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Abstract 

Background 

Mass gatherings, such as music festivals and religious events, pose a health care challenge 

because of the risk of transmission of communicable diseases. This is exacerbated by the fact 

that participants disperse soon after the gathering, potentially spreading disease within their 

communities. The dispersion of participants also poses a challenge for traditional surveillance 

methods. The ubiquitous use of the Internet may enable the detection of disease outbreaks 

through analysis of data generated by users during events and shortly thereafter. 
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Objective 

The intent of the study was to develop algorithms that can alert to possible outbreaks of 

communicable diseases from Internet data, specifically Twitter and search engine queries. 

Methods 

We extracted all Twitter postings and queries made to the Bing search engine by users who 

repeatedly mentioned one of nine major music festivals held in the United Kingdom and one 

religious event (the Hajj in Mecca) during 2012, for a period of 30 days and after each 

festival. We analyzed these data using three methods, two of which compared words 

associated with disease symptoms before and after the time of the festival, and one that 

compared the frequency of these words with those of other users in the United Kingdom in 

the days following the festivals. 

Results 

The data comprised, on average, 7.5 million tweets made by 12,163 users, and 32,143 queries 

made by 1756 users from each festival. Our methods indicated the statistically significant 

appearance of a disease symptom in two of the nine festivals. For example, cough was 

detected at higher than expected levels following the Wakestock festival. Statistically 

significant agreement (chi-square test, P<.01) between methods and across data sources was 

found where a statistically significant symptom was detected. Anecdotal evidence suggests 

that symptoms detected are indeed indicative of a disease that some users attributed to being 

at the festival. 

Conclusions 

Our work shows the feasibility of creating a public health surveillance system for mass 

gatherings based on Internet data. The use of multiple data sources and analysis methods was 

found to be advantageous for rejecting false positives. Further studies are required in order to 

validate our findings with data from public health authorities. 

Keywords: mass gatherings, infodemiology, infectious disease, information retrieval, data 

mining 

Introduction 

Background 

Historically, infectious diseases have devastated societies. Examples include the “Black 

Death” bubonic plague of the 14th century in which between 30-40% of Europe’s population 

is estimated to have died [1], and the influenza epidemic of 1918-1920, in which as many as 

50 million are estimated to have died [2]. Despite very significant advances in medicine, 

infectious diseases remain potentially very serious threats to society. For example, a 

pandemic influenza is rated as the greatest national risk on the UK government risk register 

[3]. An estimated 35.3 million people are HIV-infected [4], drug-resistant Methicillin-

resistant Staphylococcus aureus (MRSA) is a major public health concern [5], about 2 million 

cases of cancer are caused by infections each year [6], and infection is a major source of 
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morbidity in primary care [7]. Moreover, emerging new infections, such as H1N1 influenza, 

can cause pandemics, spreading rapidly and unpredictably. Early diagnostics play a crucial 

role in prevention, treatment, and care but most tests require samples to be sent to specialist 

laboratories leading to inherent delays between tests, results, and clinical interventions. 

Public health intervention may be further delayed by the time lag of 1-2 weeks associated 

with retrospective surveillance. There are increasing national and international drivers to 

dramatically improve our capacity to rapidly respond to infectious diseases by widening 

access to tests in community settings and drive innovative real-time surveillance 

Protection against infectious diseases includes the development of new medicines, 

vaccination programs, improved hygiene, and promotion of behavioral modifications. While 

together these efforts may reduce the risk of infectious diseases, the risk cannot be eliminated. 

Consequently, infectious disease surveillance networks at national and international levels 

have been established. The purpose of public health surveillance networks is to provide 

“Ongoing systematic collection, analysis, interpretation and dissemination of data regarding a 

health-related event for use in public health action to reduce morbidity and mortality and to 

improve health” [8]. 

The most reliable sources of data for public health surveillance networks are confirmed 

diagnoses of diseases. Unfortunately, confirming a diagnosis may take days or weeks, due to 

a variety of delays including (1) time to ship a patient sample to a testing laboratory, (2) time 

to perform the test, and (3) time to report the results. 

Delays in identifying the onset of an infectious epidemic result in delayed responses, which 

can significantly exacerbate the impact of the epidemic on a society. Consequently, there is 

strong interest in reducing delays. One way to accomplish this is through syndromic 

surveillance, which emphasizes “the use of near ‘real-time’ data and automated tools to detect 

and characterize unusual activity for further public health investigation” [9]. There is a range 

of pre-diagnostic data that can and has been used, including clinical data such as nurse advice 

line activity, school nurse visits, poison control center data, EMS records, emergency 

department visits, outpatient records, laboratory/radiology orders and results, prescription 

medication sales, and electronic health records, and non-clinical data such as over-the-

counter (OTC) medications, work and school absenteeism records, ambulance dispatch data, 

zoonotic surveillance data (eg, dead birds from West Nile virus activity), health-related Web 

searches, and other data from online social networks. 

The use of syndromic surveillance systems dates back to at least 1977, when Welliver et al 

[10] reported the use of OTC medication sales in Los Angeles. The early 2000s saw renewed 

interest in syndromic surveillance as a result of a US Defense Advanced Research Projects 

Agency (DARPA) initiative called ENCOMPASS (ENhanced COnsequence Management 

Planning And Support System) to provide an early warning system to protect against 

bioterrorism. As early as 2001, it was suggested to use query logs associated with health care 

websites as one form of syndromic data [11]. The advantage of online data sources is that the 

data collection is usually straightforward and very timely, that is, the lag between data 

creation, collection, and analysis can be very short (possibly seconds). We are therefore 

interested in online syndromic surveillance, which is discussed in more detail in the next 

section. 

The World Health Organization (WHO) states that “an organized or unplanned event can be 

classified as a mass gathering if the number of people attending is sufficient to strain the 
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planning and response resources of the community, state, or nation hosting the event” [12]. 

Examples of mass gatherings include very large religious gatherings such as the Hajj 

(approximately 2 million people) and the Hindu Kumbh Mela (estimated at 80-100 million 

people), large international sporting events such as the Olympics, and national music festivals 

such as Glastonbury in the United Kingdom. Mass gatherings have been sources for the 

spread of infectious diseases. The spread of cholera from a well in Mecca was documented as 

far back as 1883 [13]. More recently, during the 1992 Glastonbury music festival attended by 

70,000 people in the United Kingdom, 72 cases of Campylobacter infection were reported 

due to drinking unpasteurized milk [14]. In 2009, [15] reported an outbreak of H1N1 

influenza at the Rock Werchter festival in Belgium. Also in 2009, [16] reported outbreaks of 

H1N1 influenza at a sports event and at a music festival, called EXIT, where 62 confirmed 

cases were identified. In the same year, a further case was reported at a music festival in 

Hungary [17]. The issue of mass gatherings, medicine, and global health security was the 

subject of a series of reports in The Lancet in 2012. 

In the next section, we provide a discussion of prior work on syndromic surveillance based on 

online social networks and search engine query logs. 

Related Work 

In 2001, Wagner et al [11] first suggested the utility of query terms to detect infectious 

diseases. In particular, they presented data on the number of queries to a health website 

(WebMD) using words such as “cold” and “flu”. Though no quantitative assessment was 

provided, qualitatively a correlation is visible between the query frequency and measures of 

infectious disease. A related quantitative analysis was documented in subsequent work [18], 

which took “the weekly counts of the number of accesses of selected influenza-related 

articles on the Healthlink website and measured their correlation with traditional influenza 

surveillance data from the Centers for Disease Control and Prevention (CDC)”. The results 

showed a clear correlation; however, interestingly, the Web log data was no more timely than 

that of the CDC, that is, the Web log data did not allow an influenza outbreak to be detected 

any sooner than with traditional surveillance methods. 

Later, Eysenbach [19] used information from Google’s AdSense to indirectly estimate the 

number of queries for particular search terms that contained keywords related to influenza. 

Specifically, Eysenbach reported correlations between the “number of clicks on a keyword-

triggered influenza link” and traditional measures such as (1) the number of lab tests, and (2) 

the number of positive lab test results (cases). Pearson correlation scores of between .85 

and .91 are reported. Interestingly, the higher correlation score was obtained when correlating 

with the number of cases reported for the next week, indicating the Web-based information 

was more timely. 

A number of systems have been developed to gather and analyze unstructured information 

that is openly available on the Web. The earliest example of this is Global Public Health 

Intelligence Network (GPHIN) developed by the Canadian government and the WHO [20]. A 

number of systems have subsequently been deployed, including BioCaster [21,22], 

EpiSPIDER [23], and HealthMap [24,25]. Comparisons of these various systems can be 

found in [26,27]. 

Interest in Web-based surveillance increased significantly with the publication by Polgreen et 

al [28] and Ginsberg et al [29] of relationships between query search terms and influenza-like 
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illness (ILI) based on Yahoo and Google search logs, respectively. Polgreen et al showed that 

it was possible to estimate the percentage of positive cultures for influenza and the deaths 

attributable to pneumonia and influenza in the United States, and to do so several weeks 

ahead of actual culture results. Ginsberg et al reported similar findings. A further contribution 

of [29] was to automatically determine the best set of query search terms that correlate with 

CDC estimates. The work by Ginsberg et al has subsequently been developed as Google Flu 

Trends and its more generic service, Google Trends [30]. 

A large body of research has since been developed that utilizes data from online social 

network or query logs to infer health information. This includes work on mining blog posts 

that mention influenza. For example, Corley et al [31,32] describe collecting blogs from a 

variety of sources and looking for the frequency of occurrence of keywords such as 

“influenza”. After normalization, they reported Pearson correlation scores of .77 and .55 for 

two datasets with corresponding ILI reports from the CDC (CDC ILINet reports). This work 

also discusses the possibility of identifying relevant online communities and developing 

associated targeted intervention strategies. 

The analysis of microblogging data from Twitter for health purposes has recently received 

attention [33-40]. Inspired by the approach in Ginsberg et al [29], Cullota et al [35] applies a 

similar approach to Twitter data revealing the benefits of having longer, more complete 

messages as opposed to unstructured search query entries. This allows for simpler 

classification algorithms that can also filter out many of the erroneous messages that typically 

occur and would sometimes overwhelm the classifier predictions [38]. Lampos and 

Cristianini [33,34] performed an analysis of tracking influenza rates throughout the United 

Kingdom. Their major contribution to the existing regression-based models was proposing a 

new automatic way of selecting the keywords used by the classifier. These were learned from 

a large pool of candidates extracted from Web articles related to influenza, imposing a 

scarcity constraint via an L1 norm penalty in the least squares prediction error. This method 

yielded a correlation of 97% with respect to the reported influenza rates. Unfortunately, the 

proposed way of automatically building the vocabulary is based solely on correlation and 

sometimes produces terms that, although highly correlated with the flu trends, may not make 

good candidates to track for future predictions: for instance, automatically selected keywords 

“phone”, “nation”, or “mention” might not be good indicators of the presence of ILI 

conditions. 

Methods 

Data 

We examined 10 events, nine of which were in the United Kingdom and one (the annual Hajj 

in Mecca) that had significant participation from people in the United Kingdom. All events 

took place in the second half of 2012. 

We extracted two datasets for each event, one from the entire set of Twitter users and the 

other from that of the Microsoft Bing search engine. The population of Twitter users relevant 

to an event was defined as any user who mentioned a hashtag associated with an event at 

least twice between 30 days before and 30 days after the event. We refer to the relevant users 

as the target population. We also identified a population of users who could be used as a 

reference population (see Analysis Algorithms below) for each event by randomly sampling 1% 
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of users who did not mention the event in their Twitter messages, but had the United 

Kingdom listed as their location in their profile. It comprised 345,849 users over the entire 

study period. For each Twitter message, we extracted an anonymized user identifier, the date 

and time of the message, and its text. 

We followed a similar methodology for detecting relevant users according to queries made on 

the Bing search engine by users who agreed to share their queries, and marked as relevant 

any user who mentioned an event at least twice in their queries. For each query made by the 

relevant users, we extracted the query text, time and date, and an anonymized user identifier. 

In order to maintain user privacy, data were first anonymized by hashing, before the 

investigators had access to them. They were then aggregated prior to analysis and no 

individual-level user datum was examined by the experimenters. 

On average, we identified approximately 14,000 Twitter users and 5650 Bing users. The list 

of events and basic statistics concerning the events are shown in Table 1, including the 

number of Twitter users who mentioned the event more than twice, the number of tweets that 

mentioned each event, the number of users who queried for each event, and the number of 

queries. 

We extracted all queries and Twitter messages for the relevant users from 30 days before an 

event until 30 days after it. The queries and messages were stemmed using a Porter stemmer 

[41]. We then marked each query and Twitter message as to whether it contained one or more 

words or phrases describing medical symptoms given in a list of 195 medical symptoms and 

457 corresponding synonyms described in Yom-Tov and Gabrilovich [42]. This list of terms 

was derived from a set of terms in International Statistical Classification of Diseases and 

Related Health Problems, 10th Revision (ICD-10), expanded to include ways in which non-

specialist people frequently refer to the medical terms. The expansion is based on terms that 

people use in order to reach the Wikipedia page referring to a medical symptom and the terms 

frequently associated with it in Web documents. A complete explanation of how the list was 

constructed can be found in Yom-Tov and Gabrilovich [42]. 

A table listing the number of tweets that contained each of the symptom words or their 

synonyms in each of the festivals analyzed is provided in Multimedia Appendix 1. 

Analysis Algorithms 

Overview  

We analyzed each dataset using three methods, described below. Briefly, Method 1 tests how 

well the probability of a word occurring as a function of time fits a lognormal distribution 

with variance between 1.2 and 1.5, since this is the epidemiological distribution predicted in 

[43] for spread of infectious disease. Method 2 compares the number of times a symptom was 

mentioned before and after the date of an event, and uses a statistical test based on the False 

Discovery Rate (FDR) to determine significance. Method 3 computes the likelihood that 

symptoms would be measured at an observed frequency in a target population compared to 

what would be expected by chance. All three methods are described in detail below. 

Method 1: Comparison to Background With Epidemiological Profile  
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Let P 
T
 i (w,t) be the probability that the i-th word will appear in the target population on day t, 

where, in our data t∈[−30,−29,...,29,30]. Similarly, we denote P 
R
 i (w,t) as the same 

probability in the reference population, that is, in a population that is disjointed from the 

target population, but is located in a similar geographic area. 

We assume that if there is an epidemic of an infectious disease in the population, users 

mention its symptoms in their text (eg, Twitter messages). In that case, a word P 
T
 i (w,t) 

describing a symptom of the disease should follow the appearance profile of such a disease, 

which takes into account its incubation period. This profile should fit a lognormal distribution 

with a variance of between 1.2 and 1.5 [43]. 

Thus, for each of the symptom words, we compute its probability over time and normalize 

this by the same probability for the reference population, in order to exclude diseases that are 

unrelated to the event. Therefore, for each symptom word (and its synonyms), we compute a 

score given by P 
T
 i (w,t)/ P 

R
 i (w,t), and fit to it a lognormal distribution with a center that 

varies from the first day of the event and until 14 days later. The day on which the best fit is 

found (in the least squares sense) is chosen to represent the distribution of this word. 

In order to ascertain if the fit of the distribution is statistically significant, we employ the 

FDR procedure [44] and conduct the same procedure for a random set of 1950 non-symptom 

words (10 times larger than the symptom list) and display a symptom only if its fit to the 

lognormal distribution is greater than would be expected at an FDR of 1%. 

This method should work well if there is a large enough target population to generate 

information pertaining to the epidemic and should enable not only the identification of the 

outbreak but also its temporal profile. 

Method 2: Comparison to Background and Time  

Here, we follow Yom-Tov and Gabrilovich [42] and construct a 2×2 contingency table that 

measures the number of times a symptom was mentioned before and after the date of the 

event (see Table 2 for an example), for either the target or reference population. Each 

symptom is then scored according to the chi-square score computed from the table. 

A threshold for statistical significance is computed using FDR [44] with a random set of non-

symptom words. We report symptoms with a chi-square score higher than that expected at an 

FDR of 1%. 

Method 3: What’s Strange About Recent Events  

Following the approach in [45] (What’s Strange About Recent Events [WSARE]), for each 

day after the mass gathering, t∈[1,⋯,30], we compute a one-term rule score for each 

symptom in our vocabulary. The score is computed using a hypothesis test in which the null 

hypothesis is the independence between history records and current day counts. We apply the 

Fisher’s exact test on a 2×2 contingency table, as shown in Table 3, made out of the current 

day’s symptom count and the number of times the symptom was mentioned in the time prior 

to the festivals. 

The test generates a P value, given by P(x=k)=C(K, k)C(N-K, n-k)/C(N, n), with C(n, k) 

being the binomial coefficient (“n choose k”) – C(n,k)=n!/k!(n-k)! and where k is the number 
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of tweets containing the keyword w i today, K is the number of times the keyword w i was 

mentioned in the period before the festival, n is the number of tweets today, and N is the 

number of tweets in the period before the festival. 

Since we are computing a score for each day, we consider as baseline the corresponding 

weekdays in the 30-day time window (ie, if the current day is Tuesday, we will look back to 

all Tuesdays in the time before the mass gathering and take that as our history baseline). This 

is done primarily to eliminate false detection due to periodic weekly trends in Twitter 

postings. 

Results 

As noted above, the target population was defined as any user who tweeted a hashtag related 

to the event during the data period. To validate this heuristic, a random sample of 200 twitter 

users who mentioned the Wakestock festival in their tweets were analyzed. Their tweets were 

labeled as to whether or not the tweets of a user implied that they were at the event. The area 

under the receiver operating characteristic (ROC) curve for this label as a function of the 

number of tweets a user made that had the event hashtag was 0.91 and the true detection rate 

at the threshold of two tweets was 0.70. Therefore, the majority of people who were detected 

by our heuristic did, in fact, attend the festival. The remaining users either did not attend the 

event, and thus added noise to our analysis, or did not mention their attendance in their tweets. 

Table 4 shows the list of statistically significant symptoms (at P<.01) identified in the Twitter 

data for each of the 10 events. Several observations are in order. First, though most identified 

symptoms are mild (eg, tired), in some events, the symptoms could be a cause for concern. 

For example, in the Bestival event, the symptom was “tremor”. 

In only two of the events (Wakestock and V Festival) did all three methods identify the same 

symptoms. Anecdotally, once “cough” was identified as a possible symptom after the 

Wakestock festival, we found tweets such as “anyone else still suffering from the wakestock 

cough? can’t be only me”, which were made by people who were identified as having been to 

the festival, suggesting that this is a true symptom that was also self-identified as due to the 

event. This, together with the fact that it was identified by all three analysis methods, 

indicates that this symptom is very unlikely to be a spurious false positive, especially as it 

was identified by making different comparisons within the data (eg, target vs control 

population and before vs after the event in the target population). Thus, the use of more than 

one analysis method strengthens the analysis and reduces the likelihood of false positives. 

We tested the agreement between all pairs of analysis methods for each of the events using a 

chi-square test at a threshold of P=.01. Methods 2 and 3 had a statistically significant 

agreement in six of the 10 events, Methods 1 and 3 in two of eight events (two of the events 

had no identified symptoms), and Methods 1 and 2 in three of eight of the events. We also 

found a statistically significant agreement between sources for three of the events: Wakestock, 

V Festival, and T in the Park. The agreement rate expected by chance, as computed using an 

FDR procedure, is 5 of 1000 comparisons. Therefore, these agreements are much higher than 

expected by chance and lend support to the hypothesis that the different methods identified 

real signals, through alternative means. 
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Table 5 shows the list of statistically significant symptoms (at P<.01) identified in the Bing 

data for each of the 10 events using Method 2. We applied only this method because there 

was insufficient daily activity in the Bing data to allow the application of Methods 1 and 3. 

As this table shows, the symptoms identified in the Bing data were potentially more serious 

(eg, “diarrhea” and “vomiting”) and also more personally sensitive. This is probably because 

users tend to share more sensitive information in anonymous media [46]. Thus, the use of 

Bing data complements Twitter data in the kinds of symptoms that are identified. However, 

the relative sparseness of this data, which is at least partly related to the number of Bing users 

in the United Kingdom, also means that not all methods are applicable to it. 

In order to validate whether our methods might result in false positive symptoms, we also 

applied our methods to an event with a small physical footprint, but one that had significant 

media attention. Specifically, we chose the opening of The Shard building in London (the 

tallest building in the European Union) on July 5, 2012. This event was mentioned by 2007 

users in 5553 tweets. No symptoms were reported at statistically significant levels by any of 

these methods. This provides evidence that when no symptoms exist, our methods will not 

report spurious symptoms. 

Discussion 

Principal Findings 

Mass gatherings are potentially significant to the spread of infectious diseases. However, 

traditional surveillance methods are challenged by the fact the participants may congregate 

and disperse very quickly. In this paper, we investigated whether syndromic surveillance 

based on Twitter and query logs could be used to monitor mass gatherings. 

We looked at nine music festivals that took place in the United Kingdom in 2012 as well as 

the 2012 Hajj religious gathering in Mecca. When analyzing the Twitter data, we considered 

three different statistical methods. The three methods did not always give the same results, 

with Methods 1 and 3 finding no statistically significant symptoms almost half of the time. 

However, when all three methods did identify statistically significant symptoms at the same 

concert, there was almost always agreement with at least one of the symptoms. 

Each of the three methods compares different attributes of the data in order to detect medical 

symptoms. Because of this, each method might be better in the analysis of data from some 

festivals, while for others it will perform less accurately. By using more than one method, we 

afford two benefits. First, if more than one method discovers a symptom has appeared with 

an unexpectedly high probability (as noted above), this strengthens the evidence that this 

symptom has indeed appeared in festival participants. Second, at the cost of higher false 

positive rates (but also higher true positives), health authorities might choose to use 

symptoms discovered by any of the methods as possible candidates for further investigation. 

The relative lack of data provided by the Bing query logs permitted only Method 2 to be used. 

Generally, the statistically significant symptoms that were identified were different from the 

symptoms identified by Twitter. We hypothesized that this is because users rightly perceive 

that tweets are public, while queries are private. Consequently, the symptoms identified by 

the query log describe more private indicators such as “flatulence” and “diarrhea”. 

Nevertheless, for two concerts, namely “Wirelessfest” and “T in the Park”, using Method 2 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090384/table/table5/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090384/?report=printable#ref46


for both Tweets and query logs, the same symptoms were identified as “pain” and “cough” 

respectively. 

Limitations and Conclusions 

To the best of our knowledge, no infectious outbreaks at mass gatherings were reported to 

health authorities during the last 18 months, the period for which query logs are available. 

While this is, of course, fortunate, it prevents any comparison with ground truth data. Future 

work is needed to compare results from Internet data with results obtained from traditional 

methods. Note, however, that the use of traditional surveillance methods can be challenging 

in the context of mass gatherings due to the combination of an incubation period prior to 

onset of symptoms and dispersal of participants to their home regions. 

An additional drawback of our method is that some of the identified symptoms (eg, tired) 

might not be a symptom of a disease, but instead the outcomes of going to specific types of 

events. Therefore, an additional filtering stage might be required so as to remove symptoms 

that regularly appear in similar events. 

Acknowledgments 

The work described here was supported by an Engineering and Physical Sciences Research 

Council Interdisciplinary Research Collaboration (EPSRC IRC) in Early Warning Sensing 

Systems for Infectious Diseases EP/K031953/1, the and School of the Built Environment, 

Engineering and Mathematical and Physical Sciences (BEAMS), University College London, 

and a Royal Society Wolfson Merit Award for RM BEAMS. We thank these institutions for 

their support. The authors would also like thank Dame Anne Johnson of University College 

London for suggesting the problem and for many useful discussions. 

Abbreviations 

CDC Centers for Disease Control and Prevention 

EMS Emergency Medical Services 

FDR false discovery rate 

ILI influenza-like illness 

OTC over the counter 

WHO World Health Organization 

Multimedia Appendix 1 

Number of tweets containing symptom words for each festival. 

Footnotes 

Conflicts of Interest:  

Conflicts of Interest: None declared. 



References 

1. Perry RD, Fetherston JD. Yersinia pestis--etiologic agent of plague. Clin Microbiol Rev. 

1997 Jan;10(1):35–66. http://cmr.asm.org/cgi/pmidlookup?view=long&pmid=8993858. 

[PMCID: PMC172914] [PubMed: 8993858] 

2. Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918-1920 

"Spanish" influenza pandemic. Bull Hist Med. 2002;76(1):105–15. [PubMed: 11875246] 

3. Cabinet Office National Risk Register of Civil Emergencies 2012 Edition. [2014-06-06]. 

webcite https://www.gov.uk/government/publications/national-risk-register-for-civil-

emergencies-2012-update. 

4. Global Report: UNAIDS report on the global AIDS epidemic 2013. [2014-06-06]. webcite 

http://www.unaids.org/en/resources/campaigns/globalreport2013/index.html. 

5. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of 

meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet. 2006 Sep 

2;368(9538):874–85. doi: 10.1016/S0140-6736(06)68853-3. [PubMed: 16950365]  

6. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J 

Cancer. 2006 Jun 15;118(12):3030–44. doi: 10.1002/ijc.21731. [PubMed: 16404738]  

7. Davies SC. Infections and the rise of antimicrobial resistance. 2011. [2014-06-05]. webcite 

http://antibiotic-action.com/resources/chief-medical-officer-annual-report-volume-two-201-

infections-and-the-rise-of-antimicrobial-resistance/ 

8. German RR, Lee LM, Horan JM, Milstein RL, Pertowski CA, Waller MN, Guidelines 

Working Group Centers for Disease Control Prevention (CDC) Updated guidelines for 

evaluating public health surveillance systems: recommendations from the Guidelines 

Working Group. MMWR Recomm Rep. 2001 Jul 27;50(RR-13):1–35; quiz CE1. [PubMed: 

18634202] 

9. May L, Chretien JP, Pavlin JA. Beyond traditional surveillance: applying syndromic 

surveillance to developing settings--opportunities and challenges. BMC Public Health. 

2009;9:242. doi: 10.1186/1471-2458-9-242. http://www.biomedcentral.com/1471-2458/9/242. 

[PMCID: PMC2718884] [PubMed: 19607669]  

10. Welliver RC, Cherry JD, Boyer KM, Deseda-Tous JE, Krause PJ, Dudley JP, Murray RA, 

Wingert W, Champion JG, Freeman G. Sales of nonprescription cold remedies: a unique 

method of influenza surveillance. Pediatr Res. 1979 Sep;13(9):1015–7. [PubMed: 503653] 

11. Wagner MM, Tsui FC, Espino JU, Dato VM, Sittig DF, Caruana RA, McGinnis LF, 

Deerfield DW, Druzdzel MJ, Fridsma DB. The emerging science of very early detection of 

disease outbreaks. J Public Health Manag Pract. 2001 Nov;7(6):51–9. [PubMed: 11710168] 

12. Barbeschi M, Healing T. World Health Organization. 2008. [2014-06-05]. webcite 

Communicable disease alert and response for mass gatherings: Key considerations 

http://www.who.int/csr/Mass_gatherings2.pdf. 

13. Donkin H. The Cholera and Hagar's Well at Mecca. The Lancet. 1883 

Aug;122(3128):256–257. doi: 10.1016/S0140-6736(02)35905-1.  

14. Morgan D, Gunneberg C, Gunnell D, Healing TD, Lamerton S, Soltanpoor N, Lewis DA, 

White DG. An outbreak of Campylobacter infection associated with the consumption of 

unpasteurised milk at a large festival in England. Eur J Epidemiol. 1994 Oct;10(5):581–5. 

[PubMed: 7859858] 

15. Gutiérrez I, Litzroth A, Hammadi S, Van Oyen H, Gerard C, Robesyn E, Bots J, 

Faidherbe MT, Wuillaume F. Community transmission of influenza A (H1N1)v virus at a 

rock festival in Belgium, 2-5 July 2009. Euro Surveill. 2009 Aug 6;14(31):1. 

http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19294.  

16. Loncarevic G, Payne L, Kon P, Petrovic V, Dimitrijevic D, Knezevic T, Medici S, Milic 

N, Nedelijkovic J, Seke1 K, Coulombier D. Public health preparedness for two mass 

http://cmr.asm.org/cgi/pmidlookup?view=long&pmid=8993858
http://www.webcitation.org/6Q79v6EPN
https://www.gov.uk/government/publications/national-risk-register-for-civil-emergencies-2012-update
https://www.gov.uk/government/publications/national-risk-register-for-civil-emergencies-2012-update
http://www.webcitation.org/6Q7A04zh2
http://www.unaids.org/en/resources/campaigns/globalreport2013/index.html
http://www.webcitation.org/6Q7ADsur0
http://antibiotic-action.com/resources/chief-medical-officer-annual-report-volume-two-201-infections-and-the-rise-of-antimicrobial-resistance/
http://antibiotic-action.com/resources/chief-medical-officer-annual-report-volume-two-201-infections-and-the-rise-of-antimicrobial-resistance/
http://www.biomedcentral.com/1471-2458/9/242
http://www.webcitation.org/6Q7AIIRht
http://www.who.int/csr/Mass_gatherings2.pdf
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19294


gathering events in the context of pandemic influenza (H1N1) 2009 - Serbia, July 2009. 

Eurosurveillance. 2009;14(31):A4 1–3.  

17. Botelho-Nevers E, Gautret P, Benarous L, Charrel R, Felkai P, Parola P. Travel-related 

influenza A/H1N1 infection at a rock festival in Hungary: one virus may hide another one. J 

Travel Med. 2010;17(3):197–8. doi: 10.1111/j.1708-8305.2010.00410.x. [PubMed: 

20536890]  

18. Johnson HA, Wagner MM, Hogan WR, Chapman W, Olszewski RT, Dowling J, Barnas 

G. Analysis of Web access logs for surveillance of influenza. Stud Health Technol Inform. 

2004;107(Pt 2):1202–6. [PubMed: 15361003] 

19. Eysenbach G. Infodemiology: Tracking flu-related searches on the Web for syndromic 

surveillance. AMIA Annual Symposium Proceedings. 2006:244–248. [PMCID: 

PMC1839505] [PubMed: 17238340] 

20. Mykhalovskiy E, Weir L. The Global Public Health Intelligence Network and early 

warning outbreak detection: a Canadian contribution to global public health. Can J Public 

Health. 2006;97(1):42–4. [PubMed: 16512327] 

21. Collier N, Kawazoe A, Jin L, Shigematsu M, Dien D, Barrero RA, Takeuchi K, 

Kawtrakul A. A multilingual ontology for infectious disease surveillance: rationale, design 

and challenges. Lang Resources & Evaluation. 2007 Jun 26;40(3-4):405–413. doi: 

10.1007/s10579-007-9019-7.  

22. Collier N, Doan S, Kawazoe A, Goodwin RM, Conway M, Tateno Y, Ngo QH, Dien D, 

Kawtrakul A, Takeuchi K, Shigematsu M, Taniguchi K. BioCaster: detecting public health 

rumors with a Web-based text mining system. Bioinformatics. 2008 Dec 15;24(24):2940–1. 

doi: 10.1093/bioinformatics/btn534. 

http://bioinformatics.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=18922806. 

[PMCID: PMC2639299] [PubMed: 18922806]  

23. Tolentino H, Kamadjeu R, Fontelo P, Liu F, Matters M, Pollack M, Madoff L. Scanning 

the emerging infectious diseases horizon-visualizing ProMED emails using EpiSPIDER. 

Advances in Disease Surveillance. 2007;2:169. 

24. Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection--harnessing the Web 

for public health surveillance. N Engl J Med. 2009 May 21;360(21):2153–2157. doi: 

10.1056/NEJMp0900702. http://europepmc.org/abstract/MED/19423867. [PMCID: 

PMC2917042] [PubMed: 19423867]  

25. Freifeld CC, Mandl KD, Reis BY, Brownstein JS. HealthMap: global infectious disease 

monitoring through automated classification and visualization of Internet media reports. J Am 

Med Inform Assoc. 2008;15(2):150–7. doi: 10.1197/jamia.M2544. 

http://jamia.bmj.com/cgi/pmidlookup?view=long&pmid=18096908. [PMCID: PMC2274789] 

[PubMed: 18096908]  

26. Keller M, Blench M, Tolentino H, Freifeld CC, Mandl KD, Mawudeku A, Eysenbach G, 

Brownstein JS. Use of unstructured event-based reports for global infectious disease 

surveillance. Emerg Infect Dis. 2009 May;15(5):689–95. doi: 10.3201/eid1505.081114. 

http://dx.doi.org/10.3201/eid1505.081114. [PMCID: PMC2687026] [PubMed: 19402953]  

27. Lyon A, Nunn M, Grossel G, Burgman M. Comparison of Web-based biosecurity 

intelligence systems: BioCaster, EpiSPIDER and HealthMap. Transbound Emerg Dis. 2012 

Jun;59(3):223–32. doi: 10.1111/j.1865-1682.2011.01258.x. [PubMed: 22182229]  

28. Polgreen PM, Chen Y, Pennock DM, Nelson FD. Using Internet searches for influenza 

surveillance. Clin Infect Dis. 2008 Dec 1;47(11):1443–8. doi: 10.1086/593098. 

http://www.cid.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=18954267. [PubMed: 

18954267]  

http://bioinformatics.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=18922806
http://europepmc.org/abstract/MED/19423867
http://jamia.bmj.com/cgi/pmidlookup?view=long&pmid=18096908
http://dx.doi.org/10.3201/eid1505.081114
http://www.cid.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=18954267


29. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting 

influenza epidemics using search engine query data. Nature. 2009 Feb 19;457(7232):1012–4. 

doi: 10.1038/nature07634. [PubMed: 19020500]  

30. Carneiro HA, Mylonakis E. Google Trends: a Web-based tool for real-time surveillance 

of disease outbreaks. Clin Infect Dis. 2009 Nov 15;49(10):1557–64. doi: 10.1086/630200. 

http://www.cid.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=19845471. [PubMed: 

19845471]  

31. Corley CD, Cook DJ, Mikler AR, Singh KP. Text and structural data mining of influenza 

mentions in Web and social media. Int J Environ Res Public Health. 2010 Feb;7(2):596–615. 

doi: 10.3390/ijerph7020596. http://www.mdpi.com/1660-4601/7/2/596. [PMCID: 

PMC2872292] [PubMed: 20616993]  

32. Corley CD, Mikler AR, Singh KP, Cook DJ. Monitoring influenza trends through mining 

social media. International Conference on Bioinformatics and Computational Biology; July 

2009; Las Vegas, NV. 2009. pp. 340–346. 

33. Lampos V, Cristianini N. Tracking the flu pandemic by monitoring the social web. 

Cognitive Information Processing (CIP); 14-16 June 2010; Elba, Italy. 2010. pp. 411–416.  

34. Lampos V, De Bie T, Cristianini N. Flu detector-tracking epidemics on Twitter. Machine 

Learning and Knowledge Discovery in Databases; 2010; Barcelona, Spain. 2010. pp. 599–

602. 

35. Culotta A. Towards detecting influenza epidemics by analyzing Twitter messages. 

Proceedings of the First Workshop on Social Media Analytics; The 16th ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining; 2010; Washington DC, 

District of Columbia. 2010. pp. 115–122.  

36. Chew C, Eysenbach G. Pandemics in the age of Twitter: content analysis of Tweets 

during the 2009 H1N1 outbreak. PLoS One. 2010;5(11):e14118. doi: 

10.1371/journal.pone.0014118. http://dx.plos.org/10.1371/journal.pone.0014118. [PMCID: 

PMC2993925] [PubMed: 21124761]  

37. Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of disease 

activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS One. 

2011;6(5):e19467. doi: 10.1371/journal.pone.0019467. 

http://dx.plos.org/10.1371/journal.pone.0019467. [PMCID: PMC3087759] [PubMed: 

21573238]  

38. Culotta A. Lightweight methods to estimate influenza rates and alcohol sales volume 

from Twitter messages. Lang Resources & Evaluation. 2012 May 13;47(1):217–238. doi: 

10.1007/s10579-012-9185-0.  

39. de Quincey E, Kostkova P. Electronic Healthcare. Berlin: Springer; 2010. Early warning 

and outbreak detection using social networking websites: The potential of Twitter; pp. 21–24. 

40. Szomszor M, Kostkova P, De Quincey E. #swineflu: Twitter predicts swine flu outbreak 

in 2009. eHealth; 13-15 December 2010; Casablanca, Morocco. Electronic Healthcare; 2010. 

Dec,  

41. Porter MF. An algorithm for suffix stripping. Program: electronic library and information 

systems. 1980;14(3):130–137. doi: 10.1108/eb046814.  

42. Yom-Tov E, Gabrilovich E. Postmarket drug surveillance without trial costs: discovery of 

adverse drug reactions through large-scale analysis of web search queries. J Med Internet Res. 

2013;15(6):e124. doi: 10.2196/jmir.2614. http://www.jmir.org/2013/6/e124/ [PMCID: 

PMC3713931] [PubMed: 23778053]  

43. Sartwell PE. The distribution of incubation periods of infectious disease. Am J Epidemiol. 

1950 May;51(3):310–318.  

44. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate - a new and powerful 

approach to multiple testing. J Roy Stat Soc B. 1995;57(1):289–300. doi: 10.2307/2346101.  

http://www.cid.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=19845471
http://www.mdpi.com/1660-4601/7/2/596
http://dx.plos.org/10.1371/journal.pone.0014118
http://dx.plos.org/10.1371/journal.pone.0019467
http://www.jmir.org/2013/6/e124/


45. Moore A, Cooper G, Wagner M. WSARE: What's strange about recent events? J Urban 

Health. 2003;80(1):i66–i75. doi: 10.1007/PL00022317. [PMCID: PMC3456546] [PubMed: 

12791781]  

46. Pelleg D, Yom-Tov E, Maarek Y. Can you believe an anonymous contributor? On 

truthfulness in Yahoo! Answers. ASE/IEEE International Conference on Social Computing; 

3-6 September 2012; Amsterdam, The Netherlands. 2012. pp. 411–420.  

Figures and Tables 

Table 1 

List of analyzed events and statistics. 

Event Dates Capacity
a
  Twitter Bing 

   Number 

of users 

Number of 

festival 

mentions 

Number 

of users 

Number of 

festival 

queries 

Wakestock 6-8 July 10,000 3878 12,180 1177 3750 

Wireless 

Festival 

6-8 July 50,000 23,105 191,762 2309 6909 

T in the Park 6-8 July 85,000 24,746 175,881 11,899 44,416 

V Festival 17-19 

August 

90,000 22,018 92,722 14,704 50,796 

Bestival 6-9 

September 

30,000 13,359 104,550 6715 23,330 

Creamfields 24-26 

August 

80,000 21,703 191,663 5533 19,071 

Hajj 24-27 

October 

3,161,573 17,473 129,137 3402 13,892 

Isle of Wight 

Festival 

22-24 June 60,000 6276 1398 4400 14,222 

Download 

Festival 

8-10 June 120,000 9360 1497 4598 17,267 

RockNess 8-10 June 35,000 12,935 1068 1764 6266 

Median  70,000 15,416 98,636 4499 15,744 

a
Capacity information from Wikifestivals and Wikipedia websites. 



Table 2 

The 2x2 contingency table for computing the chi-square score of Method 2. 

Number of times that the user mentioned/queried for the 

symptom or its synonym 

User queried for or tweeted about 

the festival? 

No Yes 

Before Day 0 N11  N12  

After Day 0 N21  N22  

Table 3 

The 2×2 contingency table (rule w i=1: tweet contains keyword w i) for Fisher’s exact test. 

 C today  C history  

w i=1 # today tweets containing w i , (k)
a
  # history tweets containing w i (K) 

b
  

w i=0 # today tweets not mentioning w i , (n-k)  # history tweets not mentioning w i (N-K)  

 

n 
c
  N 

d
  

a
 k: the number of tweets containing the keyword w i today. 

b
 K: the number of times the keyword w i was mentioned in the period before the festival. 

c
 n: the number of tweets today. 

d
 N: the number of tweets in the period before the festival. 

Table 4 

Statistically significant symptoms
a
 from Twitter data for each event and three analysis 

methods. 

Event Method 1 Method 2 Method 3 

Wakestock Cough Cough Tired, cough 

Wireless Festival None Tired, pain, tremor Tired, flatulence 

T in the Park Tired Tired, pain, cough Tired, cough 

V Festival Depression Tired, pain, depression Depression 

Bestival None Tired, pain, tremor Tired, fever 



Event Method 1 Method 2 Method 3 

Creamfields None Tired, pain, blindness None 

Hajj Rash, wound Tired Tired 

Isle of Wight Festival None Bleeding None 

Download Festival None None None 

RockNess None Phobia, swelling None 

a
When more than three symptoms were significant, only the top three are shown. 

Table 5 

Statistically significant symptoms
a
 from Bing data for each event using Method 2. 

Event Method 2 

Wakestock Pain 

Wireless Festival Pain 

T in the Park Wound, cough, diarrhea 

V Festival Perspiration, edema, wound 

Bestival Vomiting, diarrhea 

Creamfields Wound, rash, itch 

Hajj Fever, flatulence, pain 

Isle of Wight Festival Headache, fever, flatulence 

Download Festival Diarrhea, wound, headache 

RockNess Fever 

a
When more than three symptoms were significant, only the top three are shown. 

 


