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Abstract

This paper describes the use of flexible Bayesian regression models for estimating a par-
tially identified probability function. Our approach permits efficient sensitivity analysis con-
cerning the posterior impact of priors on the partially identified component of the regression
model. The new methodology is illustrated on an important problem where only partially ob-
served data are available – inferring the prevalence of accounting misconduct among publicly
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1 Introduction

This paper develops an approach for estimating partially identified parameters in nonlinear re-

gression settings. Our approach is based on a decomposition of the probability function into an

identified and a partially identified component (Kadane, 1975). This representation permits us

to employ flexible (nonlinear) models when inferring the identified component; in our applica-

tions we utilize Bayesian tree-based priors for the regression functions (Chipman et al., 2010; Hill,

2012). For the partially identified portion of the model, informative priors are crucial, so checking

the sensitivity of posterior inferences to model specification is vital. In our proposed framework,

this sensitivity analysis is straightforward, and may be conducted under many different models for

the partially identified parameters using only one set of samples from the marginal posterior of the

identified parameters.

Our motivating application comes from the corporate accounting literature, where there is sub-

stantial interest in determining what fraction of U.S. firms engage in financial misconduct (such as

misstated earnings); e.g. Dyck et al. (2013). Inferring the prevalence of misconduct is complicated

by an inherent partial observability—not all cases of misconduct are discovered. Any treatment

of this problem will therefore need to analyze how company attributes impact the probability of

misconduct being discovered in addition to the probability of the misconduct itself taking place.

As further evidence of the generality of our approach, we also include a reanalysis of a pub-

lished dataset (from a broken randomized encouragement study of flu vaccine) in the supplemen-

tary material.

The remainder of this section collects necessary background material, providing an overview

of the concept of partial identification (specifically its treatment from a Bayesian perspective) and

describing the empirical data we will analyze. Section 2 lays out our inferential framework and

fixes notation. Section 3 describes the results of our data analysis. Section 4 concludes with a

discussion.
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1.1 Partial identification

A statistical modelp(y | τ) indexed by a parameterτ ∈ T is said to beidentifiableor identifiedif

parameter values correspond uniquely to distinct probability distributions over observables. That

is, p(y | τ) = p(y | τ′) for all y if and only if τ = τ′. A model that is not identified is simply

referred to as unidentified. The importance of identifiability as a modeling concern has its ear-

liest roots in econometrics, the term first being introduced in Koopmans (1949). Other seminal

references include Haavelmo (1943, 1944) and Koopmans and Reiersol (1950). Unidentifiability

arises naturally in econometric analysis of observational data as a byproduct of imperfect measure-

ment and/or various data censoring mechanisms. The Bayesian perspective on identifiability has

been comprehensively reviewed in Aldrich (2002) and more recently in San Martı́n and Gonźalez

(2010).

The notion ofpartial identifiabilityor partial identificationof parameters expands the concept

of identification to consider cases of partial learning. A more general definition of identifiability

is p(y | τ) = p(y | τ′) if and only if t(τ) = t(τ′) for some non-constant functiont; heret is an

“identifying function” in the terminology of Kadane (1975). Whent is one-to-one, we recover the

traditional definition of identifiability, orpoint identification. When thet with the finest preimage

satisfying this condition is many-to-one, the model is partially identified — the intuition being that

asymptotically we can only isolate the value oft(τ) consistent with the data, which will correspond

to a proper subset ofT with more than one element. For this reason, and in contrast to point

identification, it is common to talk ofset or partial identification. For a more rigorous exposition

of the theory of functional identification, refer to Kadane (1975).

Early examples of the partial identification concept include Frisch (1934), Fréchet (1951) and

Duncan and Davis (1953). In recent years, interest in partial identification has accelerated; an

excellent recent review article is Tamer (2010) which includes comprehensive citations. See also

the book-length treatments by Manski (Manski, 1995, 2003, 2007). Recent contributions from a

Bayesian perspective have focused primarily on asymptotic properties of the posterior distribu-

tion over partially identified parameters, notably Gustafson (2005) and Gustafson (2010). Moon

and Schorfheide (2012) examine asymptotic discrepancies between Bayesian credible regions and

frequentist confidence sets for set-identified parameters. Florens and Simoni (2011) consider a
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theoretical framework for studying posteriors of partially identified parameters in nonparametric

models. Kline and Tamer (2013) develop large sample approximations of posterior probabilities

that particular parameter values lie in the identified set without reference to a prior on the partially

identified parameter. See also the recent book by Gustafson (2015).

Our approach differs from these recent contributions in three ways. One, it is tailored to a non-

linear regression setting with possibly many predictors and complicated inter-relationships; most

of the recent literature considers much simpler examples, often without any covariates. Two, our

focus is on practical methods for making inferences on parameters of interest with finite sam-

ples; most of the recent literature has focused on theoretical and specifically large-sample issues.

Three, we introduce an efficient computational scheme for sensitivity analysis, an issue which

has received relatively little attention in the literature. Most previous work focuses on wholly

unidentified parameters and typically requires multiple iterations of model fitting; see e.g. Mc-

Candless et al. (2007); Molitor et al. (2009) and McCandless et al. (2012) in the context of causal

inference/observational data analysis, and Daniels and Hogan (2008) and chapter 15 of Little and

Rubin (2002) for extensive reviews in missing data problems.

1.2 Application: inferring the prevalence of accounting misconduct

Since 1982, the United States Securities and Exchange Commission (SEC) has released public

notices called Accounting and Auditing Enforcement Releases, or AAERs. AAERs are financial

reports “related to enforcement actions concerning civil lawsuits brought by the Commission in

federal court and notices and orders concerning the institution and/or settlement of administrative

proceedings” (Securities and Exchange Commission, Accounting and Auditing Enforcement Re-

leases, 2014). Informally, AAERs comprise a list of publicly traded firms that the SEC has cited

for misconduct in one form or another.

For brevity, we adopt the nomenclature “cheating” and “caught”, with the understanding that

“cheating” is operationally defined as any accounting anomaly that would lead to an AAER being

issued, were it explicitly brought to the SEC’s attention. This interpretation entails that all caught

firms are, by definition, “cheaters”.

Our goal is to provide an estimate of the prevalence of accounting misconduct in the U.S. econ-
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omy, defined as all actual (caught) and potential (uncaught) AAERs. Predicting which companies

are likely to cheat, on the basis of observable firm characteristics, is complicated by the fact that

there are potentially many instances of misconduct of which the SEC is unaware. Thus, we do not

directly observe which firms cheat, but merely the subset of cheating firms that werecaughtdoing

so. A naive regression analysis would therefore only speak to the question of which attributes are

predictive of getting caught cheating. To complete the analysis, one must incorporate knowledge

or conjectures concerning the impact firm attributes have on the likelihood of misconduct being

discovered.

Problems with a similar structure to the SEC data appear in the literature under the heading

of “partially observed binary data”. Regression models for such data have been studied in many

different fields, going by various names. For example, Lancaster and Imbens (1996) considers the

case where the observation model is covariate independent under the name “contaminated case-

control”, building on Prentice and Pyke (1979). Poirier (1980) studies such data under the rubric

of “partially observed bivariate probit models”, building on the work of Heckman (1976, 1978,

1979). Our analysis is similar to the approach taken in Wang (2013), which adapts the bivariate

probit model of Poirier (1980) for the securities fraud problem.

Whereas these earlier references considered particular parametric models, such as the probit

model, and studied identification conditions in that setting, we proceed in the more generic setting

of nonlinear regression models, which leads to partially identified parameters. Our approach will

be to confront this partial identification with informative priors.

2 Prior specification for partially identified regression models

As in Dawid (1979); Gelfand and Sahu (1999) and Gustafson (2005), we will work with a reparam-

eterization ofτ into an identified componentφ and an unidentified component (θ, η). We separate

the unidentified component intoθ, which appears in our estimand of interest, andη, which collects

hyper parameters. We will be interested in the case whereφ andθ are functions of a fixed vector

of covariates x. Therefore, we will refer toφ, φ(x) or φx (respectively,θ, θ(x) or θx) depending on

context. We will useφ when the dependence on x is inessential, we will useφ(x) to emphasize that
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φ is a function of x, and we will useφx to refer to point-wise evaluations ofφ(x). One may allow

η to be a function of x as well, but we do not explore this possibility here.

The joint distribution over data and parameters in a partially identified model can be written as

π(η, θ, φ, y) = f (y | η, θ, φ)π(η, θ, φ),

= f (y | φ)π(η, θ, φ),

= f (y | φ)π(φ)π(η, θ | φ),

where the conditional independence implied in moving from the first line to the second line con-

stitutes a definition of partial identification. It follows that the joint posterior distribution of the

identified componentφ and the unidentified component (θ, η) can be written as

π(η, θ, φ | y) =
f (y | φ)π(φ)π(η, θ | φ)

f (y)
=

f (y | φ)π(φ)
f (y)

π(η, θ | φ) = π(φ | y)π(η, θ | φ). (1)

Theorem 5 of Kadane (1975) shows rigorously that the parameter space of any model can be de-

composed in this way. Essentially, there are three cases to consider. If the model is fully identified,

then (η, θ) is simply a constant random variable. When the model has fully unidentified elements,

the support ofπ(η, θ | φ) does not depend onφ; the data inform about (η, θ) only via the presumed

prior dependence represented in the choice ofπ(η, θ | φ). In the partially identified case, which we

focus on here,π(θ | φ, η) has support restrictions that do depend onφ; we will denote this restricted

support byΩ(φ, η).

Our approach will be to directly specifyπ(θ | φ, η) with supportΩ(φ, η). In principle,η can be

integrated out a priori, butη often proves useful as a device for parameterizing the conditional prior

for θ, in conjunction with a possiblyφ-dependent priorπ(η | φ). Our SEC analysis specifiesπ(η | φ)

with non-trivial support restrictions depending onφ, while in the flu analysis in the supplement we

takeπ(η | φ) = π(η). Algorithmic details are given in section A.1. See Gustafson (2005, 2010) and

Florens and Simoni (2011) for similar decompositions.

More specifically, partial identification arises in our applied analysis due to partially observed

multivariate binary data. The complete data consist of binary vectorsU = (U1, . . .Uk), of which

only certain subsets are simultaneously observable. Interest is in some functionalp(x) of the entire

joint distribution p(U1, . . .Uk | x), where x denotes a vector of fixed covariates. Due to the par-

tial observability,p(x) must be reconstructed from an identified functionφ(x) and an unidentified

6
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

on
do

n]
 a

t 0
3:

02
 1

4 
M

ar
ch

 2
01

6 



ACCEPTED MANUSCRIPT

functionθ(x).

2.1 A Gaussian process model for the partially identified regression

Furnishing prior information regardingθ(x) in a predictor-dependent manner strongly motivates

the use of simple parametric models. For starters, consider the construction

F−1{θ(x)} = h(x)β, (2)

whereF−1 is a link function andh denotes some transformation or subset of the covariate vector.

In this caseη ≡ β, and a prior overθ(x) is induced by the priorπ(β | φ). A chief difficulty with this

type of specification is that nonlinear (possibly discontinuous) regression models forφ(x) impose

complex support restrictions onπ(β | φ) — indeed, some samples from the posterior forφ(x) may

contradict the model forθ(x) entirely, meaning that they imply a set of bounds forθ(x) such that

no feasibleβ exists.

To address this problem, we expand the prior overθ(x) to acknowledge that (2) is only a guess

as to the form of the regression function. Specifically, wecenterour model forθ(x) at (2) by

assuming that

F−1{θ(x)} | φ(x), η ∼ GP (h(x)β,ΣX)1[θ(x) ∈ Ω{φ(x), η}] (3)

for all x ∈ X. HereGP(m,ΣX) denotes a Gaussian process kernel with meanm and covarianceΣX

and the indicator function denotes that our prior is truncated to be supported onΩ{φ(x), η}.

Additionally, we will assume that (3) is supported on the discrete set of observed data points,

i.e. X = {xi}ni=1, (though additional design points of interest could be included as well). The

assumption of a discrete support yields computations involving a truncated multivariate normal

prior, conditional onβ. Note that in this specification,β may be given a proper prior distribution,

which may depend onφ(x), or may be fixed at predetermined values. In our empirical analysis,

we assume diagonal covariance functions, which we denote asΣX = σ2I. Under this specifica-

tion, sampling from(θx | η, φx) reduces to drawing samples from independent truncated univariate

normal distributions.

Note that choosing a multivariate normal prior overβ, with covarianceΣβ, implies a Gaus-

sian process prior onθ (marginalizing overβ) with non-diagonal covarianceh(x)TΣβh(x) + σ2I.
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This representation can be exploited to approximate Gaussian process priors with general covari-

ance functions, without requiring onerous draws from multivariate truncated normal distributions

(Pakman and Paninski, 2014). However, we do not explore this possibility further here.

2.2 Illustration

It is instructive to observe graphically how the approach works in a simple problem where the

predictor variablex is one-dimensional. Therefore, consider the following definitions ofφ(x) and

θ(x) for x ∈ [0,1]:

φ(x) = 0.05+ 0.7 logistic(14 (x− 0.5)),

θ(x) = 0.1+ 0.7 logistic(16 (x− 0.5)+ 50 (x− 0.5)2)

These formulae are included for replicability, but the set-up is easiest to see graphically as illus-

trated in Figure 1a. The important features are thatφ(x) andθ(x) both lie between 0 and 1 and

φ(x) ≤ θ(x) for all values ofx ∈ [0,1]. Suppose thati = 1, . . . , n = 100 data pairs (xi , yi) are

observed, with Pr(Yi = 1 | Xi = x) = φ(x), and suppose that interest is in the ratiop(x) ≡ φ(x)
θ(x) .

Clearly p(x) is unidentified through its dependence onθ alone. Nonetheless, the data do inform us

about possible values ofθ(x), and hencep(x), due to the constraint thatφ(x) ≤ θ(x). That is, in this

exampleΩ{φ(x), η} = {θ(x) | φ(x) ≤ θ(x) ≤ 1 ∀x ∈ X} (no hyperparameterη has been designated

yet).

We specify a prior onθ(x) as

Φ−1(θ(x)) ∼ GP
(
β0 + β1x+ β2x2, σ2I

)
1[θ(x) ∈ Ω{φ(x), η}]

whereΦ(∙) is the standard normal inverse cumulative distribution function. We fixβ0 = 1, β1 =

−9, β2 = 9, to mimic the elicitation of a “U-shaped” regression function. In the notation of section

2, we haveh(x) = (1, x, x2) andβ = (1,−9,9)T .

As seen in Figure 1a, this prior guess is grossly incorrect. However, in regions where the data

are uninformative via the bounds supplied byφ(x), the prior happens to be close to the truth. There-

fore, this prior, coupled with the observed data, yields a reasonably accurate estimate ofθ(x) and

of p(x) (Fig. 2a, left) in the sense that the posterior 95% credible interval ofα ≡ n−1 ∑
i φ(xi)/θ(xi)
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contains the true value (Fig. 2a, right). The raw estimate from the data, i.e., assumingθ(x) = 1

for all x, would have given the much smaller estimate of approximately 1/2. Of course, this is an

ideal scenario — the prior forθ is correct where the data are uninformative, and the data are fairly

informative — throughΩ{φ(x), η}— where the prior forθ is incorrect. In general we will have no

such assurances, so it is important that the modular prior is carefully chosen and that the sensitivity

of posterior inference to multiple specifications of the modular prior is assessed. In appendix B we

consider other, less fortuitous choices of prior distributions.

It is possible to further improve our estimate by supplying additional prior information. Assume

that we believeφ(x)/θ(x) < c for all x, which implies thatφ(x)/c ≤ θ(x). Takingc < 1 defines

a larger lower bound onθ(x) than the necessary one, which implicitly takesc = 1. To connect

this specification with the more abstract formulation of section 2, we haveη ≡ c andΩ{φ(x), η} =

{θ(x) | φ(x)/c ≤ θ(x) ≤ 1}.

Note that the relationship betweenφ, θ andc also implies thatc ≥ supX φ(x). Hence the data

are partially informative aboutc as well, and may contradict any particular fixed value. So rather

than fixingc to some valuec0 we assign it a proper prior, concentrated aroundc0 and truncated to

the appropriate region, with a scale parameter controlling the degree of prior belief inc0. For this

example we assignc a Beta(vc0, v(1 − c0)) distribution, truncated to have supportc ≥ supX φ(x).

Here we takec0 = 0.65 andv = 100, considering other specifications in appendix B.

The results under this more informative prior are shown in Figures 1b and 2b. Because the

true parameter values satisfyφ(xi)/θ(xi) < 0.8 across alli, the chosen prior onc induces a prior on

θ(x) which proves beneficial. Different choices ofm(x) and prior overc yield different posterior

estimates; Appendix B explores additional specifications.

3 Analysis of AAER data, 2004-2010

Let Zi indicate “cheating” in firm-yeari, let Wi indicate “getting caught” in firm-yeari, (U1 = W

andU2 = Z) and let x denote a vector of firm attributes (some which vary by year, such as income,

and others that are constant across years, such as industry). We assume that with some probability,

cheaters get caught, but that there are no firms who get caught when they are not cheating (this
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is consistent with our operational definition of “cheating”). Additionally, the data are “presence-

only” in that we have no confirmation that any given firm is certainly non-cheating.

The parameter of interest is the marginal firm-year probability of cheating,

p(x) = Pr(Z = 1 | x) =
Pr(W = 1,Z = 1 | x)
Pr(W = 1 | Z = 1, x)

from which we may determine the overall prevalence of cheating across all firms as

α ≡ n−1
n∑

i=1

Pr(Zi = 1 | xi) = n−1
∑

i

Pr(Zi = 1,Wi = 1 | xi)
Pr(Wi = 1 | Zi = 1, xi)

. (4)

Equivalently, for each firm-year we observeYi ≡ ZiWi instead of (Zi ,Wi), whereYi indicating

whether a firm received an AAER (cheated and got caught), giving

φ(x) = Pr(Z = 1,W = 1 | x) = Pr(Y = 1 | x); θ(x) = Pr(W = 1 | Z = 1, x).

As φ(x) is simply the (conditional) probability of the observed binary dataY, it is point iden-

tified. In our application, we estimateφ(x) using the BART model described in the Appendix.

BART has been shown empirically to be an excellent default nonlinear regression method, with

a demonstrated ability to handle many noise variables and strong nonlinearities (Chipman et al.,

2010; Hill, 2012).

The partial identification ofp(x) arises simply because 0≤ p(x) ≤ 1. Givenφ(x), the posterior

on p(x) is defined by the prior overθ(x), truncated to regions satisfying

0 ≤
φ(x)
θ(x)

≤ 1, (5)

for all x ∈ X. In other words, in our applied setting,Ω{φ(x), η} = {θ(x) | φ(x) ≤ θ(x), ∀x ∈ X}, just

as in our example from section 2.2.

3.1 Data

Our data are aggregated from three main sources. First, the AAER response variable was obtained

from the Center for Financial Reporting and Management (CFRM) at Berkeley’s Haas School of

Business. Detailed information about the full data set can be found in Dechow et al. (2011).
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Second, additional firm attributes are obtained from the CompuStat North America Annual

Fundamentals database via the Wharton Research Data Service (WRDS). These data are then

merged with the AAERs using Global Company Key (GVKEY) by year. Specifically, the covariate

vector x consists of:

• fiscal year,

• cash,

• net income,

• capital investments,

• SIC industry code,

• qui tam dummy variable.

Cash, net income and capital investments are all recorded as a fraction of the firm’s total assets.

Standard industrial classifications are given in terms of ten major divisions, denoted A-J by the

Occupational Safety and Health Administration. Thequi tamdummy variable is derived from the

SIC codes; it denotes if a firm is in an industry where persons responsible for revealing misconduct

are eligible to receive some part of any award resulting from subsequent prosecution. Similar to

Dyck et al. (2008) and Jayaraman and Milbourn (2010), our qui tam variable is set to one for

firms with SIC code 381x, 283x, 37xx, 5122 or 80xx, which includes healthcare providers and

pharmaceutical firms, and airplane, missile, and tank manufacturers. It is reasonable to suppose

that firms in these industries have a greater likelihood of any misconduct being exposed as a result

of incentivized employees.

Finally, a keyword search at the Financial Times web page (www.ft.com) was conducted on

each company name and the number of search results was recorded by year. This variable provides

a crude measure of media exposure. Although discrepancies between firm names as recorded in

CompuStat and firm names as reported in Financial Times articles lead to measurement error of

this variable, it still provides a reasonable proxy for name recognition and cultural visibility. Most

firms will never be mentioned in any news article; a few firms are routinely mentioned in the press.

To adjust for the fact that web traffic has increased over that period, we normalize the search results

count by the total number of hits across all companies in a given year.
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We restrict our analysis to U.S. firms that had positive net income for the given year, consider-

ing the period between 2004 and 2010, for a total of 6,641 unique firms and a total ofn = 25,889

total firm-year observations.

3.2 Surveillance model

The unidentified functionθ(x) can be thought of as a “surveillance” probability; it encodes which

attributes invite (discourage) SEC scrutiny, making cheaters more (less) likely to be caught. Its

effect is to inflate the probability of cheating, which is intuitive since the proportion of caught

cheatersφ(x) represents an obvious lower bound on the proportion of actual cheaters.

Our surveillance model takes the form reported in expression (3) withΣX = σ2I and using a

logit link. We scale and shift all variables to reside on the unit interval, taking shifted log transfor-

mations of the financial times search hits and net income. We chose to place nonzero coefficients

on the (fiscal) year of misconduct, media exposure (as measured by Financial Times search hits),

income, cash, and a dummy for qui tam industries. We have specific reasons to expect that these

variables are important determinants of the surveillance probability, allowing us to chose informa-

tive values forβ.

First, note that the frequency of AAERs is substantially higher in earlier years; see Figure 3.

AAERs may be filed retroactively, so the opportunity to discover and report misconduct in a given

year increases over time. Fitting a curve to the data in Figure 3 suggests a coefficient of roughly

β f year = −2.5. Observe that this makes the posterior probability of cheating approximately constant

across the years examined, which seems plausible.

Second, it is reasonable to assume that media attention naturally draws SEC scrutiny (Miller,

2006). The SEC has a vested interest in catching and making examples of any high-profile cheaters.

We setβFThits = 2, implying approximately a six-fold difference in the probability of misconduct

being discovered between a company with no media exposure and the company with the highest

media exposure. Similarly, we setβquitam = 1, implying approximately a two-fold increase in

misconduct being discovered for companies in qui tam industries where employees are incentivized

to report misconduct. These observations constitute the subjective information contained in our

first observation model A.
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To determine the intercept term, consider the following argument: AAERs are quite rare, with

an observed aggregate incidence in our sample of only 0.5%. Potentially this is because very few

firms exhibit actionable misconduct, but more likely it is because the SEC has limited resources

to identify and pursue violations. Accordingly, one sensible calibration method would be fix the

mean probability of discovery across all firms. Fixing this quantity and the other elements ofβ,

we may then solve for the interceptβ0. In the case of model A, fixing the average discovery rate to

30% givesβ0 = 0.

After obtaining posterior samples under model A, we observe that cash appears to have a

negative impact on the probability of cheating. In contrast, net income appears to have a positive

impact on the probability of cheating. We might surmise that these trends are due to unadjusted

surveillance probabilities. For example, one could argue that having large amounts of cash on

hand (relative to total assets) provides a measure of “wiggle room” that makes certain kinds of

misconduct harder to discover. Likewise, firms with high income are more likely to draw SEC

attention than firms with smaller income streams. To compare our results under these narratives,

we specify a second surveillance model (B), withβcash = −1.5 andβincome = 2.5. Setting the

intercept for model B to match the 30% discovery rate of model A givesβ0 = −0.85. Surveillance

models A and B are shown side-by-side in Table 1.

3.2.1 Upper bounding firm-year cheating probability

Finally, we introduce an additional parameterc that allows us to interject prior information con-

cerning an upper bound on the probability of cheating, as was done in the example of section

2.2. Recall that the partial identification in this application is driven by the inequality Pr(Z =

1 | x) = φ(x)/θ(x) ≤ 1, which impliesφ(x) ≤ θ(x); the left hand side of this latter inequal-

ity is identified by the data. Extremely high probabilities of cheating are implausible, moti-

vating us to consider alternative truncations: Pr(Z = 1 | x) = φ(x)/θ(x) ≤ c, which implies

φ(x)/c ≤ θ(x) andc ≥ φ(x) for all x. In terms of the notation in section 2, we haveη ≡ c and

Ω{φ(x), η} = {θ(x) | φ(x)/c ≤ θ(x) ≤ 1 ∀x ∈ X}. As in our example in section 2.2,φ(x) is identified

so the data may contradict any particular value ofc.

We specifyπ(c | φ(x)) ∝ Beta(10c0,10(1− c0))1{c ≥ supX φ(x)} so thatc0 captures prior
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beliefs about the upper bound on Pr(Z = 1 | x), the probability of cheating for any firm. Our prior

for (θx | c, φX) again takes the form in expression (3), with various fixed specifications ofβ and

h(x) as described above, andΩ{φ(x), η} = {θ(x) | φ(x)/c ≤ θ(x) ≤ 1 ∀x ∈ X}. The covariance is

taken asσ2I, with bothσ2 andc0 subject to a range of specifications for sensitivity analysis in the

following subsection.

Our surveillance models allow us to include prior information in the form of subject matter

knowledge about the impact of various covariates. We are also able to include additional subjective

prior information aboutα ≡ n−1 ∑
i Pr(Wi = 1 | Zi = 1, xi) — the overall prevalence, i.e., average

probability, of a cheating firm getting caught — via the intercept terms, and maxiPr(Zi = 1 | xi) —

an upper probability on any firm cheating — via the prior onc. Computational details are included

in the Appendix.

3.3 Results

We conduct a sensitivity analysis by varying the parametersσ andc0 for both model coefficients

βA andβB above. Specifically, we consider two settings of each (σ ∈ {0.25,0.5} andc0 ∈ {0.4,0.8})

for a total of eight candidate models. We study the impact these choices have on both Pr(Z = 1 | x)

as a function of individual predictor variables, and also on the overall misconduct prevalenceα.

Figure 4 shows the posterior distribution of the adjusted cheating prevalence under the different

models. As can be seen in the top panel, increasingσ or c0 alone has little effect on the overall

adjusted cheating prevalence. These two parameters control different aspects of the surveillance

uncertainty: a highc0 implies that any probability of cheating is plausible, whereas a highσ

allows large deviations from the specified surveillance model logistic term. Under these values of

c0 andσ, we observe that the prevalence of misconduct is inferred to be less than 15% with high

probability.

The bottom panel of Figure 4 shows the posterior prevalence for each different SIC code un-

der the two priors, fixing (σ = 0.25, c0 = 0.4). Under both priors, SIC category D, representing

“electricity, gas, steam and air conditioning supply”, shows much lower cheating prevalence than

categories (B,E,H), which correspond to “mining and quarrying”, “water supply, sewerage, waste

management and remediation activities”, and “transportation and storage” respectively. This find-
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ing squares with prior expectation that misconduct prevalence should vary by industry.

Because BART is nonlinear, summary plots of the impact of individual covariates are chal-

lenging to visualize, even if the surveillance model is relatively simple, such as our linear logistic

specification. It is instructive, therefore, to examine the implied probability of cheating as one

varies individual covariates, for a given firm. That is, how does Pr(Z = 1 | x) change as a function

of xj while holdingx− j fixed?

To demonstrate this approach, we focus on a specific firm, ConAgra Foods of Omaha, Nebraska

(simply because it yields illustrative plots). Figure 5 shows Pr(Z = 1 | x), varying media attention,

cash, and net income under priors A and B and for various combinations ofc0 andσ. As expected,

the surveillance model coefficients on cash and net income reverse the associated slope of the

probability of cheating. High values of bothσ andc0 results in posterior credible intervals of up

to 40% probability of cheating for some values of net income.

We have reported here only a small number of the possible variations one would presumably

want to investigate; we make no claims that models A and B are ideal or even necessarily good

or realistic models. Rather, our sensitivity analysis demonstrates a range of possible comparisons

that one might undertake when investigating how various assumptions interact with the data via

the identified portion of the model.

An important upshot of our analysis is that the surveillance model intercept terms—which

govern the average probability of misconduct discovery (getting caught) across firm—and the pa-

rameterc— which defines the upper bound Pr(Zi = 1 | xi) ≤ c for all i — play dominant roles

in determining the inferred overall prevalence of misconduct. For our choices of 30% miscon-

duct discovery probability andc0 = 0.4 or 0.8, we find that no more than 15% of firms engage in

accounting misconduct.

This finding is consistent with that of Dyck et al. (2013), who put the prevalence at between

4.74% to 15%, based on a clever natural experiment resulting from the dissolution of the large

accounting firm Arthur Andersen and the subsequent re-audit of its clients following the Enron

scandal. Unavailability of their exact data, as well as the unavailability of the data of Wang (2013)

at the time of writing, means that we cannot compare their precise estimates with those from our

model. However, our partial identification analysis suggests that any similar analysis is likely to
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yield similar conclusions in the matter of overall prevalence. After all, there is only so much infor-

mation in the available data, with the rest coming from auxiliary assumptions about the surveillance

probability, whether those assumptions are explicit, as in our model, implicit, as in the joint like-

lihood assumed by Wang (2013), or based on supplementary evidence, as in Dyck et al. (2013).

To the extent that these various approaches supply similar assumptions, they will yield similar

conclusions. Our approach, by layering such assumptions over the dataex post, permits system-

atic sensitivity analysis rather than one-off comparisons of published studies whose authors are

committed to one particular approach.

4 Discussion

We conclude by comparing our modular prior approach to that of Wang (2013), which similarly

attempts to infer the prevalence of fraud using the SEC data, on a simulated data set. This compar-

ison serves to further highlight the advantages of our approach relative to parametric alternatives

in problems exhibiting partial identification. We consider the performance of our approach relative

to a correctly specified parametric model and also to a misspecified parametric model.

Wang (2013) builds off Poirier (1980), which considers a latent Gaussian utility formulation of

the bivariate probit model:


Z∗

W∗


 ∼ N(μ(x),Cρ) (6)

whereμ(x) = (γ0 + xTγ, δ0 + xTδ) and Cρ is a 2-by-2 correlation matrix with correlation parameter

ρ. The latent utilities (Z∗,W∗) give rise to bivariate variablesZ ≡ 1(Z∗ > 0) andW ≡ 1(W∗ > 0).

Poirier (1980) establishes that (subject to certain exclusion restrictions) the parameters of the model

(γ, δ and the correlation parameterρ) are identified even if onlyY ≡ ZW is observed. Wang

(2013) proposes to leverage this result, while deviating from the latent utility formulation. In

particular, despite making a “no false positives” assumption (as we did in our analysis), Wang

(2013) continues to equate Pr(Z∗ > 0 | x) with the probability of cheating which corresponds to

the somewhat arbitrary model:

(7)
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In other words, Wang (2013) identifiesγ from the first equation above, invoking the result of Poirier

(1980), and then proceeds to interpretγ as the parameter from a bivariate probit modelwithoutthe

no false positives assumption. While there is nothing formally wrong with this model, its peculiar

form appears not well motivated.

All the same, if (7) is in fact the correct model, it is instructive to observe what our approach

gives up to it. Conversely, if (7) is used in a misspecified setting, how do its results compare to

ours? To investigate, we simulatedn = 2000 observations from the following two models. First,

we generated data according to (7) by drawingY ≡ WZ with (W,Z) coming from a bivariate

probit model withγ0 = δ0 = −1/2, γ = (−1,3/4,0), δ = (−3/4,0,−1/2), andρ = 1/2, with x1

drawn from a Uniform(−π/2, π/2) distribution, and x2 and x3 drawn from a Uniform(−3π/2,3π/2)

distribution (independently). This specification ofγ andβ satisfies the exclusion restriction of

Poirier (1980), in that distinct predictor variables are omitted from each linear equation in the

probit mean function.

A Bayesian specification of Wang (2013), with vague conjugate priors forβ andγ and a uni-

form prior on (−1,1) for ρ, was fit using a Gibbs sampler algorithm with a Metropolis-Hastings

update forρ. Our modular prior approach proceeds by fitting the BART model (with default priors

as described in Chipman et al. (2010)) to the observed data (Yi , xi) and constructing the posterior

estimate of Pr(Zi | xi) by dividing posterior samples ofφx by draws ofθx from (3), with diag-

onal covarianceσ2I with σ = 0.1 and mean function set to match the true Pr(W = 1 | Z = 1)

implied by (7), i.e. m(x) = Φ(γ0 + xTγ, δ0 + xTδ, ρ)
/
Φ(γ0 + xTγ) . Note that in this case we de-

viate from our previous linear specification,m(x) = h(x)β, because we wish to center our prior

at the corresponding probability function from Wang (2013). As in our applied analysis, we have

Ω{φ(x), η} = {θ(x) | φ(x) ≤ θ(x), ∀x ∈ X}.

The results are depicted in Figure 6a. As expected, the Wang (2013) model, which achieves

point-identification when it is correctly specified, yields much more accurate inference compared

to our approach. Meanwhile, even with a correct surveillance model in this case, there persists a

modicum of unresolved uncertainty, which reflects that in our model the estimand is only partially

identified. Additionally, we see the impact of the BART prior pulling the estimated probabilities

towards 1/2 in regions near the edges where there are fewer data points.
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To demonstrate how inferences are impacted when the linear probit model is misspecified,

we chooseμ(x) = (0.5 + sin (x+ π)Tγ, sin (x)Tδ) for the above values ofγ and δ. The Wang

(2013) model is fit using the unadjusted linear predictors. The modular prior approach is fit

the same as above, but centering (using 3) at the correctly specified surveillance model:m(x) =

Φ(0.5+ sin (x+ π)Tγ, sin (x)Tδ, ρ)
/
Φ(0.5+ sin (x+ π)Tγ) .

These results are depicted in Figure 6a. As might be expected, under misspecification the

Wang (2013) model badly mis-estimates the true Pr(Zi = 1 | xi). Our approach, with good prior

information, still does not achieve point identification, but manages to avoid the gross mis-fit of the

Wang (2013) model by successfully recovering the nonlinear identified component from the data.

Naturally, if we had supplied invalid surveillance models, our approach may have been far off

the mark in both cases. The point of this demonstration is merely that proceeding in a partially

identified fashion is a more conservative course of action than choosing an implausible model on

the grounds that —should it happen to be correct— it would deliver the desired point identifica-

tion.

4.1 Summary

Working directly with modular priors in partially identified settings has several advantages. First,

it allows identified parameters to be modeled flexibly, permitting the data to be maximally infor-

mative, while simultaneously allowing the analyst to specify informative priors for the underiden-

tified components of the model. It may appear that this tactic stands in contrast to the approach

of Gustafson (2010) (for example) which advocates working with a scientific model directly in the

τ parametrization. However, nothing in our approach precludes the use of such subject-specific

information. Rather, we argue that typical prior specifications forτ do not allow separately modu-

lating the prior informativeness on the identified and unidentified components; by working directly

in the (φ, θ) representation, we achieve precisely this sort differential informativeness. Nonetheless,

one should always be mindful of the implied prior onτ. Specifically, analysts can use intuitions

regardingτ as a tool for vetting priors over (φ, θ), by checking (via simulation) that they are con-

sistent with available knowledge in theτ representation. In many applications, such as the one

studied in this paper, the (φ, θ) representation is itself readily interpretable (in this case, the “cheat-
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ing probability” and the “surveillance probability”, respectively).

Second, when an interpretable parameterization of the modular parameters is available (as it is

in our application), the modular prior approach facilitates efficient sensitivity analyses. Sensitivity

analysis is good practice generally, and vital when the data are completely uninformative about

certain aspects of the model. Being able to conduct such analyses without refitting the entire

model can be a tremendous practical advantage, particularly when fitting sophisticated nonlinear

regression models to the identified component.
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A Bayesian additive regression trees

Note: In this appendix, the original notation of Chipman et al. (2010) is used; several of the BART

prior parameter names are used in the main text where they refer to different entities.

In our application, the nonlinear functionφ(x) was modeled using the Bayesian Additive Re-

gression Trees (BART) approach of Chipman et al. (2010). Though nothing in our method is

specific to this choice, the BART model has several properties that make it a sensible one. BART

is more flexible than classical parametric regression models, such as linear logistic or probit re-

gression (Cox, 1958), but, unlike alternative nonparametric Bayesian regression models, BART is

able to detect interactions and discontinuities and is invariant to monotone transformations of the

covariates.

The BART prior represents an unknown functionf (x) as a sum of many piecewise constant

binary regression trees. Each treeTl , 1 ≤ l ≤ L, consists of a set of internal decision nodes which

define a partition of the covariate space (sayA1, . . . ,AB(l)), as well as a set of terminal nodes or

leaves — one corresponding to each element of the partition. Each subset of the partitionAb is

associated with a parameter valueμlb, defining a piecewise constant function:gl(x) = μlb if x ∈ Ab.

This regression tree function representation is depicted in Figure 7.

Individual regression trees are then additively combined into a single regression function:

f (x) =
∑L

l=1 gl(x). The representation off (x) through the sum of a set of regression trees is gener-

ally non-unique; in our applications, this redundancy is unproblematic.

Each of the functionsgl are constrained by their prior to be “weak learners”; that is, the prior

strongly favors small trees and leaf parameters that are near zero. Each tree independently follows

the prior described by Chipman et al. (1998), where the probability that a node at depthd splits (is

not terminal) is given byα(1+ d)−β, α ∈ (0,1), β ∈ [0,∞).

A variable to split on, and a cut-point to split at, are then selected uniformly at random from

the available splitting rules. Large, deep trees are given extremely low prior probability by taking

α = 0.95 andβ = 2 as in Chipman et al. (2010). The leaf parameters are assigned independent

priors μlb ∼ N(0, σ2
μ) whereσμ = 3/(k

√
L). The default value,k = 2, shrinksgl(x) strongly

toward zero. The induced prior forf (x) is centered at zero and puts approximately 95% of the

prior mass within±3 pointwise. Larger values ofk imply increasing degrees of shrinkage.
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Finally, the probability function of interest is modeled asΦ ( f (x) + c), wherec is an offset

parameter with default value 0 andΦ(∙) is the standard normal cumulative distribution function.

Complete details of the BART prior and its implementation are given by Chipman et al. (2010).

A.1 Computation

Posterior inferences are obtained by sampling at a fixed grid of design points x∗
1, . . . , x

∗
J. To reduce

notational clutter, we suppress dependence on x∗
j ; for example,θ should be read as referring to a

specificθ(x∗j ).

Operationally, posterior samples are obtained according to the following recipe.

1. Fit the BART model to the observed pairs (Yi , xi), for i = 1, . . . , n. ConvenientR implementa-

tions facilitate this step readily, for exampleBayesTree or dbarts. This gives a collection

of posterior samplesφ1, . . . , φk.

2. For each posterior sampleφk, draw (θk, ηk) by composition: First drawηk from π(ηk | φk) and

then drawθk from π(θk | φk, ηk)1{θk ∈ Ω[φk, ηk]}.

See Chan and Tobias (2014) and Gustafson (2015), chapter 2, for related computational approaches.

Because sampling from the posterior ofφ operates independently from sampling the partially iden-

tified parameterθ— as shown in (1) in the main text — sensitivity analysis can be conducted with-

out ever needing to refit the model, simply by repeating step 2 for various choices ofπ(η, θ | φ).

In our empirical application, we use the Gaussian process prior (3) with diagonal covariance

matrix, η ≡ c is given a Beta prior as described in Section 3.2.1, and we use a standard normal

probit link for F−1. For these choices, step 2 above becomes:

(i) Drawc from its truncated Beta distribution with lower truncation point given by max
{
φ(x∗1), . . . , φ(x

∗
J)
}
.

(ii) Draw F−1{θx} from independent truncated normal distributions at each design point, with

lower boundF−1{φx/c}.
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B Expanded example

This section reports additional simulations based on section 2.2. Specifically, we consider an

alternative specification ofm(x), the prior mean ofθ(x), and also several alternative priors over the

upper-bound parameterc, varying both the prior location and prior scale parameters.

Figure 8 shows posterior inferences when form(x) = −1 + 9x − 9x2. Using the notation of

2.1, we haveβ = (−1,9,−9)T andh(x) = (1, x, x2). This choice ofm(x) does not match the true

θ(x) well, especially forx < 1/2 where the data are uninformative; posterior inference onα are

correspondingly less accurate.

Figure 9 shows posterior inferences whenm(x) is specified as in section 2.2, withc0 = 0.65 for

varying levels of prior scalev ∈ {10,100,1000}.

Figure 10 shows posterior inferences whenm(x) is specified as in section 2.2, withc0 = 0.8 for

varying levels of prior scalev ∈ {10,100,1000}.
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Figure 1: (a) The thin solid line indicatesφ(x); the bold solid line indicates the trueθ(x); the dashed
line indicates the point prior mean forθ(x); the dotted line depicts a single draw from the BART
posterior forφ(x). The filled circles indicate draws from the posterior onθ(x); note that they obey
the lower truncation imposed by the dotted line. (b) Givingc a Beta(100c0,100(1− c0)) prior with
c0 = 0.65, posterior draws ofθ(x) (black dots) are observed to be further away from the lower
boundφ(x) (dotted line) in regions whereθ(x)’s prior mean,m(x) (dashed line), is much less than
φ(x). Compare to Figure 1a, where the posterior draws ofθ(x) hug the lower bound tightly.
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Figure 2: (a) (left) Posterior mean (solid gray) and 90% credible interval forθ(x) (shaded), along
with its prior mean (dashed) and true value (solid black). Because the prior matches the truth in
regions where the data is uninformative and is incorrect in regions where the data is informative,
the posterior mean ends up relatively close to the truth. (Right) A posterior density (smoothed)
for α ≡ n−1 ∑

i φ(xi)/θ(xi). Because the posterior forθ(x) well-approximates the truth, a decent
estimate of the true value ofα (shown as a dashed vertical line) is achieved. (b) Providing prior
bias thatφ(x)/θ(x) < c0 = 0.65 leads to improved estimation of bothφ(xi)/θ(xi) (at left, solid gray
is posterior mean, solid black is true, dashed is prior mean) andα ≡ n−1 ∑

i φ(xi)/θ(xi) (at right,
truth is shown by the vertical dashed line) .
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Figure 3: AAERs are more common in earlier years, likely because they may be filed retroactively,
not because cheating was more prevalent in the past.
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Figure 4: Top panel: posterior cheating prevalence, white corresponding to the raw (unadjusted)
prevalence, pink to prior A and blue to prior B. The four boxplots within each prior correspond
to the following combinations forc andσ (from left to right): (σ = 0.25, c0 = 0.4), (σ =

0.25, c0 = 0.8), (σ = 0.5, c0 = 0.4), (σ = 0.5, c0 = 0.8). Bottom panel: Posterior cheating
prevalence in companies within each SIC code, pink corresponding to prior A and blue to prior B
for (σ = 0.25, c0 = 0.4).
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Figure 5: Pr(Z = 1 | x) varyingxj while holdingx− j fixed (at the values of ConAgra Foods) under
two surveillance models A (pink, solid) and B (blue, dashed). Lines depict the median and shaded
areas depict 90% credibility intervals. Each row represents a different covariate; the three columns
correspond to the following (c0, σ) combinations (from left to right): (c0 = 0.4, σ = 0.25), (c0 =

0.8, σ = 0.25), (c0 = 0.8, σ = 0.5).
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Figure 6: (a) Estimated probability of cheating versus the actual probability of cheating on the
normal linear predictor scale for each ofn = 2000 data points. Black solid dots show the modular
prior approach, which loosely surrounds the diagonal, demonstrating the unresolved uncertainty
in the partial identification approach. The solid gray dots correspond to the Wang (2013) model,
which is correctly specified in this example; they hew more tightly to the diagonal. (b) Estimated
probability of cheating versus the actual probability of cheat on the normal linear predictor scale
for each ofn = 2000 data points. Black solid dots show the modular prior approach, which loosely
surrounds the diagonal, demonstrating the unresolved uncertainty in the partial identification ap-
proach. The solid gray dots correspond to the Wang (2013) model, which is incorrectly specified
in this example; they grossly diverge from the diagonal.
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Figure 7: (Left) An example binary tree, with internal nodes labelled by their splitting rules and
terminal nodes labelled with the corresponding parametersμlb. (Right) The corresponding partition
of the sample space and the step function.
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Figure 8: Herem(x), the prior mean ofθ(x), is grossly incorrect for all values ofx (dashed). In
the previous examples,m(x) was relatively close toθ(x) whenx < 1/2, which happens to be the
region where the data is uninformative. Posterior inferences concerningα ≡ n−1 ∑

i φ(xi)/θ(xi) are
seen to be inaccurate as a result.
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Figure 9: Results are shown with truncated beta distributions Beta(vc0, v(1 − c0)) for v = 10,
v = 100 andv = 1000, from top to bottom, withc0 = 0.65. The true upper bound onφ(xi)/θ(xi)
is 0.8. As a result, decreasing the variance aboutc0 can adversely bias posterior inferences; higher
variance prior guard against misspecified values ofc0.
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Figure 10: Results are shown with truncated beta distributions Beta(vc0, v(1 − c0)) for v = 10,
v = 100 andv = 1000, from top to bottom, withc0 = 0.8, the true upper bound onφ(xi)/θ(xi). As
a result, decreasing the variance aboutc0 does not adversely bias inferences.
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Table 1: Regression coefficients defining surveillance models A and B. They differ in their intercept
terms and their cash and net income coefficients. The intercepts have been adjusted to obtain an
average misconduct discovery rate of 30%

Intercept Fiscal year FT.com hits cash net income quitam

βA 0 −2.5 2 0 0 1

βB −0.85 −2.5 2 −1.50 2.5 1
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