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Abstract

We introduce several notions of potentials for mechanism design
problems with interdependent values, and relate them to implementa-
tion in ex-post equilibrium. Whereas ex-post implementation is closely
linked to the ordinal concept of best-alternative potentials, the cele-
brated Vickrey-Clarke-Groves mechanism corresponds to the stronger
notion of a cardinal potential: agents agree not only on the best al-
ternative, but also on the quantitative di¤erences between all alterna-
tives. We characterize all valuations that allow for cardinal potentials,
and use this characterization for: 1) Identifying valuations for which
ex-post implementation is possible; 2) Identifying classes of valua-
tions for which all ex-post implementable choice rules correspond to
cardinal potentials. The latter allows us to extend to interdependent
valuations a result for dominant strategy implementation in private
values settings, due to Roberts (1979).

1 Introduction

We introduce several notions of potentials for mechanism design problems
with interdependent values, discuss their properties, and establish relations
between these notions and ex-post implementation. Roughly speaking, a
mechanism design problem with given valuation functions admits a potential
if there exist monetary transfers such that the maximization problem of each
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agent coincides with the problem of maximizing a single �potential� func-
tion, common to all agents1. Thus, the existence of a potential suggests the
possibility of aligning the interests of all agents.
Aligning the interests of heterogenous strategic agents that jointly control

a decision is a central desideratum in mechanism design and implementation.
By attaching di¤erent monetary transfers to di¤erent social alternatives, the
designer can a¤ect the agents�preferences over these alternatives so that,
ultimately, all agents agree about the preferred alternative, and hence all
agents �nd it in their own strategic interest to behave in a way that leads to
the commonly preferred alternative.
The most famous example of successful alignment is o¤ered by the Vickrey-

Clarke-Groves mechanisms (see Vickrey (1961), Clarke (1971), and Groves
(1973)) for private values environments with quasi-linear utility. There, an
agent receives a transfer equal to the sum of valuations of the other agents in
the chosen social alternative. With such transfers all individual payo¤maxi-
mization decision problems coincide with the maximization of social surplus,
yielding the well-known dominant strategy implementability of the e¢ cient
choice rule.
The notions of interest alignment analyzed in the present paper bear

a strong formal resemblance to potentials for normal form games, de�ned
by Monderer and Shapley (1996). Roughly speaking, a normal form game
admits a potential if there exists a function (common to all players) from
strategy pro�les to the set of real numbers such that, for any player, changes
in utility resulting from changes in own strategy (while keeping �xed others�
strategies) are re�ected in appropriate changes in the value of the common
potential function. A main result is that a strategy pro�le is a Nash equi-
librium of the original game if and only if it is a Nash equilibrium of the
arti�cial game where each player�s utility function is replaced by the com-
mon potential. Thus, the equilibria of strategic interaction in a potential
game are mirrored in a much simpler game where all players�interests are
identical.
Following the literature on potential games, we shall distinguish between

best-alternative, ordinal and cardinal potentials. The �rst, weakest, concept
says that the potential function and each agent�s payo¤ function agree on
the best alternative; the second requires that the potential function agrees
with every agent�s preference order over all alternatives; the third, strongest,

1The potentials introduced here should not be confused with the individual potential
functions arising as expected equilibrium utility functions in Bayes-Nash implementation
(see for example Jehiel, Moldovanu and Stacchetti, 1999). The common name re�ects
certain properties about path integrals �rst analyzed in the physical sciences (e.g., energy
conservation).
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concept requires that the potential function coincides, up to an a¢ ne trans-
formation, with each agent�s utility function (as is the case for social surplus
in the Vickrey-Clarke-Groves mechanism).
Whereas in Monderer and Shapley�s general setting a potential need not

have an economic interpretation related to the game�s features (see for exam-
ple their derivation of a potential for a Cournot oligopoly), a potential in our
mechanism design problem is closely related to the choice rule that is being
implemented through the alignment of interests induced by that potential.
In spite of the formal resemblance, the links between potentials in mecha-
nism design and potential games are not immediate. Whereas an agent�s
preferences over her strategies are preserved by the potential function in a
potential game, her preferences over alternatives are explicitly altered, via
transfers, in the potential function for a mechanism design problem. It is also
not true that a mechanism that admits a potential gives rise to a potential
game in the corresponding revelation game2.
Our present focus is on ex-post implementation - a weakening of dominant

strategy implementation, appropriate also for settings with interdependent
valuations. This notion requires that an agent is not willing to change her
strategy for any type realization of the other agents. Ex-post implementation
has recently received a lot of attention3 because it ensures that neither the
mechanism designer, nor the agents need to know the distribution from which
signals are drawn in order to design the mechanism or to play optimally in
the induced game4.
Via a taxation principle, it can be easily shown, that best-alternative

potentials are equivalent to ex-post implementable choice rules. Thus, state-
ments over implementable choice rules can be translated into statements
about best-alternative potentials5. Ordinal potentials go beyond ex-post im-
plementation by requiring that, after eventual transfers, agents agree over
the ranking of all alternatives (rather than just the best alternative), and

2In contrast, Sandholm (2005) shows how a price scheme administered by a designer
can be used to augment an externality abatement game in order to yield a potential game
a la Monderer-Shapley. A dynamic learning process leads there to an e¢ cient outcome.
Compare Example 6.4.

3See, among others, Dasgupta and Maskin (2000), Jehiel and Moldovanu (2001), Chung
and Ely (2001), Bergemann and Välimäki (2002), Perry and Reny (2002), and Jehiel et
al. (2006).

4See Bergemann and Morris (2005) for a formal treatment of this issue, and for the
connection to �Wilson�s doctrine�about detail-free mechanisms.

5Potentials should be seen as o¤ering a di¤erent interpretation of the mechanism design
problem. Whereas the latter studies joint decisions based on agents�signals (while pro-
viding incentives for truthful revelation), the former focuses on the aggregation of agents
preferences.
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cardinal potentials go even further by requiring that agents�utilities ulti-
mately agree up to a¢ ne transformations. While implementation theory
has essentially focused on best-alternative potentials, ordinal and cardinal
potentials o¤er stronger notions of interest alignment, which should be at-
tractive for a number of applications6. In particular, as mentioned above,
the Vickrey-Clarke-Groves mechanisms correspond to cardinal potentials.

The paper is organized as follows: In Section 2 we describe the mech-
anism design problem with interdependent values, and state a well-known
taxation principle. In Section 3 we de�ne several notions of potentials, and
link potentials to implementation in ex-post equilibria (Proposition 3.4).
In Section 4 we use existing results from the theory on potential games in

order to provide conditions for the existence of cardinal potentials (Proposi-
tion 4.1). Roughly speaking, the existence of cardinal potentials requires, for
each alternative k; the identity of the cross derivatives of agent i�s and j�s
valuations with respect to the signals held by i and j. Equivalently, as shown
by Ui (2000), this requirement can be expressed as a separability condition
on the valuation functions.
It is a-priori not straightforward to determine whether ex-post imple-

mentation is possible for given valuation functions. But, the above su¢ cient
conditions are readily checked. Furthermore, the conditions are constructive
in the sense that, when satis�ed, they indicate how to construct the cardi-
nal potential, the implemented choice rule and the necessary transfers. If
the conditions are not satis�ed, however, ex-post implementation via weaker
notions of potentials may still be possible.
After recalling that, with generic interdependent valuation functions, only

constant choice rules can be ex-post implemented (see Jehiel et al., 2006), we
next consider settings in which cardinal potentials exist. Our main question is
whether and when all ex-post implementable choice rules can be represented
by cardinal potentials in such cases.
Our main results can be summarized as follows:

1. When the valuation functions admit a cardinal potential and are generic
within the class of settings admitting cardinal potentials and multi-
dimensional type spaces, we show that every non-trivial implementable
choice rule is represented by a translate of the cardinal potential (Propo-
sition 4.4).

6For example, such stronger alignments may be desirable if there is some probability
that the best-alternative will no longer be available at the time when the joint decision
must be implemented. By contrast, in the literature on potential games, it is unclear
what the stronger notions of potentials mean beyond providing technical simpli�cations
to characterize the potential.
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2. In a more special class of settings with �rich enough�multi-dimensional
type spaces and with valuations that are additively separable in the
agent�s own signal and other agents�signals, we show that any ex-post
implementable choice rule that is not trivial is an a¢ ne maximizer: any
such choice rule can be represented by a maximization of a weighted
sum of the parts of agents�utilities that depend on their own signals,
augmented by signal-independent, alternative-speci�c weights (Propo-
sition 4.7). Since almost all a¢ ne maximizers are cardinal potentials, it
follows that in this case too almost all implementable non-trivial choice
rules correspond to cardinal potentials.

3. In one-dimensional settings we observe that ex-post implementation is
possible for an open set of valuations functions (thus implying that
best-alternative potentials exist), and yet cardinal implementation is
generically impossible. We also provide a one-dimensional example in
which a cardinal potential exists and yet other (non-trivial) choice rules
can be ex-post implemented. This example illustrates the signi�cant
di¤erence between the two notions in such restricted domains.

Of course, the same questions about relations between best-alternative
and cardinal potentials can be asked in private values settings. As men-
tioned above, the classic work of Vickrey, Clarke, and Groves implies that
the maximization of social surplus is implementable and corresponds to a
cardinal potential. But, their work leaves open the question whether some
alternative choice rules can be implemented in dominant strategies without
corresponding to cardinal potentials. In a remarkable paper, Roberts (1979)
shows that, in a su¢ ciently rich, high-dimensional environment, determinis-
tic implementation in dominant strategy boils down to a¢ ne maximization7.
Since a¢ ne maximizers are cardinal potentials, cardinal and best-alternative
potentials coincide in the environments studied by Roberts. In fact, we heav-
ily use Roberts�result for our analysis of the interdependent but separable
values case.
Bikhchandani et al. (2006) characterize dominant strategy implementa-

tion for private values settings in terms of a monotonicity condition8. The
fundamental di¤erence to Roberts�work is that these authors consider a re-
stricted domain of preferences, better suited to some of the applications they

7Lavi et al. (2004) o¤er alternative proofs for Roberts�main result, and for another
characterization result (that uses a condition of �player-decisiveness�), due to Meyer-ter-
Vehn and Moldovanu (2002).

8Similar characterizations in terms of a �no cycle condition� are given by Gui et al.
(2004). Their work builds on an earlier insight about monotonicity properties of subdif-
ferentials of convex functions, due to Rochet (1987).
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have in mind (e.g., combinatorial auctions without externalities). In partic-
ular, the characterization of dominant strategy implementable choice rules
as a¢ ne maximizers does not hold anymore in their framework. Thus, in
restricted, private-values domains, best-alternative and cardinal potentials
need not coincide.
There are two appendices: Appendix A recalls the original de�nitions of

potential games and the main result of Monderer and Shapley (1996), and it
shows that mechanism design problems generally do not give rise to potential
games. Appendix B contains several proofs that would interrupt the �ow of
argument in the main text.

2 The Mechanism Design Model

We consider a situation where N 2 N agents i 2 N are a¤ected by a decision
among K 2 N alternatives, k; l 2 K. Agent i�s utility ui = vik + ti is deter-
mined by a quasi-linear utility function that takes into account the chosen
alternative k and a monetary transfer ti 2 R. Her valuation for alternative
k; vik = vik (s), depends smoothly on the state of the world s 2 S.
Each agent gets a private signal si 2 Si � Rdi about the state of the world

s 2 S. The signal si results from an exogenous draw. Thus, we identify states
of the world with signal pro�les: S =

Q
i2N Si:We adopt the usual notation

s�i = (sj)j2N ;j 6=i, and more generally s
I = (sj)j2I and s

�I = (sj)j2NnI for a
subset of agents I � N , and write s = (si; s�i) when we focus on agent i.
We denote by rsi the di-dimensional vector of partial derivatives with re-

spect to si and assume that the value di¤erence between any two alternatives
k; l is not satiated in one�s own signal si:

rsi
�
vik � vil

�
(s) 6= 0 for all s 2 S. (1)

Given an in�nitesimal change dsi of i�s signal, we denote by dvik = rsiv
i
k (s)�

dsi the corresponding in�nitesimal e¤ect on i�s valuation of alternative k.
We study choice rules  : S ! K with the property that there are

transfers functions t = (ti)i2N : S ! RN such that truth-telling almost
everywhere is an ex-post equilibrium in the incomplete information game
that is induced by the direct revelation mechanism ( ; t), i.e.

vi (s) (s) + ti (s) � vi (esi;s�i) (s) + ti
�esi; s�i� (2)

for all agents i, almost all signal pro�les s = (si; s�i) and all possible misrep-
resentations of i�s signal esi 2 Si. We shall call such  implementable (a.e.)
and ( ; t) an incentive compatible mechanism (a.e.), and will suppress the
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�(a.e.)�from here on9. Consider an incentive compatible mechanism ( ; t) :
By Fubini�s Theorem, for almost all si 2 Si, the set S�i (si) � S�i of other
agents�signals s�i such that constraint (2) is violated for s = (si; s�i) and
some misrepresentation esi 2 Si is a null-set. Thus almost all types si �nd it
optimal to truthfully report their type given truthful reporting by the other
agents, and given any continuous type distribution over S�i.
We call two choice rules  ;  0 equivalent if they agree on the chosen

alternative  (s) =  0 (s) for almost all signal pro�les s 2 S; we call  
exhaustive if every alternative k is chosen on some set S (k) of states with
positive measure; we call  trivial if it chooses the same alternative k in
almost all states s.
We conclude this section by stating a �taxation principle� for ex-post

implementation, �rst pointed out by Chung and Ely (2001). This is a multi-
agent generalization of a well-known idea in the monopolistic screening lit-
erature: Instead of asking an individual for her information and deciding on
an alternative and a transfer based on the report, the central authority can,
equivalently, post prices for the di¤erent alternatives and let the individual
choose among them. In our setting with multiple agents, these prices are
personalized and depend on the signals of the other agents. In equilibrium
all agents must agree on the best alternative.

Lemma 2.1 (Taxation Principle) A choice rule  is implementable if
and only if for every agent i there are transfers (tik (s

�i))k 2 (R [ f�1g)
K

n (�1; ::::;�1)10, such that for almost all s it holds that:

 (s) 2 argmax
k2K

�
vik (s) + tik

�
s�i
�	

(3)

Proof. �if�: Given tik (s
�i), such that condition (3) holds, de�ne ti (s) :=

ti (s) (s
�i). Agent i�s problem in the game induced by the mechanism ( ; t)

9The reason for requiring optimality almost everywhere rather than everywhere is that
we want to allow some leeway on zero-measure sets of signals where agents are indi¤erent
between multiple alternatives. This avoids tedious technical details in the de�nition of
best-alternative and ordinal potentials in equations (5) and (6), while allowing us to focus
on the main economic insights implied by ex-post implementation.
Results on the restrictiveness of ex-post implementation, such as the those in Jehiel et

al. (2006) and Proposition 4.4 below, generalize to choice rules that are implementable
almost everywhere, as the geometric condition driving the result is determined by the
incentive constraints in a whole neighborhood (with positive measure) of the indi¤erence
set.
10It is necessary to allow for tik

�
s�i
�
= �1 for some alternative k in order to ensure

that  
�
si; s�i

�
6= k for all si 2 Si: On the other hand one cannot allow for tik

�
s�i
�
= �1

for all alternatives k, as this would make agent i indi¤erent between all alternatives, and
yield him in�nite disutility.
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is: maxesif vi (esi;s�i) (si; s�i) + ti (esi;s�i) (s�i)g. By condition (3), it is optimal
for her to report esi = si since then the choice rule  picks, for almost all s;
her most preferred alternative.
�only if�: Let  be ex-post implementable via a mechanism ( ; t). Let

Si (s�i) be the set of signals si such that constraint (2) holds for all esi: By
Fubini�s Theorem, for almost all s�i 2 S�i; the set Si (s�i) has full measure.
We de�ne

tik
�
s�i
�
=

�
ti (si; s�i) if  (si; s�i) = k for some si 2 Si (s�i)
�1 if  (si; s�i) 6= k for all si 2 Si (s�i) . (4)

Note that tik (s
�i) is well-de�ned since, by i�s incentive constraint,

 
�
si; s�i

�
=  

�esi; s�i� = k for si; esi 2 Si �s�i� ) ti
�
si; s�i

�
= ti

�esi; s�i� :
By i�s incentive constraint we know that she reports in a way that maximizes
her payo¤. Thus, with tik (s

�i) as de�ned in equation (4), condition (3) is
satis�ed for s = (si; s�i) such that si 2 Si (s�i).

3 Preference Aggregation via Potentials

De�nition 3.1 1. A family P = (Pk)k2K of functions Pk : S ! R is a
best-alternative potential for valuations v if there are �transfers�
(tik (s

�i))k 2 (R [ f�1g)
K n (�1; ::::;�1) such that, at almost every

state of the world s; the potential agrees with each agent i on the most
favored alternative(s) k:

argmax
k

�
vik (s) + tik

�
s�i
�	
= argmax

k
fPk (s)g (5)

2. A family P = (Pk)k2K of functions Pk : S ! R is an ordinal potential
for valuations v if there are �transfers� (tik (s

�i))k 2 (R [ f�1g)K
n (�1; ::::;�1) such that, at almost every state of the world s; the
potential agrees with each agent i on the preference order of alternatives:

8i;8k; l 2 K ; vik (s)+t
i
k

�
s�i
�
� vil (s)+t

i
l

�
s�i
�
, Pk (s) � Pl (s) (6)

3. A family P = (Pk)k2K of functions Pk : S ! R is a cardinal poten-
tial for v if there exist (�i; �i); �i > 0 and �transfers� (tik (s

�i))k 2
(R [ f�1g)K n (�1; ::::;�1) such that, at almost every state of the
world s; the utility of each agent i coincides with the potential up to an
(�i; �i)-a¢ ne transformation:

8i; k; �i
�
vik (s) + tik

�
s�i
��
+ �i = Pk (s) (7)

8



A cardinal potential that is achieved through weights �i will be called
an �-potential.

The above de�nitions closely parallel those for potential games (see Ap-
pendix A). Note that in the de�nition of a cardinal potential we can always
choose �i = 0 without loss of generality: if P = (Pk)k2K is a cardinal poten-
tial for some f(�i; �i)gi it is also a cardinal potential for f(�i; 0)gi11. This
justi�es the terminology for �-potentials.
The following result summarizes the simple relations among the above

notions:

Proposition 3.2 An ordinal potential for valuations v is a fortiori a best-
alternative potential. A cardinal potential for valuations v is a fortiori an
ordinal potential.

Proof. If P is an ordinal potential, condition (6) obviously implies equa-
tion (5) and P is a best-alternative potential.
If P is an �-potential, �i > 0 ensures that condition (6) is satis�ed.
Recall that a choice rule identi�es a unique �best� alternative for each

pro�le of signals. Thus, it is not surprising that implementable choice rules
are closely related to best-alternative potentials. We now formally express
this connection.

De�nition 3.3 Two best-alternative potentials P; P 0 for valuations v are
equivalent if argmaxk fPk (s)g = argmaxk fP 0k (s)g at almost every state
of the world s12.

Proposition 3.4 There is a one-to-one relation between equivalence classes
of best-alternative potentials P and equivalence classes of ex-post implementable
choice rules  .

Proof. We de�ne for each class of best-alternative potentials P an equiv-
alence class  = �

�
P
�
of implementable choice rules, and we then show that

� is a bijection.
Given P with representative P 2 P , de�ne  = �

�
P
�
by de�ning a rep-

resentative  2  with  (s) 2 argmaxk fPk (s)g. By the taxation principle,
the de�ned choice rule  is implementable. In order for � to be well-de�ned

11For �i = 0, consider the transfers btik �s�i� = tik
�
s�i
�
+ �i

�i where t
i
k

�
s�i
�
is the transfer

associated with the (�i; �i)-potential.
12Note that by non-satiation, condition (1), and by the de�nition of best-alternative

potentials, condition (5), the set argmaxk fPk (s)g is a singleton for almost all s.
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we need to check that  = �
�
P
�
does not depend on the choice of P 2 P in

the construction of  . However, this is obvious from De�nition 3.3.
To prove that � is one-to-one, observe that �

�
P
�
= �

�
P
0
�
implies that

argmaxk fPk (s)g = argmaxk fP 0k (s)g for all P 2 P; P 0 2 P
0
and for almost

all s 2 S. Thus we get that P = P
0
, proving that � is injective. Finally,

the taxation principle yields for a given implementable choice rule  that
Pk (s) = vik (s) + t

i
k (s

�i) de�nes a best-alternative potential with �
�
P
�
=  ,

yielding surjectivity.

4 Cardinal Potentials

It is obvious form the work of Vickrey, Clarke and Groves and from the above
de�nitions that social surplus Pk (s) =

P
i v

i
k (s

i) is a cardinal potential for
private values settings. Thus, if valuations are private, dominant-strategy
implementation of the e¢ cient choice rule can be achieved via the strong
notion of cardinal potentials.
We next give a condition for the existence of cardinal potentials in interde-

pendent values settings. This condition is not satis�ed for generic valuations,
and hence ex-post implementation via cardinal potentials is generically im-
possible. But, the non-generic set of valuation functions that allow for cardi-
nal potentials goes far beyond private values, and these more general families
of valuations play a role in various applications.

4.1 Existence of Cardinal Potentials

Denote by @si;esi@sj ;esjvik �s�fi;jg� the second di¤erence of vik:
@si;esi@sj ;esjvik �s�fi;jg� : =

�
vik
�
si; sj; s�fi;jg

�
� vik

�
si; esj; s�fi;jg���

�
�
vik
�esi; sj; s�fi;jg�� vik

�esi; esj; s�fi;jg��
Proposition 4.1 For � = (�i)i2N � 0 the following conditions on the val-
uation functions v = (vik)i;k are equivalent:

1. There exists an �-potential for valuations v.

2. There exist functions Pk : S ! R and Qi
k : S

�i ! R for all k and i,
such that:

�ivik(s) = Pk(s) +Qi
k(s

�i) (8)
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3. For all agents i; j and alternatives k, the cross-di¤erences in the valu-
ations coincide:

�i@si;esi@sj ;esjvik �s�fi;jg� = �j@si;esi@sj ;esjvjk �s�fi;jg� (9)

4. There exists a family of functions �Ik : S
I ! R for each subset of

agents I � N such that:

�ivik (s) =
X

I with i2I

�Ik
�
sI
�

(10)

The family
�
�Ik
�
I is called an interaction potential and de�nes the po-

tential function Pk (s) =
P

I �
I
k

�
sI
�
.

For the proof of Proposition 4.1 it is convenient to �rst establish a formal
link between potentials for mechanism design problems and potentials for
normal form games. This will allow us to use several known results from the
latter theory.
Given valuations v and given an alternative k 2 K, consider an arti�cial

game in normal form �k(v) where the set of players is N , the set of strategies
of player i 2 N is Si; and the payo¤ function of player i is vik : S ! R:

Lemma 4.2 A family P = (Pk)k2K of functions Pk : S ! R is an �-
potential for v if and only if, for each k 2 K; the function Pk is an �-potential
for the game �k(v)13.

Proof. By the de�nition of potentials for normal form games (see Ap-
pendix A), Pk is an �-potential for the game �k(v) if and only if

�i(vik(s
i; s�i)� vik(t

i; s�i)) = Pk(s
i; s�i)� Pk(t

i; s�i)

holds for all si; ti 2 Si; s�i 2 S�i and i 2 N : This condition is equivalent to
the existences of functions Qi

k : S
�i ! R such that

�ivik(s) = Pk(s) +Qi
k(s

�i)

for all s 2 S and i 2 N 14.
Armed with the above Lemma, we now prove Proposition 4.1:
Proof. �1 , 2�follows from an immediate transformation of equation

(7) by setting Qi
k(s

�i) = ��itik (s�i)� �i:

13We are very grateful to an anonymous referee who suggested this result.
14This has been pointed out by Slade (1994) and Facchini et al. (1997) for one-

dimensional signals si, but is easily seen to generalize to arbitrary signals.
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�1 , 3�follows from a path-integral argument, standard in the physics
literature, that has been applied to potential games by Monderer and Shapley
(1996). By their Corollary 2.9, condition (9) is equivalent to the fact that
�k(v) is a potential game. The result follows then by Lemma 4.2.
�1 , 4�follows from Lemma 4.2 and from the analogous result on po-

tentials for normal form games, due to Ui (2000).
For given valuations v, identities (9) provide an easy way to check whether

implementation via cardinal potentials is possible or not. Moreover, when
identities (9) hold it is fairly easy to construct the associated �-potentials.
For the sake of illustration, assume that there are two agents i, j, that each
agent holds a one-dimensional signal si 2 R+, that vik are smooth functions
of si and sj, and that identities (9) hold for all k and � = (1; 1). Then
P = (Pk)k2K is an �-potential if and only if there exist �k such that

15

Pk(s
i; sj) =

Z si

0

@vik(x; s
j)

@si
dx+ vjk(0; s

j) + �k:

Note that the conditions imposed by identities (9) are non-generic in
the sense that if the valuations are �drawn randomly�, identities (9) will
typically not be satis�ed. But, as highlighted by the equivalent conditions
(8) or (10), the set of valuation functions that allow for implementation via
cardinal potentials goes far beyond the private valuations case. These equiv-
alent conditions provide alternative simple representations of those systems
of valuation functions that admit an �-potential, such as the settings with
separable or semi-separable valuations analyzed below.

4.2 Implementation via Cardinal Potentials

Having identi�ed the conditions for the existence of cardinal potentials, we
now turn to a systematic study of the following question: Assuming the exis-
tence of cardinal potential, we ask oursleves whether and when it is the case
that all best-alternative potentials (or equivalently, ex-post implementatable
choice rules) are cardinal potentials? As we shall see, this study also reveals
interesting classes of valuations for which ex-post implementation is possible.
To get a �avor of the di¤erence between best-alternative and cardinal

potentials, let us give an interpretation of cardinal potentials in terms of
rates of information substitution. Given a cardinal potential P that repre-
sents an implementable choice rule  , and an �indi¤erence point� s where
argmaxk0 fPk0 (s)g = fk; lg ; let us consider an in�nitesimal change (dsi; dsj)
15This parallels Lemma 2.7 in Monderer and Shapley (1996) showing that a cardinal

potential is unique up to a constant.
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in the signals of agents i and j that does not a¤ect their preferences between
alternatives k and l:

rsi (Pk � Pl) (s) � dsi +rsj (Pk � Pl) (s) � dsj = 0
By the de�nition of the cardinal potential we get that

�irsi
�
vik � vil

�
(s) � dsi + �jrsj

�
vjk � vjl

�
(s) � dsj = 0

which can be expressed as

�
dvik;l (s)

dvjk;l (s)
=
�j

�i
(11)

where dvik;l (s) = rsi (v
i
k � vil) (s) � dsi and dv

j
k;l (s) = rsi

�
vjk � vjl

�
(s) � dsj:

The left hand side of the above equation can be interpreted as a rate of infor-
mation substitution. It compares the change in i�s preference of alternative k
over l due to an in�nitesimal change of her signal with the analogous term for
agent j. A high value for this quotient signi�es that a large change in i�s pref-
erence is needed to o¤set a smaller change in agent j�s valuation. Thus, agent
j can be considered to be �more important�to the decision making. Equation
(11) says that this rate needs to be independent of the chosen alternatives
k; l and of the indi¤erence signal s. But, there is no a-priori reason why this
strong requirement should be satis�ed by an arbitray implementable choice
rule (or by an arbitrary best-alternative potential). Indeed, we �nd that this
condition is not generally satis�ed by arbitrary implementable choice rules
in settings with one-dimensional signals (compare with Figure 1).
By contrast, in many settings with multi-dimensional signals admitting

a cardinal potential, we �nd the surprising result that almost every best-
alternative potentials is equivalent to some cardinal potential, thereby imply-
ing that the strong information substitution condition is satis�ed by almost
all implementable choice rules.
The next three subsections analyze settings with multi-dimensional sig-

nals and proceed from general valuations to more and more restricted ones. In
particular, we get larger and larger families of choice rules that can be ex-post
implemented. The last subsection considers settings with one-dimensional
signals.

4.2.1 Generic Multi-dimensional Settings

Jehiel et al. (2006) have shown that for generic16 valuation functions any
ex-post implementable choice rule must be constant (i.e., it can make no
16Genericity pertains here to both topological and measure-theoretic notions of residual

sets and �nite prevalence, respectively. See Jehiel et al. (2006) for precise de�nitions.
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use of private information). In other words, any best-alternative potential
is trivial. Since cardinal potentials are a-fortiori best-alternative potentials,
we obtain:

Proposition 4.3 For multi-dimensional signal spaces and generic valuation
functions v with non-zero gradient rsi (v

i
k � vil) (s) 6= 0, the only imple-

mentable rules that are not cardinal potentials are trivial choice rules.

4.2.2 Semi-Separable Valuations

We now focus on the less general class of settings with valuation functions
that allow for the existence of a cardinal potential P , characterized in Propo-
sition 4.1.
By the de�nition of potentials, we know that the choice rule represented

by the potential  (s) 2 argmaxk fPk (s)g is implementable, and it is easy
to see that the same holds for all rules represented by its translates:  (s) 2
argmaxk fPk (s) + �kg, for any vector of real numbers (�k)k. The next result
says that, beyond these choice rules, only trivial rules are implementable.

Proposition 4.4 Consider a setting with multi-dimensional signals and with
valuation functions that admit an ��potential (e.g., the valuations have the
form vik (s) =

1
�i
(Pk (s) + Qi

k (s
�i)) where Pk : S ! R is a common value

part, Qi
k : S

�i ! R are arbitrary, and �i > 0). Then, for generic families
fPk (s)gk, the only non-trivial ex-post implementable choice rules  are of
the form  (s) 2 argmaxk fPk (s) + �kg for a vector of constants (�k)k ; and
are thus represented by cardinal potentials.

The proof of the above result closely follows that of Proposition 3.3 and
Theorem 4.2 in Jehiel et al. (2006), and we ask the reader to consult that
paper for details.
For an intuition, assume that the signal spaces are di-dimensional cubes

Si = [0; 1]d
i

, di � 2, that there are only 2 agents and 2 alternatives, k
and l; assume that �i = �j = 1 and normalize vil = vjl = 0. Let vik(s) =
Pk (s)+Q

i
k (s

j) ; and let ( ; t) be an ex-post incentive compatible mechanism
with til = tjl = 0 and with smooth transfers t

i
k; t

j
k. By the taxation principle

(Proposition 2.1) we have vik (s) + tik (s
j) = 0 , vjk (s) + tjk (s

i) = 0. Call
signals for which these equalities hold �indi¤erence signals�, and denote the
set of indi¤erence signals by I � S. Di¤erentiating the payo¤ functions, we
obtain that rvik+ tik and rv

j
k+ t

j
k are both perpendicular to the indi¤erence

set I:
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In other words, the vectors�
rsiPk (s)

rsjPk (s) +rsj (Q
i
k + tik) (s

j)

�
and

�
rsiPk (s) +rsi

�
Qj
k + tjk

�
(si)

rsjPk (s)

�
must be parallel for all s 2 I.
Fix now an indi¤erence signal bs 2 I. For multi-dimensional signals

(di; dj � 2) the above implies that rsiPk (s) is parallel to rsi
�
Qj
k + tjk

�
(bsi)

for all s 2 I with bsi = si. If the common value part Pk is a �randomly
drawn�generic function, the direction of the gradient rsiPk (s) will vary in
sj. The only way by which the term rsi

�
Qj
k + tjk

�
(si), which cannot de-

pend on sj, can remain parallel to all these multiple directions is by having
rsi

�
Qj
k + tjk

�
(si) = 0. This implies that

�
Qj
k + tjk

�
(si) = �k, is a constant

independent of si. The assertion follows then by the taxation principle.
The proof is completed by discarding the di¤erentiability (and continuity)

assumption on the transfer functions, and by showing that the set of func-
tions fPkgk for which the gradient rsiPk (s) varies in sj on every possible
indi¤erence set of Pk is residual and �nitely prevalent in the Banach space
of su¢ ciently smooth functions (see Jehiel et al., 2006).
Finally, note that the restriction on valuations that admit cardinal po-

tentials is stronger than necessary in order to avoid the negative result of
Proposition 4.3. Intuitively, this class of valuations is small within the class
of valuations that allow for a non-trivial best-alternative potential: given val-
uations that admit a cardinal potential, only a¢ ne transformations of these
valuations preserve the property that a cardinal potential exists, whereas a
best-alternative potential will still exist for any monotone transformation;
moreover, the set of a¢ ne transformations is small in the set of all monotone
transformations. Thus, the present results do not imply that for all �reason-
able� classes of valuations over multi-dimensional signals, best-alternative
potentials and cardinal potentials coincide17 18.

4.2.3 Separable Valuations

In this subsection we restrict valuations even further, and we focus on inter-
dependent, yet separable valuation functions of the form

vik (s) = f ik
�
si
�
+ hik

�
s�i
�
; (12)

17But, it is not hard to derive from the proofs in Jehiel et al. (2006) that non-trivial ex-
post implementation does impose locally around the indi¤erence set (instead of globally)
the �cardinal conditions�on valuation functions.
18It also follows from the analysis in Jehiel et al. (2006) that, if there are three of more

alternatives, the set of valuations allowing for an ordinal potential is small within the set
of valuations allowing for ex-post implementation of an exhaustive choice rule.
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for some functions f ik : S
i ! R and hik : S�i ! R. Let f i = (f ik)k2K : Si !

RK and f = (f i)i2N : S ! RNK .

De�nition 4.5 A choice rule  : S ! K is said to be an a¢ ne maximizer
if and only if it is of the form:

 (s) 2 argmax
k2K

(
NX
i=1

�if ik
�
si
�
+ �k

)
(13)

for agent-speci�c weights �i � 0 and alternative-speci�c weights �k 2 R.

For a given a¢ ne maximizer, the weight �i can be interpreted as the
importance of agent i�s information to the social choice, and the weight �k
as the designer�s preference for alternative k. Note also that, for private
values, a Vickrey-Clarke-Groves mechanism is simply the a¢ ne maximizer
with weights �i = 1; �k = 0: A¢ ne maximizers with weights �i > 0 can be
implemented by transfers tik(s

�i) = �hik(s�i) +
X
j 6=i

�j

�i
f jk(s

j) .

Consider now a vector �� 0 . By de�ning

Pk(s) =
NX
j=1

�jf jk
�
sj
�
and Qi

k(s
�i) = �

X
j 6=i

�jf jk
�
sj
�
+ �ihik

�
s�i
�

we obtain:

vik (s) = f ik
�
si
�
+ hik

�
s�i
�
=
1

�i
[Pk(s) +Qi

k(s
�i)]

and

 (s) 2 argmax
k2K

fPk(s) + �kg

for a¢ ne maximizers  :
Thus, separable valuations admit an ��potential for any � >> 0; and

they constitute a (non-generic) subcase of the semi-separable valuation func-
tions studied in Subsection 4.2.2 where, in contrast, the cardinal represen-
tation is generically unique (up to a multiplicative constant). The present

non-genericity arises because 8i; k; s; we have @vik(s)

@si@sj
= 0 in the class of separa-

ble valuations, whereas, for semi-separable valuations, @v
i
k(s)

@si@sj
is proportional

to @Pk(s)
@si@sj

which is allowed to vary in an arbitrary way.
Since rsiPk (s) does not vary here in sj; we cannot apply the method of

proof illustrated in the above section. Quite surprisingly, by using a remark-
able result about dominant strategy implementation for settings with private
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values and multi-dimensional signals due to Roberts (1979), we are neverthe-
less able to prove a result similar to Proposition 4.4 (albeit under additional
technical conditions): for separable valuations, the only implementable rules
are a¢ ne maximizers. Thus, for all separable valuations, almost all imple-
mentable choice rules are represented by cardinal potentials. Exceptions are
choice rules corresponding to a¢ ne maximizers where �i = 0 for some i: Such
an a¢ ne maximizer is not a cardinal potential because De�nition 3.1 insists
that even an agent i with �i = 0 should have the same cardinal preference
as the other agents. This requirement does not show up in the conditions for
ex-post implementation since this agent�s report can simply be ignored.
The following simple lemma explains why we can use here a result that

was obtained for settings with private values:

Lemma 4.6 A choice rule  : S ! K is ex-post implementable in the in-
terdependent values model if and only if it is ex-post implementable in the
associated private values model where 8i; k; s�i : hik (s�i) = 0.

Proof. See Appendix B.
Our main result in this subsection is:

Proposition 4.7 Assume that valutions vik (s) = f ik (s
i) + hik (s

�i) are sep-
arable, that f i (Si) = RK 19, and that K � 3. Then every implementable,
exhaustive choice rule is an a¢ ne maximizer. Thus, almost all implementable
choice rules are represented by cardinal potentials.

The proof of Proposition 4.7 is based on a hyperplane separation argu-
ment due to Roberts (1979) who proved a similar result for dominant strategy
implementation with private values, i.e. for Si = RK ; f i = id; hi = 0. Our
proof adapts Roberts�insight by showing that there is no loss of generality
in assuming that an ex-post implementable choice rule takes only payo¤ rel-
evant information into account. This means that  factors through f , i.e.
for X =

�
RK
�N
there exists a function � : X ! K such that  = � � f .

The assumptions in Proposition 4.7 cannot be relaxed. If there are only
two alternatives (i.e., K = 2), a characterization of dominant strategy im-
plementable choice rules in a private values setting has been obtained by
La¤ont and Maskin (1982). Their characterization generalizes to separa-
ble, interdependent valuations, and yields a larger set than the set of a¢ ne
maximizers. For bounded valuations f i (Si) � RK , an example of an im-
plementable choice rule that is not an a¢ ne maximizer is available from the
authors upon request.

19This implicitly assumes that the dimension of Si � Rdi is at least as large as K.
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Figure 1:

4.2.4 One-dimensional Settings

In one-dimensional settings, the conditions for the existence of cardinal po-
tentials are still stringent and cannot be generically satis�ed (see Propo-
sition 4.1). Yet, as illustrated by Dasgupta and Maskin (2000), Jehiel and
Moldovanu (2001), Bergemann and Välimäki (2002), Perry and Reny (2002),
Chung and Ely (2001), and Jehiel et al. (2006), ex-post implementation of
non-trivial choice rules can be achieved for open sets of valuation functions.
Thus, in one-dimensional settings, the set of best-alternative potentials does
generally not coincide with the set of cardinal potentials. Besides, even in
situations in which a cradinal potential exists, many choice rules other than
cardinal potentials can be implemented in one-dimensional settings.
To illustrate this phenomenon, consider a setting with two agents i; j

with signals si; sj 2 [0; 1], two alternatives k; l and private valuations vik =
si; vil = 0 and v

j
k = sj; vjl = 0. Clearly, total welfare is a cardinal potential

in such a private values setting. Yet, many other choice rules that do not
admit a cardinal representation can be implemented in this case. Indeed,
standard arguments show that a choice rule  is implementable if and only
if it is monotone in the sense that it satis�es  (s) = k )  (es) = k for any
s = (si; sj) and es = (esi; esj) with si � esi and sj � esj. Figure 1 shows that,
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for a general implementable  ; the rate of information substitution
dvik;l

dvjk;l
(s)

is not constant, and thus  cannot be represented by a cardinal potential.

5 Conclusion

Using ideas from the theory of potential games, we have introduced to mech-
anism design new notions of alignment between individual and social pref-
erences, and we related these notions to ex-post implementation. We have
characterized valuation functions that admit cardinal potentials. Since the
required conditions are very easily checked, our results o¤er simple meth-
ods to construct the potentials and the corresponding transfers needed to
implement them. Moreover, for settings with multi-dimensional type spaces
that admit a cardinal potential and that are generic (within the class of such
settings), we have established that almost all implementable choice rules
maximize this potential or its translates. The class of separable valuations
constitutes a non-generic sub-class, and the extra freedom leads there to the
possibility of implementing the larger class of a¢ ne maximizers. Virtually
all a¢ ne maximizers are cardinal potentials and we show that beyond them
no additional choice rules are implementable.
To conclude, the focus on cardinal potentials and on the derived pos-

sibility results for ex-post implementation constitute, in our view, a signif-
icant complement to the earlier impossibility result for generic valuations
with multi-dimensional signals (see Jehiel, Meyer-ter-Vehn, Moldovanu and
Zame, 2006).

6 Appendix A: Potential Games

We brie�y review the original de�nitions of potentials for normal form, com-
plete information games due to Monderer and Shapley (1996). Let � =
�(u1; u2; :::; uN) be a game in strategic form played by the agents in a �nite
set N : The strategy set of player i is denoted by Y i; and the payo¤ function
of i is ui : Y ! R;where Y = Y 1 � Y 2 � :::Y N :

De�nition 6.1 1. Given agent speci�c weights � = (�i)i2N � 0 , a
function P : Y ! R is an �-potential for � if for every i 2 N and for
every y�i 2 Y �i

�i(ui(y�i; x)� ui(y�i; z)) = (P (y�i; x)� P (y�i; z)) (14)

for every x; z 2 Y i: If we are not interested in the value of � we simply
speak of a cardinal potential:
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2. A function P : Y ! R is an ordinal potential for � if for every
i 2 N and for every y�i 2 Y �i

ui(y�i; x)� ui(y�i; z) > 0, P (y�i; x)� P (y�i; z) > 0 (15)

for every x; z 2 Y i:

An analogue for best-alternative potentials was de�ned by Dubey et al.
(2006):

De�nition 6.2 A function P : Y ! R is a pseudo-potential for � if for
every i 2 N and for every y�i 2 Y �i

argmax
x2Y i

�
ui
�
y�i; x

�	
� argmax

x2Y i

�
P
�
y�i; x

�	
: (16)

The following result shows how potentials align the agents�interests:

Proposition 6.3 (Monderer and Shapley (1996)) Let P be an ordinal
potential for �(u1; u2; :::; un): Then a strategy pro�le is a Nash equilibrium of
�(u1; u2; :::; un) if and only if it is a Nash equilibrium of �(P; P; :::; P ).

Proof. By de�nition, �(P; P; :::; P ) has the same best-response corre-
spondence as �(u1; u2; :::; un); which immediately implies the result.

6.1 Potentials and Potential Games

From the above de�nitions it seems a-priori plausible to assume that a poten-
tial P = (Pk)k2K for valuations v gives rise to a potential for the revelation
game that implements an associated choice rule  2 �

�
P
�
. In fact, Sand-

holm (2005) shows how an externality abatement mechanism gives rise to a
potential game.

Example 6.4 Consider a choice rule  = S ! K and valuations of the
form vik (s) = wik + p

i
k (s

i) with the property that pik (s
i) depends on the alter-

native k =  (s) only through agent i�s reported signal esi, i.e. pi (esi;s�i) (si) =
pi (esi;es�i) (si) for all s�i; es�i 2 S�i. Then, given true signals s, the revelation
game ( ; t) : S ! K � RN with transfers ti (es) = P

j 6=iw
j
 (es) admits the

potential Ps (es) =Pj

�
wj (es) + pj (es) (sj)

�
.
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Proof. It is easy to check that:

ui
�esi; es�i�� ui

�es0i; es�i�
= [

X
j

wj
 (esi;es�i) + pi (esi;es�i) �si�]� [X

j

wj
 (es0i;es�i) + pi (es0i;es�i) �sj�]

= [(Ps
�esi; es�i��X

j 6=i

pj
 (esj ;esi;es�fi;jg)

�
sj
�
]

�[Ps
�es0i; es�i��X

j 6=i

pj
 (esj ;es0i;es�fi;jg)

�
sj
�
]

= Ps
�esi; es�i�� Ps

�es0i; es�i�
The above example relies on the special circumstances that valuations are

private and that the true information si and the stated information of the
other agents es�i enter the valuation function vi in an additive separable way.
In general there is no reason to believe that revelation games are poten-

tial games. Ex-post incentive compatibility only requires truth-telling to be
a best response to truthful revelation of other agents. It does not pose re-
strictions on the preference ordering of suboptimal announcements, and it is
silent on best responses o¤ the equilibrium path. To illustrate this phenom-
enon, we o¤er below a simple example of a second price auction for which
we construct an improvement cycle in sub-optimal announcements, thereby
proving that the auction is not a potential game.

Example 6.5 The second-price auction with two bidders i; j, and private
valuations vi; vj is not a potential game.

Proof. The induced bidding game allows for the following improvement
cycle. Let b=

�
bi; bj

�
and b =

�
b
i
; b
j
�
be such that bi < bj < b

i
< b

j
< vi; vj

and consider the cycle
�
bi; bj

�
!
�
b
i
; bj
�
!
�
b
i
; b
j
�
!
�
bi; b

j
�
!
�
bi; bj

�
.

Whereas the �rst change
�
bi; bj

�
!

�
b
i
; bj
�
makes agent i better o¤ by

vi � bj > 0, the second change
�
b
i
; bj
�
!
�
b
i
; b
j
�
makes agent j better o¤

by vj � bj > 0 and the last two changes leave the agents indi¤erent. It easily
follows from condition (15) that an ordinal potential game does not allow for
such improvement cycles and that this auction is therefore not a potential
game.
It is possible to amend the above example to construct a strong improve-

ment cycle, i.e. a sequence of signal changes with the property that each
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change makes the relevant agent strictly better o¤. Thus the revelation game
does not even posses a generalized ordinal potential20.

7 Appendix B: Proofs

Proof of Lemma 4.6. �if�: Let  be ex-post implemented by a mecha-
nism ( ; t) under private values. Thus

f i (s)
�
si
�
+ ti (s) = maxesi2Si[f i (esi;s�i)

�
si
�
+ ti

�esi; s�i�]
for all i; si; s�i. For interdependent utilities of the form f ik (s

i) + hik (s
�i) + ti

we de�ne monetary payments by t0i (s) = ti (s) � hi (s) (s
�i). One easily

veri�es that

f i (s)
�
si
�
+hi (s)

�
s�i
�
+t0i (s) = maxesi2Si[f i (esi;s�i)

�
si
�
+hi (esi;s�i) �s�i�+t0i �esi; s�i�]

for all i; si; s�i: This shows that ( ; t0) ex-post implements  for the interde-
pendent values case.

�only if�: Analogously.
The following result is a crucial ingredient for the proof of Proposition

4.7. It is also interesting in its own right, as it establishes a monotonicity
property of implementable choice rules.

Lemma 7.1 (Monotonicity) An implementable choice rule  is monotonic
in the following sense: For every agent i; and for all signals s = (si; s�i) ; s0 =
(s0i; s�i) 2 S, such that vik (s

0) � vik (s) > vil (s
0) � vil (s),  (s) = k implies

that  (s0) 6= l.

Proof of Lemma 7.1. By the taxation principle, there are trans-
fers til (s

�i) such that  (s) 2 argmaxk0 fvik0 (s) + tik0 (s
�i)g for all s. If

alternative k is among i�s favorite alternatives at signal s, we have k 2
argmaxk0 fvik0 (s) + tik0 (s

�i)g. If the change from si to s0i makes alterna-
tive k strongly more preferable (for i) than l, vik (s

0) � vik (s) > vil (s
0) �

vil (s), it is immediate that l can not be preferred at signal s
0i: Thus, l =2

argmaxk0 fvik0 (s0) + tik0 (s
�i)g. By the taxation principle, we can conclude

that  (s0) 6= l.
Proof of Proposition 4.7. We use an important result due to Roberts

(1979) who studied deterministic choice rules that are implementable in dom-
inant strategies in a private values setting. Roberts showed that such rules

20P is a generalized ordinal potential if it satis�es condition 15 with the "() " replaced
by a ") ".
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must satisfy a monotonicity condition, called PAD. Using our notation, his
proof relies on the following technical result21:
Theorem A (Roberts 1979): LetX =

�
RK
�N
and assume thatK � 3.

Then any function � : X ! K which satis�es PAD is an a¢ ne maximizer.
Here PAD means that for x; x0 2 X such that x0ik � xik > x0il � xil for all

i 2 N and all l 6= k 2 K; � (x) = k implies � (x0) = k. An a¢ ne maximizer

� satis�es � (x) 2 argmaxk2K
nPN

j=1 x
j
k + �k

o
for some f�jgj2N and some

f�kgk2K
Thanks to Lemma 4.6 we can assume that hik � 0 for all i; k: In order to

apply Theorem A, assume �rst that  : S ! K factors through f , i.e. there
is a function � : X ! K such that  = � � f . As  is implementable, we can
recursively apply Lemma 7.1 to show that for all signals s; s0 2 S such that

f ik (s
0)� f ik (s) > f il (s

0)� f il (s) for all i 2 N and l 6= k 2 K;

 (s) = k implies  (s0) = k. Consider the sequence of signals s(0) := s,
s(i) :=

�
s0i; s(i�1)

�
for all agents i � n (this gives s(n) = s0). The proof of

Lemma 7.1 serves then as the induction step proving that, with  
�
s(0)
�
= k;

we have  
�
s(i)
�
= k for all i: This yields  (s0) = k. Thus, we can apply

Theorem A to � as a function of the f ik (s), and get  (s) = � (f (s)) =

argmaxk2K

nPN
j=1 �

jf jk (s
j) + �k

o
.

It remains to show that the above assertion holds also for the cases where
 : S ! K does not factor through f . This proof can be broken down into
three steps: a) Slightly change  to a function e that factors e = � � f ; b.)
Show that e is ex-post implementable, and apply Theorem A to � to show
that e is an a¢ ne maximizer; c) Show that  is an a¢ ne maximizer if e is
one.
a) Given functions f i = (f ik)k2K : S

i ! RK , denote f i (si) =: xi and for
each xi �x esi 2 (f i)�1 fxig. We shall say that es = (esi)i2N represents s. Given
an ex-post implementable choice rule  : S ! K de�ne e : S ! K by setting

e (s) :=  (es)
where es represents s. Obviously, there is a function � : �RK�N ! K such
that e = � � f .
b) The choice rule e is ex-post implementable by the transfer rule et (s) :=

t (es), where t : S ! RN are the transfers that implement  . Indeed, we

21Roberts�proof uses a hyperplane-separation argument which yields the weights in the
a¢ ne representation.
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readily check agent i�s incentive constraint:

f ie (si;s�i) �si�+ eti �si; s�i� = f i (esi;es�i) �si�+ ti
�esi; es�i� �

f i (es0i;es�i) �si�+ ti
�es0i; es�i� = f ie (s0i;s�i) �si�+ eti �s0i; s�i�

for all i; si; s0i; s�i. The �rst and third equality follow by the de�nitions ofe and et , and the inequality follows by the ex-post incentive compatibility
of ( ; t). By Lemma 7.1, e satis�es monotonicity, which in turn means
that � :

�
RK
�N ! K satis�es PAD in the sense of Roberts�Theorem A.

Thus, there are constants �j � 0 for j 2 N and �k for k 2 K such that
� (f (s)) 2 argmaxk2K

nPN
j=1 �

jf jk (s
j) + �k

o
for all s 2 S: This proves thate is an a¢ ne maximizer.

c) We now return to the original choice rule  . We will derive a contra-
diction by assuming that there exists s 2 S such that  (s) = l =2 argmaxk2KnPN

j=1 �
jf jk (s

j) + �k

o
. Consider s0 2 S such that f jl (s

0) = f jl (s) + " for

all j, f jk (s
0) = f jk (s) for all j and all k 6= l , where " is su¢ ciently small

so that l 6= e (s0) 2 argmaxk2K nPN
j=1 �

jf jk (s
0j) + �k

o
. Let es0 be the el-

ement representing s0 in the de�nition of e . By monotonicity,  (s) = l

implies  (es0) = l, but, by the characterization of e , we know that l 6= e (es0)
contradicting e (es0) =  (es0). This contradiction concludes the proof that
 (s) 2 argmaxk2K

nPN
j=1 �

jf jk (s
j) + �k

o
for all s 2 S.
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