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Abstract

Background: When analytical techniques are used to understand and analyse geographical events, adjustments to the
datasets (e.g. aggregation, zoning, segmentation etc.) in both the spatial and temporal dimensions are often carried out for
various reasons. The ‘Modifiable Areal Unit Problem’ (MAUP), which is a consequence of adjustments in the spatial
dimension, has been widely researched. However, its temporal counterpart is generally ignored, especially in space-time
analysis.

Methods: In analogy to MAUP, the Modifiable Temporal Unit Problem (MTUP) is defined as consisting of three temporal
effects (aggregation, segmentation and boundary). The effects of MTUP on the detection of space-time clusters of crime
datasets of Central London are examined using Space-Time Scan Statistics (STSS).

Results and Conclusion: The case study reveals that MTUP has significant effects on the space-time clusters detected. The
attributes of the clusters, i.e. temporal duration, spatial extent (size) and significance value (p-value), vary as the
aggregation, segmentation and boundaries of the datasets change. Aggregation could be used to find the significant
clusters much more quickly than at lower scales; segmentation could be used to understand the cyclic patterns of crime
types. The consistencies of the clusters appearing at different temporal scales could help in identifying strong or ‘true’
clusters.
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Introduction

In recent years, the advancement in geographical data

collection techniques (e.g. Computer Aided Dispatch Systems

(CAD), portable sensors etc.) has brought about exponential

growth in the availability of geographic data at small space and

time scales. This trend of data availability is now observed in many

application domains including criminology, epidemiology, and

transport, to mention but a few. The time stamp in these datasets

provides opportunities to mine intrinsic properties of spatial events

in relation to time. Hence, attention is shifting from purely spatial

analysis to space–time analysis. Research efforts are now focussing

on developing techniques to mine the space-time complexities

within the datasets in order to further understand the dynamics

underlying geographic events [1,2].

Observations of discrete geographic data are usually made at

point locations, but are often aggregated into areal units for

various reasons, such as confidentiality of individual records, data

summary or to fit into an existing zoning system (e.g. districts,

service areas, police beats etc.). Spatial aggregation however,

requires consideration of problems such as the Modifiable Areal

Unit Problem (MAUP) and the ecological fallacy, which have been

widely discussed in the literature [3–6]. Recently, the term MTUP

(Modifiable Temporal Unit Problem) has been mentioned in a

number of studies in analogy to MAUP [7,8], with major focus on

temporal aggregation (scales) and its effects on statistical inference

[9–13]. However, other issues relating to the temporal dimension,

such as the manner in which the temporal dimension is divided

(segmentation) or adjustments to the temporal extent (boundary) of

a time series, have received less attention.

Analogous to the zonation effect in the spatial dimension [14],

temporal segmentation may be viewed as the situation whereby

the analyst is open to a number of choices as to how the temporal

dimension can be discretised into temporal units. Commonly used

implementations of segmentation in large databases were exam-

ined in [15], and found to often produce disparate results. One

important factor affecting the frequency distribution of a

segmented dataset is the selection of the starting phase of temporal

segmentation. It was further demonstrated that the selection of the

starting phase of temporal segmentation influences the estimation

of regression model parameters [8]. In discrete data segmentation,

for example, mid-night or mid-day may be considered as the

starting point of daily observations, while weekly aggregation may

start from Sunday or Monday. In any case, the basic statistical

estimates such as mean, variance and so on are bound to change

[16].

The boundary problem is a concept mostly associated with the

spatial dimension [17]. However, it was argued that the boundary
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problem occurs not only in horizontal boundaries but also in

vertically drawn boundaries such as time, depth and temperature

[18]. In temporal data, the boundary is the temporal frame within

which observations of a process are made. Adjusting the frame is

synonymous with adjusting the temporal boundary within which

the events are bounded. However, as [19] argues, human activities

are rarely bounded in this way, but extend in space and time. In

general, estimation of certain variables in an analysis may depend

directly or indirectly on the temporal length of the dataset.

Despite growing interest in the analysis of dynamics in

geographical datasets in space and time simultaneously, issues

relating to the spatial dimension continue to receive attention

while their temporal counterparts are largely ignored. In

geographical cluster analysis for example, a number of studies

have investigated how the spatial aggregation (a component of

MAUP) of spatiotemporal datasets affects the results of cluster

detection [20–24]. Studies related to the MTUP have exclusively

focused on the impacts of temporal aggregation on statistical

inference in either purely temporal or spatiotemporal data analysis

[12,25–27]. The joint impacts of both spatial and temporal scales

on space-time data analysis have only been examined in a few

studies to date [28–29], but not a single study has examined the

effects of temporal aggregation on cluster detection, let alone

segmentation or boundary effects. Recently, Kwan argued that

analytical results could be different for different delineations of

contextual units even if everything else is the same [30]. This

problem is referred to as the uncertain geographic context

problem (UGCoP). The spatial uncertainty and dynamics of

geographic context associated with the UGCoP greatly complicate

any examination of the effect of contextual influences on health.

We hope the work presented here will help us to understand the

UGCoP better if not yet fully tackle the problem.

This paper investigates the impacts of not only temporal

aggregation but also temporal segmentation and boundaries,

which we will formally define as the three components of the

MTUP in the next Section. These effects will be examined in the

context of spatiotemporal cluster detection using space-time scan

statistics (STSS). In the case study, STSS is used to detect clusters

in three crime types (‘‘burglary-dwellings’’, ‘‘theft-of-shoplifting’’ and

‘‘violence-against-persons’’) in the London Borough of Camden. Each

of the three temporal effects (aggregation, segmentation and

boundary) is examined individually by comparing the attributes of

the detected clusters under each temporal effect.

Temporal Effects - Modifiable Temporal Unit
Problem (MTUP)

Here we define the temporal effects in analogy to the spatial

effects of MAUP.

2.1 Temporal Aggregation Effect
Temporal scale corresponds to spatial scale (resolution) in the

temporal dimension. It refers to the regularly spaced unit of time

observation, which can be a minute, a day, or a week, etc.

Temporal aggregation is a process that converts the observations

from a fine interval into a coarse interval. Temporal aggregation is

needed for various reasons, which include, for example, closing

gaps in the data, data summary and reduction of data size for ease

of processing. When data are not recorded at regular time

intervals, adjustment is needed to convert the data into regular

intervals for analysis. For example, a crime may occur in a

geographic region at any time, usually being recorded to the

nearest second. To make meaningful analysis, such irregularly

recorded data will often be converted into measures at regular

time intervals either hourly or daily (see more details in Section

3.2).

There are various forms of temporal aggregation [15] but the

basic form involves discretisation of time frame from a detailed

interval into a coarse one, where the number of events (e.g. the

number of crimes) within each time interval is summed and

reported as a single value. Summation could be replaced with

averaging or taking the maximum of the number of events within

the original intervals. By aggregating the data from a higher

temporal scale to a lower one (e.g. from daily to weekly) the small

cyclic temporal trends (low frequency variations) in data are

automatically adjusted. The basic statistical estimates such as

Figure 1. Modifiable Temporal Unit Problem (MTUP) (a) Temporal aggregation (b) Temporal Segmentation (c) Temporal boundary.
doi:10.1371/journal.pone.0100465.g001
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variance and correlation coefficients are affected due to the change

in the number of resulting intervals [26].

Figure 1a illustrates the aggregation of a daily scale to lower

scales (weekly and monthly). The aggregation first splits the data

into different intervals; the events within each interval are then

summed. Thus aggregation divides the data into a coarse interval,

using the data from the fine intervals. As the scale becomes

smaller, the number of intervals within the temporal frame is

reduced.

2.2 Temporal Segmentation Effect
Temporal segmentation can be likened to the zoning effect of

the MAUP where the result of spatial analysis varies depending on

the adoption of different zoning patterns. Similarly, in purely

temporal or spatiotemporal analysis, the continuous time frame is

usually divided into chunks of temporal segments, i.e. it is

discretised into temporal units (partitions/portions). The temporal

segmentation is usually carried out at regular intervals, with data

for a day, a week, a month, or a year, etc. However, the

segmentations could be different if the starting points of the

intervals are different. For example, a weekly segmentation for a

time frame of daily crime counts may begin on Sunday and end on

the following Saturday. Equally, the segmentation could start on

Monday and end on the following Sunday. A series of

segmentations can be generated from a single time frame by

simply varying the starting point of the temporal intervals.

Figure 1b illustrates the division (partition) of a daily time frame

into weekly segmentations (partitions), varying the first day of the

week (Monday, Tuesday, and Wednesday). With segregation, the

fine-scale (daily) data is portioned into the frame of the coarse

(weekly) temporal intervals (all at same scale). The sample counts

and summation of each (weekly) interval at different segmentations

might change due to different starting point of the intervals. So

aggregation is involved somehow in the segmentation, but

aggregation emphases the scale change (from fine to coarse),

while segmentation emphases the partition of the data during the

process of scale change.

2.3 Temporal Boundary Effect
In purely spatial or spatiotemporal analysis, the term ‘‘bound-

ary’’ is exclusively used to denote an arbitrary line drawn around a

geographical area indicating its extent. The ‘‘boundary effect’’

refers to the impact that the way in which a boundary is drawn has

on both the identification of the spatial distribution and the

estimation of the statistical parameters of the underlying spatial

process [17,31,32]. Here, we extend the same concept to the

temporal dimension by identifying the start and end points of a

time series as its temporal extent or boundary. By altering the

Figure 2. The study Area.
doi:10.1371/journal.pone.0100465.g002
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temporal length of a space-time process, the sample counts and

estimates of mean and variance would be altered. Figure 1c shows

a time frame A with an original start (Ts1) and end point (Te1). By

adjusting the boundary, new temporal boundaries B, C and D can

be obtained, with B, C and D bounded by [Ts2, Te1], [Ts1, Te2] and

[Ts2, Te2], respectively.

Methods

In this study, we investigate the three MTUP effects defined in

Figure 1 on space-time cluster detection by using a case study of

crime pattern analysis. In the following subsections, we will first

introduce the principle of space-time scan statistics (STSS), then

present the case study area and the dataset, and finally describe the

workflow of the experiment.

3.1 Space-Time Scan Statistics (STSS)
Space-Time Scan Statistics (STSS) is an extension of the

popular Spatial Scan Statistics (SSS), a geographical cluster

detection technique, which was originally used in the field of

epidemiology for disease outbreak detection [33]. SSS was

developed to overcome the limitations of the Geographical

Analysis Machine (GAM) in identifying the optimal size (which

is also part of the MAUP) and the significance of identified clusters

[34]. STSS has so far been applied in a few domains including

criminology [35], public health [36] and forestry [37]. Generally,

the technique is used to investigate whether an observed cluster of

events has occurred by chance, assuming that the events are

distributed uniformly across the geographical region with no

space-time interaction.

In operation, the technique scans through the study area using a

large set of overlapping geographic windows moving across space

and time [36]. Each of the scanning windows has a shape (e.g.

cylinder), a base centroid (x, y), a radius r and time length t. The

number of cases within the window is counted and compared with

the expected count. The size of the cylinder (in space and time) is

increased systematically to generate a large number of cylinders

with all parameters evaluated at each instant. Considering all the

cylinders together, the one with highest likelihood ratios (the ratio

of observed cases with the expected value) are marked as primary

candidates for true clusters. The statistical significance (p-value) of

the marked cylinder is tested by random permutation (Monte

Carlo replication). The p-value is calculated by dividing the count

of replicas that have higher likelihood ratios than the marked

cylinder with the total count of the replicas. In most cases, the p-

values are compared with a threshold value a (0.05 or 0.001) in

order to conclude that the space-time clusters are statistically

significant (i.e. likely to be a true cluster).

A variety of scan statistical models exist, designed for application

to different data types. For count data, the Poisson [33] and Space-

Time Permutation scan statistics [36] are two models generally

used, and are based on the null hypothesis of complete

randomness in space time. For discrete data such as crime counts,

Space-Time Permutation Scan Statistics (STPSS) is the most

appropriate. STPSS is implemented in SaTScan software [38],

and will be used for the case study described below.

3.2 Dataset
The data of reported crime in the London Borough of Camden

is used in this study. The Borough of Camden is one of the inner

boroughs of London City. It has an approximate area of 22 km2

with eighteen administrative wards. According to UK 2011

Census, Camden’s usual resident population was 220,338 with

the highest proportion of residents (27%) located in the 30–44 age

band. The Borough features contrasting geo-demographic settings

ranging from open space like Hampstead Heath, to very busy

areas like Camden Town and Covent Garden (Fig. 2). These areas

are sites of attraction to tourists and leisure seekers.

All reported crimes within London are recorded in the

Metropolitan Police Service Computer Aided Dispatch (CAD)

system. Between 1st March 2011 and 31st March 2012, a total of

28,686 records of committed crimes of different types were

recorded in the database for Borough of Camden. Each data point

is geocoded to the centroid point of a 250 m by 250 m grid and

recorded to nearest second. Three crime types - ‘‘burglary-

dwellings’’, ‘‘theft-of-shoplifting’’ and ‘‘violence-against-persons’’ -

were chosen in order to examine whether MTUP has different

effects on different crime types. The dataset consists of 2,160,

1,072 and 3,323 records of these three crime types, respectively. As

part of the data pre-processing, the temporal scale of the dataset

was aggregated to a daily scale, given that the number of crimes at

the original scale is too sparse for meaningful analysis.

3.3 The Workflow of the Experiment
Figure 3 illustrates the workflow of the experiment. The first

step involves preparing the dataset for testing each of the temporal

effects, i.e. converting (temporally) irregularly recorded data (at

any time of the day recorded to the nearest second) into a regular

interval (daily count of observations). Intervals within which no

observation was recorded are assigned the value 0.

Figure 3. Our experimental approach to examining the MTUP effects on space-time cluster detection.
doi:10.1371/journal.pone.0100465.g003
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The second step is to implement the process of adding the

MTUP effects. For the temporal aggregation effect, we generated

data at weekly and monthly intervals from the daily dataset

generated in Step one. For the temporal segmentation, we

generated seven weekly datasets by dividing the daily data in

Step one into weekly units (portions) with different starting day of

the week (i.e. Monday, Tuesday, Wednesday and so on); the

temporal boundary effect was then examined by adjusting the

length of the study period. Here, three new study periods were

generated from the original study period by removing 1-month of

data from the beginning, or/and the end.

The third step is to carry out the cluster detection of crime

hotspots. Here the retrospective space-time permutation proba-

bility model is chosen in SaTScan (Kulldorff, 2010) with a

maximum spatial cluster size equal to 50% of the at-risk

population (maximum circle size of 1000 metre radius). The

maximum temporal cluster size is equal to 50% of the study

period, with a maximum of 999 Monte Carlo replications, and ‘No

geographic overlap’ as the criteria for reporting secondary clusters

and statistical significance (p-value) threshold of 0.05 (i.e. we are

only interested in clusters with p-value less or equal to 0.05).

The fourth step is to compare the clustering results. To compare

the results, three basic cluster attributes were used along with the

count (number) of detected clusters. These attributes are; the

temporal duration, spatial extent (size) and the statistical signifi-

cance (p-value). The spatial locations of the cluster centroids (x, y)

were used to identify the same clusters under separate analyses.

Two Clusters will be considered to be the same, if the distance

between their centroid points is within 250 metres.

Results and Discussion

The textual description of clusters, as reported by SaTScanTM,

contains information such as the spatial location, radius, start and

end dates of the cluster, number of observed and expected crime

counts inside the clusters and the statistical significance value (p-

value). This information is usually imported into GIS environment

for proper visualisation.

4.1 Impacts of Temporal Aggregation
For each of the three crime types, the clusters detected at each

temporal scale (i.e. daily, weekly and monthly) are placed side-by-

side for comparison. The clusters are identified by their spatial

locations, i.e. the centroid of the cluster (x, y). Figures 4a, 4b and

4c show the clusters detected in ‘‘burglary-dwellings’’, ‘‘theft-of-

shoplifting’’ and ‘‘violence-against-persons’’ datasets respectively.

The spatial and temporal extents are represented by the width and

height of the clusters respectively. The clusters are labelled

numerically to match the same cluster detected at different scales,

and the order of their appearance reflects the level of significance

changing from higher to lower (all are significant at the 0.05 level).

For the ‘‘burglary-dwellings’’ crime (Figure 4a), only one cluster

was detected at each of the three scales. The three clusters were

identified as different from each other based on their spatial

location and hence have different labels (i.e. B1, B2, B3).

Moreover, their temporal duration, spatial extent (size) and

statistical significance (p-values) are different (See Table S1-a in

Appendix S1).

In Figure 4b, four clusters (labelled T1, T2, T3, and T4) were

detected for the ‘‘theft-of-shoplifting’’ crime type at the daily scale,

with significance decreasing from cluster T1 to T4; another cluster

(Cluster T5) was detected at the weekly scale, with a lower p-value

than the other four clusters; and a further two clusters (T6 and T7)

were detected at the monthly scale, with p-value lower than

Clusters T1, T3, T4, and higher than Clusters T5 and T2. The

four clusters (T1–T4) are identified at all scales with small variation

in p-values and temporal durations but their spatial extents remain

generally stable at the three scales (see Table S2-a in Appendix

S1). The consistency of these 4 clusters suggests strong hotspots in

these areas.

Similar patterns are shown for the ‘‘violence-against-persons’’

crime with 4 clusters (V1, V2, V3 and V4) detected at all three

scales (Figure 4c), and another cluster V5 detected at the monthly

scale. These 4 clusters display small variations in p-values and temporal

durations at each scale, with the exception of V4, which has a much

shorter duration at the monthly scale. Again, we can say that these

4 clusters (V1–V4) are strong hotspots in these areas. Further

details of these clusters can be found at Table S3-a in Appendix

S1.

The result demonstrates that a change in the temporal

aggregation scale of the dataset affects the temporal duration, size

and significance of the clusters. The effect on the ‘‘burglary-

dwellings’’ crime type results in three different clusters being

detected at different scales, but the effect on both the ‘‘theft-of-

shoplifting’’ and ‘‘violence-against-persons’’ crimes types is less

strong. Clusters at fine scales can equally be detected at a coarse

scale, and a coarse scale tends to detect more clusters. This

suggests that temporal aggregation does not reduce the power of

STSS to detect clusters, though not all the clusters are significant

at fine scales. The clusters appearing at all scales should be

considered ‘‘true’’ clusters that warrant attention.

4.2 Impacts of Temporal Segmentation
Figures 5a, 5b and 5c show the clusters detected at seven

temporal segmentations for the ‘‘burglary-dwellings’’, ‘‘theft-of-

shoplifting’’ and ‘‘violence-against-persons’’ crime types respec-

tively.

In the ‘‘burglary-dwellings’’ crime dataset (Figure 5a), Cluster

B1 is detected at two segmentations i.e. Tuesday and Saturday

segmentations, with similar values for ‘start date’, spatial extent

and temporal duration. Cluster B2 is detected at four segmenta-

tions, i.e. Monday, Wednesday, Thursday and Friday, with

different ‘start dates’ and temporal durations, except that the

results on Thursday and Friday are similar. No cluster is detected

with Sunday segmentation. The cluster with the next smallest p-

value for the Sunday segmentation is Cluster B1, with a p-value as

0.056 (see Table S1-b in Appendix S1). This implies that B1 is a

week cluster, and this type of crime displays weekly patterns.

‘‘Burglary-dwellings’’ crime is more likely to occur on working

days (Monday to Friday). This also may imply that on other days,

Area B2 might have higher chance of being burglarised. Further

details of these clusters can be found at Table S1-b in Appendix

S1.

The ‘‘theft-of-shoplifting’’ dataset featured more clusters and

equally showed more variations in the clusters detected at all

segmentations (Figure 5b). Only Clusters T1 and T2 appear at all

segmentations while others are not consistent at all segmentations.

Therefore, the number of clusters detected changes with the

segmentation. For example, four clusters are detected with

Tuesday and Sunday segmentations, five with Monday and

Figure 4. Temporal Aggregation Effects (a) ‘‘Burglary-dwellings’’ crime clusters (b) ‘‘Theft-of-shoplifting’’ crime clusters (c)
‘‘Violence-against-persons’’ crime clusters.
doi:10.1371/journal.pone.0100465.g004
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Saturday segmentations, six with Wednesday and Thursday and

seven with Friday segmentation. The varying number of clusters

seems to reflect daily shopping patterns, although further

clarification is needed on this aspect. Further details of these

clusters can be found at Table S2-b in Appendix S1.

The ‘‘violence-against-persons’’ dataset showed the most

consistent results (Figure 5c). The clusters barely changed except

in the Sunday segmentation. In this case, Cluster V4 is not

detected but an additional cluster, V5, is detected which overlaps

temporally with Cluster V4. The consistent results reflect the fact

that ‘violence-again-persons’ includes domestic violence, which

does not have specific daily patterns. Further details of these

clusters can be found at Table S3-b in Appendix S1.

In summary, the segmentation of the dataset alters the

clustering results depending on the crime type, which suggests

different crime types have their own cycles during a week.

‘‘Burglary-dwellings’’ is relatively highly high on other days except

on Sunday. ‘‘Theft-of-shoplifting’’ is relatively quiet on Sunday

(this might be due to the short opening hours), and relatively busier

on Wednesday to Friday. There are no daily patterns in the

‘‘violence-against-persons’’ crime type. Also, the consistency of

some clusters suggests that certain clusters can be considered as

being stronger than the others, and therefore provides clues to

which clusters can be considered as ‘true’ clusters, e.g. Clusters T1

and T2 for the ‘‘theft-of-shoplifting’’, and Clusters V1, V2, and V3

for the ‘‘violence-against-persons’’.

4.3 Effect of Change in Temporal Boundary
For each crime type, same adjustments are made to the

temporal length of the daily dataset as follows;

(i) March1, 2011–March 31, 2012 (Boundary A, original

boundary)

(ii) April 1, 2011–March 31, 2012 (Boundary B)

(iii) March 1, 2011–Feb 29, 2012 (Boundary C)

(iv) April 1, 2011–Feb 29, 2012 (Boundary D)

All clusters detected in each boundary are placed on the right

hand-side of their respective boundary and are arranged in order

of statistical significance from left to right as shown in Figures 6a,

6b and 6c for the three crimes respectively.

In the ‘‘burglary-dwellings’’ dataset, the adjustments to the

temporal length had a significant influence on the clusters detected

(Figure 6a). Only 2 clusters, B1 and B2, were identified as

significant at the original length A and the adjusted length D

respectively. The most significant clusters in the other two

boundaries B and C, are clusters B1 and B2, respectively, with

p-values of 0.071 and 0.055 respectively. This suggests that these

clusters may not be ‘true’ clusters given their relatively low p-

values (compared with the threshold value of 0.05), and their

inconsistency across different boundaries. Therefore, it is difficult

to be certain about which cluster is a ‘true’ hotspot of ‘‘burglary-

dwellings’’. Further details of these clusters can be found at Table

S1-c in Appendix S1.

In the ‘‘theft-of-shoplifting’’ crime type (Figure 6b), Clusters T2

and T4 are very consistent in their desriptions, Cluster T1 is also

detected at all 4 boundary ranges, but has two durations, one for

Cases A and C, and one for Cases B and D. Clusters T3, T5 and

T6 appear at different boundary ranges, but are not consistent.

Therefore, Clusters T1, T2 and T4 can be considered ‘‘true’’

clusters. Further details of these clusters can be found at Table S2-

c in Appendix S1.

Again, boundary effects are relatively less obvious on the

clusters detected for the ‘‘violence-against-persons’’ crime type,

e.g. clusters V1 and V2 (Figure 6c). Both Clusters V3 and V4

appear in 3 but not 4 cases. So we may consider Clusters V1 and

V2 in Figure 6c as ‘‘true’’ clusters based on their consistency.

Further details of these clusters can be found at Table S3-c in

Appendix S1.

4.4 Further Discussion
For comparison purposes, we put the results of one crime type

in one table (see Appendix S1 Tables S1–S3), with each effect in a

sub-table (a, b, c) for aggregation, segmentation and boundary. We

can see that there is no cluster appearing consistently in all the

scales for ‘‘burglary-dwellings’’. For ‘‘theft-of-shopping’’, Clusters

T1 and T2 are significant at all scales, as are the Clusters V1 and

V2 for ‘violence-against-persons’. These are the ‘true’ hotspots.

If we examine the p-values more carefully, we will find that most

clusters that are consistent across all scales have p-values smaller

than 0.005. This applies to the 4 clusters that we have identified

above. This means that a p-value of 0.005 could be used to identify

‘true’ clusters that are consistent across scales, and to mitigate the

MTUP effect.

More clusters are found at coarse intervals, which imply that we

can use aggregation to detect significant clusters more quickly,

given much less data than are required to process at a coarse scale.

Although the exact temporal duration of clusters identified at two

scales might be different, the clusters detected at the coarse scale

could be used as a guide for further analysis. This will significantly

improve the processing speed.

Furthermore, we can use segmentation to probe the cyclic

patterns of crime varying within the week. The results demonstrate

that ‘‘burglary-dwellings’’ is generally quiet on weekends and

Tuesday (no hotspot on Sunday, and very short duration on

Saturday and Tuesday); ‘‘Theft-of-shopping’’ is relatively quiet on

Tuesday and Sunday compared with other days, and Friday is

very active with highest number and longest duration of the

hotspots; and ‘‘violence-against-persons’’ has no time varying

patterns at all.

Conclusions and Future work

This study investigated the impact of temporal effects that are

usually ignored in space-time analysis. We formally defined the

MTUP (modifiable temporal unit problem) as a consisting of

temporal aggregation, segmentation and boundary effects. In our

experiment, we examined these effects on space-time cluster

detection of crime hotspots using space-time scan statistics (STSS).

In general, there is tendency to detect different clusters as the

aggregation, segmentation and boundary of a space-time dataset

are altered. This means that we should be cautious when we use a

particular temporal scale, segmentation and boundary for analysis.

But the most significant clusters (‘true’ clusters) with a p-value

smaller than 0.005 can be consistently detected no matter the

temporal configuration of the dataset.

We have discussed how to use these three temporal effects to

improve the efficiency of STSS and to gain insight into crime

patterns. Aggregation could be used to find the significant clusters

much more quickly than at lower scales; segmentation could be

Figure 5. Temporal Segmentation Effects (a) ‘‘Burglary-dwellings’’ crime clusters (b) ‘‘Theft-of-shoplifting’’ crime clusters (c)
‘‘Violence-against-persons’’ crime clusters.
doi:10.1371/journal.pone.0100465.g005
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used to understand the cyclic patterns of crime types. Further

experiments on other crime types and on other data sets (such as

health data) will be needed to examine if the results can be

generalised to other applications.

In the next phase of this study, we will consider the ‘‘Modifiable

Spatio-Temporal Unit Problem’’ (MSTUP) as the intersection of

MAUP and MTUP. The question of how to select the most

suitable spatial and/or temporal scales for space-time cluster

detection is an area that also needs further research. Also, an

extension of this study to other techniques such as space-time

clustering using technique like space-time kernel density estimation

will be carried out in the future.

Supporting Information

Appendix S1 Contains the following files: Table 1: Cluster

detection for ‘‘Burglary-dwellings’’. Table 2: Cluster detection for

‘‘theft-of-shoplifting’’. Table 3: Cluster detection for ‘‘violence-

against-persons’’.
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