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Abstract 

This project aims to benefit the sub-Saharan African economies by exploiting cassava 

for chemical feedstock for materials production. It anticipates the industrial changes 

that will follow from increased petroleum price and regulatory control of embedded 

fossil carbon. It offers a way to integrate industrial and agricultural sectors.    

Initially, glucose and fructose were dehydrated by reactive distillation over a sulfated 

zirconia catalyst and 1-butyl-3-methylimidazolium chloride (BMIM Cl) ionic liquid 

as solvent under a nitrogen atmosphere at 180 oC to produce 5-(hydroxymethyl) furan 

(5-HMF) as a precursor for polymeric materials. Solvent, catalyst and reaction 

conditions were varied to improve the yield of 5-HMF. Yields of 82% and 65% were 

obtained using fructose and glucose substrates with this catalyst.  

Secondly, 2,5-furandicarboxylic acid (FDCA) and 2,5-bis-(hydroxymethyl)furan 

(BHMF) were synthesised as monomers from 5-HMF. The aldehyde group of 5-HMF 

was oxidized using potassium permanganate to FDCA with 80% yield achieved. 

BHMF was synthesised from 5-HMF using sodium borohydride with 88% yield 

achieved. 

The third part focuses on the polymerization of FDCA with the following diols: 1,4-

butanediol, 1,6-hexanediol, 1,8-octanediol and BHMF via esterification reactions at 

160-200 oC using titanium (IV) n-butoxide catalyst. All diols produced polymers under 

the same conditions. The difference within this family of polymers was the number of 

carbon atoms in the linking diols and that BHMF had a different diol structure with a 

furan ring attached. 

Furthermore, a study of the interaction of all the monomers and the 5-HMF with Na-

montmorillonite clay was made. It was observed that all were intercalated into the clay 

paving the way for the manufacture of nanocomposites. 

Finally, all the polymers were shown to be hydrophobic with PBH-2,5-F more 

hydrophobic with a contact angle of 91o compared to others. Water absorption, 

dielectric constant and mechanical properties of the polymers were recorded.
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CHAPTER 1:  INTRODUCTION 

 General Introduction 

Research on biomass as a source of chemical feedstock has received considerable 

attention from the academic and industrial communities in recent years in contrast to 

the obscurity that has prevailed since the 1960s. This is partly because of the changes 

in mineral oil price. The increase in oil price is mainly a result of new extraction 

techniques for mineral oil and other global political situations such as trade and 

exchange rates. These changes could have transformative effects on the chemical and 

materials industries. For instance, between 2008 and 2009, although the price of oil 

fell rapidly by around $33.39 per barrel from a peak of $94.45, there is an underlying 

upward trend as revealed in Figure 1-1.  

Furthermore, impending developments in control measures to address climate change 

may also encourage industries to seek independence from fossil fuels and to use 

biomass resources as alternatives for fossil-derived materials and energy in order to 

reduce the embodied carbon content. Isotopic assay can be used to distinguish mineral 

and biomass oil sources [1]. Again, the use of agricultural biomass as raw material 

realigns industrial and agricultural sectors for the establishment of an integrated-

sector-economy. This would provide new opportunities for countries that depend on 

fossil fuel resources to diversify their economic-drivers. 

 

Figure 1-1. Yearly oil price 2001-2013 [2]. 
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The use of fossil fuels for energy and chemicals is a global issue in terms of climate 

change and economic perspective. It is beyond the scope of this work to address these 

questions globally and so this thesis focuses on the agricultural opportunities offered 

by sub-Saharan Africa and more specifically by Nigeria as a nation because of its 

emerging economy which presently depends largely on its petroleum and natural gas 

resources despite the huge amount of agricultural resource that is presently under-

utilized. Also, Nigeria, as a developing country with a population of over 160 million 

[3] will be significantly affected by the impacts of climate change even though it is a 

low carbon emitter. Indeed, the severity will be more pronounced in developing 

countries especially those in Africa, due to their lower level of coping capabilities and 

their geographical positions which make them vulnerable to desertification [4] . 

Therefore, this research focuses on the production of engineering polymers that begin 

with cassava. Cassava is a robust plant capable of providing food, fuel and chemical 

feedstock [5-8]. This work builds upon the substantial emerging interest in the 

potential business opportunities and government initiatives centred around the 

exploitation of cassava products in Nigeria and indeed sub-Saharan Africa in general. 

These potentially open the way for export markets and for the industrial transformation 

of Nigeria and sub-Saharan Africa.  

As part of the introduction to this thesis, the motivation for the work is explained in 

the context of an assessment of Nigeria and her economic potential. A comprehensive 

review on the available literature on bio-based polymers and nanocomposites is 

presented in Chapter 2. Details of materials and the methods used are highlighted in 

Chapter 3, while the results and discussion thereof are given in Chapter 4. 

Conclusions are provided in Chapter 5 along with directions for further work. 

 Motivation for this research 

The motivation of this work was nurtured because of the prevailing economic situation 

in Nigeria in trying to diversify its economy from dependence on its petroleum 

products as the main economic driver. Before the discovery of oil in 1970, agriculture 

was the main economic driver as it played a vital role by engaging both subsistence 

and full time farmers. However, the role of agriculture is not prioritized at present 
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because of oil discovery. Agricultural export has tended to be neglected in the Nigerian 

market [9-11].  

Nigeria is one of the leading producers of petroleum in the world. It is one of the 

members of the Organization of Petroleum Exporting Countries (OPEC) and presently 

is facing a serious security challenge in the Niger Delta. This is where the country’s 

mineral oil production is located. This could force the oil-producing companies to 

relocate and this will have a serious effect on the socioeconomic activities of the 

country. To further add to the motivational factor that encouraged this research, the 

Governor of the Central Bank of Nigeria, Mr. Sanusi Lamido Sanusi [12] made the 

following remarks recently about Nigeria at the TEDxYouth platform in Maitama, 

Abuja: 

“A country that specializes in exporting what it does not produce and importing that 

which it produces”. 

“One of the world’s largest producer of crude oil that does not refine its own 

petroleum products and has to import petroleum products”. 

“The world’s largest producer of cassava but does not produce starch or ethanol”. 

“A large tomato belt, yet the world’s largest importer of tomato paste”. 

 

It is against this background that the thesis envisages an integrated-sector-economy for 

Nigeria  in which its economic future is re-established around agricultural potential  

paving the way for farmers to produce more agricultural products and investors to have 

the opportunity of establishing polymer/materials industries that can utilize the 

agricultural products particularly cassava, a unique plant providing food, fuel and 

materials. The thesis explains its use for the synthesis of bio-based polymers for 

materials application. 

 Nigeria: the background 

Nigeria is located in western Africa on the Gulf of Guinea and lies between latitude 4o 

and 14oN and longitude 2o 45 and 14o 3E. It has a total area of 923,768 km², making it 

the world's 32nd-largest country [13]. The country shares about 4047 km border with 
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Benin (773 km), Niger (1497 km), Chad (87 km), and Cameroon (1690 km), and has 

a coastline of at least 853 km. 

 

Figure 1-2. Map of Nigeria showing the 36 states and the Federal Capital Territory 

[14]. 

 Crude oil production in Nigeria 

Nigeria, as a member of OPEC produces mostly light, sweet (low sulfur) crude oil and 

exports to the global markets. Production of crude oil in Nigeria between 1980 and 

2012 as represented in Figure 1-3 revealed a maximum production of crude oil in 2005 

with a production capacity of  4.84 m3/s (2.63 x 106 barrels per day) [15]. However, 

this began to decline significantly as violence from militant groups surged, forcing 

many companies to withdraw staff and shut down production. By 2009 crude oil 

production had reached about 4.07 m3/s (2.21 x 106 barrels per day). Furthermore, lack 

of transparency in oil revenue, tension over revenue distribution and environmental 

degradation due to oil spillage have created a fragile situation in the oil producing 

states.  

In order to provide a conducive atmosphere for increased production, an amnesty was 

granted to militants in the Niger Delta region in late 2009 and an agreement was 

reached whereby the militants handed in their weapons in exchange for cash payments 

and training opportunities. This has provided a relatively calm situation in the region:  
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reduction in attacks on oil facilities was witnessed and production was partially 

increased as can be seen in Figure 1-3. 

 

Figure 1-3. Crude oil production in Nigeria 1980 – 2012 [15]. 

 Crude oil Export from Nigeria 

As a member of OPEC, Nigeria exports her crude oil to the global markets at between 

4.07 m3/s to 4.23 m3/s  (2.21 x 106 barrels per day to 2.3 x 106 barrels per day) of crude 

oil and condensate products in 2012 [15]. In the same year, the United States imported 

about 406,000 billion barrels per day from Nigeria which accounted for 18% of the 

total exports. India, Brazil, Spain and the Netherlands made up the remaining countries 

that import crude oil from Nigeria. This is represented in Figure 1-4. 

 

Figure 1-4. Nigeria crude oils and condensate export in 2012 [15]. 
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 The Nigerian Economy 

Nigeria is a middle-income nation with developed financial, communication and 

transport sectors. The country’s economy is one of the most developed economies in 

Africa because it has the second largest stock exchange in the continent [16].  

During the first half of 2010, the economy recorded a slight improvement against the 

previous year. For instance, Real Gross Domestic Product (GDP) was N334.74 billion 

($2.069 billion) representing a rise of 7.53%, and 1.26% increase over the same period 

in 2009 as shown in Figure 1-5. The Gross Domestic Product (GDP) of the country as 

at 31st December, 2010 was $369.8 billion. 

 

Figure 1-5. Real Growth Rate (%), 2009: first half – 2010 first half [17]. 

Although much has been made of its status as a major exporter of oil, Nigeria’s proven 

oil reserve was 37.14 x 109 barrels (5.9 x 109 m3) and a natural gas reserves of  5.295 

x 1012 m3,  making the country’s gas reserves the seventh largest in the world [18], yet 

it produces only about 2.75% of the world's supply [15]. Although it is ranked as 15th 

in production at 4.07 m3/s (2.21 x 106 barrels per day) putting the life index of the oil 

at 46 years, this implies its main export capability has a limited future.  

Furthermore, the United States imported crude oil from Nigeria as one of its major 

supplier. U.S imported between 9% and 11% of crude oil from 1993 to 2013. However, 

from Figure 1-6, it was observed that in 2012, there was a drastic decline in crude oil 
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importation from Nigeria by U.S which fell to an average of 5% and by 2013, it 

dropped to about 4%. As a result, Nigeria has fallen from being the fifth largest foreign 

oil supplier to the United States in 2011 to eighth in 2013 [15]. This will definitely 

affect the country’s socioeconomic activities if this trend continues.  

 

Figure 1-6. U.S crude oil imports (East coast) from Nigeria 1993-2013 [15]. 

 Nigeria’s agricultural potential 

Nigerian agriculture is characterized by considerable regional and crop diversity. The 

sector remained stagnant during the oil boom decade of the 1970s, and this accounted 

largely for the declining share of its contributions.  The trend in the share of agriculture 

in the GDP shows a substantial variation and long-term decline from 60% in the early 

1960s through 48.8% in the 1970s and 22.2% in the 1980s. Unstable and often 

inappropriate economic policies (of pricing, trade and exchange rate), the relative 

neglect of the sector and the negative impact of the oil boom were also important 

factors responsible for the decline in its contributions [19]. 

On its diversity, Nigerian agriculture features tree and food crops, forestry, livestock 

and fisheries.  In 1993 at 1984 constant factor cost, crops (the major source of food) 

accounted for about 30% of the Gross Domestic Product (GDP), livestock about 5%, 

forestry and wildlife about 1.3% and fisheries accounted for 1.2%  [20]. 
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 Land availability 

Nigeria has abundant land resources for agricultural purposes. It has a land area of 

923,768 km2 and it is used for several agricultural practices such as grazing, farming 

and forestry with a land use estimates as shown in Figure 1-7. Rainfall is heaviest in 

the southern part where the forest and savannah benefit from abundant precipitation 

and relatively short dry seasons. The crops grown include cassava, yam, cocoyam, and 

sweet potato. The main commercial product includes cocoa, oil palm, rubber and 

timber. Cocoa grows mostly in the southwest; oil palm is predominantly in southeast 

and is numerous in the southern area. Rubber stands are common in south and south-

eastern Nigeria, while timber is in the south and southwest. 

The northern part of the country experiences dry season of between three to four 

months. During this season less than 400 mm of rain fall is reported [21]. The region 

lies in the Sudan savannah and Sahel savannah mostly, where crops such as millet, 

cowpeas and drought resistant crops like cassava, sorghum, corn rice, cotton and 

groundnuts are cultivated [19]. Between the arid north and the moist south lies the 

guinea savannah region. This area produces staples such as sorghum, millet and 

cowpea in low quantities together with fruits such as orange and mango. 

 

Figure 1-7. Map of Nigeria showing land use  

Of all these uses, the highest percentage of land use goes to land used for pastures, 

forests and woodlands, making up some 56% of general land use. This region stretches 
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across the South including some eastern and middle belt states and 33% goes to arable 

land in which crops are planted throughout the year.  

 The place of Cassava in the Nigerian economy 

Nigeria is the largest producer of cassava in the world [22] with an estimated area of 

3.8 million hectare that is under cultivation and in 2011, the country produced over 50 

million tonnes according to Food and Agricultural Organization (FAO) as shown in 

Figure 1- 8 [22]. 

 

Figure 1-8. World’s leading producers of cassava [22]. 

Cassava is cultivated widely in almost every part of the country as this biomass plays 

a vital role as food security and can be cultivated under marginal soil conditions as it 

can withstand prolonged drought and it provides a livelihood for over 30 million 

farmers all over the country with the southern states providing over 60% as illustrated 

in Figure 1- 9 [23, 24].  

In terms of yield, cassava production in Nigeria has shown a significant yield (Figure 

1-10) [22]. For instance, between 2010 and 2012, the yields tends to increase within 

the years mentioned with the exception of 2005 and 2007 where an outbreak of cassava 

mosaic disease was experienced. This outbreak was partially eradicated in 2006 which 

boasts an increased in yield. After this period, a steady increase in the yield was 
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achieved after some researches on how to overcome the future outbreak of the disease 

[25]. 

Therefore, Nigeria has considerable potential to diversify the use of cassava both as a 

primary industrial raw material and livestock feed. The two main factors that give the 

country this potential have been the rapid adoption of improved cassava varieties and 

the development of small-scale processing technologies [25]. 

In addition, among the many crops widely cultivated in Nigeria, research has probably 

made the greatest impact on cassava by increase in production over the years and also 

the area cultivated with production efficiency through the introduction of high 

yielding, disease- and pest-resistant species. 

 

Figure 1-9. Cassava production zones in Nigeria [26]. 

 

Figure 1-10. Nigerian Cassava yields 2001-2013 [22] 
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 Aims of this research 

The aim of this research is to synthesis hydrophobic polymers and nanocomposites for 

materials applications from biomass obtained from cassava. The stage from cassava to 

glucose and fructose is well established (Figure 1-11). Therefore, the first investigative 

step is to synthesise 5-(hydroxymethyl) furan (5-HMF) from glucose using ionic liquid 

as solvent in a solid catalyst. Next, derivatives of 5-HMF are synthesised to serve as 

monomers for the polymerisation reaction with commercially available diols. Then a 

diol is synthesised from 5-HMF and used in place of the mineral oil based diol to form 

the polyester.  The next stage was to study the interaction of the monomers so obtained 

with potential reinforcement agents, such as montmorillonite clays with a view to 

making composites by in-situ polymerisation. Such composites should have improved 

elastic modulus and barrier properties. Subsequently, the interaction of clays with the 

polymers is studied with the aim of preparing composites based on these biomass 

polymers by melt or solvent intercalation. The ultimate objective, not fully realised in 

the timescale of this research, is to find appropriate conditions for polymerisation and 

reinforcement to prepare nanocomposites with mechanical properties in the range 

suitable for composite applications in the automotive industry. 

This research will pave the way for polymer-clay nanocomposites from cassava as a 

biomass source in which there is no embedded carbon (depending on the source of 

energy used in the manufacturing process)  and which are therefore largely 

independent of mineral oil stock and also are environmentally benign. Montmorillonite 

clay is selected as the reinforcement agent because it has the ability to exfoliate to 

about 1 nm leading to high aspect ratio reinforcement. Furthermore, this reinforcement 

is also of low embedded carbon and is cheap 
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Figure 1-11. Experimental sequence. 

The work will use 5-(hydroxymethyl) furan (5-HMF) derived from glucose as the 

biomass source which has been described as a “sleeping giant” in the field of 

intermediate chemicals from re-growing resources for the synthesis of various 

chemicals derived from petroleum source [27]. This will serve as the precursor for the 

synthesis of 5-HMF derivatives as monomers for the polymer synthesis such as 

polyesters, polyamides and polyurethanes [28-30]. Another part of the work is the 

synthesis of 2,5-furandicarboxylic acid (FDCA) from 5-HMF as the bio-based diacid 

for the synthesis of bio-based polyester as an analogue poly (ethylene terephthalate) 
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PET derived from petroleum source. In addition, 2,5-bis-(hydroxymethyl) furan 

(BHMF) as bio-based diols would be synthesised for polymerisation with FDCA.
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CHAPTER 2:  LITERATURE REVIEW 

 Biomass 

Biomass can be defined as any plant material that consists mainly of carbon, hydrogen, 

oxygen and nitrogen [31]. It can also be defined as an organic material that has stored 

sunlight in the form of chemical energy [32] or a plant material derived from the 

reaction between CO2 in the air, water and sunlight, via photosynthesis to produced 

carbohydrates that form the building blocks of biomass [33]. Biomass has been defined 

also to be ‘any material, excluding fossil fuel, which was a living organism that can be 

used as a fuel either directly or after a conversion process. 

Conversion of biomass into bio-products and energy involves a series of feed streams 

that are interconnected as illustrated in Figure 2-1. These operations can make use of 

various technologies such as chemical, biological and mechanical processes to produce 

chemical intermediates that are environmentally benign and renewable. By preparing 

for these technologies now, a company or country can anticipate a world market 

increasingly regulated by environmental standards and can hedge against increases in 

oil price that make the petrochemical market uncompetitive. 

Therefore, production of high-value chemicals from biomass can become an economic 

driver for countries that currently depend solely on fossil fuels for revenue. This is 

likely to lead to profitable ventures to meet energy and chemical demands for these 

countries. 

 Biomass resources and their composition 

Biomass resources include wood, crops (energy and agricultural), wastes (animal and 

plants) and seed oils [34]. The most abundant extracted feeds of biomass are cellulose, 

hemicelluloses and lignin [34-36]. They are of low cost and adequately available for 

large scale sustainable production of liquid fuels [36], with various compositions 

typically as 33%, 28%, and 24% of cellulose, hemicelluloses and lignin respectively. 

Others such as oil, fibre and starch account for 15% as shown in Figure 2-2. This lingo-



N.M. Baba                                                                                                                         CHAPTER 2: LITERATURE REVIEW 

38 

 

cellulosic biomass can also be converted to bio-oil through fast pyrolysis in the 

absence of air at atmospheric pressure and temperatures of 450-550 oC [37]. 

 

 

 

 

 

 

 

Figure 2-1. Conversion of biomass into bio-products and energy. 

 

Figure 2-2. Cellulosic Biomass Composition. 
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 Chemicals from biomass 

Petroleum and natural gas are currently the main raw materials for the production of 

about 95% of the world’s chemicals. Predominantly, various chemicals such as 

ethylene, propylene, butadiene, butanes, benzenes etc. are derived from crude oil. 

These chemicals could be used as end-products, monomers for the polymer industries 

or as precursors for the production of chemicals for other applications. However, price 

fluctuations of these materials in the global markets and the effect of the emission of 

greenhouse gases to global climate coupled with increased public awareness of these 

effects, has renewed interest the search for an alternative to chemicals derived from 

fossil resources [38-41]. In this respect, biomass, which is widespread, inexpensive 

and abundant is considered as an ideal replacement for fossil resources [42-44]. 

 Carbohydrates 

Carbohydrates are the predominant raw materials for the present day biorefineries [45] 

which account for 75% of the 1.7 x 1014 kg of plant biomass harvested yearly [46, 

47].These carbohydrates can be broken-down into various monomers through 

enzymatic hydrolysis, thermochemical degradation or a combination of these two. The 

major components of carbohydrates, cellulose and hemi-cellulose play major roles as 

the structural components of plant tissues and plant cell walls and these constitute the 

major biomass-based precursors for chemicals that can be suitable for conversion into 

more valuable chemicals and polymers [48-50].  

 Chemicals produced from saccharides 

Glucose is the most abundant monosaccharide in nature that can be derived from 

cellulose, starch and hemicellulose and used in production of various chemicals via 

bioconversion and chemical modification. It can be used to produced bio-based acids 

and ketoacids via oxidation to synthesis D-gluconic acid which are widely used in 

pharmaceutical and food industries as a complexing or acidifying agents [51]. 

On an industrial scale, glucose is produced by the enzymatic hydrolysis of starch 

derived from cassava, corn, wheat and potato [52] with an annual production of over 
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15 million tonnes globally. It can also be obtained from lignocellulose materials via 

hydrolysis of the cellulose components for the synthesis of bio-based chemicals such 

as bioethanol, citric acid, lactic acids and 1,3-propandiol [53].  

Several known processes for the conversion of carbohydrates into energy and liquid 

fuels have been in existence for decades. For instance, liquefaction or pyrolysis of 

biomass leads to formation of bio-oils [54], Fischer-Tropsch synthesis has been 

employed for the production of alkanes or methanol from biomass-derived CO: H2 gas 

and the production of aromatic hydrocarbons via the conversion of sugars or methanol 

was reported using zeolites as catalysts [55, 56]. However, the most widely used 

process for producing liquid fuels from biomass is the conversion of glucose to ethanol 

[57]. 

 Bio-based polymers 

Bio-based polymers are defined as materials that are produced from renewable 

resources [58] [59, 60]. Also, the term biopolymers generally refers to naturally 

occurring long-chain materials such as proteins and carbohydrates or materials that 

can be prepared synthetically such as poly (lactic acid) or from bio-based monomers 

[61, 62]. Hence, they are referred to as natural polymers because their synthesis 

generally involves enzyme-catalyzed, chain growth polymerization reactions of 

activated monomers, which are typically formed within cells by complex metabolic 

processes [63]. 

These polymers have continued to draw increased interest from the scientific 

community in recent years. For instance, according to a recent survey of publications 

from the ISI Web of Science (Figure 2-3), this renewed interest is evidenced by the 

number of publications per year. These polymers reduce dependence on fossil fuels 

for materials applications and ameliorate environmental impacts by reducing carbon 

dioxide emissions and price fluctuations that are associated with fossil fuels [64-67]. 
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Figure 2-3. Number of publications of bio-based polymers (source: ISI Web of 

Science) 

For these reasons, there is a motive to replace the petroleum-derived raw materials 

with renewable-based materials for polymer production and based on a recent study, 

it was predicted that the worldwide production capacity of bio-based plastics will 

increased from 3.6 x 108 kg in 2007 to 23. 2 x 108 kg in 2013 and 34.6 x 108 kg by 

2020 [68].  

 Classification of bio-based polymers 

Bio-based materials have been generally classified into three groups [59]. These are: 

(a) those derived directly from biomass, examples are polysaccharides such as 

cellulose, chitin, starch, lignin and proteins, (b) those produced by chemical synthesis 

of bio-derived monomers such as poly (lactic acid) and (c) those from microorganisms 

such as polyhydroxyalkanoates (PHAs) and polyhydroxybutyrates (PHBs). The 

schematic classification is presented in Figure 2-4. 
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Figure 2-4. Schematic classification of bio-based polymers 

 Bio-based polymers derived directly from biomass 

Bio-based polymers derived directly from biomass are generally polysaccharides 

which are carbohydrates formed through the condensation of monosaccharide residues 

by hemi-acetal or hemi-ketal linkages. They can also be found as a short 

oligosaccharide sequence or polymeric repeat units linked to other biopolymers and 

serve as energy storage, structural and protective components, and for gel formation 

depending on their specific chemical structure, composition, molecular weight and 

ionic character [69]. The major classes of polysaccharides are starches, celluloses and 

chitin which constitutes the bulk of polymers directly derived from biomass and are 

used in food and non-food industries due to their functional diversities [69]. 

Although they are naturally obtained directly from biomass, they generally need to 

have a bulk or surface modification chemically on the hydroxyl groups in their 

structure to pave the way for their application as biopolymers. In terms of bulk 

modification, some derivatives of these polymers are also desirable: an example of 

such a process is the formation of chitosan and the chemical modification involves the 

compatibility and minimization of the hydrophilicity of natural fibres between the 

fibres and the matrix [64]. Therefore, polysaccharides are generally modified for used 
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as biopolymers by reducing their hydrophilicity; achieved by lowering their surface 

energy or creating enough surface morphology in order to obtain a water contact angle 

higher than 90o [64, 66, 70].   

2.3.5.1 Cellulose 

Cellulose is the most abundant and widespread biopolymer on earth and its 

macroscopic morphology occurs in the form of fibres [71]. It is produced by plants, 

bacteria, algae and fungi by biosynthesis. Bacterial cellulose, with a degree of 

polymerization of 2000-8000 is an example of an extracellular polysaccharide that is 

produced by several microorganisms. This class of biopolymer is produced as a three-

dimensional network of highly crystalline nano- and microfibrils having 10 – 100 nm 

diameter as revealed in Figure 2-5 below and unique physical and mechanical 

properties that makes it a very promising material for a wide range of applications. 

Cellulose is also characterised by its poor solubility as a result of the strong intra- and 

inter- molecular bonds of the hydrogens within its structure. It exhibits a chemical 

reactivity that is affected by its morphology and degree of crystallinity which varies 

according to its origin and pre-treatment [72]. 

Because of its abundance, biodegradability and specific properties, cellulose is used in 

paper making, cotton textile, coatings, biodegradable plastics and biomaterials [73-

75]. It is also used in the form of a fibre for reinforcements as revealed by its 

macroscopic morphology, replacing glass fibre used in composite materials with 

thermoplastics or thermosetting polymer materials. Their use in this regard have 

helped dramatically in cost reduction and density in handling and transportation, 

recycling, combustion energy recovery and lower fibre abrasion on the processing 

machines, when compared with  glass fibre [64]. 

 

 Figure 2-5. Cellulose structure 
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As a natural bio-based polymer, cellulose can undergo chemical modification to 

improve the adhesion between the polar OH groups of the cellulose fibre and that of 

the non-polar polymer matrix to create some sort of covalent bonds between the fibre 

surface and the polymer matrix which tends to reduce the hydrophilicity and also the 

moisture absorption of the cellulose fibre [64]. The modification of cellulose leads to 

formation of various derivatives by altering one or more OH groups of the structure. 

Some of these derivatives are ethers, esters and acetals which are found commercially 

[76]. 

Cellulose, in the form of a cotton fabric was reported to have been chemically modified 

via two-stage process in order to have an antibacterial properties [77]. The first stage 

of the modification was the treatment of the cotton fabric with chloroacetyl chloride 

using a THF/pyridine as a solvent/catalyst system to introduce the chloroacetate 

groups. The chloroacetylated cotton was treated with potassium salts of a bioactive 1-

napthylacetic acid in the second stage of the process to give a cellulose-1-napthylacetic 

acid adduct. The results from these modifications was reported to have some 

bactericidal activity on Escherichia coli and also showed a high degree of 

hydrophobicity, with a contact angle of more 120o [77]. 

Cellulose can be converted into glucose through hydrolysis by enzymes such as endo-

1,4-β-glucanase and exo-1,4-β-glucanase which are secreted from fungi, bacteria and 

protozoans and can catalyse the oxidation reactions of glucose, or lower molecular 

weight oligomers produced from the hydrolysis reactions [78].  During the hydrolysis, 

endo-1,4-β-glucanase attacks the internal bonds and the exo-1,4-β-glucanase attacks 

the end of the cellulose structure thereby separating the cellulose polymer into two 

glucose units as represented in Figure 2-6. 

 

Figure 2-6. Hydrolysis of cellulose to glucose [78]. 
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2.3.5.2 Chitin and Chitosan 

Chitin is the second most abundant polysaccharide after cellulose that is produced 

annually by biosynthesis. This biopolymer is a long-chain homopolymer of N-acetyl-

D-glucosamine (GlcNAc), (1–4)-linked 2-acetamido-2-deoxy-β-D-glucan, a 

derivative of glucose as shown in Figure 2-7. It occurs in nature as ordered crystalline 

microfibrils forming structural components in exoskeletons of arthropods or in the cell 

walls of fungi and yeast [79, 80]. It can also be produced by other microorganisms 

such as insects and worms and is considered as one of the most abundant renewable 

biopolymers that can be obtained as a cheap renewable biopolymer from marine 

sources [81]. 

Chitin may be described as cellulose biomass because of its similarity in structure in 

that the one hydroxyl group on the monomer structure of cellulose is replaced by an 

acetylamine group as seen in Figure 2-7. Because of this substitution of the hydroxyl 

group in cellulose, chitin possesses increased strength resulting from increased 

hydrogen bonding between the adjacent polymer chains. This makes it a favourable 

bio-based material for use in surgical thread application where it is biodegradable with 

time as the wound heals. Furthermore, it is used industrially for the manufacture of 

separation membranes and ion exchange resins for water purification and as an 

additive in the pharmaceutical and food industries as a stabilizer [82]. 

Chitosan on the other hand, is the most important derivative of chitin and is also 

derived from natural products including the exoskeletons of insects, arthropods such 

as crustacean shells, prawns, crabs as well as cell walls of fungi [83]. It is made up of 

linear β-(1→4) glycosidic linkages that are similar to that of cellulose as can be seen 

in Figure 2-7 that the 2-acetamido-D-glucose and 2-amino-D-glucose units are 

combined by glycosidic bond. This biopolymer is produced by partial deacetylation 

(removal of an acetate moiety) of chitin under acidic conditions (concentrated NaOH) 

or by enzymatic hydrolysis in the presence of chitin deacetylase [84]. 
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Figure 2-7. Structure of chitin, chitosan and cellulose [83]. 

Chitin and chitosan can undergo some form of chemical modification for further 

applications. For instance, based on the structure of chitin, it can be modified at the 

only two hydroxyl groups present while chitosan at either the hydroxyl group, amino 

groups or both. These chemical modifications of chitin and chitosan have been 

reviewed by several authors in recent times [85-87]. For example, chemical 

modification of some polymers was reported via graft copolymerization reactions and 

the following polymers were obtained: polyurethanes, poly(2-alkyl-oxazolines), 

poly(ethylene-glycol), block polyether, poly(ethylene-imine), poly(2-

hydroxyalkanoate), poly(dimethylsiloxane) and dendrimer-like hyper branched 

polymers [88]. Similarly, these chemical modifications can occurred as 

phosphorylated, acylated or alkylated with the formation of Schiff’s bases [89], or 

carboxylates, phthaloylation, silylated, tosylated, sulfated and thiolated [87]. During 

the chemical modification of chitin and chitosan, the physicochemical and biochemical 

properties of these bio-based polymers are not altered. 

On their degradation, chitin and chitosan can undergo total degradation by chemical, 

enzymes and by physical methods. The chemical methods involve acid hydrolysis with 

HCl or oxidation reactions with nitrous acid and hydrogen peroxide. In the enzymatic 

method, chitin and chitosan are degraded by enzymes such as chitinase, chitosanase, 

gluconase, proteases, lysozyme, cellulose, lipase and pectinase. In the case of physical 

degradation, this can be achieved by microwaves, thermal treatments, ultrasound and 
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ionizing radiation [90]. Furthermore, chitin and chitosan can undergo an in-vivo 

biodegradation that leads to the production of non-toxic oligosaccharides with 

different chain lengths that are incorporated into the metabolic pathways to give 

glycosaminoglycan and glycoproteins [78]. Also, the rate of biodegradation depends 

on the degree of acetylation, distribution of the acetyl group and the chain lengths of 

the bio-based polymers [78]. It is suggested that fast rates of biodegradation should be 

avoided if chitin or chitosan are to be considered for medical application. This is to 

prevent the accumulation of amino sugars which can lead to an inflammatory response 

[91].  

Chitin and chitosan as bio-based polymers are used as food additives, in textile 

materials, in drug delivery, as an antibacterial agents, tissue engineering, treatment of 

waste water and in metal nanocomposites [90-94]. Chitosan on the other hand has been 

reported to be moulded as fibres and films [95, 96]. 

2.3.5.3 Starch 

Starch is one of the natural polymers that is generated from carbon dioxide and water 

during photosynthesis in plants [97]. Starch is composed of amylose (poly-α-1,4-D-

glucan) and amylopectin (poly-α-1,4-D-glucan and α-1,6-D-glucan) which is a 

biodegradable and biocompatible polymer from many renewable sources [98-100]. α-

Amylose is a straight chain of glucose molecules joined by α-1, 4-glycosidic linkages. 

Amylopectin is similar to amylose except that short chains of glucose molecules 

branch off from the main chain as shown in Figure 2-8. Starches found in nature are 

10-30% α-amylose and 70-90% amylopectin [101]. Based on these properties, starch 

has been given attention since the 1970s for the production of starch-based polymers 

and for other applications [102-104]. It is considered as a prime candidate for the 

production of bio-based materials that are sustainable because of its complete 

biodegradation, and low cost [105, 106] and it is found in plant roots, stalks, crop seeds 

and staple crops such as rice, corn, wheat, tapioca and potato [107].  

The main sources of starch worldwide are maize 82%, wheat 8%, potatoes 5% and 

cassava 5% [108]. From Figure 2-8, it can be seen that starch structure contains many 

hydroxyl groups at C-2, C-3 and C-5. This suggest that starch can be oxidized or 
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reduced and also participate in the formation of hydrogen bonds, esters and ether which 

are mostly the characteristics of alcohols [109]. 

 

 Figure 2-8. Molecular structure of starch [110]. 

2.3.5.4 Lignin 

Lignin is the only renewable source of aromatics, which consists of three basic 

structural units, p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol in which 

the structural unit are connected by ether and C-C bond, as presented in Figure 2-9 

[111]. These compounds offer the possibility for the synthesis of value-added 

renewable products for materials applications because of the presence of the phenolic 

functional group. For instance, lignin constitutes about 30% by weight and 40% of its 

biomass value which can be used to increase fuel production [111]. 

In lignocellulose material, lignin appeared as a matrix that surrounds the cellulosic 

fibre mostly in herbaceous and soft wood plants [112], with their structures as lamellar 

macromolecular complexes that link through non-covalent interactions [113]. As with 

other bio-based polymers, lignin can undergo some chemical modifications in order to 

be used in polymer synthesis. The modification can be done at the phenolic side or the 

aliphatic hydroxyl groups for the synthesis of polyesters and polyurethane by the 

liquefaction process [78]. Polymers synthesized from these monomeric units of lignin 

are said to have some advantages in terms of their thermal and mechanical properties 

because of their aromatic character [64]. 
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Lignin, like other bio-based polymers can undergo some forms of biodegradation 

facilitated by enzymes and by extracellular lignolytic enzymes such as lignin 

peroxidises, the first lignolytic enzymes isolated from Phanerochaete chrysosporium 

[114] and lactases [115]. In addition to these two enzymes, fungi have also been 

reported to use the secretion of some metallenzynmes such as manganese peroxidases 

in breaking down lignin [116, 117]. These enzymes oxidize the phenolic compounds 

and the aryl-ether position of the molecule as illustrated in Figure 2-10 [78]. 

 

Figure 2-9. Primary lignin monomer structure [118] 

 

Figure 2-10. Lignin degradation by oxidative pathways [78]. 
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2.3.5.5 Proteins 

Proteins are copolymers of amino acids that are randomly arranged and classified 

based on their origins: plant proteins (e.g. soy, pea, canola etc.) and animal proteins 

(e.g. gelatin, whey casein and keratin). Therefore, bio-based polymers derived from 

proteins can be defined as a stable 3D polymeric network which is strengthened by 

hydrophobic interaction and hydrogen bonding [119]. 

Protein obtained from plants particularly from grains obtained by starch extraction 

from the grains are often blended with other materials for possible applications in food 

packaging, preservation and also in automobiles as car dashboards because of their 

improved water resistance [78].  For the proteins to be applied in materials application, 

they undergo compression moulding, injection moulding and extrusion [120]. 

 Bio-based polymers from chemical synthesis of bio-derived 

monomers 

2.3.6.1 Poly (lactic) acid  

PLA, as a bio-based polymer is produced commercially because of its similarities with 

conventional polymers produced from fossil fuels such as polyethylene terephthalate 

(PET). Therefore, PLA is considered as a thermoplastic polymer that has the potential 

to replace polymers such as PET, PS and PCs for packaging, electronics and 

automobile applications [121]. However, their low thermal properties (Tg = 60 oC) 

make PLAs less attractive. Therefore, PLAs are often blended with other polymers 

changing the stereochemistry of these polymers. This influences the crystallinity of the 

final polymer and hence, improves the mechanical and thermal properties [122].  

PLAs are produced by the polymerisation of lactic acid. The monomer, lactic acid 

(LA) is a hydroxyl carboxylic acid that is obtained through bacterial fermentation of 

starch or sugars derived from agricultural biomass and also by chemical processes. 

Two optical isomers of LA are obtained depending on the bacterial strain used during 

the fermentation process.  
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Synthesis of PLA is achieved by either direct polycondensation reaction of lactic acid 

(LA) or ring opening polymerisation of lactide, a cyclic dimer of the lactic acid (LA) 

as presented in scheme 2-1 below [123]. However, it was reported that the synthesis 

of the PLA by the polycondensation reaction is difficult due to the formation of water 

molecules during the reaction [58]. 

 

Scheme 2-1. Synthesis of PLA 

In scheme 2-1 above, the synthesis of low-cost continuous process developed by 

Nature Works LLC for PLA synthesis is presented [124]. The process provides two 

routes for production, the first producing a low molecular weight pre-polymer of 

lactide dimers by a condensation process. In the second route, high molecular weight 

PLA is produced via the catalytic ring opening polymerization of the low-molecular 

weight pre-polymer earlier prepared by the condensation reaction [125].  

These processes provide the opportunity to produce various types of PLA and their 

corresponding copolymers which depends on the ratio and stereochemical nature of 
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the monomers. This results in the production of PLAs with final properties based on 

the ratio of the monomers with an example presented in Table 2-1 [126]. 

Table 2-1. Glass transition and melting temperature of PLA with various L-monomer 

copolymer ratio 

Copolymer 

ratio 

Glass transition (Tg), 

°C 

Melting temperature °C 

100:0 (L/DL)-PLA 63 178 

95:5 (L/DL)-PLA 59 164 

90:10 (L/DL)-PLA 56 150 

85:15 (L/DL)-PLA 56 140 

80:20 (L/DL)-PLA 56 125 

 

In the global market, PLA is produced under different brand names for various 

applications in the industrial sectors such as automobile, electronics, medical and 

commodity uses. The major producers of different grades of PLAs with various ratios 

of D/L lactide and trade names are listed in Table 2-2 [76]. 

Table 2-2. Trade names and suppliers of various brands of PLA [76] 

Trade Name Suppliers Country 

Nature Works® Cargill Dow USA 

Galacid® Galactic Belgium 

Lacty® Shimadzu Japan 

Heplon® Chronopol USA 

CPLA® Dainippon Ink Chem Japan 

Eco plastic® Toyota Japan 

Treofan® Treofan Netherlands 

Ecoloju® Mitsubishi Japan 

Biomer® L Biomer Germany 
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 Bio-based polymers derived from microorganisms 

2.3.7.1 Polyhydroxyalkanoates (PHAs) 

PHAs were first discovered in 1926 as an accumulated polymer within a bacterium 

named Bacillus megaterium [127] and this accumulation occurs in the presence of a 

carbon source together with a deprivation of some nutrients such as nitrogen [128, 

129].  Therefore, these bio-based polyesters have been found in most microorganisms 

as intracellular granules [130-132] or secreted as extracellular by the microorganisms 

[127, 133]. Also, these bio-based polymers can be produced in high yields from certain 

genetically modified plant species [134-136]. Therefore, PHAs have the potential to 

replace some plastics that are derived from petroleum because they are biodegradable 

and biocompatible [137]. 

Polyhydroxyalkanoates (PHAs) are bio-based aliphatic polyesters with a general 

formula as shown in scheme 2-2 below [138]  that are produced by numerous 

microorganisms through bacterial fermentation using several renewable wastes 

feedstock [60, 139]. Examples of microorganisms used in PHAs synthesis are: 

microbes such as Bacillus megaterium, Azotobacter, Agrobacterium, Rhodobacter and 

Sphaerotilius  that are accumulated  in the form of granules as energy storage 

compounds [78]. However, production of PHAs from microorganisms is very 

expensive as the cost of the carbon source is the main contributing factor to this [122].  

Therefore, a cheaper route for their production is the use of genetically modified plants 

that use atmospheric carbon dioxide and sunlight for the production of PHAs [134, 

140]. Table 2.3 illustrates some of the plants that have been used in the synthesis of 

PHAs via biosynthesis. 
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n = 1 R = Hydrogen 

R = Methyl 

R = Ethyl 

R = Propyl 

R = Pentyl 

R = Nonyl 

Poly (-3-hydropropionate)   

Poly (-3-hydroxybutyrate) 

Poly (-3-hydroxyvalerate) 

Poly (-3-hydroxyhexanoate) 

Poly (-3-hydroxyoctanoate) 

Poly (-3-hydroxydodecanoate) 

n = 2 

 

R = Hydrogen Poly (-4-hydroxybutyrate) 

 

n = 3 R = Hydrogen Poly (-5-hydroxyvalerate) 

 

Scheme 2-2. The general structure of Polyhydroxyalkanoates [138]. 

Table 2-3. PHAs biosynthesis in plants [137] 

Plant PHA genes Product Yield 

Nicotiana 

tabacum 

Acinetobacter sp. 

Thiolase (phaA), 

syhthase (phaC) 

 

17.3-18.8 % 

DW in leaf 

tissue 

Nicotiana 

tabacum 

Bacillusbmegateri

um reductase 

(phaB) 

 

8.8 % DW 

in total 

plant 

biomass 

Elaeis 

guineensis 

bktB, phaB, phaC 

and tdcB 

 

~91.2 % 

Panicum 

virgatum L 

PhaA, phaB of R.  

eutropha hybrid 

phaC 

 

3.72 % DW 

in leaf, 1.23 

% DW in 

stalk 

A. thalia, 

Saccarum 

spp 

R. eutropa  phaA, 

phaB phaC 

 

1.6-1.8 % in 

the leaves. 

DW = dry weight 
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The structure of PHAs have a great influence on their properties with the simplest PHA 

consisting of a hard and brittle material [141], which  makes it very difficult to be 

manipulated using melt processing machines used for conventional plastics [142].  

PHAs are classified into two groups according to the number of carbons on their 

monomer structure. These are: short chain length (scl-PHA) and medium chain length 

(mcl-PHA). The scl-PHA contains 3-5 carbon atoms and are synthesised by some 

bacteria such as Cuprivadus necator and Alcaligenes latus. The other group, mcl-PHA 

consists of 6-14 carbon atoms and are synthesised by bacteria such as Psedomonas 

putida and Psedomonas mendocina [143, 144]. Short chain length PHAs are stiff and 

brittle in addition to having a high degree of crystallinity while medium chain length 

PHAs are flexible with low degree of crystallinity, tensile strength and melting points 

[144]   

PHAs can undergo biodegradation into water-soluble oligomers and monomers by 

lipases and also by microbial depolymerases excreted from various microbes found in 

the environment [145] and can also undergo thermal degradation as well as 

nonezymatic degradation. This makes the PHAs suitable in medical applications, 

disposable materials and in the production of bottles, films and fibres [144].  

 Other sources of bio-based polymers 

2.3.8.1   Plant oils 

Plant oils such as fatty acids and terpenes have great potential as alternative renewable 

resources for synthesis of polymers derived from biomass because of their abundance 

and relatively low price [146, 147]. Furthermore, diverse chemical techniques can lead 

to their modification for synthesis of various monomers and polymers for material 

applications [148-150]. 

Plant oils are made up of triglycerides which are triesters of glycerol with long-chain 

fatty acids as shown in Figure 2-11. The structure of the fatty acids varies and is 

dependent on the plant, crop, season and the growing conditions. The glycerides are 

obtained from the esterification reaction involving glycerol with three fatty acids that 
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accounts for 95% of the total weight of the triglycerides and their content in each plant 

oil [151]. The physical and chemical properties of glycerides are generally affected by 

factors which include: the stereochemistry of the double bonds within the fatty acids 

structure, the degree of unsaturation of the double bonds and the length of the carbon 

chains [146]. 

 

Figure 2-11. Triglyceride generic structure [151]. 

2.3.8.2   Cassava as a biomass source of starch 

Cassava (Manihot esculenta) is one of the most important sources of biomass starch 

for the production of wide range of materials as well as being a food crop. Because of 

its ability to survive drought and conditions of low nutrients, this plant is usually 

planted in humid tropics [152] by stem cutting and grows to a height of 1 to 3 m with 

several roots with various compositions as shown in Figure 2-12. 

 

Figure 2-12. Typical composition of cassava root 

Among plants that can convert large amounts of solar energy into soluble 

carbohydrates per unit area cassava ranks highly and can yield 40% starch higher than 

rice and 25% more than maize. Therefore, it is the cheapest source of energy for human 

Moisture Starch

Fiber Protein

Others including minerals
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consumption and animal feed with its production requiring only marginal land for 

increased agricultural production [153].   

2.3.8.3   Starch production from cassava 

Cassava is a woody shrub that was introduced by the Portuguese navigators to the 

African continent around the 17th century and flourished as a reliable source of food to 

the poor [154]. It is cultivated as an annual crop in tropical and sub-tropical regions as 

a major source of carbohydrate from its starchy roots. The crop is regarded as a major 

source of staple food in developing countries because it is the third-largest source of 

food carbohydrate. Because of its drought-tolerance, this crop is capable of growing on 

marginal soils [153]. 

 

Starch is one of the most abundant substances in nature, a renewable resource for use 

as a raw material for bio-based polymers. As stated earlier, starch is produced from 

grain or root crops. It is mainly used as food, but is also readily converted chemically, 

physically, and biologically into many useful products such as food, paper, textiles, 

adhesives, beverages, confectionery, pharmaceuticals, and building materials. Cassava 

starch has many remarkable characteristics, including high paste viscosity, high paste 

clarity, and high freeze-thaw stability, which are advantageous to many industries 

[155, 156].  

The greatest potential of cassava as an agro-industrial crop lies in the production of 

starch which can generally be produced by the wet milling of fresh cassava roots but 

in some countries such as Thailand it is produced from dry cassava chips. The wet 

milling method of starch extraction from fresh cassava roots can be divided into five 

main stages: preparation (peeling and washing), rasping/pulping/grating, purification 

(starch washing), dewatering and drying, and finishing (milling and packaging) as 

shown in Figure 2-13. 

In sub-Saharan Africa, these processes of making starch from cassava are subjected to 

quality control measures to prevent deterioration in the quality of the starch which 

might otherwise reduce its acceptability for food or pharmaceutical use. This is 

achieved by adding water to the mash in order to make a thin slurry. The slurry is 

http://www.idbes.com/index.php?option=com_content&task=view&id=139&Itemid=238
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sieved, dewatered, and then dried, which may be by sun drying: that is, spreading thin 

layers of the lumps on concrete floors or raised wooden platforms for 24-120 hours. 

The possibility of contamination by dirt is high and poor weather extends the chances 

of spoilage by microbial attack. Therefore, mechanized drying at 50 °C for 6 h is 

employed to improve the quality of the starch. Sometimes starch is dewatered in a 

centrifuge or vacuum filter before drying in fluid-bed driers, tray driers, and flash 

driers. It is then pulverized, sifted, and packaged [157]. 

 

Figure 2-13. Simple process for cassava starch production 

Among the chemical precursors that are derived from carbohydrates (fructose and 

glucose) besides their use in food chemistry are furan derivatives such as furfural and 

5-hydroxymethylfuran which are produced as the major products by acid catalysed 

hydrolysis and dehydration of several abundant biomass carbohydrates [158]. These 
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can be considered as starting materials for the preparation of polymers to replace those 

of fossil raw materials [49, 159]. With the recently developed preparation methods, 5-

hydromethylfurfural is expected to play a vital role in renewable energy and chemical 

areas, and together with related oxidation product derivatives, 2,5-dicarboxylic acid 

(FDCA) and 2,5-diformylfuran (DFF) can serve as  excellent candidates as monomers 

for the development of new polymeric materials [160], that can have direct 

applications in the pharmaceuticals and polymer industries [161, 162].  

 Production of furan-based aldehyde 

Furan-based aldehydes derived from biomass-based carbohydrates have been 

produced in recent years and have found a lot of industrial applications. This is because 

of the availability of cheaper materials, environmentally benign catalysts and solvents 

used in their preparation in comparison with conventional catalytic conversion 

systems. The detailed advancements in their production are highlighted below.  

 Furfural production 

2.4.1.1   Furfural from Xylose and xylan as feedstock 

Furfural is generally produced from xylose that is mainly present as xylan in the 

hemicellulose. Traditionally, furfurals are produced using homogeneous acid catalysts 

such as HCOOH, CH3COOH, HCl, H2SO4, HNO3 and H3PO4 in aqueous solution 

[163-168]. However, these homogeneous acid catalysts have some drawbacks such as 

being very corrosive and possessing higher environmental risks [169-171]. This 

prompted the scientific community to proffer some solutions by the use of solid acids, 

Lewis acids and various solvents that were considered to be cleaner and more 

environmentally benign. Based on these, dehydration of xylose in water by the use of 

H-ZSM-5 catalyst was investigated and 46% furfural yield was obtained at 200 oC 

over 18 min [167]. Similarly, a one-pot conversion of hemicellulose into furfural using 

K10 and HUSY in aqueous media was conducted [172] and 12% yield at 170 °C for 3 

h was obtained. In addition, Sn-beta, MSHS-SO3H, graphene, graphene oxide (GO), 

sulfonated graphene (SG) [173] and sulfonated graphene oxide (SGO) were also 
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synthesized and used for furfural formation, and yields of 14.3, 43.5, 51, 53, 55 and 

62%  respectively were achieved [170, 174, 175]. 

As stated earlier, water was used as a solvent for the synthesis of furfural with a 

reasonable yield and is considered as the most economical solvent for the synthesis of 

furfural. However, it can lead to formation of some undesired side reactions that 

decrease the yields of furfural [176]. Therefore, polar aprotic solvents were 

subsequently introduced to the production of furfural. Takagaki et al [177] showed 

that a furfural yield of 37% was obtained from xylose in N,N-dimethylformamide 

(DMF) using Amberlyst-15 with addition of hydrotalcite (HT). When the dehydration 

of xylose was performed in dimethyl sulfoxide (DMSO) by the use of Nafion 117, 

60% furfural yield was achieved [178]. Although polar aprotic solvents have been used 

in furfural production, they have also been found to inhibit the formation of side-

products to some extent, and suffer from the drawback of poor solubility of 

carbohydrates and the problem of high boiling points, which are unfavourable in the 

production and separation of furfural [176]. 

In recently times, mixed solvents consisting of water and toluene or methyl isobutyl 

ketone (MIBK) in the presence of H-form mordenite were found to be effective for the 

conversion of xylose into furfural [179]. In these systems, the dehydration reaction 

takes place in the aqueous phase and furfural is extracted to the organic phase as soon 

as it is formed [179] and this contributes to reduction of several unwanted secondary 

reactions and improves furfural yields. Hence, the biphasic systems were further 

studied by a number of research groups that used various solid acids including ion-

exchange resins, zeolites, sulphated metal oxides and supported heteropoly acids, 

furfural yields ranging from 20.2 to 98% were obtained [180, 181].  

Another acid option for the production of furfural is solid acids. These solid acids are 

considered an attractive option for the synthesis of furfural because they are less 

corrosive and can be easily separated and reused [176]. However, solid acids may be 

gradually deactivated due to the deposition of humins and the loss of active sites after 

a few reaction cycles, and consequently, require frequent regeneration by calcination 

and impregnation. 
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2.4.1.2   Production of 5-(hydroxymethyl) furfural (5-HMF) 

5-hydroxymethylfurfural (HMF) is a yellow organic compound with a low melting 

point (30 - 34 oC) that is produced by dehydration of carbohydrates, such as fructose, 

glucose, sucrose, cellulose and inulin. HMF is regarded as a key building block in 

biomass-based bio refinery because it can produce a variety of useful derivatives, 

including 2,5-dimethylfuran, which is a promising biofuel, 2,5-diformylfuran, 2,5-

furandicarbaldehyde and 2,5-furandicarboxylic acid [41] 

Generally, production of 5-(hydroxymethyl) furfural (5-HMF) is based on the triple 

dehydration of C6 sugar (hexose) as shown in scheme 2-3. 5-hydroxymethylfurfural 

(HMF) is being considered as a key intermediate for chemicals derived from biomass. 

Its potential has been identified by several authors as biofuel intermediates [59, 182, 

183], polymeric materials and fine chemicals [184, 185], pharmaceuticals [162] and 

solvents [49, 186]. 

It can also be produced from oligo- and polysaccharides by more complex catalytic 

systems and reaction media [187, 188]. The dehydration reaction of hexose is usually 

carried out in the presence of acid catalysts. Efficient yield of HMF is achieved when 

the dehydration reaction is carried out in a non-aqueous medium rather than in aqueous 

media. This efficient yield was reported to be attributed to the degradation of HMF to 

the side reactions such as the formation of levulinic acids [38]. The experimentally 

observed mechanism for the dehydration of hexose is proposed to consist of a cyclic 

intermediate [176, 189] and an open-chain mechanism [190] in aqueous and non-

aqueous media. 

Hexose

O

O

OH

-3H2O

O

OH
H

O

OH

O

5 -HMF

[Intermediate]

Levulinic acid Formic acid
++2H2O

 

Scheme 2-3. Production of HMF and the corresponding side reaction [162]. 
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 Catalytic conversion of carbohydrate to 5-HMF 

Dehydration of carbohydrate, particularly fructose is known to be catalysed by 

Bronsted acids and Lewis acids. Catalysts used in the dehydration are classified as 

mineral acids, solid acids and metal-containing catalysts [162]. 

2.4.2.1   Mineral acids 

Mineral acids have been employed widely in studies relating to catalytic conversion 

of carbohydrates [164] producing yields of 40 - 60% of HMF at 70 - 90% fructose 

conversion [173]. The most commonly used mineral acids are H2SO4, H3PO4 and HCl 

because they are not expensive [191]. However, these homogenous acids have some 

disadvantages being particular difficult in terms of separation from the reaction 

mixtures and subsequent recycling. Furthermore they have the possibility of corroding 

the reaction vessel materials when they are in contact.  

Dehydration of D-fructose was reported using H2SO4 as catalyst in sub-critical water 

at 250 oC [27, 189]. The results indicate that 53% yield of HMF was obtained. 

Similarly, 78% yield was obtained at 180 oC when a sub-critical or supercritical 

acetone-water mixture was used as the reaction medium [27]. Another mineral acid 

used in fructose dehydration is HCl as the catalyst. The acid was used in a two-phase 

reactor system. In this process, DMSO and poly (1-vinyl-2-pyrrolidinone) (PVP) were 

employed to suppress the undesired side reactions [162]. Similarly, glucose was 

reported to be hydrated using mineral acid such as H3PO4 at a temperature of 190 oC. 

The results indicate a low yield of 15.5% and were attributed to the stable ring structure 

of the glucose [162]. 

Dehydration of carbohydrate can also be achieved using mineral acids as catalyst in a 

biphasic reactor system. It was reported that a high yield of 5-HMF (63.3%) was 

obtained from glucose hydrolysis in a water-butanol biphasic reactor system using HCl 

as catalyst [49]. This approach can also be employed to polysaccharides such as 

sucrose, starch, cellobiose and xylan using mineral acids catalysts [164].  
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Therefore, it has been established that mineral acids have been employed broadly in 

dehydration of carbohydrate and found to be effective: 5-HMF was obtained at 

reasonable yields. However, mineral acids have some drawbacks in terms of separation 

and recycling as well as material corrosion. 

2.4.2.2 Solid acid catalysts 

Solid acid catalysts are used because they have some advantages over liquid acid 

catalysts. Some of these advantages include: their ability to facilitate the separation of 

products, they can be recycled easily and can work at elevated temperatures, thereby 

lowering the rate of reactions and favouring the formation of 5-HMF [162].  

Recently, dehydration of fructose was carried out using niobic acid as a solid acid 

catalyst and a stable 5-HMF product was obtained without the formation of side 

products [192]. The reaction was carried out using water as the solvent because the 

acid is known to be water-tolerant [193, 194]. Also, hydrated niobium pent oxide 

(Nb2O5.nH2O) was reported to have shown high catalytic activity in the dehydration 

of carbohydrates to 5-HMF [195] and from the results, 74% yield of 5-HMF was 

obtained. Furthermore, this hydrated niobium oxide is relatively cheap, low toxicity 

and provides easy handling. Other solid acids used in dehydration of carbohydrates are 

H-form mordenite [196], vanadyl phosphate [197], ion-exchange resins [162] and 

sulphated zirconia [198]. 

Dehydration of carbohydrate was studied using dealuminated H-form mordenite in a 

solvent mixture of water-methylisobutylketone (MIBK) at 165 oC [196] and the results 

obtained indicate a 5-HMF yield of 69.2% at 76.0% conversion was accomplished in 

one hour. The authors further stated that the conversion and selectivity of the 5-HMF 

depends on both the acidic and structural properties of the catalyst. 

Catalytic properties of vanadyl phosphate as a solid catalyst were also reported in the 

dehydration of D-fructose in aqueous solution and 40.2% yield of 5-HMF was 

obtained within 30 minutes [197]. Other phosphate-based catalysts like niobium 

phosphate (NbOPO4) and phosphoric acid-treated niobium oxide were also used and 
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delivered 70 - 80% selectivity of 5-HMF at a D-fructose conversion of 30 - 50% in 

pure water, achieved at 100 oC without any extracting solvent [199]. 

Fructose dehydration was investigated using acidic ion-exchange resins and 80% yield 

of 5-HMF was obtained [200]. Similarly, 80 - 90% yield of 5-HMF was obtained using 

Levitit® SPC-108 and Diaion® PK-216 resins as catalysts [201, 202]. Furthermore, 

high selectivity of 5-HMF was obtained in the presence of ion-exchange resin catalyst 

and DMSO as the solvent medium. From the results obtained in DMSO, 90% yield of 

5-HMF was reported while 80% yield was obtained in water as the reaction medium. 

This suggests that both DMSO and water as solvents can effectively give 5-HMF in 

high yield. In addition, DMSO is a dipolar aprotic solvent and can prevent the 

formation of side products; however, separation of the solvent (DMSO) and 5-HMF 

remained a major challenge [162]. Amberlyst-15 is also used as catalyst in the 

dehydration reaction of fructose. This catalyst was in various ionic liquids and 5% 

yield of 5-HMF was obtained at 80 oC in 1-butyl-3-methylimidazolium 

tetraflourophosphate and closed to 80% in the same ionic liquid (1-butyl-3-

methylimidazolium hexaflourophosphates) in a micro batched reactor [203]. Also, 

Ilgen et al. [186] reported a 40% yield of 5-HMF using Amberlyst-15 catalyst in a 

cholin chloride (ChCl)/D-fructose system. 

2.4.2.3   Sulfated zirconia as a solid catalyst 

The use of liquid acid catalysts is very important in commercial and industrial 

applications. However, the uses of these liquid catalysts have some safety and 

environmental drawbacks such as toxicity, corrosion, pollution, separation of products, 

and problems associated with storage, disposal, transportation and handling. 

Therefore, replacing those acids with more environmentally benign solid catalysts is 

desirable to overcome these environmental and safety drawbacks. Among these solid 

catalysts, sulfated zirconia has attracted much attention since it exhibited a promising 

catalytic activity in many reactions such as isomerization, hydrocracking, alkylation, 

condensations, and oligomerizations [204]. The use of sulfated zirconia as a solid 

catalyst was first reported by Arata et al. [205] used in  n-butane isomerization at 

moderate temperatures. The results showed that the reaction mechanism involved the 

formation of carbenium ions via protonation of the alkane, and this demonstrated the 
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super acidity of sulfated zirconia. However, catalytic activity of sulfated zirconia is 

not only affected by acid strength alone, but also the type of the acid sites, Brønsted 

and Lewis acid sites, plays an important role in determining the catalytic properties. 

It is generally accepted that the essential properties of sulfated zirconia, such as the 

acid strength, the nature of the Lewis and Brønsted acid sites, and catalytic properties, 

are strongly influenced by the method of preparation, nature of the starting materials, 

types of sulfating agent, and thermal treatment [206]. Conventional sulfated zirconia 

is generally synthesized by two step methods [207, 208]. In the first step, zirconium 

hydroxide is prepared by hydrolysis of an aqueous solution of a zirconium salt. The 

second step involves treatment of the zirconium hydroxide with a suitable sulfating 

agent to form strong acid zirconia upon pyrolysis. An alternative one step preparation 

procedure has also been developed for the synthesis of sulfated zirconia. In the one 

step method, alcogel is formed by mixing the zirconium alkoxide, usually zirconium 

propoxide, in alcohol with nitric acid in the presence of sulfuric acid. The alcohol is 

then dried to form aerogel which in turn forms sulfated zirconia when calcined at high 

temperature [209]. These methods are affected by the type of hydrolysing and 

precipitation agents, pH of the solution, type of the zirconium precursor, sulfating 

agents, and finally the drying and calcination procedures. Typical sulfating agents 

reported in the literature are H2SO4, (NH4)2SO4, SO2, H2S, and SO2Cl2, and typical 

zirconium precursors are zirconium chloride, zirconium nitrate, zirconium 

isopropoxide, and zirconium oxychloride [210]. 

Recently, production of 5-HMF catalyzed by TiO2 and ZrO2 was examined under 

microwave irradiation [211, 212]. In these approaches, 38.5% yield was obtained using 

TiO2 with D-fructose conversion of 83.6% and 30.5% yield at 65% conversion using 

ZrO2 all at 5 minutes reaction time. Sulfated zirconia was impregnated with H2SO4 

used in dehydration of fructose as catalyst [199, 213]. From the results obtained, 72.8% 

yield of 5-HMF was reported at 180 oC at 93.6% fructose conversion in acetone-

DMSO solvent mixtures. This suggests that sulfated zirconia is an effective solid 

catalyst that can catalyse fructose in non-aqueous solvents.  
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2.4.2.4   Metal-Containing catalysts 

Transition metal elements have found applications in dehydration of D-fructose as far 

back as the 1960s [162]. 5-HMF was prepared using thorium and zirconium metals as 

catalysts [162]. Similarly, lanthanide (III) ions were reported to catalyse the 

dehydration of six carbon sugars in aqueous media at 140 °C without the formation of 

side reactions [214] and also dehydration of D-glucose to 5-HMF was catalyzed by 

lanthanoide (III) ions, but the 5-HMF was observed to be decomposed further in the 

reaction [215]. 

Several authors have recently reported some remarkable achievements in metal 

catalyzed reactions in carbohydrate dehydration to 5-HMF. Zhao et al. [216] reported 

that metal halides particularly, chromium chloride can effectively catalyse D-fructose 

and D-glucose in ionic liquids. From their findings, 70% yield of 5-HMF was obtained 

from D-fructose and glucose using CrCl2 as catalyst in 1-ethyl-3-methylimidazolium 

chloride (BMIMCl) [217]. In a similar report, IIgen et al. [186] obtained 60% yield of 

5-HMF from fructose using CrCl3 catalyst in a medium consisting of ChCl and 50wt. 

% of the fructose substrate. Furthermore, 55% yield of 5-HMF was obtained in a 

single-step conversion of cellulose components catalyzed by metal chlorides basically 

CuCl2 and CrCl2 in 1-ethyl-3-methylimidazonalium chloride (EMIMCl) [217] [218] 

and 89% conversion of cellulose was achieved in EMIMCl-water mixture [217] [219]. 

From these studies, it can be seen that metal-containing catalysts can be applied 

effectively in the dehydration reaction of hexose sugars for the synthesis of 5-HMF. 

2.4.2.5   Other catalysts 

Presently, ionic liquids are applied in the synthesis of bio-based materials because they 

are stable, have low vapour pressure and can be recycled [220, 221]. These ionic 

liquids can serve as catalysts as well as solvents in green chemistry [222]. For instance, 

a 74.8% yield of 5-HMF was obtained from fructose dehydration at 90 °C using N-

methyl-morpholinium methyl sulphonate as catalyst under a nitrogen atmosphere 

[223]. Also, 88% yield of 5-HMF was reported using 1-ethyl-3-methylimidazolium 

hydrogen sulphate as catalyst at 30 min in MIKB as co-solvent [223]. Therefore, their 
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use has been explored extensively in the dehydration of sugars mostly in the presence 

of metal chlorides and acidic resins [216, 224]. 

   Solvents used in production of 5-HMF 

Solvents that are commonly used in the dehydration of hexose are dimethylsulphoxide 

(DMSO), n-butanol, acetone, dioxane, polyglycol ether and dimethylformamide 

(DMF) [190]. Water is also considered as a possible solvent based on economic and 

environmental perspectives and recently was applied as a reaction medium in the 

dehydration reaction of fructose over a niobic acid catalyst without the formation of 

any side-reactions [192].  Among these solvents, dimethylsulphoxide (DMSO) has 

been reported many times as the most widely used in carbohydrate dehydration 

reactions. It was reported that dehydration of fructose to HMF with DMSO as solvent 

was found to be possible without a catalyst [225]. However, product separation and 

reactant solubility using this solvent has been identified as its major disadvantage. In 

addition, economic feasibility and environmental impact of using these non-aqueous 

solvents in HMF production on a large scale is also a challenge [189] . In  order to 

overcome these challenges facing solubility of the products, mixed solvents such as 

water - organic systems are used because non-aqueous solvents are often partially 

miscible with water and therefore, they can serve as phase modifiers of the aqueous 

medium [226].  

In summary, the solvents mentioned above have been reported to be used as reaction 

media in hexose dehydration by several authors. HMF can be decomposed to levulinic 

and formic acids by taking up two molecules of water under acidic, hence this may 

affect the HMF yield and separation of HMF from levulinic acid tends to be difficult 

[227]. Therefore, the presence of water should be avoided if one is to obtain HMF in 

high yield in acid catalysed dehydration of hexose. 

2.4.3.1   Ionic liquids as solvents 

Ionic liquids are used as solvents in dehydration of hexose. They are regarded as novel 

environmentally benign solvents mainly because of their very low vapour pressures. 

Ionic liquids are defined as salts that melt at or below 100 °C, affording liquids 



N.M. Baba                                                                                                                         CHAPTER 2: LITERATURE REVIEW 

68 

 

exclusively composed of ions [159]. They are generally organic salts with low melting 

point which usually appear crystalline under ambient conditions, however at relatively 

low temperature (less than 100 °C) they can be molten and dissociate [217]. One of 

their most important features is that they present a very low vapour pressure. 

Dehydration of glucose to HMF was reported by several authors using ionic liquids as 

solvents [47, 216, 228-231] some of them are shown in Figure 2-14. 

 

Figure 2-14. Structures of some ionic liquids used in the synthesis of 5-HMF 

HMF yield of about 70% was reported using 1-ethyl-3-methylimidazolium chloride 

(EMIMCl) as ionic liquid in the presence of chromium (II) chloride catalyst at 100 °C 

for 3 hours [216]. These authors were the first to report such a significant yield of HMF 

in ionic liquid. Furthermore, 1-butyl-3-methylimidazolium chloride (BMIMCl) was 

used in the production of HMF and 88.4% yield was obtained with a fructose 

conversion of 95.8% at 100 oC for 30 minutes reaction time catalyzed by sulphated 

zirconia [230]. From their results, it appears that the ionic liquid can be recycled up to 

6 times with the catalyst without loss of activity for both the ionic liquid and catalyst. 

This suggests that ionic liquids used as solvent can be recycled in the course of 

carbohydrate dehydration without loss of activity. 

Cao et al [232] have studied the effects of ionic liquid structure and the amount of 

catalyst used in 5-HMF synthesis. From their findings, it was observed that 5-HMF 

yield of 63% was achieved using 1-butyl-3-methylimidazolium chloride (BMIMCl) 
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while 1-butyl-2, 3-dimethylimidazolium chloride yielded no 5-HMF. They observed 

that the structural difference between these ionic liquids is the position of hydrogen 

and methyl group on the C-2 position in which the reaction was affected the acidic 

nature of the C-2 hydrogen. 

A recent study on the conversion of glucose to HMF was conducted using an 

inexpensive tetraethyl ammonium chloride (TEAC) ionic liquid and the results show 

an HMF yield of 71.3% was achieved in 30 minutes reaction time at 130 oC [229]. 

Based on these results, the authors have argued that though higher yield was obtained 

by others, the ionic liquids were expensive and the reaction proceeds in relatively long 

reaction times of 3-6 h. Furthermore, the ionic liquids used were reported to be highly 

problematic for actual industrial application, hence the need to develop relatively 

inexpensive ionic liquids for the production of HMF from glucose [229]. 

 Furan derivatives for polymer applications 

Recently, interest of the scientific community is focusing on furan derivatives for 

polymer production and applications because of their distinct characteristics that are 

associated with the peculiar behaviour of the furan ring. Furans being heterocyclic 

compounds possess an aromatic-dienic character that opens vast perspectives for the 

production of polymeric materials [64, 233]. Compared with benzene and its 

homologues such as pyrrole and thiophene, furan has the lowest aromatic character as 

well as highest dienic character. The supremacy of the dienic character is positioning 

some monosubstituted furan derivatives as precursors for new methods in polymer 

synthesis and modification, such as by Diels-Alder (DA) reactions. In this case, the 

furan ring plays the role of dienic reagent with a variety of dienophiles such as 

maleiamides [65, 234, 235]. This may represent a starting point for the preparation of 

polymeric materials with novel properties and applications. 

Furthermore, furan derivatives such as 2,5-disubstituted furans can be suitable 

precursors of condensation polymers such as polyesters and most commercial 

polymers with furan version like poly(butylenes terephthalate) (PBT) and 

poly(propylene terephthalate) (PPT) [236-238]. These polymers are dependent on 
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furans and 5-HMF that can be converted into two distinct large families of monomers 

that may replace those available from petrochemicals [65, 233]. 

Monomers derived from furfural are illustrated in Figure 2-15. They are prepared by 

connecting the various vinyl moieties and acrylic or epoxide groups of the furan ring 

which can be polymerized or copolymerised by either free radical, anionic or cationic 

polymerisations via these moieties. 

 

 Figure 2-15.  Monomers derived from furfural [65].  

Additionally, furfural derivatives are reported as serving as precursors of difunctional 

difuran monomers appropriate for step-growth polymerizations and their production is 

based on the acid-catalysed condensation of the corresponding 2-substituted furan 

derivatives in the presence of an aldehyde or ketone as illustrated in Figure 2-16 [64, 

65]. 

 

Figure 2-16.  Difuran monomers derived from 2-subsituted furans [65]. 
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Other monomers are derived from 5-HMF as illustrated in Figure 2-17.  They are 

prepared like those of furfural but in this case, the carbonyl, hydroxyl, amino or 

isocyanate functional groups are connected to the heterocyclic ring of the 5-HMF 

which are suitable for step-growth reactions. These types of monomers when 

polymerised can give rise to polycondensation products with the furan ring being part 

of the polymer’s backbone unlike those from furfural which are pendant on the 

backbone of the polymers [64].  
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Figure 2-17. A selection of monomers derived from HMF [65]. 

Therefore, from all these monomers derived from furfural and 5-HMF as illustrated in 

Figures 2-16 and 2-17, FDCA and its derivatives such as the corresponding esters 

(R=OAlkyl) and dichloride (R= Cl) are potential precursors for the synthesis of 2, 5-

disubstituted furan polyesters.  

Other derivatives of 5-HMF that can serve as monomers for the production of 

polymers to replace those derived from fossil are 2,5-furandicarboxylic acids (FCDA), 

2,5-bis(hydroxymethyl)furan (BHMF), 2,5-bis(aminomethyl)furan 2,5-diformylfuran 

(DFF), and 2,5-dimethylfuran (DMF) [64, 238] (Figure 2-18). These compounds are 

oxidation products of 5-HMF and can be used in the production of polyesters, 

polyamides and polyurethane [34].  
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Figure 2-18.  Products of HMF oxidation [239]. 

 2,5-Furandicarboxylic acid (FDCA) 

2,5-furandicarboxylic acid is synthesised from the oxidation of 5-HMF. This has 

properties and applications that are similar to teraphthalic and isophthalic acids which 

are used in the production of polymers and chemicals [158, 233]. For instance, FDCA 

has a similar structure to teraphthalic acid (Figure 2-19) that is used in the production 

of polyethylene terephthalate (PET). Therefore, FDCA has been found to be an 

alternative for the petroleum-based terephthalic acid counterparts used in the chemical 

industry [240]. Furthermore, the US department of Energy has also identified FDCA 

as one of the 12 top potential chemicals that can be derived from biomass [241]. 

 

Figure 2-19. Structural similarity between terephthalic acid and FDCA 

The oxidation of 5-HMF has been studied using variety of catalysts. For instance, 5-

HMF oxidation over Pt/Pb catalysts was studied [242]. It was found that the reaction 

proceeds via two stages; the aldehydes side chain was first oxidized to a carboxylic 

acid, producing 5-hydroxymethyl-2-furancarboxylic acid (HFCA), and the oxidation 
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of the hydroxymethyl side chain follows to yield FDCA. The same authors also found 

that hydroxide base was more effective in producing FDCA than carbonate base, 

which favoured the production of HFCA. Furthermore, metallic catalysts such as 

carbon or alumina-supported platinum are found to be efficient for the oxidation of 5-

HMF to FDCA [243]. Similarly,  high yield of 2,5-FDCA was obtained using Pt/Pb 

bimetallic catalysts [242] and 60% yield based on air oxidation of 5-HMF using 

Co/Mn/Br catalysts was reported [242]. The reaction was performed at 125 °C under 

7.0 MPa air pressure for 3 hours. Also, 99 mol.% yield of 2,5-FDCA from 5-HMF was 

obtained when the reaction was performed  under mild conditions (65-130 °C, 1.0 MPa 

air) in water and gold nanoparticles supported on Au-CeO2 catalyst [244].  

Recently, supported Pt, Pd and Au catalysts were evaluated in the aqueous-phase 

oxidation of 5-HMF to FDCA at 295K and high pH in a semi batch reactor [239]. The 

results showed that Pt and Pd were able to oxidise the HFCA effectively to FDCA 

under identical conditions. 

 2,5-Diformylfuran (DFF) 

2,5-diformylfuran has been considered as an important derivative of 5-HMF because 

it can serve as a potential intermediate for a vast array of chemicals [162]. This bio-

based material had been reported to have potential applications in pharmaceuticals 

[245], fungicides [246], and a cross-linking agent for poly (vinyl alcohol). Also, DFF 

can be applied as a monomer for polymeric materials due to its symmetrical and 

unsaturated structure [247, 248]. 

In terms of  manufacture, DFF is produced mostly by selective oxidation of 5-HMF, 

using metallic catalysts such as Pt/C [242], Co/Mn/Zr/Br [249], V2O5 [250], and 

VOPO4 .2H2O [251]. These catalysts have been found to show excellent catalytic 

activity with significant yield of DFF produced. For instance, DFF yield of 90% was 

obtained from 5-HMF using V2O5/TiO2 using toluene at 90 °C and 1.6 MPa air 

pressure within 4 h [250]. Also, 77% yield was obtained over vanadylacetylacetonate/ 

PVP catalyst in triflurotoluene via aerobic oxidation of HMF to DFF [252]. However, 

isolation and purification of 5-HMF requires a large amount of energy, and so pure 5-

HMF might be costly; hence DFF production may be limited and incur very high cost.  
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Since glucose is cheap and readily available, it can be regarded as a prime candidate 

for the synthesis of 5-HMF as stated earlier and subsequently to DFF. 

 2,5-Dimethylfuran (DMF) 

Among the furan derivatives, 2,5-dimethylfuran (DMF) is the most attractive as a 

biofuel because it has an energy content of 31.5 MJ L-1, which is similar to that  

obtained from gasoline (35 MJ L-1) and greater than that of ethanol (23 MJ L-1) by 

40% [42]. Other advantages of DMF over ethanol include higher boiling point (92 – 

94 °C) than ethanol (78 °C), which makes it less volatile and more suitable as a 

transportation fuel [42]. Furthermore, DMF can be more stable during storage than 

ethanol because it is insoluble in water and also consumes only one-third of the energy 

used in its production compared with that required during fermentation of ethanol 

[253]. Therefore, this physicochemical property makes DMF a very promising 

gasoline alternative from biomass resources. 

DMF is produced from hexoses by selective removal of five oxygen atoms. Recently, 

catalytic routes for its manufacture have been developed using D-fructose by two-step 

processes: acid catalysed dehydration of fructose which produced 5-HMF using a 

biphasic reactor and then conversion to 2,5-DMF by hydrogenolysis of the C-O bond 

over copper-ruthenium catalyst [253]. 

  2,5-Bis-(hydroxymethyl) furan 

2,5-Bis-(hydroxymethyl)furan (BHMF) was reported to be synthesised by the 

reduction of the formyl group of  HMF in the presence of nickel, copper chromites, 

platinum oxide and sodium amalgam as catalysts [254]. Similarly, catalytic 

hydrogenation of HMF in an aqueous medium was conducted in the presence of nickel, 

copper, palladium and platinum catalysts [162] and BHMF was obtained as the major 

product. 
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 Polymer - Clay nanocomposites 

The manufacture of new materials with enhanced properties and performance is 

presently an expanding area at the interface of chemistry and materials science. A 

significant advanced in these fields has been the synthesis of polymer-clay 

nanocomposites.  

Toyota Motor Corporation were the pioneers in polymer-clay nanocomposites which   

reported the exfoliation of montmorillonite clay by incorporating polyamide-6   via in 

situ polymerization [255, 256]. Also, reports by other research groups [257-259] on 

blending of layered silicates with polymers in molten state provided an environmental 

benign and versatile approach in the production of polymer-clay nanocomposites. 

Therefore, these breakthrough have attracted much attention from the academic and 

industrial communities and since then, extensive research has been carried out to 

investigate the reinforcing effects of clay in other polymer matrices, such as polyolefin, 

epoxies, polyesters, and polyurethanes (PU) [259]. 

Polymer-clay nanocomposites are materials in which nanoscopic inorganic particles, 

typically 1-10 nm in at least one dimension, are dispersed in an organic polymer matrix 

in order to improve the performance of the polymer. These concepts have attracted a 

great deal of attention recently in materials science because of their superior 

engineering properties and represent a new alternative to conventionally filled 

polymers. Because of their nanometre sizes, filler dispersion nanocomposites exhibit 

markedly improved properties when compared to the pure polymers or their traditional 

composites. These properties include increased modulus and strength, outstanding 

barrier properties, improved solvent and heat resistance and decreased flammability 

and, because the reinforcement is at such a fine scale, the same processing operations 

that are used for the unfilled polymer, such as extrusion and injection moulding can be 

applied to the composite.   

 Types of polymer-clay nanocomposites 

Three types of polymer-clay nanocomposites are thermodynamically achievable 

depending on the strength of interfacial interactions between the polymer matrix and 
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the layered clay silicates [257]. These are: intercalated, intercalated-and-flocculated 

and exfoliated nanocomposites as illustrated in Figure 2-20. 

2.6.1.1  Intercalated nanocomposites 

In intercalated nanocomposites, the guest species is reversibly inserted into a host solid 

while maintaining the structural features of the host. Intercalated nanocomposites are 

formed when the insertion of an organic molecule such as a polymer into the layered 

silicate structure occurs in a crystallographically regular fashion, regardless of the clay 

to polymer ratio. This results in a well ordered multilayer structure of alternating 

polymeric and inorganic layers with a repeat distance between them [260]. 

Furthermore, this type of nanocomposites can also be described based on the distance 

between  a plane in the unit layer and the corresponding plane in the next unit layer 

defined as the basal plane spacing, d001 [261]. If there is an increase in d001 as an 

organic species enters the galleries and the clay layers remain stacked, the composite 

formed is ‘intercalated’ [261].  

2.6.1.2  Intercalated-and-flocculated nanocomposites 

Intercalated-and-flocculated nanocomposites represent another type of 

nanocomposites that is conceptually the same as intercalated nanocomposites as 

defined by Ray et al; containing flocculated intercalated silicate layers due to 

hydroxylated edge–edge interaction of the silicate layers [259]. 

2.6.1.3  Exfoliated nanocomposites 

In exfoliated nanocomposites, the individual clay layers are separated in a continuous 

polymer matrix by extended distances that depends on clay loading. Usually, the clay 

content of an exfoliated nanocomposites is much lower than that of intercalated 

nanocomposites [259]. If the clay layers are pushed apart completely leading to a 

disordered array, an exfoliated nanocomposite results [261], and some authors 

classified composites as exfoliated if the basal plane spacing such as d001 > 10 nm that 

cannot be determined by conventional X-ray diffractometer [261, 262]. 
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Figure 2-20. Schematic illustration of three different types of polymer clay 

nanocomposites, reproduced with permission [257]. 

 Preparation of nanocomposites 

Four main routes for the preparation of nanocomposites have been reported [260, 263]. 

These are: In situ template synthesis, intercalation of polymer or prepolymer from 

solution, in situ intercalative polymerization and melt intercalation. 

  In situ Template synthesis 

In in situ template synthesis, the inorganic material is prepared within the polymer 

matrix using an aqueous solution containing the polymer and the silicate building 

blocks. This method has been reported for the synthesis of double-layer hydroxide-

based nanocomposites in an aqueous solution of the polymer and silicate building 

block [264]. The polymer is said to aid nucleation and growth of the inorganic host 

crystal and gets trapped within the layers as they grow [260]. However, this method is 

not commonly used in nanocomposite preparation because it requires high temperature 

in the synthesis of the clay minerals which tends to decompose the polymers. Also, the 

aggregation tendency of the growing silicate layers is another challenge for this 

method [260]. 
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  Intercalation of Polymer or Pre-polymer from Solution 

This method involves the dispersion of organically modified silicate in a solvent in 

which the polymer is also soluble. The dispersion is achievable because the weak 

forces that stack the layers together can easily be overcome in an appropriate solvent 

to produce dispersion. In this case, the polymer then adsorbs onto the delaminated 

sheets and when the solvent is evaporated (or the mixture precipitated), the sheets 

reassemble, sandwiching the polymer to form, in the best case, an ordered multilayer 

structure [263]. This method may lead to the formation of intercalated 

nanocomposites. It is not necessarily environmentally benign because of the use of 

large amounts of solvent. The schematic of the process is shown in Figure 2-21 [260].  

 

Figure 2-21. Schematic representation of polymer adsorption from solution, 

reproduced with permission [260]. 

This technique is well suited for the intercalation of water soluble polymers such as 

poly (vinyl alcohol), poly (ethylene oxide), poly (acrylic acid) and poly 

(vinlypyrrolidone) [265, 266]. It has been used in organic solvents for polymers that 

are insoluble in water. For instance, high density polyethylene was used as polymer 

matrix which was dissolved in a mixture of xylene and benzonitrile [267]. Similarly, 

biodegradable nanocomposites using poly(lactic acid) as polymer matrix were also 

reported using dichloromethane as solvent and some exfoliated and intercalated 

nanocomposites were obtained based on the type of organically modified 

montmorillonite [268]. However, some polymers like poly (imides) do not dissolve in 



N.M. Baba                                                                                                                         CHAPTER 2: LITERATURE REVIEW 

79 

 

organic solvents, therefore, in such cases, a pre-polymer or polymer precursor is 

intercalated in the silicate interlayers and subsequently converted in the polymer 

matrix [263]. Toyota researchers [269] reported the preparation of poly(imide) 

montmorillonite nanocomposites by mixing poly(amic acid) in dimethylacetamide in 

the presence of modified montmorillonite. From their findings, the montmorillonite 

was exchanged with dodecylammonium hydrochloride resulting in the generation of 

exfoliated nanocomposites. This was confirmed by the absence of diffraction peaks 

from the XRD diffractograms. Conjugated polymers can also be intercalated in the 

filler interlayers by a similar precursor intercalation approach [270] and poly(p-

phenylenevinylene)/montmorillonite intercalated nanocomposites were produced with 

layered silicates using poly(xylenylenedimethylsulfonium bromide) as precursor [270, 

271]. The precursor was then transformed into polymer by base-mediated elimination 

of dimethylsulfide and HBr. Furthermore, emulsion polymerization of monomers in 

the presence of the layered silicates has also been reported to generate intercalated and 

exfoliated nanocomposites using methyl methacrylate and styrene as monomers [272]. 

The monomer is suspended in water along with varying amounts of silicates in the 

presence of emulsifier and then polymerized which results in the generation of 

nanocomposites with a part of silicate embedded inside the polymer particles and a 

part adsorbed on the surface of the particles [272]. 

Table 2-4 shows representative examples of polymer-clay nanocomposites produced 

by intercalation from solution. This method is only possible for certain polymer, clay 

and solvent systems. This implies that for a given polymer one has to find the right 

clay, organic modifier and solvents [257, 263]. Moreover, the use of these organic 

solvents is not economically viable from an industrial point of view and as such they 

are not environmentally benign [257]. 
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              Table 2-4. Nanocomposites prepared by intercalation from solution [260]. 

Nanocomposite Solvent(s) 

PVOH/Na+-MMT Water 

PVA/Na+-MMT Water 

TPO/OMLS Toluene/DMAc 

PEO/ Na+-MMT or Na+-hectorite Acetonitrile 

PEO/MMT Chloroform 

PLA/OMLS Dichloromethane 

PLA/OMLS DMAc 

 

 In situ intercalative polymerization 

This method involves the dispersion of particles first in a monomer and then the 

mixture is polymerized. It is applied in the polymerization of thermoplastic and 

thermosetting polymers. Nanocomposites were prepared with polyamide-6 matrix and 

silica inclusions by first drying the particles to remove water adsorbed on the surface. 

Then, the particles were mixed with caproamide and concurrently a suitable 

polymerization initiator was added. The mixture was then polymerized at a high 

temperature under nitrogen [273]. This technique produced well-dispersed samples 

when the inclusions were around 50 nm in size, but aggregation occurred for smaller 

particles around 12 nm in size. 
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  Melt intercalation 

This method involves the mixing of the layered silicates by either annealing or under 

shear with the polymer while heating the mixture above the softening temperature of 

the polymer. The polymer chains are diffused from the bulk polymer melt during the 

annealing process into the clay galleries [263, 274-277]. 

This technique is attractive because of its versatility and compatibility with existing 

processing infrastructure and it is now applied in commercial applications [278]. The 

structure of nanocomposites formed by this method depends on the thermodynamic 

interaction between the polymer and the clay as well as the movement of polymer 

chains from the bulk melt into the clay galleries [279].  

Polypropylene (PP)/calcium carbonate nanocomposites were made by melt 

intercalation method [280]. The authors mixed the polypropylene first with antioxidant 

and calcium carbonate (44 nm in diameter) which was added slowly and mixing 

continued for a fixed time after all particles were added. The results indicate a well 

dispersed sample at lower filler volume fractions of 4.8% and 9.2% respectively. 

However, aggregation was found to be at a higher volume fraction of 13.2%.  

Although this method has been applied for the synthesis of nanocomposites, it has 

some limitations for two reasons:  

First, production of nanocomposites involving high-temperature processes leads to 

low thermal stability of the clay modifier and hence, decrease in the distance between 

the clay sheets as a result of the thermal degradation of the clay modifier. Furthermore, 

loss in hydrophobicity of the clay surface occurs which leads to a hydrophilic surface 

[281, 282]. These limitations were confirmed by Park et al [283] who discovered that 

the d-spacing of the clay galleries decreased when the reaction temperature was 

increased from 200 oC to 280 oC because of the degradation of the clay particles and 

this affected the intercalation of the polymer and the clay. 

Second, it was reported that this method seems to be unsuitable for the synthesis of 

some polymer nanocomposites such as those from amorphous PS even though PS can 
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be intercalated into clay through weak interaction between the phenyl group of PS and 

the clay surface. The interplanar spacing was observed to be decreased upon heating 

PS and clay [284].  

 Layered Silicates 

Layered silicates are clay minerals, built of two structural units. The simplest are the 

1:1 structures (e.g. in kaolinite) where a silica tetrahedral sheet is joined to an 

aluminium octahedron, sharing the oxygen atoms [285]. Most of the layered silicates 

commonly used in nanocomposite preparation are of 2:1 phyllosilicate types which 

includes: smectite clays (e.g montmorillonite, saponite, and hectorite) [286]. Their 

detailed general formulae are presented in Table 2-5. Among these silicates, 

montmorillonite (MMT) with the general formula Mx(Al4-xMgx)Si8O20(OH)4  (where, 

M is sodium, calcium) is the filler chosen for most studies of polymer nanocomposites 

because it is of low-cost and is environmentally benign [287]. Furthermore, its unique 

layered structure, cation exchangeability and expandability makes it a better candidate 

than others [288]. 

Table 2-5. Commonly used layered phyllosilicates with their general formula [263]. 

2:1 Phyllosilicate                                           General formula 

Montmorillonite                                           Mx(Al4-xMgx)Si8O20(OH)4   

Hectorite                                     Mx(Mg6-xLix)Si8O20(OH)4   

Saponite                                          Mx(Mgx)(Si8-x Alx)O20(OH)4   

 

The montmorillonite crystal structure consists of layers formed by sandwiching an 

aluminium octahedral sheet between two silicon tetrahedral sheets. Stacking of the 

layers leads to a van der Waals gap between the layers. Substitution of aluminium 

(Al2
3+ ) for magnesium (Mg2+) in the octahedron sheet gives each three-sheet layer an 

overall negative charge in the range 0.2–0.6 per formula unit, which is normally 

counterbalanced by exchangeable metal cations residing in the interlayer space. The 
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interlayer cations hold the individual negatively charged silicate layers together 

through electrostatic forces. Due to the weak interaction between layers, organic 

monomers can be intercalated into these interlayer spaces and react with the interlayer 

cations as shown in Figure 2-23 [260].  

 

Figure 2-22. Structure of  layered silicate reproduced with permission [260]. 

 Characterization of the structures of nanocomposites  

Structures of nanocomposites are characterized by two main techniques. These are X-

ray diffraction and transmission electron microscopy [289]. These structures can be 

distinguished based on the ordering and the clay dispersion into the polymer matrix as 

conventional (immiscible), intercalated and exfoliated (delaminated) [290].  

  X-ray diffraction  

This technique is used to determine the distance d between the basal layers of the clay 

or layered material by the use of Bragg’s law: 𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃  where, λ corresponds to 

the wavelength of the X-ray radiation used in the diffraction experiment, d is the 
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spacing between diffraction lattice planes and  θ is the measured diffraction angle 

[277].  

Among the three distinguished nanocomposite structures, intercalation and exfoliation 

are associated with the change in the distance between the clay layers and the polymer. 

An increase in the value of d indicates that an intercalated nanocomposite has been 

formed implying that the polymer chains have entered clay galleries which expand. 

The absence of diffraction peaks suggests an exfoliated (delaminated) nanocomposites 

indicating that a great amount of polymer has entered the clay galleries and disordered 

the platelets [291]. Furthermore, conventional (immiscible) polymer nanocomposites 

exhibit no change in d-spacing with respect to pristine clay, meaning that no polymer 

has entered the gallery and that the spacing between clay layers is unchanged [292-

294]. Therefore, the value of d-spacing observed in XRD describes the nanoscale 

dispersion of the clay in the polymer matrix [292]. The three types of structures that 

are obtained by XRD measurements are illustrated in Figure 2-24. 

 

Figure 2-23. XRD pattern of three types of silicate layers (a) Conventional (b) 

Intercalated (c) exfoliated nanocomposites reproduced with permission [263]. 

As stated earlier, XRD is a useful technique for measuring the d(001)-spacing of ordered 

miscible and intercalated nanocomposites [259]. However, it has some limitations or 

drawbacks in that it is not sufficient in measuring disordered and exfoliated 

nanocomposites that do not give XRD peaks. In other words, the absence of peaks may 

be misinterpreted [289, 294]. Some factors can influence the XRD pattern which may 
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results in the absence of peaks and some of these factors are concentration and ordering 

of the clay [294]. Therefore, absence of peak from the XRD pattern of a polymer-clay 

nanocomposites cannot prove or disprove the presence of exfoliated clay platelets in 

the nanocomposites. XRD relates only to the degree of dispersion of clay sheets with 

respect to each other in the polymer matrix, and does not give information with respect 

to interaction between the organic and inorganic phase in the composite materials 

[294]. 

 Transmission electron microscopy (TEM)  

As XRD patterns of polymer-clay nanocomposites have some limitations, TEM is the 

next available instrument to determine quantitatively how the layered silicate filler 

(clay) is dispersed into the polymer. Usually a thin cross-section of approximately 40-

50 nm of the nanocomposite is microtomed and observed via the TEM. When 

nanocomposites are formed, a dark lines are observed signifying the formation of a 

polymer-clay nanocomposite as illustrated in Figure 2-25 [259, 263, 295]. 

 

 

Figure 2-24. TEM micrographs of (a) treated hectorite, (b) thermoplastic-treated 

hectorite  and (c) thermoplastic starch-untreated hectorite nanocomposites 

reproduced with permission [295]. 
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 Bio-based polymer composites 

   Thermoplastic Starch Based Composites  

Thermoplastic starch based composites have been synthesized by melt-processing of 

starch and glycerol for the manufacture of bio-based nanocomposites for materials 

application [295]. Thermoplastic starch was first reported as a bio-based material for 

the production of polymer nanocomposites by melt intercalation methods in a twin 

screw extruder [296]. The composites were prepared with regular corn starch 

plasticized with glycerine and reinforced with hydrated kaolin and the results afforded 

an increased in tensile strength of the nanocomposites from 5 to 7.5 MPa with 50% 

clay composition. Similarly, the modulus of elasticity increased from 120 to 290 MPa 

while the tensile strain at break was observed to decrease from 30 to 14%. The results 

further revealed the occurrence of strong bonding between kaolin and the matrix as 

obtained by the scanning electron microscopy of the nanocomposite. 

The effect of varying the amount of plasticizer on the mechanical and structural 

properties of starch nanocomposite was investigated by the solution method [297]. 

From these results, it was observed that the sequence of addition of components 

(starch/plasticizer/clay) had a significant effect on the nature and properties of 

nanocomposites formed. The results further revealed that the dispersion of the filler 

was more heterogeneous and brittle when the starch was plasticized prior to the 

addition of the clay and as a result of that the modulus of elasticity was increased 

significantly in all the nanocomposites produced irrespective of the preparation 

method. These authors concluded that all the properties of the nanocomposites derived 

from starch could be achieved by proper dispersion of the clay filler and not necessarily 

on varying the sequence in which the addition of plasticizers occurred. 

Modified starch with acetate was used in the synthesis of bio-based nanocomposites 

with cellulose fibres [298]. In this approach, 70% corn starch was extruded with 10, 

20 and 30% (w/w) cellulose and 20% (w/w) ethanol for the synthesis of bio-based 

nanocomposites at 150, 160 and 170 °C barrel temperatures and 170, 200 and 230 rpm 

screw speeds in a twin screw extruder. The results further revealed from the XRD 

pattern that the crystallinity of the starch and cellulose reduced drastically. Also, the 
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melting temperatures of the composites were observed to change significantly when 

higher DS starch acetates were used. Experimental variables such as cellulose content, 

barrel temperature and screw speed have profound effects on thermal, physical and 

mechanical properties of extruded foams. For the extruded starch foams, thermal 

properties were strongly related to blend composition, barrel temperature and screw 

speed. Tg and Tm of the extruded foams decreased as cellulose content increased. The 

author noted that as barrel temperature and screw speed increased, Tg and Tm 

increased initially and then decreased when barrel temperature and screw speed were 

higher than 160 °C and 200 rpm respectively.   

Further studies by Kumar and Singh [299] were done through starch modification by 

photo-induced cross linking. Composite films were made from the aqueous dispersions 

of starch with microcrystalline cellulose using glycerol as plasticizer and irradiated 

under ultraviolet (UV) light using sodium benzoate as photo-sensitizer via casting. 

Young’s modulus of composites reinforced with 5, 10 and 15 wt. % which were 

irradiated for 30 minutes improved by 72.41%, 42.5% and 32% respectively, when 

compared to control samples.   

The elongation (%) values were found to decrease with increasing cellulose fibre 

content and time of photo-irradiation. Other researches on the use of thermoplastic 

starch without further modification (i.e., changes in experimental conditions) also 

reported significant increase in tensile and thermal properties of thermoplastic research 

when reinforced with nanofibres [300-305].  

   Poly Lactic Acid Based Composites 

Bio-based nanocomposites were prepared using poly (lactic) acid (PLA) with 

organically modified clay by dissolving the PLA in hot chloroform in the presence di 

methyl ammonium modified MMT [306].  The results of this study as revealed by the 

XRD pattern indicated that the silicate layered clay could not be intercalated by PLA 

to form nanocomposites by the solvent casting method. In a recent study, 

PLA/organically modified clay nanocomposites were prepared by dissolving the 

polymer in hot chloroform in the presence of dimethyl distearyl ammonium modified 

MMT and the results revealed that the clay layers were unable to be intercalated based 
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on the XRD pattern [306]. It was reported that the clay existed in the form of tactoids 

with several stacked silicate layers which could lead to an increase in the Young’s 

modulus of the nanocomposites. Similarly, other research groups have reported the 

synthesis of nanocomposites derived from PLAs [307-313], and the results indicate 

improved mechanical, thermal and impact properties of the nanocomposites. For 

instance, a nanocomposite of PLA/Wood flour (WF) was prepared by melt 

compounding and injection moulding and it was found that the tensile modulus of this 

composite increased from 62.5 to 169.5% and the tensile strength increased 13.7%, 

16.7% and 13.9% at the loading levels of 10, 20, and 30 wt.% WF, respectively [314]. 

Furthermore, nanocomposites of PLA with a compatibilizer and cellulose fibrils have 

been developed by Qu, et al [315]. It was observed that the tensile test results and the 

elongation rate increased by 56.7% and 60% by adding PEG to the PLA and the 

cellulose nanofibrils matrix, compared with the PLA/cellulose nanofibrils composites. 

The authors explained that PEG covers the surface of the cellulose nanofibrils and acts 

not only as a plasticizer for PLA to improve its elongation, but also as a compatibilizer 

between the hydrophobic PLA and the hydrophilic cellulose nanofibrils. It was also 

stated that PEG prevents the aggregation of the nanofibrils, so that the cellulose 

nanofibrils disperse in the PLA matrix homogeneously to form a network structure. 

   Cellulose Based Composites  

As stated in section 2.5.1.1, cellulose from biomass has been identified as a source of 

biopolymer that can replace petroleum polymers. Bio-based nanocomposites have 

been successfully produced from cellulose acetate (CA), triethyl citrate (TEC) 

plasticizer and organically modified clay via melt compounding [316]. The cellulosic 

plastic with 80 wt. % pure cellulose acetate and 20 wt. % triethyl citrate plasticizer 

was used as the polymer matrix for nanocomposite production. Mechanical properties 

of the composites were determined and correlated with observations from X-ray 

diffraction and transmission electron microscopy. The results obtained indicate that 

cellulosic plastic-based nanocomposites containing 5 and 10 wt. % organoclay have 

better exfoliated and intercalated structure than those of 15 wt. % organoclay. Tensile 

strength and modulus of cellulosic plastic reinforced with 10 wt. % organoclay 

improved by 75 and 180% respectively.  
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Furthermore, a cellulose-based nanocomposite material has been investigated and the 

results revealed that this nanocomposites can serve as humidity and temperature 

sensors [317]. The cellulose employed in this study was obtained from cotton pulp via 

acid hydrolysis using a solution of lithium chloride and N,N-dimethylacetamide. 

During the experiment, nanoscaled polypyrrole was used as the second component of 

the nanocomposite and the composites were prepared by a polymerization-induced 

adsorption process. The polypyrrole was coated onto the surface of the cellulose and 

its influence on the cellulose membrane was determined by atomic force microscopy 

technique. These authors primary aim in this experiment was basically on the sensing 

ability and not the structural integrity of the nanocomposite material. Therefore, the 

study shows that successful deposition of the polypyrrole nanolayer onto the cellulose 

surface was achieved because the material was not analyzed on a structural basis it 

could not determine if cellulose served as the reinforcement or the polypyrrole. 

In summary, many agricultural products can serve as a source of bio-based polymers 

and these include: terpenes, sugars, celluloses, starches, lignin, proteins, polyphenols 

and fibres. Others have utilized wastes produced from these agro materials and food 

wastes for the production of bio-based polymers. Both materials can undergo three 

basic strategic pathways for the production of bio-based polymers. These pathways 

are: (i) those that are derived directly from biomass (ii) biochemical modification of 

the bio-based components and (iii) those produced from genetically modified 

transgenic plants. All these pathways produce polymers with added importance to the 

bio-based industries and in which their characteristics can be improved by using some 

reinforcements sourced from natural resources such as plant fibres and smectite clays. 
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CHAPTER 3:   MATERIALS AND METHODS 

 Materials 

The details of materials used in this work are given in Table 3-1. All chemicals and 

reagents were used as received without further purification. 

Table 3-1. Materials used in this work 

Reagent Supplier Purity/% 

Grade   

Location 

1,2-dichlorobenxene Sigma-Aldrich 99 Gillingham, 

Dorset ,UK 

1,4-butanediol Sigma-Aldrich 99 Gillingham, 

Dorset ,UK   

1,4-dioxane Alfer Aeser 99.8 Heysham, 

Lancashire, UK  

1,6-hexanediol Sigma-Aldrich 99 Gillingham, 

Dorset ,UK  

1,8-octanediol Alfer Aeser 98+ Heysham, 

Lancashire, UK 

12-tungstophosphuric acid Strem Chemicals 

Ltd 

99 Massachusetts, 

U.S.A  

1-butyl-3-

methylimidazolium 

chloride 

Io.li.tec 99 Germany 

2,5-Furandicarboxylic 

acid 

Sequoia Research 

Products Ltd 

97 Pangbourne, 

UK 

5-(Hydroxymethyl) 

furfural 

Sigma-Aldrich 99 Gillingham, 

Dorset ,UK  

Anhydrous sodium 

carbonate 

VWR International 

Ltd 

AnalaR West Sussex, 

UK   

Benzylamine Sigma-Aldrich 99 Gillingham, 

Dorset ,UK  

Chromium (III) chloride Sigma-Aldrich 99 Gillingham, 

Dorset ,UK  
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Ethylene glycol VWR International 

Ltd  

Technical  West Sussex, 

UK 

Formic acid Sigma-Aldrich 95 Gillingham, 

Dorset ,UK  

Fructose Sigma-Aldrich 99.5 Gillingham, 

Dorset ,UK  

Glucose Sigma-Aldrich 99.5 Gillingham, 

Dorset ,UK  

Levulinic acid Sigma-Aldrich 98 Gillingham, 

Dorset ,UK  

Nanofil 116 clay Rockwood 

Additives Ltd   

- Widnes, 

Cheshire, UK 

Nitric acid VWR International 

Ltd 

68 West Sussex, 

UK   

Palladium on activated 

carbon 

Sigma-Aldrich 5 wt  Gillingham, 

Dorset ,UK  

Potassium per manganate Sigma-Aldrich 99, ACS 

grade 

Gillingham, 

Dorset ,UK  

Sodium borohydride Sigma-Aldrich 98 Gillingham, 

Dorset ,UK  

Sodium cyanoborohydride Alfer Aeser 95 Heysham, 

Lancashire, UK   

Sodium hydroxide Fisher Chemicals Analytical 

grade 

Loughborough, 

UK  

Sulphuric acid VWR International 

Ltd  

95 West Sussex, 

UK   

Titanium (IV) n-butoxide Across Organics 99 Loughborough, 

UK 

Triflouroacetic acid VWR International 

Ltd 

99 West Sussex, 

UK  

Zirconium (IV) hydroxide Sigma-Aldrich 99.5 Gillingham, 

Dorset ,UK  
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 Analytical Instruments 

 Nuclear Magnetic Resonance spectrophotometer (NMR) 

All 1H and 13C NMR were recorded using a Bruker AMX 300 MHz and 500 MHz 

spectrometers. Data were processed by ACD/NMR Processor Academic Edition and 

sample dilutions were made in CDCl3 and DMSO-d6 respectively. All chemical shifts 

(δ) are reported in parts per million (ppm).  

 Fourier Transform Infrared spectrophotometer (FTIR) 

FTIR spectra obtained in this work were conducted with an ALPHA Bruker Optics FTIR 

spectrophotometer equipped with ZnSe ATR crystal. The samples were scanned from 

400 – 4000 cm-1 wavenumber with a 32 scan per sample circle and a resolution of 4 

[318]. 

 X-Ray diffractometer (XRD) 

All XRD data were collected using a Siemens D500 X-Ray diffractometer using Cu Kα1 

radiation with wavelength of 0.154056 nm. The diffractometer was operated at 40 kV 

and 30 mA. Scans began at a low angle of 2o and scanned to 25o of 2θ in 0.05o steps at 

6 seconds per step.   

 Transmission Electron Microscope (TEM) 

TEM was conducted on a JEOL JEM-2100 electron microscope with digital image 

capture operating at 200 kV. TEM specimens were embedded into a resin and were 

sectioned with a Leica EM UC6 microtome (Leica microsystems, Wetzlar, Germany), 

equipped with diamond knife (Diatome, Hatfield, PA, USA) into thin sections at the 

Anatomy Department, UCL. Sections were transferred to 300 mesh copper grids coated 

with carbon [319]. 
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 Thermogravimetric analysis (TGA) 

Thermal analysis of the polymers and nanocomposites were conducted on Netzsch STA 

449 F1 Jupiter thermal analyser. Samples (~ 10-15 mg) were heated using an aluminium 

pan at a constant rate of 10 oC min-1 under helium at a flow rate of 20 mL min-1 between 

20 oC and 600 oC. The onset of thermal degradation was determined according to the 

method developed by Marsh [320]. 

 Tensile properties 

Tensile testing of the polymer and its nanocomposites was performed using a Tinius 

Olsen H10KM/0348 testing machine (Salford Redhill, Surrey, UK) with 1 kN load cell 

and a crosshead speed of 10 mm per minute. Tensile stress and elongation at break were 

calculated from the average of five duplicate readings for each polymer and 

nanocomposites at ambient temperature. The calibration of the machine was done using 

dead weight and the deviation between recorded and actual force was 0.4% upon which 

a calibration factor was based. Gauge lengths were measured using a vernier calliper 

and was set at 70 mm. Samples were prepared by solvent (ethyl acetate) casting on a 

Petri dish and left overnight under ambient temperature and cut with a hot knife to give 

sections of 10 mm x 0.13 mm. 

The tensile stress and strain were calculated based on the following equations:  

Tensile stress, σ = 
Force

Area
=  

F

A
 ------------------------------------------- (3.1) 

  

Tensile strain, ε = 
Change in length

Original length
=  

∆L

LO
 ------------------------------ (3.2) 

The Young’s modulus, E, was estimated from the slope of stress-strain curve derived as 

a tangent modulus of the various polymers and this was accomplished using equation 

(3.3). 
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Young’s modulus E = 
Tensile stress

Tensile strain
 =   

σ

ε
 ---------------------------- (3.3) 

 Elemental analysis 

Elemental analysis of the polymers were conducted using Exeter analytical CE440 

analyser (Warwick, UK) for the determination of carbons and hydrogens by placing 1-

3 mg of the samples in an aluminium pan for combustion in an excess of  oxygen under 

static conditions at about 600 oC.  Helium was used to carry the combustion products 

through the analytical system to atmosphere, as well as for purging the instrument and 

the concentrations of carbon and hydrogen are measured by displacing the sample gas 

through the detectors and were recorded as a percentage. The oxygen concentrations 

were obtained as the difference from the percentage of carbons and hydrogens. 

 Water contact angle 

Water contact angles on the polymer surfaces were determined using a camera STC-

TC-83USB-AT and a cold light source (Schott 150 w) attached to a fibre optic cable. 

Distilled water droplets of ~0.8 mm diameter as determined from the volume of the 

sessile hemispherical drop, were placed using a stainless steel needle on a horizontal 

surface of the polymer inside a glass cell with a ground glass rim and covered with a 

glass lid. Distilled water was placed inside the cell to provide a buffered atmosphere of 

100% RH. The needle was cleaned with a blue flame prior to placing the water droplets. 

Images of the sessile drops were captured after 10-120 seconds and at later times to 

assess stability and the contact angles were measured from enlarged prints using a 

protractor. A graticule was photographed at the same magnification to provide scaling. 

  Surface tension of water 

Distilled water for contact angle measurements was obtained directly from the glass 

condenser without contact with polymeric tubing. Surface tension was measured using 

Du Noüy balance (White electrical company, Worcestershire, UK) at a room 

temperature of 18.9 oC using a platinum ring which was previously cleaned by heating 

in a blue flame to just close to orange colour. The result was compared to the literature 
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[321, 322]  values interpolated for exact temperature and the distilled water was then 

used for the contact angle measurements explained in section 3.2.8 above.  

   Capacitance and dielectric constant 

Samples for the capacitance measurements were electroded with a conductive silver ink 

(Johnson Matthey, London U.K) to provide rectangular electrodes approximately 12 x 

12 mm2 and the capacitance was obtained using an Agilent 4294A 40Hz-110 MHz 

precision impedance analyser in the frequency range 1-10 MHz.  

The dielectric constants of the polymers were calculated from equation (3.4).  

εr  = 
Cd

εo A
  --------------------------------- (3.4) 

where C is the capacitance, εr  is the relative permittivity of the dielectric, εo the 

permittivity constant  = 8.85 x 10-12 Fm-1, A is the area of the electrode and the thickness 

of the polymers is d. 

   Ultrasonic probe 

This instrument was used during the study of the interaction of the monomers with the 

montmorillonite clay. Ultrasonic vibrations were used to assist in the dispersion of the 

monomer and polymer into the clay galleries. Ultrasonic homogenizer sonicator model 

U200S-Control from IKA Labortechnik Staufen, Germany was used at duty cycle 0.5 

with constant amplitude of 60%. 

 Methods 

 Synthesis of sulfated zirconia catalyst 

Sulfated zirconia (SO4
2-/ZrO2) was prepared according to the method described by Qi 

et al [43, 213]. Briefly, 1 g of zirconium hydroxide was dissolved in 10 mL of 1M H2SO4 

and stirred vigorously at room temperature for 3 h. The suspension was centrifuged 

using a Heraeus Biofuge Primo Centrifuge machine set at 3000 rpm for 15 minutes and 
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the supernatant was discarded. The deposition at the bottom of the centrifuge tube was 

dried in a vacuum at 60 oC overnight. It was ground into a fine powder using pestle and 

mortar, and further calcined at 500 oC in a muffle furnace for 3 h. The catalyst was 

characterised by XRD and FT-IR. 

 Dehydration of glucose to  5-HMF [43] 

To glucose (5.0 g, 0.028 mol) was added BMIMCl (20.0 g, 0.11 mol) and the following 

catalysts at 10 mol. %: H2SO4, HCl, HNO3, CrCl3.6H2O, ZrO2, and SO4
2- /ZrO2. The 

mixture was heated to 120 oC for 2 h and samples were withdrawn at 30 minute intervals 

and immersed in an ice bath to quench the reaction in order to assess the progress of 

conversion. 

After completion of the reaction, ethyl acetate (50 mL) was added and the mixture 

separated by decanting the upper layer. The same procedure was repeated three times 

and the combined ethyl acetate extracts were dried (sodium sulfate) and evaporated in 

vacuo at (50 oC) to isolate 5-HMF as a thick pale yellow liquid. An identical procedure 

was used for fructose. 

1H NMR (300 MHz; CDCl3) δ 9.57 (1H, s, CHO), 7.22 - 7.21 (1H, d, J = 3.0 Hz, 3-H), 

6.50 (1H, d, J = 6.0 Hz,  4-H), 4.70 (2H, s, OCH2); 
13C NMR (75 MHz; CDCl3) δ 177.8 

(C=O), 160.9 (C-5), 152.2 (C-2), 122.9 (C-3) 109.8 (C-4), 57.7 (OCH2); FT-IR (cm-1) 

3345br, 1660s, 1250s, 1188s, 1160s. 

 Dehydration of glucose to 5-HMF by vacuum distillation 

Glucose (5.0 g, 0.028 mol) and BMIMCl (20.0 g, 0.11 mol) were heated in an oil bath 

at a temperature of 120 oC and stirred for 300 s to allow the dissolution of the glucose 

in the ionic liquid. The reaction was started by adding 10 mol. % of the following 

catalysts: CrCl3.6H2O, ZrO2, and SO4
2-/ZrO2. After completion of the reaction, 5-HMF 

was collected by vacuum distillation at 180 oC, 2.7 kPa. The same procedure was used 

for fructose. 
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 Yield calculation of 5-HMF produced 

The yield of 5-HMF produced was calculated from the following equation: 

5-HMF yield (mol. %) =  
Moles of 5−HMF produced

Moles of carbohydrate used
 x 100% ------------------ (3.5) 

 Synthesis of some derivatives of 5-HMF 

 Synthesis of 2,5-furandicarboxylic acid (FDCA)[323]  

To 5-HMF (1.26 g, 0.01 mol) was added a solution of NaOH (0.92 g, 0.023 mol). 

Potassium permanganate (3.6 g, 0.023mol) was added and the reaction stirred at ambient 

temperature for 0.5 h. The mixture was filtered and to the filtrate 1 mL of concentrated 

HCl was added to to adjust the pH to 1 or less. The precipitate was collected by suction 

filtration, washed with distilled water (50 mL) and FDCA isolated as a yellow solid 

(1.25 g, 80%). 

1H NMR (500 MHz, DMSO-d6) δ 13.56 (2H, s, COOH), 7.29 (2H, s, 2 x =CH); 13C 

NMR (126 MHz, DMSO-d6) δ 158.5(COOH), 149.5 (C-2 and C-5), 118.3 (C-3 and C-

4); FT-IR (cm-1) 3117s, 1665s, 1570s, 1418s, 960s, 851s. 

 Synthesis of 2, 5-bis-(hydroxymethyl) furan (BHMF) 

To 5-HMF (2.0 g, 0.016 mol) in methanol (40 mL, 0 oC), sodium borohydride (2.4 g, 

0.063 mol) was slowly added. The reaction was stirred for 3 h at room temperature, 

quenched with saturated aqueous sodium chloride solution (40 mL) and stirred for a 

further 30 minutes. The methanol was removed in vacuo at 40 oC. The product was 

extracted with ethyl acetate (3 x 40 mL), the organic layers combined and washed with 

brine (60 mL) and dried (sodium sulfate). The solvents were removed in vacuo to give 

BHMF as a pale yellow powder (1.8 g, 88%). 

1H NMR (300 MHz, CDCl3) δ 6.22 (2H, s, 3-H and 4-H), 4.56 (4H, s, OCH2); 
13C NMR 

(75 MHz, CDCl3) δ 154.1 (C-2 and C-5), 108.7 (C-3 and C-4), 57.5 (OCH2); FT-IR (cm-

1) 3310br, 1730s, 1240s, 971s, 810s, and 756s. 
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 Synthesis of dimethyl-2, 5-furandicarboxylate (DFD) [158] 

To FDCA (10.0 g, 0.064 mol) in 130 mL of methanol, p-toluenesulfonic acid 

monohydrate (30.5 g, 0.16 mol) was added. The mixture was heated at reflux for 3 h 

and distilled water (130 mL) added. The precipitate formed was collected and 

recrystallized from methanol to give DFD as colourless crystals (10.6 g, 91%).  

1H NMR (500 MHz; DMSO-d6) δ 7.27 (2H, s, 2 x =CH)), 3.84 (6H, s, 2 x OMe)); 13C 

NMR (126 MHz; DMSO-d6) 157.8 (C=O), 146.0 (C-2 and C-5), 118.9 (C-3 and C-4). 

 Sample preparation for XRD 

The samples prepared from 5-HMF and FDCA by the solution and melt intercalation 

methods were carefully ground into fine powders using a pestle and mortar and pressed 

with a microscope slide into a copper sample holder and analysed using an X-ray 

diffractometer (Siemens D500) in the Chemistry Department of UCL using Cu Kα1 

radiation with wavelength of 0.154056 nm. The diffractometer, running at 40 kV, and 

30 mA was set at a low initial angle of 2o and scanned to 25o 2θ in 0.05o steps.  Counts 

were collected for 6 s at each step and the XRD pattern of the samples was obtained.  

 Treatment of montmorillonite clay with 5-HMF and FDCA  

3.4.5.1 Dispersion of clay and 5-HMF 

A suspension of 1 g of   montmorillonite clay (Nanofill 116) was made in 25 mL of 

ethyl acetate in a glass bottle with lid and 2 g of 5-HMF was added. The contents were 

stirred with the aid of an ultrasonic probe (U200s control, IKA Labortechnik Germany) 

at 0.5 duty cycle to limit the heating effect,  60% amplitude and poured into a Petri dish 

and left to stand for 86 ks (24 h) for drying. Control samples were prepared with solvent 

but without 5-HMF. 

3.4.5.2 Melt intercalation method of clay and 5-HMF 

1 g of 5-HMF was carefully weighed into a 10 mL beaker and 0.05 g of montmorillonite 

clay was added. The contents were covered with an aluminium foil and heated on a hot 
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plate at a temperature of 75 oC for 20 minutes. The contents were cooled at 2 oC and 

analysed by XRD. 

3.4.5.3 Dispersion of clay and FDCA 

1 g of montmorillonite clay was dissolved in 25 mL of DMSO in a 50 mL glass bottle 

and dispersed with an ultrasonic probe at 0.5 duty cycle, 60% amplitude for 20 minutes. 

To the contents in the 50 mL glass bottle, 2 g of FDCA were added and the dispersion 

continued for further 20 minutes. The contents were poured into an evaporating basin 

and placed on a hot plate pre-set at 150 oC to evaporate the DMSO. After 30 minutes, 

the evaporating basin was cooled to room temperature and dried in a vacuum oven at 60 

oC for 72 h. 

3.4.5.4 Melt intercalation of clay and FDCA 

Montmorillonite clay and FDCA were weighed in a ratio of 1:2 and placed into a 400 

mL cylindrical glass vessel. Nitrogen gas was introduced into the glass vessel with the 

aid of a balloon as inlet and an empty balloon was placed at the outlet. The contents 

were heated in a furnace to 330 – 344 oC and allowed to cool to room temperature. 

  Synthesis of modified MMT clay 

Organically modified MMT clay was synthesis according to the protocol described by 

Yuan et al. [324]. Briefly, 15 g of Na-MMT was suspended in 400 mL of distilled water 

and stirred for 6 hrs at ambient temperature. A mixture of hydrochloric acid (HCl) and 

cetyltrimethylammonium bromide (CTAB) as an organic treatment agent in a mole ratio 

of 1:1 was added slowly to the clay suspension and stirring continued for another 3 h at 

80 oC. A precipitate was formed and filtered, washed with distilled water several times 

and the filtrate was tested with 0.1 mol/L AgNO3 until no further bromide ions were 

detected. The result product was dried in a vacuum at 60 oC overnight and ground with 

a pestle and mortar to a fine powder.    
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 Polymerization reactions 

 Synthesis of polyester from FDCA [323] 

FCDA (5.0 g, 0.03 mol), 1,4-butandiol (13.523 g, 0.15 mol) and titanium (IV) n-

butoxide (0.102 g, 0.0003 mol) were heated at 160 oC for 6 h under a N2 atmosphere. 

Excess diol was then removed under vacuum and the reaction heated at 200 oC for 

further 2 h under vacuum. Upon cooling to room temperature, 6 mL of 1,2-

dichlorobenzene was added and heating continued at 200 oC under vacuum to remove 

traces of diol. The resulting polyester was dissolved in 30 mL of trifluoroacetic acid 

(TFA) and precipitated using methanol (300 mL). The precipitates were centrifuged at 

3000 rpm for 10 minutes, washed with methanol (3 x 5 mL) and dried at 50 oC under 

vacuum for 18 h. 

 Water absorption test 

Water absorption tests were conducted by following ASTM D570-98: standard test 

method for water absorption of plastics [325]. Briefly, the samples were conditioned by 

drying in an oven for 24 h at 50 ± 3 oC, cooled in a desiccator and immediately weighed 

to the nearest 0.001g. The conditioned samples were immersed entirely in a 50 mL glass 

beaker containing 25 mL of distilled water maintained at ambient temperature. The 

immersed samples were removed after specific time intervals and all surface water was 

gently wiped with dried lint-free filter paper and weighed to the nearest 0.001g. 

Percentage increased in weight during immersion was calculated using the following 

equation: 

Increase in weight, % = 
𝑊𝑓−𝑊𝑜

𝑊𝑜
 x 100 -------------------------------- (3.6) 

Wf is the weight of the water absorbed sample and Wo is the weight of the conditioned 

sample. 
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 Preparation of polymer/clay nanocomposites 

Polymer/clay nanocomposites were prepared by intercalation from solution, in situ 

intercalative polymerization and melt intercalation as follows: 

 Polymer/Clay Nanocomposites by Intercalation method 

Montmorillonite clay (10 mg) was weighed and dispersed in chloroform (25 mL) by 

ultrasonication. Polyester (200 mg) was added to the clay solution and dispersed for a 

further 30 minutes. The contents were transferred into a Petri dish and dried in a fume 

cupboard overnight to evaporate the chloroform. After drying, the mixture was ground 

with a pestle and mortar to a fine powder and the XRD pattern of the polyester/clay was 

obtained. 

 In situ intercalative polymerization 

FDCA (4.5 g), montmorillonite  clay (0.225 g), 1,4-butandiol (13.53 g, 30 mmol) and 

titanium (IV) n-butoxide were charged into a 50 mL round bottom flask and heated in 

an oil bath set at 160 oC under reflux and in a N2 atmosphere for 6 h. The excess diol 

was removed under vacuum and the reaction continued for further 2 h at 200 oC under 

vacuum. The reaction mixture was cooled at room temperature and the resulting 

polyester was dissolved in triflouroacetic acid (30 mL). Methanol (100 mL was added 

to precipitate the polyester/clay and the precipitate was centrifuged at 3000 rpm for 10 

minutes, washed with methanol (10 mL 3 times) and dried under vacuum at 50 oC  

overnight. 

 Melt intercalation  

Montmorillonite clay (10 mg) and polyester (200 mg) were charged into a 50 mL round 

bottom flask and heated at 40 oC with constant stirring at 300 rpm for 1h. The melt 

sample was cooled to 4 oC and ground with a pestle and mortar to a fine powder and 

analysed by XRD.  
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CHAPTER 4:   RESULTS AND DISCUSSION 

 Characterisation of sulfated zirconia catalyst 

Sulfated zirconia (SO4
2-/ZrO2), has been reported as a solid acid catalyst used in 

various reactions such as acylation, alkylation, nitration, etherification and 

esterification [43]. In this work, it was used in the dehydration of glucose to 5-HMF 

with other solid catalysts such as CrCl3.6H2O and zirconium dioxide (ZrO2). The 

sulphated zirconia prepared was characterized by XRD. 

 X-ray diffraction of sulfated zirconia 

XRD was used to elucidate the changes in the crystalline phase of zirconia before and 

after treatment with sulphuric acid. It was observed that the XRD patterns exhibited 

tetragonal–monoclinic phase transformation as revealed in Figure 4-1. From literature, 

it was revealed that sulfate treatment of zirconia retards its crystallization which leads 

to its transition from the tetragonal phase to the monoclinic phase occurs [326]. 

Furthermore, it was reported that during monoclinic–tetragonal phase transformation 

of zirconia, the tetragonal phase should be formed above 1170 °C [43, 213], but in this 

experiment the zirconia prepared occurred as a tetragonal phase at lower temperature 

This might be that the transformation was hindered in fine SO4
2-/ZrO2 powders because 

of the sulfate treatment of pure zirconia [327]. Moreover, this transformation of the 

tetragonal phase into the monoclinic phase was probably due to the lower surface 

energy of the tetragonal phase compared to monoclinic phase [328]. 
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Figure 4-1. XRD patterns of (a) ZrO2 (b) SO4
2-/ZrO2 (M and T designate monoclinic 

and tetragonal phases) 

Therefore, sulfate treatment of zirconia can lead to retention of the tetragonal phase 

and this indicates a strong effect of the sulfate ions on phase modification of zirconia 

and allowed the catalyst to retained its stability in the tetragonal phase as reported 

elsewhere [213]. 

The phase composition in Figure 4-1 was established using JCPDS card index nos. 14-

0534, 17-0923, 79-1770 and 85-1081 for tetragonal phase and 13-0307, 37-1484 and 

07-0343 for monoclinic phase as reported by Evans, et al [329] and the phase mixtures 

are presented in Table 4-1. Furthermore, the amount of tetragonal ZrO2 was calculated 

using intensity measurements as suggested by Evans, et al [329] and Schmid [330] 

using the following equation: 

f(𝑖) =  
I𝑖(111)

I𝑖(111)+ 𝐼𝑚(111)
 ----------------------------- (4.1) 

Where, f(i) fraction of tetragonal phase, Ii (111) and Im (111) are X-ray intensity peaks 

of tetragonal and monoclinic phases in 111 (hkl) planes. 

From the results obtained, it was observed that 27% represents the tetragonal ZrO2 is 

present in pure zirconia and 73% in sulfated zirconia using JCPDS card index numbers 

17.0923 and 13-0307. 
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Table 4-1. Phase mixtures transformation of sulfated zirconia 

Phase JCPDS card 

index 

hkl 2θ θ d/nm 

Tetragonal ZrO2 14-0534 111 30.28 15.14 0.294900 

Tetragonal ZrO2 17-0923 111 30.17 15.08 0.296000 

Monoclinic ZrO2 13-0307 111 31.54 15.77 0.283400 

Monoclinic ZrO2 37-1484 111 31.47 15.73 0.284069 

 

 Dehydration of glucose/fructose by solvent extraction 

Synthesis of 5-HMF via the dehydration of glucose and fructose were investigated 

using a solvent extraction method. This is to provide a preliminary investigation on 

the yields obtained using these liquid catalysts and the sulfated zirconia catalyst. The 

results obtained are presented in Figure 4-2 from which it was observed that higher 

yield (36%) was obtained from SZ catalyst using fructose as a substrate. This is only 

a slightly higher yield compared to H2SO4 using the same substrate. However, glucose 

substrate revealed a lower yield in SZ (18%) compared to H2SO4 (26%).This can be 

attributed to the isomerization of glucose to fructose which has been reported to 

undergo a different reaction mechanism to form 5-HMF [331]. Therefore, SZ was 

subsequently used with other solid catalysts for 5-HMF synthesis via vacuum 

distillation and the results are discussed in section 4.4. 
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Figure 4-2. 5-HMF yields by solvent extraction method 

 Dehydration of glucose/fructose by vacuum distillation 

The dehydration of glucose and fructose were investigated using a reactive vacuum 

distillation approach. This is to provide an avenue whereby the production of 5-HMF 

is conducted and separated with minimal use of volatile solvents: almost all reported 

literature on the synthesis of 5-HMF is based on solvent extraction [43, 164, 212, 213, 

231, 332].   To date, only one paper reported the separation of 5-HMF under vacuum 

distillation [333]. These authors reported the dehydration of glucose and fructose using 

a vacuum distillation set-up with so-called ‘entrainers’ and reported a yield of 94.4% 

at 180 oC and 93.2% at 150 oC using fructose as reactant for 10 and 30 minutes reaction 

times  respectively. Furthermore, they reported yields of 68.5% and 65.2% of 5-HMF 

also using glucose at the same temperatures and reaction times. From their stated 

operating conditions, 2 g of fructose/glucose and 0.065 g of IrCl3.(1-2)H2O/0.049 g of 

CrCl3.6H2O were dissolved in 20 g of ionic liquids. It could be argued that based on 

these stated reaction conditions, the level of precision claimed in their results is not 

justified by the likely associated weighing errors. Whether the results support the 

conclusions is therefore somewhat controversial.  

 

Wei et al [333] used nitrogen, hexane and methyl isobutyl ketone (MIBK) as 

entrainers. These entrainers were used to increase the evaporation efficiency of the 

distillation process and effectiveness of the recovery of 5-HMF. Their suggestion was 
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that the solvents hexane and MIBK enhanced the process. Inspection of rows 1, 3 and 

5 in their results (reproduced here as Table 4-2) shows that there may be no significant 

difference in yield compared to the use of nitrogen alone (Entry 1) and that 

improvements in recovery are marginal. Since the use of the solvents introduces a 

downstream separation stage and nitrogen does not, there is a case for using nitrogen 

only to enhance the distillation.   

 

Therefore, considering the boiling point of 5-HMF which is 114 -116 oC at 1 mbar, a 

reactive vacuum distillation procedure involving both the chemical reaction and 

product separation steps within a single unit was applied for the production of 5-HMF 

from glucose dehydration. This reactive distillation method can have a wide range of 

industrial applications [334-336].  The process results in the evaporation of the most 

volatile component because when the pressure is reduced, the molecules are few and 

hence, it is possible for vaporization and distillation to take place. A continuous 

operation procedure could be envisaged. 

 

As stated earlier, the reaction involves the dehydration of glucose and fructose in 

BMIMCl ionic liquid with separation by vacuum distillation [337]. It was aimed to 

provide a commercially viable pathway that avoids a discrete separation stage and 

efficiency savings in any heating costs. It also helps to keep the product from 

decomposing at the high temperatures that would be required for atmospheric pressure 

distillation. In general, thermally sensitive substances can be processed easily and 

separated from component mixtures by this technique. In previous work on the 

dehydration of glucose as reported by some authors, a reaction step was followed by a 

liquid-liquid separation stage with attendant redistillation and capture of solvents [43, 

338]. This makes the process considerably less attractive from a manufacturing 

viewpoint. 
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Table 4-2. Vacuum reactive distillation of 5-HMF from the dehydration of 

carbohydrates with different entrainers [333]. 

Entry Carbohydrate Entrainer Temp. 

(oC) 

Time 

(min) 

Recovery 

(%) 

Yield 

(%) 

1 Fructose N2 180 10 90.6 94.4 

2   150 30 89.4 93.2 

3  Hexane 180 10 94.6 93.8 

4   150 30 93.6 93.7 

5  MIBK 180 10 95.0 95.1 

6   150 30 93.6 94.6 

7a  - 180 10 - 92.5 

8a  - 150 30 - 90.8 

9a  - 120 20 - 89.0 

10 

11 

12 

13 

14 

15 

16a 

17a 

18a 

Glucose N2 

 

Hexane 

 

MIBK 

 

- 

- 

- 

180 

150 

180 

150 

180 

150 

180 

150 

100 

10 

30 

10 

30 

10 

30 

10 

30 

180 

88.3 

85.3 

87.5 

88.6 

88.2 

88.4 

- 

- 

- 

68.5 

65.2 

70.4 

64.8 

71.8 

66.2 

51.3 

42.1 

35.1 

a Reaction carried out without vacuum distillation 

 

The relationship between vapour pressure and temperature of 5-HMF from 

thermodynamic data reported [339] was used to determine the actual boiling point of 

the 5-HMF at the pressure used (Figures 4-3 and 4-4).  



N.M. Baba                                                                                                            CHAPTER 4: RESULTS AND DISCUSSIONS 

108 

 

 

Figure 4-3. Plot of vapour pressure against temperature for 5-HMF [339]. 

The relationship between the temperature of a liquid and its vapour pressure is 

logarithmic and can be explained by the Clausius-Clapeyron equation as: 

d lnP

dT
=  

∆Hvap

RT2  ------------------------------------------- (4.2) 

From the above equation, the rate at which the natural logarithm of the vapour pressure 

changes with temperature is determined by the molar enthalpy of vaporization ΔHvap, 

the ideal gas constant R, and the temperature T (K) of the system.  

Assuming that ΔHvap does not change very much with temperature, equation (4.2) can 

be expressed in the following integrated form where C is a constant.  

ln 𝑃 = −
∆𝐻𝑣𝑎𝑝

RT
 + 𝐶 --------------------------------------- (4.3) 

This form of the Clausius-Clapeyron equation (4.3), is been used to measure the 

enthalpy of vaporization of the 5-HMF from plots of the natural logarithm of its vapour 

pressure versus temperature.  

The logarithm of the vapour pressure increases as the temperature of the system 

increases. Thus the ln P vs 1/T plot shown in Figure 4-4 is linear as expected.  
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Figure 4-4. Plot of ln P against reciprocal of temperature for 5-HMF [339]. 

 Testing the vacuum distillation equipment 

To test the efficacy of the arrangement for vacuum distillation, water was initially used 

and operating at a pressure of 27 kPa to 53 kPa, 94% of the water was collected at      

45 oC. The same process was repeated with the addition of 5-HMF dissolved distilled 

water (ratio of 0.2: 25). After 30 min, 94% of water was collected as the distillate while 

a pale yellow liquid remained as undistilled material. This was dried under vacuum for 

1 h to remove traces of water and the amount of 5-HMF remaining was 60% of what 

was initially added. This indicated that the experimental arrangement was able to 

separate 5-HMF from the solvent (water) used in 60% yield and the equipment was 

therefore employed in the dehydration of glucose and fructose. 

 Synthesis of 5-(hydroxymethyl) furan (5-HMF) 

 5-HMF yields from dehydration of glucose and fructose  

The dehydration of glucose was conducted as reported by Wei et al [333] with some 

modifications of their experimental conditions. These modifications included a change 

in catalyst, entrainer and the use of the vacuum distillation equipment as highlighted 
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above. The catalysts used in this work have been used previously in dehydration of 

carbohydrate. However, they have not been employed with reactive vacuum 

distillation equipment. 

The results of the dehydration of glucose and fructose conducted under vacuum at    

180 oC in 1-butyl-3-methylimidazolium chloride (BMIMCl) solvent with 10 mol.% of 

the catalysts, CrCl3.6H2O, ZrO2 and SO4
2-/ZrO2 designated as Cr (III), Z and SZ 

respectively, are presented in Figure 4-5. From these results, it was observed that 

higher yields (82%, 75% and 55%) of 5-HMF were obtained using fructose as a 

substrate with catalysts SZ, Cr (III) and Z, respectively. When using glucose as a 

substrate, the yields were lower compared with those for fructose as substrate. This 

lower yield may be as a result of the glucose straight chain and pyranose ratio (63% β-

glucopyranose and 37% α-glucopyranose) in water and hence, the enolisation rates 

might be slow [48]. Since fructose forms less stable ring structures, more open chains 

structures are likely to be present in BMIMCl and therefore the enolisation rates might 

be higher Fructose and glucose have been reported to exhibit different reaction 

mechanisms to form 5-HMF as glucose isomerizes to fructose on dehydration [340], 

and this might account for the lower yield of 5-HMF from glucose as compared to that 

of fructose. This observation was also explained elsewhere [341]. The results of the 5-

HMF yields from glucose (65%, 63% and 34%) using SZ, Z and Cr (III) catalysts in 

BMIMCl solvent was higher in this work as compared to 22%, 24% and 27% using 

the same solvent and catalysed by zeolite (H-ZMS-5) as reported from literature [342]. 

Therefore, this study revealed that SZ can effectively catalysed the dehydration of 

glucose to 5-HMF in higher yield as compared to zeolite even though both catalysts 

are environmentally benign.  
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Figure 4-5. Dehydration of glucose and fructose in different solid catalysts 

 Catalytic activity of the solid catalysts 

Based on catalytic activity, it was observed that SZ exhibited a strong catalytic activity 

as can be seen (Figure 4-5) which gave almost 80% and 65% yields from fructose and 

glucose substrates. Also, the catalytic activity of SZ was compared with an untreated 

Z catalyst and lower yields were obtained from the latter. This increased catalytic 

activity of SZ may be attributed to the increased acid sites of SZ in comparison to Z. 

 5-HMF formation in other ionic liquids 

In order to optimise 5-HMF yield, the use of other ionic liquids; 1-hexyl-3-

methylimidazolium chloride ([HMIM]Cl) and 1-butyl-2,3-dimethylimidazolium 

hexaflourophasphate ([BDMIM]PF6) were used. The results compared to those when 

using [BMIM]Cl ionic liquid are presented in  Figure 4-6. Among the ionic liquids 

used in the synthesis of 5-HMF, [BMIM]Cl clearly gave 5-HMF in higher yields.  

Ionic liquids [BMIM]Cl and [HMIM]Cl media provided significant yields of 5-HMF 

in the dehydration reaction of fructose and glucose substrates. This may be due to the 

fact that the chloride ions form only weak ion pairs [343], which leads more readily to 

the isomerization of carbohydrates [216] and the subsequent dehydration process. 
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Furthermore, as a result of the weak coordination of the ionic liquid structures, they 

do not compete with sugar for the binding of metal chlorides; therefore it is more likely 

that a sugar-metal coordination complex will be formed [344]. 

 

Figure 4-6. 5-HMF yields in ionic liquids 

 Effect of reaction temperature with time on 5-HMF yield 

The effect of reaction temperature with time on 5-HMF yield in the dehydration of 

fructose catalysed by sulfated zirconia (SZ) using [BMIM]Cl solvent was investigated 

and the results are presented in Figure 4-7. The reactions were conducted at 100 oC, 

120 oC, 150 oC and 180 oC. As shown in Figure 4-7, it was observed that the reaction 

temperatures have a significant effect on the 5-HMF yield. When the reactions were 

conducted at 100 oC, a lower yield (18%) was obtained after 2 h and a maximum yield 

of 82% was obtained at 180 oC after the same time of 2 h. It was also observed that the 

yield tended to increase gradually with increasing reaction time up to 120 minutes. 

Beyond 120 minutes, a decrease in yield of 5-HMF was observed in these temperature 

regimes. These results indicate that the degradation of 5-HMF was significant at higher 

reaction time even though increase in temperature speeds up the reaction initially and 

this behaviour was also reported elsewhere [41, 189, 254]. Furthermore, it was 

reported that [BMIM]Cl is known for its reaction with aldehyde functional group [345] 

and this decreased in yield might also be a side product formed from the reaction 

between 5-HMF and [BMIM]Cl as reported in literature [331]. 
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Figure 4-7. Effect of reaction temperature and time on 5-HMF yield 

 Effect of catalyst dosage on 5-HMF synthesis 

The effect of catalyst dosage on 5-HMF synthesis was investigated using fructose and 

glucose as substrates and the results are presented in Figure 4-8. This result is based 

on the dehydration of the substrates in BMIMCl ionic liquid solvent and sulfated 

zirconia catalyst at 180 oC, where the highest yield of 5-HMF was obtained (Figure 4-

7). When the catalyst dosage was increased from 2.5 mol. % to 10 mol. %, the yield 

of 5-HMF increased,  at 180 oC for a reaction time of 120 minutes, from 22% to 82% 

with fructose as substrate and 16% to 65% when using glucose as substrate. However, 

when the amount of the sulfated zirconia was increase from 10 mol. % to 30 mol. %, 

there was a decrease in the 5-HMF yield with both fructose and glucose as substrates. 

Therefore, 10 mol. % of catalyst dosage was chosen as the most suitable condition.   
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Figure 4-8. Effect of catalyst dosage on 5-HMF yield 

 Sulfated zirconia and [BMIM]Cl recycling 

Recycling of catalysts and solvents is very important based on the principles of green 

engineering [346] and therefore, recycling of sulfated zirconia catalyst and [BMIM]Cl 

ionic liquid was examined. The result of this study is presented in Figure 4-9 which 

shows that the recycled catalyst and ionic liquid gave comparable results on 5-HMF 

yields. For instance, the catalyst and the solvent retained a very high activity up to the 

third cycle and tended to lose their activity slightly from fourth to fifth cycle. This 

might be due to the retention of some 5-HMF or unreacted substrates in these cycles. 

 

Figure 4-9. Recycling of sulfated zirconia and [BMIM]Cl 
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 Characterization of 5-HMF 

The synthesised 5-HMF was characterised by 1H NMR, 13C NMR and FT-IR and were 

similar to previous data reported [333].  From the analysis of the 1H and 13C NMR 

data, only 5-HMF was present indicating a purity >95%. In addition, the FT-IR data 

indicated that the absorption bands were in agreement with NMR data as assigned in 

section 3.3.2. All spectral data are compared with commercially sourced 5-HMF and 

are presented in appendix 2.  

 Synthesis of some derivatives of 5-HMF 

Some derivatives of 5-HMF were synthesised in order to select the optimal monomer 

for treatment with montmorillonite clays for subsequent production of polymer-clay 

nanocomposites. These derivatives were 2,5-FDCA and 2,5-BHMF which were 

characterised by FT-IR and NMR spectroscopy and their spectra are shown in 

appendix 3. 

 Synthesis of FDCA 

Stated in the experimental section, FDCA was synthesised by oxidation of 5-HMF by 

potassium permanganate in a solution of sodium hydroxide and a pale yellow solid 

was isolated by filtration as the product. The product was characterized by NMR and 

FT-IR spectroscopy. 

4.7.1.1 Characterization of FDCA 

The 1H and 13C NMR results as assigned in section 3.4.1 were similar  as to reported 

values found in literature [65, 237, 347]. 

In addition, the expected FT-IR absorption bands were observed (section 3.4.1). The 

C = O stretching vibration characteristic of the carbonyl group occurs at 1670 cm-1 in 

agreement with others [348]. Using the C = O stretching absorption resulting from that 

of carboxylic acids occurs near 1760 cm-1 [347]. This decrease may be attributed to 

the conjugation effects of the carbonyl group with the unsaturation of the furan ring 



N.M. Baba                                                                                                            CHAPTER 4: RESULTS AND DISCUSSIONS 

116 

 

which decreases the bond order of the C=O slightly and this leads to shifting of the 

absorption band to a lower frequency [348].  

The FT-IR peaks observed are summarised in Table 4-3 which are in agreement with 

the values reported elsewhere [65, 237, 347, 349]. 

Table 4-3. Characteristic peaks of FDCA 

Assignment Wavenumber / cm 

C = O stretching 1670 

C – H  3150, 3120 

OH (Acid) 2700 - 3400 

C = C (Furan ring)  1569 

C – O – H bending (Acid) 1418 

C – H bending and Furan ring 960, 851, 762 

 

 Synthesis of 2,5-bis (hydroxymethyl) furan (BHMF) 

2,5-bis (hydroxymethyl) furan was synthesised by oxidation of 5HMF using NaBH4 

and KMnO4. The product was recrystallized in a refrigerator and a light yellow powder 

and was characterized by NMR and FT-IR spectroscopy.  

4.7.2.1 Characterization of BHMF 

From the analysis of the 1H NMR data, the BHMF was present indicating a purity 

>90%. Furthermore, the FT-IR data confirmed the various functional groups 

associated with BHMF as assigned by NMR. Both data assigned were presented in 

section 3.4.2 and the spectra are in appendix 3. 
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Therefore, this product will either serve as a monomer or diol for esterification 

reactions and also will be treated with Na-MMT clay for an attempt to carry out an in 

situ polymerization for the synthesis of polymer-clay nanocomposite. 

 Synthesis of dimethyl-2, 5-furandicarboxalate (DFD) 

In order to establish if the intercalation of 2,5-FDCA with Na-MMT clay was due to 

the acid functional group, the corresponding dimethyl dicarboxylate was synthesised 

in excess methanol. An analysis of the 1H NMR results revealed that DFD was 

obtained as the only product as confirmed by the assignment of the protons shown in 

section 3.4.3 and the spectra in appendix 4. 

 Assessment of intercalation of monomers into clay 

   5-HMF and Na-MMT clay 

An assessment of the intercalation of 5-HMF into a natural montmorillonite clay 

(MMT) was conducted and the results obtained by XRD (Figure 4-10) are presented 

in Table 4-4. The XRD pattern of the clay shows a strong basal reflection at 6.95o of 

2θ which from the Bragg equation (sin θ = λ/2d) corresponds to d (001) of 1.271 nm 

which is close to values usually reported for natural montmorillonite [257, 259, 261, 

295, 308, 350-353]. After introducing 5-HMF into the solvent (ethyl acetate) and Na-

MMT clay, the contents were dispersed by the aid of an ultrasonic probe for 15 

minutes. The corresponding d(001) reflection of 5-HMF-Na-MMT appears at a lower 

angle (4.30o of 2θ), indicating an increased basal spacing to 2.053 nm. This can be 

attributed to the intercalation of 5-HMF into the Na-MMT galleries. The other 

reflections such as that observed at 19.60o of 2θ were not shifted by the introduction 

of 5-HMF. Thus the inner sheet structure of the Na-MMT was not affected by the 

intercalation and geometrical irregularities in the sample which are amplified at low 

angles were not responsible for the displacement. It is often assumed that the 

intercalating species, in this case 5-HMF is lying flat on the silicate surface, which 

could maximise the electrostatic interaction [354]. 
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In order to be sure that ethyl acetate, the solvent used for intercalation of 5-HMF did 

not play a part in the basal plane expansion, a control was used consisting of clay that 

had been soaked in ethyl acetate without 5-HMF and subsequently dried in the same 

procedure and then tested. XRD patterns of 5-HMF and Na-MMT/ethyl acetate were 

obtained separately as shown in Figure 4-10.  It was observed that the solvent in the 

Na-MMT has been completely evaporated and gave exactly the d(001) of  as-received 

Na-MMT. 

Table 4-4. Maximum peak and d-spacing of Na-MMT and 5-HMF 

Samples Maximum peak, 

2θ/degree 

Basal spacings, 

d001/ nm 

Na-MMT 6.95 1.27 

Na-MMT/EtOAc 6.95 1.27 

Na-MMT, 5-HMF and 

EtOAc 

4.30 2.05 

 

 

Figure 4-10. XRD pattern of (a) 5-HMF, MMT and solvent (b) MMT and solvent (c) 

MMT only 

2.05 nm, 2θ = 4.30o 

1.27 nm, 2θ = 6.95o 

1.27 nm, 2θ = 6.95o 

0.44 nm, 2θ = 20.16o 
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   FDCA and MMT clay 

XRD was used to assess whether the monomer (FDCA) synthesized in this work 

intercalated into MMT clay and the results are presented in Figure 4-11. From these 

results, there was a slight increase of the basal reflection from 6.95° to 5.2° of 2θ for 

the clay after treatment with FDCA dissolved in DMSO, evaporated to dryness at     

190 oC and then dried in a vacuum. The evaporation technique was applied considering 

the boiling point of the DMSO in relation to that of the FDCA. As shown in            

Figure 4-15b, the XRD pattern revealed an increase from 1.27 nm to 1.70 nm, an 

increase of 0.43 nm relative to that obtained from as-received Na-MMT. Also, the 

XRD pattern of MMT/DMSO revealed that the DMSO was not present within the 

MMT galleries as there is not much difference with that of the MMT alone. Therefore, 

this result indicates an intercalation of the diacid into the clay galleries by this 

technique. 

 

Figure 4-11. XRD pattern of (a) FDCA/ MMT/ DMSO (b) MMT and (c) 
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   BHMF and MMT clay 

The synthesized BHMF was tested with Na-MMT clay to investigate if the monomer 

would be incorporated into this clay.  The XRD pattern in Figure 4-12 revealed an 

increase in the basal spacing d(001) from 1.25 nm to 1.67 nm when this monomer was 

added to clay. Also observed on the XRD patterns are peaks at 2θ = 10.85o, 15.75o and 

21.7o. These are diffraction patterns associated with this monomer as they are present 

on the XRD pattern of the monomer without clay (Figure 4-12). Based on this result, 

intercalation of this monomer into the clay galleries is said to occur and this might 

possibly lead to the production of polymer-clay nanocomposites by in situ 

polymerization of the diacid (FDCA) synthesized earlier with this monomer. 

Therefore, it is worth noting that this is the first investigation on the intercalation of 

Na-MMT clay with BHMF: there is no reported literature on this. 

 

Figure 4-12. XRD pattern of: (a) BHMF/Na-MMT and (b) Na-MMT 

 Organically modified MMT 

Organically modified MMT was synthesised (section 3.3.10) and characterised by 

XRD and compared with that of the Na-MMT are presented in Figure 4-13. From 

Figure 4-13 the d (001) of the organo-MMT calculated from Bragg’s equation is about 

1.94 nm for 2θ = 4.55o compared with d (001) of the Na-MMT 1.27 nm for 2θ = 6.95o. 

1.67 nm, 2θ = 5.29o 

   1.27 nm, 2θ = 6.95o 
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Therefore, this basal spacing increase indicates intercalation of the CTAB into Na-

MMT. This is due to ion-exchange of the organic ammonium cations of the CTAB 

with Na ions of the MMT resulting in the expansion of the galleries [355]. 

 

Figure 4-13. XRD pattern of: (a) Organo-MMT and (b) Na-MMT 

    FT-IR absorption spectra of modified MMT 

The FT-IR absorption spectra of Na-MMT and organo-MMT clays were recorded and 

are presented in Figure 4-14. It can be observed that an absorption band around 3620 

cm -1 was noted on both the Na-MMT and organo-MMT spectra. This is as a result of 

the stretching vibrations of OH groups that  are coordinated to Al-Al pairs [356]. Also 

observed on the spectra are absorptions at 2919 cm-1 and 2849 cm-1 (Figure 4-14(a)) 

which are the characteristic bands of the CTAB which indicates that intermolecular 

attractions occurred between the adjacent alkyl chains of CTAB in Na-MMT. This is 

also confirmed elsewhere [357, 358]. Therefore, these observed absorption bands are 

attributed to the organophilic modification of Na-MMT clay [359-361].  

 1.94 nm, 2θ = 4.55o 

1.27 nm, 2θ = 6.95o 
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Figure 4-14. FT-IR spectra of: (a) Organo-MMT and (b) Na-MMT 

   Polymers derived from FDCA 

Initial polymerisation reactions were conducted at 200 oC using esterification and 

polycondensation method (section 3.4.1). At the end of the polymerization reaction, 

methanol was added to precipitate the polymer formed which was collected via 

centrifugation. A fibrous polymer was obtained and after drying was characterized by 

NMR, FTIR and TGA instruments. The reaction scheme is presented in scheme 4-1. 

 

Scheme 4-1. Synthesis of poly (butylene-2, 5-furandicarboxylate) (PB-2,5-F) 

   NMR structure characterization 

The 1H NMR and 13C NMR spectra for the polymer product are presented in Figures 

4-15 and 4-16. From Figure 4-15, it was observed that the resonance peaks of  3-H and 

4-H of the furan protons appeared at 7.21 ppm and that at 4.38 is attributed to ester 

OCH2 group. Also observed were two peaks due to OCH2CH2 at 1.89 ppm as expected.  

3620 

3620 

2919 2850 
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In the 13C NMR spectrum (Figure 4-16), the C = O, C-2/C-5 and C-3/C-4 associated 

with the furan ring were observed at 160.0, 147.8 and 118.5 ppm respectively. Also 

observed are the carbon atoms associated with the ester at 65.0 ppm and 25.2 ppm 

corresponding to OCH2 and OCH2CH2 respectively. These resonances were 

comparable to those for the same polymer reported elsewhere [362]. 

From these results, it was concluded that the furan ring remained thermally stable in 

the final product despite the extensive heating at 200 oC during the polymerization 

reaction. 

 

Figure 4-15. 1H NMR spectra of polyester from FDCA and 1, 4-butanediol in CDCl3 

 

Figure 4-16. 13C NMR spectra polyester from FDCA and 1, 4-butanediol 
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   FT-IR structure characterization 

The resulting polymer synthesized from FDCA and 1,4-butanediol (BD) was 

characterized by FT-IR. The FT-IR spectra shown in Figure 4-17 provided evidence 

for characteristic absorptions of the furan ring at 3117, 1570, 1040, 975, 824 and              

771 cm -1, and those of the ester carbonyl at 1722 cm -1 which were all observed. This 

also confirmed the results obtained from the NMR spectrum. The detailed functional 

group assignments are presented in Table 4-5.  

To ascertain the total elimination of the 1,4-butanediol from the polymer, the FT-IR 

spectrum of 1,4-butanediol and FDCA was compared with that of the polyester product 

as shown in Figure 4-18 and  it can be seen that the absorption band of the OH group 

present on the 1,4-butanediol (BD) spectra was absent on the polyester. This indicates 

that the polymerization reaction proceeds and the expected product was obtained. 

 

Figure 4-17. FTIR spectrum of PB-2,5-F polymer from FDCA and BD 
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Figure 4-18. FTIR spectrum of PB-2,5-F polymer, 1,4-butanediol and  FDCA 

Table 4-5. FT-IR absorption bands of polyester from FDCA 

Assignment Wavenumber/cm  

=CH 3117 

C-H 2960, 2890 

C=O 1722, 1785 

C=C 1570 

C-O 1270 

Furan breathing 1040 

Furan bending motion 975, 824, 771 
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    Polymers from FDCA and other diols 

Further polymers were synthesised using different diols, 1,6-hexanediol, 1,8-

octanediol and the synthesised furan-based diol, BHMF (scheme 4-2). The products 

were characterised by NMR and FT-IR spectroscopy as described for PB-2,5-F 

polymer. 

 

Scheme 4-2. Synthesis of PH-2,5-F, PO-2,5-F and PBH-2,5-F polymers 

 NMR structure characterisation of PH-2,5-F, PO-2,5-F and 

PBH-2,5-F polymers 

NMR spectroscopy was employed to elucidate the structures of PH-2,5-F, PO-2,5-F 

and PBH-2,5-F polymers and the results are presented below. 

4.12.1.1 NMR spectra of PH-2,5-F polymer 

The 1H and 13C NMR spectra of PH-2,5-F polymer are presented in Figure 4-19. The 

peak at 7.12 ppm was attributed to 2H of the furan ring at H-3 and H-4 and that at 4.33 

ppm was assigned to the 4H at OCH2. The peak at 1.77 ppm was due to 4H of 

OCH2CH2. Furthermore, a peak at 1.45 ppm was the methylene groups at 

O(CH2)2CH2. The 13C NMR of this polymer revealed some peaks at 158.2 and 146.9 
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ppm and these were attributed to C=O and C-2/C-5 of the furan ring. The C-3 and C-

4 of the furan ring was observed at 118.4 ppm and the peaks at 65.4 ppm, 28.4 ppm 

and 25.5 ppm corresponds to OCH2, OCH2CH2 and OCH2CH2CH2 respectively.    

 

 

Figure 4-19. 1H and 13C NMR spectra of PH-2,5-F polymer 
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4.12.1.2 1H and 13C NMR spectra of PO-2,5-F polymer 

The 1H and 13C NMR spectra of PO-2,5-F polymer are presented in Figure 4-20. This 

polymer resembled that explained in section 4.10.2.2 in terms of its structural 

characterisation by NMR. For instance peaks at 7.18 ppm and 4.31 ppm are associated 

with the 2H of the furan ring and 4H of the methylene protons of OCH2CH2. The same 

observation was made in terms of the 13C NMR in relation to other polymers, PB-2,5-

F and PH-2,5-F respectively.  
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Figure 4-20. 1H and 13C NMR spectra of PO-2,5-F polymer 

4.12.1.3 1H and 13C NMR spectra of PBH-2,5-F polymer 

PBH-2,5-F polymer was characterized by 1H and 13C NMR. From the results in Figure 

4-21, it was observed that the 1H NMR spectrum (Figure 4-21(a)) is characterized by 

the presence of three singlet peaks at 7.26 ppm, 6.12 ppm and 4.33 ppm. The peak at 

7.26 ppm is attributed to the 2H resonances at 3-H and 4-H of the furan ring and at 

4.33 ppm is due to 2H of OCH2. Also observed on the spectrum is a chemical shift at 

6.12 ppm and is attributed to the 3'-H and 4'-H due to the deshielding effect of the 2,5-

dicarbonyl groups on these protons.. 

For the 13C NMR spectrum (Figure 4-21(b)), it was observed that this polymer consists 

of six resonance peaks. The resonance peaks associated with the furan carbons were 

observed at 154.6 ppm, 118.4 ppm, 147.0 and 107.4 ppm. These are attributed to C-

2/C-5, C-3/C-4, C-2'/C-5' and C-3'/C-4' respectively. Also observed are peaks present 

at 158.9 ppm and 55.8 ppm. These corresponds to the resonances of C=O and OCH2 

The higher chemical shifts for the resonances of C-2/C-5 and C-3/C-4 when compared 
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with those for C-2'/C-5' and C-3'/C-4' carbons correlates with the 1H NMR results of 

this polymer which are due to deshielding effects of the 2,5-dicarbonyl groups on these 

carbons as earlier reported.  

All the assignments were similar with those established for similar 2,5-disubstituted 

furan polyesters [237, 363]. 

 

 

Figure 4-21. 1H and 13C NMR spectra of PBH-2,5-F polymer 
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 FT-IR characterisation of PH-2,5-F, PO-2,5-F and PBH-2,5-F 

polymers  

The polymers PH-2,5-F, PO-2,5-F and PBH-2,5-F (scheme 4-2) were characterised by 

FT-IR and the results are presented in Figure 4-22. It was evident that they possessed 

similar functional groups. For instance, all absorption peaks indicated the presence of 

furan rings. For example, absorption bands were observed at approximately              

3117 cm-1 and attributed to the =C-H groups of the furan rings of PH-2,5-F, PO-2,5-F 

and PBH-2,5-F polymers respectively. The carbonyl, C = O, functional groups of these 

polymers were observed at approximately 1722 cm-1.  

 

Figure 4-22. FTIR spectra of PH-2,5-F, PO-2,5-F and PBH-2,5-F polymers 

In order to ascertain that the polymerisation reactions proceed without any traces of 

the OH functional group in the final products, FT-IR spectra of the polymers were 

compared with the various diols and FDCA used in their synthesis and are presented 

in Figure 4-23(a-c). It can be observed that in all the polymers produced, there was no 

absorption band around the OH regions of the polymers spectra. 
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Figure 4-23(a-c). FT-IR spectra of the polymers with their corresponding diols 

Table 4-6. Assignments of the functional groups of the polymers 

 

Assignment 

Wavenumber/cm 

PH-2,5-F PO-2,5-F PBH-2,5-F 

=CH (furan ) 3117 3117 3117 

C – H (CH2) 2939, 2858 2922, 2857 2937, 2859 

C = C 1574, 1509 1573, 1506 1572, 1500 

C = O 1722 1722 1722 

C - O 1274 1271 1271 

Furan breathing 1043 1011 1040 

Furan bending motion 967, 871, 772 967, 867, 774 962, 846, 764 

 

In summary, the details of the functional groups found in these polymers are presented 

in Table 4-6 which suggests that all the assigned groups are in agreement with the 

proposed structures. Also, these assignments are similar to those reported by Jiang et 

al [364].  
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   Elemental analysis 

The values for elemental analyses of the polymers produced are given in Table 4-8 and 

they indicate that the percentage hydrogens in all the polymers were slightly higher 

than the theoretical values. This may be attributed to the residual moisture. It has been 

reported elsewhere that residual moisture can cause these values to be slightly higher 

than the calculated values [365]. Using the excess, the equivalent percentage of 

residual water was calculated and found to be within ~ 0.1 wt. % - 0.2 wt. % for all the 

polymers. These results are compared with water uptake experiments as reported in 

section 4.12.9 which establish that the polymers are capable of absorbing up to 0.8 

wt.% water. 

Table 4-7. Elemental analysis results of the polymers* 

 

Polymer 

% C 

Calculated  Found 

% H 

Calculated  Found 

% O** 

Calculated  Found 

PB-2,5-F 57.14 53.53 4.80 4.90 38.06 41.57 

PH-2,5-F 60.50 58.13 5.92 7.19 33.58 34.68 

PO-2,5-F 63.66 64.21 4.41 4.56 31.93 31.23 

PBH-2,5-F 65.12 64.92 3.90 4.13 30.98 30.95 

       

 

* The manufacturer, Exeter Analytical Inc., authenticate the quotation of results to 

    0.01% and claim a typical deviation theoretical values of 0.03% 

** Values calculated by difference 

 Tensile properties 

The tensile stress, tensile modulus and elongation at break of polymers prepared from 

2,5-furandicarboxylic acid and various diols (1,4-butandiol, 1,6-hexanediol, 1,8-

octanediol and 2,5-Bis-(hydroxymethyl)furan) designated as PB-2,5-F, PH-2,5-F,   
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PO-2,5-F and PBH-2,5-F were determined using the Tinius Oslen H10KM/0348 

testing machine. Examples of results obtained from these studies are presented in 

Figure 4-24.  

 
 

 
 
 

   

 

 

 

 

 

      

           

Figure 4-24. Tensile properties of the four polymers synthesized in this work: (a) 

Force-extension curve (b) Tensile strength-strain curve 

Of the four polymers prepared, the elastic properties are similar but the PBH-2, 5-F 

has a higher tensile failure stress compared to others and PO-2, 5-F possesses the least. 

When compared with the strength of PET as reported elsewhere [366] the tensile 

failure stress of these polymers was lower than that of PET and this can be attributed 
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in part to the fact that a great deal of refinement to the synthesis is needed to obtain a 

high and narrow molecular weight distribution. Such refinement is beyond the scope 

of the present work. 

It is normal practice for Young’s modulus of polymers to be obtained using an 

extensometer which measures the elongation of the sample directly and eliminates 

machine compliance. Unfortunately, an extensometer was not available for use during 

the course of this investigation. Since the loads recorded in figure 4-24(a) are low, it 

can be argued that machine compliance has minimal effect and a ‘nominal Young’s 

modulus’ is recorded for the purpose of comparison.  

These estimated Young’s modulus results are within the range reported for phenolic 

resins (2.8 - 4.8 GPa) and polyester resins (2.1 - 4.4 GPa) [367]. The detailed results 

obtained are summarized in Table 4-7. 

Table 4-8. Some mechanical properties of polymers derived from FDCA 

Polymers Tensile strength/MPa   Young’s modulus/GPa    Elongation at break (%) 

Mean 95%*     Mean 95%* Mean 95%* n** 

PB-2,5-F 19 1 2.9 0.1 2.0 0.1 5 

PH-2,5-F 21 2 2.8 0.1 1.7 0.1 5 

PO-2,5-F 19 2 2.6 0.1 1.8 0.1 5 

PBH-2,5-F 21 2 3.0 0.1 1.1 0.2 5 

 

*Confidence limit,      **Number of population 

     Water contact angle 

The water contact angle gives an indication of hydrophobicity which in turn is related 

to the number of permanent dipoles in the structure and hence to dielectric constant. 
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This reveals how a water drop on a solid or liquid surface spreads. Water contact angle 

is defined as the included angle that water makes with a solid surface or capillary walls 

of a porous material when both materials come into contact [368]. 

As one of the aims of this research is the synthesis of hydrophobic polymers, contact 

angle of the polymer surface was determined to study wettability and the results are 

presented in Figure 4-25. The contact angle as measured with a protractor on printed 

images of droplets such as those displayed in Figure 4.26 was 91° for PBH-2, 5-F 

polymer (Figure 4-25). During the measurements of the contact angle, the advancing 

angles were measured and not the receding angle. This is because the measurements 

were conducted within 10-120 seconds and the formation of receding angles was 

prevented by buffering the atmosphere to stop evaporation from the water droplets. 

Therefore, the results suggest that the PBH-2,5-F polymer is slightly more 

hydrophobic than the others based on their water contact angle measurements [368, 

369].  In general, a material or surface is designated hydrophobic if the water contact 

angle is greater than 90o but this is an arbitrary criterion. An angle less than 90° 

corresponds to high wettability or hydrophilicity of the surface as illustrated in Figure 

4-26. However, others have argued that 65o should be the criterion for hydrophobic 

surfaces [370, 371]. As shown in Table 4-10, the other polymers: PB-2,5-F, PH-2,5-F 

and PO-2,5-F also have contact angles close to 90° and therefore also fall into the 

category of hydrophobic. The actual angles can be seen in Table 4-10.  
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Figure 4-25. Water contact angle of: (a) PB-2,5-F (b) PH-2,5-F (c) PO-2,5-F and (d) 

PBH-2,5-F 

 

Figure 4-26. Hydrophilic and hydrophobic surfaces based on contact angle [372]. 
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Table 4-9. Water contact angles of polymers derived from FDCA and various diols 

Polymers Water contact angle/ o 

Mean 95%*     n** 

PB-2,5-F 83 1 6 

PH-2,5-F 85 1 6 

PO-2,5-F 87 2 6 

PBH-2,5-F 91 1 6 

 

*Confidence limit            **Number of population 

   Variation of contact angle with time 

The relationship between contact angle and time was investigated and the results are 

presented in Figure 4-27. The contact angles of the sessile drops were also measured 

between 10-120 seconds and it was found out that PB-2,5-F, PH-2,5-F and PO-2,5-F 

polymers have the same contact angles of 83o at 10s while PBH-2,5-F has an angle of 

89o. This study revealed that the contact angles on these polymers increase slightly 

with time as observed on different polymers [373]. The reason is that the approach to 

equilibrium is slow: some authors have advised vibrating the sessile drop to obtain an 

equilibrium angle [374].  
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Figure 4-27. Water contact angle as a function of time of the various polymers 

In conclusion, water droplets on these polymers rest on their surfaces with a high 

contact angle which is stable in a 100% RH buffered atmosphere.  

   Capacitance and dielectric constant 

Studies on the electrical properties of polymers are important for industrial 

applications involving, for example, insulation of cables, encapsulates for electric 

components, interlayer dielectrics, and printed wiring board materials [375]. 

In this work, the capacitance and dielectric constants were determined and Figure 4-

28 shows the frequency dependences of the capacitance of simple capacitors made 

from the four polymers produced from FDCA and various diols. It can be observed 

that PBH-2,5-F and PB-2,5-F polymers have almost the same capacitance values at 

24-25 pF when compared to the remaining two polymers. The capacitance value for 

PH-2, 5-F was lower than that of the others. These values of the capacitance were used 

to determine the dielectric constants of all the polymers synthesised in this work. 
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Figure 4-28. Capacitance of the four polymers derived from FDCA and diols 

The dielectric constant or relative permittivity (εr), was obtained from the capacitance 

values of the various polymers using equation 3.4 in section 3.2.10. A frequency range 

that avoided space charge effects from electroding and high frequency effects was 

used. Permittivity is also useful in predicting other electrical properties of the polymers 

[376, 377]. The results are presented in Figure 4-29 as derived from the capacitance- 

frequency curves (Figure 4-28).  

From Figure 4-29, it can be observed that PBH-2,5-F polymer has the highest value of 

the dielectric constants among the four polymers with a dielectric constant of about 

3.25 which is similar to the reported value for an analogous polyester, PET which was 

3.4 [378]. The dielectric constants of PH-2,5-F and PO-2,5-F polymers were found to 

be 2.7 and 2.6 while that of PB-2,5-F and PBH-2, 5-F polymers were 2.8 and 3.2 

respectively. The dielectric constants of PH-2,5-F and PO-2,5-F in the range exhibited 

by common thermoplastics such as polystyrene and acrylonitrile butadiene styrene 

[379]. This variations in the dielectric constants can be attributed to the structure and 

composition of the polymer which have strong effects on the dielectric constant [378].  
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Figure 4-29. Dielectric constants of the four polymers derived from FDCA and diols 

   Water absorption 

Water absorption tests were conducted on the polymers produced at different times 

and the results are presented in Figure 4-30. It can be seen that all the polymers have 

absorbed a significant but low amount of water rising to about 1% at saturation. 

Among the four polymers produced, PHB-2, 5-F shows the least water absorbed 

compared to others. After 14 days of immersion in water, this polymer was able to 

absorb only about 0.8% water. This correlates with the contact angle value of this 

polymer: it gave the highest contact angle of about 91o compared to others. Similarly, 

PB-2, 5-F polymer was observed to have the highest water absorption value of 1% 

after 14 days of immersion which correlates with lowest water contact angle as earlier 

shown in Table 4-8. In general therefore, these polymers are able to absorb about 1% 

of water when in contact with water for extended times during their potential 

applications. 
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Figure 4-30. Water absorption of the polymers derived from FDCA and various diols 

  Thermogravimetric Analysis (TGA) 

To anticipate the potential applications of the polymers produced, thermal stability and 

degradation behaviour of these polymers are of great importance. Thus, 

thermogravimetric analyses were conducted to assess their thermal behaviour and 

stability. As shown in Figure 4-31, the first stage involves a mass loss of around 9 wt. 

%, and corresponds to the vaporization of moisture, to desorption of water and to the 

possible emission of volatile organic compound [380]. For PB-2,5-F polymer, the 

TGA curves have a main weight loss onset at above 324 oC representing about 85% of 

the total weight PB-2,5-F polymer, with a maximum degradation rate at 381 oC. Also 

noted was a minor weight loss commencing at 200 oC which may be due to low 

molecular weight fractions. In the region below 200°C there are fluctuations of the 

weighing balance due to vibrations from adjacent equipment located in the same 

vicinity. The other polymers (PBH-2,5-F, PH-2,5-F and PO-2,5-F) showed similar 

thermal behaviour and both exhibit some weight loss at 300 oC. Among the polymers 

synthesised, PB-2,5-F possessed the highest temperature of maximum degradation at 

381 oC with a weight loss of 85% at that temperature. The decomposition and 

maximum degradation temperatures of these polymers are summarised in Table 4-11. 

These represent thermal degradation processes in helium at a rate of 10 oC/min. Also, 
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it is observed that the polymers prepared from the aliphatic diols, maximum 

degradation temperature decreased with increasing methylene number of the diols in 

the following order: PB-2,5-F > PH-2,5-F > PO-2,5-F polymers respectively. 

 

Figure 4-31. TGA traces of polyester from FDCA and various diols at 10°C/min. 

Table 4-10. Decomposition and maximum degradation temperature of polymers 

Polymer Decomposition/oC Maximum degradation /oC 

PB-2,5-F 324 381 

PBH-2,5-F 280 350 

PH-2,5-F 287 346 

PO-2,5-F 281 336 
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  Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) of the polymers was obtained and the results 

are presented in Figure 4-32. The DSC results of PH-2,5-F and PO-2,5-F polymers 

(Figure 4-32a) exhibit an endotherm starting at 100 oC which ends at 125 oC. If the 

area of these endotherms are converted to energy (J) then, using the enthalpy of 

vaporization of water (2257 Jg-1 at 373 K), it corresponds to a loss of ~ 1 wt. % of 

water which was in agreement with the water uptake results obtained in section 4.12.9.  

The second endothermic peak comprises a shoulder at ~290 oC which is the crystalline 

melting endotherm and correlates with the melting point determination (Section 

4.12.3). This merges with the endotherm which ends at about 350 oC and is associated 

with thermal degradation of these polymers and volatilisation of products. For PH-2,5-

F this is preceded by an exotherm and  it is not clear what this represents. Exothermic 

behaviour would be expected if oxygen was present but these tests are done in flowing 

helium.   PB-2,5-F and PBH-2,5-F polymers  (Figure 4-32b) exhibit similar  behaviour  

in the region 100-125 °C corresponding to water loss but the second endotherms 

involve much lower enthalpies. These results confirm the TGA traces and suggest that 

the polymers have substantial thermal stability under these experimental conditions.  

 

Figure 4-32. DSC traces of: (a) PH-2,5-F / PO-2,5-F and (b) PB-2,5-F / PBH-2,5-F   

  XRD pattern of the polymer 

The crystalline structures of polymers have a significant impact both on their 

mechanical properties and biodegradability. Therefore, the presence of crystallinity in 
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PB-2,5-F polymer was assessed by XRD. The XRD pattern as presented in Figure 4-

33(a) revealed some prominent reflections at 2θ = 17.9o and 22.5o. This result suggests 

that there might be a crystalline melting endotherm in the DSC trace of this polymer 

[362]. 

 Effect of grinding on XRD pattern of the polymer 

The polymer produced (PB-2,5-F) was obtained as fibrous lumps of material and was 

subjected to grinding by pestle and mortar in order to obtain a fine powder material for 

XRD measurements. In order to control for the effect of grinding, a sample that had 

not been ground was carefully placed into the XRD sample holder and tested. The 

XRD patterns were almost identical (Figure 4-33) confirming that grinding the 

polymer prior to XRD measurement had no effect on the trace.  

 

Figure 4-33. XRD pattern of: (a) ground (b) unground PB-2,5-F polymer 

    Polymer/Clay nanocomposites 

    XRD pattern of the polymer/clay nanocomposites 

Assessment of intercalation and/or exfoliation of the polymer clay nanocomposites 

produced by in situ polymerization of PB-2,5-F polymer was investigated by XRD 

0.50 nm, 2θ = 17.9o 

0.83 nm, 2θ = 10.7o 
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(Figure 4-34(a)) from which  it can be observed that the basal spacing (d001) of the 

nanocomposite was 1.45 nm (2θ = 6.1o). In comparison with the XRD pattern of the 

clay with basal spacing (d001) of 1.27 nm (Figure 4-34(b)), this suggest the formation 

of an intercalated nanocomposites. It can also be noted from Figure 4-34(c) that the 

polymer without clay has no d001 reflection in the region 2-10° of 2θ.   

 

Figure 4-34. XRD pattern of polymer-clay nanocomposites (a), clay (b) and    

polymer (c).  

 XRD pattern of polymer/clay nanocomposites prepared by      

different methods 

PB-2,5-F/clay nanocomposites were prepared by solution in ethyl acetate, in situ 

polymerization and melt intercalation methods at 200 oC as described in section 3.6. It 

was observed that the contents in the flask melted and then solidified on cooling at 

ambient temperature. The solidified product was ground by pestle and mortar and all 

the products obtained by the three methods were characterized by XRD and are 

presented in Figure 4-35. 

1.45 nm, 2θ = 6.1o 
1.27 nm, 2θ = 6.95o 

0.50 nm, 2θ = 17.9o 
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Figure 4-35. XRD pattern of polymer/clay nanocomposites: (a) melt (b) in situ and 

(c) solution methods 

The XRD patterns of PB-2,5-F/clay nanocomposites made by  melt processing  (Figure 

4-35(a)) revealed that there were no d (001) reflections above 2° of 2θ. This suggests 

that an exfoliated nanocomposite was made by the melt processing method. However, 

nanocomposites produced by in situ and solution methods revealed some d001 

reflections at 2θ = 6.1o and 2θ = 6.7o. The d-spacings of these nanocomposites 

calculated from Bragg’s equation revealed a value of 1.45 nm and 1.32 nm for in situ 

polymerization and solution methods respectively, thereby affording intercalated 

nanocomposites based on the XRD measurements. 

In summary, PB-2,5-F/clay nanocomposite prepared by in situ  and from solution 

methods revealed an intercalated polymer/clay nanocomposites and by melt method 

an exfoliated nanocomposites was produced.  

    TEM images of polymer/clay nanocomposite  

TEM was used to explore whether the nanocomposites were intercalated or exfoliated 

as the results obtained by XRD alone cannot provide evidence of partial exfoliation. 

The results of polymer/clay nanocomposite prepared by the melt method are presented 

0.50 nm, 2θ = 17.9o 

1.45 nm, 2θ = 6.1o 

1.32 nm, 2θ = 6.7o 
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in Figure 4-36. The TEM image indicates structures of light and dark stripes [261, 295] 

with a spacing of about 5 nm. Obviously the exact spacing can only be deduced if the 

clay layers are perpendicular to the beam but the XRD trace for this system (Figure 

4.35(a)) gives no peaks above 2θ = 2° which corresponds to 4.4 nm.   The dark regions 

represent layers that are not completely ordered intercalative structures but might be 

seen as partially exfoliated with an orderly structure. Therefore, this results might 

suggest that an exfoliated nanocomposite was prepared by melt intercalation method 

as earlier proposed by the XRD results [381]. 

 

Figure 4-36:   TEM image of Polymer/clay nanocomposite by the melt processing 

method 

Similarly, the TEM image of PB-2,5-F/Na-MMT nanocomposite containing 5 wt % 

clay platelets produced by in situ intercalation method was obtained and the image is 

presented in Figure 4-37.  The silicate layers exist mostly as an ordered structure and 

the arrows correspond to two spacings each about 4 nm. The XRD trace (Figure 

4.35(b)) gives a broad and rather flat peak with maximum spacing 1.8 nm which would 

produce a spacing of 4 nm in the TEM image if the plates were aligned at 27° to the 

surface. This implies that an intercalated nanocomposite was obtained via the in situ 
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polymerization technique which confirmed the results of the XRD as explained in 

section 4.12.12 above. 

 

Figure 4-37. TEM image of PB-2,5-F/Na-MMT nanocomposites by in situ 

interaction . 
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CHAPTER 5: CONCLUSIONS AND FUTURE 

WORK 

  Conclusions 

The overall conclusion from this research work is that it is feasible to manufacture 

hydrophobic polymers and their composites from cassava as a starting material and in 

so doing to extend materials markets towards bio-based resources and away from 

mineral oil feedstock. This approach, in the context of the economies of sub-Saharan 

Africa potentially realigns the agricultural and industrial economic sectors helping to 

establish an integrated-sector-economy, providing a stronger relationship between 

farmers and manufacturers, extending employment and thus providing social stability 

in these regions of the world. 

The first part of this work demonstrates that it is possible to use carbohydrates 

particularly glucose and fructose to obtain 5-(hydroxymethyl) furan (5-HMF) via a 

reactive vacuum distillation process (based on the boiling point of 5-HMF as  114 -

116 oC at 1 mbar) so that the chemical reaction and product separation take place 

within a single vessel. This process provides an avenue whereby the production of 5-

HMF is conducted and separated with minimal use of volatile solvents and offers the 

possibility of a semi-continuous industrial processes to produce 5-HMF as a precursor 

for the production of hydrophobic polymers from biomass. The novelty in this part is 

the dehydration of glucose and fructose using sulfated zirconia and BMIMCl ionic 

liquid as solvent by the reaction distillation process which afforded 5-HMF as the main 

product. This the first investigative research involving this catalyst and the solvent by 

this method. Another novelty part was the intercalation of Na-MMT with the 5-HMF 

affording an increased d-spacing of the clay from 1.27 nm to 2.05 nm determined by 

Bragg’s equation from the XRD pattern. There was no report from literatures on the 

intercalation of Na-MMT clay with 5-HMF prior to this report and this suggest that 

the precursors derived from 5-HMF as monomers could potentially produce polymer-

clay nanocomposites.  
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The second part of this work makes use of the 5-HMF for the production of derivatives 

to serve as monomers for the synthesis of hydrophobic polymers by esterification. Two 

monomers were synthesised and these are: 2,5-furandicarboxylic acid (FDCA) and 

2,5-bis-(hydroxymethyl) furan (BHMF). FDCA was obtained at 80% yield by 

oxidation of 5-HMF using potassium permanganate. A yield of 88% BHMF was 

obtained by the reduction of 5-HMF using sodium borohydride (NaBH4) as reducing 

agent. This product was synthesis so as to pave way for the synthesis of polymers that 

encompass the starting materials: diacid and diol both derived from biomass sourced 

carbohydrate via esterification reaction. Furthermore, these diols were treated with Na-

MMT clay and the results obtained indicate an intercalation of the clay with the 

monomers. For instance, the d-spacing of the clay as determined from the XRD 

patterns using Bragg’s equation increased from 1. 27 nm to 1.70 nm for FDCA and to 

1.67 nm for BHMF respectively. Again, this is the novelty part of this research as there 

was no reported literature on this. 

The third part of this work was the polymerization of FDCA monomer with various 

diols including BHMF as the reduction product of 5-HMF. The other diols used were 

1,4-butandiol, 1,6-hexanediol, and 1,8-octanediol. The FDCA monomer was used to 

produce polymers using these various diols namely:  poly (butylene-2,5-

furandicarboxylate) (PB-2,5-F), poly (hexylene-2,5-furandicarboxylate) (PH-2,5-F) 

and poly (octylene-2,5-furandicarboxylate) (PO-2,5-F). Another polymer, poly (2,5-

furandimethylene 2,5-furandicarboxylate) (PBH-2,5-F) was produced from FDCA 

and BHMF. Their structures were confirmed by 1H NMR and FT-IR spectroscopies 

after precipitation in methanol. 

As one of the aims is the synthesis of hydrophobic polymers, the wettability of these 

polymers was determined by water contact angle measurement. The contact angle on 

PBH-2,5-F was 91o and this is the more hydrophobic. For the others, the angle was 

just below 90°. Water uptakes during immersion were in the region of 0.8-1.0% for all 

these polymers. Dielectric constant was comparable to that of PET.    

Furthermore, the mechanical properties of the four polymers are similar but the PBH-

2,5-F has a higher tensile failure stress compared to the others and PO-2,5-F possesses 

the least. The tensile failure stress of these polymers were lower than that of PET and 
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this can be attributed in part to the fact that a great deal of refinement to the synthesis 

is needed to obtain a high and narrow molecular weight distribution. Similarly, 

Young’s modulus of the polymers, obtained as ’nominal modulus’, were similar within 

the range of 2.6-3.0 GPa comparable to that of PET. 

Finally a study of the interaction between the monomers and Na-montmorillonite clay 

was made. Results shows that 5-HMF, FDCA and BHMF were able to intercalate 

between the clay layers which suggests that production of polymer-clay 

nanocomposites are possible based on the in-situ polymerisation of intercalated 

monomers. An attempt to produce polymer-clay nanocomposites from PB-2,5-F 

polymer and Na-montmorillonite clay via the in situ polymerization technique 

produced a polymer accompanied by increased basal spacing of the montmorillonite, 

confirming that a polymer-clay nanocomposite had been prepared. This is also the 

originality aspect of this project as there was no literature report on this type of 

polymer-clay nanocomposites. 

The success of this sequence of laboratory experiments provides sufficient confidence 

for a materials production strategy based on derivatives of biomass in the form of 

cassava and suggests the feasibility of scale-up, highlighting the areas of refinement 

to the process that are needed.    

 Future work 

 Other sources of carbohydrate 

Other sources of carbohydrates which can be obtained from biomass should be 

explored to find an alternatives to fossil-derived chemicals. These sources includes 

wastes crop residues such as sugar cane bagasse, wheat straw, rice straw and corn 

stover which can serve as raw materials for the synthesis of glucose. 

 Other derivatives of 5-HMF 

In addition to FDCA and BHMF, other derivatives of 5-HMF that can be obtained 

from carbohydrate biomass are 2,5-diformyl furan (DFF) and 2,5-dimethylfuran 
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(DMF). These derivatives could potentially provide vast arrays of important chemicals 

and biofuels. It is suggested that effective approaches for their synthesis and potential 

applications as bio-based materials and starting materials for polymers should be 

investigated. 

 Molar mass determination of the polymers 

It is of great importance for these polymers to be characterised by molar mass.  Various 

methods are available for the determination of molar mass of polymers. Some of these 

methods are: (i) light scattering (ii) ultracentrifugation (iii) osmatic pressure (iv) gel 

permeation chromatography (GPC) and (v) viscosity. Among these techniques, the 

absolute method for molar mass determination are light scattering, ultracentrifugation 

and osmotic pressure as they determine the molar mass of polymers directly. The other 

two methods are GPC and viscosity which do not directly give the values of molar 

mass and are termed as relative methods. These methods use calibration curves or 

evaluation of unknown constants by first finding out the molecular weight of the 

standard or reference polymers. 

These methods with the exception of viscosity requires equipment which was not 

available during the course of this work. Also, molecular weight of a reference 

standard polymer was not published or established elsewhere. Therefore, molar mass 

determination of these polymers should be investigated and most importantly 

molecular mass distribution should be measured and the synthesis process 

interactively developed to avoid low molecular mass fractions and increase overall 

molecular mass in order to improve the mechanical and formability properties. 

 Mechanical properties of the polymers 

Generally, polymers and nanocomposites exhibit mechanical deterioration over time 

which affect their durability and long term performance. Therefore, detailed 

mechanical behaviour and mechanisms of failure during creep and oxidative and UV 

degradation should be investigated for future work. Furthermore, the mechanical 

properties of the composites depends on the composite constituents as well as on the 

interfacial strength between them. There is a need to determine their long term 
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performance by the use of reliable tools to determine mechanical durability with the 

aim of developing polymers and nanocomposites with enhanced mechanical properties 

for a wide range of applications. Furthermore, other reinforcements such as graphene 

or graphene oxide could be added to the polymers and their behaviour and properties 

studied. Again, the volume fraction of reinforcing agents should be studied to find the 

favourable amount that could provide a nanocomposites with much improved 

properties. 

 Regulatory measures 

Regulatory measures addressing climate change and environmental legislation should 

be revisited so as to incorporate the use of biomass as a resource for bio-based 

materials. This will encourage Governments to focus their attention and investments 

in biomaterials research in order counter-balance the effects of oil price increase and 

to safeguard their long term energy security.     

Looking at the future, the use of biomass as a resource for bio-fuel and biomaterials 

will diversify the economies of sub-Saharan Africa particularly Nigeria from 

dependence on fossil fuel for their economic drivers and this will create more jobs for 

the teaming unemployed population. Therefore the use of agricultural biomass will 

realign the industrial and agricultural sectors. An agreement between Governments 

and industries has to be made in order to assure availability and therefore sustainability 

for this project.  
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Appendix 1. Vacuum distillation apparatus 

The vacuum distillation set-up in this work consisted of a rotary vacuum pump, a 

condenser with coolant recirculation, a silicone oil bath and a hot plate. The hot plate 

was fitted with a type K thermocouple inserted by drilling into the plate and its 

temperature was controlled by a Eurotherm 815 programmable controller (Worthing 

UK). Vacuum connection was via a needle valve (Ham-Let, Sussex, UK) with a ‘T’ to 

another needle valve for air entry (labeled I and J respectively in Figure 5-1) and a 

Bourdon–type pressure gauge. Valve A was opened slowly and the vacuum gauge 

registered its lowest pressure which was 2.7 kPa. This was done several times until a 

desired vacuum level was obtained. Needle valve B allows gas (air or nitrogen) to 

bleed into the chamber.  

 

Figure 5-1.  Vacuum distillation set-up for glucose/fructose dehydration 

Key: A: 100 ml round bottom flask. B: Oil bath set at predetermined temperature, C: 

Hot plate with magnetic stirrer, D: Reflux condenser, E: Vacuum pump, F: 50 ml round 

bottom flask for product collection, G: Thermometer, H: Pressure gauge, I: Valve B 

and J: valve A. 
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Appendix 2. NMR and FT-IR spectrum of 5-HMF 

 

 

Figure 5-2. 1H NMR spectra of 5-HMF synthesised 
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Figure 5-3. 1H NMR spectra of 5-HMF: (a) commercially sourced and (b) 

Synthesised  

(b) 

(a) 
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Figure 5-4. 13C NMR of synthesised 5-HMF 

 

Figure 5-5. FT-IR spectra of (a) commercially sourced and (b) synthesized 5-HMF 
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Appendix 3. NMR and FT-IR spectra of FDCA 

 

Figure 5-6. 1H NMR of FDCA in DMSO-d6 (500 MHz) 

 

Figure 5-7. 13C NMR of FDCA in DMSO-d6 (500 MHz) 
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Figure 5-8. FT-IR Spectra of prepared FDCA. 
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Appendix 4. NMR and FT-IR spectra of BHMF 

 

Figure 5-9. 1H NMR spectra of BHMF in CDCl3 (300 MHz) 

 

Figure 5-10. 13C NMR spectra of BHMF in CDCl3 (300 MHz) 



N.M. Baba                                                                                                                                                                  APPENDICES 

163 

 

 

 

Figure 5-11. FT-IR spectra of (a) 5-HMF and (b) BHMF 
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Appendix 5. 1H and 13C NMR spectra of DFD 

 

 

Figure 5-12. 1H NMR spectra of DFD in DMSO-d6 (500 MHz) 

 

Figure 5-13. 13C NMR of DFD in DMSO-d6 (500 MHz) 
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Appendix 6. Analytical instruments 

1. X-Ray Diffraction (XRD) 

X-ray diffraction technique is used to determine the crystal lattice structure and the 

spacing between atomic planes which will constructively interfere to yield peaks at 

discrete angles. In another words, when a crystal is irradiated with X-rays that are 

similar to the spacing of the atomic-scale lattice and at certain incidence angles, then 

intense reflected X-rays are produced when the wavelengths of the scattered X-rays 

interfere constructively as illustrated in Figure 5-14. 

For the waves to interfere constructively, the differences in the travel path must be 

equal to integer multiples of the wavelength which will results into a diffracted beam 

of X-rays that will leave the crystal at an angle equals to that of the incident beam 

[382].   

 

Figure 5-14.  Bragg's Law reflection. The diffracted X-rays exhibit constructive 

interference when the distance between paths ABC and A'B'C' differs by an integer 

number of wavelengths (λ). 

To illustrate this phenomena, consider a crystal with crystal lattice planar distances d 

(right). Where the travel path length difference between the ray paths ABC and A'B'C' 

is an integer multiple of the wavelength, constructive interference will occur for a 

combination of that specific wavelength, crystal lattice planar spacing and angle of 
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incidence (θ). Each rational plane of atoms in a crystal will undergo refraction at a 

single, unique angle (for X-rays of a fixed wavelength). 

The general relationship between the wavelength of the incident X-rays, angle of 

incidence and spacing between the crystal lattice planes of atoms is known as Bragg's 

Law, expressed as:   

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃------------------------- (5.1) 

Where n (an integer) is the "order" of reflection, λ is the wavelength of the incident 

X-rays, d is the interplanar spacing of the crystal and θ is the angle of incidence. 

Application of Bragg’s equation 

In X-ray diffraction (XRD) the interplanar spacing (d-spacing) of a crystal is used for 

identification and characterization purposes. In this case, the wavelength of the 

incident X-ray is known and measurement is made of the incident angle (θ) at which 

constructive interference occurs. Solving Bragg's Equation gives the d-spacing 

between the crystal lattice planes of atoms that produce the constructive interference. 

A given unknown crystal is expected to have many rational planes of atoms in its 

structure; therefore, the collection of "reflections" of all the planes can be used to 

uniquely identify an unknown crystal. In general, crystals with high symmetry (e.g. 

isometric system) tend to have relatively few atomic planes, whereas crystals with low 

symmetry (in the triclinic or monoclinic systems) tend to have a large number of 

possible atomic planes in their structures. 

In the case of wavelength dispersive spectrometry (WDS) or X-ray fluorescence 

spectroscopy (XRF), crystals of known d-spacing are used as analyzing crystals in the 

spectrometer. Because the position of the sample and the detector is fixed in these 

applications, the angular position of the reflecting crystal is changed in accordance 

with Bragg's Law so that a particular wavelength of interest can be directed to a 

detector for quantitative analysis. Every element in the Periodic Table has a discrete 

energy difference between the orbital "shells" (e.g. K, L, M), such that every element 

will produce X-rays of a fixed wavelength. Therefore, by using a spectrometer crystal 

http://serc.carleton.edu/17061
http://serc.carleton.edu/17061
http://serc.carleton.edu/research_education/geochemsheets/wds.html
http://serc.carleton.edu/research_education/geochemsheets/techniques/XRF.html
http://serc.carleton.edu/research_education/geochemsheets/techniques/XRF.html
http://serc.carleton.edu/17061
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(with fixed d-spacing of the crystal) and positioning the crystal at a unique and fixed 

angle (θ), it is possible to detect and quantify elements of interest based on the 

characteristic X-ray wavelengths produced by each element. 

2. Nuclear Magnetic Resonance (NMR) Spectroscopy  

Nuclear Magnetic Resonance popularly called NMR spectroscopy is an instrumental 

technique usually applied in structural elucidation and conformational analysis in 

organic and inorganic compounds. It gives detailed information about molecules and 

their environment based on the interactions of nuclear magnetic moments with 

electromagnetic radiation. Therefore, this technique is a quantitative technique based 

on the fundamental properties of magnetic resonance and according to quantum 

mechanics, separation between energy levels are quantized. This resonance frequency 

information on the chemical structure and the magnetic environment can be obtained 

and also the information on the spin system because of the disturbance from 

equilibrium. In NMR spectroscopy, magnetic resonance is exhibited by the presence 

of a magnetic moment provided by the NMR with a non-zero nuclear spin and are 

aligned with the magnetic fields applied in the form of radio frequencies 

Therefore, in determining the structures of compounds by NMR, the samples are 

subjected to the electromagnetic waves with various frequencies and those that 

matched the frequencies of the nucleic or electrons are sent to the detector as an electric 

signals. These signals are then recorded as plots of voltage as a function of time which 

are converted to peaks as a function of frequencies by the mathematical method of 

Fourier transformations as hydrogen and carbon nuclei represented as 1H NMR and 

13C NMR. 

NMR samples are prepared as solutions in deuterated solvents and placed in 5 or 10 

mm glass tubes. The tubes are inserted into a cryomagnet probe (Figure 5- 15) that are 

positioned between the poles of an electro- or permanent magnet or inside a solenoid 

of a superconducting magnet under liquid helium conditions as illustrated in Figure 5-

15 [383].  
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Figure 5-15. Schematic diagram of  NMR Spectrometer [383]. 

The schematic representation of the probe is illustrated in Figure 5-16. A Dewar vessel 

is attached to the probe which holds the sample tube, the various sensor coils and the 

conduits of the entire system.  Attached to the Dewar vessel is a heater which controls 

the probe and the samples at a prescribed temperature.  Also attached to the Dewar are 

two coils: RF lock-coil and the RF coil. The RF lock-coil is usually tuned to deuterium 

as the reference nucleus and this provide the calibrating scale for the spectrum and the 

RF coil for the nucleus under examination [383]. The probe is integrated by radio-

frequency transmitter and receiver coils and a spinner which spins the tube sample in 

its vertical axis in order to average out the magnetic field inhomogeneity across all the 

sample.  

Therefore, the NMR spectroscopy is used as a quantitative method as the time domain 

signals are directly related to the peak intensities in the frequency spectrum. 

Furthermore, each frequency component corresponds to a peak at a specific frequency 

and amplitude and its own line-width. The resolution of a NMR spectrum depends on 

the atomic motions, i.e. faster molecular motions lead to sharper lines and higher 

resolutions. As well, impurities like solid particles or viscous solutions can cause peak 

broadening and degrade the quality of the spectrum [384]. 
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Figure 5-16. Schematic diagram of the  probe of an NMR spectrometer  [383] 

3. Fourier Transform Infrared (FT-IR) Spectroscopy 

FT-IR spectroscopy is an analytical technique that is used in the areas of determination 

of molecular structure, identification of chemical species and also 

quantitative/qualitative determination of chemical species based on their functional 

groups. This technique is applied to organic and inorganic materials present in either 

solid, liquids or gaseous states. It involves the interaction between an electromagnetic 

field with a molecule such that the dipole moment of the molecule changes due to a 

molecular vibration. This provides an idea of the structural characteristics of the 

molecules based on the molecular vibrations produced by absorptions frequencies, 

leading to distinctive physical properties produced by the spectrum. The different 

absorption frequencies can provide information about a molecule such as linear or 

branched chains, unsaturation, aromatics and various functional groups. Depending on 

the number of functional group present in a given molecule, additional absorption 

bands are observed which provide an avenue to possibly determine their location and 

orientation within the molecular structure. This is because the peaks of some functional 

groups tends to be displaced from their theoretical ranges as a results of the influences 

from other functional group in the molecular structure, their spatial orientation and  

entropy related effects. 

http://www.analyticalspectroscopy.net/spectropaedia.htm#NMR
http://www.analyticalspectroscopy.net/spectropaedia.htm#spectrometer
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FT-IR spectrum is generated when an electromagnetic radiation adsorption occurs at 

a frequency that correlates to the vibration associated with a particular chemical bond 

within a molecule. When the number of electrons that are involved in bond formation 

in a molecule are greater, then higher energy is required for the excitation of the 

electrons to a higher energy level. This implies that the energy applied is proportional 

to the frequency, therefore absorptions due to stretching vibrations are observed at 

higher frequencies (wavenumbers) than the corresponding bending deformation 

vibrations. Similarly, symmetric vibrations are easier to excite than asymmetric 

vibrations. However, in terms of masses, the frequencies are inversely proportional 

which suggests that light elements vibrate at higher frequencies than the heavy 

elements. 

The FT-IR spectrometer consists of an infrared source (S), a beam splitter (BS), 

movable mirrors (M1 and M2) for frequency change and a detector as presented in 

Figure 5-17. Thermally sourced infrared radiation is generated and sent to the beam 

splitter, represented here as BS which takes the incoming infrared beam and divides it 

into two optical beams. One beam reflects off of a flat mirror, M1 which is on a 

mechanism which allows the mirror to move a short distance 2L away from the beam 

splitter and the other beam is remitted to the movable mirror, M2. The movable mirror 

M2 makes an additional distance x resulting in the entire distance moved by the 

radiation 2L + x and directed onto the sample and subsequently to the detector which 

records the intensity of the radiation as a function of the displacement x. This resulting 

signal is called an interferogram which has the unique property that every data point 

(a function of the moving mirror position) which makes up the signal has information 

about every infrared frequency which comes from the source. As the interferogram is 

measured, all other frequencies are also measured at the same time and Fourier 

transformation by the computer displays the result as a frequency spectrum. The 

frequency spectrum is scanned several times to reduce the noise and provide a greater 

sensitivity and the unknown substances measured are compared with tables of spectral 

data [384]. 
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  Figure 5-17. Schematic diagram of an FT-IR instrument [384] 

4. Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) is an analytical technique that is applied in 

polymer characterisation to determine the decomposition, thermal stability and 

fractions of volatile components of polymers. This is achieved by measuring the 

weight change of a polymer sample as a function of temperature or time. In this 

technique, the polymer is subjected to a controlled heating while the weight loss of the 

sample is recorded at the same time. The measurements are carried out in air or in an 

inert atmosphere, such as helium or argon.  

In addition to changes in mass of a polymer, some TGA instruments are capable of 

measuring the temperature difference between the polymer sample and a reference 

pans (differential thermal analysis, DTA) or the heat flow into the sample pan 

compared to that of the reference pan (differential scanning Calorimetry, DSC)  



N.M. Baba                                                                                                                                                                  APPENDICES 

172 

 

5. Differential Scanning Calorimetry (DSC) 

Differential Scanning Calorimetry is a technique used to measure thermal properties 

of polymers based on the rate at which they absorb heat energy compared to a reference 

material. The technique takes advantage of the energy changes involved in the various 

phase transitions of certain polymer molecules. This allows several properties of the 

material to be ascertained; melting points, enthalpies of melting, crystallisation 

temperatures, glass transition temperatures and degradation temperatures.  

A heat flux differential scanning calorimeter is used in the experiment. This is one in 

which a sample is heated along with a reference material with a known specific heat. 

One of the criteria of this technique is that the sample and reference material remain 

at the same temperature during heating. This can be achieved by setting the machine 

to heat both the sample and reference material at a specific rate (In this experiment, 

the rate is set to 10oC per minute). This allows the heat flux or difference in energy 

input between the sample and reference to be measured. Maintaining a constant supply 

of heat to both materials would not (unless the materials have the same heat capacity 

at all points, which is unlikely) maintain a minimal temperature difference between 

them. Instead, a computer is connected to the machine, and using the software and 

various signals from the calorimeter, “decides” when to supply heat to either material. 

This information is then dealt with by the computer software and presents it as a graph 

of the energy changes versus the temperature. A standard DSC curve for a particular 

polymer is shown in Figure 5-18. 

 

Figure 5-18.  A standard output for a polymer from a DSC machine. 
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From the diagram, it can be seen that a sudden upward jump in the curve signifies an 

exothermic process. A sudden drop in heat flux indicates an endothermic process.  

It is possible to approximate the heat flow into the sample holder using the following 

equation: 

 TTK
dT

dQ
b  -------------------------------- (5.2) 

T is the sample temperature, Tb:  programmed block temperature and K:  thermal 

conductivity of the material. 

qtTTb  0 -------------------------------------- (5.3) 

T0 is the initial temperature and q is the programmed heating rate. 

The heat capacity is defined as the amount of heat energy required to raise the 

temperature of a body by 1K. For a substance with a constant heat capacity: 

 0TTCQ P  ------------------------------ (5.4) 

It is possible to derive an equation from equations 5.5 and 5.5 that forms the basis for 

the DSC experiment as follows: 

K

C
qT P ------------------------------- (5.5) 

ΔT is the difference in temperature between the reference material and the sample. 

The heat capacity is given as 

PP mcC  ----------------------------- (5.6) 

Where Cp is the specific heat (Amount of heat required to raise the temperature of unit 

mass by 1K). 
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The enthalpy change for a given phase transition may be found by integrating over the 

area in which the transition is seen to occur on the DSC plot. This change may be 

described by the following integral: 

 






 


f

i

f

i

T

T

T

T

P dT
q

TK
dtCH -------------------- (5.7) 

Where the limits of integration Ti and Tf are the initial and final temperatures over 

which the graph is integrated. Therefore it is the area under the curve that gives 

information about the enthalpy changes involved in the various transitions. 
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Appendix 7. Photographs of some of the equipment used 

1. Bruker alpha FTIR 

 

Figure 5-19. Alpha Bruker FTIR spectrophotometer 

2. Siemens D500 X-Ray Diffractometer 

 

Figure 5-20. Siemens D500 X-Ray Diffractometer 
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3. Thermal analyser 

 

Figure 5-21.  Netzsch STA 449 F1 Jupiter thermal analyser 

4. Centrifuge 

 

Figure 5-22. Heraeus Biofuge Primo Centrifuge machine 

 



N.M. Baba                                                                                                                                                               REFERENCES 

177 

 

REFERENCES 

1. Berner, R.A., Petsch, S.T., Lake, J.A., Beerling, D.J., Popp, B.N., Lane, R.S., 

Laws, E.A., Westley, M.B., Cassar, N., Woodward, F.I. and Quick, W.P., 

Isotope fractionation and atmospheric oxygen: Implications for phanerozoic 

O2 evolution. Science, 2000, 287(5458): pp. 1630-1633. 

2. Organization of Petroleum Exporting Countries; (2014) Yearly oil price. 

Retrieved from: http://www.opec.org/opec_web/en/data_graphs/40.htm. 

[Acessed 20th January,2014]. 

3. National Population Commission of Nigeria; 2006 population and housing 

census. Retrieved from: www.populalation.gov.ng [Accessed 20th June 2011]. 

4. Moomow, W., Yamba, F., Kamimoto, M., Maurice, L., Nyboer, J., Urama, K. 

and Weir, T., Introduction-IPCC special report on renewable energy sources 

and climate change mitigation. In:  Edenhofer, O., Pichs-Madruga, R., 

Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, 

P., Hansen, G., Schlömer, S., and Von Stechow, C.(eds), 2011,  Cambridge 

University Press, United Kingdom, pp 1-45. 

5. Ohimain, E.I., The benefits and potential impacts of household cooking fuel 

substitution with bio-ethanol produced from cassava feedstock in Nigeria. 

Energy for Sustainable Development, 2012, 16(3): pp. 352-362. 

6. Wu, C.Z., Yin, X.L., Yuan, Z.H., Zhou, Z.Q. and Zhuang, X.S., The 

development of bioenergy technology in China. Energy, 2010, 35(11): pp. 

4445-4450. 

7. Nguyen, T.L.T., Gheewala, S.H. and Bonnet, S., Life cycle cost analysis of 

fuel ethanol produced from cassava in Thailand. International Journal of Life 

Cycle Assessment, 2008, 13(7): pp. 564-573. 

8. Zhang, H.L., Baeyens, J. and Tan, T.W., The bubble-induced mixing in starch-

to-ethanol fermenters. Chemical Engineering Research and Design, 2012, 

90(12): pp. 2122-2128. 

9. Omotor, D.G., Orubu, C.O. and Inoni, E., Policy reforms and agricultural 

exports in Nigeria: An empirical analysis. Singapore Economic Review, 2009, 

54(4): pp. 589-603. 

10. Aigbedion, I. and Iyayi, S.E., Diversifying Nigeria's petroleum industry. 

International Journal of Physical Sciences, 2007, 2(10): pp. 263-270. 

11. Okonkwo, I.C., The erosion of agricultural exports in an oil economy - The 

case of Nigeria. Journal of Agricultural Economics, 1989, 40(3): pp. 375-380. 

12. Sanusi, S.L.(2013) Overcoming the fear of vested interest. Retrieved from: 

http://www.youtube.com/watch?v=IjViGLJIU9g [Accessed 14th January, 

2014]. 

13. Central Intelligent Agency; (2014) The world fact book. Retrieved from: 

https://www.cia.gov/library/publications/the-world-

factbook/rankorder/2147rank.html [Accessed 16th April, 2014]. 

14. United Nations; (2011) Map of nigeria. Retrieved from: 

www.un.org/Depts/Cartographic/map/profile/nigeria.pdf. 

15. United States Energy Information Administration (2014); Retrieved from: 

http://www.eia.gov/beta/state/seds/data.cfm?incfile=/state/seds/sep_sum/htm

l/sum_btu_1.html&sid=US; [ Accessed 21th January, 2014]. 

16. World Bank (2014) World bank list of economies. Retrieved from: http: 

www.worldbank.org [Accessed 16th April,2014]. 

http://www.opec.org/opec_web/en/data_graphs/40.htm
http://www.populalation.gov.ng/
http://www.youtube.com/watch?v=IjViGLJIU9g
http://www.cia.gov/library/publications/the-world-factbook/rankorder/2147rank.html
http://www.cia.gov/library/publications/the-world-factbook/rankorder/2147rank.html
http://www.un.org/Depts/Cartographic/map/profile/nigeria.pdf
http://www.eia.gov/beta/state/seds/data.cfm?incfile=/state/seds/sep_sum/html/sum_btu_1.html&sid=US;
http://www.eia.gov/beta/state/seds/data.cfm?incfile=/state/seds/sep_sum/html/sum_btu_1.html&sid=US;
http://www.worldbank.org/


N.M. Baba                                                                                                                                                               REFERENCES 

178 

 

17. National Bureau of Statistics; (2010) 2009 and estimates for 2010 Q1 and Q2 

gross domestic products (GDP) for Nigeria. 1-15]. Retrieved from: 

http://www.nigerianstat.gov.ng/ [Accessed 21st June, 2011]. 

18. Odumugbo, C.A., Natural gas utilisation in Nigeria: Challenges and 

opportunities. Journal of Natural Gas Science and Engineering, 2010, 2(6): pp. 

310-316. 

19. Adamu, A., Agricultural production on the Soba plains in the nineteenth 

century. Zaria Archaeol. Papers (ZAP), 2000, 9: pp. 82-88. 

20. Muhammed-Lawal, A. and Atte, O.A., An analysis of agricultural production 

in Nigeria. African Journal of General Agriculture, 2006, 2(1): pp. 1-6. 

21. Ati, O.F., Stigter, C.J., Iguisi, E.O. and Afolayan, J.O., Profile of rainfall 

challenges and variability in the northern Nigeria, 1953-2002. Research 

Journal of Environmental and Earth Sciences, 2009, 1(2): pp. 58-63. 

22. Food and Agriculture Organization (2011) Online statistical database. 

Retrieved from: http://faostat.fao.org/site/339/default.aspx [Accessed 27th 

January, 2014]. 

23. Nweke, F.I., Spencer, D. and Lynam, J., The cassava transformation: Africa’s 

best kept secret. 2002, Michigan State University Press., pp. 273-275. 

24. Nweke, F.I., Cassava processing in sub-Saharan Africa: Implications for 

expanding cassava production. IITA Research, 1996, 12: pp. 7-14. 

25. Tarawali, G., Abdoulaye, T., Ellis-Jones, J., Asumugha, G., Dixon, A., 

Okechukwu, R., Ezedinma, C., Sanni, L., Isife, B., Ogisi, D. and Ekpere, J., 

An impact assessment of the cassava enterprise development project. 2013,  

IITA, Ibadan, Nigeria, pp 1-63. 

26. International Institute of Tropical Agriculture (IITA) (2011); Towards 

production of bread from cassava. Retrieved from: 

http://www.iita.org/search/-/journal_content/56/25357/55843. [Accssesd, 

20th January, 2012]. 

27. Bicker, M., Hirth, J. and Vogel, H., Dehydration of fructose to 5-

hydroxymethylfurfural in sub- and supercritical acetone. Green Chemistry, 

2003, 5(2): pp. 280-284. 

28. Gandini, A. and Belgacem, M.N., Furans in polymer chemistry. Progress in 

Polymer Science 1997, 22(6): pp. 1203-1379. 

29. Gandini, A. and Belgacem, M.N., Furfural and furanic polymers. Le furfural 

et les polymères furaniques, 2002(11-12): pp. 56-61. 

30. Gandini, A. and Belgacem, M.N., Recent contributions to the preparation of 

polymers derived from renewable resources. Journal of Polymers and the 

Environment, 2002, 10(3): pp. 105-114. 

31. Serdar, Y., Pyrolysis of biomass to produce fuels and chemical feedstock. 

Energy Conservation and Management, 2004, 45: pp. 651-671. 

32. Demirbas, A., 'Sub- and Super-critical water depolymarization of biomass'. 

Energy Sources Part A: Recovery, Utilization and Environmental Effects, 

2010, 32(12): pp. 1100-1110. 

33. Mckendry, P., Energy production from biomass (part 1): Overview of biomass. 

Bioresource Technology, 2002, 83(1): pp. 37-46. 

34. Kroger, M., Prusse, U. and Vorlop, K.D., A new approach for the production 

of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural 

starting from fructose. Topics in Catalysis, 2000, 13(3): pp. 237-242. 

http://www.nigerianstat.gov.ng/
http://faostat.fao.org/site/339/default.aspx
http://www.iita.org/search/-/journal_content/56/25357/55843


N.M. Baba                                                                                                                                                               REFERENCES 

179 

 

35. Paster, M., Pellegrino, J.L. and Carole, T.M., Industrial bioproducts: Today 

and tomorrow, US Department of Energy, W.D., Editor. 2003,  Energetics Inc. 

Columbia, pp 1-89. 

36. Li, N., Tompsett, G.A., Zhang, T.Y., Shi, J.A., Wyman, C.E. and Huber, G.W., 

Renewable gasoline from aqueous phase hydrodeoxygenation of aqueous 

sugar solutions prepared by hydrolysis of maple wood. Green Chemistry, 

2011, 13(1): pp. 91-101. 

37. Taufiqurrahmi, N. and Bhatia, S., Catalytic cracking of edible and non-edible 

oils for the production of biofuels. Energy & Environmental Science, 2011, 

4(4): pp. 1087-1112. 

38. Alonso, D.M., Bond, J.Q. and Dumesic, J.A., Catalytic conversion of biomass 

to biofuels. Green Chemistry, 2010, 12(9): pp. 1493-1513. 

39. Geboers, J.A., Van De Vyver, S., Ooms, R., Op De Beeck, B., Jacobs, P.A. 

and Sels, B.F., Chemocatalytic conversion of cellulose: Opportunities, 

advances and pitfalls. Catalysis Science & Technology, 2011, 1(5): pp. 714-

726. 

40. Kobayashi, H., Ohta, H. and Fukuoka, A., Conversion of lignocellulose into 

renewable chemicals by heterogeneous catalysis. Catalysis Science & 

Technology, 2012, 2(5): pp. 869-883. 

41. Rosatella, A.A., Simeonov, S.P., Frade, R.F.M. and Afonso, C.A.M., 5-

hydroxymethylfurfural (HMF) as a building block platform: Biological 

properties, synthesis and synthetic applications. Green Chemistry, 2011, 

13(4): pp. 754-793. 

42. Binder, J.B. and Raines, R.T., Simple chemical transformation of 

lignocellulosic biomass into furans for fuels and chemicals. Journal of the 

American Chemical Society, 2009, 131(5): pp. 1979-1985. 

43. Qi, X.H., Guo, H.X. and Li, L.Y., Efficient conversion of fructose to 5-

hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids. 

Industrial & Engineering Chemistry Research, 2011, 50(13): pp. 7985-7989. 

44. Wang, P., Yu, H., Zhan, S. and Wang, S., Catalytic hydrolysis of 

lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. 

Bioresource Technology, 2011, 102(5): pp. 4179-4183. 

45. Koutinas, A.A., Du, C., Wang, R.H. and Webb, C., Production of chemicals 

from biomass. In: Introduction to chemicals from biomass. Clark, J.H. and 

Fabien, E.I.D., Editors.  Wiley-VCH, UK, pp. 77-101. 

46. Stahlberg, T., Sorensen, M.G. and Riisager, A., Direct conversion of glucose 

to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts. Green 

Chemistry, 2010, 12(2): pp. 321-325. 

47. Zakrzewska, M.E., Bogel-Lukasik, E. and Bogel-Lukasik, R., Ionic liquid-

mediated formation of 5-hydroxymethylfurfural-A promising biomass-derived 

building block. Chemical Reviews, 2011, 111(2): pp. 397-417. 

48. Kuster, B.F.M., 5-hydroxymethylfurfural (HMF) - A review focusing on its 

manufacture. Starch-Starke, 1990, 42(8): pp. 314-321. 

49. Huang, R.L., Qi, W., Su, R.X. and He, Z.M., Integrating enzymatic and acid 

catalysis to convert glucose into 5-hydroxymethylfurfural. Chemical 

Communications, 2010, 46(7): pp. 1115-1117. 

50. Huber, G.W., Iborra, S. and Corma, A., Synthesis of transportation fuels from 

biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 

106(9): pp. 4044-4098. 



N.M. Baba                                                                                                                                                               REFERENCES 

180 

 

51. Climent, M.J., Corma, A. and Iborra, S., Converting carbohydrates to bulk 

chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 

2011, 13(3): pp. 520-540. 

52. Patel, M., Crank, M., Dornburg, V., Hermann, B., Roes, L., Husing, B., 

Overbeek, L., Terragni, F. and Recchia, E.(2006) The brew project report: 

Medium and long-term opportunities and risks of the biotechnological 

production of bulk chemicals from renewable resources. Retrieved from: 

http://www.chem,uu.nl/brew/BREW_Final_Report_September_2006.pdf 

[Accessed 25th February, 2013]. 

53. Hu, S., Zhang, Z., Song, J., Zhou, Y. and Han, B., Efficient conversion of 

glucose into 5-hydroxymethylfurfural catalyzed by a common lewis acid sncl4 

in an ionic liquid. Green Chemistry, 2009, 11: pp. 1746-1749. 

54. Elliott, D.C., Beckman, D., Bridgwater, A.V., Diebold, J.P., Gevert, S.B. and 

Solantausta, Y., Developments in direct thermochemical liquefaction of 

biomass - 1983-1990. Energy & Fuels, 1991, 5(3): pp. 399-410. 

55. Chen, N.Y., Degnan, T.F. and Koenig, L.R., Liquid fuel from carbohydrates. 

Chemtech, 1986, 16(8): pp. 506-511. 

56. Weisz, P.B., Haag, W.O. and Rodewald, P.G., Catalytic production of high-

grade fuel (gasoline) from biomass compounds by shape-selective catalysis. 

Science, 1979, 206(4414): pp. 57-58. 

57. Katzen, R. and Tsao, G.T., A view of the history of biochemical engineering. 

Advances in biochemical engineering/biotechnology, 2000, 70: pp. 77-91. 

58. Kalendova, A., Merinska, D., Gerard, J.F. and Slouf, M., Polymer/clay 

nanocomposites and their gas barrier properties. Polymer Composites, 2013, 

34(9): pp. 1418-1424. 

59. Abdelmagid, A.F., Carson, K.G., Harris, B.D., Maryanoff, C.A. and Shah, 

R.D., Reductive amination of aldehydes and ketones with sodium 

triacetoxyborohydride: Studies on direct and indirect reductive amination 

procedures. Journal of Organic Chemistry, 1996, 61(11): pp. 3849-3862. 

60. Babu, R., O’connor, K. and Seeram, R., Current progress on bio-based 

polymers and their future trends. Progress in Biomaterials, 2013, 2(1): pp. 1-

16. 

61. Song, J.H., Murphy, R.J., Narayan, R. and Davies, G.B.H., Biodegradable and 

compostable alternatives to conventional plastics. Philosophical Transactions 

of the Royal Society B-Biological Sciences, 2009, 364(1526): pp. 2127-2139. 

62. Mohamed, A.M.E., Synthesis and characterisation of novel biopolymers via 

click chemistry. 2010,  University of Durham, pp 1- 259. 

63. Chandra, R. and Rustgi, R., Biodegradable polymers. Progress in Polymer 

Science, 1998, 23(7): pp. 1273-1335. 

64. Gandini, A., Polymers from renewable resources: A challenge for the future 

of macromolecular materials. Macromolecules, 2008, 41(24): pp. 9491-9504. 

65. Gandini, A., Coelho, D., Gomes, M., Reis, B. and Silvestre, A., Materials from 

renewable resources based on furan monomers and furan chemistry: Work in 

progress. Journal of Materials Chemistry, 2009, 19(45): pp. 8656-8664. 

66. Gandini, A., The irruption of polymers from renewable resources on the scene 

of macromolecular science and technology. Green Chemistry, 2011, 13(5): pp. 

1061-1083. 

67. Gallezot, P., Conversion of biomass to selected chemical products. Chemical 

Society Reviews, 2012, 41(4): pp. 1538-1558. 

http://www.chem,uu.nl/brew/BREW_Final_Report_September_2006.pdf


N.M. Baba                                                                                                                                                               REFERENCES 

181 

 

68. Shen, L., Worrell, E. and Patel, M., Present and future development in plastics 

from biomass. Biofuels Bioproducts & Biorefining-Biofpr, 2010, 4(1): pp. 25-

40. 

69. Ramesh, H.P. and Tharanathan, R.N., Carbohydrates - the renewable raw 

materials of high biotechnological value. Critical Reviews in Biotechnology, 

2003, 23(2): pp. 149-173. 

70. Cunha, A.G. and Gandini, A., Turning polysaccharides into hydrophobic 

materials: A critical review. Part 1. Cellulose. Cellulose, 2010, 17(5): pp. 875-

889. 

71. Gandini, A. and Belgacem, M.N., The state of the art. In:  Belgacem, M.N. 

and Gandini, A.(eds) Monomers, polymers and composites from renewable 

resources, 1st edn. 2008,  Elsevier, Amsterdam, pp 1-16. 

72. Krassig, H., Cellulose - morphology, structure, accessibility and reactivity. 

Papier, 1990, 44(12): pp. 617-623. 

73. Klemm, D., Heublein, B., Fink, H.P. and Bohn, A., Cellulose: Fascinating 

biopolymer and sustainable raw material. Angewandte Chemie-International 

Edition, 2005, 44(22): pp. 3358-3393. 

74. Czaja, W., Krystynowicz, A., Bielecki, S. and Brown, R.M., Microbial 

cellulose - the natural power to heal wounds. Biomaterials, 2006, 27(2): pp. 

145-151. 

75. Iguchi, M., Yamanaka, S. and Budhiono, A., Bacterial cellulose - a 

masterpiece of nature's arts. Journal of Materials Science, 2000, 35(2): pp. 

261-270. 

76. Vroman, I. and Tighzert, L., Biodegradable polymers. Materials, 2009, 2(2): 

pp. 307-344. 

77. Jantas, R. and Gorna, K., Antibacterial finishing of cotton fabrics. Fibres and 

Textiles in Eastern Europe, 2003, 14(1): pp. 88-91. 

78. Sanchez-Vazquez, S.A., Hailes, H.C. and Evans, J.R.G., Hydrophobic 

polymers from food waste: Resources and synthesis. Polymer Reviews, 2013, 

53(4): pp. 627-694. 

79. Park, B.K. and Kim, M.M., Applications of chitin and its derivatives in 

biological medicine. International Journal of Molecular Sciences, 2010, 

11(12): pp. 5153-5165. 

80. Jayakumar, R., Menon, D., Manzoor, K., Nair, S.V. and Tamura, H., 

Biomedical applications of chitin and chitosan based nanomaterials—A short 

review. Carbohydrate Polymers, 2010, 82(2): pp. 227-232. 

81. Yeul, V.S. and Rayalu, S.S., Unprecedented chitin and chitosan: A chemical 

overview. Journal of Polymers and the Environment, 2013, 21(2): pp. 606-614. 

82. Vaca-Garcia, C., Biomaterials. In:  Clark, J. and Deswarte, F.(eds) 

Introduction to chemicals from biomass, 2008,  Wiley, UK, pp 103-142. 

83. Shukla, S.K., Mishra, A.K., Arotiba, O.A. and Mamba, B.B., Chitosan-based 

nanomaterials: A state-of-the-art review. International Journal of Biological 

Macromolecules, 2013, 59(0): pp. 46-58. 

84. Suh, J.K.F. and Matthew, H.W.T., Application of chitosan-based 

polysaccharide biomaterials in cartilage tissue engineering: A review. 

Biomaterials, 2000, 21(24): pp. 2589-2598. 

85. Zohuriaan-Mehr, M.J., Advances in chitin and chitosan modification through 

graft copolymerization: A comprehensive review. Iranian Polymer Journal, 

2005, 14(3): pp. 235-265. 



N.M. Baba                                                                                                                                                               REFERENCES 

182 

 

86. Jayakumar, R., Selvamurugan, N., Nair, S.V., Tokura, S. and Tamura, H., 

Preparative methods of phosphorylated chitin and chitosan - An overview. 

International Journal of Biological Macromolecules, 2008, 43(3): pp. 221-225. 

87. Kurita, K., Chitin and chitosan: Functional biopolymers from marine 

crustaceans. Marine Biotechnology, 2006, 8(3): pp. 203-226. 

88. Hirano, S., Chitin and chitosan as novel biotechnological materials. Polymer 

International, 1999, 48(8): pp. 732-734. 

89. Sashiwa, H. and Aiba, S.I., Chemically modified chitin and chitosan as 

biomaterials. Progress in Polymer Science, 2004, 29(9): pp. 887-908. 

90. Prashanth, K.V.H. and Tharanathan, R.N., Chitin/chitosan: Modifications and 

their unlimited application potential - An overview. Trends in Food Science & 

Technology, 2007, 18(3): pp. 117-131. 

91. Ren, D.W., Yi, H.F., Wang, W. and Ma, X.J., The enzymatic degradation and 

swelling properties of chitosan matrices with different degrees of n-

acetylation. Carbohydrate Research, 2005, 340(15): pp. 2403-2410. 

92. Kumar, M., A review of chitin and chitosan applications. Reactive & 

Functional Polymers, 2000, 46(1): pp. 1-27. 

93. Boerjan, W., Ralph, J. and Baucher, M., Lignin biosynthesis. Annual Review 

of Plant Biology, 2003, 54: pp. 519-546. 

94. Khoushab, F. and Yamabhai, M., Chitin research revisited. Marine Drugs, 

2010, 8(7): pp. 1988-2012. 

95. Pillai, C.K.S., Paul, W. and Sharma, C.P., Chitin and chitosan polymers: 

Chemistry, solubility and fiber formation. Progress in Polymer Science, 2009, 

34(7): pp. 641-678. 

96. Souza, V.C., Monte, M.L. and Pinto, L.A.A., Preparation of biopolymer film 

from chitosan modified with lipid fraction. International Journal of Food 

Science and Technology, 2011, 46(9): pp. 1856-1862. 

97. Teramoto, N., Motoyama, T., Yosomiya, R. and Shibata, M., Synthesis, 

thermal properties, and biodegradability of propyl-etherified starch. 

European Polymer Journal, 2003, 39(2): pp. 255-261. 

98. Wang, N., Zhang, X.X., Han, N. and Liu, H.H., A facile method for 

preparation of thermoplastic starch/urea modified montmorillonite 

nanocomposites. Journal of Composite Materials, 2010, 44(1): pp. 27-39. 

99. Averous, L. and Halley, P.J., Biocomposites based on plasticized starch. 

Biofuels Bioproducts & Biorefining-Biofpr, 2009, 3(3): pp. 329-343. 

100. Averous, L., Biodegradable multiphase systems based on plasticized starch: 

A review. Journal of Macromolecular Science-Polymer Reviews, 2004, 44(3): 

pp. 231-274. 

101. Flaris, V. and Singh, G., Recent developments in biopolymers. Journal of Vinyl 

and Additive Technology, 2009, 15(1): pp. 1-11. 

102. Park, J.S., Yang, J.H., Kim, D.H. and Lee, D.H., Degradability of expanded 

starch/pva blends prepared using calcium carbonate as the expanding 

inhibitor. Journal of Applied Polymer Science, 2004, 93(2): pp. 911-919. 

103. Schwach, E. and Averous, L., Starch-based biodegradable blends: 

Morphology and interface properties. Polymer International, 2004, 53(12): pp. 

2115-2124. 

104. Le Corre, D., Bras, J. and Dufresne, A., Starch nanoparticles: A review. 

Biomacromolecules, 2010, 11(5): pp. 1139-1153. 



N.M. Baba                                                                                                                                                               REFERENCES 

183 

 

105. Araujo, M.A., Cunha, A.M. and Mota, M., Enzymatic degradation of starch-

based thermoplastic compounds used in protheses: Identification of the 

degradation products in solution. Biomaterials, 2004, 25(13): pp. 2687-2693. 

106. Zhang, J.F. and Sun, X.Z., Mechanical properties of poly(lactic acid)/starch 

composites compatibilized by maleic anhydride. Biomacromolecules, 2004, 

5(4): pp. 1446-1451. 

107. Buleon, A., Colonna, P., Planchot, V. and Ball, S., Starch granules: Structure 

and biosynthesis. International Journal of Biological Macromolecules, 1998, 

23(2): pp. 85-112. 

108. Angellier, H., Choisnard, L., Molina-Boisseau, S., Ozil, P. and Dufresne, A., 

Optimization of the preparation of aqueous suspensions of waxy maize starch 

nanocrystals using a response surface methodology. Biomacromolecules, 

2004, 5(4): pp. 1545-1551. 

109. Tomasik, P. and Schilling, C.H., Chemical modification of starch. Advances 

in Carbohydrate Chemistry and Biochemistry, Vol 59, 2004, 59: pp. 175-403. 

110. Lu, D.R., Xiao, C.M. and Xu, S.J., Starch-based completely biodegradable 

polymer materials. Express Polymer Letters, 2009, 3(6): pp. 366-375. 

111. Kang, S., Li, X., Fan, J. and Chang, J., Hydrothermal conversion of lignin: A 

review. Renewable and Sustainable Energy Reviews, 2013, 27(0): pp. 546-

558. 

112. Jorgensen, H., Kristensen, J.B. and Felby, C., Enzymatic conversion of 

lignocellulose into fermentable sugars: Challenges and opportunities. 

Biofuels Bioproducts & Biorefining-Biofpr, 2007, 1(2): pp. 119-134. 

113. Rouilly, A. and Rigal, L., Agro-materials: A bibliographic review. Journal of 

Macromolecular Science-Polymer Reviews, 2002, C42(4): pp. 441-479. 

114. Brown, M.E. and Chang, M.C.Y., Exploring bacterial lignin degradation. 

Current Opinion in Chemical Biology, 2014, 19(0): pp. 1-7. 

115. Crestini, C., Melone, F. and Saladino, R., Novel multienzyme oxidative 

biocatalyst for lignin bioprocessing. Bioorganic & Medicinal Chemistry, 

2011, 19(16): pp. 5071-5078. 

116. Zeng, Y., Zhao, S., Yang, S. and Ding, S.-Y., Lignin plays a negative role in 

the biochemical process for producing lignocellulosic biofuels. Current 

Opinion in Biotechnology, 2014, 27(0): pp. 38-45. 

117. Hofrichter, M., Review: Lignin conversion by manganese peroxidase (MNP). 

Enzyme and Microbial Technology, 2002, 30(4): pp. 454-466. 

118. Ghaffar, S.H. and Fan, M., Lignin in straw and its applications as an adhesive. 

International Journal of Adhesion and Adhesives, 2014, 48(0): pp. 92-101. 

119. Verbeek, C.J.R. and Van Den Berg, L.E., Extrusion processing and properties 

of protein-based thermoplastics. Macromolecular Materials and Engineering, 

2010, 295(1): pp. 10-21. 

120. Raquez, J.M., Deleglise, M., Lacrampe, M.F. and Krawczak, P., 

Thermosetting biomaterials derived from renewable resources: A critical 

review. Progress in Polymer Science, 2010, 35(4): pp. 487-509. 

121. Majid, J., Elmira, A.T., Muhammad, I., Muriel, J. and St'ephane, D., Poly-

lactic acid: Production, applications, nanocomposites, and release studies. 

Comprehensive Review on Food Scince and Safety, 2010, 9(5): pp. 552-571. 

122. Babu, R.P., O'connor, K. and Seeram, R., Curren progress on bio-based 

polymers and their future trends. Progress in Biomaterials, 2013, 2(8): pp. 1-

16. 



N.M. Baba                                                                                                                                                               REFERENCES 

184 

 

123. Sun, Z.M., Park, Y., Zheng, S.L., Ayoko, G.A. and Frost, R.L., XRD, TEM, 

and thermal analysis of arizona Ca-montmorillonites modified with 

didodecyldimethylammonium bromide. Journal of Colloid and Interface 

Science, 2013, 408: pp. 75-81. 

124. Erwin, T.H., David, A.G., Jeffrey, J.K., Robert, J.W. and Ryan, P.O., The eco-

profiles for current and near-future natureworks polylactide (PLA) 

production. Industrial Biotechnology, 2007, 3: pp. 58-81. 

125. Drumright, R.E., Gruber, P.R. and Henton, D.E., Polylactic acid technology. 

Advanced Materials, 2000, 12(23): pp. 1841-1846. 

126. Garlotta, D., A literature review of poly(lactic acid). Journal of Polymers and 

the Environment, 2001, 9(2): pp. 63-84. 

127. Prieto, M.A., From oil to bioplastics, a dream come true? Journal of 

Bacteriology, 2007, 189(2): pp. 289-290. 

128. Hassan, M.A., Yee, L.-N., Yee, P.L., Ariffin, H., Raha, A.R., Shirai, Y. and 

Sudesh, K., Sustainable production of polyhydroxyalkanoates from renewable 

oil-palm biomass. Biomass and Bioenergy, 2013, 50(0): pp. 1-9. 

129. Lee, G.N. and Na, J., Future of microbial polyesters. Microbial Cell Factories, 

2013, 12: pp. 4. 

130. Ko-Sin, N., Wong, Y.M., Tsuge, T. and Sudesh, K., Biosynthesis and 

characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and 

poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers using jatropha 

oil as the main carbon source. Process Biochemistry, 2011, 46(8): pp. 1572-

1578. 

131. Ni, Y.Y., Kim, D.Y., Chung, M.G., Lee, S.H., Park, H.Y. and Rhee, Y.H., 

Biosynthesis of medium-chain-length poly(3-hydroxyalkanoates) by volatile 

aromatic hydrocarbons-degrading pseudomonas fulva TY16. Bioresource 

Technology, 2010, 101(21): pp. 8485-8488. 

132. Hofer, P., Vermette, P. and Groleau, D., Production and characterization of 

polyhydroxyalkanoates by recombinant methylobacterium extorquens: 

Combining desirable thermal properties with functionality. Biochemical 

Engineering Journal, 2011, 54(1): pp. 26-33. 

133. Abu-Elreesh, G., Zaki, S., Farag, S., Elkady, M.F. and Abd-El-Haleem, D., 

Exobiopolymer from polyhydroxyalkanoate-producing transgenic yeast. 

African Journal of Biotechnology, 2011, 10(34): pp. 6558-6563. 

134. Bohmert-Tatarev, K., Mcavoy, S., Daughtry, S., Peoples, O.P. and Snell, K.D., 

High levels of bioplastic are produced in fertile transplastomic tobacco plants 

engineered with a synthetic operon for the production of polyhydroxybutyrate. 

Plant Physiology, 2011, 155(4): pp. 1690-1708. 

135. Tilbrook, K., Gebbie, L., Schenk, P.M., Poirier, Y. and Brumbley, S.M., 

Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for 

bioplastic production in high biomass crops. Plant Biotechnology Journal, 

2011, 9(9): pp. 958-969. 

136. Van Beilen, J.B. and Poirier, Y., Production of renewable polymers from crop 

plants. Plant Journal, 2008, 54(4): pp. 684-701. 

137. Gumel, A.M., Annuar, M.S.M. and Chisti, Y., Recent advances in the 

production, recovery and applications of polyhydroxyalkanoates. Journal of 

Polymers and the Environment, 2013, 21(2): pp. 580-605. 

138. Lee, S.Y., Bacterial polyhydroxyalkanoates. Biotechnology and 

Bioengineering, 1996, 49(1): pp. 1-14. 



N.M. Baba                                                                                                                                                               REFERENCES 

185 

 

139. Koller, M., Salerno, A., Dias, M., Reiterer, A. and Braunegg, G., Modern 

biotechnological polymer synthesis: A review. Food Technology and 

Biotechnology, 2010, 48(3): pp. 255-269. 

140. Ariffin, N., Abdullah, R., Muad, M.R., Lourdes, J., Emran, N.A., Ismail, M.R., 

Ismail, I., Fadzil, M.F.M., Ling, K.L., Siddiqui, Y., Amir, A.A., Berahim, Z. 

and Omar, M.H., Constructions of expression vectors of polyhydroxybutyrate-

co-hydroxyvalerate (phbv) and transient expression of transgenes in immature 

oil palm embryos. Plasmid, 2011, 66(3): pp. 136-143. 

141. Barham, P.J. and Keller, A., The relationship between microstructure and 

mode of fracture in polyhydroxybutyrate. Journal of Polymer Science Part B-

Polymer Physics, 1986, 24(1): pp. 69-77. 

142. Noda, I., Green, P.R., Satkowski, M.M. and Schechtman, L.A., Preparation 

and properties of a novel class of polyhydroxyalkanoate copolymers. 

Biomacromolecules, 2005, 6(2): pp. 580-586. 

143. Akaraonye, E., Keshavarz, T. and Roy, I., Production of 

polyhydroxyalkanoates: The future green materials of choice. Journal of 

Chemical Technology and Biotechnology, 2010, 85(6): pp. 732-743. 

144. Philip, S., Keshavarz, T. and Roy, I., Polyhydroxyalkanoates: Biodegradable 

polymers with a range of applications. Journal of Chemical Technology and 

Biotechnology, 2007, 82(3): pp. 233-247. 

145. Tokiwa, Y. and Calabia, B.P., Degradation of microbial polyesters. 

Biotechnology Letters, 2004, 26(15): pp. 1181-1189. 

146. Meier, M.a.R., Metzger, J.O. and Schubert, U.S., Plant oil renewable 

resources as green alternatives in polymer science. Chemical Society 

Reviews, 2007, 36(11): pp. 1788-1802. 

147. Metzger, J.O., Fats and oils as renewable feedstock for chemistry. European 

Journal of Lipid Science and Technology, 2009, 111(9): pp. 865-876. 

148. Guner, F.S., Yagci, Y. and Erciyes, A.T., Polymers from triglyceride oils. 

Progress in Polymer Science, 2006, 31(7): pp. 633-670. 

149. Sharma, V. and Kundu, P.P., Condensation polymers from natural oils. 

Progress in Polymer Science, 2008, 33(12): pp. 1199-1215. 

150. Sharma, V. and Kundu, P.P., Addition polymers from natural oils - a review. 

Progress in Polymer Science, 2006, 31(11): pp. 983-1008. 

151. Montero De Espinosa, L. and Meier, M.a.R., Plant oils: The perfect renewable 

resource for polymer science?! European Polymer Journal, 2011, 47(5): pp. 

837-852. 

152. Burrell, M.M., Starch: The need for improved quality or quantity - an 

overview. Journal of Experimental Botany, 2003, 54(382): pp. 451-456. 

153. Cock, J.H., Cassava - a basic energy-source in the tropics. Science, 1982, 

218(4574): pp. 755-762. 

154. Campbell, D.J., An atlas of cassava in africa: Historical, agroecological and 

demographic aspects of crop distribution: S. E. Carter, l. O. Fresco and p. G. 

Jones, with j. N. Fairbairn. Centro internacional de agricultura tropical, ciat 

publication no. 206, cali, colombia, june 1992. 86 pp Agricultural Systems, 

1994, 46(2): pp. 239-242. 

155. Defloor, I., Dehing, I. and Delcour, J.A., Physico-chemical properties of 

cassava starch. Starch-Starke, 1998, 50(2-3): pp. 58-64. 

156. Tonukari, N.J., Cassava and the future of starch. Electronic Journal of 

Biotechnology, 2004, 7(1): pp. 5-8. 



N.M. Baba                                                                                                                                                               REFERENCES 

186 

 

157. Taiwo, K.A., Oladepo, O.W., Ilori, M.O. and Akanbi, C.T., A study on the 

nigerian food industry and the impact of technological changes on the small-

scale food enterprises. Food Reviews International, 2002, 18(4): pp. 243-261. 

158. Lewkowski, J., Convenient synthesis of furan-2,5-dicarboxylic acid and its 

derivatives. Polish Journal of Chemistry, 2001, 75(12): pp. 1943-1946. 

159. Tadesse, H. and Luque, R., Advances on biomass pretreatment using ionic 

liquids: An overview. Energy and Environmental Science, 2011, 4(10): pp. 

3913-3929. 

160. Roman-Leshkov, Y., Chheda, J.N. and Dumesic, J.A., Phase modifiers 

promote efficient production of hydroxymethylfurfural from fructose. Science, 

2006, 312(5782): pp. 1933-1937. 

161. Rosatella, A.A., Simeonov, S.P., Frade, R.F.M. and Afonso, C.a.M., 5-

hydroxymethylfurfural (HMF) as a building block platform: Biological 

properties, synthesis and synthetic applications. Green Chemistry, 2011, 13: 

pp. 754-793. 

162. Tong, X.L., Ma, Y. and Li, Y.D., Biomass into chemicals: Conversion of 

sugars to furan derivatives by catalytic processes. Applied Catalysis A-

General, 2010, 385(1-2): pp. 1-13. 

163. Antal, M.J., Leesomboon, T., Mok, W.S. and Richards, G.N., Mechanism of 

formation of 2-furaldehyde from D-xylose. Carbohydrate Research, 1991, 

217(0): pp. 71-85. 

164. Chheda, J.N., Roman-Leshkov, Y. and Dumesic, J.A., Production of 5-

hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- 

and poly-saccharides. Green Chemistry, 2007, 9(4): pp. 342-350. 

165. Montane', D., Salvado', J., Torras, C. and Farriol, X., High-temperature dilute-

acid hydrolysis of olive stones for furfural production. Biomass and 

Bioenergy, 2002, 22(4): pp. 295-304. 

166. Yemis, O. and Mazza, G., Acid-catalyzed conversion of xylose, xylan and 

straw into furfural by microwave-assisted reaction. Bioresource Technology, 

2011, 102(15): pp. 7371-7378. 

167. Yemis, O. and Mazza, G., Optimization of furfural and 5-

hydroxymethylfurfural production from wheat straw by a microwave-assisted 

process. Bioresource Technology, 2012, 109(0): pp. 215-223. 

168. Taarning, E., Osmundsen, C.M., Yang, X., Voss, B., Andersen, S.I. and 

Christensen, C.H., Zeolite-catalyzed biomass conversion to fuels and 

chemicals. Energy & Environmental Science, 2011, 4(3): pp. 793-804. 

169. Serrano-Ruiz, J.C., Luque, R. and Sepulveda-Escribano, A., Transformations 

of biomass-derived platform molecules: From high added-value chemicals to 

fuels via aqueous-phase processing. Chemical Society Reviews, 2011, 40(11): 

pp. 5266-5281. 

170. Lam, E., Chong, J.H., Majid, E., Liu, Y., Hrapovic, S., Leung, A.C.W. and 

Luong, J.H.T., Carbocatalytic dehydration of xylose to furfural in water. 

Carbon, 2012, 50(3): pp. 1033-1043. 

171. Mamman, A.S., Lee, J.-M., Kim, Y.-C., Hwang, I.T., Park, N.-J., Hwang, 

Y.K., Chang, J.-S. and Hwang, J.-S., Furfural: Hemicellulose/xylosederived 

biochemical. Biofuels, Bioproducts and Biorefining, 2008, 2(5): pp. 438-454. 

172. Dhepe, P.L. and Sahu, R., A solid-acid-based process for the conversion of 

hemicellulose. Green Chemistry, 2010, 12(12): pp. 2153-2156. 



N.M. Baba                                                                                                                                                               REFERENCES 

187 

 

173. Asghari, F.S. and Yoshida, H., Acid-catalyzed production of 5-hydroxymethyl 

furfural from D-fructose in subcritical water. Industrial & Engineering 

Chemistry Research, 2006, 45(7): pp. 2163-2173. 

174. Choudhary, V., Pinar, A.B., Sandler, S.I., Vlachos, D.G. and Lobo, R.F., 

Xylose isomerization to xylulose and its dehydration to furfural in aqueous 

media. ACS Catalysis, 2011, 1(12): pp. 1724-1728. 

175. Jeong, G.H., Kim, E.G., Kim, S.B., Park, E.D. and Kim, S.W., Fabrication of 

sulfonic acid modified mesoporous silica shells and their catalytic 

performance with dehydration reaction of D-xylose into furfural. Microporous 

and Mesoporous Materials, 2011, 144(1-3): pp. 134-139. 

176. Amarasekara, A.S., Williams, L.D. and Ebede, C.C., Mechanism of the 

dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 

150 oC: An NMR study. Carbohydrate Research, 2008, 343(18): pp. 3021-

3024. 

177. Takagaki, A., Ohara, M., Nishimura, S. and Ebitani, K., One-pot formation of 

furfural from xylose via isomerization and successive dehydration reactions 

over heterogeneous acid and base catalysts. Chemistry Letters, 2010, 39(8): 

pp. 838-840. 

178. Lam, E., Majid, E., Leung, A.C.W., Chong, J.H., Mahmoud, K.A. and Luong, 

J.H.T., Synthesis of furfural from xylose by heterogeneous and reusable nafion 

catalysts. Chemsuschem, 2011, 4(4): pp. 535-541. 

179. Moreau, C., Durand, R., Peyron, D., Duhamet, J. and Rivalier, P., Selective 

preparation of furfural from xylose over microporous solid acid catalysts. 

Industrial Crops and Products, 1998, 7(2-3): pp. 95-99. 

180. Agirrezabal-Telleria, I., Larreategui, A., Requies, J., Gãemez, M.B. and Arias, 

P.L., Furfural production from xylose using sulfonic ion-exchange resins 

(amberlyst) and simultaneous stripping with nitrogen. Bioresource 

Technology, 2011, 102(16): pp. 7478-7485. 

181. Antunes, M.M., Lima, S.R., Fernandes, A., Pillinger, M., Ribeiro, M.F. and 

Valente, A.A., Aqueous-phase dehydration of xylose to furfural in the 

presence of MCM-22 and ITQ-2 solid acid catalysts. Applied Catalysis A: 

General, 2012, 417-418(0): pp. 243-252. 

182. Schmidt, L.D. and Dauenhauer, P.J., Chemical engineering - hybrid routes to 

biofuels. Nature, 2007, 447(7147): pp. 914-915. 

183. Kamm, B., Production of platform chemicals and synthesis gas from biomass. 

Angewandte Chemie-International Edition, 2007, 46(27): pp. 5056-5058. 

184. Mascal, M. and Nikitin, E.B., High-yield conversion of plant biomass into the 

key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and 

levulinic esters via 5-(chloromethyl)furfural. Green Chemistry, 2010, 12(3): 

pp. 370-373. 

185. Gorbanev, Y.Y., Klitgaard, S.K., Woodley, J.M., Christensen, C.H. and 

Riisager, A., Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in 

water at ambient temperature. Chemsuschem, 2009, 2(7): pp. 672-675. 

186. Ilgen, F., Ott, D., Kralisch, D., Reil, C., Palmberger, A. and Konig, B., 

Conversion of carbohydrates into 5-hydroxymethylfurfural in highly 

concentrated low melting mixtures. Green Chemistry, 2009, 11(12): pp. 1948-

1954. 

187. Narayan, R., Polymeric materials from agrictural feedstocks. In:  Fishman, 

M.L., Friedman, R.B., and Huang, J.S.(eds) Polymers from agricultural 



N.M. Baba                                                                                                                                                               REFERENCES 

188 

 

coproducts, 1994,  American Chemical  Society Symposium Series 579, 

Washington DC, pp 44-52. 

188. Climent, M.J., Corma, A. and Iborra, S., Heterogeneous catalysts for the one-

pot synthesis of chemicals and fine chemicals. Chemical Reviews, 2011, 

111(2): pp. 1072-1133. 

189. Antal, M.J., Mok, W.S.L. and Richards, G.N., Kinetic-studies of the reactions 

of ketoses and aldoses in water at high-temperature .1. Mechanism of 

formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. 

Carbohydrate Research, 1990, 199(1): pp. 91-109. 

190. James, O.O., Maity, S., Usman, L.A., Ajanaku, K.O., Ajani, O.O., Siyanbola, 

T.O., Sahu, S. and Chaubey, R., Towards the conversion of carbohydrate 

biomass feedstocks to biofuels via hydroxylmethylfurfural. Energy & 

Environmental Science, 2010, 3(12): pp. 1833-1850. 

191. Kuster, B.F.M. and Vanderbaan, H.S., Dehydration of d-fructose (formation 

of 5-hydroxymethyl-2-furaldehyde and levulinic acid) .2. Influence of initial 

and catalyst concentrations on dehydration of D-fructose. Carbohydrate 

Research, 1977, 54(2): pp. 165-176. 

192. Carniti, P., Gervasini, A. and Marzo, M., Absence of expected side-reactions 

in the dehydration reaction of fructose to HMF in water over niobic acid 

catalyst. Catalysis Communications, 2011, 12(12): pp. 1122-1126. 

193. Busca, G., Acid catalysts in industrial hydrocarbon chemistry. Chemical 

Reviews, 2007, 107(11): pp. 5366-5410. 

194. Okuhara, T., Water-tolerant solid acid catalysts. Chemical Reviews, 2002, 

102(10): pp. 3641-3665. 

195. Yang, F.L., Liu, Q.S., Bai, X.F. and Du, Y.G., Conversion of biomass into 5-

hydroxymethylfurfural using solid acid catalyst. Bioresource Technology, 

2011, 102(3): pp. 3424-3429. 

196. Moreau, C., Durand, R., Razigade, S., Duhamet, J., Faugeras, P., Rivalier, P., 

Ros, P. and Avignon, G., Dehydration of fructose to 5-hydroxymethylfurfural 

over H-mordenites. Applied Catalysis A-General, 1996, 145(1-2): pp. 211-

224. 

197. Carlini, C., Patrono, P., Galletti, A.M.R. and Sbrana, G., Heterogeneous 

catalysts based on vanadyl phosphate for fructose dehydration to 5-

hydroxymethyl-2-furaldehyde. Applied Catalysis A-General, 2004, 275(1-2): 

pp. 111-118. 

198. Takagaki, A., Ohara, M., Nishimura, S. and Ebitani, K., A one-pot reaction for 

biorefinery: Combination of solid acid and base catalysts for direct production 

of 5-hydroxymethylfurfural from saccharides. Chemical Communications, 

2009(41): pp. 6276-6278. 

199. Benvenuti, F., Carlini, C., Patrono, P., Galletti, A.M.R., Sbrana, G., Massucci, 

M.A. and Galli, P., Heterogeneous zirconium and titanium catalysts for the 

selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates. 

Applied Catalysis A-General, 2000, 193(1-2): pp. 147-153. 

200. Nakamura, Y. and Morikawa, S., The dehydration of D-fructose to 5-

hydroxymethyl-2-furaldehyde. Bulletin of the Chemical Society of Japan, 

1980, 53(12): pp. 3705-3706. 

201. Rigal, L. and Gaset, A., Optimization of the conversion of D-fructose to 5-

hydroxymethyl-2-furancarboxaldehyde in a water-solvent-ion exchanger 

triphasic system .2. Search for a local optimum of selectivity by the simplex-

method. Biomass, 1985, 8(4): pp. 267-276. 



N.M. Baba                                                                                                                                                               REFERENCES 

189 

 

202. Mercadier, D., Rigal, L., Gaset, A. and Gorrichon, J.P., Synthesis of 5-

hydroxymethyl-2-furancarboxaldehyde catalyzed by cationic exchange resins 

.2. Analysis and discussion of the effect of the main parameters on the HMF 

output. Journal of Chemical Technology and Biotechnology, 1981, 31(8): pp. 

497-502. 

203. Lansalot-Matras, C. and Moreau, C., Dehydration of fructose into 5-

hydroxymethylfurfural in the presence of ionic liquids. Catalysis 

Communications, 2003, 4(10): pp. 517-520. 

204. Yadav, G.D. and Nair, J.J., Sulfated zirconia and its modified versions as 

promising catalysts for industrial processes. Microporous and Mesoporous 

Materials, 1999, 33(1-3): pp. 1-48. 

205. Arata, K. and Hino, M., Reaction of butane to isobutane catalyzed by the solid 

superacid of hfo2 treated with sulfate ion. Reaction Kinetics and Catalysis 

Letters, 1984, 25(1-2): pp. 143-145. 

206. Corma, A., Inorganic solid acids and their use in acid-catalyzed hydrocarbon 

reactions. Chemical Reviews, 1995, 95(3): pp. 559-614. 

207. Hino, M., Kobayashi, S. and Arata, K., Solid catalyst treated with anion .2. 

Reactions of butane and isobutane catalyzed by zirconium-oxide treated with 

sulfate ion - solid superacid catalyst. Journal of the American Chemical 

Society, 1979, 101(21): pp. 6439-6441. 

208. Yamaguchi, T., Jin, T., Ishida, T. and Tanabe, K., Structural identification of 

acid sites of sulfur-promoted solid super acid and construction of its structure 

on silica support. Materials Chemistry and Physics, 1987, 17(1-2): pp. 3-19. 

209. Ward, D.A. and Ko, E.I., One-step synthesis and characterization of zirconia-

sulfate aerogels as solid superacids. Journal of Catalysis, 1994, 150(1): pp. 

18-33. 

210. Bensitel, M., Saur, O., Lavalley, J.C. and Mabilon, G., Acidity of zirconium-

oxide and sulfated ZrO2 samples. Materials Chemistry and Physics, 1987, 

17(3): pp. 249-258. 

211. Watanabe, M., Aizawa, Y., Iida, T., Nishimura, R. and Inomata, H., Catalytic 

glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: 

Relationship between reactivity and acid-base property determined by TPD 

measurement. Applied Catalysis A-General, 2005, 295(2): pp. 150-156. 

212. Qi, X.H., Watanabe, M., Aida, T.M. and Smith, R.L., Catalytical conversion 

of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water 

by microwave heating. Catalysis Communications, 2008, 9(13): pp. 2244-

2249. 

213. Qi, X.H., Watanabe, M., Aida, T.M. and Smith, R.L., Sulfated zirconia as a 

solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. 

Catalysis Communications, 2009, 10(13): pp. 1771-1775. 

214. Seri, K., Inoue, Y. and Ishida, H., Catalytic activity of lanthanide(iii) ions for 

the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water. Bulletin 

of the Chemical Society of Japan, 2001, 74(6): pp. 1145-1150. 

215. Ishida, H. and Seri, K., Catalytic activity of lanthanoide(iii)) ions for 

dehydration of D-glucose to 5-(hydroxymethyl)furfural. Journal of Molecular 

Catalysis A-Chemical, 1996, 112(2): pp. L163-L165. 

216. Zhao, H.B., Holladay, J.E., Brown, H. and Zhang, Z.C., Metal chlorides in 

ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science, 

2007, 316(5831): pp. 1597-1600. 



N.M. Baba                                                                                                                                                               REFERENCES 

190 

 

217. Hsu, W.H., Lee, Y.Y., Peng, W.H. and Wu, K.C.W., Cellulosic conversion in 

ionic liquids (ils): Effects of H2O/cellulose molar ratios, temperatures, times, 

and different ils on the production of monosaccharides and 5-

hydroxymethylfurfural (HMF). Catalysis Today, 2011, 174(1): pp. 65-69. 

218. Yu, S., Brown, H.M., Huang, X.W., Zhou, X.D., Amonette, J.E. and Zhang, 

Z.C., Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), 

A versatile platform chemical. Applied Catalysis A-General, 2009, 361(1-2): 

pp. 117-122. 

219. Zhang, Y.T., Du, H.B., Qian, X.H. and Chen, E.Y.X., Ionic liquid-water 

mixtures: Enhanced kw for efficient cellulosic biomass conversion. Energy & 

Fuels, 2010, 24: pp. 2410-2417. 

220. Sheldon, R., Catalytic reactions in ionic liquids. Chemical Communications, 

2001(23): pp. 2399-2407. 

221. Yang, X., Fei, Z.F., Geldbach, T.J., Phillips, A.D., Hartinger, C.G., Li, Y.D. 

and Dyson, P.J., Suzuki coupling reactions in ether-functionalized ionic 

liquids: The importance of weakly interacting cations. Organometallics, 2008, 

27(15): pp. 3971-3977. 

222. Moreau, C., Finiels, A. and Vanoye, L., Dehydration of fructose and sucrose 

into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium 

chloride acting both as solvent and catalyst. Journal of Molecular Catalysis 

A-Chemical, 2006, 253(1-2): pp. 165-169. 

223. Tong, X.L., Ma, Y. and Li, Y.D., An efficient catalytic dehydration of fructose 

and sucrose to 5-hydroxymethylfurfural with protic ionic liquids. 

Carbohydrate Research, 2010, 345(12): pp. 1698-1701. 

224. Hu, S.Q., Zhang, Z.F., Song, J.L., Zhou, Y.X. and Han, B.X., Efficient 

conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common 

lewis acid SnCl4 in an ionic liquid. Green Chemistry, 2009, 11(11): pp. 1746-

1749. 

225. Musau, R.M. and Munavu, R.M., The preparation of 5-hydroxymethyl-2-

furaldehyde (HMF) from D-fructose in the presence of DMSO. Biomass, 1987, 

13(1): pp. 67-74. 

226. James, O.O., Maity, S., Usman, L.A., Ajanaku, K.O., Ajani, O.O., Siyambola, 

T.O., Sahu, S. and Chaubey, R., Towards the conversion of carbohydrate 

biomass feedstocks to biofuels via hydroxymethylfurfural. Energy & 

Environmental Science, 2010, 3(12): pp. 1833-1850. 

227. Ma, H., Zhou, B., Li, Y. and Argyropoulos, Conversion of fructose to 5-

hydroximethyl-furfural with a functionalized ionic liquid. BioResources, 2012, 

7(1): pp. 533-544. 

228. Stahlberg, T., Fu, W.J., Woodley, J.M. and Riisager, A., Synthesis of 5-

(hydroxymethyl)furfural in ionic liquids: Paving the way to renewable 

chemicals. Chemsuschem, 2011, 4(4): pp. 451-458. 

229. Hu, L., Sun, Y. and Lin, L., Efficient conversion of glucose into 5-

hydroxymethylfurfural by chromium(iii) chloride in inexpensive ionic liquid. 

Industrial & Engineering Chemistry Research, 2012, 51(3): pp. 1099-1104. 

230. Qi, X., Guo, H. and Li, L., Efficient conversion of fructose to 5-

hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids. 

Industrial & Engineering Chemistry Research, 2011, 50(13): pp. 7985-7989. 

231. Qi, X., Watanabe, M., Aida, T.M. and Smith, J.R.L., Efficient process for 

conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green 

Chemistry, 2009, 11(9). 



N.M. Baba                                                                                                                                                               REFERENCES 

191 

 

232. Cao, Q., Guo, X.C., Yao, S.X., Guan, J., Wang, X.Y., Mu, X.D. and Zhang, 

D.K., Conversion of hexose into 5-hydroxymethylfurfural in imidazolium ionic 

liquids with and without a catalyst. Carbohydrate Research, 2011, 346(7): pp. 

956-959. 

233. Gandini, A. and Belgacem, M.N., Furans in polymer chemistry. Progress in 

Polymer Science, 1997, 22(6): pp. 1203-1379. 

234. Laita, H., Boufi, S. and Gandini, A., The application of the diels-alder reaction 

to polymers bearing furan moieties .1. Reactions with maleimides. European 

Polymer Journal, 1997, 33(8): pp. 1203-1211. 

235. Gousse, C., Gandini, A. and Hodge, P., Application of the Diels-Alder reaction 

to polymers bearing furan moieties. 2. Diels-Alder and retro-Diels-Alder 

reactions involving furan rings in some styrene copolymers. Macromolecules, 

1998, 31(2): pp. 314-321. 

236. Moreau, C., Belgacem, M.N. and Gandini, A., Recent catalytic advances in 

the chemistry of substituted furans from carbohydrates and in the ensuing 

polymers. Topics in Catalysis, 2004, 27(1-4): pp. 11-30. 

237. Gandini, A., Silvestre, A.J.D., Neto, C.P., Sousa, A.F. and Gomes, M., The 

furan counterpart of poly(ethylene terephthalate): An alternative material 

based on renewable resources. Journal of Polymer Science Part A-Polymer 

Chemistry, 2009, 47(1): pp. 295-298. 

238. Gandini, A., Furans as offspring of sugars and polysaccharides and 

progenitors of a family of remarkable polymers: A review of recent progress. 

Polymer Chemistry, 2010, 1: pp. 245-251. 

239. Davis, S.E., Houk, L.R., Tamargo, E.C., Datye, A.K. and Davis, R.J., 

Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. 

Catalysis Today, 2011, 160(1): pp. 55-60. 

240. Bokanga, M., Biotecnology and cassava processing in africa. IITA Research, 

1996, 12: pp. 14-18. 

241. Holladay, J.E., Werpy, T.A. and Muzatko, D.S., Catalytic hydrogenation of 

glutamic acid. Applied Biochemistry and Biotechnology, 2004, 113: pp. 857-

869. 

242. Verdeguer, P., Merat, N. and Gaset, A., Catalytic-oxidation of HMF to 2,5-

furandicarboxylic acid. Journal of Molecular Catalysis, 1993, 85(3): pp. 327-

344. 

243. Vinke, P., Vanderpoel, W. and Vanbekkum, H., On the oxygen tolerance of 

noble-metal catalysts in liquid-phase alcohol oxidations - the influence of the 

support on catalyst deactivation. In: Heterogeneous catalysis and fine 

chemicals ii. pp. 385-394. 

244. Casanova, O., Iborra, S. and Corma, A., Biomass into chemicals: Aerobic 

oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with 

gold nanoparticle catalysts. Chemsuschem, 2009, 2(12): pp. 1138-1144. 

245. Hopkins, K.T., Wilson, W.D., Bender, B.C., Mccurdy, D.R., Hall, J.E., 

Tidwell, R.R., Kumar, A., Bajic, M. and Boykin, D.W., Extended aromatic 

furan amidino derivatives as anti-pneumocystis carinii agents. Journal of 

Medicinal Chemistry, 1998, 41(20): pp. 3872-3878. 

246. Del Poeta, M., Schell, W.A., Dykstra, C.C., Jones, S., Tidwell, R.R., Czarny, 

A., Bajic, M., Kumar, A., Boykin, D. and Perfect, J.R., Structure in vitro 

activity relationships of pentamidine analogues and dication-substituted bis-

benzimidazoles as new antifungal agents. Antimicrobial Agents and 

Chemotherapy, 1998, 42(10): pp. 2495-2502. 



N.M. Baba                                                                                                                                                               REFERENCES 

192 

 

247. Amarasekara, A.S., Green, D. and Williams, L.D., Renewable resources based 

polymers: Synthesis and characterization of 2,5-diformylfuran-urea resin. 

European Polymer Journal, 2009, 45(2): pp. 595-598. 

248. Gandini, A. and Belgacem, N.M., Recent advances in the elaboration of 

polymeric materials derived from biomass components. Polymer International, 

1998, 47(3): pp. 267-276. 

249. Partenheimer, W. and Grushin, V.V., Synthesis of 2,5-diformylfuran and 

furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-

hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl 

alcohol to benzaldehyde with metal/bromide catalysts. Advanced Synthesis & 

Catalysis, 2001, 343(1): pp. 102-111. 

250. Moreau, C., Durand, R., Pourcheron, C. and Tichit, D., Selective oxidation of 

5-hydroxymethylfurfural to 2,5-furan-dicarboxaldehyde in the presence of 

titania supported vanadia catalysts. Studies in Surface Science and Catalysis, 

1997, 108: pp. 399-406. 

251. Carlini, C., Patrono, P., Galletti, A.M.R., Sbrana, G. and Zima, V., Selective 

oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde 

by catalytic systems based on vanadyl phosphate. Applied Catalysis A-

General, 2005, 289(2): pp. 197-204. 

252. Navarro, O.C., Canos, A.C. and Chornet, S.I., Chemicals from biomass: 

Aerobic oxidation of 5-hydroxymethyl-2-furaldehyde into diformylfurane 

catalyzed by immobilized vanadyl-pyridine complexes on polymeric and 

organofunctionalized mesoporous supports. Topics in Catalysis, 2009, 52(3): 

pp. 304-314. 

253. Adeniji, A.L., Ega, M., Akoroda, A., Adeniyi, B.U. and Balogun, A., Cassava 

development in nigeria. A country case study towards a global strategy for 

cassava development, Agriculture, D.O., Editor. 1997,  Federal Ministry of 

Agriculture and Natural Resources, Lagos Nigeria. 

254. Lewkowski, J., Synthesis, chemistry and applications of 5-

hydroxymethylfurfural and its derivatives. Arkivoc, 2001: pp. 17-54. 

255. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T. and 

Kamigaito, O., Synthesis of nylon 6–clay hybrid by montmorillonite 

intercalated with ϵ-caprolactam. Journal of Polymer Science Part A: Polymer 

Chemistry, 1993, 31(4): pp. 983-986. 

256. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, 

T. and Kamigaito, O., Mechanical properties of nylon 6-clay hybrid. Journal 

of Materials Research, 1993, 8(05): pp. 1185-1189. 

257. Ray, S.S. and Bousmina, M., Biodegradable polymers and their layered 

silicate nano composites: In greening the 21st century materials world. 

Progress in Materials Science, 2005, 50(8): pp. 962-1079. 

258. Ray, S.S., Okamoto, K. and Okamoto, M., Structure-property relationship in 

biodegradable poly(butylene succinate)/layered silicate nanocomposites. 

Macromolecules, 2003, 36(7): pp. 2355-2367. 

259. Ray, S.S. and Okamoto, M., Polymer/layered silicate nanocomposites: A 

review from preparation to processing. Progress in Polymer Science, 2003, 

28(11): pp. 1539-1641. 

260. Pavlidou, S. and Papaspyrides, C.D., A review on polymer-layered silicate 

nanocomposites. Progress in Polymer Science, 2008, 33(12): pp. 1119-1198. 



N.M. Baba                                                                                                                                                               REFERENCES 

193 

 

261. Chen, B., Evans, J.R.G., Greenwell, H.C., Boulet, P., Coveney, P.V., Bowden, 

A.A. and Whiting, A., A critical appraisal of polymer-clay nanocomposites. 

Chemical Society Reviews, 2008, 37(3): pp. 568-594. 

262. Tolle, T.B. and Anderson, D.P., Morphology development in layered silicate 

thermoset nanocomposites. Composites Science and Technology, 2002, 62(7-

8): pp. 1033-1041. 

263. Alexandre, M. and Dubois, P., Polymer-layered silicate nanocomposites: 

Preparation, properties and uses of a new class of materials. Materials 

Science & Engineering R-Reports, 2000, 28(1-2): pp. 1-63. 

264. Wilson, O.C., Olorunyolemi, T., Jaworski, A., Borum, L., Young, D., Siriwat, 

A., Dickens, E., Oriakhi, C. and Lerner, M., Surface and interfacial properties 

of polymer-intercalated layered double hydroxide nanocomposites. Applied 

Clay Science, 1999, 15(1-2): pp. 265-279. 

265. Loo, L.S. and Gleason, K.K., Fourier transform infrared investigation of the 

deformation behavior of montmorillonite in nylon-6/nanoclay nanocomposite. 

Macromolecules, 2003, 36(8): pp. 2587-2590. 

266. Wu, H.D., Tseng, C.R. and Chang, F.C., Chain conformation and 

crystallization behavior of the syndiotactic polystyrene nanocomposites 

studied using fourier transform infrared analysis. Macromolecules, 2001, 

34(9): pp. 2992-2999. 

267. Jeon, H.G., Jung, H.T., Lee, S.W. and Hudson, S.D., Morphology of 

polymer/silicate nanocomposites - high density polyethylene and a nitrile 

copolymer. Polymer Bulletin, 1998, 41(1): pp. 107-113. 

268. Krikorian, V. and Pochan, D.J., Poly (l-lactic acid)/layered silicate 

nanocomposite: Fabrication, characterization, and properties. Chemistry of 

Materials, 2003, 15(22): pp. 4317-4324. 

269. Yano, K., Usuki, A., Okada, A., Kurauchi, T. and Kamigaito, O., Synthesis 

and properties of polyimide clay hybrid. Journal of Polymer Science Part a-

Polymer Chemistry, 1993, 31(10): pp. 2493-2498. 

270. Tyan, H.L., Liu, Y.C. and Wei, K.H., Enhancement of imidization of poly(amic 

acid) through forming poly(amic acid)/organoclay nanocomposites. Polymer, 

1999, 40(17): pp. 4877-4886. 

271. Oriakhi, C.O., Zhang, X.R. and Lerner, M.M., Synthesis and luminescence 

properties of a poly(p-phenylenevinylene)/montmorillonite layered 

nanocomposite. Applied Clay Science, 1999, 15(1-2): pp. 109-118. 

272. Lee, D.C. and Jang, L.W., Preparation and characterization of pmma-clay 

hybrid composite by emulsion polymerization. Journal of Applied Polymer 

Science, 1996, 61(7): pp. 1117-1122. 

273. Yang, F., Ou, Y.C. and Yu, Z.Z., Polyamide 6 silica nanocomposites prepared 

by in situ polymerization. Journal of Applied Polymer Science, 1998, 69(2): 

pp. 355-361. 

274. Lebaron, P.C., Wang, Z. and Pinnavaia, T.J., Polymer-layered silicate 

nanocomposites: An overview. Applied Clay Science, 1999, 15(1-2): pp. 11-

29. 

275. Manias, E., Chen, H., Krishnamoorti, R., Genzer, J., Kramer, E.J. and 

Giannelis, E.P., Intercalation kinetics of long polymers in 2 nm confinements. 

Macromolecules, 2000, 33(21): pp. 7955-7966. 

276. Vaia, R.A., Jandt, K.D., Kramer, E.J. and Giannelis, E.P., Microstructural 

evolution of melt intercalated polymer-organically modified layered silicates 

nanocomposites. Chemistry of Materials, 1996, 8(11): pp. 2628-2635. 



N.M. Baba                                                                                                                                                               REFERENCES 

194 

 

277. Giannelis, E.P., Polymer layered silicate nanocomposites. Advanced 

Materials, 1996, 8(1): pp. 29-&. 

278. Fornes, T.D., Yoon, P.J., Hunter, D.L., Keskkula, H. and Paul, D.R., Effect of 

organoclay structure on nylon 6 nanocomposite morphology and properties. 

Polymer, 2002, 43(22): pp. 5915-5933. 

279. Huang, J.C., Zhu, Z.K., Yin, J., Qian, X.F. and Sun, Y.Y., 

Poly(etherimide)/montmorillonite nanocomposites prepared by melt 

intercalation: Morphology, solvent resistance properties and thermal 

properties. Polymer, 2001, 42(3): pp. 873-877. 

280. Chan, C.M., Wu, J.S., Li, J.X. and Cheung, Y.K., Polypropylene/calcium 

carbonate nanocomposites. Polymer, 2002, 43(10): pp. 2981-2992. 

281. Gilman, J.W., Awad, W.H., Davis, R.D., Shields, J., Harris, R.H., Davis, C., 

Morgan, A.B., Sutto, T.E., Callahan, J., Trulove, P.C. and Delong, H.C., 

Polymer/layered silicate nanocomposites from thermally stable 

trialkylimidazolium-treated montmorillonite. Chemistry of Materials, 2002, 

14(9): pp. 3776-3785. 

282. Xie, W., Xie, R.C., Pan, W.P., Hunter, D., Koene, B., Tan, L.S. and Vaia, R., 

Thermal stability of quaternary phosphonium modified montmorillonites. 

Chemistry of Materials, 2002, 14(11): pp. 4837-4845. 

283. Park, C., Park, O.O., Lim, J.G. and Kim, H.J., The fabrication of syndiotactic 

polystyrene/organophilic clay nanocomposites and their properties. Polymer, 

2001, 42(17): pp. 7465-7475. 

284. Gilman, J.W., Flammability and thermal stability studies of polymer layered-

silicate (clay) nanocomposites. Applied Clay Science, 1999, 15(1-2): pp. 31-

49. 

285. Kiliaris, P. and Papaspyrides, C.D., Polymer/layered silicate (clay) 

nanocomposites: An overview of flame retardancy. Progress in Polymer 

Science, 2010, 35: pp. 902–958. 

286. Utracki, L.A., Sepehr, M. and Boccaleri, E., Synthetic, layered nanoparticles 

for polymeric nanocomposites. Polymers for Advanced Technologies, 2007, 

18(1): pp. 1-37. 

287. Choy, J.H., Choi, S.J., Oh, J.M. and Park, T., Clay minerals and layered 

double hydroxides for novel biological applications. Applied Clay Science, 

2007, 36(1-3): pp. 122-132. 

288. Usuki, A., Koiwai, A., Kojima, Y., Kawasumi, M., Okada, A., Kurauchi, T. 

and Kamigaito, O., Interaction of nylon-6 clay surface and mechanical-

properties of nylon-6 clay hybrid. Journal of Applied Polymer Science, 1995, 

55(1): pp. 119-123. 

289. Causin, V., Marega, C., Marigo, A. and Ferrara, G., Assessing organo-clay 

dispersion in polymer layered silicate nanocomposites: A saxs approach. 

Polymer, 2005, 46(23): pp. 9533-9537. 

290. Xu, M.Z., Choi, Y.S., Kim, Y.K., Wang, K.H. and Chung, I.J., Synthesis and 

characterization of exfoliated poly(styrene-co-methyl methacrylate)/clay 

nanocomposites via emulsion polymerization with amps. Polymer, 2003, 

44(20): pp. 6387-6395. 

291. Porter, D., Metcalfe, E. and Thomas, M.J.K., Nanocomposite fire retardants - 

a review. Fire and Materials, 2000, 24(1): pp. 45-52. 

292. Haraguchi, K., Li, H.J., Matsuda, K., Takehisa, T. and Elliott, E., Mechanism 

of forming organic/inorganic network structures during in-situ free-radical 



N.M. Baba                                                                                                                                                               REFERENCES 

195 

 

polymerization in pnipa-clay nanocomposite hydrogels. Macromolecules, 

2005, 38(8): pp. 3482-3490. 

293. Kim, Y.K., Choi, Y.S., Wang, M.H. and Chung, I.J., Synthesis of exfoliated 

PS/Na-MMT nanocomposites via emulsion polymerization. Chemistry of 

Materials, 2002, 14(12): pp. 4990-4995. 

294. Morgan, A.B. and Gilman, J.W., Characterization of polymer-layered silicate 

(clay) nanocomposites by transmission electron microscopy and X-ray 

diffraction: A comparative study. Journal of Applied Polymer Science, 2003, 

87(8): pp. 1329-1338. 

295. Chen, B.Q. and Evans, J.R.G., Thermoplastic starch-clay nanocomposites and 

their characteristics. Carbohydrate Polymers, 2005, 61(4): pp. 455-463. 

296. De Carvalho, A.J.F., Curvelo, A.a.S. and Agnelli, J.a.M., A first insight on 

composites of thermoplastic starch and kaolin. Carbohydrate Polymers, 2001, 

45(2): pp. 189-194. 

297. Pandey, J.K. and Singh, R.P., Green nanocomposites from renewable 

resources: Effect of plasticizer on the structure and material properties of 

clay-filled starch. Starch-Starke, 2005, 57(1): pp. 8-15. 

298. Guan, J.J. and Hanna, M.A., Selected morphological and functional properties 

of extruded acetylated starch-cellulose foams. Bioresource Technology, 2006, 

97(14): pp. 1716-1726. 

299. Kumar, A.P. and Singh, R.P., Biocomposites of cellulose reinforced starch: 

Improvement of properties by photo-induced crosslinking. Bioresource 

Technology, 2008, 99(18): pp. 8803-8809. 

300. Lu, Y.S., Weng, L.H. and Cao, X.D., Morphological, thermal and mechanical 

properties of ramie crystallites - reinforced plasticized starch biocomposites. 

Carbohydrate Polymers, 2006, 63(2): pp. 198-204. 

301. Ma, X.F., Yu, J.G. and Wang, N., Fly ash-reinforced thermoplastic starch 

composites. Carbohydrate Polymers, 2007, 67(1): pp. 32-39. 

302. Fama, L., Gerschenson, L. and Goyanes, S., Starch-vegetable fibre composites 

to protect food products. Carbohydrate Polymers, 2009, 75(2): pp. 230-235. 

303. Kaushik, A., Singh, M. and Verma, G., Green nanocomposites based on 

thermoplastic starch and steam exploded cellulose nanofibrils from wheat 

straw. Carbohydrate Polymers, 2010, 82(2): pp. 337-345. 

304. Guimaraes, J.L., Wypych, F., Saul, C.K., Ramos, L.P. and Satyanarayana, 

K.G., Studies of the processing and characterization of corn starch and its 

composites with banana and sugarcane fibers from Brazil. Carbohydrate 

Polymers, 2010, 80(1): pp. 130-138. 

305. Kaith, B.S., Jindal, R., Jana, A.K. and Maiti, M., Development of corn starch 

based green composites reinforced with saccharum spontaneum l fiber and 

graft copolymers - evaluation of thermal, physico-chemical and mechanical 

properties. Bioresource Technology, 2010, 101(17): pp. 6843-6851. 

306. Ogata, N., Jimenez, G., Kawai, H. and Ogihara, T., Structure and 

thermal/mechanical properties of poly(l-lactide)-clay blend. Journal of 

Polymer Science Part B-Polymer Physics, 1997, 35(2): pp. 389-396. 

307. Jandas, P.J., Mohanty, S. and Nayak, S.K., Surface treated banana fiber 

reinforced poly (lactic acid) nanocomposites for disposable applications. 

Journal of Cleaner Production, 2013, 52: pp. 392-401. 

308. Ray, S.S., Maiti, P., Okamoto, M., Yamada, K. and Ueda, K., New 

polylactide/layered silicate nanocomposites. 1. Preparation, characterization, 

and properties. Macromolecules, 2002, 35(8): pp. 3104-3110. 



N.M. Baba                                                                                                                                                               REFERENCES 

196 

 

309. Ray, S.S., Okamoto, K., Yamada, K. and Okamoto, M., Novel porous ceramic 

material via burning of polylactide/layered silicate nanocomposite. Nano 

Letters, 2002, 2(4): pp. 423-425. 

310. Ray, S.S., Yamada, K., Okamoto, M. and Ueda, K., Polylactide-layered 

silicate nanocomposite: A novel biodegradable material. Nano Letters, 2002, 

2(10): pp. 1093-1096. 

311. Paul, M.A., Alexandre, M., Degee, P., Calberg, C., Jerome, R. and Dubois, P., 

Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion 

polymerization. Macromolecular Rapid Communications, 2003, 24(9): pp. 

561-566. 

312. Maiti, P., Yamada, K., Okamoto, M., Ueda, K. and Okamoto, K., New 

polylactide/layered silicate nanocomposites: Role of organoclays. Chemistry 

of Materials, 2002, 14(11): pp. 4654-4661. 

313. Chang, J.H., An, Y.U., Cho, D.H. and Giannelis, E.P., Poly(lactic acid) 

nanocomposites: Comparison of their properties with montmorillonite and 

synthetic mica(ii). Polymer, 2003, 44(13): pp. 3715-3720. 

314. Lee, S.Y., Kang, I.A., Doh, G.H., Yoon, H.G., Park, B.D. and Wu, Q.L., 

Thermal and mechanical properties of wood flour/talc-filled polylactic acid 

composites: Effect of filler content and coupling treatment. Journal of 

Thermoplastic Composite Materials, 2008, 21(3): pp. 209-223. 

315. Qu, P., Gao, Y.A., Wu, G.F. and Zhang, L.P., Nanocomposites of poly(lactic 

acid) reinforced with cellulose nanofibrils. BioResources, 2010, 5(3): pp. 

1811-1823. 

316. Misra, M., Park, H., Mohanty, A.K. and Drzal, L.T., Injection molded ‘green’ 

nanocomposite materials from renewable resources, in Global Plastics 

Environmental Conference. 2004, Detroit, MI, USA, . 

317. Mahadeva, S.K., Yun, S. and Kim, J., Flexible humidity and temperature 

sensor based on cellulose-polypyrrole nanocomposite. Sensors and Actuators 

a-Physical, 2011, 165(2): pp. 194-199. 

318. Halim, K.a.A., Farrell, J.B. and Kennedy, J.E., Preparation and 

characterisation of polyamide 11/montmorillonite (MMT) nanocomposites for 

use in angioplasty balloon applications. Materials Chemistry and Physics, 

2013, 143(1): pp. 336-348. 

319. Mansa, R. and Detellier, C., Preparation and characterization of guar-

montmorillonite nanocomposites. Materials, 2013, 6(11): pp. 5199-5216. 

320. Marsh, B.K. and Day, R.L., Pozzolanic and cementitious reactions of fly ash 

in blended cement pastes. Cement and Concrete Research, 1988, 18(2): pp. 

301-310. 

321. Vargaftik, N.B., Volkov, B.N. and Voljak, L.D., International tables of the 

surface-tension of water. Journal of Physical and Chemical Reference Data, 

1983, 12(3): pp. 817-820. 

322. Kaye, G.W.C. and Laby, T.H., Tables of physical and chemical constants. 6th 

ed. 1995, Essex, England, Longman Group Ltd, pp. 60. 

323. Ma, J.P., Pang, Y., Wang, M., Xu, J., Ma, H. and Nie, X., The 

copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-

based copolyester materials. Journal of Materials Chemistry, 2012, 22(8): pp. 

3457-3461. 

324. Yuan, X., Li, X., Zhu, E., Hu, J., Cao, S. and Sheng, W., Synthesis and 

properties of silicone/montmorillonite nanocomposites by in-situ intercalative 

polymerization. Carbohydrate Polymers, 2010, 79(2): pp. 373-379. 



N.M. Baba                                                                                                                                                               REFERENCES 

197 

 

325. ASTM D570-98, A., Standard test method for water absorption of plastics. 

2010: USA, pp. 1-4. 

326. Fa˛Rcas¸Iu, D., Li, J.Q. and Cameron, S., Preparation of sulfated zirconia 

catalysts with improved control of sulfur content ii. Effect of sulfur content on 

physical properties and catalytic activity. Applied Catalysis A: General, 1997, 

154(1–2): pp. 173-184. 

327. Tangchupong, N., Khaodee, W., Jongsomjit, B., Laosiripojana, N., 

Praserthdam, P. and Assabumrungrat, S., Effect of calcination temperature on 

characteristics of sulfated zirconia and its application as catalyst for 

isosynthesis. Fuel Processing Technology, 2010, 91(1): pp. 121-126. 

328. Osendi, M.I., Moya, J.S., Serna, C.J. and Soria, J., Metastability of tetragonal 

zirconia powders. Journal of the American Ceramic Society, 1985, 68(3): pp. 

135-139. 

329. Evans, P.A., Stephens, R. and Binner, J.G.P., Quantitative X-ray diffraction 

ananlysis of polymorphic mixes of pure zirconia. Transactions and Journal of 

the British Ceramic Society, 1984, 83(2): pp. 39-43. 

330. Schmid, H.K., Quantitative-analysis of polymorphic mixes of zirconia by X-

ray-diffraction. Journal of the American Ceramic Society, 1987, 70(5): pp. 

367-376. 

331. Zhang, Z.H., Liu, W.J., Xie, H.B. and Zhao, Z.B.K., An unexpected reaction 

between 5-hydroxymethylfurfural and imidazolium-based ionic liquids at high 

temperatures. Molecules, 2011, 16(10): pp. 8463-8474. 

332. Qi, X.H., Watanabe, M., Aida, T.M. and Smith, R.L., Selective conversion of 

d-fructose to 5-hydroxymethylfurfural by ion-exchange resin in 

acetone/dimethyl sulfoxide solvent mixtures. Industrial & Engineering 

Chemistry Research, 2008, 47(23): pp. 9234-9239. 

333. Wei, Z.J., Liu, Y.X., Thushara, D. and Ren, Q.L., Entrainer-intensified 

vacuum reactive distillation process for the separation of 5-

hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a 

metal salt-ionic liquid. Green Chemistry, 2012, 14(4): pp. 1220-1226. 

334. Hasabnis, A. and Mahajani, S., Entrainer-based reactive distillation for 

esterification of glycerol with acetic acid. Industrial & Engineering Chemistry 

Research, 2010, 49(19): pp. 9058-9067. 

335. Noeres, C., Kenig, E.Y. and Gorak, A., Modelling of reactive separation 

processes: Reactive absorption and reactive distillation. Chemical 

Engineering and Processing, 2003, 42(3): pp. 157-178. 

336. Taylor, R. and Krishna, R., Modelling reactive distillation. Chemical 

Engineering Science, 2000, 55(22): pp. 5183-5229. 

337. Guo, F., Fang, Z. and Zhou, T.J., Conversion of fructose and glucose into 5-

hydroxymethylfurfural with lignin-derived carbonaceous catalyst under 

microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures. 

Bioresource Technology, 2012, 112: pp. 313-318. 

338. Qi, X.H., Watanabe, M., Aida, T.M. and Smith, R.L., Efficient process for 

conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green 

Chemistry, 2009, 11(9): pp. 1327-1331. 

339. Verevkin, S.P., Emel'yanenko, V.N., Stepurko, E.N., Ralys, R.V., Zaitsau, 

D.H. and Stark, A., Biomass-derived platform chemicals: Thermodynamic 

studies on the conversion of 5-hydroxymethylfurfural into bulk intermediates. 

Industrial & Engineering Chemistry Research, 2009, 48(22): pp. 10087-

10093. 



N.M. Baba                                                                                                                                                               REFERENCES 

198 

 

340. Zhang, Y.M., Pidko, E.A. and Hensen, E.J.M., Molecular aspects of glucose 

dehydration by chromium chlorides in ionic liquids. Chemistry-A European 

Journal, 2011, 17(19): pp. 5281-5288. 

341. Tong, X.L. and Li, Y.D., Efficient and selective dehydration of fructose to 5-

hydroxymethylfurfural catalyzed by bronsted-acidic ionic liquids. 

Chemsuschem, 2010, 3(3): pp. 350-355. 

342. Jadhav, H., Taarning, E., Pedersen, C.M. and Bols, M., Conversion of d-

glucose into 5-hydroxymethylfurfural (HMF) using zeolite in bmim cl or 

tetrabutylammonium chloride (TBAC)/CrCl2. Tetrahedron Letters, 2012, 

53(8): pp. 983-985. 

343. El Seoud, O.A., Koschella, A., Fidale, L.C., Dorn, S. and Heinze, T., 

Applications of ionic liquids in carbohydrate chemistry: A window of 

opportunities. Biomacromolecules, 2007, 8(9): pp. 2629-2647. 

344. Zhang, Z.C., Catalysis in ionic liquids. In: Advances in catalysis, vol 49. Gates, 

B.C. and Knozinger, H., Editors.  Elsevier Academic Press Inc, San Diego, pp. 

153-237. 

345. Ebner, G., Schiehser, S., Potthast, A. and Rosenau, T., Side reaction of 

cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. 

Tetrahedron Letters, 2008, 49(51): pp. 7322-7324. 

346. Anastas, P.T. and Zimmerman, J.B., Design through the 12 principles green 

engineering. Environmental Science & Technology, 2003, 37(5): pp. 95A-

101A. 

347. Silverstein, R., Webster, F. and Kiemle, D., Spectrometric identification of 

organic compounds.  John Wiley & Sons  Inc., Hoboken, NJ. USA, pp. 72-

126. 

348. Mohrig, J.R., Hammond, C.N. and Schatz, P.F., Techniques in organic 

chemistry.  W.H. Freeman and Company, New York, pp. 251. 

349. Mitiakoudis, A. and Gandini, A., Synthesis and characterization of furanic 

polyamides. Macromolecules, 1991, 24(4): pp. 830-835. 

350. Chen, X., Gao, H. and Ploehn, H.J., Montmorillonite–levan nanocomposites 

with improved thermal and mechanical properties. Carbohydrate Polymers, 

2014, 101(0): pp. 565-573. 

351. Albayrak, O., Sen, S., Cayli, G. and Ortac, B., Bio-based polymer 

nanocomposites based on layered silicates having a reactive and renewable 

intercalant. Journal of Applied Polymer Science, 2013, 130(3): pp. 2031-

2041. 

352. Boonprasith, P., Wootthikanokkhan, J. and Nimitsiriwat, N., Mechanical, 

thermal, and barrier properties of nanocomposites based on poly(butylene 

succinate)/thermoplastic starch blends containing different types of clay. 

Journal of Applied Polymer Science, 2013, 130(2): pp. 1114-1123. 

353. Zhu, S., Peng, H., Chen, J., Li, H., Cao, Y., Yang, Y. and Feng, Z., 

Intercalation behavior of poly(ethylene glycol) in organically modified 

montmorillonite. Applied Surface Science, 2013, 276(0): pp. 502-511. 

354. Geist, M.F., Boussois, K., Smith, A., Peyratout, C.S. and Kurth, D.G., 

Nanocomposites derived from montmorillonite and metallosupramolecular 

polyelectrolytes: Modular compounds for electrorheological fluids. 

Langmuir, 2013, 29(6): pp. 1743-1747. 

355. Yuan, X.H., Li, X.H., Zhu, E.B., Hu, J., Cao, S.S. and Sheng, W.C., Synthesis 

and properties of silicone/montmorillonite nanocomposites by in-situ 



N.M. Baba                                                                                                                                                               REFERENCES 

199 

 

intercalative polymerization. Carbohydrate Polymers, 2010, 79(2): pp. 373-

379. 

356. Mashael, A., Amal, A. and Waffa, M., Polystyrene/montmorillonite 

nanocomposites: Study of the morphology and effects of sonication time on 

thermal stability. Journal of Nanomaterials, 2013: pp. 1-12. 

357. Tzavalas, S. and Gregoriou, V.G., Infrared spectroscopy as a tool to monitor 

the extent of intercalation and exfoliation in polymer clay nanocomposites. 

Vibrational Spectroscopy, 2009, 51(1): pp. 39-43. 

358. Ma, Y.H., Zhu, J.X., He, H.P., Yuan, P., Shen, W. and Liu, D., Infrared 

investigation of organo-montmorillonites prepared from different surfactants. 

Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2010, 

76(2): pp. 122-129. 

359. Onal, M. and Sarikaya, Y., Some physicochemical properties of 

methylammonium and ethylenediammonium smectites. Colloids and Surfaces 

a-Physicochemical and Engineering Aspects, 2008, 312(1): pp. 56-61. 

360. Akyuz, S. and Akyuz, T., Ft-ir spectroscopic investigations of adsorption of 

2-, 3- and 4-pyridinecarboxamide on montmorillonite and saponite from 

anatolia. Vibrational Spectroscopy, 2006, 42(2): pp. 387-391. 

361. Li, Z.H., Jiang, W.T. and Hong, H.L., An FTIR investigation of 

hexadecyltrimethylammonium intercalation into rectorite. Spectrochimica 

Acta Part a-Molecular and Biomolecular Spectroscopy, 2008, 71(4): pp. 1525-

1534. 

362. Ma, J., Pang, Y., Wang, M., Xu, J., Ma, H. and Nie, X., The copolymerization 

reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester 

materials. Journal of Materials Chemistry, 2012, 22(8): pp. 3457-3461. 

363. Moore, J.A. and Kelly, J.E., Polyhydroxymethylfuroate poly(2,5-

furandiylcarbonyloxymethylene). Journal of Polymer Science Part A-Polymer 

Chemistry, 1984, 22(3): pp. 863-864. 

364. Jiang, M., Liu, Q., Zhang, Q., Ye, C. and Zhou, G.Y., A series of furan-

aromatic polyesters synthesized via direct esterification method based on 

renewable resources. Journal of Polymer Science Part a-Polymer Chemistry, 

2012, 50(5): pp. 1026-1036. 

365. Gomes, M., Gandini, A., Silvestre, A.J.D. and Reis, B., Synthesis and 

characterization of poly(2,5-furan dicarboxylate)s based on a variety of diols. 

Journal of Polymer Science Part A-Polymer Chemistry, 2011, 49(17): pp. 

3759-3768. 

366. Young modulus (tensile modulus) - elastic properties - for some common 

materials - steel, glass, wood and more. Retrieved from: 

http://www.engineeringtoolbox.com/young-modulus-d_417.html [Accessed 

18th March, 2014]. 

367. Stuart, B.H., Polymer analysis. Analytical techniques in the sciences, ed. 

Ando, D.J. 2002, West Sussex, England, John Wiley & Sons, LTD, pp. 211. 

368. Zhang, L., Zhao, N. and Xu, J., Fabrication and application of 

superhydrophilic surfaces: A review. Journal of Adhesion Science and 

Technology, 2014, 28(8-9): pp. 769-790. 

369. Yuan, Y. and Lee, T.R., Contact angle and wetting properties. In: Surface 

science techniques. Bracco, G. and Holts, B., Editors.  Springer-Verlag, Berlin 

Heidelberg. 

370. Vogler, E.A., Structure and reactivity of water at biomaterial surfaces. 

Advances in Colloid and Interface Science, 1998, 74: pp. 69-117. 

http://www.engineeringtoolbox.com/young-modulus-d_417.html


N.M. Baba                                                                                                                                                               REFERENCES 

200 

 

371. Guo, C.W., Wang, S.T., Liu, H., Feng, L., Song, Y.L. and Jiang, L., Wettability 

alteration of polymer surfaces produced by scraping. Journal of Adhesion 

Science and Technology, 2008, 22(3-4): pp. 395-402. 

372. Chemistry matters (2003). Retrieved from: 

http://danthechemist.wordpress.com/2013/02/24/superdry-try-ultra-dry/ 

[Accessed on 20th March, 2014]. 

373. Taylor, M., Urquhart, A.J., Zelzer, M., Davies, M.C. and Alexander, M.R., 

Picoliter water contact angle measurement on polymers. Langmuir, 2007, 

23(13): pp. 6875-6878. 

374. Ruiz-Cabello, F.J.M., Rodriguez-Valverde, M.A. and Cabrerizo-Vilchez, 

M.A., Comparison of the relaxation of sessile drops driven by harmonic and 

stochastic mechanical excitations. Langmuir, 2011, 27(14): pp. 8748-8752. 

375. Bicerano, J., Prediction of polymer properties.  Marcel Dekker, New York, 

pp. 324 - 355. 

376. Schweitzer, R.C. and Morris, J.B., Improved quantitative structure property 

relationships for the prediction of dielectric constants for a set of diverse 

compounds by subsetting of the data set. Journal of Chemical Information and 

Computer Sciences, 2000, 40(5): pp. 1253-1261. 

377. Hougham, G., Tesoro, G. and Viehbeck, A., Influence of free volume change 

on the relative permittivity and refractive index in fluoropolyimides. 

Macromolecules, 1996, 29(10): pp. 3453-3456. 

378. Xu, J., Wang, L., Liang, G.J., Wang, L.X. and Shen, X.L., A general 

quantitative structure-property relationship treatment for dielectric constants 

of polymers. Polymer Engineering and Science, 2011, 51(12): pp. 2408-2416. 

379. Aguilar, S.M., Shea, J.D., Al-Joumayly, M.A., Van Veen, B.D., Behdad, N. 

and Hagness, S.C., Dielectric characterization of PCL-based thermoplastic 

materials for microwave diagnostic and therapeutic applications. IEEE 

Transactions on Biomedical Engineering, 2012, 59(3): pp. 627-633. 

380. De La Fuente, J.L., Ruiz-Bermejo, M., Menor-Salván, C. and Osuna-Esteban, 

S., Thermal characterization of HCN polymers by TG–MS, TG, DTA and DSC 

methods. Polymer Degradation and Stability, 2011, 96(5): pp. 943-948. 

381. Chouli, F., Benyoucef, A., Yahiaoui, A., Quijada, C. and Morallon, E., A 

conducting nanocomposite via intercalative polymerisation of 2-methylaniline 

with aniline in montmorillonite cation-exchanged. Journal of Polymer 

Research, 2012, 19(11). 

382. Suryanarayana, C. and M.G, N., X-ray difraction. A practical appraoch. 2010, 

Plenum Publishing Corporation, USA, pp. 1-94. 

383. Scott, R.P.W.(2014) A modern high resolution nmr machine fitted with a 

superconducting magnet. Retrieved from: 

http://www.analyticalspectroscopy.net/ap7-3.htm [Accessed: 28th January, 

2014. 

384. William, A., Handbook of analytical techniques. Vol. 1. 2001, Wiley-VCH, 

USA, pp. 1-100. 

 

http://danthechemist.wordpress.com/2013/02/24/superdry-try-ultra-dry/
http://www.analyticalspectroscopy.net/ap7-3.htm

