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Abstract: The paper presents a new meta data set covering 13 experiments on the

social learning games by Bikhchandani, Hirshleifer, and Welch (1992). The large

amount of data makes it possible to estimate the empirically optimal action for

a large variety of decision situations and ask about the economic signi�cance of

suboptimal play. For example, one can ask how much of the possible payo¤s the

players earn in situations where it is empirically optimal that they follow others

and contradict their own information. The answer is 53% on average across all

experiments �only slightly more than what they would earn by choosing at random.

The players� own information carries much more weight in the choices than the

information conveyed by other players�choices: the average player contradicts her

own signal only if the empirical odds ratio of the own signal being wrong, conditional

on all available information, is larger than 2:1, rather than 1:1 as would be implied

by rational expectations. A regression analysis formulates a straightforward test of
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Dorothea Kübler, Luke Miner, Charles Noussair, Matthew Rabin, Myung Seo and seminar audiences at Berkeley,
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Holt, Angela Hung, John List, Markus Nöth, Clemens Oberhammer, Joerg Oechssler, Brian Rogers, Andreas Roider,

Andreas Stiehler, Martin Weber and Anthony Ziegelmeyer who provided the individual data sets. Finally, I thank

the ESRC (Award RES-000-22-1465) for funding.



rational expectations, which rejects, and con�rms that the reluctance to follow others

generates a large part of the observed variance in payo¤s, adding to the variance

that is due to situational di¤erences.
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1 Introduction

The paper re-visits the experimental literature on social learning and addresses a signi�cant gap in

the existing data analyses: to what extent is it bene�cial for a decisionmaker to learn from others

and contradict his or her own private information �and if it is bene�cial, do people do it? These

questions lie at the heart of understanding social learning behavior but have been answered only

very partially. The main di¢ culty in �nding appropriate answers is the identi�cation of conditions

under which a decisionmaker should follow others. Most previous discussions in the literature

measure a decisionmaker�s success under the assumption that other players obey a given model

solution, e.g. Bayes Nash Equilibrium or Quantal Response Equilibrium. Any such theory implies

an optimal response of the decisionmaker herself, which can be held against the data.2 But despite

the undisputable usefulness of these solutions, it is important to note that they are often inaccurate

and thus their implications are imperfect benchmarks. It has never been established to what degree

the decisionmakers choose the empirically optimal action, i.e. the action that is ex-post optimal

most of the time under identical conditions. This paper�s premise is that the empirically optimal

action is what we should measure the success of social learning by, because it re�ects all relevant

situational factors, including those that are in�uenced by the true behavior of other players. The

paper combines the raw data from a large set of experiments (all of which follow Anderson and

Holt, 1997) into a new meta data set and asks whether the average behavior can be viewed as

approximately payo¤maximizing, given the behavior of others. It �nds that the success of learning

from others is very modest. Conditional on being in a situation where it is empirically optimal for

the participants to contradict their own private information, they choose this action (among two

2Anderson and Holt (1997), the in�uential �rst study in this experimental literature, contains a data analysis

using both Bayes Nash Equilibrium and Quantal Response Equilibrium. Most subsequent studies have summarized

behavior on the equilibrium path of Bayes Nash Equilibrium, see e.g. the survey in Kübler and Weizsäcker (2005).

Variants of Quantal Response Equilibirum are discussed in Oberhammer and Stiehler (2003), Kübler and Weizsäcker

(2004), Choi, Gale, and Kariv (2004), Drehmann, Oechssler and Roider (2005), Krämer, Nöth and Weber (2006) and

Goeree et al (2007).
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alternatives) in less than half of the cases.3 On the other hand, in cases where their own signal

happens to support the empirically optimal action, the participants more likely realize this and

follow the signal nine out of ten times.

These and all other results in the paper are generated under a reduced-form approach, without

imposing a behavioral model of the players�decisionmaking process or a model of how they take

other players�actions into account. (For example, the analysis does not assume that players apply

Bayesian updating.) A disadavantage of not imposing a behavioral model is that we learn little

about the nature of the suboptimality. Yet the results are supportive of the model estimates by

Nöth and Weber (2003) and Goeree et al (2007), which suggest that people assign too much weight

to their own private information, relative to the publically observable choices of others.4

But can the high error rate perhaps be attributed to the lack of strong incentives? Especially

in situations where a player receives a signal that is di¤erent from other players� signals, the

expected gain from making correct inferences is reduced: with con�icting pieces of information,

the total value of the available information is small and all choice options are unsuccessful with

relatively high likelihood. This makes it less important to choose the best option. At the same time,

players may also �nd it more di¢ cult to identify the optimal action in situations with con�icting

information. One may thus expect a positive correlation between simplicity and lucrativity (value

of the available information) of choice situations. The mere choices frequencies may therefore be

misleading indicators of success if they do not consider the di¤erences in the importance of making

the optimal choice �the players may do the right thing predominantly when it is important.5

3The frequency is about 0.44 and depends on the set of included cases � the identi�cation of the empirically

optimal action relies on small sample sizes for many decision problems so that it is better not to include these cases

(see Section 3). But for any of a large selection of possible sets, the frequency lies below one half.
4These and other reports of biases relative to a rational-expectations benchmark (Oberhammer and Stiehler, 2003,

Kübler and Weizsäcker, 2004, Kraemer, Nöth and Weber, 2006) are essentially con�ned to establishing statistical

signi�cance. The existing literature has largely sidestepped a detailed discussion of payo¤ outcomes �as opposed to

behavioral outcomes �and most studies merely contain measures of overall earnings in the experiment. A notable

exception is in Goeree et al�s (2007) discussion of higher average earnings of players who choose later in the game.
5The complication is particularly severe in social learning games, where uncertainty about others�strategies prevails

so that the value of the available information (here, the observation of others�actions) is unknown to the researcher.

2



But with enough data one can estimate the value of the available information and control for

it in the analysis. Below, calculations will show that the success rate indeed increases with the

importance of making the optimal choice, but still social learning is unsuccessful in payo¤ terms.

In situations where participants should contradict their own signal, they only receive 53% of the

higher of the two possible prizes on average (normalizing the low prize to zero). They could have

earned 64% of the high prize on average, had they always realized that it is better to contradict

their own information. In contrast, in the complementary set of situations, where it is empirically

optimal for participants to follow their own information, they are much more successful and earn

73% of the high prize on average, out of 75% that they could earn from always behaving optimally.

Indeed, the numbers show that the latter set of situations is more lucrative for the players, but also

that the di¤erence in success rates generates a large payo¤ gap.

Estimating the value of the players�information is particularly straightforward in games like the

present ones, where there are only two payo¤ outcomes and two available actions for each player.

One can simply count how often each of the two actions would have yielded the higher of the

two possible prizes, across all instances where the available information is identical.6 The relative

frequency of the two counts then yields the desired estimate. This exercise is applied to the new

data set consisting of data from 13 di¤erent experimental studies on the game by Bikhchandani,

Hirshleifer, and Welch (1992), which is widely viewed to capture the essence of social learning. All

of these experiments follow the same format, with only minor modi�cations and di¤erences in the

experimental procedures, such as di¤erent precisions of signals. The data set contains a large variety

of di¤erent decision situations �there are more than 10000 distinct decision problems if one counts

decisions in di¤erent experiments separately, and almost 30000 decisions in total �but all of them

are generated within the same basic game, with two possible states of the world and two actions

per player, and they can therefore be summarized in meaningful ways. Section 3 describes the

statistical connection between the participants�frequency of following their own information and

the estimated value of this action. This description demonstrates a strongly in�ated tendency of

6As will be made clear in Section 2, this estimation only views situations as identical if their informational

conditions are the same and if they appear in the same treatment of the same experiment.
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participants�to follow their private information, and indeed gives a negative answer to the question

in the paper�s title, as described above: when participants should optimally contradict their own

signal, this action is observed in less than half of the cases. As the value of this action increases,

its frequency increases, but at a slow rate. To observe a frequency of one half or more, the action�s

value needs to exceed 2/3 of the higher prize. That is, to induce the average participant to act

against her signal, the evidence conveyed by the other players�decisions needs to be so strong that

even after accounting for the countervailing signi�cance of the signal, the empirical likelihood ratio

against the signal is larger than 2:1.

The reader may note that the above classi�cation of situations �whether or not the own signal

supports the empirical optimal action �makes for an unusual explanatory variable because it is

unobservable to the decisionmaker. But of course, it is correlated with other, more transparent

classi�cations. Section 4 considers an natural one, whether or not a player�s signal is in contradiction

to a strict majority of previous players�choices. This variable and the success rates under each of

its categories are highly correlated with the above-described results,7 indicating again that people

underestimate how much information is contained in other people�s choices. There is also a positive

e¤ect of unanimity of previous choices: participants are much more successful in learning from others

if the others all agree.

Section 4 presents these results in a regression analysis that projects the observed behavior on

explanatory variables that describe the nature of the situation. Importantly, one of the control

variables is the value of the empirically optimal choice. If this value is held constant, and under

the assumption of rational expectations, there is no reason for a systematic behavioral change in

response to the nature of the situation. The signi�cance test for the other explanatory variables

therefore makes for a straightforward consistent test of the hypothesis that players respond to

rational expectations. The test rejects strongly: the behavioral change depending on whether the

own signal contradicts the majority of previous choices is highly signi�cant and accounts for about

7The average earnings are 55% of the high prize in situations where the own signal contradicts the majority; were

the participants to choose the empirically optimal action in each case, they would earn 65% in these situations. In

the remaining situations, where the signal coincides with the majority of previous choices �so that the bias in favor

of the own signal may help the participants �they earn 72% out of the maximum feasible payo¤ of 75%.
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half of the total payo¤ di¤erences between the two classes of situations.

Section 5 concludes with a discussion of how the methodology may be applied in other data

contexts. It argues that the identi�cation of empirically optimal actions can be used generally in

tests of rational expectations models, if enough data is available.

2 A meta data set of cascade game experiments

Anderson and Holt�s (1997) experiment was replicated and modi�ed by numerous researchers, and

the new meta data set is restricted to this class of experiments because the structure of the game

is thereby held constant in all subsets of data.8 The following describes the game with Anderson

and Holt�s speci�c parameter values. At stage t = 0, Nature draws one of two states of the world,

! 2 � � fA;Bg, with Pr(A) = 0:5. The states are represented by two urns labelled A and B. Of

the balls in urn A, a fraction qA = 2=3 is labelled a and 1� qA is labelled b. Urn B , analogously,

has fractions of qB = 2=3 labelled b and 1 � qB labelled a. Nature�s draw is not revealed, so that

it is unknown in the remainder of the game whether balls are chosen from A or B. A set of T = 6

players makes predictions about this event. At stage t = 1, the �rst player receives a private signal,

in the form of a ball drawn from the true urn. The player then predicts the state of the world, i.e.

chooses an action d 2 �. At t = 2, the next player receives a signal from the same urn, makes a

prediction, and so on until the game ends after stage T . If a player�s prediction coincides with the

true urn, she gets a �xed amount U , here normalized to 1. Otherwise, the player gets 0.9 Social

learning is possible because at t � 2 the players observe the predictions made by all previous players

1; :::; t� 1 (but not their signals). Hence, players can make their choices dependent on the choices
8Other social learning experiments are those on learning in networks (e.g. Choi, Gale, and Kariv, 2004), on

cascade games that do not follow the Anderson/Holt format (Allsopp and Hey, 2000, Celen and Kariv, 2004, Guarino,

Harmgart and Huck, 2007) and games where agents are replaced by groups (Fahr and Irlenbusch, 2008). Several

papers also address how experimental participants play social learning games against automated opponents with

exogenously �xed behavior (Huck and Oechssler, 1999, Grebe, Schmidt and Stiehler, 2006, Kraemer, Nöth and

Weber 2004).
9Note that since there are only two possible payo¤s for each player, risk considerations would be absent under any

expected-utility model.
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of other players. Information cascades can arise in Bayes Nash Equilibrium: e.g., if the �rst two

players make an identical prediction, say, A, then in sequential equilibrium the third player chooses

A even if she has signal b. The fourth player, too, follows the prediction of the initial three players,

and so on for later players. Quantal Response Equilibrium and its variants also prescribe that the

decision makers learn from the predecessors�choices, and tend to follow them.

Anderson and Holt played the game with 18 participants, each of whom took part in 15 repeti-

tions of the game, with randomly changing player positions between the repetitions. In a separate

asymmetric treatment, 36 subjects played a modi�ed version (again with 15 repetitions), where the

proportion of a balls in urn A is qA = 6=7, and the proportion of b balls in urn B is qB = 2=7. Both

treatments are used in the analysis, yielding a total number of N = 810 decisions. The following

lists the other data sources:

� Willinger and Ziegelmeyer (1998, N = 324). Basic (symmetric) Anderson/Holt experiment,

with q � qA = qB = 0:6, 36 participants, and 9 repetitions.

� Anderson (2001, N = 270). Symmetric Anderson/Holt experiment, with q � 2=3, 18 partici-

pants, and 15 repetitions.

� Hung and Plott (2001, N = 890). Replication of Anderson/Holt with T = 10 and q = 2=3, in

three treatments with minor di¤erences in the experimental implementation. 40 participants

and 22:25 repetitions on average.

� Ziegelmeyer et al (2002, N = 810). 54 participants and 15 repetitions with T = 9, Pr(A) =

0:55 and q = 2=3. Subjects in one of the two treatments also reported beliefs about the state

of the world.

� Nöth and Weber (2003, N = 9834). Variant of the game with T = 6, where q is drawn for

each player from f0:6; 0:8g, in independent draws with equal probabilities, and the realized

signal precision is known to the player herself but unknown to other players. 126 participants

and about 78 repetitions on average.

� Oberhammer and Stiehler (2003, N = 876). Variant where subjects also announce their
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willingness to pay for playing the game, with T = 6, q = 0:6, 36 participants, and about 24

repetitions on average.

� Kübler and Weizsäcker (2004, N = 482). Variant where subjects also decide whether or not

to receive a private signal, this decision not being revealed to other players. 36 participants

and 15 repetitions, with T = 6 and q = 2=3. 68 observations are dropped from the original

data, in cases where the corresponding participants requested no signal.10

� Dominitz and Hung (2004, N = 2270). 90 participants, games with T = 10 and q = 2=3.

30 participants played 20 regular repetitions, and the other 60 participants reported belief

statements during the last 10 out of 20 repetitions.

� Cipriani and Guarino (2005, N = 161). Variant where players have an outside option, mod-

elled after the possibility not to trade in �nancial markets. 48 participants and 10 repetitions,

with T = 12 and q = 0:7. 319 observations are dropped from the original data because the

participant or one of her predecessor chose the outside option.11

� Drehmann, Oechssler and Roider (2005, N = 2789) 1840 participants played in 8 di¤erent

Internet-based treatments with di¤erent signal precisions and di¤erent values for Pr(A). 267

participants were management consultants who played among each other, with T = 7. In

addition, 1573 participants of di¤erent backgrounds (mostly students or graduates of univer-

sities) played in games with T = 20 (mostly). Participants played up to three repetitions.

� Alevy, Haigh and List (2006, N = 1647). Replication of both Anderson/Holt treatments,

with T = 5 or T = 6, 15 repetitions, and with subjects of di¤erent backgrounds: 55 �nancial

market professionals, and 54 undergraduate students. Treatments also di¤ered with respect

to gains/losses framing. Eight treatments in total.

10Receiving a signal is weakly dominant in this game.
11For risk-neutral expected-utility maximizers, the outside option is strictly suboptimal for almost all subjective

beliefs that a player may have about the state of the world. This game is the only game with three possible payo¤s,

so that risk considerations may become important. For the sake of completeness, I decided to include the (few) data

despite these di¤erences.
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� Goeree et al (2007, N = 8760). 380 participants play in four long-game treatments, with

T = 20 and T = 40, q = 5=9 and q = 2=3, and an average of 22:7 repetitions.

In total, the meta data set contains 29923 individual decisions fsig29923i=1 , made by 2813 partici-

pants in 13 separate studies. All of them follow the observation of a private signal and a (possibly

empty) string of previous choices made in analogous situations. In all of them there are two actions

and two possible payo¤s,12 but the data set nevertheless contains decisions with a large variety in

environments, instructions, and histories of other players�choices.

Frome here on, let a "decision" si be a row in the data matrix �a vector of variable realizations

that describe a partipant�s choice problem in one particular repetition of a game. Each decision si

in the data set contains the description of the game (Pr(A)i; qA;i; qB;i; Ti), the participant�s player

position ti, her choice di and the true state of the world !i.13 In addition, the following variables

are contained in si:

groupi: An identifying variable that denotes the group of participants with whom the partici-

pant played the current repetition of the game.14

treatmenti: A categorical variable that de�nes two decisions (si; sj) to be in the same treat-

ment if (i) the participants received the same instructions for the current game, and (ii) the par-

ticipants (and their opponents) are drawn from the same pool.15

Ii (information): A set of variables describing the history of play in the current repetition of

the game, including all previous choices as well as the participant�s signal. E.g. if the participant

12But with the quali�er about Cipriani and Guarino (2005) �see the previous footnote.
13 Information on !i is available for each decision �which is crucial for estimating the empirical value of each action

�thanks to the "no-lying-to-subjects" policy in experimental economics: all urn and signal draws in the experiments

were actually made according the described process, and not made up by the experimenters.
14With the exception of the Internet-based experiment by Drehmann, Oechssler and Roider (2005), the matching

of participants into groups remained constant throughout all experiments, so that no participant was part of several

groups.
15This does not require identical conditions for other parts of the experiment, e.g. for the belief elicitation in some

studies or for the number of repetitions of the game. In all cases except one, this treatment de�nition coincides with

that of the original studies�treatment de�nitions (the exception is Dominitz and Hung, 2004, who had two treatments

with di¤erent belief elicitation procedures). But most studies included additional treatments.
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in decision si acts as the �rst player in the game, she may have Ii = a, or if she acts as the third

player she may have Ii = ABa. In the case of the Nöth/Weber dataset where the signal strength

di¤ers between the participants, the information about the own signal strength is also part of Ii.16

contradicti: An indicator of whether or not the participant in decision si contradicts her own

signal �e.g. chooses d = A with own signal b.17

sitcounti: A counting variable that contains the number of times that a decision with the same

information Ii occured within the same treatment. In treatments with A=B symmetry (Pr(A) =

0:5; qA = qB), this includes situations with the symmetric information set. (E.g. AABa is viewed

as identical to BBAb.)

Let eS(si) be the set of all decisions that are identical to si, in the sense that the (treatmenti,
Ii)-description is the same. By de�nition, sitcounti = jeS(si)j. Further, let eS � feSkgk be the
resulting set of all distinct sets of identical situations: each element of eS is a set of identical

decisions and each si appears in one and only one element of eS. Notice that these de�nitions ignore
information about history of play in previous repetitions of the game, i.e. they pool situations

as identical across di¤erent histories. The subsequent analysis relies on this pooling and thereby

makes the simplifying assumption that pre-current-game history does not enter into a participant�s

decisionmaking process.18 Under this assumption it holds that the decisionmaking process in

decision si �whatever it may be � uses only information that is identical across eS(si) because
all that the participants learn about the random draws or about the possible characteristics of

other players is re�ected in (treatmenti, Ii).19 The following variable estimates the value of this

16 In e¤ect, there are four di¤erent signals in this data set: a� weak; a� strong; b� weak and b� strong.
17For this de�nition to apply also in the case of the Nöth/Weber experiment where there are four signals, the

phrase "contradicts her own signal" is to be understood e.g. as a choice of B after observing a signal a � weak or

a� strong.
18The assumption is restrictive but still relatively mild: it is di¢ cult to learn about other player�s strategies in social

learning games because their signals remain unknown and player positions change after each repetition of the game.

Several studies (e.g. Kübler and Weizsäcker, 2004) looked for behavioral changes over the course of the experiments

and found at most weak changes. The meta data set allows for further checks, which support the assumption. For

example, the frequency of following the own signal changes by 0.6 percentage points between the �rst and the second

half of the experiments (0.767 versus 0.761).
19This observation about the information being constant across eS(si) is correct only in the pure case of complete
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information, using the ex-post knowledge about !i, the true underlying state of the world. It is

the key ingredient of the analysis �the empirical value of contradicting one�s signal.

mean_payjcontradicti: Averaging across situations sj 2 eS(si), the payo¤ that the partici-
pant earns if she chooses contradicti=1. Due to the payo¤ normalization, this variable is identical

to the frequency across sj 2 eS(si) of the participant�s signal being wrong, i.e. the state of the world
!j not being indicated by the signal.

The variable mean_payjcontradicti is an average of a �nite sample. As sitcounti increases, this

average approaches the mean of the corresponding random variable, i.e., it approaches the expected

payo¤ from contradicting one�s signal, conditional on all available information. This conditional

expected payo¤ is what that the player should care about: she should contradict her signal if the

expected payo¤ from doing so exceeds 0:5.

For small sitcounti, however, mean_payjcontradicti may be far away from its expected value. I

will therefore restrict attention to cases where there are strictly more than 10 occurances of identical

situations in the data set, i.e. where sitcounti = jeS(si)j > 10. Almost half of the decisions are

therefore not considered in the statistical analysis: out of the 29923 situations, 15734 remain in

the restricted data set. To give the reader an impression of the resulting selection of the subsample

as well as a general overview of the data, the following two tables present some features of the

restricted data set (�rst entry in each cell) and the full data set (second entry, in italics). Table 1

organizes the data by decisions fsigi, and Table 2 by distinct decisions feSkgk (so that each distinct
decision counts only once for the reported values in Table 2).

anonymity between the participants during the experiment. If participants can observe each other�s person-speci�c

characteristics, there are informational di¤erences even within eS(si) �but these should be minor. Another caveat is
that unobservable di¤erences between experimental sessions within the same treatment cannot be taken into account.
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# of

decisions

ave. of

sitcounti

from largest

data set

history of only A

or only B

ti=1
3198

3306

456.8

442.1

51.6% (NW)

49.6% (NW)

-

-

ti=2
3025

3304

263.1

241.5

54.2% (NW)

49.7% (NW)

-

-

ti=3
2727

3301

141.8

118.1

60.1% (NW)

49.7% (NW)

63.2%

60.6%

ti=4
2379

3298

87.0

64.2

68.9% (NW)

49.7% (NW)

49.4%

43.5%

ti=5
2024

3289

63.6

40.8

80.1% (NW)

49.8% (NW)

43.1%

34.8%

ti=6
1844

3120

51.7

32.1

83.7% (NW)

52.5% (NW)

40.0%

30.4%

ti=7
136

884

35.5

8.0

83.1% (DH)

36.4% (GMPR)

100.0%

31.0%

ti=8
134

880

33.8

7.2

82.1% (DH)

36.6% (GMPR)

100.0%

29.1%

ti=9
139

878

28.9

6.3

91.4% (DH)

36.7% (GMPR)

91.4%

26.3%

ti=10
128

788

32.8

6.8

82.0% (DH)

40.9% (GMPR)

100.0%

22.2%

ti>10
0

6875

-

1.2

-

80.6% (GMPR)

-

4.8%

total/ave.
15734

29923

196.5 (ave.)

104.5 (ave.)

61.9% (NW)

32.9% (NW)

52.9% (ave.)

29.1% (ave.)

Table 1: Decisions in fsigi, split up according to player position t. Note: The �rst entry in each cell

described the restricted data set where sitcounti > 10, the second, italicized entry describes the full data

set. Abbreviations: NW-Nöth/Weber 2003, DH-Dominitz/Hung 2004, GMPR-Goeree et al 2007.
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# of distinct

decisions

ave. of

sitcounti

from largest

data set

history of only A

or only B

ti=1
38

62

84.2

53.3

31.6% (AHL)

35.5% (DOR)

-

-

ti=2
52

116

58.2

28.5

19.2% (AHL)

31.0% (DOR)

-

-

ti=3
59

206

46.2

16.0

25.4% (GMPR)

29.1% (AHL)

64.4%

50.5%

ti=4
59

338

40.3

9.8

27.1% (NW)

27.8% (AHL)

54.2%

29.0%

ti=5
53

534

38.2

6.2

60.4% (NW)

25.7% (AHL)

43.3%

17.2%

ti=6
64

629

28.8

5.0

76.6% (NW)

17.0% (GMPR)

28.1%

10.5%

ti=7
5

434

27.2

2.0

60.0% (DH)

37.3% (GMPR)

100.0%

8.3%

ti=8
5

506

26.8

1.7

60.0% (DH)

39.5% (GMPR)

100.0%

7.1%

ti=9
6

543

23.2

1.6

83.3% (DH)

41.8% (GMPR)

83.3%

5.7%

ti=10
5

528

25.6

1.5

60.0% (DH)

46.2% (GMPR)

100.0%

3.9%

ti>10
0

6400

-

1.1

-

79.4% (GMPR)

-

1.7%

total/ave.
346

10296

45.5 (ave.)

2.9 (ave.)

32.1% (NW)

59.7% (GMPR)

51.2% (ave.)

5.8% (ave.)

Table 2: Distinct decisions in eS, split up according to player position t. Note: The �rst entry in each
cell describes the restricted data set where sitcounti > 10, the second, italicized entry describes the full

data set. Abbreviations: AHL-Alevy/Haigh/List 2006, DOR-Drehmann/Oechssler/Roider 2005,

NW-Nöth/Weber 2003, DH-Dominitz/Hung 2004, GMPR-Goeree et al 2007.12



The tables show the large variety of decision situations in the meta data set. For example, the

�rst entries in the cells of the second column of Table 2 show that for each of the player position

up to t = 6, there are between 38 and 64 distinct decisions among those with sitcounti > 10. The

second column of Table 1 shows that these sets of distinct situations comprise several thousand

individual decisions at each player position. For player positions 7; :::; 10, which appear in only

six experiments, there are much fewer suitable decisions available, and not a single decision with

t > 10 satis�es the requirement that sitcounti > 10.

The third columns of the two tables show the strong decrease of sitcounti for increasing player

positions: due to the fact that later positions can have many more di¤erent histories, their average

number of identical decisions is much lower. Nevertheless, there are large numbers of identical

decisions even in later positions. E.g. for t = 6, each of the 1844 decisions that are included in the

restricted data set appears 51.7 times on average. Averaging across all decisions in the restricted

data set, decisions appear identically in 196.5 cases each. Table 2 shows that averaging across

distinct decisions, each decision appears 45.5 times �this is necessarily lower because the decisions

with many identical occurances do no get larger weight in this average.

The fourth columns show the respective largest proportions of observations from an individual

data set. Table 1 reveals that in the restricted data set, the experiment by Nöth and Weber (2003),

which had many identical games, is rather dominant particularly for player positions t = 5 and

t = 6. This is the main reason for not increasing the cuto¤ value for sitcounti to a higher value than

10: requiring an even higher number of identical decisions would have increased the precision of

mean_payjcontradicti, but it would also have restricted the meta data set even more to its largest

homogeneous subset of decisions. While it is not clear that this or any other kind of selection would

introduce problematic biases �because all included experiments are selected situations anyway, and

all of them are carefully designed and are equally suitable to detect social learning patterns � it

would certainly run counter to the idea of a meta analysis and would reduce the variablility of

explanatory variables that are included in the regressions of Section 4.20

20 In parallel to the contents of the next sections, robustness checks were run where the cuto¤ was increased to

sitcounti > 30 as well as a separate analysis where the data by Nöth and Weber (2003) were excluded. All linear

regressions were also repeated with a probit model. Unless noted otherwise, the results were similar.
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The �fth columns of the tables show the proportions of decisions that follow a history where

all predecessors agree in their choices. These are potential decisions where social learning should

be most prevalent, and they are also relatively simple decisions. The tables show that the selection

e¤ect on this variable due to the restriction sitcounti > 10 is not very strong for player positions up

to t = 6, which make up most of the restricted data set. For player positions t = 1 and t = 2, the

variable is not de�ned because there can be no disagreement yet, and for postions 3; :::; 6, about

half of the decisions follow a history where all previous players agreed.

3 Reluctance to contradict one�s own information

This section shows the main result concerning the question in the title of the paper. Figure 1

plots mean_payjcontradicti against the proportion of contradicting one�s signal among all identical

situations. That is, for each decisions si with sitfreqi > 10, the �gure contains a marker with

x-value mean_payjcontradicti and y-value given by the following variable.

prop_contradicti: Frequency of contradictj = 1 across all sj 2 eS(si).
Every marker in the scatterplot re�ects one of the 364 distinct decisions. The regression uses all

15734 individual decisions and not just each distinct situation once, thereby weighting according

to sitfreqi. It includes an intercept plus linear, squared and cubed terms of the regressor variable.

The �gure shows a large discrepancy between decisions where mean_payjcontradicti is small

versus large: for the decisions in the left half of the �gure, where the own signal is correct in more

than half of the cases, the participants mostly make the correct choice and follow their signal.

In contrast, in the decisions depicted in the right half of the �gure the frequency of the signal

being correct is smaller than one half but the participants often fail to contradict their signal. Had

they made the payo¤-maximizing choice in each case, or even approximately so, the regression

line would be an S-shaped line through (0:5; 0:5), which is a possible shape of the �tted line with

squared and cubed regressors, and it would lie close to 1 in the right half of the �gure. But the

proportions in the right half are mostly far away from this optimum. Averaging over all decisions

with mean_payjcontradicti � 0:5, the frequency of the optimal choice is 0:44. In contrast, for the

decisions in left half of the �gure, they make the optimal choice with a frequency of 0:91.
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Figure 1: Proportion of contradicting own signal across all decisions in the restricted data set

with sitcounti > 10. Note: 346 distinct decisions, 15734 individual decisions in total. Regression

includes linear, squared and cubed x-variable.
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The correspondence at least has the right slope as the proportion of contradicting the signal in-

creases in mean_payjcontradicti. A natural question to ask is how large does mean_payjcontradicti
have to be for the average participant to optimally contradict their own signal with more than prob-

ability 0:5. The answer is most easily seen by observing that the regression line reaches the level of

0:5 at mean_payjcontradicti = 0:68. (Considering a series of subsamples of the data, conditioning

on prop_contradicti, would yield the same result.) The empirical likelihood of the own signal being

correct therefore has to be very low before the typical participant discards the signal. On average,

only in decisions where the signal is wrong more than twice as often as it is correct (i.e., at an

empirical odds ration of 2:1 against the signal) do the participants contradict this signal with a

frequency of more than one half.

Without making any assumptions on the process of decisionmaking, one can conclude from these

observations that choices cannot be best responses to rational expectations about the underlying

distributions. Whatever the true structure of the data generating process, it cannot be that the

participants optimally respond to it because otherwise the proportions in the right half of the �gure

would lie closer to 1. One can even reject that participants only imperfectly respond to rational

expectations but in a way that is unbiased between following and contradicting the own signal.

Under such a model, rational expectations would still imply that the unsystematic disturbances

would only attenuate the S-shape in the estimated correspondence: for large samples the regression

consistently estimates the frequency of contradicting the own signal as a function of this action�s

value (consistent for sitcounti !1). Under rational expectations the turnover point therefore lies

at mean_payjcontradicti = 0:5. But the vertical distance between the regression line and (0:5; 0:5)

is highly signi�cant.21 22 Section 4 will provide further tests and a more precise formulation of the

21The t-value for the vertical distance between the regression line and (0:5; 0:5) is t = �24:15 in a regression where

the errors are clustered by groupi.
22A straightforward argument rules out the possibility that the failure of the regression line to go through (0:5; 0:5)

is driven entirely by random deviations of mean_payjcontradicti from its true expected value. One can estimate

the standard deviation of mean_payjcontradicti for each decision si, using the fact that mean_payjcontradicti is a

counting variable with a known sample size. The mean of these estimated standard deviations is 0:05, far smaller

than the horizontal distance of the regression line from (0:5; 0:5). Another possible check of the potential impact

of limited sample sizes is to consider only cases where sitcounti exceeds more stringent thresholds, so that more

16



rational expectation hypothesis.

But recall the discussion in the introduction, where it was argued that the frequency of making

the optimal choice is only a partial indicator of success because the particpants earn more from

making the optimal choice in some situations than in others. To calculate the payo¤of a participant

in decision si, let p(contradicti) be her probability of choosing contradicti = 1. Her expected

earnings are

E[�i] = p(contradicti) � E[�ijcontradicti = 1] + (1� p(contradicti)) � E[�ijcontradicti = 0].

Here, E[�ijcontradicti = 1] is the expected payo¤ from contradicting the signal �which varies

between decisions si; sj if they are not identical, and cannot be in�uenced by the particpant�s action.

Due to the fact that one action yields 1 i¤ the other action yields 0, it holds that E[�ijcontradicti =

0] = 1� E[�ijcontradicti = 1], so the expression can be rewritten as

E[�i] = p(contradicti) � (2E[�ijcontradicti = 1]� 1) + 1� E[�ijcontradicti = 1]. (1)

Substituting the sample means into this expression � prop_contradicti for p(contradicti) and

mean_payjcontradicti for E[�ijcontradicti = 1] �yields the actual average earnings in decisions

that are identical to si. Applying this calculation to all decisions where mean_payjcontradicti � 0:5

shows that in these situations the participants earn 0:53 of the normalized pie size. In contrast,

had they chosen p(contradicti) = 1 in all of these decisions, they would have earned 0:64, and they

would have earned 0:36 from doing the opposite, p(contradicti) = 0. Had they simply randomized

between A and B, they would have predicted the correct urn in half of the cases and therefore

would have earned 0:5. Hence, their actual earnings are much closer to the payo¤ from simple

randomization than they are to the payo¤-maximizing strategy. In contrast, the same calculation

for the decisions with mean_payjcontradicti < 0:5 shows that in these situations the success of the

participants is much higher: when following the own signal is optimal, the participants earn 0:73

out of the 0:75 that they could have earned if they had always made the optimal choice.

reliable values of mean_payjcontradicti are used. The pattern is unchanged when such additional restrictions are

made (sitcounti > 30 and sitcounti > 50, respectively).
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But from this analysis one cannot tell whether there is a bias in one class of situations, or the

other class, or in both �one can only establish a discrepancy between the two. Evidently, the data

pattern suggests that relative to rational expectations, the participants have a general tendency to

follow their signal. To the extent that such a bias exists also in the left half of Figure 1, this bias

would help the participants to make the optimal choice. In the right half of the �gure, such a bias

would be harmful and particpants could earn more if they were to overcome it. But little can be

said about where the anomaly occurs.

In the absence of a structural model of behavior, the analysis therefore does not reveal much

about the nature of the deviations from rational expectations. The next section will yield some

insights on this issue, by looking for additional systematic patterns across di¤erent subsets of the

data. It will demonstrate that the participants�ability to learn from others depends on whether

the other players�actions are in contradiction to the own signal and whether the other participants

show an unambiguous string of actions.

I also wish to point out clearly that other contributions to the literature have formulated models

and other arguments that speak to the evidence presented above. Willinger and Ziegelmeyer (1998)

were the �rst to raise the tendency to follow the own signal, which was later discussed most explicitly

in Nöth andWeber (2003) and Goeree et al (2007). In the model estimates of Goeree et al (2007), the

weight on the own signals is estimated to be signi�cantly higher than the weight of a player�s belief

before observing the signal. In the error-rate analyses of Nöth and Weber (2003), Oberhammer

and Stiehler (2003), Kübler and Weizsäcker (2004) and Kraemer, Nöth and Weber (2006), related

arguments are given in the observations that the participants appear to attribute too low precision

to other players. But all of these earlier results rely on much more restrictive assumptions about

the decisionmaking process, and none has assessed the economic signi�cance of the deviations from

optimal play in much detail. This is further pursued in Section 4.
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4 Accounting for losses: Behavioral versus situational determi-

nants of payo¤s

This section investigates co-variates of behavior, with the initial goal of identifying conditions

under which social learning is more or less successful, measured by the frequency with which

the participants choose the empirically optimal action. The section will then demonstrate that a

substantial proportion of the payo¤ variation between these di¤erent conditions can be attributed

to behavioral deviations from a rational-expectations benchmark. For this demonstration, the value

of the available information will be held constant across di¤erent situations, so that the remaining

payo¤ di¤erences can be attributed to changes in the participants�behavior.

The �rst explanatory variable of interest is a proxy for the amount of available information. It

describes whether the participants observe more or fewer other participants in the current repetition

of the game:

latei: An indicator variable that takes on the value of 1 if the participant has player position

t � 5.

One may expect that social learning is more successful in cases where latei = 1 because people

may be more easily pursuaded to pay attention to others if the amount of observable actions is

large. On the other hand, they may also �nd it harder to interpret a large set of actions relative to

a small set.

The second variable of interest indicates whether or not the actions of other players tend to

contradict the player�s own signal.

counter_majorityi: An indicator of whether or not the player�s own signal is in contradiction

to a strict majority of the predecessors�actions. (For example, if predecessors�s actions are AAB

and the participant�s signal is b.)

Given that the previous section has already demonstrated a systematic tendendcy towards fol-

lowing the own signal, it is natural to suspect that the participants are more successful in situations

where other players�actions indicate that they received the same signal (counter_majorityi = 0),

because in these situations the signal tends to be correct.23

23Not surprisingly, counter_majorityi is highly correlated with the separation in Section 3, according to
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The third co-variate is whether the previous players in the current game unanimously chose the

same action.

full_agreementi: An indicator that is 1 if all predecessors chose A or all predecessors chose

B, in the current repetition of the game.

Perfect agreement among predecessors can potentially make learning more successful because

the string of observations is easier to interpret. On the other hand, if a player makes the mis-

take to follow the own signal too often, then this mistake may be more costly in cases with

full_agreementi = 1 because in these cases it is more likely that the other players are correct.

Another possibility �which will be con�rmed below �is that full agreement among other players

has a especially strong e¤ect on the success of learning when it is interacted with the length of the

observed string of actions (latei). Such an interaction e¤ect may arise e.g. due to the di¢ culty of

interpreting long strings of observations that are not unanimous.

The following is the dependent variable of all regressions in this section. It measures whether

the participant chooses the action that is empirically optimal.

optimali: An indicator of whether or not the participant chooses the action with higher em-

pirical value. If mean_payjcontradicti > 0:5, then optimali is 1 i¤ the participant contradicts her

signal. If mean_payjcontradicti � 0:5, optimali is 1 i¤ the participant follows her signal.

The following variable is the empirical value of the optimal action (paralleling the calculation

of mean_payjcontradicti):

mean_payjoptimali: The frequency across sj 2 eSi of receiveing the high payo¤ from choosing
optimali = 1.

The variable mean_payjoptimali is included as a control in some of the subsequent regressions.

Controlling for the value of the actions is relevant because the participants may exhibit a payo¤-

sensitive precision of play. For decisions where the empirical value of making the correct choice

is low (close to 0:5) the participants may have a relatively low success rate, by either of three

mean_payjcontradicti <> 0:5. In the restricted dataset with sitcounti > 10, there are 5146 decision with

counter_majorityi = 1, of which 4012 also have mean_payjcontradicti > 0:5. The conceptual di¤erences are that

the value of counter_majorityi is observable to the participants and that it does not rely on estimates of underlying

values, which makes the interpretation of results simpler.
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mechanisms: (i) a larger di¢ culty of �nding the optimal action, (ii) a consciously higher likelihood

to deviate in situations where less is at stake, (iii) the fact that mean_payjoptimali measures

the "true" underlying expected value with measurement error, so that the optimal action may

be misclassi�ed for cases where mean_payjoptimali is close to 0:5. In either case, given that the

dummy variables are correlated with mean_payjoptimali, the latter should be included.

With such a control, the dummy coe¢ cients in the regressions have a distinct interpretation:

they describe the size of behavioral changes that are associated with the nature of the situation (as

captured by the dummies), but not with the importance of making the respective choices. Under

the assumption that the participants have rational expectations about the underlying distributions

and best respond to these expectations with equal precision across the dummy categories, all of the

dummy coe¢ cients are predicted to approach zero as mean_payjcontradicti approaches the true

expected payo¤. The regressions with controls therefore represent a simple test of the hypothesis

that people respond to rational expectations.

The following gives a precise de�nition of the rational-expectations hypothesis that is tested

here. Let xi � (treatmenti, Ii) be the vector of variables that is observable to the decisionmaker

in situation si, including the explanatory dummies that are de�ned above. The hypothesis is that

the player uses the relevant payo¤ information that is contained in xi, but disregards xi otherwise:

a player exhibits (probabilistic) best responses to rational expectations if action A is chosen i¤

E[�ijA;xi]� E[�ijB;xi] + �i � 0

where �i is i.i.d. across i, with a distribution F that is symmetric around zero, and independent of

xi. The choice probability is therefore

pi(A) = 1� F (E[�ijA;xi]� E[�ijB;xi])

= 1� F (2E[�ijA;xi]� 1).

Since the labelling choice of actions A and B is arbitrary in this formulation, one can write the

probability of making the empirically optimal choice as 1�F (2E[�ijoptimali;xi]�1), which depends

on E[�ijoptimali;xi] alone. Therefore, if a regression controls for E[�ijoptimali;xi] but includes

elements of xi as separate regressors (the dummies) then the latters�coe¢ cients are predicted to be
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zero. Since mean_payjoptimali approaches E[�ijoptimali;xi] for large sample sizes (sitcounti !

1), the t-tests for the dummies in a regression with controls for mean_payjoptimali are consistent

tests of rational expectations.

In addition, the following tables will also contain regressions where mean_payjoptimali is not

included. These regressions only contain dummy variables, thus allowing to read o¤ the average

success rates for each category from the estimated coe¢ cients.

Table 3 considers in columns (1) to (8) the main e¤ects of the above explanatory variables. In

all of the subsequent analysis, attention is restricted to player positions t � 2, i.e. to those players

who observe at least one predecessor in the current repetition of the game.

optimali

(1) (2) (3) (4)

latei 0.116 (.009) -0.002 (0.008) -

counter_majorityi - - -0.343 (.013) -0.199 (.015)

full_agreementi - - - -

mean_payjoptimali - 24.055 (4.583) - 23.077 (4.277)

mean_payjoptimal2i - -26.864 (6.043) - -26.145 (5.623)

mean_payjoptimal3i - 10.176 (2.618) - 9.918 (2.427)

constant .705 (.009) -6.370 (1.140) 0.887 (0.009) -5.861 (1.068)

# of obs. 12536 12536 12536 12536

R2 0.016 0.217 0.150 0.255

Table 3: Frequencies of making the empirically optimal choice. Note:

Data includes cases with sitcounti > 10 and t � 2. Robust standard errors

in parentheses, clustered by groupi.
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optimali

(5) (6) (7) (8)

latei - - 0.126 (.010) 0.039 (0.009)

counter_majorityi - - -0.348 (0.013) -0.211 (0.016)

full_agreementi -0.010 (0.015) 0.001 (0.010) 0.062 (0.013) 0.034 (0.012)

mean_payjoptimali - 24.101 (4.582) - 24.128 (4.163)

mean_payjoptimal2i - -26.929 (6.054) - -27.644 (5.469)

mean_payjoptimal3i - 10.205 (2.626) - 10.580 (2.363)

constant 0.752 (.011) -6.381 (1.135) 0.805 (0.013) -6.117 (1.037)

# of obs. 12536 12536 12536 12536

R2 0.000 0.217 0.170 0.257

Table 3 (ctd.): Frequencies of making the empirically optimal choice.

optimali

latei=0 latei=1

(9) (10) (11) (12)

full_agreementi -0.048 (0.021) -0.024 (0.013) 0.119 (0.014) 0.080 (0.013)

mean_payjoptimali - 26.689 (6.444) 1.345 (5.398)

mean_payjoptimal2i - -28.364 (8.485) -1.372 (7.054)

mean_payjoptimal3i - 10.039 (3.671) 0.839 (3.024)

constant 0.740 (0.017) -7.382 (1.602) 0.764 (0.010) 0.157 (1.352)

# of obs. 8131 8131 4405 4405

R2 0.002 0.285 0.024 0.084

Table 3 (ctd.): Frequencies of making the empirically optimal choice.
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optimali

latei=0 latei=1

(13) (14) (15) (16)

counter_majorityi -0.246 (0.032) -0.052 (0.032) -0.176 (0.021) -0.158 (.023)

full_agreementi 0.109 (0.020) 0.067 (0.016) 0.146 (0.011) 0.102 (0.011)

(counter_majorityi

� full_agreementi)
-0.221 (0.034) -0.178 (0.030) -0.075 (0.032) -0.035 (0.030)

mean_payjoptimali - 27.603 (5.700) 5.423 (5.269)

mean_payjoptimal2i - -31.046 (7.480) -5.943 (6.878)

mean_payjoptimal3i - 11.614 (3.232) 2.325 (2.937)

constant 0.804 (0.018) -7.244 (1.426) 0.835 (0.012) -0.867 (1.315)

# of obs. 8131 8131 4405 4405

R2 0.208 0.315 0.010 0.126

Table 3 (ctd.): Frequencies of making the empirically optimal choice.

The overriding feature of the regressions is the strongly negative e¤ect of counter_majorityi.

In situations where most previous players choose a di¤erent action than is indicated by a partic-

ipant�s signal, her frequency of making the empirically optimal choice is much lower. The dif-

ference in frequencies is 0:343, relative to an average success rate of 0:887 in the situations with

counter_majorityi = 0, see column (3). The result corresponds to the tendency described in Section

3: people far too often follow their own signals, and this is harmful in situations where the majority

of previous choices indicates that the signal is likely wrong. In part, the result can be explained by

the di¤erent incentives that the participants face depending on the value counter_majorityi. As

column (4) shows, controlling for the incentives by including mean_payjoptimali reduces the size

of the coe¢ cient on counter_majorityi. This re�ects the fact that mean_payjoptimali is lower in

situations where counter_majorityi = 1, and that participants make the empirically optimal choice

more often when it is important. But even when mean_payjoptimali is controlled for, the partial

e¤ect of counter_majorityi is �0:199, a large and highly signi�cant deviation from the hypothesis
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of best responding to rational expectations.

The variable latei has a positive coe¢ cient in column (1), indicating that participants in posi-

tions t � 5 have a higher success rate on average, by 11.6 percentage points. However, controlling

for mean_payjopti in column (2) shows that the higher success is entirely associated with the

higher incentive to make the optimal choice. Holding mean_payjopti constant, the success rates

are virtually identical between earlier and later positions in the game. Higher earnings for later

players are therefore associated with the higher lucrativity of situations. The rate of optimal play

improves for later players in the game, but only in correspondence with the higher incentives.

The variable full_agreementi is not correlated with success rates, unless the other dummy

variables are introduced as well (columns (5) to (8)).24 This is surprising because one would have

expected learning to be easier when full_agreementi = 1. But the di¤erence between the results

in columns (5) and (6) versus (7) and (8) points at a potential interaction between the dummy

variables, which is examined next. Columns (9) to (16) interact the three variables of interest, by

separating the data according to latei and, in columns (13) to (16), by including an interaction term

for (counter_majorityi� full_agreementi). The regressions show that a full agreement among the

previous players can indeed strongly increase the success rate, but especially for late positions in

the game. This is most directly seen in columns (9) to (12), where full_agreementi has a signi�cant

and positive e¤ect only in the subsample with latei = 1.

The interaction e¤ect of latei and full_agreement is further clari�ed if it is also interacted with

24The results on full_agreement are not all robust to excluding subsamples. When restricting the sample to t � 3

instead of t � 2, there is a small but signi�cant e¤ect of full_agreementi: the dummy coe¢ cient in regression (5)

changes to 0.050 (std. err. 0.014). But in column (7), the analogous coe¢ cient is 0.001 (0.010). When excluding the

largest individual data set, Nöth and Weber (2003), full_agreementi is signi�cantly and strongly positively correlated

with optimali, with dummy coe¢ cients of 0.160 (0.038) and 0.20 (0.038) in the regressions corresponding to columns

(5) and (7), and 0.120 (0.039) and 0.176 (0.085) in columns (9) and (11). However, when mean_payjoptimali is

controlled for, parallel to the regressions in columns (6), (8), (10) and (12), the coe¢ cients are reduced to 0.053

(0.032), 0.111 (0.035), 0.050 (0.033) and -0.006 (0.076), respectively. All other results of Tables 3 are qualitatively

unchanged when the data are restricted to subsets that exclude t = 2 situations or the data from Nöth and Weber

(2003), or to observations with sitcounti > 30. All conclusions from Table 3 are also supported by repeating the

regressions as a probit instead of linear model.
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counter_majorityi, in columns (13) to (16). First consider the case that counter_majorityi = 0.

For these cases, the coe¢ cients of full_agreementi show that observing an unanimous set of actions

increases the success rate by 0:109 for latei = 0 and by 0:146 for latei = 1. This con�rms the results

of columns (9) to (12) to a somewhat weaker degree, for those situations where the majority of

previous actions and the participants�s own signal are in agreement. But for counter_majorityi = 1

and latei = 0, the participants in situations with full_agreementi = 1 have a lower success rate

than with full_agreementi = 0, by a di¤erence of 0:109 � 0:221 = �0:112 .25 For latei = 1, on

the other hand, the participants in situations with full_agreementi = 1 have a success rate that is

higher by 0:146� 0:075 = 0:071, as one would expect.

In sum, the discussion shows that for later players, the positive e¤ect of having previous players

who all agree is larger than for early players. The e¤ect counteracts to a substantial degree the

negative e¤ect of counter_majorityi: in situations where all three dummy variables are 1 (e.g.

histories with information AAAAb or AAAAAb), the average success rate is 0:730, which is higher

than in any other constellation with counter_majorityi = 1. In other words, the participants are

fairly successful in learning from others only when the evidence conveyed by the others�choices is

strong (latei = 1) and unambiguous (full_ageementi = 1).

Controlling for the empirical value of the optimal action (in regression in even-numbered

columns) does not qualitatively change these conclusions but only reduces the size of the e¤ects

somewhat. This shows again that the hypothesis of best responding to rational expectations is

violated �the participants exhibit systematically lower success rates in those situations where the

actions of others are not unambiguous.

As an illustration, Figure 2 contains the same variables as Figure 1, plotting the empirical value

of contradicting one�s signal against the corresponding frequency, but highlights with solid markers

25 In part, this is driven by the observation that players at positions t = 2 and t = 3 have a very low success rate

if counter_majority= 1 (0:404 and 0:453, respectively) and that by de�nition of the variables, in these cases it is

always true that full_agreementi = 1 holds because there cannot be a strict but ambiguous majority with only one

or two predecessors. But it also re�cets that there is no positive e¤ect of full_agreementi even for players at t = 4:

conditional on counter_majorityi = 1 and ti = 4, the frequency of optimali is 0:558 for full_agreementi = 0 and

0:564 for full_agreementi = 1.
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Figure 2: Proportion of contradicting own signal. Note: See Figure 1. Highlighted situations are

those with latei = 1 and fullagreehisi = 1:

the set of situations with latei = 1 and full_agreementi = 1. The solid line is the regression line of

this subsample, whereas the dashed line is for the remaining subsample. As the �gure shows, the

rate of contradicting the own signal when it is optimal are much higher if the history of previous

choices is long and unanimous. These situations are the typical cascade situations, where Bayes

Nash Equilibrium predicts that players disregard their signals. The fact that the success rates are

much lower in the remainder of the situations was never emphasized in the previous literature, to

my knowledge. Instead, the high success rates along paths where cascades would theoretically arise

was often pointed out (see e.g. Anderson and Holt, 1997, Kübler and Weizsäcker, 2005).

The remainder of the section describes the payo¤s of participants in the di¤erent classes of

situations that are captured by the dummy variables, and discusses the relative e¤ect of behavioral
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versus situational in�uences on the payo¤ variance. I will restrict attention to the two identi�ed

signi�cant e¤ects of counter_majorityi (columns (3), (4) of Table 3) and of full_agreementi for

later player positions (columns (11), (12)). The relevant distinction between the two former classes

of situations will be adressed in Table 4, and the latter in Table 5.

The �rst step is to calculate the obtained payo¤s for the di¤erent classes of situations. Parallel

to expression (1) one can calculate the average realized payo¤ in all situations that are identical to

si as

mean(�i) = mean(optimali) � (2 �mean_payjoptimali � 1) + 1�mean_payjoptimali. (2)

The row labelled "realized earnings" in Table 4 shows the corresponding values (averages of

mean(�i) across all situations) for each of the categories of counter_majority. Across all situations

with counter_majorityi = 0, the participants receive an average payo¤ of 0:748, and they receive

an average payo¤ of 0:545 if counter_majorityi = 1.

Had they always chosen the empirically optimal action, how much would they have earned?

This can be calculated by replacing optimali by 1 in expression (2). The row labelled "maxi-

mum earnings" shows the corresponding calcualtion results. Comparing realized with maximum

earnings, it shows that for counter_majorityi = 1, the realized earnings are much further from

their maximum than for counter_majorityi = 0. But the entries also show that situations with

counter_majorityi = 1 are much more lucrative: choosing the optimal action yields 0:785 on

average, compared to 0:648 in situations with counter_majorityi = 1. Overall, the calculations

illustrate that the di¤erence in the realized earnings is driven by both the di¤erence in behavior

and the di¤erence in incentives. Both components have a substantial impact.

To explore this further, one can ask the following counterfactual question: by how much would

the di¤erence in the earnings decrease if the di¤erence in behavior was absent? For example, how

much would earnings under counter_majorityi = 1 increase if the participants were equally suc-

cessful in making optimal choices as under counter_majorityi = 0? The answer can be generated

by replacing mean(optimali) in expression (2) by (mean(optimali)� dummy coefficient), where

the dummy coe¢ cient is taken from the regressions of column (3) or (4) of Table 3. This coef-

�cient measures the di¤erence in the success rates, so that subtracting it generates the desired
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counterfactual behavioral change. The di¤erence to the realized payo¤s is then given by

� bE[�i]j1! 0 = �dummy coefficient � (2 �mean_payjoptimali � 1),

which is reported in the last row of Table 4. Similarly, the term � bE[�i]j0 ! 1 in the preced-

ing row measures the counterfactual change in payo¤s under counter_majorityi = 0 that would

arise if behavior was equally (un)successful as in situations with counter_majorityi = 1. For each

of the two rows, the �rst entry measures the counterfactual payo¤ increase when using only the

simple dummy regression of column (3) of Table 3 �hence uses the simple di¤erence in the data

average as the dummy coe¢ cient � whereas the second entry uses the regression that controls

for mean_payjoptimali when describing the behavioral di¤erence (column (4)). Recall that un-

der the hypothesis that participants best respond to rational expectations, the inclusion of such

controls should capture any impact of the nature of the situation, including the dummy values.

Hence, the counterfactual payo¤ changes in Table 4�s columns (2) and (4) are estimates of the

payo¤ changes that are associated with the observed deviations from rational expectations. For

example, the entries in column (4) of Table (4) show that if behavior was equally successful under

counter_majorityi = 1 as it is under counter_majorityi = 0, payo¤s under counter_majorityi = 1

would increase by almost 6 percentage points, to about 0:61. The observed payo¤ di¤erences

between the two classes of situations would be substantially reduced if behavior was identical.

Table 5 repeats the above exercises for the distinction between situations where full_agreementi =

1 versus full_agreementi = 0, both conditional on latei = 1. Here, too, it shows that the sizable

di¤erences in realized payo¤s between the two classes of situations (0:759 versus 0:663) would be

substantially reduced �to at most half of the actual di¤erence �if behavior was equally successful

in both categories. This con�rms that also for this second "irrational" reaction to the nature of

situations, the payo¤ was strongly a¤ected.
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counter_majorityi = 0 counter_majorityi = 1

(1) (2) (3) (4)

controls for

mean_payjoptimal
no yes no yes

realized earnings 0.748 0.545

maximum earnings 0.785 0.648

� bE[�i]j0! 1 -0.195 -0.114 - -

� bE[�i]j1! 0 - - 0.101 0.059

Table 4: Payo¤ results in response to behavioral variations

depending on counter_majorityi

full_agreementi = 0

latei = 1

full_agreementi = 1

latei = 1

(1) (2) (3) (4)

controls for

mean_payjoptimal
no yes no yes

realized earnings 0.663 0.759

maximum earnings 0.758 0.813

� bE[�i]j0! 1 0.061 0.041 - -

� bE[�i]j1! 0 - - -0.074 -0.050

Table 5: Payo¤ results in response to behavioral variations

depending on full_agreementi
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5 Conclusions

The paper presents a large meta dataset from thirteen cascade game experiments, and applies a

simple counting technique to infer that the success rate is low in decisions where it would be optimal

to follow the choices of others. This demonstrates a violation of rational expectations about the

conditional likelihoods of the states of the world. This conclusion can be drawn without imposing

any structural model of what players might believe about the behavior of the players that acted

before her.

The paper also discusses the payo¤ impact that the deviations from rational expectations have.

In situations where the own signal runs counter to a strict majority of previous choices, the partic-

ipants earn much less than in the remaining situations, and it is estimated that the "behavioral"

deviations from rational expectations account for a large share of the payo¤ di¤erence. If the par-

ticipants were as successful in identifying the optimal choice in these decisions as they are in the

remaining decisions, the payo¤ di¤erence would be reduced by a proportion between one quarter

and one half. A similar result occurs for cases where the previous players were not in full agreement,

which causes players to mis-read the available information and forgo substantial payo¤s.

The methodology of the test for rational expectations in Section 4 is simple but novel in experi-

mental economics, so the question arises whether it can be applied to other experimental (or other)

data sets. It surely can, and in fact aspects of it are already applied in numerous studies: it is

often calculated �though not often enough �how much the participants in an experiment give up

due to their failure to choose a best response against the empirical distribution of payo¤-relevant

random variables. The innovative component of the methodology here is to not only estimate the

empirical value of the available actions, but to also use it as an explanatory variable in regressions

that describe behavior. This yields a test of rational expectations that does not rely on a structural

behavioral model.26 The key requirement is to have su¢ cient data so that the empirical value of

an action is a useful estimate of the underlying "true" expectation. With a meta data set, which

typically has lots of data, one can apply this approach to a large variety of decisions. As in other

26See Weizsäcker (2003) and Goeree and Holt (2004) for Quantal�Response-Equilibrium-based tests of rational

expectations in normal form games.
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meta analyses, the wealth of data thus allows multiple di¤erent perspectives on the data �includ-

ing some that are unanticipated by the original studies� authors �without giving up statistical

reliability. This general advantage of meta analyses is probably underrated, too, in the literature.27
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