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We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant

nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The

buried dopant nanostructures have been fabricated in a bottom-up approach using scanning

tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy

is suited to locate and image buried nanostructures at room temperature and with residual surface

roughness present. From these studies, we can place an upper limit on the lateral diffusion during

encapsulation with low-temperature Si molecular beam epitaxy. VC 2014 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4884654]

The basic functional unit of the integrated circuit, the

MOSFET (metal-oxide-semiconductor field effect transistor)

contains dopants whose number and location form a random

distribution. As MOSFETs are scaled down to channel

lengths <30 nm, this randomness becomes problematic, lim-

iting the reproducibility of MOSFET electrical characteris-

tics, such as threshold voltage.1 Consequently, it would be of

great benefit to fabricate devices where the location and

number of dopants were controlled exactly, for both conven-

tional electronics and for applications based on quantum

properties such as quantum computers.2 A scheme to achieve

such precision doping using scanning tunneling microscopy

(STM) has been developed over the last decade,3–5 recently

culminating in the fabrication of an atomic scale buried dop-

ant electrical wire6 and a buried single atom transistor.7

While buried dopant devices can be characterized electri-

cally, knowledge of their spatial profile will be valuable if

more complicated device architectures are to be developed.

The imaging of ionized dopants buried below the sur-

face of semiconductors is possible because the buried charge

modifies its local electrostatic environment, shifting the sur-

face bands locally, which leads to a variation in the tunneling

current in the vicinity of the buried charge.8 However, the

imaging of dopants buried in Si is made harder by to the

presence of surface states, which can partially pin the Fermi

level at the surface, making the screened Coulomb potential

of the ionized dopant difficult to resolve. These surface states

can be removed by hydrogen terminating the surface and this

approach was used to facilitate the identification of B,9

As,10,11 and P12,13 dopants buried below H:Si(001) surfaces.

The imaging of buried P atoms below a clean Si(001) surface

was achieved using large work function (approximately

5.6 eV) platinum/iridium tips to eliminate the Fermi-level

pinning that hinders dopant identification in highly doped

samples.14 In the above-mentioned dopant imaging work, all

experiments studied randomly dispersed dopants and atomi-

cally flat surfaces were required for successful imaging. This

latter requirement is particularly problematic if one wishes

to image buried dopant nanostructures as the flash anneal (to

>1000 �C) required to produce the atomically flat surface

will also redistribute the dopants via diffusion,15 effectively

destroying the nanostructure.

In this paper, we demonstrate imaging of deterministi-

cally fabricated buried P nanostructures in silicon. We first

present a direct comparison of voltage-dependent STM

imaging and current imaging tunneling spectroscopy

(CITS)16 to image single buried P dopants, at room tempera-

ture. We then use STM lithography, phosphine (PH3) dosing

and Si epitaxy to fabricate buried dopant nanostructures and,

using CITS, demonstrate that imaging subsurface dopant

structures is possible even with residual surface roughness

present after the Si epitaxy.

All experiments were performed in an ultra-high vac-

uum (UHV) chamber with a base pressure of <5� 10�11

millibars, housing a variable temperature scanning tunneling

microscope (Omicron). Further details of our experimental

arrangement are described elsewhere.4 The starting point is a

flat, well-ordered Si surface prepared by annealing a

phosphorus-doped 1 X cm silicon Si(001) wafer at 1150 �C
for 30–60 s, quickly reducing the sample temperature from

1150 �C to 900 �C then cooling to room temperature at a rate

of �3 �C/s. The STM measurements were taken at room

temperature. Figure 1 shows (a) a filled- and (b) an empty-

state STM image of the same area of a Si(001) surface below

which several buried P atoms (dopants) reside. Unlike
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previous STM studies of P dopants in bulk-doped wafers,14

these dopants were deliberately introduced into the near-

surface region of the substrate in controllable numbers.17 A

delta-doped layer of P atoms was formed 5 monolayers (ML)

below the surface by chemical vapor deposition of P from

PH3 followed by silicon encapsulation using molecular beam

epitaxy at room temperature. A subsequent anneal to 450 �C
for 5 s causes diffusion of some of the P atoms from the

delta-layer, towards and away from the surface.17 Using this

method of sample preparation, the local dopant density is in

the range of 1018–1019 cm�3.

Figure 1 shows a pair of filled- and empty-state STM

images of a surface prepared as described above. We observe

several long-range (�3 nm) enhancements in the empty-state

image (Fig. 1(b)) that are absent in the filled-state image

(Fig. 1(a)). These features can be attributed to a position de-

pendent bias voltage induced by ionized P dopant atoms in

substitutional subsurface lattice sites.14 The features are not

apparent in the filled-state image due to Fermi-level pinning

at the conduction band edge induced by the strong tip-induced

band bending. We also note that unambiguous identification of

buried dopants in STM images is only possible on the areas of

the surface away from steps and defects. In Fig. 1, the step-

edge density, after a 450 �C anneal, is sufficiently high as to

make the identification of every single buried dopant unfeasi-

ble using topographic filled and empty state imaging.

We now image buried P dopants using CITS. Figure 2

shows a direct comparison between STM and CITS imaging

of individual subsurface P dopants. In the empty state STM

image (Fig. 2(a), Vs¼þ1.1 V), the faint protrusion around

the buried dopants is small compared to the height variation

due to steps and terraces. The visibility is enhanced in

Fig. 2(b) by adjusting the color scale for each terrace individ-

ually and piecing the STM image together. Here, subsurface

dopants are visible as circular hillocks superimposed on the

atomic lattice, similar to the appearance of the features seen

by Brown et al.14 In Fig. 2(c), we present a CITS measure-

ment of the same surface area. In CITS, a current-voltage

characteristic is obtained at every topography data point (or

a subset of these points)16 with the tip-sample distance fixed

at the set point of the topographic measurement. This pro-

vides a spatial image of the tunneling current at each voltage

over a specified voltage range. In Fig. 2(c), we show the cur-

rent corresponding to Vs¼þ0.9 V. As for the STM data in

Fig. 1, circular regions with increased current can be

distinguished at the positions of subsurface dopants [Fig.

2(b)]. Here, the contrast in the images can be explained in

complete analogy to STM imaging. The positive charge of

the subsurface dopant locally shifts the surface bands down-

wards, thereby increasing the states available for tunneling

into the sample at positive sample bias. The increased cur-

rent around the buried P dopant is visible in the CITS image.

We now turn to fabricating and imaging buried phospho-

rus nanostructures. Fabrication of buried P dopant structures

in UHV has been described elsewhere.18 A flat, clean Si(001)

surface is terminated with a single monolayer of hydrogen,

which acts as a resist mask that is subsequently patterned via

the controlled atomic scale desorption of hydrogen using the

STM.19 Phosphorus atoms are delivered to the patterned sur-

face via the adsorption of PH3 gas, which only adsorbs to the

areas of the surface where H has been removed. Heating the

wafer to 350 �C results in the substitution of P atoms into

the surface and further heating to 470 �C desorbs the

FIG. 1. (a) Filled state and (b) empty state STM images of single P dopants,

highlighted by the circles, buried beneath a Si(001) surface. The visibility of

buried dopants is hindered by the presence of steps and defects on the sur-

face. Sample bias was �0.8 V and þ0.8 V, respectively.

FIG. 2. Direct comparison of STM imaging and CITS on single buried P

dopants. (a) Empty state STM image (Sample bias, Vs¼þ1.1 V). (b) The

same data as (a) with the height differences equalized by piecing together

image areas from individual atomic terraces. Buried P dopants are visible as

slight circular protrusions. (c) CITS image at Vs¼þ0.9 V taken on the same

area. The buried P dopants are visible as circular features with increased cur-

rent. Some buried P dopants are marked by the arrows in (b) and (c).
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H-resist.20 The final step is the encapsulation of the nano-

structure with 5 ML of silicon from a silicon sublimation cell,

and the temperature of the sample at which this occurs has

implications for the subsequent imaging of the buried struc-

ture. During Si epitaxy, the sample is initially heated only by

the radiation of the sublimation cell, reaching �110 �C, in

order to minimize the thermally induced dopant redistribu-

tion. However, this low growth temperature has the unwanted

side effect of increasing the surface roughness. Figure 3

shows STM images and root-mean-square roughness, Rrms,

values of the typical surface at three stages of the fabrication

process described above. The value of Rrms increases from

�0.04 nm at the stage where the hydrogen resist has been de-

sorbed (Fig. 3(a)), to �0.36 nm after subsequent growth of 5

monolayers of Si at �110 �C (Fig. 3(b)), due to the formation

of large silicon clusters. This high value of Rrms prevents ob-

servation of buried P dopants using the topographic STM

imaging method described in Fig. 1. While performing Si

growth at elevated sample temperatures would have resulted

in the formation of a flatter surface, we choose to keep the

surface temperature low during Si growth to minimise P seg-

regation and diffusion.17 A previous demonstration of imag-

ing individual buried P dopants below a clean Si(001)

surface14 was achieved after a surface anneal to �1250 �C.

During an anneal at this temperature, P diffusion is likely to

completely destroy a buried nanostructure. If necessary, the

surface roughness can be decreased by annealing after encap-

sulation at which point segregation, a strictly surface phe-

nomenon, does not occur. For example an anneal of 500 �C
for 5 s lowers Rrms to �0.06 nm, as seen in Fig. 3(c). Here,

the occasional individual buried dopant can be observed

using topographic imaging, although the surface roughness

masks more of the dopants. Nonetheless, to optimize struc-

tural integrity of buried nanostructures we strive to minimize

the thermal budget during fabrication and, as we will show,

buried dopant imaging can be achieved on rough surfaces,

provided spectroscopic imaging (i.e., CITS) is used.

In Figs. 3(d)–3(f), we present patterning and CITS imag-

ing of a planar buried P nanostructure following the above

procedure. The STM image in Fig. 3(d) shows the pattern

created in the hydrogen resist mask by STM lithography.

The area of the surface where H has been desorbed is imaged

more brightly than the terminated surface because the bare

surface has a relatively increased electron density due to the

presence of unsaturated dangling bonds.19 The pattern is

approximately rectangular in shape with the dimensions of

�260 nm� 530 nm. The three white “blobs” on the surface

are lumps of material deposited from the tip by the applica-

tion of a brief voltage pulse to the tip at specific positions on

the surface to act as local registration markers enabling us to

return to the same area of the surface after further process-

ing, such as after Si encapsulation. Figure 3(e) shows a topo-

graphic STM image of the surface, obtained at a sample bias

of �1.3 V, after the remaining fabrication steps: These were

a PH3 dose (30 s at a pressure of PPH3¼ 1� 10�9 millibars),

a 350 �C anneal for 5 s to incorporate the P donors, a 470 �C
anneal for 5 s to desorb the H-resist, and a deposition of

5 MLs of Si to encapsulate the nanostructure. In this experi-

ment, we have also reduced surface roughness by annealing

the wafer at 500 �C for 5 s, after Si encapsulation, as

described in Fig. 3(c). The topographic STM shows no evi-

dence of the nanostructure, demonstrating that the Si growth

was not significantly affected by the presence of the phos-

phorus. What we might expect however is that the presence

of a high density of dopants would significantly modify the

electronic properties of the Si, in the region of the nanostruc-

ture. This is borne out in CITS data obtained simultaneously

with the topographic image of Fig. 3(e). In Fig. 3(f), we see

a CITS image for a voltage slice obtained at þ1.0 V. Here,

the outline of the rectangle is clearly visible and has

same dimensions of the pattern written in the resist

(260 nm� 530 nm—Fig. 3(d)) within the estimated error of

68 nm. The absence of topographic contribution cross-talk

to the spectroscopic data in this image is evidenced by the

fact that registration blobs are not clearly resolved in the

CITS image. This image confirms both that the imaging of

buried P-in-Si nanostructures is possible using CITS and that

integrity of the nanostructure, as defined by H lithography, is

retained after Si encapsulation and a 500 �C anneal. The rea-

son why CITS is less affected by surface roughness than

topographic STM imaging is because variations in the tun-

neling current translate into topographic height changes only

by a weak logarithmic dependence.21 So, the height change

associated with electronic structure differences on and away

from the P nanostructure are significantly smaller than the

surface roughness, in a topographic STM imaging.

Therefore, contributions of the subsurface dopant pattern are

hard to distinguish from the contribution of the surface

roughness. Contrary to that, in the CITS measurements, the

IV characteristics are recorded at virtually identical tip-

sample separation and therefore yields the dopant contribu-

tion compensated for the height changes in a rough surface.

FIG. 3. (a)–(c) Overgrowth process: STM images showing a Si(001) surface

after (a) desorption of a monolayer hydrogen resist, (b) deposition of 5

monolayers of Si at �110 �C, and (c) subsequent sample annealing at 500 �C
for 5 s. Each image is 50 nm� 50 nm. The root mean square roughness,

Rrms, of the three surfaces is indicated. (d)–(f) Patterning and imaging pro-

cess: (d) A topographic STM image of patterned hydrogen resist layer

(Vs¼�2.0 V, I¼ 0.15 nA), written using Vs¼þ6.0 V and I¼ 1.5 nA. (e) A

topographic STM image of the same area after P doping, 5 ML Si growth at

room temperature and a 550 �C anneal (Vs¼�1.3 V, I¼ 0.15 nA). (f) CITS

image obtained at þ1.0 V, taken simultaneously with (e), showing the 2D

buried P nanostructure, as defined by the lithography in (d).
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Having demonstrated the imaging of a planar buried

P-dopant nanostructure, we now define a structure with sub-

10 nm feature widths and this time dispense with the 500 �C
post-anneal, i.e., contend with a greater surface roughness.

Figure 4(a) shows a 750 nm� 750 nm STM image of a H ter-

minated Si(001) surface after patterning the letters

“CQCT”22 using the STM tip. The linewidth of the desorbed

H lines in this pattern is �8 nm. Again three registration

markers have been deposited around the patterned area.

Figure 4(b) shows a topographic STM image of the same

area of the surface after P incorporation, H desorption and

5 ML silicon encapsulation at room temperature. The three

registration markers are still visible but the buried nanostruc-

ture is not. Figure 4(c) shows CITS data, obtained simultane-

ously with the topographic image, at þ2.0 V. The width of

the lines seen in Fig. 4(c) vary from 22 nm to 39 nm, signifi-

cantly broader than the �8 nm wide lines of the H lithogra-

phy pattern in Fig. 4(a). The major contributing factor to the

apparent broadening of the nanostructured lines is lateral P

diffusion during the thermal H desorption step. We know

from separate investigations that the broadening of nano-

structured lines during the thermal H desorption (before Si

encapsulation) is around 8 nm in any direction,23 which is

likely to increase the width of the lines by around 16 nm.

This would amount to an apparent width of around 24 nm

wide after encapsulation. However, since the encapsulation

was done at temperatures around 110 �C, segregation or lat-

eral diffusion during growth is expected to be minimal.17

While the goal of this work was achieved, i.e., the imaging

of a buried nanostructure on a very rough surface, further

research will be required to determine the detailed contrast

mechanisms at play in such experiments. Indeed the origin

of the contrast observed in Fig. 4 is somewhat puzzling. The

fact that the “CQCT” is seen as a depression instead of a pro-

trusion in Fig. 4(c) reflects the fact that the filled states of

that spectroscopic measurement were partially suppressed

both on and away from the nanostructure, indicating an arti-

fact in the imaging process, possibly caused by the high sur-

face roughness effecting the properties of the tunnel junction

or adding contaminant atom(s) to the end of the tip.

In conclusion, we have used STM and CITS to locate

and image single phosphorus atoms and phosphorus dopant

nanostructures buried beneath the Si(001) surface. The bur-

ied dopant nanostructures were fabricated in a bottom-up

approach using scanning tunneling microscope lithography

on Si(001).24 We have shown that current imaging tunneling

spectroscopy is suited to locate and image buried nanostruc-

tures with residual surface roughness present. The fact that

images of buried nanostructures can be obtained even after

low-temperature Si encapsulation could prove crucial in the

future development of fabrication processes and architec-

tures of buried dopant devices.
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