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Abstract 

Most cells, including bone cells, release ATP into the extracellular environment.  A 

considerable body of previous work has shown that ATP, acting through the P2 

receptors, inhibits bone formation by osteoblasts and increases bone resorption by 

osteoclasts.  This work focuses on the action of two key breakdown products of 

ATP, pyrophosphate and adenosine on bone cell function.  Pyrophosphate, a 

ubiquitous physicochemical inhibitor of mineralisation, is formed from extracellular 

ATP by the action of ecto-nucleotide pyrophosphatase phosphodiesterases (NPPs); 

in bone these enzymes act in opposition to alkaline phosphatase.   Adenosine, 

which can be generated in a number of ways from ATP, has been previously 

reported to stimulate both osteoblast and osteoclast function.   However, using in 

vitro cultures, I found that it had little or no effect on the differentiation and bone 

forming capacity of rat osteoblasts, nor on the formation and resorptive function of 

mouse osteoclasts.   I investigated the possibility that osteocytes, which form an 

interconnected cellular network within bone, might regulate mineralisation via 

NPPs.  I found that cultured, primary osteocyte-like cells derived from mouse bone 

expressed Enpp1 mRNA.  Osteocyte lacunae in the femora of Enpp1-/- mice imaged 

by scanning electron microscopy were found to be reduced in area by about 35%; 

indirect estimates of lacunar size using microCT imaging were in agreement.  These 

results are consistent with the notion that ATP-derived pyrophosphate is important 

for maintenance of osteocyte lacunae size.   Enpp1-/- mouse bones (humerus) were 

found to have reduced cortical bone diameter, reduced cortical porosity and an 

increased endosteal diameter compared to wild types, suggesting that the knockout 

phenotype also involves increased bone resorption and decreased bone 

formation.   Histology and microCT of Enpp1-/- mice confirmed inappropriate joint 

mineralisation and showed that cartilage in the trachea and ear pinna was also 

mineralised, as were whisker sheaths.  Osteoblasts, osteoclasts and osteocytes 

cultured in vitro from Enpp1-/- mice were found to release less ATP compared to 

cells from Enpp1+/+ mice in static conditions and after fluid flow stimulation.  Enpp1-

/- osteoblasts and osteoclasts also contained higher levels of intracellular 

ATP.   Enpp1-/-osteoblasts showed increased bone production in vitro compared to 

Enpp1+/+; no effects of Enpp1 knockout on the formation or resorptive activity of 

osteoclasts were noted.   Sclerostin, an osteocyte-derived inhibitor of WNT 

signalling and bone formation, was found to increase Enpp1 mRNA expression and 

NPP activity of osteoblasts, without affecting ALP in vitro.  These results emphasise 

the importance of ATP and its breakdown product pyrophosphate in regulating 

mineralisation.
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Chapter 1 

Introduction 

The structure and composition of mammalian bone reflects its dynamic and varied 

functions.  Bone requires mechanical strength because it has a major role in 

movement and locomotion, yet is also a key endocrine organ and regulator of 

calcium and phosphate homeostasis.  Bone is also the primary site of 

haematopoiesis and has a key role within the immune system (Schwartz & Heath 

1947; Meyer, Jr. et al. 1989; Le & Mougiakakos 2012).  

Development of the skeleton 

Each bone within the mammalian body is different.  However, all bones of the 

mammalian skeleton are formed in one of two different ways, either by 

intramembranous ossification or endochondral ossification.  The bones of the axial 

skeleton (vertebrae and ribs) and the bones of the appendicular skeleton (limbs) 

are formed by endochondral ossification.  The flat bones of the skull are formed by 

the process of intramembranous ossification. 

Endochondral ossification 

Endochondral bone formation involves a cartilaginous template of the bone being 

created first, which then develops into mineralised bone.   During development 

mesenchymal stem cells (MSCs) condense, these cells then differentiate into 

chondrocytes.  Chondrocytes proliferate and secrete type II collagen and aggrecan 

(chondroitin sulphate proteoglycan 1).  Certain chondrocytes in the centre of this 

embryonic clustering stop proliferating, become hypertrophic, and begin to secrete 

a matrix rich in collagen type X.  These hypertrophic chondrocytes signal to 

perichondral cells to influence their differentiation into osteoblasts.  The 

osteoblasts begin to form a collar of bone.  The hypertrophic chondrocytes also 

attract blood vessels and cause them to invade the tissue by releasing vascular 

endothelial growth factor (VEGF).  The hypertrophic chondrocytes then undergo 
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apoptosis, leaving behind a scaffold composed of type 2 collagen.  There is evidence 

to suggest that these chondrocytes do not undergo apoptosis in a classical way, but 

undergo “chondroapoptosis”, which is preceded by an increase in the endoplasmic 

reticulum and Golgi apparatus of the cell (Roach & Clarke 2000).  The chondrocytes 

further away from the hypertrophic chondrocytes continue to proliferate; this 

causes the bone to lengthen.  As the bone enlarges further secondary ossification 

sites appear at the ends of the bone in a very similar process.  In the long bones, the 

cartilage that remains between the primary and secondary ossification centres is 

called the growth plate (epiphyseal plate).  In the growth plate below the secondary 

ossification centre, proliferating chondrocytes form orderly columns, these cells act 

to continue lengthening the bone postnatally (reviewed in Ortega et al. 2004). 

Intramembranous ossification 

Like endochondral ossification, intramembranous ossification starts with 

mesenchymal condensations.  During intramembranous ossification MSCs 

differentiate directly into osteoblasts, without the intermediate collagen scaffold 

formation by chondrocytes.  In the mammalian skull, neural crest derived MSCs 

proliferate and form the flat bones (Helms et al. 2005).  The calvarial sutures form 

where two opposing bone formation fronts meet.   

Bone cells 

Osteoblasts 

Osteoblasts are the bone forming cells; they are formed from MSCs by a multistep 

series of events.  MSCs can differentiate into a number of different  cell types, such 

as adipocytes (Friedenstein et al. 1976), chondrocytes (Mardon et al. 1987), 

myocytes (Wakitani et al. 1995) and fibroblasts (Friedenstein et al. 1987).   MSCs 

are found in a wide variety of tissues: the Wharton’s jelly of an umbilical cord (Lee 

et al. 2004), adipose tissue (Zuk et al. 2002), amniotic fluid (Sessarego et al. 2008) 

and muscle (Jankowski et al. 2002).  It has been suggested that MSCs can be found 

circulating in the blood (Eghbali-Fatourechi et al. 2005; Kassis et al. 2006; He et al. 

2007).  Pools of MSCs reside in the bone marrow stroma; it is believed that it is 
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from these MSCs that osteoblasts develop (Haynesworth et al. 1992; Pittenger et al. 

1999). 

A number of studies have identified key genes which mediate the differentiation 

of MSCs.  The formation of adipocytes is promoted by PPARγ and C/EBPα (Mueller 

et al. 2002; Tang et al. 2003), the formation of chondrocytes from MSCs requires 

Sox9 (de et al. 2000) and the formation of myocytes is under the control of MyoD 

(Emerson 1990).  The formation of osteoblasts from MSCs requires a number of 

factors, including: Runx2 (previously known as cbfa1) (Banerjee et al. 1997; Ducy et 

al. 1997; Komori et al. 1997), Osterix (Nakashima et al. 2002; Skillington et al. 2002), 

WNTs (Monroe et al. 2012) and bone morphogenic proteins (BMPs) (Urist 1965). 

Runx2-/- mice have been shown to have a normal cartilaginous skeleton at day 15 

of gestation, but it was under mineralised compared to wild type skeletons (Komori 

et al. 1997; Otto et al. 1997).  By day 18 of gestation, wild type mice tibias had 

developed a bone marrow cavity and were showing signs of vasculature invasion 

into the bone, whereas Runx2-/- mice had neither of these developments, indicating 

the importance of Runx2 in early bone formation and mineralisation.  These Runx2-

/- mice did not form osteoblasts, had reduced alkaline phosphatase (ALP) activity 

and died immediately after birth.  They died of asphyxiation due to the 

hypomineralisation of the rib cage; ribs lacking deposited mineral are not strong 

enough to provide the negative pressure needed for lung expansion (Komori et al. 

1997; Otto et al. 1997).  In addition to osteoblast formation, Runx2 is required for 

osteoblast function.  Osteocalcin, is an osteoblast specific calcium binding protein, 

the expression of which is under the control of Runx2 (Ducy et al. 1997).   

Osteocalcin has been reported to be important in bone mineral deposition (Boskey 

et al. 2002) and induces chemotaxis in osteoclasts (Chenu et al. 1994). Further 

evidence is developing that shows decarboxylated-osteocalcin may stimulate the 

secretion of insulin from the pancreas (Lee et al. 2007; Ferron et al. 2008). 

The expression of the zinc finger containing transcription factor Osterix (Osx) is 

under the control of Runx2; the expression of Osterix is reduced in Runx2-/- mice 

(Nakashima et al. 2002).  However, the expression of Runx2 is not affected in Osx-/- 
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mice (Nishio et al. 2006), indicating that Osterix acts downstream of Runx2.  Similar 

to Runx2-/- mice, Osx-/- mice lack osteoblasts and have an unmineralised skeleton, 

but there are phenotypic differences between Runx2-/- mice and Osx-/- mice.  

Knockout of Runx2 leads to an underdeveloped perichondrium (outer layer of 

connective tissue) in the mid shaft of long bones, were as knockout of Osx causes 

ectopic cartilage formation beneath a thickened perichondrium (Nakashima et al. 

2002).   Osterix appears to work cooperatively with nuclear factor for activated T-

cells 2 (NFAT2) to regulate the expression of extra cellular-matrix proteins, such as 

type I collagen, by osteoblasts (Koga et al. 2005).   

Other transcription factors are needed for osteoblast differentiation.  Activating 

transcription factor 4 (ATF4) plays a role in the late stage differentiation of 

osteoblasts.  ATF4 is a member of the basic leucine zipper domain transcription 

factor family and is a substrate of ribosomal S6 kinase 2 (RSK2), a growth factor 

regulated kinase.   A missense mutation in ATF4 is the cause of Coffin-Lowry 

syndrome, which is characterised by skeletal abnormalities (Yang et al. 2004).  

People with this syndrome have incomplete closure of the fontanelles, the “soft 

spot” of the skull and delayed bone development (Lowry et al. 1971).  ATF4-/- mice 

have defects in long bone mineralisation; however, knock out of ATF4 does not 

affect Runx2 or Osx expression (Reimold et al. 1996).  So it can be seen that ATF4 

acts as an important transcription factor downstream of Runx2 and Osx.  ATF4-/- 

mice also have reduced expression of osteocalcin and receptor activator of nuclear 

factor kappaβ ligand (RANKL), two osteoblast associated factors (Reimold et al. 

1996).  ATF4 promotes amino acid uptake into the osteoblast, a process that may 

support the protein synthesis function of osteoblasts (Yang et al. 2004).  ATF4 also 

interacts with Forkhead box O (FoxO) proteins in osteoblasts to regulate glucose 

homeostasis (Kode et al. 2012).  Factor inhibiting activating transcription factor 4 

(FIAT) is a leucine zipper protein which is an inhibitor of ATF4.  When over-

expressed in transgenic mice FIAT reduced osteocalcin, bone mineral density, bone 

volume and trabecular thickness (Yu et al. 2005).   
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MSCs that differentiate down the osteoblast lineage in vivo can give rise to 

preosteoblasts, mature osteoblasts, osteocytes and bone-lining cells.  

Preosteoblasts may express some of the phenotypic markers of osteoblasts, for 

example ALP, but at lower levels.  However, they lack many of the defining 

characteristics of mature osteoblasts, such as a well-developed endoplasmic 

reticulum, necessary for its matrix secretory role.   On quiescent surfaces where 

bone remodelling is not taking place, the osteoblasts flatten to become lining cells.  

The bone-lining cells form a barrier between the extracellular fluid and the bone.  It 

is thought that the lining cells may play a role in regulating the movement of 

calcium and phosphate in and out of the local bone environment (Miller & Jee 

1987).  The mature osteoblasts synthesise and secrete an extracellular matrix, 

osteoid, which provides the site for mineral deposition (Komori et al. 1997).   

Osteocytes 

Some osteoblasts differentiate into osteocytes.  Osteocytes are the most numerous 

bone cell; they reside within lacunae, bathed in fluid, surrounded by mineralised 

matrix.  These cells are dispersed throughout bone and are connected to each other 

by dendritic processes that pass down thin canals, called canaliculi. These dendrites 

allow the osteocytes to communicate with each other and with other cells on the 

surface of the bone.  The canaliculi allow osteocytes to communicate in a paracrine 

and endocrine manor by enabling hormones, and other signalling molecules to 

reach the circulatory system.  The canaliculi system also results in the osteocyte 

having a large surface area of interaction with the bone  (reviewed in Bonewald 

2011).   

The process by which an osteoblast is converted into an embedded osteocyte is 

not fully understood.  Osteoblasts have a slightly different gene expression profile 

based on their age and location within bone, this may affect their chance of 

becoming an osteocyte (Candeliere et al. 2001).  It has been shown that mouse 

osteocytes release osteoblast stimulating factor-1 (ORF-1) / heparin binding growth 

associated molecule (HB-GAM), possibly to recruit and further differentiate 

osteoblasts into osteocytes (Imai et al. 2009).   The first step of this differentiation 
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process involves the osteoblast becoming passively buried under the matrix that it, 

or a neighbouring osteoblast has produced (Franz-Odendaal et al. 2006).  However, 

the whole process of osteocytogenesis is not a passive one, the collagen-lytic 

activity of matrix metalloproteinase I is required to help embed the osteoblast 

(Holmbeck et al. 2005).  The change from an osteoblast to an osteocyte is a gradual 

process, starting with the down-regulation of osteoblast specific genes such as: ALP, 

type I collagen and osteocalcin, and with the concordant up-regulation of osteocyte 

specific genes including: dentine matrix protein-1 (DMP1), E11, sclerostin (Sost) and 

fibroblast growth factor 23 (FGF23) (Schulze et al. 1999; Toyosawa et al. 2001; 

Winkler et al. 2003; Ubaidus et al. 2009).  It is not clear if these factors “make an 

osteocyte”, or “define an osteocyte”.  As the cell progresses from being an 

osteoblast to an osteocyte, it reduces in volume by approximately 70% (Palumbo 

1986).  The osteocyte also loses some of the osteoblast defining intracellular 

characteristics, such as the well-developed endoplasmic reticulum and Golgi 

apparatus (Dudley & Spiro 1961).   

The E11 gene is expressed by early, immature osteocytes; it is a hydrophobic 

membrane protein that appears to play a role in the formation of dendrites. The 

addition of the E11 protein to the osteocyte-like cell line MLO-Y4 resulted in the 

elongation of the cell’s dendrites (Zhang et al. 2006).  It was also seen that MLO-A5 

osteocyte-like cells increase their expression of E11 when they are surrounded by 

mineralised extracellular matrix (Prideaux et al. 2012).  E11 is also expressed in 

endothelial cells, kidney and lung, where it is known as GP38, podoplanin and T1α, 

respectively.  Knockout of the E11 gene resulted in mice that died at birth of 

respiratory failure (Ramirez et al. 2003).  Fluid shear stress upon MLO-Y4 cells 

resulted in increased expression of E11; prevention of E11 translation using small 

interfering RNA resulted in decreased dendrite length (Zhang et al. 2006).   

Dentine matrix protein-1 (DMP1) is an extracellular matrix protein that was first 

discovered in rat teeth (George et al. 1993).  In postnatal mammals, DMP1 is 

predominantly expressed by osteocytes (Toyosawa et al. 2001); prenatally, DMP1 is 

also expressed by hypertrophic chondrocytes and osteoblasts (Fen et al. 2002).  
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DMP1 knockout mice had defects in their osteocyte canaliculi system and delayed 

osteocyte development (Lu et al. 2011).  One of the main functions of DMP1 may 

be as a regulator of matrix mineralisation (He & George 2004).  Knockout of DMP1 

in mice increased the concentration of circulating FGF23, and resulted in 

hypophosphatemia, osteomalacia, and rickets (Feng et al. 2006).  Conversely, over 

expression of DMP1 in mice was shown to have no effect in some models (Lu et al. 

2011), but was seen to increase bone mineral density in other mice models (Bhatia 

et al. 2012).  Humans with loss-of-function mutations in DMP1 suffer from 

autosomal recessive hypophosphatemic rickets (Feng et al. 2006).   

Osteocytes and osteoblasts are the main source of the circulating hormone 

FGF23 (Ubaidus et al. 2009).  FGF23 acts via the FGF receptor (FGFR) on the cell 

surface, its affinity for this receptor is increased by the protein cofactor klotho 

(Martin et al. 2012).  The main role of FGF23 is to inhibit renal phosphate 

reabsorption by sodium phosphate transporters (type 2a), therefore increasing 

urinary phosphate loss (Shimada et al. 2005).  FGF23 also inhibits the formation of 

1,25-dihydroxyvitamin D from 25-hydroxyvitamin D, by suppressing the enzyme 

CYP27B1 in the kidney; this reduces the amount of the active form of vitamin D in 

the circulation (Shimada et al. 2005).  FGF23 may also increase the amount of 

24,25-dihydroxyvitamin D formed from 25-hydroxyvitamin D by up-regulating 

CYP24 in the proximal tubule of the kidney, resulting in a higher circulating amount 

of the inactive form of vitamin D (Shimada et al. 2005).  In both humans and mice, 

over production or gain-of-function mutations in Fgf23 leads to autosomal 

dominant hypophosphatemic rickets (ADHR) (White et al. 2000; Shimada et al. 

2002).  Tumour-induced osteomalacia may have symptoms very similar to ADHR, 

FGF23 secreted by the tumour can be a cause of a low plasma phosphate 

concentration in these patients (Zimering et al. 2005).   

Matrix extracellular phosphoglycoprotein (MEPE) is a member of the small 

integrin-binding ligand N-linked glycoprotein (SIBLING) family of proteins; these are 

proteins that seem to have no similarities when their amino acid sequences are 

compared, but are all located in the same chromosomal region (4q.21 in humans 
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and 5q in mice), all display an arg-gly-asp motif that mediates cell binding and 

attachment and all are associated with bone and dentine (Huq et al. 2005).  The 

members of the SIBLING family are osteopontin (OPN), bone sialoprotein (BSP), 

DMP1, dentine sialophosphoprotein and MEPE.  MEPE is expressed by both 

osteoblasts and osteocytes; it plays an important role in the mineralisation of bone.  

Knockout of MEPE leads to an increased bone mass in mice and increased 

osteoblast number and activity in culture (Gowen et al. 2003).  Mice that over-

express MEPE form osteoblasts normally but have a mineralisation defect due to 

decreased osteoblast activity (David et al. 2009).  Administration of the MEPE 

protein to mice leads to phosphaturia and decreased plasma phosphate levels 

(Rowe et al. 2004).  MEPE is cleaved to release a peptide that contains an acid 

serine and aspartic acid-rich motif (ASARM) which inhibits mineralisation (Martin et 

al. 2008).  Phosphate regulating endopeptidase x-linked (PHEX) interacts with MEPE 

to prevent the release of the ASARM peptide.  Humans with X-linked 

hypophosphatemic rickets (XLH) and the Hyp mouse, have defects in the Phex gene, 

this results in an inability to prevent the release of ASARM and leads to impaired 

mineralisation (Bresler et al. 2004; Rowe et al. 2005).   

Along with the control of mineralisation, one of the main functions of osteocytes 

is thought to be the detection of mechanical force on the bone.  Under normal 

conditions the rate of bone formation and loss is balanced.  However, the skeleton 

is able to remodel and adapt to its mechanical environment by adding or removing 

bone.  So, a bone under a high amount of mechanical force will adapt by increasing 

its mineralised tissue volume and / or density, a bone under little mechanical force 

will lose mineralised tissue volume and / or density (Skerry et al. 1989; Burr et al. 

2002; Tatsumi et al. 2007; Klein-Nulend et al. 2013). 

Various studies have shown that when force is applied to a bone the osteocytes 

respond by increasing the expression of DMP1 (Gluhak-Heinrich et al. 2003; Yang et 

al. 2005a) and E11 (Zhang et al. 2006), which may result in bone formation.  

Mechanical loading has been shown to down-regulate the expression of sclerostin, 

an inhibitor of WNT signalling and bone formation (Robling et al. 2006), whereas 
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unloading of the hind limbs of a mouse has been shown to up-regulate the 

expression of sclerostin, which would inhibit bone formation (Lin et al. 2009).  

Targeted deletion of all of the osteocytes within bone using diphtheria toxin 

resulted in mice that were resistant to unloading-induced bone loss (Tatsumi et al. 

2007).  It has also been shown that unloading of mouse hind legs increased the 

osteocytes’ expression of RANKL, a potent cytokine required for osteoclast 

formation, which can lead to bone loss (Xiong et al. 2011). 

It is believed that osteocytes are able to dissolve the non-organic matrix of the 

internal wall of their own lacunae by a process of osteolytic osteolysis (Belanger et 

al. 1967; Qing & Bonewald 2009; Atkins & Findlay 2012).  In support of this theory, 

osteocyte-like cell lines have been reported to express the genes for tartrate-

resistant acid phosphatase (TRAP) and a lysomal proton pump, both are associated 

with bone resorption (Tazawa et al. 2004; Bivi et al. 2009).  It has been reported 

that both PTH treatment and lactation result in enlargement of the osteocyte 

lacunae; it is believed that this dissolution of the lacunae may contribute to net 

circulating calcium and phosphate concentrations (Tazawa et al. 2004; Qing et al. 

2012).  However, the theory of osteolytic osteolysis is disputed (Parfitt 1977; Boyde 

& Jones 1979).   

It has also been reported that osteocytes can actively replace the mineral and 

matrix within their lacunae (Baylink & Wergedal 1971; Zambonin et al. 1983).  It has 

been reported that the osteocyte lacunae size increased in lactating mice and then 

returned back to the baseline size with weaning (Qing et al. 2012), suggesting that 

osteocytes are able to remodel their lacunae. 

Osteoclasts 

Osteoclasts are bone resorbing cells; they are motile and usually multinucleated.   

Osteoclasts are required for breaking down bone, so it can be reformed and 

remodelled during skeletal development and throughout adult life.  Osteoclasts are 

formed from monocyte / macrophage precursors (reviewed in Arnett 2013a).  

Unlike osteoblasts and osteocytes, osteoclasts are formed from the haemopoietic 
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stem cell lineage.  The source of osteoclasts was first elucidated in the 1970s when 

mice suffering from osteopetrosis, a condition resulting in excess bone, caused by 

an osteoclast defect, were cured by a bone marrow transplant, a spleen graft or a 

temporary parabiosis, allowing the blood of a wild type mouse to be shared with an 

affected mouse (Walker 1973; Walker 1975a; Walker 1975b).   

The formation of monocytes and macrophages, from which osteoclasts are 

derived, requires the transcription factor PU.1 (Scott et al. 1994; Anderson et al. 

1998).  Knockout of PU.1 in mice results not only in the inability to produce 

monocytes and macrophages, but also osteopetrosis due to a lack of osteoclasts 

(Tondravi et al. 1997).  This form of osteopetrosis was cured in PU.1-/- mice by a 

bone marrow transplant.  In the initial stages of monocyte and macrophage 

development from haemopoetic stem cells, PU.1 stimulates the expression of C-

fms, the macrophage colony-stimulating factor (M-CSF) receptor (DeKoter et al. 

1998).   

M-CSF is a critical cytokine for the generation of osteoclasts.  The osteopetrotic 

mouse strain op/op has an inactivating mutation in the M-CSF gene.  This lack of M-

CSF results in a severe reduction in osteoclasts and in osteopetrosis, which cannot 

be overcome by a bone marrow transplant (Yoshida et al. 1990).  However, 

injection of these mice with M-CSF restores the osteoclast defect and treats the 

osteopetrosis (Felix et al. 1990).   

RANKL is a member of the tumour necrosis factor (TNF) cytokine family; it is 

expressed by osteoblasts, osteocytes, stromal cells and activated T-cells (Yasuda et 

al. 1998; Kong et al. 1999b; Nakashima et al. 2011; Xiong et al. 2011).  RANKL exists 

in both soluble and membrane bound forms, it acts on osteoclast precursor cells, 

via its receptor, RANK, and via the TNF receptor associated proteins, TRAF2, TRAF5 

and TRAF6.  This activates the nuclear transcription factor nuclear factor κβ (NFκβ), 

which in turn activates the transcription factor of activated T-cells (NFATc1) 

(Franzoso et al. 1997; Iotsova et al. 1997).  Activation of RANK signalling by RANKL 

leads to an increase in multinucleated osteoclasts.  RANKL up-regulates the 

expression of the genes that cause the fusion of preosteoclast precursors: dendritic 
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cell stimulatory transmembrane protein (DC-STAMP) and osteoclast stimulatory 

transmembrane protein (OC-STAMP) (Miyamoto et al. 2012).  Loss of function 

mutations in human RANK (Guerrini et al. 2008) or RANKL (Sobacchi et al. 2007), 

and knockout of RANK (Dougall et al. 1999) or RANKL (Kong et al. 1999a) in mice 

leads to an inability to form osteoclasts and therefore causes severe osteopetrosis 

and failure of tooth eruption.  Over-expression of RANKL in humans, caused by 

factors such as tumours, resulted in extensive pathological osteolysis (Grimaud et 

al. 2003).   

The actions of RANKL are inhibited by osteoprotegerin (OPG), a soluble decoy 

receptor that binds to RANKL and prevents its interaction with RANK (Simonet et al. 

1997).  Inactivating mutations in the OPG gene (Tnfrs11b) in humans results in 

Paget’s disease due to excessive osteoclast activity (Whyte et al. 2002).  In mice, 

over-expression of OPG, or injection with recombinant OPG, reduced osteoclast 

formation and caused osteopetrosis (Simonet et al. 1997).   

The RANK-RANKL-OPG axis is one of the most important signalling pathways in 

the development of osteoclasts. NFATc1 is the transcription factor most strongly 

induced by RANKL and may represent the master gene in osteoclast formation 

(Takayanagi et al. 2002).  Knock out of NFATc1 in mice caused them to die in utero 

because the pulmonary and aortic valves did not develop (de la Pompa et al. 1998; 

Ranger et al. 1998).  Osteoblast targeted ablation of NFATc1 in mice, which 

prevented the lethal defects, resulted in a reduction in osteoclast number and size, 

and severe osteopetrosis (Winslow et al. 2006).  Over expression of NFATc1 in mice 

led to a large increase in the number of osteoclasts formed in vivo (Winslow et al. 

2006).   

Osteoclasts have to attach to the bone surface in order to resorb it.  The 

attachment and binding of the osteoclast to the bone surface occurs primarily 

through the ανβ3 integrin (vitronectin receptor) (Davies et al. 1989; Nakamura et 

al. 1999).  This integrin forms part of a structure known as a podosome that 

contains actin filaments, cortactin, Wiskott-Aldrich syndrome proteins and other 

attachment proteins such as vinculin and talin (Luxenburg et al. 2007).  The ανβ3 
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integrin recognises and binds to the arg-gly-asp (RGD) amino acid motif of proteins 

embedded in the matrix of bone (Horton et al. 1991).  Knockout mice deficient in 

the β3 integrin are able to form osteoclasts, yet these osteoclasts are not able to 

sufficiently bind to mineralised surfaces for resorption to occur (McHugh et al. 

2000).   

When an osteoclast attaches onto bone, the podosomes rearrange into a ring 

known as the sealing zone, which anchors the osteoclast onto the bone surface, 

and results in the formation of a compartment underneath the cell where bone 

resorption can take place.  Podosome formation is under the control of c-Src, a 

tyrosine kinase and Rho (a GTPase)  (Jurdic et al. 2006).  Knock out of c-Src in mice 

resulted in osteopetrosis because the osteoclasts that these mice formed were 

unable to breakdown bone (Soriano et al. 1991).  Src kinases phosphorylate many 

substrates, including cortactin and gelsolin, which regulate actin polymerisation and 

podosome turnover (De, V et al. 1997; Tehrani et al. 2007).  Within the sealing 

zone, the cell membrane of the osteoclast develops the ruffled border.  This highly 

convoluted folded membrane allows a large surface area of the osteoclast to 

interact with the bone. 

The ruffled border of the osteoclast contains the vacuolar-type H+ ATPase proton 

pump.  This actively pumps protons out of the osteoclast, across the ruffled border, 

and into the sealed resorption compartment covering the surface of the bone (Blair 

et al. 1989).  This acidifies the compartment and results in the “acid etching” of the 

bone.  The protons secreted by the v-ATPase are mainly formed by the actions of 

carbonic anhydrase II; this also results in the formation of bicarbonate.  This 

bicarbonate is passively exchanged for chloride ions at the basolateral membrane 

of the osteoclast (Blair et al. 1993).  In order to maintain the intracellular pH and 

electrochemical charge of the osteoclast, these negatively charged chloride ions are 

expelled from the cells across the ruffled border into the resorption zone by the 

CIC-7 chloride channel (Brandt & Jentsch 1995).  Knock out of CIC-7 channel in mice 

results in osteoclasts that are unable to resorb bone and severe osteopetrosis.  
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Defects in the CIC-7 Cl- channel have been detected in humans, and shown to be a 

cause of malignant osteopetrosis (Kornak et al. 2001). 

This acid environment that the osteoclast forms is able to dissolve 

hydroxyapatite, but for the complete destruction of bone, and the degradation of 

demineralised bone matrix, enzymatic digestion is required.  Cathepsin K is an 

enzyme expressed by activated osteoclasts and secreted into the sealed resorption 

zone, where it cleaves all three chains of the type 1 collagen triple helix and the 

telopeptides (Costa et al. 2011a).    A genetic defect in the gene encoding cathepsin 

K results in the rare condition pycnodysostosis.  Humans with this loss of function 

mutation in cathepsin K have a short stature and skeletal malformations (Gelb et al. 

1996).  Cathepsin K knockout mice have increased bone mass due to impaired bone 

resorption; these mice formed osteoclasts which had little resorptive activity, 

resulting in impaired bone remodelling (Saftig et al. 1998; Li et al. 2006).   

The matrix metalloproteinases (MMPs) are also secreted across the ruffled 

border of osteoclasts and degrade the organic component of bone (Delaisse et al. 

2003).  MMPs are generally regarded as contributing less to matrix degradation 

than cathepsin K; however, MMP knockout mice show skeletal defects.  Knockout 

mice deficient in MMP9 and MMP13 have defects of the growth plate due to 

reduced osteoclast resorptive function (Vu et al. 1998; Inada et al. 2004).  

Osteoclasts express tartrate resistant acid phosphatase (TRAP).  TRAP generates 

reactive oxygen species that may also aid in matrix degradation.  TRAP knockout 

mice have reduced osteoclast activity and mild osteopetrosis (Hayman & Cox 2003).  

In histology and cell culture experiments, TRAP activity is used as a convenient 

marker for osteoclasts. 

The activation of osteoclasts requires the up-regulation of key genes needed for 

resorption.  The acidification of the osteoclast’s extracellular environment is the key 

factor in the activation of resorption in vitro (Arnett & Dempster 1986).  

Extracellular acidification stimulates the formation of the podosome and the 

expression of the machinery needed for resorption: carbonic anhydrase II, v-type 

H+ ATPase, cathepsin K and TRAP (Teti et al. 1989; Murrills et al. 1993; Arnett 
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2010).  After the initial activation by acidosis, other factors can influence the rate of 

resorption by osteoclasts, such as, PTH (Dempster et al. 2005), RANKL (Burgess et 

al. 1999), ATP / ADP (Morrison et al. 1998; Hoebertz et al. 2001).  The key factor in 

the long term survival of the osteoclast is the RANKL / OPG ratio; reduction in 

RANKL or an increase in OPG leads to apoptosis (Lacey et al. 2000).   

Bone matrix 

Bone derives its strength by being a composite material of organic and non-organic 

factors.  Type I collagen is the predominant structural protein in bone and provides 

the tensile strength (Vashishth 2007). This collagen provides the backbone for bone 

and is the site of initial mineral deposition. Osteogenesis imperfecta in humans and 

animals is caused by mutations in the genes encoding collagen; defective collagen is 

produced and results in brittle bones (Marini et al. 2007).  Collagen is a trimeric 

molecule made up of three α-chain subunits. The amino acid sequence of each of 

these α-chains is made up of a repeating triplet sequence, gly-X-Y, where X is often 

proline and Y is often hydroxyproline.  Collagenous proteins can be either 

homotrimeric, where all three α-chains are identical, or hetrotrimeric, where the α-

chains are different.  These three chains coil together to form a triple helix.  This 

structure is stabilised by hydrogen bonding between the OH groups of 

hydroxyproline (reviewed in Gordon & Hahn 2010).  Collagen fibrils are formed by 

the collagen molecules lining up.  Individual fibrils are aligned in a quarter-

staggered way.  As a result of this stagger there are gaps in the fibril structure; it is 

within these gaps that crystals of the bone mineral hydroxyapatite first appear in 

the extracellular environment (Traub et al. 1992).   

Using proteomics and gene profiling it has shown that there are many thousands 

of different non-collagenous proteins in bone matrix, each with varying actions 

(Boskey 2013).  Some of these proteins, such as albumin, are explanted into the 

bone from the blood plasma.  Other proteins such as proteoglycans are assumed to 

become embedded during the bone formation process and may act to help stabilise 

the tissue integrity.  Osteonectin is a phosphorylated glycoprotein found in bone 

that may regulate osteoblast proliferation and function.  The SIBLING proteins may 
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play a role in the attachment of bone cells to the bone (reviewed in Robey & Boskey 

2009). 

The mineralisation of bone matrix  

The inorganic mineral hydroxyapatite (Ca5(PO4)3OH) provides the rigidity of bone.  

Unlike the naturally occurring geological form of this mineral, the biological form 

contains many other elements.  These factors increase the solubility of the 

hydroxyapatite crystals, giving it an important role in Mg2+, Ca2+ and phosphate 

homeostasis (McConnell et al. 1961; Hukins et al. 1986).  

Collagen does not directly induce hydroxyapatite crystal deposition onto bone 

matrix.  The first stages of mineralisation take place within matrix vesicles 

(Anderson 1969; Ali et al. 1970).  These osteoblast organelles provide a site for Ca2+ 

and phosphate accumulation, which enables the formation of hydroxyapatite 

(Anderson et al. 1997).  The matrix vesicle buds out from the osteoblast, next the 

matrix vesicle membrane is broken down releasing the hydroxyapatite into the 

extracellular matrix, where its crystal structure propagates further (Anderson et al. 

2005a).  A number of factors have been shown to be key regulators of 

mineralisation, these include three key enzymes: ecto-nucleotide pyrophosphatase 

/ phosphodiesterase-1 (NPP1), alkaline phosphatase (ALP) and phosphatase orphan 

1 (PHOSPHO1); the transport protein ANK and the pyrophosphate / phosphate 

ratio. 

Ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and 

mineralisation 

The Enpp1 gene, which encodes the membrane bound enzyme NPP1 is expressed in 

a wide variety of tissues including heart, kidney, vascular smooth muscle cells, 

osteoblasts and chondrocytes (Terkeltaub 2001; Johnson & Terkeltaub 2005; 

Johnson et al. 2005; Nitschke et al. 2011).  NPP1 is a member of the NPP family of 

enzymes; it is highly expressed on the membrane of mineralising cells and within 

matrix vesicles.  It acts to hydrolyse nucleotide triphosphates to their 

monophosphate form with the release of the inhibitor of mineralisation, 
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pyrophosphate (Fleisch & Bisaz 1962).  For further details on its role in nucleotide 

hydrolysis see page 47. 

NPP1 has been shown to have a role in extracellular matrix mineralisation (see 

section below on phosphate / pyrophosphate ratio) but there is also evidence to 

show that NPP1 plays a role in insulin signalling.  Over expression of Enpp1 in 

cultured fibroblasts inhibited insulin receptor tyrosine kinase, thereby reducing the 

actions of insulin on its receptor.  Certain subpopulations of patients with non-

insulin dependent diabetes mellitus have been shown to over express NPP1 

(Maddux et al. 1995; Frittitta et al. 1998).  Further studies revealed that the actions 

of NPP1 on insulin signalling are not mediated by its actions on nucleotide 

breakdown; the abolition of NPP1’s nucleotidase activity did not affect its actions 

on insulin signalling (Grupe et al. 1995).  Subsequent work has shown that NPP1 

directly interacts with the α-subunit of the insulin receptor; antibodies against 

NPP1 can prevent this interaction and restore insulin receptor signalling in cells 

over-expressing Enpp1 in vitro (Maddux & Goldfine 2000).  Transgenic mice with 

liver specific over expression of Enpp1 show impaired glucose tolerance, but not 

overt diabetes.  However, mice with targeted over-expression of Enpp1 in both the 

liver and muscle show fed and fasting hyperglycaemia and hyperinsulinemia 

(Maddux et al. 2006).   A short hairpin RNA adenovirus has been used to reduce in 

vivo hepatic Enpp1 mRNA expression in a db/db mouse model of diabetes.  

Knockdown of Enpp1 expression in this mouse led to a reduction in fasting and fed 

plasma glucose levels and an improvement in glucose tolerance (Zhou et al. 2009). 

Alkaline phosphatase and mineralisation 

In humans there are four ALP isoenzymes: tissue non-specific (TNAP), placental, 

germ cell and intestinal ALP (Millan 2013).  Tissue non-specific ALP is expressed only 

in the bone, liver and kidney. There are slight differences in the post-translational 

modification of the tissue non-specific form depending on the tissue source of the 

enzyme; this results primarily in variations in the type and amount of glycosylation 

and differences in the number of sialic acid side-chains (Schreiber & Whitta 1986; 

Magnusson & Farley 2002; Halling et al. 2009).  Mice also have four separate genes 
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that express ALP: the tissue non-specific form (Akp2), duodenum specific intestinal 

form, embryonic and the global intestinal form (Millan 2013).  Rats have three 

different ALP genes, the tissue non-specific form and two isoenzymes of the 

intestinal form (Millan 2006).  In both the human and the rodent, only the tissue 

non-specific form has been implicated in tissue mineralisation. 

Tissue non-specific ALP is found anchored to the surface of osteoblasts by 

glycosylphosphatidylinositol (Fedde et al. 1988; Hooper 1997).  ALP is also found on 

the surface of matrix vesicles (Anderson et al. 2004).  It was first suggested in 1923 

that ALP may be significant in bone mineralisation (Robison 1923).  Later work 

showed that the key role of tissue non-specific ALP on osteoblasts and within 

matrix vesicles is to hydrolyse the inhibitor of mineralisation pyrophosphate, to 

produce phosphate (Hessle et al. 2002). 

Phosphatase orphan 1 (PHOSPHO1) 

PHOSPHO1, a phosphoethanolamine / phosphocholine phosphatase, is a member 

of the haloacid dehalogenase superfamily of enzymes (Houston et al. 1999; Stewart 

et al. 2003).  Experiments in chicks and mice have shown that PHOSPHO1 is found 

inside the matrix vesicles of osteoblasts and hypertrophic chondrocytes (Stewart et 

al. 2006). The expression of Phospho1 is up-regulated in mineralising cells by 

approximately 100 fold compared to non-mineralising cells (Houston et al. 1999).  

PHOSPHO1 is important in the initial stages of mineralisation.  TNAP knockout mice 

still produce hydroxyapatite and calcium phosphate crystals within their matrix 

vesicles, despite having a bone mineralisation defect.  It has been shown that 

PHOSPHO1 hydrolyses the phosphate groups from both phosphoethanolamine and 

phosphocholine to produce ethanolamine and choline (Roberts et al. 2004).  

Phosphoethanolamine and phosphocholine are found within the membrane of 

matrix vesicles, the phosphate groups that PHOSPHO1 hydrolyses from them 

contribute towards the initial formation of hydroxyapatite within matrix vesicles 

(Yadav et al. 2011). 
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Phospho1-/- mice have hypomineralised bones that are prone to spontaneous 

fracture (Huesa et al. 2011; Yadav et al. 2011).  Experiments using Akp2 / Phospho1 

double knockout mice have shown that PHOSPHO1 plays a key role in the 

generation of phosphate and formation of hydroxyapatite within matrix vesicles, 

whereas TNAP predominantly undertakes this role outside of the matrix vesicles 

(Yadav et al. 2011).  All mineralisation is impaired in Akp2 / Phospho1 mice; these 

mice die by day 18 post birth (Yadav et al. 2011).  PHOSPHO1 has also been 

implicated in the regulation of insulin signalling in osteoblasts (Oldknow et al. 

2012). 

Phosphate / pyrophosphate ratio 

Pyrophosphate (PPi) is produced from ATP in the extracellular environment by the 

actions of some members of the NPP family (Terkeltaub 2001); PPi inhibits 

mineralisation of the extracellular matrix (Meyer 1984; Russell 2011).  PPi is the 

body’s natural “water softener”, it is a physicochemical inhibitor of mineralisation 

that is believed to work by reducing the dissolution of hydroxyapatite crystals, by 

lowering the equilibrium concentrations of calcium and phosphate (Fleisch et al. 

1966), thereby preventing the precipitation of mineral out of solution and onto 

bone surfaces. 

In the extracellular environment ALP plays a key role in hydrolysing PPi; this 

results not only in the reduction of this inhibitor of mineralisation, but also releases 

two phosphate molecules that can contribute to the formation of hydroxyapatite.   

The actions of NPP and ALP are antagonistic: NPP acts to inhibit mineralisation by 

increasing the concentration of PPi, whereas ALP acts to promote mineralisation by 

hydrolysing PPi and releasing Pi (Millan 2013).   

Enpp1-/- mice develop soft tissue calcification, calcification of the aorta and 

calcification of the joints (hyperostosis); this is because the loss of NPP1 leads to a 

reduction in the PPi concentration and therefore less inhibition of calcification 

(Sakamoto et al. 1994; Johnson et al. 2003; Zhu et al. 2011).  Enpp1-/- mice also 

have significant defects in long bone mineralisation, 22 week old mice have been 
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shown to have reduced trabecular bone volume.  This seems a counterintuitive 

finding, when removing an inhibitor of mineralisation it would be expected that 

mineralisation is increased (Mackenzie et al. 2012b).  In humans, mutations that 

decrease or knock out the expression of NPP1 lead to generalised arterial 

calcification during infancy; severe cases usually result in death before 6 months of 

age (Nitschke et al. 2012).   

Akp2-/- mice lack tissue non-specific alkaline phosphatase.  Akp2-/- mice begin to 

display skeletal hypomineralisation at around day 6 after birth, until they die at 

approximately day 20 (Narisawa et al. 1997).  The lack of TNAP results in an inability 

to hydrolyse PPi; this results in both an excess of this mineralisation inhibitor and a 

deficit in phosphate, which is required for hydroxyapatite formation (Fedde et al. 

1999; Anderson et al. 2004).  Osteoblasts from Akp2-/- mice form matrix vesicles 

which contain hydroxyapatite crystals; however, these crystals fail to propagate and 

spread outside of the matrix vesicle environment, resulting in poorly mineralised 

bone in vivo (Anderson et al. 1997; Anderson et al. 2004).  Mouse osteoblasts did 

form from Akp2-/- precursors in vitro, yet they were not able to deposit mineral 

onto the extracellular matrix that they produced (Wennberg et al. 2000).  In 

humans, TNAP is encoded by the ALPL gene.  Hypophosphotasia is an inherited 

metabolic disease caused by mutations in the ALPL gene that reduce the activity of 

TNAP, leading to rickets and osteomalacia.  Approximately 200 mutations in the 

ALPL gene have been found so far; some are transmitted in an autosomal recessive 

way, others in an autosomal dominant way (Mornet et al. 1998; Whyte 2010).  

Hypophosphotasia is characterised by hypomineralisation of bone and teeth, the 

severity of which can vary between mild teeth defects to perinatal and infantile 

death (reviewed in Orimo 2010; Whyte 2010).   

Akp2-/- mice have defective mineralisation of the calvaria, spine and long bones; 

this phenotype can be rescued by knockout of the Enpp1 gene creating an 

Akp2/Enpp1 double knockout mouse (Hessle et al. 2002).  These double knockout 

mice have a normalised PPi/Pi ratio, permissive for mineralisation of the long 

bones, yet sufficient to inhibit soft tissue mineralisation (Hessle et al. 2002; Harmey 
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et al. 2004; Murshed et al. 2005).  However deletion of the Enpp1 gene does not 

completely compensate for the knockout of Akp2.  Although double knockout of 

TNAP and NPP1 restored the level of mineralisation in the calvaria and spine to 

levels comparable with wild types, double knockout did not fully restore the 

hypomineralisation defects seen in the long bones.  It is believed that this is due to 

differences in the local levels of expression of TNAP and NPP1.  The axial skeleton 

has been shown to have higher levels of Enpp1 expression compared to the 

appendicular skeleton (Anderson et al. 2005b). 

In order to permit the mineralisation of bone, but prevent the mineralisation of 

soft tissues, the PPi/Pi ratio must be finely balanced.  Organ cultures of foetal chick 

long bones have shown that PPi can have a bimodal effect.  At physiological 

concentrations up to 1 µM, PPi is rapidly hydrolysed by TNAP to produce two 

phosphate molecules, which positively contribute towards mineralisation.  

Concentrations of PPi greater than 1 µM inhibit mineralisation, because the excess 

PPi is not hydrolysed by the pyrophosphatases (Anderson & Reynolds 1973; 

Anderson et al. 2005a).   

ANK 

PPi is produced within cells by a number of different metabolic processes, and the 

hydrolysis of nucleotides.  The trans-membrane transport protein, ANK, transports 

PPi from the intracellular to the extracellular environment; it is encoded by the 

progressive ankylosis gene (ank) (Ho et al. 2000).  Mice deficient in the PPi 

transport protein ANK show defects similar to NPP1 knockout mice.  They have 

defects in bone mineralisation and have pathological soft tissue calcification (Ho et 

al. 2000; Kim et al. 2010). 

Factors that regulate bone cells and bone formation 

The vascular system 

The vascular supply to the bone can have an effect on bone cells.  In a typical long 

bone there are three major classes of blood vessels.  The nutrient artery and vein 

are major vessels that invade the diaphysis (shaft) of the bone and extend down its 
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length.  Metaphyseal vessels supply blood to the diaphyseal (inner) surface of the 

growth plate.  Periosteal vessels are incorporated into the outer surface of growing 

bone (Martini 1998).  The vascular system is important for supplying oxygen and 

nutrients to the bone and removing waste metabolic products; alterations in the 

vascular supply can lead to bone loss and changes in bone cell activity. Hypoxia due 

to a reduction in the vascular perfusion of bone can be caused by many factors; 

these include, fracture of the bone, infection, inflammation, cigarette smoking, 

pulmonary disease and sickle cell anaemia (reviewed in Arnett 2010). 

Oxygen tension is a major regulator of osteoclast formation.  Hypoxia stimulates 

mouse and human osteoclast formation in vitro (Arnett et al. 2003; Utting et al. 

2010).  Osteoclast formation may be mediated by hypoxia inducible factors (HIFS) 

1α and 2α (Knowles & Athanasou 2009).  Normal human bone marrow aspirates 

have a pO2 of between 44 to 47 mmHg (Harrison et al. 2002), healthy mandible 

marrow has been shown to have a pO2 of 61 mmHg.  However, measurements have 

shown that diseased mandible and fracture haematomas have pO2 levels of 11 to 6 

mmHg (reviewed in Arnett 2010).   

Chronic hypoxia inhibits the growth, differentiation and bone forming activity of 

rodent osteoblasts in vitro. ALP activity and collagen production were both 

decreased in osteoblasts cultured in a 2% pO2 environment.  The decreased 

collagen production may have been due to the decreased expression of the oxygen 

sensitive enzymes prolyl-hydroxylase and lysyl oxidase (Utting et al. 2006).   

In contrast with osteoblasts, osteocytes reside in lacunae that may be hypoxic 

due to their distance away from the blood supply and closed structure.  It has been 

suggested that bone loading may result in enhanced nutrient diffusion to the 

osteocytes; bone unloading has been reported to result in osteocyte hypoxia (Dodd 

et al. 1999; Gross et al. 2001). 

Hydrogen ions 

Impairment of the vascular supply to bone can result in an acidotic environment 

forming.  The vascular system is required to transport acidic waste products such as 
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CO2 and lactic acid to the kidneys and lungs for excretion.  Failure to do so will 

result in a systemic acidosis.  Under hypoxic conditions the mitochondria are unable 

to provide the ATP the body requires.  This shortfall is compensated for by an 

increase in glycolysis.  The pyruvate produced during glycolysis is converted to lactic 

acid; resulting in an acidosis.  It has long been known that an acidosis, of any origin, 

can have detrimental effects on the bone (Goto 1918).   

For many years it was thought that an acidosis resulted in a physicochemical 

etching of the bone, resulting in mineral release (Bushinsky et al. 1985; Barzel 

1995).  It was subsequently demonstrated that a reduction in the pH of the cell 

culture media was necessary to activate osteoclast resorptive activity in vitro 

(Arnett & Dempster 1986; Arnett & Dempster 1987; Brandao-Burch & Arnett 2004).  

Acidification was shown to increase the expression of mRNA for carbonic anhydrase 

II (Biskobing & Fan 2000) and increase cathepsin K activity (Muzylak et al. 2007) by 

osteoclasts.  This indicated that osteoclasts are key mediators of the decrease in 

bone quality seen in acidosis. 

In vitro experiments using mouse osteoblasts found that acidifying the growth 

media from pH 7.5 to pH 7.1 on day 8 of culture resulted in less mineralised bone 

nodule formation and prevented the normal developmental increase in the 

expression of matrix GLA protein and osteopontin mRNAs compared to non-

acidified osteoblasts (Frick & Bushinsky 1998).  However, work undertaken in the 

Arnett laboratory yielded slightly different results.  They found that acidification of 

the culture media from pH 7.4 to pH 6.9 resulted in the inhibition of bone matrix 

mineralisation by rat osteoblasts, but these osteoblasts still formed collagenous 

extracellular matrix.   They did not find that acidification led to a decrease in matrix 

GLA protein and osteopontin mRNA expression, but did observe an 8 fold decrease 

in ALP activity by osteoblasts when the pH was reduced to 6.9 (Brandao-Burch et al. 

2005). 
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Glucocorticoids 

High glucocorticoid levels, due to either administration as medicines or due to 

pathological conditions, cause bone loss (reviewed in Weinstein 2012).  Mice 

administered with glucocorticoids for 28 days were reported to have a decrease in 

their bone vasculature (Weinstein et al. 2010).  It has also been reported that 

glucocorticoids act directly on osteoclasts and inhibit their apoptosis, resulting in 

increased bone resorption (Jia et al. 2006).  Additionally, glucocorticoids have been 

reported to supress osteoblast activity by down regulating WNT signalling (WNT 

signalling is discussed below) (Ohnaka et al. 2004). 

Endocrine and paracrine regulators of bone cells  

The formation and resorption of bone, and the differentiation and activity of 

osteoblasts, osteocytes and osteoclasts needs to be tightly regulated; a number of 

signalling molecules fulfil this role. 

Bone morphogenetic protein signalling 

The family of bone morphogenetic proteins (BMPs), were originally identified as 

proteins with the ability to form ectopic bone when injected subcutaneously (Urist 

1965).  The 20 known BMPs are members of the transforming growth factor-β (TGF-

β) super-family; the other members of the TGFβ family are the activin / nodal 

proteins (reviewed in Sieber et al. 2009).  There are two types of BMP receptors; 

each type is a serine-threonine kinase (reviewed in Rosen 2006).  The main 

functions of BMP signalling are to initiate the differentiation of MSCs towards the 

osteoblast lineage and to promote osteoblast activity (Gitelman et al. 1995; 

Yamaguchi et al. 1996).  BMPs also increase chondrocyte maturation and function, 

increasing the expression of type II and type X collagens (De et al. 2001; Grimsrud et 

al. 2001).  

The antagonists, noggin, chordin and gremlin inhibit the interaction of BMP with 

its receptors, preventing BMP signalling (Piccolo et al. 1996; Brunet et al. 1998; Hsu 

et al. 1998).  BMP3 can block signalling through the type II BMP receptor.  Knock-in 
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mice that over-expressed BMP3 were more prone to fractures; BMP3 knockout 

mice formed more bone than wild types (Kokabu et al. 2012).    

When BMP signalling is blocked in early chick limbs, the condensation of 

mesenchymal cells fails to occur, indicating that BMP signalling is necessary for 

endochondral ossification and chondrocyte generation (Pizette & Niswander 2000).  

Knock out of BMP2 and BMP4 in a mouse model leads to a complete failure of 

osteoblast differentiation from MSCs (Bandyopadhyay et al. 2006).  The knockout of 

BMP2 within the post natal, formed limb of a mouse resulted in an inability to 

initiate fracture healing and repair after trauma, yet the limbs of the knockout mice 

formed normally (Tsuji et al. 2006).   

Vitamin D 

Vitamin D is a major regulator of calcium and phosphate homeostasis in the body.  

It exists in two different forms, vitamin D3 (cholecalciferol), the animal form, and 

vitamin D2 (ergocalciferol), the plant form.  In mammalian skin, ultraviolet B rays 

convert 7-dehydrocholesterol into vitamin D (Holick et al. 1980).  Vitamin D is 

transported to the liver where is converted by the enzyme 25-hydroxylase into 25-

hydroxyvitamin D, the major form of vitamin D in the circulation.  In the kidney 25-

hydroxyvitamin D is converted into 1α,25-dihydroxyvitamin D (1,25(OH)2vitD) by 

the actions of the enzyme 25(OH) vitamin D 1α-hydroxylase.  1α,25-

dihydroxyvitamin D, also known as calcitriol is the active form of vitamin D 

(reviewed in Haussler et al. 2011).  

The classical actions of 1,25(OH)2vitD are to increase dietary calcium and 

phosphate absorption by the intestine, in order to maintain their plasma 

concentrations.  1,25(OH)2vitD can have a direct action on bone cells; it has been 

reported to decrease proliferation and increase differentiation of human 

osteoblast-like cells in vitro (Van Driel et al. 2006; Atkins et al. 2007).    

1,25(OH)2vitD has also been reported to indirectly stimulate mouse 

osteoclastogenesis by up-regulating  RANKL  mRNA expression by osteoblasts in 

vitro (Takeda et al. 1999).  Inadequate vitamin D production or intake, mutations in 
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the vitamin D receptor, or mutations in the enzymes required for 1,25(OH)2vitD 

production leads to rickets in children and osteomalacia in adults (reviewed in Bikle 

2012).   

Parathyroid hormone 

Parathyroid hormone (PTH) has been known for many years to play a major role in 

the control of calcium and phosphate homeostasis (Collip 1925).  The chief cells of 

the parathyroid gland secrete PTH in response to a decrease in the ionised calcium 

concentration in blood (Potts 2005).  When rats were infused with PTH in vivo it 

was reported that the RANKL / OPG ratio was increased.  The number of osteoclasts 

seen histologically was increased and an increase in blood serum calcium also was 

detected (Ma et al. 2001).   

PTH reduces the reabsorption of phosphate in the proximal convoluted tubule of 

the kidney (Kempson et al. 1995; Keusch et al. 1998; Traebert et al. 2000) and also 

increases renal calcium reabsorption in the ascending limb of the loop of Henle and 

the distal convoluted tubule (Friedman & Gesek 1993),  in doing so it is able to 

regulate their concentrations in blood. 

PTH also increases the production of the enzyme 25(OH) vitamin D-1α-

hydroxylase in the proximal tubule of the kidney, this leads to an increase in the 

production of 1,25(OH)2vitD, which increases calcium absorption by the intestines 

(Fraser & Kodicek 1973; Kremer & Goltzman 1982). 

Intermittent PTH administration to people or animals results in an increase in 

osteoblast numbers and anabolic bone formation.  In vitro experiments on rodent 

and human osteoblasts and osteoblast-like cells have shown that intermittent low 

dose PTH administration increases the formation of osteoblasts from precursors 

(MacDonald et al. 1986; Ishizuya et al. 1997; Schiller et al. 1999).  Intermittent PTH 

administration in rodents has also been shown to down-regulate two negative 

regulators of the WNT signalling pathway, dickkopfs-1 (DKK-1) (Kulkarni et al. 2005) 

and sclerostin (Bellido et al. 2005; Keller & Kneissel 2005).  Down-regulation of 

these two factors will result in increased bone formation.  Intermittent PTH 
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administration has also been shown to decrease the rate of in vitro and in vivo 

osteoblast apoptosis in rodents (Jilka et al. 1999; Wang et al. 2007). 

WNT signalling 

The WNT acronym is derived from the combination of the gene names wingless 

type and int-1 (Nusse et al. 1991).  The WNT signalling pathways can be separated 

into two distinct groups; the canonical pathway, in which the actions are mediated 

by β-catenin; the non-canonical pathway, in which the effects are independent of β-

catenin.   

β-catenin is an intracellular signalling molecule.  In the absence of any WNT 

proteins binding to their receptors, β-catenin is associated with an intracellular 

destruction complex.  This destruction complex contains axin, adenomatous 

polyposis coli (APC), casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3); 

the ubiquitin-mediated proteolysis activity of this complex degrades β-catenin and 

prevents signalling (Aberle et al. 1997).  The T-cell specific transcription factor / 

lymphoid enhancer-binding factor (Tcf/Lef) transcription factor in the nucleus 

remains bound to Groucho, a transcriptional co-repressor, so it cannot affect gene 

expression.   

When WNT proteins bind to the Frizzled (FZD) and LRP5/6 cell surface receptors 

a FZD-LRP5/6 co-receptor complex recruits and activates the cytoplasmic signalling 

protein dishevelled (Dvl) (Bilic et al. 2007).  Dvl recruits the axin-GSK3 complex; this 

complex phosphorylates the LRP5/6 receptor and leads to the inhibition of the β-

catenin destruction complex, resulting in increased β-catenin levels in the 

cytoplasm (Zeng et al. 2005).  β-catenin then translocates to the nucleus, where it 

displaces Groucho, freeing the Tcf/Lef transcription factors to activate target genes 

(Figure 1.1) (reviewed in Monroe et al. 2012).  
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Figure 1.1.  The WNT β-catenin signalling pathway 

(A) Inhibition of WNT signalling. The WNT protein is prevented from binding to the Frizzled 
/ LRP co-receptor on the surface of the cell by sFZP or Wif-1 binding to it, or by sclerostin or 
DKK binding to the receptor. WNT signalling is inhibited, resulting in the formation of an 
intracellular destruction complex containing axin, APC, GSK3 and CK1. This destruction 
complex promotes phosphorylation and ubiquitin mediated breakdown of β-catenin.  WNT 
related genes remain suppressed by Groucho.  (B) Activation of WNT signalling. The binding 
of WNTs to the Frizzled / LRP co-receptor lead to the phosphorylation of the receptor and 
the recruitment of the Dvl proteins.  Dvl inhibits the formation of the destruction complex 
and the phosphorylation of β-catenin.  The un-phosphorylated β-catenin is free to 
translocate to the nucleus, where it displaces the inhibitor of transcription, Groucho, and 
interacts with Tcf/Lef to regulate gene expression.   
APC = adenomatous polyposis coli, CK1 = casein kinase 1, Dvl = dishevelled, GSK3 = 
glycogen synthase kinase 3, P = phosphate, sFZP = secreted frizzled related proteins, Wif-1 
= WNT inhibitory factor-1.  (Adapted from (Goltzman 2011; Monroe et al. 2012). 
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The non-canonical WNT signalling pathways include: the WNT/Ca2+ pathway, the 

WNT/planar cell polarity (PCP) pathway, the WNT/JNK pathway, WNT/Rho-Rac and 

the WNT/Ror pathways.  In non-canonical signalling, WNT proteins bind to FZD or 

co-receptor complexes of FZD/Ror2 or Ryk.  WNT proteins bind to the FZD receptors 

and activate Dvl, Dvl acts independently of β-catenin to affect gene transcription.  

WNT proteins may also bind to Ror2 and Ryk receptors on the surface of the cell.  

Within these pathways, WNT signalling occurs independently of Dvl and β-catenin 

(Monroe et al. 2012). 

WNTs are a family of 19 secreted glycoproteins, they are classified as either 

canonical or non-canonical depending on their ability to mobilise β-catenin.  There 

is a considerable amount of functional overlap between the two groups.  Wnt3a is 

considered to be a canonical WNT, yet may also activate WNT/G-protein coupled 

receptors (Tu et al. 2007), Wnt5a is considered to be predominantly a non-

canonical WNT, but under specific circumstances it may activate canonical signalling 

(Mikels & Nusse 2006).   

The name Frizzled was used to describe the tightly coiled hairs of the FZD-/- 

Drosophila Melanogaster fly, before the receptor was discovered (Gubb & Garcia-

Bellido 1982). There are currently 10 known FZD receptors; all are 7-

transmembrane domain receptors and each different FZD receptor regulates a 

different intracellular signalling cascade depending upon the nature of the co-

receptor (Schulte 2010).  LRP5 and LRP6 are low-density-lipoprotein receptors  (Rey 

& Ellies 2010).  LRP5 and LRP6 have distinct functions, LRP6-/- mice die at birth, yet 

LRP5-/- mice do not (Pinson et al. 2000; Kato et al. 2002).   

WNT signalling can be antagonised in a number of different ways.  Sclerostin, 

DKK and Wise all down-regulate WNT signalling by interacting with the LRP5/6 co-

receptor complex.  There are four DKK proteins; DKK1 and DKK4 always act as 

antagonists, DKK2 may act as an antagonist or an agonist depending on whether it 

is bound to kremen, a co-receptor for antagonism (Zorn 2001; Mao & Niehrs 2003; 

Semenov et al. 2008).  Sclerostin is encoded by the Sost gene; it is produced 
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primarily by osteocytes (Van Bezooijen et al. 2004).  However, sclerostin may also 

be produced by hypertrophic chondrocytes in the growth plate and cementocytes 

in teeth (Van Bezooijen et al. 2009; Chan et al. 2011).  Sclerostin is a member of the 

Dan family of glycoproteins; like many members of this family, sclerostin can inhibit 

BMP signalling (Winkler et al. 2003).  However, sclerostin’s main mechanism of 

action is by binding to the LPR5/6 receptors and preventing WNT signalling 

(Semenov et al. 2005; Li et al. 2005b).  Wise also belongs to the Dan family of 

proteins; it acts to inhibit WNTs binding to LRP5/6 and down-regulates WNT 

signalling (Itasaki et al. 2003; Ahn et al. 2010).  Wise can also bind BMPs and inhibit 

their signalling (Laurikkala et al. 2003; Yanagita et al. 2004).   

WNT signalling may also be antagonised by factors that bind to the WNT ligands 

directly, interfering with their ability to bind to receptors. The secreted frizzled 

related proteins (sFZPs) family has five members that have a high structural 

similarity with FZD, allowing them to bind to WNTs (Bovolenta et al. 2008).  WNT 

inhibitory factor-1 (Wif-1) has a high structural similarity with the WNT receptor 

Ryk, this means that like sFZPs, it is able to bind to and inhibit WNTs (Malinauskas 

et al. 2011).   

Both canonical and non-canonical WNT signalling plays a key role in the 

development of bone and bone cells.  WNTs are required for both osteoblast and 

chondrocyte differentiation in the developing bone, and for the maintenance of 

mature bone.  Knockout of Wnt5a is embryonically lethal in mice, Wnt5a+/- mice 

have reduced bone mass.  Wnt5a was found to down-regulate PPARγ expression; 

this repressed the conversion of MSCs to adipocytes, so MSCs in Wnt5a+/- mice 

favoured an osteoblastic lineage (Takada et al. 2007).  β-Catenin has been shown to 

down regulate Sox9 expression, the transcription factor necessary for the 

differentiation of MSCs into chondrocytes; WNT signalling therefore pushes MSCs 

towards a more osteoblastic phenotype (Akiyama et al. 2004).  In mice and human 

cell cultures Wnt3a has been shown to increase MSC proliferation, increase the 

differentiation of MSCs into osteoblasts and prevent osteoblast apoptosis (Boland 

et al. 2004; Almeida et al. 2005; Tu et al. 2007).   
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Inactivating mutations in the LRP5 gene in humans leads to osteoporosis 

pseudoglioma syndrome, an autosomal recessive disorder characterised by reduced 

bone mass and early onset osteoporosis (Gong et al. 2001).  Mutations in LRP5 

resulting in a high bone mass have also been reported.  Mutations to the LRP5 co-

receptor can result in a decreased binding affinity of the WNT inhibitors DKK and 

sclerostin, resulting in less WNT inhibition and a greater bone mass (Boyden et al. 

2002; Little et al. 2002).  Mouse models with loss of function and gain of function 

mutations in LRP5 have similar bone phenotypes to affected people.  Overall the 

animal studies show that LRP5 regulates bone formation by affecting osteoblast 

proliferation, apoptosis and the bone formation rate (Kato et al. 2002; Babij et al. 

2003). 

WNT signalling increases osteoblast formation and has an anabolic effect on 

bone; however, it may also decrease osteoclast formation via an indirect 

mechanism.  Wnt3a was seen to act on osteoblasts in vitro to down regulate RANKL 

expression; this decrease in RANKL concentration led to a reduction in the 

formation of osteoclasts from precursors in osteoblast / osteoclast co-cultures in 

vitro (Spencer et al. 2006).  

Extracellular nucleotide signalling 

The nucleotide adenosine triphosphate (ATP) is a well-known unit of energy 

currency; however, its ability to act as an extracellular signalling molecule is less 

well known.  The P2 receptors are located on the surface of most cells and are 

activated by the nucleotides: ATP, adenosine diphosphate (ADP), uridine 

triphosphate (UTP), uridine diphosphate (UDP) and their synthetic derivatives.  The 

P2 receptors are subdivided into the P2X ligand gated ion channel receptors and 

the P2Y G-protein coupled receptors.  The P2X receptors are trimeric ion channels 

assembled as homo- or hetromers from seven different gene products (P2X1-7) 

(Kaczmarek-Hajek et al. 2012).  There are eight (P2Y1,2,4,6,11-14) genes encoding the 

P2Y receptors.  Of the naturally occurring P2 receptor ligands, only ATP acts 

through the P2X receptors; ATP, ADP, UTP, UDP and UDP-glucose all activate one or 

all of the P2Y receptors.  Purinergic signalling has been shown to have physiological 
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and pathological effects in numerous tissues (Kennedy & Burnstock 1985; 

Abbracchio & Burnstock 1994; Burnstock 2007). Purinergic signalling also plays a 

significant role in the regulation of bone cell function.   

ATP may be released from cells in a number of different ways.  ATP may be 

packaged into secretory granules along with neurotransmitters or other 

extracellular signal mediators and released by vesicular exocytosis.  ATP is packaged 

into these granules from the cytoplasm by vesicular nucleotide transporter (VNUT).  

Alternatively ATP may be released from cells by large conductive anion channels 

such as the volume regulated anion channel.  Other transmembrane channels such 

as connexins and pannexins may also facilitate release ATP.  P2X7 receptor 

stimulation results in a large pore formation that allows ATP release (reviewed in 

Lazarowski 2012).   

Purinoceptor signalling and osteoblasts 

The expression of the P2Y receptors by osteoblasts has been studied by many 

groups.  It has been shown that primary rat osteoblasts in culture express mRNAs 

for the P2Y1,2,4,6,12-14  receptors in a differentiation dependent manner (Hoebertz et 

al. 2000; Orriss et al. 2006; Orriss et al. 2010).  In contrast, the rat osteoblast-like 

cell lines ROS17/2.8 and UMR 106 do not express the P2Y2 receptor (Jorgensen et 

al. 1997; Buckley et al. 2001).  Primary rat osteoblasts in culture have been shown 

to express mRNA for all seven P2X receptors (Orriss et al. 2010).  The human 

osteosarcoma cells lines Mg-63, SaOS-2, OHS-4, SaM-1 have between them been 

shown to express P2Y1,2,4,6,12, and the P2X2,4-7 receptors (Bowler et al. 1995; Maier 

et al. 1997; Nakamura et al. 2000; Gartland et al. 2001; Ihara et al. 2005; Alqallaf et 

al. 2009).  There can be considerable variation in the expression of the P2 receptors 

by osteoblasts depending on the source of cells and stage of maturation (Orriss et 

al. 2006).   

ATP is found in the cytoplasm of osteoblasts, and other mammalian cells, at 

concentrations between 2 - 5mM (Orriss et al. 2010; Rumney et al. 2012).  This ATP 

is released by the cell into the extracellular compartment via a number of different 
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mechanisms.  ATP may be released due to cell membrane damage or necrosis; 

alternatively, the ATP may exit the cell in a controlled way (Buckley et al. 2003; 

Orriss et al. 2013). Fluid shear stress upon in vitro osteoblasts has been shown to 

increase the rate of ATP release (Genetos et al. 2005).  Other factors that have been 

shown to increase ATP release from osteoblasts in vitro are hypoxia (Orriss et al. 

2009) and 1,25(OH)2vitD3 (Biswas & Zanello 2009).  ATP can be released by vesicles; 

when osteoblast-like cells were subjected to fluid shear stress, ATP release was 

inhibited by the presence of the vesicle inhibitors brefeldin A, monensin and n-

ethylmaleimide (Genetos et al. 2005).  There is also evidence that the P2X7 receptor 

may mediate ATP release.  HEK293 cells that were made to overexpress the P2X7 

receptors showed increased ATP release (Pellegatti et al. 2005).  Primary rat 

osteoblasts grown in vitro released less ATP into their extracellular environment in 

the presence of P2X7 inhibitors (Brandao-Burch et al. 2012).  However, osteoblasts 

from P2X7
-/- mice did not show any difference in amplitude or timing of ATP release 

compared to wild type cells in vitro (Li et al. 2005a). 

Osteoblasts respond to extracellular nucleotides with a prompt increase in 

intracellular calcium (Kumagai et al. 1989; Schofl et al. 1992; Orriss et al. 2006; 

Orriss et al. 2012a).  Importantly, exogenous ATP, UTP and other nucleotide 

analogues also potently inhibit mineralisation of bone nodules formed by 

osteoblasts in culture (Hoebertz et al. 2002; Orriss et al. 2007; Orriss et al. 2010; 

Orriss et al. 2012a).  Moreover, endogenous ATP also appears to act as a significant 

local inhibitor of mineralisation by osteoblasts (Orriss et al. 2013). 

It has been shown that ATP and UTP act via the P2Y2 receptor on osteoblasts to 

inhibit mineralisation of deposited osteoid in vitro.  ATP and UTP elicit this 

inhibitory effect by inhibiting ALP activity (Orriss et al. 2007).  P2Y2 receptor 

knockout mice skeletons have increased trabecular and cortical bone mineral 

content, most notably in the hind limbs (Orriss et al. 2007).  Later work showed that 

ATP signalling through the P2Y2 receptor on osteoblast-like cells increased ERK1/2, 

P38 mitogen activated protein kinase and JNK1 signalling (Katz et al. 2006; Katz et 

al. 2008). 
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Stimulation of the P2X receptors has also been shown to inhibit mineralisation 

by osteoblasts in vitro.  Used in conjunction with receptor antagonists, the P2X1 

receptor agonist α,β,-methylene adenosine 5’-triphosphate was found to inhibit 

mineralisation by primary rat osteoblasts in vitro, as did the P2X3 agonist β,γ-

methylene adenosine 5’-triphosphate and the P2X7 agonist 2’(3’)-O-(4-

benzoylbenzoyl) adenosine 5’-triphosphate (Bz-ATP) (Orriss et al. 2012a).   

Clopidogrel is a P2Y12 receptor antagonist used in the treatment of myocardial 

infarction and stroke; it works by preventing platelet aggregation. Exposure of 

primary rat osteoblasts in vitro to clopidogrel resulted in decreased ALP expression, 

decreased collagen production and inhibited the formation of mineralised bone 

nodules.  Mice dosed with clopidogrel for four weeks had reduced trabecular bone 

volume in the tibia and femur compared to controls (Syberg et al. 2012). 

Knockout of the P2Y13 receptor in mice led to a decrease in both osteoblasts and 

osteoclasts in vivo; this resulted in a reduced rate of bone turnover (Wang et al. 

2012). Follow-on work showed that the P2Y13 receptor is important for the 

development of osteoblasts and adipocytes from MSCs.  In vitro stimulation of the 

P2Y13 receptor with ADP resulted in a greater number of osteoblasts forming from 

MSCs, knockout of P2Y13 led to a greater number of adipocytes forming  (Biver et al. 

2013). 

In addition, ATP acting via the P2X5 receptors has also been shown to increase 

proliferation of human osteoblast-like cells in vitro (Nakamura et al. 2000).  It has 

also been reported that ATP increased the expression of RANKL by human 

osteoblast-like cells in vitro, this elevated RANKL in turn led to increased osteoclast 

formation within a cell co-culture system (Buckley et al. 2002). 

Purinoceptor signalling and osteoclasts 

Nucleotides also have a direct effect on osteoclasts.  It has been shown that in vitro 

mouse osteoclasts express mRNAs for the P2X1-5,7 receptors and the P2Y1,2,6,12-14 

receptors (Orriss et al. 2010).  In vitro human osteoclasts have been shown to 

express mRNAs for the P2X1,4,7 and the P2Y1,2,4,6,11 receptors (Bowler et al. 1995; 
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Buckley et al. 2002; Gartland et al. 2003a).  Like osteoblasts, osteoclasts 

constitutively release ATP into their extracellular environment. Also like osteoblasts 

it has been shown that P2X7 receptor antagonists reduce the rate of ATP release 

per cell, however, unlike osteoblasts, vesicle inhibitors do not affect the rate of ATP 

release from primary rodent osteoclasts in vitro (Brandao-Burch et al. 2012). 

ATP and ADP have been shown to stimulate the formation of rodent osteoclasts 

from precursors in vitro and increase the rate of resorption per osteoclast.  Using a 

selective agonist (2-methylthioADP) and antagonist (MRS2179), it was determined 

that the P2Y1 receptor mediates the response of osteoclasts to ATP and ADP 

(Hoebertz et al. 2001). 

The P2Y6 receptor has also been shown to play a role in osteoclast function.  A 

selective P2Y6 agonist was shown to induce the translocation of NFκβ from the 

cytoplasm to the nucleus of in vitro rodent osteoclasts (Korcok et al. 2005).  This 

increase in NFκβ caused by P2Y6 signalling suppressed apoptosis and increased the 

survival time of the osteoclasts in culture (Korcok et al. 2005).  

Stimulation of the P2X7 receptor in macrophages has been shown to promote 

multinuclear giant cell formation (Chiozzi et al. 1997).  This led to the idea that it 

may be important in the formation of multinuclear osteoclasts.  It has been shown 

that the formation of osteoclasts from human peripheral blood monocytes was 

inhibited by an antibody blocking the P2X7 receptor (Gartland et al. 2003a).  In 

support of this observation, RAW 264.7 cells which lacked the P2X7 receptor failed 

to form multinucleated osteoclast-like cells when exposed to RANKL (Hiken & 

Steinberg 2004).  P2X7 antagonists have also been shown to induce apoptosis in 

human osteoclasts in vitro (Penolazzi et al. 2005).  However, in contradiction to 

these results, P2X7 receptor knockout mice have been histologically shown to form 

osteoclasts in vivo, and precursors from these mice have been shown to develop 

into viable osteoclasts in vitro (Ke et al. 2003; Gartland et al. 2003b). 
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Ecto-nucleotidases 

Ecto-nucleotidases are cell surface enzymes that hydrolyse nucleotides, these 

enzymes act to reduce the concentration of ATP in the extracellular compartment, 

and therefore modulate purinergic signalling.  There are four major families: ecto-

nucleoside triphosphate diphosphohydrolase (NTPdase), ALP, NPP and ecto-

5’nucleotidase (eN).   There are also a number of other enzymes that may 

metabolise nucleotides.   These include prostatic acid phosphatase (PAP) (Zylka et 

al. 2008), TRAP (Mitic et al. 2005), the calcium activated nucleotidase (CAN) (Smith 

& Kirley 2006), α-sarcoglycan (Sandona et al. 2004) and the neural cell adhesion 

molecule (NCAM) (Dzhandzhugazyan & Bock 1993). 

Ecto-nucleoside triphosphate diphosphohydrolase (NTPdase) 

NTPdases hydrolyse ATP to ADP and then AMP with the release of Pi at each stage 

(Figure 1.2).  NTPdases represent one of the major classes of nucleotidases; 

however, they are unable to hydrolyse the dinucleoside polyphosphates, ADP-

ribose or AMP. 

 

  NTPdase   NTPdase 
NTP   NDP   NMP + Pi 

Figure 1.2. The actions of ecto-nucleotidase triphosphate diphosphohydrolase (NTPdase) 

NTPdase hydrolyses nucleoside triphosphates (NTP) to nucleoside diphosphates (NDP) and 
nucleoside monophosphates (NMP) with the release of phosphate (Pi). 

There are currently eight known NTPdases, four of these enzymes: NTPdase1-3 

and NTPdase8 are cell surface bound, NTPdase4-7 are located on the membranes of 

intracellular organelles, NTPdase5 and 6 are found in the cytosol and in a secreted 

form (Grinthal & Guidotti 2006; Robson et al. 2006; Knowles 2011).  NTPdase1-3 
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and NTPdase8 hydrolyse nucleoside triphosphonucleosides and diphosphates; the 

other NTPdases do not show activity for the full possible range of 

triphosphonucleosides and diphosphonucleosides; for example, NTPdase6 shows 

activity against UDP but not ATP (Zimmermann et al. 2012).   

NTPdases are expressed in most tissues (Zimmermann et al. 2012).  NTPdase1, 

also known as CD39, was first characterised on the surface of B-cells and activated 

natural killer cells (Maliszewski et al. 1994).  An NTPdase1 knockout mouse model 

has been developed.  The major and most notable defect in these mice is their 

prolonged coagulation / bleeding times (Enjyoji et al. 1999; Pinsky et al. 2002).  ADP 

increases platelet aggregation, in wild type mice NTPDase1 will break down ADP 

and prevent clotting.  In NTPdase-/- mice the coagulation time was prolonged 

because the P2Y1 receptor, which is involved in the regulation of platelet function, 

became desensitised to the excess nucleotides.  NTPdase-/- mice also show 

disordered cellular migration of monocytes and macrophages and defective 

angiogenesis.  This is believed to be due to impaired breakdown of nucleotides and 

P2 receptor desensitisation (Goepfert et al. 2001).   

In vitro, mouse osteoblasts and the mesenchymal stem cells from which they 

form have been shown to express mRNA for NTPdase1 (Roszek et al. 2013).  

Primary mouse osteoblasts have been cultured from the bone marrow of NTPdase-/- 

mice in vitro.  No difference was seen between knockout and wild type osteoblasts 

in the amount of mineralised bone formed and the ALP activity in vitro, although it 

was not explicitly shown that the wild type form of these cells expressed NTPdase1, 

(He et al. 2013a). 

Ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) 

There are seven structurally related members of the NPP, of which NPP1 is a 

member (Stefan et al. 2005).  These seven isoenzymes can be divided into two 

families based on their structural domains and orientation within the cell 

membrane.  Most of the NPPs are membrane bound.  NPPs4-7 have a C-terminal 

transmembrane domain and are referred to as type 1 enzymes;  NPP1 and 3 are 
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type 2 enzymes and have an N-terminal transmembrane domain (Nishimasu et al. 

2012).  NPP2 is different to the other NPPs in that it is secreted as a pre-pro-enzyme 

and only exists in the secreted form; it is not membrane bound (Jansen et al. 2005; 

Nishimasu et al. 2012).   

The NPP1-3 enzymes contain between 863–925 amino acid residues and have a 

molecular mass of approximately 115 to 125 kDa.  At the protein level they have 

approximately 40–50 % similarity (Zimmermann et al. 2012).  NPP1, previously 

named PC-1, was first discovered on the plasma cell membrane of B-lymphocytes 

(Takahashi et al. 1970).  Its structure was further characterised (Goding & Shen 

1982) and it was then purified from murine cells (Stearne et al. 1985) and human 

cDNA libraries (Buckley et al. 1990). 

NPPs hydrolyse nucleoside triphosphates, nucleoside diphosphates, dinucleoside 

polyphosphates, ADP ribose, NAD+, but not AMP; some NPPs hydrolyse 

phospholipids (Figure 1.3 -1.9) (Umezu-Goto et al. 2002; Zimmermann et al. 2012).  

All of the NPP enzymes possess a similar catalytic domain, but only NPP1-3 have 

been shown to have nucleotidase activity (Stefan et al. 2005).  Further studies have 

shown that molecules other than nucleotides with a pyrophosphate or a 

phosphodiester bond may be substrates for NPPs (Umezu-Goto et al. 2002).  NPP1-

3 can hydrolyse ATP to AMP, with the release of pyrophosphate, or ADP to AMP 

with the release of Pi.  NPP1-3 can also hydrolyse PPi to release two Pi molecules 

(Clair et al. 1997; Ciancaglini et al. 2010).  
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           NPP1-3 
          NTP    NMP + PPi 

Figure 1.3.  The actions of ecto-nucleotide pyrophosphatase / phosphodiesterase (NPPs) 
on nucleoside triphosphates 

NPPs hydrolyse nucleoside triphosphates (NTP) to nucleoside monophosphates (NMP) with 
the release of pyrophosphate (PPi). 

 

       

                                NPP1-3 

        NDP    NMP + Pi 

Figure 1.4.  The actions of ecto-nucleotide pyrophosphatase / phosphodiesterase (NPPs) 
on nucleoside diphosphates 

NPPs hydrolyse nucleoside diphosphates (NDP) to nucleoside monophosphates (NMP) with 
the release of phosphate (Pi). 

 

        

          NPP1-3 
Pyrophosphate               2 Phosphates 

Figure 1.5.  The actions ecto-nucleotide pyrophosphatase / phosphodiesterase (NPPs) on 
pyrophosphate 

NPPs can hydrolyse pyrophosphate, releasing two phosphate molecules. 
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                  NPP1-3 

Dinucleoside polyphosphate           NMP + nucleoside 5’(N-1) polyphosphate (Npn-1) 

Figure 1.6.  The actions of ecto-nucleotide pyrophosphatase / phosphodiesterase (NPPs) 
on dinucleoside polyphosphates 

NPPs hydrolyse dinucleoside polyphosphates with the release of nucleoside 
monophosphates (NMP) and a nucleoside with the remaining phosphates attached, in this 
case, three phosphates (NTP). 

 

      
NPP1-3 

NAD+    AMP + nicotinamide mononucleotide 

Figure 1.7.  The actions of ecto-nucleotide pyrophosphatase / phosphodiesterase (NPPs) 
on nicotinamide adenine dinucleotide 

NPPs hydrolyse nicotinamide adenine dinucleotide to adenosine monophosphate (AMP) 
and nicotinamide mononucleotide.  
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  NPP1-3 
ADP-Ribose   AMP + Ribose-5-monophospahate 

Figure 1.8.  The actions of ecto-nucleotide pyrophosphatase/phosphodiesterase (NPPs) 
on adenosine diphosphate - ribose 

NPPs hydrolyse adenosine diphosphate ribose to adenosine monophosphate (AMP) and 
ribose-5-monophosphate. 

 

 

  NPP1-3 
            UDP - glucose   UMP + glucose-6-phosphate 

Figure 1.9.  The actions of ecto-nucleotide pyrophosphatase / phosphodiesterase (NPPs) 
on uridine diphosphate glucose 

NPPs hydrolyse uridine diphosphate (UDP) glucose to uridine monophosphate (UMP) and 
glucose-6-phosphate. 

NPP2, also known as autotaxin, has nucleotidase activity and is a 

lysophospholipase-D that hydrolyses albumin-bound or membrane-bound 

lysophosphatidylcholine, to produce lysophosphatidic acid and choline.  

Lysophosphatidic acid can then act on G-protein coupled receptors (LPA1-6) to 

produce a cellular response (Noguchi et al. 2009).  It has been shown in vitro that 

lysophosphatidic acid can increase tumour cell growth; in vivo, lysophosphatidic 

acid dysregulation has been shown to affect the differentiation and proliferation of 

neural cells and cause craniofacial dysmorphism (Umezu-Goto et al. 2002; Noguchi 

et al. 2009).  NPP2 also hydrolyses sphingosylphosphorylcholine to produce 

sphingosine-1-phosphate (S1P), which has been shown to regulate angiogenesis 

and cell motility in vitro (Clair et al. 2003).  S1P has been reported to induce mouse 
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osteoclast chemotaxis in vitro and in vivo by acting via G-protein coupled receptors 

(Ishii et al. 2009).  It has also been reported that S1P increases human and rat 

osteoblast proliferation and induces heat shock protein 27 expression in vitro 

(Kozawa et al. 1999).  Enpp2-/- mice are not viable past day 10 of gestation; it has 

been assumed that this was due to a defect in lipid signalling, related to blood 

vessel formation (Tanaka et al. 2006).   Although NPP2 is a weak nucleotidase 

compared to NPP1 and NPP3, there is evidence that it plays a greater role in the 

hydrolysis of phospholipids than nucleotides (Gijsbers et al. 2003). 

NPP6 and NPP7 are both choline phosphate esterases (Duan et al. 2003; 

Sakagami et al. 2005).  NPP6 hydrolyses p-nitrophenyl phosphorylcholine but not p-

nitrophenyl thymidine 5'-monophosphate, indicating it has phospholipase C activity 

but not nucleotide phosphodiesterase activity.  NPP6 has lysophospholipase-C 

activity; unlike NPP2 when it hydrolyses lysophosphatidylcholine it produces 

monoacylglycerol and phosphorylcholine (Sakagami et al. 2005).  

NPP7 has been shown to possess alkaline sphingomyelin phosphodiesterase 

(sphingomyelinase) activity, generating ceramide from sphingomyelin in the 

intestinal tract (Duan et al. 2003).  It is believed that NPP7 may play a role in the 

pathogenesis of inflammatory bowel disease by affecting the activity of platelet 

activating factor with its phospholipase activity (Wu et al. 2006). 

Ecto-5’nucleotidase (eN) 

Ecto-5’nucleotidase (eN), also referred to as CD73, is a glycosylphosphatidylinositol 

(GPI) cell surface anchored enzyme that hydrolyses the remaining phosphate group 

from nucleoside monophosphate to produce phosphate and a nucleoside.  EN 

hydrolyses ribonucleoside 5’-monophosphates and deoxyribonucleoside 5’-

monophosphates including AMP, CMP, UMP, IMP, and GMP (Figure 1.10).  AMP is 

the most effectively hydrolysed nucleotide by eN, it has much lower activity with 

deoxyribonucleotides as substrates (Zimmermann et al. 2012).  ATP and ADP are 

competitive inhibitors of eN.  These nucleotides bind to the catalytic site of eN, but 
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apparently without being hydrolysed, thereby blocking the binding for AMP and 

preventing its hydrolysis (Grondal & Zimmermann 1987).   

 

 

       Ecto-5’ nucleotidase 
NMP   Nucleoside + Phosphate 

Figure 1.10.  The actions of ecto-5’ nucleotidase (eN) 

Ecto-5’ nucleotidase hydrolyses nucleoside monophosphates (NMP) to their constituent 
nucleoside and phosphate.  Shown here is the conversion of AMP to adenosine and 
phosphate. 

The production of adenosine from AMP is considered to be one of the key roles 

of eN.  Dependent upon the supply of the substrate AMP, eN activity could have a 

significant effect on the extracellular adenosine concentration. An ecto 5’-

nucleotidase knockout mouse (eN-/-) has been developed.  EN-/- mice were reported 

to be healthy, gain weight normally and have a normal immune system; however, 

when subjected to hypoxia, eN-/- mice developed vascular leakage, perivascular 

oedema and inflammatory infiltrates (Thompson et al. 2004).  These symptoms 

were considered to be due to the lack of adenosine, the addition of adenosine 

receptor agonists and soluble eN partially rescued this phenotype. Further 

experiments showed that the eN-/- mice had a defective renal response to NaCl at 

the glomerulus due to a presumed lack of adenosine in the kidney (Castrop et al. 

2004).  It has also been shown that eN-/- mice have increased platelet aggregation, 

increased adhesion of leucocytes to the vascular endothelium and a decrease in 

vascular tone (Koszalka et al. 2004).  
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Alkaline phosphatase (ALP) 

The alkaline phosphatase isoenzymes and their roles in PPi metabolism and 

mineralisation of the extracellular matrix have been discussed on page 29.  ALP also 

plays a role in the hydrolysis of nucleotides that is intimately related to the 

regulation of mineralisation.   ALP can hydrolyse NTP to NDP and NMP (Figure 1.11); 

unlike the NPPs and the NTPdases, ALP may also remove the phosphate group from 

NMP to produce a nucleoside and a phosphate (Figure 1.12) (Ciancaglini et al. 2010; 

Simao et al. 2010). 

 

 
ALP             ALP 

NTP   NDP + Pi  NMP + Pi   

Figure 1.11.  The actions of alkaline phosphatase on nucleotides 

ALP hydrolyses nucleoside triphosphates (NTP) to nucleoside diphosphates (NDP) and 
nucleoside monophosphates (NMP) with the release of phosphate (Pi). 

 

   
     ALP 

  NMP  Nucleoside + Phosphate 

Figure 1.12.  The actions of alkaline phosphatase on nucleoside monophosphates 

Alkaline phosphatase (ALP) hydrolyses nucleoside monophosphates (NMP) to their 
constituent nucleoside and phosphate. 
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         ALP 

              Pyrophosphate               2 Phosphates 

Figure 1.13.  The actions of alkaline phosphatase on pyrophosphate 

Alkaline phosphatase (ALP) hydrolyses pyrophosphate to produce two phosphate 
molecules. 

The ability of ALP to hydrolyse ATP and AMP means that it can modulate P2 

signalling by hydrolysing ATP, and it can influence adenosine signalling by affecting 

the rate of adenosine formed from AMP.  It has been shown in the airway tissues, 

that  where both eN and ATP are expressed in one tissue, eN may predominate in 

the breakdown of AMP at low concentrations, and ALP may predominate at high 

concentrations (Picher et al. 2003).  The ALPs have a pH optimum of approximately 

8;  TNAP has been shown to hydrolyse ATP at both pH 7.4 and 9.4 (Demenis & 

Leone 2000).  The neuronal like cells NG108-15 are able to hydrolyse AMP at pH 

8.5, this nucleotidase activity is markedly decreased at pH 8.5.  In the presence of 

the non-competitive ALP inhibitor levamisole, NG108-15 cells are unable to 

hydrolyse AMP (Ohkubo et al. 2000). 

Nucleoside mono/di/tri-phosphate inter-conversion 

Hydrolysis to adenosine is not the only fate that may befall nucleotides; they may 

also be re-phosphorylated to produce ATP.  ATP, ADP or GDP may also be used in 

the production of dinucleoside polyphosphates.  These molecules consist of two 

nucleosides joined by a chain of between two and seven phosphate molecules 

between their 5’ carbon molecules (McLennan 2000).  The enzyme glycyl-tRNA 

synthetase can cause the condensation of two ATP molecules, with the release of 

PPi to produce diadenosine 5’,5’’’P1,P4-tetraphosphate (Ap4A) (Guo et al. 2009).  

The function of Ap4A  is not truly known, but it has been implicated in a number of 

functions, including: regulation of the cell cycle in mouse liver cell lines (Rapaport & 

Zamecnik 1976), as an extracellular signalling molecule in the cardiovascular system 

(Stavrou 2003) and as a neurotransmitter (Pintor et al. 2000)  
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Adenosine kinase  

Adenosine kinase phosphorylates adenosine to produce AMP (Figure 1.14). When 

the adenosine concentration in the extracellular environment is high it is 

transported by the ENT transporters into the intracellular environment, where 

adenosine kinase is located (Lloyd & Fredholm 1995). 

 

   
     Adenosine kinase 

Adenosine + Phosphate        AMP 

Figure 1.14.  The actions of adenosine kinase 

Adenosine kinase adds a phosphate onto adenosine to produce adenosine 
monophosphate. 

 Adenosine kinase knockout mice showed a delay in development from day 3 

after birth, and die within approximately one week of birth of a grossly fatty liver 

and vascular stenosis. These mice also had reduced levels of all the adenine 

nucleotides and elevated levels of S-adenosyl-homocysteine.  It is believed that the 

formation of a fatty liver in these mice is due to a decrease in transmethylation 

reactions, caused by a disruption in the conversion of S-adenosylmethionine to S-

adenosylhomocysteine (Boison et al. 2002). 

Adenylate kinase 

Adenylate kinase is expressed in both the intracellular and extracellular 

compartments.  In the intracellular compartment, adenylate kinase has been found 

in the cytosol, the mitochondria and the nucleus, it is believed to play a key role in 

energy transfer and distribution (reviewed in Yegutkin 2008).  In the extracellular 

environment adenylate kinase has been shown to be expressed on: the vascular 

endothelium cells (Yegutkin et al. 2001), lymphocytes and leukemic cell lines 

(Yegutkin et al. 2002), hepatocytes and hepatic cell lines (Fabre et al. 2006), airway 

epithelia (Donaldson et al. 2002; Picher & Boucher 2003) and keratinocytes (Burrell 



Chapter 1 - Introduction 

59 
 

et al. 2005).  Adenylate kinase transfers a phosphoryl group from ATP to AMP to 

produce two ADP nucleotides, by regulating AMP and ADP levels, adenylate kinase 

may play a role in purinergic signalling. 

 

  
  

          Adenylate kinase 
          ATP + AMP  2 ADP 

Figure 1.15.  The actions of adenylate kinase 

Adenylate kinase is a phosphotransferase that catalyses the conversion of ATP and AMP 
into two ADP molecules. 

Adenylate kinase-1 knockout mice had reduced energy efficiency in their 

muscles. Enzyme kinetics show that these mice used ATP in a less efficient way, 

resulting in a greater de novo synthesis of ATP needed per muscle contraction 

because it could not be synthesised from other nucleotides efficiently (Janssen et 

al. 2000). 

Nucleoside diphosphate kinase 

Nucleoside diphosphate kinase (NDPK) catalyses the transfer of a phosphate group 

from a nucleoside triphosphate to a nucleoside diphosphate (Figure 1.16) (Yegutkin 

2008).  
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NDPK 

             N1TP + N2DP       N1DP + N2TP 

Figure 1.16.  The actions of nucleoside diphosphate kinase (NDPK) 

NDPK catalyses the transfer of a phosphate group from one nucleotide to another.  Here 
NDPK transfers a phosphate group from nucleoside triphosphate 1 (N1TP), here 
represented by GTP, to nucleoside diphosphate 2 (N2DP), represented by ADP.  Nucleotide 
1 losses a phosphate group and nucleotide 2 gains a phosphate group, resulting in the 
formation of GDP and ATP. 

Extracellular ATP synthesis via the NDPK enzyme has been reported (Ronquist 

1968; Agren et al. 1974).  This may involve the transfer of a phosphate group from 

GTP onto ADP to produce ATP (Figure 1.16).  Expression of NDPK has been shown 

on the cell surface of a number of cell types, including, erythrocytes (Ronquist 

1968), glioma and glia cell lines (Agren et al. 1974), astrocytoma cells (Lazarowski et 

al. 1997), vascular endothelium cells (Yegutkin et al. 2001), lymphocytes (Yegutkin 

et al. 2002) and hepatocytes (Fabre et al. 2006).  NDPK plays a role in maintaining 

the balance of ATP within the cell; it is also involved in growth and developmental 

control, signal transduction and tumour metastasis suppression (Otero 2000; 

Okabe-Kado & Kasukabe 2003). 

Adenosine triphosphate synthase 

ATP synthase (also known as F1Fo ATP synthase) catalyses the formation of ATP 

from ADP and Pi.  Located within the mitochondria, ATP synthase consists of two 

regions, the Fo portion is within the membrane of the mitochondria, the F1 portion 

(also called H+ ATPase) is located in the matrix of the mitochondria (Yoshida et al. 

2001). 



Chapter 1 - Introduction 

61 
 

 
  ATP synthase 

ADP + Pi  ATP 

Figure 1.17.  The actions of adenosine triphosphate synthase 

Adenosine triphosphate synthase catalyses the formation of adenosine triphosphate (ATP) 
from adenosine diphosphate (ADP) and phosphate (Pi). 

Although generally expressed in mitochondria, there is evidence that ATP 

synthase may also be an ecto-enzyme expressed on the outer surface of the plasma 

membrane (Das et al. 1994).  It has been shown that at least some of the catalytic 

subunits of the enzyme are expressed on the cell surface of: vascular endothelial 

cells (Yamamoto et al. 2007), adipocytes (Kim et al. 2004), keratinocytes (Burrell et 

al. 2005) and various tumour cell lines (Chi & Pizzo 2006).  However, it is not clear if 

this ecto-ATP synthase is enzymatically active, or if the metabolic effects seen using 

cells in vitro could be due to adenylate kinase and NDPK (Yegutkin 2008). 

Adenosine and adenosine receptors 

All of the above mentioned ecto-nucleotidases, ALP, NPP, NTPdase and eN act 

together to hydrolyse extracellular ATP and produce adenosine.  Adenosine is an 

endogenous nucleoside widely distributed in all body fluids and tissues.  It is 

continuously formed in both the intra- and extracellular compartments of most 

cells (Schubert et al. 1979; Zimmermann 2000).  The intracellular production of 

adenosine is by either de-phosphorylation of AMP by ecto-5’ nucleotidase / ALP or 

by hydrolysis of S-adenosyl-homocysteine (Broch & Ueland 1980).   

 Intracellular adenosine is transported to the extracellular compartment by an 

equilibrative nucleoside transporter, of which there are four (ENT1-4), or by a 

concentrative nucleoside transporter, of which there are three (CNT1-3) (Baldwin et 

al. 1999; Young et al. 2013). Adenosine cannot freely cross the cell membrane 

because nucleosides are hydrophilic molecules (Baldwin et al. 1999).  Under normal 

conditions the extracellular concentration of adenosine in the human body is 30 - 
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300 nM (Ballarin et al. 1991; Fredholm et al. 2001); under physiological stress, 

extracellular adenosine can rise to concentrations of approximately 1 µM 

(Fredholm & Sollevi 1981; Zetterstrom et al. 1982).  

 The physiological actions of adenosine have been studied for over 80 years after 

its cardiovascular actions were first demonstrated by Drury & Szent-Gyorgyi (1929).  

Adenosine acts via the G-protein coupled P1-receptors, found on the surface of 

many cell types.  The P1 receptor family can be further subdivided into the A1, A2A, 

A2B and A3 receptors (Fredholm et al. 2001; Fredholm et al. 2011).  The A2A and A2B 

adenosine receptors are predominantly stimulatory and are coupled to Gs to 

stimulate cAMP signalling, the A1 and A3 receptors are predominantly Gi coupled 

and act to inhibit cAMP signalling (Freissmuth et al. 1991; Pierce et al. 1992; Palmer 

et al. 1995; Olah 1997).   

 Adenosine plays a key role in many tissue types.  In the heart, adenosine has 

been shown to have a key role in the control of coronary blood flow.  Decreased 

coronary blood flow, hypoxia, or increased oxygen utilisation by the myocardial 

cells leads to a drop in myocardial oxygen tension (pO2).  Decreased pO2 causes 

myocardial cells to release adenine nucleotides; adenosine is formed from these 

nucleotides in the extracellular compartment.  Adenosine then acts on the coronary 

arterioles, causing them to dilate. This dilation results in a greater coronary blood 

flow and a normalisation of the pO2 level, thereby reducing the release of 

nucleotides.  This feedback mechanism allows adenosine to control the blood flow 

and pO2 level in the heart (Berne 1963; Gerlach & Deuticke 1966).  It has been 

shown using in vivo animal models that the coronary vasodilatory effect of 

adenosine is mediated predominantly by the A2A and A2B adenosine receptors 

(Morrison et al. 2002; Frobert et al. 2006).  

 The administration of adenosine either prior to myocardial ischemia or during 

reperfusion has been shown to reduce both the reversible and irreversible tissue 

damage and apoptosis this condition may cause.  Adenosine A1 receptor agonists, 

or receptor over-expression, reduced myocardial tissue damage and contractile 

dysfunction in rat hearts when they were subjected to hypoxia in vitro (Matherne et 
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al. 1997; Cerniway et al. 2002).  Is has also been reported that infusion of adenosine 

A2A receptor agonists into rats in vivo during reperfusion decreases myocardial 

infarct size (Norton et al. 1992; Yang et al. 2005b). 

 Adenosine has been shown to have potent anti-inflammatory and pro-

inflammatory functions.  Adenosine reduces neutrophil mediated injury to the 

vascular endothelium during inflammation by inhibiting the adhesion of neutrophils 

to the endothelium (Cronstein et al. 1986).  Adenosine acting via the A2A receptor 

reduced phagocytosis by neutrophils and also reduced the production of potentially 

pathogenic oxygen radicals in vitro (Taylor et al. 2005).  Adenosine has also been 

shown to reduce the inflammatory effects of macrophages by suppressing the 

production of pro-inflammatory chemokines and cytokines such as IL-12, nitric 

oxide and TNFα (Hasko et al. 1996; Ryzhov et al. 2008).  Adenosine acting via the 

A2B receptor can increases the release of the anti-inflammatory cytokine IL-10 from 

mice cells in vitro (Nemeth et al. 2005). 

 VEGF is released by macrophages; it is a potent stimulator of angiogenesis, it 

causes the differentiation of endothelium cells, and promotes the growth of new 

capillaries from existing blood vessels.  It has been shown that adenosine acting via 

the A2A receptor stimulates in vitro human and rodent macrophage production of 

VEGF, and therefore it may promote angiogenesis (Ramanathan et al. 2007; Ernens 

et al. 2010; Gessi et al. 2010). 

 Adenosine is neither stored nor released as a classical neurotransmitter, yet it 

may influence synaptic transmissions.  Early work showed that adenosine inhibited 

neuromuscular transmission in vitro, as a consequence of its inhibition of 

acetylcholine release from the presynaptic nerves (Ginsborg & Hirst 1971).  

Adenosine is also implicated in the regulation of glycogen metabolism, glutamate 

transporters, cell proliferation and cellular swelling in astrocytes and glial cells 

(Dare et al. 2007).  Adenosine has a key role in sleep homeostasis; experiments 

performed in cats showed that that adenosine levels in the basal forebrain rise 

during wakeful periods, and leads to a decrease in neuronal activity, after which 

sleep is induced (Porkka-Heiskanen et al. 1997).  Caffeine and other adenosine 
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receptor antagonists increase wakefulness (Landolt et al. 1995).  In mice and 

humans the actions of adenosine and adenosine receptor antagonists on sleep are 

mediated through the A1 and A2A receptors (Elmenhorst et al. 2007; Retey et al. 

2007). 

 Although adenosine is found ubiquitously throughout the human body, 

pharmacological intervention with adenosine is mainly directed towards the 

cardiovascular system, such as treatment of supraventricular arrhythmia, 

congestive heart failure, controlling blood pressure and attenuating reperfusion 

injury (Neubauer 2007; Peart & Headrick 2007). 

Adenosine deaminase 

Adenosine deaminase (ADA) catalyses the deamination of adenosine to inosine 

(Figure 1.18).  It is found in the extracellular and intracellular environment (Lloyd & 

Fredholm 1995). ADA has a Km of 2-100 µM, meaning it has a lower affinity for 

adenosine than adenosine kinase (Km, 100nM) (Arch & Newsholme 1978; Lloyd & 

Fredholm 1995; Spychala et al. 1996).  

         
          ADA 

  Adenosine   Inosine 

Figure 1.18.  The actions of adenosine deaminase (ADA) 

ADA irreversibly removes an amine group from adenosine and replaces it with a hydroxyl 
group, forming inosine. 

 ADA knockout mice died of hepatocellular impairment within 3 weeks of birth 

(Wakamiya et al. 1995).  This liver phenotype was attributed to the formation of 

toxic 2-deoxyadenosine metabolites (Hershfield 1979); these can inhibit S-

adenosylhomocysteine hydrolase and alter the ratio of S-adenosylmethionine to S-

adenosylhomocysteine (Migchielsen et al. 1995; Wakamiya et al. 1995).   
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 ADA-/- mice were studied at day 19 post birth and found to have a bone defect.  

ADA-/- mice had shorter femora and tibiae, and a reduced volume of trabecular 

bone.  ADA-/- mice also have reduced levels of circulating RANKL and normal levels 

of OPG, this may lead to reduced osteoclast formation.  ADA-/- osteoblasts in vitro 

proliferated significantly less than wild types and the expression of collagen type I 

and osteocalcin was reduced (Sauer et al. 2009).   

 In humans, ADA deficiency is a major cause of severe combined 

immunodeficiency (ADA-SCID).   In patients who have ADA-SCID, the main 

symptoms are related to immune defects such as:  lymphopenia, severely impaired 

cellular and humoral immunity, failure to thrive, and recurrent infections (Sauer et 

al. 2012).  People with ADA-SCID may also suffer from skeletal, hepatic, renal, lung, 

and neurologic abnormalities (Ratech et al. 1985).  Patients with ADA-SCID may 

have a short stature, femora bowing and disorganised chondrocyte arrangement in 

the growth plates, however, symptoms can be variable (Cederbaum et al. 1976; 

MacDermot et al. 1991).   

Adenine and adenine receptors 

Although it has long been known that nucleotides and nucleosides act as 

extracellular signalling molecules, it is only recently that it has been shown that the 

nucleobase adenine can act in this capacity.  Adenine was shown to be an agonist of 

the Mas-related gene receptor A (MrgA) in rats, this receptor was soon renamed 

the rat adenine receptor (Bender et al. 2002), it has been suggested that adenine 

receptors could form the P0 class of purinergic receptors (Thimm et al. 2013).  This 

would result in a family of purinoceptors as shown in Table 1.  Two mouse adenine 

receptors have been identified, mAde1R and mAde2R, these have been shown to 

be activated by nano-molar concentrations of adenine (von Kugelgen et al. 2008).  

Analysis of the sequences of these rodent adenine receptors has not identified an 

equivalent receptor in humans.  However, there is pharmacological evidence to 

suggest that a human adenine receptor may exist (Slominska et al. 2002; Gorzalka 

et al. 2005; Borrmann et al. 2009; Knospe et al. 2013). 
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Receptor Natural agonist References 

P0 Adenine (Thimm et al. 2013) 

P1 (A1A, A2A, A2B and A3) Adenosine (Fredholm et al. 2011) 

P2 (P2X1-7 & P2Y1,2,4,6,11-14) ATP, ADP, UTP, UDP (Abbracchio & Burnstock 1994) 

P3 Adenosine / ATP (Smith et al. 1997; King et al. 1998) 

P4 Dinucleotides (Pintor & Miras-Portugal 1995) 

Table 1.  The proposed purinoceptor family 

More recent work casts doubt on the existence of a separate P3 receptor and suggests the 
actions seen in vivo are due to ATP sensitive P1 receptors or adenosine sensitive P2 
receptors (Morikawa et al. 2007; Tautenhahn et al. 2012). 

Purine salvage pathway 

Intracellular ADA converts adenosine into inosine, which may then have its ribose 

group removed by purine nucleoside phosphorylase, converting it into 

hypoxanthine.  Xanthine oxidase converts hypoxanthine to xanthine, the enzyme 

then further adds oxygen to xanthine, forming uric acid. This uric acid is then 

excreted by the kidneys. 

 An alternative fate may await purines; they can be salvaged and reused.  

Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) forms inosine 

monophosphate from hypoxanthine.  HGPRT also catalyses the conversion of 

guanine to guanine monophosphate.  Adenine phosphoribosyltransferase (APRT) is 

an enzyme that is functionally similar to HGPRT.  APRT catalyses the formation of 

AMP from adenine.  This AMP may be deaminated to form inosine monophosphate 

or converted to adenosine by eN (Figure 1.19).  During de novo synthesis of purines, 

IMP is the first nucleotide formed (Berg et al. 2002).   

 Mild deficiency of HGPRT in humans leads to an over production of uric acid, 

kidney stones and gout.  Total loss of HGPRT function in people results in Lesch-

Nyhan syndrome, the symptoms of which are: mental retardation, self-harm, and 

the muscle conditions of dystonia (sustained torsion), choreoathetosis 

(contractions, twisting, writhing) and ballismus (rapid irregular movements) (Torres 

& Puig 2007).  
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Figure 1.19.  The fate of nucloetides and nucleosides 

Summary diagram showing the possible fates of nucleotides and nucleosides in the intra- 
and extracellular environment of the cell.  See text for more details on specific enzymes.  
Enzymes are italicised;  APRT, adenine phosphoribosyltransferase; HGPRT, hypoxanthine 
guanine phosphoribosyltransferase; IMP, inosine monophosphate. 
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Aims 
The work in this thesis relates to the topic of tissue mineralisation and its control, 

with particular emphasis placed on the role of the hydrolysis products of ATP.  I 

investigated what effects the products of ATP breakdown have on bone and tissue 

mineralisation, independent of nucleotide signalling through P2 receptors. 

 In Chapter 3, I address the question of what role do NPP1, an enzyme that 

hydrolyses ATP, and PPi, the hydrolysis product, play in the maintenance of 

cortical bone structure, osteocyte lacunae size and endocrine function; I also 

investigated their roles in preventing soft tissue mineralisation. 

 In Chapter 4, I investigated the role NPP1 plays in regulating osteoblast and 

osteoclast function and formation, with particular emphasis on the latter cell. 

 In Chapter 5, I studied the effects of adenosine, a hydrolysis product of ATP, on 

rodent osteoblasts and osteoclasts in vitro. 

 In Chapter 6, I examined the actions of sclerostin on rodent osteoclasts and 

osteoblasts in vitro, and show a potential link with NPP1, nucleotide signalling 

and nucleotide hydrolysis. 

 



Chapter 2 – Materials & methods 

69 
 

Chapter 2 

Materials and methods 

Reagents 

All tissue culture and molecular biology reagents were purchased from Life 

Technologies (Paisley, UK), unless stated otherwise.  Chemical reagents and 

adenosine were purchased from Sigma Aldrich (Pool, Dorset, UK).  2-

chloroadenosine and ATP were purchased from Tocris (Bristol, UK).  Nucleotides 

and nucleosides were stored protected from light as per the manufactures 

instructions and solubilised in PBS.  Sclerostin and an anti-sclerostin antibody were 

provided by Amgen (Thousand Oaks, California, US). 

Transgenic animals 

Enpp1-/- mice were generated by Dr José Luis Millán and colleagues (Sandford 

Burnham Institute, La Jolla, US) (Sali et al. 1999).  A breeding colony of Enpp1+/- was 

maintained within the UCL Biological Services animal facility.  Genotyping was 

performed by Mr Stuart Martin at the UCL genotyping service.  Sost-/- bone marrow 

was provided by Amgen (Thousand Oaks, California, US). 

Cell culture 

Rat and mouse calvarial osteoblast culture 

Primary rat or mouse osteoblasts of calvarial origin were obtained by sequential 

digestion of the calvarial bones dissected from 2 day old Sprague-Dawley rats or 

C57BL/6 - 129/SvTerJ crossed mice.  In this three-step process, calvariae were 

digested using 0.25% trypsin for 10 minutes, followed by 0.2% collagenase in Hank’s 

buffered salt solution (HBSS) for 30 minutes and finally 0.2% collagenase in HBSS for 

60 minutes all at 37oC.  The first two digests were discarded and the remaining rat 

cells were suspended in Dulbecco’s modified essential medium supplemented with 

10% foetal calf serum (FCS), 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 
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streptomycin, 0.25 µg/ml amphotericin (mixture abbreviated to DMEM).  Mouse 

cells were obtained by an identical digestion procedure and then suspended in α-

modified essential medium supplemented with 10% FCS, 70 µg/ml gentamicin, 50 

U/ml penicillin, 50 µg/ml streptomycin, 0.125 µg/ml amphotericin (mixture 

abbreviated to α-MEM).   Rat and mouse cells were cultured for 4 days in 75 cm2 or 

25 cm2 flasks in a humidified atmosphere of 5% CO2 at a temperature of 37oC until 

confluent.  Upon confluence rat cells were cultured into 6, 12 or 24 well trays in 

DMEM further supplemented with 2 mM β-glycerophosphate, 50 µg/ml ascorbate 

and 10 nM dexamethasone (mixture abbreviated to supplemented DMEM) (Orriss 

et al. 2012b) at a cell density of 1 x 105, 5 x 104, or 2.5 x104 cells per well 

respectively.  When confluent, mouse cells were cultured into 6 well trays in α-

MEM further supplemented with 2 mM β-glycerophosphate and 50 µg/ml 

ascorbate (mixture abbreviated to supplemented α-MEM) at a density of 1 x 105 

cells per well.  Half media changes were performed every third day of culture.  The 

culture media was supplemented with adenosine, 2-chloroadenosine, ATP, 

sclerostin, anti-sclerostin antibody or phosphate buffered saline (PBS) (for controls) 

when the cells were cultured into plates and at each media change.  Experiments 

were terminated by fixing the cells in 2% glutaraldehyde buffered in PBS for 5 

minutes.  α-MEM contains phenol red; the effects this has on oestrogen and P2 

receptors was considered. 

Rat bone marrow osteoblast culture 

Primary rat osteoblasts of bone marrow / stromal cell origin were obtained by 

dissecting the long bones from 6 week old Sprague-Dawley rats.  The epiphyses 

were cut across and the marrow was flushed out of the bones using PBS.  The 

collected cells were suspended in α-MEM within a 75 cm2 flask at 37oC and 5% CO2.  

After 24 hours the α-MEM was removed and all cells that had not adhered to the 

wall of the flask were discarded; the adherent stromal cells were cultured for a 

further 2 days in fresh α-MEM until confluent. Upon confluence cells were cultured 

into 6 well trays with supplemented α-MEM at a density of 1 x 105 cells per well.  

Experiments were terminated by fixing the cells in 2% glutaraldehyde for 5 minutes.   
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Mouse osteoclast culture 

Primary mouse osteoclasts were formed from precursors obtained from the bone 

marrow of 8 and 15 week old mice.  The precursor cells were incubated in a 75cm2 

flask containing modified essential medium (MEM) supplemented with 10% FCS, 

2mM L-glutamine , 100 U/ml penicillin, 100 µg/ml streptomycin, 0.25 µg/ml 

amphotericin, 100 nM prostaglandin E2 and 50 ng/ml macrophage colony 

stimulating factor (M-CSF) within a humidified atmosphere of 5% CO2 at 37oC.  After 

24 hours the non-adherent cells were collected from the flask, the stromal cells 

which had adhered to the flask were discarded.  The cells were re-suspended in 

MEM supplemented with: 10% FCS, 2 mM L-glutamine, 100 U/ml penicillin, 100 

µg/ml streptomycin, 0.25 µg/ml amphotericin, 100 nM prostaglandin E2 (PGE2), 150 

ng/mL M-CSF, and 3 ng/mL receptor activator of NF-κB (RANKL).  Cells were seeded 

(106) onto 5 mm-diameter ivory discs in a 96 well tray.  After a further 24 hours the 

ivory discs were transferred into 6 well trays for a further 6 days.  For the final 2 

days of the culture the media was acidified to pH 6.9 by the addition of HCl to 

activate osteoclast resorption (Orriss & Arnett 2012).  At the end of the culture cells 

were fixed in 2% glutaraldehyde and treated to detect the presence of TRAP 

activity.  Cells were deemed to be osteoclasts if they were multinucleated (≥3 

nuclei) and stained positive for TRAP.  The number of osteoclasts per dentine disc 

was manually counted “blind” using transmitted light microscopy and the total plan 

area of resorption per disc was quantified “blind” using reflective light microscopy 

and dot-counting morphometry. 

In vitro osteoclasts used in the Sost-/- experiments, and the wild type controls to 

which they were compared, were grown from frozen bone marrow,  stored at           

-80oC, provided by Amgen (Thousand Oaks, California, US).  Bone marrow was 

defrosted in MEM supplemented with 20% FCS at 37oC, the cells solution was 

centrifuged and the cells were seeded onto dentine discs, the experiments then 

proceeded as per the osteoclast experiments stated above. 
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Mouse osteocyte-like cell culture 

This primary mouse osteocyte isolation method is based on previously published 

methods (Van Der Plas & Nijweide 1992; Stern et al. 2012).  Primary mouse 

osteocytes were obtained from the long bones of 15 week old C57BL/6 - 129/SvTerJ 

crossed Enpp-/- and wild type mice.  The long bones were dissected out of the mice, 

the soft tissues were removed and the marrow was flushed out from them.  The 

remaining bones were cut into small pieces using a scalpel.  This bone was digested 

using 0.2% collagenase for 30 min at 37oC, this process was repeated three times, 

the cells and digested materials obtained were discarded; the bones were washed 

in HBSS between each digestion step.  Next, the bones were digested using 5 mM 

EDTA in a 1% BSA solution for 30 minutes; they were then washed in HBSS, and 

then digested in collagenase for 30 min as previously.  The collagenase and EDTA 

digestion steps were repeated alternately and the bones were washed in HBSS 

between each digestion step.  After the first eight digestion steps the cell solution 

and digested material obtained was discarded, these were considered to contain 

osteoblasts, fibroblasts and other unwanted cell types. After the ninth digestion 

step the cells obtained were retained and washed in HBSS.  These cells were seeded 

into collagen coated 6 well trays at a density of 2x105 cells per well with αMEM.  

Half media changes were performed on every third day; the cells were used for 

experimental procedures on day 7.  The first eight digestion steps were intended to 

remove any cells resident on the surface of the bones and hydrolyse the collagen 

bonds within the bone, to reveal the inner structure of the bone.  The ninth 

digestion was intended to release osteocytes from the bone.   

Quantification of in vitro bone nodule formation 

The cell layers in osteoblast cell culture experiments at time points from 4 - 29 days 

were fixed in 2.5% glutaraldehyde for 5 min, then washed with 70% ethanol and 

allowed to air dry.  The cell culture plates were imaged at 800dpi using a flatbed 

scanner (Epson, Hemel Hempstead, UK) in reflected light mode.  The images so 

generated were converted to binary form using Adobe Photoshop (San Jose, 
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California, US) and the plan surface area of bone nodules (now appearing as black 

areas) were quantified by automated analysis using Image J (NIH, USA) (Figure 2.1). 

 

 

Figure 2.1. The quantification of the total area of bone formed by rodent osteoblasts in 
vitro 

Images of the cell layers within the culture plates underwent an automated multistep 
process which allows the quantification of the area of mineralised bone formed.  (A) 
Original image of bone within the cell culture plate; (B) final binary image used for bone 
quantification. 

Biochemical assays 

Alkaline phosphatase (ALP) activity measurement 

The ALP activity of cell lysates was determined colorimetrically using a 

commercially available kit (Biotron Diagnostics, California, USA) and a Bio-Tek EL 

x800 plate reader (Fisher Scientific, Loughborough, UK).   This assay measures the 

hydrolysis by cell lysates of a p-nitrophenyl phosphate substrate to p-nitrophenol, a 

yellow dye, the absorbance of which is measured at 405 nm.  ALP activity was 

calculated using the molar absorption coefficient and a p-nitrophenol standard 

curve.  ALP activity was normalised to the cell protein content (see below). 

Total NPP activity measurement 

Total NPP activity was measured spectrophotometrically using the method first 

described by Razzell & Khorana (1959); this method measures total NPP activity, 

not NPP1 activity.  Cells were lysed in a buffer containing 1% triton X100 and         

1.6 mM MgCl in a 0.2 M Tris base at pH 8.1.  After centrifugation at 500 g for 5 

minutes, the NPP activity of the supernatant was measured by its ability to 

hydrolyse p-nitrophenyl-thymidine 5’-monophosphate, again yielding a yellow dye 
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which was quantified at 405 nm.  NPP activity was normalised to the protein 

concentration. 

Measurement of intra- and extracellular ATP 

Cell culture media were aspirated from the plates and cell layers were washed with 

PBS.  Next 1 ml of serum-free DMEM was added to each well of the cell culture 

plate.  For the experiments measuring the breakdown of ATP, this serum-free 

DMEM was spiked with exogenous ATP (100 nM – 1 µM).  In the experiments 

examining the effects of adenosine on ATP release the serum-free medium was 

spiked with adenosine (1 - 100 µM).  Extracellular ATP released into the serum-free 

medium by the cells was measured using a commercially available luciferin-

luciferase based kit (‘Cell Titre Glo’, Promega, Southampton, UK). Luminescence 

was measured in a luminometer (Promega GloMax 2020) and values were 

normalised to cell number, quantified using an assay which measures lactate 

dehydrogenase (LDH) release from lysed cells.  To determine the intracellular ATP 

concentration, cells were lysed using a 1% solution of Triton X-100.  Standard curves 

were constructed by spiking cell culture media with ATP (100pM – 1µM).  The 

coefficient of variation of the ATP assay was found to be less than 2.5% regardless 

of ATP concentration measured.  PPi up to a concentration of 1µM was found to 

have little interfering effect on the measurement of ATP. 

Protein measurement (Bradford assay) 

The Bradford assay (Bradford 1976; Compton & Jones 1985) was used to measure 

protein levels within cell lysates against a bovine serum albumin standard, 

according to the manufacturer’s instructions (Sigma-Aldrich, Gillingham, UK).     

Cell number and viability assays 

Osteoblast cell number and viability were measured using the CytoTox 96 

nonradioactive cytotoxicity assay (Promega UK, Southampton UK).  This assay 

measures the activity of LDH, a cytosolic enzyme that is released on cell lysis.  LDH 

in the cell lysate oxidises lactate into pyruvate, generating NADH from NAD+, which 
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is then used to convert a tetrazolium salt into a red formazan product, which was 

quantified photometrically at 490 nm.  

 To determine cell viability, the LDH activity in the cell culture media was 

measured.  All of the culture medium was removed and the cells were washed with 

PBS.  Next 1 ml of serum free DMEM was added to each well of the cell culture 

plate and LDH activity measured.  The cells were then lysed using 1% Triton X-100 in 

water and the LDH activity determined.  A standard curve for the determination of 

cell numbers was constructed using cells seeded at 103 to 106/well.  Measurement 

of the total cellular LDH allows us to calculate the total cell number. The ratio of 

LDH in the cell supernatant to total cellular LDH allows us to calculate the cell 

viability.  

Serum sclerostin measurement 

Blood was collected from 8 and 15 week old Enpp1-/- and wild type mice by cardiac 

puncture immediately after killing by cervical dislocation.  Blood from 22 week old 

Enpp1-/- and wild type mice was provided by Dr. Vicky MacRae (Roslin Institute, 

University of Edinburgh) because the development of Enpp1-/- mice beyond 15 

weeks was not permitted under UCL veterinary advice.  Blood was collected into 

plain tubes and allowed to clot; samples were then centrifuged at 500 g for 25 min, 

the serum was separated and frozen at -20oC until analysis.  Serum sclerostin was 

measured using a commercially available ELISA kit (R&D Systems, Abingdon, UK), 

according to the manufacturer’s instructions. 

Molecular Biology 

Total RNA extraction, DNase treatment and complimentary DNA 

synthesis 

Osteoblasts were cultured in 6 well trays for up to 28 days; total RNA was extracted 

using TRIzol reagent according to the manufacturer’s instructions.  Osteoclasts were 

cultured on dentine discs for up to 10 days before mRNA was extracted using 

TRIzol.  Extracted RNA was treated with RNase-free DNase I (Promega, 

Southampton, UK) for 30 min at 37°C to remove contaminating genomic DNA. The 
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reaction was terminated by heat inactivation at 65°C for 10 min.  Total RNA was 

quantified spectrophotometrically by measuring absorbance at 260 nm.  cDNA was 

synthesised from approximately 1µg of mRNA  using Superscript 3 reverse 

transcriptase, oligo dT, RNasin and a deoxyribo-nucleotide mix. 

RT-PCR 

The cDNA produced from osteoblast and osteoclast mRNA was amplified by PCR 

using 1U GoTaq DNA polymerase, 1.5 mM MgCl, 0.8 µM nucleotide mix (Promega, 

Southampton, UK) and 0.5 µM primers (MWG Biotech, Ebersberg, Germany).  The 

primer sequences used for rat and mouse RT-PCR are shown in Appendix 1.  This 

mixture was placed in a thermal cycler and heated to 94oC for 5 minutes.  Next the 

sample was cycled through a three different temperatures approximately 30 times 

(primer dependent cycle number).  The temperatures cycled through were 94oC for 

30 seconds, approximately 53oC for 30 seconds (the exact temperature is primer 

specific) and 72oC for 45 seconds.  After the sample had passed through this cycling 

process the desired number of times it was heated to 72oC for 5 minutes.  Next, 

electrophoresis was used to quantify the amount of cDNA present in the sample in 

relation to standards of known weight.  10µl of the amplified cDNA solution was 

placed into a 1.5% agarose gel containing 10 mg/ml ethidium bromide and 

electrophoresis was performed for 25 minutes at 100v.  The cDNA was visualised 

under UV light. 

Imaging techniques 

Computed tomography 

Micro-computed tomography (microCT) was performed on the left humerus, head 

and lungs of Enpp1-/- and wild type mice.  All scans were performed using a Skyscan 

1172 microCT scanner (Bruker, Kontich, Belgium), and all data analyses were 

performed using Skyscan proprietary software. 

The left humerus bone was dissected from 8 and 15 week old male and female 

Enpp1-/- and wild type mice.  Humerus bones from 22 week old female Enpp1-/- and 

wild type mice were provided by Dr. Vicky MacRae (Roslin Institute, University of 
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Edinburgh) for reasons stated above.  All outer soft tissues were removed from the 

bones; the bones were then fixed in formaldehyde for 24 hours and then 

transferred to 75% ethanol.  After 1 week the bones were removed from the 

ethanol and allowed to air dry.  The humerus bones were scanned using the 

following microCT parameters: the x-ray generation energy was 50 kv  and 200 µA; 

a 0.25 mm aluminium filter was placed in the X-ray path; the image pixel size was 

0.9 µm; the sample was rotated 0.3 degrees between images; and each image was 

averaged from two separate exposures.  To analyse the cortical bone a 0.25 mm 

region of interest was selected 0.5 mm below the deltoid tuberosity.  This was to 

ensure that the same region of cortical bone in all the samples was compared.   

The heads were dissected from wild type and Enpp1-/- mice, fixed in 

formaldehyde for 24 hours and then transferred to 75% ethanol.  All soft tissues 

were left attached in situ.  MicroCT scans were performed on hydrated samples 

with the following scan parameters: the x-ray generation energy was 50 kv and 200 

µA; a 0.5 mm aluminium filter was placed in the x-ray path; the image pixel size was 

10 µm; the sample was rotated 0.4 degrees between images; and each image was 

averaged from two separate exposures.  All skull measurements were performed 

on a region of interest 4 mm in height, 2 mm from the back of the skull.  

Scanning electron microscopy 

The femur from the right leg was dissected out from wild type and knockout mice; 

the soft tissues were removed using a scalpel.  The bones were then cut along their 

longitudinal axis using a low-speed diamond saw (Isomet, Buehler, Düsseldorf, 

Germany).  The bone marrow and any remaining soft tissues were then digested 

using a protease based detergent, Tergazyme (Alconox, New York, US) at a 

concentration of 6% in water; this solution had a pH of 8.0.  After three weeks the 

bones were removed from the Tergazyme solution and placed in 50 and 70% 

ethanol solutions for 2 hours each, and then transferred to 100% ethanol and left 

overnight.  Finally the bones were left to air dry.   Images from 22 week old animals, 

both wild type and knockout, were generated using a JEOL 7401 scanning electron 

microscope (Tokyo, Japan) at UCL, with the kind assistance of Mr Mark Turmaine.  
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Images of bones from 15 week old animals were kindly generated by Prof Alan 

Boyde using a Zeiss EVO MA10 SEM (Oberkochen, Germany) at Queen Mary, 

University of London.  Bones from 22 week old animals were gold coated before 

imaging using an ion beam coater; bones from 15 week old animals were not gold 

coated.    Image analysis of all bones was performed using Image J. 

Histology 

Histological analysis of the lungs, ear and the muzzle / whisker follicles of Enpp1-/- 

and wild type mice was performed.  The lungs were removed and fixed using the 

procedure detailed above in the microCT section. After microCT analysis, the lungs 

were processed for histology.  For whisker follicle analysis, mice were culled and 

the muzzle was dissected away from the head and fixed in 10% neutral buffered 

formalin.  An automated tissue processor (Leica microsystems, Wetzlar, Germany) 

was used to prepare all of the samples.  The samples were passed through an 

increasing series of ethanol baths until dehydrated in 100% ethanol; they were then 

infiltrated with paraffin wax.  The samples were then manually set within paraffin 

wax blocks.  The set paraffin wax block was next placed face down on an ice block, 

when cool, 3µm sections were cut using a microtome and mounted onto 

microscope slides coated with poly-l-lysine.  Before staining, the slides were de-

paraffinised using xylene, then rehydrated through a series of decreasing ethanol 

solutions and finally water.  After staining, the samples were covered with a glass 

cover slip.  Ear tissues were prepared for histological examination as per the muzzle 

/ whisker tissues.  The kind assistance of Dr Chris Scotton (Exeter University) is 

gratefully acknowledged. 

Staining of tissues and cells 

Alizarin red staining 

The Alizarin red S stain binds to calcium.  Histological sections were prepared as 

stated above and then immersed in a 1% w/v solution of Alizarin red S in glass 

Coplin jars for 5 minutes to demonstrate the presence of calcium deposits.  After 5 
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minutes the slides were washed three times in deionised water and then counter-

stained for 5 minutes with 1% w/v Fast green.   

Osteoblasts cultured in vitro were fixed in glutaraldehyde as stated above and 

then washed three times with 70% ethanol.  The cell monolayer was covered with a 

1% Alizarin red S solution for 5 minutes.  After 5 minutes the Alizarin red S was 

discarded and each well was washed three times with 70% ethanol and left to air 

dry. 

ALP activity 

Cell associated ALP activity was measured using a commercially-available leukocyte 

alkaline phosphatase kit (Sigma-Aldrich, Gillingham, UK) according to the 

manufacturer’s instructions.  Osteoblast cell layers were fixed in glutaraldehyde, as 

described above, washed with PBS and deionised water and incubated with the ALP 

reagent in the dark for 30 minutes, followed by washing with deionised water and 

air drying.  This reaction involves the liberation of napthol AS-BI from its phosphate 

ester by cell surface ALP, leading to the formation of an insoluble blue diazonium 

salt.    

Tartrate resistant acid phosphatase (TRAP) activity  

Cell-associated TRAP activity was measured using a commercially-available 

leukocyte tartrate resistant acid phosphatase kit (Sigma-Aldrich, Gillingham, UK) 

according to the manufacturer’s instructions.  Osteoclast-forming mouse marrow 

cells, grown on dentine discs were fixed in glutaraldehyde as described above and 

then washed with 70% ethanol.  Each dentine disc was covered with the TRAP 

reagent and incubated in the dark at 37oC for 30 minutes.  After 30 minutes the 

TRAP reagent was discarded and the dentine discs were washed with 70% ethanol.  

Cells that have TRAP activity are able to hydrolyse phosphoric acid from naphthol 

AS-BI; this produces a maroon / purple coloured dye deposit.   

  



Chapter 2 – Materials & methods 

80 
 

Haematoxylin and eosin staining 

All histological samples were stained and examined using haematoxylin and eosin 

(H&E) staining, as well as other specialist stains.   Haematoxylin is a basic dye that 

stains acidic structures purple / blue; eosin is an acidic dye that stains basic 

structures pink. 

Statistics 

Statistical comparisons were made using one-way analysis of variance (ANOVA) and 

adjusted using the Bonferroni method.   Calculations were performed using In Stat 

3 software (GraphPad, San Diego, CA).  All data are presented as means ± SEM for 

between 6 - 12 replicates.  Results are representative of experiments performed at 

least three times, unless otherwise stated.   
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Chapter 3 

Enpp1 is important for the prevention of 
soft tissue mineralisation and for 
regulating the size of osteocyte lacunae 
in mice 

Introduction 

Ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) 

There are seven structurally related members of the NPP family, of which NPP1 is a 

member (Stefan et al. 2005).  NPP1 (previously called PC-1), encoded by the Enpp1 

gene, was first discovered during the study of surface antigens on plasma cells 

(Takahashi et al. 1970), it was later purified and its gene sequence determined 

(Stearne et al. 1985; Van Driel & Goding 1987).   NPP1 is a trans-membrane enzyme 

orientated with its amino terminal within the cytoplasm of the cell, and its carboxyl 

terminal and active site in the extracellular environment (Singer et al. 1987; Van 

Driel & Goding 1987).  Crystal structure analysis of the NPP1 enzyme showed that 

its preferred substrate is ATP, and that unlike some of its family members, it is 

unable to hydrolyse lipids (Kato et al. 2012). 

The development of an Enpp1 knockout mouse was prompted by observations in 

the pathological condition of ossification of the posterior longitudinal ligament 

(OPLL) (Sali et al. 1999). In OPLL, the ligaments surrounding the spinal cord calcify; 

OPLL is commonly found in elderly Asian men (Saetia et al. 2011).  The tiptoe 

walking mouse has a naturally occurring autosomal recessive mutation that results 

in OPLL; it also has an unusual gait when walking due joint calcification (Hosoda et 

al. 1981; Okawa et al. 1998).  The mutation in the tiptoe walking mouse was 

eventually found to be due to a solitary G to T nucleobase substitution, resulting in 
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a nonsense stop mutation in the Enpp1 gene (Okawa et al. 1998).  This discovery 

prompted the development of the Enpp1 knockout mouse. 

NPP1 has been shown to be expressed in a wide variety of tissues including the 

heart, kidney, vascular smooth muscle cells, osteoblasts and chondrocytes 

(Terkeltaub 2001; Johnson & Terkeltaub 2005; Johnson et al. 2005; Nitschke et al. 

2011).  NPP1 hydrolyses ATP to produce AMP and PPi (Terkeltaub et al. 1994), a 

potent inhibitor of mineralisation (Fleisch & Bisaz 1962; Addison et al. 2007).  

Extracellular PPi is hydrolysed by ALP to produce phosphate (Pi), thereby removing 

the inhibitor of mineralisation (Hessle et al. 2002). 

NPP1 and soft tissue mineralisation 

In children, mutations in the Enpp1 gene have been shown to lead to the autosomal 

recessive condition of generalised arterial calcification of infancy (GACI); infants 

with this condition often die before they are 6 months old (Rutsch et al. 2003).   

GACI has been suggested to be due to reduced circulating levels of PPi and thus 

decreased inhibition of aortic calcification (Rutsch et al. 2000; Ruf et al. 2005). 

It has been shown that Enpp1-/- mice have severe calcification of the aortic arch 

by the time they are 5 weeks old (Johnson et al. 2005; Zhu et al. 2011).  Using in 

vitro mouse vascular smooth muscle cells, it was also seen that calcifying vascular 

smooth muscle cells up-regulate the osteocyte associated genes for sclerostin, 

DMP1 and E11 (Zhu et al. 2011).  

Glycosylated end-products that accumulate in diabetic and aged tissues are 

detected by the receptor for advanced glycation end products (RAGE).  Double 

knockout of Rage-/- and Enpp1-/- in mice reportedly reduced the in vivo arterial 

calcification seen compared to Enpp1-/- alone, but did not restore the defects seen 

in the skeleton of Enpp1-/- mice. This suggests that the Rage-Enpp1 axis may only 

have effects in vascular smooth muscle cells (Cecil & Terkeltaub 2011).   RAGE 

promotes atherosclerosis, osteoclastogenesis, calcification of smooth muscle cells, 

and is a key mediator of inflammation (Zhou et al. 2006; Ramasamy et al. 2008; 

Soro-Paavonen et al. 2008; Yan et al. 2008; Basta et al. 2010).  Aortic explants from 
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Enpp1-/- released less of the RAGE inhibitor, sRAGE, when stimulated by phosphate 

(Cecil & Terkeltaub 2011).  Ex vivo aortas from Enpp1-/- mice are therefore more 

prone to the damage caused by RAGE signalling.   

Mutations in Enpp1 have also been detected in some patients with 

pseudoxanthoma elasticum, an autosomal recessive disorder associated with soft 

tissue mineralisation of the eyes, kidneys and skin (Li et al. 2012; Nitschke et al. 

2012).   Pseudoxanthoma elasticum has previously been linked to defects in the 

ATP-binding cassette subfamily-C member 6 gene (ABCC6), encoding the MRP6 

transport protein (Le et al. 2000; Ringpfeil et al. 2000).  ABCC6-/- mice have ectopic 

mineralisation in the kidneys, skin, and mineralisation of whisker follicles (Klement 

et al. 2005).  Mutations in ABCC6 have been detected in patients with GACI 

(Nitschke et al. 2012).  This suggests a close genetic relationship, and common 

downstream mediators of calcification in these two diseases (Rutsch et al. 2011).  

Recent work has additionally described a reduction in the serum PPi concentration 

of ABCC6-/- mice compared to wild types (Jansen et al. 2013).   

Genome-wide analysis in a highly consanguineous family found that mutations in 

eN resulted in arterial and joint calcification (St Hilaire et al. 2011).  Cultured eN-/- 

fibroblasts were reported to have reduced extracellular adenosine levels, increased 

TNAP activity and increased PPi hydrolysis.  Adenosine supplementation was 

reported to suppress TNAP activity in eN-/- cells (St Hilaire et al. 2011). 

Osteopontin is also, like PPi, a direct inhibitor of bone mineralisation, vascular 

smooth muscle cell mineralisation and hydroxyapatite crystal formation (Wada et 

al. 1999; Boskey et al. 2002).  The PPi generated by NPP1 is believed to increase the 

expression of OPN by rat calvarial osteoblasts in vitro (Johnson et al. 2003).  In vitro 

osteoblasts from Enpp1-/- mice expressed less osteopontin than wild type 

osteoblasts (Johnson et al. 2003).  Supplementing the media in which these Enpp1-/- 

osteoblasts were grown with PPi restored the osteopontin expression back to levels 

analogous with the wild type cells (Johnson et al. 2003).  Later work showed that 

Enpp1-/- mice have a decreased serum osteopontin concentration, Akp2-/- mice have 

an increased serum OPN concentration, and Akp2-/- Enpp1-/- double knockout mice 
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have levels of serum osteopontin similar to wild type mice (Harmey et al. 2004).  

Osteopontin also promotes bone resorption by osteoclast, by acting as a binding 

site for αvβ3 intergrins (Yoshitake et al. 1999; Ihara et al. 2001). 

NPP1 and bone mineralisation 

Hessle and colleagues studied the effects of gene deletion on the calvariae of 20 

day old mice using histology and staining techniques.  They found that knockout of 

Akp2, the mouse tissue non-specific ALP gene, led to hypomineralisation of the 

calvariae, compared to wild type mice (Hessle et al. 2002).  Double knockout of 

Akp2 and Enpp1 in mice rescued the calvarial hypomineralisation phenotype.  

Knockout of Enpp1 alone did not have any effect on the mineralisation of the 

calvariae in 20 day old mice (Hessle et al. 2002).  Hessle et al also studied the spines 

of the 20 day old knockout mice.  They found that knockout of Enpp1 led to 

pathological mineral deposits in the vertebrae, which were again corrected by 

double knockout with the Akp2 gene.  Knockout of Akp2 alone led to decreased 

mineralisation of the vertebrae (Hessle et al. 2002).  Hessle et al found that 

osteoblasts grown in culture from Enpp1-/- mice produced less PPi than wild type 

cells.  Extracellular PPi levels in osteoblast cultures from Akp2-/- mice were greater 

than in wild type cultures but this difference was eliminated in cultures from 

Enpp1/Akp2 double knockout mice (Hessle et al. 2002).  These results indicated that 

NPP1 and TNAP have antagonistic actions that are central to the control of 

mineralisation.  Similar experiments were performed on the metatarsals and tibia 

bones; however, knockout of Enpp1 did not completely rescue the 

hypomineralisation phenotype of the bone, as it did in the calvaria (Anderson et al. 

2005b).  It was hypothesised that these site-specific differences in mineralisation 

were due to local differences in TNAP and NPP1 expression.   

Using microCT analysis it was reported that Enpp1-/- mice have reduced 

mineralised bone volume in the tibiae and femora at 6 and 22 weeks. Enpp1-/- mice 

were also reported to have a lower body weight and shorter femurs (Mackenzie et 

al. 2012b).  It was surprising that the loss of NPP1 and a reduction in PPi, which is 

an inhibitor of mineralisation, would lead to a reduction in mineralised bone 
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volume.  It was hypothesised that the knockout of NPP1 resulted in a reduction in 

the PPi concentration, which cumulated in there not being enough PPi to provide 

the Pi required for normal mineralisation (Anderson et al. 2005b; Mackenzie et al. 

2012a). However, both the tiptoe walking mouse and the Enpp1 knockout mouse 

have been shown to have hyperostosis of the spine and joints (Okawa et al. 1998; 

Sali et al. 1999).   

NPP1 and osteocyte lacunae 

It is widely accepted that osteocytes play an active role in regulating mineral 

accretion and removal from lacunae (Bonewald 2011; Atkins & Findlay 2012; Arnett 

2013b).  This topic and the wider biology of osteocytes were covered in detail in the 

introduction. 

Aims 

Taken together, the previous studies discussed above all indicate that NPP1 and PPi 

are important for the maintenance and formation of bone, and in preventing soft 

tissue mineralisation.  In order to further elucidate this role; the aims of the work in 

this chapter were to:  

 Investigate any previously unreported soft tissue mineralisation in mice due to 

Enpp1-/-. 

 Determine if cultured primary osteocyte-like cells express Enpp1 and release 

ATP. 

 Examine the cortical bone of Enpp1-/- mice in greater detail than has been 

previously reported and determine if NPP1 and PPi are important in 

maintaining the size of the osteocyte lacunae.  I hypothesise that PPi produced 

by NPP1 on osteocytes is involved in maintaining the lacunae. 

 Investigated whether the circulating sclerostin concentration in mice, which is 

determined by osteocytes, is influenced by the knockout of Enpp1. 

 Examine the skulls of Enpp1-/- mice to determine if a reduction in PPi has any 

effect on intramembranous bone formation.  
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Results 

Enpp1-/- mice weigh less than wild type mice 

Female Enpp1-/- mice weighed approximately 12% less than age and sex matched 

wild types by 8 weeks. However, wild type and Enpp1-/- mice increased in weight by 

approximately 18% between 8 and 15 weeks of age. 

 
 
 

Figure 3.1.  Enpp1-/- mice have a lower 
body weight than wild type mice 

Results shown are from female mice.  
Male wild type and Enpp1-/- mice show a 
similar trend in weight. (*, p<0.05; **, 
p<0.01; ***, p<0.001; n = 9). 

 

 

 

 

 

 

Enpp1-/- mice exhibit ectopic mineralisation and hyperostosis in the 

spine, knee joints and paws  

As previously observed, Enpp1-/- mice have defective mineral deposition (Hessle et 

al. 2002; Anderson et al. 2005b; Mackenzie et al. 2012b).  In the present study 

microCT was used to visualise the aberrant mineralisation in these mice in greater 

detail.  In Enpp1-/- mice pathological mineralisation was observed between the 

vertebra (Figure 3.2A & B), within the knee joint capsule (Figure 3.2C & D), and in 

the capsule surrounding the joints of each digit on all four paws (Figure 3.2E & F).  

Enpp1-/- mice were unable to grip the bars of their cages due to inflexibility in their 

fingers and toes caused by ectopic mineralisation. 
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Figure 3.2.  Pathological mineralisation of the vertebra, knee and paw of Enpp1-/- mice 

MicroCT images of the 3rd lumbar vertebra (A, B), knee joints (C, D) and paws (E, F) of wild 
type and Enpp1-/- mice.  Images are transverse sections (A, B, C, D) and 3D models (E, F).  
Dystrophic mineralisation is evident between the vertebrae (B), within the knee joint (D) 
and surrounding the joints of the paw (F) in Enpp1-/- mice (blue arrow).   Note: inflexibility 
of Enpp1-/- toe joints. 
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Mineralisation of whisker follicles in Enpp1-/- mice  

The heads were dissected from 8, 15 and 22 week old Enpp1-/- and wild type mice.  

The heads, including all attached soft tissues were fixed in neutral buffered formalin 

(NBF) and scanned by microCT.  Surprisingly, microCT analysis showed that from 

week 8 onwards, all Enpp1-/- mice examined exhibited a striking x-ray opaque 

substance around their whisker follicles.  In the configuration used for this 

investigation, the x-ray energy of the microCT scanner used does not allow the 

visualisation of soft tissues, only hard mineral deposits are detected.  This indicates 

that the whisker follicle was mineralised.  This mineralisation was sub-dermal and 

not visible to the naked eye.   No whisker follicle mineralisation was evident in 

Enpp1+/+ mice (Figure 3.3).   

22 week old Enpp1-/- and wild type mice had the tissue across their left 

premaxilla bone of the skull dissected away and fixed in neutral buffered formalin 

(this is the tissue from which most of the whiskers protrude).  Alizarin red 

histological staining showed that the collagen rings surrounding the whisker follicles 

in Enpp1-/- mice contained a calcium mineral.  There was no other mineralisation 

detected in this tissue, the smaller hair follicles that do not have a surrounding 

collagen ring were not mineralised (Figure 3.4).  
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Figure 3.3.  MicroCT imaging of mineralised whisker follicles of Enpp1-/- mice 

Coronal microCT images of the non-embedded hydrated heads with all of the soft tissues 
still attached; 3D reconstructed images shown are representative of 22 week old animals 
and have false colour added based on x-ray attenuation (see scale). Mineralised whisker 
follicles on the Enpp1-/- mouse are indicated by the arrows. The enamel on the incisors is 
dense and appears blue; the mineralisation around the whisker follicle is of a similar 
density to bone. 
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Figure 3.4.  Mineralised whisker follicles in Enpp1-/- mice  

Sections (3 µm) across the soft tissue over the premaxilla of wild type and Enpp1-/- mice (22 
weeks), stained with alizarin red and fast green.   Mineralisation of the collagenous sheath 
around the large whisker follicles of Enpp1-/- animals is indicated by arrows.  (Scale bars; 
left, 0.5 mm; right, 0.25mm) 

 

Enpp1-/- mice show tracheal mineralisation 

The tracheas of Enpp1-/- mice were examined to determine if this large collagen 

containing structure was mineralised.  The tracheas were dissected from 15 week 

old wild type and Enpp1-/- mice and fixed in NBF.  MicroCT analysis showed that the 

cartilage rings of the tracheas from Enpp1-/- mice had greater x-ray attenuation than 

the cartilage rings of the tracheas from wild type mice.  This suggested that the 

tracheal rings of Enpp1-/- mice were mineralised (Figure 3.5). 

Histological examination using alizarin red staining showed that the cartilage 

rings of the tracheas of Enpp1-/- mice contained a calcium containing mineral; wild 

type mice tracheas were not mineralised (Figure 3.5). 

Enpp1+/+ 

Enpp1-/- 
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Figure 3.5.  Tracheal mineralisation in Enpp1-/- mice 

Tracheas were dissected out of wild type and Enpp1-/- mice and fixed in NBF. (A) The 
tracheas were scanned by microCT. Scale bar A = 500 µm per mark.  (B) Alizarin red stained 
histological sections (3µm).   MicroCT shows that the tracheas of Enpp1-/- mice attenuate x-
rays more.  The arrow points to the cartilage rings of the trachea in cross section, which 
have stained red for calcium in the Enpp1-/- mouse. Scale bar B = 250 µm.   

Enpp1+/+ 

Enpp1+/+ 

Enpp1-/- 

Enpp1-/- A 

B 

x-ray attenuation 



Chapter 3 – Enpp1 & tissue mineralisation 

92 
 

Ear pinna mineralisation in Enpp1-/- mice 

The heads from 8, 15 and 22 week old Enpp1-/- and wild type mice were scanned 

using microCT with all soft tissues still attached.  MicroCT analysis showed that 

from 8 weeks onwards, all Enpp1-/- mice had greater x-ray attenuation in the pinna 

of the ear (Figure 3.6A).  Histological examination using alizarin red staining showed 

that the hyaline cartilage within the pinna of the ears of Enpp1-/- but not wild-type 

mice contained a calcium mineral (Figure 3.6B). 

 

  

Figure 3.6.  Mineralised ear pinnas in Enpp1-/- mice 

Wild type and Enpp1-/- mice heads were fixed in NBF. (A) The heads were scanned by 
microCT. The arrows point to the mineralised ears and whiskers.  Scale bar = 1 mm.  (B) The 
ears were then sectioned for histology (3 µm), and stained with alizarin red. The arrows 
point to the cartilage within the ear pinna, which has partially stained red, indicating the 
presence of calcium deposits in the Enpp1-/- mouse ear.  Scale bar B = 250 µm. 
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Mouse primary osteocyte-like cells express mRNA for Enpp1 in vitro 

Mouse osteocyte-like cells were extracted from the long bones of 15 week old wild 

type mice using collagenase and EDTA, and grown in vitro for 7 days within a 

collagen coated plate.  Microscopic examination revealed that these cells had the 

characteristic dendritic processes of osteocytes (Figure 3.7A).  RT-PCR showed that 

these cells express mRNA for the osteocyte specific gene DMP1 and mRNA for 

Enpp1 (Figure 3.7B). 

        

Figure 3.7.  Primary osteocyte-like cells express mRNA for DMP-1 and Enpp1 

(A)  Osteocyte-like cells were extracted from the long bones of wild type mice using 
repeated digestion by collagenase EDTA solutions and seeded onto collagen-coated plates. 
The cells can be seen to have dendritic processes, characteristic of osteocytes (arrow); 
scale bar = 100 µm.   (B) RT-PCR shows that these cells express DMP-1 and Enpp1. 

Osteocyte-like cells cultured from Enpp1-/- mice show reduced viability  

and release less ATP than wild types 

Mouse osteocyte-like cells were seeded at 1x105 cells per well in a collagen-coated 

6 well plate and cultured for 7 days in vitro. There was no significant difference in 

the number of cells initially obtained from wild type and Enpp1-/- bones, but after 7 

days in culture, there were 48% fewer cells in Enpp1-/- cultures, compared to wild 

types, as determined by manual counting (p<0.05; n=6) (Figure 3.8A).   
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On day 7 of culture the ATP release per osteocyte-like cell was measured by 

luminescence.  It was found that Enpp1-/- osteocyte-like cells release less ATP per 

cell than wild type cells (p<0.05;  n=6) (Figure 3.8B). 
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Figure 3.8.  Enpp1-/- mouse long bone osteocyte-like cells are less viable than wild type 
cells in vitro and release less ATP 

Osteocyte-like cells were extracted from the long bones of wild type mice using collagenase 
and EDTA, they were then seeded onto collagen coated plates.  On day 7 of culture the 

number of cells was counted (A), and the mean ATP release per cell was measured (B). (*, 
p<0.05; **, p<0.01; data are means  SEM; n=6) 

Enpp1-/- mice have less porous cortical bone than wild type mice 

MicroCT image analysis of a specific region of interest, 0.25 mm long, 0.5 mm below 

the deltoid tuberosity in the cortical bone of the left humerus from 8, 15 and 22 

week old Enpp1-/- and wild type mice was performed.  The total porosity of Enpp1-/- 

mice bones was found to be reduced by 30% (p<0.001) at 15 weeks and by 60% 

(p<0.001) at 22 weeks, compared to wild types (Figure 3.9 & 3.10).   

22 week old wild type bones were also 34% (p<0.001) less porous than 15 week 

old bones.   Total porosity is a measurement of all of the space within the cortical 

bone not filled by mineral, for example, a blood vessel channel, a large osteocyte 

lacuna or a crack.  This pore space may contain a soft tissue or cell, but it is not 

detectable by microCT when used with these settings. 
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Figure 3.9.  MicroCT cross sections of the diaphysis of the humerus bones of Enpp1-/- and 
wild type mice 

Humerus bones from 8, 15 and 22 week old mice were scanned by microCT.  The images 
shown represent a region 0.25 mm in length, 0.5 mm below the deltoid tuberosity.  Red = 
empty space within the cortical bone, grey = bone.  Enpp1-/- mice show reduced porosity 
(space) within their cortical bone compared to age and sex matched wild types (see Figure 
3.10).  
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Figure 3.10.  The total porosity of Enpp1-/- 
mouse humerus bone is reduced  

Ex vivo humerus bones from 8, 15 and 22 
week old female mice were scanned by 
microCT and the region of interest was 
analysed.  “Total porosity” is a composite 
measurement that will include any space 
within the cortical bone (blood vessel 
channels, large  osteocyte lacunae, cracks).  

(Data are means  SEM; ***, p<0.001; n = 5). 

 

Enpp1-/- mice have fewer and smaller “closed pores” in their cortical 

bone compared to wild types 

The microCT data was further analysed to determine what factors contribute to the 

decrease in total porosity of the cortical bone in the humerus of Enpp1-/- mice.  

Each individual pore within the region of interest in the cortical bone was classified 

as either a “closed pore” or an “open pore”.  “Open pores” were spaces within the 

bone which opened onto the periosteal or endosteal surface, or are pores that 

were bisected by the region of interest.  A blood vessel channel running 

longitudinally within the bone from the proximal to the distal end would be 

bisected by the region of interest, so would be classified as an open pore.  A crack 

that runs laterally from either the endosteal surface to the periosteal surface would 

also be classified as an “open pore”.  A “closed pore” was classified as a space 

within the cortical bone than was fully enclosed by mineral.  A crack within the 

bone that does not reach the surface, or get bisected by the perimeter of the region 

of interest would be classified as a closed pore.  The osteocyte canaliculi are too 

small to be detected by this method of microCT; this means that larger sized 

osteocyte lacunae may be one of the contributing factors to the “closed pore” 

measurements within the cortical bone.   
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All “open pore” results from the data sets were discarded.  Any “closed pore” 

with a total volume of less than 22 µm3 was discarded as it was deemed to be 

below the accurate limit of detection of the microCT.  This value represents 30 

individual voxels (3D pixels).  Any closed pore with a volume greater than 950 µm3 

was also excluded.  

MicroCT analysis of the ex vivo humerus bones from 8 week old Enpp1-/- and wild 

type mice showed that there was no difference between the two groups in the 

number and volume of closed pores within the cortical bone (Figure 3.11).  MicroCT 

analysis showed that at 15 weeks, the cortical bone of the humeri in Enpp1-/- mice 

contained 50% (p<0.05 n=5) fewer closed pores than wild type mice, had a 41% 

(p<0.001) reduction in the total closed pore volume and each individual pore was 

reduced in diameter by an average of 10% (p<0.05) (Figure 3.11).  At 22 weeks of 

age, microCT analysis showed that the cortical bone of the humerus in Enpp1-/- mice 

contained 55% (p<0.001 n=5) fewer closed pores than wild type mice, had a 59% 

reduction in closed pore volume (p<0.05) and each individual pore was reduced in 

diameter by an average of 15% (p<0.001) (Figure 3.11).   
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Figure 3.11.  Enpp1-/- mouse humerus cortical bones have a reduced number of ‘closed 
pores’, reduced closed pore diameter and volume compared to wild type bone 

Ex vivo humerus bones from 8, 15 and 22 week old mice were scanned by microCT and the 
region of interest was analysed.  A “closed pore” is a space within the cortical bone that is 

completely encapsulated by bone when imaged by microCT.  (Data are means  SEM; n = 5 
bones, individual pore values are based on calculations on all pores in each bone; *, p<0.05; 
***, p<0.001). 
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Osteocyte lacunae are smaller in the femurs of Enpp1-/- mice 

compared to wild types 

The left femur was dissected from the legs of 15 and 22 week old Enpp1-/- and wild 

type mice.  The bones had all of the soft tissues digested from them before being 

dehydrated and air dried.  The diameter of the osteocyte lacunae along its longest 

axis and the plan surface area were measured using SEM imaging.   

SEM showed that the osteocyte lacunae of 15 week old Enpp1-/- mice were 25% 

shorter than wild type osteocyte lacunae (p<0.001) and had a 35% (p<0.001) 

reduction in their plan surface area.  SEM also revealed that 22 week old Enpp1-/- 

mice had osteocyte lacunae that were 22% (p<0.001) shorter than wild type 

osteocyte lacunae, with a 39% (p<0.001) reduction in their plan surface area (Figure 

3.13). 

SEM analysis also showed 27% and 23% reductions in the length of wild type and 

Enpp1-/- mouse osteocyte lacunae, respectively between the ages of 15 and 22 

weeks (p<0.001 in each case) (Figure 3.12).   

Enpp1-/- mice have fewer open blood vessel channels on the endosteal 

surface of their cortical bone 

Bone samples for SEM were prepared as detailed above.  Low resolution SEM (x 16 

magnification) showed that ex vivo femur bones from 15 week old Enpp1-/- mice 

appear to have fewer blood vessel channels opening at the endosteal surface than 

wild type mice (Figure 3.13).  However, this methodology does not allow 

quantification of this difference.  
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Figure 3.12. The osteocyte lacunae in 15 and 22 week old Enpp1-/- mouse femurs are 
shorter and have a reduced plan surface area compared to wild types 

(A, B) Representative SEM images of the endosteal surface of mouse femurs from 22 week 
old mice at x400 magnification.  The arrows point to (ocl) an osteocyte lacuna, (b) a blood 
vessel channel and (r) resorption pits on the surface of bone.  (C, D) Images of an osteocyte 
lacunae.  Lacunae diameter was measured along the longest axis.  Quantitative analysis of 
osteocyte lacunae SEM images based on n = 60 measurements per group (E, F).  Scale bar A 

= 20 µm, C = 5 µm; data are means  SEM ***, p<0.001. 
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Figure 3.13.  SEM shows that the endosteal bone surface of 15 week old Enpp1-/- mouse 
femurs contains fewer open blood vessel channels than wild type bone 

The arrows point to blood vessel channels; scale bar = 0.5 mm. These images were 
generated by Prof Alan Boyde, QMUL. 
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Increased  serum sclerostin in Enpp1-/- mice 

Blood was collected by terminal cardiac puncture from 8, 15 and 22 week old wild 

type and Enpp1-/- mice.  The serum sclerostin concentration, measured by ELISA, of 

wild type mice decreased by 37% (P<0.01) between the ages of 8 and 15 weeks, and 

62% (p<0.001) between 8 and 22 weeks (Figure 3.14).  There was no difference in 

the serum concentration of sclerostin between wild type and Enpp1-/- mice at 8 

weeks.   At 15 and 22 weeks, however, serum sclerostin was 75% (p<0.001) and 

52% (p<0.01) higher in Enpp1-/- mice, compared to wild types (Figure 3.14).   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14.  Knockout of Enpp1 leads to an increase in serum sclerostin 

Sclerostin was measured by ELISA in serum collected from 8, 15 and 22 week old Enpp1-/- 

and wild type mice.  (**, p<0.01; ***, p<0.001; data are means  SEM; n = 5). 
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Enpp1-/- humerus bones have reduced cortical bone thickness and a 

wider bone marrow cavity 

Outer soft tissues were removed from 8, 15 and 22 week old Enpp1-/- and wild type 

mice left humerus bones; the bones were fixed and then left to air dry. MicroCT 

measurements of the cortical bone width (thickness), bone marrow cavity diameter 

(endosteal diameter) and bone diameter (periosteal diameter) were undertaken in 

a specific region of interest, 0.25 mm long, 0.5 mm below the deltoid tuberosity 

(Figure 3.15).   

There was no difference in any of these measured parameters between Enpp1-/- 

and wild type mice at 8 weeks.  There was no difference in the periosteal diameter 

between Enpp1-/- and wild type mice at any time point.  In wild type mice the 

thickness of the cortical bone increased with age.  The cortical bone thickness of 15 

and 22 week old wild type mice was 34% (p<0.001) and  57% (p<0.001) greater than 

that of 8 week old bone respectively.  Enpp1-/- mice showed no increase in cortical 

bone thickness with age (Figure 3.15).   

15 week old Enpp1-/- mice had a 16% (p<0.05) thinner cortical bone thickness 

and a 22% (p<0.001) larger endosteal diameter compared to wild type mice.  22 

week old Enpp1-/- mice had a 35% (p<0.001) reduction in their cortical bone 

thickness and a 23% (p<0.05) increase in their endosteal diameter compared to wild 

type mice.  When combined, these results indicate that from 15 weeks onwards, 

the humerus bones of Enpp1-/- mice have a similar total diameter to wild type mice, 

but their bone marrow cavity has a greater diameter and their cortical bone is 

thinner (Figure 3.15).    
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Figure 3.15.  Enpp1-/- mouse humerus bones 
have decreased cortical bone thickness and 
increased endosteal diameter 

(A) Representative microCT images of 22 
week old Enpp1-/- and wild type humerus 
bone regions of interest.  Cortical bone 
diameter (thickness) (x) was measured across 
the thinnest part, ensuring that the line of 
measurement was on a tangent that bisected 
the central point of the bone marrow cavity.  
The endosteal (y) and periosteal (z) diameter 
was measured by finding the circumference of 
the bone along the whole region of interest 
and calculating the diameter from it.             
(B-D)  Quantitative measurements taken from 
the microCT images. (*, p<0.05; ***, p<0.001; 

data are means  SEM; n = 5). 
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Enpp1-/- mouse skulls are similar in size and shape to wild type skulls 

Humerus bones are made by the process of endochondral ossification.  The skull, 

which is made by intramembranous ossification, was examined to detect 

differences between Enpp1-/- and wild type mice. 

The heads from 8, 15 and 22 week old Enpp1-/- and wild type mice were scanned 

by microCT.  The lengths of the skulls were measured from the tip of the nasal plate 

to the occipital condyle along the medial axis (Figure 3.16a).  The widths of the 

skulls were measured at a point 6 mm forward from the back of the skull, at an axis 

point spanning the parietal bones (Figure 3.16b).  The height from the most dorsal 

point of the parietal bone (top) to the most distal point (bottom) was measured at a 

site exactly 6 mm forwards from the back of the skulls, to determine the depth of 

the calvariae (Figure 3.16c).  A 4 mm wide strip of bone, 2 mm from the back of the 

skull, across the whole calvaria was analysed to determine calvarial bone volume in 

Enpp1-/- and wild type mice (Figure 3.16d). 

At 22 weeks, the skulls of Enpp1-/- mice were 10% longer than those of wild type 

mice (p<0.05).   Enpp1-/- mice were also found to have 10% (p<0.05) less calvarial 

bone compared to wild type mice at 15 weeks.  No other significant differences 

were observed (Figure 3.17). 
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Figure 3.16.  MicroCT images of a mouse skull showing the parameters examined as part 
of the morphological examination of skull dimensions  

MicroCT images were evaluated to determine if there were any skull morphological 
differences between wild type and Enpp1-/- mice.  See figure 3.18 for results. (a)Length of 
skull, (b) diameter of skull, (c) depth of calvaria and (d) calvarial volume, were measured. 
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Figure 3.17.  Enpp1-/- mouse skulls are morphometrically similar to wild type skulls  

Data are derived from microCT scans (Data are means  SEM; *, p<0.05; n = 5). 
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Discussion 

This work showed that NPP1 is vital to prevent soft tissue calcification in the 

whisker follicles, the ear pinna and the trachea.  The strikingly high levels of 

mineralisation seen in these tissues have not been previously reported.  SEM 

analysis demonstrated for the first time that Enpp1-/- mice have fewer open blood 

vessel channels on the endosteal surface of their femurs, compared to wild type 

mice.  SEM analysis also revealed that Enpp1-/- osteocyte lacunae are reduced in 

size compared to wild types.   MicroCT analysis demonstrated that the knockout of 

Enpp1 results in thinner, less porous cortical bone; however, no effects on the skull 

bones were noted.  Long bone porosity and osteocyte lacunar size also decreased 

with age in control mice.   It has also been shown here for the first time that 

primary mouse osteocyte-like cells release ATP and express mRNA for Enpp1 in 

vitro.  Moreover, it was demonstrated here that Enpp1-/- osteocytes are less viable 

and release less ATP in culture.  Furthermore, Enpp1-/- mice have a greater 

circulating sclerostin concentration than wild type mice.   

Histological and x-ray studies more than 40 years ago showed that 

hypercalcaemic rats developed hair follicle mineralisation when their skin was 

subjected to a mild crush injury (Pearce et al. 1972).  Rat hair follicles grown in a 

high calcium and phosphate media in vitro also showed spontaneous mineralisation 

(Pearce & Smillie 1973).  In the present study, whisker follicles in Enpp1-/- mice may 

have mineralised before the much smaller hair follicles because the large collagen 

sheath around the whisker follicle acted as a preferential nucleation site for mineral 

deposition. These results suggest that Enpp1 hydrolysis of ATP could be involved in 

the prevention of inappropriate mineralisation of the hair follicle. Most cell types 

release ATP; although there has been no specific evidence of ATP release from hair 

follicles.  However, hair follicles grown in vitro have been shown to express P2X5, 

P2X7, P2Y1 and P2Y2 receptors on which local ATP may act (Greig et al. 2008).   

Calcification of the hyaline cartilage of the ear pinna is rare; however, it occurs in 

Primrose syndrome (Dalal et al. 2010; Carvalho & Speck-Martins 2011) and very 

occasionally it  is seen  in cases of frost bite (Lautenschlager et al. 1994; Stites et al. 
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2003), Addison’s disease (Cohen et al. 1991), inflammatory states (Chopra et al. 

2013), pituitary insufficiency (Gogate et al. 2012), diabetes (Strumia et al. 1997)  

and trauma (Gordon 1964).  Anecdotal evidence suggests that calcification of the 

ears is more frequent in older people, especially those who had worked out-doors 

(Bowers & Gould 1998).  My results suggest the possibility that alterations in Enpp1 

expression may play a role in calcification of ear pinna cartilage.  

Histological and microCT analysis showed that the hyaline cartilage rings were 

also mineralised along the entire length of the trachea and the primary and 

secondary bronchi in Enpp1-/- mice.  No mineralisation of adjacent soft tissues such 

as arterioles, bronchioles or smooth muscle was detected.  It has been reported 

that in healthy human subjects with a mean age of 70, approximately 50% showed 

signs of tracheal cartilage mineralisation (Kusafuka et al. 2001).  The present results 

suggest the possibility that decreased expression of Enpp1, leading to a reduction in 

the production of PPi may play a role in the mineralisation of the tracheal  cartilage 

with age.  Cartilaginous mineralisation of the trachea has been reported in patients 

on long term warfarin anticoagulant therapy (Moncada et al. 1992; Thoongsuwan & 

Stern 2003).  The effect of warfarin on vascular calcification has been suggested to 

be mediated by its actions on the vitamin K-dependent proteins matrix gla protein 

and osteocalcin (Gundberg et al. 2012; Kruger et al. 2013), but could also be due to 

a NPP1 mediated mechanism. 

An important finding in this chapter is that the osteocyte lacunae in the cortical 

bone of Enpp1-/- mice had a surface area that was 35 - 39% smaller than wild types.  

Further extrapolation of this data suggests that the volume of the prolate spheroid 

shape of the Enpp1-/- osteocyte lacunae could by approximately 60% less than the 

wild type lacunae.   The “closed pore” data generated by microCT suggests that 

there may also be a reduction in the total number of osteocyte lacunae, because 

large osteocyte lacunae could be one of the factors contributing to this parameter.  

The most obvious explanation for this reduced lacunae size is related to PPi 

formation by osteocytes.  Osteocytes release ATP; this ATP may be broken down by 

NPP1 to produce PPi; this PPi then inhibits the further mineralisation of the 
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osteocyte lacunae.  Knockout of Enpp1 would decrease this process and result in 

greater lacunar mineralisation and decreased lacunar size.  In support of this theory 

it was shown that primary mouse osteocyte-like cells release ATP and express 

mRNA for Enpp1 in vitro, so may be capable of generating PPi.  It has previously 

been shown that the MLO-Y4 osteocyte-like cells release ATP (Genetos et al. 2007; 

Kringelbach et al. 2013).   It should be noted, however, that the methods used in 

this study cannot distinguish between mineral deposition and true bone formation 

(which would also involve collagenous matrix deposition by osteocytes). 

It was also observed that Enpp1-/- osteocyte-like cells release less ATP in vitro 

than wild type cells; this is potentially a second factor contributing towards a 

reduction in PPi concentrations within the osteocyte lacunae in vivo.  Mouse 

osteocyte-like cell lines have been shown to express mRNA for some of the P2Y 

receptors (Kringelbach et al. 2013); although it is unknown what, if any effects 

purinergic signalling has on osteocytes.  The reduction in ATP release found here 

may lead to changes in autocrine purinergic signalling. 

The simplest interpretation of my results is that PPi is acting in a mainly 

physicochemical manner on the inner surface of the osteocyte lacunae to prevent 

mineral encroachment.   This mechanism could also be seen to be involved in the 

still-controversial process of ‘osteocytic osteolysis’ (which is thus being reduced in 

Enpp1-/- mice).  Increased osteocyte lacunae size has been reported in rats infused 

with PTH (Tazawa et al. 2004), as well as during lactation (Qing et al. 2012).  

Humans with Enpp1 gene defects have been found to have normal serum PTH and 

calcium concentrations and a low phosphate concentration (Lorenz-Depiereux et al. 

2010).   Enpp1-/- mice have previously been shown to have low blood serum calcium 

and phosphate concentrations and a high blood serum FGF23 concentration 

(Mackenzie et al. 2012b).  Circulating PTH was not measured in the present study, 

but these results suggest that it could be elevated in Enpp1-/- mice, as part of a 

homeostatic response to normalise the blood calcium concentration. The change in 

osteocyte lacunae size I found in Enpp1-/- mice is unlikely to be due to a high PTH 
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concentration because that would result in an increased lacunae size not 

decreased. 

SEM measurements also revealed that the osteocyte lacunae of 22 week old wild 

type mice were smaller than those of 15 week old mice.  A number of reports have 

also shown a reduction in osteocyte lacunae size with age in human and rodent 

bones (Mullender et al. 1996; Mori et al. 1997; Power et al. 2002; Qiu et al. 2002; 

Busse et al. 2010; Torres-Lagares et al. 2010; Carter et al. 2013), presumably as a 

consequence of continuing secondary mineralisation.  It is not known what effect 

ageing has on the activity of NPP1 in humans and mice.  A reduction of NPP1 

activity with age may permit the secondary mineralisation seen. 

In young adults, exercise and hypoxia lead to increased ATP release from red 

blood cells (RBCs); this ATP release has been reported to be attenuated with age 

(Kirby et al. 2012).  This released ATP is believed to cause vasodilation and relieve 

the hypoxia (Sprague et al. 2011).  Reduced ATP release with ageing might thus be 

expected to result in decreased relief of hypoxia.  Reduced ATP release from RBCs 

might also lead to decreased circulating PPi, which could contribute to the 

secondary mineralisation seen with age. 

From 15 weeks onwards, Enpp1-/- mice had thinner and less porous cortical bone 

in the humerus than wild types.  The Enpp1-/- bones had the same diameter as 

those of wild type mice, but a bigger marrow cavity.   This increase in the endosteal 

/ periosteal diameter ratio is indicative of increased osteoclast activity in the bone.  

Mackenzie and colleagues saw histological evidence of increased in vivo osteoclast 

activity on the bones of Enpp1-/- mice (Mackenzie et al. 2012b).  A possible 

explanation as to why Enpp1-/- mice have altered bone structure may be related to 

acidosis and hypoxia.  The knockout of NPP1 leads to a reduction in PPi; this 

reduction in PPi has been shown to lead to arterial blood vessel calcification (Villa-

Bellosta et al. 2011).  These vessels may have reduced capacity for transporting 

oxygenated blood; this may result in tissue hypoxia and acidosis.  Results presented 

here show a reduction in the number of open blood vessels channels in Enpp1-/- 

bone (Figure 3.13), and a reduction in the total pore / channel space in bone 
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(Figure 3.10), which may result in hypoxia and acidosis in the bone environment.  

Acidosis and hypoxia have been shown to increase osteoclast formation and 

resorption rate (Arnett & Dempster 1986; Arnett et al. 2003) and inhibit bone 

mineralisation (Brandao-Burch et al. 2005; Utting et al. 2006).  This increase in 

osteoclast activity may be responsible for the changes seen in the diameter of the 

cortical bone of Enpp1-/- mice.  Enpp1-/- mice reportedly have an increased serum K+ 

concentration (Mackenzie et al. 2012b); increased serum K+ may be an indicator of 

an acidosis (Nyirenda et al. 2009).   

No large changes in skull dimensions were detected at 8, 15 and 22 weeks in 

Enpp1-/- mice compared to wild types.  This finding aligns with previous work which 

found that 20 day old Enpp1-/- mice did not have any calvarial defects (Hessle et al. 

2002).  The skull is different to the long bones in that it is formed by 

intramembranous ossification and develops from the neural crest cells (Santagati & 

Rijli 2003); the long bones (axial skeleton) are formed by the process of 

endochondral ossification from the  sclerotome compartment of the somite (Fan & 

Tessier-Lavigne 1994).  This may be a reason why Enpp1-/- had no effect on the skull 

bones, but a dramatic effect on the long bones. 

Enpp1-/- mice had a higher serum sclerostin concentration than wild type mice.  

A possible explanation for this may be found in their decreased mobility (Okawa et 

al. 1998; Sali et al. 1999).  It has previously been reported that Enpp1-/- mice have a 

raised blood serum creatine kinase concentration (Mackenzie et al. 2012b), this 

indicates that they have muscle damage.  MicroCT data presented here shows 

mineralisation of the knees and toes; coupled with the reported muscle damage, 

the Enpp1-/- mouse may be attempting to put as little force as possible through 

their limbs when moving, this would result in unloading of the long bones.  

Unloading of the bones can result in increased expression of sclerostin by 

osteocytes (Lin et al. 2009; Macias et al. 2013; Spatz et al. 2013) and may be a 

reason why Enpp1-/- mice have increased blood serum sclerostin.  

 A further explanation for the elevated sclerostin concentration seen in Enpp1-/- 

mice may be related to their reduced PPi production (Hessle et al. 2002).  It is 
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possible that the increased sclerostin concentration may be a homeostatic response 

by the osteocyte to the hypermineralisation of their lacunae caused by the 

decrease in PPi.  It has been has reported that sclerostin increased the expression 

of carbonic anhydrase 2 in osteocyte-like cell lines in vitro.  It has been suggested 

that this carbonic anhydrase 2, through its production of carbonic acid, enables the 

osteocyte to dissolve the mineralised lacunae wall and increase the lacunae size 

(Kogawa et al. 2013).  The increased blood sclerostin concentration seen in Enpp1-/- 

mice may be due to the osteocytes’ attempts to reduce the mineral encroachment 

into the lacunae. 

Increased differentiation of osteoblasts to osteocytes may also be reason for the 

increased sclerostin concentration detected in Enpp1-/- mice.  Increased 

mineralisation of the extracellular matrix has been shown to up-regulate the 

osteocytic differentiation of MLO-A5 osteocyte-like cells and increase their 

expression of E11 in vitro (Prideaux et al. 2012).  This suggests the possibility that 

increased mineralisation in Enpp1-/- mice bones may also act to increase osteocyte 

differentiation. 

Increased sclerostin could provide another explanation for the increased 

osteoclast function seen in vivo.  Sclerostin has been shown to increase the 

expression of RANKL by osteoblasts and osteocytes, and therefore increase 

osteoclast formation (Wijenayaka et al. 2011).  Along with hypoxia discussed above, 

the increased blood sclerostin levels seen in Enpp1-/- mice may stimulate osteoclast 

formation and bone resorption, and be responsible for some of the changes seen in 

Enpp1-/- mouse bones.   My observation that blood sclerostin decreased with age in 

wild type mice contrasts with the results of a number of studies in humans showing 

that circulating sclerostin increases with age (Modder et al. 2011; Bhattoa et al. 

2013; Roforth et al. 2014).  The reason for this difference is not clear. 

In summary, the work presented in this chapter provides significant new 

evidence of the important role of Enpp1 and PPi in regulating the mineralisation of 

soft tissues and bone. 
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Chapter 4 

Effects of Enpp1 knockout on osteoclasts 
and osteoblasts in vitro 

Introduction 

Enpp1-/- osteoclasts 

The previous chapter showed that the bone marrow cavity is enlarged in Enpp1-/- 

mice (Figure 3.16), with prominent resorption pits on the endosteal surface (Figure 

3.12B), suggesting that these mice have increased osteoclastic resorptive activity.  

Mackenzie and colleagues saw an increased number of osteoclasts on the ex vivo 

bone surfaces of Enpp1-/- mice, compared to age-matched, wild type mouse bones 

(Mackenzie et al. 2012b).  They also found that the blood serum concentration of C-

terminal telopeptides of type I collagen (CTx), a marker of osteoclast activity, was 

increased by 364% in 22 week old Enpp1-/- mice compared to wild types.  They 

observed that the concentration of blood serum CTx decreases with age in wild 

type but not Enpp1-/- mice.  It was suggested that Enpp1-/- mice failed to 

appropriately down-regulate osteoclast numbers and activity with age.    Mackenzie 

et al hypothesised that the increased number of osteoclasts in Enpp1-/- mouse 

bones may be due to the increased circulating creatine kinase activity they found in 

these animals.  It has been reported that brain-type creatine kinase (CK-BB) is up-

regulated during osteoclastogenesis and that knockout of CK-BB reduced osteoclast 

formation in vitro, and decreased bone loss in ovariectomised mice and rats in vivo 

(Chang et al. 2008).  

One of the main biological functions of calcitonin is to suppress osteoclast 

resorptive activity by binding to receptors on their surface (Chambers & Moore 

1983; Shyu et al. 2007; Hamdy & Daley 2012).  Administration of calcitonin for 4 

weeks to the tiptoe walking mouse partially corrected the low bone volume seen in 

the cervical vertebrae (Okawa et al. 1999).  This suggests that tiptoe walking mice, 
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have increased osteoclast activity; it also suggests that the Enpp1-/- mice, which 

have a similar genetic abnormality, may have an osteoclast related defect.  

However, calcitonin has not been shown to reduce the number of osteoclasts in 

bone (Ikegame et al. 2004; Karsdal et al. 2008; Hamdy & Daley 2012).   

ATP and ADP have been shown to increase the formation rate and resorptive 

activity of mouse osteoclasts formed from precursors in vitro, by signalling through 

the P2Y1 and P2Y6 receptors; whereas AMP has no effect (see chapter 1, for a 

detailed review).   This suggests that an additional potential reason for the 

increased number or resorptive activity of osteoclasts in Enpp1-/- mice may be due 

to a decrease in the rate of extracellular nucleotide hydrolysis, leading to increased 

extracellular ATP and ADP (and reduced AMP). 

Enpp1-/- osteoblasts 

Osteoblasts cultured from precursor cells obtained from Enpp1-/- mice calvariae 

produced more mineralised bone nodules than wild types.  Conversely, osteoblasts 

formed from precursor cells from Enpp1-/- bone marrow produced less mineralised 

bone nodules than wild types in vitro.  No differences were detected in the rate of 

cell proliferation between wild type and Enpp1-/- osteoblasts in culture (Anderson et 

al. 2005b).   

It has been reported that when Enpp1 expression was suppressed by shRNA in 

the mouse osteoblast-like cell line MC3T3, these cells were unable to mineralise the 

matrix they deposited.  Confusingly, it was also reported that Enpp1-/- primary 

mouse calvarial osteoblasts, when grown from precursors in vitro, were less 

differentiated than Enpp1+/+ cells, resulting in decreased ALP and OCN expression 

and produced less mineralised bone than wild type cells (Nam et al. 2011).  These 

results are not consistent with those reported by (Anderson et al. 2005b).  It was 

also reported that catalytically inactive NPP1 enhanced the differentiation of 

precursor cells into osteoblasts and increased mineral production (Nam et al. 2011).   

It has also been proposed that NPP1 may modulate insulin signalling.  NPP1 may be 

able to bind to the insulin receptor  (Maddux & Goldfine 2000) and block osteoblast 
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bone formation by preventing insulin from suppressing the Runx2 inhibitor Twist2 

(Fulzele et al. 2010). 

Previous reports have shown that over-expression of Enpp1 inhibited 

adipogenesis and the expression of adipocyte associated genes, PPARγ, adipsin and 

C/EBPβ in the adipocyte-like cell line 3T3-L1.  Knockout of Enpp1 reportedly 

increased adipogenesis in primary mesenchymal precursor cells, and increase 

expression of the adipocyte associated genes in vitro (Liang et al. 2007).  This 

suggests that Enpp1 may play a role in the differentiation of MSCs to osteoblasts 

and adipocytes.  Increased adipose tissue expression of Enpp1 in humans has been 

shown to be linked with decreased expression of adiponectin, a hormone secreted 

by adipocytes that can lead to increased liver triglyceride deposition (Chandalia et 

al. 2012). 

The PPi generated by NPP1 reportedly increased the expression of OPN by 

rodent in vitro osteoblasts in a phosphate independent way (Boskey et al. 2002; 

Johnson et al. 2003; Addison et al. 2007). OPN, like PPi, is a direct inhibitor of 

mineralisation (Wada et al. 1999; Boskey et al. 2002).  In vitro osteoblasts from 

Enpp1-/- mice expressed less OPN than wild type cells (Johnson et al. 2003), the 

addition of PPi or soluble NPP1 to the cell culture media increased OPN expression 

(Boskey et al. 2002; Johnson et al. 2003; Addison et al. 2007; Nam et al. 2011).  This 

indicated that Enpp1 can regulate the mineralisation process in a dual inhibitory 

way by either a PPi or OPN mediated mechanisms.   

PPi has been shown to inhibit mineralisation by osteoblasts in vitro by either a 

physicochemical method or increasing the expression of OPN.  In addition, PPI has 

also been reported to decrease the expression of ALP by the osteoblast-like cell line 

MC3T3-E1. This decrease in ALP activity resulted in the reduced hydrolysis of 

phosphate from β-glycerophosphate in vitro, therefore resulting in less available 

phosphate for the formation of mineral (Addison et al. 2007).   
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Aims 

The aim of the experiments in this chapter was to determine if the knockout of 

Enpp1 affects the function of osteoclasts and osteoblasts in vitro.  
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Results 

Enpp1 and osteoclasts 

Osteoclasts express mRNA for ecto-nucleotidases and related proteins 

in vitro 

On ivory discs, primary mouse osteoclasts were formed from precursors flushed 

from the bone marrow of wild type mice (see chapter 2).  On day 8 the cells were 

acidified to pH 6.90 to activate resorption.  TRIzol was used to collect mRNA from 

the osteoclasts on days 3, 6, 8 and 10 of culture, these represent: immature, 

maturing, mature and mature resorbing osteoclasts respectively (Figure 4.1).  RT-

PCR showed that osteoclasts express mRNAs for Enpp1, Enpp3, NTPdase1, 

NTpdase3 and the PPi transport protein Ank.  These in vitro mouse osteoclasts did 

not to express mRNAs for Enpp2 and NTPdase2 (Figure 4.2). 

   

   

Figure 4.1. Transmitted light microscopy images of mouse osteoclasts grown in vitro 

Osteoclast precursors were seeded onto dentine discs on day 2. The culture medium was 
acidified to pH 6.9 on day 8 to activate resorption; no resorption was visible on day 6. 
TRAP-stained osteoclasts (red) and resorption pits (tan); scale bar = 50 µm. 

Day 3 Day 6 

Day 8 Day 10 
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Figure 4.2. Ecto-nucleotidases expression by differentiating mouse osteoclasts in vitro 

RT-PCR showed that mouse osteoclasts expressed mRNAs for the nucleotidases Enpp1, 
Enpp3, NTPdase1, NTpdase3 and the PPi transport protein ANK from day 6 of culture 
onwards.  mRNAs for Enpp2 and NTPdase2 were not detected. Enpp1 expression increased 
throughout the culture; NTPdase3 expression decreased in mature resorbing osteoclasts; 
positive control = mouse brain. 

Mouse osteoclasts have NPP activity in vitro 

Osteoclasts were grown from precursors obtained from the bone marrow of   

Enpp1-/- and wild type mice on ivory discs for 10 days.  On day 8 the cells were 

acidified to pH 6.90 to activate resorption.  The total NPP activity of the cells was 

measured photometrically using p-nitrophenyl-thymidine 5’-monophosphate on 

days 6, 8 and 10.  It was found that osteoclasts have functional NPP enzyme 

activity, which decreased throughout the duration of the experiment.  Enpp1 

knockout resulted in a 25% reduction in the total NPP activity of osteoclasts at days 

6 and 8 of culture, and a 70% decrease in the total NPP activity on day 10 of culture 

(Figure 4.3). 
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Figure 4.3.  NPP activity of mouse osteoclasts in vitro 

Osteoclasts were grown from precursors on ivory discs.  Total NPP activity was determined 
by the osteoclasts’ ability to hydrolyse p-nitrophenyl-thymidine 5’-monophosphate.  (Data 

are means  SEM; *, p<0.05; ***, p<0.001; n = 12). 

Acid activation of mouse osteoclasts increases NPP activity and Enpp1 

mRNA expression  

Wild type mouse osteoclasts were grown from precursors, on ivory discs for 10 

days.  On day 8 of culture one group of cells was acidified to pH 6.90 (n = 12 discs), 

a second group was maintained at pH 7.30.  On day 10 the experiment was 

terminated, NPP activity was measured and mRNA was collected.  Osteoclasts 

which were acidified had increased mRNA expression of Enpp1 and greater total 

NPP activity compared to non-acidified cells (Figure 4.4). 
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Figure 4.4. Increased Enpp1 mRNA expression and NPP activity in acid-activated mouse 
osteoclasts in vitro 

Osteoclasts were grown from precursors on ivory discs. On day 8 the test group osteoclasts 
were acidified to pH 6.90, the control group was maintained at pH 7.30.  On day 10 of 
culture (A) the total NPP activity was measured in cell lysates; (B) mRNA was collected for 

RT-PCR analysis.  (Data are means  SEM; **, p<0.01; n = 12). 

The effect of Enpp1-/- on osteoclast mRNA expression  

Osteoclasts were grown from precursors obtained from the bone marrow of   

Enpp1-/- and wild type mice on ivory discs for 8 days.  On day 8 of culture TRIzol was 

used to collect mRNA from the osteoclasts.  RT-PCR demonstrated that Enpp1-/- 

osteoclasts have increased expression of mRNAs for NTPdase1, Enpp3 and Ank 

compared to wild type cells (Figure 4.5). 

  

B 
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Figure 4.5.  Altered expression of mRNAs for nucleotidase-related genes in Enpp1-/- 
mouse osteoclasts in vitro 

Mouse osteoclasts were grown from precursors on ivory discs.  On day 8 of culture mRNA 
was collected for RT-PCR analysis.   

Reduced ATP release and increased intracellular ATP in Enpp1-/- 

osteoclasts  

As described previously, osteoclasts were formed from precursor cells on ivory discs 

that were obtained from the bone marrow of 8 and 15 week old Enpp1-/- and wild 

type mice.  The amount of ATP released per cell, and the intracellular ATP 

concentration were measured on days 6, 8 and 10 of culture.  It was found that 

Enpp1-/- osteoclasts formed from precursors obtained from both 8 and 15 week old 

mice released less ATP per cell than wild type cells (Figure 4.6A & B).  It was also 

found that Enpp1-/- osteoclasts grown from precursors from 8 week old mice had a 

higher intracellular ATP concentration than wild type cells from day 6 onwards 

(Figure 4.6C).  Enpp1-/- osteoclasts grown from precursors from 15 week old mice 

had a higher intracellular ATP concentration than wild type cells from day 8 

onwards (Figure 4.6D). 
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Figure 4.6.  Enpp1-/- mouse osteoclasts release less ATP and have a higher intracellular 
ATP concentration compared to wild types in vitro 

Osteoclasts were grown from precursors obtained from the bone marrow of 8 (A, C) and 15 
(B, D) week old mice.  To determine the rate of ATP release, medium was replaced with 
fresh serum free medium, after 1 hour the ATP concentration in the medium was 
measured. To determine the intracellular ATP concentration the osteoclasts were lysed 
using Triton X-100 before the ATP concentration was measured. Cell viability was found to 
be above 90% in all groups, with no significant differences seen. (**, p<0.01; *, P<0.05; 

data are means  SEM; n = 12).  
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Enpp1 knockout does not affect extracellular ATP hydrolysis by 

cultured osteoclasts 

Experiments were performed to determine if the knockout of Enpp1 resulted in a 

decreased rate of ATP breakdown.  On ivory discs, osteoclasts were grown from 

precursor cells obtained from the bone marrow of 8 and 15 week old Enpp1-/- and 

wild type mice.  On day 8, all of the cell culture media were removed from the cells 

and replaced with serum free media containing 100 nM ATP.  The rate of ATP 

hydrolysis in the cell culture media was measured using a luminescent method 

described on page 72.  Using precursors from both 8 and 15 week old mice, it was 

found that knockout of Enpp1 in osteoclasts did not reduce the rate of extracellular 

ATP hydrolysis (Figure 4.7).  
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Figure 4.7.  Knockout of Enpp1 does not affect the rate of extracellular ATP hydrolysis by 
mouse osteoclasts in vitro 

In vitro osteoclasts were cultured from the bone marrow of 8 (A) and 15 (B) week old mice.  
On day 8, all of the culture media were removed and replaced with fresh media containing 
100 nM ATP (t = 0). The concentrations of ATP in the culture media were measured using a 
luminescent method from when the media was added.  Cell viability was measured using 

LDH and found to be above 90%, with no significant differences seen; data are means  
SEM; n = 12. 
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Reduced ATP release from Enpp1-/- osteoclasts stimulated by fluid 

flow 

Mechanical stimulation of osteoblasts and osteocyte-like cells in vitro by the flow of 

fluid across their surface increases ATP release (Romanello et al. 2001; Genetos et 

al. 2005; Genetos et al. 2007).  However, there are currently no published papers 

showing ATP release by primary osteoclasts in response to fluid flow.  Because it 

was found that Enpp1-/- osteoclasts release less ATP compared to wild types, and 

have a greater intracellular ATP concentration, their response to fluid flow in vitro 

was investigated. 

Osteoclasts were cultured as described above.  On day 8, cell culture medium 

was removed from the ivory discs and replaced with serum free medium, the cells 

were then left undisturbed.  After 1 hour the cells were stimulated by removing 

85% of the cell culture media, tilting the culture plate to 45o and running the same 

culture media over the cells with a Gilson pipette at a fixed rate of 50µl per second 

until the entire medium was reintroduced to the well.  This procedure was carried 

out twice in total.  The concentrations of ATP and LDH (to determine cell viability) in 

the cell culture media were measured for 30 minutes.  Osteoclasts released ATP in 

response to fluid flow.  It was also found that Enpp1-/- osteoclasts formed from 

precursors from 8 and 15 week old mice released less ATP when stimulated by fluid 

flow than wild types (Figure 4.8). 
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Figure 4.8.  Enpp1-/- mouse osteoclasts released less ATP under fluid flow stimulation 
than wild types in vitro 

Osteoclasts were generated from the bone marrow of 8 (A) and 15 (B) week old Enpp1-/- 
and wild type mice.  Osteoclasts were subjected to flow fluid and their ATP release into 
serum free medium was measured by luminometry.  Cell viability determined by LDH assay 

was ≥85% with no significant differences seen. (***, p<0.001; data are means  SEM; n = 
12.) 

Knockout of Enpp1 has no effect on the formation or resorptive 

activity of mouse osteoclasts in vitro 

Osteoclasts were cultured on ivory discs from precursors that were collected from 

the bone marrow of 8 and 15 week old Enpp1-/- and wild type mice.  On day 8 of 

culture the cells were acidified to pH 6.90 to activate resorption.  It was found that 

knockout of Enpp1-/- had no effect on the formation, or the rate of resorption, of 

mouse osteoclasts in vitro (Figure 4.9). 
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Figure 4.9.  Knockout of Enpp1 has no effect on the formation or resorptive activity of 
mouse osteoclasts in vitro 

Osteoclasts were formed from the bone marrow of 8 (A, B) and 15 (C, D) week old mice 
and cultured on ivory discs for 10 days; scale bar = 50 µm. On day 8 of culture the 

osteoclasts were acidified to pH 6.90 to activate resorption.  (Data are means  SEM; n = 8) 
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Enpp1 and osteoblasts 

Enpp1-/- mouse osteoblasts formed more mineralised bone in vitro 

than wild type osteoblasts 

Wild type and Enpp1-/- mouse calvarial osteoblasts were cultured for up to 28 days 

in supplemented αMEM.  The experiments were terminated and the amount of 

mineralised bone formed in the cell culture plates was quantified by automated 

image analysis.  It was found that cultured mouse Enpp1-/- osteoblasts produce 

approximately 32% (p<0.001) more bone than wild type cells (Figure 4.10A-C). 

Enpp1-/- mouse osteoblasts proliferated at the same rate as wild type 

osteoblasts 

To determine if the knockout of Enpp1 affects the rate of osteoblast proliferation in 

vitro, wild type and Enpp1-/- mouse calvarial osteoblasts were cultured for up to 14 

days in αMEM.  105 cells were seeded into each well of a six well cell culture plate, 

the number of cells within each well was determined spectrophotometrically at 

specific time points using an LDH method.  Enpp1-/- osteoblasts proliferated at the 

same rate as wild type osteoblasts, resulting in no significant difference in the 

number of osteoblasts formed at each time point (Figure 4.10D).  
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Figure 4.10.  Enpp1-/- mouse osteoblasts form more mineralised bone than wild types in 
vitro, but proliferate at the same rate 

Osteoblast precursors from the calvariae of wild type and Enpp1-/- mice were seeded at 105 
cells / well into 6 well trays.  Images of the bone formed by (A) wild type and (B) Enpp1-/- 
osteoblasts by day 28; top image, scanned well stained with alizarin red; lower image, 
phase contrast microscopy of unstained bone nodules (b). Note: Enpp1-/- cultures appear to 
contain more unmineralised matrix than wild types (o); Scale bar top = 1 cm, bottom = 500 
µm.  (C) Bone formation was quantified using 28 day unstained cultures.  (D) Cell number 

was determined using an LDH based method. (***, p<0.001; data are means  SEM; n = 6.)  
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Enpp1-/- osteoblasts had decreased NPP activity, but not ALP activity 

compared to wild types in vitro 

Wild type and Enpp1-/- mouse calvarial osteoblasts were cultured for up to 28 days 

in supplemented αMEM.  The total NPP and ALP enzymatic activity of the 

osteoblasts were measured by spectrophotometry at 4 time points during the 

experiment.  It was found that Enpp1-/- osteoblasts had approximately 50% 

(p<0.001) less total NPP activity than wild type osteoblasts (Figure 4.11A), with no 

change in ALP activity (Figure 4.11B). 
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Figure 4.11.  Enpp1-/- osteoblasts had reduced total NPP activity, but unchanged ALP 
activity compared to wild types in vitro  

Osteoblasts precursors for the calvariae of wild type and Enpp1-/- mice were seeded at 105 
cells / well into 6 well trays.  (A) The total NPP and (B) ALP activity of the cells was 

normalised to the cell protein concentration.  (Data are means  SEM; n = 6; ***, p<0.001). 

Exogenous ATP inhibited mineralised bone formation by Enpp1-/- and 

wild type mouse osteoblasts in vitro 

Wild type and Enpp1-/- mouse calvarial osteoblasts were cultured for up to 28 days 

in supplemented αMEM with 10 and 100 µM ATP.  The experiments were 

terminated, and automated image analysis revealed that ATP inhibited the 

mineralisation of deposited matrix by both Enpp1-/- and wild type osteoblasts 

(Figure 4.12). 
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Figure 4.12.  Exogenous ATP inhibited bone formation by Enpp1-/- and wild type mouse 
osteoblasts in vitro 

Osteoblasts precursors for the calvariae of wild type and Enpp1-/- mice were seeded at 105 
cells / well into 6 well trays.  ATP was added from the start of the culture and at each 

medium change. (Data are means  SEM; n = 6; NS, not significant; *, p<0.05; ***, 
p<0.001.) 

Enpp1-/- mouse osteoblasts had lower ATP release and higher 

intracellular ATP concentration than wild types In vitro  

As described above, wild type and Enpp1-/- mouse calvarial osteoblasts were 

cultured for 28 days.  The amount of ATP released per cell, and the intracellular ATP 

concentration were measured using a luciferase based method on days 7, 14 and 21 

of culture.  The cell number and cell viability were measured using an LDH assay.  It 

was found that Enpp1-/- osteoblasts released between 50 – 70 % (p<0.001) less ATP 

per cell than wild type cells (Figure 4.13A).  Enpp1-/- osteoblasts also had 

intracellular ATP levels that were 60 – 350% (p<0.001) greater than wild types 

(Figure 4.13B). 
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Figure 4.13.  In vitro Enpp1-/- mouse osteoblasts had an increased intracellular ATP 
concentration and decreased basal ATP release compared to wild types 

Osteoblasts precursors for the calvariae of wild type and Enpp1-/- mice were seeded at 105 
cells / well into 6 well trays. To determine basal ATP release (A), media was removed from 
the cells and replaced with fresh serum free media, after 1 hour the ATP concentration in 
the media was measured. To determine the intracellular ATP concentration (B) the 
osteoclasts were lysed before the ATP concentration was measured. All of the cells were 

found to be 95% viable by LDH measurement. (Data are means  SEM; ***, p<0.001.) 

In vitro Enpp1-/- osteoblasts released less ATP per cell when 

stimulated compared to wild type osteoblasts 

Similar to the Enpp1-/- osteoclasts, it was found that Enpp1-/- osteoblasts released 

less ATP compared to wild types, and had a greater intracellular ATP concentration 

than wild type. The response of Enpp1-/- and wild type mouse osteoblasts to fluid 

flow across their surface in vitro was investigated.   

Enpp1-/- and wild type osteoblasts, developed from calvarial precursors, were 

cultured in 6 well trays.  On day 14, all of the cell culture media was removed from 

the culture plate and replaced with serum free media, the cells were then left 

undisturbed.  After 1 hour the cells were stimulated by removing 85% of the cell 

culture media, tilting the cell culture plate to 45o and running the same culture 

media over the surface of the cells at a fixed rate using a graduated pipette until all 

of the culture media was reintroduced.  The concentration of ATP in the cell culture 
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media was measured at fixed time points for 30 minutes.  The LDH concentration 

was also measured to determine if the viability of the cells was affected by the fluid 

flow, and to calculate the number of cells.  It was found that Enpp1-/- osteoblasts 

released less ATP when stimulated by fluid flow than wild type osteoblasts (Figure 

4.14A).   

Knockout of Enpp1 does not affect the rate of extracellular ATP 

hydrolysis by osteoblasts in vitro 

Osteoblasts were cultured in 6 well trays as described.  On day 14 all of the cell 

culture media was removed and replaced with serum free media containing 1 µM 

ATP.  The rate of ATP hydrolysis of the in the cell culture media was measured using 

a luciferase method as described.  The LDH concentration was also measured to 

determine the viability of the osteoblasts, and to calculate the number of cells.  

There was no significant difference in the rate of extracellular ATP hydrolysis 

between cultured Enpp1-/- and wild type mouse osteoblasts (Figure 4.14B). 
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Figure 4.14.  Cultured Enpp1-/- osteoblasts release less ATP in response to fluid flow than 
wild type cells, but hydrolyse extracellular ATP at a similar rate 

Osteoblasts precursors were seeded at 105 cells / well into 6 well trays. (A) Culture media 
was removed and replaced with serum free media. After 1 hour cells were stimulated by 
fluid flow.  (B) Culture media was replaced with media containing 1 µM ATP (t = 0) and the 
ATP concentration determined.  Cell viability was found to be >85% by LDH measurement 
for all groups. (***, p<0.001; n = 12). 
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Discussion 

The work presented in this chapter found that cultured Enpp1-/- osteoclasts 

differentiate from precursor cells, and resorbed mineralised tissue at the same rate 

as wild types.  Enpp1-/- osteoclasts showed reduced ATP release and increased 

intracellular ATP compared to wild types, but with no change in the rate of 

extracellular ATP hydrolysis.  Enpp1-/- osteoblasts were found to have 50% less NPP 

activity compared to wild types and produce approximately 30% more bone in vitro.  

Enpp1-/- osteoblasts were also found to have a higher intracellular ATP 

concentration and a lower rate of ATP release than wild types, with no change in 

the rate of extracellular ATP hydrolysis. 

This study of Enpp1-/- osteoclasts was undertaken because evidence of increased 

activity was seen in vivo (see chapter 3). This work showed for the first time that 

cultured osteoclasts expressed mRNA for ecto-nucleotidases and had NPP activity.  

Enpp1-/- osteoclasts had greater mRNAs expression for Enpp3 and NTPdase1 than 

wild types; this may be a compensatory mechanism to counteract the loss of NPP1 

and may be a reason why extracellular ATP hydrolysis was unchanged in Enpp1-/- 

cells. 

Extracellular ATP and ADP, signalling through the P2 receptors, stimulate 

osteoclasts to resorb mineralised tissues in vitro (Hoebertz et al. 2001).   It was 

therefore expected that Enpp1-/- osteoclasts might resorb fewer pits in vitro due to 

their reduced release of ATP into the extracellular environment.  However, no 

difference was observed between Enpp1-/- and wild type osteoclasts.  Enpp1-/- 

osteoclasts were found to release approximately 50% less ATP than wild types; this 

is equivalent to approximately 0.5 nmol / cell (Figure 4.6).  Each ivory disc had 

approximately 700 individual cultured osteoclasts on it; therefore the total 

difference in ATP released was 350 nmol per replicate.  Work within Chapter 5 of 

this thesis and previous work has shown that an exogenous ATP concentration of 2 

- 10 µM is required to stimulate formation and resorption by osteoclasts (Morrison 

et al. 1998).  Taken together, these data indicates that the difference in ATP release 
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between wild type and Enpp1-/- osteoclasts is 5 - 28 times lower than what would 

be required to stimulate an observable effect in vitro.   

ATP and PPi both inhibit the formation of bone by rodent osteoblasts in vitro 

(Hoebertz et al. 2002; Orriss et al. 2007).  Enpp1-/- osteoblasts produced more 

mineralised bone than wild type cells in vivo.  The most obvious explanations for 

this are the 50% reduction in NPP activity, leading to reduced PPi formation, and 

the 50 – 70% reduction in endogenous ATP release seen (Orriss et al. 2013).  Enpp1-

/- osteoblasts released approximately 1 - 2 nmol / cell less ATP than wild types in 

vitro.  The large number of cells within each well of the cell culture plate means that 

differences of up to 1µM could arise; which is the concentration needed to 

significantly reduce matrix mineralisation (Orriss et al. 2007).  Wild type and Enpp1-

/- osteoblast cultures were found to have equal ALP rates of activity; therefore any 

PPi that is formed will be hydrolysed at similar rates. 

A higher concentration of intracellular ATP was seen in both Enpp1-/- osteoblasts 

and osteoclasts compared to wild types.  This may be due to the decreased release 

of ATP by these cells.  However it is not clear if the rate of ATP synthesis by Enpp1-/- 

cells is altered compared to wild types.  The P2X7 receptor has been implicated as a 

mechanism for the release of ATP from osteoblasts (Romanello et al. 2001; Buckley 

et al. 2003; Genetos et al. 2005) and osteoclasts (Suadicani et al. 2006; Pellegatti et 

al. 2011). P2X7 receptor antagonists have been shown to reduce the rate of ATP 

release by osteoblasts and osteoclasts (Brandao-Burch et al. 2012).  Reduced 

stimulation of the P2X7 receptor on the surface of Enpp1-/- osteoblasts and 

osteoclasts, due to the lower extracellular concentration of ATP, may lead to a 

feedback loop resulting in lower ATP release.  Also, inhibitors of vesicular exocytosis 

can reduce ATP release from osteoblasts by up to 90% (Orriss et al. 2009).  

Knockout of Enpp1-/- in osteoblasts in vitro may interfere with the vesicular release 

of ATP. 

Enpp1-/- osteoblasts released less ATP than wild type cells when stimulated by 

fluid flow.   In the previous chapter, Enpp1-/- primary osteocyte-like cells were 

shown to release less ATP than wild types. Together, these results suggest the 
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possibility that Enpp1-/- mice may be less sensitive to the fluid flow induced by 

mechanical strain upon bones in vivo.  It has been suggested that fluid flow through 

the osteocyte canaliculi and lacunae is important in load sensing (Bonewald 2011; 

Price et al. 2011).  

In summary, cultured Enpp1-/- osteoclasts are not more active and do not form 

faster than wild type osteoclasts.  This indicates that the increased osteoclast 

activity seen in vivo (Chapter 3) is due to an undetermined factor, such as a 

hormone, cytokine or physiological parameter acting upon the osteoclasts.  Enpp1-/- 

mouse osteoblasts produced more bone than wild type osteoblasts, but 

differentiate from precursors at the same rate as wild type cells.  Surprisingly, 

Enpp1-/- mouse osteoblasts and osteoclasts had a higher intracellular ATP 

concentration and a reduced rate of ATP release compared to wild type cells in 

vitro. 
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Chapter 5 

Lack of effect of adenosine on rodent 

osteoblasts and osteoclasts in vitro 

Introduction 

Adenosine 

Adenosine is a hydrolysis product of ATP.  It is formed in both the intra and 

extracellular compartments by the orchestrated actions of multiple enzymes (see 

page 60).  Adenosine acts via the G-protein coupled P1-receptors, found on the 

surface of many cell types.  Both osteoblasts and osteoclasts have been reported to 

express all four P1 receptor subtypes (Kara et al. 2010a; Gharibi et al. 2011; 

Pellegatti et al. 2011; Vincenzi et al. 2013).  However, the actions of extracellular 

adenosine on bone cells are not clear. 

Osteoblasts and adenosine 

Synthetic adenosine analogues were shown to elicit a receptor-mediated rise in 

cAMP levels in calvarial osteoblast-like cells (Lerner et al. 1987) but adenosine itself 

had no effect on intracellular calcium levels in these cells (Orriss et al 2006).   Two 

independent groups failed to find an effect of adenosine on the formation of 

mineralised bone nodules by rat calvarial osteoblasts in vitro (Jones et al. 1997; 

Hoebertz et al. 2002).  However, a more recent study has indicated that adenosine, 

acting via the A2B receptor, may increase the osteogenic differentiation of rat long 

bone mesenchymal stem cells in vitro (Gharibi et al. 2011).   Bone nodule formation 

by osteoblasts cultured from the bone marrow of A2B receptor knockout mice has 

also been shown to be reduced (Carroll et al. 2012);  the same authors also found 

that a synthetic adenosine receptor agonist increased bone nodule formation by 

wild type osteoblasts.  It has been reported that adding the adenosine A1 or A2B 

receptor agonists to cultures increased human osteoblast ALP activity, but A2A 

agonists decreased it and A3 agonists were without effect (Costa et al. 2011b).  



Chapter 5 – Adenosine & bone cells 

138 
 

Bone nodule formation by osteoblasts from mice lacking ecto-5’nucleotidase (eN) 

(which may result in reduced endogenous adenosine) also showed reductions, 

along with decreased ALP expression (Takedachi et al. 2012).  Conversely, others 

have reported that adenosine decreases alkaline phosphatase activity and 

mineralised bone produced by eN-/- human fibroblasts in vitro (St Hilaire et al. 

2011). 

Osteoclasts and adenosine 

The study of Lerner and colleagues (1987) found that adenosine analogues had no 

effect on the resorption of cultured mouse calvarial bones.    Adenosine was 

subsequently reported to be without effect on the formation or resorptive activity 

of primary rodent osteoclasts in vitro   (Morrison et al. 1998; Hoebertz et al. 2001).   

However, more recent work has indicated that adenosine, acting through the A2A 

receptor may stimulate the formation of osteoclasts from human peripheral blood 

cells (Pellegatti et al. 2011).  In contrast, Mediero et al (2012) found that A2A 

receptor agonists inhibited mouse osteoclast formation in vitro.   Blockade or 

deletion of the A1 receptor has additionally been reported to reduce the formation 

of mouse osteoclasts in culture (Kara et al. 2010b); however, the same group  also 

found that stimulation of the A1 receptor had no effect on mouse osteoclasts (He & 

Cronstein 2012).   In the eN-/- mouse no change in the circulating levels of the 

osteoclast markers TRAP5b and CTX were observed (Takedachi et al. 2012), 

although osteoclastogenesis in vitro was reduced (He et al. 2013b). 

Caffeine 

Caffeine is a non-specific adenosine receptor antagonist (Degubareff & Sleator 

1965; Fredholm 1982). It has been reported that caffeine increased rodent 

osteoclast differentiation and formation in both a direct (Choi et al. 2013), and 

osteoblast mediated way in vitro (Liu et al. 2011) and inhibited the formation of 

rodent osteoblasts, and osteoblast like cells in vitro (Tsuang et al. 2006; Su et al. 

2013).  A number of clinical trials have investigated the effect of caffeine on 

fracture risk.  Some studies demonstrated a mild risk of fracture in certain specific 

bones due to caffeine (Kiel et al. 1990; Hernandez-Avila et al. 1991; Hansen et al. 
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2000; Hallstrom et al. 2006); others found no association (Holbrook et al. 1988; 

Fujiwara et al. 1997; Huopio et al. 2000).  It has been suggested that this risk 

highlights an important role of adenosine receptors in bone formation (Ham & 

Evans 2012). 

Aims 

The aim of the work in this chapter was to determine the direct actions of 

adenosine on normal osteoblasts and osteoclasts, using well-characterised assays 

that measure the accepted physiological functions (i.e., bone formation and bone 

resorption) of these cells. This work also examined the effects of the synthetic 

universal adenosine receptor agonist 2-chloroadenosine, which is more resistant to 

hydrolysis, on osteoblasts and osteoclasts in vitro. 
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Results 

Rodent osteoblasts and osteoclasts express P1 receptors in vitro 

On days 14, 16 and 28 of culture mRNA was collected from rat calvaria, rat bone 

marrow and mouse calvarial osteoblasts respectively using TRIzol.  RT-PCR showed 

that rat calvarial osteoblasts expressed mRNA for the A1 and A2B adenosine 

receptors.   Rat bone marrow osteoblasts were shown to expresses mRNAs for the 

A1, A2A, A2B and A3 adenosine receptors. When normalised to β-actin, RT-PCR 

showed that rat bone marrow osteoblasts expressed less A1 and A2B receptor mRNA 

compared to rat calvarial osteoblasts (Figure 5.1A). Mouse calvarial OB expressed 

mRNA in vitro for A1, A2A and A2B adenosine receptors, but not mRNA for the A3 

receptor (Figure 5.1B).  

On day 10 of culture, mRNA was collected from mouse osteoclasts in vitro.  RT-

PCR showed that mouse osteoclasts express A2A, A2B and A3 adenosine receptor 

mRNA in vitro (Figure 5.1C). 

    

Figure 5.1.  Expression of mRNAs for adenosine receptors by rodent bone cells in vitro 

(A)  Rat calvarial osteoblasts expressed mRNAs for the A1 and A2B adenosine receptors.  Rat 
bone marrow osteoblasts showed weak expression of mRNAs for all of the adenosine 
receptors.  (B) Mouse calvarial osteoblasts expressed mRNA for the A1, A2A and A2B 
adenosine receptors.  (C) Mouse osteoclasts strongly expressed mRNA for the A2A, A2B and 
A3 adenosine receptors.  Positive control:  rat / mouse brain. 

  

A C B 
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Adenosine and 2-chloroadenosine have no effect on bone formation 

by mouse or rat calvarial osteoblasts in vitro 

Rat calvarial osteoblasts were cultured for up to 14 days in the presence of 1 nM – 

100 µM adenosine or 100 pM – 10 µM 2-chloroadenosine in vitro.  Mouse calvarial 

osteoblasts were cultured for up to 28 days in the presence of 1 nM – 100 µM 

adenosine or 1 nM – 1 µM 2-chloroadenosine.  No differences were seen in the 

amount of bone formed between the control and the adenosine or 2-

chloroadenosine treated groups (Figures 5.2 & 5.3).     

2-Chloroadenosine, but not adenosine, increases bone formation by 

rat bone marrow osteoblasts in vitro 

Rat bone marrow osteoblasts were cultured with 1 nM – 1 µM 2-chloroadenosine 

or 1 nM – 100 µM adenosine for up to 16 days. 1 µM 2-chloroadenosine increased 

the total amount of bone formed by rat bone marrow osteoblasts in vitro by 

approximately 50% (p<0.001) (Figure 5.2 & 5.3).  Concentrations of 10 µM               

2-chloroadenosine and above were toxic; concentrations of less than 1 µM had no 

effect on the amount of bone formed.  Adenosine had no effect on the amount of 

bone formed by rat bone marrow osteoblasts compared to the control group 

(Figure 5.2 & 5.3). 

ATP inhibits bone formation in vitro by rodent osteoblasts 

Rat osteoblasts were cultured for up to 16 days in the presence of 10 and 100 µM 

ATP.  Mouse calvarial osteoblasts were cultured for up to 28 days in the presence of 

10 and 100 µM ATP.  ATP was found to inhibit mineralisation of deposited collagen 

by >50% (p<0.001) in both rat and mouse osteoblasts in vitro when at a 

concentration of 100 µM (Figure 5.3). 
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Figure 5.2.  Effects of adenosine and 2-chloroadenosine on mineralised bone nodule 
formation by  rodent osteoblasts in vitro 

Images show alizarin red-stained mineralised bone nodules, viewed by phase contrast 
microscopy (top) and low power reflected light scans.   Adenosine, at a concentrations of 
100 µM had no effect on bone formation by rat calvarial, mouse calvarial or rat bone 
marrow osteoblasts (cultured on plastic for 14, 28 and 16 days, respectively).   2-
chloroadenosine at a concentration of 1 µM appeared to cause a modest increase in bone 
formation by rat bone marrow osteoblasts.  Scale bar top = 100 µm, bottom = 1cm; Ado, 
adenosine; 2Cado, 2-chloroadenosine.  
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Figure 5.3.  Lack of effect of adenosine on the formation of mineralised bone nodules by 
cultured rodent osteoblasts; modest stimulatory action of 2-chloroadenosine on rat bone 
marrow osteoblasts 

Adenosine and 2-chloroadenosine had no effect on rat calvarial (A, D) or mouse calvarial 
(B, E) osteoblasts.  1 µM 2-chloroadenosine increased bone nodule formation by rat bone 
marrow osteoblasts (p<0.001) (F); note toxicity [Ø] of 2-chloroadenosine at 10 µM (E, F) 
and 100 µM (D).  ATP inhibited bone formation by rat calvarial (G), mouse calvarial (H) and 

rat bone marrow (I) osteoblasts (**, p<0.01; ***, p<0.001).   Data are means  SEM for 6 
replicate determinations.  

[Adenosine] (1nM-100µM) 

[2-Chloroadenosine] (1nM-100µM) 

[ATP] (10 - 100µM) 

Rat calvarial OB Mouse calvarial OB Rat bone marrow OB 
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Adenosine and 2-chloroadenosine do not affect the number of 

osteoblasts formed from precursors in vitro 

Rat calvarial osteoblast precursors were seeded into 24 well trays, rat bone marrow 

osteoblast precursor cells were seeded into 12 well trays and mouse calvarial 

osteoblast precursors were seeded into 6 well trays.  Osteoblasts were cultured 

with 1 – 100 µM adenosine or 100 nM – 10 µM 2-chloroadenosine for 14, 17 or 28 

days respectively.    Using an LDH assay as described, it was found that adenosine 

and 2-chloroadenosine had no effect on the number of mouse or rat calvarial 

osteoblasts formed from precursors in vitro (Figure 5.4).   

2-chloroadenosine increases the ALP activity of in vitro rat bone 

marrow osteoblasts, but not in vitro calvarial osteoblasts 

Rat bone marrow osteoblast precursor cells were seeded into 12 well trays with 10 

µM adenosine or 1 µM 2-chloroadenosine.    1 µM of 2-chloroadenosine increased 

the ALP activity of in vitro rat bone marrow osteoblasts by approximately 48% 

(p<0.01) from day 10 of culture and was seen to have an effect until day 16, when 

the experiment was terminated (Figure 5.5D).  Adenosine had no effect on rat bone 

marrow osteoblasts in vitro (Figure 5.5D).   

Rat calvarial osteoblast precursors were seeded into 24 well trays with 1 µM - 100 

µM adenosine or 10 nM - 1 µM 2-chloroadenosine.  Mouse calvarial osteoblast 

precursors were seeded into 6 well trays, in the presence of 10 µM adenosine or 1 

µM 2-chloroadenosine.     Adenosine and 2-chloroadenosine had no effect on the 

ALP activity of rat or mouse calvarial osteoblasts in vitro (Figure 5.5).    
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Figure 5.4. The number of rodent osteoblasts formed from precursors in vitro is not 

affected by adenosine or 2-chloroadenosine  

Adenosine (ado) and 2-chloroadenosine (2cado) had no effect on numbers of rodent 
calvarial osteoblasts or rat marrow osteoblasts in culture.   Cell numbers were estimated 

using a LDH assay.    Ø symbol indicates cell toxicity of 10 µM 2cado.   Data are means  
SEM for 6 replicate determinations. 
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Figure 5.5.  Effects of adenosine and 2-chloroadenosine on alkaline phosphatase (ALP) 
activity of rodent osteoblasts 

Adenosine had no effect on the ALP activity of rodent osteoblasts  (A, C, D).   2-
chloroadenosine also was without effect on rat and mouse calvarial osteoblasts (B, C) but 

caused mild stimulation of rat bone marrow osteoblast ALP activity (D).   Data are means  
SEM for 6 replicate determinations; *, p<0.05; **, p<0.01; Ado, adenosine; 2Cado, 2-
chloroadenosine. 
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Adenosine and 2-chloroadenosine do not affect mouse osteoclast 

formation or resorptive activity in vitro. 

Mouse mononuclear cells from the bone marrow of 8 week old mice were cultured 

in osteoclastogenic media on ivory discs for 10 days.  Adenosine (10 nM – 100 µM), 

2-chloroadenosine (10 nM- 1 µM) or ATP (1µM – 100µM) was added to the cell 

culture media from day 3 onwards.  Cells were acidified to pH 6.90 on day 8 of the 

culture to activate osteoclastic resorption.  Neither adenosine nor 2-

chloroadenosine affected the number of multinucleated osteoclasts formed from 

precursors by day 10 of culture or the amount of resorption per osteoclast (Figures 

5.6 & 5.7).  ATP was seen to increase the number of osteoclasts and resorption 

(Figures 5.6D & 5.7C). 

  

  

Figure 5.6.  Effect of P1 and P2 receptor agonists on osteoclasts 

Osteoclasts were generated in 10 day cultures of mouse marrow cells on ivory discs. There 
was no difference in osteoclast number or resorptive activity between (A) control (B) 
adenosine, (C) 2-chloroadenosine or (D) ATP.  Cells were acidified to pH 6.90 on day 8 of 
culture to activate resorption.   Representative transmitted light images of cultures, 
showing TRAP-positive multinucleated osteoclasts (large red cells) and resorption pits (tan 
areas); scale bar, 50 µm. 
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Figure 5.7. Mouse osteoclast formation 
and resorptive activity are not affected by 
adenosine or 2-chloroadenosine in vitro 

Mouse osteoclasts were grown in the 
presence of adenosine (A), 2-
chloroadenosine (B) or ATP (C) from the 
start of the culture. Cells were acidified to 
pH 7.05(A), 7.06(B) and 6.99(C) on day 8 of 
culture to activate resorption (*, p<0.05; 
**, P<0.01). 
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Discussion 

The results presented in this chapter show that adenosine had no effect on rat and 

mouse osteoblasts or mouse osteoclasts in vitro.  However, the synthetic universal 

adenosine receptor agonist, 2-chloroadenosine, modestly increased ALP activity 

and the amount of bone formed by rat bone marrow osteoblasts in vitro, but did 

not affect rat and mouse calvarial osteoblasts or mouse osteoclasts.  In contrast, 

the established osteogenic inhibitory effects and osteoclastic stimulatory effects of 

ATP (Orriss et al. 2010) were observed. 

It is possible that the stimulatory effects of 2-chloroadenosine on rat bone 

marrow osteoblasts may be related to the greater potency of this synthetic 

analogue compared to adenosine (Daly et al. 1993; Van Galen et al. 1994; Yan et al. 

2003); moreover, it is not as quickly hydrolysed (Abdel-Hamid et al. 2000).  One 

explanation why 2-chloroadenosine had no effect on rat and mouse calvarial 

osteoblasts may be due to the observed differences in adenosine receptor mRNA 

expression (Figure 5.1).  Rat bone marrow osteoblasts expressed mRNA for all four 

P1 receptors; rat calvarial osteoblasts lacked A2A and A3 mRNA expression, but 

expressed A1 and A2B at higher concentrations than rat bone marrow osteoblasts; 

mouse calvarial osteoblasts expressed the A1, A2A and A2B receptors, but not the A3.  

The A2A and A2B adenosine receptors are predominantly linked to Gs and stimulate 

cAMP signalling; A1 and A3 are predominantly Gi associated and act to inhibit cAMP 

(Freissmuth et al. 1991; Pierce et al. 1992; Palmer et al. 1995; Olah 1997).  There is 

evidence to suggest that adenosine receptors can form homomers between two A1 

receptors (Ciruela et al. 1995), or between two A2A receptors (Canals et al. 2004).  

Adenosine receptor A1-A2A heteromers have been reported (Ciruela et al. 2006), 

along with A1-P2Y1 and A1-P2Y2 adenosine-receptor-ATP-receptor G-protein 

heteromers (Yoshioka et al. 2001; Suzuki et al. 2006).  This dimerisation of 

receptors may lead to alterations in the response of osteoblasts to P1 receptor 

agonists and could be a reason for the differences seen between cell types. 

 It is possible that the differences in responsiveness of osteoblasts to 2-

chloroadenosine between rat calvarial and bone marrow cells could be related to 
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the age of the animals.  Rat bone marrow osteoblasts were obtained from 6 week 

old animals, whereas the rodent calvarial osteoblasts were collected from 2 day old 

animals.  It has been reported that MSCs from older mice have a much higher 

expression of ecto-5’-nucleotidase, an enzyme responsible for converting AMP to 

adenosine, than younger mice (Katsara et al. 2011) and reduced viability and 

differentiation potential (Kretlow et al. 2008; Choudhery et al. 2014). 

 In the results reported here, no expression of mRNA encoding the A1 receptor by 

mouse osteoclasts was detected.  Pellagatti et al (2011) reported very weak mRNA 

expression for the A1 receptor by human osteoclasts in vitro, but suggested that it 

did not play a significant role in regulating osteoclast formation.  However, other 

workers have reported the A1 receptor to be vital (Merrill et al. 1997; Kara et al. 

2010b; He & Cronstein 2012).  My own results suggest that the adenosine A1 

receptor is unlikely to be of importance in regulating osteoclast function. 

 The expression of ecto-nucleotidases by osteoblasts and osteoclasts may also be 

an additional factor in determining the actions of adenosine on these cells.  These 

enzymes could alter the rates of ATP hydrolysis and adenosine formation in the 

experiments reported here (Zimmermann et al. 2012).  In chapter 4, some factors 

that affect the expression of ecto-nucleotidases by osteoclasts were investigated 

(Figures 4.2 - 4.5).  The expression of adenosine deaminase, which converts 

adenosine to inosine, may play a key role in these experiments; a previously 

unknown factor regulating its expression is reported in chapter 6 (Figure 6.5).  

Future work should examine the potential role of ecto-nucleotidases on adenosine 

signalling.  The possibility that these cultures contained saturating concentrations 

of adenosine cannot be ruled out. 

 Knockout mouse models for each of the adenosine receptors exist.  Knockout of 

the adenosine A1 receptor reportedly increased cortical and trabecular bone 

volume of in the femurs of 6 month old mice (Kara et al. 2010b). Four month old 

mice with the A2A receptor knocked-out were also reported to have decreased 

cortical and trabecular bone in the femur (Mediero et al. 2012).  Based on three 

samples, knockout of the A2B receptor resulted in a decrease in the cortical bone 
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volume, with no change in the trabecular bone volume of the femurs of mice, but 

only after 15 weeks (Carroll et al. 2012).  The effects of adenosine A3 receptor 

knockout on the bones of mice have not been specifically investigated; however, no 

overt changes have been noted (Salvatore et al. 2000).  Mice with the adenosine 

transport protein ENT1 knocked out reportedly had reduced trabecular bone in the 

femur and increased trabecular bone in the cervical and upper thoracic vertebrae at 

7 months (Hinton et al. 2014).  Mouse models have shown that adenosine acting via 

the A2A and A2B receptors induced coronary vasodilation (Morrison et al. 2002; 

Frobert et al. 2006).  Adenosine has also been reported to stimulate human and 

rodent macrophage production of VEGF in vitro, and could thereby promote 

angiogenesis (Ramanathan et al. 2007; Ernens et al. 2010; Gessi et al. 2010).  

Therefore, the global knockout of adenosine receptors in mouse models in vivo 

could affect bone indirectly by inducing a hypoxic / acidotic state which can result 

in increased osteoclast formation and activity, and decreased osteoblast activity 

(Arnett et al. 2003; Brandao-Burch et al. 2005; Arnett 2010; Utting et al. 2010).  It is 

suggested that further histomorphometric examination of mice with targeted 

conditional P1 receptor knockout in osteoblasts and osteoclasts should be 

performed. 

 In conclusion, supraphysiological concentrations of adenosine did not have an 

effect on rodent osteoblasts or mouse osteoclasts in vitro.  2-Chloroadenosine did 

not have any effect on mouse osteoclasts or rodent osteoblasts obtained from the 

calvaria, but did increase ALP expression and bone formation by rat bone marrow 

osteoblasts in vitro, but only when added to cell cultures in extremely high 

concentrations.  Using state of the art assays for measuring the accepted cell 

functions, these data suggest that adenosine has very little effect on osteoblasts 

and osteoclasts. 
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Chapter 6  

The actions of sclerostin on osteoblasts 
and osteoclasts in vitro 

Introduction 

The discovery of sclerostin 

Sclerosteosis is a rare autosomal recessive condition that mainly affects Afrikaners.  

Syndactyly, the fusion of the second and third fingers, is a common symptom of the 

condition, and one of the few that occurs prenatally (Beighton 1988). All of the 

symptoms of sclerosteosis that develop throughout the life of affected humans are 

due to the over production of bone (Hamersma et al. 2003).  Radiographs show that 

sufferers have abnormally large and dense bones (Beighton et al. 1976).  Bone 

constricting the cranial nerves leads to facial palsy and deafness (Robinson et al. 

2013), and sufferers usually die in their mid-30’s due to complications related to 

high intracranial pressure caused by over-growth of the calvaria (Hamersma et al. 

2003; Robinson et al. 2013).  Van Buchem disease is also a condition characterised 

by an over-production of bone, but its symptoms are less severe than those of 

sclerosteosis.  Most cases of Van Buchem disease are found localised to a small 

Dutch fishing village.  It was later shown that sclerosteosis was due to a defect in 

the Sost gene (Brunkow et al. 2001) and Van Buchem disease was due to a deletion 

in one of the promoter elements that drive expression of the Sost gene (Van Hul et 

al. 1998; Balemans et al. 1999; Staehling-Hampton et al. 2002).  

Sclerostin and WNT signalling 

Sclerostin, the product of the Sost gene, inhibits bone formation.  It is produced 

primarily by osteocytes (Van Bezooijen et al. 2004), but may also be produced by 

hypertrophic chondrocytes in the growth plate and cementocytes in teeth (Van 

Bezooijen et al. 2009; Chan et al. 2011).  Sclerostin is a member of the Dan family of 
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glycoproteins, many members of which inhibit BMP signalling (Winkler et al. 2003).  

However, the main mechanism of action for sclerostin is by binding to the LPR5/6 

cell surface receptors and blocking WNT signalling (Semenov et al. 2005; Li et al. 

2005b).  WNT signalling is of vital importance for bone development and 

maintenance (see introduction). 

Knock out models designed to mimic sclerosteosis and Van Buchem disease have 

been developed; histological analysis of their bones indicated that the high bone 

mass was due to increased osteoblast activity (Li et al. 2008).  Transgenic mice over-

expressing human sclerostin have been produced.  These mice were reported to 

have an osteopenic phenotype; histological analysis revealed these mice had 

reduced cortical and trabecular bone volume (Winkler et al. 2003).  Transgenic over 

expression of sclerostin in human osteoblast-like cells in vitro decreased the 

expression of ALP and reduced mineralised bone nodule formation (Winkler et al. 

2003). 

Loading of bones and sclerostin 

Using immunohistochemistry, it was shown that mechanically loading the limbs of 

mice inhibits sclerostin expression by osteocytes in vivo and resulted in increased 

bone formation.  Mechanical unloading of the limbs resulted in a slight increase in 

sclerostin expression and the loss of bone volume (Robling et al. 2008).  Sost-/- mice 

that were suspended by their tails so that their hind limbs could not touch the floor 

did not display the trabecular bone loss in the femora typically seen with unloading 

experiments (Lin et al. 2009).  Mice under general anaesthesia that were forced to 

exercise by electrical muscle stimulation had a greater tibiae cortical bone volume 

and reduced sclerostin expression (Macias et al. 2012).  Along with other factors 

such as nitric oxide (Pitsillides et al. 1995), prostacyclin (Rawlinson et al. 1993) and 

prostaglandin E2 (Thorsen et al. 1996), sclerostin may be important in mediating the 

response of bone to mechanical stress. 
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Sclerostin is produced by mature osteocytes 

In situ hybridisation has been used to demonstrate that rat osteocytes only start 

secreting sclerostin when they are mature and buried within mineralised matrix 

(Irie et al. 2008).  Using human iliac bone samples and anti-sclerostin antibodies, it 

has been reported that the deeper an osteocyte is buried within the bone, the 

greater its probability of actively secreting sclerostin.  It was hypothesised that this 

is a mechanism by which bone that is well mineralised prevents further osteoblast 

activity (Poole et al. 2005). 

Anti-sclerostin antibodies 

The apparent role that sclerostin has as a regulator of bone mass made it a clear 

therapeutic target.  A number of anti-sclerostin antibodies have been developed: 

AMG785 (Amgen/UCB), AMG167 (Amgen/UCB), BPS804 (Novartis) and LY2541546 

(also known as blosozumab, Eli Lilly) (Paszty et al. 2010; Robinson et al. 2013).  

Aged, ovariectomised rats were treated with the anti-sclerostin antibody in the first 

in vivo experiments.  Ovariectomisation of rodents mimics postmenopausal 

osteoporosis and is a standard in vivo model that results in bone loss (Iwaniec et al. 

2006).  Administration of the anti-sclerostin antibody resulted in increased bone 

mass and bone strength (Li et al. 2009).   Histological analysis of the bones from 

these rats revealed evidence of increased osteoblast activity, and decreased 

osteoclast activity (Li et al. 2009); this is similar in phenotype to  Sost-/- mice, they 

also displayed histological evidence of increased osteoblast activity and decreased 

osteoclast activity (Li et al. 2008).  Unlike other antiresorptive agents such as 

bisphosphonates, which decrease osteoclast and osteoblast activity, anti-sclerostin 

antibodies increase the “anabolic window” by decreasing osteoclast activity and 

increasing osteoblast activity (Li et al. 2009; McClung et al. 2014).   

In the first clinical trial, a single dose of the anti-sclerostin antibody 

AMG785/CDP785, now called romosozumab, led to an increase in the bone 

formation markers P1NP, bone specific ALP, and osteocalcin; and a decrease in the 

marker of bone breakdown, CTx (Padhi et al. 2011).  A larger, follow-on study 

confirmed these results (McClung et al. 2014).  Based on the concentrations of 
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P1NP and CTx in the blood, this year-long clinical trial found that the initial response 

to the anti-sclerostin antibody was mediated predominantly by up-regulation of 

osteoblast function, after 6 months any further improvements in bone quality were 

mediated mainly by down-regulation of osteoclasts (McClung et al. 2014).  It is not 

clear if the changes observed in osteoclast activity in this in vivo study were due to 

a direct or indirect action of sclerostin. 

The direct effects of sclerostin on bone cells 

There is little doubt about the effects that sclerostin has on bone mass in both 

rodents and humans; however its effects at the cellular level are less well defined.    

In vitro experiments have shown that sclerostin prevents the incorporation of 

calcium into the matrix produced by human osteoblasts and increases the 

expression of the mineralisation inhibitors MEPE and osteopontin (Atkins et al. 

2011).  Sclerostin has also been shown to decrease the expression of osteocalcin 

and Runx2, a key osteogenesis transcription factor, in human osteoblast-like cell 

lines  (Vincent et al. 2009) and decrease ALP expression in a mouse osteoblast-like 

cell line (Winkler et al. 2003). 

Further in vitro experiments using primary human osteoblasts have shown that 

sclerostin increases the expression of RANKL, and has no effect on the expression of 

OPG (Wijenayaka et al. 2011).  Similar effects were also seen when sclerostin was 

added to cultures of mouse osteocyte-like MLO-Y4 cells in vitro (Wijenayaka et al. 

2011).  This alteration in the RANKL / OPG ratio in vivo would lead to an increase in 

the formation of osteoclasts.   

Sclerostin and PTH 

Intermittent dosing of mice with PTH, either directly onto the calvaria or infused 

into the blood, led to a decrease in Sost expression by osteocytes in bone (Bellido et 

al. 2005; Keller & Kneissel 2005).  Intermittent PTH administration has potent 

anabolic effects on bone in vivo.  Administration of PTH caused a significant 

increase in mouse vertebrae bone mineral density and femoral cortical and 

trabecular bone volume; however, sclerostin over-expressing mice had a blunted 
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response when PTH was administered to them (Kramer et al. 2010).  Transgenic 

mice engineered to express a constitutionally active form of the PTH receptor on 

their osteocytes have reduced expression of Sost, and increased bone mass (O'Brien 

et al. 2008).   

PTH reportedly reduces the expression of Sost by the MLO-A5 osteocyte-like cell-

line (Bellido et al. 2005).  In osteoblast-like cells PTH seemingly acts to suppress 

MEF2, and in doing so it down regulates Sost expression (Leupin et al. 2007).  PTH 

may induce the PTH receptor, PTH1R, to interact with the LRP6 WNT receptor; this 

complex then activates canonical WNT signalling, leading to an increase in bone 

formation, irrespective of sclerostin (Wan et al. 2008).  Further reports show PTH 

still retains its normal anabolic actions in LRP5 knockout mice (Sawakami et al. 

2006; Iwaniec et al. 2007).   

Tcf/lef transcription factor  

The Tcf/Lef transcription factors play an important role in the WNT / β-catenin 

signalling pathway.  Tcf/Lef is functionally inactive unless bound to β-catenin 

(reviewed in Brantjes et al. 2002).  When β-catenin is bound to Tcf/Lef they form a 

bipartite transcription factor which activates target genes. 

The enzymes ecto 5’-nucleotidase (eN) and adenosine deaminase (ADA) have 

been previously discussed.  The expression of the genes for both eN and ADA has 

been shown to be under the control of the regulatory transcription factor Tcf/Lef in 

mammalian cell lines (Aronow et al. 1992; Spychala & Kitajewski 2004).  Using 

mammalian tumour cell lines, it has been shown that WNT signalling can up-

regulate eN expression and down regulate ADA expression.  These results indicate 

that WNT signalling can play a role in the hydrolysis of nucleotides and the 

formation and breakdown of adenosine.   
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Aims 

The aim of the experiments in this chapter was to investigate for the first time the 

direct effects of sclerostin and an anti-sclerostin antibody on osteoblast function 

and osteoclast formation and resorption in vitro using assays of true bone 

formation and resorption§.  

 

§ NOTE: The bone formation assays predominantly used precursor cells from neonatal rat calvariae; 
the osteoclast resorption assay used precursor cells from juvenile mouse bone marrow.  These are 
the most efficient and best validated cell culture systems presently available for bone formation and 
resorption studies in vitro.  
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Results 

Sclerostin and an anti-sclerostin antibody have no effect on the 

formation and resorptive activity of mouse osteoclasts in vitro 

As described, mouse mononuclear cells from the bone marrow were cultured in 

osteoclastogenic media on ivory discs for 9 days.  Either sclerostin (10 pg/ml – 500 

ng/ml) or an anti-sclerostin antibody (10 pg/ml – 5000 ng/ml) was added to the cell 

culture media at each media change, from day 3 onwards.  Cells were acidified to 

pH 6.90 on day 7 of the culture to activate osteoclastic resorption.  No difference 

was seen in the number of osteoclasts formed or the amount of mineralised tissue 

resorbed per osteoclast compared to controls (Figure 6.1).  

Knockout of Sost has no effect on mouse osteoclast formation or 

resorptive activity in vitro 

Osteoclasts were formed in vitro from precursors obtained from wild type and   

Sost-/- mouse bone marrow.   Cells were cultured on elephant ivory for 9 days; on 

day 7 cells were acidified to pH 6.90 to activate resorption.  No difference was seen 

in the number of osteoclasts formed from precursors, or the amount of mineral 

resorbed per osteoclast, between wild type and Sost-/- cells (Figure 6.2). 
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Figure 6.1.  Sclerostin and an anti-sclerostin antibody do not affect mouse osteoclast 
formation or resorption in vitro 

(A)Transmitted light images of TRAP-stained osteoclasts (red) and resorption pits (tan).  
(Scale bar = 50 µm). Osteoclasts were cultured in the presence of (B) sclerostin or (C) an 
anti-sclerostin antibody.  On day 7 of culture the cells were acidified to pH 6.90; n = 8. 

  

A 

Control 500ng/ml 
Sclerostin 

5000ng/ml 
Anti-Sclerostin antibody 



Chapter 6 – Sclerostin & bone cells 

160 
 

 

   

  

Figure 6.2.  The effects of Sost-/- on 
mouse osteoclasts in vitro 

Osteoclast precursors were obtained 
from the bone marrow of wild type 
and Sost-/- mice and cultured on 
ivory discs.  On day 7 of culture the 
cells were acidified to pH 6.90 to 
activate resorption. (A) Transmitted 
light images of TRAP-stained 
osteoclasts (red) and resorption pits 
(tan). Scale bar = 50 µm. (B) 
Knockout of Sost has no effect on 
mouse osteoclasts.  n=8.  

 

Sclerostin reduces bone formation by rat osteoblasts in vitro 

Bone forming osteoblasts were cultured from rat calvarial precursor cells for 14 

days with sclerostin (10 – 500 ng/ml).  Sclerostin at concentrations greater than 100 

ng/ml inhibited the amount of mineralised bone formed by up to 100% compared 

to controls in a dose dependent manner (p<0.001) (Figures 6.3, 6.4A). 

Anti-sclerostin antibody has no effect on mineral formation by rat 

osteoblasts in vitro 

Rat calvarial osteoblasts were cultured for 14 days with anti-sclerostin antibody (10 

– 500 ng/ml). Anti-sclerostin antibody had no effect on the amount of bone formed 

compared to controls (Figures 6.3, 6.4B). 
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An anti-sclerostin antibody inhibited the effects of sclerostin on rat 

osteoblasts in vitro 

Rat calvarial osteoblasts were grown in the presence of either 100 ng/ml sclerostin, 

100 ng/ml sclerostin + 500 ng/ml anti-sclerostin antibody, or neither (control) for 14 

days.  Sclerostin at a concentration of 100 ng/ml reduced the amount of 

mineralised bone nodules formed by rodent osteoblasts in vitro (p<0.01); 500 ng/ml 

of the anti-sclerostin antibody inhibited the effects of 100 ng/ml of sclerostin and 

restored the amount of mineralised bone formed (Figures 6.3, 6.4C). 

 

   

   

Figure 6.3.  Images of the bone formed by rat osteoblasts cultured in the presence of 
sclerostin, anti-sclerostin antibody, or both 

Rat osteoblasts were cultured in 24 well trays.  On day 14 cultures were terminated and the 
bone nodules were stained with alizarin red.  (A) Scanned images of the wells of the cell 
culture plates. (B)Transmitted light images of bone nodules.  Sclerostin inhibits bone 
formation; anti-sclerostin antibody alone has no effect on the amount of bone formed per 
well, the anti-sclerostin antibody inhibits the actions of sclerostin. (Scale bar = 0.5 cm (A), 
100 µm (B).) (Sost = sclerostin, ab = antibody.) 
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Figure 6.4.  Sclerostin inhibits mineralised bone formation by rat osteoblasts in vitro, 
anti-sclerostin antibody prevents this effect 

On day 14 the cultures were terminated and the total area of unstained mineralised bone 
formed was quantified.    (A) Sclerostin added from the start of the culture reduced the 
amount of mineralised bone formed. (B) An anti-sclerostin antibody had no direct effect on 
osteoblasts. (C) 500 ng/ml anti-sclerostin antibody blocked the effect of 100 ng/ml 
sclerostin on osteoblasts. (**,  p<0.01; ***, p<0.001, n=6). 

Sclerostin affected the expression of ecto-nucleotidase related mRNAs 

by rat osteoblasts in vitro 

Rat osteoblasts were grown in vitro with or without 500 ng/ml sclerostin.  On day 

14 the cultures were terminated and mRNA was collected.  RT-PCR showed that 

sclerostin up-regulated Enpp1, NTPdase1, ADA, eN and ANK gene expression but 

had  had no effect on the expression of ALP (Figure 6.5). 
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Figure 6.5.  Sclerostin affects ecto-nucleotidase and ecto-nucleotidase related mRNAs 
expression by rat osteoblasts in vitro 

Rat calvarial osteoblasts, grown from precursors, were cultured for 14 days with or without 
500 ng/ml sclerostin.  RT-PCR showed that 500 ng/ml sclerostin increased the expression of 
mRNAs for Enpp1, NTPdase1, ADA, eN and ANK by rat osteoblasts. 

Sclerostin increased the total NPP activity of rat osteoblasts in vitro 

Rat calvarial osteoblasts were cultured with sclerostin (500 ng/ml) or an anti-

sclerostin antibody (1 µg/ml).  On day 14 the cultures were terminated and the 

total NPP activity of the osteoblasts was measured.  Sclerostin increased the NPP 

activity of the osteoblasts by approximately 150% (p<0.001); the anti-sclerostin 

antibody had no direct effect on osteoblast NPP activity (Figure 6.6A). 

Sclerostin has no effect on the ALP activity of rat osteoblasts in vitro 

Rat calvarial osteoblasts were grown in culture for 14 days with sclerostin (500 

ng/ml) or an anti-sclerostin antibody (1 µg/ml).  Neither sclerostin, nor the anti-

sclerostin antibody, had an effect on the in vitro ALP activity of rat osteoblasts 

(Figure 6.6B). 
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Figure 6.6.  Sclerostin increases total NPP activity of rat osteoblasts in vitro, but has no 
effect on ALP activity 

On day 14 of culture, the NPP and ALP enzyme activity of rat osteoblasts was measured. (A) 
NPP activity of in vitro rat osteoblasts. (B) ALP activity of in vitro rat osteoblasts.  (***, 
p<0.001 n=6). 

Sclerostin inhibits mineralisation by in vitro Enpp1-/- mouse 

osteoblasts 

In order to determine if the actions of sclerostin are mediated by NPP1, wild type 

and Enpp1-/- mouse calvarial osteoblasts were grown in culture for 28 days in the 

presence of 100 - 500 ng/ml sclerostin.  Cultured Enpp1-/- osteoblasts produced 

more bone than wild type osteoblasts (see chapter 4).  Sclerostin inhibited 

mineralised bone nodule formation by both wild type and Enpp1-/- osteoblasts in 

vitro (Figure 6.7). 

Effects of sclerostin on expression of RANKL and OPG by rat 

osteoblasts in vitro 

It was investigated whether sclerostin could act indirectly through osteoblasts to 

affect osteoclasts.  Rat osteoblasts were cultured with or without 500 ng/ml 

sclerostin.  On day 14 cultures were terminated and the osteoblast mRNA was 

collected.  RT-PCR showed that sclerostin moderately increased the expression of 
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RANKL (TNFSF11) mRNA by rat calvarial osteoblasts in vitro, but had little effect on 

the expression of OPG (TNFRSF11B) mRNA (Figure 6.8). 
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Figure 6.7.  Sclerostin decreased the amount of mineralised bone formed by wild type 
and Enpp1-/- mouse osteoblasts in vitro 

Wild type and Enpp1-/- mouse calvarial osteoblasts were cultured for 28 days with 
sclerostin.  Sclerostin inhibited the formation of mineralised bone by wild type and Enpp1-/- 
osteoblasts. (A) Results expressed as percentage of maximum bone formed. (B) Total area 
of bone formed. (NS = not significant; ***, p<0.001).   

 

Figure 6.8.  Sclerostin affects osteoclast related mRNAs expression by rat osteoblasts in 
vitro 

Rat calvarial osteoblasts grown from precursors, were cultured for 14 days with or without 
500 ng/ml sclerostin.  RT-PCR shows that when normalised against β-actin, 500 ng/ml 
sclerostin increased the expression of mRNA for RANKL by rat osteoblasts but did not affect 
OPG expression.   
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Discussion 

Data presented in this chapter show that exogenous sclerostin had no direct effect 

on the formation or resorptive activity of mouse osteoclasts in vitro.  It was also 

shown that the knockout of the Sost gene, or the blocking of potential sclerostin 

activity using an antibody had no effect on osteoclast formation and activity.   

However, the same preparation of sclerostin elicited a strong, dose-dependent 

inhibition of bone formation by rodent osteoblasts in vitro; this inhibition was 

abrogated by an anti-sclerostin antibody.  The anti-sclerostin antibody alone was 

without effect on osteoblast function, indicated that within this cell culture system 

there is little or no sclerostin inhibiting mineralisation.   Sclerostin was also seen to 

effect the expression of genes related to ATP and adenosine hydrolysis by 

osteoblasts.   

The primary action of sclerostin is to inhibit WNT signalling (Semenov et al. 2005; 

Li et al. 2005b).   The lack of effect of sclerostin on osteoclasts observed here is 

consistent with Spencer et al (2006), who showed that Wnt3a has no direct 

inhibitory or stimulatory effects on the formation of osteoclasts from human 

peripheral blood cells.  Gain of function mutations in LRP5, a key receptor in the 

WNT signalling pathway, also have no effects on human and rodent osteoclast 

function in vitro and in vivo (Boyden et al. 2002; Babij et al. 2003), as is the case for 

loss of function mutations in LRP5 (Gong et al. 2001; Yadav et al. 2008).  It was not 

determined if the targets of sclerostin, the LRP5/6 receptors, were expressed by 

osteoclasts in these experiments, but previous works have only found their 

expression on osteoblasts (Gong et al. 2001; Kato et al. 2002; Williams & Insogna 

2009).  Clinical trials have indicated that anti-sclerostin antibodies decrease 

resorption in vivo, as shown by a decreased circulating concentration of CTx 

(McClung et al. 2014).  My own results show that sclerostin does not act directly on 

osteoclast formation and activity, indicating that the in vivo effects of sclerostin 

depletion on osteoclast function are likely to occur via indirect mechanisms. 

RT-PCR showed that sclerostin increased the expression of RANKL mRNA by rat 

osteoblasts in vitro, but had no effect on OPG mRNA expression.  These results 
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demonstrate a mechanism by which sclerostin may affect osteoclast formation and 

activity indirectly via osteoblasts.  In support of this, previous studies using co-

cultures have shown that WNT signalling affects osteoclasts indirectly via 

osteoblasts (Spencer et al. 2006; Wijenayaka et al. 2011).   

Exogenous sclerostin increased not only the expression of Enpp1 mRNA but also 

the total NPP enzymatic activity of rat osteoblasts in vitro, without affecting ALP 

mRNA expression or activity.  An increase in NPP without a corresponding increase 

in ALP may lead to an up-regulation in the formation of PPi without affecting its 

rate of hydrolysis; this will produce an environment that is inhibitory to 

mineralisation (Millan 2013).  This may be one of the mechanisms by which 

sclerostin inhibits bone nodule formation.  Sclerostin also increased the expression 

of mRNA for the PPi transport protein ANK.  However, it should be noted that 

knockout of the Enpp1 gene did not significantly affect the inhibitory action of 

sclerostin on mineralised bone formation by osteoblasts in vitro, indicating that 

ENPP1 is unlikely to be a primary target for the action of sclerostin. 

Sclerostin also increased rat osteoblast expression of mRNAs for NTPdase1, ADA 

and eN in vitro.   This suggests that since both NPP1 and NTPdase1 hydrolyse ATP 

(Zimmermann et al. 2012); sclerostin may act to increase the rate of ATP hydrolysis 

and AMP formation by osteoblasts.  Increased expression of eN could lead to an 

increase in the rate of adenosine formation from AMP (Zimmermann et al. 2012) 

and by increasing the expression of ADA by rat osteoblasts in vitro, sclerostin may 

also increase the rate of adenosine conversion to inosine (Lloyd & Fredholm 1995).  

These data indicate that sclerostin and WNT signalling may have the potential to 

interact with purinergic and adenosine signalling. 

Rat NPP1 has a Km value of 0.281mM when acting on ATP, and requires Mg2+ 

and Zn2+ as co-factors;  it is active between pH 6.5 – 11.0, with an optimum working 

pH around pH 9.5.  NTPdase1 has a Km value of 0.234mM and requires Mg2+ and 

Ca2+ as co-factors; its optimum pH at around 7.7 is less alkaline than that for NPP1 

(International Union of Biochemistry and Molecular Biology Database, accessed 

02/06/2014).  The very similar Km values of these enzymes suggest that the biggest 
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determinants of their relative ability to hydrolyse ATP will be their levels of 

expression and the pH of the environment they are working in.  Sclerostin increased 

the expression of both NPP1 and NTPdase1 (Figure 6.5), although it is not clear if 

this affected the relative activity ratio between the two enzymes. 

In conclusion, sclerostin (and anti-sclerostin antibodies) had no direct effect on 

osteoclast formation or resorption.  It was seen that sclerostin could affect 

osteoclasts in vivo by altering mRNA expression of RANKL by osteoblasts.  Sclerostin 

also inhibited mineral formation by osteoblasts and increased total NPP activity.  

Sclerostin may also regulate PPi levels around osteoblasts and could potentially 

have effects on purinergic signalling by altering the expression of ecto-

nucleotidases.   



Chapter 7 – General discussion 

169 
 

Chapter 7 

General discussion and future work 

Nucleotide signalling has been known for many years to affect the in vitro function 

of osteoblasts (Kumagai et al. 1989; Schofl et al. 1992; Orriss et al. 2007; Orriss et 

al. 2012a) and osteoclasts (Hoebertz et al. 2001; Korcok et al. 2005).  The work in 

this thesis focused on PPi and adenosine, the hydrolysis products of ATP.  I also 

investigated the effects of sclerostin on osteoclasts and osteoblasts, and the 

potential links between the WNT signalling pathway and ATP hydrolysis.  The 

findings of this work suggest further important questions. 

The work presented here has shown that it is possible using the established SEM 

and CT technologies to quantify osteocyte lacunar size and mineralisation.  This 

approach can now be applied to a whole range of pathologies and knockout 

models.  Advances in bench-top microCT technologies also make it possible to study 

osteocyte lacunae in whole specimens.  A study of 100 randomly selected mouse 

genes found that 10% had effects on the bone when knocked-out (Bassett et al. 

2012).  It is unknown what effect many of these genes have on osteocytes.  

Although osteocytes themselves are difficult to investigate, the changes that they 

make to their lacunae are relatively easy to study.  The techniques I have 

demonstrated here could provide a practical basis for future studies of osteocyte 

function in experimental animals or humans – for example, in diverse settings such 

as ageing, menopause, renal disease, respiratory disease and vitamin D deficiency, 

as well as in response to therapeutic interventions such as bisphosphonate 

treatment.   

Further work using synchrotron radiation-based CT or nanoCT could also be used 

to image osteocyte lacunae in 3-dimensions and overcome the methodological 

problems discussed in Chapter 3.  Lacunae and possibly canaliculi could be imaged 

at resolutions down to 100 nm.  However, both of these methods present practical 
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problems.  Synchrotron CT is relatively difficult to gain access to, and nanoCT is 

currently only able to image a very small volume of bone (~200 mm3).  A drawback 

of CT imaging systems in general is that they allow only the visualisation of 

mineralised bone, not unmineralised collagenous matrix.   This is a potentially 

important shortcoming because it is possible that a thin layer of demineralised 

matrix lining osteocyte lacunae could act as a site for rapid remineralisation (Arnett 

2013b).   SEM in backscattered mode, which provides high-resolution information 

about mineral density, could offer one approach to studying the more subtle 

changes in mineralisation around osteocytes. 

I found that Enpp1-/- osteocytes were less viable than wild types in vitro. Fluid 

flow stimulation has been reported to increase WNT signalling and prevent 

osteocyte apoptosis (Bakker et al. 2004; Santos et al. 2009).  I detected an 

increased circulating level of sclerostin, an inhibitor of WNT signalling, and an 

alteration in ATP release from osteoblasts and osteoclasts in response to fluid flow 

stimulation in Enpp1-/- mice.  It will clearly be of interest to determine whether 

osteocyte viability or apoptosis in vivo is different between Enpp1-/- (or indeed 

other ecto-nucleotidase knockout mouse models such as eN, NTPdase1 that might 

affect hydrolysis of extracellular ATP) and wild type mice.  Reductions in osteocyte 

viability in vivo, either due to an inherent cellular defect or to increased mineral 

encroachment might be expected to impact on the sensing of mechanical strain and 

on the production of key paracrine / endocrine factors such as sclerostin, FGF23 

and RANKL. 

I reported in Chapter 3 that the bones of Enpp1-/- mice showed an increased 

endosteal diameter and an increase in resorption pits on their endosteal surfaces.  

These signs of increased osteoclast activity Enpp1-/- mice are consistent with other 

reports (Okawa et al. 1999; Mackenzie et al. 2012b).  However, I found that Enpp1-/- 

mouse osteoclasts did not resorb more bone than wild type osteoclasts in vitro.   I 

hypothesised that the increased osteoclast activity seen in vivo in knockouts may be 

due to either the increased sclerostin concentration I detected, or hypoxia and 

acidosis in the bone environment due to vascular calcification (Rutsch et al. 2003; 
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Villa-Bellosta et al. 2011; Mackenzie et al. 2012b) and thus impaired blood flow.  

Doppler ultrasound imaging could be used to determine if significant reductions in 

bone perfusion are indeed occurring in Enpp1-/- mice.   It would also be useful to 

measure the pH and the partial pressure of O2 and CO2 in the arterial blood of these 

mice would to determine whether systemic acidosis or hypoxia were present. 

I found Enpp1-/- mice had a greater bone marrow cavity volume than wild types.  

It has previously been reported that Enpp1-/- mice do not have a different number 

of platelets or red blood cells compared to wild type mice (Mackenzie et al. 2012b), 

suggesting that Enpp1-/- mouse bone is not haematopoietically more active.  This 

suggests the possibility that the increased bone marrow cavity volume in Enpp1-/- 

mice may have been primarily occupied with adipose tissue.  It has previously been 

reported that the knockout of Enpp1 induces MSCs to differentiate into adipocytes 

(Liang et al. 2007; Nam et al. 2011).  Changes in the bone marrow fat volume have 

been linked with ageing (Hardouin et al. 2014).  Further analysis of the bone 

marrow composition of Enpp1-/- mice is now clearly warranted. 

The present work has emphasised the key role played by NPP1 and PPi in soft 

tissue mineralisation such as the ear pinna and whisker follicles.   This can be 

demonstrated by microCT and relatively simple histological methods.  NPP1 has 

already been shown to play a role in the calcification of the kidney and the aortic 

arch (Mackenzie et al. 2012a). The formation of kidney or salivary duct stones may 

also be potentially affected by NPP1 or PPi (Moochhala et al. 2008; Pradeep et al. 

2011).  Further investigation is clearly now needed on the role of NPP1 in in the 

pathological calcification of soft tissues.  For example, mineralisation of nodules 

within the lungs is common in patients who have lung cancer (Khan et al. 2010).  It 

is known that lung cancer patients may have increased NTPdase activity in their 

platelets, with no change in NPP activity (Zanini et al. 2012).  This suggest the 

possibility that a higher percentage of ATP would be broken down by NTPdase than 

NPPs, resulting in less PPi being formed and less inhibition of mineralisation.   NPP1 

may also play key roles in preventing the calcification of tissues which normal 

express high levels of ALP such as the liver and bile duct (Millan 2013). 
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As discussed previously, calcification of the cartilage of the knee and trachea has 

been reported to increase with age (Teale et al. 1989; Kusafuka et al. 2001; 

Mitsuyama et al. 2007), as has the hyper-mineralisation of osteocyte lacunae (Busse 

et al. 2010; Carter et al. 2013).  Enpp1-/- mice consistently showed these symptoms, 

raising the possibility that these mice may represent a model of accelerated ageing.  

The tide mark zone of mineralised articular cartilage, which advances with age 

(Goldring & Goldring 2010), should also be examined in Enpp1-/- mice.   It could be 

of interest to determine whether NPP activity in circulating blood changes 

(decreases?) with age in human patients.   

Unexpectedly, I found that Enpp1-/- osteoblasts and osteoclasts had a higher 

concentration of intracellular ATP, and a lower rate of ATP release.  Further work 

should be carried out to elucidate the mechanism behind these differences.  ATP 

release from osteoblasts may occur via vesicular exocytosis (Orriss et al. 2009).  The 

P2X7 receptor has been implicated as a mechanism for the release of ATP from 

osteoblasts and osteoclasts (Romanello et al. 2001; Buckley et al. 2003; Genetos et 

al. 2005; Suadicani et al. 2006; Pellegatti et al. 2011).  Initial experiments should 

determine if Enpp1 can influence the P2X7 receptor or vesicular exocytosis.  Further 

experiments should be performed to determine if the knockout of other ecto-

nucleotides also effects ATP release and the intracellular ATP concentration. 

Very little is known about the environmental, chemical or physiological factors 

that may affect NPP1 activity.  Although the phenotype of the Enpp1 knockout 

mouse represents an extreme example, it highlights the importance of NPP1 for the 

healthy functioning of many tissues.  It is conceivable that even moderate chronic 

reductions in NPP1 activity could eventually cause significant disturbances. 

In conclusion, the work presented here revealed a number of important new 

findings relating to role of NPP1 in the mineralisation of osteocyte lacunae and soft 

tissues.  It also highlighted a potential new link between sclerostin and ecto-

nucleotidases and further clarified the role that adenosine and sclerostin have on 

bone cells in vitro.  Additionally, this work emphasised the greater role that 



Chapter 7 – General discussion 

173 
 

extracellular nucleotides play in the control of in vitro bone cells compared to 

nucleosides. 
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Appendix 1 – PCR primer sequences 

 

Rattus 
norvegicus gene 

Sense 5’ – 3’ Anti-sense 5’ – 3’ 

A1 receptor CTCCATTCTGGCTCTGCTCG CTCCATTCTGGCTCTGCTCG 

A2A receptor CCATGCTGGGCTGGAACA GAAGGGGCAGTAACACGAACG 

A2B receptor TGGCGCTGGAGCTGGTTA GCAAAGGGGATGGCGAAG 

A3 receptor AGAGCTAGGTCCACTGGC GCACATGACAACCAGGGGGATGA 

β-actin GTTCGCCATGGATGACGAT TCTGGGTCATCTTTTCACGG 

Sost CTCCTGAGAACAACCAGAC TGGAGAACGCCTATAGAG 

DMP1 AAGTCAAGCTAGCCCAGA CGATGAGGACAATGATCTAG 

ADA TCCTGGCCAAGTTCGATTCA AGCGAACTTCCACGTACACC 

Enpp1 GTCAGTATGCGTGCTAAC TGGCACACTGAACTGTAG 

ALP (TNAP) CTCATTTGTGCCAGAGAA GTTGTACGTCTTGGAGAG 

ANK AAGGCAGCCAGATACAGGAA CATCACCAACATAGCCATGC 

NTPdase1 AGATGAACAGCCCTGTGA GGGTTCATTTCTGGGTCT 

Ecto-5-
nucleotidase 

CAGGAAATCCACCTTCCAAA AACCTTCAGGTAGCCCAGGT 

OPG GCAACACATGACAATGTATG CAAGCTCTCCATCAAGATGC 

RANKL CGAGCGCAGATCGATCCTAAC GACTTTATGGGAACCCGATGG 

Table 2. The primer sequences used for RT-PCR analysis of rat mRNAs expression 
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Mus musculus 
gene 

Sense 5’ – 3’ Anti-sense 5’ – 3’ 

A1 receptor CTACCTTCTGCTTCATCGTA ACAAGACAGTGGTGACTCAG 

A2A receptor CTATTGCCATCGACAGATAC GAACAACTGCAGTCAGAAAG 

A2B receptor CCACCAACTACTTTCTGGTA AACAGTAAAGACAGTGCCAC 

A3 receptor TCATTGTCTCCCTAGCACT GACARCRRCRACARCARCCG 

GAPDH CTCACTCAAGATTGTCAGCA GTCATCATACTTGGCAGGTT 

Enpp1 ACAGCTTAATCTGACCACAG GATCCTGGTACAGACAGTTG 

Enpp2 GTATGACCCTGTCTTTGATG GAAAGCCACTGAAGGATAGT 

Enpp3 CTGCTGACTGTGGTTTTACT CTGTGGTAAAGGAGACAGTG 

NTPdase1 CTTTGGCGCTTTGGATCTCG TCTGGTGGCACTGTTCGTAG 

NTPdase2 CTGGAGGCAGTGACACAGAC TGGGTGGAGTAGCCCTTTGG 

NTPdase3 GTGAGCATTGTGGTACTTGT TGACCACTCCTGTGTTATTC 

ANK CAGTTTCCTGGTGGGATGTG TTGATGTGGGCTGAGGTG 

ADA AAGCATTTGGCATCAAGGTC CATAGCCACCACGGTCTTCT 

Table 3. The primer sequences used for RT-PCR analysis of mouse mRNAs 
expression 

GAPDH=glyceraldehyde-3-phosphate dehydrogenase. 
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Appendix 2 – Abbreviations 

2-Cado  2-Chloroadenosine 

A1 receptor Adenosine receptor A1 

A2A receptor Adenosine receptor A2B 

A2B receptor Adenosine receptor A2B 

A3 receptor Adenosine receptor A3 

Ab  Antibody 

ABAM  Antibiotic – antimycotic 

ABCC6  ATP-binding cassette subfamily-C member 6 gene 

ADA   Adenosine deaminase 

ADA-SCID  ADA - severe combined immunodeficiency 

ADHR   Autosomal dominant hypophosphatemic rickets  

Ado  Adenosine 

ADP  Adenosine diphosphate  

Akp2  Mouse tissue non-specific alkaline phosphatase gene 

ATF4  Activating transcription factor 4  

ALP  Alkaline phosphatase  

α-MEM α-modified essential medium supplemented with 10% foetal calf 

serum, 70 µg/ml gentamicin, 50 U/ml penicillin, 50 µg/ml 

streptomycin, 0.125 µg/ml amphotericin 
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AMP  Adenosine monophosphate  

Ank   Progressive ankylosis gene  

ANOVA Analysis of variance 

Ap4A  Diadenosine 5’,5’’’P1,P4-tetraphosphate  

APC  Adenomatous polyposis coli 

APRT  Adenine phosphoribosyltransferase 

Arg-Gly-Asp  Arginine – glycine – aspartic acid 

ASARM Acid serine and aspartic acid-rich  

ATP   Adenosine triphosphate  

BGP  β - gylcerophosphate 

BMP   Bone morphogenetic protein 

BSA Bovine serum albumin 

BSP  Bone sialoprotein  

Bz-ATP  2’(3’)-O-(4-benzoylbenzoyl) adenosine 5’-triphosphate  

CAN  Calcium activated nucleotidase 

CCAAT  Cytidine-cytidine-adenosine-adenosine-thymidine 

CD39  Ecto-nucleoside triphosphate diphosphohydrolase (NTPdase) 

CD73  Ecto-5’nucleotidase (eN) 

cAMP  Cyclic adenosine monophosphate 

cDNA  Complimentary deoxyribonucleic acid 

C/EBPα CCAAT-enhancer-binding proteins 
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CK  Creatine kinase 

CK1  Casein kinase 1  

CK-BB  Creatine kinase brain type 

CK-MB  Creatine kinase cardiac type 

CK-MM Creatine kinase muscle type 

CO2  Carbon dioxide 

DC-STAMP Dendritic cell stimulatory transmembrane protein 

DKK  Dickkopfs  

DMEM Dulbecco’s modified essential medium supplemented with 10% 

foetal calf serum, 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 

streptomycin, 0.25 µg/ml amphotericin 

DMP1  Dentine matrix protein-1  

DNase  Deoxyribonuclease 

DPCPX  P1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine 

Dpi Dots per inch 

Dvl  Dishevelled  

EDTA  Ethylenediaminetetraacetic acid 

ELISA  Enzyme linked immunosorbent assay 

eN  Ecto-5’nucleotidase  

ENT  Equilibrative nucleoside transporter 

FCS Foetal calf serum 
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FGF23  Fibroblast growth factor 23  

FGFR   Fibroblast growth factor receptor  

FIAT  Factor inhibiting activating transcription factor 4 

FoxO  Forkhead box O  

FZD  Frizzled  

GACI  Generalised arterial calcification of infancy 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

GDP  Guanosine diphosphate 

GMP  Guanosine monophosphate 

GPI   Glycosylphosphatidylinositol 

GSK3  Glycogen synthase kinase 3  

GTP  Guanosine-5’-triphosphate 

HB-GAM  Heparin binding growth associated molecule 

HBSS Hank’s buffered salt solution 

HGPRT  Hypoxanthine-guanine phosphoribosyltransferase 

HIFS   Hypoxia inducible factors 

IMP  Inosine monophosphate  

I-Smads  Inhibitory Smads  

JNK   C-Jun N-terminal kinases 

LDH Lactate dehydrogenase 

LPA1-6  Lysophosphatidic acid receptors 1 - 6 
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LRP5/6  Low-density-lipoprotein receptor 5 / 6 

MC3T3  Mouse osteoblast cell line 

M-CSF   Macrophage colony-stimulating factor  

MEM Modified essential medium 

MEPE  Matrix extracellular phosphoglycoprotein  

MicroCT Micro – computed tomography 

MLO-Y4 Mouse long bone osteocytes cell line Y4 

MMPs  matrix metalloproteinases  

MrgA  Mas-related gene receptor A (adenine receptor) 

mRNA  Messenger ribonucleic acid 

MRP6  Multi-drug resistant protein 6 

MSCs  Mesenchymal stem cells 

MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NAD+ Nicotinamide adenine dinucleotide 

NBF Neutral buffered formalin 

NCAM  Neural cell adhesion molecule 

NDP  Nucleoside diphosphates 

NDPK   Nucleoside diphosphate kinase 

NECA  5’ -N- Ethylcarboxamidoadenosine 

NFAT2  Nuclear factor for activated T-cells 2  

NFκβ   Transcription factor nuclear factor κβ  
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NMP  Nucleoside monophosphates 

Npn-1  Nucleoside 5’(n-1) polyphosphate (n = number of phosphates) 

NPP  Ecto-nucleotide pyrophosphatase / phosphodiesterase  

NPP1  Ecto-nucleotide pyrophosphatase / phosphodiesterase - 1  

NTP  Nucleoside triphosphates 

NTPdase Ecto-nucleoside triphosphate diphosphohydrolase  

OCN  Osteocalcin 

OC-STAMP  Osteoclast stimulatory transmembrane protein  

OPG  Osteoprotegerin  

OPLL  Ossification of the posterior longitudinal ligament 

OPN  Osteopontin  

ORF-1  Osteoblast stimulating facto-1  

Pi  Inorganic phosphate 

PC-1  Ecto-nucleotide pyrophosphatase / phosphodiesterase - 1  

PAP  Prostatic acid phosphatase 

PBS Phosphate buffered saline 

PCP  Planar cell polarity pathway 

PHOSPHO1 Phosphatase orphan 1  

PPARγ   Peroxisome proliferator-activated receptors γ 

PPi   Pyrophosphate  

PPi/Pi ratio Pyrophosphate / phosphate ratio 
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PTH   Parathyroid hormone  

QMUL   Queen Mary, University of London  

RAGE  Receptor for advanced glycation end products 

RANK  Receptor activator of nuclear factor κβ 

RANKL  Receptor activator of nuclear factor κβ ligand 

RGD  Arginine – glycine – aspartic acid 

RT-PCR  Reverse transcriptase polymerase chain reaction 

SEM  Scanning electron microscopy 

SIBLING Small integrin-binding ligand N-linked glycoprotein 

Sost  Sclerostin gene 

SOST  Sclerostin 

Sox9  SRY sex determining region Y box 9 

sRAGE  Receptor for advanced glycation end products inhibitor 

sFZP  Secreted frizzled related proteins 

Tcf/Lef T-cell specific transcription factor / lymphoid enhancer-binding 

factor transcription factor 

TGF-β  Transforming growth factor-β 

TNAP   Tissue non-specific alkaline phosphatase 

TNAP   Tissue non-specific alkaline phosphatase (human gene) 

TNF   Tumour necrosis factor  

TNFRSF11B Tumour necrosis factor receptor super-family member 11b (OPG) 
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TNFSF11 Tumour necrosis factor ligand super-family member 11 (RANKL) 

TRAF  TNF receptor associated proteins 

TRAP   tartrate resistant acid phosphatase  

TRPV5  Transient receptor potential, vanilloid, members 5  

TRPV6  Transient receptor potential, vanilloid, members 6 

Ttw  Tiptoe walking mouse 

UDP  Uridine diphosphate  

UTP  Uridine triphosphate  

VDREs   Vitamin D response elements 

VEGF   Vascular endothelial growth factor  

Vit D2   Ergocalciferol 

Vit D3   Cholecalciferol 

Wif-1  WNT inhibitory factor-1 

WNT   Wingless type and int-1 

w/v Weight per volume 

XLH  X-linked hypophosphatemic rickets  
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