
Seeing is as good as doing 

 1

Seeing is as Good as Doing 

Magda Osman 

 

University College London 

 

 

 

 

 

 

 

 

 

 

 

Department of Psychology 

University College London 

Gower Street 

London WC1E 6BT 

England 

Phone: +4420 7679 7572 

Fax:  +4420 7436 4276 

Email: m.osman@ucl.ac.uk  



Seeing is as good as doing 

 2

Abstract 

 

Given the privileged status claimed for active learning in a variety of domains (visuo-motor 

learning, causal induction, problem solving, education, skill learning), the present study 

examines whether action-based learning is a necessary, or a sufficient, means of acquiring the 

relevant skills needed to perform a task typically described as requiring active learning. To 

achieve this, the present study compared the effects of action-based and observation-based 

learning on controlling a complex dynamic task environment. Both action- and observation-

based learners either learnt by describing the changes in the environment in the form of a 

conditional statement, or not. The findings show that observational learners are sensitive to 

the instructional manipulations pursued during learning, in ways that are comparable to the 

active learning conditions. For both, advantages in performance, accuracy in knowledge of 

the task, and self-insight were found when learning was based on inducing rules from the 

task environment. 
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Seeing is as Good as Doing 

Who has better knowledge and skill, the back seat driver, who is learning to drive, or 

the actual driver, who is also learning to drive, the person watching their friend play a new 

game on the Sony play station, or the friend who is actually playing the game? Our daily lives 

frequently involve learning to control complex dynamic environments like those referred to 

in the question, but how we come to form the relevant skills needed to master such 

environments remains much debated. Laboratory versions of these tasks, referred to as 

Complex dynamic control tasks (CDC-tasks) (e.g., See Figure 1: water purification system) 

typically include several inputs (salt, carbon, lime) that are connected via a complex structure 

or rule to several outputs (chlorine concentration, temperature, oxygenation). In such 

environments, people are required to make a series of decisions, often in real time, that each 

depend on the other, and in an environment that changes autonomously, as a consequence 

of the person’s actions (Brehmer, 1992).  

The prevailing view is that skill acquisition in these tasks develops through 

procedural learning: that is, incidentally and without the mediation of reportable knowledge 

(Berry, 1991; Berry & Broadbent, 1984, 1987, 1988; Dienes & Berry, 1997; Lee, 1995; 

Stanley, Mathews, Buss, & Kotler-Cope, 1989). This form of learning produces instance-

based knowledge: i.e., Specific actions undertaken whilst interacting with the system become 

associated with the specific effects that they generate. Through repeated exposure to the 

same instances, this knowledge is gradually formulated into reportable rules about how the 

task operates (e.g., Broadbent, Fitzgerald, & Broadbent, 1986; Dienes & Fahey, 1995, 1997; 

Gibson, Fichman, & Plaut, 1997). In support of this, there is evidence that people can 

successfully control a CDC-task independently of any reportable knowledge of the rule or 

causal structure that determines its operation, and without self-insight as to how they are able 

to perform it (e.g., Berry & Broadbent, 1984, 1987, 1988; Stanley et al., 1989). Another 

compelling demonstration of dissociations between rule- and instance-based knowledge is 
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found in the contrasting effects of observation-based and procedural-based learning (Berry, 

1991; Lee, 1995). Observation-based learning involves problem solvers watching the actions 

taken by another problem solver attempting to learn a CDC-task. This encourages the 

observer to focus on understanding how the system operates (i.e., rule-based knowledge). In 

contrast, procedural-based learning encourages knowledge of how to operate the system (i.e., 

instance-based knowledge). When compared, observers show better rule-based knowledge 

than procedural learners, but poorer control performance. 

Others, however, have suggested that successful skill acquisition depends on a 

combination of rule-based and instance-based knowledge, which develops through 

hypothesis testing (e.g., Burns & Vollmeyer, 2002; Osman, in press A, in press B; Sweller, 

1988; Vollmeyer, Burns, & Holyoak, 1996). By exploring the task and formulating rules 

about how it operates, the learner is able to update their rule-based knowledge through the 

instances that they have generated to test them. Through practice, a wider range of instances 

are experienced, and these enable the learner to form generalizable knowledge that they can 

transfer to other similar tasks. Evidence for this comes from studies that compare different 

types of goal instructions during learning. For instance, instructions like “explore the 

system,” an example of a non-specific goal (NSG), are contrasted with “learn about the 

system while trying to reach and maintain specific outcomes,” an example of a specific goal 

(SG). The former instruction is assumed to encourage hypothesis testing, because rules can 

be generated and tested, whereas, in the latter instruction, learning is constrained by 

generating instances that fulfill specific criteria. When tested on their ability to control the 

system to previously trained goals, SG-learners’ performance is equal to that of NSG-

learners’ that have not learnt to perform the task to any criteria. Furthermore, for untrained 

goals, NSG-learners outperform SG-learners. Taken together with evidence that NSG-

learners also have superior structural knowledge about the system, this suggests that rule- 
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and instance-based knowledge combined is more effective than instance-based knowledge 

alone (e.g., Burns & Vollmeyer, 2002; Osman, in press A; Vollmeyer et al., 1996).  

Given these conflicting views, this article asks: Is procedural learning necessary to 

ensure skill acquisition in a complex dynamic environment? To address this, the present 

study included six conditions [Active (generate)-Instance, Active (generate)-Instance + Rule, 

Active (replicate)-Instance, Active (replicate)-Instance + Rule, Observe-Instance, Observe- 

Instance + Rule], across which the involvement of procedural learning was gradually 

attenuated. If procedural learning is necessary for skill development in CDC-tasks, then 

active conditions will consistently show superior control performance compared with 

observers, but poorer rule-based knowledge. If instead, instance- and rule-based knowledge 

combined are necessary for control skills to develop, then, regardless of action- or 

observation-based learning, both kinds of learners will show superior knowledge relative to 

those acquiring only instance-based knowledge. 

 

 

Method 

Ninety-six students from University College London volunteered to take part in the 

experiment, and were paid £4 for their participation. Participants were randomly allocated to 

one of six conditions, with sixteen in each. Participants were tested individually and were 

presented with a fully automated version of Burns and Vollmeyer’s (2002) water purification 

system, which was run on Dell Optiplex computers. 

Materials & Procedure  

All participants were presented with a CDC-task (See Figure 1), in which they were 

told to imagine that they worked in a water purification plant, and that their job was to 

inspect the water quality of the system. The system was operated by varying the different 
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levels of salt, carbon, and lime (inputs), which then changed the three water quality 

indicators: oxygenation, temperature, and chlorine concentration (outputs). The CDC-task 

was divided into two phases, the learning phase (40 trials divided into 4 blocks of 10 trials), 

and the test phase with two control tests (each test 10 trials). 

In the learning phase, all participants received the same goal-specific instruction (i.e., 

the following output values in the system must be reached and maintained: Oxygenation = 

50, Chlorine Concentration = 700, Temperature = 900), which was identical to that of 

Control Test 1. Each condition also received additional instructions. The Active (generate)-

Instance condition was required to generate input values to achieve and maintain the output 

values specified. In addition to this, the Active (generate)-Instance + Rule condition was 

instructed that, at the end of each trial, they were to verbally describe the input and output 

changes in the form of an ‘if___, then____’ statement (e.g., if input salt is changed to 10 

units, then the output value of carbon is 516). In the Active (replicate)-Instance condition, 

participants were required to change the inputs according to a trial history: i.e., A pre-

specified set of trials were presented to each participant, in which the input/inputs that had 

to  be changed and the values they had to be changed by were listed for every trial.1 In 

addition, the Active (replicate)-Instance + Rule condition described the input and output 

changes in the form of an ‘if___, then____’ statement. In the Observe-Instance condition, 

participants’ job was to carefully track the changes to the inputs and outputs on each trial, 

which changed according to the same trial history presented in the active-replicate 

conditions, and to assess how successfully the output values met the criteria output values. In 

addition, the Observe-Instance + Rule condition described the input and output changes in 

the form of an ‘if___, then____’ statement.  

The test phase was the same for all conditions. The criterion values participants had 

to reach and maintain in Control Test 1 were Oxygenation = 50, Chlorine Concentration = 

700, Temperature = 900, and in Control Test 2 the values were Oxygenation = 250; Chlorine 
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Concentration = 350; Temperature = 1100. The output criteria in Control Test 2 were 

unfamiliar to all six conditions, since this control test involved a goal that they had not been 

trained on, and provided a test of the generalizability of their control skills. 

After every 10 trials in the learning phase, and after each control test in the test 

phase, all participants were presented with a structure test, consisting of a diagram of the 

system shown on screen, and were asked to indicate which input was connected to which 

output. On completion of the experiment, participants were presented with a record of three 

different trial histories from the learning phase: one that they had actually experienced during 

the learning phase, and two randomly selected alternatives from the Active (generate) 

conditions. They were asked to decide which of the three they had experienced, and what 

formed the basis of their judgment: i.e., did they recognize specific trials? Did they rely on a 

sense of familiarity? Did they guess? 

Scoring 

Structure test performance was based on computing the proportion of input-output 

links correctly identified for each test. A correction for guessing was incorporated: correct 

responses (i.e., the number of correct links included, and incorrect links avoided) – incorrect 

responses (i.e., the number of incorrect links included, and correct links avoided)/ N (the 

total number of links that could be made). The maximum value for each structure score was 

10. Successful performance is indicated by an increase in structure scores. 

Control Tests 1 and 2 

 Control performance was measured as error scores, and was calculated in the same 

way for each test. Error scores were based on calculating the difference between each target’s 

output value (i.e., the criterion according to the test) and the actual output value produced by 

the participant for each trial of the transfer test. A log transformation (base 10) was applied 

to the error scores of each participant for each trial, to minimize the skewedness of the 

distribution of scores. All analyses of error scores are based on participants’ mean error, 
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averaged over all 10 trials, across all three output variables. Successful control performance is 

indexed by the difference between the achieved and target output values, thus lower error 

scores indicate better performance. 

Results 

Test of Control Skills  

The mean error score of all six conditions presented in Figure 2 suggests that, in all 

three Instance + Rule-based conditions, control error scores decreased (indicating good 

performance) in both tests, compared with the three Instance only based conditions. To 

analyze this, a 2x2x3 ANOVA was carried out using test (Control Test 1, Control Test 2) as 

within subject variables, and knowledge (Instance, Instance + Rule) and learning format 

(Active (generate), Active (replicate), Observe) as the between subject variables. The analysis 

showed a significant main effect of test: F(1, 90) =4.87, MSE = 0.13, p < 0.05, η2 = 0.05. 

There was also a significant main effect of knowledge: F(1, 90) = 59.22, MSE = 1.56, p < 

0.005, η2 = 0.39. No other main effects or interactions were significant. Because there was no 

interaction between knowledge and test, the control error scores for each condition were 

collapsed across tests. The significant increase in control error scores (impaired performance) 

in the Instance conditions compared with the Instance + Rule conditions for the Active 

(generate), Active (replicate), and Observe conditions, was confirmed by a planned 

comparison for error scores: t(15) =2.75, p < 0.05, d = 1.42, t(15) =5.05, p < 0.05, d = 2.61, 

and t(15) = 8.78, p < 0.005, d = 4.53, respectively. 

Test of rule-based knowledge: The mean error scores were collapsed across phase for each 

of the six conditions and are presented in Figure 2. The figure suggests that, in the three 

Instance + Rule-based conditions, structure test scores increased (indicating good 

performance) compared with the three Instance only based conditions. To analyze this, a 

2x2x3 ANOVA was carried out using phase (Learning, Test) as within subject variables, and 

knowledge (Instance, Instance + Rule) and learning format (Active (generate), Active 
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(replicate), Observe) as the between subject variables. The analysis showed a significant main 

effect of phase: F(1, 90) = 4.561, MSE = 0.18, p < 0.05, η2 = 0.48. There was also a 

significant main effect of knowledge: F(1, 90) = 29.58, MSE = 4.18, p < 0.0005, η2 = 0.24. 

No other main effects or interactions were significant. Because there was no interaction 

between knowledge and test, the structure test scores for each condition were collapsed 

across phase. Planned comparisons confirmed the significant increase in structure test scores 

(improved performance) in the Instance + Rule conditions, compared with the Instance 

conditions for the Active (generate), Active (replicate), and Observe conditions: t(15) =2.65, 

p < 0.05, d = 1.37, t(15) =3.19, p < 0.01, d = 1.65, and t(15) = 4.37, p < 0.001, d = 2.26, 

respectively. 

Correlation between control performance and structural knowledge. The following correlation 

analyses were carried out on control error scores (averaged across Control Tests 1-2), and 

structure test scores (averaged across Structure Tests 5-6 in the test phase). Scores were 

collapsed across the four active conditions, and then again for the remaining observation 

conditions. Correlation analyses revealed a significant negative relationship between structure 

test scores and control test scores: r(64) = -0.31, p < 0.05, and, r(32) = -0.47, p < 0.01, 

respectively. 

Test of self-insight. Table 1 indicates that more correct identifications of the learning 

trials experienced were made in Instance + Rule conditions than in Instance conditions. A 

Chi-squared analysis, collapsing responses across action-based conditions, and comparing 

accuracy of responding in Instance and Instance + rule conditions, confirmed the trend 

indicated in Table 1: χ (3) = 8.78, p < 0.05. Furthermore, Table 1 suggests that more 

participants relied on specific instances to identify their learning phase in Instance + Rule 

conditions than in Instance conditions, whereas the Instance-based conditions relied more 

on guessing. This was also confirmed using a Chi-squared analysis: χ (3) = 9.47, p < 0.05.    
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Discussion 

The target question asked in this article asked: Is procedural learning necessary to ensure skill 

acquisition in a complex dynamic environment? The evidence from this study shows that 

procedural learning is sufficient for the successful uptake of relevant knowledge, but not 

necessary, given that observational learning produced patterns of performance equivalent to 

those of the active learning conditions.  

Implicit learning theorists (e.g., Berry, 1991; Berry & Broadbent, 1988; Sun et al., 

2001) have maintained that the knowledge required to control CDC-Tasks is embedded 

within the interactions problem solvers have with the system. Furthermore, knowledge is 

conscious only to the extent that the response that is appropriate to a given situation can be 

stated, but the knowledge used to support that response is unavailable to consciousness 

(Buchner et al., 1995; Dienes & Berry, 1997; Dienes & Fahey, 1998). Similar claims are made 

in other tasks considered to be procedural learning tasks, or called, alternatively, implicit 

learning tasks (e.g., artificial grammar learning, Reber, 1989; sequence learning, Nissen & 

Bullemer, 1987; Willingham et al., 1989). The study is the first of its kind to provide clear 

evidence that explicitly thinking about the relationship between events and outcomes as rules 

leads to superior knowledge about how a CDC-task works, how to operate it, how to 

transfer control skills to an untrained goal, and self-insight into what one does to learn about 

how to operate it.  

The findings converge with previous evidence suggesting that instructions designed 

to encourage hypothesis testing and other similar meta-cognitive processes (e.g., monitoring-

tracking one’s online goal-directed behaviors) do not interfere with the uptake of skilled 

knowledge, as some have claimed, and may even enhance skilled performance (e.g., Berardi-

Coletta et al., 1995; Osman, in press A, in press B). Thus, the present study shows that 

hypothesis testing, rather than the active engagement with a procedural task, is necessary for 
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the successful uptake of knowledge, and its application to mastering a complex control 

system.  
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Footnote 

 

1. The trial histories for the Active (replicate-instance), Active (replicate- Instance + Rule), 

Observe (Instance), Observe (Instance + Rule) conditions, were based on the learning phase 

generated by one of the participants from the Active (generate – Instance + Rule) condition. 

Participant was selected on the basis of their control performance in the test phase, which 

was closest to the mean across both Active (generate – instance) and Active (generate – 

Instance + Rule) conditions. This was favored instead of a full yoking procedure, because the 

source of any differences in these conditions was carefully controlled, and was likely to result 

from the instructional manipulations during learning, rather than from the trial history itself. 
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Figure Captions. 

 

Figure 1. Water tank system with inputs (salt, carbon, lime) and outputs (oxygenation, 

chlorine concentration, temperature).  

Figure 2. Mean Control Test error scores (±SE) at Control Test 1 and Control Test 2 for each 

condition. Successful performance is indicated by lower mean error scores. 

Figure 3. Mean Structure test scores (±SE) averaged across the learning phase and again for 

the Control test phase for each condition. Successful performance is indicated by higher 

structure scores. 

Table 1. Frequency of responses to questions concerning the identification of the trial history 

experienced during the learning phase, and the basis for making that response by condition.  
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Figure 1. Water tank system with inputs (salt, carbon, lime) and outputs (oxygenation, 

chlorine concentration, temperature).  
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Figure 2. Mean Control Test error scores (±SE) at Control Test 1 and Control Test 2 for each 

condition. Successful performance is indicated by lower mean error scores. 
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Figure 3. Mean Structure test scores (±SE) averaged across the learning phase and again for 

the Control test phase for each condition. Successful performance is indicated by higher 

structure scores. 
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Table 1. Frequency of responses to questions concerning the identification of the trial history 

experienced during the learning phase, and the basis for making that response by condition.  

 

 Basis for Identification 

Condition No. of Correct 

Identifications 

Feeling of 

Familiarity 

Recognize 

specific 

instances 

Guess 

Active (Generate) Instance 5 5 5 6 

Active (Generate) Instance + Rule 9 6 8 2 

Active (Replicate) Instance 4 5 4 7 

Active (Replicate) Instance + Rule 10 3 8 5 

Observe Instance 4 6 3 7 

Observe Instance + Rule 9 5 9 2 

 


