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Abstract  

The main goal for this work was to produce microbubbles for a wide range of 

applications with sizes ranging between 10 to 300 µm in a capillary embedded T-

junction device. Initially the bubble formation process was characterized and the 

factors that affected the bubble size; in particular the parameters that reduce it were 

determined. In this work, a polydimethylsiloxane (PDMS) block (100 x 100 x 10 

mm3) was used, in which the T-shaped junction was created by embedded 

capillaries of fixed outer diameter. The effect of the inner diameter was investigated 

by varying all the inlet and outlet capillaries’ inner diameter at different stages. In 

addition, the effect of changes in the continuous phase viscosity and flow rate (Ql) 

as well as the gas pressure (Pg) on the resulting bubble size was studied. Aqueous 

glycerol solutions were chosen for the liquid phase, as they are widely used in 

experimental studies of flow phenomena and provide a simple method of varying 

properties through dilution. In addition, the viscosity could be varied without 

significantly changing the surface tension and density of the solutions. The 

experimental data were then compared with empirical data derived from scaling 

models proposed in literature, which is widely used and accepted as a basis of 

comparison among investigators. While the role of liquid viscosity was investigated 

by these authors, it was not directly incorporated in the scaling models proposed 

and therefore the effect of viscosity was also studied experimentally. It was found 

that bubble formation was influenced by both the ratio of liquid to gas flow rate and 

the capillary number. Furthermore, the effect of various surfactant types and 

concentrations on the bubble formation and stability were investigated. Preliminary 

studies with the current T-junction set-up indicated that producing microbubbles 

with size ranging from 50-300 µm was achievable. Subsequently, the study 

progressed to optimise the junction to produce smaller bubbles (~ 20 µm) by 

directly introducing an electric field to the T-junction set-up and assisting the 

bubble breakup with the combination of microfluidic and electrohydrodynamic 

focusing techniques. Finally, in this thesis, a novel method that combines 

microfluidics with electrohydrodynamic (EHD) processing to produce porous BSA 

scaffolds from microbubble templates with functional particles and/or fibres 

incorporated into the scaffolds’ structure is presented. 
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Nomenclature 

Symbol Definition Units 

Ainterface Projected area of liquid-gas interface m2 

B Universal gas constant Dimensionless 

Bo Bond number Dimensionless 

Ca Capillary number Dimensionless 

Ci Initial concentration of dissolved gas in liquid g/ml 

Csat 

Saturation concentration of dissolved gas in 
liquid g/ml 

d Characteristic dimension of the system m 

Db Bubble diameter μm 

Dch Microchannel diameter μm 

E Electric field strength N/C 

εg Gas dielectric constant Dimensionless 

εl Liquid dielectric constant Dimensionless 

K Electrical conductivity μS/m 

L Length of the slug m 

Lgap Gap between the coaxial capillaries m 

M Molecular weight g/mol 

M Mach number Dimenssionless 

µg Gas viscosity mPa s 

µl Liquid viscosity mPa s 

Pg Gas inlet pressure kPa 

Pgmax Maximum gas pressure kPa 

Pgmin  Minimum gas pressure kPa 

Plg Gas outlet pressure downstream of junction kPa 

∆Pc Characteristic pressure from lubrication analysis kPa 
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Qg Gas flow rate ml/min 

Ql Liquid flow rate ml/min 

Ra  Principle radii of curvature in horizontal plane  m 

Rr Principle radii of curvature in vertical plane  m 

Reg Gas Reynolds number Dimensionless 

Rel Liquid Reynolds number Dimensionless 

ρe Volume charge density C/m3 

ρg Gas density kg/m3 

ρl Liquid density kg/m3 

σl Liquid surface tension mN/m 

T Temperature K or (ºC) 

t Time s 

θ Contact angle º 

ug Gas flow velocity m/s 

ul Liquid velocity m/s 

V Voltage kV 

w Width of the channel m 

wc width of the continuous phase capillary m 

We Weber number Dimensionless 
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Glossary of abbreviations 

     

BSA    Bovine serum albumin  

BSS Balanced salt solution 

CEHDA    Co-axial electrohydrodynamic atomization  

CMC Critical micelle concentration 

CTAB Cetyltrimethyl ammonium bromide 

DEP Dielectrophoresis 

EHDA   Electrohydrodynamic atomization  

FC Fluorocarbon 

FDA Food and Drug Administration  

FEP Fluorinated ethylene propylene 

HIFU High intensity focused ultrasound 

HPLC High performance liquid chromatography 

MRI Magnetic resonance imaging 

MEMS Microelectromechanical systems 

O/W Oil-in-water  

PBS phosphate buffered saline 

PDMS Polydimethylsioxane 

PEG Poly ethylene glycol 

PET Polyethylene terephthalate 

PI Polydispersivity index 

PLGA Poly (lactic acid-co-glycolid acid)  

PMMA Poly(methyl methacrylate) 

PMSQ Polymethylsilsesquioxane  

PTFE Polytetrafluoroethylene 

PVA Poly vinyl alcohol 

SEM Scanning electron microscopy 
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SDS sodium dodecyl sulfate 

SLS sodium lauryl sulfate 

W/O/W   water-in-oil-in-water  

W/O    water-in-oil  

 

 

Subscripts 

     

b  bubble 

c continuous phase 

ch    channel 

d dispersed phase 

g gas 

i initial 

l liquid 

lv liquid-vapour 

sat saturation 

sl solid-liquid 

sv solid-vapour 
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Chapter 1 

  

Introduction and Background 

 

1.1  Background 

Microbubbles are used in a very wide range of applications ranging from 

biomedical to food, cosmetics and agricultural science and technologies (Gordillo 

et al., 2004, Park et al., 2010). Microbubbles are used in ultrasound medical imaging 

as contrast agents to enhance the acoustic contrast between blood and surrounding 

tissues and therefore improve the quality of ultrasonic images (Zheng, 2012, 

Taverna et al., 2012, Kiessling et al., 2012, Blomley et al., 2001). Microbubbles are 

also employed in therapeutic applications as vehicles for targeted drug and gene 

delivery (Stride et al., 2009, Unger et al., 2001, Stride and Edirisinghe, 2008). In 

order for microbubbles to be used as ultrasound contrast agents or in drug delivery 

platform, their size and distribution are critical parameters (Chen et al., 2009). The 

technology to use microbubbles in the food industry in a controlled manner has also 

recently emerged as an important breakthrough (Campbell and Mougeot, 1999). 

Microbubbles have great potential to be used in a number of processes, including 

aquaculture and hydroponic cultivation, food preservation and quality control, and 

water and wastewater treatment (Cassell et al., 1975). The requirements on the 

properties of microbubbles such as size, monodispersity, surface property, and 

stability vary amongst different applications (Xu et al., 2008). 

 

Microbubbles are typically referred to as gas in liquid emulsions with diameters 

ranging from 1 to 200 μm. Over the last century, the existence of naturally occurring 
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microbubbles in fresh water, sea water and blood and other body fluids has been 

studied by many investigators (Johnson and Cooke 1981; Cassell et al. 1975). These 

suspensions have been the topic of intense investigation by scientists and engineers 

in many practical fields. For instance, in wastewater treatment, small microbubbles 

are applied to efficiently separate colloidal pollutants from water during 

microflotation (Cassell et al., 1975). The presence of bubbles near the surface of the 

ocean has profound significance in marine biology over a number of oceanographic 

processes, such as converting organic carbon to particulate formed by dissolving 

small bubbles in seawater (Johnson and Cooke, 1980). In meteorology, air bubbles 

produced by breaking waves affect the local air quality and rain formation while 

carrying surface active organic materials upon rising to the ocean surface and 

ejecting them into the air in the form of aerosols upon breaking (Blanchard, 1975).  

Due to the high surface area to volume ratio, microbubbles are ideal tools for mass 

and energy transfer. In bioprocessing, yeast biomass production largely depends on 

the oxygen transfer efficiency of the aeration system performed by microbubbles 

(Ago et al., 2005). In the pharmaceutical industry, microbubble aeration systems 

are used in bioreactors to carry out similar air/oxygen mass transfer (Zimmerman 

et al., 2008). 

 

An important topic for scientists and engineers to study is the origin of the 

microbubbles’ long lasting stability. Currently microbubbles are applied in a large 

scope of industrial and technological applications.  In the more recent years, 

microbubbles have received increasing attention for biomedical applications. In the 

next section, a detailed developmental history of microbubbles as ultrasound 

contrast agents for diagnostic imaging is reviewed.  

 

There are several methods to produce microbubbles. The microfluidic method has 

many advantageous over conventional methods, which are discussed below: 

 

 It is a method capable of producing fine and highly monodisperse 

microbubbles. Monodisperse bubbles have the advantage in many 

applications, for instance in ultrasound imaging, using uniform 

microbubbles enables similar attenuation and scatter characteristics. 
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 It is a technique that can be scaled up easily for mass production with 

multiple microchannels being used in parallel. 

 

 This method is very flexible and different surfactants and stabilizers can be 

added to adjust the stability of microbubbles produces. 

 

 The capillary embedded T-junction device described in this work is different 

from the conventional microfluidic chips manufactured through much more 

expensive methods (i. e. lithography).  

 

 This device provides a simple but yet robust production of highly 

monodisperse microbubbles without the need of continuous cleaning and 

replacement due to the blockage of channels caused by the material residue. 

 

 Another advantage of this setup is that the channel diameter is generally 

larger and therefore pressure drop in the channel is much lower than smaller 

diameter channels.  

 

 The T-junction device is optimized by introducing the electric field directly 

into the bubble breakup region, the flow of the continuous phase is assisted 

with electrohydrodynamic flow and bubbles with almost an order of 

magnitude smaller than the channel diameter were generated. 

 

The above-mentioned advantages make the capillary embedded T-junction an attractive 

method for the production of monodisperse microbubbles. 
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1.2  Objectives of the research 

 

 

Figure 1.1: Objectives of the research presented in this thesis. 

 

The flow chart in Figure 1.1 sets out the key objectives of this study. The detail of each 
objective is discussed below. 

1.2.1 Production of Microbubbles using the capillary embedded T-junction 
device 

The primary objective of this work was to investigate the parameters affecting the 

formation of bubbles in a simple capillary embedded T-junction device. In addition, the 

aim was to demonstrate that this device could successfully produce microbubbles with 

control over size and size distribution under ambient conditions. Furthermore, the focus 

was on the optimisation of the device by including an external electric field and further 
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reduction in bubble size due to the addition of the external field. To meet these 

objectives, several studies were necessary which were arranged into different stages as 

follows: 

 

1.2.1.1 Microbubble size and distribution study  

 

Initially, the aim of this study was to investigate the fundamentals of the T-junction 

microfluidic processing for the preparation of microbubbles. The main goal for this part 

of the work was to determine how the size and size distribution of the microbubbles 

generated can be systematically controlled through the range of operating parameters: 

solution and gas flow rates, channel diameter and the inherent properties of the solution 

such as viscosity and surface tension during microbubble generation. Finally, to 

complete this part of the study, the intention was to validate the experimental data with 

the scaling models previously studied to assess the role of the capillary number has on 

bubble size. 

 

1.2.1.2 Effect of surfactant properties on microbubble formation, size and 

stability 

 

The purpose of this part of the work was to conduct an experimental study to determine 

the effect of surfactant type and concentrations on bubble formation and size. The study 

was aimed at four differently charged surfactants: an anionic surfactant, sodium 

dodecyl sulfate (SDS), two non-ionic surfactants, polyoxyethylene sorbitan 

monopalmitate (Tween 40) and polyoxyethylene glycol 40 stearate (PEG 40), and a 

cationic surfactant, cetyltrimethyl ammonium bromide (CTAB).  The intention of this 

part of the research was also to achieve stable bubbles by altering the surfactant type 

and concentration.  
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1.2.1.3  Optimising the setup to reduce the bubble size by introducing 

Electrohydrodynamic flow focusing 

 

This aspect of the study was aimed at the optimisation of the standard T-junction by 

introducing an external electric field to produce bubbles with a versatile range of 

applications. The objectives in this section were to modify the basic T-junction 

microfluidic device by applying an electrical potential difference across the outlet 

channel to reduce the bubble size, as well as exploring the effect of applied voltage in 

conjunction with the capillary number. It was intended further in this work to produce 

a model to predict the bubble size for the range of experimental conditions tested in this 

study. 

1.2.2 Production of scaffolds and foams from microbubbles 

In this work, the main goal was to provide an understanding of the concepts of 

microfluidics and electrohydrodynamic (EHD) techniques and the combination of two 

simple but highly reliable methods in order to construct advanced multi-dimensional 

structures. This part of the work was focused on production of highly uniform protein 

scaffolds from microbubbles generated with the state of the art capillary embedded T-

junction device with a high level of control over the size of microbubbles. In addition, 

the intention was to demonstrate that the attachment of nanoparticles/fibres on the 

multi-layered structures through the EHD method is viable and can improve the 

functionality of the scaffolds for possible future applications. 

 

1.2.2.1 BSA Foams and scaffolds from microbubbles 

The objective in this section was to generate foams from protein coated microbubbles 

produced via the T-junction set-up. The study was aimed at bovine serum albumin 

(BSA) solutions with different concentrations to produce stable foams and fine 3D 

scaffold structures. The fabrication of scaffolds and foams for applications such as 

tissue engineering and food and cosmetics industries in a scaled up and cost effective 

manner was intended in this part of the research.  
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1.2.2.2 Production of novel BSA scaffolds loaded with nanoparticles/fibres 

The purpose of this research was to produce multi-dimensional scaffolds containing 

biocompatible particles and fibres using a combination of two techniques of T-junction 

microfluidics and electrohydrodynamic (EHD) processing. The aim was to form porous 

scaffolds by drying the layers of monodisperse bovine serum albumin (BSA) bubbles 

generated from the T-junction method and further spraying or spinning  poly (lactic-

co-glycolic) (PLGA), polymethysilsesquioxane (PMSQ) and collagen particles/fibres 

onto the scaffolds during their production and after drying by using the EHD 

processing. The key motivation for conducting this study was to produce 

multifunctional BSA scaffolds with controlled porosity that have bio-products such as 

PLGA, PMSQ and collagen particles/fibres attached on them, which can provide these 

structures with the potential to be used in many biomedical and cosmetics applications.  

1.3  The structure of the thesis  

This dissertation describes the way in which the research is proceeded by surveying 

literature, assembling the experimental setup, selecting materials and methods, and 

conducting experiments etc., in order to exploit the potential available in T-junction 

microfluidic device as a viable technique to prepare microbubbles primarily for medical 

and secondarily for other industrial applications. The organisation of this thesis is given 

in this section. This Chapter 1 provides background information about the research 

project and gives an overview about the basics of microbubble formation in T-junction 

microfluidics and parameters influencing the size and stability of bubbles. The 

objectives of the research are stated and the organisation of this thesis and scope of the 

research outlined. 

 

Chapter 2 presents a detailed literature survey. Since the aim of the research is to 

prepare microbubbles through T-junction microfluidics, optimisation of the 

microfluidic device with electrohydrodynamic focusing and finally generation of 

scaffolds from microbubbles, an extensive collection of literature has been surveyed to 

understand the principles of microfluidics and electrohydrodynamic atomization, the 

procedures and their uses, as well as the materials and the methods used for the 
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preparation of microbubbles and scaffolds. A literature survey has been presented on 

the uses and properties of microbubbles that are used in medical, food and agricultural 

applications and the investigations carried out previously using microfluidic systems 

and the theory behind the microbubble formation in different microfluidic devices. 

 

Chapter 3 describes the experimental setup, materials used, experiments and 

characterisation procedures carried out, and a detailed description of the experimental 

tools employed. 

 

In Chapter 4, results obtained during the experiment using a capillary embedded T-

junction device are discussed in conjunction with existing literature. This chapter is 

split into three sections; in Section 4.1, aqueous glycerol solutions with different 

concentrations were used to show the effect of different parameters such as; flow rate 

ratios, viscosity and channel geometry were studied on size, size distribution and 

polydispersity index of microbubbles. 

 

In Section 4.2; surfactants with different charge type and chain lengths were used to 

investigate the effect of various surfactants on the formation and stability of 

microbubbles. The effect of surfactant wetting characteristics on the surface of channels 

walls were studied. The stability profile of microbubbles were measured to select an 

ideal surfactant for applications requiring stable microbubbles such as ultrasound 

imaging and drug delivery. 

 

Section 4.3 discusses a novel method of integrating the T-junction microfluidics with 

electrohydrodynamic focusing to reduce the microbubbles size further. Parameters such 

as viscosity, electric conductivity and applied voltage were varied and an empirical 

model was suggested for the range of capillary numbers studied in this study. 
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Chapter 5 studies the role of microbubbles in production of protein foams and 

scaffolds. This chapter has two sections. Section 5.1 focuses on the production of BSA 

foams and scaffolds from microbubbles produced in a T-junction microfluidic device. 

A detailed description is given in Section 5.2 on the formation of BSA scaffolds loaded 

with nanoparticles/fibres using a combination of two well established techniques. 

Scaffolds with uniform pore size were developed from protein microbubbles formed 

via capillary embedded T-junction microfluidic cross flowing device. Polymer 

nanoparticles were electrosprayed on the structure; while Collagen beaded nanofibres 

were electrospun via the EHD setup. 

 

Chapter 6 is divided into two sections. Section 6.1 summarizes the experimental 

results and presents the conclusions of the work. Section 6.2 discusses some 

recommendations for future work, employing microfluidics processing of 

microbubbles and beyond, to continue the research presented in this thesis in new 

directions. Finally, the literature referred to throughout the thesis is listed in the 

References section
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Chapter 2  

Literature review  

2.1  Introduction 

The motivation and the objective behind this literature survey is to provide an overview 

of techniqueS to prepare microbubbles that can satisfy the requirements of primarily in 

medical engineering, particularly in biomedical applications such as scaffolds from 

bubbles for tissue engineering and microbubbles as contrast agents for ultrasound 

imaging and targeted drug delivery. In order to fulfil this objective, the literature 

connected to the usages, properties, requirements and preparation methods of 

microbubbles that are used in ultrasound imaging and targeted drug delivery, food 

engineering, water and wastewater management and finally their role as platforms for 

generation of scaffolds for tissue engineering has been surveyed in the first instance. 

Secondly, the work carried out by previous authors on microfluidic systems have been 

reviewed in order to understand how these techniques offer opportunities for further 

research in fulfilling the objectives of the work.  
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2.2  The applications of microbubbles  

Microbubbles play an important role in a highly diverse range of applications ranging 

from biomedical to food, cosmetic and agricultural science and technologies (Gordillo 

et al., 2004, Park et al., 2010, Kiessling et al., 2012, Blomley et al., 2001, Xu et al., 

2008). The requirements in terms of the properties of microbubbles such as size, 

monodispersity, surface functionalization and stability for these applications similarly 

vary widely (Unger et al., 2001, Stride and Edirisinghe, 2008, Stride et al., 2009). 

2.2.1  Ultrasound contrast imaging 

Compared with other imaging modalities such as computed tomography and magnetic 

resonance imaging (MRI), ultrasound imaging is one of the most popular medical 

diagnostic techniques due to its safety, low cost, and easy accessibility (Kang and Yeh, 

2012). However, due to the relatively poor quality of the images obtained using this 

technique, methods to improve this problem are considered amongst researchers (Stride 

and Saffari, 2003). The application of encapsulated microbubbles, in particular in the 

area of ultrasound contrast imaging, is rapidly expanding in the field of medical 

engineering. Microbubbles are highly compressible and therefore they are found to be 

practical as contrast agents in ultrasound imaging (Lindner, 2004). Since their discovery 

in the late 1960’s (Kremkau et al., 1970), it is established that surfactant or polymer 

shell stabilized microbubbles are the most effective means of contrast enhancement in 

ultrasound imaging and various current commercially available contrast agents 

(Dijkmans et al., 2004). Microbubbles scatter ultrasound much more efficiently than 

red blood cells due to their high compressibility. By introducing a suspension of 

microbubbles into the blood stream, the contrast between blood vessels and the 

surrounding tissue in an ultrasound image is improved by several orders of magnitude 

(Cui et al., 2005). 

2.2.2  Targeted drug delivery 

As well as their use in diagnostic imaging, microbubbles have been the subject of 

intensive research in therapeutic applications. Microbubbles in intravascular ultrasound 
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treatment can improve drug penetration into tissues, such as through the blood-brain 

barrier (Hernot and Klibanov, 2008). In drug delivery and gene therapy, the required 

therapeutic agent is loaded in microbubbles, where they can be traced to the target by 

using low-intensity ultrasound and further the material is released locally by destroying 

the microbubbles with a high intensity burst and therefore avoiding systemic 

administration such as toxic chemotherapy. The risk of harmful side effects can be 

substantially reduced by localizing the treatment using this method.  In order to increase 

the speed and efficacy of the treatment in high-intensity focused ultrasound (HIFU) 

surgery, microbubbles have been used as means of nucleating cavitation in the target 

volume (Stride, 2009). Microbubbles are used as theranostic agents as they provide 

simultaneous and co-localised contrast for diagnostics imaging and drug carrying and 

delivering capacity for targeted therapy. In this case, the imaging modality and 

therapeutic trigger is ultrasound (Sirsi and Borden, 2009). Improvements in both 

microbubble design and ultrasound devices and methodology have made this 

technology clinically relevant.  

 

Figure 2. 1: Different types of microbubble agent used for ultrasound imaging and 
therapy. a) Coated microbubble. b) Phase shift emulsion. c) Echogenic liposome. d) 

Multilayered microbubble (Stride, 2009). 

 



 
Chapter 2: Literature review 

35 
 

Figure 2.1 illustrates different types of microbubbles for specific biomedical 

applications. These include coated gas microbubbles, phase shift emulsions, echogenic 

liposomes and multi-layered structures for therapeutic applications. Phase shift 

emulsion consists of a stabilised emulsion of volatile liquid droplets (Figure 2.1 b) 

which vaporise to form microbubbles either upon injection or following exposure to 

ultrasound of sufficient intensity. Echogenic liposomes are similar in terms of their 

chemical composition to phospholipid-coated microbubbles but consist of phospholipid 

bi -layers encapsulating a mixture of liquid and gas. Compared with gas microbubbles, 

this type of agents provide enhanced stability and therefore they are particularly 

attractive in drug delivery applications. 

2.2.3 Water and wastewater treatment 

Small gas bubbles are known to be extensively used in many environmental and 

industrial separation processes. Bubbles generated for these applications are used in the 

treatment of potable water and wastewaters for the removal of volatile contaminants in 

the aqueous phase as well as the separation of particulate materials from the aqueous 

phase (Ahmed and Jameson, 1985, Ketkar et al., 1991, Chu et al., 2007). Many different 

methods are used to generate bubbles depending on the treatment application. Since 

smaller bubbles act as more efficient collectors and optimize mass transfer rates, it is 

important to control the diameter and size distribution of the bubbles produced by these 

different methods (Burns et al., 1997). Microbubbles are used in microflotation for 

wastewater treatment because of their large surface area and relatively slow rise 

velocities (Cassell et al., 1975, Rodrigues and Rubio, 2007). As microbubbles rise in 

wastewater, they come into contact with organic pollutants and other low-density 

particulates and carry them to the surface to form a collective foam layer for subsequent 

separation and purification processes. In the mineral industry, fine particles are 

separated from solutions using microbubbles in a similar fashion called electroflotation 

(Jimenez et al., 2010). Electroflotation is a simple process that floats particles to the 

surface of a water body by microbubbles of hydrogen and oxygen gases generated from 

water electrolysis (Chen, 2004). 
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2.2.4  Food engineering 

Bubbles play a significant role in the manufacturing of many food products such as 

cakes, ice creams and soft drinks. Introducing microbubbles in food has many 

advantages such as lowering the cost and forming novel structures (Campbell and 

Mougeot, 1999). There are a number of positive benefits from aeration of food 

including texture change, digestibility modification or flavour intensity (Lau and 

Dickinson, 2005). Replacement of the carbonated drinks, enrichment of the nutrition 

value of the food and reduction of price per volume in products such as candy bars are 

potential novel applications of microbubbles compared to traditionally aerated food. 

Microbubbles effectively adsorb oppositely charged molecules, tiny particles, and/or 

fine oil droplets due to their charged surface and large surface area. Microbubbles 

dispersed in food products can not only modify the texture, but also have several very 

interesting and value-added benefits. Previous studies have reported the use of 

microbubbles for enzyme extraction, protein recovery, bacteria harvest and oil removal 

or recovery (Xu et al., 2008). The appearance and shelf-life of food incorporated with 

microbubbles can be influenced by the physical stability and amount of air. By 

sufficiently adding small amounts of such bubbles per unit mass without significantly 

altering the macroscopic rheological properties, healthier (reduced calorie) food with a 

similar taste can be produced. In addition, microbubbles coated with nutritional 

ingredients or drugs could help to improve the nutrition or act as a medicinal aid in food 

(Shen et al., 2008). Methods of making coated microbubbles suitable for food 

applications is a challenging area for manufacturers.  

2.2.5 Scaffolds from microbubbles for tissue engineering 

Scaffolds play an important role in tissue engineering by acting as porous biodegradable 

structures containing various bio-products (cells, genes, drugs and proteins) 

(Dhandayuthapani et al. 2011, Cutroneo, 2003, Haynesworth et al., 1998). They serve 

as surrogate matrices, e. g. extra cellular (ECM) and can be produced from natural or 

synthetic material or a combination of both (Pereira et al. 2013, Carletti et al., 2011). 

In order for scaffolds to mimic the function of the natural ECM available in the human 

body, they must balance mechanical function with transport of bioactive agents (Chan 

and Leong, 2008, Hollister, 2005). While a denser scaffold offers a better function and 
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mechanical strength, a more porous scaffold provides greater diffusion of gas/liquid 

components and provides cell growth (Carletti et al., 2011). 

 

Scaffolds developed for tissue engineering are to assist with the growth of cells 

migrating from the surrounding tissue in to the porous structure of the scaffold. As the 

primary function of the scaffolds is to support the growing tissue, they are required to 

allow cell migration, attachment and proliferation (Hollister, 2005). In order to satisfy 

these requirements they must have high porosity, high surface area and uniform three-

dimensional shape, which can be tailored to suit the requirements of different types of 

tissue (Vats et al., 2003). There has been many studies into the morphological design 

of scaffolds to stimulate cellular growth. Several factors are important including the 

pore shape and size, as well as their interconnectivity and spatial distribution through 

the scaffold. Generally, scaffolds with high porosity have relative lower mechanical 

property while the honeycomb structure of a scaffold is attributed to the well 

compressive strength (Wang et al., 2009). Foam and honeycomb like structures with 

interconnecting and large pores are ideal templates for tissue engineering scaffolds. 

 

Recently microbubbles have been used as pore generators in the biomedical field. Wang 

et al. (Wang et al., 2009) showed that a sponge-type, multiple-layer alginate scaffold 

could be formed by collecting bubbles over a period of time, with uniform pore sizes 

of 250 μm promoted more cell migration and distribution in the scaffold with an 

increased cell (chondrocyte) proliferation over 7 day period. Scaffolds prepared by Nair 

et al.  (Nair et al., 2009) using protein microbubbles as porogens have shown to be an 

excellent candidate to be used as tissue engineering scaffolds as well as drug / growth 

factor delivery vehicles. 

 

2.2.5.1  Scaffold fabrication techniques 

A great variety of well‐known fabrication techniques are used in scaffold design for 

tissue engineering applications. Particle leaching (Mikos et al., 1994), polymer casting 

and phase separation (Liu et al., 2011), solvent casting, emulsion freeze 
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drying, electrospraying (Sullivan and Jayasinghe, 2007), electrospining (Li et al., 2005) 

and foaming (Ekemen et al., 2011) are amongst the main fabrications methods. Some 

of the widely used techniques are described here. Examples of scaffolds generated with 

various techniques are shown in Figure 2.2.    

Scaffolds produced by these methods have pores with a wide size and shape distribution 

leading to insufficient transport of nutrition, migration and attachment of cells. 

Moreover, the use of organic solvents and particulate leaching in most of these 

techniques reduce the biocompatibility of the structure which hinders the growth of 

cells (Lee et al., 2011).  

 

2.2.5.1.1  Particle leaching  

Particle leaching incorporates particles, e.g.  salt,  sugar  or  specifically  prepared  the 

spheres,  dissolved  in  a  polymer  sample  and further washed out after 

processing  the  polymer  sample  into  the  final  form  creating  additional porosity in 

the structure of the scaffold (Mikos et al., 1994). One of the advantages of this method 

is the creation of large pores with high control over the pore morphology. However, 

this method is not suitable for materials such as soluble protein scaffolds as well as the 

risks of remaining material residue after processing that is harmful for the tissue.  

2.2.5.1.2  Emulsion freeze drying 

In emulsion freeze‐drying, an emulsion is formed by homogenization of a polymer-

solvent system and water. The emulsion is then cooled down quickly resulting in 

solidification of the polymer and the creation of a polymeric porous structure. Later the 

solvent and water content are removed by freeze drying (Ma and Zhang, 1999). 

Creation of relatively thick scaffolds with large pores is one of the highlights of this 

method, as well as enabling the incorporation of proteins during the fabrication. The 

permeability of the pores in the obtained morphology is however very poor and 

therefore this limits the growth of cell and transport of nutrients through the scaffold. 
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Figure 2. 2: SEM images of scaffolds fabricated with different techniques of a) gas 

foaming (Ma and Choi, 2001), b) electrospining (Bhardwaj and Kundu, 2010), c) 

phase separation (Ma and Zhang, 2001) and d) freeze drying (Ma and Zhang, 1999). 

 

2.2.5.1.3 Foaming via pressure quenching method 

Generally, in the foaming process, a soluble inert gas such as CO2 or N2 is used as a 

blowing agent to create porosity in polymers via pressure quenching method. The 

properties of the scaffold is adjusted by variation of the process conditions. This method 

is also applicable for composites of polymer and ceramics (Ma and Choi, 2001). The 

advantage that this method has over the other processes is the lack of solvents, 

eliminating the risk of remaining residue. However, one of the drawbacks of this 

method is the pores are not percolated. Nonetheless, there are additional post processing 

steps such as plasma treatment or pulsated ultrasound to obtain porous morphologies. 
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2.2.5.2 Polymeric scaffolds 

In order to fabricate scaffolds suitable for tissue engineering, biocompatible polymers 

that do not have the potential to elicit an immunological or foreign body reaction should 

be used. The selected polymers should degrade with a controlled rate in conjunction 

with tissue regeneration. There are many types of polymeric materials that have been 

used for bone tissue engineering that can be categorized as naturally derived materials 

(e.g. collagen and fibrin) and synthetic polymers (e.g. poly(lactic acid) (PLA), 

poly(glycolic acid) (PGA), and their copolymers (PLGA) (Hollister, 2005). One of the 

potential advantages of naturally derived polymers is that they positively support cell 

adhesion and function, however they may exhibit immunogenicity and contain 

pathogenic impurities. Another disadvantage of the naturally derived materials is the 

lack of control over their mechanical properties and biodegradability as well as 

limitation in supply and being costly. On the other hand synthetic polymers have the 

advantage of being reproducible in large scale production with controlled properties of 

strength, degradation rate and microstructure. Although there is a variety of 

biodegradable polymers available for tissue engineering, no single polymer meets all 

the requirements for the design of scaffolds. As a result, composite materials that often 

have an excellent balance between mechanical properties and cell adhesion are 

introduced to mimic the natural bone or tissue matrix, for instance natural bone matrix 

is a composite material of collagen and apetites (Liu and Ma, 2004). 

In order to create favourable scaffold environment the base material should have a 

suitable decomposition rate, good biocompatibility, surface characteristics and 

favourable plasticity (Wang et al., 2013). Biodegradable materials from natural 

polymers such as hyaluronic acid, alginate and chitosan to synthetic polymers such as 

poly (L-lactic acid) (PLA) and poly (L-lactic-co-glycolic acid) (PLGA), are commonly 

used for the fabrication of scaffolds and have been extensively researched (Kim et al., 

2005). However, most polymeric scaffolds are hydrophobic and this discourages cell 

attachment and growth. In order to address this problem many methods have been 

suggested such as coating the scaffold with proteins or soaking it in various growth 

factors via spontaneous adsorption or covalent linking (Nair et al., 2007). While these 

additional treatment methods assist with cell attachment and growth in polymeric 
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matrices, they may also alter the morphological and physical properties of the scaffolds 

(Nair et al., 2010). 

2.2.5.3  Protein scaffolds 

The technique of using protein bubbles as porogens provides two distinct advantages. 

Firstly, the coating material is a biological polymer without any toxicity and secondly 

preparing scaffolds from microbubbles has a potential to function as a drug delivery 

mechanism in the matrix by incorporating biological molecules within the bubble shell 

or inside the core. The importance of proteins as biomaterials is mainly due their 

inherent tendency to deposit on surfaces as tightly bound adsorbents and the influence 

these deposits have on cell-surface interactions (Ekemen et al., 2011). In addition, their 

excellent biocompatibility and biodegradability, availability on large scale and low cost 

has brought about a great effort in developing applications for proteins as biomaterials. 

 

Recently bovine serum albumin (BSA) microbubbles have been used as porogens with 

low toxicity and high biocompatibility to fabricate scaffolds (Lima et al., 2012). In 

addition to improvement in the porosity of scaffolds, albumin microbubbles can shield 

encapsulated growth factors from solvent denaturation. Nair et al. (2007) used a 

sonication technique to produce the BSA microbubbles and fabricated scaffolds by 

phase separation of a polymer solution mixed with microbubbles. Microbubbles 

produced using the sonication technique generally have a wide size distribution and 

therefore the scaffolds produced with this methods were not homogeneous. An 

alternative to this method is to use a microfluidic technique, whereby emulsions and 

foams characterized by monodisperse droplet/bubble sizes can be readily prepared. 

These systems could be used to generate porous materials with a highly consistent pore 

size (Wang et al., 2011, Chung et al., 2009). 

 

In addition to microbubbles, particles containing growth factors have been incorporated 

into porous scaffolds (Hu et al., 2001). Encapsulation of drugs into polymeric 

microparticles, and subsequent injection, is a proven method of controlled delivery for 

bioactive agents (Enayati et al., 2009). Electrohydrodynamic  (EHD) processing can 

produce uniform solid and encapsulated particles and fibres with diameters ranging 
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from a few nanometres to several micrometers in a single step, under ambient 

conditions, at low cost and without the need of high concentrations of additives or 

surfactants (Sofokleous et al., 2013b, Yoon and Kim, 2011). Moreover, multifunctional 

products (particles/fibres) loaded with therapeutic compounds (drugs, growth factors, 

DNA etc.) can be generated via co-axial electrohydrodynamic processing (CEHD) 

(Sofokleous et al., 2013a). However, there are limitations to incorporating polymeric 

particles/fibres into polymeric scaffolds due to the simultaneous equivalent solubility 

of the particles and scaffolds. Alternatively, protein-engineered biomaterials have the 

advantage of being able to combine desirable biocompatibility properties of natural 

ingredients to which tuning in with those of synthetic structures (Sengupta and 

Heilshorn, 2010). Proteins are complex organic macromolecules with inhomogeneous 

charge distribution that results in amphiphilicity, structural flexibility and bioactivity, 

and therefore play a significant role in reinforcement, structuring and functionalization 

of ceramics and tissue engineering scaffolds (Maas et al., 2013, Ekemen et al., 2011).  

2.3  Stability of microbubbles and foams 

The generation and the breaking of liquid films cause the formation and collapse of 

foams and bubbles. In the absence of thermal or mechanical perturbation, the stability 

of the foam as an isolated system depends on its resistance to factors such as the 

gravitational drainage, drainage by capillary suction between regions with different 

radii of curvature (Laplace equation will be described in detail in (chapter 4) and 

finally gas diffusion through the liquid film induced by the pressure gradient between 

two bubbles (Laplace equation) (Beneventi et al., 2001). 

Microbubbles can be stabilized by the effect of surface tension and can provide 

resistance to gas permeation. Microbubble shell used for biomedical applications is 

comprised of different materials including lipid, protein and polymer (Figure 2.3). The 

lipid molecules are held together through physical force fields, such as van der Waals 

interactions. The protein is cross-linked by covalent disulphide (structural unit 

composed of a linked pair of sulfur atoms) bonds. The polymer chains are covalently 

cross-linked and/or entangled to form a bulk-like material (Sirsi and Borden, 2009). 
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Diverse hard shells (made of gelatin, alginate, poly (ter-butyloxycarbonylmethyl) - 

glutamate, the biodegradable block copolymer poly (D,L-lactide-co-glycolide), 

polyelectrolyte multilayers, etc.) have been investigated (Gerber et al., 2006). 

Phospholipids are also being used as shell components. In biomedical applications, air 

bubbles dissolve rapidly in the blood under the combined action of Laplace pressure, 

arterial pressure, and oxygen metabolism. It has been demonstrated that the resistance 

of the phospholipid monolayer shell to gas permeation was a significant contributor to 

the stability of air-filled microbubbles. This contribution is particularly effective when 

the phospholipid is in the condensed state and increases with the phospholipid’s chain 

length. However, the half-lives of these bubbles in partially degassed water do not 

exceed a few minutes. Alternately, bubbles can be stabilized using a perfluorocarbon 

(PFC) gas. PFCs, when used as part of the filling gas, retard bubble dissolution very 

effectively, due to very low water solubility. 

 

 

Figure 2. 3: Schematic of microbubble shell and coating. 

2.3.1  Stabilisation by low diffusivity gases 

First generation microbubbles used in biomedical applications are microspheres with 

ordinary air.  However, a few seconds after intravenous administration, air 

microbubbles disappear due to the high solubility of air in blood and the lungs filtering 

microbubbles, especially those with larger diameters. Microbubbles’ stability and 
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survival was reached by coating them with a thin shell, like albumin, polymer or lipid. 

These microbubbles are capable of passing the pulmonary capillary bed, but cannot 

resist arterial pressure gradients. In order to increase the stability of microbubbles 

further, second generation contrast agents are filled with a high molecular weight gas 

such as sulphur hexafluoride or perflouropropane with lower solubility. This therefore 

improves the survival and stability of bubbles under higher pressure (Dijkmans et al., 

2004, Cui et al., 2005). Microbubbles stabilized by gases that have low Ostwald 

coefficients, yet relatively high saturated vapour pressures have recently been the centre 

of many biomedical applications. Researchers are investigating fluorocarbons (FCs) for 

a range of biomedical uses, including intravascular oxygen transport, ophthalmology, 

drug delivery, treatment of lung diseases, lung surfactant replacement preparations due 

to their biological inertness and extremely low solubility in water (Szíjjár  et al., 2012). 

Essentially all the commercially available or under development injectable soft-shell 

microbubble contrast agents for diagnosis are stabilized by fluorocompound gases, 

including sulphur hexafluoride, perfluoropropane, perfluorobutane, perfluoropentane, 

and perfluorohexane (Rossi et al., 2009). In addition, phospholipids are used in most of 

these agents as the main bubble wall component. The mechanism of bubble stabilization 

by FC-driven compounds has been assigned to retarding bubble dissolution in the blood 

due to osmotic counteraction of the blood pressure and Laplace pressure. It was 

predicted that bubble stability increases with decreasing Ostwald coefficient of the gas. 

Compounds with low vapour pressure usually have low Ostwald coefficients and vice 

versa. 

2.3.2  Role of surfactants in microbubble stability 

The main phenomenon governing surfactant solutions foaming properties is the ability 

of surfactant adsorption at the air/liquid interface. In order for an aqueous solution to 

form a stable foam, three conditions must be fulfilled: firstly the solute must be surface 

active; secondly, the liquid film at the interface of the foam must have a low surface 

free energy; and finally the liquid film must have good elastic properties. In principle, 

the large variety of available surfactants lends great flexibility to the production of 

surfactant stabilized microbubbles. 
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If molecules are dissolved in the bulk liquid that are at least partially hydrophobic, then 

these molecules will be attracted to the gas liquid interface. These surface active 

molecules are generally named surfactants. Because surfactants are attracted to the gas-

liquid interface, where the hydrophobic portion of the molecule can be expelled from 

the liquid phase, they displace water molecules from the interface, reducing the number 

of interfacial water molecules, in turn reducing the surface tension of the interface. This 

process of migration toward the interface and displacing of water molecules is called 

adsorption, and is generally explained by the hydrophobic effect. If a surfactant 

molecule is highly surface active, and the interface is already packed with surfactants, 

then the surfactant molecules sometimes self-assemble into structures called micelles, 

which effectively sequester the hydrophobic portions of the micelle-member 

surfactants from the water. The concentration at which one can expect the self-assembly 

of micelles is called the critical micelle concentration (CMC). If the bulk concentration 

of the surfactant solution is above the critical micelle concentration, then adsorption 

becomes more complicated. The adsorption kinetics will be coupled to the association 

and dissociation kinetics of the micelles in solution. 

 

The molecular composition at the interface dominates the interactions between the 

interface and its surroundings. In the case of a gas bubble, the composition of the 

interface will determine mechanical properties, such as surface tension, which will 

affect the motion and deformation of the bubble in the blood stream (Eckmann and 

Diamond, 2004). 

 

A rather delicate balance between the respective roles of surface tension, surface 

activity and adsorption kinetics guarantee stability of foams and bubbles. Therefore, for 

a surfactant molecule with a particularly short hydrophobic chain, a sufficient decrease 

in surface tension may not necessarily lead to the fast adsorption of the surfactant 

molecule. On the other hand, an exceedingly large hydrophobic chain might be too slow 

in reaching the fresh surface and again the foam stability cannot be maintained by 

decrease in surface tension. The interplay between these two opposite parameters in 

intermediate situations can favour or disfavour foam stability which depends on more 

specific factors (Beneventi et al., 2001). 
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2.3.2.1 Surfactant effect on microbubble stability 

Due to the action of interfacial tension, microbubbles are naturally unstable. The effect 

of capillary pressure acting on a spherical microbubble surface can be expressed by the 

Laplace equation: 

R Laplace= 2σ/R        Eq (2.1) 

where R is the instantaneous radius of the microbubble and σ is the surface tension. The 

diameter of microbubble in an unsaturated liquid will decrease exponentially as the gas 

diffuses into the surrounding under constant ambient conditions. The rate of dissolution 

of the gas depends on the magnitude of the surface tension, the concentration and 

diffusivity of the gas in the liquid, the ambient temperature and pressure, and the size 

of the microbubble (Epstein and Plasset, 1950, Reddy and Copper Jr, 1966). Epstein 

and Plesset (Epstein and Plasset, 1950) presented an equation for the rate of change of 

bubble size (𝑑𝑅

𝑑𝑡
) under constant surface tension (σ), while they considered the effect of 

convection negligible: 

 

𝑑𝑅

𝑑𝑡
=

𝐷(𝐶𝑖−𝐶𝑠𝑎𝑡(𝑅))

𝜌(∞)+
2𝑀  2𝜎

3𝐵𝑇  𝑅

[
1

𝑅
+

1

(𝜋𝐷𝑡)
1

2⁄
]            Eq (2.2) 

Where Ci and Csat are the initial and saturation concentrations of the dissolved gas in 

the liquid, respectively, M is the molecular weight of the gas, B is the universal gas 

constant, T is the gas temperature, t is time and ρ(∞) is the density of the gas at a zero 

curvature interface with a constant coefficient of dissolution, D. Eq (2.2) is for an 

uncoated bubble, hence the effects of surfactant coating is not considered. These can be 

included either by making diffusivity and surface tension functions of surfactant 

concentration at the gas-liquid interface as previously described by Mohamedi et al. 

(2012) or by introducing a “shell” term similar to the model proposed by Borden and 

Longo (2002). By introducing a surfactant layer on the microbubble surface the 

dissolution of the bubble is affected due to the decrease in interfacial tension as well as 

the restriction to the mass transfer of the gas in and out of the bubble surface by the 

surfactant film. The concentration of the surfactant on the bubble surface is an 

important subject to consider with respect to both phenomena (Mohamedi et al., 2012). 
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2.3.2.2 Surfactant types 

Surfactants also known as surface active agents bare amphipathic structures. The 

characteristic molecular structure of surfactants consists of a structural group that has 

very little attraction for the solvent, known as a lyophobic group, together with a group 

that has strong attraction for the solvent, called the lyophilic group (Figure 2.4).  

 

Usually, the hydrophobic group is a long-chain hydrocarbon residue, and less often a 

halogenated or oxygenated hydrocarbon chain while the hydrophilic group is an ionic 

or highly polar group (Rosen and Kunjappu, 2012). Surfactants are classified in four 

groups depending on the nature of the hydrophilic group as: 

 

 Anionic: The surface-active portion (hydrophilic group) of the molecule bears 

a negative charge. Examples of this type of surfactant include: alkylbenzene 

sulfonates (detergents), (fatty acid) soaps, lauryl sulfate (foaming agent), di-

alkyl sulfosuccinate (wetting agent) and lignosulfonates (dispersants) (Salagar, 

2002). About 50 % of the world production of surfactants comprises of anionic 

type. 

 

 Cationic: The hydrophilic head group bears a positive charge. A very large 

proportion of this type contains nitrogen compounds such as fatty amine salts 

and quaternary ammoniums, with one or several long chain of the alkyl type, 

often coming from natural fatty acids. Generally, this type of surfactants are 

more expensive compared to anionics, due to the high pressure hydrogenation 

reaction required during their synthesis. Therefore, when there is no cheaper 

substitute they are only used either as bactericide, or as positively charged 

substance. This enables them to adsorb on negatively charged substrates that 

provides antistatic and hydrophobant effect, often of great commercial 

importance such as in corrosion inhibition (Salager, 2002). 

 

 Zwitterionic: This class contains both positive and negative charges in the 

surface-active hydrophilic head group. As a result, these can adsorb onto both 

negatively charged and positively charged surfaces without significantly 

changing the charge of the surface. 
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Figure 2. 4: Surfactant classification according to their head group composition and 

schematic of adsorption monolayer of a gas bubble coated with surfactants. 

 

 Nonionic: These surfactants the hydrophilic head group contain are no apparent 

ionic charge. Around 45% of the overall industrial production of surfactants are 

nonionics, making them the second largest category. Due to their hydrophilic 

group being a non dissociable type (i.e. alcohol, phenol, ether, ester, or amide), 

nonionic surfactants do not ionize in aqueous solution. The presence of a 

polyethylene glycol chain makes a large proportion of these nonionic 

surfactants hydrophilic, which is acheived by the polycondensation of ethylene 

oxide. These are called polyethoxylated nonionics (Salager, 2002). On the other 

hand, the lipophilic group is often of the alkyl coming from fatty acids of natural 

origin or alkylbenzene type. The polycondensation of propylene oxide produces 

a polyether which (in opposition to polyethylene oxide) is slightly hydrophobic. 

This polyether chain is used as the lipophilic group in the so-called polyEO-

polyPO block copolymers, which are most often included in a different class, 

e.g. polymeric surfactants. 
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2.4  Current preparation methods 

In order to meet the demand for improved control over the characteristics of 

microbubbles a number of new preparation technologies have been developed. Over 

the past decade several techniques have been developed to generate microbubbles. 

Amongst these techniques, sonication and fractionation (Stride and Edirisinghe, 2008), 

electrohydrodynamic atomization (Cui et al., 2008, Farook et al., 2007)  and 

microfluidic devices (Garstecki et al., 2004, Hettiarachchi et al., 2007) are the most 

commonly used methods. Generation of microbubbles with diameters smaller than 10 

μm from electrified cone jets using the electohydrodynamic atomization (EHDA) 

technique was reported by Farook et al. (Farook et al., 2007), where the jet breakup and 

microbubbling zones were thoroughly investigated. Whilst much narrower than those 

obtained by sonication, the microbubble size distributions obtained with this method 

were not perfectly monodisperse. Microfluidic devices on the other hand offer an 

unparalleled level of control over microbubble size and size distribution (Chen et al., 

2009, De Menech et al., 2008, Teh et al., 2008), facilitating the formation of 

microbubbles suitable for a diverse range of applications, including in the biomedical 

field (Ferrara et al., 2007, Hernot and Klibanov, 2008, Farook et al., 2009). One 

disadvantage of using microfluidics for preparing bubbles in the < 10 μm range, 

however, is the tendency for microchannels to become clogged. 

 

A detailed review and comparison between the conventional bubble preparation 

technique, sonication, with two more recent methods, Electrohydrodynamic 

atomisation (EHDA) and microfluidic processing is described in this section. These 

methods vary in terms of their ability to produce bubbles, which are sufficiently small 

and stable for in vivo use in biomedical applications, microbubble uniformity, relative 

production rates and other practical and economic considerations. 

2.4.1 Sonication 

This method uses high intensity ultrasound to produce a suspension of gas 

microbubbles in a liquid containing either surfactant or polymer solution which forms 

a stabilising coating on the surfaces of the microbubbles (Suslick et al., 1999). This is 
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normally achieved either with the assistance of a sonicator or a high-shear mixer. 

Sonication can be accomplished via a number of methods. For instance, a vial 

containing a surfactant solution and gas in headspace of the vial can be sonicated 

through a thin membrane. Sonication can be performed by contacting the membrane 

with an ultrasonic probe or with a focused ultrasound “beam” (Prajapati and Agrawal, 

2012). This method produces bubbles with a broad size distribution and it is necessary 

to filter out microbubbles having diameters > 10μm (Klibanov, 1999). This 

disadvantage of broad size distribution results in a wide range of microbubble 

resonance frequencies. The size distribution of the microbubbles produced depends 

upon the frequency, power and pulse regime of the ultrasound. Moreover, there is a 

wide variation in the properties of individual microbubble coatings which has a 

significant effect upon their dynamic and acoustic response (Wang et al., 1996).  Whilst 

sonication is the most commonly used method for preparation of microbubbles, the 

relatively broad size distributions of suspensions need to be fractionated and/or filtered 

to remove any large bubbles (for intravenous use) and excess surfactant (Stride and 

Edirisinghe, 2009).  

2.4.2  Coaxial Electrohydrodynamic Atomization (CEHDA) 

Electrohydrodynamic atomization is a process where a liquid is passed through a 

capillary needle at a controlled flow rate and maintained at several kilovolts relative to 

a ground electrode few centimetres away. The liquid at the outlet of the capillary takes 

various shapes under the influence of the electric field (Tang and Gomez, 1994).  One 

of the methods that produce microbubbles by this phenomenon is Coaxial 

Electrohydrodynamic Atomization (Farook et al., 2007, Stride and Edirisinghe, 2008). 

In this process, the simultaneous coaxial flow of a liquid medium (such as a lipid 

suspension) and a gas (in this case compressed air or nitrogen) under the influence of 

an external electric field allows the liquid to encapsulate the gas phase, and hence form 

bubbles. Figure 2.5 illustrates a schematic of a CEHDA setup, where two needles are 

coaxially aligned and each supplied with fluid from a separate syringe pump. 
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Figure 2. 5: Schematic representation of the CEHDA setup. 

 

In order to form microbubble, the gas is supplied through the inner needle, whilst the 

outer needle is filled with a suspension of the coating material. An electrical potential 

difference of several kilovolts is applied between the needles and an earthed ring 

electrode positioned a short distance below the end tip of the needles. It has been shown 

that the uniformity and size of microbubbles are dependent on both the applied voltage 

and the gas and liquid flow rates (Farook et al. 2007; Stride and Edirisinghe, 2009). 

Although this method produces microbubbles with diameter in range of 1-10 μm 

(suitable for medical applications), but the uniformity of the bubbles still remain a 

challenge to scientists. 

2.4.2.1  Electrospraying of nanoparticles 

 One of the procedures that has been widely used in both industrial processes and 

scientific instrumentation is electrospraying. In this method, droplets are generated and 

charged simultaneously by means of an electric field. With regards to pharmaceutical 

applications, electrospraying is an acknowledged technique to produce nanoparticles. 

Electrospraying is an effective and reproducible method to enable micro and nano thin 

film deposition, micro/nanoparticle production, and micro/nanocapsule formation with 

high scalability (Jaworek, 2007). 
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2.4.2.2 Electrospining of nanofibres 

Electrospining has been recognized as a broadly used technique for the fabrication of 

electrostatic fibres which utilizes electric force to produce fibres with diameters ranging 

from micrometres (10-100 μm) to nanometres (~100 nm) from a wide range of 

materials such as polymers, composites, semiconductors and ceramics (Huang et al., 

2003, Cooley, 1902, Bhardwaj and Kundu, 2010) Several characteristics appear at this 

level such as very large surface area to volume ratio, flexibility in surface 

functionalities, and superior mechanical properties (e.g. stiffness and tensile strength) 

(Huang et al., 2003). 

 

Electrospun fibres are used in many applications including tissue scaffolds, protective 

clothing, filtration and nano-electronics (Ramakrishna et al., 2005) and food-grade 

films (Wongsasulak et al., 2013). Recent studies on electrospun fibres have been on the 

usage, characterisation and finding new applications of various materials that are 

electrospinnable (Ramakrishna et al., 2005). From the derivatives of the EHDA, 

electrospinning has been the process preferred for making scaffolds and films. 

2.4.3  Microfluidic devices 

Microfluidic devices and methods that produce monodisperse liquid droplets and 

microbubble suspensions by means of controlling and manipulating fluids with the 

length scale on the order of a micrometre, has drawn considerable attention in the last 

decade (Zhao and Middelberg, 2011). The microbubble formation process in 

microfluidic devices occurs at an orifice at which a column of gas impinges upon a 

liquid flow. Subsequently, at a certain distance from the orifice, the gas–liquid interface 

becomes unstable and bubbles are formed by a ‘‘pinch-off’’ process (Stride and 

Edirisinghe, 2009).  

The size and uniformity of bubble depend upon the physical properties of the liquid, 

the gas and liquid flow rates and the dimensions and profile of the orifice and channels. 

Microfluidic devices facilitate the formation of monodisperse microbubbles as they can 

be fabricated with internal dimensions on the micrometre scale.  
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Figure 2. 6: Illustrations of the three main microfluidic geometries used 

for bubble formation. (a) Co-flowing, (b) flow focusing geometry, and (c) 

cross flowing streams in a T-shaped junction. 
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Recently there have been several methods investigated to build microfluidic structures 

to prepare monodisperse microbubbles using gas and liquid streams and microdroplets 

with two immiscible liquid streams, which include cross flowing devices (i.e. T-shaped 

junctions) (Zhang and Wang, 2009, Garstecki et al., 2006, Xu et al., 2006b), flow 

focusing devices (Fu et al., 2009, Nie et al., 2008) and others based on co-flowing 

rupturing method (Xiong et al., 2007, Castro-Hernandez et al., 2011), and the geometry 

dominated break up technique (Yasuno et al., 2004). The bubble/droplet formation 

process in a microfluidic device over the scale of the liquid flow at various rates and 

viscosities is dominated by viscous forces as well as the capillary forces and interfacial 

tension (Zhao and Middelberg, 2011). Bubble formation mechanisms vary between 

different microfluidic devices.    

Microbubble and droplet formation are achieved by three main types of devices 

depending on the geometry of the device and the nature of the flow field near pinch off: 

1) co flowing 2) flow focusing and 3) Cross flow technique (T-junction). Figure 2.6 

illustrates the geometry of these devices. Each of these methods uses a specific flow 

field to promote the uniform generation of microbubbles.  

The geometry of the microfluidic device can be divided into two main groups. Firstly, 

those based on flow focusing generators and secondly, those that rely on the shearing 

of bubbles/droplets against a channel wall or edge (Martinez 2009). A complete 

description of these devices is provided in this section. The structure of the microfluidic 

device plays an important role in the control of liquid-liquid and liquid–gas flows. The 

most frequently used microfluidic geometries and the resulting flow patterns, 

particularly the three main structures: T-junction, flow focusing, and co-flowing, are 

described in this section. 

2.4.3.1  Co flowing devices 

The co-flowing microfluidic system is one of the techniques used to produce 

monodisperse droplets/ bubbles (Figure 2.6a). In this device, droplets and 

microbubbles are formed when the dispersed phase (gas for microbubbles and liquid 

for droplets) is fed through a capillary or needle into the co-flowing continuous phase 

(Zhang and Wang, 2009, Hua et al., 2007). In order to form microbubbles, a gas column 

initially enters the mixing channel that is parallel to the liquid flow, consequently a 

bubble starts to grow and move downstream where the velocity component of the liquid 
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flow pushes the bubble surface against the channel wall and breaks up. The whole 

process is repeated when the gas thread returns to the mixing channel (Martinez, 2009).  

2.4.3.2 Flow focusing devices 

Flow focusing is another frequently used structure (Stone et al., 2004) (Figure 2.6b). 

This method has been widely used for producing spherical monodisperse droplets (Xu 

and Nakajima, 2004, Yobas et al., 2006) and microbubbles (Fu et al., 2009). Generally 

the continuous phase flows through two side channels and the dispersed phase is fed 

through a middle channel. The dispersed phase is squeezed and breaks up into spherical 

droplets or microbubbles at a mixing channel where the two phases meet (Figure 2.6b). 

Due to the confinement of the dispersed phase in the central region of the main channel, 

the flow-focusing device compared with T-junction microchannels usually generates 

spherical bubbles rather than slugs  (Zhao and Middelberg, 2011). As a result, the 

bubbles can be protected from shear, and contact with the channel walls, that can cause 

adhesion or damage of the bubbles.  The flow regime in microfluidic flow-focusing is 

divided into two different modes of dripping and jetting (Zhou et al., 2006). While 

jetting occurs at higher flow rates, the dripping regime occurs at low flow rates. 

Monodispersed microbubbles are formed at the outlet of the mixing channel in the 

dripping regime. By increasing the flow rate, the dispersed phase (gas column) 

infiltrates into the downstream channel, where the bubbles break up at the orifice where 

a neck forms. The flow focusing generators are categorised in to two axisymmetric and 

asymmetric geometries. A detailed description of these two geometries is presented 

here. 

 Axisymmetric Flow focusing devices 

 

Axisymmetric flow focusing devices are typically made by inserting capillaries inside 

square channels forming a coaxial arrangement where the liquid channel surrounds the 

gas channel and both merge into a single stream near a narrow exit where bubble 

breakup takes place (Martinez, 2009). This geometry is highly effective in flow 

focusing the gas phase, leading to the breakup of monodispersed bubbles with a narrow 

size distribution (<1%) at a high generation frequency. The liquid flow focuses the gas 

through a small orifice and a thin gas thread is formed. Contrary to liquid–liquid 
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systems, in which flow focusing leads to the formation of a thin liquid thread that 

increases in length with increasing flow rates, the length of the gas thread is very short 

and it breaks up at a constant frequency. Higher gas/liquid flow ratios lead to smaller 

monodisperse bubbles. In fact, the thread size becomes independent of the capillary 

tube diameter. 

 Asymmetric Flow focusing devices 

 

Asymmetric devices are generally manufactured either by etching or machining 

channels on a rigid substrate such as glass or by forming channels on PDMS rectangular 

blocks (Zhang and Wang, 2009, Garstecki et al., 2005a). Polydimethylsiloxane 

(PDMS) devices are fabricated using soft lithography to form a relieved channel pattern 

on the surface of a silicon wafer. These geometries are composed of a central channel 

that merges with two side channels into an exit opening in which the bubble/droplet 

breakup take place.  

 

2.4.3.3 Cross flowing (T Junction) devices 

T-junction geometry is the most common method to form microbubbles and droplets in 

which the two phases are injected perpendicularly into the main flow channel. One of 

the most frequently used microfluidic geometries used to produce bubbles/droplets is 

the T-junction microchannel (Figure 2.6c) (Van der Graaf et al., 2006)( Garstecki et al. 

2006; Xu et al. 2006a). Bubbles and droplets formation in these devices is remarkably 

different than that in the flow-focusing devices. Initially the dispersed phase (gas or 

liquid) enters the main fluid channel and a bubble/droplet starts to grow until it obstructs 

the channel. Due to the obstruction of the channel and the gradient in pressure the fluid 

flow distorts the bubble/droplet and the breakup occurs when the bubble/droplet in the 

upstream side touches the downstream side of the inlet channel. The diameter of 

bubble/droplet can be controlled by varying the ratio of the gas pressure, liquid flow 

rate and physical parameters, and the channel dimensions. Generally, flows in T-

junction geometries occur in one of two modes: 
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I. Cross-flowing (Figure 2.7a): In this geometry the dispersed phase is introduced 

from the perpendicular channel and the continuous phase flows through the 

horizontal channel, therefore the droplets/bubbles breakup is influenced by the 

cross-flowing shear force (Thorsen et al., 2001). 

 

II.  Perpendicular flowing (Figure 2.7b) (Xu et al., 2006b, Pancholi et al., 2008): 

In this method contrary to cross-flowing, the continuous phase flow is fed 

through the perpendicular channel and the dispersed flow from the horizontal 

channel. Compared with the perpendicular flowing technique, the cross-flowing 

rupture technique produces droplets/bubbles with a narrower range of size.  

 

 

 

Figure 2.7: Types of flow in T-junction a) Cross-flowing and b) Perpendicular flow 
(Xu et al. 2006a) 
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2.5  Mechanism of bubble/droplet formation 

2.5.1  Formation of droplets or bubbles in microfluidic devices 

There have been various studies on the formation of bubbles and droplets to control 

size and uniformity in microfluidic devices (Xiong et al., 2007, Yasuno et al., 2004, Xu 

et al., 2006a, Garstecki et al., 2006). Bubble size is affected by the ratio of the gas/liquid 

flow rates as well as the physical properties of the continuous phase. Generally bubbles 

or droplets produced in microfluidic devices rarely coalesce with each other inside the 

capillaries prior to collection and therefore the studies are mainly focused on the area 

where the interface of the two phases occur and the bubbles or droplets form (Fu et al., 

2009).  It is fair to compare the behaviour of bubble formation in gas–liquid flows to 

droplet formation in liquid–liquid flows in a similar manner. In general, in microfluidic 

devices gas flows are much more unstable and difficult-to-control than their liquid 

counterparts and therefore bubble formation mechanisms have been widely 

investigated. 

Xiong et al. (2002) performed experimental and numerical investigations on bubble 

generation in co-flowing devices and found that the bubble size is proportional to the 

ratio of the gas/liquid flow rates. The variation of liquid viscosity and surface tension 

produced different bubble shapes from slugs to spherical bubbles. Yasuno et al. (2004) 

proposed that the bubble size in the geometry dominated breakup technique increases 

with increasing viscosity of the continuous phase, but surface tension and flow rates do 

not affect the size. For the cross flowing rupture technique, Garstecki et al. (2006) 

reported that the bubble size is mainly determined by the ratio of the gas/liquid flow 

rates and the dominant effect in the break-up of either liquid or gaseous streams in the 

continuous fluid is the balance of hydrostatic pressures in the two immiscible fluids. 

Moreover, Xu et al. (2006) produced microbubbles with average diameters of 160 to 

300 µm using a cross flowing microfluidic device and suggested that the bubble size is 

also influenced by the viscosity of the continuous phase, while independent of the 

surface tension in T-junction microfluidic devices. Similarly, (Zhang and Wang, 2009) 

used a confined T-junction with rectangular cross section of the microchannel and 

investigated a range of bubble formation regimes applying the Young-Laplace equation 

and bubble volume as a function of gas inlet pressure, liquid flow rate, viscosity and 
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surface tension. Microbubble formation mechanisms vary between different 

microfluidic devices and are mainly provided by three aforementioned methods 

(Figure 2.6) depending on the geometry of the device and the nature of the flow field 

near pinch off. Each of these methods utilizes a specific flow field to promote the 

uniform breakup of microbubbles. 

 

2.5.1.1  Capillary instability 

Many researchers studied droplet and bubble formation in microfluidic devices and they 

related the process to the classical treatment of a capillary instability at a sheared, 

cylindrical interface in an unbounded flow (Rallison, 1984, Sherwood, 1984, Stone, 

1994). The formation of monodisperse bubbles or droplets is associated with such 

instabilities in microfluidic devices. Ganan-Calvo et al. (Gañán-Calvo and Gordillo, 

2001) were the first group of investigators to generate microbubbles at relatively high 

Reynolds numbers, Re, between 102 and 103. The groups led by Stone (2004) were 

pioneers in experimenting the flow-focusing microfluidic devices, where Re was much 

smaller (typically between 0.01 and 1). They demonstrated that the interfacial forces 

dominate the breakup and the influence of inertia is often small compared with viscous 

effects. Contrary to the classical treatment of unbounded flows, the breakup of a 

cylindrical liquid or gas core into droplets or bubbles is influenced by the fluid 

confinement between microchannel walls (Garstecki et al., 2005a, Garstecki et al., 

2006). Capillary instability is expected to generate liquid–liquid (Stone 2004) or gas–

liquid (Cubaud and Ho, 2004, Garstecki et al., 2004) segmented flows with uniform 

droplet or bubble sizes in many applications.  

 

There have been several attempts to characterize the dynamic behaviour of segmented 

flows in microfluidic devices as well as very irregular flow behaviour. Kraus et al. 

(Kraus et al., 2004) measured statistical properties (distribution of liquid slug and gas 

bubble lengths) in segmented gas–liquid flow and studied the sensitivity to external 

disturbances e.g. fluctuations of the pressure in syringe pump. Garstecki et al. 

(Garstecki et al., 2005b) investigated the dynamics of a single-channel microfluidic 

bubble generator by analysing the phase distribution and produced a model system for 
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studying complex systems in space and time. Garstecki et al. (2006) demonstrated that 

drops or bubbles breakup at a microfluidic T-junction at low capillary numbers (Ca) 

occur due to the pressure drop across the emerging bubble or droplet and is irrelevant 

of the shear stress. Depending on the value of Ca, three different regimes of squeezing, 

dripping and jetting for the formation of droplets and bubbles were identified. Garstecki 

et al. (2006) demonstrated that in the squeezing regime the pressure fluctuations during 

breakup determines the droplet/bubble formation and breakup is independent of Ca. 

2.5.2  Type of flow in microfluidic devices 

Fluid actuation through microchannels can be achieved through two common methods. 

These two manners of fluid transport in most microfluidic systems are: pressure-driven 

or electrokinetically-driven flows. Fluid flow in the channels of microfluidic devices 

has most commonly been controlled  using high precision mechanical pumps 

(Chakraborty et al., 2012). However the other type of flow in microchannels, broadly 

referred to as electroosmotic flow (Bayraktar and Pidugu,2006), initiated by the 

application of an electric field, has also been studied extensively (Glasgow et al., 2004). 

This method of driving and controlling the operating fluid, has some distinct advantages 

in terms of the degree to which electrical forces can be localized in miniaturized devices 

and the relative ease with which high electric fields can be obtained (Zeng, 2011). Thus, 

in order to alleviate the difficulties of excessive pressure gradients associated with 

microfluidic pumps in microchannels, pressure driven flows are often replaced by 

electroosmotic flows (Lee and Li, 2006).The combination of electroosmotic and 

electrophoretic transport are referred as electrokinetic transport. (Molho et al., 1998) 

Electro-osmosis occurs when an aqueous solution moves in bulk past a stationary solid 

surface which is triggered by applying an external electric field. Electrophoresis 

describes the motion of a charged surface submerged in a fluid under the action of an 

applied electric field.  

 

In order to manipulate microfluidic flows many kinds of external fields (pressure, 

electric, magnetic, capillary, and so on) are readily used. By decreasing the dimensions 

of the channels, the surface to volume forces become relatively more important. These 

flow manipulations can be achieved either by applying forces in macroscopic scale, 
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(e.g., at appropriate inlets and outlets), or can be generated locally within the 

microchannel by integrated components. For instance, at either a gas-liquid or liquid-

liquid interface, it is possible to generate fluid motion by controlling spatial variations 

of surface tension (so-called Marangoni stresses)(Stone et al., 2004).  Surface tension 

gradients can be created with thermal, chemical, electrical, or light gradients. Another 

possible way for fluid motion in channels is to partially wet the surfaces by using 

capillary pressure gradients. Young-Laplace law (described in detail in Section 2. 6) 

states that the latter can be created by varying either wetting properties (contact angle, 

surface tension) along the channel through one of the above mentioned methods, or 

changing the geometrical features (i.e. channel diameter).  

 

Electrokinetics is an alternative method for controlling microflows that is now studied 

in a variety of forms. Electro-osmosis causing the fluid movement against the stationary 

charged solid surface; dielectrophoresis, which moves an interface (often a particle) due 

to electric field gradients; and electrowetting, modifying the wetting properties by 

applied electric field have all been studied previously.  

 

There are many advantages that both capillary-driven and electrically driven flows can 

offer compared to the more familiar pressure-driven flows as dimensions shrink. 

However, surface contamination or heterogeneities can cause both to be hindered, or 

potentially even eliminated.  

 

There are other means, in particular external fields, which can be used to control the 

motion of particles in the fluid, or by systematically distorting the channel walls. 

Amongst these external forces is magnetic fields that can influence flows directly or 

manipulate dispersed magnetic particles, as well as sound fields that can generate 

acoustic streaming motions, and cyclic deformation of a wall induced by peristaltic 

pumping. In order to provide additional control the surface characteristics of the device 

can also be varied for each manner of driving a fluid motion. This includes altering the 

geometrical, chemical, and mechanical features of the channel and network of channels. 

Additionally, the rheology of the fluid has a significant effect on the flow type, therefore 

it is important to consider both Newtonian and non-Newtonian fluids. Therefore, by 

considering the best way to mix, react, detect, analyse and separate in microflows, the 

combination of the driving forces and the surface characteristics is possible.  
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2.5.2.1 Pressure driven flows  

Pressure driven flow occurs when the fluid is displaced within the device via positive 

displacement pumps, such as syringe pumps (Chakraborty et al., 2012). By being quite 

reproducible in pumping fluids through microdevices, pressure driven flows are 

relatively inexpensive and reliable compared to electrically driven flows. There have 

been increasing numbers of efforts to develop functional micropumps because pressure 

driven flow is more favourable to miniaturization. According to one of the basic laws 

of fluid mechanics (so-called no-slip boundary condition) for pressure driven laminar 

flow, the fluid velocity at the walls must be zero. 

2.5.2.1.1  Type of flow pattern and bubble shape 

The type of flow pattern in a given microchannel is influenced by the properties of the 

fluid, the wetting characteristics of the channel surface, the diameter of channels and 

their cross-sectional shape. Dimensional analysis is used to reduce the number of 

parameters. However, the number of dimensionless groups remains large and mapping 

the flow studied in most literature (Serizawa et al., 2002) is only applied to the 

conditions under which the models were obtained. In order to obtain a better 

understanding of the flow regime behaviour, it is important to characterize multiphase 

micro-flows over significant ranges of parameters and provide meaningful 

dimensionless representation of the results in a systematic manner (Kim et al., 2011). 

Types of flows studied previously are categorised as following: 

1. Bubbly flow: In this type of flow, droplets/bubbles with diameters that are 

smaller than the microchannel size are formed since the flow rate of the 

dispersed phase is much lower than that of one of the continuous phase.  

 

2.  Segmented flow: When the ratio of flow rates of the continuous to the dispersed 

phases reaches unity, droplets or bubbles are formed whilst they span most of 

the cross-section of the channel. The continuous liquid phase is confined 

between two consecutive droplets/bubbles. 

 
3. Annular flow: This type of flow occurs when the ratio of flow rates for the 

continuous phase to the dispersed phase is very small and therefore the 

continuous phase is confined to the wall, flowing as an annular film. In channels 
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with non-circular cross-section the film thickness varies considerably along the 

perimeter, with a significant liquid volume confined to the microchannel 

corners. The film may become wavy as a result of the interaction with the non-

wetting phase at higher velocities. 

 
4. Churn flow: when the velocities are very high, regular flow patterns are replaced 

by chaotic flows, thus the droplets/bubbles sizes and shapes vary widely. 

 

Depending on the wetting properties of the microchannel walls, the lubricating films of 

the continuous phase, that are found in segmented and annular flow, may break into 

droplets/bubbles of a characteristic size.  The type of flow patterns explained above are 

shown in Figure 2.8. 

 

 

 

 

 

 

 

 

 

 

2.5.2.2 Electroosmotic flows  

Electroosmotic pumping is another common technique for the control of fluids in 

microchannels (Reddy et al., 2005). The surface of a microchannel wall contains 

electric charge, where an electric double layer of counter ions is formed. By applying 

an electric field across the channel, the ions in the double layer move towards the 

Figure 2. 8: Illustration of the most common flow patterns are bubbly flow, 

segmented flow and annular flow (Serizawa et al., 2002) 
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electrode of opposite polarity. Consequently, the fluid moves near the walls and 

transfers via viscous forces into convective motion in fluid bulk. 

Electrically driven microfluidic devices have previously been used in many studies for 

mixing of two phase flows (Reddy et al., 2005), and generation of monodisperse 

droplets (Kim et al., 2006, Ahmadi et al., 2011, Sen et al., 2011), fibres (Ahmad et al., 

2012, Srivastava et al., 2008)and microbubbles (Pancholi et al., 2008). Kim et al. (Kim 

et al., 2006) developed a microchip droplet generator using an electrohydrodynamic 

actuation method. Droplet formation was controlled by the application of an electric 

field between the charged liquid sample and a ground electrode without the need for an 

external pneumatic pump. Srivastava and coworkers (Srivastava et al., 2008)  described 

a microfluidic based electrospining method to fabricate hollow and core/sheath 

nanofibers. Of particular relevance to this study, Pancholi et al. (Pancholi et al., 2008) 

produced phospholipid coated microbubbles with diameters smaller than 8 µm using a 

device consisting of a combined T-junction microfluidic and electrospraying device. 

However, size distribution of microbubbles produced in this study was still relatively 

broad. 

A T-junction microfluidic device is one of the easiest methods of producing highly 

monodisperse microbubbles. However, to generate bubbles with diameters smaller than 

the geometrical diameter of the channels, using mechanically assembled devices is 

challenging due to constraints on capillary size, especially at higher viscosities 

(Parhizkar et al., 2013). As indicated above, the use of electric field can offer significant 

advantages for liquid manipulation in microchannels. The small channel cross sectional 

area presents high electrical resistance to ionic currents, which allows high electric 

fields to be maintained with low currents and hence control over the liquid velocity 

(Kim et al., 2011b). This in turn provides control over the breakup of the gas column 

formation of bubbles. 

2.6  Scaling models for bubble breakup and size prediction in T-
junction Devices 

Because of the flow complexity in T-shaped microchannels, there is no exact analytical 

expression for the prediction of droplet and bubble size. However, there have been 

several scaling models proposed to estimate the bubble size produced in a T-junction. 
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Thorsen et al. (Thorsen et al., 2001) suggested that the dynamics of droplet formation 

is dominated by the balance of tangential shear stresses and interfacial tension (i.e. the 

capillary number, as anticipated in unconfined shear flows. On the other hand Garstecki 

et al. (2006) proposed a mechanism they referred to as the squeezing process that is 

directly connected to the confined geometry where the bubble/ droplet forms. Based on 

the previous work carried out by Garstecki et al. (2006), when the capillary number 

(Cal=µl ul/σl) is small, the dynamics of bubble formation is dominated by the pressure 

balance of continuous phase (Pl) and dispersed phase (Pg) at the junction. When the gas 

pressure in the capillary becomes higher than the sum of Laplace pressure and flowing 

resistance (R), the bubble begins to grow. Laplace pressure decreases during the bubble 

growth process and the bubble size enlarges quickly as the pressure releases. 

       Eq (2.3) 

Ra and Rr are the principle radii of curvature in the horizontal and vertical plane 

respectively. The scaling model proposed by Garstecki et al. (2006) based on the 

mechanism of breakup can be expressed by Eq (2.4). 

       Eq (2.4)  

Where L is the length of the slug, w is the width of the channel, Qg/Ql is the ratio of 

volume flow rates of gas and liquid phase respectively, and d is the characteristic width 

of the bubble, for which the value depends on the geometry of the junction. 

        Eq (2.5) 

In Eq (2.5), R is the resistance to flow in the channel and Pg-Plg is the pressure 

difference between the gas inlet and outlet of the downstream channel from the 

junction. Based on the assumption that R would scale in a similar way as in a channel 

filled with continuous liquid, then: 
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Therefore R is directly proportional to µ. The model based on the scaling law proposed 

by Garstecki et al. (2006) is independent of the value of the capillary number and 

includes only the ratio of the rates of the flow. The proportionality constants for this 

scaling model which are independent of fluid properties, vary with several aspect ratios 

of the T-junction. Because Ca ≤ 1, the interface of the forming bubble maintains the 

shape that minimizes the surface area, independent of Ca. Geometry plays a major role, 

in particular, in non-round channels.  Van Steijn et al. (van Steijn et al., 2007) suggested 

that longer droplets or bubbles are formed in channels of near-square cross-section due 

to significant leakage  past the forming droplet in the gutters, which reduces the speed 

with which the interface is squeezed. De Menech et al. (2008) presented numerical 

results that included both the squeezing (Garstecki et al. 2006) and shear-driven 

(Thorsen et al. 2001) types of breakup in dynamics of droplet formation in T-junction 

geometries. De Menech et al. (2008) identified a critical value of capillary number (Ca 

< 0.015) below which the squeezing (rate of flow controlled) breakup mechanism 

occurs and for any values of capillary number above the critical value the shear 

dominated (dripping) mechanism is dominant. 

The complex interplay between interfacial, gravitational, viscous and inertial forces is 

responsible for a variety of phase distributions and flow patterns. One of the 

characteristics of multiphase microflows is the combination of dominant interfacial 

forces with the laminar nature of the flow that create regularly shaped gas–liquid and 

liquid–liquid interfaces (Gunther and Jenson 2006).  Multiphase microflows are 

influenced by the ratio of viscous to surface forces, the capillary number (Ca) and by 

the ratio of fluid viscosities: 

    𝐶𝑎𝑐 =
𝜇𝑐𝑢𝑐

𝜎
  and    𝐶𝑎𝑑 =

𝜇𝑑𝑢𝑑

𝜎                Eq (2.7) 

Where, µc and µd are the viscosities of the continuous and the dispersed phases, 

respectively.  

The dimensionless Bond number describes the ratio of interfacial forces with respect to 

gravity: 

  2 -1  ( ) hBo gd          Eq (2.8) 
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Where Δρ is the density difference between the two immiscible fluids (gas–liquid, 

liquid–liquid) and dh the characteristic channel dimension, the hydraulic diameter (dh 

=4A/г, where A is the channel cross-sectional area and г is the wetted perimeter). 

The ratio of inertia to surface forces is expressed by the Weber number: 

 
2
d hu dWe 




        Eq (2.9) 

Regarding the single-phase flows, the Reynolds number, Re=We/Ca, relates viscous 

and inertial forces and is fixed for given We and Ca. Figure 2.9 (Gunther and Jensen, 

2006) demonstrates the relevance of Bond, capillary and Weber numbers, i.e. the 

relevant forces with respect to the interfacial force, by altering the channel hydraulic 

diameter, dh, and the velocity, ud. The practical range of fluid properties for organic–

gaseous, organic–aqueous and aqueous–gaseous systems are represented by the 

thickness of the planes obtained. The interfacial forces dominate over gravity, inertial 

and viscous forces at low velocities and small microchannel sizes. However, inertial 

forces dominate over gravity and viscous forces when ud is on the order of several 

meters per second or in the presence of very large accelerations of liquids at the initial 

stage of rapid expansion of a vapour bubble. Bubbles and droplets much smaller than 

dh can be formed under these conditions, where microbubbles/droplets can be entrained, 

potentially resulting in fluid interfaces with complex shapes or interfacial instabilities. 

2.6.1 Governing forces in the presence of electric field 

According to electrohydrodynamic theory (Chen et al., 2007, Quan et al., 2011), electric 

Korteweg-Helmholtz force density exerted on the fluid can be written as: 

𝑓𝑒 = 𝜌𝑒𝐸 −
1

2
𝐸2∇ε +

1

2
∇(𝐸2 𝑑𝜀

𝑑𝜌
𝜌)     Eq (2.10) 

Where 𝜌𝑒 is the volume charge density, 𝜌 is the liquid density, ε is the dielectric 

constant for the liquid and E is the electric field strength. The first term in Eq (2.10) 

represents the Coulomb force acting on the free charge and can be neglected when the 

current is small. The second term is the dielectrophoresis force (DEP) exerted on the 

liquid due to the spatial gradient in the permittivity (Oh and Kwak, 2000), which is 

classified as the main force acting on the liquid-gas interface. 
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𝐹𝐷𝐸𝑃 =
2𝜋𝐷𝑏

3 𝜀𝑙(𝜀𝑔−𝜀𝑙)

𝜀𝑔+2𝜀𝑙
 ∇𝐸2           Eq (2.11) 

Where 𝐷𝑏 is the bubble diameter and as shown in Eq (2.11), the diameter of the bubble 

is inversely proportional to the electric field strength, i.e. the voltage supply through a 

fixed distance. Since the dielectric constant of a gas is smaller than that of a liquid, the 

DEP force at the liquid-gas interface will act towards the centre of the bubble. In the 

presence of the electric field, an emerging bubble into the outlet channel becomes 

polarized and similar to an electric dipole an excess of positive charge at one end and 

an excess of negative charge at the other accumulate on the interface between the two 

phases. When the electric field is applied, a growing bubble with a relative permittivity 

lower than its surrounding medium will be driven towards the place of lower field 

intensity since the forces acting on the two ends are not equal, i.e. the bubble moves 

away from the contact area due to the much lower relative permittivity of the bubble 

compared with the liquid. 

 

Finally, the third term in Eq (2.10) refers to the electrostriction force caused by a non 

uniform electric field. By varying the pressure distribution in the liquid phase, this force 

increases the elongation of the gas column into the outlet channel.  

 

In the absence of an electric field, the competition between liquid and gas pressure, 

viscous forces and interfacial tension controls the breakup of the gas column into 

bubbles. Once the sum of viscous stress and pressure difference due to the obstruction 

of channel by the emerging gas column exceeds the capillary pressure, detachment 

begins. The capillary force Fσ is given by the difference between the Laplace pressures 

at the upstream and downstream ends of the emerging bubble multiplied by the 

projected area of the emerging interface (where R1 and R2 are the radii of curvature and 

Ainterface is the projected area).  

 𝐹𝜎 ≈ 𝜎 ( 
1

𝑅1
+

1

𝑅2
) 𝐴𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒    Eq (2.12) 

Viscous shear force Fτ is given by the product of viscous stress acting on the emerging 

interface and the projected area of the emerging interface. 

𝐹𝜏 ≈ 𝜇𝑙𝑄𝑙𝐴𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒                     Eq (2.13) 



 
Chapter 2: Literature review 

69 
 

And finally similar to Garstecki et al. (Garstecki et al., 2006)the squeezing pressure 

force Fp as a product of characteristic pressure (∆PC) arising from lubrication analysis 

for pressure-driven flow and emerging interface area: 

𝐹𝑝 ≈ ∆𝑃𝑐𝐴𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒                     Eq (2.14) 

The dielectrophoresis force predominates capillary pressure force that is resisting the 

bubble breakup just after bubbles are detached. When an electric field is applied, 

electrical charge accumulates at the gas liquid interface which behaves as a capacitor. 

As the voltage increases, the charge build up at the interface increases resulting in a 

higher attraction of the gas stream downstream. The resulting elongation of the gas 

column in the axial direction and radial compression accelerates the breakup process 

and therefore leads to smaller bubbles. 

2.6.2 Role of channel geometry 

The layout of many microfluidic channel networks is created in a 2D plane 

lithographically and then extruded into the third dimension, either by etching the bulk 

material (e.g. dry etching in silicon, glass and quartz) (Zhang and Wang 2009; Garstecki 

et al. 2005) or by patterning the channel into a layer of negative resist, resulting in (near) 

rectangular cross-section microchannels with close to vertical side-wall profiles. Most 

university based or commercial microfabrication facilities use dry etching tools as 

standard equipment for manufacturing microelectromechanical systems (MEMS). By 

looking closer it is revealed that many of the underlying theories were originally 

developed either for an unbounded system (no channel walls) or for circular cross-

section channels. 

Computational and theoretical studies prefer round channels where only two-

dimensional, i.e. axisymmetric flows occur. In multiphase microfluidics, in order to 

extrapolate theoretical predictions for axisymmetric studies to non-round channels 

considerable care must be taken. The shape of the channel in bubbly flows is less 

effective than for droplet systems where the effect is considerable due to the dispersed 

phase having dimensions comparable to the channel size. However in both flows, the 

dominance of surface tension ensures that fluid– fluid interfaces maintain smooth 

curvatures and conform poorly to the sharp microchannel corners. 



 
Chapter 2: Literature review 

70 
 

 

Figure 2. 9: Inertial, viscous and gravitational body forces, relative to interfacial 
forces, as a function of the channel size and characteristic velocity in microfluidic 
multiphase systems (Gunther and Jenson 2006). 

 

2.6.3 Role of flow parameters on bubble size 

By varying the flow rates of the continuous and dispersed phases in T-junction 

microchannels, mainly two types of flow patterns are created (plug flow and 

droplet/bubbly flow). In plug flows, the length of the plug decreases with the flow rate 

ratio of the continuous phase to the dispersed phase (Qc/Qd) and the total flow rate in 

cross-flowing mode. However, in the perpendicular flowing regime, the plug length is 

influenced only by Qc/Qd, and is independent of the total flow rate. Furthermore, the 

plug length is smaller for the cross-flowing rupture technique than using the 

perpendicular shear force technique (Xu et al., 2006c). However, in the case of droplet 

flows, droplet formation in the perpendicular shear rupture process is similar to that in 

the cross-flowing rupture process (Thorsen et al., 2001). The droplet diameter decreases 

linearly with the flow rate of the continuous phase Qc, but is independent of the flow 

rate of the dispersed phase Qd. The droplet size also decreases with the total flow rate. 

The average droplet size produced by cross-flowing rupture is larger than that produced 

by the perpendicular shear force technique.  



 
Chapter 2: Literature review 

71 
 

In cross-flowing shear induced droplet formation (Tice et al., 2004), three regimes were 

observed when varying the flow rate. When the flow rate is low, the interfacial tension 

force dominates, which enables the sharp breakup of plugs. However, as the relative 

viscous force and flow rate increase, the interfacial tension force is not sufficient for 

sharp breakup; therefore, the dispersed-phase flow remains laminar for some distance 

before the shear-off takes place (Tice et al., 2004). These three regimes have also been 

revealed in a numerical study of droplet formation in T-junction microchannels, and are 

named as squeezing, dripping and jetting (De Menech et al., 2008). 

2.6.4 Role of liquid properties on bubble formation 

2.6.4.1 Interfacial tension 

 
Due to the large surface area to volume ratio at micrometre scale, the role of surface 

effects becomes noticeable. Usually surfactants are added to the continuous or 

dispersed phase to achieve regular droplet/bubble formation. In T-junction 

microchannels using surfactants in solutions reduces the droplet/bubble diameter 

compared with those systems without surfactants (van der Graaf et al., 2005). In 

addition, increasing concentration of surfactant in the continuous phase lead to a 

decrease in droplet/bubble size.  In flow-focusing microchannels, even smaller 

droplets are formed whilst surfactants are present in the dispersed phase (Wu et al., 

2008). Xu et al. (2006d) proposed that surfactants with higher concentrations than the 

critical micellar concentration (CMC) are required to form ordered droplets. In the 

microchannel emulsification process, the effect of surfactant concentration varies with 

the viscosity of the dispersed phase. Below the threshold value, the role of the 

surfactant concentration in the continuous phase is negligible on the droplet size.  

While at higher than the threshold value, droplet size is affected by the surfactant 

concentration (Kobayashi et al., 2005b). Surfactants play an important role in droplet 

and bubble formation processes. Surfactants not only can reduce the equilibrium 

interfacial tension, but they can also prompt dynamic effects by changing dynamic 

interfacial tension, inducing interfacial tension gradients, and by altering interfacial 

rheology (van der Graaf et al., 2004). These effects on droplet/bubble formation are 

generally complex and they have been poorly investigated. When droplets are formed, 
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the dynamic interfacial tension between two liquid phases is neither constant nor 

uniform. The dynamic interfacial tension effect becomes more dominant at low 

surfactant concentrations.  

 

2.6.4.2 Surfactant effect  

Surfactants can alter the interfacial stresses in a complicated manner under dynamic 

conditions. The surfactant mass transfer dynamics and the amount of surfactant 

adsorption are the key factors that can result in the surfactant to have the ability to either 

resist or enhance the droplet/bubble formation. Surfactants can also cause 

droplets/bubbles to break under flow that would otherwise be stable in their absence 

(Baroud et al., 2012, Eggleton et al., 2001). The gravitational and inertial effects are 

generally insignificant in comparison to interfacial and viscous forces in microfluidic 

devices. As well as Capillary number (𝐶𝑎 = 𝜇
𝑢𝑙

𝜎
 ) that describes the ratio between 

viscous to interfacial forces, fluid wetting plays a central role in determining the flow 

regime. Wetting behaviour of solid surfaces in the presence of surfactants depends on 

the physical chemistry, concentration at gas-liquid interfaces and concentration along 

gas-liquid-solid contact line (Yang et al., 2004). Contact angle affects the movement of 

the three phase contact line and therefore have an impact in the force balance at the 

bubble breakup region and as a result have an impact on the size and formation of 

bubbles (Shao et al., 2008).  

 

When the surfactant molecules are adsorbed at the interfaces (either gas-liquid or 

liquid-solid), the dynamic surface tension of the liquid as well as the interfacial tension 

between the liquid and solid is reduced depending on the level of adsorption. 

Consequently, the dynamic contact angle decreases for the hydrophobic solid-liquid-

air systems with low energy. However, in the case of hydrophilic solid–solution–air 

systems, the adsorption of surfactant molecules at the liquid-solid interface does not 

always reduce the solid-liquid interfacial tension (Chaudhuri and Paria, 2009, Tostado 

et al., 2011). Surfactant molecules are adsorbed with their polar heads in the aqueous 

solution and their tails on the interface (Xu et al., 2006b). Nonionic surfactants, on the 

other hand, adsorb onto surfaces with either the hydrophilic or hydrophobic group 

oriented toward the surface, depending upon the nature of the surface (Rosen and 
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Kunjappu, 2012). Since the surface of microchannel walls is nonpolar, the nonionic 

surfactants are oriented with their hydrophobic group toward the surface, and therefore 

make it more hydrophilic. 

 

2.6.4.3 Viscosity 

Regular plugs or spheres can be formed in T-junction microchannels for both lower 

viscous (µl or µg ≤ 2.0 mPa s) and higher viscous (µl or µg ≥ 18 mPa s) dispersed and 

continuous phases. Three regimes of squeezing, dripping and jetting occur depending 

on the different combinations of low and high viscosity of dispersed and continuous 

phases (Tice et al., 2004). The viscosities of the continuous and dispersed phases 

combined with the channel geometrical features and properties influence the 

droplet/bubble size. However, sometimes even in the same microchannel the behaviour 

of the flow can be complicated. Several dimensionless parameters are introduced in 

order to simplify the complex interactions between different properties, as seen in 

section 2.6. As a result, the effect of viscosities on droplet/bubble formation is generally 

defined through the Capillary number.  

2.6.5 Microchannel surface characteristics and wetting 

 
The interfacial properties play a dominant and crucial role in the micrometer scale. 

Fluid–wall and fluid–fluid are attributed as the interfaces in microfluidic two-phase 

flows. The wetting properties of the fluid–wall interface are extremely important in 

determining whether ordered or disordered flow patterns occur (Dreyfus et al., 2003). 

When the continuous phase completely wets the microchannels, ordered patterns can 

be obtained. On the other hand, in partial wetting conditions, flow patterns become 

disordered. Hydrophobic devices are typically used to produce water-in-oil (W/O) 

droplets. While oil-in-water (O/W) emulsions are formed in hydrophilic channel 

devices. The hydrophobicity or hydrophilicity property of a solid surface can be 

expressed quantitatively by contact angles. Xu et al. (2006d) established that at contact 

angle lower than 90º, disordered flow patterns can only be produced; contrarily, for 

contact angles higher than 90 º, ordered flow of droplets can be observed. By adding 
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surfactants at different concentrations, the contact angle can be adjusted (Xu et al., 

2006b). For instance, when surfactants are added into the water phase, when the 

concentration of sodium dodecyl sulfate (SDS) is higher than the critical micelle 

concentration (CMC), the PMMA surface that is characteristically hydrophobic will 

be totally converted to be hydrophilic (Xu et al., 2006c). 

2.7  Microfluidic device material and fabrication methods 

Three important aspects in the fabrication of microfluidic devices, including material, 

tooling and processing methodologies, and measurements must be considered. The 

choice of materials should be based on the device performance, response to 

manufacturing methods, device   structures, and others. In order to fabricate 

microfluidic devices there are potentially a variety of abundant materials. Many 

materials have been previously used to make microfluidic devices, such as silicon , 

quartz and glass, polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA), 

polytetrafluoroethylene (PTFE) , polyethylene terephthalate (PET) (Yussuf et al., 

2007). Due to their good biochemical performance and low cost polymeric materials 

are used in a wide range of applications in microfluidic devices. Prediction of the 

behaviour of the material during processing is a critical work for not only the design of 

the processing equipment but also for process control. 

From the simplest mechanical machining to complicated lithography to the nano-

imprinting techniques, the conventional tooling and processing methodologies have 

been the centre of interest for many applications (Fiorini and Chiu, 2005).  Sometimes, 

different techniques are integrated to make one microfluidic device. Generally, the 

tooling and processing of polymer microfluidic devices are categorised into two types: 

direct tooling techniques and the mold based processing techniques. 

It is necessary to check and measure  microfluidic devices for defect detection, bonding 

quality inspection, and critical dimensional and functionality characterization (Li et al., 

2008). The measurement results provide the feedback information for process control 

and the product quality characterization.  
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2.8  Summary of the literature 

A detailed literature survey was presented in this section, and the summary of the key 

points are as follows: 

 Initially, the applications of microbubbles in various industries, especially in 

biomedical field, have been explained. A thorough literature review of the use 

of microbubbles as progens for the construction of protein scaffolds, which is 

of particular relevance to this work, has been presented. 

 

 The requirements for microbubbles to be used in many applications are the 

stability and uniformity. The factors affecting the stability of bubbles such as 

the coating material as well as the choice of the gas were all revealed.  

 

 The principles of microbubble formation using different methods of production 

has been reviewed. Microfluidic devices are established to be reliable 

techniques in production of uniformly sized microbubbles/droplets.  

 

 Different types of microfluidic geometries as well as the type of flows inside 

the microchannels were described. Microfluidic pressure driven and 

electroosmotic flows were looked at in detail. 

 

 In addition, the parameters influencing the formation of bubbles/droplets in 

microfluidics as well as the governing forces were defined in this chapter. The 

comparison between the scaling models proposed by researchers on various 

microfluidic geometries were presented. 

 
 Finally, the methods of manufacturing microfluidic devices from lithography to 

direct tooling and the materials used to fabricate them were presented. 
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Chapter 3 

Experimental details 

 

3.1  Introduction 

This chapter describes the materials and procedures used for the experiments 

subsequently detailed in this Thesis. The materials used, corresponding suppliers and 

product details are given. The methods used to characterise the materials and solutions 

are described. A detailed description of the equipment used with the capillary embedded 

T-junction with and without electrohydrodynamic focusing also given. All experiments 

were repeated to ensure reproducibility. All equipment was calibrated and 

measurements were checked against known values quoted by the supplier or in the 

literature. 

3.2  Materials 

The main materials used in the experiments conducted for the evaluation of bubble 

formation and size using the capillary embedded T-junction were aqueous glycerol 

solutions combined with various surfactants, such as sodium dodecyl sulfate (SDS), 

cetyltrimethyl ammonium bromide (CTAB), polyoxyethylene (40) sorbitan 

monopalmitate  (Tween 40) and polyoxyethylene glycol 40 stearate (PEG 40S).  For 

the experiments conducted to produce nanoparticle/fibre loaded scaffolds, bovine 

serum albumin (BSA), L-α-Phosphatidylcholine hydrogenated (phospholipid), poly 

(lactic-co-glycolic acid) (PLGA), polymethysilsesquioxane (PMSQ) as well as 

collagen (Type I solution from rat tail), acetone and ethanol were used. A list of all the 

materials used in the experiments are shown in Table A.1. 
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3.2.1 Glycerol 

Glycerol with 99% purity (C3H8O3, density 1261 kg m-3, molecular weight 92.09, 

viscosity 1.4 Pa s Sigma Aldrich, U.K.) was diluted with distilled water. Aqueous 

glycerol solutions are widely used in experimental studies of flow phenomena. 

Experiments conducted with glycerol solutions facilitate investigation of flows in a 

wide range of Reynolds numbers (Cheng, 2008). 

3.2.2 Surfactants 

The surfactants used in this study in order to facilitate the formation of bubbles are 
described as the following: 

SDS: Sodium dodecyl Sulfate (SDS, Sigma Aldrich, UK) and sodium lauryl sulfate, 

(SLS, VWR, UK) both from the same family of an anionic surfactant, usually a mixture 

of sodium alkyl sulfates, mainly the lauryl; lowers surface tension of aqueous solutions; 

used as fat emulsifier, wetting agent, detergent in cosmetics, pharmaceuticals and 

toothpastes; also as research tool in protein biochemistry. 

 

Tween 40: Polyoxyethylene (40) sorbitan monopalmitate (Tween 40, Sigma Aldrich, 

UK) is a nonionic detergent used for many pharmaceutical and food applications. They 

are also used in the cosmetics industry to solubilize essential oils in to water based 

products. Tweens are considered to be inherently biodegradable. 

 

PEG 40: Polyoxyethylene glycol 40 stearate (PEG 40S, Sigma Aldrich) is a nonionic 

surfactant and has been found to be nontoxic and is approved by the FDA for use as 

excipients or as a carrier in different pharmaceutical formulations, foods, and 

cosmetics.  

 

CTAB: Cetyltrimethyl ammonium bromide (CTAB, Sigma Aldrich, UK) is a cationic 

surfactant widely used in the synthesis of gold nanoparticles as well as cosmetics and 

pharmaceutical industries. 
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Surfactant Formula 
Molecular 
weight / g 

mol-1 

CMC in water 
/ wt.% 

Sodium dodecyl sulfate (SDS) 

      

Na C12H25SO4  288.4 0.17-0.23 

  
Cetyltrimethyl ammonium bromide 
(CTAB) 

       

C19H42BrN  364.5 0.03 

  
Polyoxyethylene glycol 40 stearate 
 (PEG 40S) 

 

C18H35O2(C2H4O)
n H , n=40 2047 0.01 

  
Polyoxyethylene (40) sorbitan 
monopalmitate (Tween 40) 
 

 

C22H42O6(C2H4O)
n , n=20 1277 0.003 

 

Table 3. 1: Physico-chemical characteristics of surfactants (data for CMC and 

Molecular weight were obtained from Prakash (Prakash, 2010) and Sigma Aldrich, 

UK). 

 

3.2.3 Phospholipid  

L-α-Phosphatidylcholine from egg yolk, Type XVI-E, ≥99% (TLC), lyophilized 

powder (Sigma Aldrich, UK). Typical lots of egg yolk phosphatidylcholine have fatty 
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acid contents of approximately 33% 16:0 (palmitic), 13% 18:0 (stearic), 31% 

18:1(oleic), and 15% 18:2  (linoleic) (other fatty acids being minor contributors),  which 

would give an average molecular weight of  approximately 768 g/mol. 

Phosphatidylcholine is the major membrane phospholipid in eukaryotic cells. In 

addition to being the major structural component of cellular membranes, 

phosphatidylcholine serves as a reservoir for several lipid messengers. 

Phosphatidylcholine is used for preparation of vesicle suspensions commonly called 

liposomes or as monolayers. 

3.2.4 Bovine serum albumin (BSA) 

Bovine serum albumin (BSA, Sigma Aldrich, UK) is a large protein (66.5 kDa) 

composed of 582 amino acid residues. The BSA molecule is made up of three 

homologous domains (I, II, III) which are divided into nine loops (L1-L9) by 17 

disulphide bonds. Due to its homology to human serum albumin, low cost and being 

biologically inert (Waldmann et al., 1977), BSA has been used as a model drug. BSA 

as a biomaterial has been immobilized in composites to enhance surface properties and 

cell interactions. Bovine serum albumin (>96.0% lyophilized powder, essentially fatty 

acid free and globulin free, molecular weight 66,430 Da, Sigma Aldrich, U.K) was used 

as the main coating material. BSA is used as a model polymeric drug and as a coating 

material for microbubbles and spheres as contrast agents and in the field of drug 

delivery.  

3.2.5 Polymethysilsesquioxane (PMSQ) 

Polymethysilsesquioxane (PMSQ) with an average molecular weight of 7465 g mol-1 

was obtained from Wacker Chemie AG, GmbH (Burghausen, Germany). 

Polymethysilsesquioxane (PMSQ) is a hybrid polymer with good thermal stability due 

to its organic–inorganic nature. PMSQ is a chemically stable polymer, which is highly 

hydrophobic, unreactive and has been used in vivo due to its non-toxicity and 

biocompatibility for several decades (Gunduz et al., 2012). It has applications in skin 

care products. It has been previously subjected to electrohydrodynamic and 
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microfluidics processing for biomedical related applications (Chang et al., 2010, 

Gunduz et al., 2012). 

3.2.6 Poly (lactic-co-glycolic acid) (PLGA) 

Poly (lactic-co-glycolic acid) is a copolymer of glycolic and lactic acid which has been 

approved by the Food and Drug Administration (FDA) for uses in therapeutic devices 

because of its biodegradability and biocompatibility. Depending on the ratio of lactide 

to glycolide used for the polymerisation, different forms of PLGA can be obtained: 

these are usually identified in terms of the monomer ratio used. In this research the 

PLGA copolymer 50:50 Resomer RG503H (Boehringer Ingelheim, Germany) was used 

with the molecular weight 33000 kDa composed of 50% lactic and 50% glycolic acid.  

3.2.7 Collagen 

Collagen (Type I solution from rat tail, Sigma Aldrich, UK) is the most abundant long 

and fibrous protein in mammals and the main component of bone and skin. It has great 

tensile strength. As a natural material, collagen is biocompatible and doesn’t cause any 

immune response. Due to its role in the extracellular matrix, collagen is mainly used 

for a bio-mimetic approach to tissue engineering scaffold design. Initially collagen 

sponges were developed only as wound dressing materials but with the incorporation 

of other biomolecules (elastin, growth factors, and antibiotics) (Ueda et al., 2008). 

Collagen has been widely used in all areas needing construction, healing, cell 

proliferation and drug delivery; not only as scaffolds but also as films and 

microparticles. 

3.2.8 Phosphate buffered saline (PBS) 

Dulbecco’s phosphate buffered saline (DPBS, Sigma Aldrich, UK) is a balanced salt 

solution (BSS) used for the handling and culturing of mammalian cells. DPBS is used 

to irrigate, wash, and dilute mammalian cells. Phosphate buffering maintains the pH in 

the physiological range. Calcium and magnesium facilitate cell binding and clumping. 

DPBS without these ions can be used to wash and rinse suspended cells. 
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3.2.9 Ethanol 

General purpose research grade ethanol (C2H5OH 99%, density 790 kg m-3, molecular 

weight 46, viscosity 1.3 mPa s, Sigma Aldrich, Poole, UK) was used in this research. 

In addition, ethanol was also used for the calibration of the characterisation apparatus 

and for the cleaning of capillary needles which were essential components of the 

experimental setup. 

3.2.10 Acetone 

Acetone as a polar solvent (CH3COCH3 99.9%, density 791 kg m-3, molecular weight 

58.08g mol-1, viscosity 0.3 mPa s, Sigma Aldrich, Poole, UK) was used in this research 

for the preparation of PLGA solution for nanoparticle/fibre production. 

3.3  Characterisation of the solutions 

3.3.1 Density 

The density of the liquids/solutions used was measured using a 25 ml DIN ISO 3507- 

Gay-Lussac type standard density bottle (VWR International, Lutterworth, UK). The 

mass of the empty bottle and the mass of the bottle filled with liquid/solution were 

obtained using an electronic balance (AND HF-1200G A&D Instruments Ltd., Japan). 

The density (ρ) was calculated as follows: 

 

The mass of the empty density bottle = W1   g                                      Eq (3.1) 

 

The mass of the density bottle filled with liquid /solution = W2    g              Eq (3.2) 

 

Therefore, the mass of liquid/suspension/solution only = (W2-W1)    g        Eq (3.3) 

 

Therefore, the density of liquid /solution = (W2-W1)/25      g cm-3                 Eq (3.4) 
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The mean value of five such consecutive calculations was taken as the density of 

liquid/solution and reported in this thesis. Measurements were taken at the ambient 

temperature (~22-25 °C) and pressure. 

3.3.2 Viscosity 

The dynamic viscosities of the solutions were determined using a U-tube viscometer 

(BS/U type, Schott Instruments GmbH, Germany). A calibrated U-tube (size C, 

nominal constant 0.03) was used. The time taken for a standard volume of solution to 

pass through the capillary of the U-tube was noted for five passes and the mean value 

of the time was calculated. Then, the kinematic viscosity (ν) was obtained by 

multiplying the nominal constant (C) by the time (t):  

 

  ν = Ct          Eq (3.5) 

 

The dynamic viscosity (µ) was then calculated by multiplying the kinematic viscosity 

by the density (ρ) of the solution: 

            µ = νρ                                                        Eq (3.6) 

 

If equations (3.5) and (3.6) are combined, 

  µ = Ctρ          Eq (3.7) 

 

Ethanol was used to calibrate the viscometer. The mean value of five readings was 

taken as the dynamic viscosity of the sample. For U-tube viscometers that are not 

calibrated by manufacturers, use of a calibrating liquid is essential as the viscosity value 

cannot be calculated without comparing with another liquid. 

3.3.3 Surface tension and contact angle 

3.3.3.1  Wilhely’s plate method 

The surface tension of the solutions was measured using a Kruss Tensiometer K9 

(Standard Wilhelmy’s plate method). A platinum plate, fastened to a balance, is 

immersed deep in the solution and withdrawn to the position shown in Figure 3.1 where 
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the buoyancy force is zero. Provided the contact angle is zero between the plate and the 

solution, the surface tension of the liquid vapour interface, σlv, is given by the force F 

on the plate divided with the perimeter L of the platinum plate σlv= F/L). In order to 

minimize errors, the plate was cleaned thoroughly with ethanol or distilled water and 

dried in a drier before each measurement. The mean values of five readings were taken 

as the surface tension of the sample. 

 
Figure 3. 1: Submersion of platinum plate for the Wilhelmy balance measurement. 

 

3.3.3.2  Drop shape analysis method 

 

Both static surface tension and contact angle were measured using a Drop Shape 

Analysis System, Model DSA100 (Kruss GmbH, Hamburg, Germany). Surface tension 

is determined by fitting the shape of the drop (in a captured video image) to the Young-

Laplace equation which relates interfacial tension to drop shape. The software does this 

automatically.   
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Figure 3. 2: Illustration of contact angles formed by sessile liquid drops on a smooth 
homogeneous solid surface. 

 

The contact angle of a liquid drop on an ideal solid surface as described by Young is 

defined by the mechanical equilibrium of the drop under the action of three interfacial 

tensions (Figure 3.2): 

γlv cos θ = γsv −γsl    (3.8) 

where γlv , γsv, and γsl represent the liquid-vapour, solid-vapour, and solid-liquid 

interfacial tensions, respectively, and θ is the contact angle. 

3.3.4 Electrical Conductivity and pH 

The electrical conductivity and pH of the solutions were determined using a Jenway 

3540 pH/conductivity meter (Bibby Scientific Limited, Staffordshire, UK). The 

electrodes were always cleaned and dried before measurements. The electrode was kept 

immersed in the solution up to the point marked on the electrode for 10 min and the 

reading shown on the meter was recorded. The mean value of five consecutive readings 

was taken as the electrical conductivity and pH of the sample. 
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3.4  Preparation of solutions 

3.4.1 For the study of the influence of liquid physical parameters on 
microbubble size study  

Glycerol with 99% purity was diluted with distilled water at 5, 10, 20, 30, 35, 50, 60, 

65, 70 and 80 wt % concentrations for the study of liquid physical parameters (shown 

in Table 3.2) influence on the bubble production and size in the T-junction device.  In 

order to facilitate bubble formation and reduce the surface tension and stabilize newly 

created interfaces, an equal amount of 1 wt % of 0.01M SLS solution was added to all 

the solutions. Compressed air was used as the disperse phase (gas).  

 

Aqueous Solution 
Viscosity 

/ mPa s 

Surface tension 

/ mN m-1 

water 0.99 71 

100% glycerol 1495 62 

5 wt. % glycerol, 1 wt. % SLS 1.2 50 

10 wt. % glycerol, 1 wt. % SLS 1.3 52 

20 wt. % glycerol, 1 wt. % SLS 1.8 53 

30 wt. % glycerol, 1 wt. % SLS 2.5 54 

35 wt. % glycerol, 1 wt. % SLS 3 55 

50 wt. % glycerol, 1 wt. % SLS 6 56 

60 wt. % glycerol, 1 wt. % SLS 10.8 57 

65 wt. % glycerol, 1 wt. % SLS 15.2 57 

70 wt. % glycerol, 1 wt. % SLS 22.5 58 

80 wt. % glycerol, 1 wt. % SLS 60 60 

 

Table 3. 2: Measured values of viscosity and surface tension. 
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3.4.2 For the study of the T-junction setup with electrohydrodynamic focusing  

Glycerol–water mixtures with viscosities ranging from 1.3 to 36 mPa s were used as 

the continuous liquid phase. Aqueos glyccerol soluctions with 5, 50, 65 and 67 wt % 

concentrations were prepared for this study with the measured properties shown in 

Table 3.3. All measuremens were condcuted five times and the mean relative value of 

the error for the measurements is 5%, while the maximum error was recorded for the 

electrical conductivity measurements at 7%. In order to investigate the effect of liquid 

electrical conductivity, 1 wt % sodium chloride solution (NaCl, Sigma Aldrich, U.K.) 

was added to a solution of 50 wt % glycerol concentration to increase the conductivity 

while keeping the viscosity and surface tension constant. Comperesed air was used as 

the dispersed (gas) phase. 
  

Aqueous Solution 
Viscosity 

/ mPa s 

Surface tension 

/ mN m-1 

Electrical  

Conductivity 

/ µS m-1 

pH 

Deionized water 0.99 71 5.4 6.9 

100% glycerol 1495 62 0.002 7.4 

5 wt. % glycerol, 1 wt. 

% SLS 
1.2 50  12 4.8 

50 wt. % glycerol, 1 wt. 

% SLS 
6 56 1.8 8.2 

50 wt. % glycerol, 1 wt. 

% SLS, 1 wt.% NaCl 
6 56 150 7.4 

65 wt. % glycerol, 1 wt. 

% SLS 
15 57 1.6 8.3 

75 wt. % glycerol, 1 wt. 

% SLS 
36 59 1.4 8.4 

Table 3. 3: Characteristic properties of solutions used in the experiments. 
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3.4.3 For the study of the effect of surfactant properties on bubble size and 
stability 

Glycerol with 99% purity (Sigma Aldrich, UK) was diluted with distilled water to 

achieve 50 wt% concentration to form the basis for the liquid phase.  In order to 

facilitate bubble formation and reduce the surface tension to stabilize newly created 

interfaces, various concentrations of three different surfactants were added to the 

aqueous glycerol solution.  

 

To investigate the effect of liquid surface tension and surfactant type on the size and 

stability of the bubbles produced, 2, 5 and 10 wt % of sodium dodecyl sulfate (SDS), 

cetyltrimethyl ammonium bromide (CTAB), olyoxyethylene (40) sorbitan 

monopalmitate (Tween 40) and polyoxyethylene glycol 40 stearate (PEG 40S) were 

added to the aqueous solution with 50 wt % glycerol concentration (All purchased from 

Sigma Aldrich, UK). Compressed air was used as the dispersed (gas) phase. The 

properties of the experimental system are listed in Table 3.4. In order to find whether 

the channel walls are hydrophobic or hydrophilic, static contact angle (θ) of deionized 

water was measured against the FEP surface and it was shown that θ> 90° indicating 

that the surface is hydrophobic. The mean relative error of the measurements conducted 

five time was at 6% with the maximum error recorder at 10% for the contact angle 

measurements. 

 

Aqueous Solution 
Density 

/ mg m-3 

Viscosity 

/ mPa s 

Surface 

tension 

/ mN m-1 

Contact Angle 

/ ° 

Water 0.99 1 72.1 105 

50 wt.% glycerol 1.14 5.5 56 80 

 

2 wt. % PEG 40, 50 wt. % 
glycerol 

1.12 5.6 46 58 

5 wt. % PEG 40, 50 wt. % 
glycerol 

1.12 7.8 44 49 
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10 wt. % PEG 40, 50 wt. % 
glycerol 

1.13 12.3 44 43 

 

2 wt. % Tween 40, 50 wt. % 
glycerol 

1.12 5.1 41 60 

5 wt. % Tween 40, 50 wt. % 
glycerol 

1.12 6 39 54 

10 wt. % Tween 40, 50 wt. % 
glycerol 

1.13 10 39 50 

  

2 wt. % SDS, 50 wt. % glycerol 1.12 5.6 40 61 

5 wt. % SDS, 50 wt. % glycerol 1.12 7.5 40 59 

10 wt. % SDS, 50 wt. % 

glycerol 
1.08 12.4 37 51 

  

2 wt. % CTAB, 50 wt. % 

glycerol 
1.10 5.4 38 42 

5 wt. % CTAB, 50 wt. % 

glycerol 
1.04 5.5 37 46 

10 wt. % CTAB, 50 wt. % 

glycerol 
1.02 10 36 52 

 

Table 3. 4: Physical properties of the solutions used in the experiment.  

3.4.4 For the generation of BSA scaffolds loaded with polymer and collagen 
nanoparticle/fibres 

Poly(lactic-co-glycolic) acid (PLGA co-polymer 50:50, Resomer RG503H, molecular 

weight: 33000 g mol-1) was purchased from Boehringer Ingelheim, (Ingelheim, 

Germany). Acetone, ethanol, collagen (Type I solution from rat tail), Tween 40, 

phosphate buffer saline (PBS), L-α-Phosphatidylcholine hydrogenated (phospholipid) 
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and bovine serum albumin (BSA, molecular weight: 66000 g mol-1) were purchased 

from Sigma Aldrich (Poole, UK). Acetone and ethanol were used as solvents to prepare 

5% w/w PLGA and 12% w/w PMSQ solutions, respectively, by dissolving them with 

magnetic stirrers in separate volumetric flasks until a homogenous suspension was 

formed. The collagen solutions were prepared by adding the viscous solutions into PBS 

solution and had a concentration of 8% and 15% v/v. Subsequently, the final solutions 

were vortexed for 120 s. All the instruments were calibrated before use by following 

the instruments calibration guide and all experiments were performed at the temperature 

of 25°C, ambient pressure (101.3 kPa), and relative humidity (45-60%). Table 3.5 

shows the measured liquids’ physical properties used for the experiments. All 

measuremens were condcuted five times and the mean relative value of the error for the 

measurements is 5%, while the maximum error was recorded for the electrical 

conductivity measurements at 7%. 

 
 

 

 

Table 3. 5: Physical properties of liquids used in experiments.  

Material or 

polymer 

solution 

Density  

/ kg m-3 

Viscosity 

/ mPa s 

Surface 

tension 

/ mN m-1 

Electrical  

Conductivity 

/ µS m-1 

pH 

BSA 15 wt % 1070  1.6  51 6.44  6.7 

PLGA 5 wt % 780  0.78  22 339  5.4 

PMSQ 12 wt % 810  1.04  22 730  4.1 

Collagen 15 % v/v 1060  1.19  51 4.24  6.5 

Collagen 8 % v/v 620  0.76  37  3.62  5.6 
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3.5  Characterisation of generated microbubbles and scaffolds 

3.5.1 Optical microscopy 

Microbubbles were collected on glass slides for preliminary stability and size study. An 

optical microscope (Nikon Eclipse ME 600, Nikon, Japan) was extensively used for all 

the investigations described in Chapters 4 and 5. The measurements were carried out 

by means of ‘Image J’ digital imaging software as well as Image Tool (Version 2, 

University of Texas, USA). Bubbles were collected from the tip of the outlet of the 

device on microscope glass slides and immediately observed under an optical 

microscope fitted with a camera (JVC KY-F55B). Bubbles were studied at 5x, 10x and 

20x magnifications. For each sample, 100 bubbles were chosen to measure the diameter 

and stability over a fixed collection area of 1.5 mm2.  The polydispersity index σ =δ/ 

Davg × 100% was calculated from the average bubble size Davg and standard deviation 

δ (Hettiarachchi et al., 2007), determined by measuring the sizes of at least 100 

microbubbles from recorded images.  

3.5.2 High speed camera images 

All measurements of bubble frequency and length were performed on video images of 

fibre optic illuminated T Junction taken by a Phantom V5 high speed camera. For each 

flow ratio, three sets of video data were taken, with 5 minutes intervals between changes 

to any of the flow parameters. The software version 605.2 supplied with the camera 

could offer image resolutions range of 128, 256, 512 and 1024 pixels in height and 

width. The measurements were conducted with constant 1024x1024 image area 

resolution in pixels. While the resolution of 1024x1024 only gives 1000 pictures per 

second, it has the highest resolution for the V5 camera. In addition to the Phantom V5, 

bubble formation was recorded using a Phantom V7.10 camera with a maximum 

resolution of 1280 x 800 pixels at up to 7,500 fps. All data were processed using Cine 

viewer software (Vision Research, UK). 

A Photron Ultima APX high speed camera with a maximum resolution of 1024 x 1024 

pixels at up to 2,000 fps giving 3 seconds of recording time (Photron Europe Ltd., U.K.) 

was also used to obtain real time video images of the bubble formation process. The 
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data were then processed using PVF image processing tool (version 3392, Photron 

Europe Ltd., U.K.). All the high speed cameras were provided by the Engineering and 

Physical Science Research Council through their Instrument Loan Pool system.  

3.5.3 Scanning electron microscopy (SEM) 

The bubbles/scaffolds, particles, fibres and the combined structures were analysed for 

their diameter and surface morphology by optical microscopy (Micropublisher 3.3 

RTV, 3.3 megapixel CCD Color-Bayer Mosaic, Real Time Viewing camera, Media 

Cybernetics, Marlow, UK) and scanning electron microscopy (Hitachi S-3400N and 

JEOL JSM-6301F field emission scanning electron microscopes, SEM). JEOL JSM-

6301F field emission scanning electron microscope was equipped with an emitter that 

can achieve a resolution of ~ 1.5 nm. The accelerating voltage was set at 6 kV and the 

working distance between the emitter and the sample was 20 mm.  The bubbles, 

bubble/particle and bubble/fibre structures were collected and studied by optical 

microscopy immediately and after 15 and 30 minutes of production to detect any 

changes in their size and morphology. Then they were left to dry for 12 hours and they 

were studied by scanning electron microscopy at an acceleration voltage of 3-5kV. All 

the samples were vacuum-coated with gold for 120s before obtaining SEM images. 

Since the materials used for the preparation of scaffolds and nanoparticle/fibres are 

nonconductive, the SEM sample was gold coated for 2 min using a sputtering machine 

(Edwards sputter coater S 1 50B) to enable conduction of the sample surface and avoid 

charging which can cause damage when gold is used to make the surface conductive. 

The samples were then placed on an aluminium stub with a carbon sticker and were 

placed in the SEM chamber. Analysis of the products was carried out using the Image-

Pro Insight software (Media Cybernetics Ltd., Marlow, UK) and the image-processing 

program UTHSCSA Image Tool (Image Tool Version 2, University of Texas, USA). 
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3.6  Experimental Setup  

3.6.1 Standard capillary embedded T-junction device 

A schematic of the T-junction set up and the junction geometry is shown in Figure 3.3. 

This device consists of two Teflon FEP (Fluorinated Ethylene Polypropylene, 

Upchurch, USA) capillaries with fixed internal diameters of 150 µm (for the set of the 

experiments conducted to investigate the effect of the variation of viscosity and flow 

ratio) inserted in a polymer block with the ends 200 µm apart and the third Teflon FEP 

capillary inserted perpendicular to these two capillaries. In addition, the influence of 

channel geometry was studied by using three different capillary sizes with inner 

diameters of 100, 150 and 200 µm. In all these experiments the gap in the junction, 

shown in Figure 3.4 a,b was set to be 200 µm. The top capillary was connected to a 

gas regulator fitted to a pressurized air tank via a 6 mm diameter tubing, where the gas 

was supplied to the junction at constant pressure Pg.  A digital manometer was 

connected to the pipe to measure the in-line gas pressure. Also a gas regulator was used 

to vary the pressure supplied to the T- junction. The capillary perpendicular to the 

capillary supplying air was connected to a 20ml stainless steel syringe (KD Scientific, 

Holliston, MA, USA). 

 

In order to investigate the effect of variation in the size of the gap between the vertically 

aligned channels (in the case of our T-junction, the gap between the gas inlet capillary 

and the main channel), a fixed size capillary inner diameter of 200 µm was chosen. The 

experiments were conducted for the gap size of 50, 200, and 220 µm. Figure 3.5 depicts 

3D and 2D schematic of the junction geometry when the gap size is smaller than the 

capillary inner diameter at 50 µm (a), similar to the size of the capillary inner diameter 

at 200 µm (b) and larger than the capillary inner diameter at 220 µm (c). For all these 

experiments, the liquid viscosity and flow rate was kept constant at 60 mPa s and 0.01 

ml/min respectively. 
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Figure 3. 3: Schematic of the T-junction device (system apparatus) 

  

A Harvard syringe pump PHD-4400 (Harvard Apparatus Ltd., Edenbridge, UK) was 

used to force liquid through the capillaries at a constant flow rate. The geometry of the 

junction which consists of circular cross-section capillary tubing is different from that 

of a conventional rectangular T-junction device. The gas inlet capillary is placed on the 

main channel and the liquid inlet capillary is on the perpendicular channel.  The length 

of the junction is larger than the capillaries inner diameter. This creates a cylindrical 

cavity at the junction where the two phases meet. Bubble formation was monitored at 

the junction in the 200 µm gap between the main capillaries, where the liquid and gas 

phases meet to start bubble formation. Each capillary was secured mechanically to the 

block via a standard HPLC (high-performance liquid chromatography) connector to 

prevent any slippage at the junction during operation at high pressure. All connections 

were checked for leakages and blockages prior to experiments. 
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a) b) 

Figure 3. 4: (a) 3D and (b) 2D representation of junction diagram, where Pg 
and Ql are gas pressure and liquid flow rate, respectively, and L gap is the 

distance between the capillaries in the junction. 

Figure 3. 5: (a) 3D and (b) 2D illustration of the junction geometry for 3 cases of 
1. Gap size < Capillary inner diameter (50µm), 2. Gap size = Capillary inner 

diameter (200µm) and 3. Gap size> Capillary inner diameter (220µm). 
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3.6.1.1 Specific experimental details for the effect of parameters on bubble 

size 

The microbubble samples were collected from the end of the third capillary. For each 

solution of a given viscosity, the effect of varying the gas pressure (Pg) from 30 to 300 

kPa was determined for different liquid flow rates (Ql) from 0.07 to 0.4 ml/min 

(1.15x10-9 to 6.6x10-9 m3/s). Between the experiments the junction was cleaned with 

ethanol and any liquid inside the capillaries was flushed by applying air at 40 kPa 

pressure. A Phantom V5.1 high speed camera (Vision Research Ltd. Bedford, U.K.) 

was used to obtain real time video images of the bubble formation process. Values for 

the Reynolds numbers for the liquid (Rel) were determined and 7x10-4≤ Re1≤9.3x10-3. 

 

It was found that Rel < 2300, which indicates that the flow should be laminar in the lead 

capillary and dominated by viscous forces rather than interfacial tension. Any change 

in the liquid flow rate or gas pressure causes a variation in bubble size due to the fact 

that the generation of bubbles in the T-junction depends on the pressure balance of 

liquid and gas at the junction. Therefore, the results here are analyzed in terms of a 

dimensionless flow ratio, to take into account the combined effect of the gas and liquid 

flow rates. Since the pressure drop along the gas capillary is very small and the Mach 

number (M= ug/a) of the gas flow ≤0.3, the gas flow inside the capillary was considered 

as incompressible and the gas pressure drop was converted into volume flow rate using 

Poiseuille’s law for the length of capillary used in this experiment (Pancholi et al., 

2008). 

3.6.1.2 Specific details of experiments for the effect of surfactants on 

bubbles 

The channel wall surface was created by inserting two Teflon FEP (Fluorinated 

Ethylene Polypropylene) capillaries perpendicularly into a rigid Polydimethylsiloxane 

(PDMS) block as inlet channels for the gas and liquid flows. A third FEP capillary was 

embedded in the polymer block aligned with the gas inlet channel with a 200 μm 

distance to create the junction where the two phases meet. The internal diameter for all 

of the channels was fixed at 200 μm.  
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Experimental 

conditions 

Liquid 

flow rate 

 / ml min-1 

Channel 

diameter 

/ μm 

Gap 

between 

capillaries 

/ μm 

Gas 

pressure 

 / kPa 

Capillary 

Number  

2wt% PEG 40 0.2 200 200 45-95 0.0013 

5wt% PEG 40 0.2 200 200 80-150 0.0019 

10wt% PEG 40 0.2 200 200 140-200 0.0029 

  

2wt% Tween 40 0.2 200 200 30-120 0.0013 

5wt% Tween 40 0.2 200 200 45-155 0.0016 

10wt% Tween 40 0.2 200 200 70-135 0.0027 

10wt% Tween 40 0.25 200 200 80-140 0.0034 

  

2wt% SDS 0.2 200 200 35-100 0.0014 

5wt% SDS 0.2 200 200 65-120 0.0019 

10wt% SDS 0.2 200 200 110-190 0.0034 

  

2wt% CTAB 0.2 200 200 50-100 0.0015 

5wt% CTAB 0.2 200 200 75-125 0.0016 

10wt% CTAB 0.2 200 200 115-195 0.0029 

 

Table 3.6:  Conditions tested in the experiments (at 22 ° C) 

The conditions tested in the experiments are shown in Table 3.6. Each experiment was 

conducted 10 times to provide an indication of the experimental uncertainty for the 
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measured mean bubble diameter that was calculated to be approximately between 2-

5%. 

3.6.2 Capillary embedded T-junction device with electrohydrodynamic 
focusing 

The experimental setup consisted of two Teflon FEP (Fluorinated Ethylene 

polypropylene) capillaries with outer diameter of 1.58 mm were inserted 

perpendicularly into a Polydimethylsiloxane (PDMS) block (100x100x10 mm3) as inlet 

channels for the gas and liquid flows. A third stainless steel capillary was embedded in 

the polymer block aligned with the gas inlet channel with a 200 μm distance to create 

the junction where the two phases meet. The internal diameter for all of the channels 

was fixed at Dch= 100 μm. A schematic of the T-junction set up is shown in Figure 3.6. 

The top capillary was connected to a gas regulator fitted to a pressurized air tank via a 

6 mm diameter pipe, where the gas was supplied to the junction at constant pressure 

Pg. A digital manometer was   connected to the pipe to measure the in-line gas pressure. 

Also a gas regulator was used to vary the pressure supplied to the T- junction. The 

liquid capillary perpendicular to the capillary supplying air was connected to a 20 ml 

stainless steel syringe (KD Scientific, Holliston, MA, USA). A Harvard syringe pump 

PHD-4400 (Harvard Apparatus Ltd., Edenbridge, UK) was used to force liquid through 

the capillaries at a constant flow rate.  

 

The advantages that this setup has over conventional lithographically manufactured 

microfluidic chips are: that it can be easily constructed, blocked capillaries can be easily 

replaced, and microbubbles smaller than the channel width can be produced. To apply 

an electrical potential difference to the device, the steel capillary tube was connected to 

a high voltage power supply (Glassman Europe Ltd. Tadley, UK) while the ground 

electrode was placed 100 mm below the tip of the outlet channel. Once the gas pressure 

and liquid flow rates were set and conditions for stable bubble formation in the T-

junction determined, the applied voltage across the outer steel tube was varied between 

6 and 21 kV.   
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Figure 3. 6: T- Junction setup a) and schematic of the T-junction setup and bubble 
formation with b) and without c) an applied electric field. 

 

 

For a solution with a given viscosity and liquid flow rate, bubble formation occurs for 

a range of gas pressures with the smallest bubble size obtained at the lowest gas pressure 

and largest bubble size at the highest gas pressure. Outside this range, monodisperse 

microbubble formation is not achievable. This is prior to applying voltage. In this 

experimental investigation, the smallest gas pressure at which bubble formation was 

achievable, were chosen for each solution. 
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3.6.3 Combined T-junction and single needle EHD setup 

The experimental setup for producing the bubble/particle and bubble/fibre products is 

shown in Figure 3.7. It consists of a single brass EHD needle device (inner diameter: 

1.35mm, outer diameter: 1.82mm), a microfluidic T-junction device (two entry ports 

and an exit port), two ‘PHD 4400’ high precision syringe pumps (Harvard Apparatus 

Limited, Edenbridge, UK) to control the flow rate of the solutions to one of the entry 

ports of the T-junction device and to the EHD needle, a high precision voltage generator 

connected to the EHD needle (Glassman Europe Limited, Bramley, UK) and a gas 

supply cylinder, which transports air through high pressure into the secondary T-

junction entry port. A 10ml volume capacity Becton-Dickinson (Becton and Dickinson 

Company, Oxford, UK) syringe containing the 15% w/w BSA solutions was loaded to 

one of the syringe pumps and a silicone tube was used to transfer it to one of the T-

junction entry ports. The other syringe pump was loaded with a 10 ml syringe filled 

with a different solution at each time (PLGA, PMSQ and collagen) and a silicone tube 

was used to transfer these to the EHD needle.  

 

Figure 3. 7: Schematic illustration of the T-Junction/EHD setup used for the 
experiments. 
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Chapter 4 

Results and Discussion 

4 Production of Microbubbles using a capillary embedded T-

junction device 

4.1  Overview 

Production of stable microbubbles with uniform size has been the subject of many 

researchers. In order to facilitate bubble formation, microfluidic techniques have been 

widely used. To understand the mechanism of bubble formation various studies 

suggested scaling models with a number of variables affecting the size of bubbles 

formed through this technique. In this part of the research, a detailed investigation of 

parameters such as viscosity, surface tension, flow parameters and channel geometry 

were conducted. Principles of bubble formation for a range of viscosities and mapping 

of the size and size distribution were presented. Capillary tubing with channel diameters 

much larger than lithography manufactured microfluidic chips were embedded in a T-

junction block in order to enable the possibility of replacing the tubing if blocked as 

well as creating different gap sizes in the mixing area. In addition, pressure drop 

associated with the smaller channel diameter was reduced by using larger capillaries 

and therefore higher liquid and gas flow rates can be used that lead to higher rate of 

production than conventional microfluidic devices. In this study, the role of surfactant 

concentrations and types on the formation and stability of bubbles in this device was 

also investigated. Lastly, the T-junction device was optimised with 

electrohydrodynamic focusing to further decrease the bubble size and the role of 

voltage and electrical conductivity in conjunction with viscosity was studied. 
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4.2  Effect of operating conditions and liquid physical properties on 
the size of microbubbles in the T-junction device 

 

4.2.1 Introduction  

The main goal of this work was to characterize the bubble formation process in a 

capillary embedded T-junction and determine the factors that affect the bubble size; in 

particular the parameters that reduce it. In the past decade there has been intense interest 

in microfluidic systems with the evolution of inexpensive and simple methods for 

fabrication of the devices, such as lithography and wet etching (Garstecki et al. 2005; 

Zhang and Wang 2009). One of the challenges that the users of these devices face is 

the regular blockage and clogging of the flow channels and the consequent need for 

expensive cleaning processes and/or replacement of the devices (Mustin and Stoeber, 

2008). Compared with conventional methods, the set-up used in this work provides a 

robust and low-maintenance system for fabricating bubbles/droplets. Any blocked 

channel can be easily replaced by inserting a new section of capillary tubing whilst 

control over bubble/droplet size can be achieved through appropriate selection not only 

of the flow rate ratio, solution viscosity, and surface tension but also capillary inner 

diameter and/or separation. 

 

In order to investigate the bubble formation process and compare this system with 

previously reported methods, a detailed study was made of the relationship between 

bubble size and uniformity and the operating parameters. The effect of the channel inner 

diameter was investigated by varying all the inlet and outlet capillary sizes. In addition, 

the effect of changes in the continuous-phase viscosity and flow rate (Ql) as well as the 

gas pressure (Pg) on the resulting bubble size was studied. Aqueous glycerol solutions 

were chosen for the liquid phase, as they are widely used in experimental studies of 

flow phenomena, including the majority of the studies referred to above since viscosity 

can be varied easily and in a repeatable manner through dilution, and without 

significantly changing the surface tension and density of the solutions (Cheng, 2008). 

The experimental data were then compared with published data derived from scaling 

models proposed by Garstecki et al. (2006), which are widely used and accepted as a 



 
Chapter 4: Results and Discussion 

102 
 

basis of comparison among investigators. While the role of liquid viscosity was 

investigated by these authors, it was not directly incorporated in the scaling models 

proposed and therefore the effect of viscosity was also studied experimentally in this 

work.

4.2.2 Bubble formation  

As the gas inlet pressure was gradually increased under constant liquid flow rate, it was 

found that bubble formation occurred only within a certain range of gas pressures, 

where Pgmin and Pgmax are represented as minimum and maximum gas inlet pressure, 

respectively. For any gas pressure below Pgmin, the liquid phase would push the gas 

stream back to the gas channel due to the capillary force of the liquid phase and cause 

leakage in the capillaries.  

 

Figure 4. 1:  Bubble formation process as a function of time for liquid solution viscosity 

of 10.8 mPa s and flow rate of 0.01 ml/min at (a) t=0 ms, (b) t=1.62 ms, (c) t=3.82 ms, 

(d) t=4.95 ms, (e) t=6.62 ms, (f) t=7.45 ms, (g) t=8.28 ms. 
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On the other hand, gas pressures larger than Pgmax would disturb the layered laminar 

flow of both gas and liquid phases in the outlet channel.  The bubble generation process 

can be seen in the video images taken by the high speed camera, presented in Figure 

4.1, where the time evolution of a bubble is captured.  Initially, the gas column enters 

the junction and liquid and gas phases meet. The gas column expands until a neck 

appears and propagates downstream while its diameter decreases and it finally breaks. 

The bubble formation process can be considered in three stages: 1) growth stage 

(Figure 4.1a, b, c, d), 2) necking stage (Figure 4.1e, f) and 3) pinch off (Figure 4.1g). 

4.2.3 Effect of gas inlet pressure on bubble size 

Figure 4.2 illustrates the effect of gas flow rate on the average bubble size whilst the 

gas inlet pressure was varied at a constant liquid flow rate. The continuous phase 

viscosities ranged from 1.15 to 60 mPa s. The average bubble size increased with 

increasing gas flow rate/gas inlet pressure. From Figure 4.3a, b it was found that at a 

fixed liquid flow rate of 0.01 ml/min and viscosity of 10.8 mPa s, the bubble diameter 

increased with the gas inlet pressure. The increase in gas pressure led to the expansion 

time increasing and a longer bubble /slug was produced (Figure 4.3a, b).  

It is also shown that for a constant flow rate of 0.1 ml/min, bubble formation occurs 

within a larger range of gas pressures for the most viscous solution. This can be seen 

from the curve corresponding to µl = 60 mPa s in the graph shown in Figure 4, where 

the difference in pressures to obtain the largest and the smallest bubbles is 

approximately 100 kPa. Whereas for the lowest liquid viscosity of µl = 1.8 mPa s, the 

difference between Pgmin and Pgmax is approximately 30 kPa. In addition, at constant 

liquid flow rate, for the more viscous solutions, higher gas pressure is required to 

produce bubbles. All the microbubbles produced in this study were highly 

monodisperse with a polydispersity index of < 1%. 
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Figure 4. 2: The variation of bubble size with gas inlet pressure for liquid with different 

viscosities at a constant liquid flow rate of 0.1 ml/min. 

 

 

Figure 4. 3:  High speed camera images of bubble formation for liquid solution 

viscosity of 10.8 mPa s at constant flow rate of 0.01ml/min varying gas inlet pressure 

a) 150 kPa, b) 170 kPa.
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4.2.4 Effect of flow ratio and liquid viscosity on bubble size 

Micrographs in Figure 4.4 show that by increasing the viscosity, the bubble size 

decreases. For a given value of continuous phase flow rate (Ql), smaller bubble sizes 

were created at higher values of viscosity due to the relative increase in the cross-flow 

shear force over the capillary force at the channel junction. Optical images of bubbles 

shown in Figure 4.4 correspond to the smallest bubble size presented in each curve of 

constant viscosity in the graph presented in Figure 4.5. By increasing the gas inlet 

pressure, an increase in bubble size is observed in each curve. Image (a) in Figure 4.4 

shows the largest bubbles (163 µm) with the lowest solution viscosity (1.8 mPa s), while 

image (c) has the smallest bubbles (66 µm) with the highest solution viscosity (60 mPa 

s).  

 

Figure 4. 4: Microscopic images of bubbles with constant liquid flow rate of 0.1 
ml/min and viscosities of: a) µ = 1.76 mPa s @ 

mingP  = 52 kPa, b) µ = 10.8 mPa s @

mingP  = 81 kPa c) µ = 22.5 mPa s @ 
mingP  = 190kPa d) µ = 60 mPa s @ 

mingP = 

246 kPa. 
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Figure 4.5 shows how the diameter of the bubble varied with flow rate ratio (Ql/Qg) for 

different viscosities. As anticipated, increasing the flow rate ratio was found to reduce 

bubble size. The bubble size decreased with increasing continuous phase flow rate (Ql) 

under a given gas flow rate (Qg), and the bubble size increased as the gas-phase flow 

rate increased. It is also shown that as the viscosity of the solution increases, bubble 

formation occurs within a lower range of ratio of liquid to gas flow rate. The results 

were compared to the previous work carried out by Pancholi et al. (2008a, b). In 

particular, in figure 7a of the paper by Pancholi et al., the slug height curves for lower 

viscosities of 4.85 and 48.5 mPa s coincide within the curves presented in Figure 4.5 

of this study.  

 

Figure 4. 5: The variation of bubble size with viscosity and flow ratio. 

From the graphs shown in Figure 4.5, a predictive model (Eq 4.1) is obtained for the 

range of viscosities and flow ratios investigated in this study. The model shows that 

there is a good correlation for viscosities from 1.2 to 10.8 mPa s, with the mean relative 

error being 4.8%. For the range of viscosities higher than 10.8 mPa s, the correlation 

does not predict the experimental results with the same accuracy (22% error) due to the 

very small range of Ql/Qg for higher viscosities. 

 

𝐷𝑏
𝐷𝑐ℎ

⁄ = (−0.25𝜇 + 0.09)
𝑄𝑙

𝑄𝑔
⁄ + (0.058𝜇 + 1.14)       Eq (4.1) 
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Figure 4. 6: Comparison between the experimental data and predictive 

values. 

In Figure 4.6, the experimental values for Db/Dch are plotted against the predictive 

values for 1.3 ≤ µ ≤ 10.8 mPa s, and the proximity of the experimental data to the parity 

line suggests that the experimental data and the predictive model are in agreement. 

4.2.5 Effect of capillary size on bubble diameter  

Previous studies of droplet and bubble formation have been conducted mainly in 

rectangular cross-section T-junctions (Garstecki et al. 2006; Thorsen et al. 2001). In 

this study, the T-junction was created with circular cross-section capillary tubing. 

Computational and theoretical studies favour round channels in which only two-

dimensional, i.e. axisymmetric, solutions are required. The dominance of surface 

tension ensures that fluid–fluid interfaces maintain smooth curvatures and conform 

poorly to the sharp microchannel corners. In conventional T-junction devices, bubble 

and droplet formation is highly influenced by the geometry of the channels. 

Unlike co flowing and flow focusing devices where it is possible to obtain 

bubbles/droplets whose size is significantly smaller than the characteristic geometric 

length, bubble size produced by cross flowing techniques (T-junction device) is in the 
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order of the characteristic width of the channel. This is due to the fact that the emerging 

bubble/droplet has to fill the junction in order for the breakup to occur. In this study, 

the geometrical shape of the junction is different from that in rectangular cross section 

T-junction devices. The scaling model proposed by Garstecki et al. (2006) suggested 

that the bubble size is dependent on the width of the junction. In this study, the 

geometrical shape of the junction is different from that in rectangular cross-section T-

junction devices.  

 

Therefore the study was conducted to investigate whether the capillary diameter has 

any effect on the bubble size by varying all the three capillary tubing inner diameter 

sizes of 100, 150, and 200 µm. Each set of the experiment was performed twice; initially 

with constant liquid viscosity of 15.2 mPa s and later with solution viscosity of 60 mPa 

s.  Figure 4.7 a) and b) displays how the bubble size varied with respect to flow ratio, 

with curves corresponding to each capillary size and all experiments were conducted at 

constant liquid viscosity. Figure 4.7 a) and b) fits the results for the experiments at 

constant liquid viscosities of 15.2 and 60 mPa s respectively. It can be observed that by 

increasing the capillary diameter, the bubble size increased and bubble formation 

occurs within a larger range of flow ratio.  

 

This was evident in both graphs and it confirms that capillary size, i.e. the geometrical 

effects of the junction is another crucial factor to consider in bubble formation process. 

As the capillary size decreases, it becomes more difficult to find a stable regime to 

produce microbubbles. The liquid volume flow rates were chosen within a smaller 

range for smaller capillary tubing, while the gas pressure range increases, leading to 

formation of bubbles within a smaller ratio of liquid to gas flow rate. For highly viscous 

solutions the process of bubble formation in smaller capillaries is a challenge, as the 

flow of the liquid phase in smaller capillaries has to overcome capillary forces. 

 

The scaling model proposed by Garstecki et al. (2006) suggested that the bubble size is 

dependent on the width of the junction. The experimental data strongly support the 

hypothesis that the junction geometry also influences the gas column breakup to form 

bubbles.  
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Figure 4. 7:   Dependence of bubble diameter on the flow ratio for different capillary 

diameter at liquid viscosity of a) 15.2 mPa s and b) 60 mPa s. 
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4.2.6 Comparison of experimental data with scaling model 

Garstecki et al. (2006) assumed that the detachment of the neck begins when the 

emerging bubble fills the junction and the resulting bubble size is governed by rate of 

thinning the neck and filling the bubble during detachment. This assumption is 

consistent with observations of slug like bubbles. However in our experiments, 

squeezing is clearly not the only mechanism for breakup of the gas column and 

subsequently formation of bubbles. In some cases, the bubbles are smaller than the 

channel width, and therefore the detachment begins before the bubble has completely 

filled the gap. We suggest, similar to Christopher et al. (Christopher et al., 2008) , that 

the bubble size is determined by the balance of three primary forces that govern the 

breakup process: the capillary force resisting deformation of the interface, the viscous 

stress acting on the emerging bubble, and the squeezing pressure.  

The capillary force arises from the difference in Laplace pressures at the upstream and 

downstream of the emerging bubble multiplied by the surface area of the emerging 

interface, where the viscous force acting to deform the interface is driven from the 

product of viscous stress acting on the emerging bubble and the projected area of the 

emerging interface. In addition, the emerging bubble obstructs the junction as it grows, 

leading to a dramatic increase in the upstream pressure, also known as squeezing 

pressure. 

Once the sum of viscous stress and the squeezing pressure exceed the capillary pressure, 

detachment begins.  During detachment, the rate of thinning of the neck and the rate of 

filling of the bubble increases and additional growth of the bubble occurs. Christopher 

et al. (2008) described the size of droplets at the onset detachment in dimensionless 

terms, where the sum of all the forces is equal zero. 

3(1 )b b Ca         Eq (4.2) 

Where / cb b w , b is the length of the emerging droplet/bubble measured downstream 

of the junction and cw is the width of the continuous phase capillary. Hence the 

capillary number becomes the controlling parameter in the initial size of the droplet 

before detachment. 
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In Figure 4.8, the bubble diameter is plotted as a function of capillary number for three 

different liquid viscosities. The results have similarities to Figure 3 in the paper by 

Garstecki et al. (2006), where the shape and magnitude of the curves are similar and 

support the scaling model presented in Christopher et al. (2008) which shows that the 

bubble diameter depends on both capillary number and the flow ratio. At low capillary 

number both models are identical. As capillary number increases, the bubble volume 

decreases. Bubble formation in the capillary embedded T-junction, described in this 

work, mainly occurs when the capillary number is higher than the critical capillary 

number Ca~0.015 previously mentioned by De Menech et al. (2008) and therefore the 

effect of viscosity on the size of microbubbles is evident. In addition, viscosity plays a 

major role in the range of operating flow ratios under which bubble formation occurs. 

As shown in Figure 4.8, for each solution viscosity the bubbles in this T-junction 

device are being produced at different ranges of liquid to gas flow ratio. It was observed 

that the viscosity of solution plays a major role in determination of the region of liquid 

to gas flow ratio that bubble formation occurs for a given solution viscosity. In contrast 

with previous studies that either focus on the squeezing regime (where bubble size is 

dependent on flow rate ratio) or the dripping regime (where bubble size depends on 

capillary number), this experimental study shows that bubble size depends on both 

capillary number and flow ratio. On the other hand, due to the different geometry of the 

system, where bubble formation occurs in a cylindrical cavity as oppose to the confined 

geometry of the junction investigated by previous studies, bubble size is majorly 

influenced by the geometrical effects of the junction. Additionally, it appears that 

factors such as liquid viscosity and the microchannel geometry have not been 

adequately accounted for in the scaling laws reported to date and therefore a modified 

scaling law is required to describe the behaviour of the process and predict bubble size 

taking all these parameters in to account. 
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Figure 4. 8:   Diameter of bubbles produced in the T-junction as a function of liquid 

capillary number for three different viscosities (see legend in the figure) and constant 

gas pressure of 60 kPa.  

4.2.7 Effect of the vertical gap size (Cavity) on bubble size 

In order to investigate the effect of the change of the gap size (shown in Figure 3.5) on 

the bubble formation, three different gap sizes were chosen for the experiments. The 

effect of increasing the gap size on bubble formation and eventually bubble size was 

studied. As illustrated in micrographs in Figure 4.9, bubble size increases by increasing 

the gap size from 50 to 220 µm. In this set of images, a1 and a2 are images 

corresponding to a 50 µm gap size shown in Figure 4.10. In addition b1 and b2 

correspond to 220 µm gap size. It is evident in both images and the graphs that bubble 

size for the smallest and largest bubbles produced for a given flow rate and viscosity 

increases significantly by increasing the gap size. Also it is clear that for the same liquid 

flow rate and viscosity, bubble formation occurs within a higher range of gas pressure 

for the larger gap size.  
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Figure 4. 9: Micrograph images of bubbles produced with two different junction gap 

sizes of a) 50µm and b) 220µm. 

 

However in a region where bubbles are formed at a constant gas pressure, bubbles 

formed are smaller for the larger gap size, indicated by boxes drawn on the graphs in 

Figure 4.10. 

As well as images and graphs that show bubble formation is influenced by the variation 

in size of the gap between the aligned capillaries, Figure 4.11 illustrates the time 

evolution of bubble formation with the gap sizes of a) 50 and b) 220 µm. Images in 

Figure 4.11 reveal that at a fixed liquid flow rate of 0.04 ml/min and viscosity of 60 

mPa s, the increase in the gap size increases in the bubble size while it leads to the 

expansion time decreasing and a longer bubble /slug being produced. As shown in 

Figure 4.11a, b, the time taken for the bubble to form from growth to pinch off is lower 

(0.165 s) for the smaller gap size (50 µm), whereas, for the larger gap size (200 µm) 

the overall time for bubble formation is t= 0.024 s. 
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Figure 4. 10: Graph representing variation of bubble size with gas inlet pressure at 

three different gap sizes of 50, 200 and 220µm. 

 

Figure 4. 11: High speed camera images of time evolution of the bubble formation 
in the capillary embedded T-junction, for two different junction gap sizes of a) 50 
and b) 220µm at constant liquid flow rate (0.04 ml/min) and viscosity(60 mPa s). 
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4.2.8 Bubble entrapment inside channels   

In the process of bubble formation in the capillary embedded T-junction, it has been 

noted that bubbles become trapped in the junction, where the two phases meet, and 

influence the flow inside the capillaries and further affect the size of bubbles produced 

(Figure 4.12). This could be caused by a number of issues. 

 

 

Figure 4. 12: Existence of trapped bubbles in the junction cavity. 

 

First, the capillary tubing inserted in the T-junction block does not fit perfectly within 

the walls and small gaps appear either to be filled with gas or excess liquid. In addition, 

the geometrical irregularities in the transversal cut of the tubes or the presence of some 

debris in the gap are believed to have led to the occurrence of trapped bubbles in the 

junction. Finally, a sudden rise in gas pressure due to restrictions of the gas regulator 

could cause this effect. In order to ensure that the measurements taken are accurate, 

every time any reading is done, one has to check there are no bubbles trapped in the 

junction by using the real time images from the high speed camera. 

Summary  

 
The mechanism of bubble formation in a capillary embedded T-junction was 

investigated in detail and the influence of different variables, in particular flow rate 

ratio and viscosity on the bubble size was determined. While the bubble size decreases 

with increasing liquid flow rate and viscosity, the increase in gas inlet pressure 

proportionally increases the bubble size. Furthermore, there is a limit to the extent to 



 
Chapter 4: Results and discussion 

116 
 

which bubble size can be reduced by increasing viscosity and/or flow ratio for a given 

capillary diameter and gap size. Therefore, a fixed size capillary diameter was chosen 

for all sets of experiments that involved the investigation of the effect of parameters 

other than the capillary size. Further experiments were carried out to investigate the 

effect of capillary size in conjunction with the solution viscosity and liquid/gas flow 

ratio, to further reduce the bubble size. The results presented in this study facilitate the 

selection of solutions based on their physical properties and flow parameters as well as 

the capillary size for the controlled formation of highly monodisperse bubbles in the 

capillary embedded T-junction device. Factors such as liquid viscosity and the 

microchannel geometry have not been adequately accounted for in the scaling laws 

reported to date and therefore a modified scaling law is required to describe the 

behaviour of the process and predict bubble size taking all these parameters in to 

account. In addition, there is a possibility of presence of swirl effect on the junction 

where the two phases meet.   From the findings in this work, it can be concluded that, 

in the bubble formation regime, by increasing the viscosity and decreasing the capillary 

size, producing smaller bubble size could eventually become achievable; bearing in 

mind the restrictions of the experimental setup (i.e. range of liquid flow rate and gas 

pressure and geometry).  
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4.3  Preparation of microbubbles with T-junction integrated with 
electrohydrodynamic focusing  

4.3.1  Introduction 

While previously the two standard techniques (microfluidics and EHD) have been 

separately used to produce microbubbles, to the best of author’s knowledge, the 

combination of these two methods to form bubbles has not been reported in the 

literature. The capillary embedded T-junction device described in this work is different 

from the conventional microfluidic chips manufactured through much more expensive 

methods (i. e. lithography). This device provides a simple but yet robust production of 

highly monodisperse microbubbles without the need of continuous cleaning and 

replacement due to the blockage of channels caused by the material residue.  

Another advantage of this setup is that the channel diameter is generally larger and 

therefore pressure drop in the channel is much lower than smaller diameter channels. 

However, because the channel diameters are large the production of bubbles much 

smaller than the channel diameter is not viable with only  the T-junction device with 

mechanically driven flows. In this work by introducing the electric field directly into 

the bubble breakup region, the flow of the continuous phase is assisted with 

electrohydrodynamic flow and bubbles with almost an order of magnitude smaller than 

the channel diameter were generated.In this work, a microfluidic system with integrated 

electrohydrodynamic focusing with the aim of both reducing bubble size and 

maintaining monodispersity is presented. In addition, the effect of applied voltage, 

solution viscosity and electrical conductivity on the production of microbubbles and 

their characteristics are investigated. 

4.3.2 Influence of electric field on bubble formation  

Reynolds number for the liquid phase was calculated as 7x10-5 ≤ Rel ≤9.3x10-3, for the 

constant liquid flow rate of 0.01 ml/min and range of solution viscosities from 1.3 to 

60 mPa s. When Rel <1 creeping motion or stokes flow occurs and as a result the flow 

is dominated by viscous stresses and pressure gradients and therefore inertial effects 

are negligible. This is due to the fact that the fluid velocities are slow, while the liquid 
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viscosity is reasonably high and the length scale of the flow is very small.  Once the 

flows of the two phases in the junction reach equilibrium, bubbles are formed whose 

size depends upon the balance of capillary force, Laplace pressure and liquid shear 

stress force (Christopher et al., 2008). For these experiments the solution viscosity was 

fixed and the flow rate and the minimum gas pressure required to produce the smallest 

bubble size, for a fixed polydispersity index was determined. 

 

 

Figure 4. 13: High speed camera images of microbubbles at the tip of the outlet at 

applied voltages of 0, 6 and 12 kV. Scale bar is 1.6 mm. 

 

In the absence of an electric field a hemispherical droplet containing microbubbles was 

observed emerging from the tip of the outlet capillary (Figure 4.13a). This shape is due 

to liquid surface tension exceeding the weight of the droplet.  With the application of 

an electrical potential, the air/liquid interface became polarized causing deformation of 

the meniscus containing bubbles (Figure 4.13b). With increasing voltage the droplet 

adopted a conical shape (Figure 4.13c), referred to as a Taylor cone (Taylor, 1964). 

With increasing voltage, the surface tension cannot maintain the liquid inside the 

meniscus, thus a thin jet at the tip of the cone appears, which subsequently  breaks up 

into a spray containing smaller microbubbles. In this set up the formation of a Taylor 

cone and stable jet was initiated at 9 kV. 

As well as the aformentioned effect at the tip of the outlet channel, a tangential electrical 

force is created that leads to faster breakup of the gas column at the junction, therefore 

reducing the detachment time hence leading to the formation of smaller bubbles at a 

faster rate (Jayasinghe and Edirisinghe, 2005).  
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4.3.3 Effect of voltage increment on microbubble size 

Bubble formation under the influence of an electric field was observed in the 

experiments using aqueous glycerol solution with 5, 50, 65 and 75 wt% glycerol 

concentrations in order determine the effect of viscosity. The liquid flow rate was set 

for all the experiments as 0.01 ml/min, while the gas pressure was adjusted to generate 

monodisperse bubbles for each solution. Once the bubbles were formed at the minimum 

gas pressure (Pgmin) for each solution, the applied voltage was increased to 6 kV, where 

the meniscus at the tip of the outlet channel became thinner while the jet diameter was 

reduced and therefore microbubble size decreased. For instance, for the lowest solution 

viscosity (1.3 mPa s) the diameter of microbubbles produced without an electric field 

was 170 μm, which reduced to 120 μm at 6 kV (Figure 4.14). 

 

Figure 4. 14: Optical micrographs of bubbles formed in aqueous glycerol with 5, 50 

and 75 % concentration at applied voltages of 0, 6,9 to 12 kV and a constant liquid 

flow rate of 0.01ml/min. Scale bar is 200 μm. 

 

By increasing the voltage to 9 kV, a cone jet was created at the tip of the outlet channel 

and the size of bubbles reduced further, to 40 μm with polydispersity index (PDI, 

defined as the ratio between the standard deviation and mean diameter in percentage 

(Hettiarachchi et al,. 2007)) of ~1%. At 12 kV voltage, the cone jet broke up into a 

spray of fine liquid threads and bubbles with even smaller diameters ( 30+/-0.95 μm) 
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were produced. This process was repeated for solutions with higher glycerol 

concentration and viscosities of 6, 15 and 36 mPa s and it was shown that increasing 

the voltage also affected bubble size for the highest viscosity solution while the smallest 

microbubble diameter of 25 μm was produced for the solution with 36 mPa s viscosity 

at 12 kV.  

 

 
Figure 4. 15: Optical micrographs of microbubbles from a solution with 75% glycerol 

concentration at constant liquid flow rate of 0.01 ml/min at applied voltages of a) 12, 

b) 15 and c) 21 kV. 

 

Increasing the applied voltage to 15 kV, did not change the bubble size significantly at 

any of the glycerol concentrations. However bubble stability decreased, most likely as 

a result of coalescence due to the higher surface charge. Figure 4.15 shows microscopic 

images of microbubbles produced from 75% glycerol solution at constant liquid flow 

rate and applied voltages of 12-21 kV. It is evident from the images that at 12 and 15 

kV the bubble size was the same (25 μm) and they were near monodisperse. However, 

increasing the voltage supply to 21 kV led to a much broader size distribution. This 

suggests that the optimum voltage for this system is 12 kV and increasing the voltage 

above this rate only reduces microbubble stability and monodispersity. 

 

A series of graphs were plotted (Figure 4.16) to show the variation in microbubble size 

with increasing voltage. In all cases, as the voltage increased, bubble diameter 

decreased; however a dramatic decrease in bubble diameter was observed between 6-9 

kV for the solution with lowest viscosity that was not seen in the other solutions. This 

is most likely to be due to the fact that the solution with 5% glycerol concentration has 

a much higher dielectric constant (Behrends et al., 2006) and therefore the effect of 

applied voltage on bubble diameter is greater. The scaling law proposed by Pantano et 

al. (Pantano et al., 1994) predicts that the diameter of droplets produced by 
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electrospraying is inversely proportional to the liquid dielectric constant.  

 

 

 

Figure 4.  16: a) Graph showing variation of bubble diameter with applied voltage for 

solution viscosities of 1.3, 6, 15 and 36 mPa s, and b) 3D plot of dimensionless bubble 

diameter with respect to voltage and capillary number increment. 

 

In order to investigate the effect of viscosity, surface tension, flow rate ratio and applied 

voltage supply in parallel, a 3D plot of the variation of ratio of bubble diameter to 

channel width was plotted as shown in Figure 4.16b. It can be observed that for each 

value of the capillary number, with increasing voltage the bubble to channel diameter 

ratio decreased dramatically between 0 and 9 kV. The reduction in this value is less 

significant, however at larger voltages. According to Ku and Kim (Ku and Kim, 2002) 

for highly conducting and viscous liquids, the size of droplets electrosprayed from a 

Taylor cone are found to be relatively insensitive to the applied voltage and as long as 

the corona discharge density is not too high, monodisperse droplets are produced. 

Corona discharge is caused by the ionization of the surrounding medium that occurs 

once the electric field strength exceeds a certain level (the corona threshold voltage) 
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while conditions are inadequate for a complete electrical breakdown. Above this 

voltage, there is a limited region, in which current increases proportionately with 

voltage according to Ohm’s law. After this region, the current increases more rapidly, 

leading to complete breakdown and arcing or sparking at a point called the breakdown 

potential. 

It is also shown in Figure 4.16 b that with increasing capillary number, there is a 

smaller reduction in bubble size for the same increase in applied voltage.  This 

suggested that there other parameters such as solution electrical conductivity and 

relative permittivity as mentioned previously influence the bubble formation process. 

 

 

Figure 4. 17: Graph showing variation of bubble diameter with applied voltage for 

solution with constant viscosity of 6 mPa s with and without NaCl solution added. (PDI 

< 1%, Error bars indicating the experimental errors.) 
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To investigate this further, NaCl was added to the solution keeping the concentration 

of glycerol constant at 50% in order to increase the electrical conductivity while 

keeping the other solution parameters constant. The results are plotted in Figure 4.17 

and as predicted, by increasing the electrical conductivity of the solution while keeping 

the viscosity and flow ratio constant, the influence of the voltage supply on microbubble 

size increases. This explains the dramatic decrease in bubble diameter in the graph 

representing the solution with lowest concentration of glycerol compared with the other 

graphs in Figure 4.16. The electrical conductivity of the liquid phase is one of the key 

parameters in determining and predicting the bubble diameter. 

4.3.4 Mapping of the dimensionless bubble diameter with applied voltage and 
liquid physical parameters 

In Figure 4.18, the non-dimensional bubble diameter (Db/Dch) is plotted as a function 

of the applied voltage for four solutions of different concentration of glycerol. As 

mentioned previously, the results are in agreement with the theory of 

electrohydrodynamic instability in microchannels. It can be seen that in all cases the 

non-dimensional bubble diameter decreases by increasing voltage, while it reaches a 

plateau at voltages higher than 12 kV.  When low voltage is applied, the electric field 

assists with the compression of the neck of the dispersed phase, resulting approximately 

linear decrease in bubble size for voltages ≤ 12 kV. By further increasing the applied 

voltage, the width of the neck during the breakup reduces. However, similar to 

observations by Kim et al. (Kim et al., 2007) and Link et al. (Link et al., 2006) jetting 

appears at high voltage and electric field barely has any effect on the bubble size. While 

at low voltage supplies, hydrodynamic effect is the dominant factor in bubble size, 

formation of Taylor cone is disrupted at high voltages due to the larger electric field 

from the electrospraying regime. Hence, the production of monodispersed bubbles is 

aborted at voltages more than 20 kV.  For each case, a correlation that represents this 

asymptotical decrease is also plotted. According to the curves obtained, it can be 

observed that the solutions of higher concentration of glycerol (i.e. higher viscosity) 

follow a similar trend, whilst in the case for the solution with the lowest viscosity the 

trend is slightly changed due to the fact that the electrical conductivity is higher than 

the other solutions with higher concentration of glycerol and analogous values for 
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electrical conductivity. For the range of Ca numbers investigated, a general predictive 

model is obtained where the normalized bubble diameter can be estimated as the 

following: 

𝐷𝑏

𝐷𝑐ℎ
= (−11.8 𝐶𝑎 + 0.37) + (−0.98𝐶𝑎 + 0.5)𝑒(6.8𝐶𝑎−0.2)𝑉   Eq (4.3) 

 

 

Fig. 4. 18: Experimental results versus correlations and predictive model for bubble 

dimensionless diameter for solution with viscosity of a) 1.3, b) 6, c) 15 and d) 36 mPa 

s. (PDI < 1% , Error bars indicating the experimental errors.) 

 

This model can predict the dimensionless bubble size for a range of capillary numbers 

0.001≤ Ca ≤ 0.04, with approximately 8% error. In Figure 4.19, the experimental 

values for Db/Dch are plotted against the predictive values and the proximity of the 

experimental data to the parity line suggests that the predictive model is in agreement 

with the experimental data especially for the obtained values of Db/Dch<0.6.  This 

model does not take into account the geometrical aspects of the channel (i.e. the gap 

between the capillaries), as these parameters also affect the bubble size. 
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Figure 4. 19: Graph representing experimental data for dimensionless bubble 

diameter against predictive values. 

 

Figure 4.  20: Chart showing variation in the number of bubbles generated with 

applied voltage for three different solution viscosities of 1.3, 6 and 36 mPa s over a 

fixed time period of 5 seconds and collection area of 1.5 mm2. 



 
Chapter 4: Results and discussion 

126 
 

4.3.5 Influence of electric field on bubble uniformity and production yield 

Microbubbles produced with voltage supply ≤ 15 kV were highly monodispersed with 

polydispersity index of ≤ 1%. It was shown that electrohydrodynamic instability 

caused by the applied electric field only increased the velocity of the suspension flow 

due to an increase in the exerted body force and had little effect on the uniformity of 

the bubbles produced. Figure 4.20 depicts the number of bubbles produced with and 

without the presences of an electric field for variation of solutions viscosities over a 

fixed time period of 5s and collection area of 1.5 mm2. It is shown that by increasing 

the voltage not only the bubbles become smaller but also the production rate increases. 

In addition, from the data obtained from the high speed camera images, for a given 

liquid flow rate of 0.01 ml/min, the number of bubbles in every 1 ml of the collected 

sample is between 1.9 x 106 and 5.98 x 106 depending on the bubble size. While this 

work is demonstrating the principle of reduction in bubble size with the electrically 

assisted microfluidic flow, the scaling up in the production of monodisperse bubble was 

not the main focus in this study. 

4.3.6 Comparison with other bubble formation techniques 

The three common methods of producing microbubbles are sonication, 

Electrohydrodynamic (EHD) bubbling and microfluidics. Amongst these techniques, 

CEHD and sonication produce microbubbles with diameters smaller than 10 µm with a 

very wide size distribution of ~ 30-40%. While the production rate is very high with 

the sonication method, the number of microbubble formed using the EHD technique 

proposed by Farook et al. (Farook et al., 2007) is smaller than that obtained using the 

sonication method. Microfluidics, on the other hand have the potential to produce 

uniformly size microbubbles with PDI < 2%. In order to produce microbubbles suitable 

for biomedical applications, it is required to use microchannels with smaller diameter 

< 20 µm, hence these small channels can easily get blocked by the material residue. 

Also it is very difficult to pump highly viscous liquid through these channels due to the 

higher pressure drop. Hettiarachchi et al. (Hettiarachchi et al., 2007) have used a rather 

complicated flow focusing geometry and bubbles were generated through jetting mode 

rather than bubble dripping mode that is harder to control as the increase in the flow 

rate leads to decrease in the distance of the bubbles formed and therefore causes the 
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bubbles to coalesce inside the channels prior to collection. Whilst they used high flow 

rates and gas pressures (e. i. Ql> 1μl/s Pg> 10 psi) to increase the production rate, the 

polydispersity of microbubbles were > 50 %.  Furthermore, Kendall et al. (Kendall et 

al., 2012) used multi array microfluidic flow focusing geometry containing up to eight 

channels to scale up the production of bubbles. They have reported the highest 

production at 1.34 x 105 Hz (bubbles/second) with bubble size ranging between 18.6-

22.3μm and polydispersity index < 9%. In this T-junction set-up bubbles were produced 

with 1000 Hz to achieve the highest production rate of a much lower liquid flow rate 

compared to the studies mentioned above. A method has been proposed to use a simple 

T-junction setup with larger channels and the bubble size was successfully reduced 

within the same channels by using an external electric field while the polydispersity 

index is < 1% as well as increasing the production rate. 

4.3.7 Applications impacted on by the reduction of microbubble size using 
electric field 

Size of microbubbles is an important parameter governing the interfacial area between 

the gas and liquid phases; smaller microbubble size generally implies a larger interfacial 

area. The size of microbubbles also influences many important properties of 

microbubbles (e.g., shrinkage and floatation). There are various applications from 

biomedical to food to water treatment that require microbubbles with smaller size range. 

For instance, microbubble destruction has been proposed as an innovative method for 

non-invasive delivering of drugs and genes to different tissues. Conventional flotation 

assisted with microbubbles (30-100 μm) finds application in the recovery of fine 

mineral particles and flotation with these fine bubbles is being used as a solid/liquid 

separation to remove pollutants. Recent bench studies of flotation of different minerals; 

with injection of microbubbles (40 µm, mean diameter) to lab cells (in addition to the 

cell generated coarse bubbles) have improved separation parameters when compared to 

the mill standard (Yalcin et al., 2002). Microbubble having boost utilization in 

formation of biofuel. Thus microbubbles having various applications in various fields. 

Mixture of ozone nanobubbles with oxygen microbubbles can be used as a water 

sterilizer. Water in which ozone bubbles are combined with oxygen microbubbles is 

more effective in fighting bacteria than conventional ozone water (Kukizaki and Goto, 

2006). In this work by introducing the external electric field, a wider range of 
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microbubble size can be produced with this modification which enables a larger control 

over the generation of bubbles for a variety of applications mentioned above. 

 

Summary  

 
Monodisperse microbubbles were successfully produced using an integrated 

microfluidic and electrohydrodynamic device. A systematic investigation of bubble 

formation at different applied voltages and with different liquid properties was 

performed. It was shown that bubbles of much smaller diameter than that of the 

microchannel (for the smallest bubble size that was produced with almost an order of 

magnitude smaller than the channel diameter) could be produced with a polydispersity 

index close to 1%. A critical voltage of 12 kV was determined above which no further 

reduction in bubble size was achieved, and this limit was not affected by increasing the 

solution viscosity or electrical conductivity within the ranges used in this study. The 

observed dependence of bubble size on applied voltage is consistent with 

electrohydrodynamic theory. In addition to reducing the bubble size, applying an 

electrical potential difference increased the rate at which bubbles were produced. 
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4.4  The effect of surfactant type and concentration on the Size and 
stability of microbubbles in the T-junction device 

4.4.1 Introduction 

The composition and physiochemical properties of the surfactant used can greatly affect 

the formation and stabilization of microbubbles. One of the most important factors to 

consider with respect to surfactant-containing solutions is the critical micelle 

concentration (CMC) (Xu et al., 2009), at which the surfactant aggregates and form 

micelles while the properties of the solution dramatically change at this concentration. 

It is generally known that in order to achieve the maximum effect of the surfactant, 

higher concentrations than the CMC are required. Therefore, in this study experimental 

investigations on the influence of three different types of commonly used surfactants 

(cationic, anionic and nonionic surfactants) at concentrations much higher than CMC 

for the effect of the chain lengths and molecular structure of surfactants on the 

properties of the liquid phase, mainly the contact angle and capillary number, are 

presented. In this work a detailed analysis of variation of the concentration and type of 

surfactants on bubble formation and size in a capillary embedded T-junction device was 

carried out. Moreover, the stability of microbubbles produced for each type and 

concentration are examined. This study was conducted to select a surfactant type and 

concentration to achieve the best results in terms of bubble size and stability.  

4.4.2 Effect of surfactant concentration on the properties of the liquid phase 

Three types of differently charged surfactants with three different concentrations of 2, 

5 and 10 wt % were chosen for this study. Both PEG 40 and Tween 40 were chosen as 

nonionic type. The molecular structure of these two surfactants contain 

polyoxyethylene units that decrease the hydrophobic character of the surfactant, and as 

a results they appear to adsorb more efficiently onto hydrophobic surfaces than onto 

hydrophilic ones. SDS was selected as the anionic surfactant and CTAB for the cationic 

category (Rosen and Kunjappu, 2012) . All surfactants have both hydrophilic and 

hydrophobic chains. Both nonionic surfactants Tween 40 and PEG 40 have relatively 

large hydrophilic groups, while CTAB has the larger hydrophobic chain (Tong et al., 

2000). On the other hand, for higher concentrations of CTAB and SDS the preparation 
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of the solutions required heating the solutions at 70 °C for approximately 120 s prior to 

the experiments. From the data in Table 3.4, it is clear that the concentration and type 

of the surfactant have an impact on the surface tension and contact angle of the aqueous 

glycerol solution. All the surfactants selected for this study are water soluble. The 

surfactants have different abilities in lowering the surface tension of the aqueous phase. 

The interfacial tension of the solutions containing nonionic surfactants Tween 40 and 

PEG 40 decreased dramatically to 41.6 and 46.3 mN/m, respectively, at 2 wt % 

concentration. However, increasing the concentration of these surfactants further to 5 

and 10 wt % had a little effect on the surface tension but increased the viscosity of the 

solutions. This suggests that the concentrations used in this study were higher than the 

critical micelle concentration (CMC). This trend also occurred for the case of SDS and 

CTAB, although the surface tension of the solution decreased more with the addition 

of the latter. As demonstrated in Table 3.4, the surface tension for 2 wt % PEG 40 has 

the largest value, while the solution with 10 wt % CTAB concentration has the lowest 

interfacial tension. For the case of nonionic surfactants, by increasing the concentration, 

the contact angle decreased. Otherwise, the increase in concentration of cationic 

surfactant CTAB and anionic SDS led to increase in the contact angle. In 

polyoxyethylene nonionic surfactants, increasing the number of oxyethylene groups 

(C2H4O)n reduces the efficiency of adsorption of the surfactant on the surface of most 

materials because the cross sectional area of the molecule at the interface increases 

(Rosen and Kunjappu, 2012). Since the number of oxyethylene groups in PEG 40 is 

higher than Tween 40 (Table 3.1), the hydrophobic character of the surfactant is 

decreased, leading to higher adsorption of surfactant molecules on the channel 

hydrophobic surface and therefore at all concentrations of surfactants the contact angle 

is lower compared with PEG 40. At a constant 2 wt % concentration, solutions with 

both nonionic surfactants (Tween 40 and PEG 40) and SDS have similar contact angles 

which were all higher than CTAB. Lower contact angle of CTAB results in the 

reduction of the liquid film thickness at the three phase contact line and therefore 

formation of bubbles with larger diameter is anticipated for these surfactants. While at 

10 wt % concentration, the solution containing PEG 40 has the lowest contact angle, 

while the other three surfactants have similar contact angels.  At higher concentrations 

of well above the CMC (5 and 10 wt %), the surfactant molecules aggregate and form 

micelles in the bulk (Xu et al., 2006b). 
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Figure 4. 21: The effect of surfactant concentration on bubble size and gas pressure 

range where bubble formation is achievable for a) PEG 40 and b) Tween 40, all of 

the microbubbles produced with this setup were highly monodispersed with 

polydispersity index < 2 %. 
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4.4.3 Effect of surfactant concentration on bubble size 

To investigate the effect of surfactant concentration on microbubble size, three 

concentrations of the solutions with nonioinic surfactants PEG 40 and Tween 40 were 

chosen. The liquid flow rate was kept constant at 200 μl/min for all experiments to 

study the effect of capillary number in conjunction with gas pressure on the given 

concentration of surfactant in the solution, except for the experiment with 10 wt% 

Tween 40 where this parameter was increased to 250 μl/min.  As indicated in Figure 

4.21, bubble formation occurred within a larger range of gas pressures for the highest 

concentrations for both cases of PEG 40 and Tween 40. In order to produce the same 

size bubble with diameter of 250 μm (Figure 4.21a), larger gas pressure was required 

for the solution with the highest concentration of PEG 40 (10 wt %). From the measured 

capillary numbers shown in Table 3.6, it can be suggested that by increasing the 

capillary number, higher gas pressure is required to produce bubbles. On the other hand, 

for a given gas pressure of  100 kPa (Figure 4.21b), where bubble formation occurred 

for all cases of Tween 40 concentrations, the solution with the lowest concentration 

generated larger bubble size. As anticipated, the decrease in the bubble size due to 

increase in capillary number is mainly related to the increase in viscosity of the solution 

rather than the small variation in the surface tension as a result of the increase in 

surfactant concentration. It was shown that by increasing the concentration of both 

surfactants at values higher than the CMC, the bubble size is generally affected by the 

viscosity changes in the solutions. 

4.4.4 Influence of surfactant type on the bubble formation time 

In this section, the time taken from the gas column entering the exit channel and the 

reduction of the neck until the breakup of the formed bubble as well as the effect of the 

surfactant type on the formation time were studied. In order to study the effect of 

surfactant type on the formation of microbubbles in the capillary embedded T-junction 

device, gas column breakup and bubble formation was visualized  through a Photron 

Ultima APX camera with 2000 fps and 3 s recording time. The behaviour of the two 

phase flow was recorded for the solutions containing 2 wt % of the surfactants, as well 

as keeping the liquid flow rate constant at 200 μl/min. 
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The gas pressure of ~ 60 kPa chosen for this study was within the range of bubble 

production for all solutions, and therefore the only parameters that changed by varying 

the surfactant type were the capillary number  and the contact angle. Once the bubbles 

were produced, their diameters were measured with an optical microscope. Figure 4.22 

shows the high speed camera frames illustrating the time evolution of bubble breakup 

for each surfactant. From the images obtained, it is clear that whilst the operating 

conditions of the T-junction set-up were kept constant throughout the experiments, the 

solution containing CTAB produced the largest bubble size (290 μm) and the solution 

with PEG 40 formed the smallest bubbles with 170 μm diameter. The images show that 

bubbles produced with Tween 40 had a spherical shape and the time taken for the neck 

to decrease and finally pinch off was longer (8.5 ms) compared to the other surfactants. 

The bubble size increased with the other nonionic surfactant Tween 40. It is interesting 

to notice that for both cases of anionic and cationic surfactants, SDS and CTAB 

respectively, the bubble size increased into a plug like shape while the pinch off time 

was reduced. Bubble breakup occurred in a quicker rate of 2.5 ms for the solution 

containing CTAB, indicating that for the set operating parameters of liquid flow rate of 

200 μl/min and gas pressure of 60 kPa, the number of monodisperse bubbles produced 

were 1.2 x 105 in every 1 ml of the collected sample. Since the microchannel walls are 

made from FEP material, their surface is hydrophobic. The interaction between the 

solution containing surfactant molecules and the microchannel walls is the key factor 

that can affect the hydrophilicity of the surface(Kukizaki and Baba, 2008). Both 

nonionic surfactants PEG 40 and Tween 40 have relatively large hydrophilic chain 

compared to the large hydrophobic groups in SDS and CTAB. Due to the larger 

hydrophilic chain of the nonionic surfactants, the adsorption of the surfactant molecules 

at the contact line between the three phases increase and therefore the thickness of the 

liquid film at this point increases, which consequently increases the time of the bubble 

formation. The measured surface tension of 38 mN/m for the solution containing CTAB 

was lower than the SDS, PEG 40 and Tween 40 solution, as listed in Table 3.4. This 

leads to larger surface activity of CTAB compared with other surfactants. On the other 

hand, the positive CTAB molecules (cations) are attracted to the negatively charged 

microchannel surface that causes the adsorption of the surfactant molecules to the 

channel surface and therefore decreases the hydrophilicity of the channel walls. These 

effects consequently lead to change in dynamic contact angle and wettability of the 

channel surface that are also important factors to consider in bubble formation process. 
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Dynamic contact angle would affect the movement of the three phase contact line at the 

bubble breakup point and therefore it influences the shape of the gas-liquid interface as 

well as the amount of gas entering the mixing channel. While measuring the dynamic 

contact angle in the microfluidic channel is challenging, the measured values for the 

static contact angle can give an indication of the effect that each surfactant has on the 

wettability of the channel wall surface. The presence of surfactants also creates 

interfacial gradients (Tong et al., 2000).  The interfacial gradients can cause interruption 

in the flow regime and therefore influence the formation of bubbles. 

4.4.5 Effect of surfactant type on bubble size 

For this study, all surfactants were investigated with concentrations of 2 and 5 wt %. 

Bubble size was measured for each surfactant and concentration and plots of bubble 

diameter for the range of gas pressures that bubble formation was possible are presented 

in Figure 4.23. For a given gas pressure at both concentrations, the bubbles produced 

with the PEG 40 solution were generally the smallest, followed by the solution 

containing Tween 40. It was shown that for a given gas pressure and surfactant 

concentration smaller microbubbles were produced at higher capillary numbers for 

nonionic surfactants followed by anionic surfactant SDS, while cationic surfactant 

CTAB produced the largest bubbles due to lower capillary numbers. At 2 wt % 

concentration of Tween 40 and PEG 40, the static contact angles with respect to the 

channel wall surface were approximately similar (58° and 60°), however bubble size as 

shown in Figure 4.23 a) is smaller for PEG 40 and this is due to the effect of the lower 

capillary number of 2 wt % PEG 40 solution. On the other hand, the values of the 

contact angle for 5 wt% concentration of Tween 40 and PEG 40 are different but smaller 

bubbles were produced when the capillary number was smaller for Tween 40, as shown 

in Figure 4.23 b). In addition, at 5 wt % concentration of PEG 40 and SDS where the 

capillary numbers were the same (0.0019), while the viscosity is approximately similar, 

PEG 40 produced smaller bubbles. The measured contact angle for PEG 40 (49°) is 

larger than SDS (59°).This indicates that the factor affecting the bubble formation and 

size is the wettability of the channel by the surfactant molecules.   
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Figure 4. 22: High speed camera images of the bubble formation time for a) CTAB, 

b) SDS, c) Tween 40 and d) PEG 40, scale bar is 200 μm. 
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Figure 4. 23: The effect of surfactant type on microbubble size for a) 2wt % 

concentration and b) 5wt % concentration, all bubbles were monodispersed with 

polydispersity index < 2 %. 
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4.4.6 Stability of microbubbles  

The stability of bubbles/foams is governed by the balance between the roles of surface 

tension, surface activity and adsorption kinetics (Beneventi et al., 2001). The shorter 

the length of the hydrophobic chain of the surfactant molecule, the adsorption rate 

becomes faster. On the other hand, larger hydrophobic chains are slower in reaching 

the fresh surface and therefore the decrease in surface tension may not necessarily be 

sufficient for bubble stability.  

 

Figure 4. 24: Micrographic images showing the stability of 5 wt % concentration of 

a) Tween 40, b) PEG 40, c) SDS and d) CTAB. 
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Also Microbubble size distribution was measured as a function of time via optical 

microscopy. 100 microbubbles from each sample collected on the glass slides ( 2 

samples for each surfactant) were studied and measured every 5 mins for 2 h and 

additionally every hour to 5 h and consequently 24, 48 and 72 h and 7 to 150 days. 

Generally, microbubbles produced with both nonionic surfactants PEG 40 and Tween 

40 were the most stable for all concentrations studied in this report. For the purpose of 

comparison, 5 wt % concentration of all surfactants were selected. As shown in Figure 

4.24, microbubbles produced with SDS were the least stable, where over the course of 

30 minutes at the ambient temperature and pressure, the size distribution of the bubbles 

broaden greatly and bubble coalescence occurred until they burst and disappeared. This 

is due to significant Ostwald ripening affected by the surfactant molecule adsorption on 

the bubble surface.  The dynamic interfacial behaviour is an important factor to consider 

if the rate of the transport of surfactant molecules between the bulk liquid and the 

interface by way of convective flow and diffusion is slower than surface expansion and 

breakup of bubbles.  Furthermore, when the surface monolayer at the interface is closely 

packed, the diffusion of the encapsulated gas into the surrounding is limited and 

therefore bubbles become more stable (Atta et al., 2004, Stride, 2008). 

Although, SDS and CTAB solutions have lower surface tension than the other 

surfactants, but they both produced the least stable bubbles in this study, with bubbles 

produced lasting for only 30 and 90 mins, for SDS and CTAB, respectively. The 

electrostatic repulsion between the ions of both cationic and anionic surfactants head 

group on the surface of adjacent bubbles lead to instability of bubbles produced with 

these surfactants. While CTAB has a longer hydrophobic chain, bubbles were more 

stable than SDS, which implies that, in this particular case, the higher surface activity 

and surface modulus of the CTAB were more important in the stability of CTAB 

bubbles rather than the slower diffusion rate. 

On the other hand, the most stable bubbles were produced with the solution containing 

PEG 40, due to steric stabilization by the nonionic surfactant (Napper, 1977) at the 

adjacent bubbles. For the case of both PEG 40 and Tween 40, the bubbles had 

undergone a reduction in the radius under the influence of interfacial tension and the 

gas concentration gradient with respect to the surroundings. Bubbles produced with 

PEG 40 surfactant were the most stable in this study, surviving 150 days of this 

experimental study.   
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Figure 4. 25: Bubble dimensionless diameter stability profile for a) PEG 40 b) Tween 

40. 
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Having confirmed that microbubbles are produced with PEG 40 and Tween 40 

surfactants were the most stable, the variation of the mean diameter and standard 

deviation of bubbles with time for sample of 100 bubbles collected were studied. As 

shown in Figure 4.25, the diameter of bubbles produced with Tween 40 decreased 

linearly at the same rate for a period of 72 hours from the collection time until they all 

disappeared. However, for the case of PEG 40, after a certain period of time (7 days) 

the rate of bubble shrinkage became negligible. Since the diameter of all bubbles 

decreased at the same rate, they were still monodispersed. Monodisperesed 

microbubbles can greatly reduce Ostwald ripening by reducing the effective Laplace 

pressure difference due to the uniformity in bubble size. During the measurements it 

was noted that the area where the measurement is taken is crucial. As shown in Figure 

4.26, if the sample taken is from the centre of the collection sample, where the bubbles 

are closely packed, remained more stable. In comparison, the microbubbles in close 

proximity of the edge were affected by the constant flux of gas from the bubbles to the 

liquid and to the surrounding air. The diffusion of gas is influenced by the amount of 

surfactant molecules adsorbed on the bubble surface as well as the amount of solution 

around the microbubbles. The more surfactant molecules are adsorbed, the less mass 

transfer from the bubble surface would occur.  

 

Figure 4. 26: Micrograph images of microbubbles with 2 wt % Tween 40 surfactant 

from a) centre of the collection sample b) edge of the collected sample at i) time of 

collection ii)2.5 hours and iii) 5 hours after collection. 
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Summary  

In this work, an experimental study of the effect of the type and concentration of three 

differently charged surfactants on the formation and stability of microbubbles was 

conducted. For all surfactant types, significant changes in the bubble formation, size 

and stability were observed by increasing the concentration of the surfactant. This can 

be explained by the effect that surfactants have on the dynamics of bubble formation 

by influencing factors such as the channel surface character (i.e. hydrophilicity of 

channel walls) and the dynamic adsorption of surfactant molecules on the liquid-solid 

and liquid-gas interfaces in the microchannels. Both Capillary number and the wetting 

characteristics of the channel wall surface are proven to be the key factors in 

determining the size of microbubbles. Bubble size produced by a T-junction device is 

generally dependent on capillary number but it is shown in this study that for the 

solutions containing different surfactants but same physical properties, at 

approximately similar capillary numbers, the wetting characteristic of the solution is 

the key factor in determining the bubble size. It was noted that microbubbles produced 

with solutions containing nonionic surfactants PEG 40 and Tween 40 were generally 

smaller with 10 wt % Tween 40 producing the smallest bubble size of ~ 50 μm for the 

set operating parameters of the T-junction microfluidics device. This is due to the fact 

that these two surfactants have a larger hydrophilic chain and therefore the wettability 

of the channel wall surface is affected in a different manner. The wettability of the 

channels wall surface consequently effects the dynamic interfacial tension and therefore 

the bubble formation leading to production of smaller bubbles.  

Analysis of the microbubble stability was performed and it was shown that the solution 

containing 5 and 10 wt % PEG produced microbubbles that were highly stable as they 

lasted for 150 days on the collection glass slides within this study’s time frame. On the 

other hand, the microbubbles produced with SDS were the largest and least stable 

amongst all. All the microbubbles produced in this study were highly monodisperse 

with a polydispersity index < 2 %. From the findings in this study, it is suggested that 

for the conditions tested (i. e. in this case hydrophobic FEP channel surface) generally 

nonionic surfactants and particularly PEG 40, that is much cheaper compared to the 

other surfactants studied in this report, produced microbubbles with superior 

monodispersity and stability, while increasing the surfactant concentration did not 

considerably change the microbubble stability. 
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Chapter 5 

5 Production of scaffolds and foams from microbubbles 

 

5.1  Overview 

Methods for producing scaffolds and foams with a predictable narrow size distribution 

are in high demand for a wide range of biomedical and food applications. In this part 

of the work, a microfluidic technique was used to scale up the production of 

microbubbles into formation of foams and consequently by drying the formed foams 

and bubbles into highly uniform pore scaffold structures. The study later advances into 

incorporation of polymeric particles and collagen nanoparticle/fibres on to the porous 

protein structures. In order to achieve these novel structures, a combination of 

microfluidic and EHD techniques were used to initially produce scaffolds from 

microbubbles through the capillary embedded T-junction microfluidic device and then 

either electrospray the nanoparticles or electrospin the nanofibres via the EHD 

technique onto the uniform structures. 
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5.2  BSA Foams and scaffolds from microbubbles 

5.2.1 Introduction 

In addition to the methods mentioned in Chapter 2 of this thesis, the microfluidic 

technique has been used to produces uniformly sized scaffolds. Chiu et al. (2013) 

applied a microfluidic technique to generate gelatine microbubbles and incorporated 

them into scaffold structures in the microchannel. Colosi et al. (2013) used a 

microfluidic foaming technique for the generation of highly monodisperse gas-in-liquid 

poly(vinyl alcohol) (PVA) bubbles as a template for scaffold characterized by an 

ordered and homogeneous porous texture. This part of the work investigates the 

generation of foam and scaffold structures produced in a T-junction device with highly 

uniform pores compared to the methods described previously. 

5.2.2 Formation of foams from bubbles 

In this part of the study, T-junction microfluidic device was used as a tool to produce 

foams from microbubbles. In order to achieve this, 15 wt % BSA in PBS was used to 

investigate the mechanism of formation of foams from microbubbles via this method. 

As previously mentioned in Chapter 4, bubble formation and size is affected by the 

gas pressure for a given liquid flow rate. Therefore for a set liquid flow rate of 0.2 

ml/min, gas pressure was varied from 30-200 kPa. As shown in Figure 5.1 a), 

microbubbles were produced initially at a slower rate while there was also an amount 

of excess liquid at the tip of the channel prior to collection. The excess liquid increased 

the surface activity at the interface of bubbles and reduced the stability, leading to 

decreased production rate and bubbles being unstable before the drying period which 

therefore hindered the process of scaffold formation. This process only occurred at 

lower gas pressures below 90 kPa. Nonetheless, the bubbles produced within this region 

of gas pressures were highly monodisperse. 
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Figure 5. 1: Preparation of BSA scaffolds through a) microbubble formation, b) and 

c) foams from bubbles and d) dried BSA scaffolds. 

 

Increasing the gas pressure led to a change in the mode of bubble formation in the T-

junction from bubble dripping mode to jetting mode, where the amount of gas pressure 

overcome the liquid shear force. In this mode, foams containing microbubbles with 

narrow size distribution are produced (Figure 5.1 b, c), however the polydispersity 

increases when the pressure is higher than 90 kPa. Once the foams were produced, they 

were left to dry at room temperature for 30 mins to form highly porous scaffolds. The 

SEM image in Figure 5.1 d shows that a scaffold structure with uniform pore size of 

80 μm was produced. 

5.2.3 Effect of concentration of BSA on foam stability and scaffold structure 

In order to investigate the effect of protein concentration on the stability of foams and 

the structure of scaffolds generated from these foams, BSA was added to PBS at 
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concentrations shown in Table 5.1. BSA bubbles were produced with the T-junction 

device for a constant liquid flow rate of 0.2 ml/min. Gas pressure was varied between 

80-100 kPa in order to achieve the same bubble size for this part of the study. The 

stability of bubbles was monitored until the protein degenerated and the bubbles were 

dried into a scaffold structure. 

 

Table 5. 1: Properties of BSA foams and scaffolds produced via T-junction 

microfluidics. 

 

Microbubbles produced with the lowest concentration of BSA were the most stable 

before drying and this is due to the lower surface tension of 15 wt % solution compared 

to the other two concentrations. The stability of foams and bubbles is highly dependent 

on the interfacial tension at the interface of the gas and liquid. As shown in Table 5.1 

microbubbles produced with the 20 wt % concentration demonstrated a rather 
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interesting trend of bubbles diffusing uniformly in every other rows and therefore 

leaving a pattern of small and large pores in the subsequent scaffold structure. 

 

Figure 5.2: Micrograph images showing the diffusion and change in bubble size in a 

multi-layer bubble structure of the solution containing 25 wt % BSA at a) t= 0 s, b) 10 

mins, c)15 mins and d) 20 mins, and e) SEM image of scaffold with both small and large 

shrinkage voids. 

Ostwald ripening is driven by differences in the pressure inside larger and smaller 

bubbles as described by the Young–Laplace equation described in Chapter 2. 

Therefore, the solubility of the gas in the liquid just around the bubble is higher than in 

the bulk liquid (Henry's law). This excess of gas will diffuse to areas where the 
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dissolved gas concentration is lower, i.e. to larger bubbles, or to the atmosphere. In a 

multilayer foam structure, the very top layer of closely packed uniform bubbles is in 

contact with the atmosphere. As a result, at the initial stage, the gas inside the 

microbubbles in this layer diffuses to the surrounding air at a faster rate, leading to the 

shrinkage of the top layer microbubbles. 

 

Figure 5.2 shows a remarkable trend in gas diffusion and shrinkage of bubbles on the 

top layer of a double-layered foam structure for the solution containing 25 wt % BSA.  

At the initial stage microbubbles in both layers were uniform in size (220 µm). Since 

the bubbles in the lower layer of the structure were in contact with the excess liquid, 

therefore the mass transfer at the interface of the bubbles only occurred between the gas 

and the liquid. However, for the case of bubbles on the top layer of the structure, the 

gas inside the bubbles not only diffused to the surrounding air, but also into the lower 

layer bubbles. This process led to the simultaneous shrinkage of the top layer bubbles 

and expansion of the lower layer bubbles. After 20 mins, the bubbles on the top layer 

were decreased to 30 µm as they moved towards the gaps between adjacent bubbles 

(grown to 250 µm) in the lower layer. At this time the protein in the solution is 

denatured and the scaffold structure is formed. The initial rate of adsorption of the 

protein molecules at the air-water interface is an important factor affecting the stability 

of the gas bubbles. The adsorption rate of protein molecules is influenced by the 

concentration, type and pH of the protein used. Therefore a further detailed study is 

required to investigate the effect of the concentration of protein in microbubble stability 

and the resulting scaffold structure. 

 

Generally, the increase in the concentration of BSA did not favour either the foam 

stability or the scaffold structure. At 20 wt % concentration, cracks appear on the 

structure of the scaffolds, making them fragile and mechanically unstable for many 

biomedical and tissue engineering applications. Therefore, for the following part of this 

work, 15 wt % was chosen for the experimental investigations. 
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5.3  Preparation of controlled porosity particle/ fibre loaded scaffolds 
using a hybrid micro-fluidic and electrohydrodynamic technique 

 

5.3.1 Introduction 

In this study a novel method is presented that combines microfluidics with EHD 

processing to produce porous BSA scaffolds from microbubble templates with 

functional particles and/or fibres incorporated into the scaffolds’ structure. The porosity 

and the size of the scaffolds’ were controlled by adjusting the processing parameters of 

the microfluidic device. PLGA, PMSQ and collagen particles/fibres were then sprayed 

on them using the EHD technique. These secondary elements in the assembly of 

scaffolds can assist with the mechanical strength of the structure as well as providing a 

suitable route to deliver drugs and growth factors.   

5.3.2 Formation of Bio-products 

The processing conditions were optimised to form uniform and reproducible products 

in micro and nano scale dimensions, as described below: 

5.3.2.1 Bubbles 

The T-junction device was used to obtain the bubbles providing the scaffold template. 

Three different solutions of BSA 15% w/w were used to produce the bubbles: BSA, 

BSA + Tween 40 (90 wt.% / 10 wt.%) and BSA + phospholipid solution (50 wt.% / 50 

wt.%). Air was used in all cases as the gas phase. Following bubble production, the 

most stable ones (assessing them by the number of bubbles bursting in time) before and 

after drying were chosen for the experiments. The bubble diameter was controlled by 

changing the air pressure and liquid flow infused to the T-junction device. The 

processing conditions were optimised to generate monodispersed bubbles for each 

experiment. The working distance between the T-junction needle tip and the collector 

(glass slide) was set to 120 mm. Once the bubbles were collected on glass slides, they 

were left to dry at ambient temperature and pressure.  
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5.3.2.2 Particles 

The EHD process was used to produce polymeric particles. The processing conditions 

(flow rate, voltage) were optimised to form particles in nano and sub-micro scale in 

order to increase their density per mm2 on the bubbles’ surfaces. To achieve this, EHD 

parameters were optimised in order for a stable cone-jet at the EHD needle tip (Xie and 

Wang, 2007, Yarin et al., 2001). 

PLGA: To produce the PLGA particles the voltage was set to 11kV and the flow rate 

of the PLGA solution was fixed at 20 μl/min. The working distance between the needle 

tip and the collector (glass slide) was set to 120 mm and the distance between the EHD 

needle and the T-junction metallic needle tip was set at a distance of 50 mm. The EHD 

needle was set at an angle of 45° (Reference Angle (RA): At 0° if the EHD needle was 

set at a vertical position with its nozzle facing the ground) in order to spray directly 

onto the bubbles that were produced from the T-junction process. 

PMSQ: To produce the PMSQ particles the voltage was set to 9 kV and the flow rate 

of the PLGA solution was fixed at 10 μl/min. All the other parameters remained the 

same as in the PLGA particles production experiment. 

 

Collagen: Collagen solution 8% v/v was used to form the particles. The voltage was set 

to 14 kV and the flow rate of the collagen solution was fixed at 5 μl/min. All the other 

parameters remained the same as in the previous experiments. 

 

5.3.2.3 Collagen beaded Nanofibres 

To form collagen fibres, a solution of 15% v/v collagen was used and the applied 

voltage was set to 21 kV. The flow rate of the collagen solution was fixed at 3 μl/min. 

All the other parameters remained the same as the previous experiments. 

5.3.2.4 Combination of bio-products 

After the production of the BSA bubbles two different experimental approaches were 

followed to spray the secondary bio-products onto the bubbles: a) when the bubbles 

were produced by the T-junction process, the secondary bio-products formed by the 



 
Chapter 5: Production of scaffolds and foams from microbubbles 
 

150 
 

EHD process were simultaneously sprayed directly on them (Figure 5.3) and b) the 

bubbles/scaffolds were left to dry after their production and then the secondary bio-

products were sprayed on them. 

5.3.3 Bubble formation 

After the bubbles were produced they were monitored for their stability (number of 

bubbles bursting as time progressed and how long they need to dry in order to obtain a 

solid scaffold).  The most stable bubbles were the BSA bubbles obtained without the 

addition of any surfactants or phospholipids. Hence the experiments were continued 

with the BSA solution only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 3: BSA bubbles produced from the T-junction.  

(b) 

(a) 
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Solution 
Air Pressure 

 / kPa 

Bubble Diameter  

 / μm 
Stability 

BSA 

32.3 81±2 

Stable until dried 

34.9 95±2 

41.2 141±3 

42.7 152±4 

44.3 162±3 

45 164±3 

46.1 174±4 

48.3 190±4 

51.6 208±4 

57.3 251±2 

75 302±2 

81 418±4 

92 478±2 

103.5 555±3 

BSA + 

Phospholipid 

53 245 ± 5 Unstable, burst prior 

to drying 75 285 ± 5 

BSA + Tween 40 
1100 82 ± 4 Unstable, burst prior 

to drying 1200 95± 4 

Table 5. 2: Parameters used to generate bubbles and their stability at a liquid 

flow rate of 200 µl min-1. The bubbles diameter value is the mean diameter of 50 

bubbles. 
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It is well known that by adjusting the T-junction processing parameters (solution 

concentration, gas pressure, liquid flow and capillary diameter size) bubbles of different 

size can be generated (Parhizkar et al., 2013). In this study, BSA bubbles ranging from 

~80 μm to ~550 μm were produced by keeping the liquid flow rate constant at 200 

μl.min-1, while increasing the gas pressure from 30 to 100 kPa. Examples of the bubbles 

produced are shown in Figure 5.3 with images (a) and (b) showing bubbles having an 

average size of 251±2 μm and 418±4 μm, respectively. Table 5.2 shows the parameters 

used to obtain the different bubble diameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 4: Optical microscope images of BSA bubbles after: a) 1min, b) 10min, c) 

15min and d) 20min after generation. 

 

(a) (b) 

(c)  (d) 

Bubble Dried bubble 

Scaffold pore 
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5.3.4 Scaffold structure 

The bubbles produced from the T-junction process had a foam-like texture, hence to 

produce the multi-layered BSA scaffolds, the bubbles were left to dry for a short period 

of time (20 min-60 min) before spraying onto them. Figure 5.4 shows the BSA bubbles 

immediately after generation and at different time intervals while drying. The bubbles 

in this case had an average size of (81±2) μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 5: SEM images of a single layer of dried BSA bubbles formed on a glass 

slide with [(a,b)i] showing structures with two different windows controlled by 

changing the T-junction parameters according to Table5.2 and [(a,b)ii] showing the 

images in [(a,b)i] at higher magnification. 

(a)i (a)ii 

(b)i (b)ii 
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Single layer structure: By collecting a single layer of BSA bubbles on a glass slide and 

leaving it to dry for 20 min a single layer honeycomb arrangement with the same 

diameter scaffold window was obtained.  Figure 5.5 shows these structures with [a(i)] 

and [b(i)] having average gap diameters size of (152±7) μm and (208±8) μm, 

respectively and the images [(a,b)ii] showing the same structures at higher 

magnification. The depth of the windows was found to be (100±9) μm almost half the 

pore diameter and the interconnected regions of the dried bubbles had an average 

thickness of (30±9) μm. 

Double layer structure: By changing the T-junction parameters, the bubbles’ size was 

increased and a two-layered structure was obtained by adding another layer at the top 

of a single layer of bubbles instantly after collection on the glass slide. The structure 

was also left to dry for 20 min and after analysis it was found that the windows formed 

had an average diameter of (190±8) μm. Figure 5.6 shows images of the two layered 

structure taken by optical microscope and SEM with Figure 5.6 a clearly showing the 

double layered arrangement. The thickness of the two layer structure formed had an 

average value of (342±11) μm. 

 

 

 

 

 

 

 

 

Figure 5. 6: Double layer dried BSA scaffold structure (a) optical and (b) SEM 

micrographs. 

Multilayer scaffold: After experimenting with the single and double layered structures, 

scaffolds were formed by accumulating many layers of bubbles. By adjusting the T-

(a)  (b) 
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junction processing parameters, mainly increasing the gas pressure to control the bubble 

size and collecting multiple layers of bubbles on a glass slide or a glass vial, 3-D 

scaffolds with different window sizes and hence porosity, were produced. The BSA 

bubbles spontaneously self-assembled into liquid foam structures, which were 

solidified after leaving to dry for up to 60 min.  

 

 

During the drying process, the pressure difference between the bubbles and the ambient 

atmosphere ruptured the film between the bubbles and only the plateau borders were 

left (Chung et al., 2009). The dried foam formed 3-D scaffolds and by adjusting the T-

junction processing parameters four different structures were obtained with window 

diameters of (162±17) μm, (327±24) μm, (478±28) μm and (543±33) μm at various gas 

pressures of 44, 67, 93 and 102 kPa, respectively. Figure 5.7 shows these scaffolds 

with Figure 5.7(a) having the biggest pore size and Figure 5.7(d) the smallest. The 

figures indicate the ordered and interconnected pores of the 3-D scaffolds.  

 

It was noticed that despite the monodispersity of the bubbles formed during the process, 

the diameter size distribution of the scaffold pores was broader in the multi-layered 

scaffolds than in the single and double layered structures obtained at the previous 

experiments. This can also be confirmed from the relatively large standard deviation 

values measured (17, 24, 28 and 33) during the scaffold pore size analysis. This was 

probably caused by the increased pressure due to the weight of the bubbles located on 

the top layers acting on the bubbles in the lower layers. However, the pore size of the 

scaffolds produced in this study by T-junction process still had a narrower size 

distribution than other techniques used to fabricate scaffolds (Lima et al., 2012, Liu et 

al., 2011). It was also noticed in some cases that when the BSA bubbles were bursting 

during the drying process a thin cracked layer of protein coating was left at the sides of 

the scaffolds gaps. According to Neir et al. (Nair et al., 2007) this thin protein coating 

may serve as a biocompatible layer to upsurge cell seeding and growth. 
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Figure 5. 7: Scanning electron micrographs of multi-layer scaffold made using dried 

BSA bubbles showing the different diameter window sizes obtained by changing the T-

junction processing parameters (a) having the biggest gap diameter (543±33μm) and 

(d) the smallest one (162±17μm). 

5.3.5 Particles sprayed on bubbles 

The first experimental approach was to spray the bio-particles formed by the EHD 

process simultaneously onto the BSA bubbles generated via the T-junction process. In 

this procedure the stability of bubbles was affected by the particles accelerated due to 

the electric potential difference induced by the EHD process hence rupturing the 

bubbles shell and causing them to burst. Approximately 30% of the bubbles produced 

were bursting due to this effect. Although many steps were attempted to resolve this, 

such as adjusting the liquid flow rate into the EHD needle, increasing the BSA 

concentration and the distance between the EHD needle tip and the collection area, none 

had a significant effect on the bubbles stability. An advantage of this approach, 

(a) (b) 

(c) (d) 
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however, was that the particles were distributed equally in the inner and outer surfaces 

of the scaffold while it was formed. 

The second experimental approach was to leave the scaffold to dry and then spray the 

particles onto it. The advantage of this method was that the bubbles were left to dry 

without any external disturbance and thus the percentage of bubbles bursting decreased 

to less than 5%. Also the particles were still able to infiltrate into the scaffolds’ structure 

very easily because of their small size, and hence were distributed on the scaffolds’ 

inner surfaces. As expected, however the outer surface of the final scaffold had a higher 

density of particles than the inner ones.  

PLGA Particles: The bubbles and particles size used for this experiment were (141±3) 

μm and (130±23) nm (mean diameter of 100 particles), respectively. Firstly, PLGA 

particles were sprayed onto wet (not dried) bubbles (Figure 5.8 a and b) and then 

PLGA particles were sprayed onto a single layered (Figure 5.8 c), two layered (Figure 

5.8c) and multi layered (Figure 5.8f) BSA scaffolds.  

 

In order to check if the particles had infiltrated into the inner layers of the BSA scaffold, 

the surface of the structure was removed by a surgical blade. Figure 5.8 (c) confirms 

that the particles were present on the bottom layer of the scaffold. Figure 5.8 (d) shows 

the PLGA particles aggregating into different shapes while they were sprayed into the 

inner cavities of the scaffold. This is caused by the difference in the hydrophobic and 

hydrophilic nature of the PLGA and BSA, respectively (Danhier et al., 2012, Yoon and 

Garrell, 2008).  
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Figure 5. 8: Images showing (a) dried BSA bubbles, (b) dried BSA bubbles with PLGA 

nanoparticles, (c) a single layer BSA scaffold with PLGA nanoparticles in its cavities after 

spraying for 1min (see arrows), (d) PLGA nanoparticles aggregating into different shapes in a 

BSA scaffold cavity after spraying for 5min (e) a two layer BSA scaffold with PLGA 

nanoparticles and (f) a multilayer BSA scaffold with PLGA nanoparticles. 

 

(a) (b) 

(c) (d) 

(e) (f) 

PLGA 
particles 

Microbubble 



 
Chapter 5: Production of scaffolds and foams from microbubbles 
 

159 
 

PMSQ Particles: The average window diameter of the multilayered scaffold was 

measured and found to be (95±41) μm. The PMSQ particles sprayed had an average 

size of (1.94±0.4) μm (mean diameter of 100 particles). Figure 5.9 shows SEM images 

of the same BSA scaffold at different magnifications after being sprayed with PMSQ 

microparticles. It can be seen clearly that the particles infiltrated onto the inner surfaces 

of the scaffold and were distributed homogeneously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 9: SEM images at different magnifications showing the same multilayered 

BSA scaffold after sprayed with PMSQ micro-particles with images (a) and (d) having 

the lowest and the highest magnification, respectively. 

 

Collagen Particles: In these experiments the pores of the scaffold prepared had an 

average diameter of (174±8) μm and the collagen particles sprayed on it had a size of 

(1.35±0.3) μm (mean diameter of 100 particles). Figure 5.10 shows SEM images at 
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different magnifications of the same BSA scaffold sprayed with collagen micro-

particles. It was observed that the scaffold surface (see Figure 5.10f) appeared 

degraded due to spraying of the collagen particles. This was caused by the low 

concentration of acidic acid found in the collagen type I solution used for the 

experiments. When the collagen solution was sprayed onto the scaffold, it is assumed 

that the acid did not fully evaporate during the flight from the EHD needle tip to the 

collection area (probably due to its high boiling point of 118°C), hence causing the 

protein based surface of the scaffold to locally dissolve and the collagen particles to 

embed into the BSA scaffold. 

5.3.6 Spraying of collagen beaded fibres  

Collagen beaded fibres with average fibres and beads size of (257±25) nm (mean 

diameter of 100 fibres) and (685±67) nm (mean diameter of 100 beads), respectively, 

were spun successfully onto the outer surface of the dried BSA scaffold, which had an 

average pore size of (164±11) μm. Figure 5.11 (b) shows SEM images at different 

magnifications of the same BSA scaffold after being sprayed with collagen beaded 

nanofibres for 5 min and Figure 5.11 (b) shows the same scaffold after spraying on it 

for 15 min. In this experiment it was not possible for the fibres to infiltrate into the inner 

structure of the scaffold due the fibres’ “large” length.  Although an attempt was made 

to spin the fibres simultaneously while the bubbles were produced from the T-junction 

device, the bubble stability and self-assembly properties were affected thus causing the 

scaffold formation to fail. 

5.3.7 Possible applications  

The BSA scaffolds with secondary bio-products attached on them have potential 

applications in tissue and bone regeneration engineering, wound care and cosmetics. 

BSA is a biocompatible and biodegradable FDA approved material that has no toxicity 

and can provide high cell affinity when the scaffold pores size are around 100-150 μm 

(Nair et al., 2007, Nair et al., 2010). In this study it was shown that the porosity of the 

scaffolds can be very easily controlled thus providing the necessary structure for 

different types of cell to achieve infiltration into the scaffold.  
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Figure 5. 10: SEM images at different magnifications showing the same multilayered 

BSA scaffold after spraying with collagen micro-particles with images (a) and (f) 

having the lowest and the highest magnification, respectively. 

 

(a) (b) 

(c) (d) 

(e) (f) 

Collagen 
particles 

Collagen 
particles 



 
Chapter 5: Production of scaffolds and foams from microbubbles 
 

162 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 11: Scanning electron micrographs of multilayered BSA scaffolds sprayed 

with collagen beaded nanofibres for (a) 5min and (b) 15min at different magnifications. 
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The BSA solution can be replaced or combined with other materials such as 

hydroxyapatite that can be used for bone regeneration (Ishaug et al., 1997, Rathbone et 

al., 2013). The PLGA, PMSQ and collagen particles/fibres sprayed onto the scaffolds 

(which can also have a foam like texture) can be loaded with drugs, growth factors and 

other bioactive agents in order to achieve controlled release into locations such as 

wounds, thus accelerating the healing process and prevent infections (Pereira et al., 

2013, Boateng et al., 2008). They can also be used in the cosmetic industry in the form 

of cream lathers and facial scrubbing creams to deliver vitamins, proteins and other 

substances into the skin (Friess, 1998). The main advantage of using these 

biodegradable and biocompatible products produced in this work in cosmetics 

applications are that they are generally non-reactive when in contact with the human 

skin and by encapsulating them with the polymeric particles/fibres their biological 

stability can be increased (Ammala, 2013). 

Summary 

In this study T-junction microfluidic and EHD techniques were combined and used 

together successfully to engineer advanced biocompatible scaffolds containing 

secondary bio-products on their structure. BSA protein scaffolds with controlled 

porosity varying from (81±2) μm to (543±33) μm were produced from microbubbles 

generated with the T-junction technique by adjusting the operating parameters and 

solution properties. Once the microbubbles were dried, the 3D protein scaffold 

structures were obtained. The microbubbles produced with the T-junction technique 

were highly monodispersed and hence led to the uniformity of the scaffold structure. 

Further by using the EHD process, biocompatible PLGA, PMSQ and collagen particles 

were produced and sprayed onto the scaffolds having an average size of (130±23) nm, 

(1.94± 0.4) μm and (1.35±0.5) μm, respectively. Furthermore, beaded collagen 

nanofibres (fibre size: 257±25 nm and beads size: 685±67 nm) were spun on the BSA 

scaffolds. The BSA protein scaffolds with attached secondary bio-products formed in 

this work have the potential to be used as medical and tissue engineering scaffolds, as 

well as delivery devices containing multiple bioactive agents. It is also believed that 

introducing these secondary elements in the scaffolds’ assembly can assist with the 

mechanical strength of the structure. 
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Chapter 6 

Conclusions and Future Work 

6.1  Conclusions 

The main contribution of the research described in this thesis is the demonstration of 

the capillary embedded T-unction microfluidic processing as an alternative and viable 

technique for preparing microbubbles with narrow size distributions, and which satisfy 

the requirements for many applications including biomedical applications and food 

industries. The ultimate objective in this study was to investigate the parameters that 

affect the microbubble formation in the T-junction device that eventually enables users 

to be able to have a great amount of control over the size and uniformity of bubbles 

produced with this technique. This objective was fulfilled via two sets of investigations; 

firstly the influence of liquid physical properties were studied by varying the surface 

tension and viscosity of the solutions; secondly, the operating conditions were tested 

by varying the liquid flow rate and gas pressures. From the experimental data, the size 

and polydispersity of the bubbles produced is highly dependent on all these parameters. 

The experiments were then focused on the effect of various surfactant type on the 

formation and stability of bubbles produced via this set-up and it was concluded that 

due to different adsorption rate and wetting characteristics of the surfactants bubble 

formation and stability can be altered by changing the surfactant type and 

concentrations. Microbubbles produced in the standard T-junction device had a 

diameter range of 50 -300µm. In order to reduce the microbubble size even further, an 

external field was introduced to the outlet capillary to optimise the microfluidic device 

with electrohydrodynamic focusing and bubble size was successfully reduced by 

approximately an order of magnitude. Finally, the device was used to produce foams 

and scaffolds from protein coated microbubbles and consequently novel scaffolds 
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loaded with nanoparticles/fibres were generated with a combination of microfluidic and 

EHD techniques. The following conclusions are drawn from the extensive 

investigations carried out to achieve this objective: 

 

6.1.1 T-junction and parameters influencing bubble formation and size 

The mechanism of bubble formation in a capillary embedded T- Junction was 

investigated in detail and the influence of variables, mainly flow rate ratio and viscosity 

on the bubble size were determined. While the bubble size decreases with increasing 

liquid flow rate and viscosity, the increase in gas inlet pressure proportionally increases 

the bubble size as anticipated.  

 

Furthermore, there is a limit to the extent to which bubble size can be reduced by 

increasing viscosity and/or flow ratio for a given capillary diameter and gap size. 

Therefore, a fixed size capillary diameter was chosen for all sets of experiments that 

involved the investigation of the effect of parameters other than the capillary size. With 

the increase in liquid viscosity, the radial pressure around the air jet is the major factor 

for bubble pinch off, whereas with the decrease in viscosity the deceleration of the air 

jet surrounded by liquid becomes dominant for the pinch off. 

 

Further experiments were carried out to investigate the effect of capillary size in 

conjunction with the solution viscosity and liquid/gas flow ratio, to further reduce the 

bubble size. In addition, the influence of the junction gap width was also investigated. 

An increase in the gap width resulted in an increase in the size of bubbles for a fixed 

capillary number and liquid viscosity, flow rates of both gas and liquid. 

 

The microbubbling process described in this work can be used to generate bubbles in 

the diameter range of 50 -300µm. However, producing smaller bubbles in highly 

viscous liquids is still a challenge using the current T-junction set-up. This is because 

formation of bubbles smaller than 20µm is only achievable by using smaller capillary 
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tubing than the current setup. Moreover, forcing high viscous liquid through such small 

capillary tubing is nearly unfeasible. 

 

The results presented in this study facilitate the selection of solutions based on their 

physical properties and flow parameters as well as the capillary size for the controlled 

formation of highly monodisperse bubbles in the capillary embedded T Junction device. 

From the findings, it can be concluded that, in the bubble formation regime, by 

increasing the viscosity and decreasing the capillary size, producing smaller bubble size 

could eventually become achievable; bearing in mind the restrictions of the 

experimental setup (i.e. range of liquid flow rate and gas pressure and geometry).  

6.1.2 Surfactant type and concentration on microbubble formation and 
stability 

 

The effects of various surfactants on microbubble formation, size and stability in a 

capillary embedded T-junction microfluidic device were investigated in this study. Four 

differently charged surfactants were chosen. An anionic surfactant, sodium dodecyl 

sulfate (SDS), two non-ionic surfactants, polyoxyethylene sorbitan monopalmitate 

(Tween 40) and polyoxyethylene glycol 40 stearate (PEG 40), and a cationic surfactant, 

cetyltrimethyl ammonium bromide (CTAB). Each surfactant was added to 50 wt% 

aqueous glycerol solution at high concentration (above the critical micelle 

concentration) varying from 2 to 5 and 10 wt%.  

 

Static surface tension and contact angle were measured, as well as the viscosity of the 

solutions. While the value of surface tension did not significantly change with 

increasing surfactant concentration, other properties of the solutions (i.e. viscosity and 

contact angle) were affected. 

 

Microbubbles with size varying from 50 to 360 μm and polydispersity index values of 

< 2% were produced with this technique. The nonionic surfactants produced smaller 
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bubbles. This is likely to have been due to their higher adsorption on to the hydrophobic 

channel surface and hence increase in the thickness of the liquid film at the contact line 

between the three phases for approximately similar capillary numbers and viscosities.  

 

Bubble stability for all cases was evaluated by monitoring the change in average 

diameter with time. Microbubbles coated with PEG 40 were found to be the most stable, 

lasting for 150 days with a uniform size reduction of ~ 1.5% as compared with SDS 

microbubbles lasting only for 30 mins after collection. 

6.1.3 Optimization of T-junction with electrohydrodynamic focusing and 
reduction of bubble size 

While in a standard capillary embedded T-junction device bubble diameter ranged 

between 50-300 μm. In order to reduce the bubble size to uncover more applications 

including biomedical, an external electric field was introduced to the junction. In this 

part of study generation of monodisperse microbubbles using a microfluidic setup 

combined with electrohydrodynamic processing were investigated. A basic T-junction 

microfluidic device was modified by applying an electrical potential difference across 

the outlet channel.  

 

In order to investigate the influence of the electric field strength on bubble formation, 

the applied voltage was increased systematically up to 21 kV. The effect of solution 

viscosity and electrical conductivity was also investigated. It was found that with 

increasing electrical potential difference, the size of the microbubbles reduced to ~25% 

of the capillary diameter whilst their size distribution remained narrow  ( polydispersity 

index ~1% ).  

 

A critical value of 12 kV was found above which no further significant reduction in the 

size of the microbubbles was observed. The findings suggest that the size of the bubbles 

formed in the T-junction (i.e. in the absence of the electric field) is strongly influenced 

by the viscosity of the solution. The eventual size of bubbles produced by the composite 
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device, however, was only weakly dependent upon viscosity. Further experiments, in 

which the solution electrical conductivity was varied by the addition of a conductive 

salt indicated that this had a much stronger influence upon bubble size. 

 

In order to produce microbubbles suitable for biomedical applications, flow focusing 

geometries with channel geometries much smaller were previously used by researchers. 

The number of bubbles produced however are not comparable to methods such as 

sonication. In order to scale up the production rate as well as avoiding the pressure build 

up that occurs in smaller channels, larger capillary diameters were used to produce 

bubbles. Producing bubbles much smaller than the channel diameter is very difficult, 

therefore by introducing an external force (electric field) bubbles much smaller than the 

channel geometrical features were produced. 

 

6.1.4 Production of foams and scaffolds from bubbles and loading with 
nanoparticle/fibres 

This part of the research was aimed at the production of scaffolds and foams potentially 

suitable for tissue engineering and cosmetics applications. This piece of work provided 

an insight into the production of novel nanoparticle/fibre loaded scaffold structures 

using a combination of two well established techniques. Scaffolds with uniform pore 

size were developed from protein microbubbles formed via capillary embedded T-

junction microfluidic cross flowing device. Polymer nanoparticles were electrosprayed 

on the structure; while collagen beaded nanofibres were electrospun via the EHD setup. 

This method of synthesis of highly uniform structures as well as embedding them with 

polymeric bio products delivers a new route to the development of the biomedical and 

cosmetics industries. 

 

Valuable understanding of the concepts of microfluidics and EHD techniques and the 

combination of two simple but highly reliable methods in order to construct advanced 

multi-dimensional structures is presented. This experimental study produced highly 

uniform protein scaffolds from microbubbles generated with our state of the art 
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capillary embedded T-junction device with a high level of control over the size of 

microbubbles. In addition, the attachment of nanoparticles/fibres on the multi-layered 

structures through the EHD method improved the functionality of the scaffolds for 

possible future applications. 

6.2  Future Work 

Ideally, microbubbles should possess the following features: high stability and uniform 

size. The processing technique should be able to generate these features, be efficient in 

terms of time and material usage, convenient and easily scalable. T-junction 

microfluidic processing techniques have shown great promise in terms of these criteria 

offering a versatile tool for the generation of uniform bubbles and encapsulated 

structures. As it was shown in this thesis, microfluidic technique can achieve highly 

monodisperse bubbles and eventually products such as scaffolds with uniform pores 

size can be generated with this device. However there are still several aspects of future 

work recommended as the following: 

 

I. The T-junction can be adjusted to form smaller bubbles by using a capillary of 

internal diameter smaller than 20µm. A right combination of capillary length 

and diameter can yield smaller monodispersed bubbles with the T-junction set-

up. A reduction in capillary diameter will increase the liquid velocity in the 

capillary which will increase the bubble production rate without losing 

monodispersity. However, it should be noted that producing smaller bubbles in 

highly viscous liquids is a challenge using the current T-junction setup and 

therefore for this set of experiments, less viscous solutions should be chosen. 

The gap between the aligned capillaries can be precisely set by using a 

micromanipulator which will enable distances of a few micrometres upwards to 

be accurately maintained. 

 

II. Liquid can be supplied to the junction at different angles to decrease the air jet 

radius after focusing. The study of dynamics suggests that if liquid is supplied 

at a different angle than 90°, it will increase strain rate around the air jet at a 
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lower flow rate. This will enable the system to generate smaller bubbles, without 

requiring higher flow rates. 

 

 

 

 

 

 

 

 

Figure 6. 1: T-junction device with different angles. 

 

III. The effect of channel geometry shall be further studied by several different 

aspect ratios including the ratio of the widths of channels. This shall be done 

systematically, by varying the capillary inner diameter of inlet channels as well 

as the outlet channel. If the gas inlet channel width is chosen to be smaller than 

the liquid inlet channel width (combined with the reduced vertical gap size 

between the gas inlet channel and the outlet channel), there is a possibility of 

reducing the air jet diameter further.  

 
IV. The biomedical applications of microbubbles require them to be highly stable 

and uniform in size. In order to meet such requirements, bubbles coated with a 

shell of polymer or lipid are emerging as vehicles for drug delivery and 

ultrasound imaging, where the stability is much higher than uncoated 

microbubbles. If a polymeric solution or a solution containing lipid can be added 

with a material to boost the viscosity of the solution to such viscosity or higher, 

the desired small bubble size with a high stability profile can be produced. 

 
V. Another factor that affects the bubble size and stability is the collection method. 

So far, the bubbles produced in the microfluidic device have been collected on 

an empty vial or a glass slide. Bubbles produced can be collected in a material 

that can manipulate the size and shape of the bubbles while preserving their 
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stability. This could be one of the cheapest methods to form bubbles in a very 

controlled way. 

 
VI. It would be beneficial to investigate the effect of applied voltage for a range of 

channel diameters, as it is suggested that by decreasing the channel diameter 

bubble size reduces. An optimised system can be achieved by understanding the 

variety of factors that can influence the size of bubbles produced. 

 
VII. In order to have more control over the applied voltage through the DC electric 

field supply, a frequency (signal) generator can be introduced into the setup to 

assist with the control of the flow even further. 

 
VIII. For the purpose of increasing the production rate of bubbles/droplets, blocks of 

multi channels can be replaced with the single T-junction setup investigated in 

this work. Also, it is possible to run a number of T-junction devices in parallel 

and study the different techniques to increase the production rate without 

affecting the stability and size. 

 
IX. The stability of microbubbles can be further increased by using higher 

molecular weight gases with low solubility such as FCs as mentioned in the 

literature review. The effect of these gases can be investigated in comparison 

with the bubbles with regular gases like nitrogen. 

 
X. Further experimental and modelling analysis can be conducted to study the 

effect of channel surface characteristics and dynamic interfacial tension and 

dynamic contact angel on the formation of bubbles/droplets. 

 
XI. The study of the effect of surfactants with the same hydrophobic chain and type, 

where all surfactants are from the same type (i.e. anionic, cationic or nonionic) 

can provide a better insight into how the surfactant molecules change the 

properties of the solution and further influence the formation process in 

microchannels. 

 
XII. Microchannel walls surface characteristics can be altered by inserting a variety 

of capillary tubes of different material. This can provide a better control on the 
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wetting ability of the wall surface. Depending on the application of the setup 

changing the material enables either a hydrophobic or hydrophilic surface and 

therefore the interfacial forces governing the formation can be affected. 

 
XIII. Further work is required to reduce the size of microbubbles to a biomedically 

acceptable diameter range (as ideally these vesicles would be approximately 15 

μm smaller than our system is currently optimized for) while maintaining the 

clinical-scale production and monodispersity achieved here. In order to achieve 

smaller microbubbles the reduction in capillary diameter is one solution to 

consider, however this can come at the cost of the rate of production. The 

primary goal of this work was to reduce the bubble size while maintaining the 

monodispersity and the rate of production. Relatively straightforward 

modifications in the design as well as the operating conditions are required in 

order to optimise the setup to produce smaller bubbles for biomedical 

applications at higher production rates. 

 
XIV. With regards to production of scaffolds from protein bubbles, it would be 

beneficial to incorporate materials that increase the strength of the 3D structure, 

such as hydroxyapatite (which is the main ingredient in bone regeneration 

applications) or biocompatible polymers. 

 
XV. Further analysis and testing is required to optimise the scaffolds produced in 

this work. These include:  study on the variation of protein structures, the 

collection and drying method, and incorporation of growth factors instead of 

polymeric particles. 

6.2.1 Commercial viability 

A full assessment of commercial and clinical viability of the techniques used in this 

study is an important issue which should be addressed in future.  The T-junction 

microfluidic technique has some clear advantages in terms of simplicity, efficiency, 

cleanliness and ambient operation. However there is the issue of scaling up and 

associated cost to address. For the biomedically suitable microbubble production, the 

cost is one of the important issues. In contrast to the traditional method such as 
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sonication and agitation, microfluidic method with a single T-junction unit still has 

some limitations such as low concentration and high consumption of material.  It should 

be noted that microfluidic T- Junction with a single unit is a low-volume throughput 

process and it is not suitable or efficient for traditional industrial microbubbling 

processes. Approaches that address this problem are to use multi-channel (Kendall et 

al., 2012, Jiang et al., 2010). Therefore, more investigation can be conducted on scaling 

up and commercialising this technique via two methods: first, scaling up for mass 

production through the use of multiple T-junction devices, second, fabrication of 

miniaturised portable devices for in situ production of microbubbles.
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Appendix  

 

Type Chemicals used in 
experiments 

Molecular 
weight / g mol-1 Density / g m-3 

Solvents 
Acetone 58.08 0.79 
Ethanol 46 0.78 

  

Proteins 
BSA 66500 1.32 
Collagen _ _ 

  
Lipids Phospholipid 768 0.99 

  

Polymers 
PLGA 33000 1.34 
PMSQ 7465 1.24 

  

Surfactants 

CTAB 364.5 no data available 
PEG 40 2047 no data available 
SLS, SDS 288.4 1.01 
Tween 40 1277 1.09 

  

Other 
Deionized water 18.01 0.99 
Glycerol 92.09 1.26 
PBS _ _ 

  

Table A.1: List of chemicals used in the experiments and their properties. 

  


