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Abstract

In this work we present and discuss in detail a novel
vector-valued regression technique: our approach al-
lows for an all-at-once estimation, as opposed to solve
a number of scalar-valued regression tasks. Despite its
general purpose nature, the method has been designed
to solve a delicate medical issue: a reliable and non-
invasive assessment of body-iron overload.

The Magnetic Iron Detector (MID) measures the
magnetic track of a person, which depends on the an-
thropometric characteristics and the body-iron burden.
We aim to provide an estimate of this signal in absence
of iron overload. We show how this question can be for-
mulated as the estimation of a vector-valued function
which encompasses the prior knowledge on the shape of
the magnetic track. This is accomplished by designing
an appropriate vector-valued feature map. We success-
fully applied the method on a dataset of 84 volunteers.

1 Introduction

Certain blood diseases, such as thalassemia and
hemochromatosis, are characterized by the accumula-
tion of iron in the body organs, mainly in the liver. The
therapies for these disorders require to accurately eval-
uate the iron overload in the patients. Marinelli and
colleagues [7, 6] have developed a room-temperature
biosusceptometer, the Magnetic Iron Detector (MID),
that allows the non-invasive assessment of the iron over-
load in the whole liver, as opposed to the invasive liver
biopsy, which still is the most used diagnostic tool.
The biosusceptometer is composed of an AC magnetic
source and a pickup coil which measures the electromo-
tive force emf produced by the oscillation of the mag-
netic field flux. When a body is inserted under the mag-

netic field it produces a variation of the emf which de-
pends on the magnetic properties of the body and on its
position relative to the magnetic field axis.

Due to the oscillating field, the magnetic signal gen-
erated by the human body has two independent sources:
the magnetization signal, from the magnetic properties
of the tissues, and the eddy current signal, from their
electrical conductivity. For each patient a double track
is recorded: only the magnetization signal depends on
the iron overload. Given an estimate of the background
signal of a patient, that is the signal that would be gener-
ated in absence of iron overload, it is possible to recover
the liver iron overload by subtracting the two signals.
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Figure 1. Eddy current and magnetization signals of
a volunteer.

The parametric model developed by Marinelli and
coworkers [6] is currently used at the “E.O. Ospedali
Galliera” Hospital in Genoa, Italy, for assessing the iron
overload. The model has been trained on a dataset of
84 healthy volunteers and it estimates the ratio R(x)
between the two signals shown in Fig.1. The core idea
behind their approach is that the magnetization signal of
a well-treated patient is indistinguishable from the one



of a healthy volunteer with the same biometric features,
see Fig.2. Furthermore, they assume that the ratio R(x)
of the two signals, evaluated only in the range between
-8cm and 8cm, resembles a parabola.
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Figure 2. Magnetic tracks of a healthy volunteer and
of a patient with similar biometric features: the liver
iron overload produces an evident variation of the sig-
nal in the left part of the track. Position x = 0cm cor-
responds to the center of the body; negative positions
to the liver side, positive positions to the spleen side.

We reformulate this problem in the context of Statis-
tical Learning presenting a method to transform a curve
fitting task into a vector-valued regression model. Since
the measures are always taken at fixed positions along
the measurement axis, they can be thought of as com-
ponents of a vector and a high correlation among them
can be assumed, because they approximately lie on a
parabola. In this way we eschew from directly estimat-
ing the magnetization curve. The method described in
Sec. 2.1 can be implemented by means of iterative al-
gorithms, see [5], such as Landweber, ν-method or the
sparsity enforcing l1l2 regularization [3, 4].

2 Vector-valued regression
Given a training set of example points Dn ≡

{(xi,yi) ∈ X×Y}ni=1, obtained by samplingX×Y ac-
cording to the unknown probability P (x,y), the prob-
lem of learning consists in providing a deterministic es-
timator f : X → Y with good generalization properties
on unseen examples.

The best possible estimator would be the one mini-
mizing the so-called expected risk, that is:

I[f ] ≡
∫
X×Y

V (y, f(x))P (x,y) dxdy,

where V (y, f(x)) is the loss function measuring the
error of predicting y by f(x). Since P is unknown,
we could try to minimize the empirical risk: En(f) =
1
n

∑n
i=1 V (yi, f(xi)), but we would end up in solv-

ing an ill-posed problem, since the solution is not

unique, not stable and with poor generalization prop-
erties. Therefore we select the minimizer of

En(f) + λ||f ||2K (1)

in a Reproducing Kernel Hilbert Space (RKHS), pro-
vided with a kernel function K. The second term in
(1) represents the complexity of the function f . In our
setting Y ⊆ Rd, therefore the kernel function K is
K : X × X → L+(Rd).

The representer theorem [8] guarantees that the so-
lution can always be written as:

f(x) =
n∑
i=1

K(x,xi)ci,

where the coefficients ci depend on the data, on the loss
function, on the kernel choice and on the regularization
parameter λ. For vector-valued functions the ci are d-
dimensional vectors, while K(x,xi) is a d× d matrix.

The direct approach, as in [8], is computationally ex-
pensive since it requires to invert a nd× nd matrix.

To overcome this issue, we propose an extension to
the vector-valued case of iterative algorithms methods,
originally developed for scalar regression [9, 5]. The
main idea of these techniques is to start with an approx-
imate solution and iteratively add a correction in the di-
rection opposite to the gradient of the empirical risk.
By early stopping the procedure, a regularized solution
is achieved. The number of iterations m plays the role
of the regularization parameter λ. In practice we obtain
a sequence of solutions, one for each iteration, avoiding
to directly compute the solution for each regularization
parameter, therefore allowing a faster selection of the
optimal stopping point. Another advantage of such ap-
proaches consists in solving the minimization problem
without inverting any matrix.

We also extend to the vector-valued case the l1l2 reg-
ularization and assess its performance on this problem.
The l1l2 regularization is a sparsification method ini-
tially proposed by [10] and studied in [3]. This method
iteratively minimizes the following functional, derived
from (1) with a square loss and the addition of a l1
penalty term:

1
n

n∑
i=1

||(yi − f(xi))||2d + λ(1− α)||f ||2K + λα||f ||l1.

2.1 Designing the feature map

For each person i = 1, . . . , 84, we consider only the
5 measures yik at positions tk = {−8,−4, 0, 4, 8}cm.
The measures can be thought as the components of
a five-dimensional vector and lie approximately on a



parabola, hence we can model them as yik = f(xi)k +
εik, where xi stands for the biometric data of the volun-
teer i, εik representing the noise and:

f(xi)k = c0(xi) + c1(xi)tk + c2(xi)t2k. (2)

In our model, we assume that the coefficients
c0, c1, c2 depend linearly on x: cj(x) = βj · x, for
j = 0, 1, 2 and introduce the vector-valued feature map,
ϕ : X → R5×3p, (X ⊆ Rp, p = 22):

ϕ(x) =


x xt1 xt21
x xt2 xt22
x xt3 xt23
x xt4 xt24
x xt5 xt25

 . (3)

Hence, the vector-valued estimator can be written as a
linear combination of the features ϕ(x):

f(x) = ϕ(x)β, β ∈ R3p, (4)

where β is obtained by concatenating the vectors βj .
Choosing the square loss, the empirical risk is:

En(β) =
1
n

n∑
i=1

‖yi − ϕ(xi)β‖2R5 .

Our aim is to compare the estimates of β obtained with
three algorithms: Landweber, ν-method and l1l2.

These methods require the computation of the em-
pirical risk gradient, which, for this specific case, is:

∇En(β) = − 2
n

(ϕY − ϕTϕβ) (5)

(ϕY )γ =
n∑
i=1

< ϕγ(xi),yi >R5

(ϕTϕ)γ,γ‘ =
n∑
i=1

< ϕγ(xi), ϕγ‘(xi) >R5

where ϕγ(x) corresponds to the γ-th row of ϕ(x),
ϕY ∈ R3p and ϕTϕ ∈ R3p×3p.

The simple Landweber approach [1] starts with the
null solution which is updated by adding the negative of
the gradient multiplied by a constant step size, η:

βm+1 = βm − η∇En(βm), β0 = (0, . . . , 0)

The number of iterations m corresponds to the regular-
ization parameter λ−1.

The ν−method [5] extends Landweber by using
a dynamic step size and introducing an inertial term
which keeps memory of the previous update:

βm+1 = βm + u(βm − βm−1)− wη∇En(βm),

where w and u change at each iteration. The number of
iterations corresponds to λ−2.

l1l2 regularization iteratively minimizes the follow-
ing functional:

1
n

n∑
i=1

‖yi − ϕ(xi)β‖2R5 + λ(1− α)||β||22 + λα||β||1

The l1 penalty term forces many of the coefficients βlj
to be zero: the corresponding variables are irrelevant
and can be discarded. The iterations are essentially of
the Landweber type, but at each step the coefficients are
soft-thresholded and shrunk:

βm+1 = H(βm − η∇En(βm), λα)/(1 + λ(1− α))

and H(β, τ) is the soft-thresholding operator, which
sets to zero all components of β within [−τ, τ ] and
shifts towards zero by τ the remaining ones. The algo-
rithm stops accordingly to a convergence criterion [3].

From the vector-valued feature map ϕ we can derive
the corresponding matrix-valued kernel. Following [2]:

(K(x, s))pq =
5∑
k=1

ϕkp(x)ϕkq(t) = (x·s)(1+tptq+t2pt
2
q).

This kernel is of the form K(x, s) = k(x, s)A, with
k(x, s) a scalar kernel and A a positive semi-definite
matrix. Further prior information can be included by
changing the scalar kernel k or the matrix A.

2.2 Model selection and assessment

We adopt an experimental protocol in order to select
the model parameters and assess the generalization ca-
pabilities of our method in an unbiased way, perform-
ing two nested loops of K-fold Cross Validation. The
inner loop is a 5-fold Cross Validation and is performed
to select the regularizing parameter. For each value of
the parameter, an estimate of the generalization error is
computed. The value that minimizes the error is used
for training. The outer loop is a Leave One Out (LOO)
Cross Validation evaluating the performance of the cho-
sen model. The estimate of the generalization error is
the mean of the n empirical errors.

3 Results
The data set is composed of 84 healthy volunteers

represented by their biometric data and the five mea-
sures of the eddy-current signal. This features are
highly inhomogeneous and can lead to numerical prob-
lems, therefore we normalized our data. We set the
columns of the n×p data matrixX = (x1, . . . ,xn)T , to



have zero mean and fixed range and changed the vari-
able t from {−8,−4, 0, 4, 8} to {−1,−0.5, 0, 0.5, 1},
since it only represents a label for the components of
the vector y. Thus, each element of the 3d matrix
ϕ(X) ∈ Rn×3p×5, obtained by applying the feature
map to the data matrix X , belongs to [−1, 1]. In the
test phase, we apply these normalizing factors to the
test data.

Table 1. Model parameters
Model Number of iterations λ Time

Landweber 397 n.a. 1605 s
ν-method 68 n.a. 114 s

l1l2 23 ∗ 104 10−5 5300 s

Figure 3. LOO errors distributions. The first three
models are obtained from the vector-valued one by the
indicated algorithms.

For model selection and assessment we used the ex-
perimental protocol outlined in Sec.2.2: the model pa-
rameters to be selected are the number of iterations m
for the Landweber and ν-method algorithms and the
regularizing parameter λ for the l1l2 method. In the
latter case, α was set to 0.9 to enforce maximum spar-
sity while retaining correlated features [3]. For all the
algorithms we set the step size η = (2‖ϕTϕ‖)−1 which
guarantees their convergence [9, 3, 5]. From Tab.1 it
can be noted that the ν-method is significantly faster
than the other two methods.

The boxplots shown in Fig.3 represent the LOO er-
rors distributions for the different algorithms and for the
model of [6], obtained with the same protocol. As ex-
pected, we observe that the LOO errors show a high
variance. The advantage of modelling the problem as
vector-valued regression is supported by the fact that the
three algorithms consistently lead to error distributions
that are closer to zero with respect to the MID model.

The accuracies obtained correspond to a precision
in the iron overload estimation of about 0.8g. Iron

overload lower than 1g is considered mild: currently
no model is capable to detect this kind of iron burden.

4 Conclusions
The model proposed is a general method to approach

vector-valued regression problems. Moreover, it can be
used to estimate a curve explained by a variable that is
always sampled at fixed values. Prior knowledge (e.g.
the shape of the curve w.r.t. the parametrizing variable,
or the correlation among the elements of the vector-
valued function to be estimated) can be easily incorpo-
rated into the feature map or the kernel function.

Our results show that the iterative algorithms can be
applied to the vector-valued case with success. They
also provide an efficient alternative to the direct com-
putation of the inverse of a nd× nd matrix. The model
selection and validation protocol adopted leads to an un-
biased solution, avoiding overfitting and unreliable es-
timates of the performance.
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