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Abstract

Dual or multiple systems approaches are ubiquitous in
cognitive science, with examples in memory, perception,
categorization, cognitive development, and many other
fields. Dynamical systems models with multiple stable
states or modes of behavior are also increasingly used
in explaining cognitive phenomena. Catastrophe theory
provides a formal framework for studying the dynamics
of switching between two qualitatively distinct modes
of behavior. Here we present a parametric approach to
testing specific predictions about the dynamics of such
switches that follow from catastrophe theory. These so-
called catastrophe flags are bimodality, divergence, and
hysteresis. We show how these three flags can be tested
using (constrained) mixture and hidden Markov models
and provide an example of each using three different
data sets.

Keywords: hidden Markov model; mixture model; dy-
namical systems; catastrophe theory; stagewise develop-
ment; bimodality; divergence; hysteresis.

Introduction: competing states

In cognitive science, theories of learning, change, and
development often involve multiple systems or multi-
ple stages. During category learning, participants may
switch from rule-based to exemplar-based learning (Jo-
hansen & Palmeri, 2002), or switch between alternative
hypotheses about the category structure when learning
through hypothesis testing. In social psychology, people
adapt their attitudes when they become more involved
(van der Maas et al., 2003), sometimes leading to po-
larization. Piagetian developmental theory predicts that
children develop through a number of cognitive stages,
which are characterized by specific behavioral strategies
(Inhelder & Piaget, 1958).

van der Maas & Molenaar (1992) introduced catas-
trophe theory as a model to describe changes between
qualitatively different stages of development. The main
characteristic of the model is the existence of two qual-
itatively different behavioral modes, e.g. exemplar ver-
sus rule-based responding in categorization. As another
example, in apparent motion perception, the two behav-
ioral modes are perception of horizontal versus vertical
motion of the dots (Ploeger et al., 2002). Catastrophe
theory further describes the dynamics of changing be-
tween these behavioral modes as a function of so-called
control variables, i.e. variables that control which behav-

ioral mode is active. In the case of apparent motion, hor-
izontal versus vertical motion perception is determined
(among other things) by the aspect ratio of the rectangle
at which the dots are placed.

In the current paper we focus on three specific predic-
tions made by catastrophe theory. These three predic-
tions follow from any model that incorporates multiple
systems which generate qualitatively different behavior.
The first prediction is bimodality, meaning that data
are expected to be bimodally distributed. This really
is the pinnacle of having two behavioral modes: behav-
ior that is intermediate between the two modes can not
and does not occur. For example, in categorization, peo-
ple are assumed to use either an implicit or an explicit,
verbalizable strategy (Ashby et al., 1998). At any one
trial, only one of these strategies ultimately determines
the behavior, and not a combination of the two. Sec-
ond, catastrophe theory predicts divergence: bimodality
increases as a function of one of the control variables.
For example, in the case of attitudes, when people are
highly politically involved, they tend to have stronger
attitudes or opinions (positive or negative) in political
matters than when they are less involved (van der Maas
et al., 2003). Third, catastrophe theory predicts hys-
teresis, which stems from the persistence of behavioral
modes. Hysteresis is the effect that switching from one
behavioral mode to the other occurs at a different value
of the control variable depending on the direction of the
switch. For instance, in apparent motion, switches can
be induced by changing the aspect ratio of the rectangle
in which the points are organized. The aspect ratio at
which participants switch from perception of horizontal
to vertical motion is different from the aspect ratio in-
ducing a switch in the other direction (Ploeger et al.,
2002). For a more extensive description and discussion
of catastrophe theory and its predictions, see van der
Maas & Molenaar (1992).

Estimation methods and software are available for fit-
ting the full catastrophe model to observed data (Gras-
man et al., 2009). However, fitting the full catastrophe
model may be cumbersome and does not directly test
the hypothesis of hysteresis as sequential dependency
between data is not taken into account. As an alter-
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native, here we propose to use constrained mixture and
hidden Markov models to test the three predictions of
catastrophe theory directly. The proposed method has
wider applicability than to test catastrophe theory, as
hysteresis (and divergence) are expected in other, more
complex, dynamical systems as well. Whenever two sta-
ble modes of behavior exist, and there is, for example,
negative feedback between the modes, hysteresis is ex-
epected to occur.

Model
Central to catastrophe theory is the existence of a num-
ber of discrete, latent, cognitive states: e.g., we cannot
observe whether someone is using an exemplar versus
a rule-based strategy. Due to the latent nature of the
states, we propose to use unsupervised learning tech-
niques to infer their properties. In particular, we pro-
pose to use mixture and hidden Markov models, which
allow us to infer the state-conditional distributions of the
observed variables. By allowing the identity of a state
to depend on (observed) covariates, we can further de-
termine the dynamics of switching between the states.

In a mixture model, the probability density function f
of a collection of observed variables Y1:T = (Y1, . . . , YT ),
can be written as:

f(Y1:T |z1:T ,θ) =

T∏
t=1

∑
St

P(St|θpr, zt)f(Yt|St, zt,θobs)

(1)
where S ∈ {1, . . . , N} is a latent state or component, θ =
(θpr,θobs) is a vector of parameters for the state model
and response model respectively, and z1:T are covariates.
Note that the summation is over all possible realizations
of St ∈ S. For the response model, f(Yt|St, zt,θobs), we
use generalized linear models, such that we can write the
expected value (conditional upon the state), as e.g.:

E[Y |S = i, z] = g(β
(i)
0 + β

(i)
1 z) (2)

where g is a link function relating the linear prediction to
the expected value on the scale of the response variable
Y .

A hidden Markov model can be viewed as an exten-
sion of a mixture model, in which transitions between
mixture components (states) are modelled as a Markov
process. In a hidden Markov model, the probability den-
sity function of the observed variables can be written as:

f(Y1:T |z1:T ,θ) =
∑
S1:T

f(Y1:T , S1:T |z1:T ,θ)

=
∑
S1:T

P(S1|z1,θpr)f(Y1|S1, z1,θobs)×

T∏
t=2

P(St|St−1, zt−1,θtr)f(Yt|St, zt,θobs)

(3)

where the sum is taken over all possible realisations of
the state sequence S1:T ∈ ST , and θ = (θpr,θtr,θobs) is
a vector of parameters for the initial state model, tran-
sition model, and observation model respectively.

The main difference between a hidden Markov model
and a mixture model (1) is thus the addition of a tran-
sition model, P(St|St−1, zt−1,θtr), used to predict the
next state from the current state. In a mixture model,
the states are assumed to be independent. In the re-
mainder, we focus on models with two latent states, i.e.
S = {1, 2}. We can then use a binomial logistic regres-
sion model for the transitions:

P(St = 2|St−1 = j, zt−1,θtr) =
exp(η

(j)
0 + η

(j)
1 zt−1)

1 + exp(η
(j)
0 + η

(j)
1 zt−1)

(4)

Bimodality

Evidence for bimodality is obtained when a 2-state model
fits better than a 1-state model (note that the power to
detect this is larger when the state-dependent observa-
tion densities f(Y |S,θobs) are sufficiently different, e.g.
E[Y |S = 1] >> E[Y |S = 2]).

Divergence

To test for divergence, we can make each state-dependent
observation density dependent upon a control variable
(the “splitting” variable). Generally, this means that the
difference between the states increases as a function of
the control variable. Using a generalized linear model
(Equation 2), evidence for divergence is found when the

slopes of the covariate are different, i.e. β
(1)
1 6= β

(2)
1 ,

as this implies that the difference between the (state-
conditional) expected values increases along the values
of the covariate.

Hysteresis

Hysteresis means that behavioral states are persistent,
and hence the history of the system partially determines
the current state. Hence, a precondition for hysteresis
is that the data are dependent (in time) rather than
independent. In terms of a hidden Markov and mix-
ture models, this means that a hidden Markov model
should fit the data better than a mixture model, com-
pared by appropriate goodness-of-fit statistics. Persis-
tence of behavioral states means that the probability
of remaining in that state is larger than the probabil-
ity of leaving that state. In hidden Markov models,
this means that P(St = j|St−1 = j) > 0.5. When
a covariate or control variable has been measured, the
prediction of hysteresis can be translated into a spe-
cific hypothesis concerning the transition model param-
eters. Hysteresis is found when the value of z such that
P(St = 2|St−1 = 1, z,θtr) = .5 is different then the value
such that P(St = 2|St−1 = 2, z,θtr) = .5. In the model
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of Equation 4, the point at which the transition proba-
bilty is .5 is when:

P (St = j|St−1 = i, zt−1,θtr) = .5←→ zt−1 = −η
i
0

ηi1

The condition for hysteresis is thus1:

η
(1)
0

η
(1)
1

<
η
(2)
0

η
(2)
1

(5)

Estimation
The parameters θ in mixture and hidden Markov
models are generally estimated with the Expectation-
Maximization algorithm. This is an iterative algorithm
which, starting from initial values of the model param-
eters, iterates through two steps until convergence is
reached. In the Expectation step, the current values of
the parameters are used to compute the expected log-
likelihood function of the data (over all possible state
sequences), given the current values of the parameters.
In the Maximization step, this function is maximized to
obtain new values for the parameters. Specification and
estimation of general mixture and hidden Markov mod-
els is implemented in the R package depmixS4 (Visser &
Speekenbrink, 2010), which is used here to fit the models.

Example application I: testing
bimodality in the balance scale task

The first example we present concerns a test of bi-
modality in a classical Piagetian task, the balance scale
task. The substantive interest in these data is checking
whether there are multiple modes of behavior versus the
hypothesis that the performance differences are contin-
uous variations of a single underlying mechanism (In-
helder & Piaget, 1958; Siegler, 1981; Siegler & Alibali,
2005).

The data consist of four items completed by 779 partic-
ipants. The items are so-called distance items, in which
the number of weights on each side of a balance beam is
identical, and hence the distance to the fulcrum deter-
mines which side goes down. Figure 1 provides an exam-
ple of such a distance item. Participants were presented
with these items and asked whether the scale would tip
to the left, tip to the right, or was balanced. The data
used here are a subset of those presented and in Jansen
& van der Maas (2002).

Here we analyze the total number of correct responses
in four items; the frequencies of the sum scores are pro-
vided in Table 1, along with the mean age of the par-
ticipants with that score. Note the high frequencies at
0 and 4 items correct, which suggests that participants
either knew how to solve distance items, or they did not.

1When the inequality points in the other direction, this
may be due to having two repellent states, rather than stable
states.

Figure 1: Balance scale distance item.

0 1 2 3 4
participants 202 30 31 67 449
ages 9.1 10.9 10.6 11.9 13.1

Table 1: Sum scores of four items on the balance scale
task and the mean ages of participants with that score.

The natural choice of distribution for these sum scores
is the binomial, which is defined as:

f(k|n, p) =

(
n

k

)
pk(1− p)n−k, (6)

where n is the total number of trials, p is the probability
of success, and k is the number of successes, k = 0, . . . , n.
The number of trials n is a parameter of the binomial
distribution that is taken to be known. In this example
we have n = 4.

The model best suited to test the continuous varia-
tion hypothesis is a binomial (logistic) regression model,
in which (the logit of) the probability of success p de-
pends on one or more independent variables. Here we
use age as independent variable, which is used in a bino-
mial regression model.

Results show that age has a strong effect on the success
probability F (1, 777) = 345, p < 0.001. E.g., according
to this regression model, at age 6, the probability of suc-
cess on these 4 items of the balance scale task equals
0.153, whereas at age 16 this probability equals 0.955.

The alternative model to test whether behavior is bi-
modal rather than unimodal, is a 2-state mixture model.
As in the regression model, the component distributions
are binomial; that is, the mixture components are char-
acterized by different probabilities of success p.

The goodness-of-fit values of the regression model and
the 2-state mixture model are provided in Table 2. For
comparison, also a single state model is included. Table 2

model LL df BIC
1-state -1785.18 1 3577.01
2-state -900.84 3 1821.66
regression -1316.88 2 2647.07

Table 2: Goodness-of-fit statistics for 1 and 2 state bino-
mial mixture models fitted on the balance data. For com-
parison, also the goodness-of-fit of a regression model is
included with age as independent variable.
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indicates that the 2-state model is the optimal model for
these data. The parameters of the model are listed in
Table 3 and they have a clear interpretation. The states
represent correct versus incorrect strategies, respectively.
Close to 70% of participants use a correct strategy for
solving these items whereas the remainder uses an incor-
rect strategy.

state P(state) conditional
1 0.69 0.95
2 0.31 0.05

Table 3: Fitted parameters of the 2-state model of the
balance data. ‘Conditional’ is the component specific
probability of success for the binomial distribution.

Example application II: constrained
mixture model for attitude data

This example concerns divergence that is predicted by
catastrophe theory. This catastrophe flag means that the
difference between behavioral modes increases as a func-
tion of the so-called ’splitting’ variable of the model. To
make this somewhat more concrete, we use an example
from social psychology concerning the strength of atti-
tudes held by people. The ’splitting’ variable here is peo-
ples’ involvement with the issue at hand. When people
are more involved with a particular issue, the strength
of their attitudes is thought to increase, either in posi-
tive or in negative direction. When people are less in-
volved, their attitudes are thought to be moderate. The
data analysed concern a single attitude measured on a
five-point scale from ‘totally agree’ to ‘totally disagree’.
Highly involved people have somewhat more extreme at-
titudes than those that are less involved. These data are
from van der Maas et al. (2003) and they are available
in R-package cuspfit by Grasman et al. (2009).

To test for divergence, we use a mixture model in
which a participant’s attitude is modelled as a binomial
distribution. A comparison is made between two models;
in both, models the responses are modelled as a binomial
logistic regression model with strength of involvement
(high or low) as a predictor.

The 1-state model, i.e. a simple binomial regression
model, has an intercept of β0 = .35 and slope of β1 = .09.
The latter is non-significant, F (1, 1385) = 1.08, p > .2.

The estimated 2-state model shows that in one state
the effect of involvement on attitude is negative, while
it is positive in the second state. In particular, at low
involvement, both components have an average attitude
of 2.93. At high levels of involvement, one component
has an average attitude of 4.32, whereas the other com-
ponent has 2.31.

The BIC statistics for these models are 4165 and 4162,
respectively, indicating superior goodness-of-fit for the
2-state model. Hence, political involvement is a good
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Figure 2: Response times (RT), accuracy (ACC) and
relative pay-off values (Pacc).

‘splitting’ variable in the dynamics of attitude formation
and increasing political involvement leads to polarization
of attitudes.

Example application III: testing
hysteresis in the speed-accuracy trade-off

This example concerns hysteresis in a lexical decision
task under influence of a speed-accuracy trade-off. In
the lexical decision-making task, participants were re-
quired to judge whether a combination of letters formed
a word or not. Participants’ behavior was manipulated
by dynamically changing the reward that was paid for
fast versus accurate responding. When Pacc = 1, the
pay-off for accuracy was maximal, and there was no re-
ward for speed; conversely, when Pacc = 0, the reward
for accuracy was zero, and the reward for fast responding
maximal. The data analysed here are from Participant
A in Experiment 1 in Dutilh et al. (2011). Hysteresis
was also tested in these data in Visser et al. (2009); the
test for hysteresis used here is more general than was
used there. During the task, Pacc varied continuously
in a zigzag manner and the participant was shown the
reward after each trial such that behavior could be ad-
justed accordingly. The data consists of three separate
series of trials, with 168, 134, and 137 trials respectively;
Figure 2 shows the data of the first series.

A 2-state hidden Markov model was fitted to the data.
In this model, responses Y were multivariate, including
both accuracy (ACC) and response times (RT ). These
were assumed to be conditionally independent given the
states. For ACC, a Binomial distribution was used, and
for RT a Gaussian distribution; no covariates were in-
cluded for these responses. However, Pacc was assumed
to affect the transition between the states, modelled as
in Equation 4 with z = Pacc. The parameter estimates
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are given in Table 4. The parameter estimates clearly
support the intended interpretation of the 2-state hid-
den Markov model, with state S1 being the fast guessing
(FG) state and state S2 the slow and accurate stimulus-
controlled (SC) mode of responding. The 2-state model
(BIC = 564.87) clearly fitted the data better than a 1-
state model in which RT and ACC were regressed on
Pacc (BIC = 870.01). Importantly, the parameter es-
timates clearly support the presence of hysteresis. Ac-
cording to the model, the probability of switching from
the FG state to the SC state is 0.5 at Pacc = 0.46, while
the probability of switching from the SC state to the FG
is 0.5 at Pacc = 0.21.

state µ(RT ) σ(RT ) P(Ac) η0 η1
1 5.52 0.20 0.53 -4.22 9.13
2 6.39 0.24 0.90 -3.37 15.80

Table 4: Parameter estimates of the 2-state HMM.

A simple condition for hysteresis is dependence in the
data, which can be tested by comparing a 2-state mix-
ture model with a hidden Markov model. Hence, next
to the 1-, and 2-state HMMs, we also fitted a 2-state
mixture model. Table 5 has the goodness-of-fit for the
2-state mixture model as the ’ind’epence model and the
2-state HMM as the ’hyst’ model, as it is compatible
with hysteresis. The BIC values clearly indicate that
adding a transition model to the independent mixture
model improves the goodness-of-fit substantially.

The condition of hysteresis (Equation 5) concerns in-
equality of the ratios of the intercepts and slopes. Hence,
the third model we fitted is a model in which these ratios
are constrained to be equal. This is model ’no hyst’ in
Table 5. To test whether the ’no hyst’ model holds, a
log-likelihood ratio test was performed which is reported
in Table 5. The result is significant, χ2(1) = 52.44,
p < .001, indicating that the ratio constraint on the
parameters significantly decreases the goodness-of-fit of
the model, and hence the data support the hypothesis of
hysteresis.

model LL BIC #par χ2 ∆#par p
ind -430.8 904.3 7
hyst -249.2 553.2 9
no hyst -275.4 599.5 8 52.4 1 0

Table 5: Goodness of fit statistics for speed-accuracy
data models, see text for details.

Conclusion & Discussion

Catastrophe theory makes very specific predictions
about the dynamics of switching between different cog-
nitive states, and the resulting behavior. Here we have
shown how to test three essential predictions made by

catastrophe theory: bimodality, divergence, and hystere-
sis, in three different data sets. Two data sets contained
cross-sectional data which does not allow to model state
transitions. Using mixture models, we could still test
the catastrophe flags of bimodality and divergence for
these data. Clearly, these are necessary, but not suffi-
cient conditions for a dynamic systems model such as
the catastrophe model. Testing predictions about state
transitions derived from these models requires sequen-
tial observations from a single unit, such as in the last
example, where we tested for hysteresis with a hidden
Markov model.

The framework of catastrophe theory provides a strong
foundation to study the dynamics of changing behavior
by neccessitating the identification of control variables.
In social cognition, one of the control variables was po-
litical involvement. A second important control variable
is political orientation: right- versus left-wing van der
Maas et al. (2003). In the balance scale task, younger
children focus on just the number of weights on either
side of the balance beam and ignore the distance, while
older children tend to rely on both dimensions to de-
cide which side goes down, although typically they have
trouble integrating these dimensions correctly (Jansen &
Van der Maas, 2001; Jansen & van der Maas, 2002).

Hysteresis is a particularly interesting phenomemenon
predicted by dynamical systems models, such as catas-
trophe theory. Being able to straightforwardly test this
prediction, along with bimodality and divergence, pro-
vides the possibility of applying this framework in other
areas as well. We already mentioned categorization
learning: there clearly are two behavioral modes, ex-
emplar versus rule-based, that are associated with par-
ticular behavior. The variables that control whether one
or the other type of behavior occurs are to some ex-
tent known from earlier work. Bimodality of behavior
is found for example in Ell & Ashby (2006), as a result
of varying the degree of overlap between categories to
be learned. Developmental psychology offers a wealth
of examples where catastrophe theory can be applied.
An interesting example concerns the dimensional change
card sorting task, where lack of inhibition of prepotent
responses prevents children from switching to following
novel instructions (van Bers et al., 2011). Memory de-
velopment using mixture models is studied in Koppenol-
Gonzalez et al. (2013) and reasoning in Bouwmeester
et al. (2007).

In sum, we conclude that catastrophe theory provides
a strong theoretical framework for studying the dynam-
ics of switching between competing cognitive states and
their resulting behavior. Having straightforward tests
for a number of predictions made by catastrophe the-
ory by using mixture and hidden Markov models as we
have presented here, makes this framework available to
a larger group of researchers.
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