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A Fast Parallel Solver for the Forward Problem
in Electrical Impedance Tomography

Markus Jehl∗, Andreas Dedner, Timo Betcke, Kirill Aristovich, Robert Klöfkorn, and David Holder

Abstract—Electrical impedance tomography (EIT) is a noninva-
sive imaging modality, where imperceptible currents are applied
to the skin and the resulting surface voltages are measured. It
has the potential to distinguish between ischaemic and haemor-
rhagic stroke with a portable and inexpensive device. The image
reconstruction relies on an accurate forward model of the experi-
mental setup. Because of the relatively small signal in stroke EIT,
the finite-element modeling requires meshes of more than 10 mil-
lion elements. To study the requirements in the forward modeling
in EIT and also to reduce the time for experimental image ac-
quisition, it is necessary to reduce the run time of the forward
computation. We show the implementation of a parallel forward
solver for EIT using the DUNE-FEM C++ library and demonstrate
its performance on many CPU’s of a computer cluster. For a typi-
cal EIT application a direct solver was significantly slower and not
an alternative to iterative solvers with multigrid preconditioning.
With this new solver, we can compute the forward solutions and
the Jacobian matrix of a typical EIT application with 30 electrodes
on a 15-million element mesh in less than 15 min. This makes it a
valuable tool for simulation studies and EIT applications with high
precision requirements. It is freely available for download.

Index Terms—Electrical impedance tomography (EIT), finite-
element solver, forward problem, parallel computing.

I. INTRODUCTION

A. Applications of Electrical Impedance Tomography

E LECTRICAL impedance tomography (EIT) is an imag-
ing modality in which low-frequency currents are applied

to the surface of the body under examination and the resulting
surface potentials are measured. Doing this for a defined pro-
tocol of applied current patterns gives a current-to-voltage or
Neumann-to-Dirichlet (NtD) map, which is used in the inverse
problem for creating an image. Many medical applications are
envisaged for EIT, some of which have already been success-
fully applied. Monitoring lung ventilation is probably the most
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mature field of EIT, being pioneered by Barber and Brown [1] in
the early 1980s (for a review of lung EIT research, see [2]). An-
other well-validated application of EIT is the analysis of gastric
emptying, a field which is reviewed for instance in [3].

EIT has the potential to be used in neuroscience to image fast
neural activity by measuring the impedance change due to the
opening of neuron’s ion channels [4]. It would be the first time
that neuronal activity can be directly recorded noninvasively.
Furthermore, EIT can potentially be used for fast and inexpen-
sive stroke type differentiation and improve the outcome for
patients. Feasibility studies of stroke EIT include [5], where the
signal change during global ischaemia was measured with scalp
electrodes, and [6] and [7], where the effect of modeling errors
on the image quality is discussed.

B. Numerical Solvers for the Complete Electrode Model

Most research groups in EIT currently use the Electrical
Impedance Tomography and Diffuse Optical Tomography Re-
construction Software EIDORS [8], which is programmed in
MATLAB. EIDORS provides a set of useful features, such
as 2-D and 3-D forward simulations and an extensive set of
reconstruction algorithms, visualization functions, and more.
Horesh et al. [9] adapted EIDORS with different precondition-
ers and more efficient routines, resulting in a version called
SuperSolver, which is still used in our group at UCL. For large
meshes, however, MATLAB suffers from a lack of efficient par-
allel programming possibilities, which makes the computation
of forward solutions a lengthy task.

Borsic et al. [10] moved the forward and the Jacobian cal-
culations (not the assembly of the system matrix, though) to
sparse parallel direct solver library PARDISO [11] to surpass
these limitations. They were able to improve the speed for for-
ward simulations about 5.3 fold compared to Horesh et al. [9].
They used it on meshes with around half a million elements. On
larger meshes, direct solvers require large amounts of memory
that normally limits the mesh size that can be computed. Fur-
thermore, we show in this paper, that the assembly of the direct
solver is much slower than that of a good preconditioner, result-
ing in faster execution times for iterative methods depending on
the number of unique current injection patterns. In particular,
the algebraic multigrid preconditioner has been shown to im-
prove the solution time significantly [12]. Graphics processing
unit (GPU) based computations have already successfully been
applied to the calculation of the Jacobian matrix [13], where fast
access to the memory is paramount. A different approach to the
forward modeling in EIT was done by using boundary elements
[14], a technique that requires the head to be modeled as en-
closed surfaces of the different tissues with fixed conductivity.
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This works well for piecewise homogeneous media, but not
for complicated heterogeneous geometries like the human
head.

C. Main Results

We have implemented a parallel forward solver with the com-
plete electrode model (CEM) in C++ using message passing
interface (MPI). Comparing the performance of a direct solver
and an iterative solver with multigrid preconditioning, we found
that for a typical EIT application the direct solver is significantly
slower and no alternative to multigrid implementations. Using
this parallel solver, the forward solutions and Jacobian matrix
are computed on one processor more than twice as fast than us-
ing EIDORS. Furthermore, on ten processors, the total runtime
reduces more than ten fold. This makes the presented solver an
invaluable tool for forward simulations on large meshes. It is
freely available for download (instructions on http://users.dune-
project.org/projects/dune-peits/wiki).

We highlight two applications of the presented solver that
have been published separately in more detail and illustrate
the impact the developed software makes on the time effi-
ciency of both, simulation studies and experimental imaging in
EIT.

II. MATHEMATICAL FORMULATION OF THE CEM

The commonly used CEM accounts for two observed effects,
electrodes shunting current due to their high conductivity and
a voltage drop at the interface of the electrodes and the skin,
which is due to an electrochemical effect. The applied current
is constant on each electrode (Γl)l = 1,...,M and vanishes on the
surface between electrodes Γ \

⋃M
l = 1 Γl . It can thus be repre-

sented as a vector (Il)l = 1,...,M in RM satisfying the condition
∑M

l = 1 Il = 0. According to the CEM, the voltage potential u
then solves

∇ · (σ∇u) = 0 in Ω (1)
∫

Γ l

σ
∂u

∂ν
dΓl = Il l = 1, . . . , M (2)

u + zlσ
∂u

∂ν
= Ul on Γl , l = 1, . . . ,M (3)

σ
∂u

∂ν
= 0 on Γ \

M⋃

l=1

Γl (4)

where (zl)l=1,...,M ∈ RM is the positive contact impedance and
(Ul)l=1,...,M ∈ RM is the vector of the voltage potentials on the
electrodes abiding to the grounding condition

∑M
l = 1 Ul = 0. ν

is the outward unit normal to Γ and σ ∈ L∞(Ω) is the positive
real conductivity. The CEM is proven to have a unique solution
u ∈ H1(Ω), which depends continuously on I ∈ L2(Γ) satis-
fying

∫
Γ Ids = 0 [15].

The weak formulation of the CEM is obtained by integrating
(1) over Ω with a set of test functions v in H1 , applying Green’s

formula and substituting the electrode potentials Ul using (3)
∫

Ω
σ∇v∇u +

M∑

l = 1

1
zl

∫

Γ l

vu −
M∑

l = 1

1
zl |Γl |

∫

Γ l

v

∫

Γ l

u

=
M∑

l = 1

1
|Γl |

∫

Γ l

vIl . (5)

One thing to notice in this weak formulation is the uncom-
mon third term of the type

∫
Γ l

u
∫

Γ l
v. To facilitate the parallel

assembly of this term and to reduce communication between
processes, we have to ensure that each electrode is not split onto
different partitions (see Section III-D for the implementation).

Proposition II.1: The system (5) is uniquely solvable if a
ground condition is applied.

Proof: To prove that this system is positive, and thus,
uniquely solvable, we have to show that the second term of
the left-hand side (LHS) is larger than the third term. Replacing
u by v and multiplying with zl , we get from Cauchy–Schwarz

∫

Γ l

v2 ≥ 1
|Γl |

(∫

Γ l

v

)2

(6)

with v = const. leading to equality. Because a constant v sets
the first term of the LHS to zero as well, the system is only
positive semidefinite. Thus, we need an additional constraint to
make the system uniquely solvable. Setting a ground condition
achieves this. �

Different grounding conditions can be applied. We decided
to set one surface node to 0 V by applying a Dirichlet boundary
condition.

Once the forward solutions are computed, most EIT inversion
algorithms require the so-called Jacobian matrix that translates
a change in conductivity to a change in measured voltages by
linearization at the simulated conductivity distribution. Our ap-
proach to the calculation of the Jacobian matrix is the lead (or
adjoint) fields method (which is derived, e.g., in the Appendix
of [16])

δVdm = −
∫

Ω
δσ∇u(Id) · ∇u(Im ) dV (7)

where u(Id) ∈ H1(Ω) is the electric potential emerging when
the drive current Id is applied to the electrodes and u(Im ) ∈
H1(Ω) the electric potential when a unit current is applied to
the two measurement electrodes. δVdm ∈ R is then the linearly
approximated voltage change between the two measurement
electrodes when the conductivity changes by δσ ∈ L∞(Ω).

III. LARGE-SCALE EIT SOLVER BASED ON DUNE

Currently, most medical application of EIT monitor large
physiological changes in the trunk such as lung ventilation and
gastric emptying. Such tasks are not very challenging on the
modeling, since the geometry is comparatively simple and the
regions of the conductivity change are large, resulting in a high
signal-to-noise ratio. Our aim is the detection of stroke, where
we want to image a comparably small perturbation that is “hid-
den” under a highly resistive layer of skull and a highly con-
ductive layer of cerebrospinal fluid. This imposes much higher
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precision requirements on the forward modeling than is com-
monly necessary in EIT.

Preliminary results from an ongoing convergence analysis
for finite-element meshes based on the same segmentation of
a head, revealed that the optimal mesh size exceeds 10 million
elements and might be in the region of 15 to 20 million elements.
For the rat brain, which is geometrically less complex than the
human head with all its different tissues, the optimal mesh size
is 7-million elements [17]. Using a 15-million element mesh
in EIDORS, it takes 990 s to set up the system matrix and
another 936 s to solve for each unique current pattern using an
incomplete LU preconditioned conjugate gradients algorithm.

Our aim was to build a solver that can run on parallel machines
and clusters to reduce the computational time of the image
acquisition process in EIT. We sometimes use the abbreviation
PEITS (Parallel EIT Solver) in this paper and in the source
code. A guide on how to install and use the solver can be found
on the project wiki (http://users.dune-project.org/projects/dune-
peits/wiki).

A. Overview of Dune

The solver we present here is based on DUNE. The Distributed
and Unified Numerics Environment, DUNE, is a grid-based C++
toolbox for solving partial differential equations. DUNE includes
the discretization module DUNE-FEM, which allows implemen-
tations of finite-element solvers for parallel computers. It pro-
vides functions to implement local grid adaptivity, dynamic load
balancing, and higher order discretization schemes [18]. Apart
from native implementations of conjugate gradients solvers it
also provides interfaces to the solvers and preconditioners of the
DUNE-ISTL module, UFMPACK [19] for unsymmetrical prob-
lems and PETSc [20], which has an extensive collection of
solvers and preconditioners. DUNE-FEM supports two types of
parallelism, the MPI and pthread. DUNE is licensed under the
GNU General Public Licence version 2.0, and thus, free to use
for everyone.

We decided to use DUNE-FEM because it is a slim, template-
based, and thus, versatile C++ library that allows us to im-
plement the CEM, which has an uncommon weak formulation
and is thus not easily implementable in most finite-element li-
braries. Furthermore, DUNE-FEM provides an interface to all
preconditioners and solvers we require and supports tetrahedral
elements. The module is still in development and was flexibly
adjusted to our needs.

B. Implementation of the CEM in Dune-Fem

The code is structured in different files that contain classes,
structs and functions for specific tasks. The main file is
dune_peits.cc, which performs the following important
steps in this order.

1) Loading the mesh and partitioning it. If the mesh was
already partitioned before, those partitions are loaded by
the parallel processes directly.

2) The electrode positions are loaded into a struct. This
struct has query functions that evaluate if a given element

belongs to an electrode, return contact impedances of spe-
cific electrodes and more.

3) The current protocol is read from the specified file. Upon
reading the protocol it is disassembled into unique injec-
tions. The solution for each unique current injection is
computed just once. This reduces the number of required
forward solutions for a standard EIT protocol with around
1000 lines to around 60.

4) The system matrix is assembled. The function that com-
putes the system matrix entries is located in the file
elliptic.hh.

5) In a for-loop, the following steps are performed for each
unique current injection:

a) The right-hand side of the weak formulation is as-
sembled using a function in rhs.hh.

b) The CG solver computes the resulting electric po-
tential and the result is stored in a vector.

c) If specified in the parameter file, the first solution is
written to a VTK file for visual inspection.

6) In a second for-loop, the following steps are performed
for each line in the current protocol.

a) Trace back which solutions correspond to the drive
current and measurement current of this protocol
line.

b) If selected in the parameter file, compute the mea-
sured voltage and save to a binary file.

c) Compute the row of the Jacobian matrix using the
forward solutions for the drive and measurement
current and save it to a binary file.

C. Methods

Unless otherwise noted we computed all run times on a head
mesh with different conductivities for the scalp, skull, cerebro-
spinal fluid (CSF), white matter, gray matter, and dura mater
(see Fig. 1). The meshes were created from a CT and MRI scan
of the same patient’s head using the meshing toolbox of CGAL
[21]. In particular, the assembly of the system matrix will be
slower, the more elements are part of an electrode. To make
sure that the results we are presenting here can be compared
to each other, we fixed the ratio of electrode elements to other
elements by having a constant element size throughout the mesh.
For real applications it is much better to refine the mesh around
the electrodes and use much larger elements toward the center
of the head.

To measure the parallel scalability of the code, we commonly
plot the efficiency, which is calculated as follows for p parallel
processes

efficiency(p) =
runtime(1)

runtime(p) · p . (8)

This efficiency is a value for the strong scaling. For the weak
scaling, we want to show how much more elements we can
compute in the same time by using more processors. We can
thus use the following definition for the efficiency of the weak
scaling, where x is a fixed number of elements and runtime(px)
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Fig. 1. Layered cut through a 5-m element head mesh with scalp, skull,
CSF, and gray and white matter—The mesh was created with CGAL from a
segmentation of a CT and an MRI scan of the same person. It also includes parts
of the dura mater and air cavities, which are not visible in this image.

means the time it takes to compute px elements on p processors

efficiency(p) =
runtime(1x)
runtime(px)

. (9)

All run times were taken on a cluster with five nodes. Each
node had two 6 core 2.40-GHz Intel Xeon processors with 12-
MB cache and a total of 192 GB of memory. The nodes were
connected by a dedicated 1-GB Ethernet switch. PETSc version
3.4.2 and Zoltan version 3.6 were used.

D. Parallel Substructuring

When using a finite-element mesh for the first time, it needs to
be partitioned evenly onto the imposed number of parallel pro-
cesses. DUNE-FEM has a partitioning tool available, but this tool
does not enable the user to guide the load-balancing by fixing
regions to a specific process. We require the electrodes to be on
only one process each, since this facilitates the correct system
matrix assembly and minimizes communication between pro-
cesses. A well documented and established library supporting
user-defined load balancing is Zoltan [22]. Zoltan is a parallel
C, C++, and Fortran 90 library with a simple object-based in-
terface that is easily adapted to many applications. The Zoltan
tool we employed is the hypergraph partitioning. A hypergraph
interpretation of a finite-element mesh has the following appear-
ance: each element is a vertex of the hypergraph and the element
together with all its neighbors forms one hyperedge. Thus, for
a mesh with N elements, the hypergraph has N vertices and N
hyperedges, which correspond to the communication require-
ments of the parallel program. The parallel hypergraph parti-
tioning (PHG) tool in Zoltan allows the user to assign different
weights to hyperedges and to fix selected vertices to one section.

When a mesh is loaded in our solver for the first time
it will initially be partitioned by the load-balancing function
of DUNE-FEM. The resulting parts are then made acces-

Fig. 2. Partitions before and after Zoltan load balancing—This is a relatively
small head mesh with two million elements that is partitioned into four sections.
Some electrodes were split onto different processors by the load balancing of
DUNE-FEM. The Zoltan partitioner minimizes the number of elements that have
to be moved from one process to another, while optimizing the partitions and
fixing the electrode areas to one process.

TABLE I
TOTAL TIME REQUIRED FOR THE PARTITIONING OF DIFFERENT MESH SIZES

(ALL TIMES ARE IN SECONDS)

Mesh element no 2 m 15 m

12 processes 214 2137
24 processes 250 2405
48 processes 241 2400

sible to Zoltan by translating them into the hypergraph
format Zoltan requires. Defining the electrode areas with
the query functions ZOLTAN_NUM_FIXED_OBJ_FN and
ZOLTAN_FIXED_OBJ_LIST_FN, Zoltan’s PHG partitioner
is applied to the mesh in order to optimize the load balancing
while ensuring that each electrode is assigned to one process
only. Zoltan will return a list of elements that need to be moved
from one part to another part. This list is subsequently applied
using the load-balancing function of DUNE-FEM, the result of
which is illustrated in Fig. 2. These three steps are time consum-
ing and do not scale well in parallel, since most of the time is
required for the loading of the mesh and the initial load balance,
which is serial (see Table I). Furthermore, the number of ele-
ments that need to be transferred between processes varies, but
tends to increase as the number of processes increases. Since
the partitioning has to be done only once for each finite-element
mesh and number of parallel processes, the performance of this
operation is not critical. The resulting mesh parts are written
into separate DUNE grid files (DGF) that can then be loaded in
parallel for each subsequent forward computation on the same
mesh. The loading of these partitions takes less than a minute
for a 15-million element mesh and has a very good parallel
efficiency (see Table II).

E. Assembly of the System

The assembly of the system matrix is done in two mesh
iterations. The first iteration stores all elements that belong
to an electrode in a 2-D vector electrodeElements of
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TABLE II
TOTAL TIME REQUIRED TO LOAD PARTITIONS OF DIFFERENT MESH SIZES (ALL

TIMES ARE IN SECONDS)

Mesh element no 2 m 15 m

12 processes 5.7 52
24 processes 2.89 26.8
48 processes 1.45 12.8

length M ∈ N equal to the number of electrodes with elec-
trodeElements[k] containing all elements that constitute
electrode k. Furthermore, the overall electrode areas are com-
puted and stored in a vector. Storing the electrode elements is
essential to reduce the time for the matrix assembly and later on
for the computation of the electrode potentials.

During the second iteration the Laplacian term∫
Ei

∇v∇v dEi is added to the system matrix for each
element Ei for i = 1, . . . , N where N ∈ N is the number
of elements in the mesh. If element Ei constitutes part of
an electrode Γk a nested loop iterates over all elements of
that electrode electrodeElements[k] writing each
elements contribution to the third term of weak formulation (5)

1
zk |Γk |

∫
Γk

v d Γk

∫
Γk

v dΓk into the system matrix. Addition-
ally, for each element under an electrode the second term of the
weak formulation 1

zk

∫
Γk

v2 dΓk is assembled.
In a last step, one surface node of the mesh is assigned Dirich-

let boundary conditions to make the problem unique. The coor-
dinates of the Dirichlet nodes have to be given to the solver in a
mesh specific text file. The solver then evaluates for each node
if the coordinates match the given ones and applies the Dirichlet
boundary conditions if they do.

Since we are using the numerical solvers available in the
PETSc library [20], as discussed in Section III-G, we directly
want to assemble the system matrix in the native PETSc sparse
row matrix format MATMPIAIJ. The difficulty using this for-
mat lies in the correct memory preallocation. If PETSc has to
reallocate more memory during the matrix assembly the per-
formance can decrease by more than a factor of 50. Due to the
DUNE-FEM implementation of the boundaries between parallel
partitions, only one side ever knows that there are neighboring
elements. Thus, a perfect preallocation can only be achieved
by a process in charge of all its interfaces. All other processes
underestimate the number of entries in the rows corresponding
to communication with elements belonging to other processes.
Thus, it is not easily possible to perfectly preallocate the mem-
ory for the PETSc sparse row matrix structure in our application.
Instead, a first estimate of the maximum number nonzeros per
row is preallocated for each mesh and the solver is subsequently
run with the option -info, which outputs the precise maxi-
mal number of nonzeros per row per process and the required
number of mallocs required. Based on this output, the pre-
conditioning can be further optimized such that no additional
malloc is required during subsequent solves.

For our realistic head meshes with sizes of up to 15-
million elements, we allocated 100 diagonal and 40 off-
diagonal entries per row using the PETSc preallocation

function MatMPIAIJSetPreallocation(mat,100,
PETSC_NULL,40,PETSC_NULL) in the correspond-
ing file in the DUNE-FEM library \dune\fem\misc\
petsc\petsccommon.hh. This approach allocates far
more entries than are actually used, but the performance of the
matrix assembly is not significantly decreased.

The parallel efficiency of the matrix assembly drops down
to around 0.4 for small meshes and 0.5 for large meshes [see
Fig. 3(a)]. Even though the efficiency drops, the absolute times
to assemble the system matrix still improve on 60 parallel pro-
cesses (see Table III). The weak scaling shown in Fig. 3(b)
indicates that a load of around 0.5-million elements per proces-
sor is optimal.

F. Preconditioning

Multigrid methods are known to be very efficient solvers for
elliptic boundary value problems, such as the Laplace problem
solved in EIT. The underlying principle of multigrid methods
is to use several layers of coarseness to guide information ex-
change rather than having elements exchange information only
locally to their direct neighbors. Two general approaches to
multigrid methods are geometric multigrid (GMG) and alge-
braic multigrid (AMG). GMG relies on coarser finite-element
meshes with the same geometry, which are not easily created
in EIT because of the complicated geometry that cannot sim-
ply be coarsened. AMG on the other hand does not require
any geometric information and constructs the coarser levels
directly from the system matrix, which makes it very adapt-
able to different problems. With a reduced tolerance, multigrid
methods can efficiently be used as preconditioners for interative
solvers.

Since the problem (5) solved in EIT is a Laplace problem
with a compact perturbation, AMG is the most efficient pre-
conditioner we know of. Through PETSc, we have an interface
to two very good AMG implementations, BoomerAMG from
Hypre [23] and ML from Trilinos [24]. We compared the per-
formance of the two AMG implementations on two different
mesh sizes using the default settings of the respective precon-
ditioner. In Table IV, we list the performance of the two AMG
implementations with the default settings on two different sized
meshes. The assembly of the ML preconditioner is always faster
than that of BoomerAMG. ML preconditioning also results in
a faster convergence below 10−12 relative residual for the CG
solver in most of the cases.

The efficiency of the setup of the AMG preconditioner of
Trilinos was tested on two different sized finite-element meshes.
As expected, we see a better parallel performance on the large
mesh, due to the larger ratio of computation over communication
[see Fig. 4(a)]. The weak scaling [see Fig. 4(b)] indicates that
a load of approximately 0.5 − 1 million elements per processor
is optimal. Furthermore, it is interesting to compare the weak
scaling results of the ML assembly with the weak scaling results
for the CG solver [see Fig. 5(b)] and the iteration count of the
solver (see Table V), which is a measure of the mesh complexity.
The different mesh complexities explain the nonsmooth weak
scaling results.
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Fig. 3. Strong and weak scaling of the system matrix assembly—As expected, the efficiency of the matrix assembly drops when we move to more processors
since the ratio of computation to communication is getting smaller. On the larger mesh, this effect is slightly smaller than on the coarse mesh [see Fig. 3(a)]. For
Fig. 3(b), meshes were chosen such that the average load per process was approximately 300 000, 500 000 or one million elements. For half a million elements
per process, the ratio of communication over computation appears to scale best.

TABLE III
TOTAL TIME REQUIRED TO ASSEMBLE THE SYSTEM MATRIX

(ALL TIMES ARE IN SECONDS)

Mesh element no 2 m 15 m

1 process 27.89 231.41
2 processes 15.71 126.07
5 processes 6.56 54.04
10 processes 3.74 30.19
20 processes 2.23 16.93
40 processes 1.34 10.27
60 processes 1.11 7.3

G. Solver

Using the optimal multigrid preconditioning, we can use all
Krylov subspace solvers available in PETSc, which are conju-
gate gradients (CG), generalized minimal residual (GMRES),
and two CG algorithms for nonsymmetric problems BiCG and
BiCGstab. Since we have a positive symmetric system matrix,
we use CG. The stopping criterion for the CG solver was set
to a relative residuum of 10−12 . On the two million element
mesh, we observed large and reproducible fluctuations in the ef-
ficiency [see Fig. 5(a)], which most likely emerge from different
communication requirements and cache usage for the different
partitions. This effect is less visible on the large mesh since the
computation load is proportionally larger than the access to the
memory and communication between processors. The absolute
run times on 60 processors were 1.3 s on two million elements
and 9.6 s on 15 million (see Table VI). The weak efficiency
[see Fig. 5(b)] indicates that the optimal load per processor is
around 0.5 million elements. Comparing the strong scaling and
the weak scaling, we observe that the weak scaling is worse.
The reason for this is that the CG solver generally has a slower
convergence rate on the larger meshes (see Table V). The re-
quired iterations on larger meshes correlate very well with the
decrease in efficiency of the weak scaling [see Fig. 5(b)].

A possible alternative to using an AMG preconditioned CG
algorithm is to set up a direct solver. A direct solver takes very

long to assemble, but reduces subsequent solutions to mere for-
ward and back substitutions. Thus, if many forward solutions
are required (i.e., many electrodes are used) then a direct solver
might be faster. PETSc interfaces to the MUMPS direct solver
[25], using it as a preconditioner for the CG solver. This re-
duces each solution to one or two iterations. We found that the
assembly scales very badly to larger meshes and the CG solver
with MUMPS preconditioning does not scale well on many pro-
cesses (see Table VII). This observed weak scaling of MUMPS
is much worse than that of the MG preconditioners, meaning
that for large problems, the number of required forward solu-
tions for the direct solver to be faster increases (see Table VIII).
Furthermore, the strong scaling is worse than that of ML as well,
such that for many parallel processes AMG is always the better
choice (as indicated with the minus symbol in the last row in
Table VIII).

We can conclude that, for our application, a direct solver is
only worth considering on relatively small problems with many
electrodes, leading to more than hundred independent current
injections. Most applications will be solved faster by using ML
as a preconditioner.

H. Jacobian Calculation

The Jacobian matrix is computed based on the adjoint field
method (7). In our implementation, the computations are han-
dled by a struct JacobianRowCalculator, which com-
putes the local stiffness matrices of all elements in the con-
structor and stores them. When the solver is then iterating over
all lines of the measurement protocol, the member function
JacobianRowCalculator.getJacobianRow is called
with the voltage distributions for both drive and measurement
current as arguments. getJacobianRow is then iterating over
all elements and computing two matrix-vector products in each
step to obtain the local entry of the row of the Jacobian matrix.
This process requires no communication between processors at
all, meaning we would expect a very good parallel efficiency.
We observed that the efficiency is reliably larger than 1, going
up to more than 2 in one case [see Fig. 6(a)]. The computation
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TABLE IV
TIMES FOR THE ASSEMBLY OF THE PRECONDITIONER AND FOR THE SUBSEQUENT CG SOLUTION (ALL TIMES ARE IN SECONDS)

2 m elements 15 m elements

Assembly Solving Assembly Solving

Trilinos ML BoomerAMG Trilinos ML BoomerAMG Trilinos ML BoomerAMG Trilinos ML BoomerAMG

5 processes 1.1 4.4 3.5 4.4 13.8 55.0 79.0 64.7
10 processes 0.7 3.3 2.3 3.1 5.8 34.1 45.8 43.5
20 processes 0.62 5.54 0.60 2.34 3.3 36.7 22.3 24.7
40 processes 1.02 8.3 0.58 2.1 3.7 41.5 13.0 14.4
60 processes 4.8 10.5 1.3 2.53 4.5 39.4 9.6 10.5

Fig. 4. Strong and weak scaling of the assembly of the AMG preconditioner ML—Since the computational cost is larger on the fine mesh, the increasing
communication volume between parallel processes has a smaller influence on the overall efficiency of the preconditioner assembly when compared to the coarse
mesh [see Fig. 4(a)]. For Fig. 4(b), meshes were chosen such that the average load per process was approximately 300 000, 500 000, or one-million elements. The
weak scaling is a measure of how the ratio of communication over computation behaves when the code is applied to larger problems. With an average load of half
a million elements, the weak efficiency scales best for the ML preconditioner assembly. We see, however, that the complexity of the larger meshes reduce the weak
efficiency significantly.

Fig. 5. Strong and weak scaling of the assembly of the CG solver with ML preconditioning—On the small mesh, the run times show reproducible large
fluctuations, which are most likely caused by different cache efficiency for different partitions [see Fig. 5(a)]. On the larger mesh, where the computational load
is larger these cache effects are not visible. For Fig. 5(b), meshes were chosen such that the average load per process was approximately 300 000, 500 000, or
one million elements. An average load of half a million elements per processor leads to the optimal ratio of computation over communication. However, there is
a significant drop in efficiency on many parallel processes. This can be explained by different convergence rates of the solver on the different meshes we used, as
can be seen in Table V.
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TABLE V
ITERATIONS OF THE CG SOLVER ON DIFFERENT MESH SIZES—THE NUMBER

OF ITERATIONS ARE NOT DEPENDENT ON HOW MANY PARALLEL PROCESSES

WERE USED

Element no 335 k 656 k 1 m 2 m 5 m 8 m 15 m
Iterations 44 41 34 35 46 43 63

TABLE VI
TIME TAKEN BY THE CG SOLVER WITH ML PRECONDITION TO COMPUTE ONE

FORWARD SOLUTION (ALL TIMES ARE IN SECONDS)

Mesh element no 2 m 15 m

1 process 18.5 399
2 processes 8.3 169
5 processes 3.6 77
10 processes 2.25 45.8
20 processes 0.6 22.3
40 processes 0.58 13.0
60 processes 1.3 9.6

TABLE VII
PERFORMANCE OF THE MUMPS DIRECT SOLVER (ALL TIMES

ARE IN SECONDS)

2 m assem. 2 m solve 15 m assem. 15 m solve

1 proc. 1388.5 3.5 91375 48.9
10 proc. 258.0 0.94 28969 15.9
50 proc. 128.9 1.0 9469 16.3

TABLE VIII
NUMBER OF REQUIRED CONSECUTIVE FORWARD SOLUTIONS FOR MUMPS TO

BE FASTER THAN ML—ON 50 PROCESSES ML IS FASTER IN BOTH, SETUP AND

SUBSEQUENT SOLUTIONS

Mesh element no 2 m 15 m

1 process 93 261
10 processes 197 969
50 processes – –

time decreases up to the tested 60 parallel processes (see Table
IX). This is most likely due to a more efficient use of cache
memory. A reason to suspect this is that for the larger mesh the
efficiency keeps improving for more processors while it remains
around 1.4 for the smaller mesh, indicating that already all local
stiffness matrices are stored in cache. The weak scaling of the
Jacobian matrix computation [see Fig. 6(b)] indicates that the
optimal load per processor is around half a million elements.

I. Verification of Correct Performance

The correctness of the results of the forward problem was
verified in two ways. First, simulations were done on a mesh of
a cube of varying sizes, number of elements, conductivities, and
contact impedances of the two electrodes, which were placed on
opposite sides of the cube. The results were then compared to the
analytical solution and were precise up to computer precision.
To make sure that it worked correctly also with more compli-

cated shapes, the results of simulations on a head-shaped mesh
were compared both to the version of EIDORS currently used
in our group and to real measurements in a saline-filled tank.
They matched the computed results by computer precision and
the experimental results closely. Fig. 7 shows the resulting sim-
ulated electric potential distribution when a current is applied
from the front of the head to the back of the head. It is visible
how the potential drops at the highly resistive skull.

J. Application of the Solver to a Stroke Feasibility Simulation
Study and to Imaging of Fast Neural Activity in a Live Rat

To illustrate the range of applications, we envisage for the
presented software, we highlight two works using this solver.
The first is a simulation study evaluating the feasibility of detect-
ing two different types of stroke in the human head using EIT
measurements at different frequencies for the injection current
[7]. In the second application, the solver was used to compute
the forward solutions and the Jacobian matrix on a 7-million
element mesh of the rat brain, in order to reconstruct neural
activity from EIT measurements on a living rat’s brain [17].

The main difficulty in stroke type detection with EIT is that
the finite-element model never accurately matches the measure-
ment setup. These modeling errors can introduce large artifacts
into the reconstructed images. To distinguish the main sources
of artifacts, we simulated boundary voltages in the presence
of three different modeling errors on a fine mesh and recon-
structed the images on a coarse, modeling error free mesh. We
had to compute forward solutions at 12 different frequencies
for three different modeling errors with two different standard
deviations each, and this for ischaemic and haemorrhagic stroke
at two different locations in the head. This means that the study
involved the computation of 288 · N forward solutions, where
N is the number of independent current injections (in our case
31). To compute that many forward solutions on a 5-million
element mesh in MATLAB would have taken 288 · 30 min.
This estimate shows that simulation studies of this scale were
previously not feasible. Using the presented solver, the time
for the forward simulations was reduced to 288 · 1.7 min on a
workstation with two eight-core 2.4-GHz Intel Xeon CPUs with
20-MB cache each.

For EIT applications with high precision requirements, a very
fine mesh is required for the forward computations. In the sec-
ond application, the aim is to image fast neural activity in the
rat cortex using a planar electrode array, which is surgically
applied directly to the brain surface. A convergence study on
the required finite-element size was performed as follows. It-
eratively, the element size was reduced and ten meshes were
created using the same settings. Then, the differences in simu-
lated voltages on these meshes were compared to the differences
of the next coarser meshes. Once the variability between meshes
of the same resolution was of the same size than the variability
between different mesh sizes, the optimal mesh size was reached
(see Fig. 8). We found that the required mesh size for this appli-
cation is 8-million elements. Due to the large number of elec-
trodes, the measurement protocol (and thus, the Jacobian ma-
trix) was very long and to compute all forward solutions and the
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Fig. 6. Strong and weak scaling of the computation of one row of the Jacobian matrix—The efficiency of the computation of a Jacobian row increases, as we
increase the number of processors [see Fig. 6(a)]. This is most likely due to a more efficient usage of the cache. On the larger mesh, where the computational load
is larger these cache effects are more visible on many processors. For Fig. 6(b), meshes were chosen such that the average load per process was approximately
300 000, 500 000, or one million elements. The optimal load per processor is around half a million elements. We observe that the weak efficiency decreases on
the larger meshes, which is most likely due to the memory access. When the processes are not distributed over all cluster nodes evenly the weak efficiency drops
much earlier, which supports this claim.

Fig. 7. Simulated electric potential in a 2-million element mesh of the head
—A current is applied from the front to the back of the head and the computed
voltage distribution on a slice though the head mesh is shown. As expected, the
electric potential drops sharply at the skull due to its low conductivity.

Jacobian matrix in MATLAB would have taken around 16.5 h.
By using the new parallel forward solver, this was reduced to
just about an hour on the same workstation used for the first ap-
plication. Therefore, we were suddenly able to make reasonably
quick informed decisions about the quality of acquired data
and experimental paradigm changes. The iterative process of
improving experimental procedures was sped up by more than
a factor of 16 and for the first time high-quality images of fast
neural activity in the rat cortex using EIT could be reconstructed
with the methods outlined in [17] (see Fig. 9).

IV. PERFORMANCE

In this section, we evaluate the performance of the solver on
a more general level by looking at the total run time for a typical
EIT problem, comparing it to EIDORS and by comparing first-
order elements to second-order elements.

A. Total Run Times With First-Order Elements

A common forward problem in EIT with pairwise current
injection requires around 60 forward solutions for the unique
drive and measurement current injections and around 1000 cur-
rent protocol steps, i.e., 1000 lines in the Jacobian matrix. This

Fig. 8. Convergence of simulated voltages by reducing element size—The
maximal relative error in simulated boundary voltages on meshes with the same
element size (variability) was compared to the same error between meshes
with different element size (convergence). 0.1 mm was found to be the optimal
element size for this application.

means that we can estimate the total runtime for the solver by
adding up the times for the single components, which have to be
done once per execution (loading mesh partitions, finding elec-
trode elements and areas, system matrix assembly, assembly of
the preconditioner, computing local stiffness matrices used for
the Jacobian row calculations) with 60 times the time it takes
for one forward solution and 1000 times the time for one Ja-
cobian row computation. Based on the run times shown in the
previous sections, we estimated the total runtime for a common
application of the solver (see Table X). We found that the overall
efficiency scales very well (see Fig. 10).

B. Comparison to EIDORS

Since our group, like most others working in EIT, is currently
using EIDORS for the computations of the forward model, we
briefly want to compare the performance of the new parallel
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Fig. 9. Three-dimensional image of conductivity increase due to neural
activity—This image shows the conductivity increase caused by opening ion
channels during neural activity, which was induced by whisker stimulation of a
rat. The activity patterns match the literature and correlate with intrinsic optics
and local field potentials.

TABLE IX
TIME TAKEN FOR THE COMPUTATION OF ONE ROW OF THE JACOBIAN MATRIX

(ALL TIMES ARE IN SECONDS)

Mesh element no 2 m 15 m

1 process 1.44 20.3
2 processes 0.57 8.6
5 processes 0.22 3.8
10 processes 0.11 1.85
20 processes 0.057 0.84
40 processes 0.026 0.34
60 processes 0.017 0.16

TABLE X
TOTAL ESTIMATED RUN TIMES FOR A PROTOCOL WITH 1000 LINES (ALL TIMES

ARE IN SECONDS)

Mesh element no 2 m 15 m

1 process 3089.5 48644
2 processes 1335.6 22457
5 processes 498.2 6714.6
10 processes 254.3 3357.8
20 processes 117.1 1948.6
40 processes 78.3 1071.1
60 processes 86.7 842.4

solver with EIDORS on MATLAB. The new EIDORS ver-
sion 3.7.1 has recently been released and was used by us to
do the timings. For this section, we always compare the per-
formance of EIDORS on a 2-million element mesh of the head
with the performance of the DUNE solver on the same mesh in
serial (see Table XI). To make the comparison valid, we dis-
abled MATLAB’s multithreading routines by calling maxNum-
CompThreads(1). TheMATLAB version used was R2013a.

The standard solver of EIDORS is MATLAB’s backslash op-
erator, which takes approximately 1936 s for the direct solver to
be assembled and around 12.5 s for each unique current pattern
solved with it. The mumps direct solver is faster for each solve
(3.5 s) as well as for its assembly (1389 s). Comparing iterative

Fig. 10. Estimated efficiency of the total run time of a realistic EIT protocol—
Shown in this figure is the efficiency based on the estimated run times shown in
Table X. The solver scales very well on more processors, due to the very good
scaling of the Jacobian matrix calculation, which accounts for most of the run
time in serial.

TABLE XI
COMPARISON OF EIDORS/SUPERSOLVER IN MATLAB AND THE PRESENTED

C++ SOLVER (PEITS) (ALL TIMES ARE IN SECONDS FOR AN EXECUTION ON

ONE PROCESSOR)

MATLAB PEITS

Matrix assembly 128 27.8
Preconditioner assembly 0.8 5.4
CG solve step 39 18.5
Jacobian row calculation 0.3 1.4

solvers, we are using an incomplete LU decomposition as a pre-
conditioner for a conjugate gradient solver in MATLAB and the
ML AMG preconditioned CG solver in DUNE, since these two
combinations turned out to be the best for the respective solver.
While the MATLAB routine ilu was very quick (0.8 s), each
successive solve with pcg took 39 s. In DUNE, the assembly of
the AMG preconditioner took 5.4 s and each solve 18.5 s.

The assembly of the system matrix takes 128 s in EIDORS.
However, this is difficult to compare to the assembly of the
DUNE solver since EIDORS creates more data structures for
later use (plotting, inverse, ...) and also assigns the electrode
areas and ground indices differently. Our solver is less flexi-
ble and focuses only on the forward problem, which is one of
the reason why it is more than twice as fast for the matrix as-
sembly (27.8 s).

The mesh is loaded much faster in MATLAB (0.5 s) than in
our solver (61 s), which is because MATLAB uses a compressed
binary data format (.mat file), whereas our solver is currently
still using ASCII data files. We are looking to switch to binary
data files in future.

The calculation of a single row of the Jacobian is very difficult
to compare since EIDORS and our solver use completely differ-
ent approaches. While our solver uses the adjoint field method,
EIDORS applies the derivative form [26]. Thus, we compare
the total time it takes to compute a Jacobian matrix with either
1, 7 or 259 lines. In EIDORS, it took 2433, 2442, and 2817 s,
respectively. Our solver took 1.44, 10.1, and 373 s. We see, that
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the matrix-based approach of EIDORS is less dependent on the
number of protocol lines. However, the memory usage is much
higher and becomes inhibitive for bigger meshes and longer
protocols. For 2-million elements and 258 protocol steps, the
memory usage of EIDORS during the Jacobian calculation was
150 GB. This is why we also measured the time to compute the
Jacobian with a MATLAB-based adjoint field method, which
has been implemented in our group (the so-called SuperSolver
used for instance in [9]). This implementation turned out to be
extremely quick and much more memory efficient than the EI-
DORS implementation. The computation times for 1, 7, and 259
lines were 1.47, 4.3, and 77.3 s, which compares to our solver
on approximately four parallel processes. The reason that it was
significantly faster than our solver is that a generic derivative
matrix is constructed. For successive protocol lines, it is then
multiplied by the nodal potentials of the different forward solu-
tions to get the gradients. Our solver on the other hand iterates
over all elements and multiplies the local potentials with the
gradients element wise for each protocol line.

To summarize, for a typical EIT application with 60 forward
solutions and 1000 current protocol lines on a two-million ele-
ment mesh with an iterative solver EIDORS takes around 6469 s
and our DUNE solver on one processor around 3090 s.

C. Comparison With Elements of Second Order

It is very straight forward to switch to quadratic (or even
cubic) shape functions. We only need to change one environment
variable when compiling the solver. For smooth functions, the
use of higher order shape functions achieves the same precision
of the solution we get using first-order elements, but with a much
smaller mesh. In order to get a rough estimate of the ratio of
the required element sizes to get the same precision, we created
cube-shaped meshes with regular tetrahedral elements with size
h = 1/10, 1/20, 1/30, . . . for the cube with dimensions (1, 1, 1).
Then, we assigned two electrodes to the central square with
area 1/25 on opposite sides of the cube and applied a current
of 133 μA. The cube was assigned a uniform conductivity of
0.3 Sm−1 . We then plotted the convergence of the simulated
voltage between these two electrodes with respect to the element
size for first- and second-order polynomials and found that for
a similar accuracy the number of elements can be reduced by a
factor of 67 when second-order elements are used (see Fig. 11).
The slope of both curves is the same, because the solution is in
H1(Ω) and the convergence rate of second-order elements is,
therefore, the same than that of linear elements.

We do not know the problem dependence of this observed
shift between the two curves in Fig. 11, which makes it impos-
sible to generalize our finding. For some applications, it might
be very useful to switch to second-order shape functions, for
others, it might even slow down the code.

In our cube-shaped test example, we compared the run times
of the different parts of the solver on the 24 576 000 linear
element mesh with the run times on the 384 000 quadratic
element mesh. The result on the small quadratic mesh was
v2nd = 0.267988771 V and on the large mesh with linear
shape functions v1st = 0.267987305 V, meaning the mesh with

Fig. 11. Convergence of the simulated voltage with respect to the element
size—By using quadratic shape functions the same convergence can be achieved
with around 67 times less elements.

TABLE XII
RUN TIME COMPARISON FIRST- VERSUS SECOND-ORDER ELEMENTS (ALL

TIMES ARE GIVEN IN SECONDS)

Serial 20 processes

First Second First Second

Loading partitions 357.7 4.78 21.33 0.42
Matrix assembly 372.4 39.8 112.02 6.76
AMG assembly 38.8 6.52 14.53 1.70
Solve 64.2 14.6 10.61 3.27
Jacobian row 9.94 0.32 0.59 0.02

second-order shape functions was a bit closer to the value
the simulations converged to. All parts of the solver were
much faster on the small mesh of second-order elements (see
Table XII). This means that the use of second-order shape func-
tions reduces the computation time to achieve a certain precision
significantly in this test example. The PETSc preallocation was
set to 2500 diagonal and 2500 off-diagonal entries per row to
account for the electrodes on the 25-million element mesh.

V. DISCUSSION

We see from the results shown in the previous sections that
our solver significantly reduces the time needed for the compu-
tation of forward solutions in EIT. To facilitate the use of the
solver we provide MATLAB functions that write a mesh in DGF
format and call the solver with different settings. This makes it
possible to run the solver from a MATLAB code by calling just
one MATLAB function run_forward_solver(), which
returns the Jacobian matrix and the measured voltages.

The solver is actively used in our group for forward simula-
tions on 5–15 million element meshes. The computed results are
used for the image reconstruction from experimental data. Fur-
thermore, the code is applied to forward models with changing
settings such as electrode position, tissue conductivity, contact
impedances and more, with the aim to identify different sources
of image artifacts caused by modeling errors.

Especially in the use of adaptive mesh optimization, there is
room for improvements, such as using second-order elements
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in regions where the solution is in H2 or refining the mesh
around the electrodes based on local error estimates. DUNE-FEM

natively supports such local grid refinements.
In comparison to MATLAB, our solver is already faster in

serial in every step except for the computation of the Jacobian
matrix. This is where we see the largest potential speed improve-
ments, especially since this is the step that is repeated around
1000 times for a typical EIT application. We can think of sev-
eral approaches that can speed up the Jacobian computation.
One would be to use a coarser mesh where the Jacobian is com-
puted on (as shown in [10] and [27]), since most reconstruction
algorithms do not (and do not need to) rely on a fine mesh.
Another one would be to run the jacobian matrix calculation on
a GPU, where memory access is much faster. This has already
been shown to improve the speed significantly by Borsic et al.
[13].

REFERENCES

[1] B. Brown, D. Barber, and A. Seagar, “Applied potential tomography:
Possible clinical applications,” Clinical Phys. Physiol. Meas., vol. 6,
no. 2, pp. 109–121, May 1985.

[2] I. Frerichs, “Electrical impedance tomography (EIT) in applications re-
lated to lung and ventilation: A review of experimental and clinical activ-
ities,” Physiol. Meas., vol. 21, no. 2, pp. R1–R21, 2000.

[3] B. Brown, “Electrical impedance tomography (EIT): A review,” J. Med.
Eng. Technol., vol. 27, no. 3, pp. 97–108, 2003.

[4] D. Holder and T. Tidswell, “Electrical impedance tomography of brain
function,” in Electrical Impedance Tomography: Methods, History and
Applications, D. S. Holder, Ed. New York, NY, USA: Taylor & Francis,
2004, ch. 4, pp. 127–166.

[5] D. Holder, “Detection of cerebral ischaemia in the anaesthetised rat by
impedance measurement with scalp electrodes: Implications for non-
invasive imaging of stroke by electrical impedance tomography,” Clinical
Phys. Physiol. Meas., vol. 13, no. 1, pp. 63–75, 1992.

[6] A. Tidswell, A. Gibson, R. Bayford, and D. Holder, “Validation of a 3D
reconstruction algorithm for EIT of human brain function in a realistic
head-shaped tank,” Physiol. Meas., vol. 22, no. 1, pp. 177–185, Feb. 2001.

[7] E. Malone, M. Jehl, S. Arridge, T. Betcke, and D. Holder, “Stroke type
differentiation using spectrally constrained multifrequency EIT: Evalua-
tion of feasibility in a realistic head model,” Physiological Meas., vol. 35,
no. 6, pp. 1051–1066, Jun. 2014.

[8] A. Adler and W. Lionheart, “Uses and abuses of EIDORS: An extensible
software base for EIT,” Physiol. Meas., vol. 27, no. 5, pp. S25–S42, May
2006.

[9] L. Horesh, M. Schweiger, M. Bollhöfer, A. Douiri, D. Holder, and
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