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Abstract. We consider a continuous time version of the �ctitious play model in an evolutionary en-
vironment. We derive two forms of the continuous time limit, both of which are approximations to a
determinate version of the �ctitious play updating algorithm. The �rst is in the form of a �rst-order
partial di�erential equation ('continuity equation') which we solve explicitly. The dynamic for a distri-
bution of strategies is also derived, which we show that can be written in a form similar to a positive
de�nite dynamic. The asymptotic solution (in the ultra long run) is discussed in detail for 2-player,
2-strategy co-ordination and anti-coordination games, and we show convergence to Nash equilibrium in
both cases. The second, and better, approximation (because 2nd-order terms are no-longer neglected)
is in the form of a di�usion equation. This is considerably more di�cult to analyse. However, we show
that it leads to the same asymptotic limit as the 1st-order approximation.

1. Introduction

The �ctitious play algorithm was introduced in [1, 15] as a tool for �nding Nash equilibria of games.
Soon afterward this algorithm was reinterpreted as a model of learning. In the classical case of an n-player
game, a player uses a history of past games as a basis for prediction (beliefs) of his opponents' expected
actions1 and responds with a best-reply to the prediction.

The positive results on the convergence of beliefs in the �ctitious play algorithm to a Nash equilibrium
were established for 2-player zero-sum games ([15]), 2 × 2 games ([13]), potential games ([14]), games
with an interior ESS ([7]) and some classes of super-modular games ([12, 11, 6]).

On the other hand, there are plenty of negative results concerning �ctitious play. Even if beliefs do
converge to a mixed-strategy Nash equilibrium, the actual game may fail to converge, passing instead
through a deterministic cycle involving strategies in the support of the Nash equilibrium. This kind of
behavior was noted in [16, 3, 9, 18]. The reason for this is that the best-reply map is not continuous and
arbitrarily small changes in empirical frequencies (beliefs) may lead to jumps in actions.

One way to circumvent this problem is to slightly change the game. In [3] game payo�s are randomly
perturbed with the consequence that the anticipated behavior of each player is always a mixed strategy.
It was then possible to extend results from [13] proving convergence of actual play2. Another approach is
to change the algorithm itself by adding noise or considering only independent samples from the recent
history of play, as in [18]. It is also possible to consider a population of players instead of a single player, in
which all players have private information. The dynamic is then an aggregate behavior of the population.
This is the approach adopted in [2] and more recently [8].

This paper is concerned with a standard �ctitious play algorithm used in an evolutionary scenario
in which, in each round, some constant share of a population of players is randomly matched to play a
symmetric 2-player game. A history of each player is private, i.e. it is a sequence of opponents' actions
observed by a player. We use a setting similar to that introduced in [2], but instead of working within
a probabilistic framework we derive two continuous-time partial di�erential equations which are increas-
ingly close approximations to this dynamic. We solve the simpler, continuity equation approximation
analytically and derive the dynamic for the aggregate behavior of the population. Further, we note that
the model in [8] is essentially a projection of our model and so we extend the analysis presented there.

The support of the Economic and Social Research Council (ESRC) is gratefully acknowledged. The work was part of
the programme of the ESRC Research Centre for Economic Learning and Social Evolution (ELSE) at UCL.

1It is straightforward in 2-player games. In n-player games with n > 2 a player may build either a joint empirical
distribution for all opponents or marginal distributions, one for each opponent. See [4] for further discussion.

2The resulting dynamic is called stochastic �ctitious play.
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Since we work with a limit of a model from [2] we also point to some similarities between these two papers.
The second, di�usion approximation cannot be analysed so completely, but, in Appendices, we derive the
form of its solution, and present an asymptotic analysis for a 2-player, 2-strategy anti-coordination game.

We introduce our model in Section 2. This section contains a solution of the derived 1st-order partial
di�erential equation. Section 3 contains a discussion of the solution and compares it to the results
presented in [2, 8]. In the last section we summarize the main results of the paper.

2. The model

2.1. General setting. The learning process is examined in the context of 2-player symmetric games,
G = ({1, 2}, S,A) where S is a set of n pure strategies and A is a payo� matrix with a typical el-
ement aij . We are dealing with a population of players, each playing a single pure strategy. The
distribution of strategies within the population is described by a vector µ = (µ1, . . . , µn) ∈ 4n where
4n =

{
µ ∈ Rn+ :

∑
i µi = 1

}
.

The �ctitious play algorithm chooses a best reply to a prediction of the opponent's action. The
prediction takes the following special form. Each player keeps track of how many times she observes each
pure strategy. Let x = (x1, . . . , xn) be a vector of non-negative weights. These weights are updated every
time a player is selected to play in the following way

(1) x′i = xi +
{

1 if the observed strategy is i
0 otherwise

with initial values of weights given exogenously. The predicted probability assigned to a pure strategy i
given the weight vector x is

γi(x) =
xi∑
j xj

, i = 1, . . . , n.

The �ctitious play algorithm then chooses a strategy that belongs to the set of best replies β(γ(x)). The
probability distribution function γ can be used to de�ne the following sets. Let Ω = Rn+, and for each
pure strategy i, de�ne a subset Ωi ⊂ Ω by

Ωi = {x ∈ Ω : i ∈ β(γ(x))} .
It is clear that Ω =

⋃
i Ωi and that for any generic game, Ωi ∩Ωj for j 6= i is a subset of a linear subspace

of Ω. In particular, it has (Lebesque) measure 0.
As described above, the weights for a player can be represented as a point x ∈ Ω. On the other hand,

the beliefs of the population at any time t are represented by a probability distribution over Ω, with
probability density function p(x, t). We make the following technical assumption3.

Condition 2.1. We assume that initially (at t = 0) supp(p) = Ω and p is continuously di�erentiable.

Given the probability density p of a distribution over weights, and having de�ned sets Ωi, we can
calculate shares of the population using particular pure strategies

(2) µi =
ˆ

Ωi

p(x)dx, i = 1, . . . , n

and since the measure of any set Ωi ∩Ωj for i 6= j is 0 the vector µ is a probability distribution over pure
strategies. Also, because of the Assumption 1, µ ∈ int(4n) at t = 0.

The idea is then to study how the distribution of weights given by a density p changes over time, and
consequently how the distribution µ of pure strategies within the population changes over time. The
model presented here is essentially the same as the one presented in [2]. Each player may be at one of
the possible states and so there is a distribution of players over a state space. This distribution gives
in turn a distribution of certain attributes, e.g. of pure strategies within the population, which governs
the transition probabilities between states. The exhaustive probabilistic analysis of this class of models4

was presented in [2] using techniques from [5]. Instead of working within a probabilistic framework we

3This is also discussed and assumed in [8, p. 86, 89, 93].
4This is a very simpli�ed view of the type of models presented in [2] but the main idea is preserved.



FICTITIOUS PLAY IN AN EVOLUTIONARY ENVIRONMENT 3

derive here a continuous-time, continuity limit equation and study its solutions. This limit is implicitly
assumed in [8]5.

2.2. Updating process. Let τ be a small time step and δ a small `space' step. We consider the following
updating process for states x ∈ Ω:

p (x1, . . . , xn, t+ τ) dx = (1− η) p(x1, . . . , xn, t)dx

+ η µ1 p(x1 − δ, . . . , xn, t)dx
+ . . .

+ η µn p(x1, . . . , xn − δ, t)dx.(3)

The above updating process is consistent with the following evolutionary scenario. In the short period
of time from t to t + τ a proportion η of a large population of players is randomly matched to play a
2-player symmetric game. Each player observes the strategy of her random opponent and updates her
weights x accordingly.

The �mass� interpretation of this scenario is the following. The mass of population at state x =
(x1, . . . , xn) at time t + τ is p(x1, . . . , xn, t + τ)dx. This is a sum of the mass of players not chosen to
play in this round, (1 − η) p(x1, . . . , xn, t)dx, and the masses of chosen players that have updated their
weights, i.e. from the mass of players p(x1 − δ, . . . , xn, t)dx having weights (x1 − δ, . . . , xn) at time t the
share ηµ1 is chosen to play and observes the �rst pure strategy, and consequently the mass of players
ηµ1 p(x1− δ, . . . , xn, t)dx moves to the state (x1, . . . , xn), and so on for each pure strategy. This scenario
is called �Story 3� in [8, p. 87].

2.3. The continuity limit. To derive a continuous-time limit we expand (3) up to terms of order δ:

p(x, t+ τ) = (1− η)p(x, t) + η

(
p(x, t)− δ

n∑
i=1

µi(t)
∂p(x, t)
∂xi

)
.(4)

Rearranging (4) leads to:

(5) p(x, t+ τ)− p(x, t) = δη

(
−

n∑
i=1

µi(t)
∂p

∂xi
(x, t)

)
.

We assume that δ is constant (and small) and that η = wτ , where w is the rate at which players are
matched to play the game (ie. updating by agents is a Poisson process with rate w) Dividing both sides
of (5) by τ and taking limit τ → 0 gives the continuity equation (suppressing arguments):

(6)
∂p

∂t
+ wδ

n∑
i=1

µi
∂p

∂xi
= 0.

By rescaling time we may assume that wδ = 1.
Clearly, the equation (6) is only an approximation. Including terms of order δ2 in the expansion of the

right side of the equation (4) gives a better approximation. We discuss this possibility in Section 3.2.

2.4. Boundary conditions. We assume there is no probability �ux across the boundary of Ω. Writing
(6) in vector notation gives

(7)
∂p

∂t
+ µ · ∇p = 0.

We integrate (7) over Ω and use conservation of probability and the divergence theorem to obtain:

d

dt

ˆ
Ω

p dV = 0 = −
ˆ

Ω

∇ · (µp) dV

= −
ˆ
∂Ω

(n · µ)p dA,

5In fact the model considered in [8] is a certain projection of our model. However, the limit is never derived explicitly
in [8].
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where n is the outward pointing normal on the boundary ∂Ω of Ω. Let ∂Ω−i = {x ∈ ∂Ω : xi = 0} and
denote any x ∈ ∂Ω−i by x−i. It is clear that ∂Ω =

⋃
i ∂Ω−i and the normal n at x−i ∈ ∂Ω−i has i-th

coordinate −1 with other elements being 0. The general boundary condition is therefore:

(8)

n∑
i=1

µi(t)
ˆ
∂Ω−i

p(x−i, t) dx−i = 0.

Thus, if µi(t) > 0 we require p(x−i, t)
a.e.= 0 on ∂Ω−i. The natural boundary conditions are therefore:

(9) p(x−i, t) = 0 for all x−i ∈ ∂Ω−i and all t > 0, i = 1, . . . , n.

2.5. Solutions. The initial value problem (7) with boundary conditions (9) and speci�ed initial density
p0(x) satisfying Assumption 1 has the following solution.

Proposition 2.2. The general solution of (7) with initial condition p0 and boundary conditions (9) is

(10) p(x, t) = p0(x− c(t)),

where c(t) = (c1(t), . . . , cn(t)) and ci(t) =
´ t

0
µi(s) ds.

Proof. It is straightforward to check that (10) is a solution to (7). To deal with boundary conditions we
extend p0 to the whole of Rn by taking p0(x) = 0 if there is at least one element xi < 0. By de�nition of
µi and ci, we have:

(11) ċi(t) = µi(t) =
ˆ

Ωi

p0(x− c(t)) dx

with initial condition ci(0) = 0. The solution of these di�erential equations speci�es c(t), and hence µ(t),
uniquely for all t ≥ 0. Further, it follows from Assumption 1 that ċi(0) = µi(0) > 0, and since ċi(t)
cannot be negative, ci(t) cannot decrease in t. Hence c(t) ∈ int(Rn+) for all t > 0.
On the boundary component ∂Ω−i we have p(x−i, t) = p0(x1 − c1(t), . . . ,−ci(t), . . . , xn − cn(t)) = 0 for
t > 0 since c(t) ∈ int(Rn+). It follows that the boundary conditions (9) are automatically satis�ed. �

Note that (11) implies that µ(t) > 0 for all t ≥ 0. This is because the set {x ∈ Ωi : x > c(t)} has
non-zero Lebesgue measure and p0 has full support on this set by Condition 2.1.

3. Discussion

3.1. Strategy distribution. We are interested in deriving a dynamic for the strategy distribution µ.
To do this, we use (7) and the divergence theorem to obtain:

µ̇i(t) =
ˆ

Ωi

∂p(x, t)
∂t

dV

= −
ˆ

Ωi

n∑
j=1

µj(t)
∂p(x, t)
∂xj

dV

= −
ˆ

Ωi

∇ · [µ(t)p(x, t)] dV

= −
ˆ
∂Ωi

ni · µ(t)p(x, t) dA,(12)

where ni is the outward pointing normal to ∂Ωi. The dynamic (12) says that the rate of change in a
share of a population using the i-th pure strategy is equal to the rate of �ow of mass of players across
the boundary of the region Ωi corresponding to this strategy6. The negative sign before the integral in
(12) is due to the normal ni pointing outwards, so if the players are leaving the region Ωi the sign of
the integral is positive while the share of a population using the i-th pure strategy is decreasing. Before
proceeding further, we illustrate this dynamic with two simple examples.

6This is discussed but not explicitly derived in [8, p. 94]
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x1

x2

p(x, t)

x1

x2

p(x, t)

Ω1

Ω2

[Ax]1 = [Ax]2

Figure 1. Density function p for n = 2 and β = 1 with regions Ωi, i = 1, 2.

Example 3.1. Consider a 2× 2 symmetric game with payo� matrix

(13) A =
[

0 α1

α2 0

]
,

where α1, α2 > 0. There is a unique symmetric mixed strategy Nash equilibrium µNE with

µNE
1 =

α1

α1 + α2
=

1
1 + α2/α1

=
1

1 + β

and β > 0.

The partition of Ω into regions Ω1 and Ω2 is given by a ray r(u) = [u, βu], u ∈ [0,∞], see Fig. 1. Let

s(u) denote arc length, so that ds/du =
√

1 + β2. The outward pointing normal to ∂Ω1 along the ray r

is given by n1 = [β,−1]/
√

1 + β2. Using formula (12) we obtain

µ̇1(t) = −
ˆ
∂Ω1

n1 · µ(t)p(x, t) dA

= −
ˆ
r

[µ1(t)p(x, t), µ2(t)p(x, t)] · [β,−1]√
1 + β2

ds(14)

= −
ˆ ∞

0

[µ1(t)p(x, t), µ2(t)p(x, t)] · [β,−1] du

= (µ2(t)− βµ1(t))
ˆ ∞

0

p(u, βu, t) du(15)

= (1− (1 + β)µ1(t))
ˆ ∞

0

p(u, βu, t) du,(16)

where equality (14) comes from the boundary conditions (9). Since the integral in (16) is always positive,
It is clear that the only rest point of this dynamic is the Nash equilibrium µNE, which is globally
asymptotically stable. It is also worth noting that (15) can be rewritten as

µ1 (t) = (µ2 (t)− βµ1 (t))
ˆ ∞

0

p (u, βu, t) du

=
1
α1

(α1µ2(t)− α2µ1(t))
ˆ ∞

0

p(u, βu, t)du

=
1
α1

[ˆ ∞
0

p(u, βu, t)du
]

([Aµ]1 − [Aµ]2) .(17)

The dynamic (17) is of the same form as the continuous time version proposed in [8, p. 93, Prop. 5].



FICTITIOUS PLAY IN AN EVOLUTIONARY ENVIRONMENT 6

Example 3.2. Consider a coordination game with payo� matrix

A =
[
α1 0
0 α2

]
,

where α1, α2 > 0. There is a unique symmetric mixed strategy Nash equilibrium µNE where

µNE
1 =

α2

α1 + α2
=

1
1 + α1/α2

=
1

1 + β

and β > 0. The partition of Ω into regions Ω1 and Ω2 is again given by a ray r(u) = [u, βu], u ∈ [0,∞].
As before, let s(u) denote arc length, so that ds/du =

√
1 + β2. The outward pointing normal for Ω1 at

a ray r is given by n1 = [−β, 1]/
√

1 + β2. Using formula (12) and performing the same calculations as
for Example 1 we obtain

µ̇1(t) =
1
α2

[ˆ ∞
0

p(u, βu, t)du
]

([Aµ]1 − [Aµ]2)

= ((1 + β)µ1(t)− 1)
ˆ ∞

0

p(u, βu, t)du.(18)

The sign of µ̇1 is completely determined by the term ((1 + β)µ1(t)− 1). The Nash equilibrium is a rest
point of (18) but it is unstable. Depending on initial conditions the share µ1 either increases or decreases
monotonically. Thus, either µ1(t)→ 1 (and µ2(t)→ 0) or µ1(t)→ 0 (and µ2(t)→ 1) as t→∞. In either
case, it follows from (10) that

´∞
0
p(u, βu, t)du→ 0.

We now return to the general case and recover a result from [8, p. 93, Prop. 5]. Let Ωij = Ωi ∩ Ωj . We
have the following proposition.

Proposition 3.3. The dynamic (12) has the following form:

(19) µ̇i =
∑
j 6=i

gij(t) ([Aµ]i − [Aµ]j) ,

where gij = gji > 0.

Proof. The boundary ∂Ωi is a union of sets Ωij , i 6= j. Any set Ωij is contained in a set given by an
equality [Ax]i = [Ax]j and so an outward pointing normal nij is given by

nij =
[aj1 − ai1, . . . , ajn − ain]√

(aj1 − ai1)2 + . . .+ (ajn − ain)2
.

Using (12) gives

µ̇i(t) = −
ˆ
∂Ωi

ni · µ(t)p(x, t) dA

= −
∑
j 6=i

ˆ
Ωij

nij · µ(t)p(x, t) dA(20)

=
∑
j 6=i

´
Ωij

p(x, t) dA√
(aj1 − ai1)2 + . . .+ (ajn − ain)2

([Aµ]i − [Aµ]j) (t)

=
∑
j 6=i

gij(t) ([Aµ]i − [Aµ]j) (t),

where equation (20) comes from boundary conditions (9) and

gij(t) = gji(t) =

´
Ωij

p(x, t) dA√
(aj1 − ai1)2 + . . .+ (ajn − ain)2

=

´
Ωij

p0(x− c(t)) dA√
(aj1 − ai1)2 + . . .+ (ajn − ain)2

,
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where c(t) = (c1(t), . . . , cn(t)) and ci(t) =
´ t

0
µi(s) ds. �

In fact system (19) can be written in a matrix form µ̇ = QgAµ where matrix Qg has diagonal entries
Qgii =

∑
j 6=i gij and o�-diagonal entries Qgij = −gij = −gji for j 6= i.

It is clear that the matrix Qg is symmetric and that Qg1 = 0, where 1 = [1, . . . , 1]. For any vector
µ ∈ Rn we have µTQgµ =

∑
j 6=i gij (µi−µj)2 ≥ 0 with equality if and only if µ is collinear with 1. Also,

it follows from (11) that the simplex 4n is forward invariant under the dynamic (12).
Following [8, p. 96]), we call a dynamic satisfying the above conditions a positive de�nite dynamic7.

Hence, we reestablished Proposition 7 from [8, p. 97].

Proposition 3.4. The dynamic (12), having the form (19), is a positive de�nite dynamic.

3.2. Di�usion limit. As mentioned earlier, the continuity limit studied above is only an approxima-
tion. It is possible to get a better approximation by including in the expansion of the right side of the
equation (3) terms up to order δ2. This leads to:

p(x, t+ τ) = (1− η)p(x, t) + η

(
p(x, t)− δ

n∑
i=1

µi(t)
∂p(x, t)
∂xi

+
δ2

2

n∑
i=1

µi(t)
∂2p(x, t)
∂x2

i

)
.(21)

Rearranging (21) gives:

(22) p(x, t+ τ)− p(x, t) = δη

(
−

n∑
i=1

µi(t)
∂p(x, t)
∂xi

+
δ

2

n∑
i=1

µi(t)
∂2p(x, t)
∂x2

i

)
.

We again assume that δ is constant (but small) and that η = wτ . The limit τ → 0 then gives, after
rescaling time (and suppressing arguments) the following di�usion limit

(23)
∂p

∂t
+

n∑
i=1

µi
∂p

∂xi
=

1
2
δ

n∑
i=1

µi
∂2p

∂x2
i

,

where shares µ are de�ned as before, cf. (2).
It is clear that the continuity approximation (6) �forgets� about players that have not played at least a

single round since the support of a solution to (6) moves away from the boundary ∂Ω at a rate c(t). Also,
the shape of the density function p does not change. The di�usion limit (23) is also an approximation,
but more accurate. Due to the inclusion of the di�usion term it also allows for changes of the shape of
the density function p. As is well known, there are still obvious problems with this approach, cf. [10]. We
only note here that the approximation (23) is valid only for large times in the region |Ep− x| ∼ O(

√
t).

We require no-�ux boundary conditions. Integrating (23) and using the divergence theorem gives

d

dt

ˆ
Ω

p dV = 0 =
ˆ

Ω

∂p

∂t
dV

= −
ˆ

Ω

∇ · (µp) dV +
1
2
δ

ˆ
Ω

∇ · (µ ∗ ∇p) dV

=
ˆ
∂Ω

n ·
(
−µp+

1
2
δµ ∗ ∇p

)
dA,(24)

7There is a di�erence between the usual de�nition of positive de�nite dynamic and the one we use following [8]. The
matrix Qg depends through an integral on a density function p which in turn is de�ned as a shift of an initial density p0
by a vector c, where ci(t) =

´ t
0 µi(s) ds. Therefore, the matrix Qg depends on the whole path of µ up to time t rather

than just a value of µ at time t. As a consequence, an initial density function p0 uniquely determines a solution p(x, t) but
di�erent density functions may give the same shares µ. The main reason for this is that we are using richer description of a
state of a population, namely a density function p. Instead of assuming that the matrix Qg is continuously di�erentiable in
µ to get uniqueness of solutions µ(t) we have uniqueness of solutions on a lower level underlying µ, ie. for an initial density
function p0 we have a unique solution p(x, t).
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where ∗ denotes element-wise multiplication and n is the outward pointing normal on ∂Ω. In particular,
(24) is satis�ed if

(25) n ·
(
−µp+

1
2
δµ ∗ ∇p

)
= 0 almost everywhere on ∂Ω.

Speci�cally, if we let Γi = {x ∈ ∂Ω : xi = 0} we require the following boundary conditions to hold for
each i

(26) µi(t)
[
p− 1

2
δ
∂p

∂xi

]
(x−i, t) = 0 ∀x−i∈Γi

, t > 0, 1 ≤ i ≤ n.

As before we can derive a dynamic for the shares µ:

µ̇i =
ˆ

Ωi

∂p

∂t
dV

= −
ˆ

Ωi

∇ · (µp) dV +
1
2
δ

ˆ
Ωi

∇ · (µ ∗ ∇p) dV

=
ˆ
∂Ωi

ni ·
(
−µp+

1
2
δµ ∗ ∇p

)
dA,(27)

where ni is the outward pointing normal on ∂Ωi. If δ → 0 then (27) gives the continuity limit version
(12).

The model given by (23, 26) and (27) is far more di�cult to analyze than the continuity limit, so we
restrict further discussion to the class of 2× 2 anti-coordination games with a payo� matrix (13) and an
appropriate partition of Ω into Ω1 and Ω2. We have then the following problem

(28)
∂p

∂t
= −µ1

∂p

∂x1
− µ2

∂p

∂x2
+

1
2
δµ1

∂2p

∂x2
1

+
1
2
δµ2

∂2p

∂x2
2

,

subject to the boundary conditions

(29)

[
p− 1

2
δ
∂p

∂x1

]
(0, x2, t) = 0 and

[
p− 1

2
δ
∂p

∂x2

]
(x1, 0, t) = 0,

and some initial condition p0(x1, x2) at t = 0.
Any solution of the problem (28, 29) with an initial condition p0(x1, x2) can be constructed from the

fundamental solution (or kernel) p̃(x1, x2, y1, y2, t)

p(x1, x2, t) =
ˆ ∞

0

ˆ ∞
0

p̃(x1, x2, y1, y2, t)p0(y1, y2)dy1dy2.

The fundamental solution can be shown to have the form (see Appendix A)

(30) p̃(x1, x2, y1, y2, t) = q(x1, y1, c1(t)) q(x2, y2, c2(t)),

where ci(t) =
´ t

0
µi(s)ds, and

q(x, y, t) = exp
(

1
δ

(x− y)− t

2δ

)
r(x, y,

1
2
δt),

with

r(x, y,
1
2
δt) =

1√
2πδt

(
exp

(
− (x− y)2

2δt

)
+ exp

(
− (x+ y)2

2δt

))
− exp

(
1
δ

(x+ y) +
t

2δ

)(
1− erf

(
1√
2δt

(x+ y) +

√
t

2δ

))
,

where erf(x) is the error function erf(x) = 2√
π

´ x
0

exp(−z2)dz.
For any fundamental solution (30) we can show (see Appendix B) that

µ1(t) =
ˆ

Ω1

p̃(x1, x2, y1, y2t)dx1dx2 →
1

1 + β
as t→∞.



FICTITIOUS PLAY IN AN EVOLUTIONARY ENVIRONMENT 9

That is, we recovered the same limit as in the continuity case. For the class of 2 × 2 anti-coordination
games the continuity limit and the di�usion limit coincide with the Nash equilibrium.

4. Conclusions

We began with a model of an updating process along the lines of models proposed in [2]. Instead of
working within a probabilistic setting we derived a continuous time, continuity limit partial di�erential
equation together with boundary conditions. In this limit, there is a �nite incremental rate at which
weights are updated. We then solved this equation analytically. This allowed us to derive the explicit
form of the dynamic for the proportions µ of a population using particular pure strategies. In particular
we showed that our dynamic is a positive de�nite dynamic. In addition, we obtained an alternative,
more complex continuous-time limit, the di�usion limit. Both limiting formulations have a geometrical
�avour, in which the best-reply mapping is transformed into a geometrical structure. For the class of
2 × 2 anti-coordination games both of them converge to the unique Nash equilibrium in the ultra long
run.

There are three main contribution of this paper. First, we provide a rigorous derivation for the model
proposed in [8]. In the original paper the limit used is never explicitly derived nor discussed. We give a
precise assumption on an environment (Poisson movement) and derive the continuity limit. This is the
same approximation used in the original paper. Also, we extend the analysis presented in [8] by providing
an analytical solution describing the behavior of the density function p.

Once it is clear what kind of approximation is used, we are able to extend the analysis presented in
[8] by providing a more accurate approximation, the di�usion limit. This new approximation aims at
describing more precisily the shape of the density function p. We solve the di�usion equation and give
the analysis in the case of 2× 2 anti-coordination games.

Last but not least, we derive our model from the class of models proposed in [2] and, since it is the
same model as used in [8], we therefore link these two papers. Consequently, the resulting positive de�nite
dynamics is placed within the context of the much wider class of models considered in [2].

There are several questions left for future studies. The solution of the di�usion limit presented in
Appendix A is general. However, the asymptotic properties derived in Appendix B depend crucially on
a game studied and the number of strategies. Whether, and if so how, it is possible to extend these
results is not clear for the moment and will require more in depth analysis. A more general analysis of
this equation is a formidable challenge.

Appendix A. Solutions of the diffusion equation

A.1. Reduction. We consider solutions of the following non-linear initial-boundary value problem:

(31)
∂p

∂t
=

n∑
i=1

(
−µi

∂p

∂xi
+

1
2
δµi

∂2p

∂x2
i

)
,

where

(32) µi(t) =
ˆ

Ωi

p(x, t)dV (x)

subject to the boundary conditions:

(33)

[
p− 1

2
δ
∂p

∂xi

]
(x−i, t) = 0,

and the initial condition:

(34) p(x, t)→ p0(x) as t→ 0,

where p0(x) is a given (integrable) initial condition. We assume that p0(x) is a probability density on
Rn+, which implies that p(x, t) is a probability density for all t ≥ 0.
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We construct the (unique) solution to the problem (31, 32, 33, 34), from solutions of the 1-dimensional,
linear di�usion equation on the half line x ≥ 0:

(35)
∂p

∂t
= −∂p

∂x
+

1
2
δ
∂2p

∂x2
,

with boundary condition

(36)

[
p− 1

2
δ
∂p

∂x

]
(0, t) = 0.

The fundamental solution at y > 0 for the problem (35, 36) is the unique solution with a δ-function initial
condition at y. That is, a function q(x; y, t) which satis�es (35) and (36), and also

(37) q(x; y, t)→ δ[x− y] as t→ 0.

We shall obtain such solutions explicitly later in this Appendix.
Now consider the n-dimensional equation

(38)
∂p

∂t
=

n∑
i=1

(
−µi

∂p

∂xi
+

1
2
δµi

∂2p

∂x2
i

)
,

in which the µi(t) are �xed, non-negative, bounded functions of t (independent of p), with boundary
conditions (33) and initial condition p0(x). The unique solution of this problem may be constructed from
1-dimensional fundamental solutions of (35, 36). Thus, for c = (c1, . . . , cn) ∈ Rn+, de�ne

(39) p̃(x; y, c) =
n∏
i=1

q(xi; yi, ci).

Then the required solution is:

(40) p(x, t) =
ˆ

Ω

p̃(x; y, c(t))p0(y)dV (y),

with

(41) ci(t) =
ˆ t

0

µi(s)ds.

Clearly, ci(0) = 0. For this solution also to satisfy (32), we require:

µi(t) = ċi(t) =
ˆ

Ωi

p(x, t)dV (x).

That is, the ci(t) must satisfy the system of ordinary di�erential equations:

(42) ċi(t) =
ˆ

Ω

ˆ
Ωi

p̃(x; y, c(t))p0(y)dV (x)dV (y), c(0) = 0.

Since the equations (42) have a unique solution for c(t), it follows that (39, 40, 41) de�ne the unique
solution to the problem (31, 32, 33, 34). Note that it follows from (42) that

∑
i µi(t) =

∑
i ċi(t) = 1, and

hence that
∑
i ci(t) = t.

It remains to determine the fundamental solutions q(x; y, t) for the 1-dimensional problem (35, 36).

A.2. The fundamental solution q(x; y, t). This problem may be reduced further as follows. Suppose
r(x; , y, t) is the fundamental solution at y > 0 for the following problem:

(43)
∂r

∂t
=
∂2r

∂x2
with

[
r − δ ∂r

∂x

]
(0; y, t) = 0.

De�ne

(44) q(x; y, t) = r(x; y,
1
2
δt) exp

(
1
δ

(x− y)− 1
2δ
t

)
.

Then it is easy to check that (44) is a fundamental solution for the problem (35, 36). It therefore remains
to determine the fundamental solution r(x; y, t) for the problem (43).
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A.3. The fundamental solution r(x; y, t). We begin with fundamental solutions of the Dirichlet bound-
ary problem on R+:

(45)
∂P

∂t
=

∂2

∂x2
, P (0, t) = 0.

Denote the fundamental solution at y > 0 by P (x; y, t). This is given explicitly by ([17, p. 113]):

(46) P (x; y, t) =
1√
4πt

(
exp

(
− (x− y)2

4t

)
− exp

(
− (x+ y)2

4t

))
.

A solution of (45) with general initial condition P0(x) is obtained from fundamental solutions by:

(47) P (x, t) =
ˆ ∞

0

P (x; y, t)P0(y)dy.

More generally, we prove the following proposition relating solutions of the problems (43) and (45).

Proposition A.1. Let r0(x) be a given (di�erentiable) initial condition for the problem (43). Let P (x, t)
be the solution to the Dirichlet problem (45) with initial condition

(48) P0(x) = r0(x)− δr′0(x).

Then

(49) r(x, t) =
1
δ

ˆ ∞
x

exp
(

1
δ

(x− ξ)
)
P (ξ, t)dξ

is the solution to the problem (43) with initial condition r0(x).

Proof. From (49) we have

∂r

∂t
(x, t) =

1
δ

ˆ ∞
x

e(x−ξ)/δ ∂P

∂t
(ξ, t)dξ

=
1
δ

ˆ ∞
x

e(x−ξ)/δ ∂
2P

∂ξ2
(ξ, t)dξ from (45)

=
1
δ

[
e(x−ξ)/δ ∂P

∂ξ
(ξ, t)

]∞
x

+
1
δ2

ˆ ∞
x

e(x−ξ)/δ ∂P

∂ξ
(ξ, t)dξ(50)

= −1
δ

∂P

∂x
(x, t) +

1
δ2

[
e(x−ξ)/δP (ξ, t)

]∞
x

+
1
δ3

ˆ ∞
x

e(x−ξ)/δP (ξ, t)dξ

= −1
δ

(
P + δ

∂P

∂x

) ∣∣∣
(x,t)

+
1
δ2
r(x, t),(51)

where (50) follows from integrating by parts. Again, from (49):

∂r

∂x
(x, t) = −1

δ
P (x, t) +

1
δ
,(52)

∂2r

∂x2
(x, t) = −1

δ

∂P

∂x
(x, t) +

1
δ2

(−P + r)
∣∣∣
(x,t)

= −1
δ

(
P + δ

∂P

∂x

) ∣∣∣
(x,t)

+
1
δ2
r(x, t).(53)

Since (51) and (53) are equal, it follows that (49) is a solution of (43).
For the boundary condition, we have, from (45) and (52):[

r − δ ∂r
∂x

]
(0, t) = r(0, t)− δ

(
−1
δ
P (0, t) +

1
δ
r(0, t)

)
= 0.

Hence, the required boundary condition (43) is satis�ed.
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Finally, for the initial condition, from (49) we have:

r(x, 0) =
1
δ

ˆ ∞
x

e(x−ξ)/δP (ξ, 0)dξ

=
1
δ

ˆ ∞
x

e(x−ξ)/δ(r0(ξ)− δr′0(ξ))dξ using (48)

=
1
δ

ˆ ∞
x

e(x−ξ)/δr0(ξ)dξ −
[
e(x−ξ)/δr0(ξ)

]∞
x
− 1
δ

ˆ ∞
x

e(x−ξ)/δr0(ξ)dξ(54)

= r0(x),

where (54) comes from integrating by parts. This proves the proposition. �

Now use (47) to express the solution (49) with initial condition (48) in terms of the fundamental
solutions (46):

P (x, t) =
ˆ ∞

0

P (x; y, t)(r0(y)− δr′0(y))dy

=
ˆ ∞

0

P (x; y, t)r0(y)dy − δ [P (x; y, t)r0(y)]∞0

+ δ

ˆ ∞
0

∂P

∂y
(x; y, t)r0(y)dy

integrating by parts and using P (x; 0, t) = P (x;∞, t) = 0, cf. (46)

=
ˆ ∞

0

(
P − δ ∂P

∂y

) ∣∣∣
(x;y,t)

r0(y)dy.(55)

We wish to �nd fundamental solutions for the problem (43), and so we require δ-function initial
conditions in (55): i.e. r0(x; y) = δ[x − y]. Substituting this in (55), we obtain the corresponding form
for the solution of (45):

Q(x; y, t) =
ˆ ∞

0

(
P + δ

∂P

∂z

) ∣∣∣
(x;y,t)

δ[z − y]dz

= P (x; y, t) + δ
∂P

∂y
(x; y, t).(56)

Substituting (56) into (49) now gives the required fundamental solution for the problem (43):

r(x; y, t) =
1
δ

ˆ ∞
x

e(x−ξ)/δQ(ξ; y, y)dξ

=
1
δ

ˆ ∞
x

e(x−ξ)/δP (ξ; y, t)dξ +
∂

∂y

ˆ ∞
x

e(x−ξ)/δP (ξ; y, t)dξ

=
1
δ

(
1 + δ

∂

∂y

)ˆ ∞
x

e(x−ξ)/δP (ξ; y, t)dξ.(57)

It therefore remain to calculate the integral in (57) explicitly using (46). This is straightforward, and
yields the required fundamental solution:

r(x; y, t) =
1√
4πt

(
exp

(
− (x− y)2

4t

)
+ exp

(
− (x+ y)2

4t

))
− 1
δ

exp
(

1
δ

(x+ y) +
t

δ2

)(
1− erf

(
1√
4t

(x+ y) +
√
t

δ

))
,

(58)

where erf(ξ) is the error function, erf(ξ) = 2√
π

´ ξ
0

exp(−z2)dz.
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Appendix B. Asymptotic solution for the anti-coordination game

B.1. Preliminary considerations. We consider the fundamental solution (39) for n = 2. Recall that

ci(t) =
´ t

0
µi(s)ds for i = 1, 2. Since 0 ≤ µi(t) ≤ 1, we have 0 ≤ ci(t) ≤ t, and µ1(t) + µ2(t) = 1 implies

that c1(t) + c2(t) = t. It will be more convenient to work with the variables:

(59) zi(t) =

√
ci(t)
2δ

.

In this section we shall show the following:

(60) ci(t) > 0 for all t > 0,

and

(61) zi(t) ∼
√

t

2δ
· ω̄i as t→∞,

where ω̄i are non-negative constants satisfying ω̄
2
1 + ω̄2

2 = 1.

B.1.1. Proof of (60). We consider the di�erential equation (42) associated to the fundamental solution
at (y1, y2) ∈ Ω. First note that q(x; y, s) > 0 for all (x, y) and s > 0. For the anti-coordination game, we
have:

µ1(t) = ċ1(t) =
ˆ

Ω1

q(x1; y1, c1(t)) q(x2; y2, c2(t))dx1dx2

=
ˆ ∞

0

(ˆ ∞
βx1

q(x2; y2, c2(t))dx1

)
q(x1; y1, c1(t))dx1(62)

=
ˆ ∞

0

(ˆ x2/β

0

q(x1; y1, c1(t))dx1

)
q(x2; y2, c2(t))dx2.(63)

First note that ċi(t) = µi(t) ≥ 0 implies that ci(t) cannot decrease. Suppose µ2(0) = 1. Then ċ2(0) > 0,
and hence c2(t) > 0 for all t > 0. On the other hand, if c1(t) = 0 for t ≥ 0, then q(x1; y1, c1(t)) =
δ [x1 − y1] for t ≥ 0, and hence, from (62):

(64) µ1(t) =
ˆ ∞
βy1

q(x2; y2, c2(t))dx2.

However, since q(x; y, s) > 0 for all (x, y) and s > 0, and
´∞

0
q(x; y, s)dx = 1, it follows from (64) that

µ1(t) = ċ1(t) > 0 for t > 0, which yields a contradiction. Similarly, if µ1(0) = 1, then c1(t) > 0 for all
t > 0. In this case:

(65) µ2(t) =
ˆ ∞

0

(ˆ ∞
x2/β

q(x1; y1, c1(t))dx1

)
q(x2; y2, c2(t))dx2.

Hence, if µ2(t) = 0 for t ≥ 0, then q2(x2; y2, c2(t)) = δ [x2 − y2], and (65) gives:

µ2(t) =
ˆ ∞
y2/β

q(x1; y1, c1(t))dx1,

which is strictly positive since q(x1; y1, c1(t)) > 0 for t > 0. Again we have a contradiction. We have
shown therefore that 0 < µi(t) < 1 for t > 0 and i = 1, 2, from which follows that ci(t) > 0. This
proves (60).
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B.1.2. Proof of (61). Because c1(t) and c2(t) are positive for t > 0 and monotonically increasing, so are
z1(t) and z2(t), cf. (59). Also, c1(t) + c2(t) = t implies z2

1(t) + z2
2(t) = t/(2δ). Write

(66) zi(t) =

√
t

2δ
· ωi(t).

Then ωi(t) is positive for t > 0, and ω2
1 + ω2

2 = 1. Hence, we may write

(67) ω1(t) = sin(θ(t)) and ω2(t) = cos(θ(t)),

with θ(t) ∈ (0, π/2). In particular, ωi(t) is a bounded function. In addition,

żi(t) =
1

2
√

2δt
· ωi(t) +

√
t

2δ
· ω̇i(t) <

1
2
√

2δt
+

√
t

2δ
· ω̇i(t).

Suppose ż1(t) and ż2(t) are bounded away from zero as t→∞. That is, suppose ż1(t), ż2(t) ≥ ε > 0 for

all su�ciently large t. Then, since 1/
√

2δt ≤ ε for su�ciently large t, we have:

ω̇i(t) ≥
√

2δ
t
· 1

2
ε,

for all su�ciently large t. Thus, both ω̇1(t) and ω̇2(t) are positive for large t. However, from (67):

ω̇1(t) = cos (θ(t)) · θ̇(t), and ω̇2(t) = − sin (θ(t)) · θ̇(t),

and hence ω̇1(t) and ω̇(t) are either both zero or have opposite signs. This gives a contradiction, and we
conclude that żi(t)→ 0 as t→∞ for at least one i. This implies that ω̇i(t)→ 0.

Suppose that ż2(t) → 0 as t → ∞. Then ω̇2(t) → 0, and hence either θ̇(t) → 0 or θ(t) → 0. If

ż1(t) ≥ ε > 0, then ω̇1(t) is positive for all su�ciently large t (as above), and hence so is θ̇(t). But this
means that θ(t) is monotonically increasing for all su�ciently large t, which implies that θ(t)→ 0 is not

possible. We conclude therefore that θ̇(t) → 0, and hence that θ(t) → θ̄ ≤ π/2. A similar argument
shows that if ż1(t)→ 0 and ż2(t) ≥ ε > 0, then θ(t)→ θ̄ ≥ 0.

Finally, suppose that żi(t) → 0 for i = 1, 2. Then ω̇i(t) → 0 for i = 1, 2, and the only possibility is

θ̇(t)→ 0. Since θ(t) is bounded, it follows that θ(t)→ θ̄ ∈ [0, π/2].
We conclude that in all cases θ(t)→ θ̄ ∈ [0, π/2] as t→∞. We have therefore shown that

zi(t) ∼ ω̄i
√

t

2δ
as t→∞,

for constants ω̄i ∈ [0, 1] satisfying ω̄2
1 + ω̄2

2 = 1.

B.2. Asymptotic properties of the fundamental solution.

B.2.1. The 1-dimensional fundamental solution. From (44) and (58), the 1-dimensional fundamental
solution is:

(68) q(x; y, t) = exp
(

1
δ

(x− y)− t

2δ

)
· r(x; y,

1
2
δt),

where

r(x; y,
1
2
δt) =

1√
2πδt

(
exp

(
− (x− y)2

2δt

)
+ exp

(
− (x+ y)2

2δt

))
− 1
δ

exp
(

1
δ

(x+ y) +
t

2δ

)(
1− erf

(
1√
2δt

(x+ y) +

√
t

2δ

))
.(69)

We consider the asymptotics of (68, 69) as t→∞.
Write:

(70) k =
x+ y

2δ
, λ =

x− y
x+ y

, z =

√
t

2δ
.
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Then√
πδt

2
· r(x; y,

1
2
δt) =

1
2

(
exp

(
− (λk)2

z2

)
+ exp

(
−k

2

z2

))
−
√
πz exp

(
−k

2

z2

)
exp

((
k

z
+ z

)2
)(

1− erf
(
k

z
+ z

))
=

1
2

(
exp

(
− (λk)2

z2

)
+ exp

(
−k

2

z2

))
− z

k
z + z

exp
(
−k

2

z2

)
·
√
π

(
k

z
+ z

)
exp

((
k

z
+ z

)2
)(

1− erf
(
k

z
+ z

))
∼ 1

2

(
exp

(
− (λk)2

z2

)
+ exp

(
−k

2

z2

))
− z

k
z + z

exp
(
−k

2

z2

)
as
k

z
+ z →∞(71)

=
1
2

exp
(
− (λk)2

z2

)
+

1
2

exp
(
−k

2

z2

)(
k − z2

k + z2

)
.

In the step (71), we have used the fact that the function:

(72) H(ξ) =
√
πξ exp

(
ξ2
)

(1− erf (ξ))

has the following properties:

H(0) = 0,

H(ξ) = is monotonically increasing for ξ ≥ 0,

H(ξ)→ 1 as ξ →∞.

In (71) we have taken ξ = k
z + z.

It now follows that:

(73) r(x; y,
1
2
δt) ∼ 1√

π
· 1
z
· 1

2δ

{
exp

(
− (λk)2

z2

)
+ exp

(
−k

2

z2

)(
k − z2

k + z2

)}
.

Hence, from (68) and (70):

q(x; y, t) = exp
(
2λk − z2

)
r(x; y,

1
2
δt)

∼ 1√
π
· 1
z
· 1

2δ

{
exp

(
− (λk)2

z2
+ 2λk − z2

)
+ exp

(
−k

2

z2
+ 2λk − z2

)(
k − z2

k + z2

)}
=

1√
π
· 1
z
· 1

2δ

{
exp

(
−
(
λk

z
− z
)2
)

+ exp

(
−
(
λk

z
− z
)2

− (1− λ2)
k2

z2

)(
k − z2

k + z2

)}

− 1√
π
· 1
z
· 1

2δ
exp

(
−
(
λk

z
− z
)2
){

1 + exp
(
−(1− λ2)

k2

z2

)(
k − z2

k + z2

)}
.(74)

Recall that k = (x+ y)/(2δ), and λ = (x− y)/(x+ y) = 1− 2y/(x+ y) = 1− y/(δk). Substituting for
λ in (74), we obtain:

q(x; y, t) ∼ 1√
π
· 1
z
· 1

2δ
exp

(
−
(
k

z
−
( y
δz

+ z
))2

){
1 + exp

(
− 2y
δz2

k +
y2

δ2z2

)(
k − z2

k + z2

)}

=
1√
π
· 1
z
· 1

2δ

[
exp

(
−
(
k

z
−
( y
δz

+ z
))2

)
+ exp

(
−2y
δ

)
exp

(
−
(
k

z
− z
)2
)(

k/z − z
k/z + z

)]
.(75)

Now note that: ˆ ∞
K

exp
(
− (ak − b)2

)
dk =

√
π

2
· 1
a

(1 + erf (b− aK)) .
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Setting ` = k/z, from (70) we have dx = 2δdk = (2δz)d`, and we obtain:

1√
π
· 1
z
· 1

2δ

ˆ ∞
k=K

exp

(
−
(
k

z
−
( y
δz

+ z
))2

)
dx =

1
2

(
1 + erf

(
z +

y

δz
− K

z

))
→ 1 as z →∞.

This is true for any �nite K ≥ K0 = y/2δ. Since we know that
ˆ ∞
x=0

q(x; y, t)dx =
ˆ ∞
k=K0

q(x; y, t)dx = 1,

it follows that this part of the expression (75) accounts for the total probability mass as t→∞ (equiva-
lently, z →∞).

To deal with the remaining part of (75), take ` = k/z − z, so that dx = 2δzd`. Then, from (75):

I(K, z) =
1√
π
· 1
z
· 1

2δ
exp

(
−2y
δ

)ˆ ∞
k=K

exp

(
−
(
k

z
− z
)2
)(

k/z − z
k/z + z

)
dx

=
1√
π
· exp

(
−2y
δ

)ˆ ∞
K/z−z

`

`+ 2z
e−`

2
d`.

A straightforward estimate now shows that, for any �nite K ≥ K0:

(76) − 1
2
√
π
· exp

(
−2y
δ

)
· 1
K/z + z

< I(K, z) ≤ 1
2
√
π
· exp

(
−2y
δ

)
· 1
K/z + z

exp

(
−
(
z − K

z

)2
)
,

and hence I(K, z)→ 0 as z →∞.
In summary, we have shown that

(77)

ˆ ∞
k=K

q(x; y, t)dx ∼ 1
2

[
1 + erf

(
z +

y

δz
− K

z

)]
as z →∞.

B.2.2. The 2-dimensional fundamental solution. Now consider the 2-dimensional situation described in
Appendix A. Take x = xi, y = yi and z = zi =

√
ci(t)/2δ for i = 1, 2. For �xed x1 ≥ 0, we have the

region Ω1 = {(x1, x2) : 0 ≤ βx1 ≤ x2 <∞}. Thus:

k2 =
x2 + y2

2δ
≥ K2 =

βx1 + y2

2δ
= β

x1 + y1

2δ
+
y2 − βy1

2δ
= βk1 +

y2 − βy1

2δ
.

From (62), we require to �nd the asymptotic limit as t→∞ of:

µ1(t) =
ˆ

Ω1

q(x1; y1, c1(t)) q(x2; y2, c2(t))dx1dx2

=
ˆ ∞

0

[ˆ ∞
βx1

q(x2; y2, c2(t))dx2

]
q(x2; y2, c2(t))dx1

=
ˆ ∞

0

[ˆ ∞
k2=K2

q(x2; y2, c2(t))dx2

]
q(x2; y2, c2(t))dx1

∼
ˆ ∞

0

[
1 + erf

(
z2 +

y2

δz2
− K2

z2

)]
q(x2; y2, c2(t))dx1 by (77)

=
1
2

+
1
2

ˆ ∞
0

erf
(
z2 +

y2

δz2
− K2

z2

)
q(x1; y1, c1(t))dx1

=
1
2

+
1
2

ˆ ∞
k1=y1/(2δ)

erf
(
z2 +

βy1 + y2

2δz2
− β k1

z2

)
q(x1; y1, c1(t))dx1 as z2 →∞.(78)

To evaluate the integral, note that the erf term is bounded between −1 and 1. It therefore follows from
(76) that the second summand in (75) makes zero contribution to the outcome as z1 → ∞. It therefore
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su�ces to evaluate:

J1 =
1√
π
· 1
z1
· 1

2δ

ˆ ∞
k1=y1/(2δ)

erf
(
z2 +

βy1 + y2

2δz2
− β k1

z2

)
exp

(
−
(
k1

z1
−
[
y1

δz1
+ z1

])2
)
dx1

=
1√
π
· 1
z1

ˆ ∞
y1/(2δ)

erf
(
z2 +

βy1 + y2

2δz2
− β k1

z2

)
exp

(
−
(
k1

z1
−
[
y1

δz1
+ z1

])2
)
dk1,

noting that dx1 = 2δdk1. Set `− k1 − y1/(2δ). Then:

J1 = − 1√
π
· 1
z1

ˆ ∞
0

erf
(
β
`

z2
−
[
z2 +

y2

2δz2

])
exp

(
−
(
`

z1
−
[
z1 +

y1

2δz1

])2
)
d`.

Thus, µ1 ∼ 1
2 (1 + J1) as z1, z2 →∞. Since yi/(2δzi)→ 0, we can ignore these terms to obtain:

J1 ∼ −
1√
π
· 1
z1

ˆ ∞
0

erf
(
β
`

z2
− z2

)
exp

(
−
(
`

z1
− z1

)2
)
d`

= − 1√
π

ˆ ∞
0

erf
(
β
z1

z2
`− z2

)
exp

(
− (`− z1)2

)
d`

= − 1√
π

ˆ ∞
−z1

erf
(
β
z1

z2
m− z2 + β

z2
1

z2

)
exp

(
−m2

)
dm.(79)

That is, asymptotically, J1, and hence µ1, is independent of (y1, y2).
Unfortunately, the integral in (79) has no closed-form solution in general. However, we shall show that

J1, and hence µ1 has a unique asymptotic limit as t→∞.

B.3. Solutions for the anti-coordination game. We know from (60, 61) that c1(t) and c2(t) are both
positive and non-decreasing, with c1(t) + c2(t) = t. Hence ci(t) → ∞ for at least one i. In particular, if
ω̄1 and ω̄2 are both positive then both c1(t) and c2(t)→∞ as t→∞.

On the other hand, ω̄1 = 1 and ω̄2 = 0 only if θ(t) → 0 in (67). In this case, (61) implies that
c2(t)→∞ and c1(t)→ c̄1 ≤ ∞. If c̄1 <∞, then µ1(t) = ċ1(t)→ 0. However, from (78):

µ1(t) ∼
ˆ ∞

0

[ˆ ∞
βx1

q(x2; y2, c2(t))dx2

]
q(x1; y1, c̄1)dx1

∼ 1
2

+
1
2

ˆ ∞
0

erf
(
z2(t) +

y2

2δz2(t)
− β x1

2δz2(t)

)
q(x1; y1, c̄1)dx1 → 1 since z2(t)→∞ as t→∞.

This is a contradiction, and we conclude that ci(t) → ∞ for both i = 1, 2. A similar argument yields
the same conclusion if ω̄1 = 1 and ω̄2 = 0. We conclude that both c1(t) and c2(t) → ∞ as t → ∞. It
therefore follows that the asymptotic approximation µ1 = 1

2 (1 + J1),with J1 given by (79), is valid.
From (61) we have:

(80)
z1

z2
→ ω̄1

ω̄2
as t→∞.

Substituting in (79) gives:

J1 ∼ −
1√
π

ˆ ∞
−z1

erf
(
ω̄1

ω̄2
m+

(
β
ω̄1

ω̄2
− 1
)
z2

)
e−m

2
dm.

If ω̄1/ω̄2 > 1/
√
β, then the erf term → 1 as t (and hence both z1 and z2) → ∞. Thus, J1 → −1, and

hence µ1 → 0 and µ2 → 1. However, ω̄1/ω̄2 > 1/
√
β implies that ω̄1 > 0, and hence c1(t) ∼ tω̄2

1 as
t→∞. Thus, µ1(t) = ċ1(t) ∼ ω̄2

1 > 0, and we we obtain a contradiction. A similar argument in the case
ω̄1/ω̄2 < 1/

√
β also yields a contradiction.

It remains to consider the case:

(81)
ω̄1

ω̄2
=

1√
β
.
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Then βz2
1/z2 − z2 in (79) has an indeterminate limit as t→∞. Suppose that

(82) β
z2

1

z2
− z2 → ω̄ as t→∞,

where ω̄ can take any value between−∞ and∞. Recalling that z2
1+z2

2 = t/(2δ), this gives, on substituting
for z2

1 , a quadratic in z2:

(β + 1)z2
2 + ω̄z2 − β

t

2δ
∼ 0,

and hence

z2(t) ∼ 1
2(β + 1)

(
−ω̄ +

√
ω̄2 + 2

t

δ
β(β + 1)

)
.

Recall that z2 must be positive, so only the positive root is relevant. It now follows that

c2(t) = 2δz2
2 ∼

δ

(β + 1)2

(
ω̄2 +

t

δ
β(β + 1)− ω̄

√
ω̄2 +

2t
δ
β(β + 1)

)
,

and hence

µ2(t) = ċ2(t) ∼ β

β + 1

(
1− ω̄√

ω̄2 + 2tβ(β + 1)/δ

)
→ β

β + 1
as t→∞.

We have therefore shown that, for any �nite ω̄,

(83) µ1(t)→ 1
β + 1

, µ2(t)→ β

β + 1
as t→∞.

Thus, 83 is the only possible asymptotic solution. However, because µ1 ∼ (1 + J1)/2, to show that (83)
actually yields a consistent solution we have to show that ω̄ can be chosen so that J1 → −(β− 1)/(β+ 1)
as t→∞. We shall show that there is a unique value of ω̄ for which this holds.

Substituting from (81) and (82) into (79), we obtain:

(84) −J1 → K1(ω̄) =
1√
π

ˆ ∞
−∞

erf
(

1√
β
m+ ω̄

)
e−m

2
dm as t→∞.

Thus:

∂K1

∂ω̄
=

2
π

ˆ ∞
−∞

exp

(
−
[

1√
β
m+ ω̄

]2

−m2

)
dm

=
1√
π
·

√
β

β + 1
exp

(
− β

β + 1
ω̄2

)
.

If follows that K1(ω̄) is a monotonically increasing function of ω̄. Further, it is clear that K1 → ±1 as
ω̄ → ±∞ (see Fig. 2). Since −1 < (β−1)/(β+ 1) < 1 for any β > 0, it follows that there is unique, �nite
value ω̄? = ω̄?(β) such that K1(ω̄?) = (β− 1)/(β+ 1). This value therefore de�nes the unique consistent
solution. This completes the proof.

Remark B.1. The analysis given in this Appendix has concerned the special case with δ-function initial
conditions. At the cost of some notational complexi�cation, it is straightforward to generalize these
arguments to solutions with arbitrary initial conditions, (40, 41, 42).
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