
 1 

Title:   Recent environmental change may affect accurate inference of extinction  1 

 2 

Running head: Accurately inferring extinction status  3 

 4 

Word count: 5,994 5 

 6 

Keywords: species loss, method comparison, environmental change, wild populations, 7 

microcosm 8 

 9 

Authors: 10 

Christopher F Clements* 11 

Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 12 

2TN, United Kingdom.  13 

Email: c.clements@shef.ac.uk, Tel: (+44)7708945975 14 

Ben Collen 15 

Centre for Biodiversity & Environment Research, University College London, Gower 16 

Street, London WC1E 6BT, United Kingdom 17 

Tim M. Blackburn 18 

Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 19 

4RY, United Kingdom and Distinguished Scientist Fellowship Program, King Saud 20 

University, P.O. Box 2455, Riyadh 1145, Saudi Arabia  21 

Owen L. Petchey 22 

Institute of Evolutionary Biology and Environmental Studies, The University of 23 

Zurich, Zurich, CH-8057, Switzerland 24 

 25 

*corresponding author 26 

  27 



 2 

Abstract 28 

Correctly classifying a species as extinct or extant is of critical importance if current 29 

rates of biodiversity loss are to be accurately quantified. Observing an extinction event is rare, 30 

so in many cases extinction status is inferred using methods based on the analysis of records 31 

of historic sighting events. The accuracy of such methods is difficult to test. However, recent 32 

experiments using microcosm communities suggests that the rate at which a population 33 

declines to extinction, potentially driven by varying environmental conditions, may alter our 34 

ability accurately to infer extinction status. We tested how the rate of population decline, 35 

driven by historic environmental change, alters the accuracy of six commonly used sighting 36 

based methods for inferring extinction, using data from small-scale experimental 37 

communities and recorded wild population extirpations. We assessed how accuracy of the 38 

different methods depends on rate of population decline, search efforts, and number of 39 

sighting events recorded. Although the rate of populations decline affected the accuracy of 40 

inferred extinction dates, so did the historic population size of the species; faster declines 41 

produced more accurate inferred dates of extinction, but only when population sizes were 42 

higher. Optimal Linear Estimation (OLE) offered the most reliable and robust estimates, 43 

though no single method performed best in all situations, and it may be appropriate to use a 44 

different method if information regarding historic search efforts is available. Importantly, we 45 

show that OLE provided the most accurate estimates of extinction when the number of 46 

sighting events used was >10, and future use of this method should take this into account. 47 

Data from experimental populations provide added insight into testing techniques to discern 48 

wild extirpation events. Care should be taken designing such experiments to more closely 49 

mirror the abundance dynamics of populations that suffer real world extirpation events.  50 

  51 



 3 

Introduction 52 

Reducing global biodiversity loss in the face of unprecedented population 53 

extirpation and species extinction has become a fundamental goal for conservation 54 

groups. However, whilst current extinction rates are thought to be much higher than 55 

those recorded in the fossil record (Barnosky et al. 2011), quantifying the exact rate 56 

of species loss, despite much invested effort, remains problematic (Fisher & 57 

Blomberg 2011; Clements et al. 2013). This is, in part, due to the difficulty of 58 

observing extinction, i.e., the absence of something that is otherwise rarely seen, and 59 

this difficulty has given rise to many techniques that attempt to allow historic 60 

extinction events to be inferred, rather than observed directly (Solow 1993b, 2005; 61 

Burgman et al. 1995; McCarthy 1998; Roberts & Solow 2003; Gotelli et al. 2011). 62 

Given the often limited information available on many species, such methods have 63 

often concentrated on inferring extinction based on historic sighting events data (e.g. 64 

Solow 1993a, 2005; Roberts & Solow 2003; Solow & Roberts 2003; McPherson & 65 

Myers 2009). Recent work has suggested that such quantitative methods could be 66 

used to inform decisions on whether to classify species as extinct (Collen et al. 2010), 67 

however the accuracy of these methods remains difficult to test. Traditionally such 68 

tests have been tackled with either data from wild populations that may have suffered 69 

local extinction events (e.g. Collen et al. 2010), or with data from simulated 70 

populations (e.g. Rivadeneira et al. 2009). Recently, we have used experimental 71 

microcosm communities to provide detailed abundance time series data for species 72 

where the date of extinction can be accurately observed (Clements et al. 2013). Such 73 

an approach allows one to test the accuracy of estimates because the actual date of 74 

extinction is precisely known, something that is rarely possible with wild populations. 75 
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The rate at which a population declines to extinction can play an important 76 

role in determining how accurately a method for inferring extinction performs 77 

(Rivadeneira et al. 2009; Collen et al. 2010; Clements et al. 2013). Where species 78 

persist at low density for a lengthy period of time (and thus are rarely observed), 79 

estimates are worse than when the species falls rapidly to extinction. Thus, historic 80 

pressures on a species (be those abiotic, such as temperature change or habitat loss, or 81 

biotic, such as an invasive species or disease) that increase the rate at which a species 82 

declines may alter our ability to judge accurately whether the species has in fact been 83 

lost, and what time frame that may have occurred over. 84 

Data that have been collected on wild populations have shown that both the 85 

identity of the species (and thus life history) as well as the nature of the threat can 86 

alter the rate of population decline (Weimerskirch & Jouventin 1987; Laurance et al. 87 

1996; Di Fonzo et al. 2013). For example, Laurence et al. (1996) showed distinct 88 

differences in the rates of rapid disease driven population declines of four species of 89 

rain forest dwelling frogs, whilst Weimerskirch & Jouventin (1987) recorded 90 

differences in the rates of population decline of Diomedea exulans, the Wandering 91 

Albatross, between islands, probably as a result of each island’s location in relation to 92 

fishing areas. Given the high rates of environmental change over the last 100 years 93 

(Crowley 2000) the potential for factors that govern the rates of a species’ decline to 94 

alter our ability to infer whether a species is extinct is of concern, and quantifying this 95 

effect is an issue that is may affect our current understanding of the scale of 96 

biodiversity loss. 97 

Here we utilise small-scale experimental communities to test whether there is 98 

a negative correlation between rate of population decline and the magnitude of the 99 

error of inferred extinction dates produced by six commonly applied methods. We 100 
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then applied the same techniques to eight historic wild population extirpations, to see 101 

whether the results produced when using the microcosm data may also apply to real-102 

world data. The experimental populations experienced various rates of environmental 103 

change, which altered their rate of their decline and time of extinction. The wild 104 

population data were selected to include a variety of rates of population decline driven 105 

by a number of different processes (including habitat loss, disease and extreme 106 

weather events). Given time series of the abundance of these experimental and wild 107 

populations we then generated time series of sighting events using three search 108 

regimes (Rivadeneira et al. 2009; Clements et al. 2013), and examined the effect of 109 

the rate of population decline, as well as the effect of search regime and the number of 110 

sighting events the calculations used, on the accuracy of inferred dates of extinction, 111 

and compare the robustness of the six techniques. Finally, we make recommendations 112 

about the use of such techniques in real-world scenarios, based on the results 113 

presented here. 114 

 115 

Methods 116 

Experimental set up and sampling 117 

Microcosms were lidded petri dishes (Ø 100mm, height 25mm) containing 118 

50ml of medium. The medium consisted of 0.05g/L of crushed protist pellets 119 

(Carolina Biological Supply, Burlington, NC), providing organic nutrients, and 120 

Chalkley’s solution (Thompson et al. 1988), containing essential salts. On day −14 121 

the medium was inoculated with the bacteria Bacillus cereus and Serratia marcescens 122 

and incubated at 20oC. On day -10, a volume of high-density stock culture containing 123 

~200 individuals of the ciliate bacterivore Loxocephalus sp. was added to each litre of 124 

medium. This culture was sampled every two days, and the experiment started (day 0) 125 

when the density of Loxocephalus had reached approximately the carrying capacity of 126 
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the medium (i.e. exponential growth had stopped).  On day zero the medium was 127 

homogenised, and 50ml added to each of 27 petri dishes (three replicate populations 128 

of nine temperature treatments). 129 

The temperature treatments comprised: one treatment kept at a constant 20oC 130 

for the duration of the experiment (treatment C), four treatments that were heated at 131 

different rates, and four treatments that were cooled at different rates (Fig. 1a). 132 

Cooling and heating were achieved by moving replicate populations between nine 133 

incubators set at 1.5oC increments from 14oC to 26oC. The four heated treatments 134 

were: 1) increasing 0.5oC/week (I0.5), 2) increasing 0.75oC/week (I0.75), 3) 135 

increasing 1.5oC/week (I1.5) and 4) increasing 3oC/week (I3). The four treatments 136 

that decreased in temperature (D) mirrored the heated, and were thus D0.5, D0.75, 137 

D1.5 and D3. 138 

Microcosms were sampled to estimate population abundances twice per week 139 

for 10 weeks. Sampling was based on the protocol of Lawler & Morin (1993); 140 

microcosms were homogenised by repeat pipetting of the medium, and then a known 141 

volume (0.1-0.3ml) extracted using a an adjustable-volume pipette. The individuals 142 

within this known volume were then counted under a stereoscopic microscope (7.5-143 

30x magnification), and the total population in the microcosm estimated. When 144 

densities became very low the whole microcosm was placed under the microscope 145 

and the individuals counted. A species was recorded as extinct if, on two consecutive 146 

sampling days, no individuals were observed after 5 minutes of searching. Previously 147 

this method has been shown to reliably identify when a species has gone extinct 148 

(Clements et al. 2013), and no populations that were initially recorded as extinct were 149 

re-observed at the next sampling occasion. All medium was replaced after counting, 150 

and any evaporative loss (checked with a balance) was replaced with distilled water. 151 
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 152 

Wild population data 153 

Data on population dynamics followed by extirpation events were collected 154 

from three sources: a literature search (using Google Scholar with search terms such 155 

as “extirpation”, “population extinction” and “extinction dynamics”), the Living 156 

Planet Database (Collen et al. 2009), and Fagan and Holmes (2006). From these 157 

datasets we selected eight time series (Parr 1992; Burrows et al. 1995; Laurance et al. 158 

1996; Fagan & Holmes 2006): one mammal (Lycaon pictus), four birds (Corvus 159 

hawaiiensis, Crex crex, Grus americana, Pluvialis apricaria), and three amphibians 160 

(Litoria nannotis, Litoria rheocola, Taudactylus acutirostris), each with at least seven 161 

recorded population abundances prior to a recorded extirpation event (a recorded 162 

population count of 0). These time series covered a range of rates of population 163 

decline from slow to fast (estimated by fitting linear regressions to the abundance 164 

data, Fig. 2), hypothesised to be caused by a variety of factors including extreme 165 

weather events, disease, habitat loss and degradation, and invasive species. These 166 

rates of decline ranged from the very rapid (e.g. Litoria rheocola, the Common Mist 167 

Frog) where approximately 40% of the initial population was lost per year, to the 168 

relatively slow (e.g. Crex crex, the Corncrake), where the population declined by 169 

roughly 16% of the initial population per year.  170 

 171 

Creating sighting events  172 

Abundance data from replicates of Loxocephalus where extinction was 173 

observed (all populations except those in the treatments D1.5 and D3, where no 174 

extinctions were recorded), and wild populations, were converted into sighting data 175 

based on the method proposed by Clements et al. (2013) (see below). To these records 176 
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of abundance through time three simulated search regimes were applied: (i) constant, 177 

(ii) increasing and (iii) decreasing effort. The “constant” search regime was simulated 178 

with search efforts (the fraction of the habitat search) of 0.01 to 0.95, in 0.01 steps, 179 

held constant through time. The “increasing” search regime had a randomly assigned 180 

initial search effort, and then increased by a random fraction at each time step, until 181 

the search effort reached 0.95 after which it remained constant. “Decreasing” 182 

mirrored the “increasing” search effort, but the fraction of the habitat decreased 183 

through time. These simulated search efforts at each point in time were then used to 184 

generate series of sighting events. Multiplying the search effort (the fraction of habitat 185 

searched) by the total number of individuals in the entire habitat gave the expected 186 

number of individuals observed. The actual number observed was drawn from a 187 

Poisson distribution with mean set to this expectation. 188 

As in Clements et al. (2013), these sampling regimes produced regular 189 

sighting events when search effort or abundance was high. However in reality this is 190 

probably unrealistic, as sampling of wildlife populations is often sporadic (Turvey et 191 

al. 2007). Thus, two search “regularities” were simulated, “regular” sampling (as 192 

above), and “irregular” sampling. Irregular sampling was implemented identically to 193 

the first, but with every time point where observations occurred having a 50% 194 

probability of being used. This was done for both the experimental and wild 195 

population data. All analyses present results that include data from both regular and 196 

irregular sampling, with the results of the effect of regularity of sampling on the 197 

accuracy of extinction estimates presented in Appendix S1. 198 

Hereafter we refer to the times at which sightings were recorded as “sighting 199 

events”, these are days in the experimental system, and months or years in the wild 200 

population data. At each of these points in time there are a number of observations 201 
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generated, which depend on the abundance of the population and the amount of the 202 

habitat searched; these are referred to as “sightings”. If there were less than four 203 

sighting events then estimates were not made. All methods for inferring extinction 204 

were tested with identical data each time a set of sighting events was produced.  205 

The sightings records derived above were used to test the six sighting-based 206 

methods for inferring historical extinction currently included in the R package 207 

“sExtinct” (Appendix S2). These methods do not explicitly take into account the 208 

search effort that generated a sighting events (although methods that do this do exist, 209 

e.g. Marshall (1997) & McCarthy (1998)). Thus, given that these methods will be 210 

applied where search efforts are inherently unknown, it is especially important to 211 

gauge their performance under various search efforts and drivers of predictive error. 212 

These will be referred to by simplifications of the function names in the R package, 213 

and are as follows: (i) Burgman (Burgman et al. 1995), (ii) OLE (Roberts & Solow 214 

2003; Solow 2005), (iii) Robson (Robson & Whitlock 1964), (iv) Solow1993.eq2  215 

(Solow 1993a), (v) Solow2005.eq7 (Solow 2005), (vi) Strauss (Strauss & Sadler 216 

1989). Very high numbers of sightings events caused the Burgman technique to fail, 217 

and so the number of sightings was converted to presence/absence data (i.e. an 218 

individual had been observed or not at that time point) for use with this technique. 219 

Of the methods included in the sExtinct package, three (Burgman, 220 

Solow1993.eq2 and Solow2005.eq7) calculate the probability that a species has gone 221 

extinct at a given point in time. For these methods the package tests the probability of 222 

extinction iteratively at each time point after the last sighting event, up until a given 223 

date (the “test.year”, see “sExtinct” help files). The date of extinction is then 224 

calculated as the date at which the probability of a species persisting falls below the 225 

alpha value. Typically for real world data the test.year will be set to the current year 226 
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(i.e. what is the probability that a species is extinct). Preliminary testing (not 227 

presented) suggested that the maximum extinction date for the microcosm system 228 

would not fall above day 300, and for the real–world extirpations not above the year 229 

2200, so we set the test.year conservatively at day 400 for the experimental data and 230 

2300 for the wild population data. For those methods that simple produce a point 231 

estimate of the date of extinction from a sighting record (OLE, Robson, Strauss) only 232 

estimates that were less than or equal to day 400 were included in the analysis. After 233 

the simulations had been run, we are able to show that the maximum estimated date of 234 

extinction for the microcosm data was day 225, and year 2061 for the real-world data, 235 

both well under the point at which extinctions were tested up to. 236 

Simulated samplings were run on the experimental and wild population data 237 

enough times to provide 500 extinction estimates for each combination of search 238 

regime and search regularity. For the experimental data the simulations were run 950 239 

times for each individual experimental population. This number was chosen because 240 

the constant search regime had a fixed number of search efforts (95, see above), and 241 

this was then repeated 10 times to generate a high number of extinction estimates. 242 

This was then mirrored in the increasing and decreasing regimes. In total, across the 243 

replicate populations, search regimes, search regularities, and number of sighting 244 

events, this produced 631,452 simulations where at least four sighting events were 245 

produced (and thus an extinction estimate could be made).  246 

Simulations were run on the wild population data in the same way, but 247 

because of the (generally) low population abundances, lack of replicate populations, 248 

and short observation periods, there were far fewer occasions where four sighting 249 

events were produced. Consequently simulations were run 3,800 times for each 250 

combination of search regime, number of sighting events and search regularity (four 251 
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times as many as the experimental simulation), except for decreasing search effort and 252 

irregular sampling, which was run 7,600 to produce sufficient numbers of estimates of 253 

extinction. In all this produced a total of 734,121 sets of more than four sighting 254 

events (approximately similar to the 631,452 produced by the simulations run on the 255 

experimental data).  256 

The outcomes of the different methods for inferring extinction were compared 257 

across the different search regimes and experimental treatments used. To assess the 258 

accuracy of each method, error was calculated as the difference between the inferred 259 

date of extinction and the observed date of extinction. Because the number and 260 

temporal distribution of sighting events were determined by the search regimes, all 261 

analysis were carried out on a subset of the data; 500 randomly selected extinction 262 

estimates from each search regime for each of the six methods for inferring extinction 263 

(3,000 estimates for each method). The wild population data covered a range of 264 

population decline rates, and a range of time spans that those declines were monitored 265 

over. Because of these different observation periods, error of inferred dates of 266 

extinction was normalised by dividing it by the minimum time between observations 267 

(for most species this was 1 year, but for some such as the Common Mist Frog, this 268 

was only four weeks). 269 

All simulations were carried out using the R statistical software (R 270 

Development Core Team 2013). In the main we assess the accuracy of estimates in 271 

terms of relative error (the distance from the inferred date of extinction to the 272 

observed date of extinction, split into overestimation and underestimation of the 273 

extinction date). We look at the frequency and magnitude of overestimation and 274 

underestimation when assessing the overall robustness of each method.  275 

 276 



 12 

Results – experimental data 277 

 278 

Effects of environmental change 279 

The rate and direction of temperature change altered the rate at which 280 

populations declined (Fig. 1b); warmer treatments produced faster rates of extinction, 281 

and cooler treatments slower. These environmentally driven rates of decline affected 282 

the accuracy of estimates, with mean error of estimates tending to be higher in cooler 283 

treatments, and lower in warmer treatments (Fig. 3). In general this effect was most 284 

noticeable in the change in the accuracy of underestimates of extinction, with all 285 

methods except Solow2005.eq7 showing a decrease in the mean error of 286 

underestimates at warmer temperatures.  287 

The proportion of underestimates to overestimates of the extinction date was 288 

also affected by the treatments, with, in general, warmer treatments having a greater 289 

proportion of overestimates than cooler treatments, although the opposite was true for 290 

Solow1993.eq2 and Solow2005.eq7. 291 

 292 

Effects of search regime 293 

The effects of search regime and number of sighting events used (below) were 294 

calculated across data from the seven temperature treatments where extinction 295 

occurred. Search regime dramatically altered the accuracy of estimates (Fig. 4). For 296 

half of the methods (OLE, Solow1993.eq2, Strauss) error was minimised when the 297 

search regime was either constant or increasing, and the greatest error was generated 298 

when the search regime was decreasing (Fig. 4). For OLE and Solow1993.eq2 the 299 

vast majority of the error generated by decreasing search effort was underestimates of 300 
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the date of extinction. Solow2005.eq7 produced no estimates of extinction when 301 

search efforts were increasing.  302 

Burgman, Robson, and Strauss all showed similar patterns of error, with the 303 

greatest magnitude of overestimates occurring when the search regime was either 304 

constant or increasing (this error was typically much greater than OLE, 305 

Solow1993.eq2 or Solow2005.eq7), and the greatest magnitude of underestimates 306 

occurring when search effort was decreasing.  307 

 308 

Effects of number of sightings used 309 

The number of sighting events (time points at which sightings were recorded) 310 

used to infer extinction altered the accuracy of all of the methods tested (Fig. 5). In 311 

general the more sighting events used, the lower the mean error, this was especially 312 

true for underestimates of the date of extinction, which, across all methods, increased 313 

in accuracy as the number of sighting events used increased. In general, the greatest 314 

accuracy of estimates was achieved when the number of sighting events was greater 315 

than 10, and this was especially noticeable with OLE, Solow1993.eq2, and 316 

Solow2005.eq7. The Robson method was excluded from this analysis, as it uses only 317 

the last two recorded sighting events to estimate extinction.  318 

 319 

Robustness of methods  320 

The method used had a large impact on the accuracy of estimates (Fig. 6a). 321 

Mean absolute error (mean error normalized to positive values) was calculated for 322 

each method across all search regimes, and temperature treatments, to give an 323 

indication of each method’s applicability to real-world data (where information of 324 

search effort and rates of extinction are usually unknown). OLE produced the lowest 325 
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mean error (7.9 days), with Solow2005.eq7 also having relatively low error (9.1 326 

days). All other methods produced mean errors >10.4 days, with the greatest mean 327 

error associated with estimates made using Burgman (19.1 days). All methods, except 328 

Solow2005.eq7, inferred extinction to have occurred between day 0 and day 400, the 329 

last possible extinction date was day 70, in a high proportion of simulations (>0.999, 330 

Fig. 6a). OLE, Solow1993.eq2 and Solow2005.eq7 all produced less mean error than 331 

when a random method was selected for each inference of extinction, but more mean 332 

error than when method that produced the lowest error for each inference of 333 

extinction was selected (Fig. 6a).  334 

When positive and negative errors are plotted separately, instead of being 335 

normalised to positive values, it becomes clear that most methods are prone to either 336 

overestimation or underestimation of the date of extinction (Fig. 6b). In some cases 337 

this bias is dramatic: Solow1993.eq2 and Solow2005.eq7 underestimate the date of 338 

extinction 99% and 92% of the time respectively, whilst Strauss, Robson and 339 

Burgman all appear to overestimate extinction (infer extinction to have occurred after 340 

it has already happened) more than 79% of the time (Fig. 6b). Only OLE shows little 341 

bias in the frequency of overestimation to underestimation. The magnitude of these 342 

errors is highly dependent on the method; however, in most cases the magnitude of 343 

error is consistently weighted to either underestimation or overestimation, with the 344 

exception of Robson, which is roughly evenly distributed (Fig. 6b). In many instances 345 

the difference in the magnitude of the mean error is large, for example OLE tends to 346 

have greater error when the estimate is an underestimate, rather than when it is an 347 

overestimate. 348 

 349 

Results – wild population data 350 



 15 

Effect of rate of population decline 351 

The decline dynamics of the species altered the accuracy of inferred dates of 352 

extinction, but the relationship between the rate of decline and accuracy was 353 

dependent on the method used (Fig. 7). A general pattern of decreased accuracy with 354 

faster rate of population decline is apparent in all methods except Robson, which 355 

showed a decrease in mean error as populations declined at faster rates (Fig. 7). For 356 

OLE, Solow1993.eq2 and Solow2005.eq7 this pattern was driven in the main by an 357 

increase in the magnitude of the error associated with underestimates of extinction, 358 

whilst for Burgman the opposite is true (Fig. 7). Strauss showed an increase in the 359 

magnitude of the error associated with both overestimates and underestimates of 360 

extinction as populations declined more rapidly. Interestingly OLE, Solow1993.eq2, 361 

Solow2005.eq7 and Strauss all show very similar patterns of error across the different 362 

species.  363 

Some species had consistently large error associated with their inferred dates 364 

of extinction across the majority of the methods tested (notably the Waterfall Frog, 365 

which tended to have an inferred extinction date significantly and consistently after 366 

the actual date of extinction, Fig. 7). No species had consistently low errors estimate 367 

error, although the Corncrake and Hawaiian Crow had low error in all estimates save 368 

those made by Robson (Fig. 7). 369 

 370 

Discussion 371 

We show that the rate at which a population has declined may influence the 372 

accuracy with which we can infer when that population has gone extinct. Previously it 373 

has been suggested that more rapid rates of decline may facilitate accurate inference 374 

of extinction (Rivadeneira et al. 2009; Clements et al. 2013), and this is indeed seen 375 
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with some inference methods using data generated from microcosm communities. 376 

However, when using data from wild populations the opposite is often observed, with 377 

species that decline slowly typically having less error associated with inferred dates of 378 

extinction. In line with previous studies (Rivadeneira et al. 2009; Clements et al. 379 

2013), we find that the search regime can strongly influence the accuracy of 380 

estimates, but that most important appears to be the inference method used, and that 381 

in general OLE (Solow 2005) is the most accurate and potentially most widely 382 

applicable of the methods tested. 383 

The rate at which populations decline to extinction may vary based on 384 

generation time and reproductive output, as well as rates of biotic and abiotic 385 

environmental change (Fig. 1b, 2). We show that, whilst different rates of population 386 

decline can alter the accuracy of estimates, the nature of this effect is not necessarily 387 

consistent across different sources of data (Fig. 3, 7). Data from experimental 388 

populations produces results similar to those previously observed (Clements et al. 389 

2013); more rapid rates of population decline, driven by environmental change, lead 390 

to more accurate estimates of extinction time. However, this was dependent on the 391 

identity of the method used, probably due to the different assumptions underlying 392 

each of the methods (Appendix S2), and consequently how each method predicts the 393 

probability of extinction changes through time (Appendix S5). For example, 394 

Solow2005.eq2 does not predict extinction where search efforts have increased over 395 

time, probably because the method assumes the pre-extinction sighting rate decreases, 396 

an assumption clearly broken when search effort increases over time. Burgman on the 397 

other hand consistently overestimates extinction when search efforts are increasing or 398 

constant, however this is likely to be in part due to the need to reduce high numbers of 399 
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sighting to presence and absence data. When there are low numbers of sightings at 400 

each time point this method may perform better than is suggested by the results here. 401 

 It seems unlikely that such results will be particular only to extinctions driven 402 

by directional environmental change (as in the microcosms), as previous work using 403 

data from modeled populations has shown similar findings (Rivadeneira et al. 2009). 404 

Data from wild population extirpations, however, often show an opposing pattern, 405 

with increasing error of estimates when the rate of population decline was rapid (Fig. 406 

3). The differing results generated using microcosm data and those from real world 407 

population extirpations may appear conflicting. This could be driven by the difference 408 

between the drivers of extinction (directional environmental change in the 409 

experimental set up and a variety of pressures in the wild population data), but is 410 

more likely to be driven by an interaction between the way sighting events are 411 

produced, and the (generally) lower abundances of the wild populations over short 412 

observation periods (Fig. 2, Appendix S3). When population abundances are low, and 413 

observation periods are short (e.g. the Corncrake, Fig. 2), there are only a limited 414 

number of possible times at which sighting events can be produced. This means that, 415 

unlike the microcosm data, there is limited time over which wild populations can 416 

produce temporally sporadic sightings. Sighting events are further reduced by 417 

decreasing search efforts, irregular sampling, and because some methods require at 418 

least four sighting events are required to infer extinction. Given that widely 419 

temporally spaced sighting events tend to produce estimates long after a population 420 

has been observed to go extinct, there are fewer opportunities for poor estimates of 421 

extinction to be produced. Consequently, when there are a small number of sighting 422 

events that are closely clustered the inferred date of extinction cannot fall far from the 423 

observed extinction event, a different scenario to when the only the most recent 424 
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sighting events are used, as these can be widely spread in time (Fig. 5). This 425 

highlights a problem found in many records of contemporary wild population 426 

extirpations: they are both spatially and temporally limited. However, real historic 427 

sighting events may cover relatively long periods of time, with potentially a relatively 428 

high number of sighting events, a case in point being the most recent sightings of the 429 

dodo: 1598, 1601, 1602, 1607, 1611, 1628, 1628, 1631, 1638, 1662 (Roberts & Solow 430 

2003). Consequently, we suggest that data from microcosm experiments may in fact 431 

be far more suitable for testing methods of inferring extinction, not only not only 432 

because the date of extinction can be accurately gauged (Clements et al. 2013), but 433 

because sighting records more akin to those found historically can be produced than 434 

are feasible using short abundance data sets from wild populations. Sighting records 435 

produced using microcosm data must then be compared to those typically found in 436 

real-world scenarios to see whether such sighting records are appropriate. When 437 

designing future microcosm-based experiments the conditions should be such that 438 

lower population abundances through time are produced to more accurately reflect 439 

wild populations declines, achieved by using lower temperatures, lower nutrient 440 

levels, or smaller habitats.  441 

The rate and form with which a population declines, and historic search 442 

efforts, are both significant drivers of the temporal distribution of sighting events, 443 

and, consequently, both are important factors in determining the accuracy of inferred 444 

dates of extinction (Rivadeneira et al. 2009; Collen et al. 2010; Clements et al. 2013). 445 

To illustrate this conceptually, imagine a situation where a population declines slowly 446 

to extinction, but search efforts slowly increase, potentially due to increasing concern 447 

for that species; a constant frequency of sighting events could result, whilst masking 448 

the decline of a population up until an abrupt extinction event. Conversely, 449 
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populations that crash from high abundances to extinction over a very short time 450 

period (e.g. Euphydryas editha, Thomas et al. 1996) may have high numbers of 451 

sighting events prior to extinction. However, sighting records are typically produced 452 

by sporadic chance observations of a species, often as a byproduct of some other 453 

endeavor, rather than systematic searches for an endangered species (Roberts & 454 

Solow 2003; though see Turvey et al. 2007). Gauging historic search efforts is 455 

therefore likely to be difficult. In real world terms, this means that appropriate choice 456 

of which method to apply, and the number of sighting events to use, are likely to be 457 

the two main ways in which error can be minimized. Identifying techniques that 458 

provide robust, accurate estimates over a variety of different potential drivers of error 459 

is thus of critical importance.  460 

We find the method that produces the lowest mean error among our tests is 461 

OLE (Roberts & Solow 2003; Solow 2005), and that this pattern holds for both the 462 

experimental and wild population data (Fig. 6, Appendix S3). It also exhibits little 463 

bias towards either overestimating, or underestimating the date of extinction, although 464 

error in underestimates tends to be larger than that associated with overestimates. In 465 

addition, and unlike some other methods (notably Solow2005.eq2), OLE infers 466 

extinction to have occurred in a high proportion of the simulations (Fig. 6a, S3). This 467 

means that for many real-world situations, where historic search efforts and rates of 468 

population decline remain unknown, OLE should be regarded as the most reliable of 469 

the six methods tested here. Of particular importance to the read-world application of 470 

this method is our finding that using OLE with ten or more sighting events typically 471 

produces the most accurate estimates of extinction. This contradicts the widely held 472 

belief that OLE should be used with the 5 most recent sighting events only (Solow 473 

2005), and necessitates a shift in how this method should be used in the future.  474 
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In situations where the search effort decreases through time, OLE (and in fact 475 

the majority of methods tested here) does poorly (Fig. 4). This is probably a function 476 

of infrequent sighting events that are not representative of actual population declines 477 

(e.g. sighting frequency declines rapidly, driven by search effort rather than 478 

population declines), and this pattern is often exacerbated when sampling is 479 

infrequent. The Robson and Strauss methods are the exception to this rule, as both 480 

inferred extinction in a high proportion of simulations, whilst performing better than 481 

the other four methods tested when search effort is decreasing and sampling is either 482 

regular or irregular (Fig. 4, 6a, Appendix S1). This greater accuracy is almost 483 

certainly cause by their tendency to overestimate the date of extinction in most other 484 

circumstances (Fig. 6b), making them less appropriate for use where search efforts are 485 

constant or increasing (Fig. 4). If there was some indication that the search effort 486 

through time that accompanied a series of historic sighting events had declined, then 487 

choosing either Robson or Strauss as an alternative to OLE could be appropriate. 488 

Where a more detailed knowledge of sampling intensity over time is known, other 489 

methods may be more appropriate than those tested here, for example search effort 490 

through time may be explicitly accounted for in the methods proposed by Marshall 491 

(1997) and McCarthy (1998). Such methods have been show to perform well where 492 

there are reasonable estimates of search intensity (Rivadeneira et al. 2009).  493 

However, the availability of information on historic search efforts is often 494 

lacking, a function of the stochastic nature of sighting events, and potential solutions 495 

for effectively selecting extinction estimators in the absence of this information have 496 

previously been suggested (Vogel et al. 2009). For example the use of L-moment 497 

diagrams to assess how well the assumptions of each method are met by the 498 

underlying distribution of historic sighting events could be implemented (Vogel et al. 499 
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2009). Testing L-moment approach using experimental data with known extinction 500 

dates, and varying rates of species decline, could form an interesting future direction 501 

for the selection of such sighting based methods of extinction.  502 

In conclusion, to accurately gauge the current rate of biodiversity loss we must 503 

be able to reliably classify a species as either extinct or extant, however many factors 504 

may influence our ability to infer extinction status correctly, not least the choice of 505 

inference method. In an ideal situation methods could be selected based on their 506 

strengths and weaknesses. Unfortunately, this is probably an unrealistic scenario 507 

given the often-poor knowledge of important factors such as search effort and rate of 508 

population decline. Consequently, methods should be applied that are robust to a 509 

variety of drivers of uncertainty. This work shows that in the majority of cases OLE 510 

(Roberts & Solow 2003; Solow 2005) provides the most accurate estimates of the 511 

extinction of experimental and wild populations. Importantly, and contrary to 512 

previous work (Solow 2005), we show that the accuracy of OLE improves as the 513 

number of sighting events used increases, and that ideally one should infer extinction 514 

using this technique with a minimum of 10 sighting records. Using such a robust 515 

technique will allow more accurate inference of the current extinction status of 516 

species than would be possible if one were to pick one of the six methods tested here 517 

without any prior knowledge. However, in certain circumstances (especially when 518 

historic search efforts have been decreasing and searching has been irregular) inferred 519 

dates of extinction should be treated with care. If there was an indication that this had 520 

occurred, using either Robson (Robson & Whitlock 1964) or Strauss (Strauss & 521 

Sadler 1989) instead could be appropriate. Where greater information on search 522 

efforts is available, techniques that explicitly account for search intensity should be 523 

considered (e.g. Marshall 1997; McCarthy 1998). 524 
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