
European Journal of Operational Research xxx (2014) xxx–xxx
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization
Heuristics and lower bounds for the simple assembly line balancing
problem type 1: Overview, computational tests and improvements
http://dx.doi.org/10.1016/j.ejor.2014.06.023
0377-2217/� 2014 The Author. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

⇑ Tel.: +44 7440153248.
E-mail address: t.pape@ucl.ac.uk

Please cite this article in press as: Pape, T. Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, comput
tests and improvements. European Journal of Operational Research (2014), http://dx.doi.org/10.1016/j.ejor.2014.06.023
Tom Pape ⇑
Clinical Operational Research Unit, University College London, 4 Taviton Street, WC1H 0BT London, UK

a r t i c l e i n f o
Article history:
Received 24 November 2012
Accepted 19 June 2014
Available online xxxx

Keywords:
Heuristic
Lower bound
Assembly line balancing
Reduction technique
Partitioning problem
a b s t r a c t

Assigning tasks to work stations is an essential problem which needs to be addressed in an assembly line
design. The most basic model is called simple assembly line balancing problem type 1 (SALBP-1). We pro-
vide a survey on 12 heuristics and 9 lower bounds for this model and test them on a traditional and a
lately-published benchmark dataset. The present paper focuses on algorithms published before 2011.

We improve an already existing dynamic programming and a tabu search approach significantly. These
two are also identified as the most effective heuristics; each with advantages for certain problem char-
acteristics. Additionally we show that lower bounds for SALBP-1 can be distinctly sharpened when merg-
ing them and applying problem reduction techniques.
� 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Introduction

Assembly lines are a common way to organise mass production
of standardised products. They consist of ordered stations along a
conveyor belt to which a set of tasks is assigned to. The cycle time
determines how much time the stations’ workers and/or machines
have to fulfil their tasks before passing on the workpiece to the
next following station.

The simple assembly line balancing problem type 1 (SALBP-1) is
a fundamental and well-studied problem of assembly line design
(Baybars, 1986; Scholl, 1999). The tasks j = 1, . . . ,n are defined by
task times tj and their positions within the precedence graph.
The goal is to minimise m as number of loaded stations given a
fixed cycle time c. A list of all used symbols can be found in Table 1.
Fig. 1 illustrates SALBP-1 exemplarily. The nodes (tasks) of the pre-
cedence graph are indexed from 1 to 8 and above them stand their
task times tj. For SALBP-1 a solution is feasible if (i) the tasks of
each station do not have a task time sum larger than c and (ii)
no direct or indirect predecessor of any task j is assigned to a later
station than j is assigned to. The shaded regions identify a possible
feasible solution with 4 stations. If one turns around the arrows’
directions in the precedence graph, one receives the reverse prob-
lem. A solution of the reverse problem (backward direction) is
always a feasible solution of the original SALBP-1 (forward direc-
tion) after turning around the station order.
Many general assembly line balancing problems (GALBPs) base
on this simple logic and extend it, for example, with ergonomic
considerations, space restraints and mixed-model production.
Therefore algorithms should be analysed properly on their effec-
tiveness on SALBP-1 before adapting them to more sophisticated
GALBPs. Comparing the effectiveness of procedures only with the
results reported in their original papers may be distorting due to
different computational environments, incomparable CPU times,
or different datasets. This explains the need for thoroughly con-
ducted comparing studies. By now those exist only for some exact
procedures (Baybars, 1986; Scholl & Klein, 1999), simple algo-
rithms (Ponnambalam, Aravindan, & Mogileeswar Naidu, 1999)
and priority rules (Otto, Otto, & Scholl, 2014; Scholl & Voß, 1996).

SALBP-1 is NP-hard (Karp, 1972), so that heuristics are essential
to obtain upper bounds for problems. Furthermore in order to
assess the quality of found solutions, lower bounds methods are
important in integer optimisation. Closing the research gap by a
comparing study of upper and lower bounds for SALBP-1 is the first
and main goal of this paper.

The second goal is the improvement of some already-known
procedures, namely tabu search, dynamic programming, lower
bound 7 and 8, as well as SALBP-1 reduction techniques. It will also
be discussed how to use problem reduction techniques for sharp-
ening lower bounds.

As benchmark dataset this study uses the collection of 269
instances from Scholl (1993) as well as the new systematically-
generated 100-tasks and 1000-tasks problems from Otto, Otto,
and Scholl (2013) denoted as SCHOLL, OTTO-100 and OTTO-1000,
respectively, in the following. By now, there has not been thor-
ational

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.ejor.2014.06.023
http://creativecommons.org/licenses/by/3.0/
mailto:t.pape@ucl.ac.uk
http://dx.doi.org/10.1016/j.ejor.2014.06.023
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor
http://dx.doi.org/10.1016/j.ejor.2014.06.023

Table 1
Symbols for SALBP-1.

c Cycle times
j Index of the tasks
J(a, b] Set of all tasks with a < pj 6 b
k Index of the stations
m Number of stations
n Number of tasks
pj tj/cj

P�j
� �

Pj
(Direct) predecessors of j

S�j
� �

Sj
(Direct) successors of j

Sk Load of station k
tj Task time of j

Fig. 1. SALBP-1 with a grey-shaded solution.

2 T. Pape / European Journal of Operational Research xxx (2014) xxx–xxx
oughly investigated in how far the success of SALBP-1 algorithms
depends on the problem properties. Finding an answer to this
question is the paper’s third goal.

The article is organised as follows: Section 2 outlines the ‘‘Gen-
eral idea’’ of each examined heuristic briefly, states some ‘‘Experi-
ence’’ the author made during implementation and describes
methodical improvements for some approaches. The ‘‘General
ideas’’ require some knowledge about standard solution proce-
dures in operational research and the ‘‘Experience’’ can usually
not be fully understood without having read the original papers
before. Section 3 explains the improvements proposed for lower
bounds. Section 4 reports the computational result. Section 5 sum-
marises and discusses the main findings.
2. Heuristics

2.1. Falkenauer and Delchambre (1992): GA-FD

General idea: Falkenauer and Delchambre designed a genetic
algorithm (GA) in which the genes are the station loads of the solu-
tion (chromosome). Thereby the genes on the chromosome are not
necessarily ordered in the sequence of the stations in the final solu-
tion. Instead the precedence relations between the genes are kept
in an additional genes’ precedence graph. This encoding technique
is called group encoding. Falkenauer and Delchambre apply some
of the usual genetic operators on the genes to obtain improved
children. Thereby they use a fitness function which rewards well-
filled stations more than it punishes less filled ones in a solution.
After crossover the children become usually infeasible since tasks
are assigned to more than one station and the precedence relations
are violated. A complex healing process must follow therefore.

Experience: Falkenauer and Delchambre’s proposed strategy to
make children feasible (eliminating cycles in the genes’ precedence
graph) needed often more than 500,000 iterations (>1 minute CPU
time) on OTTO-100 just to obtain one new solution. In our experi-
ments, the time limit was often reached before repairing the chil-
dren of the first crossover.
Please cite this article in press as: Pape, T. Heuristics and lower bounds for the
tests and improvements. European Journal of Operational Research (2014), http
2.2. Sabuncuoglu, Erel, and Tanyer (2000): GA-S

General idea: Sabuncuoglu et al. introduce a genetic algorithm in
which the tasks as genes are always ordered on the chromosome in
a sequence that obeys the precedence graph (order encoding). They
apply a crossover technique which completely avoids infeasibility.
In contrast to GA-FD, chromosomes with equally loaded stations
receive the highest fitness score. Additionally they apply a freezing
technique which finalises the task assignments of the current first
and last unfrozen station if they provide satisfying loads. It shall be
noted that a better performing hybrid genetic algorithm incorpo-
rating priority rules and local search is published in Gonçalves
and De Almeida (2002).

Experience: Due to the smart crossover technique, GA-S is fast in
creating new solutions (about 5000 per second on OTTO-100). The
freezing often leads to a search stop before reaching an optimal
solution or the given time limit. In those cases we revoke the algo-
rithm with a twice that strict freezing policy. After preliminary tests
we chose a population size of 100, a mutation probability of 1%, a
final replacing probability of 1%, and an initial freezing parameter
DPC of 10% which halves itself every time all stations are frozen.

2.3. Nearchou (2005): DEA

General idea: Nearchou designed a differential evolutionary
algorithm (DEA) to tackle SALBP-1. We assume that learning about
the tasks’ variability concerning their positions in good solutions is
its main idea. The solutions (chromosomes) are sub-range encoded
what can be linearly transformed into order encoding. Sub-ranges
express an order position of a task by small float-point intervals
between 0 and 1. For instances the solution (0.4,0.32,0.7) basing
on the sub ranges 0; 1

3

� �
! 1; 1

3 ;
2
3

� �
! 2 and 2

3 ;1
� �

! 3 would mean
an order encoding (2,1,3). Crossover works like in genetic algo-
rithms, just mutation – which is performed in every iteration – is
done differently. Given three sub-range encoded solutions xa, xb,
xc of the population as vectors, one receives the mutant with xm = -
xc + w(xa � xb) where w denotes a small weight. Solutions after
mutation and crossover need to be healed of infeasibility.

Experience: Repairing infeasible solutions makes up 85% of the
CPU time and leads to a low number of created solutions per sec-
ond (about 60 per second on OTTO-100). For the parameters w,
crossover probability and population size we opted for 0.3, 1 and
100, respectively, after some tests. Nearchou demands a replace-
ment of some solutions when the population becomes too homo-
geneous but does not define how he measures homogeneity.
Therefore, we replace one solution from the bottom half of the
population space according to their fitness with a new random
one after every five iterations.

2.4. Bautista and Pereira (2002): ACO

Bautista and Pereira test several versions of ant colony optimi-
sation (ACO) for SALBP-1. Here only Bautista and Pereira’s best ver-
sion (task-position policy, summed trail reading) is described and
implemented. Very similar designs can be found in Boysen and
Fliedner (2008) and Zhang, Cheng, Tang, and Zhong (2007). An
ant colony algorithm which strongly relies on a local search is pub-
lished in Bautista and Pereira (2007).

General idea: Solutions are order encoded, and between each
task j and each order position o exists a pheromone trail sjo. Solu-
tions are constructed either in forward or in backward direction by
adding one task after another. To select the next task for order
position �o from all those without unassigned predecessors, a rou-
lette wheel selection based on the task preferences is conducted.
The task preference is the weighted product of the pheromone
trails from order position 1 to �o, i.e.

P�o
o¼1sjo, and a normalised task
simple assembly line balancing problem type 1: Overview, computational
://dx.doi.org/10.1016/j.ejor.2014.06.023

http://dx.doi.org/10.1016/j.ejor.2014.06.023

T. Pape / European Journal of Operational Research xxx (2014) xxx–xxx 3
priority. As fitness function for updating sjo, Bautista and Pereira
simply opt for the number of stations.

Experience: To mention is their coarse-grained fitness function
what Bautista and Pereira themselves admit as not perfect. There-
fore the fitness function from Zhang et al. (2007) which rewards,
like in GA-FD, well-loaded stations more than it punishes little-
loaded ones is used here. Due to this change, 187 instead of 181
optimal solutions could be detected after 30 seconds on SCHOLL.
It shall also be mentioned that their steady normalisation of the
task priorities counts for one-quarter of the CPU time but could
be easily replaced by Scholl (1999) and Baybars (1986)-bandwidth
scaled task priorities (not done in this study). Furthermore, restart-
ing ACO 12 times with 15 seconds CPU time on OTTO-100 provides
a best solution with on average 0.08 stations less than executing
ACO once with 180 seconds CPU time on OTTO-100. This observa-
tion provides some evidence that the current ACO design does not
explore the whole solution space sufficiently.

2.5. Scholl and Voß (1996): Tabu-SV

General idea: As main feature, the algorithm attempts to find
feasible SALBP-1 solutions by shifting and swapping tasks in a
way which eliminates the exceeding of the cycle time (‘‘overload’’).
The overload ok for station k is defined as max{0, t(Sk) � c}. That
means solutions which exceed the cycle time in some stations
are allowed but not those which violate the precedence relations.
The last station to which any task of P�j is assigned to and the ear-
liest station to which any task of S�j is assigned to set the bound-
aries within which task j can be shifted to. Two tasks can be
swapped if each is within the shifting boundaries of the other
one. Now to the steps of Tabu-SV: The procedure is initialised with
a feasible solution of the related SALBP-2 (minimising the cycle
time c given m as number of stations) with m equal to a lower
bound of SALBP-1. The SALBP-2 solution is found with a simple pri-
ority rule. Afterwards, each iteration consists of 4 steps. (1) A
highly overloaded station k⁄ with ok� ¼maxkfokg is randomly
selected as ‘‘base station’’. (2) For each task j in this base station,
all possible shifts to and swaps with other stations are evaluated
with respect to lowering the maximum station overload maxk{ok}.
(3) The best move is gone and (4) the old assignment of the moved
task(s) is set tabu for a certain dynamically adapted number of iter-
ations. If through shifts and swaps no feasible SALBP-1 solution is
detected after a certain number of iterations, m is increased by one.
When a feasible SALBP-1 solution is found for the first time, m is
decreased by one and never raised again. Additionally Scholl and
Voß apply some advanced tabu search policies. Their version with
EUREKA is not tested here.

Experience: Our implementation – which adjusts parameters
linearly depending on the time and not the iterations – detected
a cycling in the Tabu-SV search for several instances. It is caused
by the quasi-static selection of the base station. Therefore, Tabu-
SV yielded – as similarly reported by Scholl and Voß – maximal
200 optimal solutions on SCHOLL within a few seconds but never
comes further.

2.6. Simple-Tabu

To avoid cycling in Tabu-SV, two changes are proposed. First,
the base station is now selected directly proportional to the qua-
dratic station time overloads o2

k via roulette wheel selection in
90% of the cases. Because this alone cannot avoid cycling com-
pletely, the base station is selected randomly from all stations
k = 1 . . .m in the remaining cases. Second, solutions are now
assessed according to the fitness function

Pm
k¼1o2

k which measures
the sum of the quadratic overloads over all stations. Through the
changes Scholl and Voß’ conflict management, moving gap strategy
Please cite this article in press as: Pape, T. Heuristics and lower bounds for the
tests and improvements. European Journal of Operational Research (2014), http
and adaptive tabu length lose their influences on the results and
may be omitted. For 1000-tasks instances and CPU times under
30 seconds, their initial simple priority rule often provides better
results than executing Tabu-SV with a random initial solution.
Since this survey does not want to compare priority rules, it is
started with a random solution instead. So, one ends up with a
Simple-Tabu search: Beginning with a randomly generated feasible
solution with m stations, the lowest-loaded station is selected,
completely emptied by shifts and afterwards closed. One receives
a solution with m � 1 stations which obeys the precedence graph
but usually not the cycle time. In each iteration a base station is
selected as described above, all possible shifts and swaps for it
examined in the same way as in Scholl and Voß and the best one
according to the new fitness function gone. If a task j is moved from
station k to station k0, task j is not allowed to move back to k for 10
iterations, i.e. the task-station combination (j, k) is tabu for the next
10 iterations. This tabu rule is only disabled if a shift or a swap
brings a fitness value lower than ever reached for m � 1 stations
before (aspiration criterion from Scholl & Voß (1996)). When a
solution with fitness value of zero is found, it is feasible for SAL-
BP-1. Now again the lowest-loaded station is emptied and closed
and the procedure continues.

2.7. Lapierre, Ruiz, and Soriano (2006): Tabu-L

General idea: From Tabu-SV Lapierre et al. adopted the idea of
allowing overloads but no precedence violations. Tabu-L is initial-
ised with a randomly generated feasible SALBP-1 solution. In each
iteration, it is decided at first whether to test either shifts or swaps,
then a suitable station is selected, and finally the best shift (or
swap) according to their fitness function is gone. The shift mainly
selects little-loaded stations and tries to empty them by assigning
one of their tasks to another station. The swap chooses approxi-
mately half-loaded stations and attempts to fill them by exchang-
ing one of their tasks with a task of another station. The fitness of a
solution is measured by a function which (i) rewards well-loaded
stations more than it punishes little-loaded ones and (ii) penalise
stations which exceed the cycle time. The change between testing
shifts or swaps in an iteration and the heaviness of the punishment
of overloads is managed by dynamically adapting parameters. Lap-
ierre et al. use simple tabu rules for task reassignments and loading
of stations.

Experience: In our experiments the algorithm suffered on three
major weaknesses. First, the shift steadily empties stations without
being able to pay much attention to overloads. Thus, the overload
punishment parameter p rises very fast and reaches values even
exceeding the double data type (�1.8E+308) soon. So, p becomes
equal to a heavy punishment factor M what it was not designed
for. Second, Lapierre et al. state that empty stations must be closed
and cannot be reopened. With the neighbourhoods and parameters
suggested in Tabu-L it needs usually less than 100 shifts to have
less open stations than the optimal solution, and so further calcu-
lations never lead to any improvements. Therefore, our implemen-
tation always keeps m � 1 stations open where m is the best upper
bound found by Tabu-L so far (Scholl & Voß, 1996). Third, the tabu
setting of tasks (and not task-station combinations as in Tabu-SV)
for 25 ± 5 iterations is very restrictive. So in a large number of iter-
ations even a shift is not allowed. Because Lapierre et al. report dis-
tinctly better results for the 26 instances of the graph Scholl in
SCHOLL than we could find, one may assume that they have imple-
mented several procedures different to their description.

2.8. Fleszar and Hindi (2003): MultiHoff

General idea: The well-known Hoffman Heuristic (Hoffmann,
1963) seeks at first for the best load of the first station as long as
simple assembly line balancing problem type 1: Overview, computational
://dx.doi.org/10.1016/j.ejor.2014.06.023

http://dx.doi.org/10.1016/j.ejor.2014.06.023

4 T. Pape / European Journal of Operational Research xxx (2014) xxx–xxx
none with zero-idle-time is found. Then with the remaining tasks
the best load for the second station is calculated and fixed and so
on. This conducted in forward and backward direction leads to
exactly two solutions. Fleszar and Hindi propose a faster recursive
implementation of the Hoffmann Heuristic and use a bidirectional
search. Bidirectional means that at first 0,1,2,3, . . . ,m stations are
loaded in the forwards (backwards) direction and the remaining
tasks are assigned in the backward (forward) direction; i.e. approx.
2m solutions in total. Additionally they propose seven problem
reduction techniques as add-on. Sternatz (2014) recently pub-
lished a distinctly improved version of MultiHoff which is not
tested here. His enhanced MultiHoff does not enumerates tasks
by decreasing tasks times but by more ‘‘intelligent’’ priority rules
until the first zero-idle-time loads are found.

Experience: The problem reduction techniques require much
time for the implementation and are very prone to difficult to spot
bugs. Appendix A clarifies and in some occasions corrects the
description of SALBP-1 reduction techniques given by Fleszar and
Hindi.

2.9. Bautista and Pereira (2009): Bounded-DP

General idea: Bautista and Pereira also build their Bounded
Dynamic Programming on the Hoffmann Heuristic. Let us assume
one knows not only one (as in the Hoffmann Heuristic) but a set
of distinct partial solutions which load the first k stations, then
(1) one selects at first the best b partial solutions of them according
to their idle times in station k, (2) for each of these partial solutions
one enumerates over the station loads for k + 1 until either z zero-
idle-time loads are found or the enumeration comes to an end, and
(3) collects every found partial solution with k + 1 stations in a
pool.1 From this pool the best b partial solutions are now selected
to construct partial solutions with k + 2 stations, and so forth. The
procedure starts with k = 1 and increases the number of stations
until the first complete solution is found. Additionally, the lower
bounds LB1 till LB3 are applied (see Appendix B) to reject poor par-
tial solutions, the Hoffmann Heuristic is used as initial upper bound,
duplicate partial solutions are eliminated on each stage k and the
procedure repeated in the backward direction.

Experience: Instead of pooling the partial solutions in a list to
eliminate duplicates by pairwise comparisons, we store them in
a tree following the encoding rule from Nourie and Venta (1991)
what allows quicker lookups.

2.10. t-Bounded-DP

Timed Bounded Dynamic Programming (t-Bounded-DP) builds
on Bounded-DP and allows an approximation of the used CPU time.

Instead of measuring the quality of a partial solution (state) in
step (1) of Bounded-DP by the idle time of the station under con-
struction, we use the total idle time of the partial solution for t-
Bounded-DP. This change makes also lower bounds LB1 to LB3 quasi
redundant, because solutions refused by the weak LB1 till LB3 would
be normally not considered for the next stage anyway.2 To lower the
CPU time, LB1 till LB8 as global stopping criterion when having
reached an optimum are applied and the search for an initial solution
is conducted with MultiHoff instead of the Hoffmann Heuristic.

In Table 2 the found results are compared with those reported
by Bautista and Pereira. It shall be highlighted that the average
and maximum time grows almost linearly to the given parameter
b with gradient 1 in our implementation and not exponentially.
1 The parameters b and z are called window_size and max_transitions, respectively,
by Bautista and Pereira (2009).

2 In our experiments, the results and times reported in Table 2 do not depend on
the usage of LB1 till LB3 at all.

Please cite this article in press as: Pape, T. Heuristics and lower bounds for the
tests and improvements. European Journal of Operational Research (2014), http
One can exploit this relation to predict parameter settings which
are near to a given CPU time limit. For each direction it is started
with a trial for b = z = 10 and the required time is stopped. With
this information parameter b is estimated by linear approximation
in a way that let the search in forward direction end after 50% of
the given CPU time limit and the search in backward direction
when reaching the time limit. To avoid imprecise predictions for
extreme cases, a further trial with b :¼ 10b and z = 10 is conducted
if the estimated b is more than 100-fold higher than the tried one.
If the estimated b is not larger than the already tried one, no fur-
ther calculations are necessary. Figs. 2a and 2b show, respectively,
the really used CPU times and the average b parameters for given
time targets of 10 seconds on OTTO-100 and 180 seconds on
OTTO-1000 when only considering instances which are not
stopped before finishing the final search in backward direction.
The relatively high concentration between zero and five seconds
on OTTO-100 is present through instances of order strength 0.9.
Those instances do usually not use up the entire size b of the pool
of partial solutions with k stations from which partial solutions
with k + 1 stations are constructed. Obviously the approximation
systematically underestimates the needed CPU time. Therefore
the tests are given a limit of only 90% of the targeted CPU time,
e.g. 162 seconds when targeting 180 seconds.

2.11. Blum (2008): Beam-ACO

General idea: In principle similar to the later published
Bounded-DP, Blum takes a set of partial solution with the k first
stations loaded, constructs out of each of them bext solutions with
k + 1 stations and collects them in a pool, and finally selects the
best bbest solutions of this pool to construct partial solutions with
k + 2 stations. Which tasks shall be added to station k + 1 is decided
similarly as in ACO. Blum uses (i) task-station policy (i.e. phero-
mone trails sjk between tasks and stations), (ii) summed trail read-
ing (i.e.

P�k
k¼1sjk as decision criterion to assign task j to station �k),

(iii) gj as combined priority rules processing time and number of
direct successors, (iv) switches between assigning tasks according
to their preferences gj

P�k
k¼1sjk deterministically or with roulette

wheel selection, and (v) applies LB1 to exclude non-promising par-
tial solutions. For CPU times up to one minute bext = bbest = 10 is
used here, and for higher time limits bext = bbest = 20 as suggested
by Blum.

Experience: The ACO components of the procedure seem to deli-
ver useful guidance but are not the main driver of success. For
instance, a 360 seconds time limit with updating pheromones
delivers 250 optimally solved instances on SCHOLL whereas with-
out updating pheromones levels one detects 244. Furthermore,
restarting Beam-ACO 12 times with 15 seconds CPU time on
OTTO-100 produces a best solution which requires on average
0.06 stations less than executing Beam-ACO once with 180 sec-
onds. This observation provides some evidence that also Beam-
ACO suffers on convergence.

2.12. Scholl and Klein (1997, 1999): SALOME

General idea: SALOME is a station-oriented, depth-first, bidirec-
tional branch-and-bound algorithm. Station-oriented means that
branching is not done with respect to single task-station assign-
ments but according to station loads as nodes. Thereby those sta-
tion loads which do not induce raising the problem’s lower
bound are explored immediately and the others are the last devel-
oped branches of the current node. The lower bounds 1, 2, 3, 5, 6
and 7 are calculated for each sub problem and LB4 together with
the heads and tails once in the root (see Appendix B). Additionally,
SALOME includes many logical tests like tree dominance rule
(Nourie & Venta, 1991) or extended Jackson’s dominance rule to
simple assembly line balancing problem type 1: Overview, computational
://dx.doi.org/10.1016/j.ejor.2014.06.023

http://dx.doi.org/10.1016/j.ejor.2014.06.023

Table 2
Results as detected in our slightly modified version and as reported by Fleszar and Hindi (2003) with number of found optima (#), average CPU time (Ø) and CPU time for the
slowest instance (max) in seconds.

Parameter setting Modified version (2.8 gigahertz) Reported in Bautista and Pereira (2.4 gigahertz)

b z # Ø max # Ø max

10 5 236 0.06 1 227 0.09 1
50 5 255 0.3 2.75 254 0.4 4

100 10 257 0.9 9 260 1.5 12
250 10 266 2.2 24 264 3.6 26
500 10 267 4.4 48 265 9.8 64
750 10 268 6.4 75 267 30.2 182

1000 10 268 8.4 95 268 114 596
3000 20 269 51 572 Not reported Not reported Not reported

Fig. 2a. Real CPU time with 10 seconds on non-disrupted OTTO-100 instances for t-
Bounded-DP.

Fig. 2b. Real CPU time for 180 seconds on non-disrupted OTTO-1000 instances for
t-Bounded-DP.

Fig. 3. Dependency in Random Search.

T. Pape / European Journal of Operational Research xxx (2014) xxx–xxx 5
avoid branching of redundant or inferior partial solutions. Tradi-
tionally, SALBP-1 solution procedures search successively in for-
ward and backward direction. SALOME constructs just one
branch-and-bound tree and decides in each node by means of pri-
ority rules whether to look in the forward or backward direction.
Despite SALOME is designed as exact procedure it can be applied
as heuristic by limiting the CPU time. Finally, two recent improve-
ments of the original SALOME design must mentioned which are
not considered here. Sewell and Jacobson’s branch, bound and
remember algorithm (Morrison, Sewell, & Jacobson, 2013; Sewell
& Jacobson, 2012) memorises a large list of previously solved sub
problems to avoid redundant computations. Vilà and Pereira
(2013) develop branches in order of increasing idles times, estab-
lish a new logical test based on the maximum flow problem, and
incorporate a modified version of extended duration augmentation
rule (Fleszar & Hindi, 2003).

Experience: The given CPU time is consumed most by the
extended Jackson’s dominance rule (24%) and the lower bounds
(31%) when run for 10 seconds on OTTO-100. We also tested the
original Pascal code from Scholl and Klein (1999) on the same com-
puter as the new one. Thereby, the new object-oriented implemen-
tation was distinctly faster; e.g. on OTTO-100 with 180 seconds
time limit the average deviation to the best-known lower bound
could be improved from 0.91 to 0.41.

2.13. Random Search

The Random Search creates order encoded solutions in forward
direction by randomly selecting not-assigned tasks which do not
have any not-assigned predecessors and puts them at the end of
the task sequence having found by now. Additionally the simple
maximum load rule (Jackson, 1956) is applied, i.e. those tasks
which still fit in the current station are preferred to those which
demand the closing of the current station to open a new one.
Please cite this article in press as: Pape, T. Heuristics and lower bounds for the
tests and improvements. European Journal of Operational Research (2014), http
Although the algorithm works with about 15,000 solutions per
second on OTTO-100 quite fast, it must be noted that there is a
dependency between the moment a task is added to the set of
assignable tasks and the sequence position it is finally assigned
to. Fig. 3 demonstrates that fact. In this example the best solution
(task 6 after task 5) has the least probability. To reduce this effect,
the task sequences are alternating generated in forward and back-
ward direction.
2.14. Random Task Priority Search

Random Search assigns the next task from the list of available
tasks randomly. As alternative one could apply a roulette wheel
selection according to the task priorities raised to the power
b = 25 (b = 45 for OTTO-1000 only).

Before starting the search, normalised priority values are com-
puted. Let grj be the priority value for task j and rule r. For each rule
r separately, the grj are normalised to values within the interval
(Baybars, 1986; Scholl, 1999). So minj{grj} = 1 and maxj{grj} = 2
"r. Thereby the rules processing time, number of successors, num-
ber of direct successors and positional weight with priorities tj, jSjj,
S�j
���
��� and tj + t(Sj), respectively, are applied.
Every single assignment of an available task j to the next order

position consists of two steps. At first one of the rules r is randomly
selected, and at second a roulette wheel selection over gb

jr is per-
formed to decide on the next task j.
3. Lower bounds

If the lower bound (LB) of a problem equals the upper bound, i.e.
best-known solution value, the upper bound is proven optimal and
the calculation can be disrupted immediately. Thus, strong lower
bounds are valuable to assess the quality of a solution and to
reduce computational time distinctly.
3.1. Traditional lower bounds LB1 to LB7

For readers who are not fully familiar with the traditional lower
bounds 1 till 7, we provide a brief summary in Appendix B based
on the descriptions in Scholl (1999), Scholl and Klein (1997), and
Sprecher (1999).
simple assembly line balancing problem type 1: Overview, computational
://dx.doi.org/10.1016/j.ejor.2014.06.023

http://dx.doi.org/10.1016/j.ejor.2014.06.023

3 We suggest 15 as subjective trade-off between decreasing additional effective-
ness of LB7a and exponentially increasing CPU time.

6 T. Pape / European Journal of Operational Research xxx (2014) xxx–xxx
3.2. Tails and heads

A task’s tail estimates the minimal time required for a work-
piece to be fully assembled after this task has been completed.
The tail is computed as lower bound of this task’s successors
adjusted by whether the task can join a station with any of its suc-
cessors. Analogue, a task’s head provides the minimum station
time requirement of its predecessors.

Johnson (1988) introduces the traditional tails s1j, s2j, s3j and s4j

derived, respectively, from LB1, LB2, LB3 and the one-machine
scheduling problem.

A further tail s5j is suggested in Fleszar and Hindi (2003) based
on the time requirement of the tasks which have to lie between
two tasks with respect to the precedence graph: Let be j 2 Pj0 and
kjj0 the unrounded station requirement of the set Sj \ Pj0 containing
all tasks which have to lie between task j and j0, then
s5j ¼maxj0 kjj0 þ pj0 þ sj0

� �
with pj0 ¼ tj0=c. kjj0 equals the maximum

of s1ðSj \ Pj0 Þ; s2 Sj \ Pj0
	 �

and s3 Sj \ Pj0
	 �

. We also sharpen kjj0 with
s6 as described next.

The new tail s6j applies LB6 to the successors of task j and
explains the necessary adjustments to check whether task j itself
fits in the tail’s stations. Remember that there are three types of
stations which are in the focus of LB6: d1 stations (denoted as
D1) with the tasks from J(0.5,1]. d2 stations (denoted as D2) with
the tasks from J 1

3 ;0:5
	

having not fitted in D1. And d3 stations
(denoted as D3) if there exist tasks from J[q, 1 � q] which do not
fit in the stations from J(0.5,1 � q] and D2, i.e. d3 ¼max

LB1ðJ½q;1�q�Þ�d2�jJð0:5;1�q�jjq2 J 0;1
3

�
� �
. So LB6 = d1 + d2 + d3.

If d3 = 0, all stations are loaded to more than one-third when D2

contains an odd number of tasks and to more than one-half when
D2 contains an even number of tasks. That means after the correc-
tion, which incorporates the lowest possible load for the tail’s first
station, one obtains a tail

s6jðd3 ¼ 0Þ ¼

dLB6ðSjÞe � 1
3 ; D2 contains even number

of tasks and D1 ¼ ;
dLB6ðSjÞe � 0:5; D2 contains even number

of tasks and D1 – ;
dLB6ðSjÞe � 2

3 ; otherwise

8>>>>>><
>>>>>>:

:

A more interesting case is d3 > 0 where there is at least
one q 2 0; 1

3

�

in which the unrounded d3ðqÞ ¼

P
j2J½q;1�q�pj �

d2 � jJð0:5;1� q�j > 0. This equation says that there are c1(q) =
dd3(q)e + d2 + jJ(0.5,1 � q]j stations (denoted as C1) needed for the
tasks J[q,1 � q] and, of course, also c2 = jJ(1 � q,1]j separate
stations (denoted as C2) for the tasks from J(1 � q,1]. That means
in the worst case, the first station of C1 has an idle time of
c1ðqÞ �

P
j2J½q;1�q�pj ¼ dd3ðqÞe � d3ðqÞ since (i) all other stations are

filled completely and (ii) J[0, q) = ;. About the stations belonging
to C2, one knows that they are loaded at least with the station
requirement min{pjjj 2 J(1 � q,1]} of the smallest task larger than
1 � q or do not exist if J(1 � q,1] = ;. Now d03 ¼max d03ðqÞjq

�

2 J 0; 1
3

�

g with d03ðqÞ ¼ dd3ðqÞe �maxfd3ðqÞ � d3ðqÞ;1�minfpjjj 2

Jð1� q;1�gg; where dd3(q)e � d3(q) is the correction term for C1,
1 �min{pjjj 2 J(1 � q,1]} the correction term for C2, and the larger
one of both is applied. It follows s6jðd3 > 0Þ ¼ d1 þ d2 þ d03.

3.3. Lower bound 7a

LB7 takes the d + 1 shortest of the d �m + 1 tasks with the high-
est processing time and tests whether they fit in one station
according to LB1, otherwise increases m by one. We strengthen this
bound by trying to reject every station load not just with LB1 but
also with the precedence graph. The next two paragraphs explain
LB7a for the special case d = 1 at first.
Please cite this article in press as: Pape, T. Heuristics and lower bounds for the
tests and improvements. European Journal of Operational Research (2014), http
Pseudocode 1. LB7a.

Function LB7a(m)

For h = 1 to 15

Get T as h0th smallest task tuple

If T fulfils (i) Then Return m + 1

If T does not fulfil (ii) and (iii) Then Return m
EndFor

Return m

Let be hj1, j2, . . . , jm, jm+1] the set of the m + 1 largest tasks of a
SALBP-1 instance ordered by increasing task times. Then (j1, j2) is
the pair with the smallest task time sum, (j1, j3) with the second
smallest, (j1, j4) or (j2, j3) with the third smallest, (j1, j4), (j1, j5),
(j2, j3) or (j2, j4) with the fourth smallest, and so forth. In general,
a task pair ðjr1

; jr2
Þ can be the h’th smallest if r1 + r2 6 h + 2. Thereby

jri
is the task with the ri highest task time. Exploiting this observa-

tion, it is not time consuming to compute the 153 smallest task
pairs from hj1, j2, . . . , jm, jm+1].

A task pair T = (j, j0) with j 2 Pj0 does not fit in one station if (i)
tj þ tj0 > c, (ii) Lj < Ej0 or (iii) tj þ tðSj \ Pj0 Þ þ tj0 > c. Condition (ii)
and (iii) reject only the pair (j, j0) as possible load, condition (i)
rejects (j, j0) and every larger pair. Pseudocode 1 shows the behav-
iour of LB7a.

The general case with d P 1: Let be hj1, j2, . . . , jdm, jdm+1] the set of
the dm + 1 largest tasks ordered by increasing task times and
T ¼ ðjr1

; jr2
; . . . ; jrd

; jrdþ1
Þ a tuple with tasks from this set. T can be

the h’th smallest tuple if
Pdþ1

i¼1 ri 6 hþ
Pdþ1

i¼1 i� 1. Using pseudocode
1 again, one increase m by one if (i)

P
j2T tj > c, and rejects T as load

if (ii) Lj < Ej0 for any task pair (j, j0) with j 2 Pj0 and j, j0 2 T or (iii)P
j2T tj þ tð

S
j;j02T Sj \ Pj0 Þ > c.

3.4. Lower bounds 8a till 8d

A new lower bound is proposed by Fleszar and Hindi (2003),
again, based on the time requirement of the tasks which have to
lie between two tasks to obey the precedence relations. The follow-
ing is tested for all station pairs (k1, k2) with 1 6 k1 6 k2 6m: Let
Bk1 ;k2 be the set of all tasks j which fulfil the inequalities k1 6 Ej, Lj

6 k2, then all tasks in Bk1 ;k2 must be allocated among the stations
k1, . . . ,k2. For Bk1 ;k2 , none of the lower bounds 1 till 3 is allowed to
exceed k2 � k1 + 1 stations. Otherwise, the lower bound m can be
increased by 1.

Lower Bound 8 separates numerous subproblems from the ori-
ginal graph and allows therefore an easy integration of every other
bounding technique. We sharpen LB8 by (i) using LB6 instead of
LB1, LB2 and LB3 to calculate the station requirement of Bk1 ;k2

(?LB8a), (ii) additionally applying s6j to receive the heads and tails
of task j (?LB8b), (iii) additionally calculating LB7a of Bk1 ;k2

(?LB8c) and (iv) additionally using s5j (?LB8d).

3.5. LBR: LB8c with reduction techniques

Fleszar and Hindi (2003) remark that reduction techniques have
a significant impact on lower bounds. Their reduction techniques
are initialised with a strong upper bound m and try to simplify
the problem by assuming that there exists a feasible solution with
m-1 stations. If (i) a lower bound calculated for the reduced prob-
lem is higher than m � 1 or (ii) one task is never part of a feasible
packing which does not exceed the total idle time, the assumption
is revealed as false by contradiction.
simple assembly line balancing problem type 1: Overview, computational
://dx.doi.org/10.1016/j.ejor.2014.06.023

http://dx.doi.org/10.1016/j.ejor.2014.06.023

Table 3
Results for SCHOLL as tuple ‘‘number of found optima (average deviation to optima, maximum deviation to optima)’’ and for OTTO-100/1000 as ‘‘average deviation to best-known
lower bound’’.

SCHOLL OTTO-100 OTTO-1000

1 second 15 seconds 180 seconds 1 seconds 15 seconds 180 seconds 30 seconds 180 seconds 900 seconds

GA-FD a Does not find solutions for every instance Does not find solutions for every instance
GA-S a 122 (1.06, 6) 129 (0.76, 5) 136 (0.73, 5) 3.45 3.27 3.06
DEA a 124 (1.38, 9) 136 (1.11, 8) 143 (0.95, 6) 4.15 3.13 2.86
ACO 170 (0.45, 3) 190 (0.35, 2) 193 (0.31, 2) 1.41 1.07 0.91 Not tested
Tabu-L 55 (2.91, 14) 69 (2.77, 14) 85 (2.58, 14) 6.73 6.49 6.31
Tabu-SV 191 (0.37, 5) 200 (0.29,3) 197 b (0.31, 4) 1.54 0.52 0.46
Simple-Tabu 237 (0.12, 1) 243 (0.1, 1) 244 c (0.09, 1) 0.31 0.27 0.21 10.16 4.88 4.19
MultiHoff 203 (0.27, 2) Finishes in under 0.16 seconds 0.77 Finishes in under 0.19 seconds 11.32 Finishes in under 23.5 seconds
MultiHoff with

reduction
204 (0.26, 2) Finishes in under 1 seconds 0.61 Finishes in under 0.42 seconds 11.12 10.64 10.63

t-Bounded-DP 251 (0.07, 1) 266 (0.01, 1) 268 (0.00, 1) 0.34 0.29 0.23 Time limit too low 7.73 7.08
Beam-ACO 231 (0.14, 1) 243 (0.10, 1) 248 (0.08, 1) 0.53 0.39 0.38 9.26 8.67 8.19
SALOME 243 (0.1, 1) 256 (0.05, 1) 259 (0.04, 1) 0.5 0.44 0.38 5.59 5.54 5.5
Random Search 103 (1.11, 5) 116 (0.94, 4) 124 (0.86, 4) 2.83 2.49 2.24 31.46 30.92 30.47
Random Task

Priority Search
192 (0.3, 2) 199 (0.26, 2) 205 (0.24, 2) 1.08 0.88 0.75 18.71 18.3 17.86

a Randomly-generated initial population excluded.
b Cycle entrance depends on parameter setting and within the given CPU time.
c Simple-Tabu could only solve 4 out of 21 instances of the precedence graph Scholl in SCHOLL.

4 Based on the results from our experiments and those reported in Morrison et al.
(2013).

T. Pape / European Journal of Operational Research xxx (2014) xxx–xxx 7
We exploit this mechanism by assuming that there exists a fea-
sible solution with an amount of stations equal to the best-known
lower bound and applying the reduction techniques. If a contradic-
tion occurs, the lower bound is increased by 1 and reduction
revoked (destructive improvement); otherwise the lower bound
is accepted. LB6 is tested after every single reduction and the
time-consuming LB8c only after no further reduction can be found
for the present lower bound.

4. Computational results

4.1. Computational environment

The algorithms were coded in VB.NET x64 release and ran on a
2.8 gigahertz processor with 4 gigabytes RAM. Direct and indirect
predecessors and successors were saved in a list as well as a 0–1
matrix and created before starting the stopwatch.

4.2. Heuristics

Table 3 shows the computational results on all 3 datasets. The
results for SCHOLL are compared with the optimal solution values
and for OTTO-100/1000 with the best-known lower bounds.

Random Search distinctly outstripped GA-FD and Tabu-L, as
well as yielded results in the proximity of DEA and GA-S. Random
Task Priority Search was slightly superior to ACO and reached Mul-
tiHoff on SCHOLL and OTTO-100 in the long run. MultiHoff always
finished before reaching the lowest given time limits and was dis-
tinctly boosted on OTTO-100/1000 when using reduction tech-
niques. The changes on Tabu-SV towards Simple-Tabu could
break cycling, double the number of iterations, and thus improve
results. For larger CPU times Simple-Tabu and t-Bounded-DP
together clearly dominated all other heuristics (except of SALOME
for instance 297 from OTTO-100).

OTTO-100/1000 can be grouped by three properties. The graph
structure contains chains of tasks which have only one successor
each (CH), bottleneck tasks with many direct predecessors and suc-
cessors (BN), or no willingly constructed features (MIX). The task
times are normally distributed with a peak at 0.1c (BOT), with a
peak at 0.5c (MID), or bimodal with peaks at 0.1c and 0.5c (BI).
The order strength is 0.2, 0.6 or 0.9. Table 4 shows the results split
into all existing combinations of these properties for Simple-Tabu
Please cite this article in press as: Pape, T. Heuristics and lower bounds for the
tests and improvements. European Journal of Operational Research (2014), http
and t-Bounded-DP on OTTO-100/1000 with a time limit of
3600 seconds. Simple-Tabu delivered strong results for MID
instances, especially those with low order strength; whereas t-
Bounded-DP worked better in all other cases. The average devia-
tion to the best-known lower bound is 0.2/3.18 and 0.21/6.19 for
Simple-Tabu and t-Bounded-DP, respectively, for 3600 seconds
CPU time on OTTO-100/1000.

4.3. Lower bounds

Table 5 contains the results for LB1 till LB8. ‘‘Found LBMax’’
counts the number of cases where no other lower bound produced
a better result, ‘‘Unique LBMax’’ where no other lower bound com-
puted an equal or better result, and ‘‘Found optima’’ where the
lower bound reached the optimal solution value. The column
LBMax gives the results when combining LB1 till LB8 and avoiding
redundant calculations. LB5, LB7 and LB8 were initialised with LB1.
It shall be highlighted that LB1 found always the currently best-
known lower bound for any combination of BOT or BI with order
strength 0.2 or 0.6 in OTTO-100/1000. All ‘‘unique LBMax’’ of LB6
had the task time distribution MID and of LB8 the order strength
0.9.

Table 6 summarises the results for the improved versions.
Thereby LB7a, the improvements in LB8a, LB8b and LB8c, as well
as the application of reduction techniques paid off. LB8d’s calcula-
tion of the sets Sj \ Pj0 was time consuming but did not breed suc-
cess. All improvements for OTTO-100/1000 were for instances with
task time distribution MID.

Combining LB8c with reduction techniques lead to strong
improvements as displayed in the column LBR. Table 7 compares
LBMax and LBR with the best-known upper bound4 grouped by
problem characteristics.

5. Discussion

We compared existing heuristics and lower bounds for SALBP-1
on a traditional and a lately-published benchmark dataset, as well
as improved the best procedures. To our knowledge, it is the only
study of this kind.
simple assembly line balancing problem type 1: Overview, computational
://dx.doi.org/10.1016/j.ejor.2014.06.023

http://dx.doi.org/10.1016/j.ejor.2014.06.023

Table 4
Results for Simple-Tabu and t-Bounded-DP with 3600 seconds running time grouped by the instance properties and reported as ‘‘average deviation to best-known lower bound’’.

MIX CH BN

0.2 0.6 0.9 0.2 0.6 0.2 0.6

OTTO-100
BOT

Simple-Tabu 0 0 0.08 0 0 0 0
t-Bounded-DP 0 0 0 0 0 0 0

BI
Simple-Tabu 0.04 0 0 0.08 0.08 0 0.04
t-Bounded-DP 0 0 0 0 0 0 0.04

MID
Simple-Tabu 0.12 0.8 1 0.24 1 0.12 0.6
t-Bounded-DP 0.24 0.76 1 0.4 0.92 0.4 0.6

OTTO-1000
BOT

Simple-Tabu 0 0.08 0.56 0.04 0.2 0 0.04
t-Bounded-DP 0 0 0 0 0 0 0

BI
Simple-Tabu 0.12 0.24 1.68 0.24 0.64 0.12 0.4
t-Bounded-DP 0 0 0.24 0 0 0 0

MID
Simple-Tabu 1.64 5.36 41.84 2.56 7.76 1.08 2.28
t-Bounded-DP 17.16 18.24 19.88 18.96 18.16 18.08 19.32

Table 5
Results for LB1 till LB8 in ‘‘number of instances from library’’.

LB1 LB2 LB3 LB4 LB5 LB6 LB7 LB8 LBMax

SCHOLL
Found LB-Max 185 15 12 248 242 217 204 252 –
Unique LB-Max 0 0 0 0 0 8 3 3 –
Found optima 123 11 11 185 179 152 141 188 201

OTTO 100
Found LB-Max 355 11 13 363 358 502 0 408 –
Unique LB-Max 0 0 0 0 0 110 0 15 –
Average time in ms 0 0 0 0.32 0.29 0.01 0.02 0.79 0.84

OTTO 1000
Found LB-Max 353 8 7 353 353 521 360 374 –
Unique LB-Max 0 0 0 0 0 149 0 4 –
Average time in ms 0 0.01 0.01 23.79 23.02 0.12 0.87 179.7 181.2

Table 6
Results for improved lower bounds in ‘‘number of instances from library’’.

LB7a LB8a LB8b LB8c LB8d LBR

SCHOLL
Improvements to original LB 3 14 14 17 17 –
Improvements to LBMax 0 0 0 0 0 37
Found optima 143 199 199 201 201 234

OTTO 100
Improvements to original LB 29 135 137 139 139 –
Improvements to LBMax 6 21 26 29 29 97
Average/ maximum time in ms 0.15/0.48 1.4/8 1.7/14 5.5/64 14.4/76 178/866

OTTO 1000
Improvements to original LB 25 156 156 158 158 –
Improvements to LBMax 4 12 16 20 20 75
Average/ maximum time in sec 0.02/0.05 0.47/5.67 0.49/8.48 2.1/33.9 10.1/74 27.9/643

8 T. Pape / European Journal of Operational Research xxx (2014) xxx–xxx
The computational tests identified Timed Bounded Dynamic
Programming and Simple Tabu Search as most effective heuristics
for SALBP-1; each for different problem characteristics.

Timed Bounded Dynamic Programming changes some details of
Bounded Dynamic Programming (Bautista & Pereira, 2009) and
seeks parameter settings which let it finish after reaching a tar-
geted CPU time. The procedure distinctly extends the search space
of the original Hoffmann Heuristic (Hoffmann, 1963) and is the
first heuristic which can solve all 269 instances of Scholl’s library
(Scholl, 1993) in just a few minutes. The algorithm gets into enor-
mous troubles when it comes to instances with many large tasks
(here tj � Nð0:5c;0:0025c2Þ approx.). The poor results are most
Please cite this article in press as: Pape, T. Heuristics and lower bounds for the
tests and improvements. European Journal of Operational Research (2014), http
likely caused by the greediness of the original Hoffmann Heuristic
which wants to load each station as full as possible without weigh-
ing up the consequences for the next stations. But these problem
characteristics are quite uncommon in practical applications
(Otto et al., 2013). Furthermore when confronted with problems
of order strength 0.9 from 100-task instances, Timed Bounded
Dynamic Programming is often not able to find a larger amount
of feasible loads for many stations and therefore finishes long
before reaching the time limit.

Simple Tabu Search simplifies and randomises Scholl and Voß’
tabu search (Scholl & Voß, 1996), and thus improves its perfor-
mance. Among all tested heuristics it yielded the best average
simple assembly line balancing problem type 1: Overview, computational
://dx.doi.org/10.1016/j.ejor.2014.06.023

http://dx.doi.org/10.1016/j.ejor.2014.06.023

Table 7
Results for LBMax and LBR grouped by the instance properties and reported as ‘‘average deviation to best-known upper bound [number of instances with lower bound = best-
known upper bound]’’.

MIX CH BN

0.2 0.6 0.9 0.2 0.6 0.2 0.6

OTTO-100
BOT

LBMax 0 [25] 0 [25] 0.28 [18] 0 [25] 0 [25] 0 [25] 0 [25]
LBR 0 [25] 0 [25] 0.08 [23] 0 [25] 0 [25] 0 [25] 0 [25]

BI
LBMax 0 [25] 0.04 [24] 0.56 [11] 0 [25] 0 [25] 0 [25] 0 [25]
LBR 0 [25] 0.04 [24] 0.32 [17] 0 [25] 0 [25] 0 [25] 0 [25]

MID
LBMax 0.44 [16] 1.56 [2] 2.92 [0] 0.36 [16] 1.76 [2] 0.28 [18] 0.04 [24]

LBR 0.28 [18] 0.72 [11] 1 [4] 0.32 [17] 0.96 [7] 0.12 [22] 0.04 [24]

OTTO-1000
BOT

LBMax 0 [25] 0 [25] 0 [25] 0 [25] 0 [25] 0 [25] 0 [25]
LBR 0 [25] 0 [25] 0 [25] 0 [25] 0 [25] 0 [25] 0 [25]

BI
LBMax 0 [25] 0 [25] 0.24 [19] 0 [25] 0 [25] 0 [25] 0 [25]
LBR 0 [25] 0 [25] 0.24 [19] 0 [25] 0 [25] 0 [25] 0 [25]

MID
LBMax 2.12 [2] 6.4 [0] 27.96 [0] 2.72 [1] 8.84 [0] 1.4 [8] 2.92 [2]
LBR 2 [2] 5.6 [0] 19.76 [0] 2.72 [1] 8 [0] 1.36 [8] 2.44 [3]

T. Pape / European Journal of Operational Research xxx (2014) xxx–xxx 9
results for OTTO-100 and OTTO-1000. Higher order strength (0.6
and especially 0.9) sapped its solution quality. More precedence
restrictions reduce the amount of possible moves in each iteration
and so the local search algorithm cannot explore the whole solu-
tion space properly.

Our experiments give some evidence that establishing effective
learning through metaheuristics may not be possible for SALBP-1.
The only metaheuristics which could outperform the quite dull
Random Task Priority Search were Simple Tabu Search (only with
a short-term memory) and Beam-ACO (with enumeration as main
driver of success). We speculate that learning fails because SALBP-
1 solutions are sensitive to minor modifications. Slightly changing
the assignment of a single task can easily mean (i) that direct suc-
cessors of the task have to be shifted backwards or direct predeces-
sors forwards to obey the precedence relations and (ii) that the
task’s new station is overloaded and whole other tasks (and not
just portions of them) have to be shifted backwards or forwards.
Both together often trigger self-enforcing domino-effects resulting
in new stations which have to be opened. Thus, merging structural
characteristics from several attractive solutions is rather unlikely
to breed efficient new solutions for SALPB-1 and, perhaps, also
for other constrained partitioning problems.
Pseudocode 2. Packing enumeration.

Main(j) {
AddLargerTask({j})

AddLargerTaskðAÞ {
AvailabeTasks contains all tasks which can be added

to A and have a larger index than the largest index

in A
For each j in AvailableTasks {AddLargerTaskðj [AÞ}

AddSmallerTaskðAÞ
AddSmallerTaskðAÞ {
AvailabeTasks contains all tasks which can be added

to A and have a smaller index than the smallest

index in A
For each j in AvailableTasks {AddSmallerTaskðj [AÞ}

Please cite this article in press as: Pape, T. Heuristics and lower bounds for the
tests and improvements. European Journal of Operational Research (2014), http
Simple Tabu Search as metaheuristic offers the advantages that
it can be often used without many changes for general assembly
line balancing problems (GALBPs) and that its CPU time can be
scaled arbitrarily. It was shown that Timed Bounded Dynamic Pro-
gramming does hardly rely on its lower bounds for SALBP-1. So if
(i) one uses another fitness function than the total idle time to
evaluate partial solutions and (ii) selects another stopping criterion
than the number of found zero-idle-time loads when enumerating
partial solutions with k + 1 station from a given partial solution
with k stations, it should be possible to adapt this procedure to
many GALBPs (Bautista & Pereira, 2011). Furthermore, it was
shown that its time requirement is with some margin of error quite
well adjustable.

Among the lower bounds from the literature, 6 and 8 yielded
the best results. The best-known lower bounds could be distinctly
sharpened by (i) using LB6 to calculate heads and tails, (ii)
strengthening LB7 with the precedence graph, (iii) integrating
LB6 and LB7a in LB8 and especially (iv) applying reduction
techniques.

Finally this study indicates the importance of benchmark data-
sets with well grouped problem characteristics. They can lead to
insight into the strengths and weaknesses of an algorithm and
proofed in this case that the success of SALBP-1 algorithms can dis-
tinctly depend on the problem properties.
Acknowledgements

I am grateful to Armin Scholl for suggesting the research topic
and Nils Boysen for providing the code used in Boysen and
Fliedner (2008). The paper also benefited from many detailed
remarks of an anonymous referee.
Appendix A. Remarks on reduction techniques

The appendix shall clarify and in some occasions correct the
description of SALBP-1 reduction techniques given by Fleszar and
Hindi (2003). The following bullet points can be only understood
together with their original paper.
simple assembly line balancing problem type 1: Overview, computational
://dx.doi.org/10.1016/j.ejor.2014.06.023

http://dx.doi.org/10.1016/j.ejor.2014.06.023

10 T. Pape / European Journal of Operational Research xxx (2014) xxx–xxx
� Fleszar and Hindi just mention that enumerating for all Aj

works quite similar to their Hoffmann code. In it, the procedure
OnePackingSearch relies on the fact that L as the set of available
or already assigned tasks just expands with each new task
added to the load. But adding tasks to a packing may make
some tasks unavailable again. Therefore we apply a slightly dif-
ferent approach. In order to avoid several permutations of one
packing, the tasks in the packing are ordered increasingly to
their indexes (Johnson, 1988). The algorithm is shown in
pseudocode 2. AddLargerTask (A) extends the packing to the
‘‘right’’ (line 6) and hands over each found (not necessary max-
imal) packing A to AddSmallerTask in order to expand it to the
‘‘left’’ (line 7).
� AvailableTasks should be enumerated in the increasing order of

the difference between their task indexes and j in the last lines
of AddLargerTaskðAÞ and AddSmallerTaskðAÞ. Therewith one
avoids many packings like {2, j} or {j, n � 2} which can be barely
extended nor they are likely to have a low idle time. Not apply-
ing this strategy can easily increase the CPU time by factor 10.
� In order to eliminate non-conjoinable tasks quickly, one should

seek for two maximal packings for each task at first. This can be
done by identifying a packing when solemnly looking in
the ‘‘right’’ direction, i.e. evoking AddLargerTask({j}) without
line 5, and in the ‘‘left’’ direction, i.e. evoking AddSmaller
Task({j}).
� Any maximal packingAj is also a maximal packing for any other

task i 2 Aj and can update the conjoinable tasks for i.
� Let be C a set of tasks which shall be conjoined. Any maximal or

zero-idle-time packing containing some or all tasks from C must
be discarded. The same is true for those packings which would
have the new conjoined task as successor and as predecessor.
� Fleszar and Hindi state that any packing which contains a

successor and a predecessor of a task but not the task itself is
invalid. To incorporate this rule efficiently, one should only
allow the adding of those tasks j 2 S�ðAÞ to the packing Awhich
do not have a predecessor which is also in S�ðAÞ or those
tasks j 2 P�ðAÞ which do not have a successor which is also
in P�ðAÞ.
� Fleszar and Hindi call a packing Amaximal if no task from F 0ðAÞ

can be added to A without exceeding the cycle time. They
describe F 0ðAÞ as the set of (i) all direct predecessors and succes-
sors of the packing joined with (ii) all tasks which are not
related to the packing and do not have any relations to tasks
the packing itself does not have. Formally they define
F 0ðAÞ ¼ fj 2 FðAÞjPj # PðAÞ [A and Sj # SðAÞ [Ag, where FðAÞ
is the set of tasks which are either directly related or not related
to A. The more restrictive formula – which also excludes some
direct successors or predecessors of the packing – should be
preferred. Instance 248 of Otto et al.’s 20-task problem (Otto
et al., 2013) can be seen as proof since their verbal description
would allow joining tasks 4 and 8 and so increasing LB4 to a
value larger than in the optimum.
� Regularly there is no packing Aj for task j with c � tðAjÞ 6 Itotal.

In these cases the reduction can be broken immediately and the
upper bound increased by one.
� After Conjoining tasks or adding precedence relations, direct

precedence relations of not involved tasks may be explained
by new indirect precedence relations and must be eliminated
therefore.

Appendix B. Traditional lower bounds

LB1: Station borders and precedence relations neglected; i.e.

LB1 ¼
P

jtj=c
l m

.

Please cite this article in press as: Pape, T. Heuristics and lower bounds for the
tests and improvements. European Journal of Operational Research (2014), http
LB2: All tasks from J(0.5,1] require separate stations and 2 tasks
each from J[0.5,0.5] can join a station; i.e. LB2 = jJ(0.5,1]j +
d0.5jJ[0.5,0.5]je.

LB3: LB3 uses the subsets J 2
3 ;1
	

; J 2
3 ;

2
3

�

; J 1

3 ;
2
3

	 �
and J 1

3 ;
1
3

�

. All tasks

from J 2
3 ;1
	

can never be assigned to a station together with
any task from the other three subsets. Two tasks from J 1

3 ;
2
3

	 �
might share one station. A task from J 1

3 ;
1
3

�

might be joined

with a task from J 1
3 ;

2
3

	 �
, from J 2

3 ;
2
3

�

or two further tasks

from J 1
3 ;

1
3

�

. These station loads can be characterised by

giving tasks from J 2
3 ;1
	

; J 2
3 ;

2
3

�

; J 1

3 ;
2
3

	 �
and J 1

3 ;
1
3

�

a weight of

1, 2
3 ;

1
2 and 1

3, respectively. LB6 ¼ d J 2
3 ;1
	
�� ��þ 2

3 J 2
3 ;

2
3

�
�� ��þ
1
2 J 1

3 ;
2
3

	 ��� ��þ 1
3 J 1

3 ;
1
3

�
�� ��e.
LB4: In the single-machine scheduling problem, orders j = 1 . . . n

can only be produced successively on one machine. Each
order requires a time tj on the machine and a time sj for suc-
cessive processes (tail). The makespan is the time between
the first order comes into the machine and the tail for the
last order is completed. To minimise the makespan, one
starts with order j1 with the longest tail (started at time 0
and finished at time tj1 þ sj1), followed by order j2 with the
second longest tail (started at time tj1 and finished a time
tj1 þ tj2 þ sj2), and so on. The makespan is the maximum of
all end times, i.e. maxftj1 þsj1 ;tj1 þ tj2 þsj2 ; . . . ;tj1 þ tj2 þ�� �
þtjn þsjng.
In SALBP-1 the orders j are called tasks and the tails are
formed by j’s successors. The tail s gives the number of sta-
tions (not necessarily integer) which must follow task j at
least. s1j = t(Sj)/c is the unrounded LB1. s2j = LB2(Sj) � 0.5
and s3j = LB2(Sj) � 1/3 are derived, respectively, from LB2
and LB3 with corrections coming into place to take into
account that there might be still one-half and one-third of
the first station required by Sj free (see Fig. 4).
s4j ¼maxfpj1

þ sj1 ;pj1
þpj2

þ sj2 ; . . . ;pj1
þpj2

þ � � � þpjjSj j
þ sjjSj j

g
calculates the unrounded makespan for the subgraph of the
tasks from Sj; i.e. s4j = LB4(Sj).
sj = maxi{sij} for all used tail rules i. One can round up sj fur-
ther to the nearest integer when sj + pj > dsje, i.e. the task j
does definitely not fit in the tail’s first station. Having found
the tails of all tasks, one calculated the makespan of the
entire graph with LB4¼maxfpj1

þ sj1 ;pj1
þ pj2

þ sj2 ; . . . ;pj1
þ

pj2
þ � � � þpjn

þ sjng.
A task’s head hj gives the number of stations which need to
come before the task in the final solution and equals the tail
of the reverse SALBP-1 problem.

LB5: The earliest possible station for a task is not allowed to be
higher than the latest possible station; i.e. E(j) 6 L(j).
Thereby, E(j) = dhj + pje and L(j) = m + 1 � dsj + pje.

LB6: Assign the tasks j 2 J 1
2 ;1
	

to single stations and order these
by decreasing workload to obtain the station sequence
D1 ¼ ½s1; s2; . . . ; sd1 i. Arrange the tasks in J 1

3 ;
1
2

	

by increasing

task times to receive the ordered set hj1, j2, . . .]. Afterwards,
assign each task of hj1, j2, . . .] to the earliest possible station
from ½s1; s2; . . . ; sd1 i starting with j1.
If there is still a positive number of z tasks from J 1

3 ;
1
2

	

which did not fit in any s1; s2; . . . ; sd1 one can treat them
like in LB3. That means d2 = z/2 additional stations
D2 ¼ fsd1þ1; . . . ; sd1þd2g need to be opened.
The remaining tasks from J 0; 1

3

�

can be assigned to the

stations in D1, in D2 or – if necessary – to new stations.
The stations s1; s2; . . . ; sd1 are at least loaded with the task
times from J(0.5,1]. For the stations sd1þ1; . . . ; sd1þd2 , it is only
possible to say that there load exceeds 1

3. LB6 exploits that
simple assembly line balancing problem type 1: Overview, computational
://dx.doi.org/10.1016/j.ejor.2014.06.023

http://dx.doi.org/10.1016/j.ejor.2014.06.023

Fig. 4. Main idea of the correction problem.

T. Pape / European Journal of Operational Research xxx (2014) xxx–xxx 11
the tasks J q; 1
3

�

do not fit into those stations k from

s1; s2; . . . ; sd1 with 1 � p(k) < q but only in the jJ(0.5,1 � q]j
stations from D1 and the stations from D2. I.e. J[q,1 � q] must
fit in the jJ(0.5,1 � q]j + jD2j existing stations or new stations
need to be opened. Therefore, d3 (q) = t(J[q,1 � q])/
c � jJ(0.5,1 � q]j � d2 and d3 = dmaxq{0, d3 (q)}e.
t(J[q,1 � q])/c is the unrounded LB1 of J[q,1 � q].
It follows LB6 = d1 + d2 + d3.

LB7: Let be ri the task with the i highest task time and m the larg-
est known lower bound. Among the m + 1 most time con-
suming tasks at least two must be in one station
(pigeonhole principle). This condition can be at best fulfilled
by rm and rm+1; i.e. the inequality trm þ trmþ1 6 c must hold.
Otherwise, the lower bound m is not reachable and can be
increased. This idea is generalised to the dm + 1 most time
consuming tasks. At least once, d + 1 of them must join
one station. This condition can be at best fulfilled by rdm+1�d,

rdm+2�d, . . . ,rdm+1; i.e.
Pd

i¼0tðrdmþ1�iÞ 6 c must hold for all
d ¼ 1; . . . ; n�1

m

� �
if m is the LB7.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ejor.2014.06.023.
References

Bautista, J., & Pereira, J. (2002). Ant algorithms for assembly line balancing. In Ant
algorithms, third international workshop, ANTS (pp. 65–75). Brussels: Springer.

Bautista, J., & Pereira, J. (2007). Ant algorithms for a time and space constrained
assembly line balancing problem. European Journal of Operational Research,
177(3), 2016–2032.

Bautista, J., & Pereira, J. (2009). A dynamic programming based heuristic for the
assembly line balancing problem. European Journal of Operational Research,
194(3), 787–794.

Bautista, J., & Pereira, J. (2011). Procedures for the time and space constrained
assembly line balancing problem. European Journal of Operational Research,
212(3), 473–481.

Baybars, I. (1986). A survey of exact algorithms for the simple assembly line
balancing problem. Management Science, 32(8), 909–932.
Please cite this article in press as: Pape, T. Heuristics and lower bounds for the
tests and improvements. European Journal of Operational Research (2014), http
Blum, C. (2008). Beam-ACO for simple assembly line balancing. INFORMS Journal on
Computing, 20(4), 618–627.

Boysen, N., & Fliedner, M. (2008). A versatile algorithm for assembly line balancing.
European Journal for Operations Research, 184(1), 39–56.

Falkenauer, E., & Delchambre, A. (1992). A genetic algorithm for bin packing and
line balancing. In Proceedings of the 1992 IEEE international conference on robotics
and automation (pp. 1186–1192). Nice.

Fleszar, K., & Hindi, K. S. (2003). An enumerative heuristic and reduction methods
for the assembly line balancing problem. European Journal of Operations
Research, 145(3), 606–620.

Gonçalves, J. F., & De Almeida, J. R. (2002). A hybrid genetic algorithm for assembly
line balancing. Journal of Heuristics, 8(6), 629–642.

Hoffmann, T. R. (1963). Assembly line balancing with a precedence matrix.
Management Science, 9(4), 551–562.

Jackson, J. R. (1956). A computing procedure for a line balancing problem.
Management Science, 2(3), 261–271.

Johnson, R. V. (1988). Optimally balancing large assembly lines with ‘‘Fable’’.
Management Science, 34(2), 240–253.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J.
W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). New
York: Plenum Press.

Lapierre, S. D., Ruiz, A., & Soriano, P. (2006). Balancing assembly lines with tabu
search. European Journal of Operational Research, 168(3), 826–837.

Morrison, D. R., Sewell, E. C., & Jacobson, S. H. (2013). An application of the branch,
bound, and remember algorithm to a new simple assembly line balancing
dataset. European Journal of Operational Research, 236(2), 403–409.

Nearchou, A. C. (2005). A differential evolution algorithm for simple assembly line
balancing. In16th International federation of automatic control (IFAC) World
Congress. Prague.

Nourie, F. J., & Venta, E. R. (1991). Finding optimal line balances with OptPack.
Operations Research Letters, 10, 165–171.

Otto, A., Otto, C., & Scholl, A. (2013). Systematic data generation and test design for
solution algorithms on the example of SALBPGen for assembly line balancing.
European Journal of Operational Research, 228(1), 33–45.

Otto, A., Otto, C., & Scholl, A. (2014). How to design and analyze priority rules:
Example of simple assembly line balancing. Computers & Industrial Engineering,
69, 43–52.

Ponnambalam, S. G., Aravindan, P., & Mogileeswar Naidu, G. (1999). A comparative
evaluation of assembly line balancing heuristics. International Journal of
Advanced Manufacturing Technology, 15(8), 577–586.

Sabuncuoglu, I., Erel, E., & Tanyer, M. (2000). Assembly line balancing using genetic
algorithms. Journal of Intelligent Manufacturing, 11(3), 295–310.

Scholl, A. (1993). Data of assembly line balancing problems. Schriften zur
Quantitativen Betriebswirtschaftslehre 16/93, TU Darmstadt.

Scholl, A. (1999). Balancing and sequencing of assembly lines. Heidelberg: Physica-
Verlag.

Scholl, A., & Klein, R. (1997). SALOME: A bidirectional branch-and-bound procedure
for assembly line balancing. INFORMS Journal on Computing, 9(4), 319–334.

Scholl, A., & Klein, R. (1999). Balancing assembly lines effectively – A computational
comparison. European Journal of Operational Research, 114(1), 50–58.

Scholl, A., & Voß, S. (1996). Simple assembly line balancing – Heuristic approaches.
Journal of Heuristics, 2(3), 217–244.

Sewell, E. C., & Jacobson, S. H. (2012). A branch, bound, and remember algorithm for
the simple assembly line balancing problem. INFORMS Journal on Computing,
24(3), 433–442.

Sprecher, A. (1999). A competitive branch-and-bound algorithm for the simple
assembly line balancing problem. International Journal of Production Research,
37(8), 1787–1816.

Sternatz, J. (2014). Enhanced multi-Hoffmann heuristic for efficiently solving real-
world assembly line balancing problems in automotive industry. European
Journal of Operational Research, 235(3), 740–754.

Vilà, M., & Pereira, J. (2013). An enumeration procedure for the assembly line
balancing problem based on branching by non-decreasing idle time. European
Journal of Operational Research, 229(1), 106–113.

Zhang, Z., Cheng, W., Tang, L., & Zhong, B. (2007). Ant algorithm with summation
rules for assembly line balancing problem. In 14th International conference on
management science & engineering (pp. 369–374). Harbin (China).
simple assembly line balancing problem type 1: Overview, computational
://dx.doi.org/10.1016/j.ejor.2014.06.023

http://dx.doi.org/10.1016/j.ejor.2014.06.023
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0005
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0005
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0010
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0010
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0010
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0015
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0015
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0015
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0020
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0020
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0020
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0025
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0025
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0030
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0030
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0035
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0035
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0040
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0040
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0040
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0045
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0045
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0050
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0050
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0060
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0060
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0065
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0065
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0070
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0070
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0070
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0075
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0075
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0080
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0080
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0080
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0085
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0085
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0090
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0090
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0090
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0095
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0095
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0095
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0100
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0100
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0100
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0105
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0105
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0110
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0110
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0115
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0115
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0120
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0120
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0125
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0125
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0130
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0130
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0130
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0135
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0135
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0135
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0140
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0140
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0140
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0145
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0145
http://refhub.elsevier.com/S0377-2217(14)00526-8/h0145
http://dx.doi.org/10.1016/j.ejor.2014.06.023

	Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, computational tests and improvements
	1 Introduction
	2 Heuristics
	2.1 Falkenauer and Delchambre (1992): GA-FD
	2.2 Sabuncuoglu, Erel, and Tanyer (2000): GA-S
	2.3 Nearchou (2005): DEA
	2.4 Bautista and Pereira (2002): ACO
	2.5 Scholl and Voß (1996): Tabu-SV
	2.6 Simple-Tabu
	2.7 Lapierre, Ruiz, and Soriano (2006): Tabu-L
	2.8 Fleszar and Hindi (2003): MultiHoff
	2.9 Bautista and Pereira (2009): Bounded-DP
	2.10 t-Bounded-DP
	2.11 Blum (2008): Beam-ACO
	2.12 Scholl and Klein (1997, 1999): SALOME
	2.13 Random Search
	2.14 Random Task Priority Search

	3 Lower bounds
	3.1 Traditional lower bounds LB1 to LB7
	3.2 Tails and heads
	3.3 Lower bound 7a
	3.4 Lower bounds 8a till 8d
	3.5 LBR: LB8c with reduction techniques

	4 Computational results
	4.1 Computational environment
	4.2 Heuristics
	4.3 Lower bounds

	5 Discussion
	Acknowledgements
	Appendix A Remarks on reduction techniques
	Appendix B Traditional lower bounds
	Appendix C Supplementary material
	References

