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Abstract

This thesis studies the e�ect of repeated and long term relationships between
actors engaged in economic markets. Firms hire workers for long periods and
o�er contracts that evolve over time, and where the history shared with the
worker might a�ect future payments. This thesis shows that understanding the
nature and implications of such relationships is central to correctly measure
the realized allocation in the market and predict the e�ects of changes in
labour policies.

The opening chapter is a theoretical contribution to the repeated games
literature. It demonstrates how di�erences in time preferences between players
can be used to sustain equilibrium payo�s that are unattainable under identical
discount parameters. This reveals how rich inter-temporal strategies can be
utilized to sustain improbable transfers between individuals.

The second chapter embeds such a relationship inside an equilibrium where
actors randomly meet with each other. It contributes to the literature on
labour markets with friction by demonstrating how widely available matched
employer-employee data can be used to recover the production function in the
economy as well as the assignment of workers to firms. This has important
implications for the e�ectiveness of policies aiming at reallocating workers to
more productive jobs.

In the final chapter, workers are risk averse and productivity is uncertain.
I show that in this context firms choose to o�er partial insurance contracts
to their workers. The repeated interactions between the firm and the worker
are fundamental to understanding how employers choose to transmit part of
the uncertainty to the workers. I estimate the model on Swedish data and
evaluate the e�ects of a hypothetical progressive tax aimed at reducing income
inequality and uncertainty. The exercise reveals that firms will respond to the
policy by transferring more risk to the employees negating around 30% of the
direct e�ect of the policy.
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Introduction

Many markets are characterized by long term relationships between actors:

Firms hire workers for long periods of time and it is common for them to o�er

contracts with “stock options” and vesting periods, contracts indexed on per-

formance, or even to commit to career advancements; Big retailers try to lock

customers in with fidelity programs; In markets for life-insurance, monthly

payments have to reflect past, current and expected future customer health

condition, and companies o�er very complicated dynamic prices. Understand-

ing such pricing mechanisms, and how they a�ect the allocation of resources,

involves analyzing both the process that brings actors together in the market,

as well as the strategic interactions between these actors. In this thesis, I

develop methods to address these questions both theoretically and empirically

and apply these novel methods to labour markets.

The first chapter, published in Games and Economic Behavior with Yves

Guéron and Caroline Thomas, is a theoretical contribution to the repeated

games literature. The paper demonstrates how in a repeated game, di�er-

ences in time preferences between players can be used to sustain equilibrium

payo�s that are unattainable under identical discount parameters. Relatively

patient players can make credible punishment threats to less patient players

that consist of back-loading pay-o�s. We show how this type of punishment

strategy can be used to sustain otherwise unreachable payo�s. This allows us

to relax the usual full dimension assumption necessary for the folk theorem to

apply. This paper reveals how rich inter-temporal strategies can be used to
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Introduction

sustain improbable transfers between individuals. Methods and results from

the repeated game literature have important implications for the study of large

markets, as shown in the following chapters.

In my second chapter, co-authored with Jeremy Lise, Costas Meghir and

Jean-Marc Robin, we address the question of how workers are assigned to

firms in the economy and how search frictions constrain this assignment. We

develop a model with two-sided heterogeneity, production complementarities

and a contract setting where workers’ wages are determined by their produc-

tivity, the productivity of their employers and also their employment histories.

The wage paid to a worker at a given point is a sub-game perfect equilibrium

of a game played between the firm and the worker. The long term relationship

between firm and worker and the repetitive nature of these interactions are

central to understanding the price dispersion observed in the data, particularly

among similar workers, even in similar firms. We provide a constructive iden-

tification proof of how wage data, firm size and co-worker information can be

used to non- parametrically recover the production function, the assignment

distribution over unobserved worker and firm types, as well as the cost to firms

of creating new jobs. This paper is an important contribution to our knowl-

edge about both the empirical content of matched employer-employee data

and how well models with long-term contracts perform at matching observed

wage and employment dynamics.

In the final chapter I examine the sources of earning uncertainty faced by

workers in the labour market. The data tells us that a portion of earnings

uncertainty is shared by co-workers at the firm level and that job losses and

transitions are important sources of earning variation. In order to understand

how productivity shocks are transmitted into earning and employment un-

certainty, I develop an equilibrium model with search frictions, worker risk

aversion and worker and firm shocks. In the model, firms optimally choose

how the wage contract transmits productivity shocks to wages. I show theo-

retically that the presence of rents due to search frictions, together with the
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incentive problem due to workers’ private search, result in an optimal con-

tract that smoothly tracks underlying productivity. The repeated interactions

between firm and worker are fundamental to understanding how employers

choose to transmit part of the uncertainty to the workers. This represents

a departure from perfectly competitive markets since worker shocks are only

partially transmitted and workers are not fully shielded from firm shocks. I

estimate the model with matched employer-employee data from Sweden. Us-

ing information about earnings shocks shared by co-workers, I am able to

disentangle firm-specific and worker- specific shocks. Preliminary estimates

suggest that firm level shocks are responsible for about 20% of permanent in-

come fluctuations; the remaining fluctuations are accounted for by individual

level shocks (30% to 40%) and job mobility (40% to 50%). Pass-through esti-

mates reveal that the wage contract attenuates 80% of individual productivity

shocks but transmits 30% of firm productivity fluctuations. Moreover, the

model can be used to evaluate the e�ect of labour policies. In the paper, I

look at the e�ects of a hypothetical progressive tax aimed at reducing income

inequality and uncertainty. The exercise reveals that firms will respond to the

policy by transferring more risk to the workers. In equilibrium, 30% of the

direct e�ect of the policy is negated out by firms responding by posting riskier

wage contracts.

The first chapter looks theoretically at the repeated interactions between

actors, and contributes to our understanding about the kinds of equilibrium

relationships that can be sustained over long term strategic interactions. The

second chapter embeds a sub-game perfect equilibrium inside an equilibrium

where actors randomly meet with each other. In the paper, we develop in

detail how data can be used to recover the parameters of the model. In the

final chapter, workers are risk averse and productivity is uncertain. I show

that in this context firms choose to o�er partial insurance contracts to their

workers. I hope that the findings presented in the thesis will help future

research better understand price formation in frictional labour markets, but



also in other markets where long term relationships are an important feature

of the data, such as insurance markets, financial markets and goods market.
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Chapter 1

Repeated Games with

One-Dimensional Payo�s and

Di�erent Discount factors
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Chapter 1. Di�erent time preferences 1.1. Introduction

This chapter is based on joint work with Yves Gueron and Caroline Thomas.

1.1 Introduction

For the folk theorem to hold with more than two players, it is necessary to

have the ability to threaten any single player with a low payo�, while also

o�ering rewards to the punishing players. In assuming full dimensionality of

the convex hull of the set of feasible stage-game payo�s, Fudenberg and Maskin

(1986) guarantee that those individual punishments and rewards exist. Abreu,

Dutta, and Smith (1994) show that the weaker NEU condition (“nonequivalent

utilities”), whereby no two players have identical preferences in the stage-game,

is su�cient for the folk theorem to hold.

When the NEU condition fails, players that have equivalent utilities can

no longer be individually punished in equilibrium. Wen (1994) introduces

the notion of e�ective minmax payo�, which takes into account the fact that

when a player is being minmaxed, another player with equivalent utility might

unilaterally deviate and best respond. The e�ective minmax payo� of a player

cannot be lower than his individual minmax payo� (when NEU is satisfied,

they coincide), and Wen shows that when NEU fails it is the e�ective minmax

that constitutes the lower bound on subgame-perfect equilibrium payo�s. He

establishes the following folk theorem: when players are su�ciently patient,

any feasible payo� vector can be supported as a subgame-perfect equilibrium,

provided it dominates the e�ective minmax payo� vector. We show that this

can be relaxed by allowing for unequal discounting.

As pointed out by Lehrer and Pauzner (1999), when players have di�erent

discount factors, the set of feasible payo�s in a two-player repeated game is

L R
T 3,1 0,0
B 0,0 1,3

Figure 1.1: Battle of the sexes
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Chapter 1. Di�erent time preferences 1.1. Introduction

typically larger and of higher dimensionality than the set of feasible stage-

game payo�s.1 In a particular three-player game in which two players have

equivalent utilities, Chen (2008) illustrates how with unequal discounting pay-

o�s below the e�ective minmax may indeed be achieved in equilibrium for one

of the players.

In this chapter, we explore the notion that unequal discounting restores

the ability to punish players individually in an n-player game where all players

have equivalent utilities. Our result is stronger than Chen’s as we show that

all players can be hold down to their individual minmax payo� in equilibrium.

Moreover we argue that our result holds for all possible violations of NEU.

We find that a small di�erence in the discount factors su�ces to hold a player

to his individual minmax for a certain number of periods while still being

able to reward the punishing players. For discount factors su�ciently close to

one, any strictly individually rational payo�, including those dominated by the

e�ective minmax payo�, can be obtained as the outcome of a subgame-perfect

equilibrium with public correlation, restoring the validity of the folk theorem.

Although our result is stated for games where all players have equivalent

utilities, we conjecture that it extends to weaker violations of NEU, as long as

any two players with equivalent utilities have di�erent discount factor. The

intuition behind this conjecture is that following Abreu, Dutta, and Smith

(1994) we could design specific punishments for each group of players with

equivalent utilities and use the di�erence in discount factors within each group

to enforce those specific punishments.

13



Chapter 1. Di�erent time preferences 1.1. Introduction

L R L R
T 1,1,1 0,0,0 T 0,0,0 0,0,0
B 0,0,0 0,0,0 B 0,0,0 1,1,1

C D

Figure 1.2: A stage game with one-dimensional payo�s

1.1.1 An Example

Consider the stage-game in Figure 1.2, where Player 1 chooses rows, Player 2

columns and Player 3 matrices. This stage-game is infinitely repeated and the

players evaluate payo� streams according to the discounting criterion. When

the players share a common discount factor ” < 1, Fudenberg and Maskin

(1986, Example 3) show that any subgame-perfect equilibrium yields a payo�

of at least 1/4 (the e�ective minmax) to each player, whereas the individual

minmax payo� of each player is zero.2 The low dimensionality of the set of

stage-game payo�s weakens the punishment that can be imposed on a player

as another player with equivalent utility can deviate and best respond. The

inability to achieve subgame-perfect equilibrium payo�s in (0, 1/4) means that

the “standard” folk theorem fails in this case.3

We show however that if all three players have di�erent discount factors,

there exists a subgame-perfect equilibrium in which the payo� to each player

is arbitrarily close to zero, the individual minmax, provided that the discount

factors are su�ciently close to one. Any payo� in the interval (0, 1/4) can

then be achieved in equilibrium, restoring the validity of the folk theorem in

the context of this game.
1Mailath and Samuelson (2006, Remark 2.1.4) present a simple example to show how the

set of feasible payo�s can increase when allowing for di�erent discount factors. Consider the
game of battle of the sexes depicted in Figure 1.1 and assume that players have di�erent
discount factors, ”1 > ”2. Consider an outcome in which (B, R) is played for T periods while
(T, L) is played in subsequent periods. That is, first the less patient player is favored while
the more patient player is rewarded subsequently. The playo�s to player 1 and 2 from this
outcome are (1 ≠ ”

T

1 ) + 3”

T

1 and 3(1 ≠ ”

T

2 ) + ”

T

2 , which is outside the convex hull of the set
{(3, 1), (0, 0), (1, 3)} because ”1 > ”2.

2For example, when Player 1 plays T and Player 2 plays R, Player 3 gets a payo� of 0
whether he plays C or D.

3One may not be too concerned about our inability to achieve low payo�s. However if
the game of Figure 1.2 is part of a more general game then our inability to reach low payo�s
(that is, to punish players) might reduce the scope for cooperation in the more general game.

14



Chapter 1. Di�erent time preferences 1.1. Introduction

1.1.2 Notation

We consider an n-player repeated game, where all players have equivalent

utilities. We normalize payo�s to be in {0, 1} and let each player’s individual

minmax payo� be zero.4 We use public correlation to convexify the payo� set,

although we argue later that this assumption can be dispensed with. Players

have di�erent discount factors, and are ordered according to their patience

level: 0 < ”
1

< · · · < ”
n≠1

< ”
n

< 1.5 We use an exponential representation

of discount factors: ’ i, ”
i

:= e≠�fl

i , where � > 0 could represent the length

of time between two repetitions of the stage game. As � æ 0, all discount

factors tend to one. The fl’s are strictly ordered: 0 < fl
n

< · · · < fl
2

< fl
1

. We

assume that the stage game has a (mixed) Nash equilibrium which yields a

payo� Q < 1 to all players.6

We summarize our assumptions about the game and introduce a notation

for the lowest subgame-perfect equilibrium payo� of a player i in the following

definitions:

Definition 1. Let � (�) be the set of n-player infinitely repeated games such

that:

(i) The set of stage-game payo�s is one-dimensional and all players receive

the same payo� in {0, 1}.

(ii) The stage game has a mixed-strategy Nash equilibrium which yields a

payo� of Q < 1 to all players.

(iii) Each player’s pure action individual minmax payo� is zero.

(iv) Players evaluate payo� streams according to the discounting criterion,

and discount factors are strictly ordered: 0 < ”
1

< · · · < ”
n

< 1, where

”
i

:= e≠�fl

i.
4We only use two payo�s as we only need to consider the minmax payo� and the maximum

possible payo�.
5Note that the result no longer holds if several but not all players have the same discount

factor. We address this point in Section 1.A.
6For example in the game of Figure 1.2, the mixture

Ó
(1/2, 1/2) , (1/2, 1/2) , (1/2, 1/2)

Ô

is a Nash equilibrium that yields a payo� of 1/4.

15



Chapter 1. Di�erent time preferences 1.1. Introduction

Note that the stage game of Figure 1.2 satisfies assumptions A(i) to A(iii)

of Definition 1.

Definition 2. We denote by a
i

the lowest subgame-perfect equilibrium payo�

of Player i in a game G
�

œ � (�).

For given discount factors, the existence of the (a
i

)
i=1,...,n

is ensured by the

compactness of the set of subgame-perfect equilibrium payo�s (see Fudenberg

and Levine (1983, Lemma 4.2)).

1.1.3 Main Result and Outline of the Proof

Our main result, Theorem 1, states that for games in � (�), the lowest subgame-

perfect equilibrium payo� of each player goes to zero (the common individual

minmax payo�) as discount factors tend to one:

Theorem 1. Consider an n-player infinitely repeated game G
�

œ � (�). Then

a
i

œ O (�) for all i.7

Theorem 1 states that for discount factors su�ciently close to one (that is

for � su�ciently close to zero), the lowest subgame-perfect equilibrium pay-

o� of each player i, a
i

, is arbitrarily close to zero. We do not provide a full

characterization of the set of subgame-perfect equilibrium payo�s but note

that any feasible and strictly individually rational payo� is a subgame-perfect

equilibrium payo�. In recent work, Sugaya (2010) characterises the set of

perfect and public equilibrium payo�s in games with imperfect public moni-

toring when players have di�erent discount factors, under a full-dimensionality

assumption.

To prove Theorem 1, we first show that when stage-game payo�s are iden-

tical, the lowest subgame-perfect equilibrium payo�s are ordered according

to the discount factors (Lemma 1). A player’s lowest subgame-perfect equi-

librium payo� cannot be below that of another player who is less patient.

We then show that the lowest subgame-perfect equilibrium payo�s of the two
7That is, ÷ M Ø 0 and �ú

> 0 such that a

i

Æ M · � for � Æ �ú.

16



Chapter 1. Di�erent time preferences 1.2. Lowest Equilibrium Payo�s

most patient players (Player n ≠ 1 and Player n) are arbitrarily close to each

other when discount factors tend to one (Lemma 2). This is done by explicitly

constructing a subgame-perfect equilibrium of the repeated game.

In a similar way, we then construct a set of subgame-perfect equilibria

(one for each player i œ {2, . . . , n ≠ 1}) (Lemma 3) and use those to bound

the distance between the lowest subgame-perfect equilibrium payo�s of players

i and i ≠ 1 (Lemma 4). We then show by induction that the lowest subgame-

perfect equilibrium payo�s of any two players are arbitrarily close to each

other as discount factors tend to one (Lemma 5). Finally we show that Player

1’s lowest subgame-perfect equilibrium payo� can be made arbitrarily close to

zero as discount factors tend to one (Lemma 6). We are then able to conclude

and prove Theorem 1.

Note that the assumption of strictly di�erent discount factors cannot be

dispensed with. In particular our result does not hold when some but not all

player share a common discount factor. In a similar fashion to Fudenberg and

Maskin (1986, Example 3), we construct a four-player example where the stage

game satisfies assumptions A(i) to A(iii) but where the two “intermediate”

players share a common discount factor. That is we have ”
1

< ”
2

= ”
3

< ”
4

.

This example is presented in Section 1.A.

1.2 Lowest Equilibrium Payo�s

1.2.1 Strategy Profiles and Incentive Compatibility Constraints

To prove Theorem 1, we explicitly construct several subgame-perfect equilib-

ria of the repeated game. To do so, we consider strategy profiles that give

a constant expected stage-game payo� between zero and one (using public

correlation) to all players for a given number of periods, and then stage-game

payo�s of one forever:

Definition 3. Let ‡(µ, ·, i) be the strategy profile such that:

(i) For · periods, in each stage-game, players use a public correlating device

17



Chapter 1. Di�erent time preferences 1.2. Lowest Equilibrium Payo�s

to generate an expected payo� of µ. When the public correlating device

generates a payo� of zero, players minmax Player i.

(ii) In all subsequent periods t > · , players play an action profile yielding a

stage-game payo� of 1 to each player.

(iii) During the first · periods, deviations by Player i are ignored. After that,

if Player i deviates from the equilibrium path, players play a subgame-

perfect equilibrium which gives Player i his lowest possible payo�, a
i

.

(iv) If a deviation by Player j ”= i occurs at any time, players then play

a subgame-perfect equilibrium which gives Player j his lowest possible

payo�, a
j

.

Assuming that the correlating device generates a payo� of zero at t = 0, a

player j ”= i will not have an incentive to deviate from ‡(µ, ·, i) if:8,9

(1 ≠ ”
j

) + ”
j

a
j

Æ ”
j

1
(1 ≠ ”·≠1

j

)µ + ”·≠1

j

2
, (1.1)

which can be rewritten as

”·

j

Ø 1 ≠ ”
j

+ ”
j

a
j

≠ ”
j

µ

1 ≠ µ
. (1.2)

To prove Theorem 1, we show that there exists a “low” µ and a large · such

that for � su�ciently close to zero, the strategy profile ‡(µ, ·, i) is subgame

perfect, that is, we show that (1.2) is satisfied for any j ”= i. To do so, we

identify the player with the tightest incentive compatibility constraint as jú
i

and find the largest · such that (1.2) is satisfied for Player jú
i

(Lemma 3).

Notice that Player jú
i

is not necessarily the player with the lowest discount

factor. By a “low” µ we mean that µ must be close to a
i≠1

. To this end, we
8First note that zero is the lowest possible stage game payo� and so if it is enforceable all

other payo�s will be. Second the strategy starts by giving zeros and ones and then rewards
the players with ones forever, so the tightest incentive compatibility constraint will be when
t = 0 as for t > 0 players are closer to getting ones for ever.

9The left-hand side of (1.1) is the payo� to Player j if he deviates: he get an instantaneous
payo� of 1 followed by a repeated game payo� of a

j

. If Player j follows the strategy he gets
a payo� of zero today, followed by · ≠ 1 periods during which he gets an expected payo� of
µ, after which he receives a payo� of one in each period.
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choose a stage-game payo� µ
i

that is slightly above a
i≠1

:

Definition 4. For all i œ {1, ..., n}, let µ
i

be such that:10

µ
i

=

Y
__]

__[

a
i≠1

+ 1≠”1
”1

if 2 Æ i Æ n,

0 if i = 1.

To illustrate, consider a player i with intermediate patience, such that

1 < i < n. The strategy profile ‡(µ, ·, i) does not give him an opportunity to

deviate, as he is being minmaxed when payo�s of zero are generated. For this

reason, that strategy profile can be thought of as the other players colluding

against player i. Lowering the payo� to player i from that strategy profile may

conflict with making it incentive compatible both for players that are more and

less patient than him. Players less patient than i must get a payo� su�ciently

higher than their lowest SPE payo�, and players more patient than i must be

promised payo�s of 1 soon enough to make them accept an early stream of

low payo�s. We show that these constraints can be reconciled with keeping

player i’s payo� very close to the lowest equilibrium payo� of the player just

less patient than him.

1.2.2 Proof of Theorem 1

In a first step towards Theorem 1 we now show that the lowest subgame-perfect

equilibrium payo�s are ordered according to the discount factors (Lemma 1),

and that Player n’s lowest subgame-perfect equilibrium payo� is arbitrarily

close to Player n ≠ 1’s for � close enough to zero (Lemma 2).

Lemma 1. ’i œ {2, . . . , n}, a
i≠1

Æ a
i

.

Proof. The main idea is to find a stream of payo�s (z
t

)
t=0,...,Œ in [0, 1]N that

minimizes Player i’s average discounted payo�, given Player i≠1 is guaranteed

his lowest subgame-perfect equilibrium payo� at each stage. By definition, the
10Note that for all i and for � su�ciently close to zero, µ

i

Æ 1. Indeed, µ

i

Æ Q +
1≠”1

”1
æ�æ0 Q < 1.
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resulting average discounted payo� for Player i cannot be greater than a
i

. We

show that the constraints imposed by Player i ≠ 1’s lowest subgame-perfect

equilibrium payo� must all be binding and that z
t

= a
i≠1

, ’t Ø 0.

Formally, we solve the following minimization problem:

min
(z

t

)

t=0,...,Œœ[0,1]

N
(1 ≠ ”

i

)
Œÿ

t=0

”t

i

z
t

(1.3)

subject to

(1 ≠ ”
i≠1

)
Œÿ

t=s

”t≠s

i≠1

z
t

Ø a
i≠1

, ’s Ø 0 (1.4)

We show by induction that all constraints in (1.4) will be binding, which

implies that z
s

= a
i≠1

, ’s Ø 0. Our induction hypothesis is that the con-

straints in (1.4) must bind for s = 0, . . . , · and therefore, that the minimiza-

tion problem (1.3) subject to the constraints (1.4) can be rewritten as:

min
(z

t

)

t=·,...,Œœ[0,1]

N
⁄

·≠1

(a
i≠1

, ”
i≠1

, ”
i

) + (1 ≠ ”
i

)
A Œÿ

t=·+1

”·

i

1
”t≠·

i

≠ ”t≠·

i≠1

2
z

t

B

(1.5)

subject to

(1 ≠ ”
i≠1

)
Œÿ

t=s

”t≠s

i≠1

z
t

Ø a
i≠1

, ’s Ø · + 1 (1.6)

where the function ⁄
·

is recursively defined by

⁄
0

(a
i≠1

, ”
i≠1

, ”
i

) = (1 ≠ ”
i

) a
i≠1

1 ≠ ”
i≠1

and

⁄
·

(a
i≠1

, ”
i≠1

, ”
i

) = ⁄
·≠1

(a
i≠1

, ”
i≠1

, ”
i

) + (1 ≠ ”
i

) ”·

i

+ (”
i

≠ ”
i≠1

) a
i≠1

1 ≠ ”
i≠1

.

Initialization: · = 0 The first constraint is the only constraint fea-

turing z
0

and can be rewritten as z
0

Ø a

i≠1
1≠”

i≠1
≠

qŒ
t=1

”t

i≠1

z
t

. Moreover, z
0

enters with a positive coe�cient in the objective function, therefore, the first
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constraint must be binding. The constraint is then used to eliminate z
0

from

the objective function: the minimization problem (1.3) subject to (1.4) can

therefore be written in the following way:

min
(z

t

)

t=1,...,Œœ[0,1]

N
(1 ≠ ”

i

)
A

a
i≠1

1 ≠ ”
i≠1

+
Œÿ

t=1

1
”t

i

≠ ”t

i≠1

2
z

t

B

subject to

(1 ≠ ”
i≠1

)
Œÿ

t=s

”t≠s

i≠1

z
t

Ø a
i≠1

, ’s Ø 1

This verifies (1.5) and (1.6).

Induction We assume that our minimization problem can be rewritten

as (1.5) subject to (1.6) for some · > 1. Because ”
i

> ”
i≠1

, z
·+1

enters with

a positive coe�cient in the objective function and z
·+1

only appears in the

constraint z
·+1

Ø a

i≠1
1≠”

i≠1
≠

qŒ
t=·+2

”t≠(·+1)

i≠1

z
t

, this constraint will be binding

and the objective function can be rewritten by substituting for z
·+1

as follows:

⁄
·≠1

(a
i≠1

, ”
i≠1

, ”
i

) + (1 ≠ ”
i

)
A Œÿ

t=·+1

”·

i

1
”t≠·

i

≠ ”t≠·

i≠1

2
z

t

B

= ⁄
·≠1

(a
i≠1

, ”
i≠1

, ”
i

) + (1 ≠ ”
i

)
A

”·

i

(”
i

≠ ”
i≠1

)
A

a
i≠1

1 ≠ ”
i≠1

≠
Œÿ

t=·+2

”t≠(·+1)

i≠1

z
t

BB

+ (1 ≠ ”
i

)
Œÿ

t=·+2

”·

i

1
”t≠·

i

≠ ”t≠·

i≠1

2
z

t

= ⁄
·

(a
i≠1

, ”
i≠1

, ”
i

) + (1 ≠ ”
i

)
Œÿ

t=·+2

1
”·

i

1
”t≠·

i

≠ ”t≠·

i≠1

2
≠ ”·

i

(”
i

≠ ”
i≠1

) ”t≠(·+1)

i≠1

2
z

t

= ⁄
·

(a
i≠1

, ”
i≠1

, ”
i

) + (1 ≠ ”
i

)
A Œÿ

t=·+2

”·+1

i

1
”t≠(·+1)

i

≠ ”t≠(·+1)

i≠1

2
z

t

B

,

where the first equality is obtained by substituting for z
·+1

and the other

equalities are obtained by grouping the terms in z
t

(t Ø · + 2) together. Thus

(1.5) and (1.6) hold for · + 1 also.

This concludes the proof by induction and so all constraints in (1.4) must

bind: (1 ≠ ”
i≠1

)
qŒ

t=s

”t≠s

i≠1

z
t

= a
i≠1

, ’s Ø 0. We now show that this implies
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that z
s

= a
i≠1

, ’s Ø 0. Consider the constraint for some s Ø 0:

a
i≠1

= (1 ≠ ”
i≠1

)
Œÿ

t=s

”t≠s

i≠1

z
t

= (1 ≠ ”
i≠1

)
I

z
s

+ ”
i≠1

Œÿ

t=s+1

”t≠(s+1)

i≠1

z
t

J

= (1 ≠ ”
i≠1

)
;

z
s

+ ”
i≠1

1 ≠ ”
i≠1

a
i≠1

<
,

where the last inequality holds because the constraint is binding for s + 1.

This implies that z
s

= a
i≠1

, ’s Ø 0.

Given the constraints imposed on stage-game payo�s by player i ≠ 1’s

lower subgame-perfect equilibrium bound, the lowest average discounted payo�

which can be given to player i is a
i≠1

. We therefore have a
i≠1

Æ a
i

.

Lemma 2. |a
n

≠ a
n≠1

| œ O (�).

Proof. Consider the strategy profile ‡(µ
n

, Œ, n), where µ
n

= a
n≠1

+ 1≠”1
”1

. We

are going to show that this constitutes a subgame-perfect equilibrium.

First, note that in a period in which the public correlating device gener-

ates a payo� of one, no player has a one-shot profitable deviation. Secondly,

because Player n is being minmaxed in a period in which the public corre-

lating device generates a payo� of zero, he doesn’t have a profitable one-shot

deviation. Thirdly, because punishment phases consist of subgame-perfect

equilibrium strategies, no player has a profitable one-shot deviation during

one of those. Thus, to verify that ‡(µ
n

, Œ, n) is subgame perfect, we only

need to check that players i Æ n≠1 do not have profitable one-shot deviations

when the public correlating device generates a payo� of zero.

A deviation from Player i Æ n ≠ 1 leads at most to a one-o� gain of one

followed by a payo� of a
i

forever. Therefore, there is no one-shot profitable

deviation if (1≠ ”
i

)+ ”
i

a
i

Æ ”
i

1
a

n≠1

+ 1≠”1
”1

2
, where the right-hand-side is the

repeated game payo� to Player i if the public correlation device indicates a

zero payo� action profile in that period. This inequality is always satisfied for

i Æ n ≠ 1 as a
i

Æ a
n≠1

(Lemma 1) and as 1≠”

i

”

i

Æ 1≠”1
”1

.
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By definition of a
n

, and by Lemma 1, we have that a
n≠1

Æ a
n

Æ a
n≠1

+
1≠”1

”1
. We conclude the proof by noting that a

n

≠ a
n≠1

Æ 1≠”1
”1

and that
1≠”1

”1
œ O (�).

We have shown that the lowest subgame-perfect equilibrium payo�s of

the two most patient players are arbitrarily close as � tends to zero. The

intuition behind this result is that all players can collude against Player n by

minmaxing him whenever the public correlating device generates a payo� of

zero. Since Player n ≠ 1 is the most patient of the colluding players and since

lowest subgame-perfect equilibrium payo�s are ordered according to discount

factors, his lowest subgame-perfect equilibrium will determine by how much

Player n’s equilibrium payo� can be pushed down.

We now show that the lowest subgame-perfect equilibrium payo�s of any

two players are arbitrarily close to each other as � tends to zero (Lemma

5). We start by identifying bounds on Player i > 1’s lowest subgame-perfect

equilibrium payo�. To do this, we find the largest time · Ø 1 such that the

strategy profile ‡(µ
i

, ·, i) is a subgame-perfect equilibrium and compute its

equilibrium payo� for Player i. We then prove Lemma 5 by induction.

First, we introduce some useful notation. For every player i œ {1, . . . , n ≠ 1},

define

N i

+

:= {j > i : 1 ≠ ”
j

+ ”
j

a
j

≠ ”
j

µ
i

> 0} .

When proving that for a particular · , ‡(µ
i

, ·, i) is a subgame-perfect equi-

librium, N i

+

should be thought of as the set of players for whom profitable

deviations might exist depending on the value of · . That is, N i

+

is the set of

players for whom the right-hand side of (1.2) (when replacing µ with µ
i

) is

strictly positive. We will therefore choose · to satisfy the no-deviation con-

straints of all players in N i

+

. When N i

+

is not empty, we identify the player
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from this set with the tightest constraint as jú
i

and we define Ât
i

as follows:

jú
i

:= arg min
jœN

i

+

log
3

(1 ≠ ”
j

+ ”
j

a
j

≠ ”
j

µ
i

) / (1 ≠ µ
i

)
4

log ”
j

,

Ât
i

:=
log

31
1 ≠ ”

j

ú
i

+ ”
j

ú
i

a
j

ú
i

≠ ”
j

ú
i

µ
i

2
/ (1 ≠ µ

i

)
4

log ”
j

ú
i

.

Let tú
i

:=
Í

Ât
i

Î
be the largest integer smaller or equal than Ât

i

and define r
i

œ

(0, 1) to be the fractional part of Ât
i

:

r
i

:= Ât
i

≠ tú
i

.

Note that tú
i

is the longest time · such that jú
i

does not have a profitable

one-shot deviation in ‡(µ
i

, ·, i).

In Lemma 3 we show that for � su�ciently close to zero tú
i

is well defined

and arbitrarily large and that the strategy profile ‡(µ
i

, tú
i

, i) is indeed subgame

perfect.

Lemma 3. Let i œ {2, ..., n ≠ 1}, and assume that N i

+

”= ÿ. Given jú
i

, tú
i

and µ
i

, ÷ �ú
i

> 0 such that for � œ (0, �ú
i

), ‡(µ
i

, tú
i

, i) constitutes a subgame-

perfect equilibrium.

Proof. For notational convenience, we omit the i subscript on jú
i

, Ât
i

, tú
i

, and

r
i

. First, recall that for � su�ciently close to zero, µ
i

Æ 1.11 We now check

that tú is well defined. Note that ÷ �
ij

> 0 and ÷
ij

< 1 such that for � Æ �
ij

,
1≠”

j

+”

j

a

j

≠”

j

µ

i

1≠µ

i

< ÷
ij

.12 Because ÷
ij

does not depend on �, this shows that

lim
�æ0

Ât = Œ and ensures that ÷ �ú
i

> 0 such that tú is well defined and

strictly positive for � œ (0, �ú
i

).

Because i is being minmaxed if the public correlating device generates

a payo� of zero, i does not have a profitable one-shot deviation. Also, no
11See footnote 10.
12Since a

j

Æ Q, 1≠”

j

+”

j

a

j

≠”

j

µ

i

1≠µ

i

Æ ”

j

Q≠µ

i

1≠µ

i

+ 1≠”

j

1≠Q≠(1≠”1)/”1
. For any x in [0, 1), Q≠x

1≠x

Æ
Q, thus the right-hand-side of the previous inequality is bounded from above by ”

j

Q +
1≠”

j

1≠Q≠(1≠”1)/”1
, which tends to Q < 1 as � tends to zero.
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player will have a profitable one-shot deviation during the punishment phases

of ‡(µ
i

, tú
i

, i), as those are subgame perfect.

We now check that no player j ”= i has a profitable one-shot deviation,

that is, we check that (1.1) (when replacing µ with µ
i

and · with tú) holds for

all players j ”= i:

(1 ≠ ”
j

) + ”
j

a
j

Æ ”
j

1
(1 ≠ ”t

ú≠1

j

)µ
i

+ ”t

ú≠1

j

2
. (1.7)

We first check that (1.7) holds for players j Æ i ≠ 1 and then for players j > i:

(i) No deviation from player j Æ i ≠ 1: Note that because µ
i

œ [0, 1], we

have that µ
i

Æ
1
1 ≠ ”t

ú≠1

j

2
µ

i

+ ”t

ú≠1

j

. In order to show that (1.7) holds,

we can therefore show that (1 ≠ ”
j

) + ”
j

a
j

Æ ”
j

µ
i

, which is equivalent to
1≠”

j

”

j

+a
j

Æ a
i≠1

+ 1≠”1
”1

. This inequality holds ’j Æ i≠1, as 1≠”

j

”

j

Æ 1≠”1
”1

and a
j

Æ a
i≠1

.

(ii) No deviation from player j > i: We can rearrange (1.7) to get

”t

ú
j

Ø 1 ≠ ”
j

+ ”
j

a
j

≠ ”
j

µ
i

1 ≠ µ
i

. (1.8)

First, note that if j /œ N i

+

then j has no incentive to deviate as ”t

ú
j

>

0 Ø 1≠”

j

+”

j

a

j

≠”

j

µ

i

1≠µ

i

. Now let j œ N i

+

. Since tú has been chosen such that

(1.8) is satisfied for player jú, (1.8) is also satisfied for all other players

in N i

+

, and no player j œ N i

+

will have an incentive to deviate.

We conclude that for � su�ciently close to zero, ‡(µ
i

, tú
i

, i) is a subgame-

perfect equilibrium.

Remark 1 (Dispensability of public correlation). In Lemma 3, we show that

‡(µ
i

, tú
i

, i) is a subgame-perfect equilibrium and that tú
i

goes to infinity as �

approaches zero. Instead of using the strategy ‡(µ
i

, tú
i

, i), which relies on public

correlation, we can consider a deterministic strategy that alternates between

tú
i,1

zeros and tú
i,2

ones, where tú
i,1

+ tú
i,2

= tú
i

and tú
i,2

/tú
i

is arbitrarily close to

µ
i

, starting with a payo� of zero. This is possible because tú
i

goes to infinity.
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Intuitively, as � goes to zero, such a strategy will yield a payo� to any player

arbitrarily close to the payo� from ‡(µ
i

, tú
i

, i), while having a period-zero in-

centive compatibility constraint less stringent than (1.7) since µ
i

is promised

on average over the first tú
i

periods and the first period payo� is a zero. This

should ensure that Lemmas 3 and 4 still hold under such a deterministic strat-

egy. ⌃

We now compute the payo� of player i from ‡(µ
i

, tú
i

, i) in order to bound

the distance between a
i

and a
i≠1

.

Lemma 4. ’i œ {2, . . . , n ≠ 1}, we have that either:

(i) ’ j > i, |a
j

≠ a
i≠1

| œ O (�), or

(ii) |a
i

≠ a
i≠1

| œ O (�) + O
1
a

j

ú
i

≠ a
i

2
, where jú

i

> i.

Proof. Again, for notational convenience, we omit the i subscript on jú
i

, tú
i

and

r
i

. If N i

+

is empty we directly have an indication of the distance between a
j

and

a
i≠1

by noting that no player j > i has an incentive to deviate from ‡(µ
i

, ·, i),

irrespective of · : if N i

+

= ÿ, then ’ j > i , 0 Æ a
j

≠ a
i≠1

Æ 1≠”1
”1

≠ 1≠”

j

”

j

, which

implies that |a
j

≠ a
i≠1

| œ O (�).

Assume now that N i

+

”= ÿ, so that ‡(µ
i

, tú, i) is a subgame-perfect equilib-

rium. We now compute Player i’s payo� from ‡(µ
i

, tú, i) and compare it with

his lowest subgame-perfect equilibrium payo�. The payo� to Player i from

the strategy profile ‡(µ
i

, tú, i) is:

(1 ≠ ”t

ú
i

)µ
i

+ ”t

ú
i

= µ
i

+ ”t

ú
i

(1 ≠ µ
i

)

= µ
i

+ ”≠r

i

31 ≠ ”
j

ú + ”
j

úa
j

ú ≠ ”
j

úµ
i

1 ≠ µ
i

4 fl

i

fl

j

ú
(1 ≠ µ

i

)

Ø a
i

,

where the last inequality holds because a
i

is i’s lowest subgame-perfect equi-

librium payo�. This inequality can be rewritten as

a
i

≠ µ
i

1 ≠ µ
i

Æ ”≠r

i

31 ≠ ”
j

ú + ”
j

úa
j

ú ≠ ”
j

úµ
i

1 ≠ µ
i

4 fl

i

fl

j

ú ≠1

31 ≠ ”
j

ú + ”
j

úa
j

ú ≠ ”
j

úµ
i

1 ≠ µ
i

4
,
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where fl

i

fl

j

ú ≠ 1 > 0, as i < jú. Recall from the proof of Lemma 3 that for

� Æ �
ij

ú , (1 ≠ ”
j

ú + ”
j

úa
j

ú ≠ ”
j

úµ
i

) / (1 ≠ µ
i

) < ÷
ij

ú , where ÷
ij

ú < 1 does not

depend on �. For � Æ �
ij

ú , we therefore have:

a
i

≠ µ
i

1 ≠ µ
i

Æ ”≠r

i

÷

fl

i

fl

j

ú ≠1

ij

ú

31 ≠ ”
j

ú + ”
j

úa
j

ú ≠ ”
j

úµ
i

1 ≠ µ
i

4
.

The previous inequality can be rewritten as:13

a
i

≠ a
i≠1

Æ 1 ≠ ”
1

”
1

+ ”≠r

i

÷

fl

i

fl

j

ú ≠1

ij

ú ”
j

ú (a
i

≠ a
i≠1

) +

”≠r

i

÷

fl

i

fl

j

ú ≠1

ij

ú

3
1 ≠ ”

j

ú + ”
j

ú (a
j

ú ≠ a
i

) ≠ ”
j

ú
1 ≠ ”

1

”
1

4
. (1.9)

Because

lim
�æ0

”≠r

i

÷

fl

i

fl

j

ú ≠1

ij

ú ”
j

ú = lim
�æ0

”≠r

i

÷

fl

i

fl

j

ú ≠1

ij

ú = ÷

fl

i

fl

j

ú ≠1

ij

ú < 1,

there exists a Ê�
i

Ø 0 and an R < 1 such that for � Æ Ê�
i

we have:

a
i

≠ a
i≠1

Æ 1 ≠ ”
1

”
1

+ R (a
i

≠ a
i≠1

) + R
3

1 ≠ ”
j

ú + ”
j

ú (a
j

ú ≠ a
i

) ≠ ”
j

ú
1 ≠ ”

1

”
1

4
.

To conclude, note that 1≠”1
(1≠R)”1

+ R

1≠R

1
1 ≠ ”

j

ú ≠ ”
j

ú 1≠”1
”1

2
is of order �,

and that R

1≠R

”
j

ú (a
j

ú ≠ a
i

) œ O (a
j

ú ≠ a
i

), as R < 1 is a fixed constant.

Recall that the di�erence between the two most patient players’ lowest

subgame-perfect equilibrium payo�s, a
n

and a
n≠1

, is of order � (Lemma 2).

Moreover in Lemma 4 we established a bound for the distance between a
i≠1

and the lowest subgame-perfect equilibrium payo� of a more patient player.

We can now establish by induction that the lowest subgame-perfect equilib-

rium payo�s of any two players are arbitrarily close to each other as � tends

to zero.

Lemma 5. |a
i

≠ a
j

| œ O(�), ’ (i, j).
13By canceling the 1≠µ

i

and adding and subtracting ”

j

ú
a

i

inside the term in parentheses.
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Proof. By Lemma 2, we know that this result is true for i, j œ {n ≠ 1, n}. We

now prove this result by induction. Assume that ’i, j Ø k, |a
i

≠ a
j

| œ O(�).

Our aim is to show that ’i Ø k, |a
i

≠ a
k≠1

| œ O(�).

If the first statement of Lemma 4 holds, then we have that ’j > k, |a
j

≠

a
k≠1

| œ O (�). Moreover, |a
k

≠ a
k≠1

| Æ |a
k

≠ a
j

| + |a
j

≠ a
k≠1

| for any j > k.

By induction, |a
k

≠ a
j

| œ O (�), thus we have |a
k

≠ a
k≠1

| œ O (�).

If the second statement of Lemma 4 holds then ÷ kú > k such that |a
k

≠

a
k≠1

| œ O (�) + O (a
k

ú ≠ a
k

). From our induction hypothesis, |a
k

ú ≠ a
k

| œ

O (�), which implies that |a
k

≠ a
k≠1

| œ O (�). Using the triangle inequality,

’i Ø k, |a
i

≠ a
k≠1

| Æ |a
i

≠ a
k

| + |a
k

≠ a
k≠1

| œ O (�).

This shows that ’i, j Ø k ≠ 1, |a
i

≠ a
j

| œ O(�).

Finally, we show that the lowest subgame-perfect equilibrium payo� of

Player 1 is arbitrarily close to zero as � tends to zero. This is done by using

a proof similar to the one of Lemma 4, and considering the strategy profile

‡(0, tú
1

, 1).

Lemma 6. a
1

œ O (�) .

Proof. We follow the same line of reasoning as in the proof of Lemma 3 and

Lemma 4, using the strategy ‡(0, tú
1

, 1). As in Lemma 3, ‡(0, tú
1

, 1) is well

defined and constitutes a subgame-perfect equilibrium. Again, for notational

convenience, we omit the subscript 1.

The strategy profile ‡(0, tú, 1) yields a payo� of ”t

ú
1

= ”≠r

1

(1 ≠ ”
j

ú + ”
j

úa
j

ú)
fl1

fl

j

ú

to Player 1. Because a
1

is player 1’s lowest subgame-perfect equilibrium payo�,

we have

a
1

Æ ”≠r

1

(1 ≠ ”
j

ú + ”
j

úa
j

ú)
fl1

fl

j

ú

= ”≠r

1

(1 ≠ ”
j

ú + ”
j

úa
j

ú)
fl1

fl

j

ú ≠1

!
1 ≠ ”

j

ú + ”
j

ú (a
j

ú ≠ a
1

)
"

+ ”≠r

1

”
j

ú (1 ≠ ”
j

ú + ”
j

úa
j

ú)
fl1

fl

j

ú ≠1

a
1

.
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Because

lim
�æ0

”≠r

1

”
j

ú (1 ≠ ”
j

ú + ”
j

úa
j

ú)
fl1

fl

j

ú ≠1

= lim
�æ0

”≠r

1

(1 ≠ ”
j

ú + ”
j

úa
j

ú)
fl1

fl

j

ú ≠1

Æ ÷

fl1
fl

j

ú ≠1

1j

ú ,

and ÷

fl1
fl

j

ú ≠1

1j

ú < 1 there exists an R < 1 and �ú
1

Ø 0 such that for � Æ �ú
1

we

have

a
1

Æ R
3

1 ≠ ”
j

ú + ”
j

ú (a
j

ú ≠ a
1

)
4

+ Ra
1

,

or

a
1

Æ R

1 ≠ R

3
1 ≠ ”

j

ú + ”
j

ú (a
j

ú ≠ a
1

)
4

.

We know from Lemma 5 that a
j

ú ≠a
1

œ O (�), which concludes the proof,

as R < 1 does not depend on �.

We are now able to prove Theorem 1:

Proof of Theorem 1. From Lemma 5 and 6, we have that ’i œ {1, . . . , n},

|a
i

≠ a
1

| œ O (�) and a
1

œ O (�). Using the triangle inequality, |a
i

| Æ |a
i

≠

a
1

| + |a
1

| œ O(�).

1.3 Conclusion

In this chapter, we considered the set of games where the classical folk theorem

does not apply because of the low dimensionality of the set of stage-game

payo�s. In such setups, it is not possible to create player-specific punishments

which are necessary to sustain low values of equilibrium payo�s.

We extend the setting by allowing players to have di�erent discount factors

and prove that player-specific punishments as close as desired to the player’s

individual minmax can be constructed. Those punishments can be used to

enforce any stage-game payo� as an equilibrium payo�. This generalizes the

folk theorem to games which violate NEU but where players have di�erent

discount factors. They can also be used to yield equilibrium payo�s strictly
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outside the convex hull of the stage-game payo�s. However, the characteriza-

tion of this multidimensional boundary for the complete equilibrium pay o�

set is left for future research.

In the next sections, we first show that our result does require all players to

have di�erent discount factors and does not hold if two “intermediate” players

share the same discount factor. We then briefly discuss subsequent research

that generalizes our result.
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Chapter 1. Di�erent time preferences1.A. Two players with same discount factor

Wen, Q. (1994): “The “folk theorem” for repeated games with complete

information,” Econometrica, 62(4), 949–954.

1.A Two players with same discount factor

In this section we confirm that our result does indeed require all players to have

di�erent discount factors by means of a counter-example similar to the one

presented in Section 1.1.1, but with four players. We present a particular four-

player game in which player 1 and player 2 have the same discount factor ”̃ œ

(”
3

, ”
4

), but such that in every stage game at least one of them is guaranteed

a payo� of 1/2.

In the game of Figure 1.3, player 1 chooses a row, player 2 chooses a

column, player 3 chooses between the two left matrices or the two right ones

and player 4 chooses between the two top matrices or the two bottom ones.

Notice that in this game, the min-max payo� of each player is 0, and there is

a mixed-strategy Nash equilibrium (1/2, 1/2, 1/2, 1) which yields a payo� of

1/2, so that assumptions A1 to A3 are satisfied.

0,0,0,0 1,1,1,1
0,0,0,0 1,1,1,1

1,1,1,1 0,0,0,0
1,1,1,1 0,0,0,0

0,0,0,0 1,1,1,1
0,0,0,0 1,1,1,1

0,0,0,0 0,0,0,0
1,1,1,1 1,1,1,1

Figure 1.3: A four-player stage game with one-dimensional payo�s

Let –
i

denote the probability with which player i plays his first action

(either top or left). The expected payo� to all players from strategy profile

(–
1

, –
2

, –
3

, –
4

) œ [0, 1]4 is

(1 ≠ –
2

)–
3

+ –
2

(1 ≠ –
3

)–
4

+ (1 ≠ –
1

)(1 ≠ –
3

)(1 ≠ –
4

).

We now show that for any stage-game action profile, at least one of player 1

or player 2 has a deviation guaranteeing him a payo� of 1/2.
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Chapter 1. Di�erent time preferences 1.A. Same discount factor

Consider the payo� from a deviation for player 1. If player 1 plays the top

row (–
1

= 1), his payo� is

u1

1

= (1 ≠ –
2

)–
3

+ –
2

(1 ≠ –
3

)–
4

,

while his payo� from playing the bottom row (–
1

= 0) is

u0

1

= (1 ≠ –
2

)–
3

+ –
2

(1 ≠ –
3

)–
4

+ (1 ≠ –
3

)(1 ≠ –
4

).

For player 1, playing the bottom row is the best deviation (bottom indeed

weakly dominates top).

For player 2, the payo� from playing the left column (–
2

= 1) is

u1

2

= (1 ≠ –
3

)–
4

+ (1 ≠ –
1

)(1 ≠ –
3

)(1 ≠ –
4

),

while his payo� from playing the right column (–
2

= 0) is

u0

2

= –
3

+ (1 ≠ –
1

)(1 ≠ –
3

)(1 ≠ –
4

).

We now show that max{u0

1

, u0

2

, u1

2

} Ø 1/2 for any quadruple (–
1

, –
2

, –
3

, –
4

).

First let —
i

= 1 ≠ –
i

. We can then rewrite u0

1

, u0

2

and u1

2

as —
2

(1 ≠ —
3

) +

(1 ≠ —
2

)—
3

(1 ≠ —
4

) + —
3

—
4

= (1 ≠ 2—
3

+ —
3

—
4

)—
2

+ —
3

, —
3

(1 ≠ —
4

) + —
1

—
3

—
4

and 1 ≠ —
3

+ —
1

—
3

—
4

, respectively. As —
2

only appears in u0

1

, we can first

minimize max{u0

1

, u0

2

, u1

2

} with respect to —
2

. Moreover, u0

1

is linear in —
2

, so

that it’s minimum is —
3

+ min(0, 1 ≠ 2—
3

+ —
3

—
4

).

We now notice that —
4

only appears in the expression —
3

—
4

and that —
1

only appears in the expression —
1

—
3

—
4

. Let “
4

= —
3

—
4

and “
1

= —
1

“
4

, our

problem is equivalent to showing that the minimum for “
1

, —
3

and “
4

such

that 0 Æ “
1

Æ “
4

Æ —
3

Æ 1 of the maximum between —
3

+ min(0, 1 ≠ 2—
3

+ “
4

),

—
3

≠ “
4

+ “
1

and 1 ≠ —
3

+ “
1

is greater than one half.

Consider first the case when 1 ≠ 2—
3

+ “
4

Ø 0. Our problem is to show

that max{—
3

, —
3

≠ “
4

+ “
1

, 1 ≠ —
3

+ “
1

} Ø 1/2 whenever 1 ≠ 2—
3

+ “
4

Ø 0 and
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0 Æ “
1

Æ “
4

Æ —
3

Æ 1. Given that “
1

Æ “
4

then —
3

Ø —
3

≠ “
4

+ “
1

. First,

if —
3

is the maximum of those three terms then —
3

Ø 1 ≠ —
3

+ “
1

, so that

2—
3

Ø 1 + “
1

Ø 1, or —
3

Ø 1/2. Second, if 1 ≠ —
3

+ “
1

is the maximum of

those three terms then 1 ≠ —
3

+ “
1

Ø —
3

, so that —
3

Æ (1 + “
1

)/2 and therefore

1 ≠ —
3

+ “
1

Ø 1 ≠ (1 + “
1

)/2 + “
1

= (1 + “
1

)/2 Ø 1/2.

Consider now the case when 1≠2—
3

+“
4

Æ 0. Our problem is to show that

max{1 ≠ —
3

+ “
4

, —
3

≠ “
4

+ “
1

, 1 ≠ —
3

+ “
1

} Ø 1/2 whenever 1 ≠ 2—
3

+ “
4

Æ 0

and 0 Æ “
1

Æ “
4

Æ —
3

Æ 1. Given that “
1

Æ “
4

then 1 ≠ —
3

+ “
4

Ø 1 ≠ —
3

+ “
1

.

First if 1 ≠ —
3

+ “
4

Ø —
3

≠ “
4

+ “
1

then —
3

Æ 1/2 + “
4

≠ “
1

/2, so that

1 ≠ —
3

+ “
4

Ø (1 + “
1

)/2 Ø 1/2. Second if 1 ≠ —
3

+ “
4

Æ —
3

≠ “
4

+ “
1

then

—
3

Ø 1/2 + “
4

≠ “
1

/2, so that “
1

+ —
3

≠ “
4

Ø (1 + “
1

)/2 Ø 1/2.

Hence there is always one player amongst player 1 and player 2 who can

achieve a payo� of 1/2 in the stage game. Therefore for any stage-game profile

(–
1

, –
2

, –
3

, –
4

) œ [0, 1]4, both player 1 and player 2 are guaranteed a repeated-

game payo� of at least

(1 ≠ ”̃)1
2 + ”̃uú,

where uú is the minimum payo� attainable in any subgame-perfect equilibrium

for players 1 and 2.14 If (–
1

, –
2

, –
3

, –
4

) is part of an equilibrium that gives

players 1 and 2 their lowest subgame-perfect equilibrium payo� we then have:

uú Ø (1 ≠ ”̃)1
2 + ”̃uú,

so that

uú Ø 1
2 .

1.B Generalization

In a more recent paper, Chen and Takahashi (2012) generalize our result.

They aggregate the stage-game dimensionality assumption with the di�erent
14Note that because they have the same stage game payo�s and the same discount factor,

players 1 and 2 must have the same lowest subgame-perfect equilibrium payo�.
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discount factor assumption in a dynamic non-equivalent utility assumption

(DNEU). DNEU simply states that when players have equivalent utilities they

must have di�erent discount factors.15 Chen and Takahashi (2012) dispense

with the pure minmax assumption that we make and provide a more explicit

construction of the dynamic player specific punishments, whereas we rely on

the compactness of the equilibrium payo� set and use this to provide bounds

on the di�erence between the lowest equilibrium payo�s of any two players.

We note however that Chen and Takahashi (2012) rely on the compactness of

the set of feasible repeated-game payo�s and use the lowest feasible payo� for

each player without explicitly constructing them.

15In this chapter we considered a case in which all players have equivalent utilities, which
is the most problematic case for the folk theorem. DNEU therefore reduces to having all
players have di�erent discount factors in that case.
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Chapter 2. Sorting in the labour market 2.1. Introduction

2.1 Introduction

How does the labor market allocate workers to firms in equilibrium? Becker

(1974) tells us that in a frictionless environment with complementaries in pro-

duction, better workers should be assigned to better firms and that matching

should be one-to-one. The data however tells us a di�erent story where sim-

ilar workers are paid di�erently and where firms hire many di�erent types of

workers (Mortensen, 2005). The presence of rents generated by search fric-

tions can explain the departure from the Beckerian world, indeed if it takes

time to find a new matching opportunity, workers and firms might settle for

less than optimal partners, generating mismatch in equilibrium. Shimer and

Smith (2003); Atakan (2006); Eeckhout and Kircher (2010) extend the result

of Becker (1974) to environment with search frictions and show that the prin-

ciple that stronger complementarities pushes better workers into better firms

continues to apply.

Recovering the equilibrium allocation and the production function of matches

between firms and workers is made di�cult by the fact that only wages are

observed, but actual matches’ productivity is not. Abowd, Kramarz, and

Margolis (1999) first studied this distributional assignment using a regression

framework with firm and worker fixed e�ects which suggested very little sort-

ing of more productive workers into more productive firms. Eeckhout and

Kircher (2011) shows that, if the sign sorting is not always recoverable from

wage data only, the strength of sorting is. Hagedorn, Law, and Manovskii

(2012) show how information about co-workers can be used to identify non-

parametrically the allocation distribution and the production function. Their

approach utilizes the fact that with Nash bargaining, the wage ranks work-

ers by type within each firm. They propose a rank aggregation method and

demonstrate that it performs well on realistic sample size. Yet in their frame-

work identical workers are paid similar wages when employed in the same

firm.

In this paper we develop an equilibrium search model with two-sided het-
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Chapter 2. Sorting in the labour market 2.2. The model

erogeneity, on-the-job search, training cost and vacancy creation. In the

model, firms invest to create new positions, but each position can only hire

exactly one worker. This creates a capacity constraint that generates sorting

in equilibrium: firms and workers can decide not to match if it is more prof-

itable to continue searching. This di�ers from Bagger and Lentz (2008) where

sorting happens because higher ability workers move more quickly to better

firms.

In section 1 we introduce the model formally, define the equilibrium and

characterize some monotonicity properties. In section 2 we develop a construc-

tive proof for the non parametric identification of the allocation of workers to

firms and the underlying production function.

2.2 The model

We consider an economy populated by fixed numbers of workers and firms,

all infinitely lived, risk-neutral, and discounting the future at rate r. Time is

continuous.

2.2.1 Agents, technology and preferences

The economy is composed of a continuum of workers index by x and a con-

tinuum of firms index by (‘, y). The index x captures the ability of a worker,

y represents the productivity of a firm and ‘, the ability a firm has to create

new positions. More formally, a firm (y, ‘) can create n new jobs per period

at convex cost c(n, y, ‘) and a worker x employed in firm y produces output

f(x, y) every period where f
x

> 0, f
y

> 0. Employed workers are paid a wage

w œ R which depends on their employment history. A firm employs multiple

workers and we denote by h(x, w|y, ‘) the mass of workers employed by a firm

of type (y, ‘) assuming firms to be large. Jobs are destroyed at exogenous rate

”. We denote v(y, ‘) the number of unfilled jobs for that firm. Jobs are unfilled

when originally created and when workers decide to move to a di�erent firm.
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Chapter 2. Sorting in the labour market 2.2. The model

Workers and firms are risk neutral, forward looking and discount at rate r.

The mass of unemployed worker is denoted u(x).

2.2.2 Meeting technology and matching decision

x ≥ u(x)

y ≥ v(y)

meet

z ≥ G(z)
M

0

= 1, w = w
0

M
0

= 0

⁄

µ

match

no match

Figure 2.1: Meeting process and matching decision for unemployed

Workers and vacant jobs are brought together through a random meeting

technology characterized by ⁄, Ÿ and µ := ⁄
s

u/
s

v. With probability Ÿ⁄

(or ⁄) an (un)employed worker meets a vacancy randomly drawn from v(y, ‘).

Conversely with probably Ÿµ a given vacancy meets an employed worker ran-

domly drawn from h(x, w, y, ‘) and with probability µ a random unemployed

worker from u(x). When a worker and firm meet, a positive random training

cost z ≥ G(z) is drawn and must be paid if the match is formed.

Then comes the matching decision. When a firm (y, ‘) meets an unem-

ployed worker x with training cost z, the worker and the firm enter a bar-

gaining process over the wage that splits the generated surplus. The outside

option of the worker is remaining unemployed and the firm’s is the present

value of vacancy. We denote by M
0

(x, y, ‘, z) œ {0, 1} the matching decision

and by w
0

(x, y, ‘, z) the outcome wage. The wage w
0

is set by generalized

Nash bargaining.

In the case where a vacancy (y, ‘) is matched to an already employed worker

x in firm (yÕ, ‘Õ) at some wage wÕ, the two firms enter a Bertrand competition

over the wage o�ered the worker. We call M
1

(x, y, ‘, yÕ, ‘Õ, zÕ) œ {0, 1} the

matching decision. It is equal to one if the worker is poached by the new
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Chapter 2. Sorting in the labour market 2.2. The model

vacancy. We also denote by w
1

(x, y, ‘, yÕ, ‘Õ, zÕ) the outcome wage. M
1

and

w
1

are pinned down in equilibrium by the Bertrand competition.

2.2.3 Within period timing

First is production where employed worker collect their wage w, unemployed

workers collect their flow value b, firms collect output f(x, y) for each of their

matches, choose how many new vacancies n(y, ‘) to create and pay the va-

cancy creation cost c(n, y, ‘). Second is the meeting stage. Vacancies find

unemployed (employed) workers randomly at rate µ (Ÿµ), workers find vacan-

cies at rate ⁄ (Ÿ⁄) and for each meeting the training cost z is drawn. Third is

the matching decision and wage determination. Workers from unemployment

bargain with their vacancies with outcome (M
0

, w
0

). Employed workers with

an outside o�er received the Bertrand outcome (M
1

, w
1

).

2.2.4 Flow equations for distributions

(M
0

, w
0

, M
1

, w
1

) and ⁄, Ÿ, ”, G define a Markovian law of motion for the dis-

tributions (h, u, v). We start by writing the flow equation for the distribution

of unemployed workers

u
t+1

(x) = u
t

(x)
5
1 ≠ ⁄

⁄⁄⁄
M

0

(x, y, ‘, z)g(z)v(y, ‘) dy dz d‘
6

+ (1 ≠ u
t

(x))”,

and we then consider the flow equation for the distribution of vacancies. This

is given by

v
t+1

(y, ‘) = n
t

(y, ‘) + v
t

(y, ‘)
5
1 ≠ µ

⁄⁄
M

0

(x, y, ‘, z)g(z)u(x) dx dz

≠Ÿµ
⁄⁄⁄⁄

M
1

(x, y, ‘, yÕ, ‘Õ, z)G(z)h(x, w, yÕ, ‘Õ) dyÕ dzÕ d‘Õ dx
6

,

and finally the flow equation for the joint distribution of workers and firms is

given in Appendix. We call �
1

the implied Markov transition kernel for the

worker over the state space X, ,R.
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2.2.5 Equilibrium Definition

[SSE] Given primitives f, G, r, —, ⁄, Ÿ, c, b, ”, a Stationary Search Equilib-

rium › is defined by distributions h, u, v, matching and wages outcomes

M
0

, w
0

, M
1

, w
1

and firm job creation decision n(y, ‘) such that:

(i) (M
0

, w
0

) solves generalized Nash bargaining between unemployed work-

ers and vacancies (2.2.2) taking (h, u, v) as given

(ii) (M
1

, w
1

) solves the Bertrand competition (2.2.2) taking (h, u, v) as given

(iii) (h, u, v) are the stationary distributions of the Markovian law of motions

generated by (M
0

, w
0

, M
1

, w
1

) and ⁄, Ÿ, ”, G.

(iv) firms optimally choose n(y, ‘)

It is well known that the equilibrium might not be unique, and that for a

set of primitives f, G, r, —, ⁄, Ÿ, c, b, ” their might exists several such ›. In the

identification part of this paper, we will show that both › and the primitives

are identified. The procedure itself identifies the realized equilibrium among

multiple possible ones. When generating counterfactual, we should then worry

about checking for equilibrium multiplicity, but during estimation, we do not

need to worry about it.

2.3 Properties of the equilibrium

Let U(x) denote the value of unemployment and let V(y) be the value of a

vacancy for a job of type y. Let P(x, y) denote the value of all future incomes

that the worker and the job are going to generate. We define the match surplus

as

S(x, y) := P(x, y) ≠ U(x) ≠ V(y),

and we define Ê(x, y, s) the wage that delivers a surplus s to the w.

When an unemployed worker of type x meets a vacancy of type y, a non-

negative adjustment cost (training cost, mobility cost, etc.) is drawn from a
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Figure 2.2: Worker meets outside o�er

distribution G. This adjustment cost is sunk. Then, if S(x, y) Ø z, the worker

is hired according to a contract specifying a fixed wage w. This means that a

worker’s wage can be modified only if both parties agree to renegotiate. This

happens only if one of the two parties has a credible threat to break the match.

We assume that the value of the wage contract negotiated with an unem-

ployed worker is equal to the value of unemployment plus a share — of the total

surplus net of the adjustment cost, S(x, y)≠z. That is a wage w
0

(x, y, z) such

that

W (w
0

(x, y, z), x, y) = U(x) + — [S(x, y) ≠ z] ,

where W(w, x, y) denotes the present value of a wage contract w. The employer

receives the value V(y) + (1 ≠ —) [S(x, y) ≠ z] if it pays w
0

(x, y, z).

As shown in Figure 2.2, when an employed worker of type (x, y) currently

receiving a value W = W(w, x, y), with 0 Æ W ≠ U(x) Æ S(x, y), meets

a vacancy of type yÕ with training cost zÕ, the two firms enter a Bertrand

competition and three things can happen.

First if S(x, yÕ)≠zÕ > S(x, z) the worker moves to the new firm and extract

the surplus from y, she gets W = S(x, y) + U(x). Otherwise if S(x, z) >

S(x, yÕ) ≠ zÕ > W ≠ U(x), the worker stays with firm y and extract a wage

increase thanks to the outside o�er. She gets W = S(x, yÕ)≠zÕ +U(x). Finally

if W ≠ U(x) > S(x, yÕ) ≠ zÕ nothing happens, the value and the wage do not

change.

The present value of unemployment. Consider a worker of type x

who is unemployed for a whole period. During that period she earns a flow

income of b(x) and at the end of the period she meets with a vacancy y with

probability ⁄v(y). The match is consummated if S(x, y) Ø z, and the workers
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receives a share — [S(x, y) ≠ z] of the surplus. Hence

rU(x) = b(x) + —
⁄

G [S(x, y)] ⁄v(y) dy, (2.1)

where we denote G(t) ©
s

max{t ≠ z, 0}g(z) dz.

The present value of a vacancy. Let V(y) denote the expected profit for

a vacant job

rV(y) = (1 ≠ —)
⁄

G [S(x, y)] µu(x) dx

+
⁄⁄

G
#
S(x, y) ≠ S(x, yÕ)

$
Ÿµh(x, yÕ) dx dyÕ. (2.2)

A firm operates only if the value of a vacancy is positive. To avoid the is-

sue that V(y) might be negative for some y, we shall assume zero cost of

maintaining vacancies, “ = 0.

The match surplus. We now turn to the total surplus S(x, y) of a match

a match (x, y). Flow output is f(x, y). The match faces a flow probability

of dissolution ”, in which case the continuation value is 0 for the firm (a

job is destroyed), and U(x) for the worker. Otherwise, with flow probability

Ÿ⁄v(y)G (S(x, yÕ) ≠ S(x, y)), the worker is poached by a vacancy of type yÕ.

In this case, the worker moves and pockets a value of U(x)+S(x, y), while the

firm is left with a vacant job worth V(y), so that the net continuation gain for

the firm-worker match is 0. Summing up, match value solves:

(r + ”)S(x, y) = f(x, y) ≠ rU(x) ≠ (r + ”)V(y). (2.3)
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The present value of being employed. Denoting W(w, x, y) for the value

of a wage w given match characteristics (x, y), we have

(r + ” + Ÿ⁄)W(w, x, y) = w + ”U(x)

+Ÿ⁄
⁄⁄

max
Ó

U(x)+min
)
S(x, y), S(x, yÕ)≠zÕ*, W(w, x, y)

Ô
g(zÕ)v(yÕ) dzÕ dyÕ,

as a poached worker gets the second price U(x) + min {S(x, y), S(x, yÕ) ≠ zÕ}

as long as it is greater than her reservation value W(w, x, y).

Job Creation.

A firm (y, ‘) controls its stock of available jobs, and compensates for job ob-

solescence, by creating n(y, ‘) new jobs per period at a cost c(n, y, ‘):

n(y, ‘) = arg max
n

nV(y) ≠ c(n, y, ‘),

where V(y) is the present value of a vacant job and c(n, ‘) is the cost of

investments in tools, computers, etc, that accompany the creation of n jobs.

Hence,

cÕ[n(y, ‘), y, ‘] = V(y). (2.4)

Wages

The preceding Bellman equation readily defines w as a function of (x, y)

and the surplus to the worker W(w, x, y) ≠ U(x). For any feasible value

s œ [0, S(x, y)] of the worker surplus, the contract stipulates a wage

w(s, x, y) = rU(x) + (r + ”)s

≠ Ÿ⁄
⁄ Ó

G
#
S(x, yÕ) ≠ s

$
≠ G

#
S(x, yÕ) ≠ S(x, y)

$ Ô
v(yÕ) dyÕ. (2.5)

It thus follows that, for S(x, y)≠z Ø 0, the wage coming out of unemploy-

ment for a worker x into firm (y, z) is given by w (— [S(x, y) ≠ z] , x, y). Then

for a worker x transitioning from a firm yÕ to a firm (yÕ, zÕ) the wage is given
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by w (S(x, yÕ) ≠ z, x, y). Notice that the maximal wage that a worker x can

be o�ered for a job y is when she gets the whole surplus, i.e. s = S(x, y):

w(x, y) := w [S(x, y), x, y] (2.6)

= rU(x) + (r + ”)S(x, y) = f(x, y) ≠ (r + ”)V(y).

Similarly, the minimal wage for a worker x at a job y is obtained for s = 0,

which happens when the adjustment cost z is equal to the whole surplus

S(x, y), and the contract value is equal to the value of unemployment U(x):

w(x, y) := w(0, x, y) (2.7)

= rU(x) ≠ Ÿ⁄
⁄ Ó

G
#
S(x, yÕ)

$
≠ G

#
S(x, yÕ) ≠ S(x, y)

$ Ô
v(yÕ) dyÕ.

This minimum wage is attained for all (x, y) if distribution G has a large

support, for example R
+

. We assume that functions f(x, y) and b(x) are

bounded and twice continuously di�erentiable, and we omit the proof that

this property is passed on to values U(x), V(y) and S(x, y), and to the wage

function w(s, x, y).

Lemma 7. If f(x, y) is increasing in x and y, b(x) is nondecreasing, and c

is convex, then the following monotonicity properties hold true:

(i) U(x) is increasing in x.

(ii) V(y) is increasing in y.

(iii) The maximal wage w(x, y) is increasing in x and so is w(x) © max
y

w(x, y).

(iv) If in addition f is supermodular (ˆ

2
f(x,y)

ˆxˆy

> 0), then S(x, y) and w(x, y)

are also supermodular and the probability of moving from y to yÕ > y

increases with x.

Proof. See Appendix 2.B.
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2.4 Identification

In this section we address the issue of the identification of the model given

linked employer-employee data. Here we think of the data as a collection of

N independent worker trajectories drawn from the stochastic process �
t

=

(X, E
t

, R
t

, J
t

, Y
t

, C
t

), t Ø 1, defined with respect to a filtered probability space

(�, A, {A
t

}
tØ0

,P), where E
t

is the employment status (E
t

= 1 if currently

hired and 0 if unemployed), R
t

stands for a worker’s wage at time t (missing

if the worker is unemployed) and J
t

is the identifier of the firm employing

the worker (if the worker is currently employed; missing otherwise), Y
t

is the

type of the firm J
t

, C
t

its vacancy creation cost and X is the type of the

worker. (E
t

, R
t

, J
t

, I
t

) is observed and (X, Y
t

, C
t

) is not. Secondly we are also

interested in computing information at the firm level. For instance we might

want to compute the average wage in the firm. Given the set of firm identifier

J we can properly define the conditional probability with respect to any firm

J œ J.

We then want to express su�cient conditions for a given process (�, A, {A
t

}
tØ0

,P)

to be generated from a particular model › . This ties the probability mea-

sure P to the properties the endogenous distributions and decision rules of the

model: The random process �
t

defined on (�, A, {A
t

}
tØ0

,P) is generated by

the equilibrium › if

(i) X ≥ U([0, 1])

(ii) P {X Æ x|E
t

= 0} =
s

x

0

u(x) dx

(iii) P {X Æ x, Y
t

Æ y, R
t

Æ w, C
t

Æ ‘|E
0

= 1} =
s

x

0

s
y

0

h(x, y, w, ‘)/u(x) dx dy

(iv) �
t+1

|�
t

is implied by (M
0

, w
0

, M
1

, w
1

) and µ, ⁄, Ÿ, ”, G.

(v) There exists two deterministic functions júand ‘ú in J æ [0, 1] such that

’Ê, t, Y
t

= jú(J
t

), C
t

= ‘ú(J
t

)

Property (i, ii,iii) insure that the distribution in P match the distributions im-

plied by the model. In includes the link between the job creation cost and the

firm size. Property (iv) guarantees that law of motion of the random process
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generated on the filtration is distributed according to the law of motions im-

plied by the equilibrium on the model. It guarantees that wages and mobility

are correctly generated. Finally property (v) makes sure that the firm type

does not change over time and across observations. The identification exercise

is to use those properties without using (X, Y ) to reconstruct the model. We

now proceed to show that this information allows to identify the structural

parameters under the following assumption.

Assumption 1.

(i) Let zú = max
x,y

S(x, y). G(0) = 0 and G has continuous support on

[0, zú]

(ii) f(x, y) is di�erentiable and f
x

> 0, f
y

> 0

(iii) c(n, y, ‘) is di�erentiable, convex in n, c(0, y, ‘) = 0, increasing in ‘ œ

[0, 1]

Condition (i) implies that the support of G is large enough so that, for all

x, the set of couples (y, z) such that S(x, y) = z is not empty. Such match

combinations (x, y, z) are only marginally profitable. Similarly we assume

that G(z) is positive everywhere on [0, zú] to guaranty that with some posi-

tive probability every match with positive surplus will be formed. Condition

(ii) imposes comparative advantage in production. Finally (iii) restricts the

intercept of the cost function.

We can now state the main result of the paper.

Theorem 1. Identification. Set the discount rate r. Under Assumption

1, knowing conditional expectations on (�, A, {A
t

}
tØ0

,P) for all observables,

generated from an equilibrium ›, and knowing the aggregate measure of va-

cancies V , then all primitives f,G,—,⁄,Ÿ,c,b, ” and endogenous values of › are

identified.

Proof. The proof of Proposition 1 is constructive and a direct implication of

Lemma 1-9.
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The proposition states that knowing the random process �
t

on observables

only is enough to measure directly the primitives of the model.

Lemma 8. The worker type is identified:

’Ê, R = Q
¯

R

(X).

where R := max
t

{R
t

: E
t

= 1} is the A-measurable maximum wage for each

Ê, and Q
R

(·) its quantile function.

Proof. By Proposition 7(iv), the highest wage that a worker will attain in

her career, w(x) = max
y

w(x, y), is increasing in x. By construction, the A-

measurable variable R = w(X) is a deterministic and monotonic function of

the random variable X.

Lemma 9. U(x) is given by:

’x U(x) = E
J

E
t

[W
t

| X = x, E
t

> E
t≠1

, J
t

= J, R
t

= R
min

(x, J
t

)] ,

where W
t

:=
qŒ

·=t

R

·

(1+r)

·

is the A-measurable realized present value for each

(Ê, t), and R
min

(x, J) := min
Êœ�,tœT

{R
t

: E
t

> E
t≠1

, J
t

= J, X = x} is the

minimum wage paid to worker x in firm J .

Proof. It follows from Subsection 2.3 that the minimum wage ever paid to

a worker x by a firm y is w(x, y) = w(0, x, y), delivering the same present

value as unemployment. This is just stating that the worse contract a worker

would accept is a contract that makes her indi�erent to remaining unemployed.

However at this point we can’t aggregate over di�erent firms since Y is latent.

We can do this averaging inside each firm, and then aggregate.

For each firm in the data, we can define the smallest wage collected by

any worker of a given type x. This requires us to take the expectation across

workers that worked at least once in a firm J . We can then average across

all firms. The only thing required at this point is that enough x-type workers

visited firm J, but this will always be the case as time grows. Then ’Ê œ
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�, x œ X, t œ T R(x, J
t

) = w(x, Y
t

) as long as workers with type x do work in

firm J . We can now construct the value of unemployment using observables

from the data. Conditional on collecting R
min

, the expected present value

to the worker delivers exactly U(x) and gives the expression stated in the

Lemma.

Further more, since once the worker becomes unemployed again, he will be

getting U(x), one can use a finite sum to extract the value of unemployment.

The function U(x) is identified if, for all x provided that that given x works at

least in one firm, and that the z shock is large enough to deliver the reservation

wage. The latter will always be true under Assumption 1.

Lemma 10. Bargaining power — is given by:

— = E
J

5E
0

[W
0

|E
1

> E
0

, X = x, R
1

= R
max

(x, J
1

), J
1

= J ] ≠ U(x)
S(x, J)

6
,

where the surplus at firm J is given by

S(x, J) = E
t

[W
t

|J
t

”= J
t≠1

, E
t

= E
t≠1

= 1, X = x, J
t≠1

= J ] ≠ U(x).

Proof. We are going to use a similar procedure here. The highest wage col-

lected on coming out of unemployment delivers the highest possible surplus.

The present value associated with that wage delivers —S(x, y) to the worker.

Secondly workers going through a job to job transition actually extracts S(x, y)

from their current firm. More precisely:

’Ê, t E
t

[W
t

|J
t

”= J
t≠1

, E
t

= E
r≠1

= 1, X = x] = S(x, J
t

) + U(x)

E
t

Ë
W

t

|E
t

> E
t≠1

, X = x, R
t

= R(x, J
t

)
È

= —S(x, J
1

) + U(x)

selecting workers entering a given firm J with the highest entry wage, and

following them through their next job and then for ever.

Here however because the y value must match at the numerator and de-
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nominator, we need to aggregate over the J outside the fraction.

Lemma 11. G is given by

’z œ [0, zú] G(z) = P
J,w

;E [W
1

|X = x, E
1

> E
0

, J
t

= J, R
1

= w] ≠ U(x)
—

> z
<

.

Proof. Conditional on X = x we already have a measurement of S(x, J) for

any J using the subsequent job-to-job transition. Using the worker surplus

conditional on entry wage we can compute the distribution — (S(x, Y ) + z)

and as such we can estimate the distribution over z.

’x, J, Z
1

E [W
1

|X = x, E
1

> E
0

, J
t

= J, R
1

= w] = —(S(x, jú(J))+w≠1

0

(w|x, jú(J)))+U(x)

where the w≠1

0

(w|x, y) is the z from the model that delivers wage w for that

particular (x, y):

w≠1

0

(w|x, y) := {z|w
0

(x, y, z) = w}

This means that the distribution of z is directly identified. G is only recovered

on part of its support. We assume that G is analytic, and so that its global

properties can recovered from local identification.

Lemma 12. The e�ciency of on-the-job search Ÿ is given by

Ÿ = P{R
t

> R
t≠1

fi J
t

”= J
t≠1

|X, R
t≠1

= R
min

(J, X)}
P{E

t

> E
t≠1

|X} ,

and the separation rate is given by

” = P{E
t+1

< E
t

}
P{E

t

= 1} .

Intuitively, when the worker is collecting the lowest wage, any viable match

will increase his current wage or trigger a job transition since he is currently

getting his reservation value. The denominator controls for the fact that not

all meeting are with viable partners.
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Lemma 13. The firm type is identified by the rank of V̂(J) where

V̂(J) = (1 ≠ —)
⁄

G [S(x, J)] u(x) dx + Ÿ
⁄⁄

G [S(x, J) ≠ S] “(S, x) dx dS.

and �
Sx

=
s

“ is joint distribution of (S, x) in the population

�(S, x) = P{X Æ x fi S(X, J) Æ S}.

Proof. We know from Proposition 7 that the value of the vacancy is increasing

in y. We only need to show that V̂ is a monotonic transformation of V(y).

Recall its expression:

rV(y) = (1 ≠ —)µ
⁄

G [S(x, y)] u(x) dx

+ Ÿµ
⁄⁄

G
#
S(x, y) ≠ S(x, yÕ)

$
h(x, yÕ) dx dyÕ. (2.8)

We can ignore µ for now since it is an a�ne transformation. From the previous

section we have identified S(x, jú(J)). Yet we still do not know the actual y

value itself. However given that G is also identified, and so are — and u(x),

the first integral term of V(J) is also computable from the random process

itself. The second integral requires the distribution of surplus the firm draws

from in the population. However we do observe the joint distribution over

(S(x, jú(J)), x) in the data since we were able to measure S(x, jú(J)) and x

from previous Lemma. Going from V(y) to V̂(J) is just a change of variable

from yÕ to S = S(x, yÕ). This allows us to construct V̂(J) for each J , which is

an a�ne transformation of V (y) and so reveals Y
t

and the jú(·) function.

Lemma 14. The Surplus S(x, y) is identified by:

S(x, y) = E
t

[W
t

|J
t

”= J
t≠1

, E
t

= E
t≠1

= 1, X = x, Y
t≠1

= y] ≠ U(x),
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and the steady state stock of vacancies by:

v(y) Ã P{E
t

> E
t≠1

|X = x, J
t

= J}/G [S(x, y)] ,

and where the normalizing constant and µ are pinned down by the aggregate

mass of vacancy V .

Proof. This comes from the flow of workers out of unemployment µv(y)u(x)G [S(x, y)]

and the fact that the probability space is generated by the model. Importantly,

by calculating the meeting rate conditional on x, one removes the problem that

some meeting do not become matches. We established previously that S(x, J)

was identified for any J . We have also shown that the actual value of Y is

also identified for each J . So S(x, y) is identified for each (x, y).

It immediately follows that the production complementarity between x

and y, as defined by the information contained in the second partial derivative
ˆ

2
f(x,y)

ˆxˆy

= (r + ”)ˆ

2S(x,y)

ˆxˆy

, is identified.

Lemma 15. b(x) is given by :

b(x) = rU(x) ≠ —
⁄

⁄v(y)G [S(x, y)] dy

and the match-production function f(x, y) by

f(x, y) = (r + ”)S(x, y) ≠ rU(x) ≠ (r + ”)V(y)

The Bellman equation for U(x) identifies b(x) and consequently the pro-

duction function f(x, y) is non-parametrically identified.

Lemma 16. The vacancy creation cost is given by

ˆc

ˆn
(”Q

l|y(‘|y), ‘) = V(y)
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and the assumption that c(0, y, ‘) = 0, where Q
l|y(‘|y) is the quantile function

of firm size conditional on y.

Proof. We reconstruct this from the joint distribution of vacancy types y and

average firm size. The first order condition of the vacancy investment is

ˆc

ˆn
(n, y, ‘) = V(y),

which links the firm size to the value of the vacancy

ˆc

ˆn
(”l(y), y, ‘) = V(y)

so from the joint distribution of y and long term firm size, we recover the cost

function c. It is actually easier to uncover through the quantile distribution.

Normalizing ‘ to [0, 1] we have that which together with the condition that

c(0) pins down the vacancy creation cost function.

2.5 Conclusion

In this paper we study the empirical content of matched employer-employee

data. We demonstrate how a model with two-sided heterogeneity, on-the-job

search and vacancy creation is non-parametrically identified provided that the

data is large enough in both sample size and time length. We hope to have

achieved three things in this paper. The first is to convince that there is a lot

of information in knowing who works where at what wage over time. Indeed

this is enough to recover unobserved heterogeneity of both workers and firms in

an environment where linear fixed-e�ect regression deliver biased estimates.

Second we demonstrate how the firm size distribution in our model can be

utilized to learn the job creation process and costs faced by firms. Finally, on

a more practical matter, we hope that this paper will help applied work that

deal with smaller sample size with picking informative moments to estimate

model using methods of moments. For instance it is notable how important
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job to job transitions and the wages collected after that are to measuring the

surplus function.
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2.A More equilibrium properties

2.A.1 Equilibrium Worker and Vacancy Distributions

We now derive the steady-state distributions of worker skills in unemployment

and within firms, and the distribution of vacancies by firm type.

Steady-State Unemployment Distribution. The steady-state unemploy-

ment distribution u(x) satisfies the flow-balance equation

”
⁄⁄

h(x, y, ‘) dy d‘ = u(x)
⁄⁄

⁄v(y, ‘) G [S(x, y)] dy d‘,

The LHS is the flow of employed workers of type x who are laid o� in a small

time interval. The RHS is the flow of unemployed workers of type x who find

a job. Now, making use of the accounting equality u(x) = 1 ≠
s

h(x, y) dy ,

we have, at the steady-state equilibrium,

” (1 ≠ u(x)) = u(x)
⁄

⁄v(y) G [S(x, y)] dy, (2.9)

Steady-State Employment Distributions. The following flow-balance

condition determines the steady-state distribution of employment h(x, y, ‘):

5
” +

⁄
Ÿ⁄µv(yÕ) G

#
S(x, yÕ) ≠ S(x, y)

$
dyÕ

6
h(x, y, ‘)

= µv(y, ‘)G [S(x, y)] u(x) + Ÿ⁄µv(y, ‘)
⁄

G
#
S(x, y) ≠ S(x, yÕ)

$
h(x, yÕ) dyÕ.

(2.10)

where we make use of the marginal v(y) =
s

v(y, ‘) d‘.

Steady-State Distribution of Vacancies. The flow of new vacancies of

type y has two components: one is made of the new jobs n(y, ‘) created in

order to compensate for exogenous job obsolescence,

n(y, ‘) = ”
⁄

h(x, y, ‘) dx © ”¸(y, ‘),
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where ¸(y, ‘) =
s

h(x, y, ‘) dx is the size of a firm of type (y, ‘); another corre-

sponds to the flow of vacancies resulting from poaching. At the steady-state

equilibrium, the number of vacancies which find an employee must equate the

number of new vacancies:

v(y, ‘)
5⁄

µu(x) G [S(x, y)] dx + Ÿ
⁄⁄

G
#
S(x, y) ≠ S(x, yÕ)

$
µh(x, yÕ) dx dyÕ

6

= n(y, ‘) + Ÿ
⁄⁄

G
#
S(x, yÕ) ≠ S(x, y)

$
µv(yÕ)h(x, y) dyÕ dx, (2.11)

where the last component of the RHS is the flow of employees of jobs y who

get successfully poached by a firm yÕ.

2.B Proof for Proposition 1

(i) U(x) is increasing in x

Di�erentiating equation (2.1),

rU Õ(x) = bÕ(x) + —
⁄

⁄v(y)G [S(x, y)] ˆS(x, y)
ˆx

dy,

where
ˆS(x, y)

ˆx
= 1

r + ”

ˆf(x, y)
ˆx

≠ r

r + ”
U Õ(x),

and reordering terms, we have

rU Õ(x) =
bÕ(x) + —⁄

s
v(y)G [S(x, y)] ˆf(x,y)

ˆx

dy

r + ” + —⁄
s

v(y)G [S(x, y)] dy
,

which is positive under the assumption that ˆf(x,y)

ˆx

> 0 and bÕ(x) Ø 0.

(ii) V(y) is increasing in y

Di�erentiating equation (2.2),
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rV Õ(y) = (1 ≠ —)
⁄

G [S(x, y)] ˆS(x, y)
ˆy

µu(x) dx

+ Ÿ
⁄⁄

G
#
S(x, y) ≠ S(x, yÕ)

$ ˆS(x, y)
ˆy

µh(x, yÕ) dx dyÕ,

where
ˆS(x, y)

ˆy
= 1

r + ”

ˆf(x, y)
ˆy

≠ V Õ(y),

and reordering terms, we have

5
r + (1 ≠ —)

⁄
G [S(x, y)] µu(x) dx

+ Ÿ
⁄⁄

G
#
S(x, y) ≠ S(x, yÕ)

$
µh(x, yÕ) dx dyÕ

6
(r + ”)V Õ(y)

= (1 ≠ —)
⁄

G [S(x, y)] ˆf(x, y)
ˆy

µu(x) dx

+ Ÿ
⁄⁄

G
#
S(x, y) ≠ S(x, yÕ)

$ ˆf(x, y)
ˆy

µh(x, yÕ) dx dyÕ,

which is positive under the assumption that ˆf(x,y)

ˆy

> 0.

(iv) The maximal wage w(x, y) is increasing in x

By definition

w(x, y) = f(x, y) ≠ (r + ”)V(y).

Hence, ˆw(x,y)

ˆx

= ˆf(x,y)

ˆx

is positive if ˆf(x,y)

ˆx

> 0. The Envelope Theorem

guarantees that this property passes on to max
y

w(x, y).
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(iv) If f supermodular (ˆ

2
f(x,y)

ˆxˆy

> 0), then S(x, y) and w(x, y) are also

supermodular

From the previous definition ˆ

2
w(x,y)

ˆxˆy

= ˆ

2
f(x,y)

ˆxˆy

> 0;w(x, y) is supermodular.

Hence, (r + ”)S(x, y) = w(x, y) ≠ rU(x) is also supermodular. Therefore, the

probability of moving from y to yÕ > y given x, Ÿ⁄v(y)G [S(x, yÕ) ≠ S(x, y)],

is increasing with x.
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3.1 Introduction

What are the drivers behind the observed earnings and employment uncer-

tainty faced by workers in the labour market? How is this uncertainty mit-

igated by contracts between workers and firms in equilibrium? How is this

transmission mechanism a�ected by policies? To address these questions, I

develop a framework where workers face uncertainty about both their pro-

ductivity and ability to locate new job opportunities and where firms choose

optimally how wages respond to shocks. Changes in aggregate, firm level

and worker specific productivities a�ect the value of a worker to an employer.

At the same time, employed workers cannot immediately switch firms when

current productivity decreases and unemployed workers might require several

periods to locate a job opportunity. I show theoretically that in equilibrium,

firms o�er contracts that smoothly track worker’s productivity in his current

match, while responding with di�erent intensity to di�erent sources of shocks.

I estimate the model using match employer-employee data and find that firm

shocks accounts for 20% of a worker’s permanent income uncertainty and that

only about a third of underlying productivity gets passed through into wages.

Employment transitions to unemployment and other jobs (40%) and worker

shocks (40%) are the main sources of uncertainties since those are not insured

by the firm. This confirms that unemployment insurance plays an important

role in providing insurance that cannot be insured by the wage contract since

the firm is unable to insure the worker when the employment relationship

ends. However if generous unemployment insurance reduces earning risk, it

also a�ects the employment level and the total output of the economy.

Earnings and employment uncertainty have important implications for wel-

fare. A large body of literature has studied both theoretically and empirically

the nature of the income process and quantified how it translates into con-

sumption and wealth inequalities1. However, the income process itself is the
1(MaCurdy, 1982; Blundell, Pistaferri, and Preston, 2008; Attanasio and Pavoni, 2011;

Low, Meghir, and Pistaferri, 2009)
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observed part of the complex employment agreement that links a worker to

a job. The mechanism that defines this agreement in equilibrium, how the

payments are delivered over time and how they respond to underlying produc-

tivity shocks has long been of high interest to the literature both theoretically

and empirically. Knight (1921) first pointed out that one of the roles of the

firm is to insure workers against productivity shocks. Baily (1974) and Azari-

adis (1975) formalized the idea and showed theoretically that when firms can

sign long-term contracts, they fully insure their work force and o�er fixed wage

contracts even in the presence of demand shocks. Yet empirically income pro-

cesses feature growth and employment risks (Altonji, Smith, and Vidangos,

2009; Low, Meghir, and Pistaferri, 2009).

Empirical evidence for the transmission of firms’ shocks to workers’ wages is

provided by Guiso, Pistaferri, and Schivardi (2005). Using employer-employee

matched data from Italy, they estimate how permanent and transitory pro-

ductivity shocks of firms enter the wage equation of continuing workers. They

report that full insurance of firms permanent shocks is rejected by the data.

Their paper, however, uses a sample of continuing workers and does not con-

trol directly for the selection of workers in and out of firms. If workers who

su�er the most from a drop in firm performance are also the ones leaving the

sample, the e�ect of firm shocks is underestimated. Roys (2011) uses French

firm data to estimate a model with homogenous workers and firm adjustment

costs. He finds that firm permanent shocks a�ect employment and transitory

shocks a�ect wages. The result however might be driven by the assumption

that wages are set according to Nash bargaining which means that they are

continuously renegotiated.

Contract theory o�ers answers to the apparent failure of the first best al-

location. Harris and Holmstrom (1982) show that in a competitive market

without worker commitment firms continue to insure against downward risk

but have to increase the wage whenever productivity increases in order to re-

tain the worker. Thomas and Worrall (1988) introduce the idea of a shock
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to job productivity by developing a model where a match between a firm and

worker enjoy rents that can vary over time. They derive the optimal contract

in an environment where the outside option is exogenous and show that, in a

way similar to Harris and Holmstrom (1982), the wage remains constant until

either the firm’s or the worker’s participation constraint binds. Burdett and

Coles (2003) and Shi (2009) characterize the optimal contract when outside

o�ers come from competing firms and the worker’s decision is private; firms of-

fer wages that increase with tenure to retain workers even-though they are risk

averse and would prefer flat wages. Menzio and Shi (2010) extends this equi-

librium framework by reintroducing match shocks and aggregate fluctuations,

but do not characterize the optimal contract. Schaal (2010) does characterize

the contract in a similar model but with homogeneous risk neutral workers. ?

derives the optimal contract with two sided lack of commitment but without

on-the-job search or any private action from the worker, wage changes when

outside options bind. To my knowledge, the current paper is the first to char-

acterize the long term optimal contract o�ered in equilibrium by firms in an

economy with search frictions, on-the-job search, firm and worker shocks and

risk averse workers.

This paper makes three contributions to the existing literature. First, I

document new findings about the co-movement of wages among co-workers

which suggests larger transmission of firm shocks to wages than previously re-

ported. Second, I characterize the optimal contract o�ered by competing firms

in a directed-search equilibrium. Third, I estimate and evaluate quantitatively

the model using linked employer-employee data.

The model builds on the directed search equilibrium of Menzio and Shi

(2009), which allows for stochastic heterogeneity of firms and workers as well

as worker risk aversion. Workers can search for new positions when employed

and when unemployed. When on the job, the search decision is not observed

and outside o�ers are not contractible by the firm. Firms can commit to any

history-contingent long-term contract but the worker can walk away at any
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time. This contract flexibility is crucial because picking a particular form

of wage setting might impose a specific level of insurance between the firm

and the worker, whereas here it is determined by profit maximization. Flows

of workers into firms is modeled using directed search, when searching for a

new job, workers observe all contract o�ers and choose one to apply to. Each

contract has a queue associated with it and each worker chooses the queue that

maximizes the product between the return of the contract and the probability

of getting picked from that queue. Directed search is a very natural extension

of the competitive labour market that directly generates all the endogenous

movement of workers in, out and across firms2.

I show that in equilibrium firms post contracts that can be represented

by a target wage that corresponds to the certainty equivalent of the current

match productivity. Wages below that target wage will increase and wages

above will decrease. The optimal contract presented here shares features of

both Burdett and Coles (2003) and Hopenhayn and Nicolini (1997): firms

back-load wages to incentivize workers to search less when profits are positive

and front-load wages when profits are negative to incentivize the worker to

search for a better position. When the match experiences a negative shock,

the firm does not want to layo� the worker right away and decides to insure

her in way similar to an optimal unemployment insurance scheme.

The empirical strategy of this paper utilizes the property that the wage

smoothly tracks the target wage, which is subject to both worker and firm pro-

ductivity shocks. Assuming that shocks to the worker and shocks to the firm

are independent and that co-workers share the same firm productivity, shocks

to the firm should a�ect all workers, whereas idiosyncratic shocks should a�ect

them in an uncorrelated way. Using the auto-covariance and co-variance of

co-workers’ wages, I can identify how much of the wage movement is due to

the firm relative to the worker and estimate the productivity process of both.

In Section 1, I present auxiliary models that will be used for estimation.
2The pioneering work in directed search is due to (Montgomery, 1991; Peters, 1991; Moen,

1997; Shimer, 1996; Burdett, Shi, and Wright, 2001; Shimer, 2001).
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This section also motivates the economic question with evidence of risk trans-

mission at the firm level in the Swedish matched employer-employee data. In

Section 2 I formally present the equilibrium search model and I characterize

the optimal contract. In Section 3, I present the estimation strategy and I dis-

cuss the identification of the model. This section also reports the estimation

results. In Section 4, I put the model to work to answer the question of how

much of income uncertainty is due to worker shocks and how much is due to

the firm. A summary of the notation and all proofs are in the Appendix.

3.2 Earnings dynamics and participation

3.2.1 Data

The employer-employee matched data from Sweden links three administrative

data-sets: the employment data, the firm data and the benefits data that track

workers who are currently unemployed. The sample runs from 1993 to 2007

and covers around 6 million individuals. The firm data covers around 100,000

firms in four industries. The sample only covers firms with more than 10

employees, which means that some workers covered in the data work in a firm

for which we do not have an identifier. On the worker side, all self-employed

are dropped from the original sample, as well as some specific industries such as

fisheries and the financial sector. I first de-trend the data with time dummies

to remove any non stationary e�ects. I select individuals under 50 years of

age, and, for moments computed at the firm level, I limit the data to firms

with at least 25 employees.

3.2.2 Wage growth for job-stayers

In order to give an intuitive interpretation to moments computed from the

data I introduce the following statistical model for residual log earnings of
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HS dropout HS grad Some college
residual wage variation ‡2

w

0.1274 0.1159 0.2033
(0.000208) (0.000132) (0.000338)

worker transitory ‡2

v

0.0128 0.0123 0.014
(0.000158) (0.000117) (0.000179)

worker permanent ‡2

›

0.0198 0.0173 0.0193
(0.000238) (0.000161) (0.000242)

co-worker permanent ‡2

”

0.0012 0.00146 0.00174
(3.83e-05) (3.11e-05) (4.93e-05)

shared by co-workers 6.07% 8.41% 8.97%
(0.19) (0.173) (0.309)

equivalent lottery ±3.47% ±3.82% ±4.17%
(0.0555) (0.0407) (0.0591)

Standard errors are computed using clustered resampling. Wage di�erences are taken year on year.

The equivalent lottery represents fair lottery over a permanent wage raise or cut in percent that

would be equivalent to the share of variance common to co-workers.

Table 3.1. Residual income variance

continuing workers :

w
ijt

= —Z
t

+ w̃
ijt

+ v
ijt

w̃
ijt

= w̃
ijt≠1

+ ”
jt

+ ›
ijt

,

where i is the individual, j is the firm and t is time. Z
t

is a yearly dummy,

w̃
ijt

is the permanent wage, ›
ijt

is an idiosyncratic permanent shock to the

wage and ”
jt

is a permanent shock shared by all the workers in firm j. Wage

growth shared by co-worker should be thought of as a firm specific event. The

model parameters can be estimated using simple moments from individual

wage growth and average wage growth within a firm (See Appendix 3.A.1). I

report the estimates for each education group in Table 3.1.

The value of ‡
”

is of interest as it represents the risk that co-workers

share. To understand its monetary value, it is useful to think of the equivalent

lottery that delivers a permanent percentage wage raise or cut. For instance

for college graduates, every year, co-workers in a firm face the same lottery

draw that delivers with 50 percent chance a wage raise of 4.17 percent and

with 50 percent chance a 4.17 percent wage cut. This wage growth lottery
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HS dropout HS grad Col grad
· 0.0287*** 0.0217*** 0.0181***

(0.000955) (0.000643) (0.000679)

equivalent lottery ±0.537%*** ±0.453%*** ±0.399%***
(0.0179) (0.0134) (0.015)

Standard errors are computed using clustered resampling. Wage di�erences are taken year on year.

The equivalent lottery represents fair lottery over a permanent wage raise or cut in percent that

would be equivalent to the share of variance common to co-workers.

Table 3.2. Income variance and value added shocks

is permanent and consequently 4.17 percent is economically significant. This

provides evidence that part of the wage growth uncertainty is shared at the

firm level.

3.2.3 Wage growth and value added

Quantitatively, the numbers presented in the previous section are larger than

the one reported previously in the literature that focused on the link between

value added and wages such as Guiso, Pistaferri, and Schivardi (2005) and

Roys (2011). I replicate here a procedure similar to those papers to compare

the Swedish economy to the French and Italian ones. I consider a simple unit-

root model for the log value added per worker. The innovation shock µ
jt

is

then linked to the shock of permanent income among co-workers ”
jt

from the

previous section by the parameter · :

y
jt

= —X
t

+ ỹ
jt

+ u
jt

ỹ
jt

= ỹ
jt≠1

+ µ
jt

”
jt

= ·µ
jt

+ ‹
jt

Table 3.2 contains the estimates for · for each eduction group as well as

the equivalent lottery implied by the amount of log wage growth uncertainty

explained by shocks to value added. As in Guiso, Pistaferri, and Schivardi

(2005) we see that the link between value added and wages is significantly
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di�erent from zero. This provides evidence against the hypothesis of full in-

surance of firm shocks. The magnitude of the transmission of value added

shocks to worker is economically small and similar to the values reported pre-

viously in the literature. Tables 3.1 and 3.2 suggest that shocks to value added

can only explain a small part of the risk co-workers jointly share at the firm

level. Consequently, I will focus the empirical analysis on wages within the

firms rather than on value added.

3.2.4 Worker transitions

Finally it is also of interest to measure how changes at the firm level a�ect

transitions of workers to unemployment and to other firms. When a firm

receives a bad productivity shock, transitioning to another firm is a good

way to insure income. This is precisely why studying the impact of search

friction on the provision of insurance is important. Table 3.3 reports a linear

probability models of worker transitions to unemployment and to other firms.

Regressors include the mean wage of the firm and the mean wage change in

the firm.

First we see that the mean wage in the firm a�ects negatively both transi-

tions. This suggests that better firms pay higher wages and keep their workers

longer. Interestingly however the worker’s wage a�ects positively the proba-

bility to change firms. This can be explained by the fact that higher wages

are more di�cult to increase to prevent the worker form leaving, or it could

be that higher earners move more frequently. We also note that an increase

in firm average wage while keeping worker’s wage constant a�ects positively

the mobility of the worker. The results from Table 3.3 tell us that the risk of

job loss is a�ected by changes in the firm. Not only do firms that pay higher

wage seem to retain their workers longer, it also seems that a change in the

firm’s average wage does a�ect the rate at which workers loose their job. This

source of risk associated with job loss can’t be captured by the log wage mod-

els presented in the previous section that only looked at continuing workers.
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to another firm to unemployment
HS dropout HS grad Col grad HS dropout HS grad Col grad

(Intercept) 0.0134*** 0.0185*** 0.0245*** 0.0163*** 0.0154*** 0.0101***
(0.000118) (6.48e-05) (0.000107) (0.000124) (5.74e-05) (6.76e-05)

worker wage 0.0329*** 0.0468*** 0.028*** -0.0142*** -0.0033*** -0.00178***
(0.000386) (0.000219) (0.00027) (0.000408) (0.000194) (0.000171)

firm wage change 0.0162*** 0.0165*** 0.0035*** 0.0186*** 0.0208*** 0.0202***
(0.00122) (0.000782) (0.0011) (0.00129) (0.000693) (0.000695)

firm wage -0.032*** -0.0522*** -0.0281*** -0.0115*** -0.0222*** -0.0132***
(0.000673) (0.000422) (0.000494) (0.00071) (0.000374) (0.000312)

N 2,450,855 9,788,831 4,246,564 2,450,855 9,788,831 4,246,564

Table 3.3: Transition probabilities to unemployment and other jobs

The model introduced in the rest of the paper will account for this additional

employment risk.

3.3 The model

I present here an equilibrium model with search frictions and private worker

actions. The key feature of the model is to embed the bilateral relationship

between the firm and the worker, with productivity uncertainty, inside a com-

petitive search equilibrium where firms compete to attract and retain workers.

In this model, ex-ante identical firms compete by posting long-term con-

tracts to attract heterogeneous workers. Employed and unemployed workers

observe the menu of contracts o�ered in equilibrium and decide which one to

apply to. This process forms sub-markets of workers applying to particular

contracts and firms o�ering them. Within each queue the matching between

firms and workers is random. When choosing which sub-market to participate

in, both firms and workers take into account the value of matching and the

probability of matching. This probability is driven by how many firms and

workers participate in a particular sub-market.

When matched, the contract specifies the wage after each possible history

of shocks for the firm and workers. Given his wage profile, the worker chooses

which sub-market to visit while employed and chooses e�ort, which directly

a�ects the probability the current match remains intact. Both of these actions

are private and so unobserved by the firm. Firms take this into account and
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post contracts that incentivize the worker’s action in an optimal way. This

will mean that in some cases the wage will adjust downward albeit in a smooth

way. I now formally introduce the model.

3.3.1 Environment

Agents and preferences

Time is discrete, indexed by t and continues for ever. The economy is com-

posed of a discrete uniform distribution of infinitely lived workers with ability

indexed by x œ X = {x
1

, x
2

...x
n

x

}. Workers want to maximize expected life-

time utility, E
0

qŒ
t=0

—t (u(w
t

) ≠ c(e
t

)) where utility of consumption u : R æ R

is increasing and concave and cost of e�ort c : R æ R is increasing and con-

vex with c(0) = 0. Worker’s ability x changes over time according to Markov

process �
x

(x
t+1

|x
t

). Unemployed workers receive flow value of unemployment

b(x). The other side of the market is composed of a uniform distribution of

ex-ante identical firms with active jobs and vacancies. Vacancies live for one

period and become active jobs if matched with a worker.

An active job is characterized by the current worker ability x and the

current match quality z. The match quality z evolves with an innovation ÿ
t

drawn at the firm level such that z
t+1

= g(z
t

, ÿ
t

). ÿ
t

is a firm level shock

that a�ects all continuing workers’ TFP. New hires all start with z = 0. The

function g(·, ·) is assumed to generate a monotonic transition rule. Every

period a match (x
t

, z
t

) has access to a technology that produces f(x
t

, z
t

).

Worker’s e�ort e a�ects the probability that the technology continues to exists

next period. This captures the idea that a negligent worker might loose a client

or break the machine and cause the job to disappear. The firm cares about

the total discounted expected profit of each created vacancy.

Firms here operate constant return to scale production functions and can

be thought of as one worker per firm. However, empirically one cannot aggre-

gate firms with the same output as the history of productivity shocks a�ects

the distribution of workers. For instance whether or not a firm had a very bad
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shock in the last period will a�ect the current distribution of workers beyond

the current productivity. To pin down the distribution of workers in a given

firm one needs to know the entire history of shocks.

Search markets

The meeting process between workers and firms vacancies is constrained by

search frictions. The labour market that matches workers to vacancies is

organized in a set of queues indexed by (x, v) œ X ◊ V where x is the type

of the worker and v is the value promised to her in that given queue. Firms

can choose in which (x, v) lines they want to open vacancies and workers can

choose in which v line associated with their type x they want to queue3. Each

visited sub-market is characterized by it’s tightness represented by the function

◊ : X ◊ V æ R
+

which is the ratio of number of vacancies to workers. The

tightness captures the fact that a high ratio of vacancies to workers will make it

harder for firms to hire. In a directed search model like the one presented here,

the tightness is queue specific which means that di�erent worker types could

be finding jobs at di�erent rates. In queue (x, v) a worker of type x matches

with probability p(◊(x, v)) and receives utility v. Firms post vacancies at unit

cost ÷ and when posting in market (x, v) the vacancy is filled with probability

q(◊(x, v)). „(x, v) will denote the mass of vacancies created in market (x, v).

States and actions

A worker is either employed or unemployed and enters each period with a

given ability x. When unemployed she collects benefit b(x) and can search

every period. When searching she chooses which sub-market (x, v) to visit, in

which case she gets matched with probability p(◊(x, v)) and if matched joins

a job and receives lifetime utility v.
3Menzio and Shi (2009) Theorem 3 tells us that workers will separate by type in equi-

librium if markets are indexed by the value that each type x would get in a particular
sub-market (v = (v(x1), v(x2)...v(x

n

x

)) œ Rn

x ,) and workers can apply to any. At equilib-
rium only a given type x visits a particular market. This market can then be represented
directly by (x, v) as done in the current paper.
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Figure 3.1: within period time line

An employed worker is part of a match and starts the period with a given

ability level x and a current match quality z. The period is then divided in

four stages as illustrated in Figure 3.1, first is production, the firm collects

output f(x, z) and pays the wage w to the worker. The worker cannot save,

consumes all of w, chooses e�ort e and gets flow utility u(w) ≠ c(e). With

probability (1 ≠ ”(e)), where ”(e) is decreasing in e, the employment persists

to the next period. With probability ”(e) the worker moves to unemployment.

In the search stage, the worker is allowed to search with e�ciency Ÿ. When

searching she chooses which sub-market (x, v) to visit and gets matched with

probability Ÿp(◊(x, v)). If matched she moves to a new match where she will

enjoy v and the current job will be destroyed. If the worker is not matched

to a new job, the current job persists, a new xÕ is drawn conditional on the

old one, and a firm level shock ÿ is drawn to update z. In summary, in every

period an active job chooses the wage w, and the worker chooses e�ort e and

which sub-market (x, v) to search in. Because c(0) = 0 the worker can quit

in every period if the firm does not promise enough. By choosing v and e the

worker controls his transition to other jobs and to unemployment.
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Informational structure and contracts

A contract defines the transfer and actions for the worker and the firm within

a match for all future histories. Call s
·

= (x
·

, z
·

) œ S = X ◊ R the state of

the match · periods in the future and call s· = (s
1

...s
·

) œ S· a given history

of realizations between s
1

the state today and s
·

, the state in · periods.

The history of productivity is common knowledge to the worker and the

firm and fully contractible. However the worker’s actions are private infor-

mation and transitions to other firms or to unemployment are assumed to be

not contractible. This rules out side payments as well as countering outside

o�ers4. Here, the contract o�ered by the firm to the worker is then represented

by:

C := (w, ‡); with w := {w
·

(s· )}Œ
·=0

, and ‡ := {v
·

(s· ), e
·

(s· )}Œ
·=0

, (3.1)

I explicitly separate the firm’s choice from the worker’s response. The firm

chooses the wage w
·

paid at every history and the worker responds by choos-

ing (v
·

, e
·

) the search and e�ort decision5. ‡ can be thought as the action

suggested by the contract and I will focus on contracts where the recommen-

dation is incentive compatible. The contract space is completely flexible in the

way it responds to tenure and any productivity history. In particular it leaves

the firm free to chose how the wage should respond to productivity shock,

which is the central question of this paper.

3.3.2 Worker choice

An unemployed worker of type x chooses optimally which sub-market (x, v
0

)

she applies to. The only value she cares about is the value she will get,

specifically v
0

and the tightness of the market ◊(x, v
0

). Higher v
0

sub-markets
4Lentz (2013) develops a model with optimal contracts and countering of outside o�ers,

but without productivity shocks, and shows that firms continue to backload wages.
5Derivations will later require a randomization which means that the contract can specify

simple probability over actions instead of actions themselves. This is left implicit at this point
but will be clarified in the recursive formulation of the problem.
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deliver higher values but have longer average waiting times. I can write the

value U(x) of being unemployed as follows:

U(x) = sup
v0œR

b(x) + —p(◊(x, v
0

))v
0

+ — (1 ≠ p(◊(x, v
0

)))E
x

Õ|xU(xÕ). (W-BE)

We follow by writing the problem of the employed worker and the firm as

a recursive contract. As presented in Spear and Srivastava (1987) the state

space is augmented with V , the promised utility to the worker. The recursive

contract is characterized at each (x, z, V ) by {fi
i

, w
i

, e
i

, v
1i

, W
ix

Õ
z

Õ}
i=1,2

where

fi
i

: S ◊ V æ [0, 1] is a randomization, w
i

: S ◊ V æ R
+

is the wage, e
i

:

S ◊ V æ [0, ē] is e�ort choice, v
i

: S ◊ V æ [0, v̄] is the search choice and

W
ix

Õ
z

Õ : S ◊ (X ◊ R) æ V is the utility promised for each realization next

period.

The worker optimally chooses the action (v, e), when promised next period

expected utility W = E
x

Õ
z

ÕW
x

Õ
z

Õ , she solves the following problem:

sup
v,e

u(w)≠c(e)+”(e)—E
x

Õ|xU(xÕ)+(1≠”(e))—Ÿp(◊(x, v))v+—(1≠”(e))(1≠Ÿp(◊(x, v)))W,

for which we define the associated worker policies vú : X ◊ V æ [0, v̄] and

eú : X ◊ V æ [0, ē]. Because of the properties of p(·), ◊(·, ·) and c(·), those

functions are uniquely defined. Note that those policies only depend on the

promised utility for next period and not on the current (z
t

, V ) as stated in the

following definition.

Definition 5. We defined the composite transition probabilities p̃ : X◊V æ R

and the utility return to the worker r̃ : X◊V æ R as functions of the promised

utility W (using short-hand eú = eú(x, W ) and vú = vú(x, W )):

p(x, W ) =Ÿ(1 ≠ ”(eú)) (1 ≠ p(◊(x, vú
1

))) (3.2)

r̃(x, W ) = ≠ c(eú) + —Ÿ (1 ≠ ”(eú)) p(◊(x, vú
1

)) (vú
1

≠ W ) (3.3)

+ ”(eú)—E
x

Õ|xU(xÕ) + — (1 ≠ ”(eú)) W. (3.4)

(3.5)
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These functions capture everything the firm needs to know about the con-

sequences of setting the wage dynamically. We now turn to the firm’s problem.

3.3.3 Firm profit, optimal contracting problem

I can now describe the firm problem in terms of promised utilities. The firm

chooses a lottery over promised values and wages which then determines the

participation probabilities. The expected profit of a match to the firm can be

expressed recursively as

J (x, z, V ) = sup
fi

i

,w

i,

W

i

,W

ix

Õ
z

Õ

ÿ

i=1,2

fi
i

!
f(x, z) ≠ w

i

+ —p̃(x, W
i

)E
x

Õ
z

ÕJ (xÕ, zÕ, W
ix

Õ
z

Õ)
"

s.t V =
ÿ

i

fi
i

(u(w
i

) + r̃(x, W
i

)) , (BE-F)

W
i

= EW
ix

Õ
z

Õ ,
ÿ

fi
i

= 1.

The firm chooses the current period wage w
i

and the promised utilities W
ix

Õ
z

Õ

for each lottery realization i and state of (xÕ, zÕ) tomorrow. These control

variables must be chosen to maximize expected returns subject to the promise

keeping constraint. This constraint makes sure that the choices of the firm

honors the promise made in previous periods to deliver the value V to the

worker. The right hand side of the constraint is the lifetime utility of the

worker given the choices made by the firm. The lottery is present only to

insure concavity of the function.

The incentive compatibility of the worker is embedded in the r̃ and p̃

functions that we defined previously. By increasing future promises the firm

can increase the probability that the match continues. However at given V ,

larger promised utilities go together with lower current wage w. Since the

utility function is concave, there will be a point where too low of a wage is

just not e�cient. This is the classic insurance incentive tradeo�.

Finally firms choose how many vacancies to open in each (x, v) market.

Given vacancy creation cost ÷ and the fact that the match quality z starts at
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0, the return to opening a vacancy is given by:

�
0

(x, V ) = q(◊(x, V ))J (x, 0, V ) ≠ ÷,

and firms will open vacancies in a given market if and only if expected profit

is positive. The vacancy creation cost is linear, which means that if �
0

is

positive the firm will create an infinity of vacancies, if it’s negative it won’t

create any and if it’s zero the firm is indi�erent.

3.3.4 Equilibrium definition

Free entry condition

We now impose a free entry condition on the market. Firms will open vacancies

in each markets until the the expected profit is zero or negative:

’(x, V ) œ X ◊ V : �
0

(x, V ) Æ 0. (EQ1)

This will pin down the tightness of each market. „(x, v) will denote the total

mass of vacancies posted in market (x.v).

Market clearing

Markets for labour must clear, in the sense that the equilibrium distribution

must be generated by the equilibrium decisions. Given an equilibrium sta-

tionary distribution h(x, y, z, V ) of workers assigned to matches with a given

promised utility, given the mass „(x, V ) of vacancies, the following clearing

condition must be satisfied:

’x, v „(x, v) = ◊(x, v)
Ë
u(x)1[vú

0

(x) = v]

+
ÿ

xœX

⁄

z

⁄

V

Õ

ÿ

i

fi
i

(x, z, V Õ)1[vú
i

(x, W
i

) = v] dH(x, z, V Õ)
È
. (EQ2)
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There is one last market clearing equation for „ and it states that „ in the next

period is consistent with itself, all the equilibrium decisions, and law motions

such as the shocks on x, z and the endogenous separation. This is left for the

appendix.

Definition 6. A stationary competitive search equilibrium is defined

by a mass of vacancies „(x, v) across sub-markets (x, v), a tightness ◊(x, v) œ

R, an active job distribution h(x, z, V ) and an optimal contract policy › =

{fi
i

, w
i

, e
i

, v
j

, W
ix

Õ
z

Õ}
i=1,2

such that:

(a) › solves the firm optimal contract problem BE-F and so satisfies worker

incentive compatibility.

(b) ◊(x, v) and „(x, v) satisfy the free entry condition EQ1 for all (x, v)

(c) ◊(x, v), „(x, v) and h(x, z, V ) solve the market clearing condition EQ2

(d) h(x, z, V ) is generated by „(x, v) and ›

The equilibrium assigns workers to firms with contracts in a way where

neither workers or firms have an incentive to deviate. The distributions „ and

h represent the equilibrium allocation.

3.3.5 Equilibrium and contract characterization

Lemma 17 (existence). A stationary competitive search equilibrium exists.

Proof. See appendix 3.B.1

Menzio and Shi (2010) gives us the important results that a block recursive

equilibrium exists in the version of this model with aggregate shocks and no

worker e�ort or heterogeneity, and Tsuyuhara (2013) proves the existence with

e�ort but without shocks or firm heterogeneity. The existence continues to be

true when the incentive problem and the shocks are combined. The equilibrium

is also well defined when adding aggregate shocks.

Lemma 18. The Pareto frontier J (x, z, V ) is continuously di�erentiable, de-

creasing and concave with respect to V and increasing in z.
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Proof. See appendix 3.B.3

Concavity is a direct implication of the use of the lottery. I then adapt the

su�cient condition from Koeppl (2006) for di�erentiability in two-sided limited

commitment models. From the free entry condition, the tightness function is

a continuously di�erentiable and concave function of J (x, z, V ), which implies

that the composite search function p(◊(x, v)) inherits those properties for all

x œ X.

I am interested in how firms decide to compensate workers over time given

that they face the classic trade-o� between insurance and incentives. The fol-

lowing proposition provides a clear prediction for how wages move dependent

on the current state of the match:

Theorem 2 (optimal contract). For each viable match (x, z), independent

of the lottery realization, the wage policy is characterized by a target wage

wú(x, z), which is increasing in z such that:

w
t

Æ wú(x
t

, z
t

) ∆ w
t

Æ w
t+1

Æ wú(x
t

, z
t

) incentive to search less

w
t

Ø wú(x
t

, z
t

) ∆ wú(x
t

, z
t

) Æ w
t+1

Æ w
t

incentive to search more

where the target wage is characterized by the zero expected profit condition for

the firm:

’x, z E
x

Õ
z

Õ|xz

J (xÕ, zÕ, W
x

Õ
z

Õ) = 0

Proof. See Appendix 3.B.4.

The optimal contract links wages to productivity. For all histories of

shocks, the change in wage growth will be in the direction of the target wage

which is itself tied to the productivity of the match. This means that workers’

wages will respond to any shock a�ecting the expected productivity (Figure

3.2 shows an example wage path). In particular it will respond to both worker

specific and firm productivity shocks. The exact change in the wage is char-
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Figure 3.2: Wage and target wage example
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Notes: This figure represents the target wage (dotted blue) and the

actual wage (plain blue) for a worker. The red line represents a second

worker sharing same firm specific shocks, but a di�erent worker specific

productivity.

acterized by the first order conditions of the firm problem (BE-F) and reads:

’x, z, xÕ, zÕ p̃
v

(x, W
i

)
p̃(x, W

i

) · E
z

ÕÕ
y

ÕÕJ (xÕÕ, zÕÕ, W
ix

ÕÕ
z

ÕÕ) = 1
uÕ(w

x

Õ
z

Õ) ≠ 1
uÕ(w) .

The right hand side represents the change in marginal utilities and tells us

that risk aversion a�ects how rapidly wages adjust. On the left hand-side the

first term represents the severity of the moral-hazard problem and the second

term is the discounted expected profit of the firm. This expression resembles

the main equation in Rogerson (1985) and captures the incentive problem the

firm is facing when paying the worker. When in a match the worker and the

firm are part of a locally monopolistic bilateral relationship as in the original

paper. However, the incentive problem here is precisely on the availability of

the outside option. In Rogerson (1985), workers e�ort a�ects the output of

the match whereas here, the e�ort a�ects its duration and the availability of

outside options.

The fact that wages adjust downward even though firms can commit is the

consequence of the existence of rents and the presence of an incentive problem.
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Figure 3.3: productivity and wages with rents, lack of commitment and
incentive problems

In a competitive market without rents and with full commitment, even in the

presence of productivity uncertainty, the firm will fully insure workers and the

wage will be constant until the relationship is exogenously destroyed. The

wage paid to the worker is the certainty equivalent of the present value of the

firm output.

Harris and Holmstrom (1982) show that when allowing for only one-sided

limited commitment, the wage will have to adjust when worker’s productivity

increases so as to retain her (Figure 3.3.a1). However negative shocks con-

tinue to be fully insured (Figure 3.3.a2). It is the lack of commitment that

prevents the firm from o�ering the worker full insurance. Workers would want

to commit ex-ante but can’t and so the lack of commitment is a constraint,

not a relaxation.
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In the presence of rents the outside option of the worker and the produc-

tivity in the current match might vary separately. The outside option is linked

to characteristics the worker caries with her when she moves to another firm,

while the match rent also depends on the firm specific characteristics. Retain-

ing the worker only requires o�ering more than her outside o�er and and so

only depends on worker-specific characteristics. This means that with rents

only, the worker’s wage does not respond to firm specific productivity shocks

(Figure 3.3.b). Thomas and Worrall (1988) take the outside o�ers and the

match rents as exogenous and add firm-side lack of commitment and show

that in that case downwards adjustment will happen when the firm partic-

ipation constraint binds. However in the interior region of the surplus, the

contract fully insures the worker and the wage is constant.

The final ingredient is the incentive problem (Figure 3.3.c) which implies

an unique e�cient transfer from the firm to the worker instead of a full set.

The worker chooses where to search and applies to increasingly long queues

when promised higher values. Whenever the worker is getting less than the

total value of the match, she will tend to leave the current job with a higher

than e�cient probability (inversely when the workers gets more, she does

not search enough). Ex-ante, it is more e�cient to sign a contract that will

give up some of the insurance to come closer to the e�cient worker decision.

This dynamic was fully described in the extreme case of bilateral monopoly

of Rogerson (1985) and continues to apply here in an equilibrium with firm

competition and rents.

The continuum of queues available to the worker in the directed search

equilibrium can be thought of as a probabilistic version of the constraint faced

by firms in Harris and Holmstrom (1982). In their competitive version workers

can find their v̄ with probability one, whereas with directed search they can

access any v Æ v̄ with decreasing probability p(v). In the presence of search

frictions the firm-worker relationship becomes a temporary bilateral monopoly

with an incentive problem determined by the equilibrium. As the strength of
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Figure 3.4: Meeting probability

the friction varies we get a continuum of contracts à la Rogerson (1985), with

the property that as search frictions vanish, the contract becomes Harris and

Holmstrom (1982) (See Figure 3.4).

Since rents and incentives are su�cient for the transfer of firm shocks to

wages, search frictions are only one of several possible mechanisms. In the

present model, there are two sources of rents, search frictions and match spe-

cific TFP, and two incentive problems, on the job search and e�ort choice e.

This means that even when frictions are completely shut down, we would still

see some firm level shocks in the earning dynamics6. Search frictions are an

interesting feature not only because they allow us to consider employment risk

but also because they generate both the rents and the incentive problem at the

same time. It is also interesting to note that the shape of the meeting proba-

bility function creates some downward rigidities as in Harris and Holmstrom

(1982).

Finally, firing never happens right away. First the firm decreases the wage

of the worker over time because forcing her to search elsewhere is the most

e�ective way for the firm to deliver ex-ante utility. The firm, when attracting

the workers, can commit to paths where they keep the worker on payroll for
6I am in the process of estimating a frictionless version of the model on a subset of the

moments that should be included in future version.
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a given amount of time even though it means negative expected profit.

3.4 Estimation

3.4.1 Model specification and identification

I estimate the model using indirect inference and a parametrized model. I

present in Table 3.4 the specification I use in the next sections. I use the con-

stant relative risk aversion utility function. The discount rate for the worker

and the interest rate for the firm are set to an annual 5% and the model

is solved quarterly. The production function is parametrized by “
a

a scale

parameter, “
z

and “
x

that control the dispersions in ability and match pro-

ductivity. The worker e�ort function is such that c(0) = 0, cÕ(·) > 0, cÕÕ(·) > 0

and lim
eæ1

c(e) = Œ. For the time being I set the flow value of unemployment

to 30 percent of the starting productivity and I fix c
1

= 0.3 and “
z

= 1. I

normalize the mean wage in the economy which pins down the value of “
a

. I

also set an absolute lower bound of ≠f(x̄, z
0

)/(10 · r) on the negative surplus

that firms can commit to. This leaves 6 parameters to estimate as shown in

Table 3.6.

The vacancy cost ÷ a�ects the meeting rate through the free entry condition

(EQ1) and Ÿ a�ects the relative e�ciency of on-the-job search. The probability

of exiting unemployment and the probability of job-to-job transitions pin down

÷ and Ÿ.

The e�ort cost function c(·) a�ects both the average rate at which workers

loose their jobs and how this rates is linked to their current wage. c
0

and c
1

can be measured by fitting the slope and intercept of a logistic regression on

the probability of employment to unemployment (E2U) transition conditional

on current wage.

The parameter “
x

of the production function a�ects the return to worker

ability x. Normalizing x to be uniform on [0, 1] (at discrete uniformly spaced

support), the production function f can be interpreted as the quantile function
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matching function p(◊) = ◊(1 ≠ ◊‹)≠1/‹

utility function u(w) = w

1≠Î

1≠Î

production function f(x, z) = “
a

· exp
!
“

z

�≠1(z) + “
x

· �≠1(x)
"

worker cost function c(e) = c
0

((1 ≠ e)≠c1 ≠ 1)

”(e) = 1 ≠ e

unemployment benefits b(x) = f(x, Q
z

(b))

worker type �
x

(x
t+1

|x
t

) is a Gaussian copula with parameter fl
x

match TFP �
z

(z
t+1

|z
t

) is a Gaussian copula with parameter fl
z

updates to z
t

are computed via ÿ
t

shared at firm level

Table 3.4: functional form specifications

of worker specific heterogeneity. Using the normal distribution �≠1 gives the

simple interpretation that workers’ productivity is distributed as a log-normal

distribution with log-variance “
x

. The mean of that distribution is defined by

“
a

which, as mentioned before, is normalized to match the mean log-wage in

the economy.

The parameter of risk aversion controls how quickly changes in productivity

get transmitted into wage changes. Every else kept equal, matching the total

value added growth variance and the total wage growth variance within the

firm gives an indication of how risk averse workers are.

Finally let’s consider the parameters of the worker and match productiv-

ity processes. The values of fl
x

and fl
z

are learned from the variance of wage

growth and the auto-covariance of wage growth among co-workers. The sta-

tistical model presented in the first section of the paper illustrates how the

growth variance of worker is composed of both the worker specific growth

and the firm specific growth and that the auto-covariance between co-workers’

wage growth is mostly due to the common firm specific innovation. Match-

ing both workers’ wage growth variance and co-variance between co-workers

allows to pin down fl
x

and fl
z

.
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3.4.2 Solving the model

The model is estimated by method of simulated moments. For each parameter

value I solve for the equilibrium, which is then used to simulate a representative

sample. I create the moments from the simulated data and compute the

weighted distance between the simulated moments and the moments measured

from the Swedish data.

This approach requires resolving the model for each parameter set. I use

a nested fixed point method where I jointly solve for the worker’s problem,

the firm’s problem and the equilibrium constraint. The main di�culty resides

in solving the firm problem where tackling directly (BE-F) requires finding

the promised utilities W
z

Õ
x

Õ in each state of the world for the next period.

This becomes infeasible as soon as reasonable supports are considered for X

and Z. However, the first order condition with respect to W reveals that the

utility promised in di�erent states are linked to each other. Call ⁄—p(x, W )

the multiplier for the W =
q

W
z

Õ
x

Õ constraint, then the first order condition

for W
x

Õ
z

Õ is
ˆJ
ˆV

(xÕ, zÕ, W
x

Õ
,z

Õ) = ⁄,

where given ⁄, if J is strictly concave, then all the W
x

Õ
z

Õ are pinned down.

This reduces the search to one dimension. The simplification comes from the

fact that the firm always tries to insure the worker as much as possible across

future states, and does this by keeping her marginal utility constant across

realizations. Indeed, we know that the derivative of J is the inverse marginal

utility. One di�culty however is that J might be weakly concave in some

regions. In that case one needs to keep track of a set of possible feasible

promised utilities W
x

Õ
z

Õ . Given the concavity of J this set will be an interval

fully captured by its two extremities. This means that at worst the number

of the control variables is augmented by one.

Using the marginal utility in the state space is known as the recursive

Lagrangian approach as developed by Kocherlakota (1996); Marcet and Ma-
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rimon (2011); Messner, Pavoni, and Sleet (2011); Cole and Kubler (2012).

The problem of non-strict concavity persists in this formulation but Cole and

Kubler (2012) show how to overcome this di�culty by keeping track of the

upper and lower bound of the set of solutions. Numerically I solve the firm

problem using recursive Lagrangian and do not find any such flat region. The

recursive Lagrangian for the firm problem is derived in Appendix 3.B.6 and is

given by:

P(x, z, fl) = inf
“

sup
w,W

f(x, z) ≠ w + fl (u(w
i

) + r̃(x, W ))

≠ —“p̃(x, W ) + —p̃(x, W )EP(xÕ, zÕ, “), (3.6)

where

P(x, z, fl) := sup
v

J (x, z, v) + flv.

3.4.3 Estimation and standard errors (Preliminary)

Estimation of the parameters is achieved using a minimum distance estimator

based on a set of moments m
n

. The method is close to simulated moments,

however because of the moments are based on individual data and some are

based on aggregation at the firm level, I present it as an indirect inference

estimator.

Definition 7. Given a vector m
n

of moments such that
Ô

n (m
n

≠ m(◊
0

)) dæ

N (0, �) where ◊
0

is the true parameter, and for a given weighting matrix

W
n

= O(1) , I define the following criterion:

L
n

(◊) = ≠n

2 [m
n

≠ m(◊)]T W
n

[m
n

≠ m(◊)] ,

and the associated minimum distance estimate ◊̂
n

= inf
◊

L
n

(◊).

Because some of the moments are defined at the firm level, such as the

correlation between co-worker wage growth, n refers to the number of firms.

Point estimates are computed using a parallel version of di�erential evolution,
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see Das and Suganthan (2011) for a complete survey. In the first stage I use

a weighting matrix constructed from the inverse diagonal of an estimate from

the data of � which ignores the serial correlation and the fact that the same

worker appears in several firms:

W
n

=
1
diag

Ë
�̂

È2≠1

.

The computation of standard errors is based on the pseudo-likelihood es-

timator presented in Chernozhukov and Hong (2003). Using MCMC rejection

sampling, I can perform the estimation in parallel, without having to compute

derivatives and still obtain standard errors on the parameters. Given the cri-

terion L
n

(◊), with moments m
n

, true parameter ◊
0

and weighting matrix W
n

,

the asymptotic variance for the minimum distance estimator ◊̂
n

is distributed

according to
Ô

n
1

‚◊
n

≠ ◊
0

2
dæ N (◊

0

, J≠1�J≠1)

where

� = lim
næŒ

5
ˆm(◊

0

)
ˆ◊T

6
T

W
n

�W
n

ˆm(◊
0

)
ˆ◊T

J = lim
næŒ

1
n

ˆ2L
n

(◊)
ˆ◊T ˆ◊

The full procedure requires two steps. In a first step I acquire a consistent

estimate of ◊̂
n

using an approximate weighting matrix �̂
n

using bootstrap.

Given a good value of ◊̂
n

I compute a Markov chain from the posterior of the

pseudo likelihood of L
n

(◊) as described Chernozhukov and Hong (2003) and

extended to parallel chains as presented in Baragatti, Grimaud, and Pommeret

(2011). The Markov chain allows construction of an estimate of � and J≠1.

J≠1 is obtained by taking the variance covariance matrix of the parameters

generated by the chain. � can be computed by finite di�erences around the

optimal value ◊̂
n

by selecting draws from the chain that are close to it. A

consistent estimate of � can then be constructed by simulating the model at
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HS dropout HS grad Some college
model data model data model data

Pr
U2E

0.131 0.152 0.214 0.184 0.209 0.191
(2.69e-04) (1.53e-04) (3.36e-04)

Pr
J2J

0.0224 0.0223 0.0284 0.0267 0.0338 0.0331
(4.01e-05) (2.27e-05) (3.21e-05)

Pr
E2U

0.0202 0.0249 0.0199 0.0223 0.0164 0.0143
(6.25e-05) (2.67e-05) (3.05e-05)

E(� log w
it

|EE) 0.0145 0.0125 0.03 0.0153 0.0257 0.0335
(1.73e-04) (8.69e-05) (1.24e-04)

E(� log w
it

|J2J) 0.0329 0.0274 0.0738 0.0306 0.0875 0.0506
(8.36e-04) (3.95e-04) (5.60e-04)

V ar(log w
it

) 0.163 0.127 0.141 0.116 0.204 0.203
(2.09e-04) (1.32e-04) (3.38e-04)

V ar(� log w
it

|EE) 0.0186 0.0198 0.0171 0.0173 0.0173 0.0193
(2.38e-05) (1.61e-05) (2.42e-05)

V ar(� log w
it

|J2J) 0.0448 0.0206 0.0353 0.018 0.0466 0.0186
(5.36e-04) (2.14e-04) (2.49e-04)

V ar(� log y
it

) 0.375 0.103 0.158 0.119 0.102 0.132
(1.24e-03) (1.10e-03) (1.65e-03)

Cov(� log w
it

, � log w
jt

|EE) 0.00154 0.00126 0.00169 0.00167 0.0023 0.00235
(2.64e-06) (1.80e-06) (3.32e-06)

Table 3.5: Within sample model fit (Preliminary)

◊̂
n

and computing the covariance matrix.

3.4.4 Moments and estimates

I present here the set of moments used for estimation on the di�erent educa-

tion groups. Table 3.5 reports the moments in the data with their measured

standard deviation and the value of the moments in the model at the es-

timated parameter values. Table 3.6 presents the estimated parameters for

each education group.

The model matches transition probabilities and variances quite precisely

across education groups. However at this time the model performs poorly on

the average wage growth on the job and the mean wage gain on job-to-job

transitions. Those moments are related to each other because the job-to-job

transition rate, mean gain on moving and on the job mean wage growth are

linked to each other because wages increase on-the-job to lower the worker

search decision. This is a common limitation of search model which suggests
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HS dropout HS grad Some college
scale (log wage) 0.127 10.4 10.4

(0.000209) (0.0003) (0.0003)

risk aversion Î 1.12 1.62 1.42
(0.124) (0.0408) (0.0586)

vacancy cost ÷≠1 1.34 0.646 0.605
(0.34) (0.0753) (0.0532)

OTJ e�ciency Ÿ 0.586 0.617 0.687
(0.15) (0.0238) (0.0387)

e�ort cost c
0

0.0779 0.0498 0.0418
(0.0244) (0.0202) (0.0229)

worker heterogeneity “
x

2.03 1.27 1.5
(0.303) (0.123) (0.0797)

worker type auto-cor fl
x

0.749 0.802 0.879
(0.0365) (0.0206) (0.0274)

match type auto-cor fl
z

0.765 0.962 0.978
(0.06) (0.0502) (0.0215)

Table 3.6: Parameter estimates (Preliminary)

that some human capital accumulation might be happening in the data. This

is absent from the current model.

3.5 Empirical implications

3.5.1 Decomposition of permanent wage growth

I can now utilize the model to decompose observed variances into better defined

welfare measures. Our concern is with the sources of uncertainty in the change

of lifetime utility, however to get measures in monetary form, I define the wage

growth variance of log permanent wage as:

E
t

(w̄
t+1

≠ w̄
t

)2 where w̄
t

:= log
1
u≠1 (rW

t

)
2

,

where w̄ represents the annuity wage that delivers the current level of lifetime

utility, the permanent wage equivalent to the expected lifetime utility. This is

a meaningful measure since W
t

includes all possible future risk of loosing the

job or the opportunities to find new ones. Similarly we can measure equivalent

permanent output that I will denote ȳ. Considering employed workers, five
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mutually exclusive events can happen to them over the course of a period: i)

job loss, ii) job transition, iii) firm shock, iv) worker shock or v) none of the

above. We can decompose the permanent earning growth variance into the

contributions of those five events:

E
t

(w̄
t+1

≠ w̄
t

)2 =
5ÿ

i=1

p(ev
i

) · E
t

Ë
(w̄

t+1

≠ w̄
t

)2 |ev
i

È
=

5ÿ

i=1

V
i

.

To get the average risk in the population, I integrate the V
i

over the station-

ary distribution. Table 3.7 reports this variance decomposition for the three

education groups. Including p(ev
i

) in the computation of V
i

directly accounts

for the likelihood of the event.

To get an idea of the overall underlying uncertainty I compute a pass

through measure that links the growth variance in productivity to the growth

variance in earnings:
Cov(w̄

t+1

≠ w̄
t

, ȳ
t+1

≠ ȳ
t

)
V ar(ȳ

t+1

≠ ȳ
t

)

and report this value conditional on receiving a worker shock and firm shock

and unconditional.

The results first tell us that the total uncertainty associated with mobility is

of the same magnitude as the uncertainty associated with productivity shocks.

For high school drop out mobility accounts for 50 percent of uncertainty and

for 24 percent for college graduates. Within mobility, job loss takes a bigger

share for high school drop outs than for college graduates. This seems intuitive

given the J2J and E2U transition rates of the two groups. Among job stayers,

firm productivity shocks represent the main source of uncertainty.

Finally the pass through measure indicates that even though di�erent ed-

ucation group su�er di�erently from firm and worker shock in terms of total

earning uncertainty, the way in which those uncertainty transmit seems to be

the same. For both education groups, a 10 percent change productivity due

to a firm shock generates a 3 percent drop in permanent earnings. Similarly

a 10 percent drop in productivity due to a worker shocks translates into a 2
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HS dropout HS grad Some college

Growth variance shares
firm shock 4.6e-04 19.6% 1.5e-04 17.8% 3.1e-04 19.2%
worker shock 1.3e-03 54.2% 2.9e-04 34.5% 7.1e-04 44.4%
job change 1.7e-04 7.13% 1.2e-04 13.8% 1.8e-04 11.3%
job loss 4.2e-04 18.1% 2.8e-04 32.4% 3.9e-04 24.3%
no shock 2.3e-05 0.968% 1.2e-05 1.36% 1.5e-05 0.933%

Passthrough coe�cents
overall 0.369 0.243 0.282
worker shock 0.388 0.179 0.215
firm shock 0.348 0.271 0.328

Table 3.7: Permanent wage growth variance decomposition

percent drop on average.

3.5.2 Policy analysis

I analyze the e�ect of a revenue neutral government policy that redistributes

from high wages to lower wages. I parametrize the policy as follows:

w̃ = ⁄w
1
· .

I use the highest education group for the analysis, fix ⁄ = 1.2 and solve for

· = 1.25 to make the policy revenue neutral. To get a better understanding

of the e�ect of the policy, I report four sets of numbers: i) the model solved at

the estimated parameters, without any transfer, ii) use the same solution and

apply transfers without adjusting decisions, iii) solve the model again with

agents knowing about the transfers, and report pre-transfer moments and iv)

post-tax moments. Figure 3.5 represents graphically the transfer and Table

3.8 reports the computed results.

The goal of the policy is to reduce both the uncertainty in earnings growth

and the cross-sectional inequality. When applied directly on the equilibrium

solution we see that total log wage variance is reduced by 36%, and the wage

growth variance is reduced by 35%. However agents react to the introduction
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Agents do not expect transfers expect transfers
Transfers before after before after
Output 1 0.978
Unemployment 4.96% 4.69%
Total wage 1 0.992 0.962 0.961
Wage variance 0.205 0.131 0.238 0.152
Growth variance 0.0174 0.0111 0.021 0.0134

Table 3.8: Revenue neutral policy

of the policy in a way that attenuates its direct e�ect. Re-solving the model

including those transfers gives a reduction in log wage variance of only 10%

and for wage growth of 30%.

The policy however also a�ects unemployment which goes from 4.96%

to 4.56%. This happens because the policy makes lower productivity jobs

marginally more productive than without transfers, favoring workers coming

out of unemployment who apply to lower paying, highly accessible jobs. On

the other hand total output is reduced for a similar reason, worker reallocation

is not as critical and in the economy with transfers, worker will reallocate less

e�ciently.

3.6 Conclusion

In this paper I study the di�erent sources of uncertainty faced by workers

in the labour market. Workers are subject to individual productivity shocks

and their earnings may also be a�ected by the performance of their employer

because of search frictions in the labour market. To understand the way shocks

get transmitted and how this might a�ect welfare and labour market policy I

develop an equilibrium model with search frictions, risk averse workers, firm

and worker productivity shocks. In this model I show that the optimal contract

pays a wage that smoothly tracks the joint match productivity. This implies

that both worker and firm level shocks transmit to wages, albeit only partially.

In contrast to the perfectly competitive model, on one hand firm may insure
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workers’ productivity shocks but on the other hand they are able to transmit

firm level shocks to wages.

I estimate the model on matched employer-employee data to estimate the

relative importance of di�erent sources of uncertainty. Firm productivity

shocks can account for 20% for the overall permanent wage uncertainty, leav-

ing mobility and worker shocks as the main sources of risk. Firms are unable

to insure workers once the employment relationship ends making publicly pro-

vided unemployment benefits an important source of insurance. To quantify

the underlying source of uncertainty I compute a pass-trough measure of pro-

ductivity shocks to earning shocks and find that 20% of worker shocks and

30% of firm shocks get transmitted to wages. The implication of those find-

ings is that policies should focus on transitions in and out of work. This is

because when employed the firm will provide some source of insurance, but

the firm can’t continue to insure the worker when the relationship ends.

An important extension to this model is to allow individuals to hold assets,

which would allow them to self insure. The inclusion of observable assets

would depart only slightly from the current version of the model but a more

realistic environment would allow workers to privately save. This creates many

interesting economic questions such as how do firms recruit among workers

with di�erent asset holdings? In preliminary analysis of such an extension I

find that firms try to hire workers with higher assets because they are easier

to incentivize: firms can backload even more or get them to pay a bond,

improving retention. Upfront payment by the worker to the firm is observed

in high skill labour markets such as partnerships in law and consulting firms.

Another extension is to allow firms to counter outside o�ers. Ine�cient

poaching happens rarely in the estimated version of the model, but it would

be more realistic to have a mechanism by which firms could optimally decide

whether to counter outside o�ers. This type of negotiations happen in practice

in high skills markets such as CEO and academics.
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3.A Data

3.A.1 Auxiliary model

Recall the auxiliary model described in the first section of the paper. Note

that ”
jt

appears alone in the very first model, but is then decomposed into
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two di�erent components when value added is introduced.

w
ijt

= —Z
t

+ w̃
ijt

+ v
ijt

w̃
ijt

= w̃
ijt≠1

+ ”
jt

+ ›
ijt

,

y
jt

= —X
t

+ ỹ
jt

+ u
jt

ỹ
jt

= ỹ
jt≠1

+ µ
jt

”
jt

= ·µ
jt

+ ‹
jt

The auxiliary model presented can be recovered from the following moments:

E
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E
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(mw2)

E
j

[�y
ijt

· �w
ijt

] = ·‡2

µ

(mw2)

where E
i

represents the expectation over co-workers within firm j.

3.B Proofs

3.B.1 Existence of the equilibrium

The model presented here is similar to the one presented in Menzio and Shi

(2010). The di�erences are the composite functions r̃ and p̃ that now include

the e�ort decision and the fact that workers are now heterogenous. This

means that I can apply their proof here as long as I can derive the necessary

properties on (p̃, r̃) and show that heterogeneity does not break any of the

Lipschitz bounds.

Lemma 17 (existence). A stationary competitive search equilibrium exists.

Definition 8. call J the set of functions J : X ◊ Z ◊ V æ R such that
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(a) J is strictly decreasing in V ,

(b) bi-Lipschitz continuous in V

(c) bounded

(d) concave

Lemma 19. The operator T defined in (BE-F) is self-mapping on J.

Proof of Lemma 17 . Consider a function J œ J and its image Ĵ = TJ .

We start by noting that the lottery gives us that Ĵ is concave which gives

continuity and almost everywhere di�erentiability. Given that, we can ap-

ply the envelope theorem to find that the derivative of Ĵ is almost every-

where ≠1/uÕ(wú(x, y, V )). Given that we have established that the o�ered

wage has to be bounded, it gives that the derivative of Ĵ is also bounded

in [≠1/ūÕ, ≠1/uÕ]. Given that V is itself bounded it gives us that Ĵ is also

bounded. The derivative is also strictly negative and so Ĵ is a one to one

mapping. Ĵ is then also bi-Lipschitz. That concludes the fact that Ĵ œ J.

Lemma 20. Bounds on p̃,r̃ [incomplete]

First I report a result from Menzio and Shi (2010) which applies directly here

and states that given J
n

, J
r

such that ||J
n

≠ J
r

|| < fl we have that ’x, v

Îp(◊(x, vú
1n

)) ≠ p(◊(x, vú
1r

))Î < –
P

(fl) = max{2B̄
P

+ pÕ(0)–
◊

fl, 2–
R

fl1/2}

Îp(◊(x, vú
1n

)) (vú
1n

≠ v) ≠ p(◊(x, vú
1r

)) (vú
1r

≠ v)Î < –
R

fl

that we need to use to show that it continues to apply when the e�ort choice

of the worker is added. Given the policy for job search the e�ort choice is

given by ” = e = cÕ≠1(p(◊(x, vú
1n

)) (vú
1n

≠ v) + v ≠ U(x)) and so given that v

itself is bounded we find new bounds on the p̃ and r̃ functions:

Îr̃
n

≠ r̃
r

Î < –
r

fl

Îp̃
n

≠ p̃
r

Î < –
P

(fl)

Lemma 21. The operator T is continuous on J
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Proof. This boils down to showing that T is K-lipschitz. Let’s take two

functions J
1

, J
2

œ J and their respective image Ĵ
1

, Ĵ
2

. We already know

that they are part of J. Then we need to find a constant K such that

||Ĵ
1

≠ Ĵ
2

|| Æ K||J
1

≠ J
2

||. We substitute in the Ĵ
1

and Ĵ
2

by their defi-

nition. We then bound each element separately:

||Ĵ
1

(x, z, V ) ≠ Ĵ
2

(x, z, V )|| Æ ||u(w
1

) ≠ u(w
2

)||

+ ||p̃
1

(x, W
1

)EJ (xÕ, zÕ, W
1x

Õ
z

Õ) ≠ p̃
2

(x, W
2

)EJ (xÕ, zÕ, W
2x

Õ
z

Õ)||

where we now want to bound each term.

The rest of the proof follows identical steps to Tsuyuhara (2013) and Men-

zio and Shi (2010).

3.B.2 Properties or worker search functions

Lemma 22. Given (x, W ), vú(x, W ) and eú(W ) are uniquely determined,

p̃(x, W ) is continuous and decreasing, r̃(x, W ) is increasing in W , continuously

di�erentiable and ˆr̃

ˆW

(x, W ) = —p̃(x, W ).

Proof. remember the definitions

vú(x, W ) = arg max
v

p(◊(x, v))(v ≠ W )

eú(x, W ) = arg max
e

≠c(e) + ”(e)—EW
0

(xÕ)

+ —(1 ≠ ”(e)) (p(◊(x, vú))vú + —(1 ≠ ”(e))(1 ≠ p(◊(x, vú)))W ) ,

and the definition of the composite functions

p̃(x, W ) =(1 ≠ ”(eú(x, W ))) (1 ≠ p(◊(x, vú
1

(x, W ))))

r̃(x, W ) = ≠ c(eú(x, W )) + —(1 ≠ ”(eú(x, W )))p(◊(x, vú
1

(x, W ))) (vú
1

(x, W ) ≠ W )

+ ”(eú(x, W ))—E
x

Õ|xU(xÕ) + —(1 ≠ ”(eú(x, W )))(x, W )W

I first normalize ”(e) = 1 ≠ e ( or equivalently redefine c and e such that
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c(e) = c(”≠1(e))), where c(e) is increasing and concave. The maximization

problem for v gives the following first order condition

pÕ(◊(x, v))(v ≠ W ) + p(◊(x, v)) = 0

where given the property of p and q and the equilibrium definition of ◊ we

have that the function v ‘æ p(◊(x, v)) is decreasing and strictly concave. This

gives that the maximum is unique and so vú(x, W ) is uniquely defined. The

first order condition for e is given by

cÕ(e) = —p(◊(x, vú
1

(x, W ))) (vú
1

(x, W ) ≠ W ) + —W ≠ —E
x

Õ|xU(xÕ)

and given the assumption that c is strictly convex, we get that eú(x, W ) is also

uniquely defined.

Finally we can use the envelope condition to compute the derivative of r̃

with respect to W . By definition we have

r̃(x, W ) = sup
v,e

u(w)≠c(e)+(1≠e)—E
x

Õ|xW
0

(xÕ)+e—p(◊(x, v))v+e—(1≠p(◊(x, v)))W,

and so we get

ˆr̃

ˆW
(x, W ) = —eú(x, W )(1 ≠ p(◊(x, vú(x, W ))) = —p̃(x, W )

which proves that r̃ is continuously di�erentiable as long as p̃ is continuous.

3.B.3 Regularity properties for equilibrium functions

Lemma 18. The Pareto frontier J (x, z, V ) is continuously di�erentiable, de-

creasing and concave with respect to V and increasing in z.
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Proof of Lemma 18 . Consider the optimal contract equation:

J (x, z, V ) = sup
fi

i

,W

i

,W

ix

Õ
y

Õ

ÿ
fi

i

!
f(x, z) ≠ w

i

+ —p̃(x, W
i

)EJ (xÕ, zÕ, W
ix

Õ
y

Õ)
"

s.t (⁄) 0 =
ÿ

i

fi
i

(u(w
i

) + r̃(x, W
i

)) ≠ V,

(“
i

) 0 = W
i

≠ EW
ix

Õ
y

Õ ,
ÿ

fi
i

= 1.

We already know that J is concave because of the two point lottery. That

tells us that it is continuous and di�erentiable almost everywhere. Let’s then

show that it is di�erentiable everywhere. I follow the steps of the derivation

presented in Koeppl (2006) where he shows that in the problem with two

sided limited commitment it is su�cient to have one state realization where

neither participation constraint binds to achieve di�erentiability of the Pareto

frontier. Given that the current problem is one sided the result works almost

right away, it just needs to be extended to include a search decision.

For a fixed s = (x, z), let’s consider a point Ṽ where it’s not di�eren-

tiable and call (w̃, fĩ
1

, W̃
ix

Õ
z

Õ , W̃
i

) the firm’s action at that point. This action

is by definition feasible and delivers ṽ to the worker. From that strategy I

am going to construct a continuum that delivers any V around Ṽ . Keeping

(fĩ
1

, W̃
ix

Õ
z

Õ , W̃
i

) the same, I defined wú(V ) = u≠1(V ≠ Ṽ ).

I then define the function J̃ (s, v) as the value that uses strategy
1
wú(V ) = u≠1(V ≠ Ṽ ), fĩ

1

, W̃
ix

Õ
y

Õ , W̃
i

2
. It is the case that the strategy is fea-

sible since all constraints remain satisfied. By definition of J we have that

J̃ (s, V ) Æ J (s, V ) together with J̃ (s, Ṽ ) = J(s, Ṽ ). Finally because u(·) is

concave, increasing and twice di�erentiable, J̃ (s, Ṽ ) is also concave and twice

di�erentiable.

We found a function concave, continuously di�erentiable, lower than J

and equal to J at Ṽ we can apply Lemma 1 from Benveniste and Scheinkman

(1979) which gives us that J (s, v) is di�erentiable at ṽ. We then conclude that
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J is di�erentiable everywhere. Finally let’s show that J (x, z, v) is increasing

in z.

Let’s consider two di�erent values z
1

< z
2

. Call ›
i

the history contingent

policy starting at (x, z
i

, v). Policy ›
1

will deliver identical utility to the worker

in all histories independently of whether it started at z
1

or z
2

. I then compare

the value of using ›
1

at (x, z
1

, v) and (x, z
2

, v). Given that the worker will be

promised the same utility in both cases and given that the process on x and

z are independent we can write the probability of each history ht as the the

product on the probability on the history on z and the probability on x

J (x, z, v|›
1

) =
ÿ

t

ÿ

(x

t

,z

t

)

—t

1
f(x

t

, z
t

) ≠ wt

2
fi

x,t

(xt|x)fi
z,t

(zt|z)fi
”,t

(›
1

),

where fi
x,t

is the productivity process on x generated by �
x

, fi
z,t

is the pro-

cess on z generated by g(z, ÿ), and fi
”,t

(›
1

) is the composition of the leaving

probabilities p̃(xt, W t) prescribed by the policy ›
1

. We can then compare the

following di�erence:

J (x, z
2

, v|›
1

) ≠ J (x, z
1

, v|›
1

) =
ÿ

t

ÿ

(x

t

,z

t

)

—tf(xt, zt)
1
fi

z,t

(zt|z
2

) ≠ fi
z,t

(zt|z
1

)
2

fi
x,t

(xt|x)fi
”t

(›
1

),

where we finally use the fact that the transition matrix on z is assumed to

be monotonic, in which case we get that all future distributions conditional

on z
2

will stochastically dominate distributions conditional on z
1

. Given the

stochastic dominance of fi
z,t

(zt|z
2

) over fi
z,t

(zt|z
2

) and the monotonicity of

f(x, z) in z we get:

’t, xt

ÿ

z

t

f(xt, zt)
1
fi

z,t

(zt|z
2

) ≠ fi
z,t

(zt|z
1

)
2

Ø 0

which gives the result. See Dardanoni (1995) for more on properties of mono-

tonic Markov chains.
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3.B.4 Characterization of the optimal contract

Lemma 23. For a given (x, z), a higher wage always means higher lifetime

utility.

Proof. This is a direct implication of the concavity of J and the envelope

condition:
ˆJ (x, z, v)

ˆv
= 1

uÕ(w) ,

and given also the concavity of u(·), we get that w and v
s

are always moving

in the same direction.

Theorem 2 (optimal contract). For each viable match (x, z), independent

of the lottery realization, the wage policy is characterized by a target wage

wú(x, z), which is increasing in z such that:

w
t

Æ wú(x
t

, z
t

) ∆ w
t

Æ w
t+1

Æ wú(x
t

, z
t

) incentive to search less

w
t

Ø wú(x
t

, z
t

) ∆ wú(x
t

, z
t

) Æ w
t+1

Æ w
t

incentive to search more

where the target wage is characterized by the zero expected profit condition for

the firm:

’x, z E
x

Õ
z

Õ|xz

J (xÕ, zÕ, W
x

Õ
z

Õ) = 0

Proof of Lemma 2 . We start again from the list of first order conditions and

we want to find a relationship for wage change.

J (x, z, V ) = sup
fi

i

,W

i

,W

ix

Õ
z

Õ

ÿ
fi

i

!
f(x, z) ≠ w

i

+ —p̃(x, W
i

)EJ (xÕ, zÕ, W
ix

Õ
z

Õ)
"

s.t (⁄) 0 =
ÿ

i

fi
i

(u(w
i

) + r̃(x, W
i

)) ≠ V,

(“
i

) 0 = W
i

≠ EW
ix

Õ
z

Õ ,
ÿ

fi
i

= 1.

From the envelope theorem and the f.o.c. for the wage, we get that the wage
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in the current period is given by

i = 1, 2 uÕ(w
i

) = 1
⁄

= ≠
3

ˆJ
ˆv

(x, z, v)
4≠1

.

Now that also means that the wage next period in state (xÕ, zÕ) will be given

by
1

uÕ(w
ix

Õ
z

Õ) = ≠ˆJ
ˆv

(xÕ, zÕ, W
ix

Õ
z

Õ).

I then look at the first order condition with respect to W
i

fi
i

—p̃
v

(x, W
i

)EJ (xÕ, zÕ, W
ix

Õ
y

Õ) + —⁄fi
i

rÕ(x, W
i

) + fi
i

“
i

= 0,

where I substitute rÕ(x, W ) = p̃(x, W ), derived in Lemma (3.B.2):

fi
i

—p̃
v

(x, W
i

)EJ (xÕ, zÕ, W
ix

Õ
y

Õ) + —⁄fi
i

p̃(x, W
i

) + fi
i

“
i

= 0.

Using the f.o.c. for W
ix

Õ
z

Õ , which is

—p̃(x, W
i

)ˆJ
ˆv

(xÕ, zÕ, W
ix

Õ
y

Õ) ≠ “
i

= 0,

I get the following expression:

fi
i

—p̃
v

(x, W
i

)EJ (xÕ, zÕ, W
ix

Õ
z

Õ)+—⁄fi
i

p̃(x, W
i

)+fi
i

—p̃(x, W
i

)ˆJ
ˆv

(xÕ, zÕ, W
ix

Õ
z

Õ) = 0.

Focusing on p
1

(x, W ) > 0 and fi
i

> 0 since otherwise, the worker is leaving

the current firm and the next period wage is irrelevant, we first rewrite:

p̃
v

(x, W
i

)
p̃(x, W

i

) EJ (xÕ, zÕ, W
ix

Õ
z

Õ) + ⁄ + ˆJ

ˆv
(sÕ, v

s

Õ) = 0.

I finally use the envelope condition to extract the wage next period from the

last term on the right

p̃
v

(x, W
i

)
p̃(x, W

i

) EJ (xÕ, zÕ, W
ix

Õ
z

Õ) = 1
uÕ(w

x

Õ
z

Õ) ≠ 1
uÕ(w) ,
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where since p̃
v

(x, W
i

) > 0 the inverse marginal utility and consequently wages

move according to the sign of expected surplus to the firm. This shows that

within each realization of the lottery, the wage will move according to expected

profit.

Randomizing over increase and decrease: the next step is to inves-

tigate if it is ever optimal for the firm to randomize over a wage increase and

a wage decrease at the same time. If the lottery is degenerate then the result

holds directly. We are left with non-degenerate lotteries. In that case the first

order condition with respect to fi must be equal to zero (otherwise we are at

a corner solution, which is degenerate). Taking the first order condition with

respect to fi gives:

—p̃(x, W
1

)EJ (xÕ, zÕ, W
1x

Õ
z

Õ)+⁄—r̃(x, W
1

) = —p̃(x, W
2

)EJ (xÕ, zÕ, W
2x

Õ
z

Õ)+⁄—r̃(x, W
2

),

which we can reorder in

—p̃(x, W
1

)EJ (xÕ, zÕ, W
1x

Õ
z

Õ)≠—p̃(x, W
2

)EJ (xÕ, zÕ, W
2x

Õ
yz

Õ) = ⁄— (r̃(x, W
2

) ≠ r̃(x, W
1

)) .

Now, suppose that the randomization is over two expected profits of opposite

sign for the firm where 1 is positive and 2 is negative. The left hand side is

then positive. But in that case we know that W
2

< V < W
1

because higher

wages give higher utilities in all states of the world, and so they do so also in

expectation. This gives us that r̃(x, W
2

) < r̃(x, W
1

). Given that ⁄ is equal to

inverse marginal utility it is positive. But then the right hand side is negative,

so we have a contradiction. So independent of the randomization, the wage

will move according to the sign of the expected profit.

Monotonicity in z: the final step is to show that the e�ciency wage

is increasing in z. We already know that J (x, z, V ) is increasing in z and

decreasing and concave in V . Let’s consider z
1

< z
2

and associated e�ciency

wage wú(x, z
1

). We want to show that wú(x, z
1

) < wú(x, z
2

). Call ›
1

the

optimal policy starting at state J (x, z
1

, V
1

) where V
1

delivers wú(x, z
1

) and
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using ›
1

at (x, z
2

), the worker receives V
1

and is paid wú(x, z
1

). The firm

makes more profit than at z
1

since f(x, z) is increasing in z and EJ is larger

as well. The optimal policy at (x, z
2

, V
1

) will pay a higher wage than wú(x, z
1

)

to trade some output for a longer expected lifespan, but continue to choose

positive EJ . So we found a wage wú
3

Ø wú(x, z
1

) such that EJ is still positive.

This last point implies that wú
3

Æ wú(x, z
2

) and concludes.

3.B.5 From matching function to tightness

I use the following matching function

p(◊) = ◊‹

q(◊) = p(◊)/◊ = ◊‹≠1

this gives us that

p = q
‹

‹≠1 ,

and we have the following equilibrium equality for q(·) from the free entry

condition:

we end up with

p(x, v) =
3 1

k
e

J(x, y, z, v)
4 ‹

1≠‹

.

Now since I am worried about keeping this function su�ciently concave to

insure uniqueness of the worker search decision, I use ‹ < 1/2.
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3.B.6 Recursive Lagrangian formulation

Ignoring the lottery for now, we have the following recursive formulation for

J

J (x, z, V ) = sup
fi

i

,W

i

,W

ix

Õ
y

Õ
f(x, z) ≠ w

i

+ —p̃(x, W
i

)EJ (xÕ, zÕ, W
ix

Õ
y

Õ)

s.t (⁄) 0 = u(w
i

) + r̃(x, W
i

) ≠ V,

(“
i

) 0 = W
i

≠ EW
ix

Õ
z

Õ .

From which we can construct the Pareto problem

P(x, z, fl) = sup
v

J (x, z, v) + flv.

Formally, P is also the Legendre–Fenchel transform of P, see Villani (2003).

We seek a recursive formulation. I first substitute the definition of J and the

constraint on ⁄ in P to get

P(x, z, fl) = sup
V,w,W,W

x

Õ
z

Õ
f(x, z) ≠ w + —p̃(x, W )EJ (xÕ, zÕ, W

x

Õ
z

Õ) + flV

s.t (⁄) 0 = u(w
i

) + r̃(x, W ) ≠ V,

(“) 0 = W ≠ EW
x

Õ
z

Õ .

at which point I can substitute in the V constraint:

P(x, z, fl) = sup
V,w,W,W

x

Õ
z

Õ
f(x, z) ≠ w + —p̃(x, W )EJ (xÕ, zÕ, W

x

Õ
z

Õ) + fl (u(w
i

) + r̃(x, W ))

s.t (“) 0 = W ≠ EW
x

Õ
z

Õ .
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then I append the constraint (“)with weight —“p̃(x, W )

P(x, z, fl) = inf
“

sup
V,w,W,W

x

Õ
z

Õ
f(x, z) ≠ w + fl (u(w

i

) + r̃(x, W ))

≠“—p̃(x, W )(W ≠ EW
x

Õ
z

Õ)

+—p̃(x, W )EJ (xÕ, zÕ, W
x

Õ
z

Õ)

which finally we recombine as

P(x, z, fl) = inf
“

sup
V,w,W,W

x

Õ
z

Õ
f(x, z) ≠ w + fl (u(w

i

) + r̃(x, W ))

≠—“p̃(x, W )

+—p̃(x, W )EJ (xÕ, zÕ, W
x

Õ
z

Õ) + “EW
x

Õ
z

Õ

the final step is to move the sup to the right hand side to get:

P(x, z, fl) = inf
“

sup
w,W

f(x, z) ≠ w + fl (u(w
i

) + r̃(x, W ))

≠—“p̃(x, W )

+—p̃(x, W )E
C

sup
W

x

Õ
z

Õ
J (xÕ, zÕ, W

x

Õ
z

Õ) + “W
x

Õ
z

Õ

D

where we recognize the expression for P and so we are left with solving the

following saddle point functional equation (SPFE):

P(x, z, fl) = inf
“

sup
w,W

f(x, z) ≠ w + fl (u(w
i

) + r̃(x, W ))

≠ —“p̃(x, W ) + —p̃(x, W )EP(xÕ, zÕ, “). (SPFE)

From the solution of this equation we can reconstruct the lifetime utility

of the worker, and the profit function of the firm

V(x, z, fl) = ˆP
ˆfl

(c, z, fl)

J (x, z, v) = P(x, z, flú(x, z, v)) ≠ flú(x, z, v) · v.
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3.B.7 Notations

Here is a summary of the notations used in the paper:

— is discount factor

u : R æ R is utility function

c : R æ R is e�ort function

e is e�ort level of the worker

w is wage

x is worker productivity

z is match productivity

f(x, z) is output of worker x in match z

Ÿ is search e�ciency on the job

÷ is vacancy cost

◊ is market tightness for market (x, v)

v is value a worker will get in a given submarket

V is value promised to the worker when entering a period

W
i

is expected value promised to the worker in realization i of the lottery

W
x

Õ
z

Õ is value promised to the worker in realization (xÕ, zÕ) of the shock

v
1

(x, z, v) is the search policy of the worker

e(x, z, v) is the e�ort policy of the worker

3.C Additional Data information

3.D Model extensions

3.D.1 severance payments

I present here an extended version of the model with side payments when the

worker loses his job. The firm is allowed to choose a value g delivered to the

worker when he moves to unemployment.

108



Chapter 3. Shocks and earnings 3.D. Model extensions

Construction etc. Manufacturing Retail trade Services
educ1

‡
f

0.00498 0.00365 0.00298 0.00471
(0.000336) (0.000151) (0.000215) (0.000376)

‡
w

0.0245 0.0212 0.0197 0.0279
(0.00297) (0.00107) (0.00176) (0.00228)

firm perc 16.9 14.7 13.2 14.5
educ2

‡
f

0.0059 0.00321 0.00431 0.00481
(0.000434) (0.000164) (0.000401) (0.000509)

‡
w

0.024 0.0185 0.02 0.0254
(0.00302) (0.00125) (0.00269) (0.00334)

firm perc 19.8 14.8 17.7 15.9
educ3

‡
f

0.00558 0.00225 0.00521 0.00757
(0.000768) (0.000122) (0.000547) (0.000299)

‡
w

0.0267 0.0187 0.0224 0.0231
(0.00342) (0.00124) (0.00328) (0.00173)

firm perc 17.3 10.7 18.9 24.6

Table 3.9: Uncertainty at firm level per industry and education group

I start from the recursive form and

f(s) ≠ w ≠ g(1 ≠ q) + —p
1

(e, g)EJ(sÕ, v
s

Õ)+

fl (u(w) + r(e, g)) ≠ µ—p
1

(e, g)(e ≠ Ev
s

Õ)

where

r(e, g) = sup
v,q

≠c(q) + (1 ≠ q)—EU(xÕ, g) + q—p(v)v + q(1 ≠ p(v))—e.

and so we get

r
e

(e) = ≠qú—(1 ≠ pú) = ≠—p
1

(e)

r
g

(e) = (1 ≠ qú)—EU
g

(xÕ, g)

which we can recombine in

f(s) ≠ w + fl(u(w) + r(e)) ≠ µ—p
1

(e)e + —p
1

(e)EP (sÕ, µ)
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and we get 3 FOC: w µ and e and g

e = EP
fl

(s, µ)

≠flr
e

(e) ≠ µ—p
e

(e, g)e ≠ µp
e

(e, g) + —p
e

(e, g)EP (sÕ, µ) = 0

≠(1 ≠ q) + flr
g

≠ µ—p
g

e + —p
g

EP = 0

I should combine the terms in pÕ(e) to get EP ≠ (fl + µ)e

(µ ≠ fl)p
1

(e) = —pÕ
1

(e)E�
1

(sÕ, µ)

and we can recombine the equation in g to find the optimal severance package:

(1 ≠ q)(— EU
g¸˚˙˝

<0

≠1) = ≠ —p
g

1 ≠ q
E�

1
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Note on co-authored work

Note on the joint work in Thibaut Lamadonâ�ès thesis “Dynamic Contracts

and Labour Market Frictions”.

Chapter 1, “Repeated Games with One-Dimensional Payo�s and Di�erent

Discount factors”, is co-authored between Yves Guéron, Thibaut Lamadon

and Caroline Thomas and each author contributed equally to the paper.

Chapter 2, “Identifying sorting with on the job search”, is co-authored

between Thibaut Lamadon, Jeremy Lise, Costas Meghir and Jean-Marc Robin

and each author contributed equally to the paper.

Chapter 3 is single-authored by Thibaut Lamadon.
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