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Stunting, Adiposity, and the Individual-Level “Dual Burden”
Among Urban Lowland and Rural Highland Peruvian Children
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Background: The causes of the “dual burden” of stunting and obesity remain unclear, and its existence at the indi-
vidual level varies between populations. We investigate whether the individual dual burden differentially affects low
socioeconomic status Peruvian children from contrasting environments (urban lowlands and rural highlands), and
whether tibia length can discount the possible autocorrelation between adiposity proxies and height due to height mea-
surement error.

Methods: Stature, tibia length, weight, and waist circumference were measured in children aged 3-8.5 years
(n =201). Height and body mass index (BMI) z scores were calculated using international reference data. Age-sex-
specific centile curves were also calculated for height, BMI, and tibia length. Adiposity proxies (BMI z score, waist
circumference-height ratio (WCHtR)) were regressed on height and also on tibia length z scores.

Results: Regression model interaction terms between site (highland vs. lowland) and height indicate that relation-
ships between adiposity and linear growth measures differed significantly between samples (P < 0.001). Height was
positively associated with BMI among urban lowland children, and more weakly with WCHtR. Among rural highland
children, height was negatively associated with WCHtR but unrelated to BMI. Similar results using tibia length rather
than stature indicate that stature measurement error was not a major concern.

Conclusions: Lowland and rural highland children differ in their patterns of stunting, BMI, and WCH{tR. These con-
trasts likely reflect environmental differences and overall environmental stress exposure. Tibia length or knee height can
be used to assess the influence of measurement error in height on the relationship between stature and BMI or WCHtR.
Am. J. Hum. Biol. 26:48 1—490, 2014. © 2014 The Authors American Journal of Human Biology Published by Wiley Periodicals, Inc.

Amongst the myriad factors that contribute to obesity
risk, a number of studies have reported an association
between stunting and excess adiposity (Varela-Silva et al.,
2012). This so-called “dual burden” of malnutrition is par-
ticularly relevant in low-middle income countries (LMICs:
Black et al., 2013; Popkin et al., 1996; Varela-Silva et al.,
2012; Victora et al., 2008), where low birth weight and
poor growth often exist alongside a transition to more sed-
entary lifestyles and westernized diets. The mechanisms
underlying this association between stunting and obesity
and indeed the extent to which the dual burden exists at
the individual level remain contentious but are important
for devising strategies to reduce the health and economic
burdens of obesity.

Stunting and overweight might coexist within indi-
viduals because overweight can develop rapidly,
whereas the resolution of height deficits from chronic
malnutrition may take several generations (Wells and
Stock, 2011). Alternatively, there is some evidence that
stunted children have an altered body composition and
fat distribution (Hoffman et al., 2007; Martins et al.,
2004; Mukuddem-Petersen and Kruger, 2004; Wilson
et al., 2012) that predisposes them to excess adiposity
and abdominal fat distribution. This may be due to
greater insulin sensitivity (Martins and Sawaya, 2006)
and/or reduced fat oxidation (Hoffman et al., 2000;
Leonard et al., 2009) among stunted individuals
(although see Said-Mohamed et al., 2012; Wren et al.,
1997).

Rapid postnatal growth is also associated with greater
adiposity (Chomtho et al., 2008; Dulloo et al., 2006; Howe
et al., 2010; Ibanez et al., 2006; Modi et al., 2006; Monasta
et al., 2010; Ong and Loos, 2006; Victora et al., 2007; Wells
et al., 2007), so under some circumstances taller children,
who have undergone the most rapid postnatal growth,
may be at greater risk of obesity (Wells and Cole, 2011).
Rapid postnatal growth may be a “catch-up” response to
prenatal growth restriction (Ibanez et al., 2006; Ong
et al., 2000), which can result in part from the constraints
of small maternal size due to the mother’s own growth
environment (Kramer, 1987; Ramakrishnan et al., 1999;
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Veena et al., 2004; Wells, 2010). Where environmental
conditions change substantially over one or two genera-
tions, for example due to rural-urban migration or the
nutritional transition, both linear growth and adiposity
may be affected in young children, and this may account
for direct associations between height and adiposity, as
has been observed in various populations (Brophy et al.,
2012; Franklin, 1999; Kain et al., 2005; Monteiro et al.,
2003; Wells and Cole, 2011, in press).

These two different scenarios could explain why some
studies demonstrate an association between short stature
and adiposity among children (Fernald and Neufeld,
2006; Kruger et al.,, 2010; Popkin et al., 1996; Said-
Mohamed et al., 2009; Steyn et al., 2005) and adults (Asao
et al. 2006; Florencio et al., 2003; Leonard et al., 2009;
Sichieri et al., 2010) while others show positive correla-
tions between height and adiposity (Brophy et al., 2012;
Franklin, 1999; Kain et al., 2005; Wells and Cole, in
press), or no relationship (Cameron et al., 2005; Freed-
man et al., 2002; Mukuddem-Petersen and Kruger, 2004;
Stanojevic et al., 2007; Walker et al., 2006). The dual bur-
den is thus likely to be contingent on environment and
population history (Stanojevic et al., 2007; Wells, 2012b;
Wells and Cole, 2011).

However, methodological factors may also be relevant.
Studies frequently analyze associations between height (or
height z score) and adiposity indicators such as body mass
index (BMI). When adiposity measures incorporate height
in their denominator (e.g., BMI, waist circumference-height
ratio (WCHtR)), a negative correlation between height and
adiposity may be generated as an artifact of random mea-
surement error in height when the true relationship is
absent or even positive (Haaga, 1986; Timaeus, 2012).

Although direct measures of adiposity (e.g., body com-
position measured by DXA, CT, MRI, or bioimpedance)
are considered more accurate than proxies such as BMI or
WCHtR, the required equipment is often unavailable in
rural settings and LMICs where stunting is common,
whereas weight, height, and waist circumference are
more easily recorded. Using an additional measure of lin-
ear body size other than height in analyses using height-
adjusted adiposity proxies like BMI would help to confirm
that results are not biased by height measurement error.
Tibia length (directly measured or using the proxy of knee
height) potentially offers a good additional linear size
indicator for assessing whether height measurement
error may influence results based on BMI or WCHtR, as it
is measured completely independently of height, unlike
e.g. lower limb length, which is frequently calculated from
sitting and standing heights. In addition, there is growing
evidence that lower leg length, measured as tibia length
or knee height, is a more sensitive indicator of poor
growth than lower limb length or stature (Bailey et al.,
2007; Bogin and Varela-Silva, 2008, 2010; Lampl et al.,
2003; Leitch, 1951; Pomeroy et al., 2012).

Understanding the circumstances under which the dual
burden is observed in individual children will help eluci-
date its etiology and the conditions under which children
are most at risk, and is critical for designing appropriate
interventions to alleviate stunting without exposing
already vulnerable populations to increased chronic dis-
ease in adulthood (Duran et al., 2006; Popkin et al., 1996;
Varela-Silva et al., 2012; Victora, 2009). This study there-
fore has two objectives. First, we examine the individual-
level dual burden among children from two low socioeco-
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nomic status (SES) populations in Peru, one from the
urban lowlands and one from the rural highlands. As high
and low altitude populations are characterized by complex
ecological differences likely involving physical stresses,
disease load, and diet and activity patterns (Masterson
Creber et al., 2010; Niermeyer et al., 2009; Rivera-Ch
et al., 2008), with some of these factors further incorporat-
ing intergenerational effects, we hypothesize that associa-
tions between height and adiposity might not be the
same. Second, we aim to demonstrate how tibia length
can be used to confirm that measurement error in height
does not influence the results.

SUBJECTS AND METHODS

A convenience sample of Peruvian children from two
populations and aged between 6 months and 14 years par-
ticipated in the study (n =447). The first sample came
from Pampas de San Juan de Miraflores, Lima (latitude
—12.0, longitude —77.0; hereafter “lowlands”), a well-
established but unplanned peri-urban settlement (shanty
town) (Checkley et al., 2002; Miranda et al., 2009, 2011)
with an estimated population of 40,000 at the turn of the
millennium (Checkley et al., 2002), but which has contin-
ued to grow since. The second sample came from various
small, relatively isolated rural communities in the Santil-
lana and Vinchos Districts of Ayacucho Region at 3,100—
4,400 m altitude (latitude —13.2, longitude —74.2 for Aya-
cucho city; hereafter “highlands”: Supporting Information
Fig. 1). In 2007, the populations of Santillana and Vinchos
Districts were reportedly 7,000 and 16,000, respectively
(INEI 2009; ODEI—Ayacucho 2008).

Both lowland and highland children are at risk of stunt-
ing due to low SES (Checkley et al., 1998; INEI, 2009;
Sterling et al., 2012). However, their environments differ
significantly in ways that may influence the risk of both
obesity and stunting. High altitude is frequently charac-
terized as a “multi-stress” environment, where people typ-
ically experience greater cold and aridity, lower oxygen
availability, poorer diets, more limited access to health-
care and education, and high levels of physical activity
(Niermeyer et al., 2009; Rivera-Ch et al., 2008). Previous
studies have interpreted the slower growth and shorter
stature of highland populations compared with their low-
land counterparts as reflecting the impacts of these stres-
sors (e.g., Beall et al., 1977; Dittmar, 1997; Frisancho,
1976; Greksa, 2006; Leonard et al., 1990; Pawson, 1976;
Pawson and Huicho, 2010; Pomeroy et al., 2012). Thus,
highland children may be predicted to be at greater risk of
stunting than lowland children.

In terms of obesity risk, rural highland children are
likely to fare better than their lowland counterparts in
that urban environments in South America (as elsewhere
in the world) are typically associated with higher fat and
sugar consumption and reduced physical activity levels,
factors linked to increased obesity risk (Dufour and Piper-
ata, 2004; Fraser, 2005; Jacoby et al., 2003; Masterson
Creber et al., 2010). Although we have no empirical data
on diet and activity in our study sample, our observations
in the field suggest marked differences between the popu-
lations consistent with urban-rural contrasts reported else-
where in South America. Highland children often walked
long distances to school, assisted with subsistence tasks
including herding and gathering firewood, and consumed a
more traditional diet than their lowland counterparts.
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Consistent with our observations on activity among
these children, a study of adults from the same lowland
and highland communities demonstrated markedly lower
physical activity levels in the urban lowlands along with
greater levels of obesity (Masterson Creber et al., 2010).
They reported that the World Health Organization (WHO)
age-standardized prevalence of low physical activity was
2% among rural adults, compared with 32% and 39% in
rural-urban migrants and rural residents, respectively.

In addition, greater cold exposure among highland chil-
dren could influence fat distribution. Previous work has
shown a tendency for greater overall adiposity (Beall and
Goldstein, 1992; Wells, 2012a) and perhaps greater abdom-
inal adiposity in populations from cold climates (Beall and
Goldstein, 1992; though see Wells, 2012a). Variation in fat
distribution has also been suggested to reflect differences
in pathogen load between populations (Wells and Cortina-
Borja, 2013). Although we are not aware of good data com-
paring infectious disease loads in similar populations to
those studied here, respiratory infections are reportedly
more frequent in the highlands (Way, 1976), suggesting dif-
ferences in pathogen profiles as well as access to health-
care. Finally, intergenerational effects acting through
epigenetic mechanisms or the influence of maternal pheno-
type on prenatal and early postnatal growth may also
influence offspring height and body composition, particu-
larly where low birth weight is associated with exposure to
an obesogenic environment (Wells, 2010).

In the lowland study site, households with children of
appropriate ages were identified from a door-to-door sur-
vey conducted as part of the PERU MIGRANTS study
(Miranda et al., 2009) and were approached to participate.
In the highlands, different strategies were pursued
according to the size and location of the community,
including door-to-door enquiry and identifying potential
participants with the assistance of teachers and health-
care workers living in those communities. Written
informed consent was obtained from a parent or legal
guardian, and participants aged 6 years or over gave their
assent. Date of birth was confirmed from official birth or
identification documents, or school records. One child per
household was included, and participation was voluntary.
Participants were born and raised in the study region and
were not affected by chronic medical conditions (aside
from nutritional problems) that might affect growth. The
study received ethical approval from the Institutional
Ethics Committee at the Universidad Peruana Cayetano
Heredia, Lima, and the Health Directorate for Ayacucho
Region (Direccion Régional de Salud Ayacucho, DIRESA).

Anthropometry was measured by a single trained
observer (EP) using standard methods (Cameron, 2004;
Lohman et al., 1988). Height was measured to the nearest
mm as recumbent length in individuals under two years
of age using a Rollametre (Dunmow, UK), and as standing
height in those aged over two years using a Leicester
Height Measure (Seca). Tibia length was measured to the
nearest mm using sliding callipers (Cameron, 2004).
Weight was measured to the nearest 100 g using Tanita
352 scales (Tanita, Japan). Children were weighed in light
clothes, and adjustments made based on the known
weights of standard clothing items. Umbilical waist cir-
cumference was measured using a 15 mm-wide non-
stretch fiberglass tape (Hoechtmass, Germany).

Z scores for height-, weight- and BMI-for-age and weight-
for-height were calculated based on the WHO standards
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(WHO Multicentre Growth Reference Study Group, 2006)
and references (de Onis et al., 2007) for children aged under
and over 5 years, respectively. As there are no reference
data for tibia length, sex-specific internal z scores were cal-
culated for stature, tibia length, and BMI in the combined
lowland and highland sample after fitting centiles using the
LMS method (Cole, 1990; Cole and Green, 1992).

To characterize the study samples, the percentage of
stunted children was calculated following the WHO defi-
nition (height-for-age z score < —2: WHO Expert Commit-
tee on Physical Status, 1995). For BMI-for-age, thresholds
for overweight and obese followed the International Obe-
sity Task Force (IOTF) recommendations (Cole et al.,
2000; de Onis et al., 2007). The numbers of children who
were simultaneously stunted and overweight or obese
(i.e., showed individual “dual burden”) were calculated.
The IOTF cut-offs are only available from age 2 onward,
so the youngest age group was excluded from these analy-
ses (n =86). The proportion of children in each sample
with a WCHtR above the recommended threshold (Brown-
ing et al., 2010) of 0.5 is also presented.

Frequencies of stunting and underweight/overweight
included all the study participants to characterize the
study sample more completely. As height growth appears
to become largely canalized by 2-3 years of age (Dewey
and Adu-Afarwuah, 2008; Martorell et al., 1994; Mei et al.,
2004; Schroeder et al., 1995; Stein et al., 2010) and pat-
terns of weight gain, adiposity, and body composition are
complex and transient during puberty, the analyses of the
relationship between height and adiposity were restricted
to children aged 3-8.5 years (n = 201). Although pubertal
onset was not assessed directly, the vast majority of chil-
dren aged below 8.5 years were prepubertal in a similar
low SES population in the Americas (Wilson et al., 2011).

To assess the relationship between linear body size
(height or tibia length) and adiposity indicators, linear
regression was performed of WHO BMI z score on WHO
height z score, and of internal BMI z score on internal
height or tibia length z score. WCHtR was regressed on
WHO height, internal height, or internal tibia length z
score. For height, both WHO and internal z scores were
analyzed to confirm that the results did not differ accord-
ing to how the z scores were derived. Study site and the
interaction between study site and height or tibia length z
score (as appropriate) were included in the models to test
for differences in the relationship between adiposity and
linear body size measures between the samples. For
WCHLtR, age and sex were included in the model since
WCH{tR was unadjusted for these factors.

To demonstrate the effects of different levels of height
measurement error on the association between stature
and BMI (Haaga, 1986; Timeaus, 2012), random standard
normal deviates were generated, multiplied by various
levels of measurement error (2, 5, or 10 mm), and added
to the original height measurement. BMI was recalcu-
lated with the new height measurement, and z scores for
the new height and BMI were calculated using the WHO
data. Analyses were conducted in SPSS v. 21.0, and
P < 0.05 was considered significant.

RESULTS

Supporting Information Table 1 gives sample sizes and
summary statistics for the study samples by age group,
sex, and population. Stunting was far more prevalent in
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TABLE 1. Frequency of stunted and non-stunted children in “normal,” “overweight,” and “obese” categories based on BMI, using the Interna-
tional Obesity Task Force definitions and WHO reference data

IOTF BMI-for-age category (n)

Stunted Thin
Sample (height z score <—2) (Grade 1-2) “Normal” Overweight Obese Total
Lowland No 4 134 36 19 193
Yes 1 5 2 0 8
Highland No 4 77 3 0 84
Yes 7 68 1 0 76
Total 16 284 42 19 361
TABLE 2. Regression models for BMI z score on height or tibia length z scores for children aged 3-8.5 years
Unstandardized
coefficients
Analysis Regression term SE B P Adjusted R?
WHO BMI and Constant 1.04 0.09 - <0.001 0.231
height z scores Site = highland —0.98 0.23 —0.51 <0.001
WHO height z 0.61 0.10 0.78 <0.001
Site * WHO height z —0.67 0.13 —-0.87 <0.001
Internal BMI and (Constant) -0.27 0.12 - 0.05 0.202
height z scores Site = highland -0.21 0.18 -0.10 0.2
Internal height z 0.65 0.13 0.70 <0.001
Site * Internal height z —0.67 0.17 —0.46 <0.001
Internal BMI and (Constant) -0.28 0.14 - 0.05 0.183
tibia length z scores Site = highland -0.29 0.20 -0.15 0.2
Internal tibia length z 0.64 0.14 0.71 <0.001
Site * Internal tibia length z —0.80 0.19 —0.56 <0.001
SE = standard error.
TABLE 3. Regression models for WCH{R on height or tibia length z scores for children aged 3-8.5 years
Unstandardized
coefficients
Analysis Regression term SE p P R?
WCHtR and WHO Constant 0.61 0.01 - <0.001 0.280
height z score Age -0.01 0.001 —0.46 <0.001
Sex = male —-0.01 0.005 —0.16 0.01
Site = highland -0.04 0.01 —0.44 <0.001
WHO height z 0.01 0.005 0.31 0.02
Site * WHO height z —-0.03 0.006 —0.72 <0.001
WCHtR and internal (Constant) 0.60 0.01 - <0.001 0.258
height z score Age -0.01 0.001 -0.47 <0.001
Sex = male -0.01 0.005 —0.16 0.01
Site = highland —-0.01 0.008 —-0.09 0.3
Internal height z 0.01 0.005 0.26 0.04
Site * Internal height z -0.02 0.007 —0.38 0.001
WCHtR and internal (Constant) 0.60 0.01 - <0.001 0.270
tibia length z score Age —0.01 0.001 —0.46 <0.001
Sex = male —-0.01 0.005 —0.14 0.03
Site = highland —-0.001 0.009 —-0.10 0.3
Internal tibia length z 0.01 0.006 0.36 0.02
Site * Internal tibia length z —0.03 0.008 —0.48 <0.001

SE = standard error.

the highlands than the lowlands (Supporting Information
Fig. 2). Highland stunting rates exceeded 40% while in
the lowlands, stunting rates were 2% among infants and
children, rising to 8% for the oldest age group, which
might reflect delayed maturation compared with the ref-
erence population. In both samples, the majority of chil-
dren had a “normal” BMI by the IOTF criteria
(Supporting Information Fig. 3). The frequency of over-
weight or obesity was highest in the lowlands (~30%),
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while even in the highlands a few children (< 10%) were
overweight between 2 and 8.5 years. Despite relatively
high levels of stunting in the highlands, few children were
classed as thin according to the IOTF criteria. Thinness
was also uncommon in the lowlands. One of the 76
stunted highland children and two of the eight stunted
lowland children were overweight, and none were obese
(Table 1). WCHtR was generally high, exceeding the 0.5
cut-off in more than half of both the highland and lowland
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Fig. 1. Scatterplots of BMI z scores (a) and waist circumference-height ratio (WCHtR: b) against height and tibia length z scores. Interaction
for height or tibia length z score and site (highland or lowland) is highly significant (<0.001 in all cases).

samples. The only exception was for the oldest highland Highland and lowland children showed contrasting
children where 25% had a WCHtR over 0.5 (Supporting relationships between linear body size and proxies for adi-
Information Fig. 4). posity, as indicated by significant interaction terms
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Fig. 2. Scatterplots of BMI z score against height z score demonstrating the impact of increasing measurement error in height on the

stature-BMI relationship.

between site and height or tibia length in all models
(P <0.001). The two proxies for adiposity also showed dif-
ferent relationships with linear body size in the two sam-
ples (Tables 2 and 3, Fig. 1). There was little relationship
between BMI and height or tibia length among the high-
land children, while there was a clear positive association
among the lowland children (Table 2, Fig. 1a). In contrast,
the relationship between WCHtR and height or tibia
length was weakly positive among lowland children
and strongly negative among highland children (Table 3,
Fig. 1b).

Results for the regression of internal BMI on internal
tibia length were similar to those for BMI on height (Table
2, Fig. 1a). In all models, the regression coefficients for
both stature and tibia length were highly significant and
similar in magnitude (B=0.61-0.65, R?=0.18-0.23).
Thus, the analysis of tibia length confirms the validity of
the results using stature in this dataset. Similarly, analy-
ses of WCH{tR and tibia length did not differ greatly from
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analyses using stature (Table 3, Fig. 1b), again supporting
the validity of the results based on height.

Consistent with this finding, adding increasing mea-
surement error to the height data resulted in a progres-
sive decrease in the regression coefficient of BMI on
height as predicted (Fig. 2, Table 4), but even where a
large random measurement error of 10 mm was added,
the pattern of the relationship between WHO height and
BMI z-scores remained unchanged. Thus, the pattern of
association of BMI and height is very unlikely to be due to
measurement error in height.

DISCUSSION

Our data support proposals that there is no simple rela-
tionship between stunting and overweight or obesity risk
among Peruvian children, as highland and lowland chil-
dren showed contrasting patterns in the relationship
between height and adiposity measures (BMI, WCHtR).
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TABLE 4. Results of regression models for WHO BMI z score on WHO height z score for children aged 3-8.5 years, with the progressive addition
of greater measurement error

Unstandardized
Coefficients
Measurement error
added to height (mm) Regression term B SE B P Adjusted R?
0 Constant 1.04 0.09 - <0.001 0.231
Site = highland -0.98 0.23 -0.51 <0.001
WHO height z 0.61 0.10 0.78 <0.001
Site * WHO height z -0.67 0.14 —0.87 <0.001
2 (Constant) 1.05 0.09 - <0.001 0.231
Site = highland -1.00 0.23 —0.52 <0.001
WHO height z 0.60 0.10 0.77 <0.001
Site * WHO height z -0.66 0.14 —0.87 <0.001
5 (Constant) 1.05 0.09 - <0.001 0.225
Site = highland -1.02 0.23 —0.534 <0.001
WHO height z 0.58 0.10 0.75 <0.001
Site * WHO height z —0.66 0.14 -0.85 <0.001
10 (Constant) 1.05 0.10 - <0.001 0.202
Site = highland -1.10 0.24 —0.567 <0.001
WHO height z 0.51 0.10 0.65 <0.001
Site * WHO height z -0.63 0.14 -0.81 <0.001

SE = standard error.

Low SES urban lowland children showed low levels of
stunting, but higher levels of obesity and an increase in
BMI with increasing stature. In contrast, rural highland
children showed higher levels of stunting with low levels
of either thinness or overweight, and no association
between BMI and linear growth measurements, but an
inverse relationship between WCHtR and height.

Although further data are required to elucidate the
relationship between environmental factors and the dual
burden, we propose one explanation for our results. These
two populations are exposed to different environments
which are likely to present different opportunities for
catch-up growth and for the accrual of excess adipose tis-
sue. The lowland pattern would be consistent with the
model whereby children that have undergone the most
rapid postnatal growth are both taller and have greater
adiposity (Franklin, 1999; Wells and Cole, 2011, in press).
Alternatively, as growth was generally better and socioe-
conomic variation greater among lowland children than
among highland children (see also Pomeroy et al., 2012),
the positive relationship between BMI and stature for the
lowland sample may exist because some children may
have had consistently higher levels of nutrition resulting
in taller height and greater weight through childhood.

The weaker association between WCHtR and height
among the lowland children may indicate that much of
the positive association between BMI and growth is due to
lean mass index (lean mass relative to height) rather than
adiposity. BMI z-score may be more sensitive to variability
in lean mass than is WCHtR, hence, BMI may be reflect-
ing lean mass index as well as adiposity (Wells, 2000).
Therefore, WCHtR may be a more reliable indicator of
abdominal adiposity, and it is more closely related to vari-
ous indicators of metabolic disease risk among adults and
children (Browning et al., 2010).

In contrast, the highland children may conform more
closely to the pattern whereby stunting is associated with
altered metabolism and fat distribution (Hoffman et al.,
2000, 2007; Leonard et al., 2009; Martins et al., 2004;
Martins and Sawaya, 2006; Mukuddem-Petersen and
Kruger, 2004; Wilson et al., 2012). The lack of relationship
between BMI and stature among highland children may

result from a marginal diet and high activity levels that
preclude the accumulation of extra body mass across the
range of height. However, the elevated waist circumfer-
ence relative to stature among highland children who
were shorter for their age is consistent with a tendency
for central adiposity (Mukuddem-Petersen and Kruger,
2004; Walker et al., 2002). Direct measurements of body
composition and fat distribution are needed to confirm
that elevated WCHtR indicates a more centralized fat dis-
tribution among these children.

We used two different approaches to avoid the possibil-
ity that associations between height and adiposity might
emerge as an artifact of height measurement error.
Although such artifacts have been proposed previously
(Haaga, 1986; Timeus, 2012), our results indicate that
the magnitude of this effect is modest. We further demon-
strated that our findings are similar whether we indexed
growth status through height z-score, or tibia z-score,
where measurement error is independent of the adiposity
outcome and therefore unable to generate autocorrela-
tions. Application of our approach involving both stature
and tibia length (or knee height) measurements could
help to clarify why the relationship between stature and
adiposity varies between studies, and to exclude this
methodological explanation.

Other methodological problems, such as differing defini-
tions of stunting and obesity, could contribute to the var-
ied results between studies (Flegal and Ogden, 2011;
Freedman and Sherry, 2009). BMI thresholds for
“overweight” and “obese” are not derived from associa-
tions with disease risk for children, unlike those for
adults. They are either derived so that by 18 years of age
the thresholds correspond to those of 25 and 30 kg/m?
defined for adults based on disease risk (IOTF: Cole et al.,
2000), or defined arbitrarily (National Center for Health
Statistics, NCHS: Must et al., 1991; Ogden and Flegal,
2010). Definitions of stunting are similarly arbitrary and
differ between the WHO (WHO Expert Committee on
Physical Status, 1995) and US Centers for Disease Con-
trol (Frisancho, 2008) guidelines, so the prevalence of the
dual burden varies depending on the criteria and refer-
ence data used (Varela-Silva et al., 2012).
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In addition, stunting according to the WHO criteria is
defined purely statistically as height-for-age below —2 z
scores, which approximates 2.5% of a normally distrib-
uted sample. So by definition 2.5% of the WHO reference
sample, purportedly well-nourished and healthy, would
still be classed as stunted, and we can expect similar
“stunting” rates in other well-nourished, healthy samples.
The majority of these “stunted” children may be physio-
logically normal and just fall at the lower extreme of nor-
mal height variation, meaning there may be no
relationship between stunting and obesity risk. Such defi-
nitional problems may be avoided by analyzing the rela-
tionship between stature and adiposity across the full
data range as we have done, which is preferable as the
relationship between health risks and short stature apply
linearly across the height range (Varela-Silva et al.,
2012).

A limitation of our study is that we have no direct data
on dietary intake, activity levels, infection rates, cold
exposure, or parental phenotype that would help us to
interpret the results and suggest with more confidence
why we observed differences between highland and low-
land children in the relationship between stunting and
adiposity. Furthermore, our sample was relatively small,
limiting our ability to examine the causes of variation in
stature and adiposity within populations or between the
sexes and at different ages. Nonetheless, our results offer
interesting insight into the pattern of population differen-
ces in stature and adiposity during infancy and childhood,
and demonstrate that contrasting relationships may occur
in subpopulations living in differing environments.

In conclusion, our results suggest that urban lowland
and rural highland Peruvian children of low SES differ in
their patterns of stunting and adiposity as assessed by
BMI and WCHtR. Lowland children were rarely stunted
but more likely to be obese. There was a positive relation-
ship between height and BMI, but the increase in WCHtR
with height was less marked. This contrasts markedly
with rural highland children, who were more likely to be
stunted and showed little change in BMI but a decrease in
WCH{tR with increasing height. The different associations
between height and adiposity in these two sub-
populations support the notion that there is no simple
association between growth rate and obesity, and that the
association between these traits is context-specific (Wells,
2012b). Elucidating the complexity of the height—adipos-
ity relationship is challenging, but this study also demon-
strates how one methodological problem, that of
measurement error in height affecting some proxies for
adiposity, can be discounted by the using an additional
independent linear body size measurement, such as tibia
length or knee height.
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