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Abstract

This paper considers a manipulative auction design framework in which the

designer in addition to choosing the auction format(s) is free to choose how much

information feedback about the distribution of bids observed in previous auctions

to report to bidders. A feedback equilibrium is proposed to model the long run

interactions of bidders in such environments with partial feedback. It is shown that

the �rst-price auction in which bidders get only to know the aggregate distribution

of bids (across all bidders) generates more revenues than the second-price auction

while achieving an e¢ cient outcome in the asymmetric private values two-bidder

case with independent distributions. It is also shown how by using several auction

formats with coarse feedback a designer can always extract more revenues than in

Myerson�s optimal auction, and yet less revenues than in the full information case

whenever bidders enjoy ex-post quitting rights and the assignment and payment

rules are monotonic in bids.

1 Introduction

Standard equilibrium approaches of games with incomplete information (à la Harsanyi)

assume that players know the distributions of signals held by other players as well as these
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players�strategies as a function of their signals (see Harsanyi (1995)). Yet, this requires

a lot of knowledge that need not be easily accessible to players. Modern approaches to

equilibrium rely on learning to justify this knowledge (see Fudenberg and Levine (1998)).

But, a question arises as to whether enough information feedback is available to players

at the learning stage for convergence to equilibrium to be reasonably expected.

For example, consider a series of �rst-price auctions in an asymmetric private values

setting involving each time new bidders of observable characteristics i = 1; 2; :::n. That is,

each bidder when choosing his bid knows his valuation but not that of the other bidders,

and the distributions of valuations which are a priori unknown to the bidders are assumed

to depend on the characteristic i.1 Assume further that along the process, bidders are only

informed of the aggregate distribution of bids in past auctions without being informed

of the characteristics of the bidders of the corresponding bids.2 It seems then dubious

that bidders would be able to play a best-response to the actual distribution of bids of

the other bidders - even in the long run - because there is no way a bidder can assess the

distribution of bids conditional on the characteristic based on the feedback he receives.3

Instead, bidders are more likely to play a best-response to the conjecture that all bidders

- no matter what their characteristic is - bid according to the aggregate distribution of

bids that mix the distribution of bids of all bidders.4

In this paper, we consider one-object private values auction environments in which the

valuations are independently distributed across bidders. We �rst propose an equilibrium

concept to describe the long run interaction of bidders in situations in which (at the

learning stage) bidders receive coarse feedback about the distribution of previous bids,

and every single bidder participates in just one auction. Speci�cally, our framework allows

us to consider situations in which as described above only the aggregate distribution of bids

with no reference to the characteristics of bidders is observed at the learning stage, and

also situations in which di¤erent auction formats are being used and only the aggregate

1A bidder with characteristic i need not even know the distribution from which his own valuation is
drawn.

2This looks like the norm rather than the exception in many auction setups. For example, in treasury
auctions, the bids whether in discriminatory or uniform auctions are kept anonymous.

3In the language of econometrics, the model is not identi�able.
4This is assuming that bidders reason as if there were no asymmetries between bidders, which given

the feedback they receive is the simplest conjecture they can entertain.
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distribution of bids across the various auction formats is being disclosed at the learning

stage.5 The equilibrium obtained (which stands for the limiting outcome of a learning

process with corresponding feedback disclosure) is called a feedback equilibrium,6 and it

requires that bidders play a best-response to the aggregate distribution of bids, as given

by the feedback they receive.

The feedback equilibrium is closely related to the analogy-based expectation equilib-

rium (ABEE) introduced in Jehiel (2005) and further developed in Jehiel and Koessler

(2007) and Ettinger and Jehiel (2007). It can also be viewed as a selection of self-

con�rming equilibrium (with an appropriate signal structure) in which the conjecture

considered by the bidders is the simplest theory consistent with the feedback they re-

ceive. We note that the experiment reported in Huck et al. (2007) gives support to the

ABEE as a good description of long run behaviors in a multi-game experimental setting

in which the feedback about subjects�past behaviors is not cleanly separated between

games.

Importantly, the novel perspective adopted in this paper as compared with the analogy-

based expectation equilibrium is that the feedback given to bidders is viewed as a design

choice. If the same seller repeatedly sells similar objects to bidders with similar charac-

teristics, this seller is not only free to choose the auction format she likes best, but she

should also be able to choose the form of feedback she wishes to provide to bidders. We

impose the mild constraint that the feedback should be correct (even if coarse) and that

some outside authority can control and enforce it.7 Other than that, the designer is free

to choose the feedback (partition) she likes best and she is free to use whatever auction

format in which larger bids translate into greater chances of winning the object. In some

parts of the paper, we also require the bidders to approve the terms of the deal after the

outcome of the auction is known. That is, we require ex-post participation constraints.

The �rst question we ask is as follows. Suppose the main objective of the designer is

welfare maximization whereas the auxiliary goal is revenue. Can the designer do better

5In the latter case, one should have in mind that bidders are not necessarily informed of the payment
rule of other bidders.

6It is parameterized by the form of the feedback described as a partition of the set of pro�le of format
and bidders�characteristics received by the players at the learning stage, see Section 2.

7This can be viewed as being in the interest of the designer as otherwise bidders would presumably
discount the information provided to them.
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than using a second-price auction (or equivalently an ascending-price auction)?

In the classic rationality setup, the so called revenue equivalence theorem implies that

the designer can do no better. This is so because the second-price auction induces an

e¢ cient outcome and any e¢ cient mechanism that respects the participation constraints

of bidders must achieve a revenue no greater than that of the second-price auction (see,

for example, Milgrom (2004) for an exposition of the revenue equivalence theorem).

In our manipulative auction design framework, we show that the designer can some-

times do better, thereby illustrating a failure of the revenue equivalence theorem in a

setup with partial information feedback. Speci�cally, in the case of two bidders with

asymmetric distributions of valuations, we show that the �rst-price auction in which the

designer provides as feedback the aggregate distribution of bids with no reference to the

characteristic of the bidders always induces an e¢ cient outcome and always generates an

expected revenue that is strictly larger than that of the second-price auction no matter

what the distributions of valuations are. Our clear-cut revenue comparison should be

contrasted with the ambiguous revenue ranking between the �rst-price auction and the

second-price auction obtained in the standard rationality case with asymmetric bidders

(see Maskin and Riley (2000)).8

The second question we address is as follows. Suppose that the designer is solely

interested in revenue maximization. Can the designer generate more revenues than in the

classic optimal auction (Myerson (1981) or Riley and Samuelson (1981))?

We show that this is always so whether or not parties can veto the transaction after

the outcome of the auction is known. In other words, interpreting the provision of partial

feedback as design manipulation, our result shows that there is always scope for design

manipulation when the designer seeks to maximize revenues.9

8Hafalir and Krishna (2007) also obtain a clear-cut revenue comparison for the two bidder case in the
standard rationality paradigm when a resale market operates after the �rst-price auction. Observe that
in our coarse feedback treatment, the outcome of the �rst-price auction is e¢ cient and thus there is no
room for resale.

9It may be mentioned here that the designer need not know the distribution of valuations of the
bidders to start with. Her maximization exercise may be viewed as the outcome of a trial and error
process where the designer would be assumed to keep track of the past performance of her previously
tried auction designs. It may also be mentioned that unlike the bidders, the designer has access to the
entire distribution of bids and as such can much more easily have access to the distribution of valuations.
For example, by using second-price auctions and observing the distribution of bids according to the
characteristic of the bidder, the designer could in a �rst stage learn these distributions. Based, on this
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More precisely, when bidders do not enjoy quitting rights, we show that the designer

can always design an auction mechanism and a feedback device so that she makes arbit-

rarily large revenues. And when bidders have ex-post quitting rights, the designer�s best

revenue lies strictly above Myerson�s optimal auction revenue and strictly below the full

information optimal revenue that would be obtained if the designer knew the valuations

of all bidders. In the latter case, the manipulation exploited by the designer has the e¤ect

of reducing the informational rent left to the bidders.

It may be mentioned that while considering the information feedback as a design

choice is new (see however Esponda (2007) which is discussed in Section 3), the empirical

literature on auctions has been concerned with the related issue of when the available

information on bids and valuations allows the researcher to identify the model assuming

bidders play a Nash equilibrium of the corresponding auction model (see Athey and Haile

(2006)). Somehow the approach developed here assumes that bidders themselves need

not have a complete understanding of the game they play, and as a result bidders play a

feedback equilibrium as opposed to a Nash equilibrium.10

The rest of the paper is organized as follows. In Section 2 we describe the basic

de�nitions of our manipulative auction design framework. In Section 3 we expand on the

learning interpretation of the solution concept. In Section 4 we provide some preliminary

analysis. The core results of the paper are contained in Sections 5 and 6. Section 7 contains

further results in particular about the complete information case and the incentive for the

designer to use shill bidders. Section 8 suggests some further applications of the approach

and some avenues for future research. Missing proofs can be found in the Appendix.

knowledge, she could then use the feedback she likes best, as analyzed in this paper.
10Our results are very di¤erent in nature from those results showing that the designer is better o¤

revealing as much information as she can when the seller�s private information and bidders�valuations
are a¢ liated (see Milgrom and Weber (1982)). In our setup, providing partial feedback about past bids
leads bidders to play a non-Nash equilibrium, which has no counterpart in Milgrom and Weber�s analysis.
Yet at a more general level, the idea of choosing a design that reduces the informational rent left to bidders
is common to the literature on the linkage principle and the manipulative auction design setup considered
here.
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2 Basic de�nitions

There is one object for sale and n bidders with characteristics i 2 I = f1; :::ng. Each
bidder i knows his own valuation vi for the object, but not that of the other bidders j 6= i.

The distribution of valuations are independent across bidders. The valuation vi is drawn

from a distribution with support [c; d] and (continuous) density fi(�) where we assume
that fi(v) > 0 for all v 2 [c; d]. We assume that d > 0, and in some parts of the paper

we assume that c < 0 where 0 is the seller�s valuation. Bidders do not a priori know

the densities fi(�) (not even their own fi(�)). We assume that bidders have quasi-linear
preferences and that they are risk neutral. That is, if a bidder with valuation v expects

to win the object with probability p and expects to make (an expected) transfer t to the

designer, his expected utility is pv � t.

The auctioneer may use multiple auction formats Mk; k 2 K = f1; :::rg to sell his
object where auction format Mk, k = 1; :::r; is selected with probability �k. Each auction

format Mk takes the following form:

� Bidders i = 1; :::n simultaneously submit a bid bi 2
�
0; b
�
.

� Based on the pro�le of bids b = (bi)
i=n
i=1 bidder i wins the object with probability

'ki (b) and pays a transfer �
k
i (b) to the auctioneer.

� Any bidder i who bids bi = 0 makes no payment, i.e. � ki (b) = 0 whenever bi = 0.

Throughout the paper, we assume that for each i and k, 'ki (b) is a non-decreasing

function of bi and a non-increasing function of bj, j 6= i. That is, in line with the auction

interpretation, the higher the bid of bidder i (both in absolute and relative terms) the

greater the chance that i wins the object.

When auction format Mk is selected, bidder i is informed of the functions 'ki (b) and

� ki (b) that apply to him in this format. If bidder i with valuation vi bids bi and expects

the bid pro�le b�i = (bj)j 6=i to be distributed according to the random variable
eb�i inMk,

his perceived expected utility in Mk is:

uki (vi; bi;
eb�i) = Eeb�i['

k
i (bi; b�i)vi � � ki (bi; b�i)]
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Observe that to perform this calculation, bidder i need not know the functions 'kj (b),

� kj (b) that apply to bidders j 6= i. This is the benchmark knowledge assumption one

should have in mind when interpreting the feedback equilibrium (to be introduced later

on).

A strategy of bidder i is a family of bid functions �i = (�ki )k, one for each auction

format Mk where �
k
i (vi) denotes player i�s bid in format Mk when i�s valuation is vi.11

Nash equilibrium requires that for each k and vi, player i plays a best-response to the

actual distribution of bids of bidders j 6= i in Mk. That is,

�ki (vi) 2 argmax
bi

uki (vi; bi; �
k
�i)

where (with some slight abuse of notation) �k�i stands for the random variable of bids�
�kj (vj)

�
j 6=i as generated by the densities (fj(�))j 6=i.

In this paper, we do not assume that bidders have access to �ki for every i and k, as

the designer is assumed to be able to choose how much information feedback to provide

to bidders about the distribution of bids.

The class of partial feedback that we consider is described as follows. Each player i is

endowed with a partition P i of the set

f(j; k); j 2 I and k 2 Kg

where P i is called the feedback partition of player i. A typical element of P i is denoted

by �i and referred to as a feedback class of player i. The element of P i containing (j; k) is

denoted by �i(j; k). When making his choice of strategy in auction formatMk, player i is

assumed to know only (in addition to 'ki (b) and �
k
i (b)) the aggregate distribution of bids

in every �i (see the learning interpretation in Section 3). He is further assumed to play a

best response to the conjecture that j in Mk bids according to the aggregate distribution

of bids in �i(j; k). Formally, we let A = (Mk; �k;P i)i2I;k2K denote an auction design. A

feedback equilibrium of A is de�ned as:

11Strictly speaking, allowing for mixed strategies �ki (vi) should be a distribution over bids. Yet, for
our purpose, considering pure strategies is enough.
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De�nition 1 A feedback equilibrium of A = (Mk; �k;P i)i2I;k2K is a strategy pro�le � =

(�i)i2I such that for every k and vi,

�ki (vi) 2 argmax
bi

uki (vi; bi; �
k

�i)

where �
k

�i = (�
k

j )j 6=i, �
k

j is the aggregate distribution of bids in �i(j; k) and the distribu-

tions �
k

j , j 6= i are perceived by bidder i to be independent of each other.12

Remark. It should be mentioned that, in the current formulation, the feedback

received by bidders is about the distribution of individual bids and not about the dis-

tribution of pro�les of bids.13 While the de�nition of a feedback equilibrium could be

extended to cover that case, the class of partial feedback considered above is enough to

prove our main insights.

We will consider various objectives for the designer. The �rst objective will be a

lexicographic criterion with welfare ranked �rst and revenues ranked second. The second

objective that we will consider is revenues. In all cases, we will assume that the designer

is risk neutral (and as already mentioned that she has no intrinsic value for the object).

The participation of bidders to the auction should be voluntary. Our assumption that

a bidder submitting a 0 bid makes no payment ensures that participation constraints are

always (perceived to be) satis�ed at the interim stage before bidders see the outcome

of the mechanism. We will also consider the scenario in which participation should also

be approved ex post after bidders see the outcome of the mechanism, thereby providing

bidders with ex post quitting rights (see Compte and Jehiel (2007) for elaborations on

quitting rights in mechanism design).

When we consider ex-post quitting rights, we restrict our analysis to auction formats

in which payments are only made by the winner (anyway a loser would refuse to make

12That is, �
k

j is the distribution of bids that assigns weight �k0=
P

(j";k")2�i(j;k)
�k" to the distribution

�k
0

j0 (vj0) as generated by the density fj0(�) for every (j0; k0) 2 �i(j; k). Note that the densities fj are
not assumed to be known to the bidders. The aggregate distribution of bids is got accessible to bidders
through learning, see the next section for further elaborations on this interpretation.
13Accordingly, every bidder i treats every bidder j�s distribution of bids, j 6= i, as being independent

of each other.
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a positive payment) and, in line with the auction interpretation, we further assume that

the payment made upon winning is a non-decreasing (and non-negative) function of the

bids submitted by bidders.14

We note that, in the standard rationality paradigm, the optimal revenue-maximizing

auction can always be implemented while satisfying bidders�ex-post participation con-

straints (think, for example, of the second price auction with optimally set reserve price

in the symmetric regular case). One of our main insights will be to show that by an

appropriate choice of manipulative auction design, the designer can achieve strictly larger

revenues while ensuring the ex post participation constraints. The best revenues so ob-

tained then lies in between the complete information optimal revenues and the incomplete

information optimal revenues as analyzed in Myerson (1981) (see Section 7).

3 Interpretation

The interpretation of our auction design framework is as follows. A designer faces the

problem of repeatedly selling similar objects (a new one each period) to one of n potential

buyers with observable characteristics i 2 I. These potential buyers are replaced every

time a new object is for sale and the observable characteristic i may a¤ect the distribution

fi(�) of the valuation of the bidder with characteristic i.15 Bidders are assumed not to
be aware of fi(�) (even though they can observe the characteristic of other bidders as
the designer does). To simplify the exposition of the interpretation, we assume that the

designer has got su¢ cient experience to know fi(�).16

In such a context, the designer can change her auction format from one period to

another while ensuring that the frequency with which formatMk is used is �k. In addition,

the designer who collects the bids in all periods can decide how much information she

wants to pass to new bidders about past bids. If she can target the feedback to each

bidder according to his characteristic, she can decide to tell bidder i only about the

14That is, over the range 'ki (b) > 0, we assume that
�ki (b)

'ki (b)
is increasing in bi and b�i.

15The replacement scenario corresponds to an assumption made in recurrent games (Jackson and Kalai,
1997).
16Observe that this knowledge may be obtained by the designer in an initial phase in which she would

use second price auctions.
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aggregate distribution of past bids (the empirical frequencies) in every �i.17 If she does

so every period, and if behaviors stabilize, it must be to a feedback equilibrium provided

bidders consider the simplest theory that is consistent with the feedback they receive.18

Our auction design framework adopts the viewpoint that the designer can optimize on

the auction formats Mk, their frequencies �k and the feedback partitions P i provided to

bidders, and that behaviors have stabilized to a corresponding feedback equilibrium of

A.19

The approach has a non-Bayesian element in the sense that upon learning the coarse

feedback the designer reports to them, bidders do not update their belief about the dis-

tribution of others�bids based on some (possibly subjective) prior. Instead, and in line

with the literature on bounded rationality, bidders are assumed to consider the simplest

theory consistent with the feedback they receive.20

About the choice of feedback partitions, it may be argued that in a number of applic-

ations, the designer would have a hard time providing a di¤erent feedback to the various

bidders (as the information transmitted may be shared among bidders). In such cases, the

designer can always restrict herself to public feedback, thereby imposing that the feedback

partitions of all bidders must coincide, P i = P j for all i, j. As will be clear, our main

results still hold if the designer is constrained to use public feedback partitions.

It should be mentioned that a feedback equilibrium is very closely related to the

analogy-based expectation equilibrium (ABEE) introduced in Jehiel (2005), further de-

veloped in Jehiel and Koessler (2007) and Ettinger and Jehiel (2007). The feedback

17That is, bidder i would be informed of the aggregate distribution of bids
�
bkj ; (j; k) 2 �i

	
with no

reference to which (j; k) generated the bid.
18It is in this sense that a feedback equilibrium can be viewed as a selection of self-con�rming equilibrium

for the signal structure corresponding to the chosen feedback partition.
19Strictly speaking, the system should stabilize to the feedback equilibrium the designer likes best.

This is similar to the requirement of weak implementation generally made in mechanism design. One
interpretation is that the designer could suggest a default belief that would �t the equilibrium she likes
best. Alternatively, one may wish to reinforce the notion of implementation to require that all feedback
equilibria deliver good outcomes. Our main results would still hold under this more stringent notion of
implementation.
20While it would be possible to interpret bidders�beliefs through the Bayesian machinery by relying

on well chosen subjective priors, we consider the approach in terms of simplicity as preferable to the
subjective prior approach. This is because in the subjective prior paradigm, it is not clear where the
subjective prior would come from, especially if one has in mind that the prior should, in principle, be
determined by what is known about similar auctions.
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partition P i of player i is very similar to the analogy partition considered in Jehiel (2005)

with the mild di¤erence that here we allow the feedback partition to include decision

nodes of player i himself. Except for this mild di¤erence, a feedback equilibrium can be

viewed as a special case of an analogy-based expectation equilibrium. The main novelty

of the approach taken here is that the feedback partitions are viewed as a choice made by

the designer. That is, they are not exogenously given as in Jehiel (2005).

We note that Huck et al. (2007) provides experimental support to ABEE. In the

experiment of Huck et al., players repeatedly played one of two games with very di¤erent

best-response structures - this is the analog of bidders being involved in di¤erent auction

formats in our setting. In one treatment, these players received only feedback about the

aggregate distribution of actions of the subjects assigned to the role of their opponent over

the two games in the last �ve rounds.21 Convergence to the corresponding ABEE (which

di¤ered from Nash equilibrium) was mostly observed in this case, thereby suggesting that

subjects did best-respond to the aggregate distribution of actions over the two games

(despite the fact that the games under study had very di¤erent best-response structures).

It should be mentioned that in Huck et al.�s experiment, subjects were not informed

of their opponent�s payo¤ structure, and this is why we prefer interpreting our results

assuming that bidder i in format Mk is not informed of the functions 'kj (�), � kj (�) for
j 6= i.

The only other paper we are aware of that considers information feedback in auctions

as a design choice is by Esponda (2007). He considers �rst-price auctions in which the

same bidders get involved over sequences of auctions, and get information about the joint

distribution of highest bids (and possibly second-highest bids) and their own valuation

and bid. In a symmetric �rst-price auction with private and a¢ liated values he shows

that symmetric self-con�rming equilibria (of the static auction) generate at least as much

revenues as the Nash equilibrium.

Apart from the obvious di¤erence that Esponda considers �rst-price auctions with

symmetric bidders and a¢ liated signals whereas we consider general auction formats

with arbitrary yet independent distributions of valuations, Esponda�s result shares some

similarities with our insight that partial feedback may help achieve greater revenues in

21They did not learn about their performance until the end of the experiment, which should be related
to our implicit assumption that individual bidders participate in just one auction.
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�rst-price auctions (see Proposition 1 below). Yet, there are notable di¤erences between

our framework and his that we now discuss. First, Esponda considers a setting in which

the same bidders keep participating in the auctions whereas we have in mind situations in

which new bidders arrive each time. This di¤erence in turn explains why in our setting the

feedback of bidders is not conditional on their own valuation whereas in Esponda�s setting

it is.22 Second, Esponda�s solution concept is the self-con�rming equilibrium whereas we

rely on the feedback equilibrium (which is a selection of self-con�rming equilibrium, see

above). As such, Esponda�s analysis can never rule out that providing partial feedback

does no better than providing full feedback (since the Nash equilibrium is always a self-

con�rming equilibrium whatever the feedback). We also note that Esponda�s result is

for symmetric setups and symmetric self-con�rming equilibria, as there is no guarantee

that an asymmetric self-con�rming equilibrium generates more revenues than the Nash

equilibrium in his setup.23 By contrast, our insights about �rst-price auctions concern the

case of asymmetric bidders with independent distributions, and the selection imposed by

the feedback equilibrium (based on complexity considerations) ensures a strict superiority

of providing partial feedback (see Proposition 1).

Examples of feedback partitions and auction designs:

The following classes of auction designs with public feedback (all P i are the same) will

play a central role in the analysis.

1) Bidder-anonymous feedback partition: In this case, there is only one auction format,

and the feedback is about the aggregate distribution of bids across all bidders. That is,

K = f1g, and for all i 2 I, P i =

(S
j2I
f(j; 1)g

)
. For example, the object could be

sold through a �rst-price auction, and players would receive feedback about the aggregate

22One should note that in Esponda�s paper, bidders simply ignore the distribution of highest bids con-
ditional on other realizations of the valuation. If bidders somehow mistakenly mixed these distributions
for various realizations of their valuations (because say there are not enough data for each speci�c realiz-
ation of the valuation), then providing feedback about the highest bid only need not result in a revenue
gain.
23I view this as problematic as I fail to see what mechanism would lead bidders to have symmetric

behaviors given that there are many possible conjectures under the partial feedback considered in Esponda
and many di¤erent best-responses associated to these conjectures.
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distribution of bids with no mention of the characteristics of the bidders who generated

the various bids.

2) Format-anonymous feedback partition: In this case, bidders know the aggregate

distribution of bids across the di¤erent auction formats Mk, k 2 K, but they di¤er-

entiate the distribution of bids for the various bidders i 2 I. That is, for all i 2 I,

P i =

� S
k2K

f(j; k)g
�
j2I
. For example, the object could be sold either through a sealed

bid �rst price auction or through a sealed bid second price auction (in equal proportion,

say), and players would receive feedback about the aggregate distribution of bids across

the two auction formats.

4 Preliminaries

We make a few preliminary observations. First, by picking a single auction formatM and

the �nest feedback partition, the designer can always replicate the revenue generated in

the standard rationality case in M . Thus, if the designer seeks to maximize revenues, she

can always achieve a revenue at least as large as Myerson (1981)�s optimal revenue. The

question is whether she can achieve larger revenues.

Second, consider an auction formatM in which player i has a dominant strategy. Then

in any auction design including format M , a feedback equilibrium requires that player i

plays his dominant strategy in M . This is an obvious statement, since player i will �nd

his strategy best no matter what his expectation about the distribution of others�bids is,

and thus no matter how the auction design is further speci�ed.

Third, one of the auction designs that we will study falls in the following class. There

is one auction format M , which respects the anonymity of bidders. That is, consider two

bid pro�les b and b0 obtained by permuting the bids of players i and j, then 'i(b) = 'j(b
0)

and � i(b) = � j(b
0) and for all m 6= i; j; 'm(b) = 'm(b

0), �m(b) = �m(b
0). Consider the

anonymous-bidder feedback partition de�ned above. One can relate the feedback equilibria

of A to the Nash Bayes equilibria of game �ba(A) de�ned by the auction format M in

which the distribution of bidder i has density f(vi) =
P
i2j
fj(vi)=n instead of fi(vi).
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Claim 1: A symmetric strategy pro�le is a feedback equilibrium of A if and only if

it is a Bayes Nash equilibrium of �ba(A).

Fourth, another class of auction designs A considered below is such that the various

auction formats Mk in A satisfy: 'ki (bi; b�i) = 'i(bi; b�i) for all k 2 K (for example in

all formats the object is allocated to the player who submitted the highest bid). When

the anonymous format feedback partition prevails, one can relate the feedback equilibria

of such auction designs A to the Nash Bayes equilibria of the following game referred to

as �fa(A):

Game �fa(A): Each bidder i (simultaneously) submits a bid bi; the object is assigned

to bidder i with probability 'i(bi; b�i); prior to bidding, bidder i is privately informed of

his valuation vi drawn from fi(�) and of his method of payment k de�ned by � ki (bi; b�i);
the methods of payment k are identically and independently drawn across bidders and

every bidder i is subject to the method of payment k with probability �k.24

Claim 2: Suppose that the format anonymous feedback partitions prevail and that

in all auction formats Mk of A, we have that 'ki (bi; b�i) = 'i(bi; b�i) for all k 2 K and

i 2 I. Then a strategy pro�le � is a feedback equilibrium of A if and only if it is a Nash

Bayes equilibrium of �fa(A).

5 E¢ ciency and revenues

In a number of applications, the designer may be interested both in e¢ ciency and revenues.

For example, suppose that the primary objective of the designer is e¢ ciency while revenue

is only the secondary objective. In the standard rationality paradigm, the so called revenue

equivalence result holds. That is, if two mechanisms result in the same allocation rule and

the expected payment made by any bidder i with minimal valuation vi = c is 0 then both

mechanisms must yield the same revenues. Since an e¢ cient outcome can be achieved by

a second-price auction SPA, the standard approach concludes that the designer can do

no better than using a SPA.

24Compared to the true auction design, the di¤erence is that the methods of payments are independently
distributed across bidders in �fa whereas they are (perfectly) correlated in �.
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We now observe that the designer can sometimes achieve strictly larger revenues (than

that obtained through the SPA) while still preserving e¢ ciency, thereby illustrating a

failure of the allocation equivalence in our manipulative auction design setup. Besides,

this gain in revenues is achieved by using a fairly standard auction format (with, of course,

a non-standard, i.e. coarse, feedback device).

Proposition 1 Assume that all valuations are non-negative, i.e. c � 0, and consider a
two bidder i = 1; 2 auction setup with asymmetric distributions (F1(�) 6= F2(�) on a set of
strictly positive measure). There is a unique feedback equilibrium of the �rst price auction

with anonymous bidder feedback partition. Moreover, this feedback equilibrium induces an

e¢ cient outcome and it generates a strictly higher revenue than the second-price auction.

The revenue gain isZ d

c

1

4
(F1(v)� F2(v))

2 dv +

Z d

c

1

4

d�(v)

dv
(F1(v)� F2(v))

2 dv > 0

where �(v) =
R v
c
xf(x)dx=F (v), f(x) = f1(x)+f2(x)

2
and F (v) =

R v
c
f(x)dx.25

Proof of Proposition 1:

Step 1: Consider the �rst-price auction with anonymous bidder feedback partition.

There exists a unique feedback equilibrium de�ned as follows: for i = 1; 2; �i(v) = �(v) =R v
c xf(x)dx

F (v)
where f(x) = f1(x)+f2(x)

2
and F (v) = F1(v)+F2(v)

2
. It follows that the outcome is

e¢ cient in our auction design.

Proof of step 1. Consider a feedback equilibrium �i(�) for i = 1; 2. Standard

incentive compatibility considerations imply that �i(�) must be a non-decreasing function
of the valuation (as otherwise a higher valuation type of bidder i would perceive to win

the object with a probability strictly lower than a lower valuation type, which is ruled

out by incentive compatibility). Thus, the bid functions �i(�) must be continuous almost
everywhere.

Suppose we have a non-symmetric equilibrium (that is not equivalent almost every-

where to a symmetric equilibrium). This implies that for a positive measure of v,

25�(�) is the equilibrium bid function in a symmetric two-bidder FPA with density of valuations f . As
such, �(�) is an increasing function.
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�1(v) 6= �2(v) and both �1(v) and �2(v) are best-responses for a bidder with valuation

v to the aggregate distribution of bids. There must then be a neighborhood of v within

which a positive measure of v has this property. Yet, this implies that we can make

another selection of the best-response correspondence that violates the monotonicity of

�i(�), thereby showing a contradiction.26

The rest of the argument follows from Claim 1 (see Section 4). Indeed, any symmetric

feedback equilibrium must be a Nash Bayes equilibrium of the FPA with symmetric

bidders and density f(v) and vice versa. Given the analysis of the FPA with symmetric

bidders, we may conclude as desired. Q. E. D.

Call R the revenue generated in the �rst price auction with bidder anonymous feedback

partition. Call RSPA the revenue generated in the second-price auction. Finally, call R

the expected revenue generated in the second-price auction with symmetric bidders and

density of valuations f(v) = f1(x)+f2(x)
2

. These revenues write (the identity between the

last two expressions can be obtained as a consequence of the allocation equivalence):

R =

Z d

c

�(v) [f1(v)F2(v) + f2(v)F1(v)] dv

RSPA =

Z d

c

vf1(v) [1� F2(v)] dv +

Z d

c

vf2(v) [1� F1(v)] dv

R = 2

Z d

c

vf(v)
�
1� F (v)

�
dv

R = 2

Z d

c

�(v)f(v)F (v)dv

Step 2: R�RSPA =
R d
c
1
4
(F1(v)� F2(v))

2 dv

Proof of step 2. Using the �rst expression of R, we have that R � RSPA can be

26Suppose �1(v) < �2(v). By continuity �1(v + ") < �2(v) and �2(v + ") > �1(v). The de�nition of a
feedback equilibrium implies that b1(v) = �2(v) and b1(v + ") = �1(v + ") with all other bids unchanged
should also be part of an equilibrium. But, such bids would violate the incentive compatibility conditions
and as a result cannot maximize (over bids) the corresponding expected payo¤s of bidder 1 with valuations
v and v + ".
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written as Z d

c

v

�
�1
2
(F1(v) + F2(v)) (f1(v) + f2(v)) + f1(v)F2(v) + f2(v)F1(v)

�
dv

=

Z d

c

�v
2
(f1(v)� f2(v)) (F1(v)� F2(v)) dv

=

Z d

c

1

4
(F1(v)� F2(v))

2 dv

where the last equality is obtained by integration by parts (noting that F1(v)�F2(v) = 0
for v = c and d). Since

R d
c
1
4
(F1(v)� F2(v))

2 dv > 0 whenever f1 6= f2. Step 2 follows.

Q.E.D.

Step 3: R�R =
R d
c
1
4
d�(v)
dv
(F1(v)� F2(v))

2 dv

Proof of step 3. Using the second expression of R, we have that R � R can be

written as Z d

c

�(v)

�
f1(v)F2(v) + f2(v)F1(v)� 2

f1(v) + f2(v)

2
� F1(v) + F2(v)

2

�
dv

=

Z d

c

�1
2
�(v) (f1(v)� f2(v)) (F1(v)� F2(v)) dv

=

Z d

c

1

4

d�(v)

dv
(F1(v)� F2(v))

2 dv

where the last equality is obtained by integration by parts (noting that F1(v)�F2(v) = 0
for v = c and d). Since d�(v)

dv
> 0 for all v, we have that

R d
c
1
4
d�(v)
dv
(F1(v)� F2(v))

2 dv > 0

whenever F1 6= F2 on a positive measure set. Step 3 follows. Q. E. D.

Proposition 1 follows from steps 1, 2, 3. Q. E. D.

What is the intuition for the above result ? Not providing feedback about the charac-

teristic i of the bidders who submitted past bids leads the bidders in the current auction

to feel that they are in competition with a �ctitious bidder who has a distribution of

valuations that is the average distribution between the distributions of the two bidders

(this is essentially step 1 in the proof). In the two bidder case, the price level in the

second-price auction is determined by the lowest valuation, hence by the weak bidder.
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The manipulation generated by the bidder-anonymous feedback partition enhances rev-

enues because it makes the strong bidder feels the weak bidder is less weak than he really

is.27

It should be noted that the �rst-price auction with anonymous-bidder feedback par-

tition need not always generate more revenues than the second-price auction when there

are three or more bidders. This is because averaging the distributions across all bidders

need not anymore strengthen the distribution of the second highest bid. Technically, while

steps 1 and 3 of the proof still hold in the three or more bidder case, step 2 need not

hold in general. For the sake of illustration, if there are two bidders with a distribution

of valuations concentrated around d and a third bidder whose valuation is concentrated

around c, it is readily veri�ed that the �rst-price auction with bidder anonymous feedback

partition generates less revenues than the second-price auction (which achieves a revenue

approximately equal to d). On the other hand, if there is only one bidder whose distri-

bution of valuations is concentrated around d while the other bidders have a distribution

of valuations concentrated around c, the �rst-price auction with bidder anonymous feed-

back partition generates more revenues than the second-price auction (which generates

a revenue very close to c). These extreme cases illustrate that the revenue comparison

between the second-price-auction and the �rst-price auction with bidder anonymous feed-

back partition can go either way in the case of more than two bidders.

It should also be mentioned that in the �rst-price auction with anonymous bidder

feedback partition no bidder whatever his valuation makes a loss in equilibrium neither

at the interim stage nor at the ex post stage when the outcome of the auction is known.

This is because bidders bid below their valuation (bidding above one�s own valuation is

dominated) and thus they cannot make losses. Thus, even if bidders have a right to quit

the mechanism ex-post after the outcome of the auction is known, no bidder would use

this option. The manipulation exploited by the designer has here the e¤ect of reducing the

informational rent left to the bidders while preserving the veto rights of the bidders. The

most extreme revenue gain provided by the above exploitation is when the distribution of

valuations of one bidder is concentrated around d whereas the distribution of valuations
27This is essentially what step 2 formalizes. Step 3 formalizes the idea that making the distribution

more asymmetric across bidders (moving from (f; f) to (f1; f2)) makes the distribution of the highest bid
among i = 1; 2 more skewed toward larger values.
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of the other bidder is concentrated around c in which case the �rst-price auction with

anonymous feedback partition provides a revenue gain of d�c
2
, which should be compared

to the revenue c of the second-price auction.28 Clearly, as d gets large relative to c, the

revenue gain can be quite substantial in such asymmetric setups.

Comment. In some applications, the distribution of winning bids as opposed to the

aggregate distribution of all bids is available to bidders. From this information, bidders

can compute an optimal strategy based on the assumption that all bidders bid according to

the same distribution (this might be argued to be the simplest conjecture in this case). In

the two-asymmetric-bidder scenario considered in Proposition 1, it is not di¢ cult to show

that bidders would then bid according to ��(v) =
R v
c xf

�(x)dx

F �(v) where F �(v) = (F1(v)F2(v))
1
2

and f �(v) = dF �(v)
dv

. Such bidding strategies would always generate higher revenues than

in the second price auction, as in Proposition 1.29

6 Revenues

We now assume that the designer seeks to maximize revenues. We �rst consider the case

in which the participation constraints are only required at the interim stage and then

move on to consider the case in which bidders can decide to withdraw from the auction

after learning the outcome of the auction.

6.1 Unrestricted domain of mechanisms

If participation constraints are only required at the interim stage before bidders know the

outcome of the auction, we observe that the designer�s revenue can be arbitrary large.

28In some cases, the �rst-price auction with bidder-anonymous feedback partition may provide a revenue
that is larger than the revenue in the optimal auction of Myerson, even though this is not always true.
29The analog of steps 2 and 3 in the proof of Proposition 1 would still hold. Letting R� denote the

revenue in the manipulative auction setup (as just de�ned) and R
�
the revenue in the second-price auction

with symmetric bidders and density of valuations f�(�), one can establish that

R
� �RSPA =

Z d

c

[
p
F1(v)�

p
F2(v)]

2
dv > 0

R� �R� = 0
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Proposition 2 Suppose there are at least two bidders. Then by a suitable choice of

auction design the designer can make arbitrary large amounts of money.

The idea of the proof which is detailed in the appendix is fairly simple. By choosing

several formats and by using a format-anonymous feedback partition for say bidder 1,

the designer can mislead bidder 1 in his understanding of the distribution of bids of

other bidders i 6= 1. He can then propose a bet to bidder 1 whose monetary outcome is
contingent on the realization of bi, i 6= 1, in such a way that the bet sounds pro�table from
the viewpoints of both bidder 1 and the designer. By increasing the stakes of the bet,

bidder 1 will still agree on the terms of the bet given our assumption of risk neutrality,

which translates into potentially arbitrarily large revenues for the designer.

The above argument bears strong resemblance with the observation that with subject-

ive prior beliefs the logic of the no trade theorem breaks down.30 Of course, here since

the designer is assumed to know the correct distributions of bids, we make the further

inference that it is the designer (and not the bidder) who bene�ts from the bet. Another

key di¤erence with the literature on subjective priors is that the erroneous perception of

the bidders is viewed here as resulting from the feedback manipulation of the designer

and not from the subjective character of bidders�prior beliefs.

Comment. To the extent that bidders know that the designer is more informed than

they are about the distributions of bids, one might argue that in the context of the above

manipulation bidder 1 might be suspicious about adopting the simplest conjecture con-

sistent with the feedback he receives, especially if the stakes of the bet are very large

(bidder 1 may well realize that basing his estimates on the simplest conjecture consistent

with the observed feedback may be harshly exploited by the designer even if bidder 1 need

not understand how). Taking such considerations into account would require amending

the solution concept of feedback equilibrium, which should be the subject of future re-

search. Somehow the next subsection bypasses this di¢ culty by considering scenarios in

which the stakes are necessarily limited due to the ex-post quitting rights of the bidders.

In such cases as in the scenario studied in Section 5, the feedback equilibrium seems

quite reasonable (as bidders have no clue on how they could avoid being exploited - for

30See however Morris (1994) for an exploration of when the no trade theorem continues to hold in the
subjective prior paradigm.
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example, not participating in the auction would always be a bad idea as bidders always

make non-negative pro�ts ex-post).31 Alternatively, one may think of the ex-post quitting

rights scenario considered below as a regulatory constraint imposed on designers to better

protect bidders from manipulation.

6.2 Mechanisms with ex-post quitting rights

We now assume that bidders must approve the transaction after the outcome of the auction

is known. As mentioned in Section 2, we limit ourselves to auction formats in which only

the winner of the auction makes a payment, and we further assume that the payment

made by the winner of the auction is a non-decreasing function of the bids submitted by

the bidders.32 We refer to such settings as auction designs with ex-post quitting rights.

As already mentioned, the optimal auction of Myerson (1981) can always be imple-

mented within the class of auction designs with ex-post quitting rights. As we now show,

the designer can always extract strictly larger revenues.

Proposition 3 The largest revenue that the designer can achieve in a manipulative auc-

tion design with ex-post quitting rights is strictly larger than the revenue generated in

Myerson�s optimal auction (denoted by RM).

The intuition for Proposition 3 is as follows. Myerson�s optimal auction can always be

implemented in such a way that every bidder has a (weakly) dominant strategy and ex-post

quitting rights of bidders are ful�lled (think of the second-price auction in the symmetric

regular case). One can now think of an auction design in which this auction format - call

it MD - is mixed with a little bit of �rst-price auction with 0 reserve price (FPA), and

bidders get only to know the aggregate distribution of bids over the two auction formats.

In format MD, the strategies are the same as in the standard case (because bidders have

31Recently, Lehrer (2007) has proposed another selection of self-con�rming equilibrium based on the
most pessimistic conjecture (rather than the simplest conjecture as in this paper). Such an approach
would lead bidders not to accept bets as considered in the proof of Proposition 2. But, it would also lead
bidders not to take part in any auction of the sort analyzed throughout this paper as long as feedback is
partial and there is a slight cost to participate in auctions. We �nd the latter conclusion unrealistic.
32Clearly a loser would object to make a positive payment. The fact that the seller is not allowed to

make a positive payment to the loser can be viewed as resulting from the ex-post quitting right of the
seller vis a vis the losing bidder. Alternatively, it can be thought of as a regulatory constraint.
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a weakly dominant strategy in MD). In format FPA, bidders play a best-response to

the aggregate distribution of bids over the two formats. For many choices of MD, this

construction will not necessarily deliver revenues higher than RM .33 But, there are many

variants of MD in which submitted bids are �rst transformed before the original format

is being applied. For a suitable choice of such a variant, the construction leads bidders

in FPA to bid very aggressively because they are led to think that by shading too much

their bid the chance of winning in FPA gets too small. In the limit, bidders may be

induced to bid very close to their valuation. Given that such bidding strategies in FPA

induce a revenue close to the full information optimal revenue RF = E(maxi(vi; 0)), and

given that RF > RM , the result of Proposition 3 follows.

Remark. By inspecting the proof of Proposition 3, we can see that all feedback equi-

libria (not employing weakly dominated strategies) of the auction design considered there

are such that the designer obtains higher revenues than in Myerson�s optimal auction.

Thus, the conclusion of Proposition 3 would hold under the stronger full implementation

requirement (provided one restricts ourselves to equilibria not employing weakly domin-

ated strategies).

Proposition 3 shows that the designer can do better than using Myerson�s optimal

auction (with �ne feedback), but how much can she gain? Clearly, the best revenue

that the designer can extract in auction designs with ex-post quitting rights can never

exceed the full information optimal revenue RF in which for all realizations (vi)i of the

valuations, the seller would extract a revenue equal to maxi(vi; 0). This trivially follows

from the observation that a winner of the auction would always object if he were asked

to pay more than his valuation. As we now show, in manipulative auction designs with

ex-post quitting rights the designer�s best revenue lies strictly below RF whenever bidders�

valuations can take negative values.

Proposition 4 The largest revenue that the designer can achieve in a manipulative auc-

tion design with ex-post quitting rights is strictly smaller than the full information optimal

revenues RF whenever Pr(vi < 0) > 0 for all i.

33In the case of uniform distributions, a mix of second-price auctions and �rst-price auctions would
have no e¤ect on revenues.
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In the proof of Proposition 3 we have mixed some (Myerson-optimal) mechanismMD

implementable in dominant strategy with a little bit of FPA, and we have observed that

the revenue obtained in FPA could get close toRF . However, such a construction required

that the weight put on FPA was set su¢ ciently small. As one increases the frequency of

FPA, the manipulation loses its force, and, of course, in the limit as the designer almost

always picks FPA, one gets the standard revenue generated in the �rst-price auction,

which following Myerson�s analysis cannot be larger than RM .

What Proposition 4 establishes is that within the class of mechanisms under study one

can never reach RF whatever the manipulation. To get an intuition of this result, think of

a symmetric scenario in which the auction design A uses the format-anonymous feedback

partition. To get close to RF , it would be required that in all auction formats Mk used in

A every bidder pays a price close to his valuation when he wins. Consider those auction

formats in A for which the feedback equilibrium bid of a bidder with valuation d
2
is above

the average bid of bidders with the same valuation d
2
across the various formats in A. A

bidder with valuation v = d can consider deviating to �ki (
d
2
) in such formats. He should

expect to win at least half of the time whenever maxj 6=i vj < d
2
; and pay at most d

2
(so that

the ex-post quitting right of a bidder with valuation d
2
is satis�ed).34 It follows that this

bidder must perceive to get a payo¤ at least as large as 1
2
Pr(maxj 6=i vj <

d
2
)(d� d

2
); which

is strictly positive.35 But, by following his equilibrium strategy, bidder i with valuation d

cannot perceive to make a non-negligible pro�t if a revenue close to RF is to be obtained.

This follows from the monotonicity of the payment rule and the observation that to get

close to RF a bidder with positive valuation should win when all other bidders�valuations

are negative and pay a price close to his valuation. The above observations together lead

to a contradiction, thereby yielding the desired conclusion.

Comment. If the designer were allowed to commit to o¤ering positive payments

to losers and if the payments from the winner were not assumed to be monotonic in

bids, then the designer could get a revenue close to RF while still preserving the ex-post

participation constraints of bidders.36 Our restriction on mechanisms (i.e., not allowing

34The half of the time comes from the fact in at least half the formats Mk0 , �
k0

i (
d
2 ) < �ki (

d
2 ).

35This is so because in all other events, this bidder must perceive to make non-negative pro�ts given
his quitting rights.
36To see this, consider a symmetric two-bidder scenario in which bidders�valuations are identically
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positive payments to losers and imposing that payments from winners be monotonic in

bids) can then be thought of as resulting from the regulatory desire to protect bidders

from manipulation.37

7 Further results

7.1 Complete information

In the above analysis, we have assumed that there was some uncertainty about bidders�

valuations. When each bidder i�s valuation can take a single value vi, the designer can

extract a revenue equal to RF = maxi(vi; 0) in the classic rationality setup.

Consider now our manipulative auction design setup. If no ex-post quitting right is

assumed then arbitrary large revenues can be obtained using mechanisms of the type

considered in Proposition 2. Even though the setup is deterministic, the designer can

introduce some randomness by considering di¤erent auction formats. By providing partial

feedback she may next mislead bidders into thinking that high stake bets are valuable

whereas in reality they are not as in the proof of Proposition 2 (see the appendix).

If however ex-post quitting rights are assumed, then no manipulation can allow the

designer to extract more than RF given that a bidder will never accept to pay more than

distributed on (c; d). Consider an auction design with format-anonymous feedback partition and two
formatsM andM used in equal proportion. In formatM , the equilibrium bids will lie in [0; d]; in format
M , the equilibrium bids will lie in f0g [ [d; 2d]. In each format, a bidder with negative valuation bids
0 in equilibrium. In both M and M , the bidder with highest bid wins the auction if this bid is strictly
positive. InM , if bi 2 (0; d) for i = 1; 2, the winner pays his own bid and the loser receives no transfer. In
M , if bi 2 f0g [ [d; 2d] for i = 1; 2, the winner i� pays bi� � d and the loser receives no transfer. The idea
is to augment the transfers in M and M to cover all bid pro�le con�gurations even for bid realizations
that will never occur in the respective formats. So in M , a (losing) bidder submitting bi 2 (0; d) will be
o¤ered a promise of transfer h(bi) if bj 2 (d; 2d) and in M , a (winning) bidder submitting bi 2 (d; 2d) will
be o¤ered a transfer h(bi) if bj 2 (0; d). By suitable choices of h and h, one can ensure that for vi > 0
bidding �(vi) = vi in M and bidding �(vi) = vi+ d in M is a feedback equilibrium. [For example, in the

uniform distribution case, h(b) = b2

2d �
bc
d and h(b) =

(b�d)2
2d � (b�d)c

d . These functions are determined so
that the expected perceived transfers correspond to those that would be made in a SPA with 0 reserve
price.] With such bidding strategies, the expected revenues generated in each format are RF , and thus
the designer gets RF in expectation.
37Alternatively, one may postulate that the use of promise of positive payments to losers (as well as

the use of non-monotonic payment rules from winners) would raise the suspicion of bidders who would
be more reluctant to participate in such auctions.
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his valuation if he wins the object (and he will never accept to pay anything if he does not

win the object). In mechanisms with ex-post quitting rights, manipulation is pointless

when there is no private information.

7.2 Shill bidding

So far, we have assumed that the only players in the auction were the bidders i 2 I.

It might be argued that the designer could also employ shill bidders in addition to the

real bidders i 2 I. In the standard case, this does not help the designer obtain a better

outcome, but in our manipulative mechanism design setup it does, as we now illustrate.

Speci�cally, the designer is now assumed to be allowed to hire shill bidders who have

no intrinsic value for the object. If the cost of hiring shill bidders is zero, we observe that

the designer can get a revenue close to the full information revenue RF even if bidders have

ex-post quitting rights (and the restrictions on mechanisms as considered in subsection

6.2 apply).

Proposition 5 Suppose the cost of hiring shill bidders is zero and that bidders have ex-

post quitting rights. Then the designer can get a revenue close to RF in the optimal

auction design.

The proof of Proposition 5 follows the logic used to prove Proposition 3. By inviting

m shill bidders, the designer can make them bid as she wishes, say each according to a

distribution of bids g(:) with support on (0; d). Consider now a variant of the �rst-price

auction with reserve price 0 de�ned as follows. Only the bids of the real bidders i = 1; :::n

matter in this format, and the rules of the auction restricted to these bids are the same

as the �rst-price auction with reserve price 0. That is, the bidder i 2 I = f1; :::ng with
highest bid wins the object as long as this bid is strictly positive and he pays his bid bi.

Other bidders make no payment. Consider now the bidder-anonymous feedback partition

in the above auction format. It is readily veri�ed that as m grows to in�nity, bidders will

submit a bid that is approximately a best-response to the distribution of bids g(�) of each
of the other relevant bidder among i 2 I = f1; :::ng. That is, each bidder with valuation
v > 0 will submit a bid close to �(v) 2 argmaxb(v� b)Gn(b) where G(�) is the cumulative
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of g(�). By considering a cumulative G(�) of the form G(v) =
�
v
d

�q
with q large enough,

one easily obtains that �(v) gets close to v, thereby providing a proof of Proposition 5

(see more details in the proof of Proposition 3).

8 Discussion and future work

In this paper, we have shown that there is always scope for manipulation in private values

auctions. That is, a designer interested in revenues can pro�tably design an auction setup

in which she provides partial rather than total feedback about other bidders�distributions

of bids.

If the designer is unconstrained in her use of mechanisms and manipulations, she can

extract arbitrary large revenues by misleading bidders about the distribution of others�

bids (through the use of coarse feedback partitions) and o¤ering large stake bets to these

bidders based on such wrong beliefs.

Such an insight suggests that there is a role for regulatory interventions that would

provide some sort of protection to bidders. We have suggested the idea of providing

bidders with ex-post quitting rights, that is, a right to undo the transaction after it has

been made. In this case, the designer cannot extract more than the full information

revenues. As it turns out, the designer cannot approach this full information revenue

upper bound unless she can use shill bidders freely. In order to better protect bidders,

our analysis suggests that the use of shill bidders should be made less attractive either

through an explicit ban or by forcing the designer to treat all bidders alike (which would

make the use of shill bidders more costly).

Another possible regulatory idea would be to force the designer to make public the

rules of the auction that applies to all bidders.38 Some of the manipulations used in

the paper would sound less plausible in such a scenario as bidders could make further

inferences based on other bidders�incentives in the various formats.39 We note however
38We note that the rules used by Google for the ad position auctions are far from being transparent as

far as how bidders are ranked as a function of their bids because the ranking eventually depends on the
expected number of clicks, which Google does not announce publicly.
39For example, if it is known that the designer uses FPA and SPA both with frequency 0.5, bidders

can identify the distribution of valuations assuming bidders play a Nash equilibrium in each format, even
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that the manipulation highlighted in Proposition 1 seems more robust to such regulatory

constraints.40

There are several interesting directions for future research that we now wish to men-

tion. We have stressed here the manipulative nature of the feedback device that a designer

interested in revenue maximization can pro�tably use. Even though we are not aware (in

the real world) of deliberate use of such manipulative strategies to maximize revenues, it

seems that the idea of providing partial rather than total feedback about the distribution

of bids observed in similar auctions is quite common in practical auction design where

it is often regarded as a way to preserve the anonymity/privacy of bidders and/or as a

way to combat collusion (that would otherwise be easier to sustain).41 From the latter

perspective, it would be interesting in future research to formalize collusion in our auction

setup and to analyze how coarse feedback partitions can be used to combat collusion. We

note that our analysis of manipulative auction design could also be extended to study

the case of stochastic number of bidders and to the case of correlated distributions of

valuations or a¢ liated signals over valuations. In addition, while in our setting only the

designer can provide feedback about the distribution of past bids, one could imagine that

bidders themselves try to search for additional feedback to better combat manipulation.

Finally, our analysis and main results even though formulated for the auction setup can

be applied to other contexts. For example, a result similar to that of Proposition 1 can

be exported to contests to suggest the desirability of not providing the characteristics of

winners in asymmetric two-player contests as a way to increase the e¤ort made by the

stronger contestant without altering the normative desideratum that a better contestant

should win with larger probability no matter what his (observable) characteristics are.

if bidders are only told the aggregate distribution of bids over the two formats. From such distributions
of valuations, they can next infer the distribution of bids in FPA and play the corresponding Nash
equilibrium.
40Besides, in the context of Proposition 1, since the designer prefers the FPA with anonymous-bidder

feedback partition to the SPA whatever the distributions of valuations, it seems hard for bidders to make
further inference from the choice of the auction design.
41For example, in many electricity auctions over the world, only the clearing price is revealed initially

while the aggregate distribution of bids is revealed only months later if at all (due to bidders�reluctance
to have this information revealed).
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Appendix

Proof of Claim 1: Consider a symmetric feedback equilibrium � of A (where �(v)

refers to the equilibrium bid of any bidder with valuation v).42 By de�nition, bidder i

plays a best-response to the distribution of bids of other bidders that has assigns densityP
j2I

fj(v)

n
to the bid �(v). But, this is the de�nition of a Bayes Nash equilibrium of �ba(A).

The converse part is also immediate. Q. E. D.

Proof of Claim 2: Consider an equilibrium � of �fa(A). In �fa(A), bidder i whatever

his payment method expects every other bidder j 2 I to be facing the payment method
k0 with probability �k0, hence to be playing according to strategy �

k0

j (�) with probability
�k0. Thus, in �fa(A), when the payment method is k, bidder i plays a best-response

�ki (vi) 2 argmax
bi

uki (vi; bi; �
k

�i) where �
k

j =
P

k0 �k0�
k0

j and �
k0

j is the distribution of bids

of bidder j when j has the method of payment k0. But, this corresponds exactly to the

de�nition of a feedback equilibrium of A. Q. E. D.

Proof of Proposition 2:

We consider the following formats M1 and M2 both used with probability 1
2
. In both

formats, the good is never allocated whatever the bids, 'ki (b) = 0 for all i; b and k = 1; 2.

In format, M1, bidder 1 wins " if b1 = 1 and 0 otherwise. In format M2, bidder 1 wins "

if b1 = 2 and 0 otherwise. In format M2, bidder 2 pays A
2
> 0 if b1 = 2 and b2 = 1 and

receives A if b1 = 1 and b2 = 1, and receives nothing otherwise, i.e.

� 22(b) =

8>><>>:
A
2
if (b1; b2) = (2; 1)

�A if (b1; b2) = (1; 1)
0 if (b1; b2) 6= (2; 1); (1; 1)

and the feedback partition is the anonymous-format feedback partition.

Clearly, in this auction design, bidder 1 will bid b1 = 1 inM1 and b1 = 2 inM2. Given

that �1 = �2 =
1
2
, and the format-anonymous feedback partition is being used, bidder 2

42The anonymity properties of M1 ensure the symmetry (across bidders) of the best-response corres-
pondence.
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will believe that in M2, bidder 1 bids b1 = 1 or 2 each with probability 1
2
. Based on this

belief, bidder 2 will �nd it optimal to bid b2 = 1 in M2 (because 1
2
(A� A

2
) > 0).

In such a feedback equilibrium, the designer gets a revenue equal to �" in M1 and
A
2
� " in M2 so an overall expected revenue of A4 � ". Since A can be chosen arbitrarily

large, we get the desired result. Q. E. D.

Proof of Proposition 3:

We start with the following observation:

Step 1: Myerson�s optimal auction can be implemented while satisfying the ex-post

quitting rights of the bidders in a direct truthful mechanism in which reporting the truth

is a weakly dominant strategy for every bidder.

Proof. This is easily shown by simple adaptation of the second-price auction to

the optimal auction of Myerson. In the asymmetric regular case, the functions ci(vi) =

vi � 1�Fi(vi)
fi(vi)

are increasing in vi, and the optimal auction requires allocating the object

to bidder i� 2 argmax
i2I

ci(vi) whenever ci�(vi�) > 0 (and otherwise the seller should keep

the object). This is achieved in a direct mechanism implementable in dominant strategy

in which bidder i� is required to pay max
j 6=i

�
c�1i (cj(vj)) ; c

�1
i (0))

�
. It is easily checked that

this payment is always less than vi� by the monotonicity of ci(�). A similar construction
can be achieved in the general non- necessarily regular in which intervals of valuations

are treated alike.43 Q. E. D.

The rest of the argument goes as follows. Consider a monotonic bijection  from [c; d]

into itself, and let M be the mechanism obtained from the mechanism MD identi�ed in

step 1 as follows: in M , every bidder i submits a bid bi and mechanism MD is applied

to the pro�le of announcements ( (bi))
n
i=1. Clearly, M

 falls in the class of admissible

mechanisms and reporting  �1(vi) for bidder i with valuation vi is a weakly dominant

strategy. Besides, M achieves Myerson�s optimal auction revenues and no bidder is

willing to exercise his ex-post quitting rights in M .

Consider now the following auction design. Format M is used with probability 1� "
and the �rst-price auction FPA with 0 reserve price is used with probability ". Besides,

43One can easily perturb the format so as to make incentives strict in all cases (even in the non-regular
case).
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bidders get only to know the aggregate distribution of bids of all bidders across both

formats. That is, we consider the bidder-anonymous and format-anonymous feedback

partition in which for all i,
S
(j;k)

f(j; k)g forms the unique feedback class of Pi. We will

show that for a suitable choice of " and  this auction design generates strictly more

revenues that Myerson�s optimal auction. First, we observe that the revenue generated in

this auction design can be written as (1� ")R + "R� where R is the expected revenue

generated in this auction design when M prevails and R� is the corresponding expected

revenue when FPA prevails. It is clear that R is equal to Myerson�s optimal auction

revenue RM , since the behaviors in M are una¤ected by the rest of the auction design

given that bidders have (weakly) dominant strategies in M . Thus, it su¢ ces to show

that R� > RM for suitable choices of " and  .

To this end, let  be de�ned such that44

Yn

i=1
Fi( (b)) =

�
b� bc
d� bc

� n
n�1m

for some m that will be chosen su¢ ciently large later on.

In the limit case in which " = 0, the (perceived) optimal bid in FPA for a bidder

with valuation v would be argmaxb(v�b)
�
b�bc
d�bc�m as � b�bcd�bc�m would represent the perceived

probability that all other bidders�bids are below b. This expression is maximized at bopt

such that

bopt � bc = m

m+ 1
(v � bc)

Let b� be such that b� � bc = m
m+2

(v � bc) and consider " > 0. A bidder with valuation v
will perceive to get at most

(1� ")(v � b�)

�
b� � bc
d� bc

�m
+ "(v � bc) (1)

by bidding b < b�.

44It is clear that such  exists and of course satis�es  (c) = c and  (d) = d.
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By bidding bopt, a bidder with valuation v will perceive to get at least:

(1� ")(v � bopt)

�
bopt � bc
d� bc

�m
(2)

Hence, whenever (2) is larger than (1) we can be sure that a bidder with valuation v

bids no less than bc+ m
m+2

(v � bc). The di¤erence between (2) and (1) writes
�(v) = (1� ")

(v � bc)m+1
(d� bc)m

�
1

m+ 1

�
m

m+ 1

�m
� 2

m+ 2

�
m

m+ 2

�m�
� "(v � bc)

Given that 1
m+1

�
m
m+1

�m � 2
m+2

�
m
m+2

�m
> 0, this allows us to obtain that:

Step 2: 8v > bc, 8m, 9" > 0 such that 8" < ", 8v > v, �(v) > 0.

From step 2 and the above considerations, we infer that for all v > v, bFPA(v) � bc >
m
m+2

(v � bc) in the above auction design as de�ned by  and " < ". The corresponding

value of R� converges to the full information revenue RF as m converges to in�nity and

v converges to bc. It follows that one can �nd m large enough, v close enough to bc and
" > 0 so that R� > RM . This completes the proof of the proposition. Q. E. D.

Proof of Proposition 4:

Consider an auction design assumed to deliver an expected revenue that is "-close to

RF : We will show that this is not possible for " small enough.

To simplify the notation, we consider the case of two symmetric bidders i = 1; 2 and we

allow only for auction designs with format-anonymous feedback partitions. The argument

easily generalizes to the n asymmetric bidder case with arbitrary feedback partitions (by

restricting attention to those formats that are pooled together into one feedback class of

say bidder i).

Observe that in all formats, whenever vj < 0, we must have �kj (vj) = 0 given the

payment rules of the auction. We further let 
 = Pr(vj < 0; j 6= i) > 0, and we let �k(v)

denote the expected revenue loss incurred by the designer in format Mk when bidder i

has valuation v as compared with the full information case.

Let m be large enough and let e < 1
2
Pr(d

3
< vj <

d
2
). De�ne d > d

3
such that
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e = Pr(d < vi <
d
2
). Finally, let f = min(Pr(vi > 3d

4
); e), and � = m"


f
. We de�ne

� =

�
k s.t. 9v > 3d

4
and 9v0 2 (d; d

2
), �k(v) < � and �k(v0) < �

�
Given that the auction design delivers an expected revenue that is " close to RF , it is

readily veri�ed that
P

k2� �k � 1� 1
m
.

Perceived equilibrium payo¤ :

We note that for v > d, if �k(v) < �, then bidder with valuation v should in format

Mk win whenever bj = 0 (which happens with probability 
) and pay at least v � �


.

By monotonicity of the payment rule, this implies that in Mk bidder i with valuation v

perceives in equilibrium to get at most

�



=
m"

f

(the payment when i wins, bids bi and bj > 0 must be at least as large as when i wins,

bids bi and bj = 0).

We also note that �k(v) < � implies that in Mk bidder i with valuation v should win

against some vj 2 (d; d2) with probability at least 1�
�
fv
= 1� m"


f2v
. We will choose " small

enough so that this probability is no smaller than 1
2
.

Perceived equilibrium from downward deviation:

One can rank the various k 2 � by decreasing order of �k(d
3
), and let r denote the

maximum r such that the sum of �k over the �rst r � 1 formats in � is strictly below
1
2

P
k2� �k. We denote by �

sup the formats in � which correspond to the �rst r formats

in this induced order.

Consider k 2 �sup and let v0 2 (d; d
2
), �k(v0) < �. Consider any v > 3d

4
and let v

submits a bid bi = �ki (v
0). Bidder i with valuation v in format Mk must perceive to be

winning with probability at least 1
4
(1�m) Pr(vj <

d
3
),45 and he must be paying at most

45This is because in the format anonymous feedback partition, all the bids �k
0

j (vj) with vj <
d
3 and

k0 2 � n �sup [ frg must be below �ki (v
0) and by construction � n �sup [ frg has a probability at least

1
2 (1�m).
Moreover in Mk, i with valuation v should win against some v0 2 (d; d2 ) with a probability at least

1
2

(see above), and thus by the monotonicty of 'ki (b) with respect to bj he should also win against all bids
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d
2
whenever he wins.46 Given that v > 3d

4
(and thus 3d

4
� d

2
= d

4
), overall such a deviation

makes bidder i feel he can get at least 1
2
(1�m)d

4
Pr(vj <

d
3
) in Mk.

Given that " can be chosen so that m"
f
< 1

2
(1�m)d

4
Pr(vj <

d
3
) we get a contradiction

to the de�nition of a feedback equilibrium (since a bidder should obviously feel that his

perceived payo¤ obtained by following his equilibrium strategy is no smaller than his

perceived payo¤ obtained by following any other strategy). Q. E. D.

which are below �ik(d) with a probability at least
1
2 .

46This is because he is mimicking type v0 who never pays more than v0 when he wins.
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