
Exploring probabilistic grammars of symbolic
music using PRISM

Samer A. Abdallah? and Nicolas E. Gold

{s.abdallah,n.gold}@ucl.ac.uk
Department of Computer Science,

University College London

Abstract. In this paper we describe how we used the logic-based proba-
bilistic programming language PRISM to conduct a systematic compari-
son of several probabilistic models of symbolic music, including 0th and
1st order Markov models over pitches and intervals, and a probabilistic
grammar with two parameterisations. Using PRISM allows us to take
advantage of variational Bayesian methods for assessing the goodness of
fit of the models. When applied to a corpus of Bach chorales and the Essen
folk song collection, we found that, depending on various parameters, the
probabilistic grammars sometimes but not always out-perform the simple
Markov models. Examining how the models perform on smaller subsets
of pieces, we find that the simpler Markov models do out-perform the
best grammar-based model at the small end of the scale.

1 Introduction

Over the last 20 years or so, probabilistic modelling has become a key element
in many fields, including machine learning, cognitive science, computational
linguistics and music informatics. In our work, we are interested in the use of
probabilistic models for analysing the structure of music, from both musicological
and perceptual points of view, and in particular, the possibility that probabilistic
grammars and their generalisations might help us understand multi-scale temporal
structure. In this paper, we investigate the use of probabilistic programming
languages for the systematic exploration of probabilistic models of symbolic music,
focussing in particular on how the approach can support Bayesian model selection
criteria for comparing the relative merits of alternative models.

In the following sections, we will discuss some of the issues around probabilistic
modelling and model selection (§ 2) and how the probabilistic programming
language PRISM can support the development of probabilistic grammars (§ 3).
We then review previous grammar-based models of symbolic music in § 4, and
describe the particular models we implemented, along with the results of fitting
them in a number of variations to a corpus of symbolic music, in § 5, finally
drawing conclusions in § 6.

? This work is supported by the EPRSC CREST Platform Grant [grant number
EP/G060525/2]. Data may be obtained from Samer Abdallah.

2 Probabilistic modelling and model selection criteria

LetM denote a parametric probabilistic model over a domain X , such that given
some parameter setting θ, the probability1 of observing x ∈ X is P (x|θ,M).
A common task is to estimate θ given a sequence of independent observations
D = {x1, . . . , xT }, either because the parameters themselves are of interest, or to
make predictions about future observations. A related problem is to choose the
‘best’ model from a set of candidates {M1,M2, . . .}.

The method of maximum-likelihood estimation involves finding a point esti-
mate of the parameters θ̂ = arg maxθ P (D|θ,M) which maximises the likelihood :

P (D|θ,M) =
∏
t∈1..T

P (xt|θ,M). (1)

It is well known that if the model is complex (in the sense of having a large
parameter space) and the available dataset is small, then the resulting model
can suffer from over-fitting, leading to poor generalisation. Conversly, an overly
simple model might not be capable of capturing regularities in the data that a
better model would use to be less surprised by the data. Some way of managing
the trade-off is required. The notion is often expressed as Ockam’s razor—the
principle that, when there are several possible explanations for some phenomenon,
the simplest is to be preferred.

Although other methods have been proposed, the Bayesian approach offers a
theoretically and philosophically appealing solution to these problems [1]. This
entails the consistent use of probabilities to represent uncertainty about all
entities under consideration, including models and their parameters. For example,
in considering a model M with parameters θ, we must represent our initial
uncertainty about θ as a prior distribution P (θ|M). Then, on observing some
data D, we should update our ‘belief state’, giving a posterior distribution

P (θ|D,M) =
P (D|θ,M)P (θ|M)

P (D|M)
, (2)

which takes into account both the likelihood and the prior. The reason why this
is the correct policy is that, in order to make the best possible prediction of a
new datum x, given the model and observations so far, we must compute

P (x|D,M) =

∫
P (x, θ|D,M) dθ =

∫
P (x|θ,M)P (θ|D,M) dθ.

The factorised form means that we can forget about the data D as long as we
remember the posterior distribution P (θ|D,M). The denominator in (2) is known
as the evidence and can be expressed as

P (D|M) =

∫
P (D|θ,M)P (θ|M) dθ. (3)

1 We follow, for the sake of brevity, the convention of writing probability density and
mass functions leaving the random variables X,Θ etc. implicit from the context.

When there are several candidate modelsM1, . . . ,MN , then the whole inferential
process is lifted from distributions over parameters to distributions over models,
with prior P (Mi) and posterior

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)
. (4)

We can see that the evidence P (D|Mi) plays a key role in determining the relative
plausibility of the models after the data has been observed. The committed
Bayesian will use this posterior distribution to make predictions and decisions
(this is model averaging), but forced to make a choice, perhaps because of limited
computational resources, a reasonable policy, if the prior is flat, is to pick the
model with the greatest evidence. If a model is too simple, then it may not assign
sufficient probability to our given dataset D, resulting in low evidence. If it is too
complex, then it will assign significant probability to a greater variety of datasets
and therefore less to any particular dataset, also reducing the evidence. Hence,
using the evidence as the model selection criterion automatically invokes a form
of Ockam’s razor.

Representing uncertainty about model parameters and computing the evidence
can be expensive operations computationally and approximations are often
needed. For some models, variational Bayesian (VB) inference [2] can be good
solution, combining an efficient representation of uncertainty about parameters
with a tractable algorithm and delivering an estimate of the evidence. The
algorithm minimises the variational free energy F , which is an upper bound on
− logP (D|M), and so, after the process is complete, F can be used instead of the
true evidence for comparing models. For a given model, F is also a measure of
the amount of information required to encode the data according to that model
using the ‘bits-back’ coding scheme [3].

The choice of the variational free energy as a model selection criterion rests
on our adoption of a Bayesian approach. Ultimately, this is something of a
philosophical question; we refer the interested reader to some of the literature on
these matters [4, 5].

3 Implementing probabilistic grammars in PRISM

Probabilistic programming languages aim to provide an environment where a
wide variety of probabilistic models can be defined succinctly and in a relatively
declarative way, by making available powerful constructs that are familiar from
ordinary programming languages, such as recursion and structured data types.
The system then provides functions for sampling and inference automatically,
saving the programmer the effort of implementing special purpose algorithms
for each model. To date, a variety of languages have been developed based on
concepts from both logic programming [6–8] and functional programming [9–11].

The Prolog-based PRISM (PRogramming In Statistical Modelling) [7] is
particularly attractive for the development of probabilistic grammars for several
reasons: (a) it inherits Prolog’s definite clause grammar (DCG) notation and

meta-programming facilities, so that grammars and grammar interpreters can
be encoded very simply, (b) its use of tabling, provided by the underlying B-
Prolog implementation, means that parsing mimics Earley’s efficient chart parser
without any special effort by the programmer [12], and (c) it provides an efficient
implementation of variational Bayesian inference [13, 14]. PRISM has been used
for implementing probabilistic gramars for natural languages and estimating their
parameters [15] and for doing grammar induction using VB for model selection
[13]. PRISM has also been used for music modelling, but using a hidden Markov
model rather than a grammar-based model [16].

Implementing a PDCG in PRISM A context free grammar (CFG) consists
of a set of terminal symbols, a set of non-terminal symbols, a set of production
rules describing how each non-terminal can be rewritten as a sequence of terminals
or non-terminals, and a distinguished non-terminal called the start symbol. A
probabilistic CFG (PCFG) adds to this probability distributions over the possible
expansions of each non-terminal.

A PCFG can be easily implemented in PRISM by writing an interpreter with
probabilistic choice between alternative expansions for each non-terminal. In
ordinary Prolog, DCG rules (non-terminals) can be parameterised and arguments
used to represent linguistic phenomena such as number or tense agreement. As
is well known, an appropriately written DCG can be used to generate strings
as well as parse them, but turning a DCG into a probabilistic generative model
presents some difficulties. The problem is that constraints represented by rule
head unification, or embedded Prolog goals (wrapped in braces), can result in
failure, and introducing failure into a probabilistic program results in a significant
complication of inference and learning [17].

For our purposes, the problem of failure can be avoided by structuring the
rule expansion process so that no probabilistic choice can result in failure. Each
production rule is associated with a unique label, and written in one of two forms:

Head :: Label =⇒ Body.
Head :: Label =⇒ Guard |Body.

Guard is an ordinary Prolog goal, which, along with pattern matching against
any arguments in Head, determines whether or not that rule is applicable given
a particular instantiation of Head. If selected, Body is not allowed to fail. This
means that when expanding a non-terminal, the labels of applicable rules can be
collected and a label sampled from an associated distribution, represented as a
PRISM ‘switch’. The selected rule body is expanded as in an ordinary Prolog
DCG, except that we use +X instead of [X] to emit a terminal symbol, and nil
instead of [] for an empty production. Non-failing Prolog/PRISM goals embedded
in braces are permitted, and for convenience, a PRISM switch S can be sampled
using X ˜ S, which is equivalent to the PRISM goal msw(S,V).

All of this can be illustrated with reference to the program in fig. 2. The
neighbour note rule (labelled neigh) applies to the expansion of a non-terminal
i(P), where P is a pitch interval in semitones, but only when P=0. The deviation
P1 to the neighbour note is sampled from a random switch called step, and is

between -4 and 4. The rule labelled term shows how a non-terminal i(P) can
produce a terminal symbol, in this case, the integer P.

Since PRISM switches are associated with learnable probability distributions,
these can all be estimated from a given dataset. They also support the specification
of a Dirichlet prior, which is used in variational Bayesian inference.

Parameterisation of label distributions Programs written in our DCG
language define the permissible expansions for parameterised non-terminals, but
not how the probability distributions over those expansions are parameterised.
We implemented the following two approaches. The first, most straightforward
solution is to treat each ground instance of each rule (that is, with definite values
for all variables) as an independent PCFG rule with its own distribution that
can be learned from examples. Such an encoding is sometimes referred to as a
‘rule schema’, and we will refer to it as the ‘ground head’ parameterisation.

An alternative is to collect together all rule heads with the same functor and
arity and which lead to the same set of applicable expansions, and have them
share a single probability distribution. For example, in fig. 2, all non-terminals of
the form i(P) where the absolute value of P is between 6 and 16 share the functor
i with arity 1 and can be expanded using the rules term, rep and esc. Thus, under
this ‘head functor’ parameterisation, they share the same probability distribution
over those three expansion rules. This approach generally produces a model with
fewer parameters, which could potentially result in better performance on small
datasets.

4 Modelling symbolic music

Probabilistic models of symbolic music can, to a large extent, be divided into
two broad classes: those based on Markov (or n-gram) models, and those based
on grammars. While fixed-order Markov models have problems avoiding over-
simplicity for low n and over-fitting for high n, variable order Markov models
have been used successfully to model monophonic melodic structure [18] and
chord sequences [19].

Grammar-based models Although grammars have been applied in compu-
tational musicology since the late 1960s [20–22], resulting in some influential
theories [23, 24], probabilistic grammar-based models of music are a relatively
recent development. They can broadly be divided into models of harmonic se-
quence [25, 26] and models of melodic sequence [27–29]. We will focus on melodic
models only in this paper.

Gilbert and Conklin [28] applied a PCFG to melodic structure analysis, draw-
ing parallels between their approach and the hierarchical graphs of Schenkerian
analysis [30], which attempts to account for the details of musical structure in
terms of elaborations of simpler underlying forms, but in an unformalised way.
Schenker’s elaborations are similar to grammar production rules, but because
some of them, such as the introduction of neighbour notes or passing notes,
depend on two adjacent notes, they cannot be written as a context free grammar

if the melody is represented as a sequence of pitches. Instead, Gilbert and Conklin
represented the melody as a sequence of pitch intervals and were thus able to
devise a CFG that embodies four types of melodic elaboration, which we can
illustrate (following figure 1 of [28]) as follows:

repeat : � � �

neighbour : � � � ��

passing : � �
 � ��

escape:
� �

�
��

Prior to this, Mavromatis and Brown [31] reported that they had been able to
implement a non-probabilistic grammar (in Prolog) for Schenkerian analysis by
adopting the same policy of elaborating sequences of intervals, though we have
been unable to find any details about this grammar for a comparison with ours.
Despite the problems that an interval-based encoding can lead to if the grammar
is developed further, for example, to model durations or cover more types of
elaboration [32], we will adopt it for the grammars tested in this paper.

Markov vs Grammar-based models This division between n-gram based
models and grammar-based models echoes a similar division in computational
linguistics, where probabilistic grammars parsing are widely used for tasks where
a hierarchical syntactic analysis is required, such as language understanding, but
as far as assigning probabilities to sentences is concerned, do not do as well as
n-gram models. The issue was discussed by Brill et al [33], but while both n-gram
and grammar based models have advanced since then, variable order Markov
models continue to out-perform grammatical models (e.g. [34]). In computational
musicology, the situation is less clear: whilst research activity around probabilistic
grammars is increasing, a systematic framework for comparison across all models
is yet to be established.

we propose that Bayesian model selection criteria, implemented using a
probabilistic programming language that can support a wide variety of models,
can provide such a framework, and that PRISM’s support for variational Bayesian
inference and efficient parsing makes it a good place to start. Although we have
begun with small number of relatively simplistic models, the framework will
support an exploration of increasingly sophisticated models in such a way that
robust musicological conclusions can be drawn about the relative merits of such
models as applied to a variety of musical corpora.

5 Experiments

We conducted an experiment to compare the performance of several models on a
corpus of monophonic melodies. We used a collection of scores in Humdrum/Kern
format, comprising three datasets, all available from the Kern Scores website
at http:// kern.humdrum.org . The first is a set of 185 Bach chorales, and is the
dataset that was used by Gilbert and Conklin (henceforth referred to as G&C).

(a) (b)

values(nnum, X) :− numlist(40,100,X).
values(tr(), X) :− get values(nnum,X).

% start symbol for p1gram
s0 :: tail =⇒ nil.
s0 :: cons =⇒ X˜nnum, +X, s0.

% start symbol for p2gram
s1() :: tail =⇒ nil.
s1(Y) :: cons =⇒ X˜tr(Y), +X, s1(X).

values(ival, X) :− numlist(−20,20,X).
values(tr(), X) :− get values(ival,X).

% start symbol for i1gram
s0 :: tail =⇒ +end.
s0 :: cons =⇒ X˜ival, +X, s0.

% start symbol for i2gram
s1() :: tail =⇒ +end.
s1(Y) :: cons =⇒ X˜tr(Y), +X, s1(X).

Fig. 1. PDCG for 0th and 1st order Markov chains over (a) pitch (encoded as MIDI
note number) and (b) pitch interval to the next note in semitones.

The second is a larger set of 370 Bach chorales. The third is the Essen folk song
collection, containing 6174 scores. Because the full Essen collection was too large
to process with the grammars on our test computer (an Apple laptop with 8 GB
of memory), we took two random subsets of 1000 scores each. These datasets will
be referred to as chorales, chorales371, essen1000a and essen1000b respectively.

Methods Six probabilistic models were implemented. The pitch-based models
assume the input is encoded as a list of MIDI note numbers, while the interval-
based models assume an input encoded as a list of integers followed by the atom
end: each note is represented as the pitch interval to the following note, while
the last note has no following note.2 The models, with their short names and
approximate numbers of parameters, are:

1. 0th order Markov model over pitches (p1gram, 61).
2. 1st order Markov model over pitches (p2gram, 3721).
3. 0th order Markov model over intervals (i1gram, 41).
4. 1st order Markov model over intervals (i2gram, 1681).
5. Modified G&C grammar, ground-head parameterisation (gilbert2, 233).
6. Modified G&C grammar, head-functor parameterisation (gilbert3, 102).

The DCG rules for all of these models are shown in fig. 1 (p1gram and p2gram,
i1gram and i2gram), and fig. 2 (gilbert2 and gilbert3 share the same rules and
differ only in their parameterisation). All the Markov models use the head functor
parameterisation, so for s0 and s1(), there is only one distribution over the labels
[tail, cons] which determines whether or not the chain is terminated or continues.
We have omitted some supplementary code for intialising the switch probabilities
and other ancillary tasks, as well as the DCG interpreter itself.

2 When, in future, we extend the model to handle other musical dimensions such as
duration, metrical strength, articulation etc., the attributes of the last note can be
associated with the end symbol.

values(step, X) :− numlist(−4,4,X).
values(leap, X) :− numlist(−20,20,X).
values(passing(N), Vals) :−

(N>0 → M is N−1, numlist(1,M,I1)
; N<0 → M is N+1, numlist(M,−1,I1)),
maplist(N1, (N1,N2),N2 is N−N1,I1,Vals).

values(escape(N), Vals) :−
(N<0 → I1 = [1,2,3,4]
; N>0 → I1 = [−1,−2,−3,−4]),
maplist(N1,(N1,N2),N2 is N−N1,I1,Vals).

% start symbol
s :: last =⇒ i(end).
s :: grow =⇒ P˜leap, i(P), s.

i(P) :: term =⇒ +P.
i(P) :: rep =⇒ i(0), i(P).
i(P) :: neigh =⇒ P=0 |P1˜step, {P2 is −P1}, i(P1), i(P2).
i(P) :: pass =⇒ passable(P) |(P1,P2)˜passing(P), i(P1), i(P2).
i(P) :: esc =⇒ escapable(P) |(P1,P2)˜escape(P), i(P1), i(P2).

passable(P) :− abs between(2,5,P).
escapable(P) :− abs between(1,16,P).
abs between(L,U,X) :− Y is abs(X), between(L,U,Y).

Fig. 2. A grammar based on Gilbert and Conklin’s [28], written in a DCG language
defined in PRISM. maplist/5 and between/3 are standard B-Prolog predicates and
numlist(L,U,X) is true when X is a list of consecutive integers from L to U.

Our version of G&C’s grammar differs slightly from the original for reasons
of which lack of space precludes a fuller discussion, though partly they stem
from our decisions to represent each note by the pitch interval to the following
note, rather than the preceeding note, as G&C do. Also, the numerical ranges
of steps, leaps, and the limits for allowing passing or escape note introductions
were chosen arbitrarily as this information was not given in G&C’s paper.

A number of hyperparameters are available to control the Dirichlet priors
over the probability distributions for each switch. These affect the shape of
distributions, such as those over intervals in semitones or absolute pitches as
MIDI note numbers, that might reasonably be expected to be weighted towards
a central value, such as zero in the case of pitch intervals, or some central register
for absolute pitches. The expected shape for such distributions is encoded as
a weighted sum of binomial and uniform distributions. The hyperparameter
prior weight affects all distribution priors, and determines how much data is
required to effectively override prior beliefs about the switch distribution. We
omit further details about the hyperparameters due to lack of space, but, for
completeness, list them below along with the sets to which their values belong.

prior weight : {0.3,1,3,10,30}. % all models
prior shape : shape spec % for markov models
leap shape : shape spec % for grammar models
pass shape : shape spec % for grammar models
shape spec = {binomial, uniform, binomial+uniform}

∪ {binomial + K∗uniform |K in {0.1,0.3}}

To assess the effect of dataset size on model performance and to look for evidence
of over-fitting of complex models to small datasets, subsets of pieces were extracted
from each dataset. Subsets of varying sizes, from 1 to 30 were considered; in each
case, 20 subsets were chosen at random from the full dataset. The same subsets
were supplied to all models for training. Thus, each subset can be identified by a
dataset name, a size from 1 to 30, and an index from 1 to 20.

Other implementation details To create a productive environment for
conducting the experiments, we wrote a library for SWI Prolog that allows
PRISM to be used as a sub-process. This enabled us to take advantage of existing
SWI Prolog libraries and provided a degree of robustness, since the PRISM process
can place heavy demands on the operating system and occasionally crashes. SWI
Prolog, on the other hand, is very stable, and can be used to ‘supervise’ the
PRISM process, restarting it and restoring its state when necessary.

We also implemented SWI Prolog libraries for reading musical scores in
Humdrum/Kern format and for the persistent memoisation of computation
results. The latter is available as an SWI Prolog ‘pack’ called memo. We plan to
release the PRISM and Humdrum libraries in future, but in the meantime, they
are available from the authors on request.

Results Fig. 3(a) shows a summary of the overall performace of each model
against each dataset, over a range of hyperparameter values. In order to compare
performance between datasets of different sizes, the variational free energy in
each case is divided by the total number of notes in the dataset and displayed in
‘bits per note’ (bpn), to give a sense of the amount of information required to
encode each note under that model, using the ‘bits back’ coding scheme [3]—the
lower this is, the better the model. The data for p1gram, the 0th order Markov
model over pitches, is not shown, as in every case it was far below the other
models, achieving, at best around 3.7 bpn.

Of those remaining, we will now consider the models in order of increasing
performance, beginning with i1gram. This performs worse than p2gram, which
is consistent with the the fact that a pair of consecutive pitches contains all
the information in one pitch interval, plus information about absolute pitch
which is not available to i1gram. Thus, the class of i1gram models is contained
within the class of p2gram models. Proceeding onwards, there is some overlap
between p2gram and gilbert3 for the chorales, but the optimum for p2gram is
better than the optimum for gilbert3 for all datasets. For all datasets, the best two
models are i2gram and gilbert2. The latter acheives approximately 2.68 bpn on
the chorales dataset with the hyperparameter settings prior weight : 3, leap shape
: binomial + 0.1∗uniform and, pass shape : binomial. This is comparable with

chorales chorales371 essen1000a essen1000b
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5
B

it
s

p
er

 n
o

te

(a) Model performance by dataset

p2gram

i1gram

i2gram

gilbert2

gilbert3

0 5 10 15 20 25 30
2.6

2.8

3

3.2

3.4

3.6

3.8

4

Subset size (in pieces)

M
ea

n
 b

it
s

p
er

 n
o
te

(b) Subset performance (chorales371)

p2gram

i1gram

i2gram

gilbert2

gilbert3

p1gram

Fig. 3. (a) Overall performance, in bits per note, of each model against each dataset
(lower is better). For each model/dataset pair, the bar shows the range values obtained
over the various hyperparameter combinations described in the text. (b) Variation of
model performance with dataset size. For each subset size K, 20 random subsets of size
K were extracted from the chorales dataset. Then, for each model, the hyperparameter
settings obtaining the best mean performance over the 20 subsets were determined,
and this mean performance was plotted against the subset size. Though there is some
variation due to the random subset selection mechanism, the graph clearly shows how
the most complex model, gilbert2, performs the worst for the smallest datasets, even
compared with p1gram.

the 2.67 bpn reported by G&C, but it should be born in mind that the variational
free energy includes a model complexity penalty.

Fig. 3(b) shows how the models perform relative to each other on much
smaller datasets obtained by extracting random subsets, in this case, from the
chorales dataset. The graph shows how, for smaller datasets, the Markov models
out-perform the grammar-based models, with gilbert2 only emerging as best with
datasets of 20 or more pieces.

6 Conclusions

We have shown how a variety of probabilistic models of symbolic music can be
implemented in the probabilistic programming language PRISM, and applied
these models to collections of Bach chorales and the Essen folk song collection.

While it is interesting to note that a model based on Gilbert and Conklin’s
grammar gave the best account of both chorales datasets, it was beaten by a
first-order Markov model on the much larger Essen datasets. Bearing in mind
that variable-order Markov models are likely to perform better still, this shows
that designing by hand a probabilistic grammar capable of out-performing state-
of-the-art Markov models is not a trivial task. The alternative, more parsimonious

head functor parameterisation of the same grammar performed quite badly in
comparison with the other models. All of these observations show that is not safe
to assume that a grammar-based model, though seemingly more sophisticated,
will always out-perform even a first-order Markov model.

In an investigation of the models’ performance on smaller datasets, we found
that, as the size of the dataset was decreased, the 1st Markov model over intervals
began to out-perform the best grammar-based model on the chorales dataset, until,
for very small datasets, the 0th order Markov model over intervals performed best.
This highlights the need to consider modelling assumptions carefully when dealing
with small collections of music, which may often be the case when analysing
certain stylistically related pieces, of which only a small number may exist.

Looking forward, it is likely that variable-order Markov models will improve
significantly on the performance of i2gram, challenging us to develop better
grammar based models. Overall, we hope that our framework and initial set of
models will form a basis for such developments and a systematic exploration of
probabilistic models of music and their use in analysis and the development of
music theory.

References

1. Kass, R.E., Raftery, A.E.: Bayes factors. Journal of the American Statistical
Association 90 (1995) 773–795

2. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to
variational methods for graphical models. In Jordan, M.I., ed.: Learning in Graphical
Models. MIT Press, Cambridge, MA (1998) 105–161

3. Honkela, A., Valpola, H.: Variational learning and bits-back coding: an information-
theoretic view to bayesian learning. Neural Networks, IEEE Transactions on 15
(2004) 800–810

4. Guyon, I., Saffari, A., Dror, G., Cawley, G.: Model selection: Beyond the bayesian/fre-
quentist divide. The Journal of Machine Learning Research 11 (2010) 61–87

5. Gelman, A., Shalizi, C.R.: Philosophy and the practice of bayesian statistics. British
Journal of Mathematical and Statistical Psychology 66 (2013) 8–38

6. Poole, D.: Representing Bayesian networks within probabilistic Horn abduction.
In: Proceedings of the Seventh conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann Publishers Inc. (1991) 271–278

7. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In:
Proc. 15th Intl. Joint Conf. on Artifical Intelligence (IJCAI). Volume 2. (1997)
1330–1335

8. Muggleton, S.: Stochastic logic programs. Advances in inductive logic programming
32 (1996) 254–264

9. Pfeffer, A.: IBAL: A probabilistic rational programming language. In: IJCAI,
Citeseer (2001) 733–740

10. Goodman, N., Mansinghka, V., Roy, D.M., Bonawitz, K., Tenenbaum, J.: Church:
a language for generative models. In: Uncertainty in Artificial Intelligence. (2008)

11. Kiselyov, O., Shan, C.C.: Embedded probabilistic programming. In: Domain-specific
languages, Springer (2009) 360–384

12. Porter, H.H.: Earley deduction. Technical report, Oregon Graduate Center (1986)

13. Kurihara, K., Sato, T.: Variational Bayesian grammar induction for natural language.
In: Grammatical Inference: Algorithms and Applications. Springer (2006) 84–96

14. Sato, T., Kameya, Y., Kurihara, K.: Variational Bayes via propositionalized proba-
bility computation in prism. Annals of Mathematics and Artificial Intelligence 54
(2008) 135–158

15. Sato, T., Abe, S., Kameya, Y., Shirai, K.: A separate-and-learn approach to EM
learning of PCFGs. In: NLPRS. (2001) 255–262

16. Sneyers, J., Vennekens, J., De Schreye, D.: Probabilistic-logical modeling of music.
In: Practical Aspects of Declarative Languages. Springer (2006) 60–72

17. Sato, T., Kameya, Y., Zhou, N.F.: Generative modeling with failure in PRISM. In:
IJCAI. (2005) 847–852

18. Pearce, M.T.: The Construction and Evaluation of Statistical Models of Melodic
Structure in Music Perception and Composition. PhD thesis, Department of
Computing, City University, London (2005)

19. Yoshii, K., Goto, M.: A vocabulary-free infinity-gram model for nonparametric
Bayesian chord progression analysis. In: ISMIR. (2011) 645–650

20. Winograd, T.: Linguistics and the computer analysis of tonal harmony. Journal of
Music Theory 12 (1968) 2–49

21. Kassler, M.: A trinity of essays. PhD thesis, Princeton University (1967)
22. Lindblom, B., Sundberg, J.: Towards a generative theory of melody. Department

of Phonetics, Institute of Linguistics, University of Stockholm (1970)
23. Steedman, M.J.: A generative grammar for jazz chord sequences. Music Perception

2 (1984) 52–77
24. Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press,

Cambridge, MA (1983)
25. Rohrmeier, M.: Towards a generative syntax of tonal harmony. Journal of Mathe-

matics and Music 5 (2011) 35–53
26. Granroth-Wilding, M.: Harmonic Analysis of Music Using Combinatory Categorial

Grammar. PhD thesis, School of Informatics, University of Edinburgh (2013)
27. Bod, R.: Probabilistic grammars for music. In: Belgian-Dutch Conference on

Artificial Intelligence (BNAIC). (2001)
28. Gilbert, É., Conklin, D.: A probabilistic context-free grammar for melodic reduc-

tion. In: International Workshop on Artificial Intelligence and Music, IJCAI-07,
Hyderabad, India. (2007)

29. Kirlin, P.B., Jensen, D.D.: Probabilistic modeling of hierarchical music analysis.
Analysis 1 (2011) 15

30. Schenker, H.: Der freie Satz. Universal Edition, Vienna (1935) (Published in English
as E. Oster (trans., ed.) Free Composition, Longman, New York, 1979.).

31. Mavromatis, P., Brown, M.: Parsing context-free grammars for music: A computa-
tional model of Schenkerian analysis. In: Proc. 8th Intl. Conf. on Music Perception
and Cognition, Evanston, USA. (2004) 414–415

32. Marsden, A.: Schenkerian analysis by computer: A proof of concept. Journal of
New Music Research 39 (2010) 269–289

33. Brill, E., Florian, R., Henderson, J.C., Mangu, L.: Beyond n-grams: Can linguistic
sophistication improve language modeling? In: Proceedings of the 36th Annual
Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics-Volume 1, Association for Computational
Linguistics (1998) 186–190

34. Wood, F., Archambeau, C., Gasthaus, J., James, L., Teh, Y.W.: A stochastic
memoizer for sequence data. In: Proceedings of the 26th Annual International
Conference on Machine Learning, ACM (2009) 1129–1136

