 3.2. Raman spectrum of as deposited TiO2 film from the AACVD 

reaction of TTIP in methanol solvent on glass, steel and titanium substrates at 

different temperature as stated on the figures; (x) is anatase and (0) is rutile. 

 

3.5.2.Variation of thickness  

A gross variation in the film thickness was achieved by simply varying the 

deposition time, deposition rates were fairly uniform at around 5 nm min
-1

 for 

the central portion of the film. 

Growth Rate = Film thickness nm/deposition time minutes 

Growth rate = 300 nm/60 minutes = 5 nm/min
-1

 

The Raman spectra of the films produced at 15, 30, 45 and 75 minutes on glass 

at 550°C is shown in Figure 3.3. Spectra were recorded at different portions of 

the film and they were all found to be identical confirming the uniformity of 
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the deposition achieved through this AACVD method.  Surprisingly it was 

observed that the phase changes during deposition with deposition time. For 

films prepared at 500°C it was observed that at 15 minutes, exclusively the 

anatase phase was formed.  A rutile component was only observed after 45 

minutes deposition time, this then became the exclusive form deposited after 

75 minutes of deposition. To our knowledge this is the first report of phase 

control simply by varying the deposition time. Anatase is laid down first as the 

primary phase, however after a longer deposition time rutile becomes the 

dominant phase and overlaps the anatase layer.  This correlates in part with 

rutile being the more thermodynamically favoured phase. It should be noted 

that the heated block was at the correct elevated temperature during all the 

depositions.  

 

Figure 3.3. Raman pattern of as deposited TiO2 Films formed by AACVD 

reaction of TTIP in methanol at 550°C on glass substrate, at different 

deposition time; (x) is anatase and (0) is rutile. 
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3.5.3. Film Morphology and Properties 

The SEM of the films produced on glass, steel and titanium by AACVD of 

TTIP are shown in figure 3.4. It was observed that the morphology of the films 

was radically different from what is expected when using AACVD where 

spherical particles are common because the reaction often involves a 

significant gas phase reaction within the aerosol droplet.
12 

In these 

experiments the particle shapes suggest that the reaction must be taking place 

at the surface.  Cross sectional SEM images showed that the surface consisted 

of angular projections.  The depositions on glass showed a largely amorphous 

film formed at 400°C and that angular crystallites with well defined shapes 

formed at 500°C and above with the crystallites becoming larger with 

deposition temperature. The morphology of the films on the metal substrates 

showed defined block and angular shaped crystallites at 400°C- 500°C. At a 

deposition temperature of 550°C needle like particles are observed. The shapes 

of the thin films on the steel are very usual and might be due to the 

morphology of the substrate interacting with the TiO2 deposited. 
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(a)                                                         (b)                                                               (c)                                                       

(d)                                                                   (e)                                                                      (f)                        

 

(g)                                                                                 (h)                                                 (i)                                                        

 

 

 

 

Figure 3.4. Top down SEM of TiO2 Film as deposited by AACVD reaction of 

TTIP in methanol solvent on (a) glass at 400°C, (b) glass at 500°C, (c) glass 

at 550°C, (d) titanium at 400°C, (e) titanium at 500°C, (f) titanium at 550°C, 

(g) steel at 400°C, (h) steel at 500°C, and (i) steel at 550°C. 

 

3.5.4. Photo-activity of the titanium dioxide films 

 

An intelligent ink Resazurin (Rz) was used to monitor the photoactivity of the 

titania films formed on glass at 400 and 500°C by AACVD of TTIP in 

methanol.  The photocatalytic reduction was monitored via digital 

photographic methods with the films changing colour from blue to pink to 
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colourless which follows the complete reduction of the dye induced by the 

titania photocatalysis. Notably a blank glass slide sprayed with the intelligent 

ink showed no changes in colour for the duration of the experiment. It took 45 

minutes for the films produced at 400°C on glass to completely photodegrade 

the reazurin dye whilst is took 35 minutes for the films deposited at 500°C to 

turn colourless. Figure 3.5(a) and 3.5(b) shows the images at recorded 0, 1, 10 

and 35 minutes for both films. From the images it can be seen that the rate of 

photocatalysis scales with film thickness, as the thicker central portion 

changes colour most rapidly and the thinner edge portions change more 

slowly. This shows that the thickness of the films has an effect in increasing 

the photocatalysis of the films as it provides a higher surface area for the 

reaction. 

 

Figure 3.5(a). Photographs of the changes in colour of resazurin intelligent 

ink sprayed onto a film of anatase/rutile (45 x 90 mm) formed at 400°C by 

AACVD on glass. The intelligent ink changes from blue      pink        colourless 

under irradiation with 365 nm light for 0, 1, 10, and 35 minutes 

 

 

 

 

0 Minute  
1 Minute  

10 Minutes 35 Minutes  
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Figure 3.5(b) . Photographs of the changes in colour of resazurin intelligent 

ink sprayed onto a film of anatase/rutile (45x90 mm) formed at 500°C by 

AACVD on glass. The intelligent ink changes from blue       pink       colourless 

under irradiation with 365 nm light for 0, 1, 10, and 35 minutes. 

 

3.5.5. Water droplets contact angles 

Table 3.2 shows the water contact angles measured for the titanium dioxide 

films that were deposited on three different substrates- glass, steel and 

titanium metal. Titanium dioxide has been widely reported to be hydrophilic 

and frequently shows photoinduced superhydrophilicity,
5 

especially when 

irradiated with ultraviolet light.
13

 This process is due to both the removal of 

surface contamination due to photocatalysis and the formation of surface 

hydroxyl groups. The films produced at 400 and 500°C on all substrates were 

slightly hydrophilic as they have a water contact angle less than 90
o
. The 

unusual films are those produced at 550°C, on both steel and titanium which 

have water contact angles well above 90
o
 which reflects the hydrophobic 

character. Figure 3.6 shows the side on SEM images of the films formed on 

steel and glass at 550°C. It can be seen from the SEM measurements that the 

surfaces are highly rough with projections that stick up from the substrate. 
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Table 3.2 water contact angles of as deposited TiO2 thin films on steel, 

titanium and glass substrates before and after irradiation with 254 nm light 

for 30 minutes. 

 

Substrate 

Contact 

angle before 

irradiation 

(
o
) 

Contact 

angle After 

irradiation 

(
o
) 

Contact angle 

3 days after 

irradiation (
o
) 

Contact angle 

After heating at 

100°C for 60 

minutes (
o
) 

Steel 400°C 71 7 20 
62 

Steel 500°C 60 30 60 
76 

Steel 550°C 109 5 40 
80 

Titanium  400°C 61 20 41 
61 

Titanium  500°C 59 23 50 
67 

Titanium  550°C 110 4 36 
78 

Glass 400°C 97 6 40 
57 

Glass 500°C 80 2 35 
54 

Glass 550°C 101 4 36 
65 

 

 

 

(a)                                                                                                         (b) 

 
 

 

Figure 3.6. Side on SEM pattern of TiO2 Films as deposited by AACVD 

reaction of TTIP in methanol on (a) titanium and (b) steel substrates at 550°C. 
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3.5.6. Wenzel or Cassie-Baxter surface 

There are two explanations of how a surface can interact with water, the 

Wenzel and Cassie-Baxter models.
14,15

Both models use the contact angle 

between the droplet of water and the surface as a measurement of the 

hydophobicity of the film. In the Cassie Baxter model the water does not 

completely penetrate the surface porosity, has air trapped under the droplet 

and the surface is typically slippery for water droplets.  In the Wenzel model 

the water droplet fully penetrates the surface porosity.  In both models surface 

roughness encourages extreme behaviour- with rough surfaces magnifying the 

underlying hydrophilicity or hydrophobicity.  In the case of the films formed 

at 550°C the Cassie-Baxter model is the probable reason why the surface is 

hydrophobic as the roughness of the films at this temperature is high and this 

causes air to be trapped under the water droplet which in turn causes the 

surface to be slippery and increases the contact angles.
16

 After irradiation with 

UV light of 254 nm for 2 hours the water contact angles of the films formed at 

550°C on titanium and steel is typically 5° - superhydrophillic. In this case on 

irradiation the surface becomes hydroxylated and the water droplets fully wet 

the surface and the surface becomes water loving. This change over in 

behaviour has been studied previously and related to structural changes on the 

surface. The surface Ti
4+

 sites are reduced to Ti
3+

 states by the photogenerated 

electrons and oxygen vacancies generated. Repeated dissociation of the water 

adsorbed on the vacancy sites produced hydroxyl groups. 

The films formed at 550°C that were rendered superhydrophillic were left in 

the dark for two days and the measured water contact angle significantly 
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increased back to the hydrophobic state.  This is due to water drying out and 

the hydroxylated surface is removed. The same samples were also heated at 

100°C for an hour and this was also noted to increases the water contact angle. 

The increase in water contact angle after heating is due to the removal of some 

surface hydroxyl groups on the titania surface. 

This switch from hydrophobic to superhydrophillic is an uncommon 

phenomenon. Parkin’s group have made a wide series of titania films 

previously by a variety of methods and have not observed this phenomena, the 

starting water contact angles were never higher than 90° reported in previous 

studies.
10-16

 We attribute this effect to the formation of the highly rough 

surface, consisting of both needles and projections on the surface formed from 

the AACVD method – as well as a probable lack of surface hydroxyl group.  

 

3.5.7. Water splitting 

Thin films of titania deposited using AACVD onto steel and titanium 

substrates were tested for their ability to photosplit water in a sacrificial 

system. The films were coated on the reverse with platinum. The ability of 

TiO2 to photocatalyse the oxidation of water to O2 by persulfate was 

determined using UV-light. Previous studies have shown that titanium dioxide 

films can be used to generate oxygen without the need of an additional oxygen 

catalyst because titania has enough overpotential to produce an effective 

reaction.
17,18 

Table 3.3 shows the rate at which oxygen is produced. From the 

values shown in Table 3 we see that all the films are photocatalytically active 

to a great extent with oxygen values as high as 2.02 x 10
-4

 mol min-1m-2 for 

titania deposited steel and 8.09 x 10
-4

 mol min-1m-2 on titanium.
19

 These values 
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are amongst the highest ever reported and surprisingly are from the rutile 

polymorphs. Parkin et al.
19

 previously reported values between 1.8 – 9.6 mol 

min-1m-2 for films deposited by APCVD (rutile) and Kitano et al.
23 

reported a 

maximum rate of 0.2 molg
-1

s
- 1 

deposited by RF sputtering using a 0.05m 

AgNO3 sacrificial solution. These rates are close to the rates observed in the 

films deposited in this thesis. 

Anatase has been reported to be more active for the photoreduction of O2 

making it more photoactive in the decomposition of harmful organic 

materials.
20,21

 This can be used to explain the higher rate of oxygen evacuation 

using the rutile phase as the rutile phase is less active in the photoreduction of 

O2.
22

  Has discussed in chapter 1 the reduction of O2 is unwanted in the 

backward reaction that can happen during photo water-splitting reactions. 

 

Table 3.3, the rate of oxygen generated using as deposited TiO2 on steel and 

titanium in mol min
-1

m
-2

 

Steel 400°C 9.48E-05 Titanium  400°C 6.91E-04 

Steel 500°C 2.02E-04 Titanium  500°C 6.81E-04 

Steel 550°C 1.32E-04 Titanium  550°C 8.09E-04 

 

 

3.5.8. Anatase vs Rutile cross-over 

 

This work shows that the substrate used in the aerosol assisted chemical 

vapour deposition has an important role in determining the phase of TiO2 

deposited. On steel substrates at 550°C in the absence of a solvent, TTIP was 
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shown to form exclusively anatase with the APCVD method. However 

addition of methanol as a carrier solvent in an AACVD setup allowed only the 

rutile phase to be formed. It is possible that the use of methanol aerosol causes 

distinct changes in the precursor, especially during transport into the heated 

reactor. It would be expected that an alcohol exchange would occur where the 

methoxide group is coordinated to the metal and 
i
PrOH is eliminated. This will 

be explored in chapter 7.  

Furthermore the deposition time could also have a major effect. Thin films 

grown by AACVD have typical growth rates of 100-200 nm min
-1

, whereas 

the aerosol process is comparatively slow with growth rates of 5 nm min
-1

. 

The faster growth rate forms exclusively anatase whilst the slower growth 

forms only rutile. The observation correlates with the work of Hitchman who 

found rutile was favoured by slower growth rates.
8 

3.6. Conclusion 
The effect of temperature and substrate on the morphology, phases and 

properties of TiO2 thin films formed from TTIP by AACVD was investigated. 

The substrate had a key role in determining the phase produced in the reaction 

with metal surfaces producing exclusively rutile whilst glass formed anatase, 

anatase/rutile mixtures or pure rutile depending on both the susbtrate 

temperature and the deposition times with the more thermodynamically 

favoured rutile formed at the longest deposition times and highest 

temperatures. There was also a great variety in the morphology of the films 

formed at different temperatures and substrate types.  Unusually the very 

rough microstructure engendered hydrophobic titania surfaces.  This work is 

one of the first examples of using an aerosol to deliver a CVD precursor that is 
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routinely used at low pressure or atmospheric pressure.  It shows that the 

aerosol has a key role to play in dictating the morphology of the film grown on 

the surface and that it acts not just as a transport reagent.  For example use of 

TTIP as an APCVD precursor produced exclusively anatase on steel substrates 

whilst use of the methanol aerosol formed exclusively rutile. It is also reported 

in this work that the films formed are amongst the best reported for the 

photosplitting of water and were active photocatalysts. 
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Chapter 4 
Solvent effect on the phase and morphology of as deposited 

TiO2 thin films 

 

4.1 Chapter overview 
 

This chapter details the effect of using different carrier solvents on the aerosol 

assisted chemical vapour deposition of titanium dioxide and shows a solvent 

directing effect in controlling the phase of titanium dioxide deposited on a 

surface. Titanium tetra-isopropoxide (TTIP) is used as the precursor; 

methanol, ethanol, isopropanol, dichloromethane and hexane were all studied 

as  carrier solvents for titania deposition on glass and steel plates. The effect of 

methanol as a carrier solvent is reported and with as little as 10% of methanol 

to 90% ethanol favouring the deposition of the rutile phase. The effect of 

surface morphology on the water contact angles of the as deposited films is 

also reported. 

 

4.2 Introduction 
A detailed introduction to titanium dioxides,  properties and functions is given 

in chapter 1. One factor that makes this material so important is its ability to 

act as a photocatalyst. The anatase form has a band gap energy (Eg) of 3.2 eV 

and irradiation with UV radiation causes promotion of an electron from the 

valence band to the conduction band. 
1,2

 These reactive species then participate 

in oxidation and reduction processes either within the TiO2 itself (electron and 

hole recombination), or with adsorbates at the surface. The major reactive 
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intermediate species in this reaction is the hydroxyl radical, produced by redox 

reactions between photo-excited TiO2 and adsorbed water molecules.
3
 
4,5

 

The structural properties and the phase of the titania films (anatase or rutile or 

a mix) plays a key role in the applications of the films. TiO2 nanoparticles 

have been commercialised (Dugussa P25) with a mixture of anatase 80% and 

rutile 20%; this mixture is a better photocatalyst than the individual phases.
6
 

The method of synthesis also provides control on the morphology of the films 

produced. Sol-gel methods have been used to synthesise TiO2 micro and 

nonporous thin films that can be used for catalyst support and photo-

catalysis.
7,8

 Atmospheric pressure chemical vapour deposition has also been 

used to synthesise titania films with granular structures that can be used for 

self-cleaning applications.
9
 The aerosol assisted chemical vapour deposition 

(AACVD) method is a technique commonly used for precursors that have very 

low vapour pressure but that can be dissolved in a carrier solvent.  With 

AACVD the volatility requirement of the precursor is less important as the 

solvent acts as the carrier medium. 
10

 

In aerosol deposition, the solvents play a role in the reaction to the extent that 

the precursor can react differently with various solvent in the gas phase which 

may lead to the formation of different intermediates and lead to a different 

phase of TiO2. There have been a few reports where a variety of solvents have 

been used to synthesise TiO2 using a sol-gel approach and spray pyrolysis.
7
All 

the reports shows that exclusively anatase was formed using ethanol, 

isopropanol, and toluene and also using supercritical CO2 solvent.
8
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This chapter shows that the use of different solvents in an aerosol can have a 

direct effect in controlling the phase of titanium dioxide deposited on a 

surface.  

 

4.3 Experimental 
Thin films of TiO2 were deposited using aerosol assisted chemical vapour 

deposition (AACVD) on stainless steel substrates (Goodmans, grade 316, 

dimension 25 x 25 mm and 0.1 mm thickness). Titanum (IV) isopropoxide 

(TTIP) (97% Aldrich) and methanol (Fisher, reagent grade) were used without 

any purification. Deposition was carried out on a cold-wall horizontal-bed 

CVD reactor that was described in chapter 3, and which contains a graphite 

block heated by a Whatman cartridge heater. TTIP was used as a single source 

precursor (0.60 ml) and added to methanol (50 ml) and an aerosol was 

generated at room temperature using a Pifco ultrasonic humidifier. The aerosol 

was carried into the reactor with carrier gas flow of oxygen free nitrogen gas 

at 1 Lmin-1 (BOC). The gas flow was continued until the entire precursor was 

used up. Films were then cooled and stored in air. 

A series of depositions on steel substrates was carried out at a substrate 

temperature of 550°C using methanol, ethanol, isopropanol, dichloromethane, 

and hexane solvents. All depositions were subject to the same conditions as 

stated for methanol.  

TiO2 was deposited using TTIP in a mixture of ethanol and methanol as a 

solvent. Ethanol and methanol mixture, 99% and 1%, 90% and 10%, 85% and 

15%, 75% and 25%, 50% and 50% respectively.  
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4.4 Characterisation 
Thin film X-ray diffraction (XRD) measurements were carried out using a 

Bruker D8 Discover fitted with General Area Detector Diffraction System 

(GADDS) area detector and Cu K1+2 source. Diffraction patterns were 

recorded and collected for 30 minutes per sample, using a fixed incident angle 

of 5
o
. Scanning electron microscopic (SEM) measurement was carried out on 

the films to determine surface morphology using a JEOL JSM-6301F field 

emission SEM at an accelerating voltage of 5 KeV. Raman spectra were 

obtained with a Renishaw Invia Raman Microscope with a wavelength of 

515.5 nm and 50x microscope objective. 

The FTA 1000 instrument was used to determine the water contact angles of 

the deposited films. This instrument uses “drop-shape” analysis to make 

measurements. It captures video images of liquid droplets (water) on the 

surface to analyse their shape and size to determine the contact angle. 

Preliminary NMR was recorded to monitor the exchange reaction between the 

isopropoxide group on the TTIP and the methoxyl group on the solvents.  

The photocatalytic degradation of methylene blue (MB) was analysed by UV–

visible spectroscopy over the 400–800 nm range on a PerkinElmer Lambda 25 

UV/VIS spectrometer. The as deposited film was centred at designated 

positions and were affixed to a 281a plastic cuvette transparent on three sides 

and holed on the fourth. The hole, centred on the test position, was 25 mm 

high and 8 mm wide; exposing a 2 cm area to the MB solution. An aluminium 

frame was used to hold the sample and the cuvette together with a silicon seal 

providing a water tight boundary. The solution was stirred to ensure a uniform 

diffusion of the system. This ensured that MB solution was in contact with the 
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photocatalyst TiO2 surface. The concentration of MB solution was made up 

such that the maximum absorbance (≈ 650 nm) was approximately 1 

absorption unit. The solution was left to equilibrate for an hour in day light 

before testing. The solution was subsequently irradiated with a 365 nm lamp. 

The destruction of MB was then followed as a function of time by the change 

in height of this absorbance maximum in 30 min intervals for a total of 6 hours 

and then left for 12 hours. This test was carried out on all the films produced 

with the different carrier solvents. This reaction was carried out on the TiO2 

films produced using methanol and ethanol as carrier solvents. 

 

4.5 Results and discussion 

4.5.1 Deposition of titanium dioxide  

Titanium dioxide was deposited on steel substrate by AACVD using titanium 

(IV) isopropoxide TTIP in methanol, ethanol, isopropanol, chloromethane and 

hexane solvents at 550°C. The films were adhesive, passing the Scotch tape 

test.  In addition they resisted scratching with a 2H pencil and did not dissolve 

in common solvents and in 2M (HCl) solution.  The films on glass were 

transparent (>75% transmission over the visible region) but they did show a 

slight white haze when viewed off angle (ca 5% haze measurement dependent 

on specific film).  The thicknesses of the as deposited thin films were fairly 

uniform ca 250 nm to 300 nm across the majority of the films with the thickest 

portions formed at the centre of the substrate as judged by side on SEM. The 

average growth rates for the films were typical of AACVD at these precursor 

concentrations at 5–10 nm/min
-1

. The growth rate was between this 5-10 

nm/min
-1

 for all the solvents used.  
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It has been previously reported that rutile is favoured by slower growth rates 

and using methanol as the carrier solvents favours rutile.
22 

The phase directing 

effect of methanol to form rutile is probably due to the lack of a beta-hydrogen 

centre on the methanol, because at least two hydrogen is needed for beta-

hydride elimination reaction. Using ethoxide or propoxide as the carrier 

solvent allows for a beta-hydride elimination decomposition pathway. This is 

able to explain why methanol favours the rutile phase as methoxide probably 

causes a lower growth rate compare to the other solvent with more than one 

carbon. Methyl group is usually used to avoid beta-hydride elimination 

processes.
 23

 

4.5.2 Film characterisation and analysis of films deposited using 

Ethanol, Methanol, Isopropanol, Hexane and chloromethane. 

The X-ray diffraction patterns of the films grown using methanol as a solvent, 

showed reflections exclusively related to the rutile phase when deposited on 

the steel substrates (figure 4.1). The peaks in X-ray diffraction corresponds to 

the 1 1 0, 1 0 1 and 2 1 1 reflections. From reference sources we expect the 1 1 

0 peak to be the most intense but we observe some preferred orientation for 

the <1 0 1>and <2 1 1> peaks. 
17

 Figure 4.3 shows the XRD patterns of the 

TiO2 films produced using ethanol as the solvent which indicates the presence 

of the pure anatase phase. The XRD patterns of films produced on steel 

substrates using non alcohol solvents; in particular, dichloromethane and 

hexane also shows exclusively the anatase phase.  
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Figure 4.1.  XRD pattern of as deposited TiO2 Film on steel substrate at 

550°C, TTIP with methanol carrier solvent, showing the peaks that 

correspond to anatase A and rutile R. 
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Figure 4.2.  XRD pattern of as deposited TiO2 Film on steel substrate at 

550°C, ethanol carrier solvent, showing the peaks that correspond to anatase 

A and rutile R. 

 

 



100 
 

The Raman spectra for the TiO2 films as deposited on steel using methanol as 

carrier solvent shows peaks at 144, 232, 447 and 609 cm
-1

 which clearly 

indicates the presence of the rutile phase and this result is consistent with those 

reported in the literature 
14

 (see figure 4.2). These results are consistent with 

the findings of the XRD analysis. The Raman spectra of TiO2 deposited on 

steel at the same temperature using all the other solvents apart from methanol 

show that only the anatase form is present with peaks at 143, 396, 516 and 639 

cm
-1

, figures 4.3 and 4.4.    
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Figure 4.3. Raman pattern of as deposited TiO2 film by AACVD on steel using 

TTIP in  different solvents (methanol, ethanol and isopropanol) as stated on 

the figure; anatase A and rutile R. 

 

 

Figure 4.4. Raman pattern of as deposited TiO2 film by AACVD on steel using 

TTIP in  different non alcohol solvents ( hexane and dicloromethane)as stated 

on the figure;  anatase A and rutile R. 
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Methanol solvent was shown to be unique from this work. It has been reported 

previously to undergo a breakdown mechanism and can act as a reducing or an 

oxidising agent. Jackson et al reported that methanol dissociates at elevated 

temperatures in the presence of a transition metal catalysts to form carbon 

dioxide and hydrogen.
18

 

 

4.5.3 Film characterisation and analysis of films deposited using a 

mixture of ethanol and methanol 

TiO2 films deposited from a mixture of ethanol and methanol aerosol droplets 

showed interesting results. The XRD pattern of films formed from TTIP with 

50:50 and 10:90 ratios of methanol and ethanol respectively are shown in 

figure 4.4 and 4.6. We observe that the use of an equal mixture of solvents in 

depositing TiO2 shows that rutile is the major phase with a preferred 

orientation of the <1 0 1> and <2 1 1> reflections and the one deposited with 

10% of methanol shows little anatase but majorly the rutile phase. A 

systematic study with various ethanol: methanol ratio was carried out and each 

film was mapped using Raman spectroscopy. It is interesting to note that the 

films produced with 50:50 and 75:25 mixtures respectively showed the 

presence of only the rutile phase.  When the concentration of methanol was 

further reduced to 90:10 a mixture of rutile and anatase phase were detected 

and only when the solvent ratio of 99:1 was used did we see exclusively the 

anatase phase.  The intense background in the pattern is due to the steel 

substrate. The XRD pattern of the steel is shown in figure 4.8. The XRD 

pattern also appears noisy and this is because the films are quite thin and the 

resulting spectrum is not very clear. A typical map of the Raman spectra is 

shown in figures 4.8. It appears from our results that methanol solvent acts as 
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a directing agent forcing TiO2 to form rutile phase, which, to our knowledge, 

has never been reported previously.  Thus it appears from this investigation 

that a mixture of two phases or their pure forms, with a certain degree of 

control over the ratio of two phases can be achieved by controlling the solvent 

mixture ratio, which could be beneficial for the manufacture of specific 

titanium dioxide films. 
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Figure 4.5.  XRD pattern of as deposited TiO2 Film on steel substrate at 550 ° 

C, TTIP in methanol and ethanol carrier solvent 50:50 ratio, showing the 

peaks that correspond to anatase A and rutile R. 
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 Figure 4.6.  XRD pattern of as deposited TiO2 film on steel substrate at 

550°C, TTIP in methanol and ethanol carrier solvent 10:90 ratio, showing the 

peaks that correspond to anatase A and rutile R. 

 

Figure 4.7.  Raman pattern of as deposited TiO2 on steel substrates showing a 

map across the film deposited. Carrier solvent ratio 10:90 methanol and 

ethanol with TTIP. 
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Figure 4.8.  XRD pattern of the steel substrate 

 

 

4.5.4 Preferred orientation  

From the XRD data obtained from the as deposited TiO2 on glass (figures 4.9 

and 4.10) on steel substrates at 550
o
C we observed that there are different 

orientations with respect to the substrate. TiO2 deposited on glass has a 

preferred orientation of 1 1 0 for rutile and 1 0 1 for anatase. This is very 

interesting because not only can the substrate and the solvent have a combined 

and an individual effect on the phase deposited whether anatase or rutile. It 

can also determine the preferred orientation of the deposited film. 
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Figure 4.9.  XRD pattern of as deposited TiO2 film on glass substrate at 

550°C, TTIP in methanol carrier solvent, showing the peaks that correspond 

to anatase A and rutile R. 
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Figure 4.10 .  XRD pattern of as deposited TiO2 film on glass substrate at 

550°C, TTIP in ethanol carrier solvent, showing the peaks that correspond to 

anatase A and rutile R. 
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4.5.5 SEM analysis and Contact angles 

The SEM images of the as deposited TiO2 thin films are shown in figure 4.11. 

Block like particles shapes are formed when methanol and ethanol mixtures 

are used as carrier solvent whilst the films produced using methanol shows 

needle like particles as seen in SEM of TiO2 deposited on steel substrates. The 

water contact angles of all the films shown in Table 1 are all around or above 

100
o
. This indicates that the hydrophobic nature of the films which is due to 

the roughness of this structure which enables air to be trapped between the 

particles and stops water from fully wetting the surface, a typical Cassie-

Baxter phenomenon associated with hydrophobic character. 
16,19

.  
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(a)                                                                            (b)                                                           

         (c)                                                                                   (d) 

 

Figure 4.11. Top down SEM of TiO2 film as deposited on steel by AACVD 

using different mixture of carrier solvents, (a) ethanol 100%, (b) methanol 

100%, (c) 10% methanol and 90% ethanol,  (d) 25% methanol and 75% 

ethanol. 
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When pre-irradiated with 365 nm light the measured water contact angles is 

less than 5
o
 and becomes super-hydrophillic this is because the surface 

becomes hydroxylated and wetting becomes easier.
15

 Films that were left after 

pre-irradiation, in the dark for three days had measured water contact angles of 

60
o 

suggesting the reversibility of hydrophobic character of the films. These 

films could be very useful for self-cleaning applications, since the hydrophilic 

and hydrophobic natures of the TiO2 films can be reversible. The contact 

angles recorded for the TiO2 thin films deposited with a mixture of ethanol and 

methanol solvent have a slightly lower contact angle compared to when 100% 

of both solvents are used. This clearly shows the effect of surface morphology 

on contact angles as the SEM of the mixtures shows block particles which are 

less rough compared to the SEM of the films formed from pure methanol and 

ethanol. The contact angles recorded when mixed carrier solvents are used is 

slightly lower than when pure methanol or pure ethanol is used. For example 

when the solvent ratio is 75:25 ethanol and methanol respectively the water 

contact angle was 99
o
 as shown in Table 1. This correlates with the SEM 

shown in figure 4.12(d) that shows large blocks compared to when pure 

methanol or ethanol is used where we observe needle like particles. This 

clearly shows that the surface roughness has a direct effect on the water 

contact angle recorded. As already described in chapter 3 the TiO2 deposited 

on steel substrate is hydrophobic because it has a Wenze-type surface and the 

Wenzel model states that an increase in surface roughness will magnify the 

water-contact angle properties of a material. A hydrophobic surface will 

increase its water contact angle (above 90
o
) when the surface roughness 
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increases and a hydrophillic surface will reduce its water contact angle (below 

90
o
) when surface roughness increases.

24
 

Table 4.1 Water contact angles of as deposited TiO2 on steel substrates using 

methanol and ethanol as carrier solvents at 550
o
C before and after irradiation 

with 254 nm light for 60 minutes. 

Solvents 

Contact 

angle before 

irradiation 

(
o
) 

Contact 

angle After 

irradiation 

(
o
) 

Contact angle 

3 days after 

irradiation (
o
) 

Ethanol 115 0 50 

Methanol 120 2 65 

50:50 Ethanol and 

methanol 98 5 50 

75:25 Ethanol and 

methanol 99 7 60 

90:10 Ethanol and 

methanol 98 5 40 

 

4.5.6 Photo-activity analysis 

TiO2 is an active photocatalyst and it is able to oxidise dirt and organic 

molecules on its surface when exposed to UV radiation. The films deposited 

with methanol as the carrier solvent exclusively produced the rutile phase 

which has been previously reported to have a lower photocatalytic activity 

than the anatase phase.[15]
 

The TiO2 films deposited with ethanol, 

isopropanol, dichloromethane and hexane all produce only the anatase phase 

of TiO2. The results of the methyl blue test are shown in figures 4.13 (a) and 

(b). From the graphs showing reactivity, we see that the films produced with 

ethanol as the carrier solvent (anatase) are almost six times more active in the 

degradation of the organic dye with a rate of 1.11 x 10
12

 molecules destroyed 

per second compared to 3.28 x 10
11

 molecules destroyed per second with the 

film deposited using methanol (rutile) as shown in figure 4.14. This result 

correlates with previous studies of anatase and rutile photocatalysts, where it 
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has been suggested that rutile is a less active photocatalyst due to its relative 

instability of photo-generated electrons and holes.
15

 

(a)                                                                                        

 

(b) 

 

 

Figure 4.12 (a) and (b). Graph showing the rate of depletion of methylene blue 

(in minutes) reaction on TiO2 deposited on steel deposited using ethanol 

(anatase) and methanol (rutile) respectively. 
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Figure 4.13. Chart of the number of methylene blue molecules destroyed per 

second on TiO2 films deposited using methanol and ethanol.  

 

4.6. Conclusion 
The effect of solvents on the phase of TiO2 produced has been studied using 

AACVD. We have shown here that under identical conditions using methanol 

as the carrier solvent produces exclusively the rutile phase whilst the other 

solvents produce only the anatase phase. More interestingly we have shown 

that a mixture of ethanol and methanol as the carrier solvent produces only the 

rutile phase at a mixture of as low as 90% ethanol and 10% methanol. This 

shows that the methanol has a directing effect to produce the rutile phase. We 

have also shown that the TiO2 films deposited on steel substrates are photo-

catalytically active and the rutile is less photo active than the anatase phase. 

We have also shown that the deposited TiO2 films are hydrophobic in nature 

with water contact angles above 100
0
 but can be rendered hydrophillic after 

irradiation with UV. The contact angles have been shown to be reversible 

when left in the dark. 
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Chapter 5. XANES mapping of TiO2 thin films 
 

5.1. Chapter overview 
 

In this chapter X-ray absorption spectroscopy (XAS) was used to map across 

the surface of as deposited TiO2 thin films deposited by the AACVD of 

titanum (IV) isopropoxide (TTIP) in methanol and ethanol. Deposition was 

carried out on glass and steel substrates at 550°C. The X-ray absorption near 

edge structure (XANES) was used to determine the phase of TiO2 present at 

each point on the substrate using linear combination analysis.  

 

5.2. Introduction 
 

The deposited phase of TiO2 thin films of either anatase or rutile has a great 

effect on its activity making it important to study the growth process of 

TiO2.
1,2

 Anatase and rutile forms of TiO2 are great photocatalysts but a 

mixture of both in 3:1 ratio (P-25 Dugussa) is a much better photocatalyst and 

has been used in several studies.
5, 6

Studying the growth of TiO2 thin films will 

provide evidence in how to vary the ratio of the phase deposited and 

potentially in improving the effectiveness of TiO2 as a photocatalyst.  

Different characterisation methods were used to derive the structure-function 

relationships of graded film compositions
15,17 

including scanning electron 

microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. It has 

been reported in the previous chapter that the phase of titania deposited is 

affected by the carrier solvent employed in the deposition using AACVD.  

Methanol in particular deposits exclusively the rutile phase on steel substrates 



116 
 

and ethanol, isopropanol and hexane produces anatase on steel substrates.
12

 

Although ex-situ characterisation by XRD and Raman spectroscopy revealed 

the formation of a poorly crystalline TiO2 phase, these techniques do not 

provide any evidence of an amorphous titanium dioxide component in the 

films. 

Micro X-ray absorption spectroscopy (µXAS) is an effective characterisation 

technique to look at complex mixtures because unlike XRD it is not restricted 

to compounds with long-range order, so it is able to provide information on 

the local structure in heterogeneous materials either in the crystalline or 

amorphous systems. X-ray absorption spectroscopy at the Ti K-edge of TiO2, 

is well known to be sensitive to the respective phases, although electronic and 

geometric (first neighbour) interactions are important.  Therefore, this 

technique, in particular X-ray absorption near edge structure (XANES) is ideal 

to determine the structure and phase composition of titanium dioxide.
18

 To our 

knowledge this is the first application of micro-XANES to a CVD derived 

film. 

5.3. Experimental 
Thin films of titanium dioxide were deposited  using aerosol assisted chemical 

vapour deposition (AACVD) on glass (SiO2 coated float-glass of dimensions 

45 x 90 mm) and stainless steel substrates (Goodmans, 250 m thickness) of 

dimension 25 x 25 mm. Titanum (IV) isopropoxide (TTIP) (97% Aldrich), 

methanol (Fisher, reagent grade)  and ethanol (AnalaR Normapur) were all 

used without any purification. The deposition was carried out on a cold-wall 

horizontal-bed CVD reactor that contains a graphite block heated by a 

Whatman cartridge heater. The glass substrate was provided by Pilkington- 
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NSG. Deposition of thin films was carried out on the SiO2 barrier layer side of 

the glass to prevent the migration of ions from the glass bulk into the film. The 

steel foil was placed on top of a glass substrate which was placed on top of the 

carbon heater block. A glass top-plate was positioned parallel and above the 

substrate, and the whole set up was contained within a quartz tube. TTIP was 

(0.60 ml) was added to methanol (50 ml) and an aerosol was generated at 

room temperature using a Pifco ultrasonic humidifier. The aerosol was carried 

into the reactor with carrier gas flow of oxygen free nitrogen gas at 1 Lmin
-1

 

(BOC). The gas flow was continued until the entire precursor was used up. 

Films were then cooled and stored in air. The same reaction was repeated with 

ethanol as the carrier solvent. 

5.4. Characterisation of deposited films 
µXAS measurements were carried out on the I18 microfocus spectroscopy 

beam line at Diamond Light Source UK. µXAS (at the Titanium K edge) were 

recorded in fluorescence mode, in the energy range of 4.94 to 5.04 keV  to 

collect the XANES data, employing a beam size of ca 5 microns and each scan 

was collected over a ~ 3 min scan time. Figure 5.2 contains the reactor setup 

highlighting flow direction and the mapping sequence.  

 

The Athena program was used to obtain normalised data and linear 

combination analysis was performed to determine the phase of TiO2 present at 

each point on the substrate using pure anatase and rutile TiO2 as standards.
14

 

 

Thin film X-ray diffraction (XRD) measurements were carried out using a 

Bruker D8 Discover diffractometer fitted with a GADDS area detector and Cu 
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K1+2 source. Diffraction patterns were recorded and collected for 30 minutes 

per sample, using a fixed incident angle of 10
o
 for glass and 5

o
 for steel and 

titanium plates. Scanning electron microscopic (SEM) measurement was 

carried out on the films to determine surface morphology using a JEOL JSM-

6301F field emission SEM at an accelerating voltage of 5 KeV. Raman spectra 

were obtained with a Renishaw Invia Raman Microscope with a wavelength of 

515.5 nm and 50x microscope objective. 

 

5.5. Results and discussion  

5.5.1. Deposition of Titanium dioxide  

Titanium dioxide thin films were deposited on glass and steel substrate by 

AACVD using TTIP in methanol and ethanol solvents at 550°C. The films 

were adhesive and passed the Scotch tape test.  In addition they resisted 

scratching with a 2H pencil and did not dissolve in common solvents and in 

2M (HCl) solution.  The films on glass were transparent but they showed a 

slight white haze when viewed off angle. The film thickness was fairly 

uniform between 250 – 300 nm as determined using side on SEM. A tilted 

SEM is shown in figure 3.6 to illustrate the microstructure.  

 

 

5.5.2. Film characterisation and analysis using µXANES XRD, and 

Raman on glass substrates 

TiO2 K edge X-ray Absorption Near Edge Structure (µXANES) map was 

carried out on thin films deposited on glass and steel plates. The mapping was 

done in an H shape fashion every 2.5 mm to give a good coverage of the films 

deposited (Figure 5.1).  
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Figure 5.1. The H shape mapping sequence of as deposited TiO2 films. The 

arrow         represents the direction of the mapping, µXANES spectra was 

recorded every 2.5 mm spacing along the arrow mark using a 50 micron 

beam. The gas flow direction of the precursor is shown in the setup. 

 

The process to normalise the XANES data has already been discussed in 

Chapter 2. The normalised standard spectrum of pure anatase and rutile phase 

is shown in Figure 5.2. The Ti K-edge XANES spectra of the background was 

subtracted and after normalisation shows that rutile and anatase both have a 

tetragonal structure and in both, the Ti atom is coordinated to six oxygen 

atoms. Figure 5.2 shows that there is the transition from 1s to 3d in the pre-

edge region. Although both rutile and anatase are tetragonal the major 

structural difference between them is due to the way the octahedral are 

deformed and linked together.
8 
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Figure 5.2 normalised XANES standard of anatase powder (Titanium (IV) 

oxide, anatase 99.8% trace metals basis) and rutile powder (Titanium (IV) 

oxide, rutile 5 μm, ≥ 99.9% trace metals basis). 

 

The difference in the pre-edge and the edge of anatase and rutile indicates that 

they both have different long range order.
9
 One of the major differences 

between the anatase and rutile can be seen in the height difference in the 1s-4p 

transition which has been linked to the difference in crystal structures.
10, 21

 

The results of TiO2 deposited on glass substrate at 550
o
C using methanol as 

the carrier solvent are shown in figure 4.9. The XRD shows a mixture of 

anatase and rutile 5.3(a) and 5.3(b). The Raman spectra also show a mixture of 

anatase and rutile. The normalised µXANES map shown in figure 5.3c on a 

3D line graph further shows a mixture of anatase and rutile.  

1s-> 3d  

 
1s-> 4p  

 



121 
 

5.3 (a)                                                                                               5.3(b)  

 

 

5.3(c) 

Figure 5.3. (a) XRD pattern, (b) Raman spectra, (c) µXANES mapping of TiO2 

thin film deposited from the AACVD reaction of TTIP in methanol on glass at 

550
o
C.  
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Figure 5.3d. An example of the LCF of a µXANES spectrum of TiO2 from the 

AACVD reaction of TTIP in methanol coated on Glass at 550
o
C showing best 

fit and individual components and difference. 

 

 

 

 

 

 

 

 

 

Figure 5.3e. Bar chart of the ratio of anatase and rutile using LCF of the 

µXANES map of as-deposited TiO2 thin film deposited from the AACVD 

reaction of TTIP in methanol on glass at 550
o
C.  
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The linear combination fitting (LCF) analysis of the film was performed using 

bulk anatase and rutile sample data as references.  A typical best fit of one of 

the spectra is shown in Figure 5.3(d) and a bar graph over the entire film is 

shown in Figure 4e with an error of +/- 0.01-0.02. This result clearly 

demonstrates that the deposition produced a heterogeneous distribution of 

anatase and rutile phases across the film without any identifiable correlation 

with the gas flow direction. When ethanol was used as a solvent for the 

deposition of TiO2 on glass at 550
o
C, the XRD pattern and Raman spectra 

shows that the anatase phase is the dominating phase as-deposited, these are 

shown in Figure 5.3(a) and 5.3(b); the µXANES data also matches that of 

anatase shown in figure 5.2c. The LCF analysis of the µXANES data of this 

film is shown in Figure 5.4(d) and indicates that about 90 percent of the 

deposited material is the anatase form and a small portion to rutile (~ 10 

percent). Figure 5.4(e) is an example of how the LCF analysis was carried on 

each spot on the substrate. The most striking result is the uniformity of the 

film phase composition with ethanol as the solvent compared to the one 

produced using methanol as the solvent are shown in figure 4. When methanol 

is used as the carrier solvent the deposition favours the rutile phase compared 

to other solvents as already discussed in chapter 4. The methanol solvent has a 

phase directing effect.  
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5.4(a)                                                                                 5.4(b)  

 

5.4(c)                                                                               5.4(d)  

 

Figure 5.4. (a) XRD pattern, (b) Raman spectra, (c) µXANES mapping (d) 

LCF bar chart of TiO2 thin film deposited from the AACVD reaction of TTIP 

in ethanol on glass at 550
o
C.  
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Figure 5.4e. An example of the LCF of a µXANES spectrum of TiO2 from the 

AACVD reaction of TTIP in ethanol coated on Glass at 550
o
C showing best fit 

and individual components and difference. 

5.5.3. Film characterisation and analysis using µXANES, XRD, and 

Raman on steel substrates 

The X-ray diffraction patterns of as-deposited TiO2 thin films using methanol 

as a carrier solvent on steel substrates at 550
o
C showed reflections exclusively 

attributed to the rutile phase as shown in Figure 5.5(a). Figure 5.5(b) shows 

the Raman spectra recorded for the films using methanol as carrier solvent and 

it shows peaks at 144, 232, 447 and 609 cm
-1

 which is consistent with those 

reported in the literature
13

 for rutile. These results are consistent with the XRD 

analysis. The stacked µXANES, shown in Figure 5.5(c) is in agreement with 

the XRD and Raman results. The linear combination fitting (LCF) analysis of 

the µXANES data are shown in Figure 5.5(d), using a bar chart of the ratio of 

anatase and rutile shows the exact ratio of anatase and rutile present in each 

mapped position. It can be observed from this figure that most of the thin film 
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is rutile and there is less than 10% anatase present in each mapped position. 

Thus in contrast to the other characterisation techniques the XAS data 

indicates the presence of anatase and rutile phase across the film. This implies 

that XAS is more sensitive for phase analysis in this system.  

5.5(a)                                                        5.5(b) 

5.5(c)                                                                5.5(d) 

 

Figure 5.5. (a) XRD pattern, (b) Raman spectra, (c) µXANES mapping, (d) 

LCF bar chart of TiO2 thin film deposited from the AACVD reaction of TTIP 

in 100% methanol on steel at 550
o
C.  
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Figure 5.5 e. An example of the LCF of a µXANES spectrum of TiO2 from the 

AACVD reaction of TTIP in methanol coated on steel at 550
o
C showing best 

fit and individual components and difference. 

The X-ray diffraction pattern and Raman spectra of as deposited TiO2 thin 

films using ethanol as a carrier solvent on steel substrates at 550
o
C is shown in 

chapter 4 figure 4.1 and 4.2 respectively and it shows reflections exclusively 

attributed to the anatase phase however the stacked µXANES, shown in Figure 

5.6(a) is in some disagreement with the XRD and Raman results. The linear 

combination fitting (LCF) analysis of the µXANES data shown in Figure 

5.6(b), using a bar chart of the ratio of anatase and rutile shows a mixture of 

anatase and rutile. An example of how the LCF is achieved is shown in figure 

5.6(c). This result was unexpected as several Raman and XRD analysis of 

TiO2 films deposited using ethanol as the carrier solvent is dominated by the 

anatase phase. We attribute this result to an experimental error which might 

have been due to solvent contamination. It was not possible to carry out 

another µXANES map of TiO2 deposited with ethanol carrier solvent on steel 

substrate because of time limitation on the beamline.  



128 
 

5.6(a)                                                         5.6(b) 

 

Figure 5.6. (a) µXANES mapping, (b) LCF bar chart of TiO2 thin film 

deposited from the AACVD reaction of TTIP in 100% ethanol on steel at 

550
o
C.  

 

Figure 5.7. An example of the LCF of a µXANES spectrum of TiO2 from the 

AACVD reaction of TTIP in ethanol coated on steel at 550
o
C showing best fit 

and individual components and difference. 
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The solvent effect on the phase of TiO2 deposited is reported in chapter 4. 

When methanol is used as a solvent the reaction favours the deposition of 

rutile compared to other solvents such as ethanol, chloroform and hexane. 

Figures 5.8 and 5.9 show results from mixtures of methanol and ethanol. It 

was found that as little as 10% of methanol in a solution of ethanol with TTIP 

results in more rutile than anatase  as shown in Figure 5.9. Figure 5.8 shows 

the XRD, Raman and µXANES map of a TiO2 film deposited with 15% 

methanol and demonstrates that the introduction of methanol clearly favours 

the deposition of rutile. Using µXANES it has been clearly shown that the 

deposition of rutile or anatase is independent of the position mapped on the 

substrate as shown with the glass substrate and that the phase distribution is 

random.  

5.8 (a)                                                                                  5.8(b) 
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5.8 (c)                                                                                  5.8(d) 

 

Figure 5.8. (a) XRD pattern, (b) Raman spectra, (c) µXANES mapping, (d) 

LCF bar chart of TiO2 thin film deposited from the AACVD reaction of TTIP 

in 15% methanol and 85% ethanol on steel at 550
o
C.  

 

 

5.9 (a)                                                                                  5.9(b)  

 

Figure 5.9. (a) µXANES mapping, (b) LCF bar chart of TiO2 thin film 

deposited from the AACVD reaction of TTIP in 10% methanol and 90% 

ethanol on steel at 550
o
C.  
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5.6. Conclusion 
This chapter shows that µXANES characterisation technique has been 

effectively used to map as deposited TiO2 thin films on glass and steel 

substrates. This chapter shows that the analysis of µXANES data gives clear 

picture of the percentage ratio of anatase and rutile phase present in the as 

deposited TiO2 thin films. It was not possible to correlate the compositional 

change with gas flow direction as the map shows random deposition of the 

anatase and rutile phase as particularly on the glass substrates.  However, the 

mapping of the film using Ti K-edge XANES clearly allows us to determine 

the amount of both phases present at various points of the film, irrespective of 

the crystalline nature of the system.   

To our knowledge this is the first application of XANES mapping on CVD 

derived films and shows the utility of this technique.  
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Chapter 6 
 

Aerosol assisted chemical vapour deposition of tungsten oxide 

thin films  
 

6.1. Chapter overview 
 

This chapter reports on the deposition of tungsten oxide thin films using 

aerosol assisted chemical vapour deposition (AACVD) on stainless steel and 

glass substrates using tungsten hexacarbonyl [W(CO)6] in methanol and 

ethanol solvents. The deposition was carried out at substrate temperatures 

between 450 and 550°C. The films were characterised by XRD, Raman 

spectroscopy, XPS and SEM.  

6.2. Introduction 
Tungsten (VI) oxide, WO3, also referred as tungsten trioxide occurs naturally 

in hydrated forms such as WO3.H2O anhydrides. Tungsten oxide displays a 

cubic ReO3 type structure with corner sharing WO6. The formal oxidation 

state of the W in WO3 is +6 and it has a 5d
0
 electronic configuration. Five 

structures of WO3 have been reported at different temperatures: monoclinic 

(II) phase (ε WO3) which is stable at room temperature and between 0 - 230K, 

triclinic (δ-WO3) stable between 230 – 290 K, monoclinic (I) (γ-WO3)  stable 

between 290 – 600 K, orthorhombic (β-WO3)  stable between 600 – 1010 K 

and tetragonal (α-WO3) stable between 1010 – 1170 K. 
1,2

  

Tungsten oxide is well known to lose oxygen at high temperatures in reducing 

environments and therefore can exhibit a wide range of non-stiochiometric 

phases. Removal of the oxygen atoms from the WO3 results in formation of 

lower oxides, so transformation from WO3 to WO2 has a number of 
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intermediates oxides. Partially reduced tungsten oxide is usually written as 

WO3-x where x varies from 0-0.5.
3
 In partially reduced tungsten oxide an 

oxygen vacancy is generated and the W atoms are in the middle of the 

octahedral and it is partially reduced from W
6+

 to W
5+

. The oxygen vacancies 

occur at specific planes within the crystal and a partial collapse of the structure 

removes a layer of vacancies and this stabilises the structure and forms sheer 

planes.  A yellow colour is observed when tungsten oxide (WO3) is fully 

oxidised and a blue colour for partially reduced tungsten oxide (WO3-x). Hence 

tungsten oxide is electrochromic in nature. The change in colour of tungsten 

oxide can be reversible upon irradiation and this has lead to a wide range of 

applications.  

Figure 6.1 The crystal structure of monoclinic WO3, the green balls represent 

tungsten metals and the oxygen atoms are shown in red.
2
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6.3. Properties and applications of tungsten oxide 
Tungsten oxide displays electrochromism, photochromism and 

photocatalysis,
1-4

 these properties has lead to a diverse range of applications in 

various industries. It is used in the glazing industry (in electrochromic 

windows WO3-x) because it is able to control the absorbance of solar radiation 

as a function intensity and so controlling interior lighting and temperature 

levels. It has also found uses in gas-sensing because of its conductivity 

properties. 
21

 

 

6.3.1. Electrochromisim  

Tungsten oxide is electrochromic because it can change colour reversibly 

when it undergoes electrochemical redox reactions. Fully oxidised tungsten 

oxide (WO3) is transparent to visible light while the partially reduced tungsten 

oxide (WO3-x (x = 0.5)) is dark blue in colour. The electrochromic property of 

WO3 was first observed by S.K. Debs in 1969 and at present WO3 remains the 

leading material used in electrochromic devices. The visible change in colour 

in tungsten oxide has been reported to be due to the generation of W
5+

 sites 

during electrochemical reduction. The strong absorption of the dark blue state 

has been reported to be due to intervalence electron transfer between the W
5+

 

and the W
6+

 phases when a visible photon is absorbed. Equation 3.1 describes 

the electrochromic reaction. 

 

WO3 + x M
+
 + x e

-
          MxWO3 (M

+
 = Li

+
, H

+
, Na

+
, K

+
) 
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Tungsten oxide finds use as ‘Smart windows’ because it can allow sunlight 

through glass in cold weather as it works with the transparent WO3 state and 

heats up the room and can change to the blue state in hot weather limiting 

sunlight from coming into a building and keeping the environment inside cool. 

Figure 4 describes the basic content of an electrochromic design. In the case of 

the ‘smart window’ two glass layers are coated with a transparent conductive 

oxide usually fluorine (FTO) or indium (ITO) and sandwiched inside is a layer 

of electrochromic WO3 making it an active electrode.  An electrolyte is placed 

in the middle of the layer usually a solid inorganic ion storage layer. A counter 

electrode that is transparent but not electrochromic is also required and is 

oxidised as the electrode is reduced. When a voltage is applied to the system, 

there is instant movement of cations from the counter electrode to the active 

electrode (WO3) and this induces the colour change at the active electrode to 

blue. When the current is positive cations move from the active electrode back 

to the counter electrode and the active electrode is bleached of the blue colour.  

 

 

Figure 6.2 Basic design of an electrochromic device including a smart 

window. 
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6.3.2. Semiconductor photocatalysis 

 

Self-cleaning glasses have dominated research of semiconductor 

photocatalysis with the commercially available Pilkington Activ™ produced 

by chemical vapour deposition of titanium dioxide thin films on glass (chapter 

1). TiO2 has been extensively studied for its hydrophillic properties, 

photostability and ability to break down organic dirt. TiO2 with a band gap of 

3.2 eV and wavelength λ = 383 nm is considered one of the best photocatalysts 

but tungsten oxide has potential as it has a band gap of 2.7 eV (460 nm). The 

conductance band electrons are capable of reducing oxygen to water (E◦= −0.5 

eV) and its valance valence band holes E° = 3.23 eVA are more oxidizing than 

titanium oxide E° = 3.0 eV . However the conduction band energy in tungsten 

oxide is not high enough to reduce oxygen and therefore it is not able to 

produce oxygen radicals and its ability to break down organic dirt is hence 

reduced. Research has been reported on increasing the solar absorption ability 

of TiO2 by doping the material with a range of materials including zinc oxides, 

tungsten oxide and others. Figure 2.4 in chapter 1 illustrates the stages 

involved in the self-cleaning glasses using TiO2 as a photocatalyst.  After the 

e
-
 and h

+
 are generated at the surface of the semiconductor material, the 

semiconductor can donate an electron to reduce oxygen (electron acceptor) 

and the hole h
+
 can migrate to the surface and combine with an electron 

oxidising the organic pollutant. The rate at which this reaction takes place 

depends on the position of the band edges of the conduction band and valance 

band and the redox potential of the absorbing compound. To increase the rate 

of photocatalysis a metal dopant can be is introduced to inhibit the rate of 
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recombination. Dopants increase the rate of photoactivity by generating 

isolated energy levels within the band gap of the semiconductor and this level 

is able to trap the generated holes and electrons preventing e
-
 and h

+
 

recombination. It has been reported that a combination of TiO2 and WO3 

increases the rate of photocatalysis. 
15

 

 

 

6.3.3. Gas sensors 

Tungsten oxide (WO3) is an n-type semiconductor material and most effective 

at temperatures between 200°C and 500°C because of its high reactivity to 

many gaseous species. WO3 is one of the most studied and used metal-oxide 

gas-detectors used for the detection of NOx, NH3, H2, H2S, O3 and SO2 gases. 

Gas sensors work by absorption and reaction with molecules on the sensor 

surface. Depending on if the semiconductor gas sensor is p or n- type the 

sensor behaviour will be different.
4
 Gas sensing in n-type gas sensors can 

reduce sample gas such as CO or H2, as the gas can react with oxygen-ions at 

the semiconductor surface producing neutral molecules. This causes an 

electron transfer to the sensor material, and then gives rise to a decrease in the 

electrical resistance, and for an oxidizing gas such as NO2, the resistivity 

increases.
6
 

WO3 gas-sensors are very useful for the detection toxic NO and NO2 that can 

cause respiratory problems .
5
  It is able to effective differentiate between H2 

and CO gases from NO and NO2. Gas sensors based on WO3 have already 

been successfully commercialized.
22
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6.4. Synthesis method of tungsten oxide films 
 

Deposition of tungsten oxide has been accomplished through a number of 

physical and chemical techniques, these include sol–gel, spray pyrolysis, 

pulsed laser deposition flash and thermal evaporation, physical vapour 

deposition (PVD) and chemical vapour deposition (CVD). CVD presents the 

best potential for large scale depositions; Chapter 1 introduces the process 

involved in CVD reactions and also outlines the advantages of using CVD.  It 

has been previously reported that the properties of tungsten oxide thin films is 

strongly dependent on the deposition technique used. 

 

Tungsten hexacarbonyl [W(CO)6] has been widely used in the chemical 

vapour deposition of tungsten oxide thin films this is because it can be used as 

a single source precursor. When [W(CO)6] is used as a single source precursor 

in low pressure CVD black tungsten [W18O49] is produced which can then be 

annealed in air at 500
o
C to produced the fully oxidised yellow WO3.

16,17
 

W(CO)6 and oxygen in dual-source atmospheric pressure chemical vapour 

deposition (APCVD) has been reported to deposit thin film fully oxidised 

yellow tungsten oxide (WO3) in high oxygen flow and in low oxygen flow 

rates the partially oxidised blue tungsten oxide (WO3-x) thin films were 

deposited.  

 

Parkin et el reported the effect of solvent on the phase of WO3 deposited using 

WCl6 with ethanoic acid, water, methanol, ethanol on glass using atmospheric 

pressure CVD (APCVD) and have reported that most of the solvents produced 

fully oxidised monoclinic WO3 at 625
o
C except for methanol which deposited 
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crystalline reduced WO3-x films. 
8
 It has also been reported that tungsten oxide 

displays photochromism after irradiation with 254 nm or 365 nm UV light. 

The change in colour has been widely reported to be reversible when left in 

the dark and the films return to their previous yellow state. However the use of 

traditional atmospheric pressure chemical vapour deposition (APCVD) 

requires precursors to be volatile and thermally stable, the substrate needs to 

be heated to bring about a reaction of the precursors and then the reaction is 

carried out under atmospheric pressure. Hence the development of aerosol 

assisted chemical vapour deposition (APCVD) that removes the limitations on 

the volatility requirement allows for more precursors to be used.
7
 Deposition 

of WO3 on metal substrates such as steel has yet to be investigated. 

6.5. Experimental 
 Thin films of tungsten oxide were deposited using aerosol assisted chemical 

vapour deposition (AACVD) on glass substrate (SiO2 coated float-glass of 

dimensions 45 x 90 mm) and stainless steel substrates (Goodmans, 250 mm 

thickness) of dimension 25 x 25 mm. Tungsten hexacarbonyl [W(CO)6] (97% 

Aldrich) and methanol (Fisher, reagent grade) were  used without any 

purification. Deposition was carried out on a cold-wall horizontal-bed CVD 

reactor that contained a graphite block heated by a Whatman cartridge heater. 

The steel foil was placed on top of a glass substrate which in turn was placed 

on top of the carbon heater block and the system was set up within a quartz 

tube. [W(CO)6] was used as a single source precursor (0.37 g, 0.5 mmol) and 

was added to methanol (50 ml) and an aerosol was generated at room 

temperature using a Pifco ultrasonic humidifier. The aerosol was then carried 

into the reactor with carrier gas flow of oxygen free nitrogen gas at 1 L min
-1

 

(BOC). The gas flow was continued until the entire precursor was exhausted. 
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Films were then cooled and stored in air. A series of depositions on glass and 

steel substrates were carried out at substrate temperatures of 450
o
C and 550°C 

using either ethanol or methanol carrier solvent. All depositions were subject 

to the same conditions as stated for methanol. 

 

6.6. Characterisation 
Thin film X-ray diffraction (XRD) measurements were carried out on the 

deposited films using a Bruker D8 Discover fitted with GADDS area detector 

and Cu K1+2 source. Diffraction patterns were recorded and collected for 30 

minutes per sample, with a fixed incident angle of 10
o
 for glass and 5

o
 for steel 

substrates. Scanning electron microscopic (SEM) measurements were carried 

out on the films to determine the surface morphology using a JEOL JSM-

6301F field emission SEM at an accelerating voltage of 5 KeV. Raman spectra 

were obtained with a Renishaw Invia Raman microscope with a wavelength of 

515.5 nm and 50x microscope objective. 

6.7. Results and Discussion 

6.7.1. Synthesis and characterisation of tungsten oxide thin films 

deposited on glass substrates 

Thin films of tungsten oxide were deposited on glass and steel substrates by 

AACVD using [W(CO)6]   in methanol and ethanol solvent at 450 and 550°C. 

The films deposited on glass at both temperatures were blue in colour and 

could not be removed when cleaned with a paper towel.  They could not be 

scratched with a 2H pencil but could be scratched by a stainless steel or 

diamond tipped scalpel.  The films were insoluble to common solvents and 2M 

mineral acid. The blue films deposited indicat that the reduced form, of 

tungsten oxide was formed with an oxidation state of WO3-x ( x = 0.01 - 0.5) 
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and indicates the presence of W
5+

 and or W
4+

centres.
9,10

 The films deposited 

on steel using methanol as the carrier solvent appeared yellow when 

depositions are carried out at 550
0
C and the films deposited using ethanol 

appeared both blue and yellow at 550
o
C. The growth rate of the deposited 

films were actually fairly uniform with growth rate that ranged from  5 nm 

min
-1

 to 10 nm min
-1

 across the majority of the films with the thickest portions 

formed at the centre of the substrate. 

The deposition of tungsten oxide on glass at 550
o
C forms fully oxidised WO3 

compared to the deposition at 450
o
C which showed the deposition of partially 

reduced WO3-x using methanol and ethanol as carrier solvents.  Figure 6.3 

shows the Raman spectra of the films deposited on glass at 550
o
C using 

methanol and ethanol as carrier solvents. The spectra shows sharp bands at 

257, 318, and 708 cm
-1

 which has previously been identified as the γ-WO3 

monoclinic crystalline phase.
11

The band at 257 cm
-1

  has been assigned to W
6+

 

– O –W
6+

 bending modes and the bands at 708 cm
-1

 and 810 cm
-1

 to the W
6+

 O 

stretching modes.
12

 The Raman spectra shows that the yellow WO3 film 

formed at 550
o
C were fully stiochiometric WO3. 

13 
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Figure 6.3. Raman spectra of as deposited WO3 Films by AACVD from 

[W(CO)6] on glass using methanol and ethanol as stated on the figure 

 

XRD patterns were also recorded for tungsten oxide thin films deposited at 

550
o
C on glass. The XRD patterns are shown in figure 6.4 which shows 

reflections corresponding to the (0 2 0), (1 2 0) and (0 4 0) planes for the films 

deposited using ethanol and methanol. The films deposited using methanol 

shows an addition preferred orientation peak at <0 0 2>. Previous studies have 

reported preferred orientations along <0 0 1> and <0 4 0> using APCVD. 
18,19
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Figure 6.4. XRD pattern of as deposited WO3 Films by AACVD from 

[W(CO)6]  on glass using methanol and ethanol as stated on the figure 

 

The scanning electron micrographs (SEM) of the films deposited on glass 

using methanol and ethanol as carrier solvent are shown in figures 6.5a and 

6.5b respectively. The surface morphology of the films shows randomly 

oriented cone looking particles with a broccoli looking top. This morphology 

is very different to previously reported surface morphology of tungsten oxide 

made by APCVD. Agglomerates of spherical particles are normally seen for 

tungsten oxide thin films on glass at 500
o
C but in this report cone shaped 

particles are observed at 550
o
C.

7
 The only difference between the films 

deposited using methanol and ethanol is that bigger particles are observed 

using ethanol solvent. 

 

 

 

 



146 
 

  a                                                                             b 

 

 

 

 

 

 

 

Figure 6.5 SEM of as deposited tungsten oxide thin films from [W(CO)6]  on 

glass using methanol  and ethanol as carrier solvent a and b respectively.  

 

 

6.7.2. Synthesis and characterisation of tungsten oxide thin films 

deposited on steel substrates 

Tungsten oxide deposited on steel using ethanol as the carrier solvent at 550
o
C 

appeared yellow in colour indicating the deposition of fully oxidised WO3. 

Figure 6.6 shows the Raman spectra map of the films deposited, the spectra 

show sharp bands at 273, 715 and 805 cm
-1

 which have been identified as the 

γ-WO3 monoclinic crystalline phase. The band at 273 cm
-1

 has been assigned 

to W
6+

 – O –W
6+

 bending mode and the bands at 715 cm
-1

 and 805 cm
-1

 to the 

W
6+

 - O stretching modes. Unlike the films deposited on glass the films on 

steel show a little bit of the amorphous WO3-x with a broad peak at 208 cm
-1

. 
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Figure 6.6. Raman spectra map of as deposited WO3 films from the AACVD of 

[W(CO)6]  on steel using ethanol as a carrier solvent. 

 

 

The films deposited with methanol as the carrier solvent at 550
o
C appeared 

more dark yellow in colour which also indicates the deposition of fully 

oxidised WO3 compared to deposition at lower temperature which formed the 

blue form at 450
o
C. The Raman spectra show bands at 271, 708, 805 and 879 

cm
-1

. All these bands are present in the films deposited using ethanol with the 

only difference being the 333 cm
-1

 and the very sharp 879 cm
-1

 bands from the 

experiment using methanol. The band at 333 cm
-1

 has been reported to 

correspond to the stretching mode W-O and 879 cm
-1

 the bending mode O-W-

O. These peaks have been previously reported to be due to distorted 

tetrahedral W-O coordination. 
14  
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Figure 6.7. Raman spectra map of as deposited WO3 films from the  AACVD 

of  [W(CO)6]  on steel using methanol as a carrier solvent. 

 

The XRD pattern of tungsten oxide thin films deposited at 550
o
C on steel are 

shown in figure 6.8. It shows reflections corresponding to the (0 2 2), (0 2 0) 

and (2 0 2) planes for the films deposited using ethanol. The films deposited 

using methanol show preferred orientation along <1 2 0> which is not present 

using ethanol.  
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Figure 6.8. XRD pattern map of as deposited WO3 Films by AACVD from 

[W(CO)6]  on steel using methanol and  ethanol. 

 

SEM of the films deposited on steel using methanol and ethanol as carrier 

solvent are shown in figures 6.9(a) and 6.9(b) respectively. The surface 

morphology of the films shows randomly orientations of needle-like particles. 

The particles appeared bigger using ethanol compared to using methanol. The 

difference in the morphology of the as deposited tungsten oxide films on glass 

and on steel is also reflected in the different preferred orientation using each 

substrate as shown in the XRD pattern. To our knowledge this is the first 

report of deposition of tungsten oxide on steel substrates. 
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  a                                                                             b 

Figure 6.9.SEM of the as deposited tungsten oxide thin films from the AACVD 

of [W(CO)6]  on steel using methanol  and ethanol as carrier solvent (a) and 

(b) respectively.  

6.7.3. X-ray photoelectron spectroscopy (XPS) of as deposited films 

The as-deposited films were analysed using X-ray photoelectron spectroscopy 

(XPS). The XPS data were used to determine the amount of carbon 

contamination present in the films and the W 4f spectra was also used to 

deduce the oxidation state of tungsten. The carbon content of the as deposited 

film was less than 1% for all films. The films deposited on glass at 550
o
C 

using methanol as the carrier solvent shows tungsten peaks corresponding to 

the W
6+

 environment, the peaks were at binding energies of 35.9 and 38.2 eV 

and these energies corresponds to the W 4f7/2 and W 4f5/2 photoelectrons
20

 as 

shown in figure 6.10. Binding energies of 35.9 and 38.01 eV are observed 

when ethanol is used as a carrier solvent on glass substrates as shown in figure 

6.11, these energies also correspond to tungsten peaks corresponding to W
6+

 

environment. The XPS of fully oxidised WO3 has been previously reported to 

exhibit a double peak corresponding to W 4f7/2 and W 4f5/2 at binding energies 

of 35.6 and 37.8 eV respectively, whereas the partially reduced WO3-x  has 

been reported to show a double peak corresponding to W 4f7/2 and W 4f5/2 at 

binding energies of 34.4 and 37.2 eV respectively. 
13,23
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Figure 6.10. XPS of as-deposited tungsten oxide thin films from the AACVD of 

[W(CO)6] on glass substrate using methanol as carrier solvent. The 

experimental data is shown in bold and the fitted peaks are represented by 

dotted lines.  

 

Figure 6.11. XPS of as-deposited tungsten oxide thin films from the AACVD of 

[W(CO)6] on glass substrate using ethanol as carrier solvent. The 

experimental data is shown in bold and the fitted peaks are represented by 

dotted lines.  
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The XPS spectra for as-deposited tungsten oxide on steel substrate using 

methanol and ethanol are shown in figures 6.12 and 6.13 respectively. The 

films deposited on steel at 550
o
C using methanol as the carrier solvent shows 

tungsten peaks corresponding to a W
6+

 environment, the peaks were at binding 

energies of 35.5 and 37.7 eV. Using ethanol as a carrier solvent also produces 

peaks corresponding to W
6+

 environment; the peaks were at binding energies 

of 35.5 and 37.6 eV.  

The data collected using XPS does not show any peaks corresponding to the 

WO3-x stoichiometry even though the films deposited on glass was blue in 

colour. This probably because the surface of the film was fully oxides WO3 – 

yet the bulk primarily WO3-x. Furthermore no shoulders on the main peak were 

seen that could be modelled to reduce tungsten (+4/+5). The small difference 

in the values obtained using the steel and glass substrate are probably due to 

errors in the data collection technique and peak fittings. (Data collected with 

the help of Dr Sanjay Sathasivam) 
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Figure 6.12. XPS of as-deposited tungsten oxide thin films from the AACVD of 

[W(CO)6] on steel substrate using methanol as carrier solvent. The 

experimental data is shown in bold and the fitted peaks are represented by 

dotted lines.  

 

Figure 6.13. XPS of as-deposited tungsten oxide thin films from the AACVD of 

[W(CO)6] on steel substrate using ethanol as carrier solvent. The 

experimental data is shown in bold and the fitted peaks are represented by 

dotted lines.  

30 35 40 45 50 

In
te

n
si

ty
 

Binding Energy / eV 

CPS_W4f Scan 

W4f_1_W4f Scan 

W4f_2_W4f Scan 

Background_W4f Scan 

Steel substrate methanol solvent 

30 35 40 45 50 

In
te

n
si

ty
 

Binding Energy / eV 

CPS_W4f Scan 

W4f_1_W4f Scan 

W4f_2_W4f Scan 

Background_W4f Scan 

Steel substrate ethanol solvent 



154 
 

6.8. Conclusion 
Thin films of tungsten oxide were deposited on glass and steel substrates from 

the AACVD deposition of [W(CO)6]. The films deposited on glass at 450
o
C 

were blue in colour showing the presence of WO3-x. The films deposited at 

550
o
C on glass were more yellow in colour but some parts appeared a blue 

colour. The films deposited on steel substrate appeared dark yellow using 

either methanol or ethanol as the carrier solvent. The major difference 

observed using the different substrate either using glass or steel and using 

different solvents methanol or ethanol is in the morphology of the films, 

different morphologies are seen using steel and glass substrates and also when 

methanol or ethanol is used as the carrier solvent.  

This chapter shows that the use of different substrate and solvents as a direct 

effect on the morphology of the films deposited and the preferred orientation 

of the deposited films. 
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Chapter 7  
Insitu studies of titanium dioxide and tungsten oxide thin films 
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7.1. Chapter overview 
 

This chapter focuses on various characterization techniques used to understand 

the formation of titanium dioxide and tungsten oxide thin films deposited on 

glass and steel substrates by AACVD. The characterization techniques used 

includes NMR, IR spectroscopy and µXAFS. The main focus will be the 

µXANES of the as-deposited films. The stages involved in designing a new 

AACVD reactor vessel suitable for in-situ synchrotron studies will also be 

outlined.  

Although ex-situ Raman and XRD studies have revealed structural information 

of titanium dioxide and tungsten oxide films formed as discussed in chapter 3 

and 5 respectively, it was not possible to fully understand the poorly 

crystalline forms and the oxidation state of tungsten oxide in the films. By 

using the XAFS micro beam method, it was possible to map the films and 

determine metal specific information for tungsten oxide and titanium dioxide 

films.  

This chapter also details the challenges involved in carrying out in-situ 

synchrotron studies in an AACVD system.  
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7.2. Introduction 
The previous chapters of this thesis have reported the effect of solvent and 

substrates on the phase of TiO2 deposited by AACVD. The most surprising is 

the phase directing effect when methanol is used as a carrier solvent. This 

effect is not observed when ethanol is used as a carrier solvent. Methanol has 

been previously reported to act differently in a chemical reaction compared to 

when other solvents are used. Yates et al. reported in their study to modify and 

control the surface morphology of doped SnO2 deposited by APCVD that 

when methanol was used as a solvent the surface of the films produced were 

modified. They reported that the surface morphology of the films deposited 

was very rough and had elongated and sharp features compared to when using 

other alcohols were more rounded particles were observed.
1
 This correlates to 

chapter 3 and 4 of this thesis where needle like particles were observed for 

TiO2 films deposited when methanol is used as the carrier solvent. This 

motivated this section of the thesis to further investigate the reaction path of 

methanol in the reaction. 

The phase of the precursor in the gas state and the by-products during 

deposition are useful in understanding the reaction mechanism and can also 

help in altering the reaction and enhance the properties of the films deposited. 

This chapter focuses on investigating the solvent path in the AACVD reaction 

of TTIP in forming TiO2. IR spectroscopy was used to investigate the gases 

coming out of the exhaust during deposition and also the aerosol composition 

just before entering the reactor vessel. IR spectroscopy has been previously 

used to investigate reactions in the gas phase
2
 and CVD reactions

3
. IR is an 

effective way to determine functional groups present during a reaction and this 
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study aims use IR to determine if the solvent composition changes during 

reaction or if the solvent goes through the deposition unchanged.  

Nuclear magnetic resonance (NMR) spectroscopy was used in this study to 

study the reaction of TTIP in methanol solvent and to record any exchange 

reaction between the isopropyl group and the methoxy group. NMR technique 

is very effective in resolving the 
1
H environment in a compound giving an 

insight into any change in environment during a reaction.  

XAFS is a very useful technique in studying reactions in-situ as it focuses on 

the metal centre and it is able to determine the coordination environment 

around a metal, intermediate phase during a reaction and it is able to determine 

the phase of amorphous and crystalline structures compared to XRD that can 

only resolve crystalline structures. In-situ XAFS studies have been used in 

different research area including catalysis.
4,5,6

 µXANES provides information 

about the coordination state of the metal and it is also used as a finger print 

region for each metal. The pre-edge and edge of each metal is unique and 

gives valuable information of the oxidation state of the metal (see chapter 2). 

In-situ XAFS studies have been well studied in the area of catalysis in 

zeolites
7,8

 but to our knowledge this is the first application of µXANES in 

chemical vapour deposition (CVD). 

This section of the thesis will give brief descriptions of NMR and IR 

spectroscopy and detail the results obtained from the IR and NMR spectra 

recorded. The majority of this chapter will focus on the design of the X-ray 

transparent AACVD cell and the results obtained from the in-situ deposition of 

TiO2.  
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7.3. NMR Studies of the titanium precursor [Ti(OPri)4] in 

solution- does pre-reaction occurs? 

7.3.1. NMR Spectroscopy overview 

Nuclear magnetic resonance (NMR) spectroscopy is able to give an insight 

about the environment of the nuclei of atoms found in a molecule and can 

provide information about the structure,  the reaction state, and chemical 

environment of the molecule. A nucleus in an external magnetic field can align 

itself either with the external field (positive) or against it (negative). Hydrogen 

and some other nuclei have a spin about their axis. The nuclei with a spin has a 

magnetic moment and in the presence of an external magnetic field the nuclei 

turn to a preferred orientation. Nuclei obey the quantum law and in the 

presence of an external magnetic field a nuclei with ½ quantum number 

produces two spin states, one up and one down, one aligns with the magnetic 

field positive ½ and the other opposes it negative ½ . 

When a molecule is at equilibrium with the surroundings then the spin 

distribution will favour more nuclei in the lower state. If then an 

electromagnetic radiation of frequency is applied and the frequency is the 

same as the energy difference between the levels then the population of the 

higher energy state increases and so radiation will be absorbed. Equilibrium 

will be established if the nuclei loses the energy applied to its surroundings.  

Fourier transform (FT) NMR machines are used in most laboratories. FT 

instruments works by exciting all the nuclei (protons) at the same time and 

each will send out radiofrequency when returned to equilibrium. The resulting 

signal given out by each nuclei is a combination of the frequencies of each 
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chemically distinct nucleus. The FT instrument is then able to produce the 

NMR spectrum using the frequency and intensity of each nuclei absorption. 

The chemical shift is usually measured in parts per million (ppm). 

 

 

7.3.2. Experimental 

Preliminary NMR was recorded to monitor the exchange reaction between the 

isopropoxide group on the titanum (IV) isopropoxide (TTIP) and the methoxyl 

group on the solvents. We carried out the NMR of TTIP and methanol in 

benzene solvent at room temperature, NMR of methanol in benzene, TTIP in 

benzene and TIP and methanol in benzene after 5 days. 

7.3.3. Results and discussion 

Preliminary NMR studies were carried out to investigate the reaction of the 

precursor TTIP with methanol as the carrier solvent. This was done to try and 

explain the difference seen in chapter 4 on the use of EtOH and MeOH in 

making either anatase or rutile.  Figure 7.1(a) shows the NMR spectra of TTIP 

in benzene, figure 7.1(c) shows TTIP and methanol in benzene and figure 

7.1(b) shows IPA in benzene solvent.  Scheme 7.1 shows the proposed 

reaction mechanism for the reaction of TTIP and methanol in an AACVD 

reactor vessel. The proposed scheme shows that there could be an exchange 

between the isopropoxide group on the TTIP and the methoxy of the methanol 

or an intermediate with titanium attached to both the isopropoxide group and 

the methoxy at the same time. The 
1
H NMR results however shows no 

exchange reaction between the isopropanol group on the TTIP and the 

methanol solvent at room temperature, if this exchange had occur we would 
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expect a peak at 3.65 ppm due to Ti-OMe but this peak is missing in the NMR 

spectrum.
11

 The NMR of 
1
H NMR shows the same peaks in methanol in IPA 

and methanol and TTIP in benzene solvent. This indicate that the methanol is 

unreacted in the solution.  The only observable change is in the shift from 4.5 

ppm in figure 7(a) to 3.9 ppm in figure 7(d) in NMR of TTIP in benzene and 

TTIP, methanol in benzene solvent after 5 days. This change shows that the 

TTIP starts to breakdown but it is still not at a meaningful rate at room 

temperature. The exchange therefore did not occur at a meaningful rate at 

room temperature. The NMR spectra are shown figures 7.1(a) – 7.1(d). 
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Scheme 7.1. A proposed reaction of TTIP in methanol solvent. 
1
H NMR at 

room temperature did not show evidence for reaction: However these 

procedures are possible at the higher temperature of the aerosol.  



164 
 

(a) 

(b) 
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(c) 

(d) 

Figure 7.1. 
1
H NMR (a) TTIP (ligand) in benzene, (b )IPA in benzene, (c) 

methanol and TTIP in benzene, (d) methanol and TTIP in benzene after 5 

days.  
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7.4. Insitu IR spectroscopy study of TiO2 

7.4.1 IR overview 

Infrared spectroscopy (IR) involves vibrations that result in a change in 

molecular dipole and have absorption in the infrared region of the spectrum 

absorb infrared radiation. Atoms in a molecule vibrate about their equilibrium 

bond distance and their vibrating frequency depends on the mass of the 

vibrating atoms, the bond length and the strength of its bonds. When 

electromagnetic radiation of the same or higher than the molecule’s natural 

vibration frequency is applied molecules vibrate at higher frequency and using 

Fourier transform the frequency of the vibration can be interpreted and an IR 

spectrum produced. Gases like H2 and O2 do not have a dipole moment and so 

do not absorb in the IR region whilst molecules like CO which has a dipole 

moment and so has an IR spectra.  

The main use of infrared spectroscopy is in resolving molecular structure to 

characterise the functional groups present in the unidentified molecule.  

 In chapter 2 we have detailed how the carrier solvent is able to affect the 

phase of TiO2 deposited as either as anatase or rutile. We have reported that 

when methanol is used as a carrier solvent the reaction favours the deposition 

of the rutile phase and other solvents including ethanol and hexane favour the 

deposition rutile.  Jackson.S.D. et al have reported that the methanol 

breakdown mechanism involves the production of CO2 and this is able to 

create a reactive intermediate that changes the path of the reaction and so 

changing the end product. Equation 7.1 shows the reaction mechanism as 

reported by Jackson.S.D. et al.
9 

 

Equation 7.1. CH3OH            CO + 2H2 
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The idea of using IR spectroscopy is to test if CO2 will be produced during 

AACVD deposition using methanol as a carrier solvent and no CO2 using 

methanol or hexane as the carrier solvent.  

CO2 in the IR has a very distinct and strong stretch at 2350 cm
-1

 because it is a 

linear molecule and is very easy to observe the C=O stretch in the IR region 

due to the large change in dipole moment associated with the asymmetric 

stretch. This was attempted by collecting the resulting gas during the AACVD 

reaction from the gas outlet. This is to our knowledge the first time such an 

experiment has been conducted. 

 

7.4.2. Experimental 

We followed the same procedure detailed in chapter 2.3 and at the outlet of the 

reactor vessel a tube was attached going into the IR gas chamber. The gas 

released from the outlet was collected and an IR obtained.  We collected the 

gas of only TTIP, only ethanol and only methanol and also collected the outlet 

gas during reaction with ethanol and methanol. The aerosol evaporated from 

the glass containing the reagent before they reach the reactor was also 

collected and measured.  

7.4.3. Results and discussion  

The gas IR spectra of the reaction of TTIP were collected during AACVD. 

Figure 7.2 shows that the OH band in the IR which is broad in solution is now 

sharp in the gas phase. This is because of the lack of H-bonding in the gas 

phase.  
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 Figure  7.2 . Shows the liquid IR spectra of TTIP in methanol solution and 

gas phase IR spectra of the gas out of the exhaust during deposition as written 

on the figure. 

 

Functional Group Characteristics 

Absorptions (cm
-1

) 

Alcohol broad O-H 3358 

Alcohol O-H sharp  3745, 3652 

C-H  2924, 2844 

C-O 1033 

C-H rocking 721 

C-H deformation  1345 
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Figure 7.3-7.5 shows the IR spectra of TTIP, methanol and ethanol 

respectively, it is observed that the TTIP in the IR does not show sharp 

absorption due to low concentration. When looking at the IR spectra of 

methanol and ethanol during the AACVD reaction involving TTIP and 

methanol or ethanol as the carrier solvent we can see that the IR spectra of the 

solvents on their own and in reaction with TTIP, this shows exactly the same 

peaks and we are not able to detect a difference in the solvent peaks. This 

indicates that the solvent methanol and ethanol go through the reactor as 

solvents and not as an aerosol (Figures 7.6-7.8). This can be seen this due to 

the sharp OH peak on both solvent in the IR spectra which indicates that the 

gas phase MeOH has H bonds in solution and this reduces the O-H 

frequencies.  The spectrum shows P, Q and R branches in the O-H stretch at 

3750 cm
-1

. 

CH2 deformation at 1300 cm
-1 

is present in all the gas phase spectra apart from 

the TTIP spectra. P, Q and R branches in infrared spectroscopy are the 

combined rotational and vibrational behaviour of a molecule and can be seen 

in high resolution gas phase IR spectra.  
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Figure  7.3. The gas phase IR spectra of ethanol  

 

 

Functional Group Characteristics 

Absorptions (cm
-1

) 

Alcohol O-H sharp  3700 

C-H  2950 

C-O  1170 

CH2 rocking 730 

CH2 deformation 1200, 1300 
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Figure 7.4 . The gas phase IR spectra of methanol  

 

Functional Group 

methanol 

Characteristics 

Absorptions (cm
-1

) 

Alcohol O-H sharp  3750 

C-H  2950 

C-O  1120 

CH2 deformation 1300 

CH2 rocking 720 
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Figure 7.5. The gas phase IR spectra of TTIP 

 

Functional Group 

TTIP 

Characteristics 

Absorptions (cm
-1

) 

C-H  2850 

C-O  1150 

CH2 rocking  750 

 

CO2 vibration was not detected in the IR spectra obtained from the exhaust gas 

during the reaction of TTIP and methanol in the AACVD process. This 

indicates that the methanol goes through the reaction unreacted or the reaction 

happens on the surface of the substrate or it happens and could not be detected 
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from the exhaust gas using IR spectroscopy at the quantities formed.  An 

overlap of TTIP, methanol and ethanol in the IR spectra was not able to give 

any information because the peaks from TTIP are overlapping with the peaks 

from the solvent. The only observation is that the TTIP peak is not detected in 

the IR spectra shown in figure 4 and 5 from the exhaust gas using methanol or 

ethanol as the carrier solvent, indicating it has decomposed during the reaction 

or is at a concentration that could not be detected.  

 

 

Figure 7.6. The gas phase IR spectra of the exhaust gas during the deposition 

of TiO2 with TTIP in ethanol solvent. 

 

Functional Group 

ethanol + TTIP 

Characteristics 

Absorptions (cm
-1

) 

Alcohol O-H sharp  3676 

C-H  2988, 2901 

C-O  1066, 1250 

CH2 rocking 721 

CH2 deformation 1340 
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Figure 7.7. The gas phase of the exhaust gas during TiO2 deposition with TTIP 

in methanol solvent. 

 

Functional Group 

methanol 

Characteristics 

Absorptions (cm
-1

) 

Alcohol O-H sharp  3759 

C-H  2982,2844 

C-O  1065,  

CH2 deformation 1345 

Weak CO2 2077 
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Figure 7.8. Showing the gas phase IR spectra of methanol in Black, ethanol in 

blue and TTIP in red layered together. 

 

The results shown in the in-situ IR were not been able to shed light on the 

reaction mechanism of TTIP with methanol or ethanol as a carrier solvent but 

has shown that IR spectroscopy can be used to study AACVD processes and 

that the aerosol is fully evaporated in the reaction (as no broad O-H bands are 

seen).  To our knowledge this is the first time this type of in-situ gas phase IR 

spectra has been reported for AACVD and the results shows that the 

involvement of the carrier solvent in the reaction can in principle be followed 

whether it dissociates or goes through the reaction unaffected using AACVD.  
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7.5. Insitu studies of titanium dioxide and tungsten oxide 

using X-ray Absorption Near Edge Structure (XANES)  

7.5.1. Introduction 

XANES is a type of X-ray absorption spectroscopy (XAS) which also includes 

Extended X-Ray Absorption Fine Structure (EXAFS). XAS data are collected 

using synchrotron radiation as described in chapter 2.  

XAS has been increasingly useful in the study of active species in catalyst and 

has been used to determine the chemical state of important species mostly 

those with low concentration. XAS has been recognised as a powerful 

analytical technique due to the use of synchrotron radiation. XAS is concerned 

with excitation of atoms using radiation sources, when an atom is excited 

using a synchrotron radiation source the electronic state of the atom changes. 

In XANES the core level of an atom absorbs X-ray radiation; it ejects a 

photoelectron which can interact with the neighbouring atom causing 

interference.  The XANES region focuses on the modulation of the absorption 

spectrum close to the absorption edge and is particularly useful in the 

determination of the oxidation state and coordination environment (octahedral, 

tetrahedral etc) of an element. The µXANES region is very sensitive to the 

symmetry that is around the absorbing atom and this can been observed in the 

pre-edge peak of the atom, indicating 4, 5 or 6 fold coordination. 
10

 

This in-situ study focuses on the deposition of titanium dioxide and tungsten 

oxide thin films. Several characterization methods have been used to derive 

structure-function relationships in these thin films, in particular SEM, XRD 

and Raman spectroscopy. It was found that, depending on the substrate, glass 

or metal (titanium, copper and stainless steel are used as metal substrates), 

deposition temperature and time at a specific temperature, different phases of 
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anatase or rutile and varying degree of their composition were obtained. 

Although diffraction and Raman spectroscopic studies were able to identify 

these phases, both these techniques are sensitive only to the crystalline part of 

the material present in the film. X-ray absorption spectroscopy can be used to 

determine the local structure of Ti(IV) across the film during deposition. To do 

so, it is important to use very small beam (preferably micro-beam) to map the 

film.  

The ex-situ mapping of as deposited TiO2 is reported in chapter 5. The ex-situ 

µXANES mapping shows that at 550
o
C using methanol as the carrier solvent 

on steel substrate the rutile polymorph of titania was deposited and that on 

glass substrate there is a random mixture of anatase and rutile. Chapter 3 

reported that using ethanol as the carrier solvent the ethanol phase is deposited 

on steel substrate. The motivation for studying the in-situ reaction is to follow 

the reaction process and to determine if the anatase phase is the initial phase 

deposited and then transforms to the rutile phase during the course of the 

deposition or if the rutile phase is initially deposited using methanol as the 

carrier solvent. This thesis also aims to investigate any changes in the 

coordination state of TiO2 during deposition. 

The in-situ and ex-situ µXANES on tungsten oxide film growth was also 

studied. The type of tungsten oxide produced whether WO3 the fully oxidised 

form or WO3-x the partially oxidised form is dependent on a number of factors, 

in particular temperature, substrate, solvent used during deposition. In a 

typical synthesis tungsten hexacarbonyl [W(CO)6] was used as a single source 

precursor; [W(CO)6] is one of the most researched precursor used in chemical 

vapour deposition of tungsten oxide films.
13

 When [W(CO)6]  is used in CVD 
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deposition the structure and properties of the deposited films are highly 

dependent on the conditions used during the deposition, high deposition 

temperatures usually produces the yellow stoichiometric orthorhombic WO3 

films whilst low temperatures produces partially reduced blue WO3-x (where x 

is usually equal to 0.02–0.1) thin films. SEM, XRD and Raman spectroscopy 

have been used to characterise and derive the structure-function relationships. 

Chapter 4 of this thesis reports the solvent and substrate effect on the type of 

tungsten oxide films deposited showing that the carrier solvent used during 

deposition and the substrate (glass or steel) has an effect on the orientation of 

the crystal and their surface morphology. This section aims to follow the 

deposition process of deposition of tungsten oxide thin films using X-ray 

absorption spectroscopy, at the W L3 edge. The allowed 2p3/2 to 5d transition 

will allow us to estimate the density of unoccupied states which can be 

correlated to oxygen deficiency.
14

 The main objective of this work was to 

understand the process of formation of WO3 thin films during deposition on 

glass and steel substrates at 550
o
C.  

 

7.5.2. Aerosol Assisted Chemical Vapour deposition (AACVD) insitu 

cell development   

Thin film deposition in AACVD is generally carried out on a cold-wall 

horizontal-bed CVD reactor that contains a graphite block heated by a 

Whatman cartridge heater. The glass plate is placed on the carbon heater block 

and for the steel substrates the steel foil is placed on top of a glass substrate 

which in turn is placed on top of the carbon heater block. A glass top-plate is 

positioned parallel and the whole set up is contained within a quartz tube.  
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To carry out in-situ XANES a new cell was designed with a window that is X-

ray transparent. The quartz cell typically used in AACVD deposition is not X-

ray transparent. A material that can allow X-ray in and out of the cell needs to 

be cut in as a window and to reduce parasitic scattering.  Beryllium windows 

have been reported to be most transparent and would have been best suitable 

but beryllium is toxic and expensive. The commonly used window in EXAFS 

is Kapton material because of its low cost and convenience.
6
 Kapton is a 

polymer that is stable between -290 to 400
o
C.  Kapton is thermally and 

mechanically stable and has a high transmittance to X-rays. The maximum 

deposition temperature in this project was 550
o
C and kapton is stable at a 

maximum temperature of 400
o
C after which it will melt so this needs to be 

considered when designing the cell. To resolve this challenge a water cooling 

system was built around the kapton window and air was blown directly on the 

kapton window to keep the temperature low whilst the experiment was 

conducted. 

A flat surface was also required to scan using synchrotron radiation so the cell 

needed to be able to rotate from the inside to allow X-ray in and out. In 

designing the cell heat loss was reduced by adjusting the contact area between 

the carbon heating block and the quart tube. The thickness of the carbon 

heating block was reduced and made of a flat base rather than the usual half-

cylinder shape. The whole cell body was 80 mm and sample length at 60 mm. 

Figure 7.9 shows a schematic diagram of the rig setup and figures 7.10-7.13 

show the features of the rig. The flat base of the carbon heater also enabled 

easy movement of the substrate on it to allow X-ray in and out at a perfect 
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angle. The weight of the new cell was 4.89 kg, the maximum weight the 

sample holder at diamond I18 beamline can hold is 5 kg. 

 

 

Figure 7.9. Schematic of the X-ray transparent AACVD rig. 

 

 



181 
 

Figure 7.10. X-ray transparent AACVD rig 

 

Figure 7.11. X-ray transparent AACVD rig showing copper water cooling 

tubes 
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Figure 7.12. X-ray transparent AACVD rig showing how the kapton window 

was kept cool. 

 

Figure 7.13. X-ray transparent AACVD rig showing how the beam focused on 

the substrate. 
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7.5.3. Experimental  

All experiments were conducted at the I18 µX-ray absorption spectroscopy 

(XAS) beam line in the synchrotron radiation source at Diamond Light Source 

UK. 

(1) In-situ AACVD of titanum (IV) isopropoxide (TTIP) (97% Aldrich) and 

methanol (Fisher, reagent grade) were used without any purification. The 

set up is the same as shown in chapter 3 except the glass top plate was 

replaced with a stainless steel top-plate with a hole in the middle to allow 

the beam in and out. The cell was mounted on the sample holder and the 

beam was focused on the steel substrate. AACVD reaction was carried out 

at 550
o
C and µXANES scans were taken every 11 minutes during 

deposition at the center of the steel substrate.  µXANES at the titanium K 

edge were recorded in fluorescence mode, in the energy range of 4.806 to 

5.127 keV and using a beam size of ca 5 microns. 

(2) In-situ deposition of thin films of tungsten oxide were carried out using 

aerosol assisted chemical vapour deposition (AACVD) on stainless steel 

substrates (Goodmans, 250 mm thickness) of dimension 25 x 25 mm. 

Tungsten hexacarbonyl [W(CO)6] (97% Aldrich) and methanol (Fisher, 

reagent grade) were be used without any purification. The deposition 

procedure was the same as described above for TiO2.  [W(CO)6] was used 

as a single source precursor (0.37 g, 0.5 mmol) and was added to methanol 

(50 ml) and an aerosol was generated at room temperature using a Pifco 

ultrasonic humidifier. AACVD reaction was carried out at 550
o
C and 

µXANES scans were taken every 11 minutes during deposition at the 

center of the steel substrate.  µXANES at the W L3 edge were recorded in 
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fluorescence mode, in the energy range of 10.050 to 10.400 keV and beam 

size of ca 10 microns was used. 

(3) µXANES measurements were also carried out on as deposited ex-situ 

tungsten oxide thin films using either methanol or ethanol as carrier 

solvents using the same procedure as shown above. 

 

7.5.4. Film characterisation and analysis using µXANES of tungsten 

oxide thin films deposited on steel substrates 

7.5.4.1. µXANES insitu deposition of WO3 thin films 

WO3 L-edge X-ray Absorption Near Edge Structure (µXANES) was carried 

out on thin films deposited on steel plates in-situ. The in-situ deposition via 

AACVD was unsuccessful partly due to the limitations of AACVD reaction in 

producing a good flow of aerosol. There was little room to manoeuvre the 

humidifier to achieve a better mist of aerosol. The µXANES data recorded 

during the deposition was very noisy and was not clear enough to solve the 

structure. 

7.5.4.2. µXANES exsitu deposition of WO3 thin films 

WO3 L edge X-ray Absorption Near Edge Structure (µXANES) map was 

carried out on thin films deposited on steel plates. The mapping was done in 

an H shape fashion as described in chapter 5. The data was normalised 

following the procedure already described in chapter 5. Pure calcium tungstate 

CaWO4 and tungsten hexaphenoxide [W(OPh6)] were both used as standards 

and their  µXANES spectra is shown in figure 7.14. The µXANES spectra 

shows a decrease in the white line intensity from [W(OPh6)]  to CaWO4  

because tungsten goes from been in the  octahedral  surrounding to tetrahedral 
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surrounding respectively. The W L3-edge white line corresponds to electron 

transitions from the 2p3/2 state to a vacant 5d state. 
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Figure 7.14. µXANES Pure calcium tungstate (CaWO4) and tungsten 

hexaphenoxide [W(OPh6)] recorder at the W L3 edge.  

 The µXANES spectra map of as deposited tungsten oxide film on steel 

substrate using ethanol as the carrier solvent shown in figure 7.15. It shows 

that the tungsten in the as-deposited tungsten-oxide film is in the distorted 

octahedral coordination because only one peak is observed in the white line 

and the peak is broad. Whereas if the W was in the tetrahedral coordination a 

single sharp asymmetrical peak will be observed. 
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Figure 7.15. Ex-situ µXANES mapping of tungsten oxide thin film deposited 

from the AACVD reaction of [W(CO)6] in ethanol on glass at 550
o
C.  

 

The µXANES spectra map of as deposited tungsten oxide film on steel 

substrate using methanol as the carrier solvent is shown in figure 7.16 and it 

also shows tungsten in the as deposited tungsten oxide film to be in distorted 

octahedral coordination. 
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Figure 7.16. Ex-situ µXANES mapping of tungsten oxide thin film deposited 

from the AACVD reaction of [W(CO)6] in methanol on glass at 550
o
C.  

 

An interesting observation is that the white line intensity of the as deposited 

tungsten oxide films are closer to the [W(OPh6)] than to [CaWO4] again this 

confirms tungsten in the octahedral coordination.   

 

7.5.5. Film characterisation and analysis using µXANES of titanium 

dioxide film deposited in-situ on steel substrates 

TiO2 K edge X-ray Absorption Near Edge Structure (µXANES) was carried 

out on thin films deposited steel plates as already described in the 

experimental section. The normalised standard spectrum of pure anatase and 

rutile phase is shown in chapter 5 (Figure 5.3). One of the observations made 

during the in-situ deposition was that the kapton window was cloudy 

indicating deposition on the window. The in-situ deposition was repeated 
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twice to improve the data quality recorded using methanol as a carrier solvent. 

An attempt was also made using ethanol as the carrier solvent but the in-situ 

reaction was unsuccessful. Figure 7.17 shows the µXANES spectra during 

deposition. It can be observed that the initial data collected was very noisy due 

to the very thin nature of the film and also due to the cloud of mist present in 

the reactor during deposition. The observed pre-edge is very different to the 

expected pre-edge in T K-edge. We see a sharp pre-edge rather than a split 

pre-edge. We were unable to identify the pre-edge observed. 

4900 4950 5000 5050 5100

 

Energy eV

Pre-edge

Insitu TiO
2
 on steel methanol carrier solvent

 

Figure 7.17. In-situ µXANES of TiO2 thin film deposited from the AACVD 

reaction of TTIP in methanol on substrate at 550
o
C.  

 

The µXANES spectra of the deposition on the kapton window was also 

recorded and the spectra matches exactly with the spectra recorded in-situ 

(figure 7.18). These results show that the µXANES data recorded was the 

deposition on the kapton window. 
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Figure 7.18. µXANES spectra of the kapton window from AACVD deposition 

of TiO2 from the  reaction of TTIP in methanol on steel at 550
o
C.  

 

This method of following reaction process of thin films via AACVD by 

recording the µXANES data in-situ not successful however this experiment 

has opened a new area of research to develop a cell that can allow the effective 

recording of data insitu.   

7.6. Conclusion 
 

In this chapter an attempt was made using IR, NMR and µXANES 

characterisation techniques to understand the deposition process of titanium 

dioxide and tungsten oxide films formed by aerosol assisted chemical vapour 

deposition. The IR spectra recorded did not show the production of CO2 or CO 

using either ethanol or methanol as the carrier solvent and the 
1
H NMR NMR 

spectra showed no exchange reaction between the isopropyl group on the TTIP 
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and the methanol solvent at room temperature.  In-situ µXANES data 

collected for titanium oxide was the same as the µXANES spectra recorded 

from the kapton window and the Ti K-edge was very different from what has 

been previously observed (see chapter 5). This section reports the first 

application of in-situ µXANES technique for the study of AACVD depositions 

of both WO3 and TiO2 in-situ. Although the results obtained was not able to 

resolve the phases of TiO2 present during deposition, this new chemical 

vapour deposition reactor vessel can be further modified to overcome the 

challenges faced during this attempt. For future work the cell could be 

modified by creating a layer of nitrogen flow under the kapton window which 

will help to overcome the challenge of depositing on the kapton window. To 

our knowledge this is the first attempt of in-situ µXANES data collection in 

CVD reactions. 
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8.Conclusion and Future work 
This thesis focused on the deposition of titanium dioxide and tungsten oxide 

using aerosol assisted chemical vapour deposition (AACVD). Titanium 

dioxide is one of the most researched metal oxides in the past few years and 

this is because of its distinct ability to act as a photocatalyst.
1
 TiO2 based self-

cleaning glasses are already commercialised, the thin films are deposited by 

atmospheric pressure chemical vapour deposition (APCVD).
2,3

 Aerosol 

assisted chemical deposition is a unique technique in depositing thin films as it 

allows for non-volatile precursors to be used and this allows for films with a 

range of morphology and properties to be produced. At the start of this work 

there had not been any commercial use for AACVD but this has since 

changed. Beneq has commercialised the use of AACVD for the deposition of 

films on different substrates (glass, ceramic, plastics). 
4
 

AACVD has been used in this thesis to produce TiO2 films with very 

interesting surface morphology. As described in chapter 2, needle like 

particles were observed when methanol is used as a carrier solvent on steel 

substrates and this surface were also found to exhibit a Wenzel-type surface 

that are hydrobic in nature. This is somewhat surprising as TiO2 films are 

usually observed to be hydrophillic. The use of AACVD resulted in rutile 

films rather than the anatase phase deposited using APCVD (Chapter 2). 

Further using AACVD was able to change the surface morphology and this 

changes the hydrophillicity of the surface. 

The as-deposited TiO2 films were also photoactive, tested with methylene 

blue. The films produced using ethanol as a carrier solvent were more photo-

active (anatase), whilst the film deposited using methanol were less photo-
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active (rutile). The films also were also reported to be able to photo-split water 

using a sacrificial solution and the values recorded are amongst some on the 

highest values reported.  

Research into hydrogen fuel cells has increased in the last few years as the 

need for alternative fuel has increased.
5-7 

Using AACVD for the deposition of 

TiO2 produced films that were able to photo-split water producing hydrogen. 

This work can be further researched to optimise the properties of the films 

deposited on steel substrates to improve their ability to photo-split water.  

This thesis also reports the solvent and substrate effect on TiO2 films 

deposited by AACVD. It was reported that the rutile phase is favoured on steel 

substrates at high temperatures and a mixture of anatase and rutile is observed 

at the same temperature. This observation suggests that the steel substrate 

affects the deposited phase. Methanol as a carrier solvent was also reported to 

direct the formation of the rutile phase on steel compared to ethanol and other 

solvents used as a carrier solvent where the anatase phase is observed.   

AACVD deposition of tungsten oxide was studied to further investigate the 

solvent effect on films deposited using methanol or ethanol as carrier solvent. 

The films deposited had different preferred orientation and therefore different 

morphology when either ethanol or methanol is used. The phase directing 

effect of films deposited particularly when methanol is used as a carrier 

solvent lead to the investigation of the reaction path of the solvents during 

AACVD deposition.  

A number of experiments were conducted to explain the solvent directing 

effect displayed when methanol is used as the carrier solvent. NMR was used 



194 
 

to try and observe any exchange reaction between the isopropyl group and the 

methoxyl group but no exchange was recorded at room temperature. IR was 

also used to record the gases coming out of the exhaust; this was done to 

monitor the ligand break down process. The IR was unable to detect the 

production of CO2 or CO form the exhaust gas. IR spectra was not able to 

report any reaction between the TTIP and the solvent.  

XAS was successfully used to map the as-deposited TiO2 thin films. µXANES 

data was recorded for TiO2 deposited on glass and steel at using different 

solvents. Linear combination fitting (LCF) analysis of the µXANES data 

showed the exact percentage of anatase and rutile present at each point on the 

substrate. LCF of the data showed almost 100% of rutile was deposited on 

steel substrate using methanol as the carrier solvent and shows a mixture of 

anatase and rutile deposited on glass substrates. The µXANES map also 

showed that the phase of TiO2 deposited is not in the flow direction but it is 

random as shown from the data recorded using glass substrates. The anatase 

and rutile phase observed are randomly distributed across the film. Mapping 

across a µXANES has proven to be a very useful technique for determining 

the composition across a film.  

In the final chapter of this thesis an X-ray transparent AACVD rig was built. 

This rig to our knowledge is the first of its kind. A few challenges were faced 

including deposition on the kapton window and space limitation on the beam 

line. This was however a successful attempt in following film deposition in-

situ and gaining an insight into the phase deposited with time. The rig can be 

improved by designing a smaller cell to allow for better movement to improve 

the flow of aerosol during deposition and as already suggested in chapter 7 the 
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deposition on the kapton window could also be reduced by allowing a flow of 

nitrogen gas just under the kapton window.  

The work carried out in this thesis has opened a new door into the 

understanding of the process of thin film deposition and can be used to modify 

the properties and uses of films deposited by AACVD.  
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