
REFERENCE ONLY

UNIVERSITY OF LONDON THESIS

Year Name of Author / W ^ T

This is a thesis accepted for a Higher Degree of the University of London. It is an
unpublished typescript and the copyright is held by the author. All persons
consulting this thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author
and that no quotation from it or information derived from it may be published without
the prior written consent of the author.

LOANS
T heses may not be lent to individuals, but the Senate House Library may lend a
copy to approved libraries within the United Kingdom, for consultation solely on the
prem ises of those libraries. Application should be made to: Inter-Library Loans,
Senate House Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written
permission from the Senate House Library. Enquiries should be addressed to the
Theses Section of the Library. Regulations concerning reproduction vary according
to the date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the
author. (The Senate House Library will provide addresses where possible).

B. 1962-1974. In many cases the author has agreed to permit copying upon
completion of a Copyright Declaration.

C. 1975-1988. Most theses may be copied upon completion of a Copyright
Declaration.

D. 1989 onwards. Most theses may be copied.

This thesis comes within category D.

/ This copy has been deposited in the Senate House Library,
^ nfn Urn ioa N1 ̂ I nnrlnn \A/PA C 71—11 I

Degree

COPYRIGHT

Tracking and Judging Debates using
Argumentation: The Roles of Confirmation,

Preclusion and Reflection

Robert Godfrey Bowerman

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London BIBL

2008

UMI Number: U591421

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U591421
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

2

Signed Declaration

I, Robert Godfrey Bowerman, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated in the thesis.

Signature and Date:

Abstract

Using argumentation to debate and reach conclusions is a particularly human activity relevant to many

professions and applications. Debates exist not only in the Houses of Parliament, but also in such disci­

plines as medicine and law. In this theoretical thesis I explore three new logical constructs for realistic

debate modelling, namely: confirmation, preclusion and reflection. Confirmation is two or more argu­

ments for a claim, used to provide corroboration of evidence. Preclusion is an attacking argument that

says ‘one or other of your arguments is wrong’; an argumentation technique used adeptly by Sherlock

Holmes and many politicians. Reflection is a way of identifying logical redundancies (i.e. predictable

patterns) in the argument data structure of a debate. A reflection originates from an unpredictable ‘re­

flector’ argument and gives rise to the predictable or ‘reflected’ argument. One type of reflection can be

said to ‘flow down’ a tree of arguments, where the reflector is nearer the root and the reflected arguments

further from the root, while another kind ‘flows up’ the tree in the reverse direction. Incorporating preclu­

sion into the model of reflection increases this to four distinct types of reflection, two up-tree and two

down-tree. The value of identifying and removing reflections is to ensure intuitive, or arguably ‘correct’,

results when judging debates, be that judgement based on the existence or number of arguments. Re­

moving reflection also aids human comprehension of the debate as it reduces the number of arguments

involved. This logical analysis o f reflection and preclusion leads to the definition of a reflection-free,

preclusion-aware, debate-tracking tree. Finally, the framework addresses judging the tree to determine

who won the debate, with a proposal that takes confirmation into account when reaching conclusions.

Confirmation assessment is helpful in resolving inconsistencies. Out of scope are notions of alternating

moves by competing players and computational complexity.

Acknowledgements

1 wish to thank my tutor and supervisor Dr Anthony Hunter and my second supervisor Dr Robin Hirsh

for their support and teaching. I also wish to acknowledge that I first observed the logical approach

of confirmation and judgement presented herein (including the approaches of confirmation thresholds

for acceptable levels of evidence, judges that resolve inconsistency by counting arguments and by the

notion of decomposition) in the ancient Indian astrology system known as Jyotish. The Sanskrit texts,

with English translations and commentaries, by Parasara, Vrahamira and others, provided me with the

first inspiration for this approach to debate tracking and judgement. I am grateful to Pundit Vishwanath

Sharma, Sri Sri Ravi Shankar and Maharishi Mahesh Yogi for explaining this ancient system of logic

to me. I am also grateful to the software engineer who sought me out me, because of my book Putting

Expert Systems into Practice, to ask me how a Jyotish expert system should handle inconsistency and

redundancy in its processing. I did not know the answer at that time, however, this thesis is now an

answer to that question. I would also like to thank Dr John Fox and his team at Cancer Research UK

for explaining to me how this approach to debate tracking and judgement would be helpful in modem

medicine. I am grateful to my wife Liz and my children Nadine, Gaia, Julia and Niel for their patience

over the last six years of my work on this thesis.

Contents

1 Introduction 13

1.1 Problem S ta te m e n t .. 15

1.2 My Solution in the Context of the L ite ra tu re .. 17

1.3 My Contributions: Confirmation, Preclusion and R eflection... 18

2 Basic Argumentation Framework 22

2.1 Overview of the C h a p te r .. 22

2.1.1 Six Steps to the Basic F ra m e w o rk ... 22

2.1.2 Context Within the Literature .. 22

2.2 Knowledgebase of Labelled A ssu m p tio n s ... 23

2.3 Propagating Labels During the Process of D e d u c tio n ... 27

2.4 Arguments from the K now ledgebase... 29

2.4.1 Catenate Inferences.. 30

2.4.2 Argument P ro p e rtie s ... 32

2.5 Introducing C onfirm ation .. 35

2.5.1 Inconsistent C onfirm ations.. 39

2.5.2 Cardinality of C onfirm ations... 40

2.5.3 Maximum Cardinality of C onfirm ations... 41

2.6 Introducing C ontradiction... 42

2.6.1 Maximum Cardinality of C ontradictions... 45

2.6.2 R ebu tta l... 46

2.6.3 Confirmation R e b u t ta l .. 48

2.7 Judging the Outcome of D e b a te s .. 49

2.7.1 Definition of Pro and Con F u n c tio n s.. 50

2.7.2 Illustrative Judges ... 51

2.8 Worked Example of the Basic Argumentation Fram ew ork .. 52

2.8.1 A ssu m p tio n s ... 52

2.8.2 D e d u c tio n s ... 52

2.8.3 A rg u m e n ts ... 52

2.8.4 Confirm ations... 53

Contents 6

2.8.5 C o n tra d ic tio n s .. 53

2.8.6 Judgement ... 54

2.9 Conclusions for Basic Argumentation F ram ew ork ... 55

3 Undercut Framework 56

3.1 Overview of the C h a p te r .. 56

3.2 The Concept of U n d e rc u t... 57

3.2.1 Wigmore U n d e rc u t... 58

3.2.2 Undercuts Can Change Debate O u tc o m e s ... 59

3.2.3 Undercuts, Confirmations and Rebuttals Resolve Inconsistency................................ 61

3.2.4 Pollock U n d e rc u t... 62

3.3 Canonical U n d e rcu t... 64

3.3.1 The Effect on Labels in Canonical U ndercut.. 6 8

3.3.2 Reflexivity and Canonical U n d e rc u t.. 6 8

3.4 Introducing and Defining Preclusive U n d ercu t... 69

3.5 Practical Motivation for Preclusive U ndercut... 72

3.5.1 Incompatibilities due to Unsatisfied C onstrain ts... 72

3.5.2 Sherlock Holmes Relies on Preclusive U n d e rcu ts .. 73

3.5.3 Cross Examination Uses Tautological Preclusive Undercuts 74

3.5.4 Tautological Preclusions are ‘Just Asking Questions’ ... 75

3.6 Preclusive Undercut Generalises Canonical U n d e rc u t.. 76

3.7 Tautological Preclusions Attack Inconsistent Confirm ations.. 78

3.8 Non-unique Formulae, Labels and Preclusive U n d e rc u t.. 81

3.8.1 Growing Claims and In v a lid a tio n .. 82

3.9 Attack, Abstract Attack and Attack Graphs ... 83

3.9.1 Argument Graphs, Confirmation Graphs and Contradiction G raphs......................... 85

3.10 Conclusions for Undercut F ra m e w o rk ... 87

4 Reflected and Direct Arguments 89

4.1 Overview of the C h a p te r ... 89

4.1.1 Sections on Reflected and Direct Arguments .. 89

4.2 Introducing Attack and R e f le c t io n .. 90

4.2.1 Base Proposition One: Rebuttal Engenders U n d e rc u t... 90

4.2.2 Base Proposition Two: Undercut Engenders R e b u tta l.. 91

4.2.3 Attack Engenders A tta c k ... 91

4.2.4 Type I Reflection - The Reflected Attacks F unction .. 92

4.2.5 Seeing What is R eflec ted .. 94

4.2.6 Base Proposition Three: Rebuttal Engenders R ebu tta l.. 95

4.2.7 Base Proposition Four: Undercut Engenders U n d e rc u t ... 96

Contents 7

4.2.8 Reflexive Arguments and R eflec tio n .. 97

4.3 Reflection in Other Argumentation F ram ew orks... 98

4.4 Reflected Canonical U n d e rcu ts ... 102

4.4.1 Properties of Reflected Canonical Undercuts ..103

4.4.2 A Motivational Example of Reflected U n d e rc u t.. 105

4.5 Direct Canonical U ndercuts..106

4.6 Mono-Pair Enlarged R e f le c tio n s ..108

4.6.1 Reflection has an Inexact S y m m etry .. I l l

4.7 Reflected Argument R e b u t ta l s ...112

4.7.1 A Motivational Example of Reflected R e b u t ta l .. 113

4.7.2 Properties of Reflected Argument R eb u tta ls .. 114

4.8 Direct Argument R e b u tta ls ..118

4.9 Conclusion for Reflected and Direct A rg u m en ts ...120

5 Reflected and Direct Confirmations 122

5.1 Overview of the C h a p te r ... 122

5.2 Reflected Preclusive U ndercu ts... 123

5.2.1 Properties of Reflected Preclusive U n d e rc u ts ...124

5.3 Direct Preclusive Undercuts ... 127

5.3.1 Properties of Direct Preclusive U n d e rc u ts ... 128

5.3.2 Maximal Direct Preclusive U ndercut... 129

5.4 Mixed Preclusive Undercuts and In v a lid a tio n ... 131

5.5 Type II Reflection - Reflected Confirmation R ebuttals.. 133

5.5.1 Properties of Reflected Confirmation R e b u tta ls ...134

5.6 Direct Confirmation R e b u t ta l s ... 136

5.6.1 Maximal Direct Confirmation Rebuttal .. 137

5.7 Scaled and Distorted R e fle c tio n s ... 138

5.7.1 Reduced R eflec tion ..140

5.7.2 Exact R e f le c t io n ... 141

5.7.3 Enlarged Reflection..141

5.7.4 Multi-Pair Enlarged Preclusive R eflec tio n ... 142

5.7.5 Distorted R eflec tio n s...145

5.8 Type III Reflection - Reflected Confirming A rg u m e n ts ...147

5.8.1 Properties of Reflected Confirming A rg u m e n ts ... 148

5.9 Type IV Reflection - Reflected Confirming Confirmations ...151

5.9.1 Properties of Reflected Confirming Confirmations .. 152

5.9.2 Scaling and Reflected Confirming C o n firm atio n s...153

5.9.3 Direct Confirming Confirmations ..155

5.10 Conclusion for Reflected and Direct C o n firm a tio n s ... 155

Contents 8

6 How to Track a Debate 158

6.1 Overview of the C h a p te r ...158

6.2 Debate Tracking in the L itera tu re ..159

6.2.1 Argument Trees and Argument Structures - Classical Logic F o r e s ts 163

6.3 Argument Trees are Incom plete...166

6.3.1 Type A Incomplete - Non-root Rebuttals E x c lu d e d ...166

6.3.2 Type B Incomplete - Reduced Reflections from Excluded Direct Rebuttals 166

6.3.3 Type C Incomplete - Premise Reuse Prohibition... 168

6.4 Argument Trees are In o rd in a te ...169

6.4.1 Type A Inordinate - Root Reflected Canonical U n d ercu ts ...169

6.4.2 Type B Inordinate - Mono-Pair Enlarged Canonical R e flec tio n170

6.4.3 Type C Inordinate - Multi-Pair Enlarged Canonical R e fle c tio n171

6.4.4 Type D Inordinate - Reflected Confirming A rg u m e n t..171

6.5 Three Further B ehaviours...172

6.5.1 Argument Trees are In ch o ate .. 172

6.5.2 Sensitivity To The Way the Knowledgebase is W r i t t e n ..174

6.5.3 Pro and Con Reflections Do Not C a n c e l .. 175

6 .6 Rationale for Matt Opaque Contradiction T r e e s ... 175

6.7 Definition of Debate T r e e s .. 178

6 .8 Properties of Debate T r e e s .. 184

6.8.1 Introductory O b se rv a tio n s ..184

6.8.2 Vertex S i z e ...186

6.8.3 Branching F a c to r .. 187

6.8.4 Path L e n g th ...187

6.8.5 Debate Trees are F in i te .. 188

6.9 Conclusion for How To Track a Debate .. 188

7 How To Judge a Debate 190

7.1 Overview of C h a p te r .. 190

7.2 Judge S e le c tio n ...191

7.3 Judge P roperties...192

7.3.1 Rebuttal A w a re ...193

7.3.2 Existential ... 193

7.3.3 Q uantitative... 193

7.3.4 Undercut Aware ... 194

7.3.5 Reflection A w a re ... 195

7.3.6 Confirmation A w a r e ...195

7.3.7 C u m u la tiv ity .. 195

7.3.8 B ip o la r .. 195

Contents 9

7.3.9 Metaknowledge A w a re ... 196

7.4 Reflection and Judge O utcom es.. 196

7.4.1 Steps for Examining Debate Outcomes With and Without R eflection.......................... 199

7.5 Reflection and Existential Judge Outcomes .. 200

7.5.1 Situation with Reflection and Existential Judgement ... 201

7.5.2 Situation without Reflection and Existential Judgem en t..201

7.6 Judging a Debate Tree ...203

7.6.1 Undercut Aware Quantitative Judgement in the L iterature ...204

7.6.2 Quantitative Judge Aware of Confirmation, Preclusion and R e f le c tio n 204

7.7 Reflection and Quantitative Judge O utcom es...207

7.7.1 Situation with Reflection and Quantitative Judgem ent..207

7.7.2 Situation without Reflection and Quantitative Ju d g em en t...208

7.8 Closing Remarks and Conclusion for How To Judge a D ebate .. 208

8 Conclusion and Discussion 210

8.1 Overview of C h a p te r ...210

8.2 Areas for Further R e se a rc h ... 211

8.3 Further Research Shortlist ... 215

8.4 Assisting A rg u m e n ts ... 216

8.5 Im plem enta tion ... 218

8.5.1 System Exterior - Use C a s e s ...219

8.5.2 System Interior - P ack ag es ..222

8.5.3 Implementation - Next S te p s .. 227

8 .6 Decision and Design Rationale and T ra d e -o f f ... 227

8 .6 .1 Design Rationale within Private Finance Initiatives (P F I s) ...232

8.7 Contributions: Strengths and L im itations... 232

8 .8 Closing Remarks and Conclusion for Discussion ...236

List of Functions 239

Bibliography 242

List of Figures

4.1 Type I Reflection is Provided by reflectedAttacks(J :(3,I :a . A) ... 93

4.2 Reflected Canonical Undercuts Shown in an Argument Graph ..106

4.3 Motivational Example of Reflected Rebuttal Shown in an Argument G rap h114

5.1 Reflected Preclusive Undercut is a Form of Type I R eflec tion .. 123

5.2 Reflectors to Consider for the Maximal Direct Preclusive Undercut Z :< p 129

5.3 Type II Reflection is Provided by reflectedConfirmationRebuttals(Y: f3, V, X : a , A) . . . 133

5.4 Reduced Preclusive Undercut Reflection Shown in a Contradiction G r a p h 140

5.5 Exact Preclusive Undercut Reflection Shown in a Contradiction G ra p h141

5.6 Enlarged Preclusive Undercut Reflection Shown in a Contradiction G r a p h142

5.7 Multi-Pair Enlarged Reflection Shown in a Contradiction G r a p h .. 145

5.8 Distorted Reflection Shown in a Contradiction G r a p h ... 146

5.9 Type HI Reflection is Provided by reflectedConfirmingArguments(K : ->$. J : j3 .1 : a , A) . 147

5.10 Type IV Reflection is reflectedConfirmingConfirmations(U:-'^,Y:/3 .W .X : a . A) . . . 151

6.1 Repeated Vertices in an Argument Tree .. 164

6.2 Type A Incomplete - Non-root Rebuttals Excluded ..166

6.3 Type B Incomplete - Reduced Reflections from Excluded Direct R eb u tta ls 167

6.4 Type C Incomplete - Premise Reuse P ro h ib itio n ...168

6.5 Type A Inordinate - Root Reflected Canonical U n d e rc u ts .. 169

6 .6 Type B Inordinate - Mono-Pair Enlarged Canonical R e f le c tio n .. 171

6.7 Type C Inordinate - Multi-Pair Enlarged Canonical Reflection .. 172

6 .8 Inchoate - Present Arguments Do Not Represent Absent Ones ...173

6.9 Asymmetry - of Reflected Cardinality in an Argument S t ru c tu re ... 175

7.1 Marked Argument Tree - Contains Reflection - Outcome a ...201

7.2 Marked Argument Tree - Without Reflection - Outcome 0 .. 203

7.3 Argument Structure cast by Cast Two - Contains Reflection - Outcome a207

7.4 Debate Tree - Without Reflection - Outcome 0 ...208

8.1 Use Case Diagram of a Debate Facilitation T o o l ... 220

8.2 Package Diagram of a Debate Facilitation Tool ... 222

List o f Figures

8.3 Debate Tree of the Buying WarmHouse Debate

List of Tables

2.1 Summary of Key Argument Aggregation F u n c tio n s ... 55

3.1 Summary of Key Undercut Functions .. 87

3.2 Summary of Key Attacks F u n c t io n s ... 8 8

3.3 Summary of Three Attacks G ra p h s ... 8 8

4.1 Motivational Example of Reflected Undercut ..105

4.2 Motivational Example of Reflected R e b u tta l ... 113

4.3 Summary of Reflected and Direct Argument Attacking Functions... 121

4.4 Summary of Scaling Factors Found With Argument Reflections...121

5.1 Summary of Reflected and Direct Confirmation Attacking F u n c tio n s156

5.2 Summary of Scaling Factors Found With Confirmation R eflections..157

6 .1 Candidates Forms for Vertices in Debate Tracking G raphs.. 159

6.2 Candidates Forms for Edges in Debate Tracking G raphs.. 160

6.3 Summary of Debate Tracking Graphs or T re e s ..160

6.4 Summary of Comparison of Argument Trees with Professional D e b a te189

7.1 Analysis Showing that Reflection Changes Debate O u tcom es... 199

7.2 Tree Nomenclature: An Arbitrary Vertex v in a Debate Tree ...202

7.3 Tree Nomenclature: Attacks on an Arbitrary Vertex v in a Debate T r e e 205

7.4 Judge Functions in Thesis; 1.0 and 2.0 are Undercut U naw are... 209

8.1 Summary of Bipolar F u n c tio n s ... 216

8.2 Atomic Formulae and their Linguistic Equivalents for W arm H ouse....................................... 229

8.3 Arguments Derived from Knowledgebase for W a rm H o u se ...231

Chapter 1

Introduction

In common usage the word ‘argument’ tends to have two meanings; one is a single argument where a set

of premises are used to infer a claim; the second meaning is a set of many of these single arguments that

interact with each other in various ways allowing a final or overall conclusion about a particular claim to

be drawn. I call the second usage a ‘debate’. Debates occur in many professional walks of life, not just

in the formal debates in the Houses of Parliament or the Oxford Union. Professional debates occur, for

example, in medicine, journalism, economics, business management, systems engineering, law, politics,

forensic science, detective work and investment banking.

The underlying goal of this thesis is to allow a computer to have a deep and rich understanding

of a debate, but not to actively participate. Although I hold up ‘professional debate’ as the guide and

motivation o f the formalisms in this thesis I can offer no gold standard that defines professional debate in

its own right. By professional debate I am implying one conducted by courteous individuals in an orderly

and precise way with no tolerance for ambiguity or carelessness. I assume an emphasis on avoiding errors

and thereby on reaching as logically correct a conclusion as possible. I would suggest that in such debates

there is rarely a single absolute truth to be located, however, application of these principles will provide

outcomes that are more helpful than if such an approach were not used. This thesis examines professional

debate in two steps; one is tracking or recording the form of the debate in some kind of data structure;

the other is judging the outcome or conclusion of the debate, given that data structure. My approach is

to analyse the completed debate data structure as a whole and not to consider the sequence or temporal

build up of moves by individual players. Hence my approach is monological in nature. Dialectical

considerations, of alternating moves by competing players, are outside the scope of this thesis. There is

a developing literature on how to track and judge debates in the field of artificial intelligence (AI), with

some overlap into at least business administration, politics, jurisprudence, medicine, mathematics and

philosophy. However, I present evidence and reasoning in the thesis that there is no published debate

formalism that is definitely necessary and sufficient, i.e. that covers the whole debate and nothing but

the debate. As I use the phrase ’whole debate’ later I should be clear that I am meaning all of the unique

arguments that can be constructed with a) a minimal consistent set of premises taken from the overall set

of available premises and b) which use classical logic to deduce their claim. I do not refer to informal

aspects such as a video tape of the proceedings or the body language of speakers.

14

Consequently, this thesis proposes a new formalism to track and judge professional debates in a

way that is necessary and sufficient. So when I propose that a debate should be conducted in a certain

way, that is at the same time a) my claiming to know something of how professional debate is practised

in the world (based primarily on my 30 years of information technology experience in industry analysing

and designing systems for these professions), b) my own views on how a debate should be conducted to

yield an accurate result and last but not least c) the formal framework defined in this thesis.

To track a debate is to populate a data structure or record of the evidence, arguments and interactions

between those arguments that comprise the debate. In the body of this thesis I assume that all arguments

are of equal weight and come from reputable sources so that only logic can be used to distinguish

between them. The challenge here is to record each relevant argument once and only once, and also not

to include any superfluous arguments. Hence the data structure should only be as large and as complex

as necessary to keep track of the debate and no more. Any missing or excessive argumentation in the

tracking, which would or could lead to errors or changes in the judgement outcome, is of importance.

The data structure does not have to be fully populated, for example at some interim point in the progress

of the debate, for the judge function to provide an outcome. Only when the debate is complete, however,

will the judgement be conclusive. Forming this data structure of related arguments is commonly referred

to as ‘argument aggregation’; some authors include judgement within argument aggregation, but I would

recommend making that step distinct.

To judge a debate is to decide the overall outcome to all of the arguments presented in the debate.

A debate will have a motion (regardless of whether that is formally declared or not), which could be

phrased as ‘this house believes such and such’. A motion can be represented as a logical proposition, a .

At the outset o f the debate the motion is an open question that could be true or false. Once the debate has

run its course, judgement occurs and the question of the motion is answered. The outcome will either

be a , ->q or possibly the empty set 0. If the outcome is ->a it is commonly said that the motion was

defeated. If a , then the motion carried. The empty set may arise for a variety of reasons including either

i) there was a stalemate with equal evidence, support or weight for both a or ->q, or ii) there could be

not enough compelling evidence to say definitively whether a or ~^a is the case, or iii) some technical or

procedural problem occurred.

A debate may be judged by a vote or poll of some kind (e.g. in Parliament, Oxford Union or a jury)

or it may be judged by an individual (e.g. a judge, a senior doctor or a newspaper editor). The aim of this

thesis, and of related work in the AI literature, is to empower a computer to track and judge a debate and

hence determine the outcome. Most authors believe that such an automated judge should be logical and

methodical, free from arbitrary or random judgements and able to explain why it reached a particular

conclusion. Note that not all AI judges use argumentation or even logic, for example neural networks

can be said to judge outcomes and their inner workings are typically free from logic. They usually also

lack any form of explanation facility to show why a particular conclusion was reached. Judges based on

argumentation are formally introduced in Chapter 2 and revisited in Chapter 7.

Any debate is driven by its knowledgebase, which is a single repository of all of the assumptions

1.1. Problem Statement 15

available to be reasoned with. Within this knowledgebase may be i) domain-specific knowledge (for

example the contents of medical text books), ii) facts or evidence specific to the current case being con­

sidered and iii) world knowledge, which is generally known as common sense information, but which is

often not written down. In addition to the purely logical knowledgebase, a debate may also have access

to metaknowledge, meaning any additional knowledge available about the knowledge in the knowledge­

base. Metaknowledge can include such things as priorities between assumptions, thresholds for evidence

and domain specific ontologies.

1.1 Problem Statement
The problem taken up by this thesis, of debate tracking and judging, was well summarised as long ago

as 1937 by the legal expert Professor John H. Wigmore in the following paragraph.

‘ What is wanted is simple enough in purpose, namely, some method which will enable us to

lift into consciousness and state in words the reasons why a total mass o f evidence does or

does not persuade us to a given conclusion and why our conclusion would or should have

been different or identical i f some part o f that total mass o f evidence had been different.’

(Wigmore, 1937; Twining, 1985)

This quotation draws out two facets of the problem, firstly to track the debate, i.e. ‘to lift into

consciousness or state in words’, and secondly to judge the outcome of the debate, i.e. ‘persuade u s’

or ‘our conclusion ’. In tracking a debate, my view is that the whole debate and nothing but the debate

should be captured in some formal and visible structure. If the whole debate is not tracked, tracking

is incomplete. If something other than the debate is captured, tracking is excessive or inordinate. This

problem thus has five parts or steps, i) the ‘total mass o f evidence’ or knowledgebase, which is the input

ii) the ‘reasons ’ or individual arguments that follow from this evidence, iii) capturing the relevant set of

arguments and their interactions in some formal structure, i.e. ‘some m ethod’ or tracking the debate, iv)

the process of judgement of the motion under debate and v) the output which is ‘our conclusion ’ .

Inherent in this problem are six key challenges, namely:

1. Inconsistency. The evidence is usually inconsistent. Classical logic collapses in the face of incon­

sistency, a phenomena known as ‘ex falso quodlibet’. Anything can be inferred from an inconsis­

tency (including erroneous conclusions). Inconsistency is also useful as it captures the two sides

of the debate around the motion and also around subservient points argued over in the debate.

2. Repetition. Repetition in the evidence and reasons is also common. Such repetition clutters

presentation thereby hampering judgement. More problematic, however, is that any judgement

scheme which analyses the existence of arguments (i.e. existential judges) or counts arguments

(i.e. quantitative judges) can be skewed by repetition to reach a different answer. On the other

hand, repetition can be useful as it provides confirmation which is helpful for resolving inconsis­

tency, filtering out noise and establishing judge outcomes.

1.1. Problem Statement 16

3. Vital arguments excluded. Sufficient or complete versus incomplete - it is necessary to capture

the whole debate including all of the legitimate ways that arguments interact, with the main two

kinds of interaction known as undercut (where one argument attacks or negates the premises of

another argument) and rebuttal (where one argument attacks the claim of another argument).

4. Superfluous arguments included. Necessary or ordinate versus inordinate - nothing but the

debate must be tracked. Anything that is utterly predictable or redundant adds nothing and must

be excluded.

5. Non-monotonic. The knowledgebase can be subject to revision and a different or revised judge­

ment must be possible, as pointed out by Wigmore. I take this challenge as related to the notion of

appeal in courts of law, whereby the total mass of evidence may be augmented or reduced, even in

minor ways. Certainly the legal notion of appeal is broader than just revision of the knowledgebase

as it can also cover errors in due process, which I touch on in Section 7.2.

6 . Computational complexity. The issue of deducing an inference from a set of assumptions is a

computer science problem known to be at least as hard as non-deterministic polynomial time (NP)

problems (Cook, 1971). The computation complexity of argument aggregation is an active area of

research (Eiter & Gottlob, 1995; Dunne & Bench-Capon, 2002; Parsons et al., 2003; Wooldridge

et al., 2006) with a growing consensus that it is even harder than the problems described by Cook.

Thus practical applications may require heuristics to reach approximate conclusions in a reason­

able time. The computational complexity of debate tracking and judging, together with algorithms

and heuristics, are outside the scope of this thesis and left as an area for future research.

These six challenges are not unique to this thesis, but rather are well known in the fields of logic,

mathematics and computer science. This problem of tracking and judging debates is found in a large

number of application areas. These applications fall broadly into the two areas of i) professional debate

and ii) intra-system decision making. Professional debate needs this problem solved particularly in the

areas of law, medicine, journalism, politics and systems engineering. More advanced instances of the

problem occur within systems, such as AI agents, that are involved in perception, learning, planning or

taking action. Given a mass of inconsistent evidence these system may be presented with questions such

as: What do I perceive? Given what I know and what I perceive what do I believe? Given what I believe

what should I do now? What should my plan be? What do we believe? What is our plan? Addressing this

problem of how to correctly track and judge debates is essential so that correct, rather than erroneous,

conclusions can be drawn for these questions. An automated solution is especially needed in areas

where the mass of evidence is large and complex enough to make manual processing (i.e. generating

the complete set of arguments from the given premises, tracking the debate interactions as a whole and

judging the outcome) time consuming and error prone. Consequently, in these situations, automation

ought to save time, reduce errors and render the outcome more plausible and thus dependable.

1.2. M y Solution in the Context o f the Literature 17

1.2 My Solution in the Context of the Literature
This thesis employs a theoretical formal approach and falls within that part of AI known as argumenta­

tion. Such an approach ensures that different implementations will obtain the same results; something

not established by the informal and applied branches of argumentation. Argumentation is one approach

to inconsistency and is found not just in AI, but being logical is also in philosophy and mathematics, dat­

ing back at least to Aristotle. Modem interest in argumentation arises with (Wigmore, 1937; Toulmin,

1958).

In this field there are four main formal approaches to defining an individual argument, namely i)

minimal consistent subset (mincons) arguments following classical propositional logic (Doyle, 1979), ii)

defeasible logic argumentation schemes (Nute, 1988), iii) semi-abstract (Bondarenko et al., 1997) and

iv) fully abstract arguments from (Dung, 1993). I employ mincons (comprising a minimal consistent set

of assumptions, classical logic and an inference or claim), and augment them with a labelled deduction

system (Gabbay, 1991) so as to track the contributions of multiple experts or agents.

Arguments in the literature interact by attacking each other, either with an abstract (Dung, 1993),

semi-abstract (Bondarenko et al., 1997) or a concrete approach. A concrete attack is either a rebuttal or

an undercut (Pollock, 1970). I extend argument interaction by including confirmation, also known as

corroboration, (Wigmore, 1937)), as a core relationship. I extend undercut by generalising the work of

(Pollock, 1970) and (Besnard & Hunter, 2001) to bring undercut closer to professional debate. A minor,

but useful, construct I introduce is the contradiction which is an aggregation of arguments for and against

a claim.

The variety of approaches in the literature to tracking a debate almost all use some form of graph or

tree to show how the arguments in the debate interact. These graphs and trees are directed as attacks are

drawn as edges with an arrow head on them indicating the direction of attack. In trees the direction of

attack is always from leaf towards root. Proposers of formal argument aggregation trees include (Pollock,

1992; Simari et al., 1994; Prakken & Sartor, 1997; Besnard & Hunter, 2001; Amgoud & Cayrol, 2002;

Garcia & Simari, 2004; Dung et al., 2006). In contrast, the more abstract approaches of (Dung, 1993;

Dung, 1995; Bondarenko et al., 1997) can be represented as graphs, but those representations are not

explicitly relied upon in the way that trees are in the other schemes. My analysis suggests that none of

these trees or graphs captures ‘the whole debate and nothing but the debate’. I prove that finding for

one leading tree and show an indication for other trees in the literature. My research finding is that a

category of redundant arguments, which I call reflected arguments, are present in these trees from the

literature, making them inordinate. Some of the trees appear to aim to exclude reflected arguments,

but with excessive success, making them incomplete. The representative tree from the literature I have

picked for detailed analysis is in (Besnard & Hunter, 2001), allowing me to establish several ways that

these argument trees are incomplete and inordinate. I then respond to these issues by proposing a tree

that is both complete and ordinate - the matt opaque contradiction tree or debate tree for short.

Finally, in the literature and this thesis, the outcome or conclusion of a debate is drawn through the

act of judgement. There have been a number of proposals forjudge functions including (Pollock, 1992;

1.3. M y Contributions: Confirmation, Preclusion and Reflection 18

Benferhat et al., 1993), with useful elaborations including those from (Elvang-Gdransson & Hunter,

1995; Prakken & Sartor, 1997; Bondarenko et al., 1997; Besnard & Hunter, 2001; Amgoud & Cayrol,

2002; Garcia & Simari, 2004; Dung et al., 2006). Conceptually, the input to a judge is the debate

tracking argument aggregation, and the output is the debate conclusion. In practice, the input to my

judge functions is i) the motion, ii) the knowledgebase and iii) optional judge-specific metaknowledge.

In this way each unique judge can compute the debate tracking data structure it requires, be that a single

contradiction, a tree, or some other form, prior to then performing its deliberations and outputting the

conclusion. I hold that judges in the literature, whether based on existential or quantitative methods are

likely to give skewed results when applied to inordinate or incomplete trees, demonstrating my point by

a set of examples.

The broad approach of tracking and judging debates found in the literature is applicable to many

areas of professional debate. O f particular potential utility are applications in medicine (Fox & Das,

2000) and law (Prakken, 1997). This thesis suggests the systems engineering applications of design

rationale and design trade-off as particular fruitful ones - building on the work of (Buckingham-Shum,

1994).

1.3 My Contributions: Confirmation, Preclusion and Reflection
In this section I touch on a) the structure of this thesis and b) its novel concepts not covered elsewhere

in the literature. Clearly a central theme running though the majority of the literature on argumentation

is that of attack - where one argument attacks another. The distinction that an attack is either abstract

or concrete is also widespread in the literature, where the abstract approach builds on (Dung, 1993) and

the concrete approach covers most of the rest of the literature. My focus is on the particular form of the

concrete approach that uses minimal consistent subsets and classical propositional logic together with

rebuttal and undercut, as is summarised in, for example, (Besnard & Hunter, 2001) and detailed in my

Chapter 2.

The main point of my thesis is that this form of argumentative attack exhibits a phenomena I call

reflection. I establish, given a knowledgebase of assumptions, plus the attacks and arguments derivable

from it, that the existence of some arguments is utterly predictable from the existence of other arguments.

So, given their prerequisites, reflected arguments always exist. Likewise, I establish that the existence of

some attacks is predictable from the existence of other attacks. I call the predictable arguments reflected

arguments and the predictable attacks reflected attacks, while the unpredictable arguments and attacks I

call direct. I present the case that the direct arguments and attacks are the useful ones and reflected ones

are akin to noise (e.g. in an analogue hi-fi music system) or waste (e.g. in the crafts of woodwork or

sculpture) which should be eliminated or dismissed.

Included within this thesis is an analysis showing that reflection is not unique to this mincon ap­

proach, but rather also exists within other argumentation frameworks and is therefore a more general

problem in the argumentation literature. This analysis looks at the assumption-based argumentation ap­

proach of (Dung et al., 2006). While the semi-abstract approach began with (Bondarenko et al., 1997)

and is often referred to as the BDKT (Bondarenko, Dung, Kowalski and Toni) approach (see for exam-

1.3. M y Contributions: Confirmation, Preclusion and Reflection 19

pie the review of (Prakken & Vreeswijk, 2002)), I have chosen to base my analysis on the subsequent

paper (Dung et al., 2006) as it has slightly evolved its basic definitions to provide a somewhat clearer

description of what they call assumption-based argumentation or ABA for short. I show ABA as being

concrete enough to establish that it allows reflection. I examine one instance of ABA showing that it can

contain reflection; what happens in other instances is an open question. With the fully abstract approach

of (Dung, 1993), however, it is not possible to say whether it does or does not contain reflection. Any

implementation in software of the fully abstract approach that determines what arguments exist and what

arguments attack each other could contain reflection and consequently consideration of the possibility of

reflection in such an implementation would be prudent.

In summary so far, an attack is either concrete or abstract and concrete attacks are either reflected

or direct. This thesis then makes further distinctions as follows. In many places in the literature there is

clarity that a concrete attack is either a rebuttal or an undercut. I am consequently able to show that there

exist reflected rebuttals, reflected undercuts, direct rebuttals and direct undercuts. I analyse the properties

of these reflected and direct functions in Chapter 4. Undercuts can be reflected off other undercuts or off

rebuttals. Likewise rebuttals can be reflected off other rebuttals or off undercuts.

A second theme, in addition to reflection, running through this thesis is that of confirmation; that

arguments can be logically aggregated into sets of arguments all with the same claim. A simple enough

idea in essence, confirmation is introduced, motivated and illustrated in Chapter 2. While confirmation

is definitely not a novel introduction to the literature, see for example (Wigmore, 1937; Twining, 1985;

Amgoud et al., 2004; Reed & Rowe, 2006), I would argue that my presentation and analysis provides a

convenient set o f basic argument aggregation tools not found elsewhere. The heart o f the novelty of this

thesis is the use of confirmation to deepen the analysis of reflection; but first one other distinction.

Just as arguments can attack each other, I establish that confirmations can attack each other. Con­

firmation is employed in professional debate and is useful for reaching sound debate outcomes. Attack

between confirmations can take two forms: undercut or rebuttal. An undercutting attack between con­

firmations I call a preclusive undercut, or preclusion for short. Similarly rebuttal attacks exist between

confirmations, which I call confirmation rebuttals. Chapter 3, introduces the concept of preclusive un­

dercut. When a confirmation is subject to a preclusive undercut, the attack is effectively saying ‘one or

other o f your arguments is wrong', in contrast to the canonical undercut (Besnard & Hunter, 2001) be­

tween arguments which says ‘one or other o f your premises is wrong’. Consequently a use of preclusive

undercuts is for attacking sets of arguments with mutually inconsistent supports. A preclusive undercut

can attack many arguments or it can just attack one. Likewise the attacking confirmation can contain

one or many arguments. Given preclusive undercut and confirmation rebuttal it is also possible to define

confirmation attack with reflected and direct forms.

Combining the notion of attacks between confirmations with that of reflection provides access to

a number of interesting behaviours. I discuss this area of reflected and direct confirmations in Chap­

ter 5. My analysis follows the same pattern as the previous chapter, but on the level of confirmations

rather than on the level of individual arguments. Thus there exist reflected preclusive undercuts, reflected

1.3. M y Contributions: Confirmation, Preclusion and Reflection 20

confirmation rebuttals, direct preclusive undercuts, direct confirmation rebuttals, reflected confirmation

attacks and direct confirmation attacks. A feature of these reflections is that the actual number of re­

flections often does not match what might intuitively be expected. There are two mechanisms involved

that can make the number of reflections more than might be anticipated and a further mechanism that

can lead to the number of reflections being fewer than might be anticipated. Consequently reflections

can be enlarged, reduced or exact. I call the ratio between the anticipated number of arguments and the

actual number o f reflected arguments the reflection scaling factor. Distorted reflections may occur with

different parts of a reflection having different reflection scaling factors. It is also the case that different

kinds of reflection have different possible ranges for their reflection scaling factors.

A growing part of the literature that is not just on attack addresses the question of bipolar frame­

works where arguments can have an assisting or positive relationship in addition to the more common

attacking or negative relationship. My confirmation functions venture into this bipolar territory. I show

that reflections occur with these positive relationships in a similar, but different way from attack. The

remainder of this paragraph introduces reflections of a positive or assisting nature. All of the reflections

described so far have in common that an attack is engendering an attack, causing what is commonly

called reinstatement. I define a nomenclature of a chain of arguments with a head (attacked but not

attacking) and a tail (attacking but not attacked), showing that these reinstatement type reflections have

the reflector at the head of the chain and the reflected argument at the tail. Other kinds of reflection exist

within sets of interacting arguments. I have identified another form where the reflector is at the tail of

chain and the reflected argument is at the head - these I call reflected confirming arguments. As above the

symmetry continues with these reflections existing not only at the level of individual arguments but also

at the level of confirmations. Hence, I also introduce the reflected confirming confirmation. Likewise

these tail-to-head forms show that there exist direct confirming arguments and direct confirming confir­

mations which are free from reflection. These tail-to-head reflections are subject to scaled reflections

and have their own pattern of scaling factors. The final chapter, Chapter 8 , touches on a further form of

assisting arguments and shows that they too can contain reflections.

The last two chapters of the thesis build on the understanding of confirmation, preclusion and reflec­

tion to tackle the questions of how best to track and judge debates. My analysis leads to the conclusion

that reflected arguments are not good candidates or proxies to represent the arguments they are reflected

off. Hence I advocate using only direct arguments within the tracking of debates. Building on my anal­

ysis of trees in the literature, showing them to be incomplete, inordinate and inchoate, I propose the

debate tree to track ‘the debate, the whole debate and nothing but the debate’. The vertices of a debate

tree map to direct contradictions, while the edges map to direct preclusions. Debate trees are finite. In

the penultimate chapter, Chapter 7 ,1 define a judge function that assesses debate trees using quantitative

methods. This judge is the only one I know of that takes reflection into account and is thus, I believe,

likely to give more intuitive results for professional debates than judges skewed by reflection.

The novelty of contributions is high in the middle of the thesis (particularly Chapters 4 and 5) and

lower in the early (Chapters 1 to 3) and late material (Chapters 7 and 8). The utility of the material,

1.3. M y Contributions: Confirmation, Preclusion and Reflection 21

however, rises steadily as the thesis progresses. The key formal definitions are in Chapters 2 through

6 . There is no separate literature review chapter as strong links to the literature exist in almost most

chapters, except for the more novel Chapters 4 and 5 where such links are rare.

An outline system design for a tool to help facilitate professional debates is described in Chapter 8 .

This design covers virtually all of the theory introduced in this thesis. The tool differs from existing tools

in that it automates three things i) construction of arguments from premises, ii) building of the debate

tracking structure (which is a single tree) and iii) judging the outcome of the debate. Layered on top

of this automation is argumentation visualisation, allowing users to understand more clearly the state of

play in the debate tracking and judging and thus participate more actively in progressing the debate.

Chapter 2

Basic Argumentation Framework

2.1 Overview of the Chapter
This chapter formally introduces my basic argumentation framework. The chapter proceeds in six steps

that build on one another, here is a quick overview:

2.1.1 Six Steps to the Basic Framework
Step 1 - Knowledgebase Section 2.2, the initial knowledgebase of labelled assumption formu­

lae, this finite set is denoted A. It may come from multiple experts or agents.

Step 2 - Deductions Section 2.3, the set of everything that can be deduced from the knowledge­

base, denoted deductions(A), contains labelled deduction formulae.

Step 3 - Arguments Section 2.4, those deductions with consistent and minimal premises, are

called arguments and denoted arguments(A). The premises must be consistent to counter the

problem of ex falso quodlibet.

Step 4 - Confirmations Section 2.5, I then perform a further aggregation of all arguments for

each claim. I call these sets of arguments confirmations and denote the set of all confirmations,

denoted 0 (A). I contribute the inconsistent confirmation to the literature.

Step 5 - Contradictions Section 2.6, a further aggregation that I call contradiction identifies the

sets of arguments for and against each claim and is denoted ♦ (A).

Step 6 - Judgement Section 2.7, the judge function provides a ‘useful’ subset of the claims. The

choice of what is useful depends upon the application, but must include resolving inconsistencies.

The judge() function has many possible forms, a number of which are explored in subsequent

chapters.

At the end of the chapter is a comprehensive worked example, Section 2.8, retracing the same six

steps as above, this time with specific formulae. Finally comes the conclusion, Section 2.9.

2.1.2 Context Within the Literature

Steps one, two and three, from the above list of six steps, are broadly shared by many authors, e.g. (Doyle,

1979; Pollock, 1992; Benferhat et al., 1993; Elvang-Gdransson & Hunter, 1995; Bondarenko et al.,

2.2. Knowledgebase o f Labelled Assumptions 23

1997; Pollock, 2000; Amgoud & Cayrol, 2002). The use of labels to formally track and distinguish the

contributions of multiple experts or agents during argument aggregation is a relatively underdeveloped

part of the literature, e.g. (Walton, 1999; Chesnevar & Simari, 2005). The basic ideas of argument ag­

gregation steps four and five are tangentially touched on in the literature, e.g. (Fox et al., 1993a; Krause

et al., 1995; Besnard & Hunter, 2001; Amgoud et al., 2004; Walton & Reed, 2006), but not in the

form stated here. They are sometimes less formally stated, sometimes more formally, however there is

no consensus between argumentation authors on representation, nor on a way to handle multiple experts.

With step six I return to common ground with many authors, e.g. (Manor & Rescher, 1970; Cayrol et al.,

1992; Pollock, 1992; Benferhat et al., 1993; Elvang-Gpransson & Hunter, 1995; Bondarenko et al.,

1997; Prakken & Sartor, 1997; Krause et al., 1998; Bourne & Parsons, 1999; Fox & McBumey, 2002;

Konieczny & P6rez, 2002; Dung et al., 2006). While there is consensus on the conceptual goal there is

little consensus on nomenclature nor on how to get there. I will show that my framework provides a) a

formal notation for subsuming the past work of many authors and b) a convenient way of exploring fresh

and useful ground for future Al research and applications in the area of inconsistency.

Readers may feel that the framework of this chapter is overly complex, however it helps to simplify

the work of subsequent chapters. This chapter, in isolation, adds nothing significant to the literature; its

value will become clear later in the thesis.

2.2 Knowledgebase of Labelled Assumptions
My approach is to use classical deduction and augment it with the labelled deductive system (LDS)

approach of (Gabbay, 1991; Gabbay et al., 2000). My framework is limited to propositional calculus,

leaving the complications of first order predicate calculus, higher order and other logics as areas for

future research.

Ordinary set theory and notation are also employed, in particular: if X and y are arbitrary sets then

p (X) is the power set o f X \ X x y is the Cartesian product of X and y \ \X\ is the cardinality of X , X \ y

is set difference giving elements that belong to X but not to y \ and 0 is the empty set. N is the set of

natural numbers (the non-negative integers), R is the set of real numbers and N+ is the set of natural

numbers greater than zero. _L is inconsistency and T is tautology. I now use a recursive definition to

define my starting point, the language £.

Definition 2.2.1. I employ classical propositional logic in defining a language C. Let lower case Greek

letters be formulae a, 0 , 1 , . . . in £. I assume £ contains a finite set o f atoms (or equivalently atomic

formulae). Furthermore let C use the standard classical connectives, -> negation, A conjunction, V

disjunction and —> implication. I f a is a form ula then -i a is also a formula. I f a and 0 are form ulae

then a A 0, c* V 0 and a —► 0 are also formulae.

Although the number of atomic formulae is finite, the classical propositional proof rules, such as

VI and Al, ensure that any number of compound formulae can be built up and thus that the language

C is infinite. Consequently, £ allows formulae of arbitrary complexity thereby providing the set of all

possible formulae. The biconditional symbol *-+ can also be constructed following the standard definition

2.2. Knowledgebase o f Labelled Assumptions 24

a <-> 0 iff a —> 0 and 0 —> a . I use I- as classical deduction with the standard classical propositional

proof rules.

Example 2.2.1. Formulae. a , 0 , 7,aV<5, 7tA->A, ~i(CA(C —► £)),ujV pV<jVot,0 ~ ̂ - ' (C A (C ~ >

£) A 7r A (-i7T V £)) , . . . ^ C .

Three kinds of labels are used in this framework for i) assumptions, ii) deductions and iii) confir­

mations.

Definition 2.2.2. Labels. Let A = {a, b, c , . . . } be assumption labels, B — p (A) be deduction labels

and C = p{B) be confirmation labels.

I use the following nomenclature: B = {0, {a}, {&}, {c}, {a, &}, {a, c}, {6 , c}, {a, 6 , c } , . . . , A }

with equivalent set names of B = {0, / , J , i f , L, M , N , O , . . . ,.4}. Consequently

C = { V) , { (t l } , { I } , { J } , { K } , { I , J } , { I , K } , { J , K } , { J , K , L } , . . . , { A } , B } , with equivalent set

names of C — {0, {0}, S, T , U, V, W , X, Y , . . . , B) . This detailing of the collection C is partial as many

of its members contain 0. Where necessary I also use expansions such as X = { / i , Y =

{ J i , . . . , J m} to show the deduction labels that are members of a confirmation label. All of these labels

are unique as they are set members. The empty set is a necessary member of B for labelling tautologies

and of C for showing the absence of evidence. It follows that 0 ^ A , i.e. assumption labels can never be

the empty set.

Definition 2.2.3. Labelled formulae I f a G C is a formula and a e A is an assumption label, then

a : a is a labelled assumption. I f 0 e C is a formula and I e B is a deduction label, then 1 : 0 is a

labelled deduction. I f 0 6 C is a formula and X G C is a confirmation label, then X : 0 is a labelled

confirmation.

It follows that if 0 e £ is a formula and b € A is an assumption label, then b : 0 is a labelled

assumption. If I e B is a deduction label, where I = {6}, then 1 :0 and {6}: 0 are labelled deductions. If

X e C is a confirmation label, where X = { /} then X : 0 , { /} : 0 and {{&}}: 0 are labelled confirmations.

Hence 1 : 0 = {6 } : 0 and X : 0 = { /} : 0 = {{6 }} : 0. However b: 0 ^ 1 : 0 ^ X : 0 as the first is a

labelled assumption, the second is a labelled deduction and the third is a labelled confirmation.

Example 2.2.2. Labelled formulae, a : a , b : 0 , c : 0 , d : 0 A tt are labelled assumptions. Let I = {a}.

So I : a , {6} : 0 , {a, b} : a A 0, {a, c} : a A 0 are labelled deductions. Let X = { /} . Thus X : a , { / } :

M W } : 0 , {{a, i)} ,{o ,c}}:a A (3 are labelled confirmations.

Clearly these labels have an algebra which could be explored in more detail. I will not be ma­

nipulating the labels directly, but rather have them follow, or track, the processes of classical logic and

argument aggregation as described below. I also require some housekeeping functions to isolate the parts

of labelled formulae. The label function returns just the label and not the formula.

Definition 2.2.4. Let a : a be a labelled assumption, I : a be a labelled deduction and X : a be a labelled

confirmation. The label function, denoted labelQ, returns just the label o f an assumption, deduction or

2.2. Knowledgebase o f Labelled Assumptions

confirmation, such that:

25

label(a:a) = a. Iabel(/:a) = I . label(X:a) = X.

Strip does the opposite of label, giving just the formula and not the label. Clearly here a € A is an

assumption label, I & B is a deduction label and X € C is a confirmation label.

Definition 2.2.5. Let a : a be a labelled assumption, I : a a labelled deduction and X : a a labelled

confirmation. The s trip functions remove the labels from labelled assumptions, labelled deductions and

labelled confirmations, such that:

stripAssumption(a:a) = a.

stripDeduction (I: a) = a.

7 / X ^ 0

then stripConfirmation(X:a) = a ,

otherwise stripConfirmation(X:a) = 0.

I will be exploring confirmations labelled with the empty set in Definition 2.5.2 et seq. (where I call

them unfounded confirmations). Given the strip functions for single formulae, I now extend them to sets

of formulae.

Definition 2.2.6. Let $ be a set o f labelled assumption formulae, a set o f labelled deduction form ulae

or a set o f labelled confirmation formulae. The following strip functions remove the label or labels from

sets o f labelled formulae, such that:

stripAssumptions(^) = (stripAssumption(a:a) | a : a G $ } ,

where $ is a set o f labelled assumptions.

stripDeductions(^) = {stripDeduction(/:a) \ I : a e ^ } ,

where is a set o f labelled deductions.

stripConfirmations(T) = {stripConfirmation(X:a) | X : a € T },

where T is a set o f labelled confirmations.

If strip is applied to a set that already lacks labels, then the result is the same set, so e.g.

stripDeductions(stripDeductions(<I>)) = stripDeductions(^). If any member of T is labelled with the

empty set then that stripped confirmation is the empty set and the rest of e.g. stripDeductions(T) is

unaffected as, of course, for any set A U 0 = A. Now for a simple example of stripping off labels.

Example 2 .23 . Stripping off labels. Let {a : a ,b : 0 } be a set o f labelled assumption formula, {{a} :

a , {6} : /3} be a set o f labelled deduction formulae and {{{a } } : a , {{b}} : (3} be a set o f labelled

confirmation formula. It thus follows that stripAssumptions({a : a , 6 : /?}) = stripDeductions({{a} :

a , {6}:/?}) = stripConfirmations({{{a}}: a , {{& }}:/3}) = {a,/3}.

2.2. Knowledgebase o f Labelled Assumptions 26

In the above example, set names could be substituted for the sets, that is for the deduction I = {a}

and the confirmation X = { /} = {{a}}. The resultant stripped formulae would be unchanged as the

labels are removed regardless of whether they are sets or set names.

A popular starting point in the argumentation literature is to assume a knowledgebase of formulae

that can be used as assumptions in arguments. I have the same starting point, with the addition of unique

labels to the assumption formulae.

I will use the upper case Greek letters to denote possibly-infinite sets of labelled formulae

ft, 'I', <I>, T , I will assume the initial knowledgebase, denoted A, to be finite, where all the members

of A are labelled assumption formulae. Thus I have fixed the definition of A to be the starting-point

knowledgebase of labelled assumptions, a convention that holds throughout this thesis. If the nature of

the set o f labelled formulae is different then a different capital Greek letter from A will be used. In some

examples in this thesis I also explore the effect of changing or adding to the contents of A.

Proposition 2.2.1. Let A b e a knowledgebase o f labelled assumption formulae.

I f |stripAssumptions(A) | < |A|

then there exists a : a , b : 0 e A s.t. a : a ± b:(3, stripAssumption(a:a) = stripAssumption(6:/?).

Proof If stripping the labels off A reduces its cardinality then at least two members have

merged. So if |stripAssumptions(A)| < |A | it is because an A ,B e A with A ^ B have be­

come stripAssumption(A),stripAssumption(B) e stripAssumptions(A) with stripAssumption(A) =

strip Assumption (.£?). A labelled formula a : a has only two parts, label a and formula a , so if the

label is removed only the formula remains. Therefore it must be the case that if a : a / b : (3, but

stripAssumption(a: a) = stripAssumption(6: /3) then a = /3. Hence the cardinality reduction. □

So as 0 ^ A and 0 is not a formula, if |strip Assumptions(A)| < |A | then |A | > 2 .

P roposition 2.2.2. Let A b e a knowledgebase o f labelled assumption formulae.

0 < |stripAssumptions(A)| < |label(A)| = |A | < oo.

Proof. Labels in the knowledgebase are by Definition 2.2.2 unique so |label(A)| = |A |. A is by

definition finite and can be empty, so 0 < j A | < oo. Formulae in the knowledgebase have no

uniqueness constraint so |stripAssumptions(A)| < |A |. Hence the number of formulae in A, i.e.

|stripAssumptions(A)| is less than or equal to the number of labels in A, i.e. |stripAssumptions(A)|,

hence |stripAssumptions(A)| < |label(A)|. □

The unique assumption labels thus allow otherwise indistinguishable formulae to be distinguished.

The combination of unique label and non-unique formula allows multiple occurrences of the same for­

mula in the same set. This non-uniqueness, or repetition, of formulae is an interesting feature that is

explored throughout the thesis. It is used, for example, to allow the observations of two witnesses a and

b, who both saw the same event o , to be denoted as a : a and b : a . The assumption labels on a set of

labelled deductions may be non-unique, as a natural consequence of classical deduction, for example,

2.3. Propagating Labels During the Process o f Deduction 21

the assumption a : a A /3 yields deductions {a} : a and {a} : (3. An area for further research is to use a

part of each assumption label to track which agent or expert originated that assumption.

2.3 Propagating Labels During the Process of Deduction
This section on labelled deduction addresses the behaviour of labels during the process of classical

deduction. I propagate the assumption labels through the process of deduction to give labelled deduction

formulae. While I could have created an augmented form of b , such as b * , to propagate labels, the

notation is lighter if I simply extend the standard definition of I- in the style of (Gabbay, 1996).

Definition 2.3.1. Label propagation. Let the standard definition o f I- be extended so that b propagates

labels, such that:

{stripAssumption(ai : a i) , . . . , stripAssumption(an :a n)} h [3

iff { a i : a i , . . . , a „ : a n} b { a i , . . . ,a„}:/3 , where n > 0 .

I now show this propagation of labels during the process of deduction using a set-based notation,

an approach I will continue to use throughout the thesis. Here is the set of all deductions which contains

every I :a , J:(3, K : 7 , . . . that can be deduced from A.

Definition 23.2. Let A be a knowledgebase o f labelled assumption formulae. The set of labelled

deductions, denoted deductions(A) that can be deduced from A using classical logic is:

deductions(A) = { I : a | A b I : a } .

The number of assumptions for a deduction is n, where n = 0 for tautologies. Although later in

this thesis unfounded confirmations are discussed, there are no unfounded deductions, nor unfounded

arguments. Unfounded means that there is no evidence to know whether a is true or false. Unfounded

confirmations always exist for every formula in C. The last two deductions in the following example are

tautologies; I call them tautological deductions.

Example 23.1. Deductions and tautologies. Let A = {a:a , b:a —* 0 } and I = {a}, J = {a, b} then

it follows that {a} : a , {6 } : a —> /?, {6 } : ->a V (3, {6 } : V (3 V 7 , {a, b} : (3,1: a , J : (3,0 : a V ->a: £

deductions(A).

The only deductions which are labelled with the empty set are where the deduced formula is a

tautology. No assumptions are needed to deduce a tautology; some authors write a tautology specifically

with no set of supporting assumptions, e.g. just b a V -<a. All of the deduction labels, that is members

of the set B, are useful, with the empty set label having the use of labelling tautologies. Note also that

the strip function behaves as normal for the case of stripping a deduction where the label is the empty

set, i.e. stripDeduction(0:c*) = a.

In all cases the set of deductions is infinite, whether A b 1 or A b 1 , as I now show.

Proposition 2.3.1. Let A b e a knowledgebase o f labelled assumption formulae.

|deductions(A)| = 0 0 .

2.3. Propagating Labels During the Process o f Deduction 28

Proof. Even if A = 0 ,0 b T so there are an infinite number of tautologies such as 0 : a V ->a, 0 :

a V ->a V (3 V -1/0,0 : a V -ia V 7 , . . . £ deductions(0). Furthermore as additional formulae are added to

A, beyond 0, they can only increase |deductions(A)|. So in all cases |deductions(A)| = oo. □

If the knowledgebase is inconsistent then at least one deduction will have inconsistent premises.

Example 2.3.2. Let A = {o : (f>, b : ?/>, c : -<V> A {<f> —> a)}. Certainly there are many deductions from

A with consistent premises, such as {a ,c} : a , {c} : However because there exists at least one

deduction with inconsistent premises, {6, c}:tp A (-i </> V a), it follows that A t- 1 .

I now need a helper function to give the assumption formulae represented by a deduction label.

Whilst defining this function I make it general enough to work with either deduction labels or confirma­

tion labels.

Definition 2 3 3 . Let A be a knowledgebase o f labelled assumption formulae, I be a deduction label

and X be a confirmation label. The formulae function, denoted formulae(7, A), obtains the labelled

assumption formulae that are labelled by I, from A, such that:

formulae(7, A) = {a :a | a £ I a n d a :a £ A }.

Similarly the formulae function formulae(X, A) obtains the labelled assumption formulae that are

labelled by the confirmation label X, from A, such that:

formulae(X, A) = { a : a | a g 7 ,7 £ X and a : a £ A }.

Example 2 3 3 . Formulae function. Let {a : a , h: a —» (3, c : £} C A, then {a, b} :(3 £ deductions(A).

Let I = {a,b}, then I : (3 £ deductions(A). Therefore formulae(7, A) = {a : a ,b : a —► (3} and

stripAssumptions(formulae(7, A)) = {a, a: —► (3}. While c : (£ A it is not in the formulae needed fo r I.

So now given the formulae helper function I can establish the property that if the knowledgebase is

inconsistent then at least one deduction will have inconsistent premises.

Proposition 23 .2 . Let A b e a knowledgebase o f labelled assumption formulae.

I f A b _L then there exists an I : a £ deductions(A) such that formulae(7, A) b ±.

Proof. deductions(A) is the set of all possible deductions. Any $ C A can be the premises of a

deduction. Thus at least one deduction will have inconsistent premises $ b _L given A b _L. So given an

inconsistent knowledgebase, there exists a deduction I :a £ deductions(A) with inconsistent premises,

that is <J> = formulae(7, A) C A with formulae(7, A) b i , □

If the knowledgebase is inconsistent then every formula possible in the language C can be inferred.

This is ‘ex falso quodlibet’, from falsehood anything follows, i.e. {ip, b <fi, also commonly known

as the principle of explosion.

Proposition 2.3.3. Let A be a knowledgebase o f labelled assumption formulae.

I f A b 1 then stripDeductions(deductions(A)) = C.

2.4. Arguments from the Knowledgebase 29

Proof. Consider A = {a : c*, b : ~>a},I — {a, 6 }. So by disjunction introduction it follows that

deductions(A) will contain at least the following members: {a} : a , {6 } : { 6 } : ->a V 7 . Now

apply disjunctive syllogism on { a } : a , {&}: ->a V 7 to see that / : 7 € deductions(A). Here 7 could be

any formula 7 £ C so given a A h _L it follows that stripDeductions(deductions(A)) = C. □

The formalisation of assumptions without labels renders confirmation invisible, as

{a} U {a} = {a}. I make these multiple occurrences of a distinguishable through the use of labels:

{ a : a } U {6 : a } = { a : a , b : a} , which is my primary reason for using labels. In the related situation,

{c*} U {->a} = {a , ->a}, contradictory formula are visible without the use of labels. A set of labelled

formulae can have a formula and its negation as members and thus be inconsistent. For more information

on labelling of formulae see chapter five of (Gabbay, 1998) or in greater detail (Gabbay, 1996; Gabbay

et al., 2 0 0 0).

A second reason for using labels is to support an explanation feature, so that the user can see how

a certain conclusion was reached. The set of formulae used to deduce a formula, 0 , is known as the

‘provenance’ of 0 . The user can examine the label to see the provenance. The proof rules used however

cannot be directly seen by this approach, a constraint which is acceptable for most applications. Note that

while a set of proof rules that imply a deduction can be determined, it is not always possible to determine

the proof rules actually used. For example, one route might be via modus ponens and another via modus

tollens. A third benefit o f labels is that they can track which agent contributed which formulae.

2.4 Arguments from the Knowledgebase
Arguments are a special case of deductions. All arguments are deductions, but not necessarily vice

versa. Deduction labels are also used as argument labels. There are no unfounded arguments, but there

are tautological arguments. The strip function works for arguments as it does for deductions. I now

explain the motivation and formalisation for arguments.

Not all deductions are sensible or useful, from the perspective of practical debates. Two types of

deductions that are not useful are i) where the premises are inconsistent and ii) where the premises are

not the minimal subset of A necessary for the deduction. As the knowledgebase may not be consistent,

it is important to avoid the classical logic problem of ‘ex falso quodlibet’.

Example 2.4.1. Ex falso quodlibet Let A = { a: a , b : -iq}. The following deductions can be inferred:

{ { a } : a , {a} : a V / 3, {a, 6 } : ->a A (a V 0), {a, 6 } : 0 } £ deductions(A). So from an inconsistency purely

in a, 0 is derivable. Thus out o f inconsistency anything can be inferred.

I therefore follow the approach of reasoning with minimal consistent subsets (which is a standard

approach in much of the literature, e.g. (Doyle, 1979; Benferhat et al., 1993; Elvang-Gdransson &

Hunter, 1995; Besnard & Hunter, 2001; Amgoud & Cayrol, 2002)) and augment it with label propa­

gation. Arguments based on this minimal consistent subset approach are quite commonly referred to as

mincons.

2.4. Arguments from the Knowledgebase 30

Definition 2.4.1. Let A be a knowledgebase o f labelled assumption formulae. The labelled consistent

subsets o f A , denoted consistent (A) are:

consistent(A) = {II | II C A and II ¥■ ± } .

I now define the set of all of the arguments, I:a, J :0, K : 7 , . . that follow from A:

Definition 2.4.2. Let A b e a knowledgebase o f labelled assumption formulae. The set o f labelled argu­

ments that can be deduced from minimal consistent subsets o f A , denoted arguments(A) is:

arguments(A) = { I : a | II G consistent A) and II b I : a and

(there does not exist J such that J C I and II b J :c*)} .

I call any I : a G arguments(A) an argument for a derivable from A and I call a the claim of that

argument, unless a is a tautology. The label on an argument here is a deduction label that tracks a single

minimal consistent set of assumptions for an argument. I call the set of assumption formulae identified

by the argument label the support of the argument. Not all deductions are valid arguments; they may

not have consistent or minimal supports.

Example 2.4.2. Inconsistent premises. Let A = { a :a A ->(a —» 0), b :a —> 0}. Thus { a :a A - '(a —>

0) , b : a —► 0} b {a,b} : 0 is a valid deduction but not a valid argument as the set o f assumptions is

not consistent. Clearly {a : a A - i (a —> 0) , b : a —> 0} b _L. Thus {a, b} : 0 G deductions(A), but

{a, 6 }: 0 & arguments(A),

I now give an example of valid arguments, showing the situation of multiple experts.

Example 2.43. Argument, minimal premises. Let A = {a : a , b : a —► 0 ,c : a —> 0}. Then

{a, 6 } : /?, {a, c } : 0 G arguments(A). However {a, b , c } : 0 # arguments(A) as the set o f assumptions is

not the minimal required to deduce 0.

This example may be interpreted as one expert contributing b : a —* 0 and the second expert

c : a —► 0. Thus there are two valid arguments for 0. This situation of multiple experts is akin to

that of knowledgebase fusion. If each expert is equated to an original knowledgebase, then the set

arguments(A) could represent the fusion. However for arguments(A) to always be consistent a further

level of judging is needed, as is discussed at the end of this chapter and in subsequent chapters. In

merging the knowledge of multiple experts it is possible that something is learned or deduced that is

not known to any expert individually. In the above example, ‘a’ could be viewed as a third expert

meaning that 0 was not known to any of them prior to pooling, but became known after the fusion. To

consistently track which expert contributed which formulae would require a more sophisticated labelling

scheme, such as a 1, a 2 , . . . for one expert and 61, 62, . . . for another.

2.4.1 Catenate Inferences

Some schemes for describing arguments, e.g. (Walton, 1989; Gordon & Karacapilidis, 1997; Verheij,

2001), have the notion of intermediate conclusions, so that more than one argument is involved in some

2.4. Arguments from the Knowledgebase 31

kind of sequence in order to reach a final conclusion. The paper (Fox et al., 1993b) seeks a ‘complete

record of the argument structure’, which from their context appears to be a reference to the same notion

of a sequence of arguments.

In 1930, Wigmore informally introduced this notion of connected sequenced arguments calling it

‘catenate inference’ (Wigmore, 1937; Twining, 1985). The following definition of catenate inference

shows it to be basically just the cut property of classical logic. To tie better to his informal logic I present

it without reference to labels or arguments. As cut is well known, no formal definition or proof is needed:

Let T be a set of unlabelled assumption formulae and let C T .

If ($ h (3 and ({/?} U \&) 1- a) then ($ U \&) I- a .

For this discussion, I call the antecedent, i.e. the left hand side ($ I- 0 and ({ / ? } U ty) h a) , the

sequence of inferences and (3 the intermediate conclusion. Furthermore, I call the consequent, i.e. the

right hand side ($ U \D) h a , the catenate inference and a the final conclusion. Although written here

with just two inferences in the sequence, cut could be applied repeatedly to create sequences of arbitrary

length. The example below illustrates catenate inference:

Example 2.4.4. Catenate inference. Let A = { a : 7 , 6 : 7 —> (3,c:(3 —> a } . Thus { a ,6} : /3, { a ,6 , c } :

a e arguments(A). Here {a, b } : j3 is the intermediate conclusion, and {a, b , c } : a the final conclusion.

In my nomenclature, {a, b, c} : a also captures the catenate inference. However, to be able to write the

sequence o f inferences as two separate steps would require a slightly different notation from mine. The

challenge is that fo r members o/arguments(A) items to the left o f the colon must be assumption labels,

not a mix o f assumption and deduction labels.

Catenate inferences are also unnecessary for documenting practical arguments as my label notation

provides ‘a complete record of the argument structure’ as sought by (Fox et al., 1993b). Thus developing

a notation that mixes assumption and deduction labels to the left of the colon is thus, I argue, unnecessary.

There is a problem with catenate inference in that they allow inconsistent reasoning as I now show:

Example 2.4.5. Inconsistent catenate inference. Let A = { a : -17 —► (3, b : ->7 , c : (-> 7 A a) A ->/?}. So

clearly {a, & }:/?€ arguments(A). Let ^ = { a : ->7 —► (3,b: —>7 } C A , = { c : (-> 7 A a) V ->/3} C A.

Thus $! - / ? , i.e. the {a, 6 } : (3 € arguments(A), and it follows that ({/?} U V&) I- a is a valid catenate

inference. The problem comes in that $ U I- _L. Consequently while {a, 6 , c} : a e deductions(A)

is a valid deduction, the point is that the final conclusion {a, b,c} : a £ arguments(A) is not a valid

argument. Thus (a , b , c } : a is an inconsistent catenate inference.

It is also possible for the catenate inference not to be an argument because it is not minimal. My

framework, in contrast, does not permit such inconsistent or non-minimal reasoning, making it perhaps a

better match to the goals of professional argumentation. Consequently I choose not to adopt the approach

of (Walton, 1989; Gordon & Karacapilidis, 1997; Verheij, 2001; Wigmore, 1937; Twining, 1985), but

instead opt to employ the approach of putting all of the assumptions of a catenate inference into a single

argument support.

2.4. Arguments from the Knowledgebase 32

2.4.2 Argument Properties
I now discuss some of the properties of arguments. Essentially this whole thesis is about properties of

arguments, thus here I touch on a few of the most basic. All arguments are deductions, but not necessarily

vice versa.

Proposition 2.4.1. Let A b e a knowledgebase o f labelled assumption formulae.

arguments(A) C deductions(A).

Proof. deductions(A) is just classical deduction plus the propagation of labels, which just tracks the

assumptions used. arguments(A) is deductions(A) plus two more conditions, consistency and mini­

mality. So all arguments are deductions. Let I : a € deductions(A). If formulae(/, A) h _L then

I :a & arguments(A). Thus not all deductions are arguments. The = in C is necessary as there exist A,

e.g. { a : a } where no deductions violate the two constraints of arguments. □

How many arguments can be derived from any given A, where A is finite? The cardinality of the

set arguments(A) is infinity, as shown in the following proposition.

Proposition 2.4.2. Let A b e a knowledgebase o f labelled assumption formulae.

|arguments(A)| = oo.

Proof. The set o f arguments is infinite because even if A = 0, then there are an infinite number of

tautologies A h T that follow, such as A I- 0 : a V ->a, A I- 0 : a V ->a V £ V - i£ ,. . . and so on ad

infinitum. Here the support { o : a} in all cases is consistent and minimal. Adding formulae to A would

simply make |arguments(A)| even larger. □

As the set of arguments is always infinite, while A is by definition finite, it follows that A can never

be closed under argument. I give an example of this infinity.

Example 2.4.6. Infinity of arguments. Let A = {a : a , b : (3}. Conjunction introduction adds an

infinite number o f formulae, such as {{a} : a , {a, b} : a A /3, {a} : a A a , {a, 6} : a A (3 A a , {a} :

a A a A a , . . . € arguments(A). Disjunction introduction also adds an infinite number o f claims,

including { a } :a , { a ,6} :a V /3, { a } :a V a , { a ,6} :a V /5v 7 , {a}:aV <5v £ , {a} :aV<5v£vAV^zVi/>V<;,. . . €

arguments(A).

The members introduced by the disjunction introduction rule are constrained by the set o f assump­

tions. However the members introduced by VI are constrained only by the language C and not by A.

Some readers might think that claims introduced by these rules are a kind of noise or nuisance, however,

as will be shown in Chapter 3 on undercuts, a number of them are particularly useful.

While the overall set o f arguments is infinite, for a specific claim it is finite. To prove this cardinality

matter first requires two helper functions and a new definition to isolate just the arguments for one

formula. Truncate delivers the nearest integer i below any positive real number r . The output is always

i > 0 .

2.4. Arguments from the Knowledgebase 33

Definition 2.43 . The truncate function, denoted trunc(r), is such that: i = trunc(r), where i e N, r e

* < r, (i + 1) > r am/ r > 0.

A standard result in discrete mathematics is the number of combinations of n objects taken k at a

time, with order being irrelevant. The factorial function, n!, has the standard definition n! = n • (n — 1) •

 1 , where • is multiplication.

Definition 2.4.4. Let t, n € N. The combinations function, denoted combinations(n, i), gives the num­

ber of arrangements of a set of n objects, taken i at a time in a given order.

n\
combinations(n, i) = ^r.

i! • (f i — t)!

All the subsets o f a set, e.g. <J>, that is the power set of $, denoted p ($) , when ordered via subset

inclusion can be drawn as a lattice with the complete set, $, at the top of the lattice and 0 at the bottom.

In between the top and the bottom is the body of the lattice holding all the other subsets o f $. See the

example of Section 2.8 to see a visually laid out lattice (akin to a Hasse diagram of order theory). The

widest part of the lattice for an even $ contains subsets with a cardinality of |$ | + 2 ; for an odd $

there are two widest rows and the truncate function, trunc(), is needed. While I do not employ such an

ordering in my definitions, the notion of lattices is informally helpful for visualising the characteristics

of a power set.

Definition 2.43. The mid lattice function, denoted midLattice($), is the cardinality of the largest subset

of subsets of $ in which none of the members are strict subsets of other members.

midLattice($) = combinations(|$ |, trunc(|$ | -4- 2)).

If the power set o f $ was ordered by subset inclusion then this function delivers the number of

members in the largest horizontal line across the centre of a lattice of the power set o f $. If |A | = 5

then midLattice(A) = 10. Or if | A | = 6 then midLattice(A) = 20. Given these helper functions, I can

now return to the questions o f cardinality. Only for a rare A does stripDeductions(arguments(A)) = a ,

however for any A to see just the arguments for a , leaving out those for j3,7 , 7r , . . . I need the following

definition.

Definition 2.4.6. Let A be a knowledgebase of labelled assumption formulae and let a G C. The set of

arguments for a, denoted arguments(a, A), is such that:

arguments(a, A) = {A e arguments(A) | stripDeduction(A) = a } .

The cardinality of the set of arguments for just one claim is:

Proposition 2.4.3. Let A be a knowledgebase of labelled assumption formulae and let a € C.

0 < |arguments(a, A)| < midLattice(A).

Proof It could be that there are no arguments for a in a given A , if a & stripDeductions(arguments(A)),

so for that A, arguments(a, A) = 0 and thus 0 < |arguments(o:, A)|. Or it could be that every $ C A

2.4. Arguments from the Knowledgebase 34

is such that there exists an argument I : a in arguments(a, A), where formulae(/, A) = $. Let one of

these subsets be denoted C A where there exists an argument J : a in arguments(a, A), such that

formulae(J , A) = Not all o f these subsets, $ C A, VP C A, would yield valid arguments as some

of them would be subsets of others, i.e. if 4> C \P, and thus not be minimal. The maximum number of

subsets of A that are not subsets of each other are thus given by the midl_attice() function. Consequently

|arguments(a, A)| < midLattice(A). □

In stripping labelled-arguments labelled by the empty set the behaviour is that the label goes and

the claim (a tautology) remains, as shown in the following example.

Example 2.4.7. Tautological argument Let 0: a G arguments(A) be a tautological argument. Then

stripDeduction(0 :a) — a and a h T . Furthermore i f A = 0 then fo r every I : a G arguments(A) it is

the case that a I- T .

Proposition 2.4.4. Let A b e a knowledgebase o f labelled assumption formulae.

stripAssumptions(A) C stripDeductions(arguments(A)).

Proof. For all a : a G A it follows that {a}:a G arguments(A) and {a}:c* V [3 G arguments(A).

For all a G stripAssumptions(A), there exists a label b such that {6} : a g arguments(A)

and {6} : a V (3 G arguments(A). Therefore for all a G stripAssumptions(A) it follows that

a G stripDeductions(arguments(A)) and a V (3 G stripDeductions(arguments(A)). But, for all

a G stripAssumptions(A), it is not necessarily the case that a V /3 G stripAssumptions(A). Even if A = 0

it follows that arguments(A) will contain innumerable tautologies so therefore stripAssumptions(A) C

stripDeductions(arguments(A)). D

The majority of authors using mincons write an argument as (<f>, a) , (or a similar notation using

square brackets instead of angle brackets) where $ is a minimal consistent set of formulae implying a ,

i.e. $ is the support and a the claim. All (4>, a) can be written as I : a , however the converse does not

necessarily hold as my notation allows multiple occurrences of a formulae in A. Thus:

If then I :a , where $ = formulae(7, A).

Another simple feature is that some arguments are reflexive arguments, as defined below (which is

different from reflected arguments in Chapter 4). My use of the word reflexive here is conceptually, but

not formally, the same as the many uses of the term in grammar, mathematics and computer science. In

the following definition / \ provides the conjunction of a members of a set of formulae. Intuitively an

argument is a reflexive argument iff the conjunction of its support equals its claim, or more formally:

Definition 2.4.7. Let A be a knowledgebase o f labelled assumption formulae and let I : a G

arguments(A). I call I .a a reflexive argument iff

stripDeduction(7: a) = stripAssumptions(formulae(label(7: a) , A)).

2.5. Introducing Confirmation 35

With classical logic as the set of inference rules, reflexive arguments always exist, so if o : a G A

then {a} : a G arguments(A). If the support is only one formula then the conjunction is immaterial,

however, if |formulae(label(/:a), A)| > 1 the / \ is necessary.

2.5 Introducing Confirmation
Now that I have established the set of arguments, I need to aggregate together the ones that are for

the same claim - which I then call a confirmation. This section formally defines the confirmation as

the first novel (albeit simple) idea of the thesis. I put that this formalisation of confirmation is novel

relative to the formal argumentation literature; the concept has been present in parts of the informal

argumentation literature and in debate in general since at least the 1930s (Wigmore, 1937; Twining,

1985). The argumentation diagramming software tool, Araucaria, for example, building on the work of

Wigmore, uses a closed triangular symbol to represent a confirming argument (Reed & Rowe, 2006).

The formalisation of confirmation becomes my launching off point for discovering a number of thought-

provoking properties of argumentation and debates. I start by defining a single confirmation and then go

on to define various sets of confirmations.

Definition 2.5.1. A single confirmation is o f the form X : a, where a € £ is a formula and X G C is a

confirmation label and each I E X i s such that I : a G arguments(A).

A confirmation label, X = { / i , . . . , 7n }, thus tracks a set of arguments for a single given claim. By

definition, a confirmation label does not necessarily track all arguments for a claim, just some of them,

as I go on to explore. The number of arguments in a confirmation can be as few as zero.

Proposition 2.5.1. For all a , {0} :a is a confirmation, iff a \~ T .

Proof {0}: a means that the support for the argument for a is the empty set, i.e. that it needs no support

and therefore a is always true, i.e. a I- T is a tautology. Thus if {0} : a is a confirmation then a h T .

Now starting with a is a tautology posit two arguments I : a and J : a where I ^ J . Clearly 7 = 0

as 0 H T . If J ^ 0 than J would not be minimal and hence J : a not an argument. Therefore such a

J : a cannot exist and it must be the case that {0} : a is a confirmation. So if a \~ T then {0} : a is a

confirmation. Consequently for all q , {0}: q is a confirmation, iff a I- T . □

Definition 2.5.2. A confirmation o f the form { /} : a is called a self confirmation. A confirmation o f

the form 0 : a is called an unfounded confirmation. A confirmation o f the form {0} : a is called a

tautological confirmation.

In addition to these three special cases for labelled confirmations, coming shortly in Section 2.5.1,

is a fourth, the inconsistent confirmation. A self confirmation means that there is only one argument

for a . In normal English it would not be called ‘confirmation’, however I call it that as it is clearly a

logical member of the family of confirmations. Unfounded means that there is no evidence to know

whether a is true or false, or in other words there are no arguments for a . I will come on to show the

role played by unfounded confirmations within various contradictions. Tautological confirmations such

2.5. Introducing Confirmation 36

as the confirmation {0} : a V ->a always exist. A tautological confirmation is a self confirmation of a

tautological argument; it needs no assumptions to prove its claim.

I now define the confirmations function. While Definition 2.5.1 gives the form of a single confir­

mation, Definition 2.5.3 introduces the notion of a set of confirmations. I employ Q here as any set of

labelled arguments, distinguishing it from A which is the full knowledgebase of labelled assumptions.

Definition 2.5.3. Let A be a knowledgebase o f labelled assumption formulae, let I \ : a , . . . , I n : a , / , :

a G arguments(A), let Q C argum ents(A) and let j , n G N. The set o f confirm ations derivable from a

set o f arguments Q, denoted confirmations(f)), is such that:

confirm ations^) = { { /i , a | fo r all I3 G { / i , . . . , 7n } it is the case that I } . a G Q}.

The above definition of a set of confirmations is purposefully flexible to allow for a wide variety

of confirmations. Each confirmation for a does not have to contain all the arguments for a and thus the

above function builds up the full power set of confirmations for a .

Proposition 2.5.2. Let A be a knowledgebase o f labelled assumption formulae, let I \ : a , . . . , I n : a , J i :

a , . . . , J m :a G argum ents(A), let f I C argum ents(A) and let n, m G N.

{ I i , . . . , 7n , J i , . . . , J m } :a G confirm ations^)

iff { h , • • •, In} '■& G confirm ations^) and

{ J i , . . . , J m} :q g confirm ations^).

Proof. If n = m = 0 then the starting point is two unfounded confirmations, creating a further un­

founded confirmation. For n = m = 1 two self confirmations make a confirmation with two ar­

guments. By induction, considering n = n + l ,m = m -I- 1, it can be seen that successive elab­

orations of { I \ , . . . , I n , J \ , . . . , Jrn] can be built up. So if { 7 i ,. . . , 7n } : a G confirmations(Q)

and {J i , . . . , Jm] : a G confirmations(Q) then {7 i , . . . , 7n , J i , . . . , J m } : a G confirmations(Q).

Now for the other direction. If { 7 i , . . . , 7n , J \ , . . . , J m } : a G confirmations(fi) then from Defini­

tion 2 .5 .3 any subset of {7 i 7n , J \ , . . . , J m } is also the support of a confirmation for a . So in

conclusion { 7 i , . . . , 7 n } : a G confirmations(Q) and : a G confirmations(S7) iff

{ 7 ! ,___7n , J i , . . . , J m) :a G confirmations(Q). □

To describe the confirmations that follow from a set of labelled assumption formulae A, the two

functions just defined are nested. Two shorthand notations, using 0 to mean confirmation, are now

introduced to lighten the notation.

Definition 2.5.4. Let A be a knowledgebase o f labelled assumption formulae and let a G C. The set of

confirm ations derivable from A , denoted 0 (A), is:

0 (A) = confirmations(arguments(A)).

And now the second of the shorthands, this time for a specific formulae (not just claim) as opposed

to for all formulae in C.

2.5. Introducing Confirmation 37

Definition 2.5.5. Let A be a knowledgebase o f labelled assumption formulae. The set of confirmations

for a derivable from A , denoted Q(a, A), is:

Q(a, A) = confirmations(arguments(a. A)).

Naturally it follows that 0(ct, A) = {X : a G 0 (A)} | stripConfirmation(X : a) = a} . Note that

0 (rt, A) will be likely to contain many confirmations (all of which are useful) and is thus not necessarily

a singleton set.

Exam ple 2.5.1. O rd in a ry confirm ation. Let A = {a : /3,b : p —» a , c : 7 ,d : V a}. Then

{ { a ,6 } : a , { c , d } : a } C argum ents(A). Consequently { { a ,b}} : a ,{ { c ,d } } : a , {{a, 6 }, (r , d }} :

a G 0 (r t,A) . Let X = {{a, 6 }, {<?, d}}. So X : a G 0(c*,A), but X : a f 0 (a ,A) . It follows that

formulae(X, A) = { a : p , b : f 3 —► a, c : 7 , d : ^ 7 V a } , stripAssumptions(formulae(X, A)) = {p, j3 —>

a , 7, ^ 7 V a},stripC onfirm ation(X :a) = a and \abe\(X : a) — X.

To be more precise, I also refer to 0(ct, A) a power set of confirmations for a . Proposition 2.5.2

shows how a power set of confirmations is built up. I use the informal shorthand of referring to the

minimum cardinality member of the power set as the bottom of the power set and the maximum cardi­

nality member as the top of the power set. Thus the power set’s minimum cardinality is the unfounded

confirmation, 0:ct G 0 (a , A). The top of the power set is the maximum cardinality confirmation, which

I will formally define shortly in Definition 2.5.8. To see an example of a power set of confirmations refer

to the ‘Worked Example of the Basic Argumentation Framework’ in Section 2.8.4. As the empty set, 0,

plays such an influential role in these power sets, I now focus on it.

First, some more small helper functions, the set of confirm functions to describe the mapping be­

tween a set of arguments all with the same claim and their equivalent confirmation are needed. I refer to

this as a set of functions as normally a function has a fixed arity. Thus to provide the arbitrary arity in

the definition below it is necessary to have a set of functions.

Definition 2.5.6. Let A be a knowledgebase o f labelled assumption formulae, let n G N, let I \ :

a , . . . , I n : a G argum ents(A) and let X : a G 0 (A). Each function in the set o f confirm functions,

denoted confirm(/i : a , . . . , In : a) , turns a set o f arguments all with the same claim into the equivalent

confirmation, such that:

X :a = confirm(/i : a , . . . , I n :a), where X = { f I n }.

The confirm functions turn a set of arguments, all with the same claim, into a confirmation by

making its many deduction labels into a confirmation label. This transformation is done by placing the

deduction labels in a set. The difference between confirm() and confirmations() is that confirm gives

just one confirmation, with a confirmation label comprising all deductions labels the function is input,

whereas confirmations gives all members of the power set that can be built from the deduction labels it

is input. A special case confirm function is when the input is a single argument. In that case the resultant

confirmation is a self confirmation.

2.5. Introducing Confirmation 38

In stripping labelled confirmations there are two contrasting situations relating to the empty set. For

0 : a E 0 (A), an unfounded confirmation for a , it follows that a ^ stripDeductions(arguments(A)).

Thus for the unfounded confirmation 0 : a E 0 (A), it is the case that stripConfirmation(0 : a) = 0 so

stripConfirmation(0:a) f a . In contrast, for {0} :a E 0 (A), the tautological confirmation (that is a self

confirmation of a tautological argument), then stripConfirmation({0} :q) = a ^ 0.

If the claim of a confirmation is a tautology then the cardinality of the confirmation label, X will

always be one. Or if 0 E X the claim will be a tautology.

Proposition 2.5.3. Let A be a knowledgebase o f labelled assumption formulae.

I f X . a E 0 (A) and 0 E X, then |X j = 1 and {a } b T.

Proof If 0 E X then the tautological argument 0 : o E arguments(A) exists. Thus a b T so no

premises are required to deduce a . Conjecture another argument / E X with 7 ^ 0 then I would not be

the minimal set that b a , so such an I : a would not be a valid argument. Therefore the conclusion is

that I : q must also be a tautological argument with I = 0. A set cannot contain the same member twice,

so as 0 E X then |X| = 1. Thus if X : a E 0 (A) and 0 E X, it can only be the case that |X| = 1 and

{a} b T. □

For a given knowledgebase the set of stripped arguments is the same as the set of stripped confir­

mations.

Proposition 2.5.4. Let A be a knowledgebase o f labelled assumption formulae.

stripDeductions(arguments(A)) = stripConfirmations(0(A)).

Proof. The general case is that arguments(A) = {7i : 0 i , . . . , 7n :0 n }, n E N, so

stripDeductions(arguments(A)) = {0 i , -----0 n }. If arguments(A) = {7i : 0 i In : 0 n } then

0 (A) = { { / i , 0 1 , . . . , {/fc,. . . , 7n } : 4>n}- Thus stripConfirmations(0(A)) = (0 i , ----- <pn }.

For unfounded confirmations 0 : <p} E 0 (A), Definition 2.2.5 is clear stripConfirmation(0 : 0 j) = 0. So

although there are many unfounded confirmations in (0 (A)) they are not in stripConfirmations(0(A)).

Consequently stripDeductions(arguments(A)) = stripConfirmations(0(A)). □

The confirmationsQ function only groups labels, it does not manipulate the formulae that are la­

belled. Therefore when the labels are removed by stripConfirmations() the effects of confirmationsQ are

removed and what is left is just stripDeductions(arguments(A)).

A feature of this definition of confirmation is that confirmation is not relative to any specific ‘pro­

poser’. No one piece of evidence, that is no one argument, has to be taken as the first, and then be

confirmed by the others. In my definition all pieces of evidence are equal and no explicit ordering is

implied.

Whilst confirmation, with a form like the above, is not explicitly considered in the literature, much

has been published on the related topic of ‘extensions to a theory’ whereby if a particular set of arguments

meets certain criteria then the whole is deemed acceptable. Acceptability tends to revolve around notions

2.5. Introducing Confirmation 39

of conflict and freedom from conflict, with much consideration of sceptical versus credulous views, see

for example (Caminada & Amgoud, 2005). This semantics-based approach, typically with abstract forms

of argument, is outside the scope of this thesis, however there appear to be parallels and the intersection

may be a fruitful area for future research.

As an illustration from medicine, in second surgical opinion, while there is a first and second re­

viewer, the surgical result would be the same if the sequence of reviewers was reversed. Consequently

my scheme would support such medical reasoning.

A small area for future research would be to find a more succinct way of defining confirmations and

related aggregations. The above sequence of definitions is good for this thesis as it has a didactic nature

to it, but it is not as concise as it could be.

2.5.1 Inconsistent Confirmations
I now make the observation that confirmations can be inconsistent.

Definition 2.5.7. Let A be a knowledgebase o f labelled assumptionformulae and let V : a , X: a € 0 (A).

I f X :a G 0 (A) and there exists a V C X such that formulae(V, A) b _L

then X : q is an inconsistent confirmation.

The common definition of a mincon argument, see Definition 2.4.2, prevents an individual support

from being inconsistent. The use of labelled mincons also prevents inconsistent catenate inferences.

There are parallels between this notion and that of ‘Hang Yourself Arguments’ in (Caminada, 2004).

There are also several differences stemming from Caminada’s use of default logic contrasting with my

use of classical propositional logic.

Example 2.5.2. Inconsistent confirmation. Let A = {a : 0 ,b : 0 —> a,c : 7 A -<0,d : 7 —> a}

and I = {a. 6 }, J = {c, d } ,X = { I , J } . So I : a , J : a e arguments(A) and X : a € 0 (A). As

formulae(X, A) h _L then X :a is an inconsistent confirmation.

In informal argumentation it is quite common to hear the accusation ‘You just contradicted your­

self’. A debating team (i.e. the parties forming the prosecution or proponents or the parties forming

the defence or opponents) is usually obligated to have not just its individual arguments be consistent,

but also any set of arguments for a claim to be consistent. I suggest that the allowance of inconsistent

confirmations in many argumentation frameworks is something of a problem, as it may hinder formal

argumentation from emulating debating in professional life. However if the inconsistency is small (such

as one witness said four shots were fired, while another witness said five) then professional debaters

would probably tolerate it.

Proposition 2.5.5. Let A be a knowledgebase o f labelled assumption formulae and let X :a e 0 (A).

I f X :a is an inconsistent confirmation, then fo r all 0 G C, formulae(X, A) A 0.

Proof Even though no individual argument support / 6 X is inconsistent, i.e. formulae(7, A) K _L,

the collective beliefs represented by formulae(X, A) h _L. So even though a constraint in the defini­

2.5. Introducing Confirmation 40

tion of I , Definition 2.4.2, prevents the immediate ex falso quodlibet, that constraint fails to prevent

formulae(X, A) from being inconsistent so for all (3 G C it is the case that formulae(X, A) I- p. □

The logic of this chapter allows inconsistent confirmations; a restraint is provided in Section 3.7.

2.5.2 Cardinality of Confirmations
I now investigate how many confirmations can be derived from a given knowledgebase A, given that the

knowledgebase is finite, while the set of arguments is infinite.

Proposition 2.5.6. Let A be a knowledgebase o f labelled assumption formulae and l e t X : a G 0 (A).

0 < |label(X :a)| < midLattice(A).

Proof. A confirmation X : a G 0 (a , A) tracks some or all of the arguments for a in arguments(A).

Each member of label(X : a) is the deduction label of an argument for a. So, for the maximum end,

|label(X :«) l < I arguments(a, A)|. Proposition 2.4.3 states that]arguments(a, A)| < midLattice(A).

Therefore | label (X : «)! < midLattice(A). At the minimum end, there may be no arguments for a

derivable from A. □

I now move to the question of the number of confirmations for a given claim a , something which is

different from the number of arguments in a confirmation for a . Clearly |0 (a , A) | 7 ̂ |arguments(a, A)|.

Showing just one exception will prove the inequality. Suppose / : a , J : a G arguments(A) then

|{/ : q G arguments(A)}| = 2, however 0 : a , { /} : a , { J } : a , { / , J } : a G 0 (a , A) so |0 (a , A)| = 4

hence |0 (a :,A)| / |arguments(a, A)|. In fact |0 (ct,A)| > |arguments(a, A)|. To be specific, the

cardinality of 0(c*, A) is as follows:

Proposition 2.5.7. Let A be a knowledgebase o f labelled assumption formulae and let a G C.

1 < |0 (q ,A) | < 2 midLattice(A).

Proof. Even if A V- a it is the case that the unfounded confirmation 0 :a G 0 (o , A), therefore the mini­

mum cardinality is 1, i.e. 1 < |0 (o , A)|. Now for the maximum cardinality, Proposition 2.4.3 states that

the maximum number of arguments for a single claim is given by midl_attice(A). Proposition 2.5.6 states

that the largest cardinality confirmation for a, let it be X : a G 0(A), will contain |X| < midLattice(A)

arguments. All other valid confirmations for a will have labels, Y, Z ,. . . which are strict subsets of X,

i.e. Y C X, Z C X. With confirmations there is no constraint that one subset, e.g. Y, cannot be the

subset of another subset, e.g. Z. So Y C Z or Z C Y are both allowed. Thus the number of subsets of

this confirmation label X is up to 2 m'c,*-attice(A). □

Thus for any A it is the case that 0: a G 0(f*. A) even if there exist arguments for a . In the above

power set it is not necessary to exclude any element either at the top or bottom. While the number of

confirmations for one formula is finite, the number for all formulae is infinite.

Proposition 2.5.8. Let A be a knowledgebase o f labelled assumption formulae.

10(A) | = oc.

2.5. Introducing Confirmation 41

Proof. 0 (A) contains confirmations for every formula derivable from A. As |arguments(A)| = oo then

so also [0(A)| = oo. □

2.5.3 Maximum Cardinality of Confirmations
Recall that all of the confirmations for a particular claim, a , derivable from a given knowledgebase A,

denoted 0(c*, A), if ordered by set inclusion could be arranged as a lattice of confirmations. Likewise

all of the confirmations derivable from a set of arguments for a single claim can also be ordered and

arranged in a lattice. For either lattice, at the top of the lattice is the maximum cardinality confirmation

and at the bottom of the lattice is the unfounded confirmation. To extract this maximum cardinality

confirmation requires a helper function:

Definition 2.5.8. Let A be a knowledgebase o f labelled assumption formulae. Let T' be the set o f

all the confirmations fo r a derivable from a set o f arguments fo r a such that ^ = confirmations^)

where $ C arguments(a, A). The top o f confirmation lattice function, denoted top('I'), returns the

confirmation fo r a with the largest label cardinality out o f all the confirmations in ^ such that:

top(^) = {X :a G 0 (A) | X :a G ^ and

there does not exist a confirmation Y : a € 'L,

where label(X:a) C label(Y :a)} .

As $ C arguments(a, A) it follows that ^ = confirmations^) C §(a . A). The top of the power

set is the one with the largest cardinality. The cardinality of the top() function is always one, as it always

returns a single unique confirmation.

Proposition 2.5.9. Let A be a knowledgebase o f labelled assumption formulae and let a £ C.

|top(0(ck, A))| = 1 .

Proof. Suppose arguments(A) K a so there are no arguments for a in arguments(A); in that case

there is still a confirmation for a, i.e. the unfounded confirmation, of the form 0 : a e 0 (A). The

unfounded confirmation is a single confirmation, even though its label cardinality is zero. For a self

confirmation, with the form {/} :a there is still a single confirmation albeit with a label cardinality of 1.

If |0 (a , A) | > 1 then its members will always form a non-trivial power set. A power set of the subsets

of X always has a single top member which is X. So in all cases |top(0(c*, A) | = 1 . □

Clearly the cardinality of a labelled confirmation is equal to the number of deduction labels in

the confirmation label. The following simple relationships also hold; that |label(top(0(ct, A))| =

jarguments(o, A)| and also that top(0(o . A)) f 0.

Additionally, this top() function allows clarification of the earlier point relating to the distinction

between confirmations and confirm, where n e N:

top(confirmations(/i I n -(p)) = confirm(/i :0, ..., I n :<p) = X :0 .

I now touch on the cardinality of unfounded and tautological confirmations.

2.6. Introducing Contradiction 42

Example 2.5.3. Special cardinalities. For any A , i f A Y- a, then the unfounded confirmation 0 : a G

0(A) is the only member o f 0 (o , A) and in that case | label (top(0(o, A)))| = 0. Again fo r any A, z/0 b

q, then a (- T is a tautology, the tautological confirmation {0} :a 6 0(ct, A) and |label(top(0(o, A)))|

= 1.

This ends the analysis of the cardinality of confirmations, allowing the discussion to move on to the

topic of contradictions.

2.6 Introducing Contradiction
A contradiction is a further argument aggregation whereby a confirmation for a and a confirmation for

are combined into a new structure. Each contradiction thus captures an area of inconsistency. Later

in the thesis, in Chapter 6 , 1 show that contradictions are useful for tracking professional debates.

Definition 2.6.1. A single contradiction is o f the form o f a tuple o f two confirmation labels labelling a

formula a, denoted (X, Y) : a, where a e £ , X : a is a confirmation fo r a and Y : ->oc is a confirmation

fo r -iq.

As with confirmation being denoted by 0 , 1 use a similar lightweight notation of ♦ to denote con­

tradiction.

Definition 2.6.2. Let A be a knowledgebase o f labelled assumption formulae. Let 4 (A) be the set of

all contradictions derivable from A, such that:

♦ (A) = {(X, Y) :q | X :q G 0 (A), Y : - a G 0 (A)} .

The above 4 (A) contains contradictions for all formulae in C. The next definition is for one specific

a G C.

Definition 2.6.3. Let A be a knowledgebase o f labelled assumption formulae and let a , ->a G C. The

set of contradictions for a derivable from A , denoted 4 (a , A) is:

♦ (a , A) = 0 (a , A) x 0 (- a ,A) .

Thus the set of contradictions for a is the cross product of the set of confirmations for a with the

set of confirmations for ~^a. At times to be more specific I also refer to ♦ (« , A) as a power set of

contradictions. Clearly ♦(<Y A) C ♦ (A) and that ♦ (<}, A) can contain many confirmations and is thus

not just a singleton set.

This definition has a flavour of Dung’s definition of an argument framework (see Definition 3.9.1

which is from (Dung, 1993; Dung, 1995)). Both use the cross product of sets of arguments. One differ­

ence is that my definition of contradiction only considers an argument for a contradicting an argument

for ^a. Depending on what assumptions are used, the literature covers other ways that one argument

can attack another, notably undercut, which are outside the scope of my current definition. Chapter 3

goes on to address undercut. A second difference with Dung’s framework is that his is abstract, whereas

mine is limited to only one kind of argument - those whose support is a minimally consistent subset of

premises and whose method of inference is classical logic.

2.6. Introducing Contradiction 43

Example 2.6.1. Ordinary contradiction. Let A = {a : /3,6 : ft —> a , c : 7, d : ->7 V /3, e : ->a}. 77î aj

{a, 6} : a , {c, d } : a , {e} : G arguments(A). Consequently {{a , 6}} : a , {{c, d } } : a , {{a , b } , {c, d } } :

f t ,{ { e } } :^ a e 0 (A). Thus ({{a , 6}, {c,d}}, {{e}}) :a G 4(A).

An empty contradiction is a contradiction where there is no evidence for either or both a and ->a.

Definition 2.6.4. I f (X ,Y):a e ♦ (A) is a contradiction and (X = 0 or Y = 0), then

(X, Y) : a is called an empty contradiction.

As the definition contains an ‘or’, empty contradictions come in three forms: (X, 0) : a , (0, Y) : a

and (0,0) : a. The second and third use the unfounded confirmation 0 : a G 0 (A) explicitly stating

that there is no evidence for a, while the first and third use the unfounded confirmation 0: ->a G 0 (A)

explicitly stating that there is no evidence for ->a.

Contradiction thus provides a distinction between ignorance and negation. This distinction between

ignorance and negation also has a flavour of the Dempster-Shafer theory of evidence, where absence of

evidence is explicitly recognised.

Although (X, Y) : a is a contradiction in a, it is just as equally a contradiction in ->a. One implies

the other.

Proposition 2.6.1. Let A be a knowledgebase o f labelled assumption formulae. For all a , X, Y it is the

case that:

(X, Y) :a G 4 (A) i J f (Y , X) : ^ a G 4 (A).

Proof (X, Y) : a G 4 (A) iff X : a G 0 (A) and Y : G 0(A) iff X : ->->a G 0 (A) and Y : ->a G

0 (A) iff X : - (- a) G 0 (A) and Y : (- a) G 0 (A) iff (Y, X) : - a G 4(A). □

I now extend the label-removing strip functions to contradictions.

Definition 2.6.5. Let { (X i, Y i) (X n, Y n) : a n } be a set o f contradictions. The contradiction

strip functions remove the label or labels from a contradiction or set o f contradictions, such that:

stripContradiction((X. Y) :a) = stripConfirmation(X:a) U stripConfirmation(Y: ^ a).

stripContradictions({(X!, Y ^ : a i (Xn , Y n) :a n })

= {stripContradiction((Xj, Y j):a j) | (X ^ Y ,) :^ G {(X i. Y ^ : m , . . . , (Xn, Y„) :a „ }} .

The following example shows how stripping contradictions works when the empty set is involved.

Example 2.6.2. Stripped contradictions. The stripping o f contradictions involving the empty set il­

lustrates that the confirmation 0 : a represents there being no arguments fo r a, while the confirmation

{0 } : a states that a is a tautology.

2.6. Introducing Contradiction 44

1 . stripContradiction((0,0) :a) = 0 so stripContradiction((0,0) :a) K _L,

2 . stripContradiction((X, 0) :a) = a so stripContradiction((X, 0): a

3. stripContradiction((0, Y) :a) = a so stripContradiction((0, Y) : a) * - u

4. stripContradiction((X, Y) :a) = {ct,-̂ a} so stripContradiction((X, Y) :a) G _L,

5. stripContradiction((0, {0}) :a) = {0, ->a} so stripContradiction((X, {0}) :a) Y- _L,

6 . stripContradiction(({0}, 0) :a) = { a ,0 } so stripContradiction(({0}, Y) :a) V- J_.

In 1. above both confirmations in the contradiction are unfounded confirmations. In 2. and 3. one of

the confirmations in the contradiction is an unfounded confirmation. In 5. and 6 . one of the confirmations

in the contradiction is a tautological confirmation. Note that ({0}, {0}) : a ^ 4 (A) as the negation of

a tautology is an inconsistency. Thus it is impossible for both confirmations in a contradiction to be

tautological confirmations.

The cardinality of 4 (a , A) is as follows:

Proposition 2.6.2. Let A b e a knowledgebase o f labelled assumption formulae and let a G C.

1 < |4 (q A)| < 2t r u n c (m ic ,L a t t 'c e (A) ^ 2) 2 n r i i d L a t t i c e (A) - t r u n c (m i d L a t t i c e (A K 2)

Proof For the minimum, even if A = 0, the empty contradiction (0,0) : a G 4 (a , A) exists, so in

all cases 4 (a , A) ± 0. Now for the maximum. The set of contradictions for a , i.e. 4 (a , A), can be

represented as a rectangular array with one axis for members of 0(ct, A) and the other axis for members

of A). Because 4 (a , A) = 0 (a , A) x 0 (~ ,Q:, A), each cell is thus a unique contradiction. Start

the case where midLattice(A) is even. This array of contradictions will have the greatest area when

|0 (a , A)| = 10(—'Ck, A)|, i.e. that it is square. Now, if a set of premises, I , of an argument infers a ,

i.e. / : a G arguments(A) then I : ^ct $ arguments(A) as otherwise formulae(/, A) I- _L, falsely

rendering I : a $ arguments(A). If I : a , J : ->a G arguments(A) and 'I' = formulae(/ , A), <I> =

formulae(J, A), then due to the definition of argument ^ ^ $ and $ 4g The largest number of

contradictions is obtained if half of the possible confirmations and thus half the possible arguments, i.e.

midLattice(A) -G 2, are for a and half for ->q . So taking an optimal A that yields exactly two sets of

arguments such that |arguments(a, A)| = |arguments(^a, A)| = midLattice(A) -G 2. The number of

confirmations that can be produced thus has the property |0(ct, A)| = |0 (~ ,ft)| = 2m^*“a^’c e Â^ 2.

The area of this square is consequently (2m’c**“a^ 'ce Â “̂ 2)2. However, it can also be the case that

midLattice(A) is odd (e.g. if |A | = 7 then midLattice(A) = 35). The rectangular array can no longer

be exactly square. Thus the more precise answer is that the maximum number of contradictions is

2 trunc(midLattice(A)-2) . 2 midLattice(A)-trunc(midLattice(A)-2) Clearly if mjdLattiCe(A) is even (e.g.

if | AI = 9 then midLattice(A) = 126) the precise equation still works, providing the necessary square

array. □

The number of possible contradictions can be large, even for a simple knowledgebase. The compute

time to find all of the contradictions derivable from a given A rises exponentially.

Example 2.6.3. Contradiction size. Imagine a naive debate using just ten labelled assumption fo r ­

mulae. How many contradictions fo r a can be deduced from these 10? The mid lattice, o f the array o f

2.6. Introducing Contradiction 45

subsets o f A, contains 252 members or 252 potential arguments, i.e. fo r | A| = 10, midLattice(A) = 252.

Let half o f these, i.e. 126, be fo r a and the other half, i.e. 126 , be fo r - > q . The largest number o f confir­

mations that can be produced from an arguments(a, A) with |arguments(a, A)| = 126 is 2 126. 2 126 is

o f the order 8.5 • 1037. The maximum number o f contradictions, |4 (ct, A)|, is the square o f the number

o f confirmations. So | 4 (o , A)| is o f the order o f 7.2 • 1075. To put that in context, if a supercomputer had

computed 1 billion contradictions a second since the universe began, it still would not definitely compute

the answer to a debate involving just 10 assumptions. The universe is 13.7 billion years old (1.37 • 1010),

there are 3.16 • 107 seconds in a year and 1.0 • 109 contradictions per second on this state o f the art

computer, so the computer processes 4.3 • 1026 contradictions, which is a tiny fraction o f 7.2 • 1075.

These definitions are also somewhat related to Belnap’s four valued logic (Belnap, 1977). Belnap’s

scheme uses a set with four values: neither, true, false and both. In the absence of evidence (for both a

and ->a) that formulae (a) must be given the value neither. Once the first piece of evidence is available

the value must change from neither to either true or false. If a contradictory piece of information arrives

the Belnap value moves up to both. In my scheme it could be argued that I introduce a further area in the

set above both, that could be described as ‘many occurrences of both’. To have a ‘many occurrences of

both’ value would mean that the definition of Belnap’s ‘both’ would be made more specific to be ‘one

occurrence of both’. My definitions give a precise breakdown of what underlies the ‘many occurrences of

both’ value. I could also add values for ‘confirmed true’ and ‘confirmed false’, which would come above

‘true’ and ‘false’ but below ‘both’. Furthermore summarising functions could be provided to reconstruct

the four Belnap values from my seven values.

2.6.1 Maximum Cardinality of Contradictions
I now introduce a further helper function that I use later is the thesis. Just as confirmations exist in a

power set, providing the need to refer to just the maximum cardinality member or top of the power set, so

also contradictions exist in power sets. The following function, which builds on Definition 2.5.8, returns

the maximum cardinality contradiction for a power set of contradictions.

Definition 2.6.6. Let A be a knowledgebase o f labelled assumption formulae. Let 'I' be the set o f all

the confirmations fo r a derivable from a set o f arguments fo r a such that — confirmations^) where

$ C arguments(a, A). Likewise let Q be the set o f all the confirmations fo r ->a derivable from a set o f

arguments fo r ->a such that Q = confirmations(Il) where FI C arguments(^a, A). Let T = x Q.

The top of contradiction lattice function, denoted top(T), returns the contradiction fo r a with the two

largest label cardinalities out o f all the contradictions in T such that:

top(T) = { < X , Y) : a e # (A) |

(X , Y) : a 6 T, X: a = top('I') and

Y : -ia = top(fi)}.

Clearly the set of contradictions T, above, is such that T C 4 (o , A). While this function could

have been defined to operate just on ♦((*, A), its current form is more general and subsequently more

useful.

2.6. Introducing Contradiction 46

2.6.2 Rebuttal

For this discussion of contradiction to be more comprehensive it is helpful to introduce the concept of

rebuttal. Rebuttal is the simplest of contradictions, is in widespread use in the literature and is employed

later in this thesis as one kind of attacks relationship.

Definition 2.6.7. Let A be a knowledgebase o f labelled assumption formulae and let I : a £

arguments(A). The set o f all rebuttals o f I : a derivable from A, denoted rebuttals(7 : a , A), is such

that:

rebuttals(7: a . A) = { J : | J : ^ a e arguments^ a , A)}.

The definition ensures that the rebuttals take on a well ordered form as the following example shows.

Example 2.6.4. Rebuttal. Let A = { a : a A j3 A 7, b\ ->a, c: ->/7, d: ->7}. Let I — {a} and J = {6,c, d}

So I : a A (3 A 7, J : ->(a A (3 A 7), J : ->(/3 A a A 7), J : -> q V V ^ 7) € arguments(A). The

definition ensures that J : ->(/7 A a A 7), J : -<a V ->/3 V -17 rebuttals(7 : a A /3 A 7, A). Only

J : - > (a A j3 A 7) £ rebuttals(7:a A j3 A 7, A).

Now that the maximum cardinality, contradictions and rebuttals functions have been defined I can

show that rebuttals are essentially a kind of contradiction:

Proposition 2.6.3. Let A be a knowledgebase o f labelled assumption formulae, let I : a . J : -<a £

arguments(A) and let (X, Y) :q 6 4(A).

(X, Y) : a = top(4(a , A))

iff X :a = confirm(rebuttals(J:->a, A)) and

Y :^ a = confirm(rebuttals(7:a, A)).

Proof. Given (X, Y) : o = top(4(a . A)) then Definition 2.6.6 of the maximum cardinality contradiction

informs that X : a = top(0(f>, A)) and Y : ->a = top(0(_io , A)). Then using Definition 2.5.8 of

the maximum cardinality confirmation establishes that every argument 7 : a for a derivable from A

will be in X : a where 7 £ X and that every argument J : ->q for ->a derivable from A will be in

Y : -iQc where J £ Y. Adding the rebuttals function, Definition 2.6.7 provides every rebuttal for 7 : a

derivable from A, so Y : ->o = confirm(rebuttals(7 : a , A)) and likewise X : a — confirm(rebuttals(J :

-ia, A)). So if (X, Y) : a = top(4(a. A) then X : a ~ confirm(rebuttals(J : -^a, A)) and Y : =

confirm(rebuttals(7 : o , A)). Now for the other direction. Given X : a = confirm(rebuttals(J : - a . A))

and Y : -^a = confirm(rebuttals(7:a, A)) it follows from Definition 2.6.7 that X :a = top(0(o, A)) and

Y: = to p ^ -'O , A)). So if X :a = confirm(rebuttals(J : ->a, A)) and Y : -^o = confirm(rebuttals(7 :

a . A)) then (X ,Y) : a = top(4(a, A). So in conclusion (X ,Y) : a ~ top(#(a, A)) iff X : a =

confirm(rebuttals(J: ->0 , A)) and Y : ->a = confirm(rebuttals(7:a, A)). □

Clearly rebuttals do not always exist and also an argument can never rebut itself. If the support of

an argument is the empty set, that is it is a tautology, then it has no rebuttals.

2.6. Introducing Contradiction 47

Proposition 2.6.4. Let A be a knowledgebase o f labelled assumption formulae and let I : a G

arguments(A).

I f I = 0 then rebutta ls(7 :a , A) = 0.

Proof. If I = 0 then, {a} b T , the argument is a tautology. The negation of a tautology is an in­

consistency, ->T b _L. Conjecture the existence of a rebuttal J : ->a G rebuttals(/ : a , A). Then

stripAssumptions(formulae(J, A)) b -iq, hence formulae(J, A) b ->T, meaning formulae(J, A) b _L

so J is inconsistent, which is impossible as it is the support of a valid argument. Thus if I =

0 then reb u tta ls(/:a , A) = 0. □

The vice versa is not always true as for example when A K 1 and there simply are no rebuttals in

the set argum ents(A).

The rebuttals function possesses a form of symmetry, but is not a self-inverse function. A function

is self-inverse iff f(f(x)) = x.

Proposition 2.6.5. Let A be a knowledgebase o f labelled assumption formulae and let I : a . J : p G

argum ents(A).

I :a G rebuttals(J:/3, A) iff J .p G rebuttals(7:a, A).

Proof. Definition 2 .6.7 of rebuttal informs that rebuttals(7: a , A) = {J : ->a G arguments(-iQ, A)}. If

I : q G rebuttals(J : p, A) then it follows that p = -iq . Thus I : a e rebuttals(J : ->q, A). Again, by

Definition 2 .6.7 any argument with a claim of -iq will rebut I : a , therefore J : ->a G rebuttals(7: a . A).

Consequently if 7 : a G rebuttals(J : p, A) then J : p G rebuttals(7: a , A). Now for the other direction.

Assuming J : p G rebuttals(7 : a . A), Definition 2 .6.7 states that any argument for -*p is a rebuttal for

J : p. Thus if J : p G rebuttals(7 : a . A) then 7 : ->/? is a rebuttal for J : p, meaning 7 : a G rebuttals(J :

p. A). So in conclusion 7 : o G rebuttals(J : p . A) iff J : p G rebuttals(7: a , A). □

Rebuttal is not self-inverse as it is not always the case that rebuttals(rebuttals(7: a , A), A) = 7: a .

This follows because the rebuttals function only takes one argument as its input, while its output

can be many arguments. However, if |rebuttals(7 : a ,A) | = 1 , which occurs for some A, then

rebuttals(rebuttals(7: a , A), A) = 7 : a . The set of rebuttals of a single argument can be represented as

a confirmation.

Proposition 2.6.6. Let A be a knowledgebase o f labelled assumption formulae, let I : a , K : ->a G

arguments(A) and let Z : ->a G 0(A).

Z :^ a = confirm(rebuttals(7: a ,A))

iff fo r all K : G rebuttals(7 : o . A) it is the case that K G Z.

Proof Let Z = {A 'i A'n }. Thus Z : = { A 'i,. . . , K n) : -ia . Given that Z : =

confirm(rebuttals(7 : a , A)) it follows from one of the confirm() functions of Definition 2.6.6 that

{ K i : ^ o K n : -in} = rebuttals(7 : a . A). Thus from Definition 2.6.7 of rebuttals it is the

case that for every K G Z that K : ->o G rebuttals(7 : a . A). Now for the other direction. Given

2.6. Introducing Contradiction 48

that K : ->a £ rebuttals(7 : a , A), there exists a confirmation Z : ->a with K £ Z that con­

tains all of the rebuttals of I : a such that Z : ->a = confirm(rebuttals(7 : ft, A)). Therefore

Z : -.ft = confirm(rebuttals(7: a , A)) iff for all K : ->q 6 rebuttals(7: ft, A) it is the case that K £ Z. □

Thus the definition of rebuttal could just as easily be made using confirmation notation. It is also

the case the set of rebuttals of a confirmation (rather than just an individual argument) can be represented

as a single confirmation, as I now discuss.

2.6.3 Confirmation Rebuttal
The confirmation rebuttals function is a simple elaboration of the above rebuttals function, to show the

interaction at the level of confirmations, not just at the level of individual arguments. Working at the level

of confirmations shows a greater degree of symmetry and also facilitates later definitions in Chapter 5.

Definition 2.6.8. Let A be a knowledgebase o f labelled assumption formulae and let X : ft, Y : -ift £

0 (A). The set o f confirm ation rebutta ls o f X : ft, denoted confirmationRebuttals(X : ft, A), is a set o f

confirmations such that:

confirmationRebuttals(X:ft, A) = { Y : ->ft G 0(^stripConfirmation(X:ft), A) | Y ^ 0 ,X / 0 }.

A confirmation labelled with the empty set means that there are no arguments for the confirmation’s

claim. Thus valid confirmation rebuttals are never between unfounded confirmations. This set is the full

power set of confirmations, less the unfounded confirmation - which is labelled with the emptyset and

thus has the minimum cardinality label. Given the maximum cardinality confirmation for a claim the

confirmation rebuttals function is self inverse.

Proposition 2.6.7. Let A be a knowledgebase o f labelled assumption formulae and l e t X : a £ 0 (A).

top(confirmationRebuttals(top(confirmationRebuttals(X:ft, A)), A)) = X :ft.

Proof. The confirmationRebuttals(X : ft. A) function returns many confirmations for -ift, namely

{Yi : ->ft,. . . , Yn : —ift}, which equals the power set 0(~>ft, A) less the minimum cardinality mem­

ber, i.e. 0: ->ft £ 0 (A). The maximum cardinality member of this power set of rebuttals is provided by

top(confirmationRebuttals(X: ->ft. A)). So let the confirmation Yn : ->ft = top(confirmationRebuttals(X:

ft, A)). Now apply the same steps again to see that the maximum cardinality rebuttal of Y n : -ift is X : ft.

Thus X:cv = top(confirmationRebuttals(top(confirmationRebuttals(X:ft, A)), A)). □

This paragraph touches on polymorphism. Polymorphic functions can make a nomenclature more

condensed and understandable. For example the + function can add integers or floating point numbers:

1 + 1 = 2 has the data types integer + integer = integer, while 1.2 + 1.2 = 2.4 shows float + float = float.

In this analogy, individual arguments are parallel to integers and confirmations are parallel to floats -

simply as different data types. I could have written confirmationRebuttals() as a polymorphic version

of rebuttalsQ. The rebuttals function, as defined, has a single argument as input parameter and a set of

arguments as its output. I showed, in Proposition 2.6.6, that the argument rebuttals output is equal in

concept to, and could just as easily be represented by, a single confirmation. The confirmation rebuttals

2. 7. Judging the Outcome o f Debates 49

function, however, has a single confirmation as input and a power set of confirmations as its output.

The maximum cardinality confirmation rebuttal has a confirmation as input and a single confirmation

as output. I have chosen to not adopt polymorphism here in order to make the exact nature of these

functional behaviours clearer.

A confirmation rebuttal can never rebut itself.

Proposition 2.6.8. Let A be a knowledgebase o f labelled assumption formulae and l e t X : a £ 0 (A).

X :q g confirmationRebuttals(X:a, A).

Proof If an argument I : a , / £ X, could attack itself its support would be inconsistent, meaning that

stripAssumptions(formulae(/, A)) b _L, and thus it would not be an argument, I :a (f (arguments(A).

Hence X :a ^ confirmationRebuttals(X :a, A). □

The cardinality of the maximum cardinality confirmation rebuttal is either 0 or 1.

Proposition 2.6.9. Let A be a knowledgebase o f labelled assumption formulae and let X : a £ 0 (A).

0 < |top(confirmationRebuttals(X:a, A))| < 1.

Proof No matter how many rebuttal arguments there are for X : a , that is | J : -iq £ arguments(A)|

they are all in just one confirmation, top(0(_,Q, A)). If A Y- _L there are no rebuttals, however that it

represented as the unfounded confirmation 0 :q £ 0 (A). □

2.7 Judging the Outcome of Debates
I now come to the sixth and final step of the basic framework, after i) A, ii) deductions(A) iii)

arguments(A), iv) 0 (A) and v) 4 (A). My sixth step is the definition of judge functions, which provide

the outcome to a debate. While judges are akin to consequence relationships or inference operations

found in the logic literature, e.g. (Gabbay, 1985; Makinson, 1988) they must be of a particular form.

I address two categories of judge functions; those that judge a single claim and those that judge multi­

ple claims and hence a whole knowledgebase. I start with the signature, or common form, of a single

claim judge for a , where j is an index in the form of a decimal number to distinguish between the many

possible judge functions that fit this general signature.

Definition 2.7.1. Let A be a knowledgebase o f labelled assumption formulae. A judge of a, denoted

judge^o. A), is a filtering function, such that:

1. The contents o f the set judge^a. A) conforms to one o f the following three cases

a) i f a £ stripDeductions(arguments(A)) then it may be the case that judgeJ(a, A) = a, or

b) i f “■a £ stripDeductions(arguments(A))//i6'n it may be the case that judgeJ(a, A) = ->a, or

c) regardless o f whether ->a, o £ stripDeductions(arguments(A)) or

->a, a g stripDeductions(arguments(A)) it may be the case that judgeJ(a , A) = 0,

2. and in all cases judge - (a , A) V- _L.

2. 7. Judging the Outcome o f Debates 50

The ‘or’s here are exclusive ors so clearly judge^ (a , A) C stripDeductions(arguments(A)). The

judge for a function delivers a consistent subset of stripDeductions(arguments(A)). Labels are re­

moved delivering just unlabelled deduction formulae. Thus if a $ stripDeductions(arguments(A))

then a ^ judge^a, A). However if a ^ judge^(a,A) then it does not follow that a ^

stripDeductions(arguments(A)), as it could be the case that a is filtered out by the judge. Regardless of

whether A L _L or A V- _L it is always the case that judgej(a , A) V- _L. The signature, or common form,

of a multiple claim or what is called a cumulative judge, which covers all claims from a knowledgebase,

is as follows:

Definition 2.7.2. Let A be a knowledgebase o f labelled assumption formulae. A judge of A, denoted

judge^A), is a filtering function, such that:

judgej (A) = judgej (0 i, A) u • • • u judge^(</>„, A),

where stripDeductions(arguments(A)) = {</>1?. . . , 0 n}.

Thus all of the possible judges will have the above definitions in common. While judges are defined

as functions of A here, 0 (A) and 4 (A) are of utility in defining specific judge functions.

The above pair of definitions provides the minimum set of properties of judge functions. If it is

required that also judge^(A) K _L then a further property called ‘cumulativity’ must be added and that

will affect the definition of the judge of a , but not necessarily that of the judge of A. If a judge forces

consistency then there may be side effects and implications of forcing such consistency. Properties of

judge functions, particularly cumulativity, are reviewed in (Prakken & Vreeswijk, 2002). Two broader

reviews of judge function properties are to be found in (Cayrol & Lagasquie-Schiex, 1995) and (Elvang-

Gpransson & Hunter, 1995).

My judge function for A has some resonance with Dung’s concept of a semantic extension, (Dung,

1993; Dung, 1995). Both filter a set of arguments to give a desirable subset - although my result is just

the claim stripped of support or labels. Just as I have j different judges, so also Dung and those who

build on his work have many semantics. Dung and those building on his work do not appear to offer a

general definition of a semantic and thus there is no rule to say that they must all be consistent. Exploring

differences, similarities and a possible integration would be a useful area for further research.

A judge for A delivers a set of unlabelled claims. Thus repetition of claims is not allowed. The

opinions of different experts can be tracked in A, say as a : a , b : a . The judge, however, requires the

removal of the labels and thus the removal of the repetition, which merges the opinions of the different

experts.

To make the concept of a judge more concrete I provide two illustrative examples. The example

judges employ two helper functions known as pro and con.

2.7.1 Definition of Pro and Con Functions

To more simply present various argument aggregation schemes, two further cardinality functions are

defined, called pro() and con(). These are notational conveniences giving the number of arguments for

and against a claim.

2. 7. Judging the Outcome o f Debates 51

Definition 2.7.3. Let A b e a knowledgebase o f labelled assumption formulae and (X, Y) : a e ♦((*, A).

The pro and con functions give the number o f arguments fo r or against a respectively in A , denoted

pro(#(a, A)) and con(4(c*, A)), such that:

pro(4(c*,A)) = |label(top(0(a, A)))|.

con (4(a , A)) = |label(top(0(-a:, A)))|.

These two functions are sensitive to the use of labels.

Example 2.7.1. Label sensitivity. Let A = {a : £,b : £ —► u;,c : £}. Thus {a, 6 } : w, {c, 6 } : ui G

arguments(A). Consequently pro(4(u;, A)) = 2.

2.7.2 Illustrative Judges

So that I can include judgement in the example of the basic framework at the end of this chapter and

establish that there can be different types of judges with different behaviours, it is helpful to define two

illustrative judges. The first of these judges, drawn from (Benferhat et al., 1993), is defined here and

discussed in Chapter 7. It is an existential judge that does not rely on counting arguments, but rather on

just whether they exist or not.

Definition 2.7.4. Let A be a knowledgebase o f labelled assumption formulae. The Benferhat

judge1 o (<*, A, 0) is a judge such that:

a e judgex 0 (a , A , 0) iff pro(4(a, A)) > 1 and con(#(a , A)) = 0.

A second example judge is called the Benjamin Franklin method (Willcox & Bridgewater, 1977).

This judge relies on the number of arguments, not just their existence, and again is discussed in Chapter 7

under the headings on quantitative judges.

Definition 2.7.5. Let A be a knowledgebase o f labelled assumption formulae. The Franklin

judge2 0(a , A , 0) is a judge such that:

a e judge2 0 (q , A , 0) i f fp r o (t(a , A)) > con(#(a , A)).

The origin of the informal definition of this argument aggregation scheme is commonly attributed

to eighteenth century American statesman Benjamin Franklin. He called it Prudential Algebra and doc­

umented it in a letter of 19 September 1772 to Joseph Priestly, the chemist.

Judges have many properties, each of which, depending upon a combination of general principles

and application specific requirements, can be deemed desirable or undesirable. A recurrent theme in AI,

commonly known as ‘horses for courses’, is that there is no one perfect solution that solves all problems,

but rather that different problems require different solutions.

To look specifically at cumulativity in the light o f these two judges, consider the following example

Example 2.7.2. Cumulativity. Let A - {a : 0 A - > a , b : 0 —► a } . Then { a } : 0 , { a) : - > a , {6} :

0 —> a G arguments(A). Suppose a debate was conducted over 0. Judges 1.0 and 2.0 would yield

2.8. Worked Example o f the Basic Argumentation Framework 52

(3 £ judgej 0(f3, A) and (3 £ judge2 0 (/3, A). ^ second debate fo r ft —> a would result in (3 —► a £

judgex 0((3 —* a , A) and (3 —* a £ judge2 0 (/3 —* a , A). Having established (3 and (3 —> a it would

appear to be reasonable to deduce a. However, i f a debate is conducted over the question o f a the

outcome is -<a, i.e. ->a £ judge1 0 (a , A) and ->a £ judge2 0 (a , A). Both judges have thus delivered

sets o f inconsistent results showing that neither o f them has the property ‘cumulativity’.

A cumulative judge would thus have to examine all claims in arguments(A) before it could judge

one claim. Possibly, heuristics could be employed to limit the number of additional claims to examine,

but all other judge outcomes that are possibly inconsistent with a are relevant. An additional mechanism,

beyond those presented in judges 1 .0 and 2 .0 , will be required to resolve inconsistencies so the above

example would lead to a decision as either the judge results in (/3 and [3 —* a) or in ->c*. To provide

cumulativity it would appear that either levels of evidence would have to be established by computation

or priorities used.

2.8 Worked Example of the Basic Argumentation Framework
This section is a worked example illustrating the flow of the basic argumentation framework leading up

and including judging the outcome of a debate. My aim is to go into enough detail to show the workings

of the three kinds of labels, a full power set of confirmations and a full power set of contradictions that

arise from even a modest A.

2.8.1 Assumptions

The pattern I now show starts with assumption labels which are set members rather than whole sets.

The example begins with the set of assumptions. In this example there are six assumptions and they are

labelled with assumption labels a through to / .

A = { a :a , b :a —> {3, c :a , d : 7 A ->/3, e:^(3 —> A, /:-■ A}, so |A| = 6

2.8.2 Deductions

From the assumptions, the set of deductions is inferred, using classical deduction. {6 , c, d} :(3 A 7 £

deductions(A) is a valid deduction, but its premises are not consistent and thus it is not an argument. So

{6 , c, d } : (3 A 7 arguments(A). Furthermore {a, 6 , c } : (3, {a, c } : a £ deductions(A) are valid deduc­

tions, but are not minimal and thus not arguments. Consequently {a, 6 , c } :/3, {a, c } : a $ arguments(A).

2.8.3 Arguments

The arguments of relevance in this example are a small subset of all possible arguments. The set

arguments(A) includes:

{«,&}:/? { b , c} :P { e , f } : (3 {d}:^(3 {d } : 7 {a}: a

{6 } : a —*(3 {b}:^/3 —> ->a { d } : 7 A { e } : - V ? —► A {c}:c*

{6 }:-ia V /3 { e } : - i7 —*(3 { e } : /? V 7 {a}:Q :V 7 {d ,e}:A {6 ,d}:->a

So far I have shown the arguments as labelled with assumption labels. This is one valid approach,

it shows the provenance of each deduction. Now to progress the example and make the notation less

verbose, I introduce the necessary deduction labels together with their assumption label equivalencies.

2.8. Worked Example o f the Basic Argumentation Framework 53

1 = {a, b} J = {b,c} K = { e J } L = {d} M = {a} N = {b}

0 = {c} P — {e} Q = { / } P = {d,e} S = {b,d}

Thus I can relabel the same set of arguments. They are now labelled with deduction labels, rather

than assumption labels. The notation is more condensed, but the provenance is no longer visible. The

provenance is still accessible however as the label equivalencies just defined provide traceability.

1 : 0 J : 0 K : 0 L :-^0 L : j M : a

N : a —>0 TV:->/3 —►->c* L : /y A- >0 P : - '0 —> A Q :- ' A 0 : a

N : ->a V 0 P:-> 7 —► /? P : 0 \ / 7 M :q V 7 R: A S: ->a

O f course there are innumerable additional arguments I could show, such as others added by dis­

junction introduction, e.g. L : 7 V ->/? V J : /3 V £ V G arguments(A) , but I won’t clutter the example

with them.

2.8.4 Confirmations

Given the set o f arguments, the confirmations become clear. Rather than describe all of the confirmations,

this example focuses on the confirmations in 0 and also the confirmations in ->0. Other confirmations

exist (e.g. in a , 7 and A), but they are mostly self confirmations and would clutter the example.

0 (0 , A) = {0 :0 , { / } :0 , { 0 } : 0 , { K } : 0 , { / , J } : 0 , { J, K) :0 , { / , K } : 0 , { / , J , K} :0}

O (-0 ,A) = { 0 : -,0 , {£-}:->0}

The confirmations in each of 0 and ->0 each form separate power sets. Here is the power set of

confirmations for 0 , employing sets of deduction labels to show the pattern. The ordering criterion is

confirmation label set inclusion.

{ I , J } : 0 { J , K } : 0 { I , K } : 0

{ / } : 0 { J } : 0 { K } : 0

0:0

The lattice of confirmations for -'0, shown with deduction labels, is much simpler:

{ L} : ~ ' 0

0 :- /3

Here the |label(top(0(/3, A)))| = 3 and |label(top(0(-v3, A)))| = 1. Thus pro(4(/3, A)) = 3 and

con(4(/?, A)) = 1 .

2.8.5 Contradictions

Now that all of the confirmations in 0 and -*0 have been listed, I can enumerate the resultant contradic­

tions and draw them as if ordered by set inclusion in a lattice. The ordering criteria I use to draw this

contradiction lattice, relevant only to this example, is (X, Y) : 0 ‘subset or equal t o ’(X' , Y ') : 0 iff X C

X 'a n d Y C Y '. The deduction labels show which arguments the confirmations and contradictions arise

from. This power set derives from the above, as the pairing of all the confirmations for 0 first with the

2.8. Worked Example o f the Basic Argumentation Framework 54

single {L } : -*0 and again with the empty set based 0 : ->0. Two power set of confirmations, for (3 and

~>0, can be captured in just one integrated power set of contradictions:

({ I , J , K } , { L }) : 0

({ I , J , K } , 9) - . 0 <{I , J } , { L }) : 0 ({ I , K) , { L }) : 0 {{J, K } , { L }) \ 0

({ /,J} ,0 > :/3 { { I , K } , 9) - . 0 { { J , K } , 9) : 0 < { /} ,{ !}> :/? { { J } , { L }) : 0 { { K } , { L }) : 0

({ /} ,0) : /3 ({J } ,0): /3 {{K},<6):0 <0,{£}):/3

(0, 0) -.0

It can be seen that a portion of this power set of contradictions is empty-contradictions and the

compliment portion the non-empty contradictions. Such power sets will not necessarily be symmetrical,

for example this one has nine empty contradictions and seven non-empty ones.

2.8.6 Judgement

For the claim 0, applying judge1 0 (/3, A , 0) there exist arguments for both 0 and ^ 0 so:

0 , ->0 £ju d gel o (/? ,A ,0).

However instead of yielding a stalemate, judge2 o{0, A , 0) resolves the inconsistency to declare a

clear winner, such that:

0 g judge2 o(0, A , 0) - .0 £ judge2 o(0, A, 0).

Thus judgej o(0, A, 0) = 0. Both judge 1 0 (/7, A , 0) Y _L, judge2 o(0, A , 0) Y ±. This example of

judge2 0 is one simple way to resolve inconsistency, but as I go on to explain it is a naive one. By naive I

mean that that the judge suffers from a number of undesirable properties - using as yet undefined terms,

such as being too eager (i.e. letting through weakly argued claims or noise, see Chapter 7), insensitive

to undercut (Chapters 3 and 6), insensitive to reflection (Chapters 4 and 5) and insensitive to assisting

arguments (Section 8.4).

Broadening my observation it can be seen that there are other inconsistencies such that:

A, iA g judgej 0(A, A, 0) a, £ judgej 0(a, A, 0).

However there are further claims in stripDeductions(arguments(A)) which are not in conflict, for

example:

7 g judge! 0 (7 , A , 0) - 7 £ judge1-0 (7 , A , 0).

So for a debate judged by judge 1.0 with four motions Q , 0 , y and A the outcome would be that

motion 7 would pass, but that a , 0 and A would fail to pass. That completes my example showing

the six steps of the basic framework, namely knowledgebase, deductions, arguments, confirmations,

contradictions and judgement.

2.9. Conclusions for Basic Argumentation Framework 55

2.9 Conclusions for Basic Argumentation Framework
This chapter on my basic argumentation framework has formally defined the first two foundations I need

to track and judge debates, namely confirmation and rebuttal.

In addition to the definition of the knowledgebase A , the eight key argument aggregations intro­

duced in this chapter and reused throughout the thesis are:

Aggregation F or O ne Form ula Definition F or All Form ulae Definition

Arguments: arguments(a, A) 2.4.6 arguments(A) 2.4.2

Confirmations: 0 (a ,A) 2.5.5 0(A) 2.5.4

Contradictions: ♦ (a , A) 2.6.3 ♦ (A) 2 .6 .2

Judgement: judge^a, A) 2.7.1 judgej(A) 2.7.2

Table 2.1: Summary of Key Argument Aggregation Functions

Contradictions can be thought of as a general representation of the common concept of rebuttal.

Contradictions are simply groups of arguments for the same claim and its negation, a construct which

turns out to be useful for representing and thinking about professional debates.

A contribution of the chapter is the definition of the inconsistent confirmation - one where the

supports of the arguments for a single claim contradict each other. Additionally I examine the litera­

ture’s concept of catenate inference and find that it allows inconsistent catenate inferences - a problem

addressed by my framework. Another contribution of the chapter is in clarifying different types of argu­

ment and confirmation, namely the definitions o f terms: reflexive argument, tautological argument, self

confirmation, unfounded confirmation, tautological confirmation and empty contradiction. Confirmation

is not just a mechanical grouping of arguments for a claim, but rather a mindful and useful device with

a number of interesting properties, a good correlation to professional debate and is helpful for building

more refined debating constructs.

In addition, my helper functions will continue to be useful in manipulating the argument ag­

gregations in subsequent chapters, they are: stripAssumption(), stripAssumptions(), stripDeductionQ,

stripDeductions(), stripConfirmation(), stripConfirmations(), stripContradiction(), stripContradictions(),

label(), formulae(), midLattice(), confirm(), top(), pro() and con(). A number of these are polymorphic

functions. In a category of their own, the functions rebuttals() and confirmationRebuttals() help in link­

ing my work to the literature and then extend it. The many propositions and examples of this chapter

clarify the behaviours of each of these argument aggregations. Included in this analysis is the cardinality

track with its Propositions 2.4.3, 2.5.7 and 2.6.2. Now the basic argumentation framework has been

established I can move in the direction of determining how to properly track a debate, so that the whole

debate and nothing but the debate is tracked, and judge its outcome.

Chapter 3

Undercut Framework

3.1 Overview of the Chapter
This undercut framework chapter analyses four types of undercut (Wigmore, Pollock, canonical and

preclusive) over eight sections. The first section covers both Wigmore and Pollock, the second is devoted

to canonicals and the last six introduce my new preclusive undercut.

I should emphasise at the outset that in rendering the undercuts of others into my formal frame­

work these undercuts become no longer absolutely identical to their originals. I deem it vital to do this

rendering as it allows me to compare and contrast the various undercuts in the literature, and I hold that

the distinctions exposed are due to the original works and do not stem from my rendering. Nonetheless

what I call a Pollock undercut is not literally identical to that published by Pollock. To a certain degree

this difference is at the philosophical level of rationalising the connection between premises and claims.

Likewise for Wigmore and for Besnard and Hunter. This point of parallelism, but not identically, also

applies to those tree and judge functions which I take from the literature. So although my rendering

approach has a weakness of not being a carbon-copy of the original, it is a contribution in that it allows

the various approaches to be compared and contrasted.

Introductory undercuts The first three types of undercut are from the literature, however many

of the properties I explore are new - and found wanting for professional debate.

Wigmore undercut Section 3.2 .1 , is an attack that states that one of the assumptions sup­

porting an argument is wrong, affects debate outcomes, see Example 3.2.2, and resolves

inconsistency, see Example 3.2.3.

Pollock undercut Section 3.2.4, argues that one or more of the assumptions supporting an

argument is wrong. This is the most widely used undercut in the literature.

Canonical undercut Section 3.3, means that one or other of the assumptions supporting

an argument is wrong. I formalise properties, showing it to be better behaved than the first

two undercuts.

Preclusive undercut In this second half o f this chapter, I introduce a new form of undercut.

Section 3.4 defines preclusion as one or other of the attacked arguments is wrong.

3.2. The Concept o f Undercut 57

Motivation Section 3.5, preclusive undercuts are much used in professional debate, so I

give examples from politics, detective work and court-room cross examination.

Canonical subsumption Section 3.6, here I show how preclusive undercuts cover and ex­

tend the ground of canonicals to better mirror professional debate.

Tautological preclusions Section 3.7, these novel undercuts prevent a debating team from

being inconsistent when arguing a claim.

Non-unique formulae Section 3.8, goes more deeply into the properties of preclusive un­

dercuts, examining the effects of labels and non-unique formulae on cardinality.

Finally, Section 3.9, relates the definitions of undercut and rebuttal discussed so far with the notion

of abstract attack.

This chapter builds my set of argument interactions to the principal three - confirmation, rebuttal

and undercut, providing a strong foundation for subsequent analysis for tracking and judging debates.

3.2 The Concept of Undercut
I start the body of this chapter by introducing the concept of undercut as described in the literature.

There are two ways that one argument can attack another argument; rebuttal and undercut. The first

way, rebuttal, is where the conclusion of one argument is the negation of the conclusion of the other

argument. The second way, undercut, involves the conclusion of one argument attacking the support

o f the other argument. I refer to the argument that is rebutted or undercut as the defending argument.

Consequently I can refer to the undercutting or rebutting arguments as the attacking arguments.

Work on inconsistency has generally focussed on the rebuttal form of inconsistency, however under­

cut also merits attention as it is arguably a form of inconsistency and can effect the outcome of debates

(as shown later in the example of Section 3.2.2). Each of the judge functions presented so far (which

have excluded undercuts) could, broadly speaking, be repeated with the single difference of incorporat­

ing undercuts. There is, however, little consensus in the literature on a) the exact definition of undercut

and b) how undercuts should be incorporated into argument aggregation, making it possible to have not

just one, but several variations on each of the judges presented so far. In Section 7 .6 ,1 propose a way to

incorporate undercuts into judgement.

The location of the first informal description of undercut in the literature is unclear, as a number of

authors, including (Wigmore, 1937; Toulmin, 1958; Walton, 1989), explore the field that surrounds and

includes undercut with a variety of vocabularies. The formalisation of undercut is generally attributed to

(Pollock, 1970). Argument aggregation schemes not encompassing undercut include the various judges

from (Manor & Rescher, 1970) and (Benferhat et al., 1993), the Franklin approach (Willcox & Bridge­

water, 1977) and net support (Fox & Das, 2000). It seems fair to suggest, given that undercuts can effect

the outcomes of debates, to exclude them from argument aggregation schemes is somewhat naive.

The formal use of undercut within argument aggregation has been further developed notably by

(Elvang-Gpransson et al., 1993b; Elvang-Gpransson & Hunter, 1995; Besnard & Hunter, 2001). To­

day undercut is well established in the logic literature with quite a number of authors, in addition to the

3.2. The Concept o f Undercut 58

above mentioned, also writing on the topic, including many papers by Amgoud, Nute, Parsons, Prakken,

Shroeder, Verheij and Vreeswijk; in particular I cite (Prakken, 1997; Vreeswijk, 1997; Amgoud & Cay-

rol, 2002). For reviews covering this developing aspect of argumentation see (Hunter, 2001; Chesnevar

et al., 2000; Prakken & Vreeswijk, 2002).

At least three definitions of undercut are used in the literature:

1. What I call a Wigmore undercut, e.g. (Elvang-Gpransson & Hunter, 1995; Dung et al., 2006).

2. Pollock undercut, (Pollock, 1970).

3. Canonical undercut (Besnard & Hunter, 2001).

Several rather more complicated defeasible-logic based definitions are given by Hage and by

Prakken with applicability to law, (Hage, 1996; Prakken & Sartor, 1997; Verheij, 2001). Limiting

my analysis to classical propositional logic with minimal consistent arguments I now define three kinds

of undercut; Wigmore, Pollock and canonical and then add one of my own.

3.2.1 Wigmore Undercut
Wigmore was the first to introduce the concept of undercut into informal logic in his writings on jurispru­

dence in 1937 (Wigmore, 1937; Twining, 1985). Some attribute undercut to Toulmin, but a) Wigmore

predates Toulmin by two decades and b) the literature is clear that Toulmin did not precisely describe

undercut, but rather what is more commonly known as the more general or related concept of defeat.

See for example, the commentary of (Verheij, 1999) stating that Toulmin does not make the distinction

between rebuttal and undercut.

Wigmore calls the construct ‘explanatory evidence’ and shows how it reduces the strength of effect

of the argument it attacks. Thus if a witness said they saw a red wall and their barrister argues that

therefore the wall is red, an explanatory evidence would be to say actually a red light was or could have

been shining on that wall thereby making it only appear to be red.

I take Wigmore’s description as attacking an assumption and formalise it as Definition 3.2.1 be­

low. This same definition, but without labels appears in a number of published sources, e.g. (Elvang-

Gpransson & Hunter, 1995; Amgoud & Cayrol, 2002; Dung et al., 2006), but without the attribution

to Wigmore. This definition may be considered to be simpler than Pollock’s definition (to be covered in

Section 3.2.4 below) which is slightly more predominant in later literature. I now provide this definition

in my nomenclature, so that I can show the relationships between the different kinds of undercut.

Definition 3.2.1. Let A be a knowledgebase of labelled assumption formulae and let I : a, J : e

arguments(A).

J : -1 0 is a Wigmore undercut of I :a iff <p e stripAssumptions(formulae(/, A)).

Now I provide an example of a Wigmore undercut.

Example 3.2.1. Wigmore undercut Let A = { a : a , b : a —► (3, c : ->a)}. Then {a, b} : (3, {c} : ->a e

arguments(A). It follows that the argument {c} : ->a is a Wigmore undercut of {a, b } : (3.

3.2. The Concept o f Undercut 59

The Wigmore undercut of (Elvang-Gpransson & Hunter, 1995) is expressed as follows: ‘Let (II, 0)

and (©, 0) be any arguments constructed from A. If 7 G © and b 0 <-> -<7 , then (II, 0) is an under­

cutting defeater of (©, 0) ’ . I now discuss how this definition is equivalent to my definition, b 0 <->• -17

means that 0 <-* -<7 is a tautology. Consequently there is another argument, (II, ->7) that can also be

derived from A, that is not a tautology and is a Wigmore undercut of (© ,0) . Because 0 <-* ->7 is a

tautology, no further formulae need to be added to II, over and above those used to deduce 0, in order to

deduce -1 7 (as would have been the case if 0 —> ->7 had been used instead of 0 ->7 in their definition).

Similarly the ABA attack can be seen to be a generalisation of the Wigmore undercut; see Definition 2.5

in (Dung et al., 2006) where it states that argument A attacks argument B if ‘A attacks an assumption in

the set of assumptions on which B is based’.

My use of labels makes Wigmore undercuts able to attack more arguments than would be the case

without labels. For the Wigmore undercut without labels within the example below I employ the defini­

tion of (Elvang-G0 ransson & Hunter, 1995) and the notation of (Besnard & Hunter, 2001).

Example 3.2.2. Wigmore and labels. Let A = {a : a ,b : a —> p , c : --a , d : a ,e : a —> p) . Then

{ a ,6 } :/3 , {d , e} : 0 , {c} : - a G arguments(A). With labels, it follows that the argument {c} : ->a is a

Wigmore undercut o f {a, b} : P and also o f {d, e } : p. Now without labels, let V — {a , a —> P, ->o:}.

Consequently there are two arguments ({a , a —► P},P) and ({->«}, ->a). Therefore, ({->«}, ->a) is a

Wigmore undercut o f only one argument ({ a , a —> P}, p).

Now here is an example showing how undercuts (even simple Wigmore undercuts) can make a

difference to the outcome of a debate.

3.2.2 Undercuts Can Change Debate Outcomes

This subsection is built around a somewhat informal example to provide motivation for subsequent for­

malisms in this thesis. It also places this motivation in the context of the literature. The discussion builds

on the earlier definition of judge 2.0, see Definition 2.7.5.

Example 3.2.3. Changed debate. Let the initial A* = {a : p , b : 7 , c : —<A, d : ->a —> --7 , e :

-*a —► —i/3, / : ->a V A}. Then {a, e} : a , { 6 , d} : a , { c ,/ } : ->a G arguments(Aj) are the argu­

ments for a and ->a . Let {a ,e } = / , { 6 , d} = J and {c, / } = K, so { / , J } : a G 0 (a , A*) and

{K } : -iq G OC-1**, Aj). 77ien f/ie debate can be summarised as the maximum cardinality contradic­

tion ({ / , J } , { I f}) : a G ♦ (« , Aj). Using judge2 .o(Aj) it is clear that a wins. The outcome of the

debate is a because pro(4(a, A j)) = 2 , con ($ (a , A*)) = 1 and as 2 > 1 so a e judge2 0 (A t) and

-<a judge2 0 (At). A property o/judge2 0 is that it is always consistent, so a E judge2 0 (A t) implies

->a & judge2 0 (At). Now add two undercuts to the debate. Let the new A = A , U { g : ->P, h : ->7 }. Let

L = {g}, M = {h}. So now L : ->/?, M : -> 7 G arguments(A). Note that any attempt to combine g : ->P

with e : —> -<P implies nothing about a; as g : ->P only affirms the claim of e : ->a -'p. Similarly

h : -1 7 with d : ->a —> 7 also implies nothing about a. So no new confirmations or rebuttals of a are

introduced. What exists is a pair of undercuts, namely the argument L:-^p is an undercut of I : a and

M : -1 7 is an undercut of J : a. While there is more consensus in the literature to the effect that L : -̂ P

3.2. The Concept o f Undercut 60

attacks I : a, there is less agreement that L : defeats I : a.

So given this example, I can now examine the three possibilities of the impact of L : ->j3 on I : a as

full defeat, graded (or partial) defeat and no defeat (i.e. no effect).

1. No effect. Attack by an undercut can be taken to not imply defeat and have no effect. Papers

taking this position include (Manor & Rescher, 1970), (Benferhat et al., 1993) and (Fox & Das,

2000). ‘No effect’ is the assumption implicit in judge2 0. In this case the outcome of the above

debate is a , namely a € judge2 ,0 (A).

2. Full defeat. Alternatively, attack by an undercut can be taken to imply total defeat, i.e., to fully

nullify the effect of the attacked argument. Papers broadly following this approach include (Dung,

1995), (Prakken & Vreeswijk, 2002) and (Amgoud & Cayrol, 2002). So far I have not formally

defined this possibility, but intuitively, for the above example, the value of an undercut sensitive

pro function should now reduce to zero. I say zero because the two arguments for a , i.e. I : a , J : a

are now defeated by the two undercuts L : ->/?, M : ->7 . Thus by modifying the pro and con func­

tions to be undercut aware and using them in an otherwise unmodified judge2 0 (call it judge21 ,

which is not formally defined, although practical judges akin to it are defined in Chapter 7) would

yield ->a € judge2 1 (A). These modified pro and con functions should still deliver natural num­

bers in the same range as the original pro and con functions. Using this assumption reverses the

outcome of the debate - from a 6 judge2 0 (A) to ->a e judge2 1 (A) - showing that, given certain

assumptions, undercuts can affect debate outcomes.

3. Graded defeat. The third option is to say that attack by an undercut implies a gradation of defeat,

that is anything in between the above two extremes of full and no defeat. This perspective is

described in (Wigmore, 1937; Besnard & Hunter, 2001) and touched on in (Verheij, 1996).

• Half. I examine first the situation where attack by an undercut halves the strength of the

attacked argument. W hile I have not yet defined strength it is possible to explore it as an

intuitive notion, and say that the strength of I : a , initially 1 is reduced by the attack of L : ->/?

to Similarly the attack of M : -1 7 reduces the strength of J : a to Thus the collective

strength of the confirmation { / , J } : a is reduced to 1. Consequently a £ judge2 1 (A)

and also ^ judge2 X(A). To formalise this situation will require modified pro and con

functions that deliver rational numbers rather than natural numbers. Neither a nor - 1a wins.

I call this situation a stalemate because the inconsistency is not resolved and there is equal

evidence for a and ->a.

• Over half. Continuing the above example, if the attacking strength of L : -̂ (3 on I : a is over

half, then the residual strength of I : a is reduced to under a half. The same applies for the

M : -17 attack on J : a . Consequently the overall residual strength for a is under one and a

is defeated. The effect of the debate is reversed and ->a G judge2 : (A).

• Under half. Now for the contrary situation. If the attacking strength of L : ->(3 on I : a is

under half, then the residual strength of I : a is reduced but is still over a half. Consider the

3.2. The Concept o f Undercut 61

same applies for the M : -> 7 attack on J : a . Consequently the overall residual strength for a

is over one and a is still victorious. The effect of the debate is unchanged so a € judge2 X(A)

just as a e judge2 0 (A).

This example covering i) no effect, ii) full and iii) graded defeat shows that undercuts can make a

major difference to the outcome of debates. The word ‘can’ is used due to two reasons: one is undercuts

only make a difference if certain assumptions are made and the other is that even then the difference is

seen only with certain A . One of these assumptions is my use of labels. As shown in Example 3.2.2,

working with labels can alter the number of undercuts and thus can also affect debate outcomes.

Clearly there are some debates to which incorporating undercut does not effect the outcome. For

instance, consider a A that implies the contradiction ({ I , J , K } , {L }) : a and also just one undercut,

the argument M : (3, such that - (̂3 e strip Assumptions(formulae(7, A)) with the same judge^ as above.

Then even if I assume M : (3 fully defeats I : a it follows that there are still two arguments for and only

one against so a € judge2 j(A). The outcome of this debate would not be changed.

To generalise from the above example there is nothing unique about the | in its ability to infer stale­

mate or inconsistency. For example, the rational numbers 3 or | for defeating strength of an undercut

could create stalemate for other A. Similarly it is not always true that full defeat reverses the outcome

of debates; this too depends upon A. What is generally true, however, is that there are three possible

effects o f including undercut on the outcome of a debate, that is a) no effect, b) reverse the outcome, and

c) stalemate where inconsistency is not resolved.

Before progressing to counting undercuts and rebuttals of arguments (in Section 7.2) it will be

necessary to further evolve the understanding of patterns of repetition when arguments attack each other.

To introduce an indication of the puzzles ahead consider the following example that shows that one

undercut can undercut two arguments.

Example 3.2.4. Number of Wigmore undercuts. Let A = (a : a , 6 : a —► /?, c : 7 , d : 7 —► (3,e :

->(a V 7)}. Then {a,b}:(3, {c,d}:{3, {e} :->(a V 7), {e } :--a , {e } : - < 7 6 arguments(A). It follows that

{ e } : ->(a V 7) is a Wigmore undercut of {a, b } : (3 and also of {c, d } : (3. Furthermore { e } : ->a is another

Wigmore undercut of {a, 6 }: (3 and { e } : ->7 is of {c, d } : (3.

When tracking and judging a debate, should one, two or three of these undercuts be counted? Rather

than counting all possible undercuts that can be found in arguments(A) instead I need some subset of

well ordered undercuts that represents all others.

3.2.3 Undercuts, Confirmations and Rebuttals Resolve Inconsistency
So far this chapter has shown that undercuts, confirmations and rebuttals are interrelated and have a

bearing on inconsistency. I now provide an example to demonstrate that each of these three interactions

can be used to resolve an inconsistency. I argue that because all three can be used to achieve the same

effect then all three are interrelated.

Let the initial A j = { a : /?, 6 : —► ->(3, c : -A , d : ->a V A}. Then { { a , 6 } : a , {c, d} : -<a} C

arguments(Aj) are the arguments for a and ->a . Let { a , b} = I and {c, d] = K . Therefore the debate

3.2. The Concept o f Undercut 62

can be summarised as ({ /} , {/ST}): ck £ ♦(<*, A*). Thus A* I- _L, a £ judge^(Aj) and -<a judge^Aj),

where judge^ is akin to judge2 0 but also incorporates undercuts in some as yet undefined way.

There are three ways to resolve this inconsistency. All three approaches involve adding formulae

T to A j to create a new A, that is A = A* U T. My goal, of resolving the inconsistency, is to have

a £ judge^(A) or ^ judge^A). Even with the judge resolving the inconsistency it can still be the

case that A t- ± .

The three ways to resolve the inconsistency, which I describe relative to a are:

1 . Add a confirmation to resolve the inconsistency. A = A i U { e : 7r , / : 7r —► a } , I add another

argument for a , namely L : a , where { e , / } — L so now ({ / ,£ } ,{ # }) : a £ # (a , A), and

a £ judgej(A).

2. Add a rebuttal. Alternatively the inconsistency can be resolved using rebuttal of the argument

for q , that is an argument for ->a. A = A* U {g : </>, h : 0 —► ->q:} let {g, h} — M and now

({ / } , {K , M }) :a £ ♦(«*, A), so a £ judge^A).

3. Add an undercut as a third way to resolve the inconsistency. A = A* U { j : A}. If I assume full

defeat then the argument { j} : A defeats {c, d} : ->a, leaving one argument for a and no viable

argument against a , so a £ judge^A).

So given an inconsistency that is based on a stalemate - basically the worst kind of inconsistency -

then three separate ways to resolve it are to add a confirmation, a rebuttal or an undercut to the debate.

3.2.4 Pollock Undercut

The concept o f undercut was added to the formal literature by Pollock with key papers on the subject

stemming from 1970 (Pollock, 1970; Pollock, 1974; Pollock, 1987). To relate Pollock’s defeasible logic

description to the classical logic approach of this thesis, consider the deduction {P, P —► Q} t- Q. Here

Pollock refers to P as a ‘premise’, Q as a ‘conclusion’ and P —> Q as the ‘connection between premise

and conclusion’. He states that his undercut defeats this ‘connection between premise and conclusion’

so that ‘P does not guarantee Q \ He writes the defeated P —► Q as P $ $ Q . In my framework both

P and P —► Q are assumptions and I allow for either to be subject to undercut. The form of a Pollock

undercut with many assumptions is overtly documented in (Pollock, 1992) showing that the claim of the

undercutter is the negation of the conjunction of premises. Thus a Pollock undercut rebuts some, i.e. one

or more, assumptions.

While this style of undercut originated with Pollock it has been more recently and perhaps more

precisely documented by others, for example (Elvang-Gpransson et al., 1993a) and (Schroeder, 1999).

This is arguably the main definition in the literature for undercut, but to suggest a consensus would be

inaccurate. The Pollock undercut has also been called defeat, e.g. (Krause & Clark, 1993) p231, however

the more common definition of a defeater is that it is a collective term for undercuts and rebuttal, see for

example the formalisation of defeaters in (Besnard & Hunter, 2001). Recall that Wigmore undercuts, in

contrast, only allow undercuts that rebut one and only one assumption. Pollock’s own definition does not

involve labels or consistent or minimal premises, however in my framework the definition is as follows.

3.2. The Concept o f Undercut 63

Definition 3.2.2. Let A b e a knowledgebase o f labelled assumption formulae, and let I : a , J : ->(</> i A

. . . A 4>n) G arguments(A).

J :->(</»! A .. .A(f>n) is a Pollock undercu t o f I : a iff {(f>\,. . . , <fin } C stripAssumptions(formulae(/, A)).

I now give an example of an undercut that is a Pollock undercut, but not a Wigmore undercut.

Example 3.2.5. PoDock undercut Let A = {a : a ,b : a —> 7 ,c : 7 —► /?,d : ->(a: A (7 —► (3))}.

Then { a ,6 ,c} : (3,{d} : ->a V - . (7 -> (3),{d} : -i(a A (7 -> /?)) G arguments(A). The argument

{d} : -i(q A (7 —> (3)) is a Pollock undercut, but not a Wigmore undercut, o f the assumptions a : a and

c : 7 —»(3 in the argument { a , 6 , c } : (3.

This example shows that the set of Pollock undercuts for an argument can be a superset of the set

of Wigmore undercuts. All Wigmore undercuts are also Pollock undercuts, but not vice versa.

As shown with Wigmore undercuts, my use of labels can affect the number of Pollock undercuts,

as illustrated in the following example. For the Pollock undercut without labels below I employ the

definition of (Elvang-Gpransson et al., 1993a) combined with the notation of (Besnard & Hunter, 2001).

Example 3.2.6. Pollock and labels. Let A = { a : a , b : a —> 7 , c : 7 —► (3, d : -1(0: A (7 —» / ?)) , e : a } .

Then { a , 6 , c} : (3, {e, b, c} : (3, {d} : ->(a A (7 —* (3)) G arguments(A). With labels, it follows that the

argument {d } : ->(a A (a —* (3)) is a Pollock undercut o / { a , 6 , c } : (3 and also of{e, b, c }: (3. Now without

labels, let the knowledgebase of unlabelled formulae be T — {a , a —> 7 , 7 —> (3, ->(a A (7 —> /?))}.

Hence the two arguments of relevance are ({a , a: —► 7 , 7 —> (3,}, (3) and ({—-(ct A (7 —► (3))} , -i(q A

(7 —► (3))). Therefore, ({~ i(a A (7 —+ /?))}, -'(a A (7 —* ft))) is a Pollock undercut of ({a, c* —» 7 , 7 —►

(3, }, (3). So with labels one attacking argument provides a Pollock undercut of two defending arguments.

Without labels, however, the one attacking argument only undercuts only one defending argument.

Thus the use of labels makes Pollock undercuts able to attack more arguments than would be the

case without labels. I now turn to two problems with Pollock undercuts, namely that of multiple subsets

and that o f multiple claim orderings. I illustrate each of these problems with an example.

Example 3.2.7. Multiple subsets. Let A = {a : a ,b : (3,c : (a V 0) —> 7 ,d : -•0 }. The defending

argument is {a, 6 , c } : 7 . How many Pollock undercuts o f {a, 6 , c } : 7 can be inferred from A ? There are

multiple subsets to {a, b, c}, so all o f {d} : {d} : ->(q A (3), {d} : ->(0 ; A (3 A (a V ft) —>7) are valid

Pollock undercuts o f the defending argument.

How many of the above Pollock undercuts should be counted within a judge that counts arguments?

Judge 2.0 is a judge that counts arguments, so how should it be extended to consider Pollock undercuts

in its deliberations? Intuitively the above three Pollock undercuts are three manifestations of the same

one underlying argument, so if all are counted would the error that accountants call ‘double counting’,

whereby an item is counted more than once, occur?

Exam ple 3.2.8. M ultiple orderings. Continuing with the same A and defending argument {a, 6 , c } : 7

as above. Even with the one attack {d} : -i(aA/3A(aV/5) —> 7), classical logic allows fo r many orderings

3.3. Canonical Undercut 64

of the formulae within the claim. Thus { d } : ->(0 A a A (a V 0) —> 7), { d } : ->(a A (a V 0) —> 7) A 0 are

also valid Pollock undercuts of {a, b,c} : 7 .

The above example deepens the concerns raised by Example 3.2.7. In conclusion, this review

of Wigmore and Pollock undercuts shows that when aggregating arguments in order to avoid double

counting requires some well ordered or standard subset of undercuts that properly represents all other

undercuts.

3.3 Canonical Undercut
I now come onto a third definition of undercut. It is more specific than the Pollock undercut, with

the value of this specificity being to give more appropriate results in argument aggregation schemes.

It cannot represent new undercuts beyond those expressible in the Pollock form. However there are

situations where many well-formed Pollock undercuts are subsumed into a single canonical undercut.

The aim of the canonical undercut is to provide an undercut that represents a variety of other, logically-

equivalent, undercuts.

The definition of canonical undercut requires a definition of canonical enumeration, which is a

minor syntactical device that is necessary (but not sufficient) to prevent double counting or redundancy

in subsequent definitions.

Definition 33.1. Let A be a knowledgebase of labelled assumption formulae. Let every subset of

stripAssumptions(A) have an enumeration (q i, . . . , c*n) of its elements. This specific ordering, or enu­

meration, is called the canonical enumeration of the subset.

This constraint of enumeration is satisfied whenever I impose an arbitrary total ordering over A and

is thus not an onerous constraint. It is only a convenient way to indicate the order in which I assume the

formulae in any subset of A are conjoined to make a formula logically equivalent to that subset.

This minor syntactical ordering is not intended to relay that some formulae are preferred over others.

Preference-based ordering is a different topic, as addressed in such papers as (Cayrol et al., 1992;

Amgoud & Cayrol, 1998), and is outside the scope of this thesis.

Example 3.3.1. Canonical enumeration. The knowledgebase A = {a : a, b : 0, c : 7 } has only one

canonical form (a : a ,b : 0 ,c : 7). This ordering over A dictates the ordering over all subsets of A.

The one canonical form is used to stand for all of the many other possible sequences (a : a ,c : 7 , 6 :

0) , . . . , (c : 7 , b : 0, a : a) etc.

Having defined canonical ordering I can now define canonical undercut. The definition, below,

while based on (Besnard & Hunter, 2001), is in my notation and incorporates the use of labels. The

claim of the undercutting argument is the negation of the conjunction of the assumptions of the undercut

argument. In this approach a broader set of undercuts are allowed than with Wigmore as it includes cases

where exactly which assumption or assumptions are negated is unknown.

Definition 3.3.2. Let A be a knowledgebase of labelled assumption formulae and let I : a, J : _i(0 i A

. . . A <f>n) e arguments(A). The set of canonical undercuts of I .a derivable from A , denoted

3.3. Canonical Undercut 65

canonicalUndercuts(7: c*, A), is such that:

canonicalUndercuts(J : a , A) = { J : - i(0 i A . . . A 0 n) |

{ 0 i , . . . , 0 n } = stripAssumptions(formulae(/, A)) and

(0 i , . . . , 0 n) /s //ie canonical enumeration o/stripAssumptions(formulae(7, A))}.

I call an argument J : ->(0i A . . . A 0 n) a canonical undercut of an argument 7 : a iff J : —i(0i A

. . . A<f>n) € canonicalUndercuts(7: a , A). I call 7: q the defending argument and J : ->(0i A . . . A 0 n)

the attacking argument.

I now give an example of the increased generality relative to Wigmore undercut and increased

precision relative to Pollock undercut. In the following examples I assume that the canonical enumeration

is the same as the sequence that the set members are written in each definition of A. While this detail

could be added to each example it would make the text quite a bit longer and more cluttered without

adding significant clarity.

Example 3.3.2. Canonical undercut Let A - {a : a ,b : a —> 0 ,c : V ->(q —» /?)}. Let I —

{a, &}, J = {c} Then I : (3, J : - i(a A (a —» 0)) £ arguments(A). The argument J : ->(£* A (a —* 0)) £

canonicalUndercuts(7 : /5, A) is a canonical undercut, but not a Wigmore undercut, of the defending

argument 1 : 0. The argument J : ->(q A (a —> 0)) is also one of many Pollock undercuts of the same

defending argument 1 :0.

The disjunction present in V ->(a —» 0) means it could be one or the other, or both assumptions

that are undercut.

Proposition 3.3.1. Let A be a knowledgebase o f labelled assumption formulae and let J : 7 ,7 : a , J :

0 , K : 0 £ arguments(A).

I f J is a Wigmore undercut o f I :a

then there exists a K : 0 £ canonicalUndercuts(7:a , A), where K C J,

but not necessarily vice versa.

Proof. Definition 3.2.1 states that J :-> 0 is a Wigmore undercut of 7: c* iff 0 e

stripAssumptions(formulae(7, A)). Definition 3.3.2 gives the end point: canonicalUndercuts(7 : a , A)

= { K : 1 (0 1 A . . . A 0 n) | { 0 i , . . . , 0 n } = stripAssumptions(formulae(7,A)) and (0 i , . . . , 0 „)

is the canonical enumeration of stripAssumptions(formulae(7,A))}. Let 0* £ { 0 i , . . . , 0 n } =

stripAssumptions(formulae(7, A)). So 7 = —>0* and J : - 10* is a Wigmore undercut of 7 : a . Using

VI and De Morgan J : —>0* implies J : ->0* V 0 j implies J : —>0* V implies J : -i0 i V • • • V ->0n

implies J : -i(0 i A • • • A 0 n). However, A may be such that K C J also implies —i(0i A • • • A 0 n)

yielding K : —>(0i A • • • A 0 n). Such a A is A = { a : 7r, 6 : /3, c : ~>7r V —i/3} with 7 : a = {a, 6 } : 7r A 0,

a Wigmore undercut of {6 , c} : —«7r and a canonical undercut of {c} : —>(7r A 0). Lastly, of the many

orderings of J : —>(0i A • • • A 0 n) such as J : —>(02 A 0 i A • • • A 0 n) or J : -i(0 n A ■ • • A 0 i) one of

3.3. Canonical Undercut 66

them will have the required canonical ordering, so a canonical undercut is guaranteed. Now for the vice

versa. So although {7 } h (3, the rule {ip V 7r} Y ip means that, unless |formulae(7, A)| = 1, it is not

the case that {/3} h 7 . Thus, given J : (3 e canonicall)ndercuts(7: 6 , A) is not always possible to infer

a Wigmore undercut J : 7 . So in conclusion if J : 7 is a Wigmore undercut of 7 : a then there exists a

K : [3 6 canonicalUndercuts(7: a , A), where K C J, but not necessarily vice versa. □

Likewise, given a Pollock undercut it is always possible to infer the existence of a canonical under­

cut and vice versa.

Proposition 33.2. Let A be a knowledgebase o f labelled assumption formulae and let J : a , 1 :6, K :

0 e arguments(A).

There exists a Pollock undercut J -.a o f 1:6

iff there exists K : 0 e canonicalUndercuts(7:6 , A) where K C J.

Proof. Contrasting Definition 3.2.2 of Pollock undercut with Definition 3.3.2 of canonical undercut

shows two differences: i) canonicals must attack the full support and ii) the canonical ordering. So given

the Pollock undercut J : a it is known that a = -> / \ $, where $ C stripAssumptions(formulae(7, A).

W hich ever subset $ is started with it is always possible to use VI to extend a into 0 where 0 —

-> A stripAssumptions(formulae(7, A). It should be noted (see the proof of Proposition 3.3.1) that as

the full support is weaker than the subset it may not require all of J to infer it, hence K C J ,

meaning J : 0 & arguments(A) and K : 0 e arguments(A). Furthermore there are many or­

derings for the members of stripAssumptions(formulae(7, A), however one of them will always ex­

ist that will satisfy the canonical ordering of Definition 3.3.1. So if J : a a Pollock undercut of 7 :

6 then K : 0 e canonicalUndercuts(7 : 6, A), where K C J. Now for the other direction: given

K : 0 G canonicalUndercuts(7 : 6 , A) it immediately follows that K : 0 is also a Pollock undercut of

7 : 6. Hence there exists J : a a Pollock undercut o f 7 :6 iff there exists K : 0 € canonicalUndercuts(7:

9 , A) where K C J. □

The number of canonical undercuts is as follows:

Proposition 3 3 3 . Let A be a knowledgebase o f labelled assumption formulae and let I : a e

arguments(A).

0 < |canonicalUndercuts(7:a, A)| < midLattice(A).

Proof. Some A ’s will not produce any attacks, for example when A Y- _L, so the lower bound

is zero. All canonical undercuts of 7 : a will have the same claim, namely <p, equal to

-i(/\stripAssumptions(formulae(7, A))). Thus for two canonical undercuts of 7 : a , i.e. K : <p,L :

(p e canonicalllndercuts(7 :a , A), to be distinct they must different supports, so K ± L. The number of

different deduction supports derivable from A is 21 ; not all of these supports belong to valid arguments.

The support of one undercut K : (p cannot be a subset of the support of another L : <p, that is K % L and

L % K . The largest number of subsets of A with this property is given by the midLattice() function.

7 : (p can never be a canonical undercut of any argument 7 : a, as then formulae(7, A) h _L which is not

3.3. Canonical Undercut 67

allowed. The attacked support 7 could occur anywhere in the power set of 2A attacking supports, that is

a) in the bottom portion between 0 and below midLattice(), b) in the upper portion above midLattice() up

to A, or c) on the midLattice() line. If I is in a) it would remove many members of midLattice(). In b)

members of midLattice() would invalidate I , or consequently many members of midl_attice(). Thus the

smallest reduction from midLattice() is case c) and the reduction is 1. Therefore the maximum number

of canonical undercuts is < midLattice(A). □

As an argument cannot attack itself, so I :a g canonicalUndercuts(/: a , A). Now another property:

if an argument A is undercut by B then B cannot undercut A’s rebuttal C.

Proposition 33.4. Let A b e a knowledgebase o f labelled assumption formulae and let I : a, J : - i q , K :

0 e arguments(A).

I f K:<f> e canonicall)ndercuts(7:c*, A) then K:<f> & canonicalUndercuts(J:-'Q, A).

Proof. Clearly stripAssumptions(formulae(J, A)) t- a , stripAssumptions(formulae(/f, A)) I- 0 and

stripAssumptions(formulae(J , A)) I— >a. Because K : <f> e canonicalllndercuts(7 : a , A) it is the case

that {->0} b a . If the above proposition was false then it would also be the case that {—>0} I— 'Q. A s

->0 is equal to the negation of the conjunction of the members of stripAssumptions(formulae(/, A) it

would follow that J = I and I : a , I : ->q 6 arguments(A), which is impossible, so the proposition is

correct. □

Clearly the set o f canonical undercuts of a single argument can be represented as a confirma­

tion, where Z : 0 = confirm(canonicalUndercuts(7 : a , A)) iff (i f : 0 € canonicalUndercuts(7 :

a , A) and K e Z). Therefore the original definition of canonical undercut, Definition 3.3.2, could just

as easily be made using confirmation notation.

In the definition of canonical undercut note the equality sign, meaning that every assumption within

the undercut argument must appear in the claim of the undercutting argument. Pollock could also have

every assumption in the claim, but the Pollock definition only requires a subset. What is interesting,

however, is that even if one or more assumption is missing from the claim of an argument (that is the

reference to the assumption is missing relative to a valid canonical undercut), these formulae can be

added by VI. I call this process of adding formulae by VI, growing the claim. This ‘growing’ behaviour

extends the disjunction of formulae in the claim of the attacking argument in order to round it out to

match and attack the full support of the defending argument.

The support of a canonical undercut cannot be the empty set.

Proposition 3.3.5. Let A be a knowledgebase o f labelled assumption formulae and let I : a, J : 7 €

arguments(A).

I f J 17 G canonicalUndercuts(7:a, A) then J ^ 0.

Proof. If the support of the canonical undercut was the empty set, J = 0, then the claim would be

a tautology {7 } b T. From Definition 3.3.2 it is clear that -<7 is the conjunction of the members of

stripAssumptions(formulae(7, A)). So, because -<T b _L, it follows that if J = 0 then formulae(7, A) b

3.3. Canonical Undercut 68

± which is impossible given I .ot G argum ents(A). So the support of a canonical undercut can never be

the empty set. □

3.3.1 The Effect on Labels in Canonical Undercut
I now turn to the use of labels in canonical undercut, looking at their role and effects. The use of labels

can increase the number of canonical undercuts (and similarly the number of Wigmore and Pollock

undercuts) compared to the situation without labels, as shown in the next two examples. The following

three examples illustrate the effects of labels.

Example 3 3 3 . Labels add supports. Let A = {a : a , b : a —* 0, c: : -'(c* —» 0 s),e : ->a}.

Let I = { a ,6 }, J = { c } , K = {d} ,L = { e } ,M = {e,d}. Thus I : 0 ,J : - (a A (a -> 0)) , K :

->(a A (a —> 0)) ,L : ->a,L : ->(a A (a —► 0)) ,M : A ->(a —> 0) € arguments(A). Then

additional undercuts of I : 0 include the Wigmore and Pollock undercut L : ->a and the canonical

undercut L:->(a A (a —> 0)) G canonicalUndercuts(7:0, A). Thus J :->(aA (a —> 0)),K:->(a A (a —►

0)), L : —'(ck A (a —► 0)) G canonicalUndercuts(7:0, A). These undercuts would not all occur without

the use of labels, that is because stripAssumption(c: -<a) = stripAssumption(e: ->a) = ->a.

The above example shows labels increasing the number of canonical undercuts by introducing more

than one support. It is also possible for labels to increase the number of canonical undercuts by intro­

ducing more than one claim, as shown in the next example.

Example 33 .4 . Labels add arguments. Let A = { a : a , b :a , c :a —> 0 , d : ->a}. Let I = {a ,c} , J =

{6 , c } , K = {d}. Then I : 0 , J : 0 , K : ->(a A (a —> 0)) e arguments(A). Consequently the one

assumption d : ->a, which gives rise to one argument K : ->(a A (a —> 0)), produces two canonical

undercuts, namely K : ->(a A (a —► 0)) € canonicalUndercuts(7 : 0 , A) and K : - i(a A (a —> 0)) G

canonicalUndercuts(J : 0 , A).

It is also possible for the labels to add no additional arguments relative to the non-label situation,

however the labels could still be used to track which expert contributed which items of knowledge.

33.2 Reflexivity and Canonical Undercut

Can an argument be both a rebuttal and an undercut? The answer, somewhat surprisingly, is yes as it

occurs for reflexive arguments.

Example 33 .5 . Rebuttal = undercut Let A = {a : a , b : - 17, c : a —> 7 }. Let I — {a}, J = {6 , c}.

Consequently I : a , J : ->q g arguments(A). It is possible fo r an argument to be both a rebuttal and

an undercut i f the defending argument is a reflexive argument. Here I : a is reflexive. Thus J : G

rebuttals(7: a , A) and J:->a G canonicalUndercuts(7: a , A).

Intuitively one might think that undercut is an asymmetric relationship, i.e. if attacked, the attacked

argument cannot attack back. Clearly rebuttal is always symmetric, i.e. if attacked by a rebuttal there is

always a rebuttal counter attack. Can undercut ever be symmetric? The answer is yes as it occurs for

reflexive arguments. Now, unlike Example 3.3.5, both arguments have to be reflexive.

3.4. Introducing and Defining Preclusive Undercut 69

Example 33.6. Reflexive counterattack. Let A = {a : a , b : ->a}. Thus {a} : a , {6 } : ->a £

arguments(A). It is possible fo r undercut to be reflexive; {a} : a £ canonicalUndercuts({6 } : ->a, A)

and {6 }: ->a £ canonicalUndercuts({a} :a , A).

So reflexive undercuts can act like rebuttals. These observations do raise the interesting question

that if one was somehow tracking rebuttals and undercuts in a debate would one show an attack on a

reflexive argument as both an undercuts and a rebuttal?

That concludes this discussion of canonical undercuts. The next section introduces an even more

general definition of undercut, namely preclusive undercut. This definition continues the progression of

generalisation described so far.

3.4 Introducing and Defining Preclusive Undercut
I now provide a new and arguably a somewhat more fundamental and general, definition of undercut.

Just as canonical undercut provides a generalisation on the Wigmore undercut so also preclusive undercut

provides a generalisation on canonical undercut. An informal way to describe preclusive undercuts is

this: just as a canonical undercut is one argument undercutting another argument, so also a preclusive

undercut is one confirmation undercutting another confirmation. Given that a confirmation is simply

a set o f arguments for the same claim and just as a canonical undercut is one argument attacking one

argument, so also a preclusive undercut is a set o f arguments attacking a set o f arguments. Furthermore,

in simple terms, just as a canonical undercut says ‘one or more of your assumptions is wrong’ so also a

preclusive undercut says ‘one or more of your arguments is wrong’.

The word preclusive is used because just as a canonical undercut precludes one or more premises, so

also a preclusive undercut precludes one or more arguments. My definition, below, of preclusive undercut

has two principle changes from canonical undercut. Firstly, I define the attacker to be a confirmation

rather than limiting it to just an individual argument. Secondly I broaden the definition of the claim of

the undercut, so that I accept undercuts that attack more than one argument, as shown in Example 3.4.1.

Such undercuts identify that the targeted arguments are incompatible with each other, given the existence

of the undercutter. The definition of a set o f preclusive undercuts is closely related to i) the definition of

canonical undercut, which is Definition 3.3.2 and ii) the definition of the set §(a , A) of confirmations

which is Definition 2.5.5. I now give the formal definition of preclusive undercut in two steps.

Definition 3.4.1. Let A be a knowledgebase o f labelled assumption formulae and l e t X . a , Y : a , Z :

~' (0 1 A . . . A 0 n) £ 0 (A). The set o f cand idate preclusive undercuts o f Y : a derivable from A,

denoted candidatePreclusiveUndercuts(Y : a , A), is such that:

candidatePreclusiveUndercuts(Y : a , A)

= { (Z : - . (0 ! A . . . A 0 n) , X , Y : a) | Z ^ 0,

0 ^ X C Y, stripAssumptions(formulae(X, A)) = { 0 i , . . . ,0 n } and

the canonical enumeration o f { 0 i , . . . , 0 n} is ((f)i , . . . , 0 n)}.

3.4. Introducing and Defining Preclusive Undercut 70

So now given the form of the candidate preclusive undercut I take the one with the minimal claim

to be the preclusive undercut.

Definition 3.4.2. Let A be a knowledgebase o f labelled assumption formulae and let W : a , X :

a , Y : a , Z : </>, Z : ifi G 0 (A). The set o f preclusive undercu ts o f Y : a derivable from A, denoted

preclusiveUndercuts(Y :a , A), is such that:

preclusiveUndercuts(Y: a , A)

= { (Z : <fi, X, Y : a) G candidatePreclusiveUndercuts(Y: a , A) |

i f (Z : ifi, W , Y : a) G candidatePreclusiveUndercuts(Y: a , A)

then X C W }.

For a preclusive undercut between two confirmations, which is of the form of a 3-tuple (Z :

->(0x A . . . A 0 n) ,X, Y : a), I call Z : ->((fii A . . . A </>n) the attacking confirmation, I call X the

target confirmation label and I call Y : a the defending confirmation. Clearly for any preclusive un­

dercut, (Z : ->{4>i A . . . A (fin), X, Y : a) , it is always the case that X C Y. Given the target confirmation

label is X and the defending confirmation is Y : a then X : a G 0 (A) is the target confirmation. At

times I use the word ‘preclusion’ as a shortened form of ‘preclusive undercut’.

Preclusive undercuts are more general than canonical undercuts as they allow undercuts which could

not be previously represented, as shown in the following example. As before, I will continue to assume

that the canonical enumeration condition is met, unless otherwise stated.

E xam ple 3.4.1. A preclusive u n d e rc u t Let A = {a : a , b : a —> (3, c : 7 , d : 7 —> 0 , e : ->(o; A 7)}.

Then {a,b} : (3, {c , d} : 0, {e } : ->a V - 17, {e} : ->(a A (a —► 0) A 7 A (7 —> (3)) G arguments(A).

Let {a, a —► (3,7 , 7 —► (3) be the canonical enumeration o f {a , a —* (3,7 , 7 —> (3}. Let {a, b} =

I , { c , d } = J , { e } = K, then { I , J } : /3, { K } : —>(a A (a —> /?) A 7 A (7 —» 0)) G 0(A). A

preclusive undercut o f { I , J } : 0 is { K } : ->(o; A (a —» 0) A 7 A (7 —> 0)), or, put more formally, that

is ({ if} : ->(a A (a —* 0) A 7 A (7 —> 0)) , { I , J } , { I , J } : 0) G preclusiveUndercuts({7, J } : 0, A).

However { K } : - i(a A (a —* 0) A 7 A (7 —► 0)) ^ canonicalUndercuts(7 : 0, A) and likewise { K } :

->(c* A (a —► 0) A 7 A (7 —> 0)) ^ canonicalUndercuts(J : 0 , A) as it is not possible to say that just one

o f the arguments 1 :0, J : 0 is undercut. Thus { K } : ->(a A (a —> 0) A 7 A (7 —» 0)) is not a Wigmore

undercut o f either I :a or J :a.

The second definition is necessary because given a candidate preclusive undercut that attacks X,

VI will ensure many additional candidate preclusive undercuts that attack supersets of X. Because there

is no requirement that a preclusive undercut is a maximal cardinality confirmation then it is possible to

have many preclusive undercuts attacking the same target X, hence the need for the X = W part of

X C W.

The second definition covers the process of invalidation. In the above definition, if there exists

a (Z : ip, W , Y : a) such that X C W then I call (Z : cfi, X ,Y : a) an invalidated candidate preclusive

3.4. Introducing and Defining Preclusive Undercut 71

undercut, because it is not a preclusive undercut. I call {Z : x/>, W , Y : a) the invalidating preclusive

undercut.

Nowhere in the above two definitions does it insist that Z : 0 is a maximum cardinality confirmation.

Hence if Z : 0 is an attacking confirmation then each V : </>, where 0 / V C Z, is also an attacking

confirmation. Also for a single defending confirmation there can be many target confirmations. For

a single target confirmation X there will be one attacking claim, i.e. |stripConfirmation(Z : <f>)\ = 1.

Clearly, however, it is possible for |label(Z:0)| > 1.

From a perspective of the cardinality of the attack and the target, I identify four types of preclusive

undercut:

• a m ono-target preclusive undercut iff target |X| = 1,

• a m ulti-target preclusive undercut iff target |X| > 1,

• a m ono-attack preclusive undercut iff attacking |Z| = 1 and

• a m ulti-a ttack preclusive undercut iff attacking |Z| > 1.

Referring to Definition 2.5.2 of self confirmation, all self-confirmed canonical undercuts are mono­

target mono-attack preclusions, see Proposition 3.6.1. The self confirmation of a set containing many

canonical undercuts, all with the same target, yields a mono-target multi-attack preclusion, see Proposi­

tion 3.6.2.

Preclusive undercuts, by definition (see Definitions 3.4.1 and 3.4.2), allow that the attacking, de­

fending and target confirmations can be tautological, but not unfounded. Unfounded confirmations with

X = 0, Z = 0, W = 0, |X| / 0, |Z| / 0, |W | ^ 0 always exist and are used in professional debate

only to make clear where there are no arguments for a claim, but by definition they are not parts of

preclusions.

Only multi-target preclusive undercut candidates are subject to invalidation by invalidating confir­

mations. A multi-target preclusive undercut candidate may be invalidated either by another multi-target

preclusion of lower target cardinality or by a mono-target preclusion (all subject to constraints being

met).

Because X C Y, the defending confirmation Y : a can be viewed as the whole front line of soldiers,

perhaps many miles long and the target confirmation X : a as the small section of the front that is actually

targeted for attack and attacked. Thus, the arguments in the defending confirmation can all be potentially

targeted, while the ones in the target confirmation are the ones that are effectively (or actually) targeted

and attacked. It is the relationship between the attacking confirmation and the defending confirmation

that is the preclusive undercut.

Having defined and given an example of preclusive undercut I now move immediately to their

practical motivation.

3.5. Practical Motivation for Preclusive Undercut 12

3.5 Practical Motivation for Preclusive Undercut
1 have refrained from giving practical motivation for preclusive undercut until now as I first needed the

formal definition. The use of preclusive undercut is common in various professional activities such as

in courts of law, political debates and detective investigations. My examples mostly come from current

events, or news, at the time of writing. I am not intending to pass comment on the content of the

arguments, but rather focus just on the form of the arguments. My focus is logical structure and in

particular the presence of particular kinds of argument that arise in the real world and can be naturally

modelled by preclusive undercut, but not by earlier forms of undercut.

Preclusive undercuts are often identifiable from the phrase ‘they can’t all be true’, which is a suc­

cinct English description of the claim of a preclusive undercut. Here ‘they’ refers to the supports of the

arguments in question, which equates to the set of assumptions {4>i , . . . , 0 n }. ‘Can’t ’ is the negation

at the front of the claim. ‘A ll’ refers to the conjunctions joining the assumptions. Thus ‘they can’t all

be true’ means -i(</>i A . . . A (j>n). Sometimes the larger phrase ‘at a minimum they can’t all be true’ is

used, as if more information were known it would be possible to say specifically which arguments were

not true. Other phrases that identify preclusive undercuts are ‘you can’t have it both ways’ and ‘this

constraint x means that both y and z can’t be the case’. The constraint x is often time or money. Thus,

for example, the witness’s story cannot be true as there was not enough time x for them to do both y and

2 as they claimed. Or, for example, that some political manifesto is not viable as there is not enough

money x to pay for both y and z.

I now give motivating examples.

3.5.1 Incompatibilities due to Unsatisfied Constraints

A common place to find the use of preclusive undercuts is when someone’s proposals are disputed on

the grounds that they do not fit with constraints o f time or money.

For example at the 2003 Conservative Party conference, their leader at that time, Mr Iain Duncan

Smith made two key proposals that he argued together would lead to winning the next general election, as

reported by the BBC and others on 9 October 2003. He stated that upon election he would a) definitely

lower taxes rather than just maybe lower taxes and b) raise pensions by .£11 a week. He argued that

these promises would lead to his winning the election. I can refer to lowering taxes as (3, winning the

election as a and raising pensions as 7 . Thus he has two consistent arguments {/?, (3 —> a } \~ a and

{7 , 7 —► a} I- a , resulting in a confirmed argument for winning the election.

Subsequently his critics pointed out that the overall constraint of the government’s financial budget

meant that he could not pursue both promises. If I let the budget be 6 then the critics, notably Work and

Pensions Secretary Andrew Smith, are adding the formula of world knowledge 9 —» -y((3 A 7). Stating

this more formally: I now have A = {a: (3,b : (3 —> a , c : 7 , d : 7 —> a ,e : 0, f : 0 —> ->((3 A 7) } .

Thus { a , b } : a , {c, d } : a , {e, / } : ->(/3 A 7) , {e, / } : -«(/? A (0 -* a) A 7 A (7 —> a)) e arguments(A).

The defending confirmation is { { a , &}, {c, d}} :a . The attacking confirmation is {{e, /} } : ->(/3 A {(3 —>

a) A 7 A (7 —► a)) . The target and defending confirmations are { { a , b}, {c, d}} : a . So the preclusive

undercut is:

3.5. Practical Motivation for Preclusive Undercut 73

<{{e> / } } : ^ A (^ a) A 7 A (7 ^ a)) , {{a , 6}, {c, d}}, {{a , 6}, {c, d}} :a)

G preclusiveUndercuts({{a, 6}, {c, d}} :a , A).

A similar example of a preclusive undercut was raised at Governor of California Arnold

Schwarzenegger after he proposed he would reduce the state’s deficit and also reduce taxes. He promised

to repeal a proposed increase in car tax with an implied cost to the state of $4Bn. As reported by the BBC

and others on 8 October 2003, California State Treasurer Phil Angelides made the preclusive undercut:

given that the state deficit is $8Bn today, repealing the car tax would inevitably raise rather than lower

the deficit, indicating that Schwarzenegger could not successfully lower taxes and lower the deficit.

3.5.2 Sherlock Holmes Relies on Preclusive Undercuts

The underlying plot of many of the Sherlock Holmes detective stories, written by Sir Arthur Conan

Doyle during the Victorian era, revolves around the existence of a preclusive undercut. They progress

like this:

Sherlock Holmes is called in to investigate a murder. Holmes invariably starts by casting his net

wide, gathering police interviews from all possible suspects. Naturally each of the, let us say three,

suspects professes their innocence. The first suspect provides their evidence b : n G A, which when

combined with world knowledge c : n —► a G A , where a means innocence (effectively ‘we are all

innocent’), leads to the argument that the first suspect is innocent {b, c} : a G arguments(A). Similarly

the second suspect gives their evidence to the police, d : i/j G A, which again combined with world

knowledge e : —+ a € A shows their innocence {d, e } : a G arguments(A). Similarly for the third

suspect, / :<p,g : 0 —» a G A so { f , g} : a G arguments(A). Thus early in the investigation Holmes

will frame the confirmation {{6 , c}, {d, e}, { / , <7}}: a , i.e. the witness statements and world knowledge

forming the defending confirmation.

W hat H olm es also knows from his evaluations is that this list o f suspects is exhaustive and thus he

knows a : —i(7r A tp A 0) 6 A. Therefore H olm es knows A = {a : —>(7r A xjj A <f>), b : 7r, c : 7r —► a , d :

V>, e : ip —* a , / : </>, g : (f> —> a } . From this constraint, com bined with V I , the preclusive undercut arises,

namely:

({ M } :^ (7rA(7r -*■ a)A^A(V> -» a)A(f)A((f) -► a)) , {{&, c}, {d, e}, { / , # }} , {{6, c}, {d, e}, { / , g}} :a)

G preclusiveUndercuts({{6, c}, {d, e}, {/,<?}} :a , A).

At this stage he does not know which suspect is lying. Using his keen powers of observation, coupled

with his various pieces of world knowledge (concerning the behaviour of cigar ash, strides, mud on

shoes, writing on walls, etc.) he gathers some additional pieces of evidence (which he adds to A). The

way he describes his next step of logic is ‘eliminate all the other factors and the one that remains must

the truth’. In other words, the standard logic of V E : given - 17r V ->tjj V ->0, then establishing independent

arguments confirming xf) and <p implies that —>7r must be the case.

3.5. Practical Motivation for Preclusive Undercut 74

In the murder mystery Holmes quietly gathers small details that eliminate two of the three suspects;

the police then arrest the remaining suspect, who provided b : 7r. Subsequently Holmes explains to

Watson that the matter was elementary.

3.5.3 Cross Examination Uses Tautological Preclusive Undercuts
In Section 2.5.1 I introduced the inconsistent confirmation and pointed out that it is problematic if used

in professional debate. I argued the need for some construct to disallow the use of inconsistent confirma­

tions. Preclusive undercut is the mechanism exactly fitting that requirement. It is, in fact, just a particular

form of preclusive undercut that repudiates inconsistent confirmations, namely the tautological preclu­

sion. I start this motivating example by showing the inconsistent confirmation.

During the Hutton enquiry in September 2003, (as reported by the BBC and others), a witness for

the UK Government who worked in Human Relations was arguing that her conduct was in order, call

it the claim a. At one point she said that there was no ‘naming procedure’ for releasing the names of

civil servants to the press, so she could be excused for not following such a procedure. Let this naming

procedure be 0 and thus her piece of evidence is ->0. Her logic, building on an implied piece of world

knowledge ->0 —> a was thus { - i 0 , —>/3 —» a } I- a .

Under cross examination at another point the same witness said that Dr Kelly would have known

of the Government’s naming procedure, call it claim 7 (i.e. 7 = ‘Kelly knew 0 ') and thus there was no

need for her to brief him about his naming. Common sense or world knowledge provides 7 —*► 0 (i.e. ‘if

Kelly knew the naming procedure then that implies a naming procedure exists’) and thus the argument

{ l i l 0 } I- 0 • Her implied reasoning is still that her conduct was in order, this time implying the

world knowledge 0 —> a and thus she is arguing { 7 , 7 —> / ? , / ? —► a } b a.

Each of this witness’s arguments has a valid minimal consistent subset o f premises that deductively

proves its conclusion. In lieu of undercuts the witness may even feel (naively) pleased that she has two ar­

guments for a and thus a is confirmed. Also the barrister is not able to prove his goal of -> a . To formalise

this reasoning, adding labels, a : ->0, b : -<0 —> a , c : 7 , d : 7 —* 0 , e : 0 —> a E A gives the defending con­

firmation is {{a, &}, { c , d, e}} : a. What is clear, however, is that formulae({{a, b}, { c , d , e } } , A) I- _L.

Cross examination has exposed that, taken together, her arguments are inconsistent, even though no

individual argument is inconsistent.

Classical logic shows that not an inconsistency is a tautology. Therefore a preclusive undercut that

attacks an inconsistent confirmation [i.e. that argues for -<(/\ formulae({{a, &}, (c , d , e } } , A))] needs no

assumptions. It is a self evident truth that the witness has contradicted herself. Thus:

(0:->(-</? A { p0 —► a) A 7 A (7 —> /?) A (/? —> a)) , { { a ,&}, { c , d , e}}, {{a, 6 }, { c , d , e } } : a)

€ preclusivellndercuts({{a, 6 }, { c , d , e } } : a , A).

What the barrister has done is undermine both her arguments. A common phrase is that both of the

witnesses arguments have been brought into question, and usually both arguments are treated as defeated.

When a barrister cross examines a helpful witness (one on his own side) he aims to do the opposite,

that is to introduce confirmations of the key points thereby bolstering the main arguments supporting

3.5. Practical Motivation for Preclusive Undercut 75

his case. If a third argument for a was introduced, then the defeat of the above two would render a

undefeated.

This discussion of cross examination has focussed on a contradiction in evidence from one witness.

If more than one party is accused, or if the accused has witnesses to support their case, then labels are

necessary. In this multiple-source labelled situation, contradictions in evidence, in practice, are even

more likely to occur and thus preclusive undercuts are all the more common. Again in the Hutton

enquiry, under cross examination from the barrister Gompertz, Queens Council for the Kelly family,

incompatibilities were exposed between the evidence of the Defence Secretary Mr Geoffrey Hoon and

that of his aides on who was present at the meeting that decided on the Dr Kelly naming strategy. The

logic is fundamentally the same as for the single witness case.

3.5.4 Tautological Preclusions are ‘Just Asking Questions’

To conclude this section on motivation for preclusive undercuts I observe that there is an interesting

connection between preclusive undercuts and the asking of questions.

A tautological preclusive undercut can be phrased as a question. For example one could ask: ‘please

can you clarify how, as you say, on the one hand Dr Kelly would have known the Government’s naming

procedure, while on the other hand you say that such a procedure did not exist?’ Such a question tends

to have an innocent tone as it requires no evidence to argue its claim, but rather is pointing out the

self-evident truth that an inconsistency is present.

Politicians and debaters often prefer asking questions to making direct statements of attack, because

a question cannot be rebutted or undercut, whereas as a direct statement can. This observation is present

in the classical logic as not a tautology is a contradiction. Thus, any attempt to rebut or undercut a

tautological preclusion would require an inconsistency and hence would not be a valid argument. If the

topic of debate is highly controversial and opposition is not well tolerated or well received then asking

questions is all the more common.

It can be the case that the barrister has unearthed an apparent contradiction, but one that, in truth,

has a rational explanation. Even this situation can be turned to advantage as such an answer provides

further formulae in A , with the possible result that inconsistency is introduced. It is not uncommon that

while a witness tries to hide an inconsistency by introducing falsehoods they ‘tie themselves in knots’

and supply further contradictions.

Two examples of political commentators ‘just innocently asking questions’ on highly controversial

topics are 1) the article in the Guardian on 6 September 2003 by Michael Meacher, Member of Parliament

and former Minister for the Environment, entitled ‘This war on terrorism is bogus’ and 2) the first chapter

of the book by Michael Moore ‘Dude, W here’s My Country’ regarding events of 11 September 2001. I

cite these two controversial examples because of their precise use of logic in ‘just asking questions’ to

imply preclusive undercuts attacking the claims of their opponents.

Each of these questions stems from an inconsistency found between the opponent’s statements

and reports in reputable news sources. These question takes the form of ‘please explain this apparent

inconsistency’, thereby politely allowing for the case that there is a reasonable explanation that the

3.6. Preclusive Undercut Generalises Canonical Undercut 76

questioner was unaware of. Also as the subject matter of the questioning is so politically contentious the

questioner avoids being subject to criticism as they are making no direct accusations.

3.6 Preclusive Undercut Generalises Canonical Undercut
Canonical undercuts are a special case of preclusive undercuts, or to reverse that, preclusive undercuts are

a generalisation of canonical undercuts - a relationship which I now clarify. Every canonical undercut

has an equivalent preclusive undercut, but not always vice versa. I examine this relationship in four

stages:

1 . a mono-attack mono-target preclusive undercut has an equivalent canonical undercut,

2 . a multi-attack mono-target preclusive undercut has an equivalent set of canonical undercuts,

3. a mono-attack multi-target preclusive undercut has no equivalent canonical undercuts and

4. a multi-attack multi-target preclusive undercut has no equivalent canonical undercuts.

So first, the mono-target mono-attack preclusive undercut situation:

Proposition 3.6.1. Let A be a knowledgebase o f labelled assumption formulae, let I : a , J : 0 €

arguments(A) and let { /} : a, { J } : 0 e 0 (A).

J : 0 e canonicalUndercuts(7: a , A)

iff ({ J } :0 , { / } , { / } : a) € preclusiveUndercuts({/} : a , A).

Proof Given that J : <j> e canonicallindercuts(7: a , A), each condition of Definitions 3.4.1 and 3.4.2 of

preclusive undercut will have to be met for ({J } : 0, {7}, {7} : a) e preclusivellndercuts({7} : a , A).

A canonical undercut, by Definition 3.3.2, is one argument J : 0 attacking one argument 7 : a .

Let Z = {J } and Y = {7}. So confirm(J : 0) = {J } : 0 = Z : 0 is a self confirmation,

which means | label(Z : 0)| = 1 and Z / 0, thereby meeting the mono-attack condition. Like­

wise for the defending confirmation confirm(7 : a) = {7} : a = Y : a is another self confirma­

tion, which means also |label(Y : a)| = 1 . Thus the target X must be X = Y as that is the only

value that satisfies 0 / X C Y, meaning mono-target. Consequently there cannot exist any in­

validating confirmation as this candidate meets the X C W condition, so the conditions of Defini­

tion 3.4.2 do not exclude any candidate preclusion. All that remains now is the latter part of of Defi­

nitions 3.4.1. Given that stripAssumptions(formulae(X, A)) = stripAssumptions(formulae({J}, A)) =

stripAssumptions(formulae(J, A)) is the same for confirmations and individual arguments, the strip and

canonical ordering conditions are identical for both canonical and preclusive undercuts; so there is no

need to analyse the expansion of 0. Thus given J : 0 £ canonicalUndercuts(7 : a , A) it follows that

(confirm(J : 0),label(confirm(7 : a)),confirm(7 : a)) e preclusiveUndercuts(confirm(7 : a) , A) so

({ J } : 0, {7}, {7}: a) e preclusiveUndercuts({7} : a, A). Given the proof so far, the other iff direction

is simple. The attacking argument inside Z : 0 is J : 0 and the defending argument inside Y : a is 7: a. Be­

cause the strip and canonical ordering conditions of Definition 3.4.1 are met it follows that the claim and

3.6. Preclusive Undercut Generalises Canonical Undercut 77

enumeration conditions for canonical undercut are also met. Thus J : 0 G canonicalU ndercuts(/: a , A)

iff ({ J } :0 , { / } ,{ /} :a) G preclusiveUndercuts({7} : a , A). □

Thus every canonical undercut has one and only one equivalent preclusive undercut, and that preclu­

sive undercut will be a mono-attack mono-target preclusive undercut. This equivalent preclusive under­

cut may not be a maximum cardinality preclusive undercut, but all the same it will be a perfectly valid

preclusive undercut.

Now I look at the second of the four situations, that of multi-attack mono-target preclusive un­

dercuts. Every mono-target preclusive undercut has an equivalent set of canonical undercuts all with

the same claim. In other words, there exists a mono-target preclusive undercut iff there exists a set of

canonical undercuts all with the same claim.

Proposition 3.6.2. Let A b e a knowledgebase o f labelled assumption formulae, let I : a , J\:<p,. . . , Jn :

4> € argum ents(A) and let n G N.

({ J i , . . . , J „ } :0 , { /} ,{ /} : a) G preclusivellndercuts({/} :a, A)

iff J i : 0 , . . . , J n : 0 G canonicalllndercuts(7: a , A).

Proof. Proposition 3.6.1 has established that each J* : 0 G { J i : 0, . . . , J n : 0}, where Ji :

0 G canonicalllndercuts(7 : a , A), will mandate the existence of ({Ji} : 0, {7},{7} : a) G

preclusiveUndercuts({7} : a , A) and vice versa. The next step is to use Proposition 2.5.2 that many

self-confirming confirmations for the same claim, i.e. { J i} : 0 , . . . , { Jn } : 0 are equivalent to a single

confirmation, {J \ , . . . , J n } : 0 , for that same claim and vice versa. Thus ({ J i , . . . , J n } : 0, {7}, {7} :

a) G preclusiveUndercuts({7} : a , A) iff ({ J i} : 0, {7},{7} : a) , . . . , ({J n } : 0, {7},{7} : a) G

preclusiveUndercuts({7} :a , A) iff J i : 0 , . . . , J n : 0 G canonicalUndercuts(7:a, A). □

Multi-target preclusive undercuts are the preclusive undercuts that do not have equivalent canonical

undercuts. The contrary, that mono-target preclusive undercuts have equivalent canonical undercuts, is

Proposition 3.6.1.

Proposition 3 .6 3 . Let A b e a knowledgebase o f labelled assumption formulae, let I : a , . . . , J n -

0 G arguments(A), let X : a , Y : a G 0 (A) and let n G N.

I f ({ J \ , . . . , J n } :0, X, Y : a) G preclusivellndercuts(Y: a , A) such that |X| > 1

then J i : 0 , . . . , J n : 0 ^ canonicalUndercuts(7: a , A) where I G X.

Proof. If the target confirmation X : a is such that | label (X : a) \ > 1 then there does not exist an 7: a such

that confirm(7: a) = X : a . Instead it will be the case that X = {7 i , . . . , 7m} where m > 2. It also fol­

lows, from Definition 3.4.2, that 0 = 0 1 A .. .A0P = ->(/\ stripAssumptions(formulae({7i,. . . , 7n }, A)))

with m > 2 and p > 2. So any argument or arguments with this claim of 0 = 0 i A . . . A 0 m will be

attacking more than one argument and consequently cannot comply with Definition 3.3.2 of canonical

undercut. So if ({ J i , . . . , J n } : 0 , X , Y : a) G preclusivellndercuts(Y : a , A), where |X| > 1 then

J i : 0 , . . . , J n : 0 ^ canonicalUndercuts(7: a , A) where 7 G X. □

3.7. Tautological Preclusions Attack Inconsistent Confirmations 78

In the above proposition if n = 1 I have mono-attack, multi-target preclusions. If n > I I have

multi-attack, multi-target preclusions. Thus I have just addressed both the third and fourth situation

outlined at the start of this section.

A preclusive undercut is either mono-target or multi-target (it cannot be both or neither) so this

proposition makes is clear exactly which preclusive undercuts have equivalent canonicals and which do

not. The first input parameter to a canonical undercut is a single argument, not a confirmation. So,

while a canonical undercut can only attack one argument, a preclusive undercut has the added ability to

attack multiple argument. Nonetheless, preclusive undercut still retains all of the properties of canonical

undercut - none are lost in this generalisation. It is this ability to attack multiple arguments that allows

preclusive undercut to attack inconsistent confirmations.

3.7 Tautological Preclusions Attack Inconsistent Confirmations
Preclusive undercuts prevent a debater or debating team from being inconsistent. Exposing of inconsis­

tencies in a debater’s arguments is part of cross-examination. Specifically, it is the tautological preclusive

undercut which attack the inconsistent confirmations of Section 2.5.1. The following example shows that

it is possible to start with a tautology, extend it with VI and end up with the full claim of a multi-target

preclusive undercut that attacks an inconsistent confirmation.

Exam ple 3.7.1. Tautological u n d e rc u t Let A = {a : (3, b : 0 —> a , c : 7r —> a , d : ->(3 A n}. Let

I = {a, &}, J = {c, d}, K = 0. Thus I : a , J : a , K : 0 V —>/5, K : ->(3 V (3 V —>7r, K : ->(3 V ->{->(3 A

•n) , K : ->(0 A (0 —* a) A (tt —► a) A (->0 A 7r)) G arguments(A). Therefore { / , J } : a , { K } :

-i(0 A (0 —► a) A (n —► a) A (-<0 A 7r)) G 0 (A). Consequently ({ /f } : ->(0 A (0 —► a) A (7r —> a) A

(->0 A 7r)), { /, «/}, { / , J } : a) G preclusivellndercuts({J, J } : a , A). Here { /, J } : a is an inconsistent

confirmation and ({ / f } : ~>(0 A (0 —> a) A (t v —> a) A (~>0 A 7r)) , { I , J } , { / , J } : a) is a tautological

preclusive undercut.

A tautological preclusive undercut must have an attacking confirmation containing only one ar­

gument. That one argument must have a support containing no assumptions. Hence for an attack­

ing confirmation Z : </> it is not the case that Z / 0, but rather Z = {0} = {0} so |Z| = 1 and

not the zero of |0| = 0. Using this approach a debating team can argue that it is self evident that

the other side has contradicted itself. It was established in Proposition 2.5.1 that for all a , {0} : a

is a confirmation, iff a b T. Therefore given that A is a knowledgebase of labelled assumption

formulae, J G arguments(A) and W : a ,Y : a ,Z : 7 G 0(A), then it follows immediately that if

(Z :7 , W , Y : q) g preclusiveUndercuts(Y:a, A) with J G Z and J — 0 then |label(Z : -7) | = 1 .

A tautological undercut must thus be attacking a target confirmation of at least two arguments.

Proposition 3.7.1. Let A be a knowledgebase o f labelled assumption formulae and l e t W : a , Y : a , Z :

l e 0 (A).

If (Z : 7 , W , Y : a) G preclusivellndercuts(Y: a , A), where Z = {0} then |label(W : a) | > 2 .

3.7. Tautological Preclusions Attack Inconsistent Confirmations 79

Proof. Suppose instead that |label(W : a) | = 1. Clearly 7 is a tautology. Also known is that 7 is

the negation of the conjunction of stripAssumptions(formulae(W, A)). Clearly {->T} I— _L so if indeed

|label(W : a) | = 1 then stripAssumptions(formulae(W, A)) I- _L. If that was the case then the support

of an argument J : a where J € W, would be inconsistent, stripAssumptions(formulae(J, A)) h _L

and thus J : a would not be a valid argument. So |label(W : a)| = 1 cannot be the case. Any other

value of |label(W : a) | would not require any individual argument J G W to be inconsistent so it can be

concluded that |label(W : a) | > 2. □

Thus tautological undercuts cannot be canonical undercuts and must be preclusive undercuts. This

point, that the support of any canonical undercut J : 7 E canonicalllndercuts(/ : a , A) is such that

J / 0, was established earlier in Proposition 3.3.5. Thus I can unambiguously use the term tautological

undercut to refer to a tautological preclusive undercut.

From the definition of preclusive undercut, Definition 3.4.2, the terminology has been established

that the target confirmation label label(X : a) is always a subset or equal to the defending confirma­

tion label label(Y : a) , i.e. X C Y. Therefore a tautological undercut must be attacking a defending

confirmation of at least two arguments.

To further the analysis o f preclusive undercut it is useful to have two helper functions as follows:

Definition 3.7.1. Let A be a knowledgebase o f labelled assumption formulae and let (Z : </>, X, Y :

a) E preclusivel)ndercuts(Y : a , A). The attacker functions, denoted attacker((Z : </>, X ,Y : a)) and

attacker({ (Z : 0, X, Y : a) }), given a preclusive undercut or set o f preclusive undercuts return the attack­

ing confirmation or set o f attacking confirmations, such that:

attacker((Z:0, X, Y :a)) = Z:0.

attacker({(Z:0,X, Y :a)}) = {Z :0}.

If there exists an inconsistency between two arguments of one confirmation then the existence of the

tautological undercut of those two inconsistent undercuts is independent of A. Thus given an inconsistent

confirmation, the tautological preclusive undercut is automatically and always introduced into the debate

without needing to reference A . It happens for all knowledgebases.

One might be tempted to record the following relationship using iff: there exists an inconsistent

confirmation Y : a iff there exists a tautological preclusion Z : 0 E {attacker((Z : 0 , X , Y : a)) | (Z:

<f>, X, Y : a) E preclusiveUndercuts(Y: a , A), J E Y and J = 0}. However, such a biconditional is not

helpful as it has Y : a on both sides. More realistically, the confirmation Z : <j> always exists as it is a

tautology, but the confirmation Y : a only sometimes exists - it is a matter of A. So such a biconditional

would only be saying that if Y : a exists it will always be subject to undercut - which is a conditional,

not a biconditional.

Proposition 3.7.2. Let A be a knowledgebase o f labelled assumption formulae and let V : a , W : a , Y :

a ,Z : 7 E 0(A).

For any confirmation Y : a, i f there exists a W C Y such that formulae(W, A) h 1 and there

3.7. Tautological Preclusions Attack Inconsistent Confirmations 80

does not exist a V C W such that formulae(V, A) b _L, then there exists a (Z : 7 , W, Y : a) G

preclusiveUndercuts(Y: a , A).

Proof. The proposition starts with by ensuring Y : a is an inconsistent confirmation. However, the set

formulae(Y, A) may not be minimal with respect to formulae(Y, A) b ± . Thus it is necessary to ensure

the non-existence of V C W with formulae(V, A) h _L, so it follows that formulae(V, A) is minimal for

proving _L. Establishing this minimality is essential as otherwise V : a would be an invalidating target

confirmation for the preclusive undercut (Z : 7 , W , Y : a) G preclusiveUndercuts(Y : a , A). So given

that the target confirmation W : a is a minimal inconsistent confirmation it follows that the tautological

preclusive undercut (Z : 7 , W , Y :a) G preclusiveUndercuts(Y: a , A) must exist. □

One might think that the supports of only two arguments would combine to make an inconsistency,

but that is not the case. The supports of any number of arguments can combine and be necessary to

make an inconsistency. However that number must be greater than one because the definition of mincon

arguments prevents having an inconsistent support.

Once a debating team has established the other side has contradicted itself then it is an interesting

question as to the interpretation of that result. All o f the arguments in the target confirmation have been

brought into question, however no single one of them has been shown to be defeated. A common theme

in legal argumentation is that the entire set o f inconsistent arguments is defeated. An even more extreme

legal position, albeit a popular one, is that the tautological undercut shows that everything the other

team says is untrustworthy. This extreme position is not logically justifiable as it is an argument that

generalises from the specific to the universal.

A tautological confirmation (which can act as the attacking confirmation in a tautological preclusive

undercut) cannot be subject to a preclusive undercut.

Proposition 3.7.3. Let A b e a knowledgebase o f labelled assumption formulae and let Y : a G 0(A).

/ / m 1- T then preclusiveUndercuts(Y :a , A) = 0.

Proof I f stripAssumptions(formulae(label(Y : a) , A))) b T then it follows that Y : a is a tau­

tological confirmation, such that I G Y, I = 0 and |Y| = 1, i.e. b a . Consequently any

preclusive undercut with a target or defending confirmation of this Y : a will require a claim of

- i(/ \ stripAssumptions(formulae(7, A))) . However such a claim is not allowed for any argument as that

argument would be inconsistent. Thus if a is a tautology then preclusiveUndercuts(Y: a , A) = 0. □

Thus for a debater, the tautological preclusion is a useful tool. It has the unique benefits that a) it

can never be counter attacked and b) it is always available regardless of the contents of A. It is thus

effective in preventing an opposing team from using inconsistent confirmations. So while one could

directly constrain confirmations to be consistent, the preclusive undercut does exactly that job and does

it more elegantly. The preclusion is more elegant as a) it directly mirrors professional debating and b) it

has additional purposes in also undercutting consistent confirmations.

3.8. Non-unique Formulae, Labels and Preclusive Undercut 81

3.8 Non-unique Formulae, Labels and Preclusive Undercut
I now discuss cardinality of the preclusive undercut function as a starting point for looking at the effect

of labels and non-unique assumption formulae.

Whereas with canonical undercuts the statement J : /3 e canonicalUndercuts(7 : a , A) specifies

one and only one canonical undercut, the situation with preclusive undercuts is different. The statement

(Z : (3, X, Y : a) € preclusiveUndercuts(Y: a , A) specifies one or more preclusive undercuts. The distin­

guishing factor between these many preclusive undercuts is that they have different target confirmations,

X. Thus while a canonical undercut is a relationship between two arguments, a preclusive undercut is a

relationship between three confirmations.

Proposition 3.8.1. Let A b e a knowledgebase o f labelled assumption formulae, l e t X : a , Y : a € 0 (A).

0 < |preclusiveU ndercuts(Y :a, A))} | < (2|Y| - 1) • (2midLattice(A) - l) .

Proof. The label of the defending confirmation Y : a can contain many target confirmation labels X as

X C Y. The Definition 3.4 .1 of preclusive undercut requires 0 ^ X. Thus the maximum number of target

confirmations for a given defending confirmation Y : a is — 1 , with the - 1 due to the 0 constraint.

Given one target confirmations X : a the next challenge is to find the number of attacking confirmations

Z : 0. So how many confirmations are derivable from A that imply this 0? Proposition 2.5.7 states

that 1 < 10 (0 , A)| < 2m'd*_a*t'c e (A). A refinement is needed because the unfounded confirmation

is not allowed, again by Definition 3.4.1 , to ensure 0 : 0 ^ Z : 0 and thus it is necessary to deduct

1. Combining these two results means that the maximum number of preclusive undercuts for Y : a is

(2*Yl — 1) • (2 m'dl-a ttic e (A) _ i) . The smallest number of attacking confirmations is zero if A Y- _L, so the

lower limit is zero. Furthermore, if non-unique formulae exist in A it will not effect X, Y or Z as X, Y

and Z are purely labels. Thus 0 < |preclusiveUndercuts(Y :a , A))} | < (2 ^ — 1) • (2 m'd*-aH'ce(A) -

1). □

I now look at the impact of non-unique formulae, labels and the stripping of within the definition of

preclusive undercut, Definitions 3.4.1 and 3.4.2. This stripping is necessary as, in my representation for

confirmation, labels only exist on the left hand side of the colon. Claims are unlabelled formulae. When

forming the claim of the preclusive undercut I make one conjunction out of the premises of the attacked

arguments using the unlabelled premise formulae. Thus, strip is needed in the definition to remove the

labels to allow the claim of the undercut to match the support o f the defending argument.

Unlike canonical, Pollock and Wigmore undercuts, preclusive undercuts do not have an unlabelled

form in the literature to be contrasted with. The following example shows the role of labels in preclu­

sive undercuts, demonstrating that two confirmations (i.e. a defending confirmation and an attacking

confirmation) related by preclusive undercut can have many target confirmations, due to labels.

Example 3.8.1. Two target confirmations. Let A = { a : a , b : a —> (3, c : a , d : 7 , e : -17 V (3, f : ->q}.

Let I — { a , b } , J = { b , c } , K = {d, e } , L = { / } . Then I : (3, J : (3, K : (3, L : ~^a,L : ->(a A (c* —>

0)) € arguments(A) and { I , J , K } : 0 , { L } : ^ a , { L } : ->(0 : A (a —> (3)) e 0 (A). Conse­

quently ({L} : - , (a A (a - 0)) , { I } , { I , J , K } : 0) , ({ L } : ^ (a A (a -> 0)) , { J} , {I , J , K } : (3) e

3.8. Non-unique Formulae, Labels and Preclusive Undercut 82

preclusiveUndercuts({7,«/, K } : (3, A). Furthermore ({L } : -i(a A (a —> 0)) , { I , J } , { / , J, K } : 0) G

preclusiveUndercuts({7, J, K } : 0, A) as {7, J } : 0 cannot be a target confirmation because there exist

two invalidating target confirmations, both that happen to be se lf confirmations.

Imagine the defending confirmation as a vertex in a tree, with its children being the attacking con­

firmations of its preclusive undercuts. The interesting question for the above example is then should

there be one or two children? [I later go on to adopt having two children in the tree in this situation.] If

two children then the attacking confirmations would be identical - without some syntactic device, such

as edge labels, they would be indistinguishable.

This Example 3.8.1 also raises the question of how much defeating power is provided. Is it one

unit of defeat as there is only one confirmation {L } : - i(a A (a —> 0))? Or, as there are two target

confirmations, is it two units o f defeat? Does counting target confirmations introduce double counting?

I argue no, that it is more intuitive to count this situation as two attacks and that the target confirmations

have merit in tracking what is happening. But first I must relay more about the behaviour of the various

confirmations involved in preclusion.

Now I turn to the role of VI in extending claims of candidate preclusive undercuts.

3.8.1 Growing Claims and Invalidation

Earlier with canonical undercuts, in Section 3.3, it was clear that VI can be safely used to ‘grow’ the

claim so that the full support o f the undercut argument is matched. This is simply a property of classical

logic. Similarly with preclusive undercuts VI can play an influential role, however here it is a slightly

more novel behaviour. The claim of the preclusive undercut can be ‘grown’ to fill in a variety of missing

parts. If an undercut attacks just one premise each for several arguments, then VI can be used to grow

the claim to attack all o f the premises of several arguments. However, the invalidating aspect of the

definition of preclusive undercut specifically prohibits growing a claim to attack arguments for which

one has no assumptions.

While a conjectured undercut can fail to be a preclusive undercut if it attacks the support of some­

thing less than a whole number of arguments, (as shown in the following example), there will always be

a logically equivalent argument (following from VI) that is valid preclusive undercut. Continuing this

series of examples:

Example 3.8.2. The role of VI. Let A = {a : 0 , b : 0 —> o, c : 7 , d : -< 7 V <7, e : A, / : —>

- . A , 0 : - . 0 V - 7 } . Let I = { a , b } , J = { c , d } , K = { e , f } , L = {g} and R - {L },V =

Therefore I : a, J : a, K : a, L : ->(0 A 7), L : ->(0 A (0 —» o) A 7 A (-1 7 V <7)) , L : ->(0 A (0 —»

a) A 7 A (-1 7 V o) A A A (~>a —> -iA)) G argum ents(A) and R : ->(0 A (0 —> o) A 7), R : —>(/3 A (0 —»

o) A 7 A (-1 7 V ct)), R : ->(0 A (0 —> o) A 7 A (-1 7 V o) A A A (~>o —► -A)) G 0(A) . It can be concluded

that given A 5, a valid preclusive undercut fo r V :o is (R: ->(0A(0 —» a) A y A (^ y V o))) , {I , J } , V: o) .

However, the valid confirmation R : ->(0 A (0 —> o) A 7 A (-1 7 V a) A A A (- > 0 —> ->A)) with a target o f

{ I , J , K } is not a valid preclusive undercut as invalidation occurs.

In this example I started with pieces of the attack on the assumption sets of two arguments; namely

3.9. Attack, Abstract Attack and Attack Graphs 83

i) ->/3 is a partial attack on { a : (3, b : (3 —> a} and ii) -1 7 is a partial attack on {c : 7 , d: ->7 V o }. The logic

allowed ‘growing’ the formula (3 —> a in the first case and -1 7 V a in the second. This part of the example

shows the valid growing of assumptions to round out or complete the attack on multiple arguments.

However the attempt to further grow the attack to take on a completely new argument is prohibited.

That is, even though A A (~>a —► -iA) can be grown as an argument and also as a confirmation, it is not

allowed as a preclusive undercut.

Given the definition of 0(c*,A), that if |label(X : a)\ > 1 , (i.e. for everything other than self

confirmations), then a W : a with W C X will always exist in ()(a , A) as 0 (a , A) is a power set with a

minimum cardinality member of 0 : a.

This concludes the properties of preclusive undercuts. While I have given a comprehensive analysis,

more research could be done further comparing and contrasting canonical and preclusive undercuts.

3.9 Attack, Abstract Attack and Attack Graphs
Now that definitions for undercut and rebuttal are established, both at the level of individual arguments

and confirmations, the simplifying construct of ‘attack’ can be introduced. The concept of attack is

central to the abstract framework of (Dung, 1993; Dung, 1995) and the semi-abstract ABA framework

(Bondarenko et al., 1997; Dung et al., 2006). The attack construct has assisted Dung in deriving several

important results about logic programming and game playing and facilitated Bondarenko et al in showing

the unity of a wide variety of non-monotonic logics.

To build on Dung’s concept o f abstract attack I will describe bridging assumptions that map be­

tween the concrete world of mincon argumentation in the bulk of this thesis and the abstract Dung

framework. This building on concepts from the abstract and the ABA work aims to provide a more

concrete interpretation of these abstract frameworks - continuing the broad theme of others’ research,

notably (Amgoud & Cayrol, 1998; Amgoud & Cayrol, 2002), (Baroni et al., 2002; Baroni & Giacomin,

2003) and (Prakken & Vreeswijk, 2002). Thus I start with a reminder of Dung’s definition of his Dung

argumentation framework, which is comprised solely of abstract arguments and abstract attacks, with a

slight refinement of symbol use to avoid any subsequent ambiguity:

Definition 3.9.1. A Dung argumentation framework, denoted dung Framework =

(dungArguments, attacks# (dungArguments)), showing the relationships within a set o f arguments, is a

pair such that:

dungFramework = (dungArguments, attacks#(dungArguments)), where

1. dungArguments is a set o f abstract arguments and

2. attacks# (dungArguments) C dungArguments x dungArguments

is an abstract attacks relationship between arguments.

The tuple (X, y) € attacks#(dungArguments) where X , y e dungArguments, denotes that the

argument X attacks argument y, or in other words that 3 ̂ is attacked by X.

3.9. Attack, Abstract Attack and Attack Graphs 84

To map Dung’s simple definition back to the mincon world requires two bridging assumptions.

While a number of bridging assumptions exist in the literature, the analysis of which I leave as an area

for further research, the original bridging assumptions come from (Amgoud & Cayrol, 1998). While I

build on (Amgoud & Cayrol, 1998) in this section, I will be using a different definition of undercut and

be adding labels.

I start with the argument assumption. I hold that to examine a concrete instance of the Dung or

ABA frameworks, that could be implemented or used in a professional debate, it is necessary to say

or define what would constitute an argument. Thus given two arbitrary items A and B, what are the

criteria to say whether A and B are arguments or not, separate from any declaration that A and B simply

are arguments? Clearly Dung gives no indication of what constitutes an argument; that is exactly his

foundation assumption. If, however, a more direct comparison of abstract and concrete argumentation is

desired then some bridging is needed.

I would suggest that the ideal bridging would allow a) a concrete implementation in a professional

debate setting, while at the same time b) providing overall behaviours in keeping with motivations or

common sense intuitions for Dung’s framework. The paper (Besnard & Hunter, 2001), in looking at this

area of bridging, shows how a collapse might occur. Most would probably agree that their collapse is or

should be seen as more a feature of the choice of assumptions and not some flaw in the Dung framework.

I have not placed my argument assumption in a formal definition as I do not use it any further in

the formalisms of this thesis. My first assumption is thus the argument assumption in which I suggest an

instance of the Dung framework where I let { X \ X £ dungArguments} = { I : a \ I : a £ arguments(A)}

iff formulae(label(J : a) , A) is the support o f X , stripDeduction(7 : a) is the claim of X and classical

logic is used to infer the claim from the support. Clearly Dung never made any such statements, but this

understanding does facilitate comparison.

My second assumption is to clarify what is meant by the attacks relationship. Because (Amgoud

& Cayrol, 1998) do not use canonical undercuts from the more recent paper (Besnard & Hunter, 2001),

the below is not literally their definition. However, the below is a close adaptation of the (Amgoud &

Cayrol, 1998) attack assumption. This simple definition plays a central role in my thesis.

Definition 3.9.2. Let A. be a knowledgebase o f labelled assumption formulae and let I : a £

arguments(A). An argument attack, denoted argumentAttacks(/ : a , A), is the set o f arguments that

attack I : a such that:

argumentAttacks(7: a , A) = rebuttals(7: a , A) U canonicalUndercuts(7: a , A).

A sequence of two or more arguments (A , B , C , . . . , N) , where A , B , C , . . . , N £ arguments(A),

that each attack the adjacent neighbour next in the row, such that B £ argumentAttacks(A, A), C £

argumentAttacks(7?, A) , . . . , I call an attack chain of arguments or just a chain for short. I call the first

member, A, which is attacked, the head of the chain and the last member, N , which attacks, the tail of

the chain. I call the direction from tail to head up the chain, and from head to tail down the chain. In this

way small pieces of a graph of arguments can be analysed while avoiding the complexity of the whole

graph. As trees are a kind of graphs, chains also help with the analysis of trees of arguments.

3.9. Attack, Abstract Attack and Attack Graphs 85

In Section 4.8 and Definition 4.8.2, for reasons to be made clear in the next chapter, I refine my

attacks assumption to that I call “direct attack” . An area for further research would be to examine more

deeply the topic o f collapse from (Besnard & Hunter, 2001) and see how it is affected by using that direct

attack rather than this more general attack.

3.9.1 Argument Graphs, Confirmation Graphs and Contradiction Graphs

To allow this discussion of attack chains to be more robust and extensive I now define the argument

graph, which is akin to D ung’s graphs, see for example the many diagrams in (Prakken & Vreeswijk,

2002), as follows. Later in the thesis where I provide argument graphs, these commonly show just the

subset o f relevant vertices and edges. Often the graphs are annotated to provide further explanation.

Definition 3 .93. Let A be a knowledgebase o f labelled assumption form ulae and I : <p, J : ip 6

argum ents(A). An argument graph, denoted argum entG raph(A) = (V,£), where V is the set o f

vertices and £ is the set o f edges, is a directed graph such that:

V = {/:<£ | 7 :0 = argum ents(A)},

£ — { (I :<p,J :rp) \ I :<j>,J :xp e V, where 7 :0 G argum entA ttacks(J: 0 , A)}.

One implication of these argument and argument attacks assumptions is that self-defeat is ruled out,

or in other words that an argument cannot attack itself. Thus there are no loops in my argument graphs.

A claim such as T am a liar’ is an example o f a self defeating argument and hence o f an argument that

cannot be represented as a mincon. Thus it is known that I : a & argum entA ttacks(/: a , A), or in other

words X & argumentAttacks(A\ A). The Dung argumentation framework does not rule out self-defeat,

that is an argument which attacks itself, such as (X , X) . Self defeat is not dwelt on in (Dung, 1993;

Dung, 1995), however it is extensively discussed in (Prakken & Vreeswijk, 2002) and mentioned in

(Cayrol & Lagasquie-Schiex, 2002).

Given argumentAttacks() and argum entG raph(A), it is also reasonable to extend the analysis from

the level o f individual arguments to the level o f confirmations. In the next definition I extend the attacks

assumption. Preclusive undercuts are defined in Definition 3.4.2 and confirmation rebuttals in Defini­

tion 2 .6 .8 .

3.9. Attack , Abstract Attack and Attack Graphs 86

Definition 3.9.4. Let A be a knowledgebase o f labelled assumption form ulae and let Y : a , Z : 0 € 0 (A).

The confirmation attacks function, denoted confirmationAttacks(Y: a , A), is the set o f attacks on Y : a

derivable from A such that:

confirmationAttacks(Y :a , A) = preclusiveUndercuts(Y :ct, A)

u { (Z :0 ,la b e l(Y :o), Y :q) | Z : 0 e confirmationRebuttals(Y:q, A)} .

I call an individual (Z : 0 , X, Y : a) € confirmationAttacks(Y: a , A) a targeted attack tuple, where

X ,Y € C ,X C Y. As with preclusive undercuts, Z : 0 is the attacking confirmation or attacker, X

the target confirmation label and Y : a the defending confirmation. Clearly neither the attacker nor the

attacked confirmation can be labelled with the empty set.

One minor issue in forming this definition of confirmation attack is what should the target confir­

mation be for a confirmation attack that is a rebuttal? If W: ->a e confirm ationR ebutta ls(Y A) then I

define the target confirmation as the whole confirmation Y : q as clearly every argument in it is attacked

(which could not be said for the whole defending confirmation in the case of preclusive undercuts, but is

the case for the target confirmation for preclusion).

A sequence of two or more confirmations (A, B , C , . . . , N), where A , B , C , . . . , N e 0 (A) , that

each attack the adjacent neighbour next in the line, such that B e confirmationAttacks(A, A), C €

confirmationAttacks(£, A) , . . . , I call an attack chain of confirmations. I use the terms head, tail, up and

down as established for individual arguments. Consequently pieces of a graph or tree of confirmations

can be studied in isolation. Again to make the discussion more robust I define the confirmation graph

as follows. In an edge labelled graph, an edge is represented by a tuple (Z : 0 , X, Y : a) where Z : 0 is

the vertex the edge is incident from, i.e. the attacking confirmation, Y : q the vertex the edge is incident

on, i.e. the defending confirmation, and X the edge label, i.e. the target confirmation label. Later in the

thesis where I provide confirmation graphs these usually show just the subset of relevant vertices and

edges. Often I annotate the graphs with text to provide further explanation.

Definition 3.9.5. Let A be a knowledgebase o f labelled assumption form ulae and W : 0 , X : a , Y : a , Z :

<$> € 0 (A). A confirmation graph, denoted confirmationGraph(0(A)) = (V, £), where V is the set o f

vertices and S is the set o f edges, is an edged-labelled directed graph such that:

V = { W : v’ I W : 0 = top(O (0. A))} ,

S - {(Z:<2>, X, Y :a) \ Z:&, Y :a € V and (Z :0 , X, Y :a) € confirmationAttacks(Y:a, A)} .

To complete this section I introduce a third kind of graph, the contradiction graph, building on the

earlier argument graph and confirmation graph.

Definition 3.9.6. Let A be a knowledgebase o f labelled assumption formulae, (S ,T) : 0 , (U , V) :

0 , (X, Y) : « e 4 (A) and W e C. A contradiction graph, denoted contradictionGraph(#(A)) =

(V, S), where V is the set o f vertices and S is the set o f edges, is an edged-labelled directed graph such

3. 10. Conclusions for Undercut Framework 87

that:

V = { (W : 0 | W :0 = top (4 (0 , A))} ,

£ = { « U ,V) : 0 ,X ,(W ,Y) :a) | (U, V) : 0 , (X, Y) :a G V and either

(U :0 , W ,X :q) g preclusiveUndercuts(X :a , A) or

(U :0 , W , Y :->«) G preclusivellndercuts(Y:-~>a, A)}.

Clearly, in the case that U : 0 is attacking X : a then W C X. Otherwise U : 0 is attacking Y : -iq

then W C Y. The contradiction graph is first used in Section 5.7.1 where it is helpful in illustrating

some o f the behaviours of reflection. In this third graph, attacks are occurring both between and within

vertices. As all vertices are m aximum cardinality contradictions each rebuttal V : ~̂<p is fully defined.

That concludes the laying of the foundations on attack, abstract attack and attack graphs as well as

this whole chapter on undercut.

3.10 Conclusions for Undercut Framework
This chapter on my undercut framework has formally defined the third foundation, or type of argument

interaction, beyond confirmation and rebuttal, needed to track and judge professional debates. W hile

undercut is widely discussed in the literature there is a lack of consensus on what exactly constitutes

an undercut, how to represent them and how they behave. Undercuts, according to a portion of the

literature and my own view, m ust be considered in debate outcomes as they definitely help resolve

inconsistency. Consequently there is a clear need for a formally defined undercut that better matches

professional debate.

There are four undercut definitions in the chapter, starting with Wigmore undercut and Pollock

undercut, leading to the two key undercut functions, which are shown in Table 3.1.

Key Undercut Function Definition

J : 0 G canonicalUndercuts(/:a, A)

(Z : 0 , X, Y : a) G preclusiveUndercuts(Y: a , A)

3.3.2

3.4.2

Table 3.1: Summary of Key Undercut Functions

There are four points to em phasise about preclusive undercuts.

1. Preclusive undercuts comprise a confirmation attacking a confirmation, rather than just an argu­

ment attacking an argument - as was the case for the other three undercuts.

2. They cover, or subsume, all the exact same behaviour of canonical undercuts - because confirma­

tions can be self confirmations.

3. Preclusive undercuts also extend canonical undercut to cover the recurrent situation in professional

debate where it is put that ‘one or other of your arguments is false’. Motivating examples quote real

life situations where preclusions have been central to the refuting of Iain Duncan Smith and Arnold

3.10. Conclusions for Undercut Framework 88

Schwarzenegger, central to Sherlock Holmes proving a case and central to cross examinations in

the U K ’s Hutton Enquiry.

4. A particular form of preclusive undercut is called a tautological preclusion. They are used quite of­

ten in professional debate, especially to ask difficult questions. Tautological preclusions have three

key properties. Firstly, tautological preclusions enable inconsistent confirmations to be attacked

and effectively removed from a debate. Secondly, tautological preclusions always exist, because

they require no premises. Finally, they cannot be attacked back, as any conjectured rebuttal or

undercut attacking them has to be inconsistent and thus cannot be a valid argument.

This chapter employs propositions and examples to explore and draw out the specific properties of

preclusive undercut - showing where they faithfully reproduce established good undercut behaviours,

where they remedy the short com ings of other approaches and where they extend the behaviour of un­

dercuts in the literature to better match professional debate. The point about this extension of behaviour

is that it doesn’t just cover arguments put, but also removes inconsistencies from debate. In this way I

suggest that preclusion is, for avoiding inconsistency in argumentation, on a par with the use of mi neon

arguments and the avoidance of catenate inferences.

A final section in this chapter leverages the work of Dung to provide two attacks functions. The

first o f these, at the level o f individual arguments, is based on the work of Amgoud and Cayrol. In the

second I extend the literature to show how preclusive undercut is part o f a confirmation attack. These

two attacks functions are summarised in Table 3.2.

Attacks Function Definition

J : 0 € argumentAttacks(/: a , A)

(Z :0 , X ,Y :a) € confirmationAttacks(Y:a, A)

3.9.2

3.9.4

Table 3.2: Summary of Key Attacks Functions

These two attacks functions are used in my subsequent analysis of the novel concept of reflection.

The chapter concludes by providing three attack graphs which aid the illustration of various behaviours

later in the thesis. These attack graphs are summarised in Table 3.3.

Attacks Graph Vertices Edges Definition

argumentGraph (A) arguments argument attacks 3.9.3

conf irmationGraph (0 (A)) confirmations confirmation attacks 3.9.3

contradictionGraph(4(A)) contradictions preclusive undercuts 3.9.6

Table 3.3: Summary of Three Attacks Graphs

These three graphs provide different and complimentary ways of illustrating the relationships be­

tween the various levels o f argument aggregation and attacks between those aggregations.

Chapter 4

Reflected and Direct Arguments

4.1 Overview of the Chapter
This short preamble provides an overview of the chapter, together with its context within the thesis.

This chapter introduces the core novel notion of the thesis - reflection. The thesis covers four types

of reflection: Type I is defined in Section 4.2.4 and analysed throughout this chapter ; the next chapter

defines Type II in Section 5.5, Type in in Section 5.8 and Type IV in Section 5.9. Within the current

chapter four kinds of Type I reflection are analysed, which I call Base Propositions One, Two, Three and

Four.

4.1.1 Sections on Reflected and Direct Arguments

I develop this chapter’s analysis o f reflected and direct arguments and attacks in seven stages. The stages

progress from a definition and analysis o f the problem I call ‘reflection’ to my proposed solution of only

employing ‘direct’ arguments. The sections o f this chapter are:

Abstract reflection Section 4.2 identifies the predictable presence of reflected arguments and

attacks. This analysis, relating to D ung’s work, demonstrates that attack engenders attack.

Reflected canonical undercuts Section 4.4 studies these reflected attacks that are also canonical

undercuts. They can be reflected off rebuttals or off other undercuts.

Direct canonical undercuts Section 4.5 covers those attacks that are not reflected and must be

isolated to properly track a debate. These are the arguments and attacks of value.

Mono-pair enlarged reflection Section 4.6 establishes that there can be many more reflections

than might be intuitively thought. Reflections for a and ->a have inexact symmetry.

Reflected argument rebuttals Section 4.7 shows that rebuttals can be reflected off canonical

undercuts or other rebuttals. Their properties differ markedly from reflected canonical undercuts.

Direct argument rebuttals Section 4.8 shows that tracking such rebuttals that are not reflected

is vital to capture a complete debate - a point that has been missed in the literature.

W hile the chapters prior to this one have broadened the focus from individual arguments to sets of

arguments, this chapter steps back to single arguments again to establish the basic principles of reflection.

4.2. Introducing Attack and Reflection 90

The next chapter, Chapter 5, while closely allied to this one, extends the analysis back up to sets of

arguments. That said, the properties unfolded in the current chapter, when subjected to the confirm()

functions, nevertheless also apply to self-confirmed confirmation rebuttals and to self-confirmed mono­

attack mono-target preclusions.

4.2 Introducing Attack and Reflection
Conceptually the starting point for understanding reflection is attack, which is described in an abstract

form by (Dung, 1993), see Definition 3.9.1. This section builds on the concept o f attack, abstract and

concrete, to introduce a new and related concept I call reflection. In order to define reflection in terms of

attack it is necessary to first establish two base propositions which simplify subsequent proofs.

4.2.1 Base Proposition One: Rebuttal Engenders Undercut

My first base proposition is that rebuttal engenders undercut.

Proposition 4.2.1. Base Proposition O ne Let A be a knowledgebase o f labelled assumption form ulae

and let I : a , J K :(f) e argum ents(A).

I f there exists J : /3 G re b u tta ls (/: a , A)

then there exists K : 0 e canonicalllndercuts(J : (3, A)

where K C I .

Proof. For J : p to be a rebuttal o f I : a it must be the case that (3 = --a . Let

stripAssumptions(formulae(J, A)) = {0 i , . . . , 0 n }. So J : (3 equates to (0 i A . . . A 0 n) —► ->q and

thus by contraposition a —» - '(0 i A . . . A 0 n). Let stripAssumptions(formulae(/, A)) = { 0 i , . . . , 0 m },

so similarly I : a equates to (0 i A . . . A 0 m) —► a . Combining (0 i A . . . A 0 m) —* a with a —►

->(0! A . . . A0 n), by hypothetical syllogism, yields the valid deduction (0 i A .. .A 0m) —► ~’(0 i A .. .A 0„).

The support (0 i A . . . A ipm) may not be minimal, so given a { 0 P, . . . , ipq} C { 0 1?. . . , 0 m }, it follows

that (tpp A . . . A A . . . A 0 n) is a minimal deduction. The support (ipp A . . . A ipq) ¥ 1 as its

superset is consistent, being as it is the support o f the valid argument / : a . Moving to label nomenclature,

let the support { 0 P, . . . , tpq} = stripAssumptions(formulae(A\ A)), hence K C I. Consequently there

must exist K : -<(0\ A . . . A 0 n) € argum ents(A). Given the equality 0 = ->(01 A . .. A 0 n) it follows that

K : 0 e argum ents(A). Selecting (0 i , . . . , 0 „) as the canonical ordering of {0 i , . . . , 0 n }, it follows that

K : 0 is a canonical undercut for J : >3. In conclusion it is clear that this K : 0 € canonicalUndercuts(J :

J , A), given the stated prerequisites, always exists. □

The proof shows that the support o f the argument K : 0 is known from the support of the defending

argument / : a , as K C I. Furthermore the claim of K : 0 is known from the support of the attacking

argument J : J , as 0 = -'(/\stripA ssum ptions(form ulae(J, A))) . The prerequisites referred to are

simply the first part o f the proposition, namely that / : a , J :[3 6 argum ents(A) and J :{3 e reb u tta ls (/:

a . A). Thus if argument B rebuts argument A, then argument B is always subject to canonical undercut

from an argument C.

4.2. Introducing Attack and Reflection 91

4.2.2 Base Proposition Two: Undercut Engenders Rebuttal

Turning now to my second base proposition it is the case that undercut always engenders rebuttal.

Proposition 4.2.2. Base Proposition Two. Let A be a knowledgebase o f labelled assumption form ulae

and let I :a , J :p , K :<p G arguments(A).

I f there exists J : p € canonicalUndercuts(/: a , A)

then there exists K : 0 G rebuttals(J : p, A)

where K — I .

Proof. From the existence o f J : p and I : a it is always possible to infer the construct K : 0 . Using the

definition of canonical undercut, for J : p to be a canonical undercut o f I : a it must be the case that p =

- ’(/ J i A . . . Apr) where { P i pr) = stripAssumptions(formulae(7, A)). By conjunction introduction,

{/7i, . . . , p r } h p\ A . . . A p r is a valid deduction. It cannot be the case that a strict subset of { p \ , . . . , /3r }

implies p\ A . . . A p r because if it did the argument 7 : a would not be minimal. Inconsistency is also

impossible as K - I and / : a G argum ents(A). Thus I : Pi A . . . A p r G argum ents(A). Clearly for

the two arguments J : p and K : 0 to rebut it must be the case that ->/3 = 0 . Thus the reflexive argument

(reflexive by Definition 2.4.7) I : p \ A . . . A p r = 7 :->/? = 7 : 0 = K : 0 , which is a rebuttal of

J : /3,therefore K : 0 G rebuttals(J : p , A), always exists. □

The support o f this argument K : 0 is known from the support of the defending argument / : a .

The claim o f the argument K : 0 is also known, this time from the claim of the attacking argument J : p.

Clearly these two base propositions are closely related to each other, however they also contain a number

of differences which affect the properties o f this field.

4.23 Attack Engenders Attack

Rather than immediately analyse these two base propositions, I first show where they fit in the larger field

o f argumentation. I thus introduce a general (i.e. abstract or generic) definition of reflection. My starting

point is the attacks function, introduced earlier in Definition 3.9.2, which provides all the arguments

derivable from A that either rebut or undercut an argument / : a . To recap, in that definition, A is a set

of labelled assumption formulae and I :a G arguments(A). The Amgoud-Cayrol attack function, from

Definition 3.9.2, is such that:

argumentAttacks(/ :a , A) = rebuttals(/:a, A) U canonicalllndercuts(/:a, A).

For a rebuttal, the attacks relationship (following Amgoud-Cayrol) is bidirectional, while for an

undercut it is unidirectional. Rebuttal was defined back in Definition 2.6.7 and canonical undercut in

Definition 3.3.2. An alternative way of stating the definition of attacks is that:

J : p G argumentAttacks(7: a. A)

iff (J : p e rebuttals(7:a, A) or J : p G canonicalUndercuts(7 :a , A)).

Thus an argument J : p attacks an argument 7 : a iff J : p is a rebuttal of 7 : a or J : p is a canonical

undercut of 7 :a . I now establish the somewhat startling proposition that attack always engenders attack.

4.2. Introducing Attack and Reflection 92

Proposition 4 .23 . Let A be a knowledgebase o f labelled assumption form ulae and let I : q, J : (3 €

arguments(A).

I f J : (3 e argumentAttacks(7: a , A)

then argumentAttacks(J : / 3 , A) ^ 0 .

Proof. It is a given that J : (3 G argumentAttacks(/ : a , A), so using the definition of attack, Def­

inition 3.9.2, either J : 3 G rebuttals (I : a , A) or J : p € canonicalUndercuts(7 : a . A). If

J :p € rebuttals(7: a , A) then from Base Proposition One, (Proposition 4 .2 .1), this rebuttal always en­

genders the undercut K : 0 € canonicalUndercuts(J : /3, A). If, however, J : (3 e canonicalUndercuts(7:

a , A) then from Base Proposition Two, (Proposition 4.2.2), this undercut always engenders the rebut­

tal K : p G rebuttals(7 : p. A). Thus K : <p is either a rebuttal or an undercut o f J : p. So in ei­

ther case, the definition of attack, Definition 3.9.2, can be reapplied to show that it is inevitable that

K :<t> G argumentAttacks(J : p, A). Thus it is always that case that argumentAttacks(J : ft, A) / 0. □

In addition to knowing that there always is an engendered argument, quite a lot can be predicted

about the support o f this engendered argument, as I now show.

Proposition 4.2.4. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : p , K :

<p e arguments(A).

I f J . p e argumentAttacks(7:a , A)

then there exists a K :cf> £ argumentAttacks(J : p , A)

such that K C 7.

Proof. The above Proposition 4.2.3 established that the engendered argument K : <p always exists. Fur­

thermore, Proposition 4 .2 .1 established that if the first attack is a rebuttal, then there exists an undercut

in the role of the second and that K C 7 follows. Or from Proposition 4.2.2, if the first attack is an

undercut then there exists a rebuttal in the role of the second argument and thus K — I holds. As K = 7

is a special case o f K C 7 it follows that in all cases K C 7 holds. □

4.2.4 Type I Reflection - The Reflected Attacks Function

The first reflected attacks function, Type I Reflection, which I now define, follows on directly from the

attacks function. Three other types of reflection functions, called Type II, III and IV, are covered in this

thesis, so this is the first of four. I start with a concise description, supported by the argument graph

shown below as Figure 4 .1 and then give the formal definition.

Given a pair o f arguments 7 : o and J : p where J : p attacks 7 : a then there always exists another

argument K : <p that attacks J : p . Thus if there are two arguments in a chain, where chain was defined

in Section 3.9, and argument attack in Definition 3.9.2, then there always exists a third. Stating that

formally:

4.2. Introducing Attack and Reflection 93

Reflecting Argument / : q

J : j3 G argumentAttacks(/: a , A)

J-.p

K : 0 e argumentAttacks(J : [3, A)

Reflected Argument K \<p K C 7

Figure 4 . 1 : Type I Reflection is Provided by reflectedAttacks(J : p, I : a , A)

D efinition 4.2.1. Let & be a knowledgebase o f labelled assumption form ulae and let I : a, J :

J € arguments(A). 77ie set o f reflected a ttack s arising from the attack o f J : p on I : a, denoted

reflectedAttacks(J : p . I : a , A), is such that:

reflectedAttacks(J:/3,7 : a , A) = { K : € arguments(A) |

J :p € argumentAttacks(/:q , A), K : 4> e argumentAttacks(J : p, A) and K C I}.

I call the head o f the chain, I : a, the reflecting a rg u m en t or reflector for short, J : P the attacking

argument, K : <p a reflected a rg u m e n t and {K : <j>} the se t o f reflected argum ents. Furthermore, I call

the attack K : 0 e argumentAttacks(J : P, A) a reflected a ttack . If the support, K , of the reflected

argument, K : <p, is a strict subset o f the support / o f the reflector I : a, i.e. that K $ I, then I say

su p p o rt sh o rten in g has occurred.

This reflection definition could be applied recursively, suggesting an infinite chain of arguments

arising from just one pair of arguments. I clarify and refine that notion over this and the next two chapters,

taking the analysis one step at a time. I now prove that reflected arguments, given their prerequisites,

always exist.

P roposition 4.2.5. Let A be a knowledgebase o f labelled assumption form ulae and let I : a, J : p €

arguments(A).

I f J - . p e argumentAttacks(/:a, A)

then ref lected Attacks (J : P, I: a. A) / 0,

otherwise ref lected Attacks (J : p, I : a. A) = 0 .

P roof It is a given that J:P e argumentAttacks(7 :o . A) so either J :p e canonicalUndercuts(7:a, A)

or J : P e. rebuttals(7 : a. A). Thus the proof where prerequisites exist can be taken in two halves. The

first half is the situation J :p e canonicalllndercuts(7 : o . A). Base Proposition One, Proposition 4.2.1,

demonstrates that if J : p € canonicalUndercuts(7 : a, A) then there always exists a rebuttal of J : p.

Now the second half, which is the other situation for J : p e rebuttals(7 : a , A). Base Proposition

4.2. Introducing Attack and Reflection 94

Two, Proposition 4.2.2, states that if J : 0 G rebuttals(/ : a , A) then there always exists a canonical un­

dercut o f J : 0 . So regardless of which of the two situations (J : j3 G canonical Undercuts (7 : a , A)

or J : 0 G rebuttals(/ : a , A)) is the case, when the prerequisites are present it is always true

that reflectedAttacks(J : 0 ,1 : a , A) ^ 0. If on the other hand, I : a & arguments(A) or

J : 0 & arguments(A) or J : 0 & argumentAttacks(A) then the proof so far would not follow and

thus reflectedAttacks(Jr:/7 ,1 :a , A) = 0. □

Stating the proposition in English: ‘if argument A attacks argument B then there always exists an

argument C that attacks argument B ’ shows that in practice the prerequisites are quite naturally fulfilled

and are therefore not onerous.

4.2.5 Seeing What is Reflected

The reflected attacks function as defined is abstract or general in that it is not specific about what kind

of attack (i.e. rebuttal or undercut) is involved. M aking attack specific allows certain observations to be

made, including the following Propositions 4.2.6 and 4.2.7 and subsequent 4.2.9 and 4 .2 .1 1. The first of

these four is that one o f the reflected arguments from a rebuttal is a canonical undercut.

Proposition 4.2.6. Let A be a knowledgebase of labelled assumption formulae and let I : a, J : 0, K :

0 G arguments(A).

If there exists J : 0 G rebuttals(7: a , A) then

there exists a K :0 € reflectedAttacks(J : 0 ,1 : a, A)

such that K :<p G canonicalUndercuts(J : 0 , A).

Proof. Given that J : 0 G rebuttals(7 : a . A) then by Base Proposition One there exists K : <p G

canonicalUndercuts(J : 0 , A) where K C 7. Definition 3.9.2 of argument attack establishes that

given J : 0 G rebuttals(7 : a , A) then also J : 0 G argumentAttacks(7 : a , A). Likewise given

K : <$> G canonicalUndercuts(J : 0 , A) then K : <p G argumentAttacks(J : 0 , A). Furthermore from Defi­

nition 4.2.1 o f reflected attack, given this chain o f two argument attacks plus the fact that K C 7 proves

that K .0 G ref lected Attacks (J : 0 , I : a , A). So if there exists J : 0 G rebuttals(7: a. A) then there exists

a K : <p G ref lected Attacks (J : 0 , 1 : a , A) such that K : 0 G canonicalllndercuts(J : 0, A). □

This proposition is close to Base Proposition One, Proposition 4.2.1, with the added clarity that this

engendered argument may be categorised as a reflected argument and also as a canonical undercut. It is

also interesting to see, building on the generic form of reflection, that if the attack is a canonical undercut

then there exists a reflection which is a rebuttal.

Proposition 4.2.7. Let A be a knowledgebase of labelled assumption formulae and let I : ct, J : 0. K :

<p G arguments(A).

If there exists J :0 G canonicalUndercuts(7: a , A)

then there exists a K :0 G ref lected Attacks (J : 0 , 1 : a, A)

such that K : 0 G rebuttals(J : 0, A).

4.2. Introducing Attack and Reflection 95

Proof. Given that J : p € canonicalUndercuts(7 : a , A) then by Base Proposition Two there exists

K : 4> € rebuttals(J : p , A) where K — I. Definition 3.9.2 o f argument attack establishes that given

J : p e canonicalUndercuts(7 : a , A) then also J : p € argumentAttacks(7 : a . A). Likewise given K :

<t> € rebuttals(J : p , A) then K : <$> e argumentAttacks(J : /3, A). Furthermore from Definition 4.2.1 of

reflected attack, given this chain of two argument attacks plus the fact that K = 7, and thus that K C 7,

proves that K : <p € reflectedAttacks(J : p , I :a , A). So if there exists J : p € canonicalUndercuts(7 :

a . A) then there exists a K : 0 e reflectedAttacks(J : P ,1 : q , A) such that K : 0 e rebuttals(J :

P. A) . □

4.2.6 Base Proposition Three: Rebuttal Engenders Rebuttal

I now present two further base propositions, Base Propositions Three and Four, as two further instances

or consequences of reflectedAttacksQ. Three is perhaps simple, but the fourth is more profound.

Base Proposition Three is the seemingly trivial observation that rebuttal always engenders rebuttal.

I use the same format as used for Base Propositions One, Definition 4.2.1 and Two, Definition 4.2.2, to

show this observation:

Proposition 4.2.8. Base Proposition Three. Let A be a knowledgebase of labelled assumption formulae

and let I : a , J :p, K :<p e arguments(A).

If there exists J :p £ rebuttals(7: a , A)

then there exists K :<f) € rebuttals(J :/3, A)

such that K = 7.

Proof. For these rebuttals it is a clear that a = ->P, <p = ~^P and thus a = (p. Proposition 2.6.5

establishing that rebuttal possesses a form of symmetry, states that 7 : a G rebuttals(J : -■a. A) iff J :

->q € rebuttals(7 : a . A). The solution is that K : <p = 7 : a so thus K = 7. Therefore a rebuttal attack

always engenders another rebuttal attack. □

This simple proposition is interesting as it fits with the general reflection function, of Defini­

tion 4.2.1. The engendered rebuttal is in fact a reflected argument.

Proposition 4.2.9. Let A be a knowledgebase of labelled assumption formulae and let I : a, J : P, K :

<P e arguments(A).

If there exists J : p 6 rebuttals(7: a , A)

then there exists a K :<p G ref lected Attacks (J : p, I : a. A)

such that K : 0 G rebuttals (J : p, A).

Proof. Given that J : p e rebuttals(7 : a , A) then by Base Proposition Three there exists K : 4> G

rebuttals(J : p , A) where K = 7. Definition 3.9.2 of argument attack establishes that given J : p e

rebuttals(7 : a . A) then also J : p e argumentAttacks(7 : a , A) . Likewise given K : <p e rebuttals(J :

p . A) so K : 0 e argumentAttacks(J : P , A) . Furthermore from Definition 4.2.1 of reflected attack,

4.2. Introducing Attack and Reflection 96

given this chain o f two argument attacks plus the fact that K = I so K C 7 proves that K : 0 G

reflectedAttacks(J : 0 ,1 '■ a , A). So if there exists J : 0 G rebuttals(7 : a , A) then there exists a

K:<t> € reflectedAttacks(J : 0 , 1 :q , A) such that K : 0 G rebuttals(J :0, A). □

In this situation the reflected argument turns out to be the same as the original defending argument.

W hat is different or generated and also predictable by this theory of reflection, however, is the attack.

In contrast with earlier examples o f reflection (Base Propositions One and Two) those base propositions

had a new argument plus a new attack. For Base Proposition Three there certainly is a new attack, but

the difference is in not having a new argument. If Base Propositions One, Two and Four did not exist,

then Base Proposition Three would hardly be worth mentioning, but what is interesting is how it still fits

with general reflection. It also is a necessary small step in showing further properties, as I now cover in

Base Proposition Four.

4.2.7 Base Proposition Four: Undercut Engenders Undercut

Here I show that undercut engenders undercut. This observation employs the earlier Base Propositions

One, Two and Three to draw this fresh conclusion. I use the same format as used for Base Propositions

One to Three to show the observation.

Proposition 4.2.10. Base Proposition Four. Let A be a knowledgebase of labelled assumption formu­

lae and let I : a , J:0 , K :<p G arguments(A).

If there exists J :0 G canonicalUndercuts(/:a, A)

then there exists K : 0 G canonicalUndercuts(J : 0, A)

such that K C I.

Proof. First apply Base Proposition Two, Proposition 4.2.2: given J : 0 is a canonical undercut of

7 : q then it follows that there exists a I : ->0 G arguments(A) which is a rebuttal o f J : 0 . Now

apply Base Proposition Three, Proposition 4.2.8, to give a rebuttal attack of that rebuttal argument, i.e.

J : 0 € rebuttals(7: ->0, A). This has just created a new attack, but not a new argument. Now apply Base

Proposition One, Proposition 4.2.1, given this rebuttal attack, J : 0 G argumentAttacks(7: ->0, A), there

exists K : 0 a canonical undercut o f J : 0 . So given there exists J : 0 € canonicalUndercuts(7 : a , A)

then there always exists K : 0 € canonicalllndercuts(J : 0 , A) where K C 7. □

This base proposition, given the context o f a chain o f arguments could be referred to as the grand­

parent reflection. It is also the case that this reflected canonical undercut is a reflected argument, again

fitting exactly with the earlier definition of reflection, Definition 4.2.1.

Proposition 4.2.11. Let A be a knowledgebase of labelled assumption formulae and let I : a , J : 0, K :

0 G arguments(A).

If there exists J : 0 G canonicalUndercuts(7 :a . A)

then there exists a K : 0 G ref lected Attacks (J : 0 , 1 :a, A)

such that K :0 e canonicalUndercuts(J: 0 , A) .

4 .2. Introducing Attack and Reflection 97

Proof. Given that J : p G canonicalllndercuts(/ : a , A) then by Base Proposition Four there exists

K :<t> e canonicalUndercuts(J:^, A) where K C I . Definition 3.9.2 of argument attack establishes that

given J : p G canonicalUndercuts(/: a , A) then also J : p e argumentAttacks(7: q , A). Likewise given

K : <f) € canonicalUndercuts(J : p, A) so K : 0 e argumentAttacks(J :/3, A). Furthermore from Defini­

tion 4.2.1 of reflected attack, given this chain of two argument attacks plus the fact that K C 7 proves that

K :<t> e reflectedAttacks(J : p , I : q , A). So if there exists J : P e canonicalllndercuts(7: a , A) then there

exists a K : 4> e reflectedAttacks(J : p , I : a , A) such that K : <f> e canonicalUndercuts(J : p, A). □

These four base propositions show that whenever there are there are two arguments in an argument

chain, then there will always be a combination of reflected rebuttals and reflected undercuts extending

this attack chain. Thus both types of attack, rebuttal and undercut, are seen to be reflected off any attack,

be it rebuttal or undercut.

4.2.8 Reflexive Arguments and Reflection

To show how reflexive arguments fit with reflection, it helps first to clarify some behaviours of reflexive

arguments. This clarification requires not just the definitions of reflexivity (Definition 2.4.7), rebuttal

(Definition 2.6.7), canonical undercut (Definition 3.3.2), but also attack (Definition 3.9.2). If a reflexive

argument A is attacked by an argument B, then B will be a member of the canonical undercuts o f A and

B will be a member of the rebuttals o f A.

Proposition 4.2.12. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : (3 €

argum ents(A).

(J :p is a reflexive argument and I : a G argumentAttacks(J : (3, A))

if f (7 : q € canonicalU ndercuts(J:/3 , A) a n d l . a e rebuttals(J:/3 , A)).

Proof Because J : p is a reflexive argument it follows that stripDeduction(J:/3) =

A stripAssumptions(formulae(label(J : p), A)) , i.e. that its claim formula is the same as the conjunction

of the members of its support formulae. Clearly J : (3 is attacked, so the attack could be 7 : a 6

canonicalUndercuts(J : p . A) or 7 : a e rebuttals(J : p , A), with the emphasis on the word ‘or’.

However, as J : p is reflexive, with its claim a conjunction of its support, anything which is capable of

attacking its support will also attack its claim and vice versa. So if one is attacked, both are attacked. It

cannot be the case that there exists any K : a £ argumentAttacks(J : P, A) where K C 7 as then 7 : a

would not be minimal and hence not an argument, so it is 7 : a that both rebuts and undercuts J : p and

not any such K .a . Now for the reverse direction of the biconditional. As 7 : a can undercut the support

and rebut the claim of J : p , it means that stripDeduction(J : p) = f \ stripAssumptions(formulae(label(J :

p), A)) so J : p is reflexive and is attacked by 7 : a . So in conclusion (J : p is a reflexive argument and

7 : a € argumentAttacks(J : p , A)) iff (7 : a e canonicalUndercuts(J : p , A) and 7 : a e rebuttals(7 :

^ A)) . □

Thus if an argument A is subject to both rebuttal from an argument B and also canonical undercut

from an argument B, then A must be reflexive. If, however, A is subject to an undercut from B, and A is

4.3. Reflection in Other Argumentation Frameworks 98

reflexive then A must also be subject to a rebuttal from B. Additionally, if A is subject to rebuttal from

B and A is reflexive then A must also be subject to a canonical undercut from B. Thus an attack can be

both a canonical undercut and a rebuttal.

Now, here is an example of reflection and reflexivity:

Example 4.2.1. Reflection and reflexivity. A = { a : a , 6 : 7 , 0 : 7 —► ->q}. Thus { a } : a , {&, c} :

- 'a , {a} : - >(7 A (7 —» -^a)) € arguments(A). The attack chain fo r this example has {b, c} : ->o at

the head o f the chain, attacked by the reflexive argument {a} : a . The tail o f the chain is the reflected

{6 , c } : - i a € reflectedAttacks({a} : q , {6 , c} :-<a, A). Observe that {6 , c} : ->a e rebuttals({a} : a , A)

and also {6 , c} : ->a € canonicalUndercuts({a} : a , A). Later in this chapter the reflected argument

rebuttal and the reflected canonical undercut are form ally defined.

Thus reflexive arguments are no exception in giving rise to reflections - which need to be understood

in assessing debates. A point to draw from the above example is that by removing reflected arguments

one also removes some of the ‘double counting’ arising from reflexive arguments.

Recalling the terms defined immediately after Definition 4.2.1, a three member attack chain has

the reflector argument at its head, a mid-chain argument and reflected argument at its tail; reflexive

arguments may reside in any o f these three places. Looking first at the reflected argument: all reflected

argument rebuttals are reflexive arguments. In practical debate most reflected canonical undercuts are

not reflexive arguments, but there can exist reflected canonical undercuts that are reflexive. Consider

A = {a:a , b: ->a} . Later, in Section 4.4 these reflexivity roles are revisited.

Any reflexive argument may or may not take the role o f reflecting argument - depending on whether

it is attacked or not. Thus any reflecting argument may or may not be reflexive. If the defending argument

is a reflexive argument then there exists a reflected argument that is the same as the defending argument.

Any attacking argument (occupying the mid-point in the three member attack chain describing a

Type I Reflection) may or may not be reflexive. If this attacking argument is reflexive then the reflected

argument rebuttal will be the same argument as the reflected canonical undercut.

When counting arguments in judgem ents, care should be taken not to count the attacks on a reflexive

argument twice, regardless of the presence or absence o f reflection. This consideration is addressed in

Section 6.7.

4.3 Reflection in Other Argumentation Frameworks
In the introduction I stated that there are four main formal approaches to defining an individual argument,

namely i) minimal consistent subset arguments following classical logic (mincons), ii) defeasible logic

argumentation schemes, iii) semi-abstract and iv) fully abstract. I have established that reflection occurs

with the first one, so the question arises does it occur with the other three?

Given that the proofs presented in the semi-abstract approach papers, notably (Bondarenko et al.,

1997), show it to encompass many of the defeasible logic argumentation schemes in the literature, it

follows that this list of four formalisms is not a simple subdivision of the field of argumentation into

equal quarters. The defeasible approach is noteworthy in its own right because of the central position in

4.3. Reflection in Other Argumentation Frameworks 99

the argumentation aggregation literature of works of Pollock (Pollock, 1970; Pollock, 1974; Pollock,

1987; Pollock, 1992; Pollock, 2000) and of Chesnevar, Garcia, Loui and Simari (Simari & Loui, 1992;

Simari et al., 1994; Chesnevar et al., 2000; Garcia & Simari, 2004; Chesnevar et al., 2005).

I now establish that the semi-abstract approach is so defined as to encompass and allow reflection.

Some o f the concrete manifestations of the semi-abstract approach, however, may move far enough away

from classical logic, by imposing proof rule restrictions, to no longer contain reflection - hence an area

deserving further research.

An argument in the ABA framework is defined as follows. I refer to Definitions 2.1, 2.2, 2.3 and

2.4 in (Dung et al., 2006) and have packaged four original definitions into one here for brevity.

Definition 4 3 .1 . An assumption-based argument (ABA) argument is defined as follows:

1. A deductive system is a pa ir (C, 71) where

(a) C is a form al language consisting o f countably many sentences,

(b) 71 is a countable set o f inference rules o f the form °‘l i c>ia" ,

(c) q G C is called the conclusion o f the inference rule and

(d) Q i , . . . , a n are called the prem ises o f the inference rule and n > 0 .

2. A deduction o f a conclusion a based on a set o f premises P is a sequence f3\, . . . , Pm o f

sentences in C, where m > 0 and a = /3m , such that, fo r a l i i = 1 , . . . , m :

(a) (3t G P, or

(b) there exists G 7Z such that a i , . . . , a n G {(3\ , . . . , (3t- 1 }.

3. An assumption-based fram ew ork is a tuple(C, 7Z,)C,~) where:

(a) (£ , 71) is a deductive system.

(b) 1C C C, K. / 0. K is the set o f candidate assumptions.

(c) I f a e fC, then there is no inference rule o f the form Ql! Q' :a,‘ G P .

(d) is a (total) mapping from K. into C. a is the contrary o f a .

4. An ABA argument is a deduction whose premises are all assumptions.

To refer to the parts of an individual ABA argument I reuse the unlabelled notation described fol­

lowing Proposition 2.4.4, where ($. 0) is an argument. It can be observed that my language C is an

instance of the more general C above and that K, is an ABA knowledgebase of assumption formulae.

The original uses A not K for its knowledgebase, but I have changed it to avoid a clash with the set of

assumption labels defined in Chapter 2. Observe that the set of proof rules which make up classical logic

is an instance of 71. Thus mincons are a kind of ABA argument, but not all ABA arguments are mincons.

Example 1.1 in (Dung et al., 2006) presents arguments with minimal consistent sets o f premises that

infer their claims using classical logic.

4.3. Reflection in Other Argumentation Frameworks 100

An attack in the ABA framework (their Definition 2.5) is defined as follows: An ABA argument A

ABA attacks an ABA argument B iff A contradicts an assumption in the set of assumptions on which B

is based. I present that as a function now and limit it to classical logic, so that I can more easily reuse it

in a further definition and proposition.

Definition 43 .2 . Let V, be classical logic, the ABA C be equal to the C o f Definition 2.2 .1, K, be an ABA

knowledgebase o f assumptions and be Let (4>, a) , ('I', 0) be ABA arguments derivable from 1C. ABA

attack, denoted a t ta c k s ,* ^ (($, a) , £) , is the set o f arguments that attack (4>, a) such that:

($, 0) G attacks a ba{(®,ol) , IC) iff ^ 0 G $.

The ABA attack is thus a generalisation of my Wigmore undercut, see Definition 3 .2 .1. I now show

that reflection exists in this assumption-based framework. If exactly the same definition of reflection

as used earlier in this chapter, Definition 4.2.1, is used then the second argument in the attack chain of

ABA arguments must be reflexive. Thus if the unlabelled knowledgebase AC = {0, /3 —> a , ->a}, then

the ABA arguments include ({ 0 , 0 —» q } , q) , ({ - , c*}, - |a) . Consequently the head o f the attack chain

is ({ 0 , 0 —► a } , a) , which is subject to W igmore undercut by the reflexive ({ - 'a } , -•a). Consequently

({ 0 , 0 —<► c*}, a) is a reflected W igmore undercut o f ({_,a } , ->a), so using exactly the same reflection

definition is unsatisfactory due to its triviality of only working for reflexive arguments. W hat is needed

is a slightly modified or generalised definition o f reflection, which I call a reflected ABA attack, to see

that, given certain assumptions, reflection always occurs in the ABA framework regardless o f whether

the ABA attack is reflexive or not. In the following definition I limit the analysis to classical logic.

Definition 4 3 3 . Let V, be classical logic, the ABA C be equal to the £ o f Definition 2.2.1, 1C be an

ABA knowledgebase o f assumptions and ~ be Let (4>,a), (ty, ->0,) be ABA arguments derivable

from AC. The set o f reflected ABA attacks arising from the ABA attack o f {4/, -><£,) on (<£, a) , denoted

reflectedAttacks^B/i(('!>> ~'<t>t), (4>, a) , 1C) is such that:

(r , ^ 3) € reflectedAttacks^BA((^, ^ t) , (♦ •«) . £)

iff (^ , - 0 t) G attacks,**^(($,<*},£)>

(T, is an ABA argument derivable from 1C and

T = A u where A C 4>.

The above definition is a generalisation of the basic reflected attacks function, Definition 4.2.1,

that I examine throughout much of this thesis. W hile the reflection function I examine in detail is for

canonical undercuts, the above is also viable for W igmore and Pollock undercuts. An area for further

research would be to generalise all of the reflection functions in this thesis to directly cover Wigmore

and Pollock undercuts as well as canonical undercuts.

Given their prerequisites, reflected ABA attacks always exist, as I now prove.

Proposition 43 .1 . Let V, be classical logic, the ABA C be equal to the C o f Definition 2.2.1, K. be an

4.3. Reflection in Other Argumentation Frameworks 101

ABA knowledgebase o f assumptions and be Let ($, a) , ('I', ->0t) be ABA arguments derived from 1C.

/ / (^ , - 0 .) € attacksABA{(<b,a),IC)

then reflectedAttacksi4 Bi4 ((,I', ~i0 l), ($, a) , / C) -f- 0,

otherwise reflectedA ttacks^B A U ^ ($, a) , / C) = 0.

Proof. Clearly for ('I', ->0,) to be an ABA attack on ($, q) , by the definition of ABA attack and given

$ = {01> • • • >0n}. >t must be the case that 0 , G <!>. Also if (I \ ->0j) is an ABA attack on (ty, ->0,),

letting ^ = {0 i , 0 m }»it follows that 0 j € 'if. Given that (^ , ->0,) is an ABA argument then by VI

so is (4 ', -<0, V ~ i0j), which is also the case when <pj G <I>. Thus ('if, ->(0i A . . . A 0 n)) is also an ABA

argument that exists if ('I', ->0,) exists. Now using Al it follows that 0x A . . . A 0 m —► ->(0i A . . . A 0 n).

By contraposition 0 i A . . . A 0n —► _,(0 i A . . . A 0 m). Furthermore by VE, if assumptions are added to the

antecedent then their negations can be ruled out from the consequent, i.e. if 0 i A . . . A 0 n —> ->(0j A 0*)

then { 0 i , . . . , 0 n } u {0fc} I— >0j. So by VE it follows that $ U '£ \0 j I— <ipj, where the \0_, prevents

ex falso quodlibet. This statement can be simplified as not every member of the set <I> may be necessary

to infer ->(0i A . . . A 0 m). Thus if (<I> U ' i f\ipj, _,0 j) and A C $ then (A U ^ \ 0 j , _i0 J) is also an ABA

argument. Thus with T = A U ^ \ 0 j , where A C <I>, it follows, given the prerequisites, that the reflected

ABA argument (I \ -» 0 j) always exists. Absent any one o f the prerequisites then (T ,->0j) will not

exist. Thus if (^ , - > 0 ,) € attacksa b a ((^>̂) » AC) then reflectedAttacksJ4 BA((^ 1 ± 0,

otherwise reflectedAttacks^BA ((^ 7 _,0i)< (&, a) , AC) = 0. □

W hat is seen here is undercut to undercut reflection with a similar, but not identical form, to that

covered in Base Proposition Four, see Proposition 4.2.10. Base Proposition Four addresses the situation

with canonical undercuts and the above proposition describes essentially the same situation, but this time

with a form of W igmore undercuts.

This proposition shows that if A ABA attacks B then there always exists a counter ABA attack of C

ABA attacking B. Thus if A is defeated by B, then B is defeated by C and consequently A is reinstated

by C. This inevitable reinstatement raises some interesting issues around some of the semantics used in

the ABA framework. Questions suggestive by this initial analysis, each o f which is a topic for further

research, include the following.

• W hat other forms of reflection exist within the ABA framework?

• W hat are the minimum sets o f proof rules needed for each form of reflection?

• What alternative minimum sets o f proof rules can be used to show each reflection?

• Which of the non-monotonic logics that are special cases of the ABA framework permit which

forms of reflection?

• Which semantics are affected by the observation that given the right prerequisites each attacked

argument is automatically subject to counterattack and thus reinstatement?

4.4. Reflected Canonical Undercuts 102

• W hich of the semantics referred to in ABA papers are affected by the existence of which forms of

reflection and what is the effect?

Referring back to the question of reflection with defeasible logic, most defeasible logics do not have

contraposition so that would appear to rule out some forms of reflection. Even without contraposition,

however, some other forms of reflection, such as the reflected rebuttal (see Definition 4.7.1 and Proposi­

tion 4.7.2) are possible. Therefore it would appear that defeasible logics may also contain reflection and

warrant further research.

In the fully abstract approach o f (Dung, 1993) there is full clarity that the arguments and deduction

rules are undefined and hence there can be no assumption of classical logic or even of assumptions and

a claim. So here it cannot be said whether reflection occurs or not.

In conclusion, reflection is not unique to minimal consistent arguments with rebuttal and canonical

undercut, but rather is also a feature of other definitions o f argument and attack in the literature.

4.4 Reflected Canonical Undercuts
I now define the reflected canonical undercut and go more deeply into its properties. This function

outputs a set o f arguments, all o f which are canonical undercuts, that arise through reflection, from a

single pair o f attacking arguments. The attack could either be a rebuttal or an undercut. The reflected

attacks function is Definition 4.2.1 and the canonical undercuts function is Definition 3.3.2.

Definition 4.4.1. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : (3 e

arguments(A). The set o f reflected canonical undercuts, denoted reflectedCanonicalUndercuts(J :

3 , / : a , A), attacking J :(3, reflected o ff I :a , is such that:

reflectedCanonicalUndercuts(J :(3, I \ a , A)

= { K : 0 € arguments(A) |

K : <p € reflectedAttacks(J :(3,1 : a , A) and

K:<p G canonicalUndercuts(J:/3, A)} .

I now give an example of a reflected canonical undercut. As in earlier chapters the sake of brevity I

skip the repeated restatement o f the canonical ordering constraint.

Example 4.4.1. Reflected canonical undercut Let A = {a : a , b : a —* >3,c: Let J - {a, 6}, I =

{ c } . It fo llow s that J : f 3 , 1: ->(3, 0 : (a A (a —♦ [3)) —* /3, 0: ->j3 —► - ■ (a A (a —►/?)),/: -> (a A (a —»

,J)), € argum ents(A). Thus I : ->(a A (a —► j)) e reflectedCanonicalUndercuts(J : f l , l : -«/3, A). This

fo llow s as clearly I C I and thus I : - ’(a A (a - > (3)) is a reflected canonical undercut.

The above is a simple example where the support o f the undercut is the same as the support of the

rebuttal, i.e. no strict subsets are involved. I have shown some of the tautologies which exist in the set of

arguments as an aid to seeing the steps of logic that lead to the reflected undercut. To infer the existence

of the argument J : - > (a A (a —> [3)) only requires the assumption c : - (̂3. However, to deduce that

4.4. Reflected Canonical Undercuts 103

this same argument J : ->(a A (a —* (3)) is a reflected canonical undercut requires three assumptions

a : a , b :a —*• 0 and c: -<(3.

So a reflected canonical undercut is simply a canonical undercut that is also a reflected argument.

Every member of the set o f arguments reflectedCanonicalUndercuts(J :/3,7: a , A) has the same

claim and thus can always be represented as a confirmation. Thus

Z : 0 = confirm(reflectedCanonicalUndercuts(J :0 , 1 : a , A)) where for each K e Z the constraints of

the above definition apply. To be more specific, the set o f reflected canonical undercut arguments of a

given rebutted argument can be precisely represented as a mono-target preclusive undercut. Depending

upon A this preclusion may be multi-attack or mono-attack.

Given a single contradiction, comprising o f an argument for a and an argument for ->a, it is possible

to deduce the existence o f at least two canonical undercuts (one attacking the argument for a and the

other attacking the argument for ->q). The reflected canonical undercuts function is given a plural name

because combining just one attacking argument with just one reflector argument can give rise to many

reflected canonical undercuts (that is many arguments even just attacking a) .

4.4.1 Properties of Reflected Canonical Undercuts

A simple corollary to the Proposition 4.2.5 that reflected arguments always exist is the following. Given

a defending argument I : a and its attacker J : 0 then reflected canonical undercuts always exist, as shown

in the following proposition.

Proposition 4.4.1. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : 0 €

argum ents(A).

I f J :0 G argum entAttacks(7: a , A)

then reflectedC anonicalU ndercuts(J:/3 ,7 :a , A) ^ 0,

otherwise reflectedCanonicalUndercuts(J : 0 , I : a , A) = 0.

Proof. The attack of J : 0 G argumentAttacks(7 : a , A) could be either a rebuttal or a canonical un­

dercut. If J : 0 e rebuttals(7 : a , A) then Base Proposition One shows that there exists K : 0 e

canonicalllndercuts(J : 0 , A) with K C 7. If J : 0 e canonicalU ndercuts(7: a , A) then Base Proposi­

tion Four establishes that there exists K : 0 € canonicall)ndercuts(J : 0 , A) with K C 7. Thus in either

case there exists A' : 0 e canonicalUndercuts(J : 0 , A) with K C 7. It also follows, by Definition 4.2.1

of reflected attack that K : 0 e reflectedAttacks(J : 0 , A). Thus by Definition 4.4 .1 o f reflected canonical

undercut, as K : 0 is both a reflected attack and a canonical undercut it will be the case that K : 0 €

reflectedCanonical Undercuts (J : 0 , 1 : a . A) and so reflectedCanonicalUndercuts(J : 0 , 1 : a , A) 0.

However if 7 : a £ arguments(A) or J . 0 g argum ents(A) or J : 0 e argumentAttacks(7 : a , A) then

reflectedCanonical Undercuts (J : 0 , 1 : o , A) = 0. □

The support of a reflected canonical undercut is always equal to the support of the reflector argu­

ment, or a strict subset of the support of the reflector argument, regardless of whether the attack on the

reflector is a rebuttal or an undercut.

4.4. Reflected Canonical Undercuts 104

Proposition 4.4.2. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : (3 €

argum ents(A). Let J:(3 e canonicalUndercuts(7:a , A) or J :(3 e reb u tta ls (/:a , A).

reflectedC anonicall)ndercuts(J:/7 ,7: ct, A) = { K :<p e argum ents(A)) K c I } .

Proof. By Definition 4.4 . 1 , members of reflectedCanonicalUndercuts(J : (3,1 :a , A), must be reflected

attacks reflectedAttacks(J : (3 , 1 : q , A) that are also canonicalUndercuts(J : (3, A). Definition 4.2.1 of

reflected attack and Proposition 4.2.5 (reflections always exist) establish that a reflectedAttacks(J : (3 , I :

a, A) always arises from any argumentAttacks(7 :ct, A). From Definition 3.9.2, that argument attack on

the reflector 7 : a , could be either a member of rebuttals(7 : a , A) or of canonicalUndercuts(7 : a , A).

Base Proposition One, Proposition 4.2.1, states that a reflected attack off the rebuttal is a canoni­

cal undercut K : <f> € canonicalUndercuts(J : (3, A) with K C 7. Base Proposition Four, Propo­

sition 4.2.10, states that a reflected attack off the canonical undercut is another canonical undercut

K : (p e canonicalUndercuts(J : (3, A) again with K C 7. Thus in either case of reflected canonical

undercut, it follows that K C 7. So in conclusion reflectedCanonicalUndercuts(J : (3,1 : a , A) =

{ K : <p € arguments(A) | (J : (3 € canonicalllndercuts(7 : a , A) or J : (3 e rebuttals(7 : a , A)) and

K C 7}. □

The cardinality o f the reflected canonical undercuts function is as follows.

Proposition 4 .43 . Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : (3 £

argum ents(A).

0 < |reflectedCanonicalUndercuts(J:/7, 7 :q , A) | < midLattice(7).

Proof. If the prerequisites don’t exist, e.g. if either 7 : a , J : (3 & arguments(A), then there are no

reflected canonical undercuts and reflectedCanonicalUndercuts(J : (3,1 : a , A) = 0 . For the upper

limit consider two arguments K : <p,L : <p £ reflectedCanonicalllndercuts(J : (3,1 : a , A). Every

K : 0 e reflectedCanonicalUndercuts(J : (3,1 : a , A) must be such that K C 7 and must have the same

claim. The number o f subsets o f 7 is However it cannot be the case that K C L, nor L C K .

Consequently the mid lattice function must be used to give the maximum number of subsets that are not

subsets o f each other. Subsets o f assumption labels in 7 yield the supports o f all the possible reflected

arguments. □

Furthermore, reflected canonical undercuts are always canonical undercuts, but not necessarily vice

versa.

Proposition 4.4.4. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : (3 €

argum ents(A).

reflectedCanonicalUndercuts(J :(3,1 :a , A) C canonicalUndercuts(J :(3, A).

Proof. The function canonicalUndercuts(J : [3, A) is defined in Definition 3.3.2. Definition 4.4.1 defines

reflectedCanonicalUndercuts(J : (3,1 : a , A) as a canonical undercut that is also a reflected attack, for

4.4. Reflected Canonical Undercuts 105

which see Definition 4.2.1. The additional conditions to be a reflected attack are that J : 0 argument

attacks I : a and that K C I . Thus for a canonical undercut canonicalUndercuts(J : 0 , A) to also be a

reflected canonical undercut reflectedCanonicalllndercuts(J -.0 ,1: a , A) there are additional conditions

to meet. Thus for any set o f canonical undercuts some of the set members will not meet the additional

constraints. Therefore reflectedCanonicalUndercuts(J : 0 , 1 : a , A) C canonicalUndercuts(J : 0 , A) .

□

A simple corollary follows from the logic of the proof:

|reflectedCanonicalUndercuts(J : 0, / : « , A)| < |canonicalUndercuts(J :0, A)|.

4.4.2 A Motivational Example of Reflected Undercut

I now give a motivational example o f reflected canonical undercut where I provide linguistic gloss for the

individual formulae and discuss the common sense meaning and implication of this reflection. This sub­

section continues with the approach o f Example 4.4.1 and expands on it by including gloss, as follows.

The formulae in the knowledgebase are shown in Table 4 .1 .

Formula Structure Assumption Informal Gloss

Q

0

7

Q —» 0

7 -» ^ 0

atomic

atomic

atomic

compound

compound

a: a

not assumed

b: 7

c: a —» 0

d : 7 - » ^ 0

It’s raining.

Bring an umbrella.

Wear a good raincoat.

If it’s raining then bring an umbrella.

If one wears a good raincoat

then one need not bring an umbrella.

Table 4.1: M otivational Example o f Reflected Undercut

Thus the assumptions in this small debate are just four formulae A = { a : a , 6 : 7 , c : a —♦ 0, d :

7 —► ->0}. Thus the arguments include {a ,c} : 0 , {b, d} : -< 0,{a ,c} : -> (7 A (7 —► ->/?)), {6 , d} :

->(q A (a —» 0)) e arguments(A). The relevant resultant arguments and their interactions are shown in

the argument graph o f Figure 4.2 below.

This pair o f rebutting arguments yields two reflected canonical undercuts: the first is {a, c } : - - (7 A

(7 —» ->/?)) with a gloss o f ‘It's not the case that (one is wearing a good raincoat and that i f one wears a

good raincoat then one need not bring an umbrella). This follow s because i t ’s raining and i f i t ’s raining

then one brings an umbrella.’ The second reflected canonical undercut is {6 , d} : - '(a A (a —♦ 0))

with a gloss o f ‘Either i t ’s not raining or i t ’s not the case that when its raining you should bring an

umbrella. This fo llow s because one has a raincoat and i f one wears a raincoat then one need not bring

an umbrella.’ W hile these are logically valid arguments, the reflections would not normally appear in

professional debate.

4.5 . Direct Canonical Undercuts 106

{6, d} :-'(3 e rebuttals({a, c} : 0, A)

{ a , c } :0 ̂ {b,d}:^0

{a, c} :0 e rebuttals({6, c}: ->/?, A)

{ M } : > A (a - / 3)) e

canonicalUndercuts({a, c } : 0, A)

{ a , c } : - > (7 A (7 — ^/3)) e

canonicalllndercuts({6, d } : ->/?, A)

{6, d } : - (q A (q — /3)) {a, c } : - . (7 A (7 —> -/?))

{6 ,d }:-> (a A (q —► /5)) e reflectedCanonicall)ndercuts({a,c}:/3, {fc,d} A)

{a, c } : - 1(7 A (7 —» ->/?)) € reflectedCanonicalUndercuts({6 , d } : —*>3, {a, c } : a , A)

Figure 4.2: Reflected Canonical Undercuts Shown in an Argument Graph

4.5 Direct Canonical Undercuts
Not all canonical undercuts are reflected canonical undercuts. 1 now define the direct canonical undercut

simply as those canonical undercuts that are not reflected. I will show that they do exist, but do not

always exist. I now build on Definition 3.3.2 o f canonical undercut and 4.4.1 o f reflected canonical

undercut.

Definition 4.5.1. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : 0 e

arguments(A). The set o f direct canonical undercuts o f J : 0, not reflected o ff I : a, denoted

directCanonicalllndercuts(J : 0 , I : a , A), is such that:

directCanonicalUndercuts(J . 0 , 1 ’. a , A)

= canonicalUndercuts(J : 0 , A) \ reflectedCanonicalUndercuts(J .0 ,1 ' .a , A).

I call K : <f> a direct (or unreflected) argument and as before the head o f the chain, I : a is the

reflecting argument or reflector. There are two situations where reflections do not occur; either there is

no reflector or the reflector exists but is not attacked. For direct canonical undercuts, predictions can be

made about the support o f the attacking argument:

Proposition 4.5.1. Let A be a knowledgebase o f labelled assumption form ulae , let I : a , J : 0 , K :cj) €

arguments(A) and let J : 0 € argumentAttacks(7: a , A).

I f K\<t> e directCanonicalUndercuts(J:/?, 7 :a , A) then K £ 7.

P roof Proposition 4.4.2 establishes that if K : 4> G reflectedCanonicalUndercuts(J : 0 , 1 : a , A) then

K C 7. Definition 3.3.2 of canonical undercut imposes no constraint on the support of the attacking

argument, K : <f>, relative to any reflector, 7 : q , so in that case for any 7 : a some rebuttals may have

K C 7 and others K % I . The definition of direct canonical undercut, Definition 4.5.1 immediately

above, uses set difference to remove the reflected canonical undercuts from the full set o f canonical

4.5. Direct Canonical Undercuts 107

undercuts, thus the only undercuts remaining in directCanonicalUndercuts(J : 0 , 1 : a , A) must have

K £ I . So in conclusion if K :<f> € directCanonicalUndercuts(J :/3,1 : a , A) then K £ I . □

It will also be the case that K £ J as if it were then, as for any attack, it would infer J h i ;

likewise for J £ I . So far, this concept o f direct undercut is weak as the existence of a specific direct

canonical undercut depends on the choice of reflector, i.e. / : a . For example, there could exist an

L : q € rebuttals(«7: -^q, A) such that K C L and thus if L : a were passed in as the reflecting argument

it would render K : <f> reflected. This potential weakness is removed once I progress to the consideration

o f sets o f maximal direct arguments in Sections 5.3 and 5.6.

A particular canonical undercut (which is a relationship between two arguments) must be either

direct or reflected. A canonical undercut cannot be both. An individual argument, however, can be both

direct and reflected at the same time as shown by the following example.

Example 4.5.1. Both direct and reflected argument Let A = {a : 7r, 6 : tt -> q , c : 7 A -^a, d :

A, e : A —+ ->7 }. Let I — {a, 6 }, J = {c}, L = { d ye}. Thus I : a , J : ->a, J : 7 , L : -1 (7 A

->a), L : -> 7 € arguments(A). This example involves two chains, each o f three arguments. The first

chain, from head to tail is I : a , J : ->q, L : - < (7 A -iq). The second chain, again from head to tail

is L : ->7 , J : 7 , L : - - (7 A -<a). For the first chain the defending argument is I : a . The attacking

argument is J : ->a where J : ->a € rebuttals(7 : a , A). This attacking argument is in turn attacked by

a canonical undercut, namely L : - > (7 A ->a) e canonicalllndercuts(J : ->a, A). As {d, e} £ {a, 6 }

so L £ I then L : - > (7 A ->a) £ reflectedCanonicalUndercuts(J : ->a, I : a , A). So it fo llow s that

L : - > (7 A ~>q) € directCanonicalUndercuts(J : ->a, I : a , A). Turning now to the second chain, the

defending argument is L : ->7 . The attacking argument is J : 7 and as clearly L C L, L : -1 (7 A ->a) is a

reflected canonical undercut. So one argument can be both direct and reflected, that is L : -> (7 A ->a) e

reflectedCanonicalUndercuts(J : 7 , L : ->7 , A) and also L : - * (7 A ~^a) e directCanonicalUndercuts(J :

—>q, I : a, A).

Thus it is the context which determines whether a particular argument is direct or reflected. There­

fore reflection is a relative property of arguments and not an absolute property. This point emphasises

the need for placing arguments in suitable graphs or trees to provide the right context for determining

which arguments are then reflected and which are direct. It also shows the importance o f passing in the

reflector, J :/3, in Definition 4.5.1.

Thus there are two situations where direct canonical undercuts are found: one is where there is no

reflector; the other is where there is a reflector, but the undercut in question is not reflected. I now give

an example o f such a direct canonical undercut where the argument / : a has no reflector.

Example 4.5.2. Direct canonical undercut without reflector. Let A = {a : a A b : ->/3}. Then

{a} : a , {a} : 0 , {6} : ->/3, {6} : V ->a, {6} : - i(a A 0) e arguments(A). Thus the defending argument

{a} : a has a canonical undercut o f {6} : - '(a A 0), but no rebuttal. It has no rebuttal because A (/ ->a.

So {b} : ^ (a A 0) e canonicall)ndercuts({a} :a, A), but {c} :->a £ arguments(A) Thus {6 }: ->(qA/3) e

directCanonicalUndercuts({a} : a , {c} : ->q, A) is a direct canonical undercut.

4.6. Mono-Pair Enlarged Reflections 108

The second situation is when the reflector argument I : a exists, but the undercut in question, K : <f>,

is not a reflected undercut. This second situation is more interesting as given the result of Proposition

4.4.1, that reflected canonical undercuts always exist, it is perhaps somewhat unexpected. I now give an

example to show that not all canonical undercuts are reflected canonical undercuts.

Exam ple 4 i 3 . Direct canonical undercut with reflector. Let A = {a : a A 0, b : ->(3, c : ->a}. Then

{ a } : a , { c } : ->a, {6}: ->(3, {6}: ->(3 V -iq , {6}: ->(a A /?), { c } : -<(3 V ->a, { c } : -»(a A (3) € arguments(A).

Thus the defending argument { a } : a has two canonical undercuts namely {6}: ->(a A/3), { c } : ->(a A/3) e

canonicalUndercuts({a} : a , A). I f fo llow s that {c} : ->(a A (3) e reflectedCanonicalUndercuts({a} :

a , {c} : ->q, A), but {6} : ->(a A (3) & reflectedCanonicalUndercuts({a}: a , {c} : ->q, A) as {6} % {c}.

Thus {6}: ->(a A /3) G directCanonicalUndercuts({a}: a , { c } : ->a, A) is a direct canonical undercut.

Clearly in the above discussion a canonical undercut K : ->(0i A . . . A <f>n) is either a member of

reflectedCanonicalUndercuts or it is not. To emphasise the key point: for a given reflector (which could

be the empty set) a canonical undercut is either direct or reflected; it cannot be both. So some canonical

undercuts are a function o f a reflector, whilst others are not. The number of direct canonical undercuts

that an argument has is clearly unrelated to any reflectors and is instead purely a function of the contents

o f A .

As the number o f direct canonical undercuts is not constrained by any reflector argument, it is the

same as for canonical undercuts, Proposition 3.3.3:

Proposition 4.5.2. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : (3 e

arguments(A).

0 < |directCanonicalUndercuts(J:/3,1 :a, A)| < midLattice(A).

P roof The proof is the same as for the cardinality o f canonical undercuts, Proposition 3.3.3. An undercut

o f J : (3 given reflector I : a is either direct or reflected. If none of them are reflected then all canonical

undercuts are direct. □

This analysis thus shows that a single argument I : a , that attacks a reflector J : (3, can be attacked

by a mixture o f direct and reflected canonical undercuts.

4.6 Mono-Pair Enlarged Reflections
I have shown that given an attacking argument and a reflector then a reflected canonical undercut al­

ways exists. W hile this is true, there is more to the matter: the number of reflected canonical undercuts

is one or more than one. There are two reasons why there may be more reflected arguments than ex­

pected. The first stems from support shortening resulting in what I call a mono-pair enlarged reflection

(Definition 4.6.1 below); the second reason I address shortly (in Section 5.7.4 on multi-pair enlarged

reflections).

To introduce mono-pair enlarged reflections I start by giving an example that demonstrates the case

where the support o f the reflected canonical undercut is a strict subset o f the support o f the reflector.

4.6. Mono-Pair Enlarged Reflections 109

Example 4.6.1. Support shortening. Let A = {a : 0,b : 0 —> a ,c : -^0,d : -^0 —> ->a}. Let

P = {a , 6 }, Q = { c ,d}, R = {c}. Therefore P : a , Q : ->a, R : -^0, 7?: ->/3 V (/3 —► a), R : ^(0 /\ (0 —>

a)) e arguments(A). The defending argument is P : a. The reflector is the rebuttal Q : ->a. One

might think that Q : ->(/? A (0 — > a)) e reflectedCanonicalllndercuts(P : a ,Q : -> q , A) would be a

reflected canonical undercut, however it is not even a valid argument as the support is not minimal.

Rather R : -^(0 A (0 —* a)) e reflectedCanonicalUndercuts(P: a , Q : - ’a , A) is a reflected canonical

undercut. In this valid case the support of the reflected canonical undercut R is a strict subset of the

support of the rebuttal Q.

There can be more than one possible minimal consistent subset that implies ->(</>i A . . . A <j>n). In

other words, because support shortening can happen in more than one way, reflected canonical undercuts

are not necessarily unique, as shown below:

Proposition 4.6.1. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : 0 £

arguments(A).

I f J . 0 £ argumentAttacks(/:a , A)

then |reflectedCanonicalllndercuts(J: 0 , I : a , A) \ > 1 .

Proof. Given Proposition 4.4.1, plus that I : a , J : 0 £ arguments(A) and J : 0 £ argumentAttacks(/ :

q , A), it follows that reflectedCanonicalUndercuts(J : 0 , 1 : a , A) f 0. For an argument K : 7 to be

a member of reflectedCanonicalUndercuts(J : 0 , 1 : a , A), by Definition 4.4.1, requires that K : 7 e

reflectedAttacks(J : 0 , 1 : a , A), which in turn requires K C I. For any argument I : a, because

|label(7 : a) | > 0 , the argument can have many assumptions, and thus the set o f assumptions can have

many subsets. Therefore if J : 0 £ argumentAttacks(7 : a , A) then |reflectedCanonicalUndercuts(J :

0 , I :a, A)| > 1 . □

I now give an example that illustrates the above proposition.

Example 4.6.2. Mono-pair enlarged reflection. Let A = { a : 0, b : 7 , c: ->0, d : ->7 , e : (0 A 7) —> a , f :

(->/? A - 17) —► - » a } . Let P = {a, b, e) , Q = {c, d, / } , R = {c}, 5 = {d}. Therefore P : a , Q : - > a , R :

->0,R:-<0 V ->7 V - « ((0 A 7) —> a) , R : - ' (0 A 7 A ((0 A 7) —> a)) , S: ->7 , 5 : - > 7 V ~>0 V -> ((0 A 7) —►

q) , 5 : -<(0 A 7 A ((0 A 7) —► a)) € argum ents(A). One might think that Q : -<(0 A 7 A ((0 A 7) —1> q))

is a valid canonical undercut o f P : a , however it is not even a valid argument as it is not minimal. The

two arguments R : - '(0 A 7 A ((0 A 7) —♦ a)) and S : -«(0 A 7 A ((0 A 7) —► a)) are valid canonical

undercuts o f P : a and also members o f reflectedCanonicalU ndercuts(P : a , Q : ->q, A). These two valid

arguments show the situation o f multiple reflected canonical undercuts arising from a single defending

argument and its rebuttal.

In contrast to the above example, Example 4.6.1, while showing support shortening (where the

support of the reflected canonical undercut is a strict subset of the support of the reflector) still only

yields one reflected canonical undercut, so no mono-pair enlarged reflection occurred there. Given this

conceptual introduction, I now define the mono-pair enlarged reflection.

4.6. Mono-Pair Enlarged Reflections 110

The following definition, Definition 4.6.1, provides the introduction to support shortening, strict

subsets, multiple undercuts and mono-pair enlarged reflection. The pair o f arguments referred to is the

attacking argument and the argument which it attacks, also known as the reflector.

Definition 4.6.1. Let A be a knowledgebase o f labelled assumption formulae, let I \ a , J : (3 £

arguments(A) and let Z : 0 e 0 (A). A mono-pair enlarged reflection, where a single pair o f arguments

give rise to more than one reflected argument, denoted monoPairEnlargedReflection(J : (3 ,1: a , A) is

such that:

monoPairEnlargedReflection(J : (3 , I : a , A)

= {Z : 0 = confirm(reflectedCanonicalllndercuts(J:/?, 7: a , A)) | \Z\ > 1 }.

Because the set reflectedCanonicalUndercuts(J : (3, I : a, A) contains all such reflec­

tions, the confirm() o f that is the maximum cardinality confirmation Z : (f>. If |Z| = 1 then

monoPairEnlargedReflection(J : (3,1 : a , A) = 0. M ono-pair enlarged reflections only occur when

there is support shortening, which in turn can permit more than one subset o f the support of the defend­

ing argument to be the support o f an attacking argument. Not every attack chain of two arguments gives

rise to a mono-pair enlarged reflection, even though it is the case that every attack chain of a pair of

arguments gives rise to a reflected canonical undercut. Support shortening can also result in two previ­

ous distinct supports becoming indistinguishable - this is support merging - where two or more distinct

reflectors L : a , M : a with N £ L, N C A/ yield fewer reflections N :0.

The maximum number o f mono-pair reflected arguments is as follows. The mid lattice function,

Definition 2.4.5, returns an integer.

Proposition 4.6.2. Let A be a knowledgebase o f labelled assumption form ulae and let I : a, J : (3 £

arguments(A).

0 < |monoPairEnlargedReflection(J:/?, 7 :q , A)| < midLattice(J).

P roof The cardinality can be zero, if for example J : (3 & argumentAttacks(7 : a , A), which sets

the lower limit as 0 < . Now for the upper limit. As it’s possible to have many arguments making the

same point [i.e. the point ->(stripAssumptions(formulae(J, A)))], all the different canonical undercuts

K : - - (0 i , . . . , 0 n) e canonicalUndercuts(J : a , A) will have the same claim but different supports. Take

one o f these undercuts with support K . Any strict subset, K , of the support of the reflector 7, that is

K £ 7, can be the support o f a reflected canonical undercut attacking J : (3 as long as there does not

exist an L ^ K such that L : —-(0i A . . . A 0 n) is also a canonical undercut o f J : (3. If there were

an L £ K then L : - « (0 i , . . . , 0 n) would be the valid argument and K : - - (0 i , . . . , 0 „) would not be

minimal and therefore not a valid argument. The canonical ordering condition will always be met by just

one conjunction of the members of J and thus does not affect the cardinality. The subsets of 7 (which

are deduction labels) form a power set with 7 as its maximum cardinality member and 0 as its minimum

cardinality member. The largest set of subsets of 7, (call it X as it will be a set o f deduction labels

and thus a confirmation label), that does not include subsets of other members of X [i.e. L, A7 e X iff

4 .6. Mono-Pair Enlarged Reflections 111

(L g M and M % L)] has a cardinality of midLattice(Z). Hence the maximum number of reflected

canonical undercuts attacking a single argument J : (3 arising from its interaction with the single reflector

7: a , i.e. the maximum cardinality of mono-pair enlarged reflection, is midLattice(7). □

Even for a relatively small number of premises in J : /3 the number of reflected canonical undercuts

o f / :q can be large. For example if \J\ = 10 then the number o f mono-pair enlarged reflected canonical

undercuts can be up to 252.

As a final comment, given their prerequisites, the smallest number of reflections is 1, which is not

surprising due to the inevitability o f reflection. Shortly I will discuss a phenomena that arises with con­

firmations, preclusions and reflection where there are fewer reflected arguments than one might expect;

this I will call reduced reflection.

4.6.1 Reflection has an Inexact Symmetry

The reflected attacks function has an inexact symmetry about a pair of rebutting arguments for the claims

q , -<a. W hile I use the word symmetry in the title this is not a perfect symmetry as mono-pair enlarged

reflections may or may not occur for each side of a and ->a. Also if mono-pair enlarged reflections do

occur for both a and -<a, the number o f reflected arguments on each side may differ. However there is

still a certain undeniable symmetry as I now show:

Symmetry o f existence. In this analysis o f symmetry of reflected canonical undercuts I focus on

the case where the reflector is a rebuttal.

Proposition 4 .63 . Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : ->q 6

argum ents (A).

reflectedCanonicalUndercuts(7: a , J : ->a, A) ^ 0

i f f reflectedCanonicalUndercuts(J : ->a, 7 : q , A) ^ 0.

Proof If reflectedCanonicalllndercuts(7 : a , J : - >a, A) ^ 0 then it must be the case that I : a , J :->a e

arguments(A) and I : a e argumentAttacks(J : ->a, A). The claims of 7 : a , J : ->q confirm the attack

and also make it clear that I : a e rebuttals(J : ->q, A). Using Definition 2.6.7 of rebuttal, it is the

case that J : ->q g rebuttals(7 : a , A) and thus that J : -*q € argumentAttacks(7 : a , A). Therefore,

using Proposition 4.4.1, it follows that ref lectedCanonical Undercuts (J : -<a,I : a , A) ^ 0. Now for

the other direction. If reflectedCanonicalUndercuts(J : -•«, 7 : a , A) / 0 then it must be the case that

I : a , J : ->a € arguments(A) and J : € argumentAttacks(7 : a , A). The claims of 7 : q , J : ->q

confirm the attack and also make it clear that J : ->a e rebuttals(7 : a , A). Using Definition 2.6.7 of

rebuttal, it follows that 7 : a € rebuttals(J : ->q, A) and thus that 7 : a e argumentAttacks(J : -^q, A).

Therefore, using Proposition 4.4.1, it follows that reflectedCanonicalUndercuts(7 : a , J : ->q, A) / 0.

So in conclusion reflectedCanonicalUndercuts(7: a , J : ->a, A) ^ 0 iff reflectedCanonicalllndercuts(J :

->a, 7 : a , A) / 0. □

W hile I have shown that there is a symmetry of existence, in that both sides will have reflected

canonical undercuts, this does not mean that the number o f reflected canonical undercuts is symmetrical.

4.7. Reflected Argument Rebuttals 112

Asymmetry of cardinality. I now show by example, there is no guaranteed symmetry in the

number of reflected canonical undercuts. The following example shows:

|reflectedCanonicalUndercuts(7 :q , J : ->q, A)| ^ |reflectedCanonicalUndercuts(J : ->q, I :a , A)|

Example 4 .63. Asymmetry of cardinality. Let A = { a : a , b : a -* 0, c i y A ^ a , d : (j —► ~V?)A->a}.

Let I = { a ,b } , J — { c , d } , K = { a } , L = {6 } ,M = { c } , N — {d}. Therefore I : 0 , J : ->/?, A/ :

->a, TV : ->a, A/ : ->(a A (a —> 0)) , iV : ->(q A (a —► 0)) , K : a , K : a V ->7 , A : q V -> 7 V - > (7 —►

~>/3) V o , A : - > (7 A -iq A (7 —► ->/3) A L : 0 \ l -iq, L : —» ->a, A/ : 7 , A / : -iq, TV : 7 —»

->/? € argum ents(A). The defending argument is 1 : 0 and its rebuttal is J : -0. One might think that

J : ->(q A (a —» 0)) was a reflected canonical undercut o f 1:0, however it is not even a valid argument

as it is not minimal. Standing in the p lace o f the invalid argument J : ->(a A (a —► 0)) are two reflected

canonical undercuts o f 1 : 0 , namely A /: ->(a A (a —* 0)) and N : - ’(a A (a —* 0)), as clearly A/ £ J

and N £ J. That has addressed the 0 side o f the debate (showing two reflected undercuts), so now

consider the ->/? side o f the debate. One might think that I : - > ((7 A -<a) A (7 —> ^ 0) A ->q) was the only

reflected canonical undercut on this side o f the debate, however it is not even a valid argument as it is not

minimal. Rather, on this side, it is K : - > (7 A -<a A (7 —► ->0) A -<a) that is the only reflected canonical

undercut that exists here. Thus there are two reflections on one side and one on the other, making the

result asymmetrical.

The above example is symmetrical at the level o f ‘one argument and its one rebuttal’, which is

at the level o f pro and con functions covered so far, and would thus yield a stalemate. It would seem

preferable to have a judge function that considered the effects o f undercut and reflection before reaching

a conclusion. With an undercut aware, reflection unaware judge for this same debate intuitively no

stalemate would be seen.

That completes the analysis o f reflected and direct canonical undercuts, with the interesting property

o f mono-pair enlarged reflections. W hat makes reflected canonical undercuts particularly interesting is

that they can be reflected off either an undercut or a rebuttal.

4.7 Reflected Argument Rebuttals
The final part o f this chapter is on rebuttals: reflected and direct argument rebuttals. Although there

are close similarities between these rebuttals and the behaviour of undercut analysed above, a key point

is that there are differences. These subtle differences are relevant when tracking debates and thus it

is necessary to analyse them now. I have already established that a reflected argument rebuttal can be

reflected off a canonical undercut or off another rebuttal. While it is true that the rebuttal to rebuttal

reflection is a genuine reflection it creates no new argument. Consequently the focus of the rest of this

chapter is on rebuttals reflected off canonical undercuts. Even so I start this analysis in a general way

and then home in on the specific.

I now define the reflected argument rebuttal as a special case or instance of abstract reflection

(Definition 4.2.1). Here I am defining a set o f arguments, which are all rebuttals, that arise through

reflection, from a single defending argument and its attacking argument.

4 . 7. Reflected Argument Rebuttals 113

Definition 4.7.1. Let A be a knowledgebase o f labelled assumption form ulae and let I : a, J : 0 €

arguments(A). The set o f reflected argument rebuttals, denoted reflectedArgumentRebuttal(J : 0 , 1 :

q, A), attacking J : 0, reflected o ff I : a , is such that:

reflectedArgumentRebuttal(J : 0 , I : a , A)

= {*■ - ’/? € arguments(A) |

K : ->0 e reflectedAttacks(J : 0 , I : a , A) and

K :-> 0 e rebuttals(J:/3, A)}.

The function is defined with a singular name, unlike the related functions, because as I prove in

Proposition 4.7.5 it is a singleton set. Here is an example of a reflected argument rebuttal.

Example 4.7.1. Reflected argument rebuttal. Let A = {a : 7 , 6 : 7 —> a ,c : 9 ,d :8 -* ->7 }. Thus

{0 , 6 } : a , {c,d} : - > (7 A (7 —► a)) , {a, 6 } : 7 A (7 —* a) € argum ents(A). So {c , d} : - 1 (7 A (7 —>

a)) € canonicalUndercuts({a, 6 } : a, A). The reflected argument rebuttal is {a, 6 } : 7 A (7 —> a) , in

other words {a, 6 } : 7 A (7 —► a) e reflectedArgumentRebuttal({c, d } : - - (7 V (7 —► a)) , {a, 6 } : a , A).

Clearly label({a, b} :7 A (7 —► a)) C label({a, b} :a)).

4.7.1 A Motivational Example of Reflected Rebuttal

A practical question to ask about reflected arguments is ‘what do they m ean?’, i.e. when the informal

gloss o f the direct and reflected arguments are studied would it commonly be agreed that the reflected

arguments are superfluous or redundant. Therefore, I now provide a motivational example of reflected

argument rebuttal where I give gloss to the formulae and arguments. The formulae and assumptions

involved are as shown in Table 4.2.

Symbol Formula Assumption Informal Gloss

Q

0

8

7T

Q —► 0

(9 A 7r) —► ->0

atomic

atomic

atomic

atomic

compound

compound

a: a

not assumed

e : 9

f : 7T

c : a —> 0

g : (9 A 7r) —► - iq

It’s raining.

Bring an umbrella.

Water is visible on the window pane.

The neighbour’s hosepipe is wetting the glass.

If it’s raining then bring an umbrella.

If water is visible on the window pane and

the neighbour’s garden hose is wetting the

glass then it’s not raining.

Table 4.2: Motivational Example of Reflected Rebuttal

The assumptions in this small debate are just five formulae A = {a : a , c : a —► 0 , e : 9, f : it, g :

(9 A 7r) —> >Qr}. I have picked labels such that they do not clash with the previous motivational debate of

Example 4.4 .1 and Section 4.4.2, but I still conduct this current example as an isolated debate. Thus the

arguments include {a, c } : 0 , { a , c } : a A (a -► 0) , {e, f , g } : ~^a, {e, f , g} : ~^a V ^ (a -♦ 0) , { e , f , g } :

->(a A (a —► 0)) e arguments(A). The relevant chain o f arguments is shown in the Figure 4.3.

4.7. Reflected Argument Rebuttals 114

The reflector argument, {a ,c} : 0 , means ‘i t ’s raining’, ‘i f i t ’s raining then bring an umbrella’,

therefore ‘bring an umbrella ’. The canonical undercut argument which attacks the reflector has the gloss

‘water is visible on the window pane ’, ‘the neighbour’s hosepipe is wetting the glass ’, ‘i f water is visible

on the window pane and the neighbour’s garden hose is wetting the glass then i t ’s not raining’, therefore

i t ’s not the case that (‘i t ’s raining’ and ‘i f i t ’s raining then bring an umbrella’). Consequently there

exists a reflected argument rebuttal, {a, c} : a A (a —» 0) with the gloss o f ‘given the fac ts that ‘it is

raining’ and ‘i f i t ’s raining then bring an umbrella’, then it can be concluded that ‘it is raining’ and ‘i f

i t ’s raining then bring an um brella’. Thus it can be seen from an informal perspective that this reflected

argument adds nothing sensible to the debate even though from a formal logic view it is correct.

Reflector Argument {a, c } : 0

{e, / , 5 }: ->(q A (a -> 0)) G canonicall)ndercuts({a, c } : 0 , A)

{ e , f , g } : ^ (a A (a -♦ 0))

{ a ,c } :a A (a —► 0) G rebuttals({e, f , g } : ->(a A (a —► 0)) , A)

Reflected Rebuttal {a, c } : a A (a —> 0)

{ o ,c } :q A (q —► 0) g reflectedArgumentRebuttals({e,/ , <7} :-»(q A (a —► 0)) , { a ,c } :a , A)

Figure 4.3: Motivational Example o f Reflected Rebuttal Shown in an Argument Graph

4.7.2 Properties of Reflected Argument Rebuttals

Having defined reflected argument rebuttals in Definition 4 .7 .1, it is appropriate to go on to establish

their properties.

The support o f this type o f reflected argument only uses the = part of the C sign. Thus while

Definition 4.7.1 is perfectly valid, it turns out that the Q part of C in the reflected attacks function is not

used in this context. The following ‘or’ is a normal logical or, not an exclusive or, as for a reflexive / : a

then sides o f the ‘or’ can be true.

Proposition 4.7.1. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : 0 G

arguments (A).

reflectedArgumentRebuttal(J . 0 , 1 . a , A)

= { K : -i0 G arguments(A) |

(J : 0 G canonicalUndercuts(/:a, A) or

J .0 G rebuttals(/:a, A)) and K = /} .

Proof. By Definition 4.7.1, members of reflectedArgumentRebuttal(J : 0 , 1 : a , A), must be reflected

attacks reflectedAttacks(J : 0 , 1 : a , A) that are also rebuttals(J : 0, A). Definition 4.2.1 and Proposi-

4.7. Reflected Argument Rebuttals 115

tion 4.2.5 establish that a reflectedAttacks(J : 0 , 1 : a , A) always arises from any argumentAttacks(/ :

q , A). From Definition 3.9.2, that argument attack on the reflector 7 : a , could be either a member of

rebuttals(7 : a , A) or o f canonicalUndercuts(7 : a , A). Base Proposition Two, Proposition 4.2.2, states

that a reflected attack off the canonical undercut is a rebuttal K :cf> e rebuttals(J : 0 , A) with K = 7.

Base Proposition Three, Proposition 4.2.8, states that a reflected attack off the rebuttal is another rebuttal

K : 4> e rebuttals(J : 0 , A) again with K = I . Thus in either case of reflected rebuttal, it follows that

K = 7. So in conclusion reflectedArgumentRebuttal(J : 0 , I : a , A) = { K : -<0 £ arguments(A) | (J :

0 e canonicalUndercuts(7:q , A) or J : 0 e rebuttals(7:a , A)) and K = 7}. □

Given the preconditions of existence of i) a defending argument and ii) an attacking argument of

that defending argument, then reflected argument rebuttals always exist. A simple corollary to the earlier

proposition that reflected arguments always exist, is the following more specific one. Reflected argument

rebuttals, given their prerequisites always exist.

Proposition 4.7.2. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : 0 €

arguments(A).

I f J : 0 e argumentAttacks(7:a, A)

then reflectedArgumentRebuttal(J:/3,7:a, A) / 0,

otherwise reflectedArgumentRebuttal(J : 0 , I : a , A) = 0.

P roof The attack o f J : 0 £ argumentAttacks(7: a , A) could be either a rebuttal or a canonical undercut.

If J : 0 € rebuttals(7 : a , A) then Base Proposition Two shows that there exists K : 4> e rebuffals(J :

0 , A) with K = 7. If J : 0 £ canonicall)ndercuts(7 : a , A) then Base Proposition Three establishes

that there exists K : <t> e rebuttals(J : 0 , A) again with K = 7. Thus in either case there exists

K : <j> € rebuttals(J : 0 , A) with 7C = 7. It also follows, by Definition 4.2.1 of reflected attack that

K : <f> € reflectedAttacks(J : 0 , A) . Thus by Definition 4.7.1 of reflected argument rebuttal, as K : <f>

is both a reflected attack and a rebuttal it will be the case that K :<f> e reflectedArgumentRebuttal(J :

0 , 1 : a , A) and so reflectedArgumentRebuttal(J : 0 , 1 : a, A) ^ 0. However, if 7 : c* £ arguments(A)

or J : 0 & arguments(A) or J : 0 e argumentAttacks(7: a , A) then reflectedArgumentRebuttal(J : 0 , I :

a , A) = 0. □

Building on the Proposition 4.2.12 which shows that reflexive arguments if attacked are attacked

twice, it follows that:

Proposition 4.73. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : 0 , K :

<f> e arguments(A).

I f (J : 0 is a reflexive argument and J : 0 e argumentAttacks(7: a , A))

then K : 0 € reflectedCanonical Undercuts (J : 0 , I : a , A) and

K :<j> e reflectedArgumentRebuttal(J : 0 , I : a , A) .

4.7. Reflected Argument Rebuttals 116

Proof. Proposition 4.2.12 shows that if a reflexive argument is either undercut or rebutted then it is in fact

both undercut and rebutted. The argument chain, of J : 0 attacking / : a as defined here, always gives rise

to reflection, hence if the attacking argument (the one in the middle o f the chain) is a reflexive argument

there will always exist one reflected argument rebuttal J :<f> € reflectedArgumentRebuttal(J : 0 , I : a , A)

and one reflected canonical undercut (J :<p e reflectedCanonicall)ndercuts(J : 0 , I : a , A). □

The fact that a reflected canonical undercut of a reflexive argument cannot be subject to mono-pair

enlarged reflection is also noteworthy. That must be the case as the same argument is also a reflected

argument rebuttal - which can only give rise to a reflection of one argument and not more than one

argument, a point that is formally proved in Proposition 4.7.5.

To allow the next proposition, Proposition 4.7.4, to be clear I need to first provide a new definition,

the strict subset reflected argument rebuttal.

Definition 4.7.2. Let A be a knowledgebase o f labelled assumption form ulae and let I : a,

J : 0 G arguments(A). The strict subset reflected argument rebuttals, denoted

strictSubsetReflectedRebuttals(J : 0 , 1 : a , A), are the rebuttals o f J : 0 that can be inferred from the

existence o f I : a and J : 0, such that:

strictSubsetReflectedRebuttals(J : 0 , I : a , A)

= { K : - '0 e arguments(A) | J : 0 e canonicalUndercuts(7 :a, A) and K C / } .

I now show that strict subset reflected argument rebuttals never exist.

Proposition 4.7.4. Let A be a knowledgebase o f labelled assumption formulae, let I : a , J : 0 £

arguments(A) and let J :0 e canonicalUndercuts(/:a , A).

strictSubsetReflectedRebuttals(J : 0 ,1 : a , A) = 0.

P roof Suppose K : ->0 € strictSubsetReflectedRebuttals(J : 0 , 1 : a , A). There always exists an

A/ : -i/3 € reflectedArgumentRebuttal(J : 0 , 1 : a , A). As both M : ->0 and K : ->0 are rebuttals

o f J : 0 they must have the same claim. If K £ I and AT = 7 then K Q M . If K £ M and

the two arguments have the same claim, then M is not a minimal support and therefore M : ^ 0 is

not a valid argument. This is a contradiction, so consequently no such K : ->0 can exist and thus

strictSubsetReflectedRebuttals(7 : a , J : 0 , A) = 0. □

W hat is interesting here is not only that such arguments are not reflected, but also that they simply

never exist. This point may seem counterintuitive or somewhat surprising because with reflected canon­

ical undercuts, the reflected arguments arise from both parts of the subset or equal to sign (the C and

= parts o f C). This simple result has a key effect on the number of reflected rebuttals and thus on the

structure of debates, as I will shortly show.

Because of the = sign there can be no multiple subsets, which would require support shortening

but not support merging, and therefore no mono-pair enlarged reflections. There is no need to define

such a thing as mono-pair enlarged reflected rebuttals because they do not exist. Thus the function

reflectedArgumentRebuttal() is a singleton set and thus has been named in the singular.

4.7. Reflected Argument Rebuttals 117

Proposition 4.7.5. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : f3 e

arguments(A).

I f J : P G argumentAttacks(7: a , A)

then |reflectedArgumentRebuttal(J:/3,1 : a , A)| = 1,

otherwise |reflectedArgumentRebuttal(J : p , I : a , A) | = 0 .

P roof If it were the case that subset reflected argument rebuttals, i.e. a K . 4> where K £ J , existed

(see earlier Proposition 4.7.4) then there could be many subsets K of 7. However, as such subsets are

not allowed then there is only one way that the support o f the reflected argument K : <f> can equal the

support o f the defending argument I : a such that K = 7. Consequently for reflected rebuttals there

will be one and only one reflected argument. If the prerequisites of 7 : a , J : 0 € arguments(A) and

J : P e argumentAttacks(7: a , A) are not met then there are no reflected argument rebuttals. □

Any reflected canonical undercut K : <f> has a support that is a subset of the support of the reflecting

argument J :(3 ,K C J . However, if the attacking argument (the one in the middle of the attack chain) is

reflexive then the reflected canonical undercut reflected canonical undercut K : <f) will have the identical

support to its reflector.

Proposition 4.7.6. Let A be a knowledgebase o f labelled assumption form ulae and I :a , J : P, K :<p €

arguments(A).

I f J .P is a reflexive argument, J - . p G argumentAttacks(7:a)

and K:<p e reflectedCanonicalllndercuts(J : P, I : a , A)

then K = I .

P roof Because K : <p e reflectedCanonicalUndercuts(J : P, I : a , A) it must be the case that K : 4> e

canonicall)ndercuts(J : P , A). Now J : P is a reflexive, so K : <f> e rebuttals(J : P, A). So K : 4> is

also a reflected argument rebuttal, K : 0 e reflectedArgumentRebuttal(J : p , I : a , A). Now for reflected

argument rebuttals K = I . So even though reflected canonical undercuts allow K C I it must be the

case that here K = 7. □

It will also be the case for the above proposition that there is only one reflected canonical undercut

not a set o f many of them. The number of reflected arguments arising from a single attack pair is as

follows.

Proposition 4.7.7. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : P G

arguments(A).

0 < |reflectedAttacks(J:/3,7:a, A)| < (| reflectedCanonicalUndercuts(J:/3,7:q , A) | + 1).

Proof If A V- -L then A implies no undercuts, thus for that A , reflectedAttacks(J : P, I : a , A) = 0,

so the lower cardinality limit is zero. If J : p is a reflexive argument then rebuttals(J : P, A) =

4.8. Direct Argument Rebuttals 118

canonicalUndercuts(J : 0 , A) and thus the upper limit is not reached. For a non-reflexive argu­

ment the reflected argument rebuttal is not a subset o f or equal to a reflected canonical undercut, i.e.

reflectedArgumentRebuttal(J : 0 ,1 : a , A) % reflectedCanonicalUndercuts(J : 0 , 1 : a , A). Conse­

quently the cardinalities o f these two functions must be added together to get the upper limit. Therefore

0 < |reflectedAttacks(J:/?, 7: a , A)| < (| reflectedCanonicalUndercuts(J:/3, 7 :q , A) | + 1). □

That completes the analysis o f reflected argument rebuttals.

4.8 Direct Argument Rebuttals
Not all argument rebuttals are reflected argument rebuttals. The pattern here is similar to direct canonical

undercuts in many ways (Definition 4.5.1), but also different as I now show and discuss.

Definition 4.8.1. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : 0 G

arguments(A). The set o f direct argument rebuttals o f J : 0, not reflected o ff I : a, denoted

directArgumentRebuttals(J : 0 , I : a , A), is such that:

directArgumentRebuttals(J : 0 , 1 : a , A)

= rebuttals(J :0, A) \ reflectedArgumentRebuttal(J : 0 , I : a , A).

In this analysis, I continue with the attack chain o f three arguments, i.e. 7 ,:7 G argumentAttacks(J :

0 , A) , J : 0 G argumentAttacks(7 : a , A), and make it specific so that reflected argument L : 7 is a

rebuttal, hence L:->0 is used in subsequent analysis. W ith direct argument rebuttals, predictions can be

made about the support o f the attacking argument:

Proposition 4.8.1. Let A be a knowledgebase o f labelled assumption formulae, let I : a , J : 0 , L : - ^ 0 €

arguments(A) and let J : 0 e argumentAttacks(7:a , A).

I f L : ^ 0 G directArgumentRebuttals(J : 0 , I : a , A) then L ^ I .

Proof. Proposition 4.7.1 establishes that i f L : ->0 G reflectedArgumentRebuttals(J : 0 , 1 : a , A) then

L = I . Definition 2.6.7 o f argument rebuttal imposed no constraint on the support o f the attacking

argument, L : -*0, relative to any reflector, 7 : q , so in that case for any 7 : a some rebuttals may have

L = I and others L I . The definition o f direct argument rebuttal, Definition 4.8.1 immediately above,

uses set difference to remove the reflected argument rebuttals from the full set o f argument rebuttals,

thus the only rebuttals remaining in directArgumentRebuttals(J : 0 , I : a , A) must have L ^ 7. So in

conclusion if L : ->0 G directArgumentRebuttals(J : 0 , I : a , A) then L ^ I. □

Direct argument rebuttals may exist, dependant upon the reflecting argument passed in, here is an

example.

Example 4.8.1. Direct argument rebuttal. Let A = {a:n, b:n —> a, d :7 , e : 7 —> (tt A (tt —*

a))} . Let I = {a, 6 } , J = {c}, L = {d, e}. Thus I : a , J : -<(7r A (tt —► a)), I :-k A (n —> a) , L :

7r A (7r —► a) , L : a G arguments(A). So J : A (n —* a)) G canonicalUndercuts(7 : a , A) and

1 : 7r A (n —* a), L : it A (n —* a) G rebuttals(J : ->(7r A (n —> a)) , A). Consequently as L % I and

4.8. Direct Argument Rebuttals 119

clearly I C I , so I : n A (n —> a) G reflectedArgumentRebuttal(J : -i(7r A (7r —» q)) , / : q , A) am/

L : 7T A (7T —*■ q) g directArgumentRebuttals(J: -i(7r A (7r —► a)) , / : a , A). /Vote J : —i(7r A (7r —► a)) £

canonicalUndercuts(L:a , A) so L :n A (7r —► a) ^ reflectedArgumentRebuttal(J : —«(7r A (7r —► a)) , L :

a , A).

Not every A will give rise to direct argument rebuttals, so they do not always exist; they may exist.

For the same input parameters, a particular argument can never be in both direct and reflected argument

rebuttals, so clearly:

reflectedArgumentRebuttal(J:/3,/:q, A) n directArgumentRebuttals(J:/3,7:a, A) = 0.

In other words:

If K : 0 G directArgumentRebuttals(J : 0 , I : a , A)

then K:(f> & reflectedArgumentRebuttal(J : 0 , I : a , A).

If K :<f> e reflectedArgumentRebuttal(J : 0 , I : a , A)

then K:<p & directArgumentRebuttals(J : 0 , 1 : a , A) .

How many direct argument rebuttals can there be? Depending upon the given A it is quite possi­

ble to have large numbers o f direct argument rebuttals that are unconstrained by any encumbrances of

reflection.

Proposition 4.8.2. Let A be a knowledgebase o f labelled assumption form ulae and let I : a , J : 0 G

arguments(A).

0 < |directArgumentRebuttals(J:/?, I :a , A)| < midLattice(A).

Proof. It is possible that a given defending argument J : 0 can be subject to rebuttal by every argument

that is o f the form K : —>0 G arguments(A). Clearly form ulae^, A) C A. However not every subset o f

A can be a valid support for a K : ->0 as arguments must be minimal. The largest number of subsets of

A that are also not subsets o f themselves is given by the midLattice function, midLattice(A). However as

K , J C A and for the support to be consistent J : -<0 & arguments(J : 0 , A) it is necessary to take one

argument off the total and use < . The minimum number is zero as A may simply contain no formulae

that such rebuttals can be derived from. □

Now that direct argument rebuttals are defined I can add one final property, requiring first the def­

inition of direct attack. My starting point for this analysis o f reflection was the attack function, Defini­

tion 3.9.2. I have shown that that definition always yields reflection. If reflections are problematic then

the definition is arguably the cause or root of the problem. In that case the solution is to use direct attack,

as defined below, in lieu of attack. I leave as an area of future research further analysis of bridging as­

sumptions between the work of Dung and mincon argumentation, both with and without a consideration

of reflection.

4.9. Conclusion for Reflected and Direct Arguments 120

Definition 4.8.2. Let A be a knowledgebase o f labelled assumption form ulae and I : a , J : 0 , e

arguments(A). The set o f direct attacks on J : 0 which are not subject to reflection o ff I : a , denoted

directAttacks (J : 0 , 1 : a , A), is such that:

directAttacks(J : 0 , I : a , A) = argumentAttacks(J : 0 , A) \ reflectedAttacks(J : 0 , I : a , A).

As defined, this direct attack is relative to the reflector passed in. One could conjecture a kind of

direct attack between two arguments that is absent from reflections not just from one reflector, but rather

from many or all possible reflectors. That generalisation is done in the next chapter which generalises

reflection from individual arguments to sets o f arguments. So now the final property.

Proposition4.83 . Let A be a knowledgebase o f labelled assumption form ulae and I : a J : 0 e

arguments(A).

directAttacks(J : 0 , I : a , A)

= directArgumentRebuttals(J : 0 , 1 : a , A)

U directCanonicalUndercuts(J : 0 , 1 : a , A) .

Proof Direct attack, in Definition 4.8.2, is defined as all attacks argumentAttacks(J : 0 , A) less the

reflected arguments reflectedAttacks(J : 0 , I :a, A). A ttacks is defined, in Definition 3.9.2, as canonical

undercuts set-unionised with rebuttals. Direct canonical undercuts, by Definition 4.5.1 are canonical un­

dercuts less reflected canonical undercuts. Direct argument rebuttals, from Definition 4.8.1, are rebuttals

less reflected argument rebuttals. Therefore the set o f direct attacks directAttacks(J : 0 , 1 : a , A) is equal

to the set o f direct argument rebuttals U the set o f direct canonical undercuts. □

This completes analysis o f reflected argument rebuttals and also of reflected and direct arguments.

4.9 Conclusion for Reflected and Direct Arguments
This chapter on reflected and direct arguments and attacks introduces this thesis’ main contribution -

namely reflection. Reflected arguments, given their prerequisites, always exist. The process of reflection

always involves a reflecting argument and one or more reflected arguments. As reflections are predictable

they introduce redundancy or duplication and therefore make any counting of arguments problematic.

The following table shows the six new key definitions presented in the chapter, together with previ­

ous ones to provide context. These nine direct and reflected attacking functions are shown in Table 4.3

below.

Note that all o f the above table is at the level o f individual arguments. The dimension of confirma­

tions is added in the next chapter. O f the above nine, only reflectedArgumentRebuttal(J : 0 , 1 : a, A) is

always a singleton set. Three discoveries in this chapter are i) the existence of reflected arguments with

either rebuttal or undercut as the attack on the reflector and ii) again with either rebuttal or undercut as

the reflected attacks by the reflected arguments and iii) the mono-pair enlarged reflection. The following

table, Table 4.4, summarises the reflections that occur with individual arguments.

4.9. Conclusion for Reflected and Direct Arguments 121

Attack Reflection Argument Attacks Function Definition

Rebuttal Reflected U Direct rebuttals (7 :a , A) 2.6.7

Undercut Reflected U Direct canonicalUndercuts(/: a , A) 3.3.2

Attacks Reflected U Direct argumentAttacks(/: a , A) 3.9.2

Rebuttal Reflected Only reflectedArgumentRebuttal(J : 0 , I : a , A) 4.7.1

Undercut Reflected Only reflectedCanonicalllndercuts(J : 0 , I : a , A) 4.4.1

Attacks Reflected Only reflectedAttacks(J : 0 , I : a , A) 4.2.1

Rebuttal Direct Only directArgumentRebuttals(J : 0 , I : a , A) 4.8.1

Undercut Direct Only directCanonicalUndercuts(J : 0 , 1 : a , A) 4.5.1

Attacks Direct Only directAttacks(J : 0 , 1 : a , A) 4.8.2

Table 4.3: Summary of Reflected and Direct Argument Attacking Functions

Reflected Enlarged Exact Reduced

Canonical Undercut:

Argument Rebuttal:

Exist: Mono-Pair, Section 4.6 Exist: Prop 4.6.1 D on’t Exist: Prop 4.6.1

Don’t Exist: Prop 4.7.5 Exist: Prop 4.7.5 D on’t Exist: Prop 4.7.5

Table 4.4: Summary o f Scaling Factors Found With Argument Reflections

O f particular interest with mono-pair enlarged reflections are a) the fact that there can be more

reflected arguments than might be anticipated intuitively, b) that the number of reflections can be large

and c) that while the reflection has a basic symmetry o f existence it d) does not have symmetry of

cardinality. There are no reduced reflections from mono-pair reflection, however these are encountered

through another mechanism in the next chapter. These complications with mono-pair enlarged reflections

are a harbinger for the deeper challenges to be unfolded in the next chapter. These scaling properties

o f reflection show that the approach of using reflected arguments as proxies or substitutes for direct

arguments is questionable.

That completes my analysis o f single arguments attacking single arguments. In the next chapter I

extend this discussion by moving up to the consideration of confirmations attacking confirmations.

Chapter 5

Reflected and Direct Confirmations

5.1 Overview of the Chapter
I develop this chapter’s analysis o f reflected and direct confirmations and attacks in seven stages. The

chapter retraces the previous chapter’s coverage o f Type I Reflection attacks (with its four forms) this

time considering sets o f arguments. It uncovers novel properties and three further types of reflection:

Types II, HI and IV. These properties, particularly distorted reflection, impact the tracking o f debates.

Reflected confirming arguments, where knowledge o f arguments nearer a tree’s leaves allow prediction

o f arguments nearer the root, come near the end of this chapter, however they influence debate tracking

as much as the other types o f reflection. The sections o f this chapter are:

Reflected Preclusive Undercuts Section 5.2 identifies the form and properties of reflected

preclusive undercuts.

Direct Preclusive Undercuts Section 5.3 shows that not all preclusive undercuts are reflected.

W hile reflected preclusive undercuts are always mono-attack, direct preclusive undercuts can be

multi-attack.

M ixed Preclusive Undercuts and Invalidation Section 5.4 illustrates that a single confirmation

may contain a mixture of reflected and direct preclusive undercuts. Features o f the process of

invalidation are described.

Reflected Confirmation Rebuttals Section 5.5 introduces a second kind of reflection, Type II

Reflection, where a different mechanism from reflectedAttacksQ is involved, due to multi-target

preclusions, to create reflections arising off more than one argument.

Direct Confirmation Rebuttals Section 5.6 establishes that confirmation rebuttals exist which

are not reflected. They are half of what needs to be tracked for a complete debate. The other half

is the direct preclusions.

Scaled and Distorted Reflections Section 5.7 defines reflection scaling factors and shows that

enlarged, reduced, exact and distorted reflections exist. Also a second mechanism for enlargement

is shown.

5.2. Reflected Preclusive Undercuts 123

Reflected C onfirm ing A rgum ents Section 5.8 covers a third and Section 5.9 a fourth type of

reflection, i.e Type HI and IV Reflection, as distinct from the forms addressed so far in this and

the previous chapter. These reflections can be understood as flowing up attack chains from tail to

head, in contrast to the other types which flow down.

This chapter argues that there is no simple practical way to have reflected arguments stand in for,

or represent, direct arguments. Attempts to count the reflected arguments, as a substitute for counting

the direct ones, are likely to create erroneous, if not random, results. Even if existential schemes are

used instead of argument counting the same problem appears to arise. The ground work is laid here

to reason that all reflected arguments should be removed from the tracked debate and all direct ones

included. W hether the nomenclature uses confirmations or some other way to aggregate arguments is

relatively unimportant - the exclusion o f reflection and inclusion of direct arguments is the focus. The

confirmation notation, however, facilitates both the description and comprehension of these phenomena.

5.2 Reflected Preclusive Undercuts
Just as there exist reflected canonical undercuts arising from a pair o f arguments where one attacks the

other, so also there exist reflected preclusive undercuts arising from a pair of confirmations where one

attacks the other. These two different undercut reflect functions, reflectedCanonicalUndercuts(J : (3,1:

a , A) and reflectedPredusiveUndercuts(Y : (3, V , X : a , A), take slightly different input parameters: the

former takes an attack chain o f two arguments while the latter takes a attack chain of two confirmations

(with its target confirmation label). Both result in attack chains o f three items. The former is o f three

arguments, which I have referred to as the reflector / : a attacked by J:(3, attacked by the reflected K : 7 .

The latter is o f three confirmations. See Figure 5.1 for an annotated confirmation graph illustrating

reflected preclusive undercut.

Reflector Confirmation
is Target V : a , where V C X

X : a

Y :(3

W

(Y : /?, V, X : a) G confirmationAttacks(X: a , A)

(Z :7 , W , Y \(3) G
reflectedPreclusiveUndercuts(Y : (3, V , X : a , A)

Reflected Confirmation Z : 7 For each K £ Z, K C / , / £ V

Figure 5.1: Reflected Preclusive Undercut is a Form of Type I Reflection

I now define the reflected preclusive undercut and its associated terminology:

Definition 5.2.1. Let A be a knowledgebase o f labelled assumption formulae, let I : a , K : 7 G

arguments(A) and l e t \ :a, W : (3, X : a , Y : (3, Z : 7 G 0 (A). The reflected preclusive undercuts fu n c ­

5.2. Reflected Preclusive Undercuts 124

tion, denoted reflectedPreclusiveUndercuts(Y : /3, V, X : a , A), provides the set o f reflected preclusive

undercuts o f Y : 0 that can be inferred from the existence o f V : a and Y : 0 such that:

reflectedPreclusivellndercuts(Y: 0, V , X : a, A)

= { (Z :7 , W , Y : 0) G preclusiveUndercuts(Y: 0 , A) |

(Y : 0 , V, X : a) G confirmationAttacks(X: a , A) and

fo r every K G Z there exists an I € V where K C / } .

I call the attacked target confirmation at the head of the chain, i.e. V :q , the reflecting confirmation

or reflector. The reflector is attacked by Y : 0 , which is attacked by the reflected confirmation Z : 7 . If

a targeted attack tuple (Z : 7 , W , Y : 0) G reflectedPreclusiveUndercuts(Y : 0 , V, X : a , A) then I call

(Z : 7 , W , Y : 0) a reflected preclusive undercut. Each argument in the reflected preclusive undercut is

reflected off one and only one reflector argument.

Now here is an example of a reflected preclusive undercut, where the reflection is two mono-target

mono-attack preclusions.

Exam ple 5.2.1. Reflected preclusive undercut Let A = {a : 0, b: 0 —► a , c : 7 , d : 7 —► ->a, e :

t t V ^ q , / tt}. Let I = { a ,6 } ,J = { c ,d } ,K = { e , / } ,U = { J } ,V = { X } ,X = { / } ,Y =

{J , K } , Z = { / } . So I :a , K 7 A (7 —► ->a)),/:-< ((7r V ->a) A —»7r) 6 arguments(A).

Consequently U : ->a,V : ->q,X : q ,Y : ->q,Z : - > (7 A (7 —* ->a)),Z : ->((7r V ->a) A ->tt) G 0 (A).

The head of this attack chain is X : a, so defending confirmation X : a = target confirmation X : a,

so it is this confirmation which acts in the role of reflector. Next in the attack chain is Y : as

Y : ->a G confirmationRebuttals(X : a, A). Two reflected preclusive undercuts follow, namely (Z :

-< (7 A (7 —» ->q)),U , Y : -<a) G reflectedPreclusiveUndercuts(Y : ->a, V ,X : a , A) and (Z : ->((7r V

->q) A ->7r), V, Y : -«a) G reflectedPreclusiveUndercuts(Y : -iq , V, X : q , A). Clearly there are other

members of arguments(A) such as {c, d, e } : n, but these do not partake in the reflections.

Commenting on Figure 5.1, clearly the confirmation attack by Y : 0 on the head of the chain X : a

could be either a confirmation rebuttal or a preclusive undercut. In either case the target confirmation

label V will be a subset o f the defending confirmation label X, i.e. V C X. The next attack in the chain

here is Z : 7 attacking Y : 0. It is a preclusive undercut and thus W C Y.

Therefore in the above definition there is one confirmation, namely V : a , in the role of the reflector.

A second confirmation Y : 0 is the attacking (i.e. rebutting or undercutting) confirmation of X : a . The

reflected preclusive undercut function does not just yield a single tuple (Z : 7 , W , Y : 0), rather, it yields

a set o f tuples {(Z : 7 , W , Y : 0)} , where each tuple in the set is a reflected preclusive undercut. The

definition does not mandate that either V : a or Y : 0 are maximum cardinality confirmations. Any

cardinality is allowed and thus knowledge of both V : a and Y : 0 need to be explicitly passed in.

5.2.1 Properties of Reflected Preclusive Undercuts

Reflected preclusive undercuts, given their prerequisites, always exist. This proposition uses Defini­

tion 3.9.4 of confirmation attacks.

5.2. Reflected Preclusive Undercuts 125

Proposition 5.2.1. Let A be a knowledgebase o f labelled assumption form ulae and let V : a , X : a , Y :

0 e 0 (A).

I f (Y : 0, V, X : a) € confirmationAttacks(X: a , A)

then reflectedPreclusiveUndercuts(Y : 0, V, X : a , A) ^ 0,

otherwise reflectedPreclusivellndercuts(Y : 0, V, X : a , A) = 0.

P ro o / Consider an / 6 V, a J e Y and a i f € Z where (Z : 7 , W , Y : 0) e preclusiveUndercuts(Y :

0 , A) , where W : 0, Z : 7 e 0 (A). For (Z : 7 ,W , Y : 0) to be in reflectedPreclusivellndercuts(Y :

0 , V , X : a , A), where W C Y, then every argument K : 7 must be reflected. Because V : a , Y :

0 e 0 (A) it follows that I : a , J : 0 e arguments(A). Furthermore given (Y : 0, V ,X : a) €

confirmationAttacks(X: a , A) then J : 0 e argumentAttacks(7: a , A), where V is any V C X. Proposi­

tion 4.4.1 establishes that given a pair o f attacking arguments then a reflected canonical undercut always

exists. These conditions are met here, so such a reflection exists. Consequently for every K e Z there

exists an I e V where K C / and thus the set reflectedPreclusiveUndercuts(Y: 0, V, X : a , A) cannot

be the 0. However if any prerequisite is not met then the reflection cannot occur. Therefore if (Y :

0, V, X : a) e confirmationAttacks(X: a , A) then reflectedPreclusiveUndercuts(Y: 0, V, X : a, A) ± 0,

otherwise reflectedPreclusiveUndercuts(Y: 0, V, X : a , A) = 0. □

The target cardinality o f reflected preclusive undercuts can only ever be one. The reflection is thus

always a mono-target preclusive undercut and never multi-target.

Proposition 5.2.2. Let A be a knowledgebase of labelled assumption formulae and letV .a , W :0,X:

q ,Y : / 3 ,Z : 7 € 0 (A) .

If (Z: 7 , W , Y : 0) e reflectedPreclusivellndercuts(Y: 0, V, X : a , A) then |W| = 1 .

P roof Definition 5.2.1 establishes that each argument K : 7 which is in the reflected preclusive undercut

attacking confirmation Z : 7 , i.e. where K € Z, has a support which is a subset or equal to the support

o f an argument / : a that is in the reflector confirmation V : a , i.e. I € V, such that K C I . Definition

5 .2 .1 does not explicitly constrain the claim o f Z : 7 apart from stipulating that it must be a preclusive

undercut attacking confirmation. Now hypothesise that there exists a (Z : ->(7 / A . . . A 7 m), U, Y : 0) €

reflectedPreclusivellndercuts(Y : 0 , V, X : a , A) where U e C, |U| > 1. Such a target o f U could not

exist as their exists an invalidating preclusive undercut (Z : 7 , W , Y : 0) (see Definition 3.4.2 of preclusive

undercut and the definitions o f terms in the text below it) where each argument K : 7 with K € Z is

a reflected canonical undercut (see Definition 4.4.1) and hence any reflected preclusive undercut has a

target o f W : (3 where |W | = 1 . Thus the attacking confirmation with target U : 0, |U| > 1 would be

invalidated by the one with W : 0, | W | = 1. So all reflected preclusive undercuts have a target cardinality

of 1, they are mono-target. So if (Z : 7 , V, Y : 0) e reflectedPreclusivellndercuts(Y : 0, V, X : a , A) then

|W | = 1. □

Thus a reflected preclusive undercut never means 7 attack this argument or that argument’ - instead

it only attacks one argument: 7 attack this argument’. In analysing the patterns created by these various

5.2. Reflected Preclusive Undercuts 126

reflections the above proposition plays a prominent role. It follows that reflected preclusive undercuts

are comprised only of reflected canonical undercuts.

Proposition S .13 . Let A be a knowledgebase of labelled assumption formulae, let I: a, J-0,

K : 7 £ arguments(A) and let V : a , W : 0, X : a , Y : 0, Z : 7 £ 0 (A).

reflectedPreclusiveUndercuts(Y: 0, V , X : a , A)

= { (Z : 7 , W , Y : 0) £ preclusiveUndercuts(Y :0, A) |

for every K £ Z there exists an I G V am/ a J £ Y

such that K : y £ reflectedCanonicalUndercuts(J .0,1: a, A) }.

Proof Proposition 5.2.2 establishes that the target confirmation, which is W : 0 , of each reflected preclu­

sive undercut (Z : 7 , W , Y : 0) in the set reflectedPreclusiveUndercuts(Y: 0 , V, X : a , A) can only have

a label cardinality o f one, that is where |label(W : /3) | = 1 and W C Y. Hence, using Definition 4.4 .1 of

reflected canonical undercut, each argument K : 7 within a reflected preclusive undercut attacker Z : 7 ,

where K £ Z, can be represented as a canonical undercut, i.e. K : 7 £ canonicalUndercuts(J : 0 , A)

so it is always the case that this K : 7 £ reflectedCanonicalUndercuts(J : 0 , 1 : a , A) with no loss of

information. Therefore it follows that reflectedPreclusiveUndercuts(Y: 0 , V , X : a , A) = { (Z :7 , W , Y :

0) £ preclusivel)ndercuts(Y : 0, A) | for every K £ Z there exists an / e V and a J £ Y such that

K : 7 £ reflectedCanonicalUndercuts(J : 0 , I : a , A)} . □

In defining the reflected preclusive undercut an alternative approach could have started by defining

them as comprised o f reflected canonical undercuts - in which case Proposition 5.2.3 would become the

definition and an adaptation o f the above Definition 5.2.1 would follow as a proposition.

I now show that the number of reflected preclusive undercuts attacking any given defending confir­

mation is between one and the cardinality of that defending confirmation.

Proposition 5.2.4. Let A be a knowledgebase of labelled assumption formulae and let V : a , X : a , Y :

0 € 0 (A).

0 ^ |reflectedPreclusiveUndercuts(Y:/5, V ,X :q , A)| ^ |Y |.

Proof If a prerequisite, e.g. (Y : 0, W , X : a) € confirmationAttacks(X : a , A), is absent then re­

flected preclusive undercuts do not exist, so the set’s minimum cardinality is 0. Proposition 5.2.2

shows that each reflected preclusive undercut has a target cardinality of 1. Thus each argument

1 £ Y, where Y : 0 is the defending confirmation o f the reflected attack, may be subject to a unique

reflected preclusive undercut, i.e. to a maximum of one preclusive undercut. Consequently there

can only be as many reflected preclusive undercuts as there are deduction labels in Y. Therefore

0 ^ |reflect©dPreclusiveUndercuts(Y: 0, V, X : a, A)| ^ |Y |. □

Each of these up to |Y | reflected preclusive undercuts, arising from the interaction of X : a with

Y : 0, will have a different claim and will contain one or more attacking arguments.

5.3. Direct Preclusive Undercuts 127

53 Direct Preclusive Undercuts
A direct preclusive undercut is a preclusive undercut that contains no reflected canonical undercut argu­

ments, relative to a specific reflector. Thus all o f its arguments are direct and none of them are reflected.

Furthermore, a direct preclusive undercut is allowed to be a multi-target preclusive undercut - as is stan­

dard for preclusive undercuts - and therefore not every argument in a direct preclusive undercut can be

represented as a direct canonical undercut, nor even as a canonical undercut. It may be the case that the

input to a direct preclusive undercut is a confirmation attack (Y : 0, V , X : a) € confirmationAttacks(X:

q , A) or it may not, in which case V = X = 0 and only Y : 0 is non-empty. The definition builds on

Definition 3.4.2 for preclusive undercut and Definition 4.4 .1 for reflected canonical undercut.

Definition 53.1 . Let A b e a knowledgebase of labelled assumption formulae, let I : a , J :0, K : 7 e

arguments(A) and let V : a , W : 0, X : a , Y : (3, Z : 7 e 0 (A). The direct preclusive undercuts function,

denoted directPreclusivetlndercuts(Y: 0, V, X : a , A), provides the set of preclusive undercuts o f Y : 0

that are not reflected off V : a such that:

directPreclusiveUndercuts(Y : /?, V, X : a , A)

= { (Z : 7 , W , Y : 0) e preclusiveUndercuts(Y :0 ,A) \

(either (Y : (3, V, X : a) e confirmationAttacks(X: a , A) or V = X = 0)

and for every K G Z there does not exist a J € W and an I e V

where K : 7 6 reflectedCanonicalllndercuts(J : 0, 7 : q ,A) } .

Here Z : 7 is the direct attacking confirmation and V : a is the reflecting confirmation. Clearly

it is the case that i) W : 0 is such that 0 / W C Y , ii) that the negation o f the conjunction

o f the members o f stripAssumptions(formulae(W, A)) is equal to 7 and iii) as always, canonical or­

dering is followed. Also note that the attack of Y : /3 on X : a can be either a confirmation re­

buttal or a preclusive undercut. It is not possible to use a definition akin to Definition 4.5.1 of di­

rect canonical undercut as directPreclusiveUndercuts(Y : 0, V, X : a , A) / preclusiveUndercuts(Y :

0, A) \ reflectedPreclusiveUndercuts(Y : /3, V , X : a , A) for reasons addressed in Section 5.4 (i.e. the

existence o f ‘mixed preclusive undercuts’, see Definition 5.4.1).

The cardinality of the target confirmation W : 0 for direct preclusive undercuts can be greater than

one, 1 < |W| < | Y |, unlike the situation with reflected preclusive undercuts where the cardinality of the

target confirmation can only be one, |W | = 1. In the above, Definition 5.3.1, the last two lines remove

reflections and as such all removed arguments have the form of a reflected canonical undercut with a

target cardinality of one.

I now give an example of a direct preclusive undercut, taking the opportunity to show an attacking

confirmation, here Z : ->(/? A (0 —► a)) , that has a support cardinality of greater than one, i.e. |Z| > 1,

making it a multi-attack direct preclusive undercut.

Example 5 3 .1 . Direct preclusive undercut Let A = {a : 0, b : 0 —► a , c : -</?, d : ->/?}. So

{ a , 6 } : a , {c} : -</3, {c} : - ' (/ ? A (0 —> a)) , { d } : - ’(/ ? A (0 —► a)) e arguments(A). Consequently

5.3. Direct Preclusive Undercuts 128

{ { a ,6 }} : a , {{c},{d}} : ->((3 A (/3 —► a)) E 0 (A). The target confirmation is { { a ,6 }} : a and

the attacking confirmation is {{c}, {d}} : ^((3 A ((3 —» a)) . LetX = { { a , 6 }} and Z = {{c}, {d}}.

There are no arguments for ->a and indeed no arguments undercut by X : a , so for completeness it is

stated that the unfounded confirmation 0 : ->a E 0 (A) is passed in as the reflector in question. Thus

(Z : ->(/? A {(3 —► a)) , X, X : a) E directPreclusiveUndercuts(X : a , 0 ,0 : ->a, A) is a direct preclusive

undercut of X : a as no rebuttal exists, i.e. because A V- ->a.

5.3.1 Properties of Direct Preclusive Undercuts

Given a direct preclusive undercut and the confirmation it is not reflected off, then information about the

supports involved is known.

Proposition 5 3 .1 . Let A be a knowledgebase of labelled assumption formulae, let I: a , J:(3, K : 7 E

argum ents(A) and let V : a , W : (3, X : a , Y : (3, Z : 7 E 0 (A).

If (Z :7 , W , Y :/3) E directPreclusivel)ndercuts(Y:/3, V , X :a , A),

then for all K E Z there does not exist an I E V such that K C I.

Proof. Given that (Z : 7 ,W ,Y : 0) E directPreclusiveUndercuts(Y : (3, V ,X : a , A) then by Defini­

tion 5.3.1 it is the case that for every K E Z that for all I E V and J E Y there does not exist a

K : 7 E reflectedCanonicalUndercuts(J : (3,1 : a , A). If there had been a reflected canonical undercut

then it would have been the case that K C I, so as there is no reflection it is clear that for all K E Z

and all I E V it is the case that K % I . Therefore if (Z : 7 , W , Y : (3) E directPreclusiveUndercuts(Y:

(3 ,W,X: a , A) then for all K E Z there does not exist an / E V such that K C / . □

Direct preclusive undercuts can be mono-target or multi-target preclusive undercuts. Reflected

preclusive undercuts and all canonical undercuts, in comparison, are only ever mono-target undercuts.

Proposition 5 3 3 . Let A b e a knowledgebase of labelled assumption formulae and let V : a , W : 0, X :

a ,Y : / ? ,Z : 7 € 0 (A) .

If (Z :7 , W , Y:(3) E directP reclusiveU ndercuts(Y :/? ,V ,X :a, A) then |W | > 1.

Proof. By Definition 5.3.1 o f direct preclusive undercut and its use of Definition 4.4.1 of reflected

canonical undercut there is no further constraint on W , beyond that for ordinary preclusions, see Def­

inition 3.4.2, so the cardinality is the same as for ordinary preclusions. So if (Z : 7 ,W ,Y : (3) E

directPreclusiveUndercuts(Y : (3 , V , X :a, A) then |W | > 1 . □

Furthermore it is possible to be quite specific about the cardinality of the direct preclusive undercuts

function.

Proposition 5 3 3 . Let A be a knowledgebase of labelled assumption formulae and let V : a , X : a, Y :

(3 € 0 (A).

0 < |directPreclusiveUndercuts(Y:/?, V, X :a , A)| < |preclusiveUndercuts(Y:/5, A)|.

5.3. Direct Preclusive Undercuts 129

Proof. Depending upon A there may exist a Y : 0 which simply does not have any undercuts, let alone

direct undercuts, so the lower limit is 0. It may also be the case that X = 0 when there are no reflecting

arguments for a being passed in and thus V = X = 0 is an empty reflector and hence there are no reflec­

tions. Consequently, at the upper limit, every preclusive undercut of Y : 0 would be a direct preclusive

undercut. Therefore 0 < |directPreclusivellndercuts(Y : 0 , V , X : a , A) | < |preclusiveUndercuts(Y :

0 , A)|. □

53.2 Maximal Direct Preclusive Undercut

In the above definition o f direct preclusive undercut, only one reflector is considered rather than all

possible reflectors. Furthermore no constraint is applied that forces the attacking confirmation of a direct

preclusive undercut to be as large a cardinality confirmation as possible. The two advantages of the

following maximal cardinality direct preclusive undercuts function are that a) it considers all possible

reflectors and b) the attacking confirmation is as large a cardinality as possible. Motivational discussion

needed to justify the form of the maximal direct preclusive undercut is aided by Figure 5.2’s annotated

confirmation graph.

W i : ^ i W 2 : 4>2 W n : ^ n

Reflectors
v.cw,

Preclusive Undercuts

X : qReflector Y : ->q

Rebuttals
U Preclusive Undercut

Z: 0

Figure 5.2: Reflectors to Consider for the M aximal Direct Preclusive Undercut Z : <j>

One might think that to determine the form of the maximal direct preclusive undercut, Z : <f> in

Figure 5.2 above, would involve two types and many occurrences of reflector. The two types of reflector

would be rebuttal and preclusive undercut. W hile there can be only one rebuttal confirmation reflector,

Y : ->q, there could be many preclusive undercut reflectors V i : , . . . , V n : ipn . However, following the

extension of Base Proposition Two, to be provided shortly as Proposition 5.5.1, it is the case that every

one o f these preclusive undercut reflectors will be reflected down to the rebuttal Y : ->a and therefore

they do not need independent consideration as reflectors. Secondarily, a reflector can be part of either a

direct or a reflected attack. If the reflector is itself part o f a reflected attack then it will always exist in an

attack chain where at the head o f that attack chain is a direct argument. Thus, when using the maximum

cardinality confirmation for ->a, i.e. lop(0(->a, A)) as the reflector it is not necessary to know which of

these rebuttal arguments are direct and which are reflected.

A confirmation graph may be cast into a confirmation tree, following the common approach for

5.3. Direct Preclusive Undercuts 130

casting graphs into trees, see for example (Chalmers, 2003), even if the resultant tree of confirmations

is an infinite one. Now assume that these confirmation chains of Figure 5.2 are part o f such a confir­

mation tree and consider the consequences. Thus it will be the case that X : a has only one preclusive

undercut parent, some W : ip, (unless X : a is the root in which case it has no parent). Thus out of

the many preclusive undercut reflectors, V i : ip i, . . . , V n : ipn , which could act as reflectors, there is

only one preclusive undercut reflector, V : ip, that is active as all the other possible preclusive reflec­

tors will not be part o f the tree and thus rendered irrelevant. There is no need to pass in even this one

preclusive reflector as its presence is accounted for by the maximum cardinality rebuttal confirmation:

top(0(_,stripConfirmation(X: a) , A)) = Y : ->a. O f all these possible reflector rebuttal arguments, con­

sidering each J : ->a where J e Y , some will be part o f the tree and others will not be (they are ‘pruned

out’, analogous to the way that a gardener prunes a rose bush or tree by removing undesirable material)

because they are reflected off arguments higher in the tree (nearer to the root). Thus to consider them all

as reflectors it is not sufficient to just refer to any rebuttal confirmation of X : a , but rather it is necessary

to refer to the maximum cardinality confirmation that has the claim of ->stripConfirmation(X: a) . Now

I formalise this discussion as the definition for the maximal direct preclusive undercut. For comparison,

the non-maximal or ordinary direct preclusive undercuts function is Definition 5.3.1 and the attacker

helper function is Definition 3.7.1.

Definition 5 3 .2 . Let A be a knowledgebase of labelled assumption formulae and let

V :q , X :q , Y:->q, Z :<p € 0 (A). The maxim al direct preclusive undercuts function, denoted

maximalDirectPreclusiveUndercuts(X: a , A), which provides the set of maximal cardinality preclusive

undercuts of X : a that are not reflected off any reflector derivable from A, is such that:

maximalDirectPreclusiveUndercuts(X :a, A)

= { (Z : <p, V, X : a) e directPreclusiveUndercuts(X: a , Y, Y : ->a, A) |

Z :<p e top(attacker(directPreclusiveUndercuts(X:a , Y , Y : -<a, A))) and

Y:->q = top(0(^stripConfirmation(X:a), A))} .

The first top() ensures that Z : <p is the maximum cardinality member of its power set, i.e. that the at­

tacker o f any other preclusive undercut, (Z ': 0 ', V ', X : a) , where V ^ V ' £ X, that exists that is also not

reflected off the same reflectors and that attacks X : a , has a label of lower cardinality than the maximum

cardinality Z : <p. Clearly there can only be one top member of the set o f subsets o f Z. The defending

confirmation X : a can still have many maximal cardinality direct preclusive undercuts attacking it as X

can have many subsets, V C X, and thus contain many targets. Each maximal cardinality confirmation

attacking X : a will have a different claim. The target V is unconstrained, apart from V C X, so the

preamble of Definition 5.3.2 contains the phrase ‘the set o f’ to cover all the targets (not the power set of

attackers). I now give an example of a maximal direct preclusive undercut.

Example 5 3 .2 . M aximal direct preclusive undercut Let A = {a : (3, b : j3 —► q ,c : 7 ,d : 7 ->

(->0 V ->7r), e : 7r, / : -i7r V V ->(0 A 7r), i \ :a ~^ C } - Let I = {a, 6 }, J — {c, d}, K =

{e, / } , L = {g, h } , M = { i j } and let T = { /} ,U = { K } , V = { ^ } ,W = {L } ,X = { I , K } , Y =

5.4. Mixed Preclusive Undercuts and Invalidation 131

{ M } ,Z = {J, L) . So I : a , K :a, M :->a, J:-> 0V-^tt, L:~>(/3Att) G arguments(A). Thus X :a G 0 (A)

is the defending confirmation and Y : ->a G 0 (A) the rebutting confirmation and reflector. The attacking

confirmations are (Y : ->(0 A (0 —► q)) ,T , X : a) , (Y : —i(7r A (~>it V a)) ,U ,X : a) , (V : -i(/3 A (0 —>

a) A 7r A (~>7r V a)) , X, X : a) , (W : -<(0 A (fi —> a) A 7r A (~>7r V a)) , X, X : a) , (Z : -i(/? A (0 —*

a) A 7r A (—>7r V o)) ,X ,X : o) € preclusiveUndercuts(X: a , A). However (Y : -i(/3 A (0 —* a)) , T , X :

a) , (Y : ->(7r A (>7r V q)) ,U ,X :o) g reflectedPreclusiveUndercuts(X: a , Y, Y : -ta, A). Consequently

(V : -.(/? A (/3 - q) A tt A (-7T V a)) , X, X : a) , (W : -(/3 A {0 - a) A tt A (- t t V q)) ,X ,X :q) , (Z :

->(/? A (0 —» q) A 7r A (—>7r V q)) ,X ,X :q) g directPreclusiveUndercuts(X :a , Y , Y :->a, A). However

only (Z : -•(/? A (/? —♦ q) A 7r A (-«7r V q)) , X, X :q) g maximalDirectPreclusiveUndercuts(X:a , A), /r i'j

case that (V :->(/? A (/? —> a) A 7r A (-i7r V q)) ,X ,X :q) , —♦ a) A7r A (->7r V q)), X ,X :

q) maximalOirectPreclusiveUndercuts(X : a , A) as they are not maximal. It is also the case that

(Y :->((3a (0 —* a)) ,T ,X : a) , (Y:--(7r A(->7t V a)) ,U ,X : a) ^ maximalDirectPreclusiveUndercuts(X:

q , A) as they are reflected.

To conclude this section on direct preclusive undercuts I emphasise their relevance to debate track­

ing; i.e. to the tracking of all and o f only direct arguments. W hilst this and the previous chapter cover

both reflected and direct arguments, it is the reflections which are to be avoided or removed and the direct

arguments which are o f lasting value. This is perhaps akin to woodwork, where the direct arguments are

the piece o f art or equipment being created and the reflections the waste or scrap wood around the work

that need to be cut off and discarded. M aximal direct preclusive undercuts are especially relevant as

they are immune to the relative weakness I pointed out in Section 4.5.1 on direct canonical undercuts.

In a maximal direct preclusion, by using a maximum cardinality reflector, which stands for all other

reflectors, the status o f being direct is strengthened from being relative to being absolute.

5.4 Mixed Preclusive Undercuts and Invalidation

A mixed preclusive undercut is a preclusive undercut that contains a mixture of direct and reflected

preclusive undercuts. All o f the arguments in one o f these attacking confirmations will have the same

claim, but different supports. One might think that this is a mixture of direct and reflected canonical

undercuts, however that constraint is unnecessary as the direct arguments may not all be representable

as direct canonical undercuts - due to the possibility o f multi-target claims. A confirmation is a mixed

preclusive undercut iff it is a preclusive undercut and yet not a reflected preclusive undercut nor a direct

preclusive undercut, as I now define:

Definition 5.4.1. Let A be a knowledgebase o f labelled assumption form ulae and let V : a , X : a , Y :

0 , G 0 (A). A mixed preclusive undercut denoted mixedPreclusivel)ndercuts(Y: 0 , V, X : a , A), is a

5.4. Mixed Preclusive Undercuts and Invalidation 132

preclusive undercut where some o f its arguments are direct and some are reflected, such that:

mixedPreclusiveUndercuts(Y: /?, V , X : a , A)

= (preclusiveUndercuts(Y :/?, A) \

directPreclusiveUndercuts(Y: /3, V, X : a , A)) \

reflectedPreclusiveUndercuts(Y: /?, V, X : a , A).

The existence o f mixed preclusive undercuts, as shown in the following example, illustrates that

judges which rely on the counting or existence of arguments need to distinguish between direct and

reflected arguments within a preclusion - as the two can be mixed together and only direct arguments

should be allowed to affect professional debate outcomes.

Example 5.4.1. Mixed preclusive undercut Let A = {a : (3,b : (3 —> a ,c : ->/3 ,d : ->(/3 —► a)} .

Let I = { a , 6 } , J = { c } , K = {</}. So I : a , K : - a , J : J : ^/3 V - .(0 -» a) , J : ->(/? A (/3 -►

a)) , i f : ->(/? —► a) , K : -<(/? —► a) V ->(3,K : -'(/? A (/3 —► a)) G arguments(A). Consequently

{ / } : a , { i f } : : -.(/? A (/? — q)) g 0 (A). 7r /o//ows t/wt ({J , K } : ^((3 A (0 —

a)) , { /} ,{ /} : a) G mixedPreclusiveUndercuts({/} : a , { if} , {A"} : - ’Q, A) w a mixed preclusive

undercut. The attacking confirmation label o f this m ixed preclusive undercut is the union o f the at­

tacking confirmation label o f the direct preclusive undercut ({J } : -<(/3 A (/? —► a)) , { /} , { /} : a) G

directPreclusiveUndercuts({/} : a , { K } , { K } : ->a, A) and the attacking confirmation label o f the re­

flected preclusive undercut ({ K } : ->((3 A ((3 —> a)) , { / } , { / } : a) G reflectedPreclusivellndercuts({/}:

a , { K } , { t f } : - a , A), i.e. {J, K } = {J } U { K } .

A simple observation is that a direct preclusive undercut can never be invalidated by a reflected

preclusive undercut. Definition 3.4.2 of preclusive undercut, together with the definitions of terms in

the three paragraphs following it, establish that any invalidating preclusive undercut must have the same

attacking confirmation label as the invalidated preclusive undercut. If two preclusive undercuts have the

same attacking confirmation label they must be either both direct or both reflected. So direct preclusive

undercuts can never be invalidated by reflected preclusive undercuts.

Another simple observation is that a reflected preclusive undercut can never be invalidated. If a

preclusive undercut is m ulti-target then it must be direct. Proposition 5.2.2 shows that reflected preclusive

undercuts are all mono-target. Proposition 5.3.2 shows that direct preclusive undercuts can be mono­

target or multi-target. Therefore a multi-target preclusion cannot be the result o f reflection and thus must

be direct. Thus, it follows that a reflected preclusive undercut can never be invalidated; not by a direct

preclusive undercut, not by a reflected preclusive undercut, indeed not by any preclusive undercut. The

reason that reflected preclusive undercuts cannot be invalidated is that they can only ever be mono-target

and hence the formulae of the attacking confirmation label can never imply a non-empty shorter claim.

Thus if invalidation occurs it must be that a direct preclusive undercut has been invalidated by another

direct preclusive undercut.

5.5. Type H Reflection - Reflected Confirmation Rebuttals 133

5.5 Type II Reflection - Reflected Confirmation Rebuttals
To recap for context, the previous chapter, in Section 4.7, covered the reflected rebuttals arising from a

single pair o f arguments (Definition 4.7.1), one attacking the other, analysing it as a Type I Reflection.

Now I turn to the situation o f reflected rebuttals arising from a pair o f confirmations, again with one

attacking the other, and establish that this is a new type of reflection which I call Type II Reflection.

This pattern is also a parallel o f Section 4.4 on reflected canonical undercuts being elaborated upon by

Section 5.2 on reflected preclusive undercuts. Now reflected argument rebuttals, Definition 4.7.1, are

elaborated upon by reflected confirmation rebuttal, Definition 5.5.1. My focus here in the current section

is on confirmations containing multiple arguments, i.e. multi-attack confirmations, as that distinguishes

them from self-confirmed single arguments. It is the rebuttals reflected off multi-target preclusive under­

cuts, in particular, that provide novel behaviour. Note that reflected argument rebuttals between single

arguments, addressed earlier with Definition 4.7.1 as a form of Type I Reflection, does not require the

K C 11 u . . . U / „ clause introduced below. Figure 5.3 shows an annotated confirmation graph illustrating

the requirements and form of Type II Reflection.

X :q

Reflector Confirmation

is V : q where y

V = { / l f .

and V C X . y -p

(Y : (3, V, X : a) e preclusiveUndercuts(X: a , A)

Reflected Confirmation Z : ->(3

Z : ~>(3 G confirmationRebuttals(Y: (3, A)

For each K € Z, K C / x u . . . U In .

Figure 5.3: Type II Reflection is Provided by reflectedConfirmationRebuttals(Y \(3, V, X : a , A)

In defining the phenomena o f reflected confirming rebuttals there could be two situations: a) the

reflector is subject to preclusive undercut, or b) the reflector is subject to confirmation rebuttal. Even

though including b) would fit better with the abstract perspective of the last chapter and of this chapter

so far, it would be trivial. If a confirmation rebuttal is reflected off another rebuttal then the reflector is

itself - which does not add any new arguments, nor materially add to the tracking of professional debates.

Instead I analyse here the situation a) above, as then the following properties and definitions are more

practical and intuitive. I now define the shape or form of the reflected confirmation rebuttals function.

W hile the definition is akin to that for reflected preclusive undercuts, Definition 5.2.1, a number of

differences are necessary. This function returns the full power set o f confirmations, not just the maximum

cardinality one.

Definition 5.5.1. Let A be a knowledgebase o f labelled assumption formulae, let I \ : a , I n : a , K :

->/3 e arguments(A) and l e t V .c*, X :a , Y : (3, Z :-•/? € 0 (A). The reflected confirm ation rebutta ls

5.5. Type II Reflection - Reflected Confirmation Rebuttals 134

that can be inferred from the existence o f the confirmation attack o f Y : 0 on defending confirmation

X : a with target confirmation V : a , denoted reflectedConfirmationRebuttals(Y: (3, V, X : a , A), is a set

o f confirmations such that:

reflectedConfirmationRebuttals(Y: 0 , V , X : a , A)

= { Z : ->0 G confirmationRebuttals(Y :0 , A) |

(Y :/?, V, X :a) G preclusivel)ndercuts(X :a, A),

fo r each K £ Z it is the case that K C 7i U . . . U

where V = { / l f . . . , / n }.

The fact that a reflected confirmation rebuttal is also a confirmation rebuttal ensures that neither the

attacked nor attacking confirmations are labelled with the empty set. I now give an example of a reflected

confirmation rebuttal, which uses the *=’ part o f the ‘C ’ on the last line of the Definition 5.5.1.

E xam ple 5.5.1. Reflected confirm ation rebutta l. Let A = {a : 0 ,b : 0 —> Q , c : (, d : (—► a , e :

~~>rb / : _,Q r),g : ->0 V -< } . Let I = {a, 6 }, J = {c, d}, K = {e, / } , L = {p}, M = {a, 6 , c, d}. So

I : a , J : a , K : a , L : - > (0 A (/? —► a) A £ A (£ —> a)) , M : (3 A (/? —► a) A £ A (£ —> a) G argum ents(A).

L e /X = { / , J , K } , W = { / , J } , Y = {L}, Z = {M }. T h u s X . a , W :q , Y :- (/? A (/? -* a) AC A(C -♦

q)) ,Z : 0 A (/5 —♦ a) A ^ A (£ —> a) e 0 (A). Consequently (Y : ->(/? A q) A (A ((->

a)) ,W ,X : a) G preclusiveUndercuts(X : a , A). It also fo llow s that Z : 0 A {(3 —> a) A £ A (£ —»

a) G confirmationRebuttals(Y : -«(/? A (^ -> q) A (A ((-> a)) , A). Matching with the definition o f

reflected confirmation rebuttal, the observation can be made that in this example indeed M C I u J,

in fa c t M = / U J . Thus the conclusion can be drawn that Z : (3 A (0 —* a) A £ A (£ —> a) G

reflectedConfirmationRebuttals(Y: ->(0 A (/3 —> a) A £ A (£ —» a)) , W , X :a , A).

The above example also illustrates the point that the reflector is always the target confirmation,

here W : a , not the larger defending confirmation, here X : a , unless of course W = X given that

always W C X. This point is not a property or separate design decision as it is contained within the

Definition 5.5.1 of reflected confirmation rebuttals. The example also brings out that this definition

requires not just such a target confirmation, but also that Y : /3 attacks X : a , in the form of a preclusive

undercut.

5.5.1 Properties of Reflected Confirmation Rebuttals

Now that the form o f reflected confirmation rebuttals is established it is possible to show that given their

prerequisites, reflected confirmation rebuttals always exist.

Proposition 5.5.1. Let A be a knowledgebase o f labelled assumption form ulae and let W : a , X : a , Y :

0 e 0 (A).

I f (Y : /?, W , X : a) G preclusivellndercuts(X : a , A)

then reflectedConfirmationRebuttals(Y :/3, W ,X :a , A) ± 0,

otherwise reflectedConfirmationRebuttals(Y: 0 , W , X : a , A) = 0.

5.5. Type U Reflection - Reflected Confirmation Rebuttals 135

Proof. Given that (Y : 0 , W , X : a) € preclusiveUndercuts(X : a , A) it follows from Definition 3.4.2

o f preclusive undercut that X ^ 0, Y / 0 and that there must exist a target confirmation W : a

such that 0 = W C X. From the same definition, as (Y : 0 , W ,X : a) is a preclusive undercut

o f X : a with target W : a , it follows that ->0 = ^stripAssumptions(formulae(label(W : a) , A)).

Now to rebut Y : 0 just requires one or more argument K : ->0, where K e Z, Z : ->0 e

reflectedConfirmationRebuttals(Y : /?, W , X : q , A) and X is any support that infers ->0 to ensure a

non-empty confirmation label label(Z : ->0). Such a K always exists as given these preconditions it fol­

lows that stripAssumptions(formulae(label(W : a) , A)) I- ->0, so there will always exist the reflexive

argument K : ->0 € arguments(A) where K C / i u . . . U /„ and W = I \ U . . . U /„ . This union

11 U . . . U / „ therefore always implies ->/?, the negation o f the claim of the preclusive undercut attacker

Y : 0 . The full union may not be needed however, as 7i U . . . U /„ I— <0 may not be a minimal ar­

gument. If any o f the prerequisites are not met there cannot be a reflection. So if (Y : 0 , W , X : a) e

preclusiveUndercuts(X : a , A) then reflectedConfirmationRebuttals(Y : 0 , W , X : a , A) ^ 0 otherwise

refl©ctedConfirmationRebuttals(Y: 0 , W , X : a , A) = 0. □

With the reflected argument rebuttal, one reflecting argument gives rise to one and only reflected

argument, as shown in Proposition 4.7.5. However with the reflected confirmation rebuttal the number

o f reflections is not as simple. The above example, Example 5.5.1, shows two reflector arguments in the

target confirmation giving rise to one reflected argument. The following example shows four defending

arguments with two reflector arguments in the target confirmation giving rise to two reflected arguments.

Here there are two subsets (that make up the support o f the reflected attacking confirmation) of the union

of the supports o f the reflector target confirmation.

Example 5.5.2. Subset Let A = {a : A A 7r, b : A A 7r, c : A —► a , d : 7r —► a , e : (A V 7r) A ->a}.

Let I = { a ,c } ,J = { a , d } , K = { 6 ,c} ,L = { 6 ,d } ,M = {e},JV = { a , c , d } , 0 = {6,c,d}. So

I : a , J : a , K : a , L : a , M : (A A ->a) V (n A -> q), M : ->(A - > a) V —>(7r —► a) , M : --(A A 7r A (A —►

a) A (7r —► a)) , N : A A n A (A —► a) A (n —» a) , O : A A 7r A (A —► a) A (7r —♦ a) 6 arguments(A).

L e t X = { / , J , t f ,L } ,W = { / ,L } ,Y = { M } ,Z = { N , 0 } . Thus X : a , W : a , Y : -(A A tt A (A -

a) A (n —► a)) , Z : A A n A (A —* a) A (n —> a) € 0(A). Consequently (Y : ->(A A tt A (A —♦

a) A (7r —► a)) , W ,X : a) G preclusiveUndercuts(X : a , A). The point is that Z : A A n A (A —►

q) a (7 t —♦ a) e reflectedConfirmationRebuttals(Y:-i(A A7r A (A —► q)A (7 t —► ct)), W ,X :a , A), //e re

|Z| = 2 and eac/i TV, O € Z « such that N £ (/ U L), O £ (/ U L). A t the assumption level observe

that N = {a ,c , d} C {a, 6, c, d} and O = {6, c, d} C {a, 6, c, d}. So here is a reflected confirmation

rebuttal Z : A A n A (A —» a) A (7r —* a) where the defending confirmation X : a contains fo u r arguments,

the target or reflector W : a contains two and the reflection two.

In the above example the target confirmation is uniquely set by the W = { /, L}. However, still

with all o f the following being identical to the example: knowledgebase A , defending X : a , attacking

Y : ->(A A 7r A (A —> a) A (tt —* a)) and reflected Z : A A tt A (A —► a) A (n —> a) , the target could

have been defined differently. A valid target w ould have to include the assum ptions a , 6, c, d, m eaning it

could have been any one o f { / , L}, { J , K } , { / , J , K } , { / , J , L}, { / , K , L } , { J , K , L } or { / , J, K , L } .

5.6. Direct Confirmation Rebuttals 136

It can also be the case that the number o f reflected arguments in the reflected confirmation rebuttal

is greater than the number of reflector arguments in the target o f the preclusive undercut at the head of

the chain, as I now show.

E xam ple 5.5.3. E n larged reflection. Let A = {a : 7r, 6 : 7r, c : n —* a , d : it —► a , e : ->7r}. Let I —

{a, c}, J = {6, d}, K = {6, c }, L = {a, d}, M = {e} . L e t X = { / , J } , Y = {A /} , Z = { / , J, L}.

Thus Y : —*(7T A (7r —► a)) , X : a , Z : a , Y : —«(7r A (7r —♦ a) A 7r A (7r —► a)) , Z : 7r A (n —► a) G 0 (A).

So (Y : *(7r A (7r —► a)) ,X ,Z : a) G preclusivellndercuts(Z : a). 77i£ preclusive undercut attack

is on the target confirmation label o f X and hence X is the reflector. Hence Z : it A (n —► a) G

reflectedConfirmationRebuttals(Y: ->(7r A (7r —> a)) , X, Z : a , A). Afofe f/iaf (Y : —i(7r A (7r —► a) A 7r A

(tt —► q)), X, Z :a) £ preclusiveUndercuts(Z: a) as it is invalidated.

Reflected confirmation rebuttals are always confirmed reflexive arguments. See Definition 2.4.7 for

reflexive arguments and Definition 2.5.6 for the confirm function as used in the proof below.

Proposition 5.5.2. Let A be a knowledgebase o f labelled assumption formulae, let I j : -> 0 ,h :

->0, . . . , I n : -i/J G argum ents(A) and let V : a , X : a , Y : 0 , Z : -./? G 0 (A).

t fZ: ->0 G reflectedConfirmationRebuttals(Y:/?, V ,X :a , A) and

/ j G Z = { / i , . . . , / „ }

r/ien eac/i /_,: ->/? w a reflexive argument.

Proof. For an argument I : a to be a reflexive argument it is necessary that the claim stripDeduction(7: a)

equals the conjunction of the members o f the support /\stripAssumptions(formulae(label(7 : a) ,A)) .

Meeting this condition is a necessary step in the proof of Proposition 5.5.1 which showed that reflected

confirmation rebuttals always exist. Thus any reflected confirmation rebuttal Z : ~>0 = confirm(7i :

->0 , . . . , I n : - 1 0) is such that each argument I j : - > 0 in it is always a reflexive argument. □

I look more closely at the number o f reflected arguments in the next but one section on scaled re­

flections. That completes my analysis o f reflected confirmation rebuttals, which are Type II Reflections,

distinct from Type I Reflections analysed above as reflected attacks. Now I turn to the topic of direct

confirmation rebuttals.

5.6 Direct Confirmation Rebuttals
By symmetry it is apparent that just as there are rebuttals, reflected rebuttals, direct rebuttals, confirma­

tion rebuttals and reflected confirmation rebuttals, so also there must be direct confirmation rebuttals.

This is not just a mechanical symmetry, however, as noteworthy properties follow. Now I leverage the

definition of confirmation rebuttal, Definition 2.6.8 and reflected confirmation rebuttal, Definition 5.5.1.

Definition 5.6.1. Let A be a knowledgebase o f labelled assumption form ulae and let V : -*0, W : a , X :

a , Y : 0 G 0 (A). The set o f direct confirmation rebuttals, denoted directConfirmationRebuttals(Y :

5.6. Direct Confirmation Rebuttals 137

(3, W , X : q , A), is a pow er set o f confirmation rebuttals o f Y : 0 not reflected o ff X : a such that:

directConfirmationRebuttals(Y: /?, W , X : a, A)

= {Z:->0 e 0 (A) | (Y : 0 , W ,X :a) G preclusiveUndercuts(X:a, A),

Z : —>/? g confirmationRebuttals(Y: /?, A) am/

f/iere */ocs not exist a V C Z suc/t that

V : ->/? g reflectedConfirmationRebuttals(Y:0, W , X :a , A)}.

As with other reflected and direct confirmations there are a number of power sets involved here.

The direct confirmation rebuttal is so defined as to not mandate that any of the particular confirmations

are the maximum cardinality members of their respective power sets. W hat is clear, however, is that all

of the support of Z : ->0 is direct as no part o f it, i.e. label(V : ->//), is reflected off W : a . I now give an

example of a direct confirmation rebuttal.

Exam ple 5.6.1. Direct confirm ation rebuttal. Let A = {a : 0 ,b : 0 -> a ,c : n ,d : n —*• a , e :

~>0 V -i7r, / : <7 A (7r —► a) , g : o —► 7r}. A/so let I = {a, 6 }, J = {c,e/}, AT = {e} ,L = {a, 6 , /,<?}, Af =

{/,<?}, X = { / , W = { / , J } , Y = { K } , Z = {L}. Therefore I : a , J : a , K : -^(0 A (0 -

a) A 7r A (7r —► a)) , A / : a , M : n A (n —» a) G argum ents(A). Furthermore X : q ,W : q ,Y :

-<(/? A (// —» a) A 7r A (7r —► a)) , Z : 0 A (0 —► a) A 7r A (7r —» a) G 0 (A). 7/ follows that

(Y : ->(0 A (0 —* a) A 7T A (n —> a)) , W , X : a) G preclusiveUndercuts(X: a , A). So there is a direct

confirmation rebuttal Z : 0 A (0 —» a) A 7r A (n —► a) g directConfirmationRebuttals(Y: -<(// A (0 —*

q) A 7r A (7r —► a)) , W , X : a , A) because fo r the L G Z it is the case that L I U J , because

L % {a, 6 } U {c, d}, because L % {a, 6 , c, d} because {a, 6 , / , <7} £ {a, 6 , c, d}.

Direct confirmation rebuttals, such as Z : 0 A {0 —► a) A 7r A (7r —> a) , are not predictable from any

other part o f A (i.e. the claim cannot be predicted other than from their own support Z), and thus cannot

be predicted from any other part o f a tree or graph they might be situated in. So given the prerequisites

of two valid confirmations in an attack chain with the attack being a preclusive undercut, it is always the

case that a reflected confirmation rebuttal exists, but it only sometimes the case that a direct confirmation

rebuttal exists. Something that is predictable allows for propositions, but for exactly that reason there is

a paucity o f propositions about direct arguments and direct confirmations.

5.6.1 Maximal Direct Confirmation Rebuttal

The direct confirmation rebuttal does continue the relative weakness identified before - of being relative

to just one specific reflector. W hat is needed is an absolute function that covers all possible reflectors -

given its context within a debate. Being maximal there is only one maximal direct confirmation rebuttal,

so this rebuttal function is written in the singular. The function is maximal in two ways: i) it covers all

possible reflectors and hence yields the complete set o f direct rebuttal arguments, and ii) is a maximum

cardinality confirmation. Here is the absolute function, the maximal direct confirmation rebuttal, which

builds on the relative Definition 5.6.1 for direct confirmation rebuttals:

5.7. Scaled and Distorted Reflections 138

Definition 5.6.2. Let A be a knowledgebase o f labelled assumption form ulae and let W : a ,X :

a, Y : 0, Z : ->(3 £ 0 (A). The maximal direct confirmation rebuttal function, denoted

maximalDirectConfirmationRebuttal(Y : 0 , X : a , A), which provides the maximal cardinality confir­

mation rebuttal o f Y : (3 that is not reflected o ff any confirmation fo r a , is a single confirmation such

that:

Z : ->(3 = maximalDirectConfirmationRebuttal(Y : 0 , X : a , A)

i f f Z : ->/? = top(directConfirmationRebuttals(

Y :0, label(top(0(stripC ontirm ation(X :a), A))),top(0(stripC ontirm ation(X :a), A)) and

(Y :0, W , X :a) £ preclusivel)nd©rcuts(X:a , A).

The target confirmation label W need not be passed in as it is derived. It can be the case that there

are no direct confirmation rebuttals for Y : (3 and hence no maximum cardinality one, so it is possible for

maximalDirectConfirmationRebuttal(Y : 0 , X : a , A) = 0.

A t this stage in the progression of this thesis, the basic analysis o f Type I and II reflected arguments

and reflected confirmations is complete. However there is another, more advanced, group of properties

relating to scaled reflections; as I now establish.

5.7 Scaled and Distorted Reflections
This section on scaled and distorted reflections defines and examines the concepts o f reduced, exact,

enlarged and distorted reflections. The starting point is a function that measures the average scaling

factor for a particular reflection. A finding of this section is that there are two mechanisms that cause

enlarged reflection, namely the multi-pair enlarged preclusive reflection as distinct from the mono-pair

enlarged preclusive reflection (from Section 4.6). I start by defining some helper functions plus the

formal terminology for scaled reflections. The term ‘targeted attack’, used below, was defined in the text

immediately after Definition 3.9.4 of confirmation attacks.

Definition 5.7.1. Let A be a knowledgebase o f labelled assumption form ulae and let W : a , X : a , Y :

0 , Z : <f> £ 0 (A). The reflected confirmation attacks function, denoted reflectedConfirmationAttacks(Y:

0 , W , X : q , A), is a set o f targeted attack tuples such that:

reflectedConfirmationAttacks(Y: 0 , W , X : a , A)

= reflectedPreclusiveUndercuts(Y: 0 , W , X : a , A) U

{ (Z :0 , label(Y : 0) , Y : 0) \

Z:<p £ reflectedConfirmationRebuttals(Y:/?, W , X : q , A)}.

This function should appear as an unsurprising extension of the work so far, for example because

attacks on reflexive arguments are both undercuts and rebuttals at the same time - and, as established,

all arguments can be expressed as confirmations. Given this reflected confirmation attacks function, it is

possible to define the reflection scaling factor in a way that applies to both reflected preclusive undercuts

and reflected confirmation rebuttals.

5.7. Scaled and Distorted Reflections 139

The first helper function here gives the conjectured or anticipated reflection size as equal to the

size of the target confirmation, which is a simple, but incorrect assessment o f the actual reflection size.

This definition of the intuitively anticipated number of reflected arguments is based on the notion that a

reflected argument can act as a proxy for the reflector arguments.

Definition 5.7.2. Let A be a knowledgebase o f labelled assumption formulae and let W : a , X : a , Y :

/3 G 0 (A). The an tic ipated reflection size, denoted anticipatedReflectionSize(Y: 0 , W , X : a , A), given

the reflection ref!ectedConfirmationAttacks(Y :/3, W , X : q , A)), is:

anticipatedReflectionSize(Y : /3, W , X : a , A) = |lab e l(W :a)|.

The second helper function gives the actual reflection size - which is a somewhat more complicated,

but correct, assessment of the actual reflection.

Definition 5 .7 3 . Let A be a knowledgebase o f labelled assumption formulae and let V i V n :

0, X : a ,Y : 0, Zi : 7 1 , . . . , Z/ : 7 1 , Zm : 7 P, . . . , Z n : 7 P G 0 (A). The actual nu m ­

b e r o f reflected argum ents, denoted actual Ref lectionSize(Y : 0 , W , X : a , A), fo r the reflection

reflectedConfirmationAttacks(Y : /3 ,W ,X : a , A)) = {(Zi : 7 i , V i , Y : / ?) , . . . , (Zj : 7 i , V i , Y :

0) , . . . , (Zm :7 p, Vp, Y : 0) , . . . , (Zn :7 P, Vp, Y :0}} is such that:

actualReflectionSize(Y : /?, W , X : a , A)

= |label(top(attacker((Z i: 7 1 , V i , Y : 0)) , . . . , attacker((Z /: 7 1 , V i , Y :0)))) | + . . . +

| label (top(attacker ((Zm : 7 P, Vp, Y : /3)) , . . . ,attacker((Zn :7 P, Vp, Y:/?)))) |).

Clearly V i , . . . , Vp C Y, p (Y)\0 = { V i , . . . , Vp}, all the arguments that attack target V i are in

the confirmations Z i : 7 1 , . . . , Z / : 7 1 and all the arguments that attack target V p are in the confirmations

Zm : 7 p> • • • > Zn : 7 P. Given these two helper functions, the reflection scaling factor follows simply as

one divided by the other. I call this the ‘down tree’ reflection scaling factor to distinguish it from the

subsequent ‘up tree’ one in Section 5.9.2.

Definition 5.7.4. Let A be a knowledgebase o f labelled assumption formulae and let W : a , X : a , Y : 0 G

0 (A). The dow n tree reflection scaling fac to r function, denoted reflectionScalingFactorDownTree(Y:

0 , W , X : a , A), provides a rational number such that:

„ . « r- _ T v . . actualReflectionSize(Y:/3, W , X : a , A)
reflectionScalingFactorDownTree(Y: 0 , W , X : a , A) = ---------------------------- ^ ^ ----------- -.

anticipatedReflectionSize(Y: 0 , W , X : a , A)

The reflector employed to compute the scaling factor is the target confirmation and not the defending

confirmation. The reflection scaling factor gives the size ratio between a naive expectation of exact

reflection and an actual reflection that may be enlarged or reduced.

Definition 5.7.5. Let A be a knowledgebase o f labelled assumptions and let W : a , X : a , Y :0 G 0 (A) .

I f reflectionScalingFactorDownTree(Y: 0 , W , X : a , A) < 1

then reflectedConfirmationAttacks(Y: 0 , W , X :a , A) is a reduced reflection,

5.7. Scaled and Distorted Reflections 140

//■reflectionScalingFactorDownTree(Y:/3, W , X : q , A) = 1

then reflectedConfirmationAttacks(Y :0 , W , X :a , A) is an exact reflection,

7freflectionScalingFactorDownTree(Y:/3, W , X : a , A) > 1

then reflectedConfirmationAttacks(Y: /?, W , X : a , A) is an enlarged reflection.

These helper functions can now be used to clarify the distinctions between enlarged, reduced and

exact reflections.

5.7.1 Reduced Reflection
Reduced reflection occurs for reflected confirmation attacks, and within that it occurs for both reflected

preclusive undercuts and for reflected confirmation rebuttals. Support shortening can give rise to the

phenomena I call support merging. Support merging for confirmations can in turn give rise to reduced

reflections. I hold that this behaviour should influence the structure of debate tracking trees and the

examination of arguments, either through counting or existential schemes, in judge functions.

In the case o f reduced reflection there are fewer reflected arguments than there are reflector argu­

ments. Many examples in this section include a graphical depiction of the relationships involved; these

graphs are contradiction graphs, see Definition 3.9.6, as they show the illustrated behaviour well. I

now give an example o f reduced preclusive undercut reflection together with its contradiction graph in

Figure 5.4.

Example 5.7.1. Reduced preclusive undercut reflection. Let A = { a : a , b : a —> 0, c : AA7rA7 A -ict,d:

7 -*0 , e : 7r -» - < 0 , / : A -► -«/?}. Let I = { a , b } , J = { c , d } , K = {c ,e } ,L = { c , /} ,M = {c}.

So I : 0 , J : -> 0,K : ->0yL : : ~^{a A (a —► /?)) , / : a A (a -» j8) 6 arguments(A). Also

J : ->(a A (a —► 0)) , K : ->(a A (a —► 0)) , L : ->(a A (a —► 0)) e deductions(A), but they are

not members o/argum ents(A) as they are not minimal. Consequently { /} : 0 , { J , K , L } : -»/?, {M } :

-«(a A (a —v 0)) , { /} : a A (a —» 0) e 0 (A) . It follow s that ({ M } : ->(a A (a —> 0)) , { /} , { /} :

0) 6 preclusiveUndercuts({/} : 0, A), { / } : 0 e confirmationRebuttals({ J , K , L } : ->0, A)‘ and ({ M } :

-i(q A (q —> 0)), { / } , { / } : 0) g reflectedPreclusivel)ndercuts({/} : 0 , { J , K , L }, { J , K, L } : -</?, A)

is the reflected attack. So {J , K , L) : -*0 is the reflector confirmation and { M } : ->(a A (a —> 0)) is

the reflected confirmation. The resultant reflection scaling factor is thus the actual number o f reflections

| {A/} | divided by the intuitively anticipated number o f reflections \{J, K , L } \ , i.e. As the reflection

scaling factor is less than one this is a reduced reflection.

({ I } , { J , K , L }) : 0

m
<{Af}, { /}):-(<* A (a - . /?))

Figure 5.4: Reduced Preclusive Undercut Reflection Shown in a Contradiction Graph

In the above example there is only one reflected undercut argument, not three (one per rebuttal) as

one might expect. Thus this is a reduced reflection.

5.7. Scaled and Distorted Reflections 141

5.7.2 Exact Reflection

Now I come to another behaviour of reflection, which I call the exact reflection. In this case there are

exactly the same number of reflected arguments within the reflected confirmation as there are arguments

in the reflector. Exact reflection occurs with all three types of confirmation attacks: reflected confirmation

attacks, reflected preclusive undercuts and reflected confirmation rebuttals.

Exam ple 5.7.2. E xact p reclusion reflection. Let A = { a : 0 , b : (3 —► a , c : 7 , d : 7 —► a , e : ->tt A -1 7 A

cr A A , / : a —> - i Q , p : A —» ->a}. Let I = {a, b } , J = { c , d } , K = { e , / } , L = { e , h } , M = { e } .

Therefore I : a , J : a , K : ->a, L : ->a, M : ->(n A (n —» a)) , M : - 1(7 A (7 —> a)) G arguments(A).

Clearly M C K , M C L. Consequently ({ M } : ->((3 A (f3 —» a)) , { /} ,{ / , J } : a) , ({ M } : -> (7 A

(7 —> a)) , { J} , { / , J } : a) g reflectedPreclusiveUndercuts({/, J } : a , { K , L } , { K , L} : -^a, A). So

the reflector is { K , L } : ->a and the reflected confirmations are { M } : ->(/3 A (0 —> a)) am/ {A/} :

-< (7 A (7 —► a)) . Hence the reflection scaling fa c to r = |{/C, L}| -f (|{A /}| 4- |{M } |) = 2 4 - 2 = 1,

meaning that this is an exact reflection. This example is now shown as a contradiction tree in Figure 5.5.

({ I , J } , { K , L }) : a

<{M}, { / }) : - (0 A (0 —. a)) ({M }, { J }) : - (7 A (7 —> a))

Figure 5.5: Exact Preclusive Undercut Reflection Shown in a Contradiction Graph

There still may not be a one-to-one mapping between individual reflector arguments and reflected

arguments, in that, for example, two rebuttals may result in one undercut, while a different rebuttal may

result in two undercuts, giving the overall effect o f exact reflection. Reflections that lack a one-to-one

mapping from reflector to reflected I cover under distorted reflections.

In the case o f reflected confirmation rebuttals, the Example 5.5.2 illustrates the existence of an exact

reflection that is also a rebuttal. This example of exact confirmation reflection is perhaps surprising as

the form of the Type II Reflection function intuitively tends to give reduced reflections - because the

reflected support is the union o f multiple reflector supports.

5.73 Enlarged Reflection

Enlarged reflection occurs with reflected confirmation attacks and within that it occurs for reflected

preclusive undercuts and for reflected confirmation rebuttals. There exist A where enlarged preclusive

reflections occur, as illustrated in the following example.

Example 5.73. Enlarged preclusive reflection. Let A = {a : it,b : it -> a ,c : or A : (o —>

—’O') A ->7r,e: A, / : A —► a ,g : t] ,h : r i —> ->a}, so |A | = 8. Let I = { a ,6}, J = { e , f } , K = {c ,</}, L =

{ g , h } , M = {c},iV = {</}. Consequently I : a , J : a , K : ~^a,L : ~^a ,M : ->(tt A (7r —> a)) , N :

>(77 A (7r —♦ a)) , L : -i(7r A (i t —* a)) , K : ->(A A (A —* a)) , L : ->(A A (A —► a)) G arguments(A).

Importantly although K : —<(7r A (i t —> a)) G deductions(A) it is the case that K : ->(tt A (tt —* a)) ^

5.7. Scaled and Distorted Reflections 142

arguments(A) as it is not minimal. T h u s { M , TV, L} :-i(7rA(7r —> a)) , { K , L } :->(AA(A —► a)) ,{ 7 , J } :

a , { /f , L } : -«a G 0 (A). There are two preclusive undercuts {{M , TV, L } : ->(7r A (7r —> a)) , { /} , { / , J } :

a) , ({AT, L } :-i(A A (A —» a)) , { J} , { / , J } :a) € preclusivellndercuts({/, J } : a , A), both o f which are

reflected, i.e. <{A7, TV, L} : - .(7 r A (tt -> a)) , { /} , {7, J } : a) , ({ /f , L } : ->(A A (A —> a)) , {J } , { /, J } :

a) G reflectedPreclusiveUndercuts({/, J } : a , {7C, L}, { /f , L} : - ia ,A) . The scaling factor is thus

reflectionScalingFactorDownTree({7, J } : a , { K , L } , { K , L } : -•a , A) = (|{M , TV,Z,}| + \ { K ,L } \) 4

\ {K, L}| = 5 4 2 = 2.5 so reflectedPreclusiveUndercuts({/, J } : a , { K , L } , { K , L } : - ^ A) is an

enlarged reflection. This enlarged reflection is illustrated as the contradiction graph in Figure 5.6 below.

<{M, TV, L}, { / }) : - (t t A (t t -> a)) <{7C, L}, { J } > : —>(A A (A —+ a))

Figure 5.6: Enlarged Preclusive Undercut Reflection Shown in a Contradiction Graph

Enlarged reflected confirmation rebuttals also exist. In contrast, however, enlarged reflected argu­

ment rebuttals do not exist, so that non-existence o f enlargement is an exception as all of the other forms

of reflection analysed in this thesis have enlargement behaviour.

W hat the definition o f enlargement does not relay is why a particular preclusion is an enlarged

preclusive reflection - it turns out that it could be due to mono-pair enlarged reflection (as defined earlier

in Definition 4.6.1) or due to multi-pair preclusive reflection defined immediately below.

5.7.4 Multi-Pair Enlarged Preclusive Reflection

This subsection focusses on the situation where preclusive undercuts are reflected off a contradiction. For

this situation, I now define a pure multi-pair enlarged preclusive reflections, as the case where the total

number of reflected arguments is more than the number of reflector arguments and mono-pair enlarged

reflection is not involved. The term ‘enlarged reflection’ was defined in Definition 5.7.5 and ‘mono-pair

enlargement’ in Definition 4.6.1.

Definition 5.7.6. Let A be a knowledgebase o f labelled assumption formulae, let I : a , J : ->a G

arguments(A) and let W : --a , X : a ,Y : ->a,Z : 7 G 0 (A). A m ulti-pair enlarged preclusive re­

flection, denoted multiPairEnlargedReflections(Y: ->a, X, X : a , A), is an enlarged preclusive reflection

where no mono-pair enlargement is involved, such that:

multiPairEnlargedReflections(Y: -̂ q , X, X : a , A)

= { (Z : 7 , W , Y : ^a) G reflectedPreclusiveUndercuts(Y: ->a, X, X : a , A) |

reflectedPreclusiveUndercuts(Y : ->a, X, X : a , A) is an enlarged reflection and

fo r each I G X and J G Y it is the case that

monoPairEnlargedReflection(J : ->a, / :a , A) = 0}.

5.7. Scaled and Distorted Reflections 143

Multi-pair enlarged reflections do not always exist. They may exist depending upon the existence of

prerequisites. The basic mechanism is that given a contradiction (X, Y) : a for every member of the set

X x Y there exists a candidate reflected undercut. Reflected undercuts are always mono-target (be they

preclusive or canonical). Given these candidates, however, the final solution may contain a somewhat

different set of reflected arguments due to interactions with mono-pair enlargement. Alternatively or

additionally, the final solution may contain a reduced number of reflected arguments due to support

shortening and hence support merging.

This analysis shows that the above Example 5.7.3 of enlarged reflection contains a mixture of mono

and multi-pair enlargements. In that example, it is the reflector support K giving rise to attacking sup­

ports M and N that is the mono-pair enlargement. The reflection of attacking K and L with target of J

is half o f the multi-pair enlargement; the other half is partially obscured by the mono-pair enlargement

with only the reflection of attacking support L with target of 7 remaining directly visible.

The multi-pair enlarged reflection could present a complication or difficulty for notions of judging

debates by counting arguments. As reflection can produce reductions and enlargements, even a distorted

mixture o f enlargements and reductions, it follows that, without proper consideration, reflection can

confound the counting o f arguments and lead to incorrect judgements. This predicament is akin to trying

to make precise measurements in a distorting mirror. In the extreme case, with a variety of related A ’s,

the presence o f distortion could reduce a judge that does not consider the effects of reflection, across this

variety o f A ’s, to appear to be an arbitrary judge. Arbitrary here is relative to an intuitive assessment

based on an appreciation of professional debates.

The number of reflected arguments arising from a mono-pair enlarged reflection was provided in

Proposition 4.6.2. The next steps are to establish the number of arguments in i) a multi-pair enlarged

reflection in isolation and then ii) with mono-pair and multi-pair together.

P roposition 5.7.1. Let A be a knowledgebase o f labelled assumption formulae and let W :a , X :a , Y :

/? £ 0 (A). For the reflection multiPairEnlargedReflections(Y: (3, W , X :a , A) it is the case that:

2 < actualReflectionSize(Y:/3, W ,X :a , A) < |label(X:a)| • |label(Y:/3)|.

Proof If the prerequisites are not met, e.g. (Y : (3, W ,X : a) £ confirmationAttacks(X : a , A)

for any W C X, then there is no reflection. However, as it is a given that there will exist

a (Z j : 7 i ,V ,Y : j3) £ multiPairEnlargedReflections(Y : /? ,W ,X : a , A), where V : (3 £

0 (A) then it follows that a) the prerequisites have been met and b) a multi-pair enlarged reflec­

tion has occurred. A multi-pair enlarged reflection is, by Definition 5.7.6, a special case of an en­

larged reflection and hence has reflectionScalingFactorDownTree(Y : (3, W ,X : a , A) > 1. To

guarantee such a reflectionScalingFactorDownTree(Y : (3, W , X : a , A) requires that at least 2 <

|multiPairEnlargedReflections(Y : (3 ,W ,X : a ,A) | for the low end case of |X| = 1. Now, re­

call the mechanism for how reflected canonical undercuts arise from a pair J : (3,1 : a where

J : (3 £ argumentAttacks(7 : a , A). In either the case J : (3 £ rebuttals(7 : a , A) or J : (3 £

canonicalUndercuts(7 : a , A) the number of reflected canonical undercuts is the same. In the absence

5.7. Scaled and Distorted Reflections 144

of mono-pair enlargement, a single argument J : 0 combines with a single reflector I : a to yield one

K : 7 = reflectedCanonicalUndercuts(J : 0 , I : a , A). The word ‘combines’ here means the five

steps of i) expanding the claim of J : 0 [to J : ->a for rebuttal or to J : ->(V>i A . . . A 0 n) for un­

dercut, where I = { 0 i , . . . , ipn }], ii) expanding the support o f J : 0 [to (0 i A . . . A 0 P) —> ->a, or

(</>i A . . . A 0 P) —» (0 i A . . . A 0 n), where J = { 0 i , . . . , 0 P}], iii) taking the contrapositive of what

was J : 0 [to q —♦ ->(0i A . . . A 0 p) or (0 i A . . . A 0 n) —> —i(0i A . . . A 0 P)] and then iv) joining with

the reflector I : a [either by hypothetical syllogism or straight substitution to give I : -> (01 A . . . A 0 P)]

and v) remembering that the subset K £ I may be involved for minimality K : ->(0i A . . . A 0 P).

Thus there can be one multi-pair enlarged reflected argument for each member of the cross product

label(X : a) x label(Y : 0). The number of members of this cross product comes from multiply­

ing |label(X : a) | by |label(Y : 0)\. Hence the maximum number of multi-pair enlarged reflections is

|label(X : a) | • |label(Y : 0)\. So for the reflection multiPairEnlargedReflections(Y: 0 , W , X : a , A) it is

the case that 2 < actualReflectionSize(Y:/3, W ,X :a , A) < |label(X :a)| • |label(Y :/?)|. □

Finally here is the maximum and minimum size of an enlarged reflection where both multi-pair and

mono-pair enlargement are involved.

Proposition 5.7.2. Let A be a knowledgebase o f labelled assumption formulae, let Ji : 0 , J \ :

/?, . . . , J|Y| : 0 G arguments(A) and let X : a , Y : 0 £ 0 (A). For an enlarged reflection

reflectedPreclusiveUndercuts(Y: 0 , X, X : a , A), where Ji 6 Y, it is the case that:

2 < actualReflectionSize(Y:0, X , X :a , A) < |label(X :a)| • midLattice(Ji).

P roof This proof combines that for mono-pair and multi-pair enlarged reflected preclusive undercuts,

i.e. Proposition 4.6.2 and Propositions 5.7.2. The claims reveal that if X : a , Y : 0 £ 0 (A) then for every

I 6 X and J e Y it is the case that I : a € argumentAttacks(J : 0 , A). The midl_attice(Ji) in the above is

the maximum number o f subsets o f J, that are not subsets o f each other. Suppose midLattice(Ji) = 1, for

the case of no mono-pair enlargement with support J if then (5Z!=iY* |label(X :a)|-l) is equal to |label(X:

a) | • |label(Y : 0)\. Hence if there is no mono-pair enlargement the result is the same as for multi-pair

enlargement in isolation. However, as both mono-pair and multi-pair enlargement can occur for the same

attack chain (Y : 0 , W , X : a) £ confirmationAttacks(X: a , A) the two cardinalities must be multiplied.

Hence for an enlarged reflection reflectedPreclusiveUndercuts(Y:0,X,X:a, A), where Ji £ Y it is the

case that 2 < actualReflectionSize(Y:/3, X ,X :a , A) < |label(X :a)| • midLattice(J,). □

As this is an enlargement there exist more reflected canonical undercuts than there are rebuttal

arguments in the reflector, as I now demonstrate.

Example 5.7.4. Multi-pair enlarged reflection. Let A = {a : a, h : a -+ 0 , c : 7 , d : 7 —> 0 , e : A, / :

A —> 0 ,g : £ ,h : C —► 0}. Let I = = { c ,d } ,K = { e , /} ,L = = { /} ,W =

{ J } ,Y = { / , J } ,X = {K , L } = Z. So there are clearly two defending arguments and two rebuttal

arguments o f 0, namely 1 :0 , J : 0 , K : ->0, L : ~>0 £ argum ents(A). There must also be four canonical

undercuts, namely K : -i(q A (a —► 0)) , L : ->(a A (a —» 0)) £ canonicalUndercuts(7 : 0, A) and

5.7. Scaled and Distorted Reflections 145

K : -< (7 A (7 —» 0)) , L : - 1 (7 A (7 —> /?)) e canonicalUndercuts(J : 0 , A). These canonical undercuts

are reflected and can be represented as (Z : - i (q A (a —> 0)) , V , Y : /?), (Z : - 1(7 A (7 —* /?)), W , Y :

/?) € reflectedPreclusiveUndercuts(Y : 0 , X , X : -^0, A) . There are no mono-pair enlargements present,

consequently there exists a multi-pair enlarged reflection. {Z : - > (a A (a —> 0)) , Z: -> (7 A (7 —> 0)) } =

multiPairEnlargedReflections(Y : 0 , X , X : -> 0,A). This multi-pair enlarged reflection is illustrated as

the contradiction graph o f Figure 5 .7 below.

({ I , J } , { K , L }) : t 3

({K, L), { /} > : ->(a A (a 0)) « K , L}, {J }): - (7 A (7 —» a))

Figure 5.7: M ulti-Pair Enlarged Reflection Shown in a Contradiction Graph

This example shows that if one nominates canonical undercuts to stand for the rebuttals that they are

derived from, then one must be aware that it is not a one-for-one swap. In (Besnard & Hunter, 2001) the

argument is made that a canonical undercut can represent a rebuttal. They use this idea as a motivation

for the way that their argument trees exclude all rebuttals, except at the root, and only include root

arguments plus their recursive canonical undercuts. M y analysis indicates that counting or existential

based judging is only accurate for the situation o f direct arguments and exact reflections. I revisit this

issue in greater detail in the next chapter.

5.7.5 Distorted Reflections
Distorted reflections may be enlarged, exact or reduced and may involve any combination of those three

situations within their reflections. Within the distortion, if there is enlargement, the cause may be mono-

pair enlarged reflection, multi-pair enlarged reflection or a combination of the two. If reduction is in­

volved, however, there is only one mechanism. It is the existence of distorted reflections that prevents or

blocks the approach of scaling the number of undercuts to match the number of rebuttals.

Definition 5.7.7. Let A be a knowledgebase o f labelled assumption formulae and let T : a , U : a , W :

a , X : a , Y :0 G 0 (A).

reflectedPreclusiveUndercuts(Y: 0 , W , X : a , A) is a distorted refection o f W : a

iff there exists a T C W and a U C W such that T D U = 0 and

reflectionScalingFactorDownTree(Y: 0 , T, X : a, A) ^

reflectionScalingFactorDownTree(Y: 0 , U, X :a , A).

A distorted reflection does not necessarily need to have one part enlarged and another reduced; it

just needs to have different scaling factors for the two parts. Furthermore there could be more than two

parts to such a distortion by applying the definition repeatedly. I now give an example.

Exam ple 5.7.5. D istorted reflection. Let A = {a : 0 ,b : 0 —» q , c : 7 ,d : 7 -> a , e :

7r A - 1/? A 7] A A, / : 7r —► ~>a,g : A —> ->a, h : 77 —> ~^a,i : a A ~>0 A - 17 , j : 0 —* ->a}. Let

5.7. Scaled and Distorted Reflections 146

I = { a , b } , J = { c , d } , K = {e, / } , L = { e , g } , M - { e , h } , N = { i , j } , 0 = { e } ,P = {i}. Thus

I : a , J : a , K : ->a, L : ->q, M : ->a, N : -^a, P : ->((3 A (/? —> a)) , O : ->(/? A (/3 —> a)) , P : -< (7 A (7 —*

a)) € argum ents(A). Therefore {7, J } : a , { K , L , M , N } : ->a, {P } : -> (7 A (7 —> a)) ,{ 0 , P } :

->(/3 A (/5 —► a)) € 0 (A). Clearly P C N , 0 C K , 0 C L , 0 C M so these are reflected preclu­

sive undercuts ({P } : - (7 A (7 —► a)) , { J} , {7, J } : a) , ({ 0 , P } : -.(/? A (/? -+ a)) , { /} ,{ / , J } :

a) e reflectedPreclusivellndercuts({7, J } : a , {/C, L , M , AT}, { if , L , M , N } : -iq , A). Le/ T , U and W

from the definition o f distortion, Definition 5.7.7, take the values o f T = { if , L, M }, U = {TV} ami

W = { if , L, M , N } . Consequently T C W and U C W such that T n U = 0. Looking at T, the

three candidate reflections from the three reflecting arguments i f : ->a, L : -iq , M : ->a merge to become

only one actual reflected argument O : -*(P A (ft —* a)) , which is a reduced reflection with a scaling

factor o f ^ = 0.33. Turning now to the subset U, one reflecting arguments N : ->a has been reflected as

two reflected argument P : ->(/3 A (/3 —* a)) and P : -> (7 A (7 —► a)) , which is an enlarged reflection

with a scaling fac tor o f 2.0. As 0.33 ^ 2.0 it fo llow s that reflectionScalingFactorDownTree({i, J } :

a ,T ,W : ->q, A) ^ reflectionScalingFactorDownTree({7, J } : a ,U ,W : -<a, A). The fa c t that

reflectionScalingFactorDownTree({7, J } : a , T , W : -«a, A) ^ reflectionScalingFactorDownTree({7, J } :

q , U, W : ->a, A) means that this is a distorted reflection. The three arguments o f T = { if , L , M } give

rise to a reduced reflection o f ju s t O : ->(/3 A (0 —» a)) . In contrast, the single argument o f U = { N }

gives rise to the enlarged reflection o f P : -«(/? A (/3 —► a)) plus P : -> (7 A (7 —> a)) . This distorted

reflection is shown as a contradiction graph in Figure 5.8 below.

({7, { if , L , A7, N }) : a

({ P h m > : -(/* A (0 - a)) ({O , P } , { J }) : ^ (7 A (7 - a))

Figure 5.8: Distorted Reflection Shown in a Contradiction Graph

My view is that the existence o f distorted reflections should effect the tracking of debates. Suppose

for a moment that reflected canonical undercuts were exact reflections - that would form a useful basis

to propose that direct rebuttals could be excluded ffom debate tracking - because the reflected canonical

undercuts would act as their representatives. Such a notion however is refuted by the existence of en­

larged and reduced reflections. This proposal could be refined by arguing that a scaling factor be applied

to compensate for enlargement or reduction - hence it could be imagined that appropriately scaled reflec­

tions could still stand in for the excluded direct rebuttals. Such scaling factor usage would supposedly

correct any counting errors coming from the scaled reflections. The problem with that refinement is that

the reflections are non-linear. The above example clearly establishes the existence of such non-linear

or distorted reflections - blocking the hope of using linear scale factors. These properties are further

discussed in the next chapter in Section 6.4.

5.8. Type i n Reflection - Reflected Confirming Arguments 147

5.8 Type III Reflection - Reflected Confirming Arguments
I now introduce another type of reflection, distinct from those discussed so far. I call it ty p e HI Re­

flection or ‘reflected confirming arguments’. The annotated argument graph of Figure 5.9 below, where

the additional circle represents the confirmation { / , L } : a , illustrates the following commentary and

definition.

Reflected Argument L C KL . a

I . a

J :/3 e canonicalUndercuts(7: q , A)

J -.0

K : ->(3 G directArgumentRebuttals(J :(3,I :a , A)

Reflector Argument K : —■/?

Figure 5.9: ty p e HI Reflection is Provided by reflectedConfirmingArguments(/r: ->/?, J : /? , / : a , A)

This reflection is from the reflector at the tail o f the chain to the reflection at the head of the chain.

Recall that, in contrast, ty p e I and II Reflections have the reflector at the head of the chain and the

reflection at the tail.

Informally, this reflection is coming from a direct rebuttal and goes up the chain of arguments, via

an undercut, appearing as a reflected confirming argument. It is a reflection akin to, but not the same as,

my reflectedAttacks() function - so it is a third type of reflection, which I call ty p e HI Reflection. It is

a reflection as it is the predictable existence of an argument in a debate given certain other arguments

and attacks. This reflection arises from a pattern or interaction between three arguments, giving rise

to a fourth or more, whereas the reflected attacks function, reflectedAttacks(), arises from a pattern or

interaction between two arguments, giving rise to a third or more. The number of attacks involved, i.e.

two, however, is the same for all o f these types of reflection.

The ty p e HI Reflection function’s input of a chain o f three arguments has the first argument attacked

by the middle argument and the middle argument attacked by the third argument. The definition and

properties that follow from it are amongst the central findings of this thesis and are relied upon in the

next chapter. Although the following definition is in terms of individual arguments, I discuss it in this

chapter on confirmations as the reflected argument is in the same confirmation as the reflector.

Definition 5.8.1. Let A be a knowledgebase o f labelled assumption formulae and let I : a,

J . p , K:->/3 e arguments (A). The set o f reflected confirm ing argum ents, denoted

reflectedConfirmingArguments(/f J : /? , I : a , A), arising from the canonical undercut o f l . a by

5.8. Type m Reflection - Reflected Confirming Arguments 148

J : P and the direct rebuttal o f J :(3 by K :->(3 is such that:

reflectedConfirmingArguments(/f:

= { L : a G argum ents(A) | J: /3 e canonicalU ndercuts(/:a , A),

K : G directArgumentRebuttals(J : (3 , I :a , A) and L C K } .

In this definition I : a , J : (3 , K : 7 g argum ents(A) might have been placed within the conditional

part of the definition after the |, however it is clear that if they participate in the two attacks J : 0 G

argumentAttacks(7 : a , A) and K : 7 G argumentAttacks(J : (3, A) where attack was defined earlier in

Definition 3.9.2, then they are surely arguments. The same cannot be said fox L . a G arguments(A) and

so it is an explicit condition.

I now give an example o f a Type HI Reflection, i.e. o f a reflected confirming argument.

Example 5.8.1. Type HI Reflection. Let A = {a : 7r, 6 : 7r —► oc,c: X, d : A —> - <7T, e : p , f : p —► 7r}.

Let I = {a, b}, J = { c , d}, K = {e, / , b}. Thus I : a , J : ->(tt A (7r —> a)) , I : it A (7r —> a) , K :

7r A (7x —* a) , K : a e argum ents(A). Therefore J : ->(7r A (7r —> a)) G canonicalUndercuts(/ :

a , A) and I : it A (n —* a) G reflectedArgumentRebuttal(J : ->(7r A (n —* a)) , I : a , A). However,

K : 7r A (7r —► a) ^ reflectedArgu ment Rebuttal (J : -«(7r A (7r —>• a)) , / : a , A), because K % I,

because {6 , e, / } £ { a , 6 }. Additionally K : n A (n —> a) $ reflectedArgumentRebuttal(J : —>(77 A (7r —>

q)) , / ^ : a , A), because J : -*(7r A (7r —> a)) ^ canonicalUndercuts(A' : a , A). Thus it is the case

that K : tc A (n —► a) G directArgumentRebuttals(J : -i(7r A (7r —» a)) , / : a , A). Additionally

K: t x A (7t —* a) G directArgumentRebuttals(J : ->(7r A (7r —► a)) , /<":a , A). This allows the conclusion

that K : a G reflectedConfirmingArguments(/f :7r A (7r —► a) , J :-> (7r A (7r —> a)) , 7 : a , A).

To provide clarity on the mechanism at work here the above example also includes a reflected

argument rebuttal which always exists but does not partake in the reflected confirming argument. The

example makes clear the direct argument rebuttals and hence the reflected confirming argument. This

example uses the = part o f C from the last line of Definition 5.8.1. Here one argument is reflected off

one argument, so this can be called an exact reflection.

Differences between Type I and Type HI Reflections are as follows. Type I has an input of two

arguments in a chain, while Type HI has an input o f three. Type I results in a new argument at the tail

of the chain, whereas the Type HI results in a new argument at the head of the chain. Thus Type I can

be said to flow down the chain (in the direction from head to tail), while the Type HI flows up the chain

(from tail to head). Type I yields an attacking argument, while Type IH yields a confirming argument.

5.8.1 Properties of Reflected Confirming Arguments

Given their prerequisites reflected confirming arguments always exist, however absent any one prerequi­

site and they don’t exist. This observation is addressed by the following two propositions.

Proposition 5.8.1. Let A be a knowledgebase o f labelled assumption formulae and let I : a , J : (3, K :

5.8. Type IE Reflection - Reflected Confirming Arguments 149

->0 e arguments(A).

I f J : 0 e canonicalUndercuts(7:a , A) and K : ->0 e rebuttals(J :0 , A)

then reflectedConfirmingArguments(K : ->0, J : 0 , I : a , A) ^ 0.

Proof. The three argument attack chain of canonical undercut, J : 0 e canonicalllndercuts(7 : a , A),

followed by rebuttal, K : ^ 0 e rebuttals(J : 0 , A), always yields a reflected confirming argu­

ment, L : a , as follows. Given J : 0 6 canonicalUndercuts(7 : a , A) it is known that ->0 =

AstripAssumptions(formulae(label(7 : a) , A)). Clearly stripAssumptions(formulae(label(7 : a) , A)) t-

a . Given K :~>0 e arguments(A) it is a simple fact that

stripAssumptions(formulae(label(7C : ->/?), A)) h ->0, so given K : -*0 e rebuttals(J : 0, A) it fol­

lows that stripAssumptions(formulae(label(7f : ~^0),A)) I— i->/\stripAssumptions(formulae(label(7 :

a) , A)). Thus stripAssumptions(formulae(label(/f : ->0),A)) b a, i.e. that given these relationships

{->/?} I- a , therefore K : a e deductions(A). K may not be minimal, so let L C K , hence there

exists minimal L :a € arguments(A). Therefore there exits L :a € reflectedConfirmingArguments(Tf:

->0, J : 0 ,1 : a, A). Note, regardless o f whether K : ->0 e directArgumentRebuttals(J : 0, A) or

K : -i0 G reflectedArgumentRebuttal(J : 0, A), it follows that K : ~>0 e rebuttals(J : 0, A). If this

rebuttal is reflected then the reflected confirming argument L : a is the same as 7 : a - still non-empty.

So given the necessary prerequisites reflectedConfirmingArguments(7f: ->0, J : 0 ,1 : a, A) ^ 0. □

Thus if the prerequisites are not met then reflected confirming arguments do not exist. The pre­

dictable nature of reflected confirming arguments establishes that they are not just a minor novelty, but

rather that they should have a major impact on the design of debate-tracking trees. It is not that they

sometimes exist and are therefore tolerable - rather it is that they always exist and therefore should al­

ways be considered in professional debate. I thus argue that these reflected arguments need to be pruned

out o f or removed from any debate tracking tree (however at this stage of the thesis I have not shown

how to prune them out).

Now I return to the detailed behaviour: if the second argument in the attack chain is a reflected

argument rebuttal then no new argument is produced. There is a reflection, but it contributes nothing

new to the debate. There is hence no redundancy.

Proposition 5.8.2. Let A be a knowledgebase o f labelled assumption formulae and let I : a , J : 0 , K :

0 e arguments(A).

{reflectedConfirmingArguments(7(': ->0, J : 0 , I : a , A) \

J : 0 e canonicalUndercuts(7:a, A),

K :-<0 e reflectedArgumentRebuttal(J:/3,7:a, A)}

= (' : * } •

Proof. Because K :~>0 is reflected it must be the case that K C 7 and specifically because K :->0 e

reflectedArgumentRebuttals(J : 0 , 1 : a , A) it follows that K = I . From Definition 5.8.1 of reflected

5.8. Type III Reflection - Reflected Confirming Arguments 150

confirming argument, L C K , so L C I . Given that 7 : a G arguments(A) there cannot exist an L Q I

such that L : a G arguments(A) otherwise I : a would not be minimal. So it is not the case that L C I

thus L — I . Therefore the whole set equals I : a . □

Referring back to Figure 5.9, one might think that each reflected confirming argument, L : a , would

then act as a reflector that would transform the direct argument rebuttal K :->(3 at the tail of the attack

chain into a reflected argument rebuttal. This is generally not the case as the middle of the attack chain

does not usually attack the reflected confirming argument, L : a , except for the one situation when the

assumption formulae are identical. Thus it is always the case that the existence of a reflected confirming

argument, given that its assumption formulae are not identical to the reflector argument, does not turn a

direct argument rebuttal into a reflected argument rebuttal.

P roposition 5 .8 3 . Let A be a knowledgebase o f labelled assumption formulae and let I : a , J : (3, K :

~'{3,L:a G argum ents(A).

I f L . a e reflectedConfirmingArguments(/(r: ->(3, J : (3 , I : a , A)

and ^stripAssumptions(formulae(label(7:a), A)) ±

stripAssumptions(formulae(label(L: a) , A))

then K : ->(3 & reflectedArgumentRebuttal(J :(3, L :a , A).

Proof Clearly for L : a G reflectedConfirmingArguments(K : ->(3, J : (3,1 : a , A) it must be the

case that J : 0 G canonicalUndercuts(J : a , A) and that K : -<(3 G directArgumentRebuttals(J :

(3 ,1 : a, A). Thus K % I and ->(3 = /\stripAssumptions(formulae(label(7 : a) , A)). Also because

L : a G reflectedConfirmingArguments(7C : ~ /̂3, J : (3,1 : a, A) it follows that L C K . Therefore

L C K < £ I so L j t l . Furthermore if constraint / \ stripAssumptions(formulae(label(7 : a) , A)) *

/ \ stripAssumptions(formulae(label(L: a) , A)) is met then ->(3 ^ / \ stripAssumptions(formulae(label(7v:

a), A)) therefore in general J : (3 G canonicalUndercuts(L : a, A). The only exception to the general

case is when /\stripAssumptions(formulae(label(7 : a) , A)) = /\stripAssumptions(formulae(label(L :

a) , A)). Thus if L : a G reflectedConfirmingArguments(7f : ->(3,J : (3,1 : a , A) and

/\stripAssumptions(formulae(label(7:a), A)) ^ /\stripAssumptions(formulae(label(L:a), A)) then it

is always the case that K : ->(3 & reflectedArgumentRebuttal(J :(3,L:a, A). □

If it were the case that /\stripAssumptions(formulae(label(7:a), A)) =

f \ stripAssumptions(formulae(label(L: a) , A)) then in addition to J : (3 G canonicalllndercuts(7: a , A)

it would also be the case that J : (3 G canonicalUndercuts(L : a , A). So if it were not for the use of

labels to allow two experts to state the same formulae, the proposition would be simplified to just that

‘the existence of a reflected confirming argument does not transform a direct argument rebuttal into a

reflected argument rebuttal.’

I use the term ‘mutual destruction’ to describe this rare situation where what would normally be a

reflected confirming argument is not because it turns the direct argument rebuttal in the attack chain into

a reflected confirming argument. Mutual destruction occurs when two arguments 7: a , J : a are such that

5.9. Type TV Reflection - Reflected Confirming Confirmations 151

I , J G X :q and stripAssumptions(formulae(label(/ : a) , A)) = stripAssumptions(formulae(label(J :

a) , A)) and the other conditions are met.

5.9 Type IV Reflection - Reflected Confirming Confirmations
I now extend the reflectedConfirmingArguments() function from the level o f individual arguments to that

o f confirmations. I classify reflected confirming confirmations as a fourth type of reflection, which I

call Type IV Reflection, as the following definition and properties show them to materially differ from

the earlier reflection Types I to III. The confirmation graph in Figure 5.10 below provides an overview

of Type IV Reflection. The additional circle indicates a confirmation for a with confirmation label of

V U X. Definitions 3.4.2 of preclusive undercut and 5.6.1 o f direct confirmation rebuttal are reused here.

Reflected Confirmation For all N G V there is an M G U such that N C MV i a

X i a

(Y : /3, W , X : a) G preclusivellndercuts(X: a , A)

U : ->(3 G directConfirmationRebuttals(Y: /?, W , X : a , A)

Reflector Confirmation U : -'(3

Figure 5.10: Type IV Reflection is reflectedConfirmingConfirmations(U: ->(3, Y :(3, W , X :a , A)

Definition 5.9.1. Let A be a knowledgebase o f labelled assumption formulae, let M i ->/3, N i a G

arguments(A) and let U : —>/3, W : a , X : a , Y : (3 G 0 (A). The reflected confirming confirmations, de­

noted reflectedConfirmingConfirmations(U: ->/?, Y : 0 , W , X : a , A), arising from the preclusive undercut

o f X : a by Y : (3 and the direct rebuttal o f Y : (3byU: ->(3 is a set o f confirmations such that:

reflectedConfirmingConfirmations(U: ->(3, Y : /3, W , X : a , A)

= { V :q G 0 (A) | (Y : j3, W , X : a) G preclusiveUndercuts(X:a , A),

U : ~>/3 G directConfirmationRebuttals(Y: /3, W , X : a , A) and

fo r all N G V there exists an M € U such that N C M }.

I call U : the reflector confirmation and V : a the reflected confirmation. Because preclusive

undercuts can be multi-target it is not possible to define reflected confirming confirmations solely in

terms of reflected confirming argument, which is Definition 5.8.1, hence the above form is needed. Thus

we have here and require a fourth type of reflection, Type IV Reflection.

5.9. Type TV Reflection - Reflected Con Arming Confirmations 152

5.9.1 Properties of Reflected Confirming Confirmations

One implication of X being relatively unconstrained in this definition is that none, some or all of the

reflected arguments N : a are such that N e X for the head of the attack chain X : a . Thus it can be the

case that V : a is such that V C X or V n X / 0. It depends on the inputs to the reflected confirming

confirmations function. So supports N , i.e. the argument labels label(iV : a) , can be both part of the

input and the output to this function. Likewise none, some or all of N G W . The above definition

allows X : q ^ top (0(a , A)). Furthermore V : a is allowed to be a power set o f confirmations and not

just a single confirmation. The function is defined so that the output is {V : a £ 0(c*, A)}, the reason

being that 0 0 V. There is no stipulation in the definition that V : a U W : a = top(0(a, A)), nor that

V : a U X : a = top (0(a , A)). None of the confirmations in the attack chain can be labelled with the

emptyset as that is prohibited by the definitions reused here.

Example 5.9.1. Reflected confirming confirmation. Let A = {a : 7 , 6 : 7 —> a , c : 7r, d : it —> a , e :

—>7r V - 17, / : 7r A a} . Also Let I = {a, b } , J = {c, d}, K = {e}, L = {a, b, c, d}, M = {&, d , / } , N =

{6 , / } , O = {d, / } . Consequently I : a , J : a , N : a , 0 : a , K : -> (7 A (7 —► a) A 7r A (n —» a)) , L :

7 A (7 —► a) A 7r A (7r —► a) , M : 7 A (7 —► a) A 7r A (7r —► a) G arguments(A). Additionally let T =

{L} , U = {Af}, V = { N , 0 } , W = { / , J } ,X = { / , J , N yO } , Y = { K} . So V : a , W : a ,X : a , Y :

-> (7 A (7 —* a) A n A (n —» a)) , T : 7 A (7 —> a) A 7r A (ir —► a) , U 1 7 A (7 —* a) A 7r A (7r —► a) € 0 (A).

It thus follow s that (Y : -> (7 A (7 —♦ a) A 7r A (-7T —» a)) , W , X : a) € preclusiveUndercuts(X: a , A).

Also U : 7 A (7 —► a) A tt A (n —» a) e directConfirmationRebuttals(Y: -> (7 A (7 —+ a) A 7r A (x —►

a)) , W , X : a , A). As an aside, there is also a Type II Reflection T : 7 A (7 —» a) A 7r A (7r —> a) G

reflectedConfirmationRebuttals(Y : -> (7 A (7 —* a) A 7r A (7r —» a)) , W , X : a , A) as L C I u J . 77ie

mam pam f 0/ this example is that V : a G reflectedConfirmingConfirmations(U: 7 A (7 —» a) A 7r A (7r —*

a) , Y : -< (7 A (7 —► a) A t t A (n —* a)) , W , X : a , A) because N C M and O C M . So looking ahead

to tracking a professional debate, the two confirmations in this example that would have to be pruned

out are the reflected confirmation rebuttal T : 7 A (7 —> a) A 7r A (7r —> a) and the reflected confirming

confirmation V :a .

Given the prerequisites o f an appropriate attack chain, i.e. a direct confirmation rebuttal attacking

a preclusive undercut, where all three vertices in the chain are valid confirmations, reflected confirming

confirmations always exist.

Proposition 5.9.1. Let A b e a knowledgebase o f labelled assumption formulae and let U : —>/?, W : a , X :

a , Y : /? G 0 (A).

I f (Y :/3, W , X :a) G preclusiveUndercuts(X:a , A) and

U : ->I3 G directConfirmationRebuttals(Y: 0, W , X : a , A)

then reflectedConfirmingConfirmations(U: -i/3, Y : /?, W, X : a, A) / 0.

P roo / Given the preclusive undercut (Y : /3, W , X : a) G preclusivel)ndercuts(X : a , A) it is known

that 0 = -> /\stripAssumptions(formulae(label(W : a) , A)), where W : a is the target confirmation.

5.9. Type IV Reflection - Reflected Confirming Confirmations 153

Also for each M e U it must be the case that stripAssumptions(formulae(label(M : —«/3), A.)) h

->(3. Therefore for each M e U it follows that stripAssumptions(formulae(label(M : ->/3), A)) h

/\stripAssumptions(formulae(label(W :a), A)) and therefore that stripAssumptions(formulae(label(M:

->/?), A)) h a . That M may not be minimal, so suppose an N C M and it follows that given the above

attack chain, for each M e U there exists a valid argument N : a e arguments(A). All of these resultant

N : a , N C M form a confirmation V : a , where N e V. Therefore V ± 0. Thus if (Y : 0, W, X :

a) e preclusiveUndercuts(X : a , A) and U:->j(3e directConfirmationRebuttals(Y: /?, W, X : a , A) then

reflectedConfirmingConfirmations(U: ->/?, Y : (3, W , X : a , A) / 0. □

It is not quite so simple to say that otherwise reflectedConfirmingConfirmations(U: ->/3, Y : /?, W , X :

q , A) = 0 because if the second attack in the attack chain is a reflected confirmation rebuttal (rather than

a direct one) then the reflected confirmation is the same as the reflector confirmation and hence not the

emptyset. If the preclusion is absent, however, the result is the empty set.

Given that these reflections always exist, given their prerequisites, the next question is how many

arguments are there in the reflection.

5.9.2 Scaling and Reflected Confirming Confirmations

I now introduce a variation o f the reflection scaling factor o f Definition 5.7.4 to extend the concept of that

function to also cover reflected confirming confirmations. I append the function name with the words

‘up tree’ to avoid ambiguity.

Definition 5.9.2. Let A b e a knowledgebase o f labelled assumption formulae and let U : ->/?, W : a , X :

a , Y : 0 e 0 (A). The up tree reflection scaling factor, denoted reflectionScalingFactorUpTree(U :

->t3> Y : /?, W , X : a , A), is a rational number such that:

reflectionScalingFactorUpTree(U: ->(3, Y : /?, W , X : a , A)

|label(top(reflectedConfirmingConfirmations(U: ->(3, Y : (3 , W , X :a ,A))) l
|label(U :-i/3)|

The definitions of the key words for the amount o f scaling also need to apply to the different domain.

Definition 5.93 . Let A be a knowledgebase o f labelled assumptions and U : W : a , X : a , Y : (3 e

0 (A).

I f reflectionScalingFactorUpTree(U: ->/?, Y : (3, W , X : a , A) < 1

then reflectedConfirmationConfirmationsU: ->/3, Y : /?, W , X : a , A) is a reduced reflection.

(freflectionScalingFactorUpTree(U: — Y : (3, W , X : a , A) = 1

then reflectedConfirmationConfirmations(U: ->/?, Y : 0 , W , X : a , A) an exact reflection.

reflectionScalingFactorllpTree(U: -*(3, Y : [3, W , X : a , A) > 1

then reflectedConfirmationConfirmations(U: -»/3, Y : (3, W , X : a , A) an enlarged reflection.

5.9. Type TV Reflection - Reflected Confirming Confirmations 154

Now a slightly modified example to illustrate why the earlier definition of reflected confirming

arguments uses L C K rather than L = K (which would have yielded only one reflected argument of

K : a) . W hat this example shows is enlargement, exactly as with Type I Reflections. Here the C is active.

Example 5.9.2. Enlarged reflected confirming confirmation. Let A = { a : a , b : 7 —> a , c : A, d :

\ e : 7r A a , / : a A (7r —> a)} . Let I — {a , 6 }, J = {c, d}, K = { e . / } , L = {e}, M = { / } .

77j«5 I : a , J : ->'), J : -> (7 A (-> 7 —> a)) , / : 7 A (7 —> a) , A" : 7 A (7 —> a) ,L : 7 —♦ a , L :

a , A/ : a e arguments(A). Thus J : -> (7 A (7 —> a)) e canonicalUndercuts(7 : a , A). A/50 I :

7 A (7 —► a) , i f : 7 A (7 —► a) € rebuttals(J : - 1 (7 A (7 —> a)) , A). It is the case that 1 : 7 A (7 —►

a) G reflectedArgumentRebuttal(J : -> (7 A (7 —► a)) , I : a , A), because obviously I C I. It is also

the case that K : 7 A (7 —► a) e directArgumentRebuttals(J : -> (7 A (7 —> a)) , / : a , A), because

K % I. Given this attack chain of three arguments, it follows that there are two reflected confirming

arguments, namely reflectedConfirmingArguments(/f : 7 A (7 —> a) , J : -> (7 A (7 —► a)) , I : a , A) =

{L : a , M : a } where L £ i f , M £ K. Now two checks to ensure the safety of this result. Firstly

K : 7 A (7 —» a) ^ reflectedArgumentRebuttal(J : - * (7 A (7 —► a)) , L : a , A), because J : -> (7 A (7 —>

a)) £ canonicalUndercuts(L : a , A). Secondarily K : 7 A (7 —► a) $ reflectedArgumentRebuttal(J :

-> (7 A (7 —* a)) , M : a, A), because J : -> (7 A (7 —► a)) ^ canonicalUndercuts(M : a , A). So the

reflection off the one argument K : 7 A (7 —► a) has yielded two arguments L : a and M : a, giving

an enlarged reflection. Thus reflectionScalingFactorUpTree({ i f } : 7 A (7 —> a) , { J } : -> (7 A (7 —>

a)) , { i } , { i } : a , A) = \ {L,M}\ - | { i f } | = 2 - 1 = 2.

The above proves by example that Type i n and IV Reflections are not always exact reflections.

They can be enlarged. This example suggests problematic behaviour would arise if reflected confirming

arguments were used to stand in for the direct rebuttals they are reflected from.

A further implication is that the existence of reduced reflections is also inevitable. Just as shown

before for preclusive undercuts, the $ part o f C allows support shortening (e.g. a reflector with support

o f {a, 6 , c} giving rise to reflections with supports such as {6 , c}). Consequently two different shortened

subsets (e.g. reflectors {a, b, c}, {b, c, d} yielding reflections {b, c}, {b, c}) which then go on to merge

(to be just {6 , c}). Hence a reduced reflection. Here is an example of one.

Example 5.93. Reduced reflected confirming confirmation. Let A = {a : 7 , 6 : 7 —► a , c : A, d :

A -» ~>7 , e : 7T A /i A a , / : 7r -* 7 , 9 : p -> 7 }- Let I = { a , b } , J = { c , d } yK - { e , /} ,L -

{e, p}, M = {e}. Therefore I : a , J : -> (7 A (7 —► a)) , / : 7 A (7 —♦ a) , M : 7 —► a , i f : 7 A (7 —►

a) , L : 7 A (7 —> a) € argum ents(A). So J : -> (7 A (7 —* a)) e canonicalUndercuts(7 : a , A)

and K : 7 A (7 —► a) , L : 7 A (7 —♦ a) € directArgumentRebuttals(J : - 1(7 A (7 —► a)) , I : a, A)

- these two arguments are direct because K % I and L % I. Naturally there is also I : 7 A (7 —►

a) G directArgumentRebuttals(J : - > (7 A (7 —* a)) , I : a , A). Now fo r the point o f this example: firstly

M : a € reflectedConfirmingArguments(/f : 7 A (7 —► a) , J : -> (7 A (7 —> a)) , / , / : a , A) because

M £ / f and secondly M : a e reflectedConfirmingArguments(L : 7 A (7 —» a) , J : - < (7 A (7 —>

a)) , / : a , A) because M £ L. So although there are two reflectors at the tail o f the argument chain

there is only one reflected argument at the head. Because |{M } | < |{ i f , L}\ this a reduced reflection.

5.10. Conclusion for Reflected and Direct Confirmations 155

Consequently reflectionScalingFactorUpTree({I/} : 7 A (7 -> a) , { J} : - . (7 A (7 -» a)) , { / } , { / } :

a , A) = |{M } | 4- \ {K,L}\ = 1 -5- 2 = 0.5.

As enlarged and reduced reflected confirming confirmations have been shown, it follows that a

combination of the two mechanisms can be employed to yield exact reflections.

5.9.3 Direct Confirming Confirmations

By symmetry, the next and final step in this pattern of reflected and direct functions is the topic of

direct confirming arguments and direct confirming confirmations. If small steps were used the steps

would be direct confirming argument, then direct confirming confirmation leading to a maximal direct

confirming confirmation. Similar ground has been covered several times already so it is practical to move

immediately to maximal direct confirming confirmations, which for short I call direct confirmations. This

definition leverages Definition 5.9.1 of reflected confirming confirmations.

Definition 5.9.4. Let A b e a knowledgebase o f labelled assumption formulae, let L : a G arguments(A)

and let U : —</3, V : a , W : a , X : a , Y : (3 G 0 (A). The set o f direct confirmations, denoted

directConfirmations(X : a, A), which is devoid o f reflected confirming confirmations from any reflec­

tor is the set o f confirmations such that:

directConfirmations(X: a, A)

= { T : a G 0 (A) | fo r every L g T there does not exist an L G V such that

V : a = top(reflectedConfirmingConfirmations(U: ~>/3, Y : /?, W , X : a, A)),

(Y : /?, W , X : a) G preclusivellndercuts(X: a , A) and

D:->/3 G directConfirmationRebuttals(Y:/3, W ,X :a , A)}.

The set o f direct confirmations for a is a power set of confirmations directConfirmations(X: a , A) C

0 (a , A). It is a filter or pruning function because T C X. In the definition W is such that W C X.

A direct confirmation for a is not necessarily the maximum cardinality confirmation for a , but it is

maximal in the sense that it takes into account all possible reflectors. The directConfirmations(X: a , A)

does require the input parameter o f A as it ensures that there do not exist any reflectors that could give

rise to reflected arguments in the output.

To look ahead for a moment, to be free of reflections, the root node of a debate tracking tree therefore

intuitively has to be the contradiction (X, Y) : a where :

X : a — top(directContirmations(top(0(a, A), A).

Y : ->a = top(directConfirmations(top(0(~,a , A), A)).

5.10 Conclusion for Reflected and Direct Confirmations
The ten principal functions from this chapter, plus three more included for context, are summarised in

Table 5.1. This table is a close parallel to the one at the end of Chapter 4, with the exclusion of abstract

reflections and the inclusion of maximal reflections. It also includes the up-chain reflections arising

5.10. Conclusion for Reflected and Direct Confirmations 156

from the combination of rebuttal and undercut. The key difference with the previous summary table,

Table 4.3, is o f course that the one from the last chapter is at the level o f individual arguments whilst the

table below is at the level o f sets o f arguments, i.e. confirmations. This analysis of reflection on the level

of confirmations uncovers a number of properties that bear on the automation of debate.

The two maximal direct functions and the direct confirmation are the ones used in the next chapter -

on debate tracking trees. All o f the functions in the above table return power sets of confirmations, with

the maximalDirectConfirmationRebuttal() being a special case as it always returns a singleton set - hence

its singular name.

Attack Reflection Confirmation Attacks Function Def.

Rebuttal Reflected
U Direct

Undercut Reflected
U Direct

Attacks Reflected
U Direct

confirmationRebuttals(X: a , A)

preclusiveUndercuts(X: a , A)

confirmationAttacks(X: a , A)

2 .6 .8

3.4.2

3.9.4

Rebuttal Reflected Only

Undercut Reflected Only

Attacks Reflected Only

reflectedConfirmationRebuttals(Y: /?, V, X : a , A)

reflectedPreclusiveUndercuts(Y : (3, V, X : a , A)

reflectedConfirmationAttacks(Y: (3, V, X : a , A)

5.5.1

5.2.1

5.7.1

Rebuttal Direct Only

Undercut Direct Only

directConfirmationRebuttals(Y: 0 , V , X : a , A)

directPreclusiveUndercuts(Y: /?, V, X : a , A)

5.6.1

5.3.1

Rebuttal Direct, Maximal

Undercut Direct, Maximal

maxima!DirectConfirmationRebuttal(Y: (3, X : a , A)

maximalDirectPreclusiveUndercuts(Y: (3, A)

5.6.2

5.3.2

Undercut Reflected Only
then
Rebuttal

Undercut Reflected Only
then
Rebuttal

Undercut Direct, Maximal
then
Rebuttal

reflectedConfirmingArguments(K : ->/?, J: (3t I : a , A)

reflectedConfirmingConfirmations(U: ->(3, Y : /?, W , X : a , A)

directConfirmations(X: a , A)

5.8.1

5.9.1

5.9.4

Table 5.1: Summary of Reflected and Direct Confirmation Attacking Functions

Reflections can flow both up and down a chain of arguments, with the reflected undercuts and

rebuttals all being down chain. The reflected confirming arguments, however, flow up the chain from

leaf to root. The reflection scaling factors which occur with confirmations undercutting and rebutting

each other are shown in Table 5.2 below.

This chapter has uncovered the principle properties of reflections amongst confirmations, many of

which might not be intuitively expected and all o f which bear on the automation of professional debate.

Further research may uncover further forms of reflection and certainly further properties of those forms

defined here. A key observation from this and the last chapter is that reflections are subject to scaling

5.10. Conclusion for Reflected and Direct Confirmations 157

Reflected E n larged Exact Reduced

Preclusive Undercut: Exist

Example 5.7.3

Multi-Pair, Section 5.7.4

Mono-Pair, Definition 4.6.1

Exist

Example 5.7.2

Exist

Example 5.7.1

Confirmation Rebuttal: Exist

Example 5.5.3

(relies on labels)

Exist

Example 5.5.2

(relies on labels)

Exist

Example 5.5.1

Confirming Confirmation: Exist

Example 5.9.2

Exist

Section 5.9.2

Exist

Example 5.9.3

Table 5.2: Summary of Scaling Factors Found With Confirmation Reflections

and thus can result in enlarged, reduced, exact or even distorted reflections - except, as shown in the

previous chapter, for reflected argument rebuttals which are only ever exact. An area for further research

is to examine more closely the role of labels in scaling and see which scaling situations in Table 5.2

would not occur if labels were removed.

There are two mechanisms that can cause enlarged preclusive reflections (mono-pair and multi-pair

enlarged reflection), but only one one mechanism for reduced reflection (support merging). Scaling in

general, and distortion in particular, show the notion that arguments in a debate can be counted by count­

ing their reflections to be impractical or unworkable. The targets of all reflected preclusive undercuts are

always mono-attack.

One possible area for future research would be to investigate more fully the properties o f an abstract

confirmation attacks functions, including reflected confirmation attacks, direct confirmation attacks and

maximal direct confirmation attacks. Such an approach might build on the work of Dung, working at

at abstract level o f 'attacks’, but employing confirmations rather than individual arguments as the graph

nodes.

This chapter lays the foundations for constructing debate tracking trees in the next chapter and

therefore to judging debates in the chapter after that.

Chapter 6

How to Track a Debate

This chapter establishes that an effective way to track a debate, the whole debate and nothing but the

debate is to use a tree of contradictions with all o f the reflected arguments pruned out of the tree, leaving

just the direct arguments. This proposal is based on a critical analysis of trees in the literature, with a

specific analysis o f the tree in (Besnard & Hunter, 2001) and a general analysis that includes the trees of

(Prakken & Sartor, 1997; Amgoud & Cayrol, 2002; Garcia & Simari, 2004; Dung et al., 2006). My

examination shows that the question o f how to handle reflection in argument graphs is a general problem

in the literature not limited to any one particular publication.

6.1 Overview of the Chapter
I develop this chapter’s evaluation o f how to track a debate in seven stages. It moves from showing issues

with approaches in the literature to proposing a new approach that responds to these issues.

Debate Tracking in the Literature Section 6.2 describes various approaches found in the litera­

ture and then picks one for detailed analysis o f the effects o f reflection.

Argument Trees are Incomplete Section 6.3 shows several distinct mechanisms that lead to ar­

gument trees lacking necessary arguments making them incomplete.

Argument Trees are Inordinate Section 6.4 shows that there are additional mechanisms which

result in argument trees containing excessive, i.e. unnecessary or redundant, arguments.

Further Argument TVee Behaviours Section 6.5 shows i) the proxy arguments that argument

trees contain do not accurately represent the arguments that are excluded, ii) that argument trees

are sensitive to the way the knowledgebase is written down and iii) they can be asymmetrical.

Rationale for Matt Opaque Contradiction Trees Section 6 .6 provides a reasoned path from

the problems I identify with debate tracking in the literature to the justification of the new ap­

proach of the subsequent section.

Definition of Debate Trees Section 6.7 starts with a series of helper functions to succinctly de­

fine this new debate tracking structure so that it is free from reflection. I call this matt opaque

contradiction tree a debateTree(a, A) or just ♦ * (a , A) for short (see Definition 6.7.7).

6.2. Debate Tracking in the Literature 159

Properties of Debate Trees Section 6 .8 rounds out the chapter by examining the behaviour and

establishing a number of properties of these new trees.

I propose that my debate tree is a practical solution to the problem of how to track a professional debate.

For any particular debate a necessary prerequisite to correctly judging the outcome is thus, I would argue,

to populate the debate tree data structure.

6.2 Debate Tracking in the Literature
The examples of debate tracking covered so far in this thesis, notably in Section 2.7.2 on simple illustra­

tive judges, take the elementary approach o f relying on a single contradiction. Works in this area include

(Benferhat et al., 1993; Krause et al., 1995; Elvang-Gpransson & Hunter, 1995). For further use of a

single contradiction to track a debate in the informal literature see (Willcox & Bridgewater, 1977) and

descriptions in (Krause et al., 1998) and (Fox & McBumey, 2002). The limitation of tracking with a

single contradiction is that undercut cannot be taken into account and as shown in Section 3.2.2 under­

cuts can change debate outcomes, so including them is prudent. Consequently a more sophisticated data

structure is warranted and there is an established consensus in the literature that some form of graph, tree

or forest is appropriate. To create a graph to track a debate, it is necessary to make a choice for what the

graph vertices represent and another choice for the graph edges.

Vertex representation. W hile graphs in the literature tend to use arguments for the vertices, my

finding and recommendation is that sets o f arguments, namely confirmations, or even better contradic­

tions, are better suited as the nodes in a debate-tracking graph. Each contradiction then isolates a point

o f classical inconsistency. Much of this thesis is a justification for mapping vertices to contradictions.

The thesis touches upon five different argument definitions (see Table 6.1), which are the main five to

be found in the literature (excluding the related field of priorities or preferences). My focus is on classi­

cal logic labelled mincons as I find them well suited to tracking contributions in debates. These vertex

representations are summarised as Table 6 .1. The citation is the earliest formal definition I have located.

Argument Earliest Use Reference

1 . Abstract argument (Dung, 1993) Definition 3.9.1

2 . Semi-abstract (Bondarenko et al., 1997) Definition 4.3.1

3. Defeasible rule (Pollock, 1992) Not defined in thesis

4. Mincon (Doyle, 1979) Definition 2.4.2

5. Labelled mincon (Gabbay, 1991) Definition 2.4.2

6 . Contradiction this thesis Definition 2.6.1

Table 6 .1: Candidates Forms for Vertices in Debate Tracking Graphs

Edge representation. Now to turn to the question of what the inter-nodal links should be. There

is a general consensus in the non-bipolar majority o f the literature that the edges should be some form

of attack, but what kind of attack is not agreed upon. In this thesis, I analyse at least seven different

6.2. Debate Tracking in the Literature 160

definitions that could be seen as attack, m ost o f which are used in debate tracking structures in the

literature, as summarised in Table 6.2.

Attack Citation Reference

1 . Abstract attack (Dung, 1993) Definition 3.9.1

2 . Rebuttal only (Benferhat et al., 1993) Section 2.7

3. Undercut only (Pollock, 1992) Definition 3.2.2

4. Rebuttal or undercut (Amgoud & Cayrol, 1998) Definition 3.9.2

5. Direct rebuttal This thesis Definition 4.8.1

6 . Direct canonical undercut This thesis Definition 4.5.1

7. Direct preclusive undercut This thesis Definition 5.3.1

Table 6.2: Candidates Forms for Edges in Debate Tracking Graphs

Given the lists o f possible vertices and edges the question arises: in what ways have these been

combined and explored in the literature? Prior to doing further detailed research, can it be said which

ones may contain reflection and are there any where reflection can definitely be ruled out?

Publication Vertices Edges Name

1 . (Pollock, 1992) Defeasible rule Undercut or rebuttal Defeat graph

2 . (Dung, 1993) Abstract argument Abstract attack Dung graph

3. (Prakken & Sartor, 1997) Defeasible rule Undercut or rebuttal Dialogue tree

4. (Besnard & Hunter, 2001) M incon Canonical undercut Argument tree

5. (Amgoud & Cayrol, 2002) Abstract argument Abstract attack Dialogue tree

6 . (Garcia & Simari, 2004) Defeasible rule Undercut or rebuttal Dialectical tree

7. (Dung et al., 2006) Semi-abstract Undercut only Dispute tree

8 . This thesis Contradiction Direct preclusive undercut Debate tree

Table 6.3: Summary of Debate Tracking Graphs or Trees

Table 6.3 provides a representative sampling o f debate tracking structures found in the literature and

additionally in this thesis. I now comment on each o f these leading debate tracking forms in the literature

before making some more general observations about reflection in these various trees of arguments.

Defeat graph of (Pollock, 1992). The defeat graph from (Pollock, 1992) is based on defeasible

logic with the modus ponens proof rule dominating in examples. What is not clear is exactly what proof

rules are available and thus what forms o f reflection are present. It would appear that contraposition is

probably not allowed, however that does not rule out reflection as several other forms of reflection, e.g.

Type HI, are not dependent on contraposition.

Dung graph of (Dung, 1993). W hile the writings of Dung do not major heavily on graphical

visualisations of arguments, those commenting on his works, such as(Prakken & Vreeswijk, 2002) do

make extensive use of such graphs. The vertices are single abstract arguments and the edges denote are

6.2. Debate Tracking in the Literature 161

one argument attacking one argument with an abstract attack of unspecified form. Clearly out of scope

are vertices covering more than one argument and attacks attacking more than one argument. The Dung

graphs are quite different from the other lines in this table as a) they are the only one that is a graph not

a tree and b) the vertices and edges are abstract rather than concrete.

Dialectic tree of (Prakken & Sartor, 1997). This is another defeasible logic tree with an existential

judge building on the work of Pollock. Priorities are included together with a novel feature for debating

priorities. They make a distinction between i) deciding whether an individual argument is justified with

a ‘proof theory’ which I would call a debate tracking structure plus judge and ii) a ‘semantics’ which

identifies sets o f justified arguments in the style of Dung. Their undercuts are similar but not identical to

Wigmore undercuts, and do not involve priorities, whereas their rebuttals do. This landmark paper has

clearly provided some inspiration to at least (Amgoud & Cayrol, 2002; Garcia & Simari, 2004).

Argument tree of (Besnard & Hunter, 2001). The existence of reflection is acknowledged in this

paper and the tree features a no-recycling constraint (NRC) and an edge choice that appear to have been

influenced by this understanding. The removal of reflection is partial. Another strength of this paper is

that it is explicit in stating how the outcomes of multiple trees are combined - an area I would suggest is

underdeveloped in the literature. It uses the full classical logic , setting it apart from the body of papers

which limit themselves to a smaller set o f proof rules.

Dialogue tree of (Amgoud & Cayrol, 2002). The dialogue tree of (Amgoud & Cayrol, 2002) is

presented as a proof procedure to establish if a particular argument A is acceptable. The argument A

is placed at the root o f the tree and each attack on A, and each attack on those attackers etc., analysed.

W hile this paper contains a discussion of mincon arguments and Wigmore undercuts, the vertices of the

dialogue tree are defined as abstract arguments based on (Dung, 1993), augmented with priorities in the

style of (Amgoud & Cayrol, 1998). The edges are thus abstract attacks meaning that it is not possible

to say precisely whether the tree does or does not contain reflection. The implications of following

through with the mincon and W igmore undercut specifics for dialogue tree and its judgements would be

an interesting area for further research.

Dialectical tree of (Garcia & Simari, 2004). This is another defeasible tree employing priorities

and an existential judge (gaining at least some inspiration from Prakken). The proof rules are limited

and contraposition is explicitly excluded. As with Prakken the undercut-like attack is not one analysed

in my earlier Chapter 3, but unlike (Besnard & Hunter, 2001) and perhaps (Dung et al., 2006), the attack

is arguably more general as it includes rebuttal. The root of each tree is still a single argument yielding

a forest of trees for a claim.

Dispute tree of (Dung et al., 2006). I established in Section 4.3 that the semi-abstract ABA frame­

work allows reflection, which would suggest that reflection exists in the trees of (Dung et al., 2006), as

these trees are based on the same semi-abstract approach. This 2006 paper builds on the approach of

(Prakken & Sartor, 1997; Amgoud & Cayrol, 2002) and others in treating the tree as the recording of a

dialogue between proponent and opponent. In contrast, the approach of (Elvang-G0 ransson & Hunter,

1995; Besnard & Hunter, 2001; Fox & McBumey, 2002), others and this thesis is to build the tree

6.2. Debate Tracking in the Literature 162

from a single knowledgebase, where all allowed arguments and attacks are computed and automatically

included as part o f the debate. W hile edges o f the tree are specifically undercuts only, the authors present

an argument as to why they believe rebuttals are also catered for. The theme of (Dung et al., 2006), I

would argue, is probably one of the most promising area for future research in argumentation - where

Dung-style semantics are integrated with concrete assumption-based argumentation.

Debate tree of this thesis. . Later on in this chapter I define the debate tree as a debate tracking

structure which overcomes the shortcomings I identify with trees in the literature. The vertices of my

debate tree are contradictions and the edges are preclusive undercuts between contradictions. The tree is

so defined as to be devoid o f reflected arguments. All o f the arguments in one debate can be tracked in a

single tree, rather than in a forest o f trees, as is the situation with for example with (Besnard & Hunter,

2001; Garcfa & Simari, 2004; Dung et al., 2006).

More recent note-worthy existing research on trees of arguments includes the further analysis of

defeasible trees by (Prakken et al., 2005) and classical trees by (Amgoud et al., 2004). The differences

between these two approaches, defeasible and classical, are relatively small, when contrasted with the

abstract Dung and semi-abstract ABA approaches.

Observation on reflections in trees. One m ight think that various mechanisms in these trees would

ensure that reflections were absent, however each such conjecture is not robust:

1. Defeasible logic. In many defeasible logics the set o f proof rules is more restrictive than in clas­

sical logic and in some contraposition, > *s specifically excluded, e.g. (Garcfa & Simari,

2004). It might be thought that without contraposition reflection would not be possible, however

there are two responses to that idea.

• Although my proof of Base Proposition One (Proposition 4.2.1) uses contraposition, other

the predictable existence of forms of reflection, including Base Proposition Two (Propo­

sition 4.7.2), Type HI (Proposition 5.8.1) and Type IV do (Proposition 5.9.1) not rely on

contraposition. Hence, ruling out the contraposition proof rule does not rule out reflection.

• Furthermore, the same outcome can be achieved by using a combination of different proof

rules, e.g. t p y h » a » *â (3 yields ^ contrapositive, but doesn’t use contraposition.

Some would argue, however, that this sequence of proof rules is still contraposition.

2. Wigmore undercut. W hile the bulk of my analysis o f reflection uses canonical undercuts, many

of these trees employ a form of Wigmore undercut instead, e.g. (Amgoud & Cayrol, 2002; Dung

et al., 2006). It might be thought that that switch would prohibit reflection, however Proposi­

tion 4.3.1 shows reflection always existing even with Wigmore undercut.

3. Excluding rebuttal. The trees o f (Besnard & Hunter, 2001; Garcfa & Simari, 2004; Dung

et al., 2006) have already excluded all or most rebuttals and hence it would appear plausible that

reflection (off rebuttals to undercuts) was already catered for. The counter to this suggestion is

provided in Base Proposition Four showing that even with undercuts alone reflection occurs.

6.2. Debate Tracking in the Literature 163

4. No-recycling constraint (NRC). Some of these trees employ a device to keep them finite, which is

commonly called a no-recycling constraint. Some NRCs are simple in that they prevent repetition

of an argument in a path from leaf to root (e.g. (Prakken & Sartor, 1997; Amgoud & Cayrol,

2002), while others NRCs, such as that in (Besnard & Hunter, 2001), are more sophisticated

in preventing the reuse of supports. Given the absence of support reuse it might be thought that

reflection would be excluded. The counter is that even by excluding undercut to undercut reflection

there are other kinds, such as rebuttal to undercut and up-tree, that are not excluded.

Furthermore, none o f the trees in the literature appear to contain any explicit device to exclude all

reflection. Some appreciation o f reflection appears to have affected the forms in (Besnard & Hunter,

2001) and seems to have influenced the intuitions o f (Dung et al., 2006). The conclusion has to be drawn

that all o f the trees o f arguments in the literature probably do contain reflection and that a body of further

research is needed to confirm or refute that opinion.

As all o f the approaches in the literature appear to lack a full appreciation of reflection so all o f them

are likely to yield arbitrary judgem ents for some knowledgebases. O f these debate tracking approaches,

the classical forest approach of (Besnard & Hunter, 2001) is arguably the most promising as it has at

least some consideration o f reflection, however it too also exhibits a number of properties which could

be problematic in mapping to professional debate. To perform a detailed analysis of all of the forms of

reflection in all o f the trees o f arguments in the literature would be too broad a topic for this thesis so I

pick one and document that detailed analysis as follows.

6.2.1 Argument Trees and Argument Structures - Classical Logic Forests
The argument tree was defined by (Besnard & Hunter, 2001). The same definition is also to be found in

several follow on papers, notably (Cayrol & Lagasquie-Schiex, 2002; Hunter, 2004a; Hunter, 2004b).

I now recap the standard definition o f an argument tree, first using the notation of the original:

Definition 6.2.1. (Besnard & Hunter, 2001)'s Definition 6.1. An argument tree fo r a is a tree where

the nodes are arguments such that:

1. The root is an argument fo r a,

2. Fornonode ($,/3) with ancestor nodes ($ i , / ? i) , . . . , ($ n >/?n) is $ a subset o f $ i U . . . U $ n,

3. The children nodes o f a node N consist o f all canonical undercuts fo r N that obey 2.

Clause 2. is called the no-recycling constraint. When a graph is cast into a tree it is the NRC

that ensures the resultant tree is finite. The next step, as in the original, is to allow argument trees to be

collected together to form argument structures or forests with the aim of tracking the whole debate.

Definition 6.2.2. (Besnard & Hunter, 2001) ’s Definition 8.1. An argument structure fo r a formula a

is a pair o f sets ('P , C) where V is the set o f argument trees fo r a and C is the set o f argument trees fo r

-> q .

The above two definitions build on the same standard classical logic mincon argument and canonical

undercut definitions as I employ, except they do not use a labelled deductive system (LDS). A key to

6.2. Debate Tracking in the Literature 164

understanding the two definitions above is Besnard and Hunter’s argument that canonical undercuts can

stand in for, or represent, rebuttals. Hence they track no rebuttals (apart from at the root) and only track

undercuts.

A minor challenge with the above definition of argument tree is that the vertices do not form a set.

In standard graph theory, a graph comprises a set o f vertices and a set of edges. In the above, however, it

is allowed that a particular argument may appear m ore than once in the tree and hence as more than one

vertex. (Dung et al., 2006) observe the same issue in their tree and use a mapping function somewhat

akin to the one I describe below (in that they refer to labelling a node with an argument, rather than the

node being the argument), but (Garcfa & Simari, 2004) follow the same approach as (Besnard & Hunter,

2001). Here is an example of this minor challenge:

Example 6.2.1. Repeated vertices in an argument tree. Let A = {a:/3,b:(3 —> a, c : cr , d:a —»

7, / : 7 -» 9 : ^ 7 A -«<r, h : 7 V a}. Let I = {a, b}, J = {c, d}, K = {e, / } , L = { g } , M = {h}.

Members o f arguments(A) appear as nodes in the resultant argument tree fo r a below. The argument

M : - ’(- ’7 A ~icr) appears twice as two separate nodes in this argument tree showing vertex repetition.

Figure 6.1 shows this repetition using the fo rm o f an argument graph (Definition 3.9.3).

I : a

J:-n(/J A (/? -> < *)) K : ->(/? A (/? —► a))

L : -i(<t A (0 —► ~<P)) L : - i (7 A (7 —> -./?))

M 7 A -i<t) M 7 A -i(j)

Figure 6 .1: Repeated Vertices in an Argument Tree

A minor nomenclature improvement would thus be to have a set that represents vertices, a further

set that represents arguments and then use a third device, a suijective function to map many vertices to

single arguments, so that each vertex has attached to it a specific argument.

To facilitate subsequent definitions and overcome the above minor challenge I now rewrite the

definition of argument tree in my notation to use such a mapping function. Certainly by doing so I add

the possibility of additional behaviour due to labels, but that is not my motivation, and certainly not the

cause of the properties established below. So here is the argument tree adapted to have unique vertices

and edges.

6.2. Debate Tracking in the Literature 165

Definition 6.23. Let A b e a knowledgebase o f labelled assumption formulae. An argument tree fo r an

argument fo r a , I :a , denoted argumentTree(7 : a , A) = (V, £ , arguments(A), /) , where V is a set o f

vertices, £ is a set o f edges a n d / : V h > arguments(A), is such that:

1. The root v root € V o f a tree fo r I . a i s such that f { v root) G arguments(a, A),

2. Vchild € V is a child o f v G V

i ff (/ (vchild) € canonicalUndercuts(/(u), A) and

\abe\(f (vchud)) £ la b e l(/(v i)) u . . . U label(/(vn)),

where v \ , . . . , v n G V are the ancestors o f vchud)-

The last two lines together comprise the no-recycling constraint which is a mechanism to ensure

that the tree is finite and free from cycles, i.e. closed walks, of repeated arguments.

I use the above definition when documenting my analysis of reflection in argument trees below.

In this definition every v G V has one and only one / (v) G arguments(A), that is, every node

maps to an argument, rather than being an argument. Also any edge, representing a canonical under­

cut, is (Vchud, v) € £ . To avoid repeating Definition 6.2.2, I now state that forests of argument trees

argumentTree(7: a , A) can also be held in the argument structure of Definition 6.2.2.

In the following three sections I establish that argument trees have several behaviours that do not

map well to professional debate, namely that they are incomplete, inordinate and inchoate. Thus argu­

ment trees exist which lack necessary arguments, which contain unnecessary arguments and where the

arguments they do contain do not accurately represent the ones that are absent. Consequently there will

exist judge functions for these argument trees that will yield debate outcomes that are different from

those commonly or intuitively expected by professional debate.

The definitions o f inordinate and incomplete address establishing both the existence and the right

number o f arguments. If the right number are present, but they do not behave as they should then that is

inchoate tree behaviour. I employ a graphical notation in the following examples where on the left I place

an argument graph (Definition 3.9.3) portraying an argument structure (Definition 6.2.2) and on the right

the intuition o f a robust professional debate portrayed as a contradiction graph (see Definition 3.9.6). The

right side trees are, in fact, debate trees as defined later, but for now they should be viewed as informal

structures that build motivation for the later formalism.

A slightly different graphical form is used in (Besnard & Hunter, 2001) for the visual presentation of

argument trees. In contrast to my argument graphs they show less information about the claim and more

about the support. My view is that these mathematical presentational differences are not fundamental

as i) they have no impact on the underlying formalisms, ii) that the undercuts’ claims can be inferred

from the attacked supports and vice versa, iii) that the point a debater is making with an argument is

of more primary or immediate importance than the set o f assumptions they use to backup their point

and iv) to help someone appreciate and genuinely understand the parts of a debate I would suggest that

a considerably more sophisticated and adjustable graphical user interface (GUI) is required - see for

example the illustrations in the book Visualizing Argumentation by (Kirschner et al., 2003).

6.3. Argument Trees are Incomplete 166

6.3 Argument Trees are Incomplete
The first o f these properties o f argument trees is that they are incomplete. I use the term incomplete to

mean that necessary arguments are missing. An argument tree is incomplete if the A is such that one of

the four following situations occurs.

6.3.1 Type A Incomplete - Non-root Rebuttals Excluded

Argument trees, by definition, exclude all rebuttals below the root, and hence exclude all direct rebuttals

below the root. I hold a contrary position, that direct rebuttals are a legitimate and necessary part of

professional debate. The following example highlights this difference of approach.

Exam ple 6 3 .1 . Type A Incom plete. This example illustrates Type A Incompleteness by providing a

graphical representation o f the earlier Example 4.8.1 o f a direct argument rebuttal, see Figure 6.2.

I:oc 0 <{/},0):<*

m
J : —1(7r A (7r -»• a)) ({ J } , { L }) : A (n —► a))

Incomplete Argument Structure Complete Professional Debate

Figure 6.2: Type A Incomplete - Non-root Rebuttals Excluded

The direct argument rebuttal L : rr A (tt —> a) would be part o f a complete professional debate but

would be excluded from an argument tree. Here the argument tree has fewer arguments than I deem is

necessary.

The argument o f (Besnard & Hunter, 2001) is that their exclusion of rebuttals from argument trees

is legitimate because these absent rebuttals are represented by their reflected canonical undercuts. My

counter-argument to that defence is that the resultant Type B Incompleteness (and the inordinate be­

haviours discussed in the next section) bring more disadvantages than advantages.

63.2 Type B Incomplete - Reduced Reflections from Excluded Direct Rebuttals

Reflected canonical undercuts arising from direct rebuttals are not good representatives of those rebuttals

due to changes in the scaling factor o f the reflection. Type B Incompleteness arises when there is a

reduced reflection o f reflected canonical undercuts, reflected off two or more direct argument rebuttals.

In this situation the debate tracking, as recorded in an argument tree, has fewer arguments than I deem

necessary.

To illustrate Type B Incompleteness I revisit Example 5.7.1. Even though it uses preclusive notation

it is still about mono-target attacks and hence about canonical undercuts. The use of confirmation and

preclusion notations makes it easier to describe and see the incomplete behaviour.

Exam ple 63 .2 . Type B Incom plete. Let A = { a : / ? , b :0 —* a , c : i , d : ' y —> -•/?, e: ->' yAn/ \XAoA0, f :

7r -► (0 —> a) , g : \ (0 -► a) , h : a -► (0 - » a) } . Let I = { a , 6 } , J = { c , d } , K = { e , / } , L =

6.3. Argument Trees are Incomplete 167

{e, g }, M = {e, /i}, N = {e}. So I : a , J : -./? V -.(/? a) , J : -.(/? A (/5 -> a)) , X : 0 A (0 -» a) , L :

0 A (0 —> a) , M : 0 A (0 —► a) , AT: -1 7 V -> (7 —> -> 0) ,N : 1 (7 A -> (7 —> ->/?)) € arguments(A). 77ie

roof 0/ f/jz's argument tree fo r a is I : a . The root has one child which is a direct canonical undercut,

namely J : ->(0 A (0 —* a)) G directCanonicalUndercuts(7 : a , 0, A). 77h's direct canonical undercut

has three direct argument rebuttals, i.e. K : 0 A (0 —> a) , L : 0 A (0 —> a) , M : 0 A (0 —> a) G

directArgumentRebuttals(J : ->(/? A (0 —> a)) , I : a , A). 77ie.se f/iree direct rebuttals are not part o f

the argument tree, but they would be part o f a professional debate. I f it is the case that these direct

argument rebuttals can be represented by their reflected canonical undercuts, then that turns out to be

ju st N : - 1 (7 A - 1(7 —► -i/3)) e reflectedCanonicalUndercuts(J : ->(0 A ->(0 —► a)) , K : 0 A (0 —► a), A).

I f the representation was 1:1 there should be three reflected canonical undercuts, but in fac t there is only

one fo r all three reflectors - because also N : -> (7 A - 1(7 —► ~>0)) € reflectedCanonicalUndercuts(J :

->(0 A (0 —► a)) , L : 0 A (0 —» a) , A) and N : -> (7 A -< (7 —> ->0)) G reflectedCanonicalUndercuts(J :

-i(0 A (0 —> a)) , M :0 A (0 —► a) , A). This reduced reflection occurs as N £ M ,N £ L ,N £ K . So

the only child o f J : -«(0 A (0 —> a)) in the argument tree is N : -> (7 A -> (7 —> ~'0)). Thus, as shown in

Figure 6.3, this argument tree fo r a , quantitatively has two arguments missing, relative to professional

debate, and is thus an incomplete tree.

I . a

J : ^ { 0 A (/? —> a))

N : ~ 1(7 A (7 —► ~'0))

Incomplete Argument Tree Complete Professional Debate

Figure 6.3: Type B Incomplete - Reduced Reflections from Excluded Direct Rebuttals

A counter argument to my position is that reflections with support shortening are good as they are a

more economical or more conservative way of expressing the same information. This counter argument

is present in (Besnard & Hunter, 2001) via the definition of a ‘more conservative’ argument meaning

one having a subset of the support and inferring the same conclusion as another argument. To match

ordinary English, I would suggest the (Besnard & Hunter, 2001) definition of more conservative would

be better phrased as ‘as conservative as or more conservative than’. Thus by being reflected does not

automatically make an argument more conservative. In practice, and as can be seen from the examples

of this thesis, it is much more common place that the support of the reflection is equal to the full support

of the reflector, so reflections are rarely ‘more conservative’ than their reflectors. In any case, I would

argue that the relative benefit of a slightly shorter support is out weighed by the effect reflection has on

6.3. Argument Trees are Incomplete 168

the outcome of judgem ent (be that existential or quantitative). This favouring an economy of support

as more important than other considerations is a key rationale for defending argument trees against a

variety of the criticisms made in this chapter.

Whilst the above two forms o f incompleteness have nothing to do with the NRC, the next form is

entirely due to Besnard and Hunter’s choice of NRC.

6 3 3 Type C Incomplete - Premise Reuse Prohibition

In a professional debate it is acceptable to reuse the premises of a previous argument as long as a dif­

ferent claim (or point) is being made. A barrister might be cautioned ‘are you repeating material that

you covered earlier?’, to which he or she replies ‘no, I am making a new point’. The following example

illustrates what I would argue is the legitimate reuse of premises, something which is not allowed with

argument trees. The kind o f premise reuse I focus on here is within a chain of arguments from one spe­

cific leaf to the root; a second kind o f premise reuse called ’divergent arguments’ is discussed in (Walton,

1989) and refers to reusing a premise from anywhere in the tree. Within argument trees, divergent ar­

guments drawing on premises from other paths are allowed. In debate trees all divergent arguments are

allowed.

Example 6 3 3 . Type C Incomplete. Let A = {a : (3 A 7 , b : ((3 —► a) A (7 —» ->A), c : 7r, d : tt —>

->0, e : A, / : A —> —<7r}. Let I — { a ,6 } , J = { c , d } , K — { e ,/} . The arguments, confirmations and

contradictions are as shown in Figure 6.4. Here the support I is legitimately reused to make the point

-i (A A (A —*■ ~"|7r)) as the previous use o f I was in support o f a different claim, i.e. a.

I . a

J : -i(/3 A 7 A (0 —► a) A (7 —> ->X)) ({ J } , 0): ->(0 A 7 A (0 -* a) A (7 —► --A))

U }

K : ->(7T A (7T —► -<0)) ({K } , 0): -i(7r A (7T —* - 10))

m

({ / } ,0) : - i (A A (A -*• —i7r))

Incomplete Argument Tree Complete Professional Debate

Figure 6.4: Type C Incomplete - Premise Reuse Prohibition

In any of these trees, an argument can never reuse the full support of its immediate parent because if

it did then the support would have to be inconsistent; and hence not would not be a valid argument. My

analysis shows that in any tree an argument should not be allowed to reuse even a subset of the support

6.4. Argument Trees are Inordinate 169

of its grandparent, with no other premises added, because if it did it would be reflected. Additionally I

argue that the support o f a grandparent’s grandparent should not be allowed to be reused (even a subset

thereof) because of reflection. This grandparent’s grandparent constraint can be legitimately applied

repeatedly all the way up to the root (or child of the root). However, as shown in the example, I hold that

it is perfectly acceptable in professional debate to reuse the support o f a great grandparent. For longer

chains each legitimately reusable vertex’s grandparent is also legitimate. While these reuse properties

could be formally established and do constitute an area for further research, my point is that the (Besnard

& Hunter, 2001) NRC does not accurately mirror professional debate. My point is made by the above

Example 6.3.3; these additional observations are only made to reinforce that point.

This completes the identification of types of incompleteness in argument trees, allowing me to now

move on to types o f inordinateness.

6.4 Argument Trees are Inordinate
The second accuracy issue with argument trees is that they are inordinate. By inordinate I mean that

unnecessary arguments are present. The word inordinate has a dictionary definition of ‘unusually or

disproportionately large; excessive’, for example ‘He placed an inordinate amount of butter on his bread’.

I use the term inordinate to mean specifically that the tree contains more arguments than necessary to

track the debate and hence contains unwanted redundancy.

6.4.1 Type A Inordinate - Root Reflected Canonical Undercuts

A reflected canonical undercut which is an immediate child of the root, reflected off other contradicting

roots within the argument structure, see Example 6.4.1 is Type A Inordinate. The argument is counted

once as a rebuttal o f the root (existing as the root o f another tree in the argument structure) and counted

a second time as a reflected canonical undercut.

Example 6.4.1. Type A Inordinate. Let A = { a : 0 , b : 0 —> a , c : ' y , d : y —> ->a}. Let I = { o ,6 }, J =

{c,d}. Consequently I : a , J : -> a,J : ->((3 A (0 —► a)) , / : -> (7 A (7 —» ->a)) € arguments(A).

The root o f the tree fo r a is I : a . Likewise the tree fo r ->a has a root o f J : ->a. It follows that

J : ->(0 A (0 —> a)) € reflectedCanonicalUndercuts(7 : a , J : ->a,A) and I : -> (7 A (7 —► ->a)) G

reflectedCanonicalUndercuts(J : ->a, I : a , A). A s these two immediate children o f the roots are utterly

predictable arguments these are inordinate trees. See Figure 6.5.

I :a J ' .—'Ot ({-^}> { ^ }) :a

Ordinate Professional Debate

Root Reflected Canonical Undercuts

J : ->(/? A (0 —♦ a) I : -> (7 A (7 —» -* *)

Inordinate Argument Trees

Figure 6.5: Type A Inordinate -

6.4. Argument Trees are Inordinate 170

Any argument structure (V, C) with a non-empty V and a non-empty C will contain reflected canon­

ical undercuts. Here I refer back to my Definition 6.2.2 of Argument Structure, which is adapted from

(Besnard & Hunter, 2001).

Proposition 6.4.1. Let {P,C) be an argument structure, with nodes u , v , w where f (u) , f (v) , f (w) 6

arguments(A) where A is a knowledgebase o f labelled assumption formulae.

I f V ^ 0 and C ^ 0

then there exists w child o f u

such that f (w) 6 reflectedCanonicalUndercuts(/(u), f (v) , A),

where u is root o f a tree in V and v is m ot o f a tree in C.

P m o f Let the root o f an argument tree in V be I : a = f (v) , likewise for C let J : ->a = f (u) , where

/ : a , J : -ia € arguments(A) and A is a knowledgebase of labelled assumption formulae. Consequently

there exists K:<f> e reflectedCanonicalUndercuts(J : a, J : ->a, A). It follows that K : </> = f (w) always

exists as I:ct , J : —>oc € arguments(A) and I :a e attacks(J : ->a, A). □

By symmetry, swapping around v and u, it can be seen that just as their exists x child of v, so also

there will also exist y child o f u such that f (y) e reflectedCanonicalUndercuts(/(u), f (v) , A).

Another form of redundancy in an argument tree is from an expanded reflection of canonical un­

dercuts off one or more off-tree direct argument rebuttals. By ‘off-tree’ I am referring to arguments

which are in arguments(A) but not in the vertices of argumentTree(7: a , A) or debateTree(a, A) (see

Definition 6.7.7), depending upon context. Such ‘off-tree’ arguments are not part of the tree due to some

part o f the tree definition: they may be excluded by the NRC, or excluded as they are reflected, or simply

because the definition does not deem them to be part o f the debate. Such off-tree arguments can still have

an influence on a debate, notably where they act as reflectors, relaying the effects to on-tree arguments

across the tree. Expanded reflections of canonical undercuts off rebuttals may occur from a mixture of

mono-pair and multi-pair enlargement, so I describe this as two mechanisms.

6.4.2 Type B Inordinate - Mono-Pair Enlarged Canonical Reflection
An enlarged reflection of canonical undercuts from an off-tree direct argument rebuttal, caused by a

mono-pair enlarged reflection, see Example 4.6.2, is Type B Inordinate. The number of reflected canoni­

cal undercuts is greater than the number of off-tree rebuttals, hence each off-tree rebuttal is counted more

than once. The following example illustrates Type B Inordinate behaviour by providing a graphical rep­

resentation of a mono-pair enlarged reflection. The following example in focussing on the mono-pair

enlargement does not diagram every argument in the trees.

Exam ple 6.4.2. Type B Inord inate . Let A = {a : (3, h : (3 —► a , c : 7r, d : n —► --a , e : cr, / : a —>

-</?,<? : 0 A —>cr, h : (0 —* a) A ->o}. Let I = {a, 6 }, J = { c , d } , K = { e , /} ,L = {g, h} , M =

{p}, N = {h}. Therefore I : a , J : ->a, K : ->0, K : ->(0 A (0 —► a)) , L : 0 A (0 —» a) , M : ->(cr A

(a —> -i0)), N : -i(<t A (cr —* ->0)) € argum ents(A). It follows that {M , N } : ->(o A (o —> -i0)) e

monoPairEnlargedReflection(J : -<(0 A (0 —► a)) ,L : 0 A (0 —► a) , A). It might be thought that

6.4. Argument Trees are Inordinate 171

L : ->(cr A (cr —► ->0)) e reflectedCanonicalUndercuts(if : ->(0 A (0 —> a) , L : 0 A (0 —► a) , A), but

that is not the case as L : ->(cr A (c r —> ->0)) is not even an argument as its not minimal. Also note that

L : 0 A (0 —> a) is not part o f the argument tree fo r a and hence is ‘off-tree ’. See Figure 6 .6 .

I . a J :->a

m

K : - (/ ? A (D a)) ({ K } , {L}) : - (0 A (0 - a))

A
M A (o —>-i0)) N :->(& A (a —> ~>0))

Inordinate Argument Trees Ordinate Professional Debate

Figure 6 .6 : Type B Inordinate - M ono-Pair Enlarged Canonical Reflection

In professional debate neither o f the reflected undercuts, M : —«(cr A (o —* ->0)) and TV: ->(<r A (cr —»

->0)) would be allowed, but the direct rebuttal L : 0 A (0 —* a) would be. Mono-pair enlarged canonical

undercut reflection is thus one o f the several mechanisms that leads argument trees to contain superfluous

arguments. It also endorses rejection of the notion that ‘reflection is good because it leads to fewer

arguments and is therefore more efficient or conservative’ as in Type B Incompleteness; rejection because

reflection can just as easily give rise to more arguments than less.

6.4.3 Type C Inordinate - Multi-Pair Enlarged Canonical Reflection

An enlarged reflection of canonical undercuts from off-tree direct argument rebuttals, caused by a multi-

pair enlarged reflection, see Example 5.7.4, is Type C Inordinate. Again, the number of reflected canoni­

cal undercuts is greater than the number of off-tree rebuttals, leading again to over counting of the effect

of the off-tree rebuttals.

Example 6.43. Type C inordinate. Let A = { a : 0 , b : 0 —► a , c : 7r, d : 7r —► —«/3, e : 0 , f : 0 -> a , g :

A, h : A —> ->0, i : 0 —► a } . Also let I = { a , b } , K = {c, d}, L = {e , / } , M — {(?, /i}, TV = {e, *}.

Therefore I : a , K : ->(0 A (0 —> a)) , M : -<(0 A (0 —> a)) , L : 0 A (0 —► a) , N : 0 A (0 —> a) , L :

-»(A A (A —► -</?)), TV :->(A A (A —► ~>0)), L : ->(n A (n —► ->0)), TV:->(7t A (n —> ->0)) € arguments(A).

The arguments L : 0 A (0 —+ a) and L : 0 A (0 —> a) are direct rebuttals; fo r an argument tree they are

‘o ff tree ’. See Figure 6 .7.

6.4.4 Type D Inordinate - Reflected Confirming Argument

Another form of redundancy is when an exact reflected confirming argument and a reflected canonical

undercut both attempt to stand for a single direct argument rebuttal off-tree reflector. The reflected

confirming argument can be viewed as a reflection flowing up the tree (i.e. the reflection is nearer to the

6.5. Three Further Behaviours 172

I . a

/ \ m
K : ^ (p A (0 ^ a)) M :->(/? A (0 a)) { L , N }) -.^(0 A (0 - a))

/ \
A (7r —> ~>/J)) N 7T A (7T —> - 1/?))

L : - .(A A (A -* -./?)) AT: -(A A (A -» -/?))

Inordinate Argument Tree Ordinate Professional Debate

Figure 6.7: Type C Inordinate - M ulti-Pair Enlarged Canonical Reflection

root than the reflector), whilst the reflected canonical undercut is a reflection flowing down the tree (i.e.

the reflection is further from the root than the reflector).

This taxonomy o f kinds of incomplete and inordinate behaviour is somewhat arbitrary as if increas­

ingly subtle distinctions were made further kinds o f undesirable behaviour could be delineated. For

example, an enlarged reflected confirming argument where there is no reflected canonical undercut from

the direct argument rebuttal due to the NRC would be another kind of inordinate behaviour. Many re­

flected confirming arguments would be attempting to stand for a single off-tree direct argument rebuttal.

Argument trees are inchoate (as defined below), are sensitive to the way the knowledgebase is written

and are asymmetrical.

6.5.1 Argument Trees are Inchoate

The third undesirable property of argument trees is that they are inchoate. I define inchoate as meaning

that those arguments present in the tree do not accurately represent those arguments missing from the

tree.

Just suppose that all reflections were exact reflections and thus that the counting of reflected argu­

ments would accurately stand for the counting of direct arguments. Or imagine that some corrective lens

could be constructed so that enlarged and reduced reflected arguments were again transformed back into

an exact mirror of the originals - at least to satisfy the purposes of existence and counting. In either of

these situations, judging of debates would still be arbitrary - because the reflected arguments can behave

differently from their reflectors. This I call inchoate behaviour.

The dictionary definition of inchoate means ‘not fully formed or developed’ and the term definitely

does not extend to mean chaotic, confused or incoherent. I use the term to clarify the situation where an

argument A is proposed as a proxy, representative or substitute for an argument B. However B can only

6.5 Three Further Behaviours

6.5. Three Further Behaviours 173

proxy for A if B is a fully formed, fully developed version of A. If A does not behave in the same way

as B then A is an inchoate form o f B and thus not a robust proxy for B.

I now give an example to show reflected arguments that behave differently from their reflectors.

Here a reflected canonical undercut behaves differently from the off-tree direct argument rebuttal it was

reflected off. The terms ‘reinstated’ and ‘undefeated’ are used here informally; the latter part of this

example is revisited more formally in Section 7.4.

Exam ple 6.5.1. Inchoate. Let A = {a: /3,b: /3 —► a, c : 7 , d : 7 —► ->/?, e : (3 A 7r A ->7, / : it —> ((3 —>

V ->7r V 7 V -i(7r - * (0 - * a)) } . Let I = { 0 , 6 } , J = { c , d } , K = { e , / } , L = { e } , M = {g}.

Therefore I : a , J:~>(0 A (0 —* a)) , K : 0 A (0 —> a) , L : - > (7 A (7 —» ->0)) ,M:-^(0 A 7r A ->7 A (7r —>

(/3 —*• a))) € arguments(A). Consequently J . ^ (0 A (0 —► a)) € directCanonicalUndercuts(J:a , 0, A)

and K : 0 A (0 —> a) e directArgumentRebuttals(J : ->(/? A (0 —► a)) , / : a , A). Furthermore

L : - 1 (7 A (7 —» ->/?)) e reflectedCanonicalUndercuts(J : -i(/3 A (0 —* c t)) ,K : 0 A (0 —► a) , A).

Additionally M : -y{0 A n A A (n —> (0 —> a))) € directCanonicalUndercuts(K : 0 A (0 —> a) , J :

-i(/5 A (0 —> a)) , A). However canonical Undercuts(L: -< (7 A (7 —> ->/?)), A) = 0. So fo r the argument

tree the attack chain is L : - 1 (7 A (7 —► ->0)) attacks J : ~>(0 A (0 —> a)) attacks I :a . 77ie chain contains

three arguments. The attack on I : a is direct, the other reflected. For the professional debate, the chain

is M : -i(0 A 7r A -> 7 A (7r —+ (0 —> a))) attacks K : 0 A (0 —* a) attacks J : ->(0 A (0 —» a)) attacks

I : a . Thus this chain contains fo u r arguments and all attacks are direct. The attack o f K : 0 A (0 —* a)

on J : ~>(0 A (0 —► a)) in the debate tree is a direct rebuttal, whereas all the other attacks fo r both trees

in this example are canonical undercuts. Imagine a simple judge function that takes i) the existence o f an

attack to mean that the attacked argument is defeated and ii) an attack on an attack as reinstatement and

thus not defeat (i.e. concordant with the intuition o f (Dung, 1995). So in the argument tree I : a is not

defeated, whereas in the professional debate I : a is defeated - exactly the opposite outcome. Therefore

argument trees are inchoate, in that they do not behave as intuitively expected. See Figure 6 .8 .

I . a ({ /} ,0) :a

m

J : ~'{0 A (/? —► a)) ({J } , {K }): - (0 A (0 -> a))

{ K }

L : - - (7 A (7 —» ->/?)) ({ ^ } > 0) : A 7r A - 1 7 A (7r —> (0 —* a)))

Inchoate Argument Tree Choate Professional Debate

Figure 6.8: Inchoate - Present Arguments Do Not Represent Absent Ones

This example, in particular its idea of a simple judge function, is revisited and formalised in Chap­

ter 8 in Examples 7.5.1 and 7.5.2.

6.5. Three Further Behaviours 174

I now give a proposition that examines the notion that further down the tree one could conjecture

the existence of reflected canonical undercuts where the reflector is the grandparent canonical undercut.

However such a conjecture does not hold as the NRC o f Definition 6.2.1 rules them out.

Proposition 6.5.1. Let A be a knowledgebase o f labelled assumption formulae, let

argumentTree(7: a , A) = (V, £ , / , argum ents(A)) be an argument tree and let u, v € V.

I f f (u) € canonicalUndercuts(/(v)) and (v ,u) e £

then re flec tedC anonicalllndercu ts(/(u),/(u), A) = 0.

Proof The NRC used in the argument tree definition clause 2. is ‘For no node (<3>, 0) with ancestor nodes

($i» 0 \) , • • •, Pn) is $ a subset o f U . . . U $ n ’. Now suppose reflectedCanonicalUndercuts(A':

<f>, L : 7 , A) ^ 0. However, for such a M : ip e reflectedCanonicalUndercuts(.ftT :(f>,L: 7 , A) it would

have to be the case that M C L a s that is a requirement for reflection. Having M C L is the same

as having a node with label M having an ancestor with label L, which is forbidden by the NRC. So the

supposition is false and thus if K : <f> e canonicalUndercuts(L: 7) e £ , f (u) = K:<i>, f (v) = L : 7 and

(uy v) e £ then it is always the case that reflectedCanonicalUndercuts(A': L : 7 , A) = 0. □

So the form of NRC in the definition o f argument tree does not just prevent repetition of arguments it

also rules out reflected canonical undercuts that have a canonical undercut as their reflector. What it does

not rule out is reflected canonical undercuts having a rebuttal as their reflector, i.e. Type A Inordinance.

As there are no rebuttals in the tree below the root then the only direct argument rebuttals in the tree are

at the root.

6.5.2 Sensitivity To The Way the Knowledgebase is Written

The fourth undesirable behaviour of argument trees, beyond incomplete, inordinate and inchoate, is that

they are sensitive to the way that the knowledgebase is written. This sensitivity that argument trees have

to the way that the knowledgebase is written down means that two logically equivalent knowledgebases

tracked as argument trees can give entirely different results. For example { a : a A 0 } C A, will give a

different debate outcome from the logically equivalent { a :a , b:0} C A.

Consider the situation where two police clerks take the same verbal statement from a witness. One

clerk encodes the statement as A = {a : a , b : 0, c : 7 , . ..} whereas the second uses Al to write the

logically equivalent A = { a : a A / ? A 7 A . . . } . In the second case the witness would not be allowed

to defend themselves against any attack as the argument tree NRC would prohibit it. In a professional

debate, however, assumptions can be reused as long as a new claim is being made. So an argument tree

can result in arbitrary judgements because it is sensitive to the way the knowledgebase is written down.

In defence of argument trees here, it should be pointed out that all mincon systems display syntax

sensitivity - as this class of behaviour is commonly called. The framework of this thesis too is not

immune from the effects o f syntax sensitivity, so the open question, meriting further research, is the

matter o f degree.

6.6. Rationale for Matt Opaque Contradiction Trees 175

6.5J Pro and Con Reflections Do Not Cancel

The final point is not an undesirable behaviour, but rather the analysis of a possible (but incorrect)

intuition about reflection in these trees. It might be thought that even though reflections exist in argument

structures that the reflections would be symmetrical and thus that those for a balance out and cancel those

for -iQ; giving no net effect. The analysis o f Section 4.6.1, however, shows that while reflection has a

symmetry of existence it does not have a symmetry of cardinality.

Relating this asymmetry back to the current theme of analysis, I now draw Example 4.6.3, see below

in Figure 6.9, as a pair o f argument trees, also known as an argument structure. Study of the arguments

derivable from that exam ple’s A (with | A | = 4) shows that there are no other arguments for /3 or ->(3 and

hence no other argument trees that belong in this argument structure.

I:(3 J : - ,0

N : ->(a A (a —► /3) M : —«(o: A (a —> (3) K : A - iq) A (7 —> - 1/?) A ->a)

Figure 6.9: Asymmetry - o f Reflected Cardinality in an Argument Structure

This diagram shows that the reflected canonical undercuts to be found in a pair o f argument trees

can be asymmetrical. Thus any suggestion that the reflected canonical undercuts cancel each other out

is not well founded.

That concludes the comparative analysis o f argument trees and professional debate trees. I now

move on to the formalisation of the debate tracking tree as a form that better meets the criteria (the

debate, the whole debate and nothing but the debate) outlined so far.

6.6 Rationale for Matt Opaque Contradiction Trees
I use the term ‘m att’ tree or graph to mean one devoid of Type I and II Reflection and ‘opaque’ to

mean free of Type HI and IV Reflection. The structures I have mentioned so far, notably including

defeat graphs (Section 6.2), defeasible trees (Section 6.2), argument trees (Section 6.2.1) and argument

structures (Section 6.2.1), would appear to not be matt or opaque. The goal of this chapter is to define

robustly a debate tracking tree that is both matt and opaque (see Section 6.7). The word ‘graphs’ would

have been more general in the title o f this chapter, with the understanding that trees are a kind of graph,

however to prevent the infinite cycles that can arise in graph traversal I will focus exclusively on trees

from here on, as does the bulk of the literature.

I start by summarising the key points o f my critique of the argument trees and argument structures

approach, which may be extended to critique other argument aggregation trees in the literature, notably

(Pollock, 1992; Simari et al., 1994; Prakken & Sartor, 1997; Amgoud & Cayrol, 2002; Garcia &

Simari, 2004; Dung et al., 2006). This informal analysis, running through the rest of this section, moves

from critiquing the literature to the introduction of a new tree.

6.6. Rationale for Matt Opaque Contradiction Trees 176

I have presented examples and discussion showing that argument trees contain reflections (see Ex­

amples 6.4.1, 6.4.2 and 6.4.3) and thus that they are not matt opaque trees. The reflections can thus give

rise to ‘double counting’ in the argument-aggregation functions of (Besnard & Hunter, 2001) (which

they call categoriser and accumulator functions). This double, or even multiple counting, will be of

an argument and its reflections. My examples also show that even though their NRC removes some

reflections it by no means removes all.

My analysis shows that the argument tree NRC attempts to do two jobs, namely to prevent cycles

(so as to make the tree finite) and to prevent reflection. I would argue that it over achieves at the first

job and underachieves at the second, suggesting that using a single tool to do two jobs here yields sub-

optimal results on both. Consequently I define, shortly, a separate (and different) NRC, which is not

burdened with the job o f removing any reflections and is thus a) more akin to professional debate and

b) able to make the tree finite. The NRC of (Besnard & Hunter, 2001) introduces somewhat puzzling

behaviour (see my Example 6.3.3), however none o f these NRCs has a strong theoretical basis so from

that perspective they are equally valid. The (Besnard & Hunter, 2001) NRC is fully effective at removing

grandparent reflections. Reflections from rebuttals coming from the roots of other trees, however, are

not removed by the NRC.

Base Proposition Four, also called the grandparent relationship, shows that in a tree of arguments

reflections can occur from any node to the level o f its grandchildren. Prior to Base Proposition Four,

with only Base Propositions One and Two at hand one might have conjectured that all reflections were

off-tree rebuttals and thus somehow not necessary to include in the debate. Base Proposition Four shows

such a conjecture to be less than the full story as these off-tree rebuttals cause reflections back into

the main body of the tree, regardless whether the off-tree rebuttals are formally part of the tree or not.

The immediate children of the root o f an argument tree or will also be subject to Base Proposition One

reflections.

Reflections can be enlarged, reduced or distorted. Any attempt to rationalise the counting of re­

flected arguments with scaling factors is problematic as the number of reflections can be a smaller or

larger number than the original. Even for one confirmation, parts o f it can be enlarged and parts reduced

creating distorted reflections, ensuring that scaling-based approaches to judgement would be complex

and problematic. I am not claiming that such scaling-based approaches are impossible, but rather that

any such definition would be long, inelegant and hard to understand by professional debaters.

Argument tree edges are a mix of direct and reflected canonical undercuts. The reflected ones are

repetitions of other attacks in the tree. Therefore it is sensible to exclude all reflected canonical undercuts

from any such tree. The remaining edges would thus all be direct canonical undercuts.

My use of a different undercut definition is, I argue, helpful. I hold that (Besnard & Hunter, 2001)’s

canonical undercuts do not tell the full story of human debating, however they do provide a robust under­

cutting mechanism that has the advantage of being simpler than mine while still covering the majority of

cases in professional debate.

Argument trees exclude direct argument rebuttals - apart from at the root. Direct rebuttals exist

6.6. Rationale for Matt Opaque Contradiction Trees 177

and do not arise from reflection. In evaluating or judging a debate, direct rebuttals have or should

have a definite effect on the outcome. They should be included. The reasoning underpinning (Besnard

& Hunter, 2001) would appear to be that they do address argument rebuttals by means of reflection.

However if one accepts the earlier point about distorted reflections rendering reflection-unaware judging

schemes impractical, then this suggestion o f leveraging Type I Reflections to represent rebuttals is also

likely to be impractical.

Direct argument rebuttals are also reflectors for Type HI and IV Reflections. These reflections are

subject to distortion, rendering them too as unhelpful to represent rebuttals. If no distortion was present

Type HI and IV Reflections could have been sound representatives of the direct rebuttals; however that

is not the case. If distortion was absent direct rebuttals might be assesed indirectly by looking at the

arguments that reflect off them. Both Type I and II Reflections are not limited to exact reflections and

thus proscribe indirect counting or assessment.

Therefore I conclude that it is necessary to include all direct argument rebuttals in the tree. Con­

sequently, to build on the discussion of Section 3.9, it is clear that the most practical attack assumption

is the union of direct rebuttal and direct undercut. This inclusion of direct rebuttal is necessary to make

counting-based judges viable and, it would appear, to prevent all judges from giving incorrect answers.

Even existential judges, which do not use integers to count arguments, are sensitive to the existence of

arguments involved in attacks and thus sensitive to reflection. Note that although the edges of the trees

of (Pollock, 1992; Prakken & Sartor, 1997; Garcia & Simari, 2004) encompass both rebuttal and un­

dercut they also include both direct and reflected arguments making them somewhat different from my

proposal.

There are two ways that this inclusion of direct argument rebuttals could be achieved, one enhancing

the vertex definition, the other enhancing the edges. If vertex enhancement is adopted then the tree

nodes need to be contradictions. Such an approach is arguably more compact and succinct, yielding

a simpler notation. It could be argued, however, that vertex enhancement is making an excessive or

perhaps artificial distinction between rebuttal and undercut. If the vertices are contradictions then the

edges would need to be direct undercuts.

If edge enhancement is used then the edges would be direct attacks, where a direct attack is defined

as either a direct argument rebuttal or a direct canonical undercut. Edge enhancement has appeal as it

is closer to an intuitive view o f attack. This approach has a weaknesses in that when the edges include

preclusive undercuts then what the edge labels for the rebuttal arcs should be becomes unclear. One

could just use blank for rebuttal edge labels, but even that is unintuitive. It could also be argued that

there is a weakness in that the two nodes and one edge representing two confirmations and their direct

rebuttals between the confirmations could be more succinctly represented by the functionally equivalent

and more compact notation of the contradiction - o f Definition 2.6.1.

A point that applies to either approach is that any judge function traversing any of these refined

trees would have to know the difference between undercut and rebuttal because multi-target preclusions

need counting in a different way from mono-target preclusions. In either case there is no need for

6.7. Definition o f Debate Trees 178

argument structures, or any kind of pairing of trees or forests (i.e. one or more for a plus one or more

for ->a). A tree including rebuttal (using either the edge or vertex approach) would be just a single tree

for the entire debate, which is a strong advantage for visualisation, comprehension and simplicity of

judgement. Regarding the edges in an edge enhanced tree, these direct attacks could arise from undercut

or rebuttal. The undercuts are preclusive undercuts and similarly the rebuttals are confirmation rebuttals.

Thus the attacks are direct confirmation attacks. Direct confirmation attack removes all Type I and Type

jQ Reflections. It does not however remove any Type HI Reflections - which require a different approach

for their removal. In either case (vertex or edge enhancement) it is necessary to exclude Type HI and

IV Reflections (that is the up tree reflections coming off direct rebuttals and appearing as confirming

arguments).

Given this motivation it is now possible to progress to a robust definition of a reflection-free tree

where direct rebuttals are included at every level o f the debate (not just the root) thus adopting the vertex

enhanced approach.

6.7 Definition of Debate Trees
I select the approach of vertex-enhanced trees as superior to edge-enhanced trees for tracking debates,

based on the rationale of the last section. Thus I leave edge-enhanced trees as an area for further research.

My vertex-enhanced trees have each vertex map to a contradiction. Thus some of the attacks are intra-

node, whilst others are inter-node. The intra-node attacks are rebuttals, while the inter-node attacks are

undercuts.

Six helper functions are required to succinctly define the debate tree. These retrace the steps of the

last three chapters, but manipulate contradictions instead of confirmations and build on Definition 6.7.1

of preclusive undercut between contradictions. Just as the analysis of reflection and undercut moved

from the level o f individual arguments to confirmations, it is necessary now, for the sake of complete and

ordinate debate tracking, to move on again to the level o f contradictions. The six helper functions that

lead to the debate tree, Definition 6.7.7, are:

1. the preclusive undercuts between a pair o f contradictions, Definition 6.7.1,

2. the matt function that removes or prunes out Type I and Type II Reflections, Definition 6.7.2,

3. the opaque function that prunes out Type III and IV Reflections, Definition 6.7.3,

4. a defending path function that aids in identifying the ancestors of a vertex, Definition 6.7.4,

5. an ancestors function required to support the definition of the NRC of the debate tree, Defini­

tion 6.7.5 and finally

6. an ancestor arguments function which provides the set of all of the arguments in the ancestor

vertices, Definition 6.7.6.

The naming of the opaque and matt functions continues the optical metaphor used so far with

reflection. For an arbitrary vertex, v, in a tree, Type I and H Reflections allow one to partially observe

6.7. Definition o f Debate Trees 179

vertices nearer to the root than v. The analogy here is that if v was painted with matt paint then it would

not give rise to such reflections. The situation in an argument tree thus is akin to gloss paint which gives

rise to reflections of things above the painted layer, closer to the observer. Type III and IV Reflections

allow one to see something of vertices further from the root - consequently if v was painted with opaque

paint it would not allow one to see through to the descendants of v. For argument trees the situation is

thus akin to transparent paint where things below the painted layer, further from the observer, become

visible. Thus to avoid redundancy in the tracked debate the paint to use in this metaphor is opaque matt

paint.

The first helper function I now define is a variation of the original preclusive undercuts function,

which was Definition 3.4.2, this time between contradictions rather than between confirmations.

Definition 6.7.1. Let A be a knowledgebase o f labelled assumption formulae, let (V, W) : <p, (X, Y) :

a 6 4(A) and let Z G C. The set o /preclusive undercuts between contradictions attacking (X, Y) : a

derivable from A, denoted preclusivellndercutsBetweenContradictions((X, Y) :a , A) is such that:

preclusiveUndercutsBetweenContradictions((X, Y) :a , A)

= { ((V ,W) :0 , Z, (X ,Y) :q) |

I f Z C X t h e n (V:<p, Z, X :a) G preclusivellndercuts(X:a, A),

else (V :</>, Z, Y :->a) G preclusiveUndercuts(Y: ->a, A),

and W : -><p = top(confirmationRebuttals(V: 0, A))} .

For a preclusive undercut between two contradictions, which is o f the form of a 3-tuple ((V, W) :

(p, Z, (X, Y) : a), I call (V, W) : <p the attacking contradiction, I call V : <p the attacking confirmation,

I call Z the target confirmation label and I call (X, Y) : a the defending contradiction. If Z C X then

I call X : a the defending confirmation, else Z C Y and I call Y : a the defending confirmation.

I call the contradiction (V, W) : <p a preclusive undercut of a contradiction (X, Y) : a iff ((V , W) :

<p, Z, (X, Y) : a) e preclusivellndercutsBetweenContradictions((X, Y) :a , A).

This definition is not essentially a new kind of undercut. Rather, it is exactly the same preclusive

undercut, or process o f attack, from earlier, now with more information on the context of the attacker

and the attacked.

One feature of the definition o f preclusive undercut between contradiction is that attacks on reflexive

arguments, Definition 2.4.7, appear twice - as illustrated in the following example.

Exam ple 6.7.1. Preclusive u n d ercu t betw een contradictions. Let A = { a : a , b : 7 , c : 7 —> ->a} and

I = {a}, J = {b,c}. Then I : a , J : a G argum ents(A) where I : a is a reflexive argument. Fur­

thermore { /} : a , {J } : ->a G 0 (A). Thus ({ /} , {J }) : oc, ({«/}, { /}) : ~,c* € 4(A)- It can be s^en that

J : —<a G canonicalUndercuts(7 : a , A) and also J : ^ a G rebuttals(7 : a , A). So ({J } : ->a, {7}, {7} :

a) G preclusiveUndercuts({7} : a , A) and also { J } : ~^a G confirmationRebuttals({7} : a , A).

So now, using Definition 6.7.1, it is clear that (({«7},{7}) : ->o;, {7} ,({ 7 } ,{ J}) : a) G

preclusivellndercutsBetweenContradictions(({7}, { J}) : a , A). The reflexive argument {7} : a is at­

tacked once by { J } : ->a visible in the defending contradiction, where the attack is a rebuttal, and again

6.7. Definition o f Debate Trees 180

by {J } : ->a in the attacking contradiction where the attack is an undercut. There is also a further

reflection in this example, not due to reflexivity, where I : a appears a second time in the attacking

contradiction.

This feature of reflexive arguments appearing twice is not a problem as removing reflections re­

moves the second (i.e. if traversing from root to leaf, the undercutting) occurrence. The instance of

J : - iq that undercuts I : a is a reflection of the instance of J : -<a that is rebutted by and rebuts I : a , so

J : ->a G reflectedAttacks(J: a , J : ->a, A).

The following matt function, thus, not only removes reflected arguments, but also double attacks

arising from reflexivity. Given a child node and the context o f its parent (it will have only one parent,

being in a tree), it is possible to filter that child node to yield direct arguments only and no Type I or II

Reflections. The definitions reused here are Definition 5.3.2 for maximal direct preclusive undercuts and

Definition 5.6.2 for maximal direct confirmation rebuttal.

Definition 6.7.2. Let A be a knowledgebase o f labelled assumption formulae and let ((V, W) :

<f>, Z, (X, Y) : a), ((T ,U) : 0 , Z, (X, Y) : a) g preclusiveUndercutsBetweenContradictions((X, Y) :

a , A). The matt function, denoted matt(((V, W) : <f>, Z, (X, Y) : a), A), given a preclusive undercut

between two contradictions, removes Type I and II Reflections from the attacking contradiction, such

that:

m att« (V , W) :<f>, Z, (X, Y) :<*), A)

= {(T , U) :</> G 4 (A) |

i f Z C X

then (T : Z, X : a) G maximalDirectPreclusiveUndercuts(X:a, A),

U : —>(f) = maximalDirectConfirmationRebuttal(V: 0, X : a , A)),

else (T:<f>, Z, Y :-> a) G maximalDirectPreclusiveUndercuts(Y: - a , A)),

U :-></> = maximalDirectConfirmationRebuttal(V: <f>, Y : ->a, A)}.

Thus the input to the matt function is a single preclusive undercut between contradictions, ((V, W) :

<£, Z, (X, Y) : a , (plus the knowledgebase A) and the output is a single contradiction (T, U) : (j>, such

that T C V and U C W . If T C V then I say V has been p ru n ed to yield T . Likewise if U C W then

I say W has been p ru n ed to yield U. This process of pruning removes Type I and Type II Reflections

from the input (V, W) : f>, thereby ensuring that all o f the arguments in the output (T, U) : 4> are direct. I

say that the members of V \T and W \U have been pruned out. If T = V and U = W then no pruning is

needed.

The function is defined to consider a chain of two contradictions, where the attacking contradiction

is (V, W) : ((> and the attacked contradiction is (X, Y) : a . The definition does not explicitly state or

require that these contradictions are in a tree, however visualising them as such can help understanding.

Thus, the matt function can be viewed as considering an arbitrary vertex (X, Y) : a in a tree of con­

tradictions, along with one of its children (V, W) : f>. The input tree contains reflection. The function

6.7. Definition o f Debate Trees 181

then describes how to remove some of the arguments, i.e. the reflected arguments, from the child vertex

(V, W) : </> to yield the equivalent direct child vertex (T , U) : </>. Applying this definition repeatedly,

in a recursive fashion, prunes out all o f the Type I and II Reflections from a tree containing reflection,

yielding a matt tree.

The definition has been written with a certain economy of style, whereby although there

are two defending confirmations X a , Y ->a in (X ,Y) : a there is only one tar­

get confirmation label Z. For both of the input attacks, ((V, W) : (f>, Z, (X, Y) : a) G

preclusiveUndercutsBetweenContradictions((X, Y) : a , A) and the output attack ((T, U) : <£, Z, (X, Y) :

a) G preclusiveUndercutsBetweenContradictions((X, Y) : a , A) it is thus always the case that for the

‘then’ clause, above, Z C X and for the ‘else’ clause, Z C Y.

So far this commentary has focussed on the default case where pruning occurs, however if a reflector

is empty then some reflections will not occur and will thus be absent. So if the attack is on X, it follows

that Y is the reflector; thus if Y = 0 then if follows that T = V and no pruning of V occurs. Likewise

if the attack is on Y , it follows that X is the reflector; so if X = 0 it follows that U = W and no

pruning of W occurs. An additional step o f analysis is needed for reflected rebuttals; one might think if

X were subject to preclusive undercut and X = 0 then there would be no reflected rebuttal arguments

in W : -></>, however a preclusive undercut cannot attack an empty target and hence this conjectured case

cannot occur. One might also conjecture that a further way for reflection to be absent is if no attack

has occurred, however that too cannot be the case as a prerequisite for this function is a valid preclusive

undercut. Hence given a non-empty attacked reflector, then T C V, U C W and pruning is definite.

Thus summing up these various situations, it is the case that T C V and U C W , i.e. that the matt

confirmation labels will always be a subset or equal to the confirmation labels that include reflection.

Furthermore, the matt function always returns a unique top, or maximum cardinality contradiction,

containing only direct arguments. Suppose V = { J i , . . . , Jn }, then each / , 6 V is either direct or

reflected, (here the reflector is fixed as (X, Y) : a). Hence the direct subset of V, i.e. T = I m } C

V = { / i , . . . , 7n } is unique, likewise for U C W . This maximum cardinality behaviour follows from the

use of the maximal versions of the direct confirmation rebuttal and direct preclusive undercut functions.

Now that Type I and II Reflections are removed it is necessary to move on to Type HI and IV Re­

flections. The opaque function has an input o f a contradiction. Its output is again a single contradiction,

but now devoid of Type HI and IV Reflections. I reuse the direct confirmation function, Definition 5.9.4,

as it removes Type HI and IV Reflections from a confirmation.

Definition 6.7.3. Let A b e a knowledgebase o f labelled assumption formulae and let (X, Y) :q G ♦ (A).

The opaque function, denoted opaque((X , Y) : a , A), given a contradiction fo r a, delivers the maximum

6.7. Definition o f Debate Trees 182

cardinality contradiction fo r a that is free from reflected confirming confirmations such that:

opaque((X, Y) : a , A)

= { (V ,W) :a G 4 (A) |

V : a = top(directConfirmations(X:o!, A)),

W : ->a = top(directConfirmations(Y: - a , A))}.

The opaque function cannot add arguments to X or Y , in that it only prunes or removes arguments.

It will always be the case that V C X, W C Y which is why I call opaque() a pruning function. If X : a

is not subject to any preclusive undercuts then V = X, likewise if Y : -><* is not subject to any preclusive

undercuts then W = Y.

The order in which the matt and opaque functions are applied, in principle, makes no difference,

as set difference is commutative: A \ B \ C = A \ C \ B . My specific definitions, however, require

different input parameters to provide the correct reflectors and thus it is not straightforward to show this

commutativity as a property.

Finally I come to the last three helper functions needed for the debate tree which are all graph theory

related:

Definition 6.7.4. Let (V, £) be a tree where V is a set o f vertices and £ a set o f edges. Let

v , v i , V 2 ,v n ,v root e V and (v, t>i), (v i , v 2), (vn , v r0 ot) € S. The defending path, denoted

defendingPath(v, V, £), is the set o f continuously connected edges from v to the root vroot such that:

defendingPath(v, V, £) = { (v , v i) , (v i , v 2) , . . . , (v n , v root)}.

Given this set of edges the next step is to extract the vertices from the edges, giving a set of vertices.

Definition 6.7.5. Let (V, £) be a tree where V is a set o f vertices and £ a set o f edges. Let

v, v \ , v2, . . . , vn , v root £ V. The ancestors function, fo r a vertex v € V in the tree (V, £), is the set

o f vertices between v and the root, including the root, denoted ancestors (i;, V, £) such that:

ancestors(u, V, £) = {u i, v 2, . . . , vny vroot | defendingPath(v, V, £)}.

Clearly v \ is the parent o f v. Observe that the vertex v is not included within its ancestors. While

the above two definitions could apply to any tree, the next one only applies to trees where the vertices

are mapped to contradictions.

Definition 6.7.6. Let A be a knowledgebase o f labelled assumptions. Let (V ,£ , 6 (A) , /) be a tree

where V is a set o f vertices, £ is a set o f edges and f : V •—* 6 (A). The ancestor argum ents function,

denoted ancestorArguments(v, (V ,£ , 6 (A) , /)) , provides the set o f all the arguments present in the

vertices above v to the root in the tree (V, £ , 6 (A) , /) , such that:

ancestorArguments(v, (V ,£ , 4 (A) , /))

= {Jfc :a fc ,. . . , / £ : a ky J* , J ™ : ^ a k \

fo r each Vk 6 a n c e s to rs^ , V, £)

it is the case that f (v k) = ({ /£ , • • •, /£ } , V l , J™})

6.7. Definition o f Debate Trees 183

The new matt, opaque and preclusive undercut for contradictions definitions, plus the other tree-

related helper functions, can now be used in defining the debate tree, which is free of all reflections.

Key definitions reused here are: contradiction Definition 2.6.1, my shorthands for contradiction

Definitions 2.6.2 and 2.6.3, maximum cardinality contradiction Definition 2.6.6, plus the six helper func­

tions just defined.

The assertion / : V >—> # (A) establishes that each vertex in the tree is mapped onto a contradiction.

Thus the arbitrary vertex v e V is such that f (v) = (U, V) : ip € ♦ (A), where ip is any formula. It

would be untrue to say that each vertex is a contradiction as the vertices of a tree form a set, any given

contradiction may appear more than once in a tree and repeated members are not allowed in sets. Thus

for each vertex v € V there exists one and only one contradiction (U, V) : ip G ♦ (A). However for each

contradiction in 4 (A) there may or may not exist a corresponding vertex or vertices v G V.

The edges in an edge-labelled tree are three element tuples (u, Z, v), where u is the vertex the edge

is incident from, v the vertex the edge is incident to and Z the edge label.

Definition 6.7.7. Let A be a knowledgebase o f labelled assumption formulae, let (V, W) :<p,

({ I i , . . . , 7n }, {J i , . . . , J m }) '• <P € ♦ (A) and Z G C. The debate tree fo r a derivable from A, denoted

debateTree (a , A) = (V, £ , 6 (A) , /) where V is a set o f vertices, S is a set o f labelled edges and

/ : V ~ * (A), is an edge-labelled contradiction tree devoid o f reflection such that:

1. the root v root e V h a s f (v root) = opaq u e(to p (6 (a , A)), A),

2. fo r each v G V \ {vroot }>

fo r each ((V , W) :<p, Z, f (v)) € preclusiveUndercutsBetweenContradictions(/(v), A),

where (V, W):<p = top(♦(</>, A)),

i f there exists { { h , . . . , / n }, {J i , • . . , dm}) -(p such that

opaque(m att(((V , W) :<p, Z, f (v)) , A), A) = ({ I l y . . . , /„ } , { J u . . . , J m })-(p

and I \ : a , . . . , / n : a , J \ :->a , . . . & ancestorArguments(v, (V ,£ , 6 (A), /)) ,

then there exists a child vertex vchUd 6 V o fv such that

fiVchild) ~ ({ l i t • • • i 7n}i {*7l> . . . , «7m}) :(P'

I use the shorthand of ♦ * (a , A) = debateTree (a , A) = (V, £ , 4 (A), /) as an option for shorten­

ing subsequent notation. Each edge is annotated with an additional piece of information that is the target

confirmation label, however that is not needed to define the tree. So for the labelled tree vchud and v are

connected by edge (vchudi Z, v) e £ . Now the debate tree has been defined it is possible to state which

earlier examples were in fact debate trees - they are Examples 6.3.1, 6.3.2, 6.3.3, 6.4.1, 6.4.2, 6.4.3 and

6.5.1 . The Examples 5.7.2, 5.7.3, 5.7.4 and 5.7.5, while showing trees of contradiction vertices with

preclusion edges are not debate trees as they contain reflection.

The NRC, which is the sixth line of clause 2. above, disallows reusing an argument that appears

anywhere in the parent contradictions from the vertex in question up to the root. An area for further

research would be to explore variations on this NRC where only arguments in the targets between the

6.8. Properties o f Debate Trees 184

vertex and the root are counted towards no-recycling. I would defend the approach taken here as being

somewhat conservative and robust; it is clearly intolerant o f repeated arguments.

While arguments(A) can hold many attacks o f many types on a reflexive arguments, the debate tree

only holds one type o f attack because the undercutting arguments are pruned out as a reflection of each

rebutting argument.

This tree tracks the debate on the level o f contradictions, thereby ensuring that direct rebuttals are

included in the tracking. The tree can be understood on two levels: that of contradiction and that of

confirmation. On the level o f contradiction, the central feature is that (V, W) : (p undercuts (X, Y) : ip.

On the level of confirmation there are two possible undercuts: V : <p undercuts either the defending

confirmation X : ip with a target confirmation o f Z : t/;; or the defending confirmation Y : ->ip with target

confirmation of Z : -rip. The definition of preclusive undercut ensures Z C X or Z C Y.

Reflections can arise off any argument, be that argument a direct argument or a reflected argument.

Thus a reflector may itself be direct or reflected and that distinction makes no difference to its ability to

act as a reflector. Thus to make sure that the direct argument is devoid of reflections it is necessary to

include reflections in the reflector confirmation. Consequently two different confirmations are needed for

these two different purposes. The confirmation that is a part of the tree has to be the direct confirmation.

The reflector confirmation used to compute the direct confirmations has to be a maximum cardinality

confirmation.

The approach to building a debate tree is the same for immediate children of the root as it is for

vertices further down the tree. One might think that the notion of grandparent reflections, which could

affect further down the tree, would not occur for the immediate children of the root. Such immediate

children o f the root have no grandparents. In reality, however, the behaviour is the same at any level

of the tree below the root as grandparent reflections (appearing as a chain of two undercuts) are always

intermediated by a rebuttal.

6.8 Properties of Debate Trees
I now examine the properties of debate trees, starting with some introductory observations most of which

can be established directly from the tree’s definition and then move on to formal properties with more

complicated proofs. The key property I build the rationale for is that debate trees are finite.

6.8.1 Introductory Observations
The early portion o f this chapter criticised trees from the literature for not adhering to a number of

properties deemed to be desirable. Each of these cases was proven by example, with each example

giving not just an argument tree, but also the corresponding a debate tree. These examples can be re­

examined to show that debate trees are:

• Debate trees are not Type A Incomplete as non-root rebuttals are included - given that they are

direct, rather than reflected rebuttals.

• Debate trees are not Type B Incomplete as they contain no reflected arguments and hence no

reduced reflections.

6.8. Properties o f Debate Trees 185

• Debate trees are not Type C Incomplete as premise reuse is allowed within a path from leaf to root

(and also between paths).

• Debate trees are not Type A Inordinate as they contain no reflected arguments and hence no root

reflected canonical undercuts.

• Debate trees are not Type B Inordinate as they contain no reflected arguments and hence no mono­

pair enlargement.

• Debate trees are not Type C Inordinate as they contain no reflected arguments and hence no mono­

pair enlargement.

• Debate trees are not Inchoate as all necessary arguments are included and all unnecessary argu­

ments excluded, so there is no possibility of proxy arguments misrepresenting the arguments they

proxy for.

• Debate trees are considerably less sensitive to the way the knowledgebase is written, relative to

argument trees.

Before establishing properties requiring proofs there are a number of observations that can be made

simply by pointing them out in the definitions.

The debate tree is a single tree, in contrast to the argument tree and argument structure approach

which requires a forest to track a debate. The debate tree could be viewed as taking the definition of a

(Besnard & Hunter, 2001) argument structure and applying it uniformly to every vertex in the tree rather

than just at the root. Nowhere in the literature can I find anyone tracking a complete debate as a single

tree.

P roposition 6.8.1. Let A be a knowledgebase o f labelled assumption form ulae and let ♦*(«*, A) be a

debate tree.

|{r(a,A)}| = l.

Proof. The root o f the tree maps to a maximum cardinality contradiction and building on Proposi­

tion 2.5.9, it follows that there is only ever one maximum cardinality contradiction for a given formula

a. Given the root a and the knowledgebase A the rest o f the tree is uniquely determined. Therefore

[|{f*(a,A)} | = l. □

The debate tree is devoid of reflections, regardless of whether the reflection is a Type I, II, HI or

IV Reflection. Hence it is ordinate, complete and choate. Thus the possibility of judges counting an

argument twice is avoided.

Because the debate is modelled by a tree not a graph, it follows that there are no parallel edges. In

a conjectured graph, if a vertex vchud attacks two targets, V, W in parent v, then the result would be

parallel edges {vchud, V , v), (vchtid, W , v) e S. In a debate tree, however, v would have two children

Vchildl 7̂ Vchild2 where f (Vchildl) — f{ychild2) and V, u), (t,chi/d2) tj) £

6.8. Properties o f Debate Trees 186

Clearly any graph can contain infinite cycles, while a finite tree, by definition, cannot contain infinite

cycles. Additionally the NRC ensures that there are no repeated arguments and thus no repeated chains

of arguments in the tree. A third feature of some graphs is loops, that is arguments that attack themselves

(as seen with Dung). Loops cannot occur with mincons, but can with abstract arguments. Hence the

debate tree clearly has no loops, cycles nor parallel edges.

Debate trees include preclusive undercuts - unlike the debate tracking structures in the literature.

Additionally debate trees track which expert contributed which knowledge (due to the use of a Labelled

Deductive System).

There is no dependable mapping between argument trees and debate trees. Sometimes it is possible

to derive one from the other, but not always. Specifically, the examples of incomplete argument trees

are ones where there is not enough information to construct a debate tree. Furthermore, the examples

of inordinate argument trees provide ones which cannot be constructed (at least not in a straightforward

mapping fashion) from the debate tree for the same a and A.

I now look at repetition within a debate tree in more detail. In any formally defined tree, including

debate trees, a vertex cannot be repeated as the vertices form a set and hence are unique. My / (v) =

(X, Y) : 0 mapping construct ensures this vertex uniqueness. Similarly in a well formed tree, including

debate trees, edges cannot be repeated.

A contradiction, however, can be repeated in a debate tree and that is acceptable and normal in

professional debate. As a contradiction can be repeated in the tree, so also can its parts: confirmations,

arguments, supports, claims and assumptions. On a path from leaf to root, however, the NRC ensures

that an argument cannot be repeated, and hence on such a path no confirmation or contradiction can be

repeated either.

Within a path from leaf to root it is still allowable to repeat a support, a consequent or assumption,

as long as no entire argument is repeated. Now to touch on the empty set.

Example 6.8.1. Let A = 0. The debate tree ♦ * (a , A) is (0 ,0) : a. The set o f arguments fo r a is the

empty set. Note that {0} : a would mean that a was a tautology, which it is not the case here. Here

V = (0 ,0): a and £ = 0.

6.8.2 Vertex Size
The number of arguments in an arbitrary vertex in any debate tree is finite.

Proposition 6.8.2. Let IS. be a knowledgebase o f labelled assumption formulae and let ♦ * (a , A) =

(V, £ , 6 (A), /) be the debate tree fo r a derivable from A.

0 < (|X| + |Y|) < midLattice(A), where v e V , f (v) = (X ,Y):<f>.

Proof. If the number of arguments for 0 derivable from A is zero, then |X| = 0 . Likewise if there are no

arguments for -><j> then |Y| = 0, hence the lower limit is zero. The support for one argument for 0 can

never be a subset of the support for another argument for 0. Thus the maximum number of arguments

for 0 is midLattice(A). Any argument can be for 0 or for —»0, but never for both. Thus regardless of the

6.8. Properties o f Debate Trees 187

distribution of arguments between <p or ~̂<f> the total maximum is still always midLattice(A). Hence the

upper limit for the number of arguments in any vertex of a debate tree is midLattice(A). □

If some of the arguments for cp or for ~><p are reflected then the upper limit will not be reached. Thus

although this property is for a debate tree, it is essentially about the size of contradictions.

6.8.3 Branching Factor

The number of edges incident upon an arbitrary vertex v in any debate tree ♦ * (a , A) is finite.

Proposition 6.8.3. Let A be a knowledgebase o f labelled assumption formulae and let ♦ * (a , A) =

(V, £ , 6 (A), /) be the debate tree fo r a derivable from A.

0 < \ { (u , W , v) e £ \ u , v € V , W e c , f (v) = (X, Y) : - 0 } | < 2*x * + 2 |Y| - 2.

Proof. A leaf vertex will have no edges incident on it, so the lower bound is 0. Any edge incident

on a vertex v represents a preclusive undercut with defending confirmation X : ip or Y : ~̂ ip where

f (v) = (X, Y) : ip. Each edge will have a unique target confirmation label W C X o r W C Y . Any

subset o f X or Y can be a valid target confirmation label, except for the emptyset. Here u e V is any

child vertex of v and W any valid target confirmation label. Hence the upper limit for the number of

targets is 2 ^ — 1, so the upper limit for the contradiction taken as a whole is 2 'x l + 2'Y' — 2. □

This proposition is the same as asking how many preclusive undercuts can be incident upon a

confirmation and then doubling it to get the answer for a contradiction.

6.8.4 Path Length
To look at the path length from vertex v to the root, where v and root are part o f the path, it is helpful to

define odd and even levels in the tree. Thus the root is odd, given that its path length, x , is 1.

Definition 6.8.1. Let (V, £) be a tree where V is its set o f vertices and £ its set o f edges, v € V.

X X
v is even i f (— — trunc(—) = 0 else v is odd, where x = |ancestors(v, V ,£) | + 1.

W hile the following proposition could be stated more formally it is unambiguous and avoids the

introduction of further helper functions.

Proposition 6.8.4. Let A be a knowledgebase o f labelled assumption formulae and let ♦*((*, A) =

(V, £ , 4 (A), /) be the debate tree fo r a derivable from A . Let v € V and I :<p,J -.ip € arguments(A).

I f I : (p exists at an odd [even] level in the tree,

then no J .ip, J C I can exist on any other odd [even] level

o f the same path further from the root.

Proof. If such a J : ip, J C I did exist it would be pruned out by the matt() function. The same applies

to even levels. □

The number of ancestors for a given vertex is finite.

6.9. Conclusion for How To Track a Debate 188

Proposition 6.8.5. Let A be a knowledgebase o f labelled assumption formulae and let ♦ * (a , A) =

(V, £ , 4 (A), /) be the debate tree fo r a derivable from A .

0 < | ancestors(v, V ,£) | < (2 ^ - l) 2 - 2 ^ .

Proof The NRC states that any argument added to the tail of an argument chain must not already exist

in its ancestors. Hence the longest chain will use up as few arguments as possible in the ancestors and

therefore have one argument only per vertex which will be mono-attack. For two arguments I :(j>,J: ip

to be different, either support I ^ J , or claim (p ^ ip or both support and claim differ. If an argument

I : <p is child of an argument J : ip then, from the definition of preclusive undercut, it is known that

<p = * / \ stripAssumptions(formulae(label(J : ip))). The number of arguments derivable from A with

different supports is 2^* , however 0 as a support cannot attack or be attacked, so the practical number

for creating chains is 2 ^ — 1. Hence any o f 2^AI — 1 supports can combine with any of 2^AI - 1 claims.

Furthermore loops are disallowed so a support ({ /} : <p, { /} , { /} : <p) g preclusiveUndercuts({/}: </>, A).

So the upper limit is (2^AI — l) 2 — 2lAL □

One might think that the odd / even behaviour of Proposition 6.8.4 would constrain the maximum

path length, but it does not. The reason there is no constraint is that it is possible to have a sequence of

subsets o f A that starts with the shortest support length (for the root) and proceeds to longer supports

whereby none are subsets o f those nearer the root.

6.8.5 Debate Trees are Finite

Proposition 6.8.6. Debate trees are finite.

Proof. There are just three ways that a debate tree could be conjectured to be infinite: 1) the number

o f arguments in a vertex could be unbounded; 2) the branching factor could be unbounded; 3) the path

length could be unbounded. However, it is established 1) that vertex contents are finite by Proposi­

tion 6.8.2, 2) that the branching factor is finite by Proposition 6.8.3 and 3) that path lengths are finite by

Proposition 6.8.5. Therefore debate trees are finite. □

That completes the analysis o f the key properties of debate trees. Further research is warranted to

deepen this picture of how debate trees behave and also how well and in what ways they do and do not

map to professional debate.

6.9 Conclusion for How To Track a Debate
The main conclusion of this chapter, and indeed of the thesis, is that to track a debate, the whole debate

and nothing but the debate requires a debate tree, or something similar with the same properties of being

complete and choate. The debate tree, denoted ♦ * (a , A), has each vertex mapped to a contradiction

and each edge representing a preclusive undercut. The two main differences between argument trees

and debate trees are that a) debate trees include all necessary arguments (e.g. direct rebuttals below the

root) and b) exclude all unnecessary arguments (e.g. reflected arguments). The NRC of the debate tree

is simpler than that for argument trees as it is only doing one job (preventing repetition of arguments)

rather than two (preventing repetition and some reflection).

6.9. Conclusion for How To Track a Debate 189

The following table summarises areas where argument trees and argument structures do not map

well to professional debate. In each of these areas, debate trees provide a more precise mapping to

professional debate. Even so there are several areas where debate trees are lacking; these are discussed

in Chapter 8.

B ehaviour Type C onfirm ation A ttacks Function Section

Incomplete A Non-root rebuttals excluded 6.3.1

Incomplete B Reduced reflections from direct rebuttals 6.3.2

Incomplete C Premise reuse prohibition 6.3.3

Inordinate A Root reflected canonical undercuts 6.4.1

Inordinate B Mono-pair enlarged canonical reflection 6.4.2

Inordinate C M ulti-pair enlarged canonical reflection 6.4.3

Inordinate D Reflected confirming argument 6.4.4

Inchoate Present arguments do not represent missing ones 6.5.1

Additional Sensitivity to way knowledgebase is written 6.5.2

Additional Asymmetry in reflections do not cancel 6.5.3

Table 6.4: Summary o f Comparison of Argument Trees with Professional Debate

The definition of debate trees is preceded by six helper functions, notably

preclusiveUndercutsBetweenContradictions() that is still fundamentally between confirmations, matt()

which excludes Type I and II Reflections, opaque() which excludes Type IQ and IV Reflections and

three more helper functions to facilitate defining the NRC.

The properties of debate trees are mostly self evident from examining the definitions. Namely they

include undercuts, specifically preclusive undercuts, and exclude all reflected arguments. As they are

devoid of reflection they thus exclude unnecessary arguments. Non-root direct rebuttals are included,

which is part o f the way that they include necessary arguments. The key property established is that

debate trees are finite. It is conceivable that further research could identify additional forms of reflection

in which case the definition o f debate tree would have to be refined.

Chapter 7

How To Judge a Debate

The chapter is less formal than those that precede it, so many of the terms and concepts discussed or

introduced here are not formally defined. Formalisation of these concepts is suggested as one area for

future research.

7.1 Overview of Chapter
The focus o f this chapter is on how to judge a debate and draws out a preliminary result indicating

that reflection skews or modifies judge outcomes. Judgement was defined informally in Chapter 1 and

formally in Chapter 2, with the existential and quantitative distinction covered in both places. The body

of this chapter comprises six sections:

Judge Selection Section 7.2 raises the need for a theoretical basis for the design of judge func­

tions and selection of a particular judge for a specific application.

Judge Properties Section 7.3 provides an informal but fairly comprehensive discussion of judge

properties including such matters as awareness of undercuts, reflection and confirmation.

Reflection and Judge Outcomes Section 7.4 provides a motivational and reasoned discussion of

the question of whether reflection alters judge outcomes. As not removing any reflection leaves an

infinite and not sensibly judgeable tree the choice becomes between removing some and removing

all reflection.

Reflection and Existential Judge Outcomes Section 7.5 shows that, given certain assumptions,

reflection can change debate outcomes when judged with an existential judge, and therefore that

reflection should be considered in the deliberations.

Judging a Debate Tree Section 7.6 introduces a new judge function that is designed to judge the

reflection free debate tree while also taking into account preclusive undercut and the filtering of

noise.

Reflection and Quantitative Judge Outcomes Section 7.7 shows the indication that quantita­

tive judges, like qualitative or existential judges, can be skewed by reflection.

7.2. Judge Selection 191

A question at the core of this thesis is: does reflection make a difference to the outcome of debates?

The preliminary result o f the four key examples of this chapter (namely Examples 7.5.1,7.5.2, 7.7.1 and

7.7.2 in Sections 7.4 through 7.7) suggest that the answer is yes, reflection does alter debate outcomes.

It would appear that the outcomes from both existential and quantitative judging schemes are affected by

reflection. Therefore, in my view, reflection ought to be taken into account by judge functions, regardless

of whether they are existential or counting judges.

7.2 Judge Selection
Some facets o f judge selection have been begun to be explored in the literature, while other facets, I

would suggest, are less well developed. A topic which has received attention is that of semantics in the

abstract argumentation literature, and to some degree in the semi-abstract literature. There now exists a

a broad and growing range of semantics from Dung and those building on this work. How to select the

optimum semantics for a particular application is, however, I would suggest, under developed, not least

because abstract argumentation is a theoretical rather than an applied discipline. The need to develop

this area I call judge selection has been recognised by (Caminada & Amgoud, 2007). Certain general

guidelines do exist for the most well known half dozen abstract semantics regarding which semantics are

good for what jobs, but formal analysis is not so developed. Just by casting a graph of arguments into a

tree, thereby removing attack cycles will always cause agreement between grounded, preferred and stable

semantics (Dung, 1995). An important and recent classification of semantics is (Baroni & Giacomin,

2008) which shows that for seven well known semantics, (grounded, preferred, stable, complete, CF2,

semi-stable and ideal) that there are just 14 equivalence classes, or situations, out o f a possible 120 where

the semantics give the same result as each other.

Judges based on concrete argumentation, in contrast, have in the main lacked an underlying theo­

retical framework and thus selecting one over another has been somewhat arbitrary. The comparison and

selection of particular concrete judges for particular applications is not well developed in the literature.

Questions such as ‘for what particular applications would a Benferhat judge be better than a Franklin

judge?’ are yet to be thoroughly explored.

The literature on argumentation semantics provides functions where the output is a set (or a set of

sets) o f arguments that is a subset (or are subsets) o f the input set o f arguments. My judge functions, in

contrast, seek an output that is a) a proposition rather than an argument and b) a single item not a set of

items, nor a set o f sets o f items.

In the ABA framework, attack is constrained to Wigmore undercut and by definition excludes re­

buttal. Hence in ABA, due to the absence of an explicit rebuttal, it is impossible to attack a claim formula

in isolation. On page 7 of (Dung et al., 2006) the authors provide their perspective of how undercut can

be said to imply rebuttal. That view in turn hinges its justification on (Kowalski & Toni, 1996) and illus­

trates the notion with an example. The view o f (Kowalski & Toni, 1996) is also argued on the basis of an

example. I would suggest that more research is warranted to investigate how these examples, which rely

on different logics from my classical mincon analysis, compare and contrast to reflection and reflexivity

as presented herein.

7.3. Judge Properties 192

Both the ABA and (Besnard & Hunter, 2001) frameworks limit attack in this way and thus create

one tree per argument for a or ->a. Additionally (Besnard & Hunter, 2001) offer a way to aggregate

all of these trees together, by means of the argument structure. There are some indications of more

recent ABA research venturing into this territory of judging propositions rather than arguments. Because

the ABA framework appears to be built on certain unstated assumptions about reflection, it becomes

more challenging to map its semantics to professional debate. Professional debate requires judgement

of a motion not o f individual arguments, and also requires recognition of rebuttal as a valid form of

argumentation, rendering most o f the work on semantics, I would suggest, to be not as helpful as it

might initially appear to be for clarifying judge selection.

Clearly, there are many possible concrete judges, which may be categorised in various possible

ways. Common to them all is the same issue as to why to choose a particular judge for a particular

application. As different judges can give different outcomes for the same debate (as demonstrated, for

example in Sections 2.8.6 and 3.2.2) some suspicion about automated judgement is natural.

One approach to tackling this lack of basis is by means of what I call the properties approach,

another by means o f what I all the inner workings approach; I now describe these two approaches. The

properties approach has five steps.

1. Formally define desirable or possible judge properties.

2. Formally define judge functions.

3. Use logical proof to establish the precise properties for each judge.

4. Then for a particular application decide what judge properties, picked from the list immediately

above, are required for that application.

5. Hence, select the best judge for the job, accepting that compromise is often inevitable.

The inner workings approach instead seeks to define the safest judge possible, whereby the way

that it reaches conclusions is as impeccable as it can be, i.e. as free from the prospect of criticism as

possible. A feature of courts o f law is the appeal (see Section 1.1 point 5), and if in the appeal some flaw

or weakness can be established that brings into question the way that the conclusion was reached then

that can cause the original judgem ent to be ‘thrown out’ or rejected. Therefore if the goal is to achieve

safety in cases of appeal then it is prudent to focus the design on impeccability of judge inner workings.

However, safety on appeal, i.e. safety of inner workings, is arguably just another judge property so even

here, I would say, the theoretical basis is not robust. A focus on impeccability rather than on resolving

inconsistency may suggest the use of an existential judge. A focus on resolving inconsistency, thereby

reducing the frequency of stalemates, suggests counting judges.

7.3 Judge Properties
This section informally introduces a number of desirable judge properties leaving their formal definition

as an area for further research. More formal discussions of judge properties can be found in (Manor &

7.3. Judge Properties 193

Rescher, 1970; Benferhat et al., 1993; Elvang-G0ransson & Hunter, 1995; Cayrol & Lagasquie-Schiex,

1995). This literature is strong forjudge properties linked to the parts of prepositional logic covered in

discrete mathematics text books, but not, I would argue, in entertaining the notions of confirmation,

preclusion and reflection. Additionally there is a strong literature on the semantics for selecting subsets

of arguments from a larger set of given arguments, which in my view is not so pertinent to the current

discussion because professional debates have a formula as the motion, not a set of arguments. The

nine properties I now outline are rebuttal awareness, existential judging, quantitative judging, undercut

awareness, reflection awareness, confirmation awareness, cumulativity, bipolarity and metaknowledge

awareness.

7.3.1 Rebuttal Aware

Arguably the most basic o f judge properties is that a judge should consider rebuttal arguments and thus

take them into account when reaching a conclusion. The rebuttals (or pros and cons, or arguments for

and against) in a debate can be tracked using a single contradiction. Judges 1.0 and 2.0 of Chapter 2 are

rebuttal aware judges, each relying on a single contradiction as the basis for their judgement. Rebuttal

awareness appears to be the most widely accepted and prevalent judge property in the literature, but is

not universal (see (Dung et al., 2006) for example).

73.2 Existential

The simplest, and arguably the most robust, way to reach a conclusion is to look at only the presence

or absence of arguments - and nothing else. Existential judges thus never count arguments, nor perform

any subtler evaluations such as weighing or considering probabilities or priorities. The Benferhat judge,

judge 1.0, of Chapter 2 is an example of an existential judge, as also is the judge of (Garcia & Simari,

2004), which is defined shortly as judge 3.0 in Definition 7.5.1. Existential judges are strong on appeal,

but their ability or power to resolve inconsistencies or stalemates is weak. They can also deliver a lot

of null results (i.e. the empty set rather than a or ->a) making them unsuitable for some applications.

Section 7.4 looks at the effect o f reflection on existential judges.

7 3 3 Quantitative

A quantitative judge is sensitive to the number o f arguments and takes these counts into consideration

when reaching conclusions. The Franklin judge, judge 2.0, of Chapter 2 is an example of a quantitative

judge. Another quantitative judge is the example judge in (Besnard & Hunter, 2001) to be found on their

pages 222 and 223 and provided below as Definition 7.6.1. A benefit of counting arguments is that the

judge’s ability to resolve inconsistencies, which I call its resolving power, is considerably enhanced. A

downside of quantitative judges is that they make more assumptions about the nature of argumentation

than existential judges and are hence weaker on appeal. Other complaints are that different arguments

can have different weights (or degrees of worth in influencing a conclusion) and that the meaning of

counts is unclear. Generally speaking a judge is either existential or quantitative. Section 7.7 touches on

the effect o f reflection on quantitative judges.

I would argue that existential judges are particularly robust for applications that only ever have zero,

7.3. Judge Properties 194

one or perhaps occasionally two arguments for a claim and hence where inconsistency and consequently

stalemate are rare. For applications with larger and more complex knowledgebases producing a large

number of arguments for claims then there may be more of a value in employing counting schemes;

more value as inconsistencies can be resolved and do not automatically result in stalemates.

The following quotation provides the suggestion that quantitative judges, if properly formulated,

could be of considerable value, but also acknowledges the challenges that appear to be inherent in their

delineation.

‘The notion o f confirmation plays a central role in scientific practice, and is therefore a

most important task fo r philosophers o f science to clarify and perhaps systematise and im­

prove this notion, or, in other words to construct a theory o f confirmation. Unfortunately

it has proved surprisingly difficult to develop confirmation theory. It is not even clear how

we should set about this task, or what a successful confirmation theory would look like.’

(Gillies, 1998).

A further point I would like to make on quantitative judges is that they would appear to offer an

approach to living with, resolving and taking advantage of inconsistency. Existential judges, in compar­

ison have a tendency, after identifying the existence o f inconsistency and avoiding ex falso quodlibet, to

deliver the empty set, which is almost as unhelpful. One o f the most frequently cited papers in the field

of inconsistency raises exactly this issue of how to live with inconsistency, rather than just attempting to

delete or avoid it (Gabbay & Hunter, 1991).

Finally, quantitative judges that deliver not just set membership judge outputs, but also numeric

strength of the net support for the motion, are useful for deciding between different motions. In the Soft

Systems Methodology it is common to examine a challenging problem, formulate a small number of

possible solutions and then debate the merits o f each one. Quantitative judges delivering numeric output

could be of assistance in conducting such trade-off debates.

7.3.4 Undercut Aware

For a judge to be undercut aware requires that a consideration of undercut to be taken into account in

its workings to reach a conclusion. Both judges 1.0 and 2.0 introduced in Chapter 2 are not undercut

aware. However judges 3.0 onwards, introduced below, are undercut aware. Section 3.2.2 showed that

undercuts can change debate outcomes, and therefore that including them in deliberations is prudent to

obtain what would generally be agreed to be accuracy or the avoidance of errors.

I use the term ‘undercut aware’ as a general term without tying it specifically to Wigmore, Pollock,

canonical, preclusive or some other kind of undercut. A judge that relies on a single contradiction to

track a debate cannot be undercut aware. On the contrary, undercut awareness requires that the debate

tracking structure is some kind of a tree (or possibly a graph). Undercut aware judges in the literature

are almost all also rebuttal aware, but less so vice versa.

7.3. Judge Properties 195

7.3.5 Reflection Aware

For a judge to be reflection aware it must include an understanding of reflection in its deliberations. If a

judge is rebuttal aware, but not undercut aware, as are many in the literature - for example (Fox & Das,

2000), then there is no need or option to be reflection aware. Undercut aware judges, however, should, in

my view, all be made to be reflection aware. There is no current known proof or sound theoretical basis

that would make reflection awareness a mandatory requirement for a judge to be a valid judge. Judge 6.0

is reflection aware, while the judges in this thesis prior to 6.0 are not.

73.6 Confirmation Aware

Another judge property developed in this thesis in that of confirmation - in that professional debates are

often so structured as to only consider confirmed arguments, such as { / , J } : a . Any claim for which

there is only one argument, i.e. where to p (0 (a , A)) = { /} : a , will be removed from consideration

in such a debate. Journalists are taught to check their facts through confirmation and not to submit for

publication unconfirmed, i.e. unsubstantiated, stories. Surgeons also commonly seek a ‘second opin­

ion’ from another surgeon before conducting a major operation to ensure that the procedure is properly

warranted. In some professions and professional practices the number of arguments required for a claim

increases beyond two to larger numbers. This number, or variable threshold (documented as threshold in

judge 6.0), for the required level o f proof or evidence is another input to a debate and hence best treated

as an item of metaknowledge (see Section 7.3.9). The workings of juries, parliaments and senates can

be understood in this light o f confirmation thresholds. The benefit of using such a threshold is that it

filters out noise, i.e claims for which there is a paucity o f compelling evidence. Noise is not the same as

inconsistency.

7.3.7 Cumulativity

The ability of a judge to determine the outcomes o f multiple debates without the set of conclusions taken

together implying inconsistency is called cumulativity and was discussed in the light o f Definition 2.7.2.

Almost all of the judges in the literature lack this property of cumulativity, however in professional debate

this property is deemed to be important. See Example 2.7.2 and the whole of Section 2.7 for further

discussion of cumulativity. I would suggest that cumulativity is likely to be a fruitful yet challenging

area for future research. The judges of (M anor & Rescher, 1970) and of (Dung, 1993) share the feature

of judging more than one claim or arguments at a time, but neither do it in a way that appears to be

directly transferrable to make non-cumulative judges cumulative.

7.3.8 Bipolar

The term ‘bipolar’ in the argumentation literature (Amgoud et al., 2004; Cayrol & Lagasquie-Schiex,

2005) has become associated with the notion of not just having an attacks or negative relationship be­

tween arguments but also having an assisting, supporting or positive relationship. Typically there is seen

to be a kind of inverse symmetry between attacking and assisting. I introduced this notion in Section 1.3

where I pointed out that my confirmation function, 0 (c*, A), can be viewed as a form of positive relation­

ship between arguments. I revisited the notion in Section 2.4.1 and will touch on it again in Section 8.4.

7.4. Reflection and Judge Outcomes 196

W hile some papers deal with this symmetry on the level o f abstract arguments (Cayrol & Lagasquie-

Schiex, 2005), my examination is at a concrete level. Therefore, in addition to my confirmations being a

form of bipolar positive argument, I formally propose, in Section 8.4, a second kind of positive relation­

ship, which I call an assisting argument. With confirmations the positive relationship is to an argument’s

claim; in assists it is to the support. For a judge to be a bipolar judge it must take a consideration of

both positive and negative argument relationships into account. Confirmation and assisting arguments

can thus be seen as two aspects of bipolarity.

7.3.9 Metaknowledge Aware

John Locke is credited with the view that when drawing conclusions on a subject it is prudent not just

to use the logical knowledge we know about that subject, but also to draw into consideration everything

else we know about the matter (Krause & Clark, 1993). Benjamin Franklin also argued that not just the

number of arguments for and against but also their weights (he called them weights) was of importance.

Accordingly, a dominant use of metaknowledge is to hold information about weights of arguments, be

that using some from o f priorities, possibilities or probabilities. O f these various weighing approaches

that of priorities, e.g. see (Cayrol et al., 1992; Prakken & Sartor, 1997; Amgoud & Cayrol, 1998;

Modgil, 2007), is the one gaining most attention in the literature and I would suggest as likely to be the

most fruitful for further research as it assumes less about a domain than other approaches. Other kinds of

metaknowledge include thresholds and domain specific ontologies, see (Williams & Hunter, 2007). For

a judge to be a metaknowledge aware judge it must take a consideration of at least some metaknowledge

into account in its deliberations.

Beyond these judge properties touched on here there are naturally many others meriting further

research, as cited earlier.

7.4 Reflection and Judge Outcomes
A fundamental question raised by this thesis is ‘Does reflection change judge outcomes?’, be they exis­

tential or quantitatively judged. I now share some observations stemming from this question in a narrative

style akin to that o f the earlier Section 6.6, where in both cases I provide motivation by arguing for a

specific interpretation and approach.

This question can be paraphrased as ‘Does there exist a knowledgebase A, a motion a , meta­

knowledge 0 and a pair o f judges judgewith reflection K A , ©) and judgewithout Election (a > A , 0) such that

judge^th reflection(a > A , ©) ^ judgewithout r e f l e c t i o n (« , A , ©)?’ As this is a question of existence it can be

addressed with proof by example. The example requires two judge functions to be contrasted for the

same A , a and ©. I will stop mentioning © now in this section as it is typically the empty set for simple

judges and is not material to my main argument. Recall that it was established in Section 2.8.6 that

two different judges can give different outcomes for the same A and a , and this distinction was prior

to any consideration of reflection. One challenge is that if the two judges are different then how can

there be confidence that a difference in outcome is due to reflection and not just due to differences in

7.4. Reflection and Judge Outcomes 197

the approach to judgement? My analysis, outlined in this section and detailed in Section 7.6.2, aims to

address this challenge. Putting aside, for the moment, the issues of defining the two judges, the main

path to addressing the question is to provide examples with and without reflection, both with the same

A , a and 0 .

The situation with reflection is not easy to assess as for any of the many worked examples I have

done I keep discovering more and more reflections with increasingly complex logic involved in their

derivation. Much proliferation still occurs, in my experience, even with constraints that are intended to

limit the number of reflections.

An immediate observation is that if a computer is used to generate a tree of arguments and display it

for a user or users then that tree will be cluttered, complicated and difficult to understand if any reflection

is involved or allowed. The kinds of automation I have in mind here is tools such as (Efstathiou & Hunter,

2008) for computing arguments and Araucaria (Reed & Rowe, 2004) or Argumed (Verheij, 2003) for

displaying them. I thus draw the conclusion that even just for the purpose of clarity and understandability

in argumentation visualisation it is necessary to remove or prevent reflections. Even if the tool only

validates arguments, or even only records arguments, it will still become cluttered and unmanageable if

reflected arguments are introduced, i.e. are allowed to or can be introduced, by one or more debaters.

O f course the human facilitator could provide a filter to reject reflected arguments, according to some

‘common sense’ definition of reflection. In truth I believe that is what happens, to quite a degree, in

practice with computer-assisted debates - that it is the facilitator intervening to provide the intelligence.

Clearly it is modelling this human intelligence to apply ‘common sense’ that is at the heart of my thesis.

In earlier sections I have proven that given their prerequisites reflections always exist. Proposi­

tion 4.4.1 shows that every attack is subject to a reflected undercut. Propositions 4.7.2 shows that every

attack is also subject to a reflected rebuttal, which is trivial if the attack is a rebuttal, but not if the attack

is an undercut. Furthermore, Proposition 5.8.1 shows the existence of additional up-tree reflections.

The proofs just referenced show that the attack chains are not just long, they are infinite (which is not

disputing the proof in (Besnard & Hunter, 2001) that argument trees are finite). In doing examples by

hand to identify all o f the reflections even just two or three attacks away from the root, I have found the

exercise to be considerably harder than one might expect: there are so many reflections. There also may

be other forms of reflection involved that I have not discovered. More research is needed to identify if

any other types of reflection exist and ideally to prove completeness, i.e. that all possible types have

been discovered.

Infinite attack chains cannot be easily judged, certainly not, I would suggest, by any sensible, mean­

ing fitting with a easily understandable motivational intuition, deterministic existential judge. (I do note

at this point that an admissible semantics, such as the grounded semantics (Dung, 1995), can handle

infinite attack chains but is non-deterministic.) In an existential judge alternating levels of the tree, (in

terms of number of vertices between a vertex and the root), are alternately defeated or undefeated. So the

question arises: are the attack chains even or odd. Is infinity an even or an odd number? (It is neither).

Therefore for existential judges to have any credibility some no-recycling constraint (NRC) must be used

7.4. Reflection and Judge Outcomes 198

to make judged trees finite. W hile it is not the case that an NRC removes all reflection, it is the case that

the existence of a judge with decidable outcomes means that some form of NRC must have been used to

make the infinite finite. Thus the choice of NRC is intimately tied up with the question of how to handle

reflection. (I still argue that pruning out reflection and the choice of the NRC are separable concepts,

even though I acknowledge they are related).

Given the points so far, I am now able to move to another main point regarding how much reflection

to remove. Logically there are just three possible situations relating to the inclusion or participation of

reflection in judgement and debate outcome: none, all or some. Option A, none means that the tracking

and judgement are such that all reflections are removed and thus that no reflections are considered. This

is the aim o f this thesis, this is the matt-opaque situation. The second option, option B is that the tracking

and judgement is such that no reflections are removed and thus that all reflections are considered. This

option I have shown to be impossible as infinite structures cannot be sensibly judged. Or alternatively

option C has the tracking and judgement being such that some reflections are removed and thus that some

reflections remain and are considered by the judge. It is this ‘some’ situation that I believe is the only

logical alternative to all, and which I have shown, by analysis in the last chapter, to exist in the literature.

A further key conclusion is that the question here thus becomes ‘What are the merits of removing

some reflections versus removing all'. Simply disregarding reflection is not an option as it leads to

infinite structures and undecideability. This suggestion of undecideability deserves a proof, which is

a matter for further research. Consequently the issue of NRC is fundamental to the question of does

reflection alter judge outcomes. The choice of NRC is somewhat confounded by the approach I outline

here to address the core question of this section. I do not know of a superior approach, however it remains

that there are difficulties in the way the NRCs of (Garcia & Simari, 2004; Besnard & Hunter, 2001) and

of this thesis interact with reflection in the approach outlined. To sum up my position so far: my debate

tree is free from all forms of reflection known to me, is finite and thus is judgeable. Any tree with all

reflections present is simply not sensibly judgeable. Thus to be judgeable at least some reflections need

to be removed, which begs the question as to which reflections and how many should be removed. Where

does one stop?

Returning now to my core question from the first paragraph of this section (does reflection change

debate outcomes), the challenges are that a) with my tree there is no reflection, so with what to compare

it to be able to say that the removal of reflection makes a difference? My analysis has clearly selected

the argument tree as the reflection-containing debate tracking structure of focus. So how to judge the

argument tree? The (Garcia & Simari, 2004) existential judge would appear to be an obvious choice for

the judge. But then the question arises about how to handle the differences between the trees of (Garcia

& Simari, 2004) and (Besnard & Hunter, 2001). The (Garcia & Simari, 2004) tree includes rebuttals as

edges, which I accept as a robust approach, however the (Besnard & Hunter, 2001) tree does not include

rebuttals as edges - except at the root where rebuttals do appear, by courtesy of their argument structure

(of Definition 6.2.2). The (Garcia & Simari, 2004) tree uses defeasible logic and the set of proof rules

available is defined as limited, so the resultant reflections would appear to be still extant, but not as

7.4. Reflection and Judge Outcomes 199

prolific as in other examples. In contrast, the paper (Besnard & Hunter, 2001) and its successors do not

appear to provide an existential judge function. Thus this comparison is still somewhat unsatisfactory:

my set of casting and connecting devices seems at best to be complex and at worst unnecessarily complex

and implausible. W hat I describe can thus only be described as inspired by (Garcia & Simari, 2004) and

not as a map or accurate portrayal of their work. Clearly, further research is warranted to understand

the effects of reflection on judgement. W hat I can offer is early results that suggest the answer to the

question is that reflection can alter debate outcomes.

7.4.1 Steps for Examining Debate Outcomes With and Without Reflection

Judge Type —►

Debate Tracking
Structure j

Existential Judge

judge3 o() is Definition 7.5.2

from (Garcia & Simari, 2004)

Quantitative Judge

judge6 o() is Definition 7.6.4

from this thesis

With Reflection argument structure - Definition 6.2.2

o f argument trees - Definition 6.2.3.

Example 7.5.1 with its Figure 7.1

is judged by judge3 0().

Outcome: a

argument structure cast

to be a tree of contradictions

by cast two.

Example 7.7.1 with its Figure 7.3

judge6 0()+ cast two = judge7 0()

Outcome: a

Without Reflection debate tree cast

to be a tree o f arguments

by cast one - Definition 7.5.3.

Example 7.5.2 with its Figure 7.2

judge3 0()+ cast one = judge4 0()

Outcome: 0

debate tree - Definition 6.7.7

(same situation as

implementation of Section 8.5).

Example 7.7.2 with its Figure 7.4

is judged by judge6 0().

Outcome: 0

Table 7.1: Analysis Showing that Reflection Changes Debate Outcomes

Given this preamble I now examine the outcome of debates with and without a consideration of

reflection. The current section is thus directly parallel to Section 3.2.2 ‘Undercuts can change debate

outcomes’. The question of whether refection can change outcomes has two aspects, i.e. the two kinds

of judge: existential (considered in the immediately following section) and quantitative (considered in

Section 7.7). Table 7.1 summarises my analytical approach and preliminary findings. The example I

have selected to focus on for this ‘proof by example’ is Example 6.5.1 with its Figure 6.8.

The data structures o f the argument tree, argument structure and debate tree have already been de­

fined in the last chapter and provide debate tracking with and without reflection. I will subsequently

define two tree-to-tree casting functions, which I call cast one and cast two, to allow like-to-like compar­

isons whereby the same judge can be applied to virtually the same tree with and without reflection.

7.5. Reflection and Existential Judge Outcomes 200

7.5 Reflection and Existential Judge Outcomes
The following existential judge function for a tree o f arguments is adapted from (Garcia & Simari, 2004).

While the tree of (Garcia & Simari, 2004) uses defeasible logic, their judge appears to be more widely

applicable. I say ‘appears to be’ as it is not fully apparent exactly how it is to be applied to argument trees

and further research is warranted. This interpretation of (Garcia & Simari, 2004) to obtain an existential

judge for trees from (Besnard & Hunter, 2001) is somewhat speculative and not as robust as the main

body of this thesis.

I now restate (Garcia & Simari, 2004)’s Procedure 5.1 and follow it with an existential judge that

seeks to turn their Procedure 5.1 into a judge function.

Definition 7.5.1. Let T{A,a) be a tree, where the vertices are arguments derivable from A, the edges are

attacks and the root vertex argument is (A , a) having support A and claim a . Let T*A be the same

tree, but with each vertex being able to be marked as ‘D ’ fo r defeated or ‘U ’ fo r undefeated. The process

to mark the tree is such that:

1. A ll leaves in T(a ,o) are marked as ‘U ’s ’’ in T ’a ,«Y

2. Let {B , q) be a non-leaf vertex o fT (A,a)-

(B , q) will be marked as ‘U ’ in T*AtCC)

iff every child o f (B , q) is marked as ‘D ’ in T*A a y

(B , q) will be marked as ‘D ’ in T*A,a)

iff it has at least one child marked ‘U ’ in T*a ,o) •

In reusing the above for other trees, how to make the jum p from marking one Garcia and Simari

tree that has a root argument for a , and edges of rebuttal and undercut, to judging all trees for a and

->a where edges are just undercut requires some interpretation. A quotation from (Garcia & Simari,

2004) is that ‘In DeLP a literal h will be warranted i f there exists a non-defeated argument structure

{A, h).’ This quotation is then defined as their Definition 5.2 on their page 119 as follows ‘Definition 5.2

(Warranted literals) Let (A , a) be an argument structure and T*A ^ its associated marked dialectical

tree. The literal h is warranted iff the root ofT*A is marked as ‘U \ We will say that A is a warrant fo r

h.J I interpret that quotation to mean ‘In DeLP, a literal a will be warranted if there exists a non-defeated

argument (A, a) at the root of a tree T*A .’

The Garcia and Simari root is only one argument for a , so given that a professional debate may

have multiple arguments for a and -<a there will be two forests of trees, one forest for a and one forest

for ->a. Any one of the Garcia Simari trees for a will take into account all of the trees for ->a as the

roots of those trees for ->a will appear as rebuttal attacks on the root of the tree for a. How one (Garcia

& Simari, 2004) tree for a should stand for all the other trees for a is I suggest an open question. In

lieu of further research I follow the quote above so that if there exists an undefeated tree for a then a is

warranted, regardless of the state of any other trees for a or ->a.

7.5. Reflection and Existential Judge Outcomes 201

Definition 7.5.2. Let A be a knowledgebase of labelled or unlabelled assumption formulae. The

judge3 0 (a , A , 0) procedure for judging T(A,a) is such that:

If the root of at least one tree for a is ‘U’ then judge3 0(a , A, 0) = a .

An implication of Definition 7.5.2 is that if i) the roots of all trees for a are ‘D ’ or there are no

trees for a and ii) the roots of all trees for ->c* are ‘D ’ or there are no trees for - ia then given i) and

ii) judge3 0(a , A ,0) = 0. However, we know that if the root of at least one tree for a is ‘U ’ then

judge3 0(a , A, 0) = a . Therefore if the marking for one root is ‘U ’ the markings of other roots become

irrelevant (courtesy of the inclusion of rebuttals as edges in the Garcia Simari tree). Also aggregating

together the markings for many roots is probably not necessary. I use this judge3 0(a, A , 0) in my later

analysis, even though I am not entirely comfortable with its application to argument trees, as they do not

include rebuttals as edges.

7.5.1 Situation with Reflection and Existential Judgement
I now revisit my earlier Example 6.5.1, which showed that argument trees are inchoate, and judge it with

judge 3.0. This is a manageable example to use as it has no arguments for ->a and thus has considerably

less reflection than if that were the case.

Example 7.5.1. This example reuses the knowledgebase of Example 6.5.1. See the left side of Fig­

ure 6.8 for the resultant unmarked argument tree. This example then judges that tree with the existential

Garcia and Simari-like judge 3.0. The resultant marked tree is shown as Figure 7.1 below. As the

root is undefeated the judge outcome is that the motion is undefeated so the marked tree shows that

iudge3 0 (a , A , 0) = a.

{ I : a } v

{ J : - (0 h (0 ^ a)) } D

Figure 7.1: Marked Argument Tree - Contains Reflection - Outcome a

To see if reflection affects the outcome it is now necessary to look at the same knowledgebase but

without reflection.

7.5.2 Situation without Reflection and Existential Judgement
In order to apply judge 3.0 to reflection free debate trees in a way that permits direct comparison to its

application above to argument trees I propose the approach of i) not changing the judge itself, ii) casting

the debate tree into a form suitable forjudge 3.0 and then iii) applying judge 3.0 directly to that cast tree.

7.5. Reflection and Existential Judge Outcomes 202

Hence the comparison should be like-with-like. To cast a debate tree into a tree of arguments that is in

a form suitable forjudge 3.0 the following procedure is used. First I establish some basic nomenclature

to label the parts o f a tree of contradictions and parts o f a tree o f arguments. The nomenclature shown in

Table 7.2 below is used in subsequent definitions to refer to different parts of a contradiction tree. The

nomenclature and analysis focusses on an arbitrary vertex v in the tree.

1. Let v e V be an arbitrary vertex in a contradiction tree ♦*(cc, A) = (V, 8 , / , ♦ (A)).

2. Let f (v) = (X, Y):<pe 4 (A) , where I j <E X = { I u . . . , / * } e C,
and where Jk e Y = {J \ , J m } € C.

3. Let the children vertices of v be v \ hlld, . . . , v ^ f xld, where v^hxld e { v f 111*1, . . . ,
with each child connected to v by a labelled edge (v^hxld, Zif v)
equating to an intra-contradiction preclusive undercut (f { v f htld), Z*, f {v)) .

4. Showing these nomenclature points diagrammatically as part of a contradiction tree gives:

Arbitrary vertex v, where

f (v) = (X , Y) : <P= ({ h , . . . , I l } , { J u . . . , J m }) : < P , I j e X , J fce Y

..childchildchild
V 1 v i vn

Table 7.2: Tree Nomenclature: An Arbitrary Vertex v in a Debate Tree

Definition 7.5.3. Let ♦* (a , A) be a debate tree. The cast one function casts a debate tree into a forest

o f trees o f arguments as follows:

1. Starting with the root o f the debate tree apply the following procedure fo r an arbitrary vertex

thereby creating one cast tree fo r each argument I j :<p or Jk in that debate tree root.

2. Procedure fo r an arbitrary vertex. For each argument I j :<p or J k ’.-><p in the arbitrary vertex v o f

the debate tree, fo r each attack on that argument:

I f the attack is a multi-target preclusive undercut then do not create any child argument in

the cast tree fo r that attack,

I f the attack is a mono-target preclusive undercut then fo r each argument J: ip in the attack­

ing confirmation Z : i p , J £ Z create a child vertex mapped to the argument J : ip in the cast

tree (the connecting edge is a canonical undercut),

I f the attack is a rebuttal then fo r each argument attack create a child vertex mapped to the

reflected canonical undercut from the reflecting rebutting argument.

3. Repeat fo r each vertex in the debate tree working down from the root towards the leaves, using

the same steps as defined above fo r the arbitrary vertex, until each and every debate tree leaf is

(a)

(b)

(c)

7.6. Judging a Debate Tree 203

reached. Apply the no recycling constraint of the argument tree as each new prospective child

node is identified.

I use the identifier judge4 0(« , A , 0) for the combination of cast one with judge3 0 (q, A , 0) , and

give no separate definition. As this fourth judge reuses the third judge the two can be directly compared

and contrasted to see the effects o f reflection. Note that all attacks in the cast tree are mono-target and

thus edge labels do not add information and are therefore excluded. I now show the marked cast debate

tree after being judged by judge 4.0. As the root is defeated the outcome is that judge4 0(a , A , 0) = 0.

Example 7.5.2. This example reuses the knowledgebase of Example 6.5.1 and the resultant debate tree

seen on the right of Figure 6.8. This example then uses the cast one function to cast that debate tree

into a forest of trees of arguments, which in this case is a single tree, and then judges that tree with the

existential Garcia and Simari-like judge. The combination of cast one and judge 3.0 is judge 4.0. The

resultant marked tree is shown as Figure 7.2. As the root is defeated the judge outcome is that the motion

is defeated so the marked tree shows that judge4 0 (a , A , 0) = 0.

{ I : o t }D

{ K : / 3 A (0 —> a) } D

{ M : A 7r A -1 7 A (n —> (0 —► a)))}u

Figure 7.2: Marked Argument Tree - Without Reflection - Outcome 0

Thus the implication is that reflection can change debate outcomes. The question remains is this

modification of outcome by reflection unique to existential judges or does it also occur with quantitative

judges.

7.6 Judging a Debate Tree
Having covered existential judges I now move on to quantitative judges. My purpose is to enquire if

quantitative judges, like existential judges are also sensitive to reflection. Before introducing my own

reflection-aware judge function I start by providing some context from the literature. This published

function is relevant as it provides some of the inspiration for the structure of my judge 6.0.

7.6. Judging a Debate Tree 204

7.6.1 Undercut Aware Quantitative Judgement in the Literature
This quantitative discussion from the literature has the property of being undercut aware. The categoriser

function below delivers a normalised real number in the range 0 to 1. The Besnard Hunter judge 5.0 is

defined in four steps using the accumulator and categoriser functions of Definitions 8.10 and 8.11 in

(Besnard & Hunter, 2001).

Definition 7.6.1. Let A be a knowledgebase of labelled assumption formulae. The Besnard Hunter

quantitative judge, denoted judge5 0 (a , A , 0), is a judge such that:

1. Given a tree of arguments, with root R being an argument for a, the h-categoriser function,

denoted h, returns a real number h(R) € K defined recursively by:

= i + /i(jv i) + . . . + /i(jv i)’

where N \ , . . . ,Ni are the children vertices for N, and

if I = 0 then h(Ni) + . . . + h{Nt) = 0.

2. Applying the h-categoriser to each argument tree in an argument structure provides a categorisa­

tion /or a, which is a pair of multisets of real numbers, written

(lX1, . . . , X n),[Yu . . . , Y n}), whereXu . . . , X n,Yu . . . 1Yn e R

3. Given the categorisation for a, the log accumulator function, denoted l((X, Y)) returns two real

numbers a + ,a~ € R such that:

l ((X , Y)) = (log(1 + X l + . . . + X n), log(1 + Y1 + . . . + Ym)) = { a + ,a~} ,

where X = [X l t . . . , X n] and Y = \Yl t . . . , Yn].

4. The two real numbers determine the membership o/judge5 0 (a , A , 0), such that:

I f a+ > a~ then \udge5 0(a, A ,0) = a.

I f a+ < a~ then judge5 0 (a , A ,0) = ->a.

I fa+ — a~ then judge5 0 (a , A ,0) = 0.

A feature o f this judge is that finite chains of defeaters never fully defeat the argument at the head of

the chain. Furthermore there is no binary distinction between odd and even length chains, so this judge

presents a contrast to judges 3.0 and 6.0, which do provide such a binary distinction.

7.6.2 Quantitative Judge Aware of Confirmation, Preclusion and Reflection

I now define a judge function that processes the debate tree. It thus automatically excludes reflected

arguments from its deliberations. It also includes consideration of preclusive undercut and applies a

threshold-based filter to exclude uncorroborated points or noise. This tree judge is an extension of or

7.6. Judging a Debate Tree 205

elaboration upon the Franklin judge described earlier coupled with the intuition that in essence an attack

by an undercut has the same force as an attack by a rebuttal. It is a recursive function defined in two

steps, firstly to determine the argumentative strength of a vertex in the tree and then secondly to use that

within a standard judge function. First a simple helper function to set negative numbers to zero and some

further nomenclature for trees of contradictions.

Definition 7.6.2. Let r e R The positive function, denoted pos(r), takes a real number of any value

and returns a non-negative real number such that ifr < 0 then pos(r) = 0 else pos(r) = r.

The arguments in (X, Y):(f> = f (v) are subject to attacks from the children of v, however not every

child attacks every argument in the parent. The arguments that are attacked are as followed:

1. Let argument I j be undercut by each v$htld e {{Vphtld, . . . , v^hlld}
C {v{hild, . . . , v*hild} | I j C Zr C X}.

2. Let argument J* be undercut by each v^hdd e {{Vghtld, . . . , v^htld}
C { v f ildy. . . , v*hild} | I j C Zu C Y}.

3. These distinctions of which child vertices attack which arguments area clarified by the graph:

v, where
f (v) = (X,Y):<j>

..child . childchild child . . . ,,childchild vp Ur uq Us Vu Vt

Table 7.3: Tree Nomenclature: Attacks on an Arbitrary Vertex v in a Debate Tree

Given this nomenclature is it now possible to succinctly define a judge function for the debate tree.

The two steps o f definition are, firstly to define the strength o f a vertex (which is the same as the strength

o f the claim of the stripped contradiction of the vertex) and then secondly to use that function in judge

6.0 .

7.6. Judging a Debate Tree 206

Definition 7.6.3. Let A be a knowledgebase of labelled assumption formulae and let v € V be

a vertex in a contradiction tree ♦*((*, A) = (V, £ , / , ♦ (A)). The strength of the proposition

stripContradiction(/(v)), denoted strength (v, ♦ * (a , A)), is a real number showing the argumentative

strength of <j> — stripContradiction(/(v)) in its context in the tree such that:

strength (v, ♦*(<*, A))

= P° s (1 “ P°s(strength(v®/liW, ♦*(<*, A))) - r |Zr |)
j = 1 r=p

fc=m u=t
- ^ pos(l - 2̂ pos(strength(v^<w, ♦*(a , A))) -h |Z„|).

fc=l u=s

The strength of an argument in a leaf vertex v is always 1 (prior to the consideration of rebuttals)

as it is never weakened by any undercuts. The strength of a leaf vertex, however, is an integer that can

be either positive, zero or negative depending on rebuttals, i.e. on the cardinalities of X and Y where

f (v) = (X, Y) : <j>. Thus the strength o f a leaf vertex in isolation is a direct parallel to the earlier Franklin

judge.

I now extend the signature of the judge function to include an item of metaknowledge as a third

parameter that can be passed in. Metaknowledge refers to any additional knowledge available about the

situation which is not contained in A. Keeping 0 as separate from A allows A to be the same for all

judge functions, while the nature of 0 is allowed vary depending on the subscript j . In the following

judge, where j is 6.0, the metaknowledge is a threshold which is a real number controlling the filtering

of noise.

Definition 7.6.4. Let A be a knowledgebase of labelled assumption formulae, let vroot € V

be the root vertex in a contradiction tree ♦* (a, A) = (V, £ , / , 6 (A)) and let threshold € R. The

debate tree judge, denoted judge6 0 (q , A , threshold), is a judge function such that:

a € judge6 0 (a , A,threshold) iff strength(vroot, ♦ * (a , A)) > threshold,

-iq e judge6 0 (a , A , threshold) iff strength(vroot, A)) > threshold.

It follows that if strength{vroot, ♦ * (« , A)) < threshold then a judge6 0 (q, A , threshold). Like­

wise if strength(vroot, A)) < threshold then ^ judge6 0(a , A , threshold), so the judge can

never imply inconsistency. The judge threshold thus acts as a filter to remove uncorroborated evidence.

One criticism of this judge, and its underlying strength function, is that it could be said to read more

into the information relayed by a preclusive undercut than is perhaps strictly valid. A preclusion says

A or B may be false, which I interpret as meaning that A and B are equally weakened. However when

more information becomes available it could be that B is flawless and A is false. I would argue that my

scheme allows for that new information to affect the debate tracking and outcome, but that I make best

use of the available information.

It would also be valuable to extend this judge to be cumulative. In judging a debate tree a non-

cumulative judge will look at only one motion a and may produce an outcome that is inconsistent with

7.7. Reflection and Quantitative Judge Outcomes 207

other debates run on the same knowledgebase. A cumulative judge would have to be more sophisticated

in examining many motions and hence is left as an area for future research.

7.7 Reflection and Quantitative Judge Outcomes
I approach this question of ‘Are quantitative judges skewed by reflection?’ in two steps, firstly by looking

at the situation with reflection and then without reflection. While I focus on Example 6.5.1 to show

the impact o f reflection, further examples of reflection changing judge outcomes when judged with a

quantitative judge involve applying my judge to Examples 6.3.1 and 6.3.3. In Example 6.3.1 the outcome

with reflection, following the approach of an argument tree cast into a tree of contradictions by cast two

and judged with my judge is the empty set, but once reflection is removed the outcome changes from 0

to a - effectively the chain of two arguments becomes a chain of three arguments. In Example 6.3.3 the

outcome changes from a with reflection to 0 without.

7.7.1 Situation with Reflection and Quantitative Judgement

Rather than give a formal definition of cast two the following example should be simple enough for the

mapping to be clear - and as proof by example is being used a general cast two function is not required.

If there is a future need for such a cast two function in the further research of reflection then clearly a

general definition would be necessary. Judge 7.0 is defined as the combination of cast two and judge 6.0.

Example 7.7.1. This example reuses the knowledgebase of Example 6.5.1 and the resultant argument

tree on the left of Figure 6.8. Thus A = { a : (3, b : (3 —» a , c : 7 , d : 7 —» ->(3, e : (3 A 7r A -<7 , / : ir —> ((3 —►

a),g:->0 V ^ 7r V 7 V -i(7r -► (/?-> a)) } and I = {0 , 6}, J = { c , d } , K = { e , f } , L = {e}, M = {p}.

This example then casts that argument structure into a tree of contradictions using the cast two function.

It is not a debate tree as it contains reflection. The casting in this case produces a single tree. The

example then judges that tree with the quantitative judge 6.0 of Definition 7.6.4. The resultant tree,

annotated with vertex strengths, is shown as Figure 7.3. As the mot strength is 1 the judge outcome is

that the motion is carried so the annotated tree shows that judge7 0 (a , A , 0) = a.

Vrooti f {Vroot) — ({-0» ® str6 ngth(vroo$, ^ (ck, A)) = 1

v i j (v i) = < { J } , 0) : - (/ ? A (/ ? - > a O) strength(vi, ♦*(<*, A)) = 0

V2 J M = < { L } , 0 } : - (7 A (7 -► -./?)) strength^ , ♦* (a, A)) = 1

Figure 7.3: Argument Structure cast by Cast Two - Contains Reflection - Outcome a

7.8. Closing Remarks and Conclusion for How To Judge a Debate 208

7.1.2 Situation without Reflection and Quantitative Judgement
Now I provide the final example in this set of four.

Exam ple 7.7.2. This example reuses the knowledgebase o f Example 6.5.1 and the resultant debate tree

seen on the right o f Figure 6 .8 . Thus A = {a: (3, b:(3 —► a , 0 :7 , d : j —> -i/3, e : ^ A 7rA-<7 , / : 7r —> {(3 —>

ai),g:->0 V ->7r V 7 V - .(* —► (/5 —► a)) } and I = { a , b } , J = { c , d } , K = { e , / } , L = { e } , M = {5 }.

77ns example covers the normal situation that I recommend fo r professional debate and also as is used

fo r my design o f Section 8.5. It is my standard debate tree judged by my judge. No casting is involved.

Vroot, f (Vroot) = ({ /} , 0) strength (vroot, ♦*(<*, A)) = 0

{/}

v i J M = { { J } , { K }) : ^ ((3 A (0 -► a)) streng th^!, ♦* (a , A)) = 1

{ K }

V2 , f (v 2) = ({M } ,0) A 7r A - 1 7 A (7r —» (0 —► a))) strength(v2, ♦ * (a, A)) = 1

Figure 7.4: Debate Tree - W ithout Reflection - Outcome 0

These two examples show quantitative judge outcomes of a with reflection and 0 without reflection,

establishing that quantitative judgement too is affected by reflection.

That concludes this outlining of the need for further research into the effects of reflection. The

next chapter will touch on another possible source of reflection, that o f extending an argumentation

framework to have a ‘bipolar’ nature.

7.8 Closing Remarks and Conclusion for How To Judge a Debate
This chapter provides the preliminary result, given certain assumptions, that reflection can change debate

outcomes - as illustrated by reanalysis o f earlier Examples 6.3.1, 6.3.3 and 6.5.1. The existence of

changes to debate outcomes appears to be the case regardless of whether quantitative or existential judges

are used. More research is warranted to go more deeply into this point. Even in the simplest o f debates

the nature and number of all the reflections becomes a complex matter that is hard to compute manually

in a way that provides confidence o f completeness. A computer is thus required even for relatively simple

debates.

It is my ‘matt opaque contradiction tree’, which for short I call a ‘debate tree’ that I propose as a

practical tool for tracking all o f the arguments in a debate whilst avoiding redundancy. The debate tree

is the basis of the mature judgement o f Section 7.6 and the tool design of Section 8.5.

The above list summarises the judge functions defined and discussed in this thesis. Another judge

of importance in the literature and not in the above list is called ‘net support’. Net support is documented

7.8. Closing Remarks and Conclusion for How To Judge a Debate 209

Judge Function Definition Reference N ature

judge10(a , A ,0) Definition 2.7.4 (Benferhat et al., 1993) Existential

judge2 0 (a , A ,0) Definition 2.7.5 Franklin (Willcox & Bridgewater, 1977) Quantitative

judge2 i(a , A ,0) not formally defined Franklin plus undercut Quantitative

judge3 0(a , A , 0) Definition 7.5.2 (Garcia & Simari, 2004) Existential

judge4 0 (a , A ,0) cast one + judge3 0() Extends (Garcia & Simari, 2004) Existential

judge50(a , A ,0) Definition 7.6.1 (Besnard & Hunter, 2001) Quantitative

judge6 0(a , A , threshold) Definition 7.6.4 This thesis Quantitative

judge70(a , A , 0) cast two + judge6 o() Extends Definition 7.6.4 Quantitative

Table 7.4: Judge Functions in Thesis; 1.0 and 2.0 are Undercut Unaware

in (Fox & Das, 2000) and mentioned in several earlier papers by Fox et al. Net support is an enhanced

from of the Franklin judge, judge2 0(<*, A , 0). W hile this judge is not undercut aware it has been used in

production argumentation applications for the U K ’s National Health Service.

Finally I would suggest that identifying and proving potential applications for the quantitative

argumentation-based debate tracking and judging functions described in this thesis would be a area

of future research warranting attention. This quantitative approach has the key benefit of being better

able to resolve stalemates, i.e. inconsistencies, than approaches which ignores the number of arguments

and are only sensitive to the existence of arguments. Clearly more work is needed on the theoretical

underpinnings of the quantitative approach, however the use of quantitative methods in practical debates

is a good motivation for further investigation and application.

Chapter 8

Conclusion and Discussion

This first part o f this chapter summarises areas for further research and dwells on the framework refine­

ment of assisting arguments drawn from the bipolar approach. The chapter then touches on the design

of an implementation. The latter part o f the chapter goes on to draw conclusions about the contributions

made herein. This is a discussion chapter so any new concepts introduced are not particularly formal,

thereby leaving their formalisation as an area o f further research.

8.1 Overview of Chapter
The body of this chapter is made up o f six sections:

Further Research Section 8.2 summarises, with a little discussion, areas for further research

drawing from the many earlier suggestions throughout this thesis.

Short List Section 8.3 provides a short list of areas, taken from the previous section, that are

likely to be particularly interesting and fruitful for research. These topics could potentially provide

valuable contributions to the field.

Assisting Arguments Section 8.4 describes a possible and desirable framework refinement to

cover an assisting relationship between arguments to compliment the more established attacking

relationship.

Implementation Section 8.5 outlines the design of a tool that tracks and judges debates. It is

intended to be operated by a skilled facilitator in support o f a group of professionals engaged in a

professional debate.

Design Rationale Section 8 . 6 suggests the utility of this tool for the areas of decision rationale,

design rationale, decision trade-off and design trade-off. A worked example is given of decision

rational taken from the field of corporate acquisition.

Contributions and Limitations Section 8.7 summarises the various contributions made by this

thesis and examines their strengths and weaknesses. A useful angle for describing the weaknesses

has been to identify the limitations of contributions, which in turn folds back to the areas of further

research.

8.2. Areas for Further Research 211

O f these areas I am most drawn to developing an implementation and using it in real professional

debates, with the aim of then clarifying requirements and obtaining insight into which areas for future

research that would be most useful.

8.2 Areas for Further Research
I now summarise the areas for further research identified in earlier chapters. I then pick out a few which I

feel are particularly important. The sequence of presentation here is the same as the sequence of chapters

in the thesis, and is not sorted by gravity or import.

Introduction - Chapter 1. The introduction made clear that several topics are outside the scope of in­

vestigation of this thesis. They can therefore be seen as major topics for further research.

Computational Complexity. There are a number of facets to the computations presented herein

that would merit investigation. Finding all o f the arguments for a claim is crucial, however if

there is also a need to find all o f the confirmations or all of the contradictions for a particular

knowledgebase then these too would merit quantification. A starting place likely to yield

results would be to map the work of Dunne and Bench-Capon onto that of this thesis.

Algorithms and Heuristics. Algorithms and heuristics is a promising argumentation topic as it

appears to be possible to transform apparently intractable problems into ones that are man­

ageable. Work here could commence by investigating the research by Efstathiou and Hunter,

integrating it in with that of this thesis.

Dialectical Analysis. The idea of optimising the winning of debates by controlling the choice

and sequence of arguments presented merits further research. Further work could either

follow the legal path, building on writings o f Prakken and Sartor or it could take a purer form

following in the wake of such authors as Dung, Kowalski and Toni.

Priorities or Preferences. Again a huge area for future research in argumentation, priorities

could be worked into the approach of this thesis. Leaders in this field to draw from would be

Modgil, Amgoud and Cayrol.

Probabilities or Possibilities. Casual observers from outside the academic discipline of argu­

mentation often comment that its greatest weakness is not being able to handle different

weights o f arguments. The idea that one argument can be stronger than another, and to pro­

vide some numeric ratio of their strengths is not well developed in the formal argumentation

literature. Clearly my thesis touches a little on this topic by determining the weight of a

proposition, however, observers talk of adding weights to the knowledgebase and also to

the arguments derived from the knowledgebase, not just to the conclusions of debates. This

facet o f argumentation is particularly under-developed, with only elementary pointers for fu­

ture direction having been provided by such authors as McBumey, Chesnevar, Simari, Godo,

Haenni, Kohlas and Lehmann.

8.2. Areas for Further Research 212

Basic Framework - Chapter 2. The most useful area for further research in this chapter is probably the

notion of extending the basic framework to other logics, notably first order predicate logic. Others

include the following:

• Explore the algebra of labels within this labelled deductive system, especially for explanation

and provenance.

• Subsume other published argumentation frameworks.

• Extend the framework to cover first order predicate logic. This may be a challenging piece

of work, however it could yield valuable results.

• Extend the framework to cover other logics, such as defeasible, temporal and modal logics.

This would be likely to be a large piece of work which could yield interesting results.

• Use a part of each assumption label to track which agent or expert originated that assumption.

• Relate confirmation to the concept o f ‘extensions to a theory’ in abstract argumentation. The

basic insight here for this item o f research is minor, however any insights into how to better

link abstract and concrete argumentation are likely to be welcomed by the field.

• Identify a more succinct way to define confirmations and related aggregations. While im­

proving the basic definitions here is a good idea this point is unlikely to yield profound

results.

• Exploring differences, similarities and a possible integration between a) judge functions as

proposed herein and b) Dung semantics would be a particularly useful area for further re­

search.

Undercut Framework - Chapter 3. It is surprising to me that the literature contains so little consensus

on precisely what constitutes an undercut. I would be keen to know just how useful or constraining

the various approaches to undercut documented in this thesis are when applied to professional

debates with human debaters.

• More research could be done to further compare and contrasting Wigmore, Pollock, canoni­

cal and preclusive undercuts.

• Review the literature further to see if there are any other published forms of undercut.

• Analyse bridging assumptions between concrete and abstract argumentation approaches.

This examination could focus on bridges to and from the mincon classical form of con­

crete argumentation. The initial investigation of bridging assumptions could be without a

consideration of reflection.

• How abstract argumentation could be extended or refined to incorporate the practical reality

of preclusion is an interesting question. I call this idea ‘abstract preclusion’.

Reflection Between Arguments - Chapter 4. I find it surprising that no one else has documented re­

flection before, albeit that there are pointers in this direction coming from Besnard, Hunter, Dung,

8.2. Areas for Further Research 213

Kowalski and Toni. It is the implications of reflection for judging debates or evaluating semantics

that I find most fascinating. Specific points identified earlier for further research are:

• Questions around the existence or possible existence of reflection in other argumentation

frameworks from the literature are likely to be quite important. The ABA framework is a

valuable place to start as this thesis examines only one instance of ABA. Note that the bulk

of this thesis, except for Section 4.3, is not precisely an instance of ABA due to differences

in the definition to attack.

- W hat other forms of reflection exist within the ABA framework?

- W hat are the minimum sets o f proof rules needed for each form of reflection?

- W hat alternative minimum sets of proof rules can be used to show each reflection?

- Which of the non-monotonic logics that are special cases of the ABA framework permit

which forms of reflection?

- Which semantics are affected by the observation that given the right prerequisites each

attacked argument is automatically subject to counterattack and thus reinstatement?

- Which of the semantics referred to in ABA papers are affected by the existence o f which

forms of reflection and what is the effect?

• Defeasible logics may also contain reflection and therefore also warrant such evaluation.

• An area for further research would be to generalise all o f the reflection functions in this thesis

to include Wigmore and Pollock undercuts as well as canonical and preclusive undercuts.

W hile this would make the topic tidier from an intellectual perspective it could, however,

make it even more complicated and harder to understand.

• It would be worth deepening the understanding of bridging assumptions in the light of re­

flection between arguments.

Reflection Between Confirmations - Chapter 5. It should be emphasised that what gives reflection

merit for further research is the behaviour of reflections between confirmations.

• O f key interest is the question of whether there are further forms of reflection beyond those

described herein.

• Proving that all forms of reflection have been identified would be of particular value.

• Deepening the understanding o f the various forms of reflection, both identified herein and

possible others, is important.

• One specific question is to examine more closely the role of labels in scaling and see which

scaling situations would not occur if labels were removed.

• A broader question is to return to the issue of scaling and see if there are any robust ways of

catering for it while still allowing reflected arguments to exist within the debate tracking. I

have to admit that I feel this is unlikely theoretically, and unlikely to be helpful in applications

8.2. Areas for Further Research 214

as a) filtering out reflections is fundamentally easy and b) including them clutters debates

making them hard to follow.

• One possible area for future research would be to investigate more fully the properties of

an abstract confirmation attacks functions, including reflected confirmation attacks, direct

confirmation attacks and maximal direct confirmation attacks. Such an approach might build

on the work of Dung, working at at abstract level of attacks, but employing confirmations

rather than individual arguments as the graph nodes. This point would build on that of

abstract preclusion mentioned earlier in this section.

Tracking a Debate - Chapter 6. From the perspective of the application of argumentation to profes­

sional debate, the question of how best to track a debate is particularly important. The survey

(Kirschner et al., 2003) shows a variety of ideas in this field, and comparison of that survey with

the more formal research, for example at COMMA ’08, shows quite a contrast between informal

and formal approaches.

• Study the debate tracking trees and graphs in the literature and establish definitively which

contain which types of reflection and which, if any, are free of such reflections. I flag this

item as important.

• This analysis should clearly include any further forms of reflection not described herein.

• A more robust approach, with a stronger theoretical basis, is needed to select the form of the

vertices and edges of the optimum debate tracking tree.

• As is common in Al, one form of tree and graph may not be ideal for all applications, so it is

worthy to qualify under what conditions which form is most suited.

• The properties o f the debate tree should be better understood.

• One specific focus is to investigate the dialogue tree of (Amgoud & Cayrol, 2002) and see if

the abstract proof procedures presented there can be more closely combined with the concrete

argumentation and attack forms discussed in the same paper.

• The question of what no recycling constraint (NRC) is best to keep a debate tracking tree

finite merits work.

- Should the NRC be distinct from the mechanism that filters out reflection or is overlap

acceptable?

- Is one form of NRC good for all applications or are different NRCs best for different

situations?

- How profoundly and in what specific ways does the choice of NRC affect the behaviour

and properties of debate tracking trees?

• The topic of syntax sensitivity merits further research: to what degree and in what ways does

the way the knowledgebase is written affect the form of the debate tracking tree or graph?

8.3. Further Research Shortlist 215

Judging a Debate - Chapter 7. My own view is that the definition of judge functions and the way to

select the optimum judge function for a particular application is surprisingly underdeveloped in

the literature. I suggest that the role of reflection in the process of judgement is a fundamental step

to get right, before other subtleties of judgem ent can be properly evaluated.

• Does reflection affect debate outcomes?

- When judged with a quantitative judge?

- How to best structure an existential judge for a tree or forest?

- When judged with an existential judge?

- How to better cast between different forms of debate tracking tree?

- How to better cast between debate tracking graphs and trees?

• How can these questions be proved definitively for all cases and not just with an example of

a single case?

• Assuming there is a provable effect, can the situations and boundaries where the effect occurs

and doesn’t occur be better understood?

• Are there ways to better motivate, formalise and place on a stronger theoretical under-footing

the area of judgement, judge properties and metaknowledge.

• Identify and formalise further judge properties, both desirable and undesirable.

• Deepen the understanding of cumulativity.

8.3 Further Research Shortlist
Although a number of these items suggest building stronger bridges with the abstract and semi-abstract

forms of argumentation I would suggest the particularly interesting areas are where the work of this

thesis takes a radically different direction from abstract and semi-abstract work. This thesis brings to

awareness and even to question several basic assumptions which the abstract and semi-abstract work

appears to be making. These apparent abstract assumptions which I ponder over include:

Abstract preclusion. In abstract argumentation an argument can only attack one argument, not more

than one argument. My preclusive undercuts, however, attack more than one argument.

Confirmation graphs and contradiction graphs. Vertices in a debate tracking graph should be single

arguments, not confirmations or contradictions. The debate tree and related motivational work on

preclusions brings this assumption into question.

Graded defeat. An argument is either fully defeated or fully undefeated. This rigid binary simplicity

does not seem to fit well with the intuitions of quantitative judges both herein and in the informal

and formal literature.

Judgement of claims. Judging arguments is considered to be important in the abstract literature,

whereas judging claims is not. Professional debates and the judges discussed focus on the claim

or motion not on any particular argument or set of arguments.

8.4. Assisting Arguments 216

There appears to have grown up an acceptance of the ‘semantics’ approach with its ‘extensions to

a theory’ as the way to judge debates. In contrast, theoretical work on judging motions in professional

debates is considerably less developed. I agree that the work on semantics has a profound mathematical

elegance, however, from the needs of applications I would suggest more be done to create robust formal

underpinnings for quantitative judging with its graded defeat and preclusions.

My view is that papers on the semantics approach are perhaps a bit too ready to accept stalemates

yielding the empty set and not so well equipped in resolving stalemates and hence in resolving inconsis­

tency. If there are many arguments both for and against a claim then I would suggest that the full defeat

of a subset of individual arguments via undercut should not be the only mechanism available to decide

the overall status of that claim.

In concluding this shortlist, I flag this area that questions the underpinnings of abstract argumenta­

tion and its semantics as probably the most valuable one for future research highlighted by this thesis.

8.4 Assisting Arguments
The topic of catenate inferences and what I call assisting arguments, touched upon in Sections 2.4.1 and

7.3.8, merits further development not least because it is quite prevalent in the informal argumentation

literature. Wigmore appears to have been the first to introduce the distinction between ‘affirmatory and

negatory’ forces of arguments within a debate (Wigmore, 1937; Twining, 1985; Reed & Rowe, 2006).

Also, see the more recent (Kirschner et al., 2003) for an argumentation visualisation survey with many

examples of works using informal assisting arguments. This notion has also begun to be explored in

the formal argumentation literature (Amgoud et al., 2004; Cayrol & Lagasquie-Schiex, 2005) where the

topic is now commonly referred to as ‘bipolarity’. As outlined in Section 7.3.8 my conceptual approach

to ‘bipolarity’ is to view confirmation as one form of positive argument interaction and assist as a second

form of positive argument interaction, as summarised in Table 8 .1 below.

Bipolar Relationship —>

Argument Connection j.

Positive Negative

Claim-to-Premises

Claim-to-Claim

Assist

Confirmation

Undercut

Rebuttal

Table 8.1: Summary of Bipolar Functions

Thus rebuttal can be viewed as a claim-to-claim negative relationship and confirmation as a claim-

to-claim positive relationship. Likewise undercut is a claim-to-premises negative relationship and assist

a claim-to-premises positive relationship. The following brief but formal examination shows these as­

sisting arguments to have some perhaps counter-intuitive properties that make them not quite as straight­

forward as might initially appear. My findings reinforce the general controversy in the literature over the

wisdom of including bipolarity into an argumentation framework. My suggestion is that although, from

a user requirements perspective, they are highly desirable (see (Kirschner et al., 2003) for support for

this point of view), more work is required to create a concrete bipolar argumentation framework where

8.4. Assisting Arguments 217

assisting arguments have intuitive behaviour.

The avenue I suggest pursuing in this formalisation is that of ‘assisting arguments’ as follows:

given an argument {/3, /? —* a } K a then the argument {7 , 7 —» 0 } b 0 is an assisting argument. It is an

assisting argument because it reinforces one of the assumptions of the original argument.

Assisting argument definitions could be formalised to match and extend any or each of the undercut

definitions covered in Chapter 3. The Wigmore assist would be a variant on the Wigmore undercut, see

Definition 3.2.1, the Pollock assist a variation o f the Pollock Undercut, Definition 3.2.2, the canonical

assist would build on the canonical undercut o f Definition 3.3.2 and the preclusive assist would build on

preclusive undercut Definition 3.4.2. To transform one of these undercut definitions into an assist defi­

nition would primarily be a matter of removing the negation symbol. This simple approach in isolation

might not be that satisfactory for canonical and preclusive assists as the assisting argument would need

a consequent of the conjunction o f all the premise formulae of the assisted argument, which would be

a challenging requirement to meet in real world debates. Hence the subset or equals sign approach of

the Pollock undercut would seem to be more appropriate than the conjunction of the full support of the

suggested canonical and preclusive assists. Hence:

Definition 8.4.1. Let A be a knowledgebase o f labelled assumption formulae, and let I : a , J :<j> 1 A . . . A

4>n € arguments(A).

J : <f>i A . . . A (f>n is a Pollock assist o f I : a iff{4> 1 , . . . , (f>n} Q stripAssumptions(formulae(/, A)).

I call J : <f>i A . . . A (f>n the assisting argument and I : a the assisted argument. I say that this pair

I : a , J : (f>\ A . . . A (f)n form an assisting chain of arguments. Given this intuitive definition of assist,

which would appear to match the informal usage in (Kirschner et al., 2003) for example in its Villawood

‘one person one jo b ’ example, it can be seen that several issues arise. These issues would need to be

addressed before such assists could become part o f the framework and part of some yet to be defined

‘bipolar debate tree’. The first issue is the potential o f inconsistency in the chain of assisting arguments

as illustrated in Example 2.4.5, which I call catenate inconsistency. The second issue is that of a form

of reflection that could be called a Type V Reflection, which I define as follows:

Definition 8.4.2. Let A be a knowledgebase o f labelled assumption formulae. The set o f reflected

arguments of the fifth type arising from the assist o f J : (3 on I : a, denoted reflects(J : (3 , I :a , A), is

such that:

reflects(J:/3 ,1 :a , A)

= { K : a e arguments(A) |

I : a , J : 0 £ arguments(A),

J :0 is a Pollock assist o f I .a ,

K C (7 U J) a n d K ^ I } .

In this definition it can be seen that the reflected argument K : a and the argument at the head of

the chain I : a have the same claim, a. Thus there are at least two members, { / } : a , { K } : a, of 0(c*, A)

8.5. Implementation 218

making it appear that there is more evidence for a than there actually is - which is an issue. Here is an

example:

Exam ple 8.4.1. Let A = { a : 0 , b : 0 —> a , c : 7 , d : 7 —> 0}. Given the assisted argument {a, 6}: a and

the assisting argument {c, d] : 0 there exists the Type V reflected argument { b, c, d } : a. So in this example

0 is both an assumption o f one argument {a, 6}: a which is the assisted argument and a claim o f another

{c, d } : 0 which is the assisting argument. Furthermore it can be seen that {{&, c, d } } : a , {{a , b } } : a E

0 (a , A) thereby suggesting that there is more evidence fo r a than might be intuitively thought.

As shown earlier, any such redundancy can have an effect on the conclusions of existential or

quantitative judges. If the chain of assisting arguments is longer than two members the number of Type

V Reflections permutations increases rapidly.

Further research is needed to analyse this and other possible kinds of reflection that may occur with

assists and to prove that they always exist, given their prerequisites. Further research is also needed on

the optimal nomenclature to show assisting arguments. A useful destination for this further research

would be to provide a bipolar debate tree, together with any supporting definitions needed to make it

robust in practical use.

8.5 Implementation
1 now propose a software design to implement my theory as a tool to support professional debate. My

tool’s goals are, relative to manual methods, to reach conclusions that are a) better-thought through and

b) less error prone, with c) a documented audit trail in d) a more efficient fashion. The emphasis is not

on either side trying to win, but rather on ensuring that all involved are well informed and on deepening

the collective understanding of the problem at hand.

There exist several implementations of automated argumentation tools, for example Oscar by

Pollock, (Pollock, 1992; Pollock, 2000), Verheij’s Argue! (Verheij, 1998) and ArguMed, (Verheij,

1999), Reed’s Araucaria (Reed & Rowe, 2004), Gaertner and Toni’s CaSAPI (Gaertner & Toni, 2007),

Krause, Bryant and Vreeswijk Argue tuProlog (Bryant et al., 2006) and the Aspic software from

www.argumentation.org. All o f these tools have applicability to debate tracking and judging, however

none of them appear to incorporate reflection as analysed herein.

The only absolute distinction between my design and others that have been developed in this area

is thus that this one is aware of reflection. Relative distinctions are that my design is more automatic

than most (users only have to provide assumptions) while at the same time having more attention to

argument visualisation and ease of use. Consequently this tool should have a greater ability to resolve

inconsistency and filter out uncorroborated evidence, making it, arguably, closer to professional debate

in practice.

O f the broadly comparable tools in the literature, some emphasise the user interface and provide less

automatic underpinnings (Zeno by (Gordon & Karacapilidis, 1997), Argue! and ArguMed by (Verheij,

1998; Verheij, 1999; Verheij, 2003) and Araucaria by (Reed & Rowe, 2004)) than my proposed tool.

In others emphasis is placed on interoperability (Rahwan et al., 2007), which is a worthy but separate

http://www.argumentation.org

8.5. Implementation 219

goal. Yet other tools in the literature have strong automation but less apparent emphasis on ease of

use via argumentation visualisation (e.g. CaSAPI (Gaertner & Toni, 2007)), or additionally having the

automation cover the full classical prepositional logic rather than the subset of defeasible reasoning (e.g.

Oscar (Pollock, 1992; Pollock, 2000)). An area of further research is to obtain copies of these and

comparable tools and further study their strengths and weaknesses. Two areas (Prakken & Sartor, 2002)

not tackled by the proposed tool are those of a) automating the procedural control over the flow of the

debate and b) helping optimise the choice of arguments presented using rhetoric and other means to

maximise persuasion. The design aim of my tool is also to provide a superior visualisation of the debate,

both because a) my theory allows a single tree to cover a full debate arguably more richly (by including

preclusion) and simply (by excluding reflection) than others and b) leveraging recent developments in

the theory and user interface tooling for argumentation visualisation and information visualisation.

In the proposed tool, the computer does the work of building the tree from assumptions, notably

computing arguments, confirmations, contradictions (and hence rebuttals), preclusive undercuts, build­

ing the debate tree vertices and edges and also deciding the outcome of the debate. In contrast to some

approaches in the literature the tool does not require the distinction of proponent and opponent or pros­

ecution and defence. Instead all of the users are debaters, recognising that many professional debates

involve a large number of stakeholder parties whose needs often form a relatively complex web of com­

plimentary and contradictory points. The tool has no procedural controls thereby avoiding the constraints

of dialectical approaches with their use o f alternating moves by two players.

I now describe system design in two stages, describing i) the system exterior and ii) the system

interior. The system exterior section describes the functionality delivered by the tool to its users. I

use the Unified Modelling Language (UML) approach of use cases to document the system functions.

The system interior is documented as the components or modules that are needed to deliver the desired

function. I employ the UML approach of the package diagram to show the system interior. These two

provide the high level system design, that as a next step must be complimented with a detailed low level

design, prior to building the system itself.

8.5.1 System Exterior - Use Cases

Each use case is a task or job performed by a user with assistance from the computer - it is a unit

of functionality documented here at a fairly high level o f abstraction. I start with a use case diagram

showing the actors, system boundary, use cases and functional flows that occur outside the system.

Maintain Knowledgebase. A key job of the facilitator is to maintain the knowledgebase. He or she

does this by listening to proposed assumptions from the debaters and then mapping the assumptions into

the language of the knowledgebase. Within this use case there are several aspects including maintaining

the list of debaters, each with the debater’s full name and initials. Each assumption in the knowledgebase

is associated with the initials of the debater who proposed it and a unique assumption label number. An

assumption is built from a combination of one or more ‘atomic formulae’ connected by zero or more

logical operators to make a ‘compound formula’. All atomic formulae are also valid compound formulae.

The logical operators are ‘and’, ‘or’, ‘negation’ and ‘implication’. Brackets are also available to show

8.5. Implementation 220

Propose Assumption
Propose View Change

(not automated)
" \

o o
System

Facilitator Debater

Maintain Knowledgebase
Maintain Debate Motion

Modify Presentation View
(plus all other user cases)

View Knowledgebase
View Arguments
View Debate Tree
View Judgement

Figure 8.1: Use Case Diagram o f a Debate Facilitation Tool

precedence explicitly. Each atom has a symbol plus a linguistic gloss, where the gloss is a phrase or

sentence o f ordinary English. Thus each assumption also has a gloss built up from the gloss of the atoms

cover adding, editing and deleting assumptions.

Maintain Debate Motion. Each and every debate has to have a motion. The motion is an atomic

or compound formula, which is separate from the knowledgebase and from the set of arguments as the

motion is neither an assumption nor a deduction. The default situation is to have one motion, however

it is also possible to have more than one motion under debate at a time, with the given that all motions

under debate are underpinned by the same knowledgebase. It is typically only at the outset of the debate

that the facilitator selects the motion. One way to select a motion is to enter one or more assumptions into

the knowledgebase, allow the system to create the desired argument from those assumptions and then

use the resultant claim as the motion of the debate. Hence selecting the motion is not a time consuming

part of the facilitators job.

Modify Presentation View. Another key part of the facilitator’s job is to modify the presentation

view seen by all users, i.e. the single view that is shared by the debaters and facilitator. I envision that

a projector, or more specifically a bank o f three projectors, be used to show the debate tracking on walls

or large screens so all see the same information. Controlling the view assists in controlling the focus and

flow of the debate. The presentation view is modified i) by changing which window is at the front and

therefore not obscured and ii) by panning (i.e. scrolling) and zooming. When a three dimensional view

of the debate tree is employed then it is also possible to move the position of the viewer and to modify

the direction the viewer is looking in.

The view has the following windows or visible items: 1) list of debaters (with short name and

full name), 2) list of atomic formulae (with symbol and gloss), 3) knowledgebase 4) arguments (with

assumptions and claim), 5) confirmations built from arguments with the same claim, showing maximum

cardinality confirmations, 6) contradictions showing rebuttals between confirmations and hence rebuttals

between arguments, 7) preclusive undercuts and most importantly 8) the debate tree.

and logical operators it is comprised of. The word ‘maintain’ in the title of this use case is used here to

8.5. Implementation 221

The facilitator also has access to all o f the other user cases in the system and may give verbal

instructions to the debaters to pause or continue debating while he or she catches up with the data entry

and view adjustment.

Mew Knowledgebase. The knowledgebase is a list o f assumptions represented as compound for­

mulate built from atomic formulae and logical connectives (each having proposer, compound logic sym­

bols and computed gloss). The knowledgebase is displayed as a table and a choice may be made to see

a more textual or a more mathematical view. A fully textual view would require further work in the area

of natural language, but a more mathematical view might confuse some users. One workaround would

be to allow the facilitator to edit the textual gloss of assumptions and arguments to make them into more

everyday English.

View Arguments. Given the set o f assumptions, the system determines what arguments follow.

The list of arguments can be filtered to either show a) by default, just those direct arguments that actually

appear in the debate tree or trees under debate or b) those in a) plus all o f the reflected arguments that

have been pruned out o f debate tree or trees under debate or c) all practical arguments that are derivable

from the knowledgebase. More research will be needed to define the term ‘practical’; here I mean for

example that if I : a e arguments(A) then /:c*V /3, / :a:V/?V 7 and I : a V 7 V @ may not be ‘practical’.

As the automated derivation of arguments is time consuming any of these lists may not necessarily be

complete. New arguments are added to the displayed list and may affect the tree and other windows in

real time as they are computed.

Mew Debate Tree. Central to the abilities o f the system is the display of the debate tree. Different

levels of granularity of display are available with the ability to focus on contradictions, confirmations, ar­

guments, assumptions, linguistic gloss, claims, assumption labels, deduction labels, confirmation labels,

rebuttals or preclusive undercuts. The strength of each proposition is shown on the display as computed

in real time by the judge function. I envision that brightness, seen by the eye as rear illumination by a

small light bulb, is used to represent the strength o f an argument and strength of a vertex within the tool’s

visual language.

Mew Judgement. The most important feature of the system is that it shows, in real time, who is

winning the debate. Whenever a new argument is added to the debate tree then the judgement is re­

evaluated and re-displayed. The judge outcome can be that the motion is carried, defeated or that the

there is no outcome. No outcome may be due to a stalemate, the absence of compelling evidence (where

threshold has done its noise filtering work) or just the absence of evidence.

Debaters have no direct hands-on way to control the debating tool, hence they must provide their

inputs to the facilitator who then enters them into the tool. Proposing assumptions for inclusion in the

debate is the main way that debaters are allowed to contribute. The system does not allow an argument

to be entered directly as it derives them from the assumptions given. Debaters are encouraged not to

propose complete arguments, but if they do it is the facilitators job to break these arguments down into

assumptions. Debaters may also request the view to be changed. If contributions are occurring more

rapidly than the facilitator can absorb then the facilitator must request the debaters to pause and be quiet

8.5. Implementation 222

until he or she has caught up; a visual cue might assist this pausing.

8.5.2 System Interior - Packages

Now that the system exterior has been described I turn to the system interior and document its high

level design as a series of packages. The UM L approach of the package diagram is akin a modular or

component design diagram. My design bridges a) an emphasis on a rich argumentation visualisation

user interface with b) the automated discovery of arguments and population of the debate tree.

Data Entry

Repository

Knowledgebase

Motion

Connection Graph

Visualisation

Model

Tree

Argument

Support Tree

View Control

1

Judgement

Reflection

Preclusion

Contradiction

Figure 8.2: Package Diagram of a Debate Facilitation Tool

In describing the system interior I relate it to use cases so that the sequence of messaging from

package to package is explained. Package names here begin with a capital letter. The design within

the packages is assumed to be an object-oriented class structure. The package to package lines in the

diagram are somewhat informal as some represent ‘contains’, some the flow of data and others the flow

of control. Also the direction of flow and whether it is a one way or bidirectional flow is not shown. The

diagram also does not show the concurrent nature o f multiple processes, with requests passing one way

and various argument aggregations passing the other along process pipelines.

The tool starts with an empty Knowledgebase and an empty Repository. The Repository contains

the Knowledgebase and also holds all o f the other information about the debate, most of which can be

seen listed as other package names.

Motion. The debate motion is initially empty and has to be specified. The motion is held within

the Repository, but not in the Knowledgebase as that holds only the set of labelled assumption formulae.

Adding a motion starts with the Data Entry package, and ends with Visualisation displaying the debate’s

motion. The Data Entry package then talks to the Model, with that communication mediated by Visual­

isation. Model then puts the motion into the Repository for the sake of persistence. Once the motion is

8.5. Implementation 223

in Model then the view aspect of Visualisation picks it up and the users see it. At this stage the argument

generating engine has no assumptions to work on and is thus dormant. The motion does however prime

the argument generating engine by putting requests in to Argument for sets of assumptions that prove

or disprove the motion. Throughout this design the passing of events and requests will be handled by

the observer software design pattern, with listeners registering their interest in classes of event when that

listener is instantiated.

Model - View - Controller (MVC) Pattern. The MVC pattern is an established way of addressing

the underpinnings for a rich user interface. The controller, here split between View Control and Data

Entry, listens to events, namely input events from user input devices, such as mouse and keyboard and

interprets that input using a state machine that tells it what to do with that input. The Model package

contains the data to be displayed in a format that is readily accessible and closely matching that needed

for display. On the one hand the Model can contain everything in the Repository, but it also enhances

and unpacks that information particularly populating a representation of the virtual three dimensional

space visible* to the users. The view of MVC manages the display and in this tool takes the form of

the Visualisation package. The other event driving the controller is when the model changes due to

argumentation computations. A candidate tool for underpinning the MVC is the Struts package from the

Apache Software Foundation. MVCs event management will also use the observer pattern.

Visualisation. The visualisation package is built on the metaphors of argumentation visualisation

and information visualisation to provide an easy to understand graphical user interface. Information

visualisation, see for example (Chalmers, 2003), is a collection of user interface design techniques that

deliver an information-rich display of many inter-related series of data at one time. Thus there are multi­

ple dimensions o f data shown concurrently, some of which are visually modelled as the three dimensions

of space. Such visualisation allows users to more quickly gain an intuitive grasp of complex data sets.

The information involved in tracking and judging a debate is a good example of such a complex data

set. Argumentation visualisation can be seen as specialisation within information visualisation focussed

on how to best display the debate tracking and judging information so that it is a) usable, i.e. easy

to understand and b) useful, i.e. that productivity gains are achieved from the system. The landmark

book (Kirschner et al., 2003) provides several user interface metaphors; I particularly like the displays

of Chapter 5 on the Villawood example, especially the one on page 113, as one way of seeing the debate

tree. Much of the argument tool literature focusses on the level of showing isolated or individual argu­

ments, but an important exception is (Reed & Rowe, 2006) that advocates using Wigmore’s approach to

tracking a debate in a diagram.

The ArgDF documentation (Rahwan et al., 2007) suggests a rich three-dimensional way of show­

ing a tree of arguments is to have the root at the centre of a sphere and the other vertices positioned to

be spread neatly across the surface o f a series of concentric spheres. I propose adopting visualisation

that builds on the sphere style and within that the simplicity of the Villawood approach. OpenGL is a

candidate graphics library to support these two and three dimensional display metaphors, because of its

support for lighting and perspective. OpenGL provides an application programming interface (API) for a

8.5. Implementation 224

rich library of graphics primitives and has bindings to the prevalent languages. Another candidate graph­

ics library is the more recent evolution on top of OpenGL contained in the Apple Macintosh Leopard

operating system, known as Core Animation.

Adding Assumptions to Knowledgebase. The next step in the debate is for assumptions to be

added. The MVC takes care of assumption entry along the same lines as motion entry, with the distinc­

tion that assumptions are stored in the Knowledgebase. There is merit in using an extensible mark-up

language (XML) format for arguments, notably Argument Markup Language (AML) originating from

SRI International, as used in Araucaria and employed by Douglas Walton, the Open University and oth­

ers. While the main benefit is interoperability, the use of XML also makes for easy to understand and

evolve persistence. The Repository, and its sub-components Knowledgebase and Motion, are therefore

sensibly to be implemented with XML. I am minded to use an XML database, noting however that

the compute intensive, more real-time, elements of the system probably should not be making frequent

accesses to XML. A candidate XML database is the open source Xindice from the Apache Software

Foundation. As assumptions are added to the Knowledgebase the argument generating engine is able to

move from dormant to active.

Connection Graph. The construction of arguments begins with the Connection Graph package,

passes through Support Tree and delivers its result as instances of Argument. The pattern employed

here is factory. The connection graph concept was introduced by (Kowalski, 1975). The main purpose

of the Connection Graph package is to transform the knowledgebase into a structure which is more

amenable to searching for the basis of arguments. A basic feature of classical logic is that any formula,

however complex, can be represented as an equivalent disjunction of literals, known as a clause, where

a literal is an atomic formula or the negation of an atomic formula. The support of any argument can

then be represented as a conjunction of these disjunctive clauses; this standardisation or normalisation

of formulae is commonly known as conjunctive normal form (CNF). Thus the first step of processing

in the Connection Graph package is to use a small set o f standards proof rules to render a copy of the

knowledgebase into CNF, and to maintain a map between the elements in knowledgebase and CNF items.

The second step of processing in this package is to build a graph, called the connection graph, see

(Kowalski, 1975), with the CNF formulae as its vertices. The graph edges are provided by a preattacks

function, which means that there is a potential logical relationship between the two vertices. If, for

example, one vertex only referred to n and p and a second vertex only referred to A and 7 then there

would be no edge between them. Having a preattacks relationship is necessary but not a sufficient

condition for participation in a valid argument. W hile the paper (Efstathiou & Hunter, 2008) describes a

number of graphs and trees involved in the production of arguments, the special feature of the Connection

Graph is that it is the only one that is common to all arguments and all claims. Thus maintaining this

data structure as separate from the claim specific structures has merit.

Whenever the knowledgebase is changed the contents of Connection Graph have to be automatically

updated so that the two remain synchronised. Change here could mean the addition or deletion of a

formula or the revision of an existing formula. The Connection Graph is persisted over the life of the

8.5. Implementation 225

debate. In a typical debate the assumption formulae can be expected to arrive in an asynchronous fashion

with many seconds or minutes between each change. Hence the computational task is not to build a

large graph from scratch, but rather to incrementally grow and revise an existing graph, and hence the

compute times for revision can be expected to be slightly better than the complete computation times

given in (Efstathiou & Hunter, 2008); I would suggest that benchmarking is warranted, particularly for

the range 100 > | A | > 30.

Support TVee. The Support Tree package has inputs of i) the connection graph and ii) the claim of

arguments to be found and an output o f valid mincon arguments for that claim. A feature of this package

is that it is able to find all o f the arguments for a given claim derivable from the knowledgebase. The

output can of course can be no arguments. The package is able to tell when it has the complete set of

arguments for a claim. The package is also able to compute arguments in a considerably more efficient

fashion than brute force examination of every subset o f the knowledgebase.

Whenever the knowledgebase changes this package recomputes the set of arguments for each claim.

Usually that recomputation yields additional arguments, but if formulae have been deleted or revised in

the knowledgebase then this recomputation can result in the removal of previously valid arguments. A

second aspect o f this computation is that for large knowledgebases (with say in excess of 50 formulae)

it can take a long time so additional arguments for a claim can be produced at virtually any time during

a debate. A benchmark presented in (Efstathiou & Hunter, 2008) is that the computation time of the

work I have described for the Connection Graph and Support Tree packages moves from the human

perception of instantaneous processing time to that o f perceivable processing time at around 30 formulae

on a modest computer. My own evaluations of professional debate shows that 40 formulae is a more

typical average size for a modest but practical debate, so the process of use of this system will have to

tolerate the late arrival o f some arguments.

Within Support Tree the processing o f the connection graph is performed in a series of steps, as

described in (Efstathiou & Hunter, 2008). These steps, if viewed as a Venn diagram, consist o f a set of

concentric circles (with the odd exceptions) with the outer circle being the connection graph. Each step

thus computes a subset o f the output o f the previous step. In order o f increasing specificity the steps are

called 1) connection graph, 2) attack graph, 3) closed graph, 4) focal graph, 5) query graph, 6) presupport

tree, 7) consistent presupport tree, 8) minimal presupport tree, 9) support tree. Consistent support tree

and minimal support tree are both subgraphs of presupport tree. A support tree is a presupport tree that

is both consistent and minimal.

One branch of a support tree yields the support for a valid argument for the given claim. Recalling

Definition 2.4.2 of the mincon argument, consistency of the support is ensured by step 7) above, mini­

mality by step 8) and implication of the necessary claim by step 6). The chain of responsibility pattern

is employed in the Support Tree package to underpin this pipeline.

A rgum ent. The first way to understand the Argument package is as a structural element recording

or holding the form of part of a debate tree. The overall structural form is that one debate tree (in Tree)

starts with a single formula as its motion (in Motion). The debate tree, recalling Definition 6.7.7, has

8.5. Implementation 226

contradictions mapped to vertices (in Contradiction) and preclusive undercuts as edges (in Preclusion).

The intra-package links are thus part o f the form of the debate tree, showing the relationships between

structural elements. The next level o f detail is that one contradiction contains one to many arguments (in

Argument). Each of these structural element packages also contains processing functions, but they relate

to getting, setting, mapping and the like rather than to the compute intensive tasks. Thus the debate tree

itself is formed by Tree, Motion, Contradiction, Preclusion and Argument.

The second aspect of the Argument package is that it marshals the creation of arguments, their

filtering by Reflection and the process o f growing the tree. Each argument is aware of its status as either

having all of its confirmations, undercuts and rebuttals identified or not. If it has more of these yet to

be identified it issues requests to Support Tree to find and instantiate them. Argument is able to create

many parallel threads, one per claim for arguments sought. Further recent theoretical work in speeding

and approximating the computation o f arguments is also noted, e.g. (Besnard & Hunter, 2006).

Reflection. The Reflection package examines the tree looking for reflections and then flags each

argument to show which kinds of reflection it is free from. Only arguments that are free from all kinds

of reflection from all reflectors are allowed in the tree that is displayed and judged. Thus as Reflection

examines Tree it interacts with two trees, one that contains reflection and one that is matt-opaque. Conse­

quently Reflection is able to not only examine each part of the reflection-containing tree, but also to issue

commands to flag each argument with its reflected or direct status, by each type of reflection. These flags

then control the instantiation of the matt opaque tree. Reflection runs as another asynchronous process

moving data along one of the pipeline steps from the Knowledgebase to the Visualisation.

Tree. The implemented debate tree corresponds exactly to my mathematical debate tree, with its

vertices mapped to Contradictions and its edges existing as Preclusions. Edges in the tree are labelled

to show which target confirmation is attacked within which defending confirmation. All of these links

between items are achieved with object-oriented references between instantiated objects and also are

persisted within the XML of the Repository. The recursive composite pattern is used to hold the tree

itself and thus act as a springboard for recursive programming in population of the tree. The tree also

delivers the no-recycling constraint checking which is at least a fifth check on argument validity, beyond

the mincon three and reflection, for validity in a given tree. The constraints to be valid confirmation,

rebuttal or undercut argument could be seen as further integrity checks. As mentioned under reflection,

within the Tree packages are two instantiations of contradiction trees, one without reflection (i.e. matt

opaque) and one with reflection.

Preclusion. The main feature o f the Preclusion package is that each instance creates a pair of links

to two contradictions, showing the attacker and the defender. A preclusive undercut is also linked to the

various confirmations of importance: for attacker, target and defending confirmations. Thus edge labels

are accomplished by means of links. There are separate objects for the three confirmations involved,

attacker, target and defender, each with a hierarchy of sub-objects for their confirmation, argument and

assumption labels.

Contradiction. One Contradiction comprises many Arguments. Within Contradiction is confirma­

8.6. Decision and Design Rationale and Trade-off 227

tion (not shown in the package diagram). A feature of the Contradiction package is the generation of

requests to the argument factory as to what claims are being sought. These claims if they result in viable

arguments will deliver i) confirmations of existing arguments ii) rebuttals of existing arguments and iii)

preclusive undercuts of existing arguments. Thus each Contradiction (X, Y) : <j>, exploiting its status as

part of the tree, has its own ability to increase the cardinalities of X and Y. Each Contradiction also has

the ability to create new children for itself and thus link those child Contradictions into the Tree. Once a

Preclusion is validated as being an appropriate part of the tree the established Argument transforms itself

into a confirmation and then that confirmation transforms itself into a Contradiction. As touched on

under Reflection, each Argument within each Contradiction has contextual flags to indicate its reflection

status, so while these flags are manipulated by Reflection they are part of the Tree data structure. Note

that a particular Contradiction can appear more than once is a Tree and may thus be instantiated more

than once.

Judgement. The Judge package reads the tree in a parallel way to Reflection, however it is only

able to see the matt-opaque tree not the one containing reflection. Judge is another asynchronous process

that recomputes its outcome each time the tree changes, again triggered by the observer pattern. Not all

of the lines are shown on the package diagram. The main point is that the judgement is not stored as part

of the Tree, but rather resides in the Model that contains the Tree. Some obvious but unobstructive way

of showing the current state of the Judgement is necessary within the Visualisation.

8.5.3 Implementation - Next Steps

Interesting follow-on questions are: i) Can the tool and facilitator keep the data entry of assumptions in

synchronisation with such a team of professionals without too much frustrating pausing? - i.e. do the

debaters have to wait for data entry? ii) Can the tool give an indicative debate outcome in near-real time

as the debate develops? - i.e. do the debaters have to wait for the computation of the debate tree? iii)

W hat is the probability that the outcome is right after four hours? iv) What is the probability that the

outcome is right after seven full days o f computation? v) What is the probability that the outcome will

change purely as a function of the computation from debate end to a week or a fortnight later? Other

key questions are: vi) W hat exactly is the best user interface metaphor to show the debate tree and its

parts? vii) Do users find the tool-facilitator combination easy to work with? viii) Do users find the tool-

facilitator combination as useful overall? - i.e. does it increase productivity and improve the quality of

analysis? Is it perceived as useful ix) during the debate?, x) only at the end of the debate, xi) at the end

of say a week when more computation has been done and the debate has been written up and xii) some

time later when the debate tracking and judgement are required for audit or reuse?

These questions have the character o f research rather than development, and require answers before

widespread application of such debate facilitation tools is likely.

8.6 Decision and Design Rationale and Trade-off
I suggest the areas of decision and design rationale and trade-off as ones likely to be fruitful for applica­

tion of this tool and for further research. Decision rationale can be seen as establishing and documenting

8.6. Decision and Design Rationale and Trade-off 228

the reasons or arguments as to why a particular decision takes the form that it does. Likewise design

rationale documents the justification for a particular design. Design trade-off, in contrast, involves the

design rationale for more than one design with the aim of finding the optimum design solution for a

given problem. Decision trade-off is a new part o f the more established field of decision support.

Design rationale and trade-off are aspects of systems engineering which appear to be under­

developed parts of the literature and extant tooling. Existing work (Buckingham-Shum, 1994) suggests

good potential utility for a tool such as that proposed here. By documenting the reasons for a design or

decision several benefits may be achieved, notably:

1 . improved efficiency of the design or decision team in their work as their mental processes become

explicit, recorded, sharable and more quickly appreciated by other team members,

2 . improved speed and quality of design or decision modification in the face of changed requirements,

3. easier reuse and adaptation of similar designs or decisions and

4. faster and smoother communicatidn to independent auditors, assessors or advisors as to the nature

of a design or decision and its justification.

I now give a small example of such a decision or design rationale exercise, focussed on the area

of corporate acquisition, commonly known as mergers and acquisitions or M&A. This example comes

from an actual occurrence and has not been fabricated; only the company name has been changed. The

motion of this small debate is a with a linguistic gloss of ‘Buy WarmHouse’, i.e. that we should buy

the company WarmHouse Corporation. The following Table 8.2 shows the atomic formulae involved

together with their equivalent linguistic glosses. Appreciate that Table 8.2 is not the knowledgebase, but

rather just ingredients that the knowledgebase may be built from. The knowledgebase is provided in

three steps, A i, A 2 and A 3 , below.

W hile the approach of this thesis is monological in nature, I present this example as a series of steps

that could be taken as having a dialectical flavour. This step by step presentation does not change the

debate outcome versus starting with the full knowledgebase as no arguments are held back.

An initial business analysis of the situation yielded the initial knowledgebase, A i, showing what

was known about the situation at that early stage.

A i = { a : 0 , b : 7 , c : 6 A e, d : (0 A 7 A 8) —> a , e : £, / : 77, g : 9, h : i : k , j : (£ A 77 A 6 A t A k) —*

A, k : n, I: (A A fi) —» —► a } .

At first sight, with A i, the purchase of WarmHouse appeared to be attractive. There are two ar­

guments, see Table 8.3, in favour of purchasing the company and thus these form a confirmation of the

motion a .

Further due diligence analysis yielded additional basic information for the knowledgebase giving

A 2 which is A 2 = A iU some additional assumptions.

A 2 = A i U { o: £ , p : £ —> 7r ,q:£ —> p, r : (7r A p) —► ->£, s : c r , t : T , u : T —» v, v : (c r A v) —> ->r)}.

These additional assumptions provide two undercuts, again see Table 8.3, that attack one of the

confirming arguments in favour o f the motion. These undercuts are shown in Table 8.3 first as Wigmore

8.6. Decision and Design Rationale and Trade-off 229

Used

In

Atomic

F orm ula

Linguistic Gloss

Motion and

d,n,y,cc

a Buy the company WarmHouse Corporation

a,d,x P I want to get into the energy conservation business

b,d 1 A way to get into the energy business is to buy an existing firm, e.g. a heating firm

c,d 5 A local heating firm, WarmHouse, is available

c,x e My brother is an employee at WarmHouse

e,j,r,z c WarmHouse has a valuable asset of a vehicle

f,j,v,z 9 WarmHouse has a valuable asset of existing service contracts bringing in

£2,000 2 month by direct debit

gd>z 9 WarmHouse has a valuable asset of a customer database going back fifteen years

h,j,z i WarmHouse has a valuable asset of many stickers and fridge magnets in the field

with their phone number on

i»j*z K WarmHouse has a valuable asset of accumulated goodwill

from its customers and prospects

j,l,n,z,aa,cc A The assets o f WarmHouse are worth over £100,000

k,l,n,aa,cc P WarmHouse is for sale for £100,000

l,m V A company X ’s assets are worth more than its sale price

m,n,bb,cc tjj Buy that company X

o,p,q a The vehicle is old

P*r 7T The vehicle is only worth a few thousand

q»r P The vehicle could breakdown on the way to a service call

s,v O The service contracts incur considerable routine cost for each visit

t,u T Many of the boilers under contract are old

u,v V The service contracts could soon require many of the boilers to be replaced

aa,bb <t> A company X ’s assets plus projected revenues over 10 years are worth less

than its sales price

w,x X My brother knows the home heating business very well

y.x U) Start one’s own company from scratch

Table 8.2: Atomic Formulae and their Linguistic Equivalents for WarmHouse

8.6. Decision and Design Rationale and Trade-off 230

undercuts then as canonical undercuts. The tool should probably only show end users the Wigmore

undercuts, keeping by default the canonical undercuts undisplayed and for internal tracking of the debate.

At this point there is still an undefeated argument in favour of the motion and no arguments against, so

the motion a still carries.

Additional research into company valuation and startup strategy added further assumptions yielding

A3. I’ve adopted the common legal practice of having aa, bb, c c , . . . follow on from a, b, c ,. . . after z

is reached and the alphabet is exhausted. When listening to a speaker, aa is easier to distinguish from

earlier set members than the alternative approach of ab, a c , Here is the final knowledgebase:

A 3 = A 2 U {w :x , x : {(3 Ae A x) —► y :w —* ~<a, z : (-> £ A -177 A 0 A t A k) —> —«A, aa: (->A A y) —>

<f>,bb:(f> —* cc: (->A A/jA -up) —> -ia}.

These final assumptions allowed a pair rebuttals to be formed, see Table 8.3. Observe that

there is some somewhat informal logic in the two areas where the quantifiers of first order pred­

icate calculus would have been useful, notably around u,ip and <j>. Let I = { a , b , c , d } , J =

m , n } , K = { a , c , w , x , y } , L = { g , h , i , k , o , p , q , r , s , t , u , v , a a , b b , c c } , M =

{ o , p , q , r } , N = {s ,f ,u ,v} .

Some of the reflected arguments in the debate have also been shown in Table 8.3. Here is the

resultant debate tree, which by definition does not include any reflections.

{ { I , J } , { K , L }) : a

{■J}

({M,Ar},0):-nrt7

Figure 8.3: Debate Tree of the Buying WarmHouse Debate

It can be seen that there are six arguments of merit in the debate. Depending on the judge style used

one of the undercuts does not play an active role. Table 8.3 shows twelve reflected arguments, and that

is only a sampling of the total - so the number of reflected arguments outnumbers the direct arguments

here by at least a factor of three to one. Separate from the question of skewing of the debate outcome by

reflection, it is clear here that if reflected arguments were included in Figure 8.3 then it would be much

harder to see and understand the essence of the debate.

At the conclusion of the debate there are two undefeated arguments for not buying WarmHouse and

one undefeated argument for buying WarmHouse. Thus using either an existential or a quantitative judge

the conclusion is not to buy WarmHouse. This argumentation example therefore crisply documents the

decision rational for not buying the company. If a similar situation to this presented itself in the future

this documentation would allow the earlier work to be adapted more effectively and easily to the new

situation. Even if no similar situation arose the documentation provides an audit trail for shareholders,

tax auditors, accountants and others.

8.6. Decision and Design Rationale and Trade-off 231

No. Argument Comment

1. I :a = {a,b,c,d}:a £ arguments^!)

i.e. {a:P,b:'y,c:S A e,d:(0 A 7 A 6) —> a } b a

Argument for motion.

2 . J :a = {e,f,g, h, i,j, k, l ,m ,n } : a G arguments^!)

i.e. {e:£, f :rj,g:d,h:i,i:K, j :(£ Ap A 6 A l A k) —> A,

k : p , I : (A A p) —> u, m : v —> 0 , n : (A A p A 0) —> a } b a

Confirming argument for motion.

3. M :->£ = { o ,p ,q , r } : ^ £ arguments(A2)

i.e. {o:£,p:£ 7r,q:£ -> p ,r:(?r A p) - < } ^ “<

1 st Wigmore undercut

of argument 2 .

4. N:->r) = {s, £, u , v } : -<77 6 arguments(A2)

i.e. { s : (7, f : t ,u :r —► v , v :(<7 Av) —► - 177} 1— 177

2nd Wigmore undercut

of argument 2 .

5. Let m = £ Ar] Ad A l A k A ((£ A t] A 6 A l A k) —> A)

Ap A ((A A n) —> 1/) A ((A A p A u) —> a)

M : -io7 = {o,p, <7, r } : ->07 G arguments(A2)

i.e. {o: t ,p: t->n,q:£ -> p,r:(7r A p) -♦ ^<} h - .0 7

1st canonical undercut

of argument 2 .

6 . TV: ->07 = { s , u , v } :-izz7 G arguments(A2)

i.e. {s:o,t:TjU:T —* v,v:(cr Av) —> ->77} 1— 107

2 nd canonical undercut

of argument 2 .

7. K:->a = {a,c,w,x,y}:->a G arguments(A3)

i.e. {a:/?,c:<J A e ,w :x ,x :(0 A e A x) —> u , y - u —* "'a} 1— <a

1st rebuttal

of arguments 1 and 2 .

8 . L : ->a = {g, h, i, k , 0, p, <7, r, s, t ,u ,v , aa, bb, cc} : ->a:

G arguments(A3)

i.e. { p : 0 , /&:<,,«:«, f c :p ,o :£ ,p :£ -» 7r,g:£ -» p,

r : (7r A p) —► ->£, s:cr,t:T,u:T —> v,v:(cr Av) —> -177,

a a : (iA A p) —> 0 , bb: 0 —> ->0,

cc: (—>A A p A ~>0) —» —iQ:} 1---- >0 ;

2 nd rebuttal

of arguments 1 and 2 .

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

7 : 0 7 ,

J ' .V J ,

K : ->(/? A 7 A £ A € A ((/? A 7 A 5) —> a) ,

L :->(0 A 7 A <5 A e A ((/3 A 7 A 5) —» a) ,

77 :^07 ,

L : ->07,

I :->(/? A 5 A e A x A ((/3 A e A x) -> w) A (w

J : ->(/? A <5 A e A x A ((/5 A e A x) -> w) A (w - ,cO),

/:-> (# A l A k A fi A £,p:£ —> 7 r, # :£ —>pA

((7r A p) —> -<£) A a A t A (r - >7;) A ((cr A t;) -> —>77) A

(~>A A p) —» 0) A (0 —► ->0) A ((~>A A p A —>0) —♦ ->a),

J :->(0 A 1 A k A p A £,p:£ —► 7r,q:£ —> pA

((7T A p) —> ->£) A a A r A (r -* v) A ((a A v) - > _|77)A

(—>A A p) —» 0) A (0 —► —>0)A

((->A A p A ->0) —► ->a) G arguments(A3)

Reflection, rebuts {M , iV }: ->07.

Reflection, rebuts {M , iV}: ->07.

Reflection, undercuts I : a.

Reflection, undercuts I : a.

Reflection, undercuts J : a.

Reflection, undercuts J : a.

Reflection, undercuts K : ->a.

Reflection, undercuts K : ->a.

Reflection, undercuts L : ->a.

Reflection, undercuts L : ->a.

Table 8.3: Arguments Derived from Knowledgebase for WarmHouse

8.7. Contributions: Strengths and Limitations 232

8.6.1 Design Rationale within Private Finance Initiatives (PFIs)

In the UK and elsewhere today many advanced systems are being developed under the Private Finance

Initiative (PFI) funding rules and these mandate that an ‘Independent Technical Advisor’ (ITA) is in­

volved in checking all the major decision rationales, design rationales and design trade-offs for the

project (see HM Treasury guidelines Standardisation o f PFI Contracts (SoPC4)). In today’s large PFI

projects the ITA work can take two years and thus there is room for greater efficiency if the right tool­

ing could be found. PFI contracts require that before payments are made for completed construction

or delivery of physical assets, that an Independent Qualification Body (IQB) assess that construction or

delivery for quality and fulfilment of requirements. It is common practice to have the IQBs appointed as

part of the overall initial contract signing process. Thus for each candidate IQB there is a decision akin

to the above example as to why they were or were not appointed (clearly appoint is akin to buy). The

proposed tool would not only facilitate the conduct and conclusion-drawing of each decision or design

debate, but could also provide documentation for an audit trail.

8.7 Contributions: Strengths and Limitations
This section summarises the contributions of this thesis, effectively drawing out the strengths of the

thesis as a whole. In addition this section outlines the limitations of the contributions to put them into a

broader perspective. I present this summary of contributions in a chapter by chapter fashion:

Basic Framework Chapter 2’s contributions are not significant in themselves, but rather are

helpful for expressing the ideas of later sections.

• Confirmation is the main contribution of this chapter. It is helpful in that it introduces and

formalises the positive relationship between arguments with the same claim. A limitation is

that the other positive relationship of claim to support is not addressed in the basic framework

and is only touched upon in the final chapter.

• A formal framework for describing argument aggregation is provided. This is a fully concrete

framework and as such is akin to only one instance of the many possible frameworks that can

be derived from the ABA or Dung abstractions. An advantage of such a concrete approach

is that allows a very specific understanding about properties that will be encountered in an

implementation.

• Contradiction is a minor contribution and may be viewed as simply one step in the common

set of steps of aggregating arguments.

Undercut Framework Chapter 3’s contribution is preclusive undercut.

• Preclusive undercut is the main contribution of this chapter and one of the relatively useful

contributions of this thesis.

• Of particular interest with preclusion is that given that it is well motivated in professional

debate, is the observation that it does not fit easily with the abstract approach of Dung.

8.7. Contributions: Strengths and Limitations 233

Thus preclusion provides a different and complementary research direction from the abstract

aspect of the argumentation literature.

• The chapter also contributes a literature survey showing that there is a lack of consensus in

the literature as to what constitutes an undercut. As the field matures such a consensus should

be expected to emerge.

Reflection Between Arguments Chapter 4 introduces and provides the central contribution of

the thesis, that given a chain of two arguments with one attacking the other, then provided certain

simple assumptions there will always exist a third argument. Given notions of defeat and rein­

statement which are prevalent in the literature, e.g. (Prakken & Vreeswijk, 2002), there is logic to

show that every defeated argument will inevitably be reinstated.

• This analysis demonstrates that if reflection is not taken into account then practical imple­

mentations of various theoretical semantics are likely to give counter-intuitive results.

• The key contribution of the thesis is to identify predictable repetitions of arguments that occur

when arguments are chained together in simple lines of two or three attacking arguments.

• This basic reflection between two arguments takes on four forms which I call Base Proposi­

tions One, Two, Three and Four. Undercut engenders rebuttal. Rebuttal engenders undercut.

Rebuttal also engenders rebuttal and Undercut engenders undercut.

• While the existence of reflected arguments and their various properties are quite remarkable

it is difficult to say exactly what their importance or relevance must be to the larger field

of argumentation and aggregation. Abstract argumentation approaches, because they ignore

any inner structure of arguments, are able to avoid questions of reflection.

• If a debate tracking tool relies on humans to compose the arguments then it appears that

humans use their intelligence to filter out the reflected arguments. If an automated tool is

employed to generate all of the arguments that logically follow from a knowledgebase then

reflection becomes crucial.

• What is needed is to filter out or remove all reflected arguments and reflected attacks, leav­

ing only direct arguments and direct attacks. This chapter establishes this requirement and

Chapter 6 provides a data structure to meet that requirement.

In this context I mention that a management consulting exercise I did for a London investment

bank found for a practical, reasonably small but non-trivial professional debate that filtering out

all reflections while leaving in all direct arguments becomes difficult to do manually.

A limitation of this analysis of reflection is that I have not been able to prove that I have found

all of the forms of reflection. It is usually safe to say in scientific endeavours such as this that the

chances are that there are further forms yet to be discovered - which could then possibly alter the

understandings established herein.

8.7. Contributions: Strengths and Limitations 234

Reflection Between Confirmations Chapter 5’s contribution is to deepen the appreciation of

reflection, showing in particular that when the notions of reflection and preclusion are analysed

together then more sophisticated patterns and behaviours are seen.

• Reflections between confirmations, independent of the notion of preclusion, exhibit a form

of expanded reflection I call multi-pair enlargement. As shown in the worked example of

Section 8.6 even a simple debate can lead to a large amount of multi-pair enlargement.

• There are thus a variety of mechanisms that can cause expanded or reduced reflection, all of

which can interact in even simple examples to give quite complex reflection patterns.

• While all of the reflections of the previous chapter fitted a particular template I called Type

I reflection, the inclusion of preclusion adds a subtler form of reflection mandating the need

for Type II reflections.

• In addition to Type I and IE reflections which can be said to flow from head of a chain toward

the tail, (i.e. from nearer the root a some debate tracking tree to nearer a leaf) there is another

form of reflection that flows up chains of arguments from tail to head. I call these Type HI

reflections and show that they have distinct and noteworthy properties.

• When the notion of preclusion is analysed in combination with these Type IQ reflections it is

seen that a fourth distinct form of reflection, Type IV, is found. Given that there is much to

know about Type I reflection (e.g. Base Propositions One, Two, Three and Four) then there

is likely to be more to know about these more advanced forms of reflection.

• It is also apparent that direct and reflected arguments can be intermingled in a single confir­

mation so mechanisms are needed to separate them.

• In the work of the previous chapter, reflected arguments were analysed specific to a given

reflector and thus had a relative flavour to their behaviour. In contrast, in this chapter analysis

is provided to cover all possible reflectors, thereby moving the understanding of reflections

from a relative footing to what could be called an absolute form.

• Even if a confirmation contains only direct arguments and they are direct relative to all pos­

sible reflectors, then it still may not contain all such direct arguments. Consequently it is

necessary to introduce maximal forms that ensure that all appropriate direct arguments are

included in a confirmation.

As with the last chapter it is unfortunate that it has not been possible to prove that all forms of

reflection have been unearthed and thus some of these characteristics could change in the light

of further analysis. Another non-ideal aspect of this chapter is that while distorted reflections are

established as existing, it is not immediately clear a) if that is really a problem or b) if it is a

problem then what to do about it. I follow the theme of arguing that it is a problem and that the

solution must be to prune out or remove all reflected arguments, but my theme is not a proven

result.

8.7. Contributions: Strengths and Limitations 235

Tracking a Debate Chapter 6 describes how to create and populate a data structure to record the

passage of a debate. The focus here is on tracking all relevant or pertinent arguments while at the

same time excluding all irrelevant or duplicated arguments. Clearly value judgements are entailed

in defining what constitutes the debate, the whole debate and nothing but the debate. Thus a merit

of this thesis is that a proposal is put forward for tracking the debate, the whole debate and nothing

but the debate and a limitation is there must exist alternatives which have not been analysed here.

• The chapter starts by analysing debate tracking structures from the literature, particularly

trees, to show the indication that they all may well, or appear to, contain reflection.

• The chapter then goes on to pick a particular tree for detailed analysis and shows a number of

ways in which this tree is problematic. Reasoning is presented to persuade that the problems

described are not unique to this particular tree, but rather there is every likelihood that they

occur across the literature - nowhere in the literature is there description of a mechanism to

stop them from occurring.

• One of the things I like most about this thesis is that is practically grounded in providing a

way to track debates that is free from the reflection problems identified.

• While my debate tree structure has the plus of excluding reflection it has the drawback of

being not as simple as those in the literature - its definition takes more lines of logic.

• On the other hand an advantage of my debate tree is that it tracks a whole debate as a single

tree rather than as the forest of trees provided by various other authors.

An interesting puzzle that this debate tree raises is how to best portray it to users. It would appear

that a three layer approach is warranted where the bottom layer is the mathematical formalism

presented herein, the top layer is some easier-to-understand visual language and the middle layer

is a mapping between the two.

Judging a Debate Chapter 7 describes how to draw a conclusion from a debate, recorded as a

debate tree, as to whether the motion carries or is defeated. My judge functions differ from abstract

semantics in that they a) deliver a single item rather than a set of items or set of sets and b) that

single item is a proposition rather than an argument. In this way I argue that judges map more

closely to the needs of professional debate than do semantics.

• Judges in the literature can be categorised into two main groups: existential and quantitative.

Existential judges only attend to the existence of arguments, while quantitative judges are

sensitive also to the number of arguments. This thesis dwells on and advocates the quantita­

tive approach as it resolves more types of inconsistency than does the existential approach.

• While this section does provide an illustrative judge that works with the debate tree of the

previous chapter, this judge has various limitations. Considerably more research is war­

ranted, I would suggest, to provide intelligent judge functions that are not subject to these

limitations.

8.8. Closing Remarks and Conclusion for Discussion 236

• A particularly challenging, but desirable, property of judge functions is that the outcomes of

a series of debates are consistent when taken together. This property is called cumulativity

in the literature and merits further research. I do not provide it.

• A key question asked by this chapter, which lies at the core of this thesis, is does reflection

change the outcome of debates? Rather frustratingly even though there is an indication that

reflection changes the outcomes of both existential and quantitative judges I have not been

able to rigourously prove that this is a fact.

This chapter has the limitation of being not as formal as those that precede it and much of its de­

scriptions of desirable judge properties is only textual narrative. From that perspective the chapter

is rather unsatisfactory as there is no way of seeing if my proposed judge is definitively any better

or worse than alternatives. It appears to be better as it takes into account reflection, preclusion

and confirmation, but there are clearly so many possible judges that how to pick the best or most

suitable is a puzzle.

I would like to say in conclusion, my opinion is that the field of argumentation within artificial

intelligence should keep itself tied to solid motivations drawn from professional debate and thus to forms

of theory that can be mapped to applications. It should answer the questions of a) where do arguments

come from and b) given an arbitrary item x, is x an argument or not? Certainly I support and welcome

theoretical and abstract work, but do question when this takes paths that inhibit its inter-linking with

professional debate. In contrast, what I like about my thesis is that it starts with theoretical research

and then maps that into something very concrete and practical. I like that it leads to and proposes an

implementation that can be used in facilitating real-world professional debates.

8.8 Closing Remarks and Conclusion for Discussion
This chapter has covered the topics for further research, assisting arguments, the design for an imple­

mentation, an example of a debate and a summarisation of the contributions of this thesis as a whole.

An interesting aspect of this thesis is that it raises questions about some of the assumptions under­

pinning the abstract school of argumentation that is playing such a dominant role in the current argu­

mentation literature. This questioning has the key points of:

• Should an argument attack be allowed to attack more than one argument? I provide practical

motivation and a formalism for this approach, showing how it occurs in professional debates. In

contrast the abstract argumentation literature confines itself to an attack being on one and only one

argument. Certainly one abstract argument can attack several arguments, but there is no linking to

show the dependency or disjunction between the attacks.

• Should graded or partial defeat be allowed? The preclusive undercut would suggest that graded

defeat has its applications in professional debate.

• Should judge functions be allowed to count arguments? Again there is practical motivation here,

8.8. Closing Remarks and Conclusion for Discussion 237

for example from the writings of Benjamin Franklin and John Fox, however the current abstract

literature does not embrace the notion of quantitative judgement.

A second and central notion in this thesis is of course that of reflection. I would suggest that once

reflection is understood and appreciated then taking it into account is not particularly problematic. The

challenges and issues arise if reflection is not taken into account.

The relationship of reflection to the abstract argumentation literature is somewhat paradoxical, be­

cause without a concrete form for arguments there is no way of saying whether reflection occurs or not.

If every attacked, and therefore defeated, argument is automatically subject to a counter-attack, then

some of the semantics in the literature would behave differently. Without a consideration of reflection,

however, there appears to be an impact on various semantics and this, I would suggest, warrants further

research.

Clearly my line of investigation in this thesis parts company from the mainstream of the argumenta­

tion literature, i.e. the abstract and semi-abstract approaches with their various semantics. My direction

could be described as focussing on the counting of arguments and on thus on approaches that part com­

pany even from the mainstream of logic. I would argue back that I employ classical logic for individual

arguments and that to aggregate arguments in a way that fits with professional debate then quantitative

approaches are clearly motivated and warranted. The crucial benefit of the approach I give here is that

it appears to be considerably better at resolving inconsistency than approaches which rely solely on the

existence of arguments and not on their numbers.

I feel the threshold I introduce also has its charm in that it adds a new dimension to argument

aggregation, that of filtering out noise or weakly argued claims. Certainly in law, in preparation for trial,

there is a crucial need to sort through the evidence and arguments to separate the strong from the weak.

Graded defeat would thus appear to be an unavoidable aspect of argumentation if it is to mirror practical

situations.

Weights of arguments, stemming from weights of assumptions, while not addressed in this thesis

is the requirement of professional debate that must not be forgotten going forward. All arguing, based

on equal strength or flat knowledgebases must be accepted as limited. From this perspective my work is

perhaps weaker than those who embrace priorities or preferences in their argumentation. I would argue

however, than the ability of my judge function to order a set of motions from strongest to weakest is a

useful step in the direction of graded defeat. I would also hold that in lieu of an improved theoretical basis

for deciding where weights originate from and what they mean that my classical logic based approach

has the level of integrity that is necessary for professional debate. The core issue for weights is that

one must decide where the weights come from and how to formulate or construct them. Likewise, the

abstract literature does not address where argument come from or how to formulate them. The minimal

consistent subset approach to argumentation, with classical logic proof rules, does show where arguments

come from and does allow a robust treatment of reflection. To be clear about reflection you have to be

clear about the proof rules, so I would suggest also the semi-abstract ABA approach in its pure form is

also not well suited to professional debate.

8.8. Closing Remarks and Conclusion for Discussion 238

As my final point of conclusion I would argue that practical implementations of argumentation tools

need to be used in real-world professional debates to clarify the requirements of the field of argumenta­

tion as a whole. All such tools must be based, of course, on solid theory, but without the tools it is hard to

evaluate the appropriateness of the underpinnings of these various theories. Let the next step be profes­

sional debate tools based on the theory herein or similar, to clarify and refine the requirements needed for

artificial intelligence based argumentation to be deeply accepted within the realm of professional debate.

List of Functions

Definition Function Page

2.5.5 0(c*, A) Confirmation for a 37

2.5.4 0 (A) Confirmation.. ... 36

2.6.3 ♦ (a , A) Contradiction for a 42

2.6.2 ♦ (A) Contradiction 42

6.7.7 ♦* (a, A)Debate T ree 183

5.7.3 actualReflectionSize(Y: 0, W, X : a, A) 139

6.7.6 ancestorArguments(v, (V, £ , 4(A) , /)) 182

6.7.5 ancestors(v, V, S) 182

5.7.2 anticipatedReflectionSize(Y: /?, W, X : a , A) 139

3.9.2 argumentAttacks(7:a, A) 84

3.9.3 argumentGraph(A) 85

2.4.6 arguments(a, A) 33

2.4.2 arguments(A) 30

6.2.3 argumentTree(7:a, A) 165

3.7.1 attacker((Z:</>,X, Y:c*)) 79

3.7.1 attacker({(Z:0,X , Y :o:)}) 79

4.3.2 attacksAiM(($,a > M) 100

3.9.1 attackS£>(dungArguments) 83

3.4.1 candidatePreclusivellndercuts(Y: a , A) 69

3.3.2 canonicalllndercuts(7: a, A) 64

2.4.4 combinations(n, i) 33

2.7.3 c o n (4 (o : ,A)) 51

2.5.6 confirm(/i :q , . . . , 7n :a) 37

3.9.4 confirmationAttacks(Y: a , A) ; 86

3.9.5 confirmationGraph(0(A))... .. 86

2.6.8 confirmationRebuttals(X: a , A) ... 48

2.5.3 confirmations({7i: a , . . . , 7n : a }) 36

2.4.1 consistent(A)29

3.9.6 contradictionGraph(4(A))86

6.7.7 debateTree (a, A)183

240

2.3.2 deductions(A) ..27

6.7.4 defendingPath(v, V ,£) ... 182

4.8.1 directArgumentRebuttals(J : (3 , I : a , A) ..118

4.8.2 directAttacks(J : (3 ,I :a, A) ..120

4.5.1 directCanonicall)ndercuts(J : (3 , I : a , A) ..106

5.6.1 directConfirmationRebuttals(Y: (3, W , X : a , A) .. 136

5.9.4 directConfirmations(X: a , A) ... 155

5.3.1 directPreclusivellndercuts(Y:/?, V ,X :o:, A) .. 127

2.3.3 formulae(7, A) .. 28

2.3.3 formulae(X, A) ...28

2.7.1 judgej(a ,A) ...49

2.7.2 ju d g e ^ A) .. 50

2.7.4 judge10(a , A) .. 51

2.7.5 judge2.o(a, A) .. 51

7.5.2 judge3 0 (a , A) .. 200

7.6.1 judge5 0 (a , A) .. 204

7.6.4 judge6 0 (a , A,threshold) ... 206

2.2.4 label(a:a) ... 24

2.2.4 label(7:a) ..24

2.2.4 label(X:a) ... 24

6.7.2 matt(((V, W):0 , Z, (X ,Y):a), A) ..180

5.6.2 maximalDirectConfirmationRebuttal(Y: (3, X : a , A) .. 137

5.3.2 maximalDirectPreclusiveUndercuts(X:a, A) ..130

2.4.5 midl_attice(4>)...33

5.4.1 mixedPreclusiveUndercuts(Y: /?, V, X : a , A) .. 131

4.6.1 monoPairEnlargedReflection(J : /?, I : a , A) ..110

5.7.6 multiPairEnlargedReflections(Y:->a,X,X:a, A) ...142

6.7.3 opaque((X, Y) :a, A) ... 181

7.6.2 pos(r) ... 205

3.4.2 preclusiveUndercuts(Y:a, A) ...70

6.7.1 preclusiveUndercutsBetweenContradictions((X, Y):a , A) ...179

2.7.3 pro(#(a, A)) ... 51

2.6.7 rebuttals(7: a , A) ... 46

8.4.2 reflect5(J : /3 ,7 :a , A) ...217

4.7.1 reflectedArgumentRebuttal(J:/7,7:a, A) .. 113

4.2.1 reflectedAttacks(J : I : a , A) ... 92

4.3.3 reflectedAttacks^BA^, ~ ($, <*)>-4) ..100

4.4.1 reflectedCanonicalUndercuts(«7:/3, 1 :a, A) .. 102

241

5.7.1 reflectedConfirmationAttacks(Y: /?, W , X : a, A) ... 138

5.5.1 reflectedConfirmationRebuttals(Y:/?, V, X : a , A) ... 133

5.8.1 reflectedConfirmingArguments(K: ->/?, J : /3, / : a , A) ... 147

5.9.1 reflectedConfirmingConfirmations(U:-i/?,Y:/?, W ,X :a , A) .. 151

5.2.1 reflectedPreclusiveUndercuts(Y: (3, V, X : a , A) ... 123

5.7.4 reflectionScalingFactorDownTree(Y: /?, W , X : a, A) ... 139

5.9.2 reflectionScalingFactorUpTree(U: Y : 0, W , X : a , A) ...153

7.6.3 strength(v, ♦ * (« , A)) ... 206

4.7.2 strictSubsetReflectedRebuttals(J : /? ,/: a , A) ... 116

2.2.5 stripAssumption(a:a) ..25

2.2.5 stripDeduction(/:a)... 25

2.2.5 stripConfirmation(X:a)... 25

2.6.5 stripContradiction((X, Y) :a) ..43

2.2.6 stripAssumptions({ai : a i , . . . , an :a n }) ..25

2.2.6 stripDeductions({/i : a i , . . . , I n : a n }) .. 25

2.2.6 stripConfirmations({Xi:a i , . . . , X n : a n}) ..25

2.6.5 stripContradictions({(Xi, Y i) : Qi , . . . , (Xn, Y n) :« „ }) .. 43

2.5.8 top ({X i: a , . . . , Xn : a }) ..41

2.6.6 top({(X1,Y 1) : a , . . . , (X n , Y n) : a }) .. 45

2.4.3 trunc(r) ... 33

Bibliography

Amgoud, L. & Cayrol, C. (1998), On the acceptability of arguments in preference-based argumentation,

in “Proceedings of Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI

1998)”, pp. 1-7.

Amgoud, L. & Cayrol, C. (2002), “A reasoning model based on the production of acceptable arguments”,

Annals o f Mathematics and Artificial Intelligence 34(1-3), 197-215.

Amgoud, L., Cayrol, C. & Lagasquie-Schiex, M.-C. (2004), On the bipolarity in argumentation frame­

works, in “Non-Monotonic Reasoning, Tenth International Workshop (NMR 2004)”, pp. 1-9.

Baroni, P. & Giacomin, M. (2003), On the role of strongly connected components in argumentation,

in “Proceedings of Tenth Information Processing and Management of Uncertainty in Knowledge-

Based System Conference (IPMU 2004)”, pp. 1887-1894.

Baroni, P. & Giacomin, M. (2008), A systematic classification of argumentation frameworks where

semantics agree, in “Proceedings of Second International Conference on Computational Models of

Argument (COMMA 2008)”, pp.37-48.

Baroni, P., Giacomin, M. & Guida, G. (2002), Argumentation in multi-agent systems: self-stabilizing

defeat status, in “Conference of the Italian Association of Artificial Intelligence”, pp.225-234.

Belnap, N. (1977), A useful four valued logic, in G. Epstein & M. Dunn (eds.), “Modern Uses of

Multiple-Value Logic”, Reidel, Dordrecht, NL, pp.7-37.

Benferhat, S., Dubois, D. & Prade, H. (1993), Argumentative inference in uncertain and inconsistent

knowledge bases, in D. Heckerman & A. Mamdani (eds.), “Proceedings of the Ninth Conference

on Uncertainty in Artificial Intelligence (UAI 1993)”, pp.411-419.

Besnard, P. & Hunter, A. (2001), “A logic-based theory of deductive arguments”, Artificial Intelligence

128, 203-235.

Besnard, P. & Hunter, A. (2006), Knowledgebase compilation for efficient logical argumentation, in

“Proceedings of the Tenth International Conference on Principles of Knowledge Representation

and Reasoning (KR 2006)”, pp. 123-133.

Bondarenko, A., Dung, P. M., Kowalski, R. A. & Toni, F. (1997), “An abstract, argumentation-theoretic

approach to default reasoning”, Artificial Intelligence 93, 63-101.

Bibliography 243

Bourne, R. A. & Parsons, S. (1999), Connecting lexicographic with maximum entropy entailment, in

“Proceedings of the Fifth European Conference on Symbolic and Quantitative Approaches to Rea­

soning with Uncertainty (ECSQARU 1999)”, pp.80-91.

Bryant, D., Krause, P. & Moschoyiannis, S. (2006), A tool to facilitate agent deliberation, in “Proceed­

ings of Tenth European Conference on Logics in Artificial Intelligence (JELIA 2006)”, pp.465-

468.

Buckingham-Shum, S. J. (1994), “Argumentation-based design rationale: what use at what cost?”, In­

ternational Journal o f Human-Computer Studies 40(4), 603-652.

Caminada, M. (2004), Dialogues and HY-arguments, in “Non-Monotonic Reasoning, Tenth International

Workshop (NMR 2004)”, pp.94-99.

Caminada, M. & Amgoud, L. (2005), An axiomatic account of formal argumentation, in “Proceedings

of the Twentieth National Conference on Artificial Intelligence (AAAI 2005)”, pp.608-613.

Caminada, M. & Amgoud, L. (2007), “On the evaluation of argumentation formalisms”, Artificial Intel­

ligence 171(5-6), 286-310.

Cayrol, C. & Lagasquie-Schiex, M.-C. (1995), Nonmonotonic syntax-based entailment: a classification

of consequence relations, in “Proceedings o f the Third European Conference on Symbolic and

Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 1995)”, pp. 107-114.

Cayrol, C. & Lagasquie-Schiex, M.-C. (2002), Gradual handling of contradictions in argumentation

frameworks, in “Proceedings of Ninth International Conference on Information Processing and

Management of Uncertainty in Knowledge-Based Systems (IMPU 2002)” .

Cayrol, C. & Lagasquie-Schiex, M.-C. (2005), On the acceptability of arguments in bipolar argumenta­

tion frameworks, in “Proceedings of the Eighth European Conference on Symbolic and Quantitative

Approaches to Reasoning with Uncertainty (ECSQARU 2005)”, pp.378-389.

Cayrol, C., Royer, V. & Saurel, C. (1992), M anagement of preferences in assumption-based reasoning,

in B. Bouchon-Meunier, L. Valverde & R. R. Yager (eds.), “Proceedings of the Fourth International

Conference on Processing and M anagement of Uncertainty in Knowledge-Based Systems (IPMU

1992)”, pp.221-224.

Chalmers, M. (2003), Tutorial on information visualisation, Technical Report, University of Glasgow.

Chesnevar, C. I. & Simari, G. R. (2005), Towards computational models of natural argument using

labelled deductive systems, in C. Reed (ed.), “Proceedings of the Fifth International Workshop on

Computational Models of Natural Argument (CMNA 2005)”.

Chesnevar, C. I., Simari, G. R. & Godo, L. (2005), Logic Programming and Nonmonotonic Reasoning,

Springer, Berlin, D, chapter Computing dialectical trees efficiently in possibilistic defeasible logic

programming, pp. 158-171.

Bibliography 244

Chesnevar, C., Maguitman, A. & Loui, R. (2000), “Logical models of argument”, ACM Computing

Surveys (CSUR) 32(4), 337-383.

Cook, S. (1971), The complexity o f theorem proving procedures, in “Proceedings Third Annual ACM

Symposium on Thoery of Computing”, pp. 151-158.

Doyle, J. (1979), “A truth maintenance system”, Artificial Intelligence 12(3), 231-272.

Dung, P. M. (1993), An argumentation semantics for logic programming with explicit negation, in “Pro­

ceedings of the Tenth International Conference on Logic Programming (ICLP 1993)”, MIT Press,

Boston, MA, pp.616-630.

Dung, P. M. (1995), “On the acceptability o f arguments and its fundamental role in nonmonotonic rea­

soning, logic programming and n-person games”, Artificial Intelligence 77, 321-357.

Dung, P. M., Kowalski, R. A. & Toni, F. (2006), “Dialectic proof procedures for assumption-based,

admissible argumentation”, Artificial Intelligence 170(2), 114—159.

Dunne, P. E. & Bench-Capon, T. J. M. (2002), “Coherence in finite argument systems”, Artificial Intel­

ligence 141(1-2), 187-203.

Efstathiou, V. & Hunter, A. (2008), Algorithms for effective argumentation in classical propositional

logic: a connection graph approach, in “Proceedings of the International Symposium on Founda­

tions of Information and Knowledge Systems (FOIKS 2008)”, pp.272-290.

Eiter, T. & Gottlob, G. (1995), “The complexity o f logic-based abduction”, Journal o f the ACM 42 ,3-42 .

Elvang-Gdransson, M. & Hunter, A. (1995), “Argumentative logics: reasoning with classically inconsis­

tent information”, Data Knowledge Engineering 16(2), 125-145.

Elvang-Gpransson, M., Krause, P. J. & Fox, J. (1993a), Acceptability of arguments as ‘logical uncer­

tainty’, in “Proceedings of the Second European Conference on Symbolic and Quantitative Ap­

proaches to Reasoning with Uncertainty (ECSQARU 1993)”, pp.85-90.

Elvang-Gdransson, M., Krause, P. J. & Fox, J. (1993b), Dialectic reasoning with inconsistent informa­

tion, in D. Heckerman & A. Mamdani (eds.), “Proceedings of the Ninth Conference on Uncertainty

in Artificial Intelligence (UAI 1993)”, pp. 114-121.

Fox, J. & Das, S. (2000), Safe and Sound: Artificial Intelligence in Hazardous Applications, MIT Press,

Boston, MA.

Fox, J. & McBumey, P. (2002), Decision making by intelligent agents: logical argument, probabilistic

inference and maintenance of beliefs and acts, in “Non-Monotonic Reasoning, Ninth International

Workshop (NMR 2002)”, pp.293-301.

Bibliography 245

Fox, J., Krause, P. J. & Elvang-G0ransson, M. (1993a), Argumentation as a general framework for

uncertain reasoning, in D. Heckerman & A. Mamdani (eds.), “Proceedings of the Ninth Conference

on Uncertainty in Artificial Intelligence (UAI 1993)”, pp.428-434.

Fox, J., Parsons, S., Krause, P. J. & Elvang-Gpransson, M. (1993b), A Generic framework for uncertain

reasoning, in N. P. Carrete & M. G. Singh (eds.), “Proceedings of the International Workshop on

Qualitative Reasoning and Decision Technologies (QUARDET 1993)”, pp.461-470.

Gabbay, D. M. (1985), Logics and M odels o f Concurrent Systems, Springer-Verlag, Berlin, D, chapter

Theoretical foundations of non-monotonic reasoning in expert systems, pp.439 - 457.

Gabbay, D. M. (1991), Abduction in labelled deductive systems - a conceptual abstract, in “Proceedings

of the First European Conference on Symbolic and Quantitative Approaches to Reasoning with

Uncertainty (ECSQAU 1991)”, pp.3-11.

Gabbay, D. M. (1996), Labelled Deductive Systems, Vol. 1, Clarendon Press, Oxford, UK.

Gabbay, D. M. (1998), Elementary Logics: a Procedural Perspective, Prentice Hall, Englewood Cliffs,

NJ.

Gabbay, D. M. & Hunter, A. (1991), Making inconsistency respectable: a logical framework for in­

consistency in reasoning, in “International Workshop on Fundamentals of Artificial Intelligence

Research”, pp. 19-32.

Gabbay, D. M., Basin, D., D ’Agostino, M., Matthews, S. & Vigano, L. (2000), Labelled Deduction,

Kluwer, Dordrecht, NL.

Gaertner, D. & Toni, F. (2007), “Computing arguments and attacks in assumption-based argumentation”,

IEEE Intelligent Systems, Special Issue on Argumentation Technology 22(6), 24—33.

Garcia, A. J. & Simari, G. R. (2004), “Defeasible logic programming: an argumentative approach”,

Theory and Practice o f Logic Programming 4(1-2), 95-138.

Gillies, D. A. (1998), Non-Bayesian confirmation theory, and the principle of explanatory surplus, in

A. Fine & J. Leplin (eds.), “Proceedings of the Sixteenth Biennial Conference of the Philosophy of

Science Association (PSA 1998)”, Vol. 2, p.517.

Gordon, T. & Karacapilidis, N. (1997), The Zeno argumentation framework, in “Proceedings of the

Third International Conference on Artificial Intelligence and Law (ICAIL 1997)”, pp.10-18.

Hage, J. C. (1996), Reasoning With Rules: An Essay on Legal Reasoning and Its Underlying Logic,

Springer, Berlin, D.

Hunter, A. (2001), “Hybrid argumentation systems for structured news reports”, Knowledge Engineering

Review 16(4), 295-329.

Bibliography 246

Hunter, A. (2004a), Making argumentation more believable, in “Proceedings of the Nineteenth National

Conference on Artificial Intelligence (AAAI 2004)”, pp.269-274.

Hunter, A. (2004b), Towards higher impact argumentation, in “Proceedings of the Nineteenth National

Conference on Artificial Intelligence (AAAI 2004)”, pp.275-280.

Kirschner, P. A., Buckingham-Shum, S. J. & Carr, C. S. (eds.) (2003), Visualizing Argumentation: Soft­

ware Tools fo r Collaborative and Educational Sense-Making, Springer-Verlag, Berlin, D.

Konieczny, S. & Perez, R. (2002), “Merging information under constraints: a logical framework”, Jour­

nal o f Logic and Computation 15.

Kowalski, R. (1975), “A proof procedure using connection graphs”, Journal o f the ACM 22, 572-595.

Kowalski, R. A. & Toni, F. (1996), “Abstract argumentation”, Artificial Intelligence and Law Journal,

Special Issue on Logical Models o f Argumentation 4(3-4), 275-296.

Krause, P. & Clark, D. (1993), Representing Uncertain Knowledge: An Artificial Intelligence Approach,

Kluwer, Dordrecht, NL.

Krause, P., Fox, J., Judson, P. & Patel, M. (1998), Qualitative risk assessment fulfils a need, in

A. Hunter & S. Parsons (eds.), “Applications of Uncertainty Formalisms”, Springer-Verlag, Berlin,

D, pp. 138-156.

Krause, P. J., Ambler, S. J., Elvang-Gpransson, M. & Fox, J. (1995), “A logic of argumentation for

reasoning under uncertainty”, Computational Intelligence 11(1), 113-131.

Makinson, D. (1988), General theory of cumulative inference, in “Non-Monotonic Reasoning, Second

International Workshop (NMR 1988)”, pp. 1-18.

Manor, R. & Rescher, N. (1970), “On inference from inconsistent premises”, Theory and Decision

1, 179-217.

Modgil, S. (2007), An abstract theory of argumentation that accommodates defeasible reasoning about

preferences, in “Proceedings of the Eighth European Conference on Symbolic and Quantitative

Approaches to Reasoning with Uncertainty (ECSQARU 2007)”, pp.648-659.

Nute, D. (1988), Defeasible reasoning, in “Proceedings of the Twentieth Hawaii International Confer­

ence on System Science”, pp.470-477.

Parsons, S., Wooldridge, M. & Amgoud, L. (2003), “Properties and complexity of some formal inter­

agent dialogues”, Journal o f Logic and Computation 13(3), 347-376.

Pollock, J. L. (1970), “The structure of epistemic justification”, Americal Philosophical Quarterly Mono­

graph Series 4, 62-78.

Pollock, J. L. (1974), Knowledge and Justification, Princeton University Press, Princeton, NJ.

Bibliography 247

Pollock, J. L. (1987), “Defeasible reasoning”, Cognitive Science 11(4), 481-518.

Pollock, J. L. (1992), “How to reason defeasibly. The Oscar project technical report”, Artificial Intelli­

gence 57(1), 1-42.

Pollock, J. L. (2000), “Defeasible reasoning in OSCAR”, The Computing Research Repository .

Prakken, H. (1997), Logical Tools fo r Modelling Legal Arguments, Kluwer, Dordrecht, NL.

Prakken, H. & Sartor, G. (1997), “Argument-based extended logic programming with defeasible pri­

orities” , Journal o f Applied Non-Classical Logics - Special issue on ‘Handling inconsistency in

knowledge systems' 7(1), 25-75.

Prakken, H. & Sartor, G. (2002), The role of logic in computational models of legal argument: a critical

survey, in “Computational Logic: Logic Programming and Beyond”, pp.342-381.

Prakken, H. & Vreeswijk, G. (2002), Logics for defeasible argumentation, in D. M. Gabbay & F. Guen-

thner (eds.), “Handbook of Philosophical Logic”, second edition, Vol. 4, Kluwer, Dordrecht, NL,

pp.218-319.

Prakken, H., Reed, C. & Walton, D. N. (2005), Dialogues about the burden of proof, in “The Tenth

International Conference on Artificial Intelligence and Law (ICAIL 2005)”, pp. 115-124.

Rahwan, I., Zablith, F. & Reed, C. (2007), “Laying the foundations for a World Wide Argument Web”,

Artificial Intelligence 171(10-15), 897-921.

Reed, C. & Rowe, G. (2004), “Araucaria: software for argument analysis, diagramming and representa­

tion”, International Journal o f A I Tools 13(4), 961-980.

Reed, C. & Rowe, G. (2006), Translating Wigmore diagrams, in “Proceedings of the First International

Conference on Computational Models of Argument (COMMA 2006)”, pp. 171-182.

Schroeder, M. (1999), How to tell a logical story, in “Proceedings of the American Association for

Artificial Intelligence (AAAI) Fall Symposium 1999 (Stream on Narrative Intelligence)”.

Simari, G. R. & Loui, R. P. (1992), “A mathematical treatment of defeasible reasoning and its imple­

mentation”, Artificial Intelligence 53, 125-157.

Simari, G. R., Chesnevar, C. I., & Garcia, A. J. (1994), Focusing inference in defeasible argumenta­

tion, in “Proceedings of the Fourth Iberoamerican Congress on Artificial Intelligence (IBERAMIA

1994), Venezuela”, pp.301-315.

Toulmin, S. (1958), The Uses o f Argument, Cambridge University Press, Cambridge, UK.

Twining, W. L. (1985), Theories o f Evidence: Bentham and Wigmore, Weidenfeld and Nicholson, Lon­

don, UK.

Bibliography 248

Verheij, B. (1996), Rules, reasons, arguments: formal studies of argumentation and defeat, PhD thesis,

University of Maastricht, Holland.

Verheij, B. (1998), Argue! - an implemented system for computer-mediated defeasible argumentation, in

H. L. Porte & J. van den Herik (eds.), “Proceedings of the Tenth Netherlands-Belgium Conference

on Artificial Intelligence”, pp.57-66.

Verheij, B. (1999), Automated argument assistance for lawyers, in “International Conference on Artifi­

cial Intelligence and Law”, pp.43-52.

Verheij, B. (2001), Legal decision making as dialectical theory construction with argumentation schemes,

in “Proceedings of the Eighth International Conference on Artificial Intelligence and Law (ICAIL

2001)”, pp.225-226.

Verheij, B. (2003), “Artificial argument assistants for defeasible argumentation”, Artificial Intelligence -

Special Issue on A I and Law 150(1-2), 291-324.

Vreeswijk, G. A. W. (1997), “Abstract argumentation systems”, Artificial Intelligence 90(1-2), 225-279.

Walton, D. (1989), Informal Logic: A Handbook fo r Critical Argumentation, Cambridge University

Press, Cambridge, UK.

Walton, D. (1999), “Applying labelled deductive systems and multi-agent systems to source-based argu­

mentation”, Journal o f Logic and Computation 9(1), 63-80.

Walton, D. & Reed, C. (2006), Evaluating corroborative evidence, in “Proceedings of the Sixth Confer­

ence of the International Society for the Study of Argument (ISSA 2006)”, pp.881-885.

Wigmore, J. H. (1937), The Science o f Judicial Proof, third edition, Little, Brown and Co, Boston, MA.

Willcox, W. B. & Bridgewater, D. W. (eds.) (1977), The Papers o f Benjamin Franklin, Vol. 19, Yale

University Press, New Haven, CT.

Williams, M. & Hunter, A. (2007), Harnessing ontologies for argument-based decision-making in breast

cancer, in “Nineteenth IEEE International Conference on Tools with Artificial Intelligence (ICTAI

2007)”, pp.254-261.

Wooldridge, M., Dunne, P. E. & Parsons, S. (2006), On the complexity of linking deductive and abstract

argument systems, in “AAAI” .

Index

a, b, c , • • • G A a s su m p tio n la b e ls , 2 4

I , J , K , - e B d e d u c tio n la b e ls , 2 4

S , T , U , • • • € C c o n f irm a tio n la b e ls , 2 4

a , /?, 7 , . . . G £ fo rm u la e , e a c h h a s a g lo s s , 23

f i , . . . s e ts o f fo rm u la e , p o ss ib ly in f in ite , 2 6

a : a, b : (3, c : (3, . . . la b e lle d a s su m p tio n s , 2 4

I : a , J : 0, K : / ? , . . . la b e lle d d e d u c tio n s , 2 4

I : a, J : 0, K . la b e lle d a ig u m e n ts , 30

($, a) , (' J ' , / 3) , . . . u n la b e lle d a rg u m e n ts , 34

A , B , C , . . . A B A arg u m e n ts , 100

S : -< a , T : ->(3, V : a , W : 0 , . . . c o n f irm a tio n s , 2 4

(V , S) : a , (W , T) . c o n tra d ic tio n s , 4 2

TZ A B A in fe re n c e ru le s , 99

K A B A k n o w le d g e b a s e , 99

X x y C a rte s ia n p ro d u c t o f X a n d y , 23

0 P o llo c k ’s u n d e rc u t d e fea te r , 62

J2 a d d it io n o f a se r ie s , 205

X , y a rb itr a ry se ts , 23

+ a r ith m e tic a d d it io n , 33

| a r i th m e tic d iv is io n , 139

-f- a r ith m e tic d iv is io n , 33

• a r ith m e tic m u ltip l ic a t io n , 33

- a r ith m e tic s u b tra c t io n , 33

: a tta c h la b e l to fo rm u la , 2 4

b c la s s ic a l d e d u c tio n , 2 4

0 c o n f irm a tio n , 36

A c o n ju n c tio n , 23

/ \ c o n ju n c tio n o f a se r ie s , 3 4

♦ c o n tra d ic tio n , 4 2

♦ * d e b a te tre e o f co n tra d ic t io n s , 183

V d is ju n c tio n , 23

0 em p ty se t, 23

= e q u a l to , 2 4

! fa c to ria l, 33

> g re a te r th a n , 35

> g re a te r th a n o r e q u a l to , 2 6

-L in c o n s is te n c y , 23

o o in fin ity , 32

A fin ite k n o w le d g e b a se o f la b e lle d a s su m p tio n s , 2 6

C la n g u a g e , 23

< le s s th a n , 2 6

< le s s th a n o r e q u a l to , 2 6

X i—> y e a c h m e m b e r o f X m a p s to a m e m b e r o f y,
164

«-► m a te r ia l b ic o n d it io n a l , 2 4

—» m a te r ia l im p lic a tio n , 23

€ m e m b e r o f s e t , 2 4

N n a tu ra l n u m b e rs (n o n -n e g a tiv e in te g e rs) , 23

N + n a tu ra l n u m b e rs g re a te r th a n z e ro , 23

-i n e g a tio n , 23

^ n o t e q u a l to , 2 4

£ n o t m e m b e r o f se t , 2 4

. . . o th e r se t m e m b e rs , 2 3

p(X) p o w e r se t o f X, 23

(. . .) p re c e d e n c e , 2 4

/ p r im e , d is tin g u ish tw o s im ila r l a b e ls , 5 4

R re a l n u m b e rs , 23

{ . . . } se t, 2 4

{ . . . | . . . } s e t b u ild e r n o ta tio n , 25

A ’X.y se t d iffe re n c e o f X le s s y , 23

D se t in te rs e c tio n , 119

A se t o f a ll p o s s ib le a s su m p tio n la b e ls , 2 4

C se t o f a ll p o s s ib le co n f irm a tio n la b e ls , 2 4

B se t o f a ll p o s s ib le d e d u c tio n la b e ls , 2 4

£ s e t o f ed g e s , 85

V se t o f v e r tic e s , 85

U se t u n io n , 25

C s tr ic t s u b se t, 30

C su b se t o r eq u a l to , 28

T ta u to lo g y , 23

x v x to th e p o w e r o f y, 40

(. . .) tu p le , 42

249

Index 250

A B A , see a s su m p tio n -b a se d a rg u m e n ta tio n

ab s tra c t a rg u m e n t, see a rg u m e n t, a b s tra c t

a b s tra c t a tta c k , see a tta c k , a b s tra c t

a n c e s to r a rg u m e n ts , 163, 182

a n c e s to r v e r tic e s , 182

A n g e lid e s , P h ilip , 73

A rau ca ria , 3 5 , 197, 218

arc , see ed g e

A rg u M e d , 197, 2 1 8

a rg u m e n t, 2 9 -3 5

d e f in it io n , 2 9 , 30

e x a m p le , 30 , 32 , 52

p ro p e rtie s , 3 2 -3 5

ab s tra c t , 3 9 ,4 2 , 8 3 ,9 8

ag g re g a tio n , 1 4 ,1 7 ,2 3 ,4 2 , 57

a ss is t in g , 2 1 6 -2 1 8

a ssu m p tio n -b a se d (A B A), 9 8 ,9 9

a tta c k in g , 5 7 ,6 5 ,6 7 ,9 1 ,9 8 ,1 0 8 ,1 1 2 ,1 1 5 ,1 4 8

a tta c k s fu n c tio n , see a t ta c k b e tw e e n a rg u m e n ts

b r id g in g a s su m p tio n s , 83 , 8 4 , 119

d e fe a s ib le , 159

d e fe n d in g , 57 , 115

d ire c t, see d ire c t a rg u m e n t

g ra p h , 8 5 , 9 2 , 105, 114, 147, 158 , 164, 165

h a n g y o u rse lf , 3 9

in fo rm a lly in tro d u c e d , 13

la b e l, 2 8

m in im a l c o n s is te n t , see m in c o n

re f le c te d , see re f le c te d a rg u m e n t

re flex iv e , 3 4 , 6 8 - 6 9 , 9 7 - 9 8 , 114 , 179 , 184

s tre n g th , 6 0 , 2 0 5 , 2 0 6 , 221

s tru c tu re , see a rg u m e n t s tru c tu re

ta u to lo g ic a l, 3 0 , 3 4

tree , see a rg u m e n t tre e

arg u m e n t s tru c tu re , 1 6 3 -1 7 5

arg u m e n t tre e , 161, 1 6 3 -1 7 5

d e f in itio n , a s fu n c tio n , 165

d e f in itio n , o r ig in a l, 163

ex a m p le , 164, 1 6 6 -1 7 1 , 173

p ro p e rtie s , 174

n o n -ro o t re b u tta ls e x c lu d e d , 145 , 166

re p e a te d v e r tic e s , 164

as s is t in g a rg u m e n ts , 2 1 6 -2 1 8

a s su m p tio n , 2 3 - 2 7 ,5 2 , 174

re p e ti tio n , see re p e ti tio n o f a s su m p tio n s

a s s u m p tio n -b a se d a rg u m e n ta tio n (A B A), 8 3 , 9 8 -

1 0 2 ,1 6 1 , 162

a tta c k , 5 7 -1 5 7

a b s tra c t, 83

a s su m p tio n -b a se d (A B A), 100

b r id g in g a s su m p tio n , 8 4

c h a in , see c h a in

c o n c re te , 8 4

e n g e n d e rs a tta c k , 91

re f le c te d , 9 2

a t ta c k b e tw e e n a rg u m e n ts , 8 4

d e f in it io n , 8 4

p ro p e r tie s , 9 2 - 9 7

a t ta c k b e tw e e n c o n f irm a tio n s , 85

d e f in it io n , 86

p ro p e rtie s , 1 2 5 -1 2 6

a tta c k in g a rg u m e n t, see a rg u m e n t, a t ta c k in g

a tta c k in g c o n f irm a tio n , see c o n f irm a tio n , a tta c k in g

a tta c k in g c o n tra d ic tio n , see c o n tra d ic tio n , a tta c k in g

B a s e P ro p o s itio n s , 89 , 9 0

O n e , 9 0 , 162

T w o , 9 1 , 129 , 134

T h re e , 9 5 - 9 6

F o u r, 9 6 , 9 7 , 101, 169, 174, 176

B B C , 7 2 - 7 4

B D K T , 18

b ip o la r , 1 9 5 ,2 1 6 -2 1 8

b ra n c h in g fa c to r, 187

b r id g in g a s s u m p tio n s , 8 3 , 8 4 ,1 1 9

c a n o n ic a l en u m e ra tio n , 6 4 , 6 9 , 102, 127

e x a m p le , 6 4

c a n o n ic a l o rd e r in g , see c a n o n ic a l e n u m e ra tio n

c a n o n ic a l u n d e rc u t, 6 4 -6 9

d e f in itio n , 6 4

e x a m p le , 6 5 ,6 8 ,6 9

p ro p e r tie s , 6 5 -6 8

d ire c t, see d ire c t c a n o n ic a l u n d e rc u t

la b e ls , e f fe c t o f, 68

Index 251

re flec te d , see re fle c te d c a n o n ic a l u n d e rc u t

re flex ive , 98

ca rd in a lity , 2 6 ,3 2 ,3 8 ,4 0 - 4 2 ,4 4 - 4 5 , 5 5 ,7 1 ,8 1 ,1 0 4 ,

110, 112 , 1 2 5 -1 2 9 , 137, 175

C aS A P I, 2 1 8 ,2 1 9

c a s t o n e , 1 9 9 ,2 0 2 , 2 0 3 ,2 0 8

c a s t tw o , 1 9 9 ,2 0 7 , 2 0 8

ch a in , 8 4 ,9 2 ,9 6

a s s is t in g , 2 1 7

d o w n , 8 4 , 156

h e a d , 9 8

in fin ite , 93

m id -p o s i tio n , 98

o f a rg u m e n ts , 8 4 ,8 9 - 1 2 1

o f c o n f irm a tio n s , 86, 1 2 2 -1 5 7

ta il , 8 4 , 98

u p , 8 4 , 1 4 7 ,1 5 6

c la im , 13, 3 0

p re d ic ta b le b y re flec tio n , 91

re p e ti tio n , see re p e ti tio n o f c la im

re p e t i tio n o f , 15

c la s s ic a l lo g ic , 15, 2 3 , 2 4 , 2 7 , 2 9 , 9 8 - 1 0 0 , 102, 161,

163

c o m b in a t io n s , 33

c o m p u ta t io n a l co m p le x ity , 1 6 ,2 2 4

co n f irm a tio n , 3 5 - 4 2

d e f in it io n , 3 5 , 36

e x a m p le , 3 7 , 3 9 ,4 2 , 53

p ro p e r t ie s , 3 5 -4 2

a t ta c k in g , 7 0 , 86, 179

a tta c k s , see a t ta c k b e tw e e n c o n f irm a tio n s

a w a re ju d g e , 195

d e fe n d in g , 7 0 , 86 , 179

in c o n s is te n t, 3 9 ^ 1 0 ,7 4 , 7 8 - 8 0

la b e l, 2 4 , 2 8 , 3 5 , 3 7 , 4 1 , 4 8 , 7 0 , 86 , 132 , 138,

151, 179, 180

su b s e t o r eq u a l to , 7 0 ,7 9 , 180

su p e rse t, 7 0

m a x im u m c a rd in a lity , 4 1 - 4 2

se lf , 35 , 3 7 ,5 3 ,7 6

s h o rth a n d , 3 6 , 37

ta rg e t, 7 0 ,1 7 9

ta u to lo g ic a l, 3 5 ,3 8 ,4 1 ,4 4 ,7 1 , 80

u n fo u n d e d , 2 5 , 2 7 , 35 , 38 , 4 1 ,4 3 ,4 4 ,4 8 ,7 1

c o n s c io u s n e s s , 15

c o n tra d ic tio n , 4 2 - 4 9

d e f in itio n , 4 2

e x a m p le , 4 3 ,4 4 ,5 3

p ro p e rtie s , 4 3 - 4 6

a tta c k in g , 179

ca rd in a lity , 4 4

d e fe n d in g , 179

em p ty , 43

g ra p h , 86

m a x im u m c a rd in a lity , 45

s h o rth a n d , 42

c ro ss e x a m in a tio n , 7 4

c u m u la tiv ity , 5 0 - 5 2 ,1 9 5 , 2 0 6

d e b a te , 1 5 8 -2 0 9

d e d u c tio n s to e x c lu d e , 2 9

e ffec t o f

co n f irm a tio n , 3 5 ,5 1 , 1 9 3 ,2 0 3 - 2 0 8

re fle c tio n , 1 9 6 -2 0 8

u n d e rc u t, 5 9 -6 2

in fo rm a lly in tro d u c e d , 13

ju d g in g , 1 9 0 -2 0 9 , see ju d g e

m o tio n , 14, 15, 5 4 , 196, 2 0 1 , 2 0 3

o u tc o m e , 5 9 , 132, 165, 174, 191, 1 9 8 -2 0 0

p ro fe s s io n a l, 13, 39 , 5 5 , 7 1 -7 6 , 8 7 -8 8 , 105,

132 , 143, 149, 156 , 163, 1 6 5 -1 7 5 , 195,

2 18

su p e rflu o u s a rg u m e n ts in c lu d e d , 16

tra c k in g , 4 2 , 1 5 8 -1 8 9

tra c k in g g ra p h , 1 5 9 -1 6 2

v ita l a rg u m e n ts ex c lu d e d , 16

d e b a te tree , 162, 170

d e f in itio n , 183

e x a m p le , 136, 1 6 6 ,1 6 8 -1 7 0 , 173, 183, 186

p ro p e rtie s , 1 8 4 -1 8 8

im p le m e n ta tio n o f, 2 1 8 -2 3 2

n o m e n c la tu re , 2 0 2 ,2 0 5

sh o rth a n d , 183

v isu a lisa tio n o f, 2 1 9 -2 2 4

Index 252

d ec is io n ra tio n a le , 227

d e d u c tio n , 2 7 -2 9

de f in itio n , 27

e x a m p le , 2 7 - 3 0 ,5 2

p ro p e rtie s , 2 7 - 2 9

d e fe a t g ra p h , 160

d e fen d in g a rg u m e n t, see a rg u m e n t, d e fe n d in g

d e fe n d in g c o n f irm a tio n , see c o n f irm a tio n , d e fe n d in g

d e fe n d in g c o n tra d ic t io n , see c o n tra d ic t io n , d e fe n d ­

in g

d e fe n d in g p a th , 182

D e m p s te r -S h a fe r , 43

d e s ig n ra tio n a le , 2 2 7

d e s ig n tra d e -o ff , 221

d ia le c tic , 13, 2 0 0 , 2 1 9

d ia le c tic tre e , 161

d ia lo g u e tre e , 161

d ire c t a rg u m e n t, 106, 118

d ire c t a t ta c k b e tw e e n a rg u m e n ts , 119 , 177

d e f in it io n , 120

p ro p e r t ie s , 120

d ire c t c a n o n ic a l u n d e rc u t, 1 0 6 -1 0 8

d e f in it io n , 106

e x a m p le , 107, 166 , 173

p ro p e r tie s , 1 0 6 -1 0 8

d ire c t c o n f irm a tio n , see d ire c t c o n f irm in g c o n f irm a ­

tio n

d ire c t c o n f irm in g a rg u m e n t, 155

d ire c t c o n f irm in g c o n f irm a tio n , 155

d e f in it io n , 155

d ire c t p re c lu s iv e u n d e rc u t , 1 2 7 -1 3 2

d e f in it io n , 127

e x a m p le , 127 , 130 , 132

p ro p e rtie s , 1 2 8 -1 3 1

d irec t re b u tta l b e tw e e n a rg u m e n ts , 1 1 8 -1 2 0

d e f in itio n , 118

e x a m p le , 118, 148, 154 , 166, 173

p ro p e rtie s , 1 1 8 -1 2 0

d ire c t re b u tta l b e tw e e n c o n f irm a tio n s , 1 3 6 -1 3 8

d e f in itio n , 136

e x a m p le , 1 3 7 ,1 5 2

d isp u te tre e , 161

d is to r te d re fle c tio n , 1 2 2 ,1 3 8 ,1 4 5 - 1 4 6 ,1 5 7 , 176

d ia g ra m o f, 146

D u n c a n S m ith , Ia in , 72

D u n g fra m e w o rk , 4 2 , 8 3 ,1 5 7 , 159

D u n g g ra p h , 160

e d g e , 8 5 - 8 7 ,1 5 9 - 1 6 5 ,1 7 6 - 1 8 8 ,1 9 8 - 2 0 3 ,2 1 9

e d g e la b e l, 8 2 ,8 6 ,1 7 7 ,1 8 3 ,2 0 3

e n la rg e d re flec tio n , 1 0 8 -1 1 2 , 116 , 120 , 136, 139,

1 4 1 -1 4 6 , 1 5 3 ,1 5 6 , 1 7 0 -1 7 1

d ia g ra m o f, 142

e n la rg e m e n t m e c h a n ism , 1 0 8 ,1 4 2

m o n o -p a ir , 1 0 8 -1 1 2

d e f in itio n , 110

e x a m p le , 109

p ro p e rtie s , 110-112

m u lti-p a ir , 1 4 2 -1 4 5

d e f in itio n , 142

e x a m p le , 144

p ro p e rtie s , 1 4 3 -1 4 6

d ia g ra m o f, 145

e v id e n c e , 1 4 ,7 3

a b se n c e , 2 4 , 2 7 ,4 3

a p p e a ra n c e o f m o re th a n th e re is , 2 1 8

c o m p e llin g , 221

c o n tra d ic tio n s in , 75

eq u a l, see s ta le m a te

e q u a lity o f , 38

ex p la n a to ry , 58

le v e ls fo r c u m u la tiv ity , 52

n o n e n e e d e d , 75

re p e titio n o f, see re p e titio n o f a s su m p tio n s

th re s h o ld , 15, 195, 1 9 6 ,2 0 4 ,2 0 6 ,2 2 1

e x fa lso q u o d lib e t, 15, 2 8 , 29

e x a c t re flec tio n , 120, 139, 141, 145 , 146, 148, 153—

1 5 6 ,1 7 1 ,1 7 2 ,1 7 7

d ia g ra m o f, 141

e x is te n tia l ju d g e , 51 , 161, 1 9 3 ,2 0 0 -2 0 3

F ra n k lin , B e n ja m in , 5 1 , 196

g ra n d p a re n t re la tio n s h ip , see B a se P ro p o s itio n s F o u r

g ra p h th e o ry

Index 253

a n c es to r, see a n c e s to r

ch a in , see ch a in

e d g e , see e d g e

fo re s t, see a rg u m e n t s tru c tu re

p a th , see p a th

tre e , see a rg u m e n t tre e , d e b a te tre e

v e r te x , see v e r te x

g ro w in g th e c la im , 6 7 , 8 2 , 83

h an g y o u rs e lf a rg u m e n ts , 3 9

h e a d o f c h a in , 8 4 , see c h a in , h e a d

H o lm e s , S h e r lo c k , 7 3

H o o n , G e o ffre y , 75

H u tto n e n q u iry , 7 4

Ia in D u n c a n S m ith , 72

ig n o ra n c e , 43

In c h o a te d e b a te tra c k in g , 1 7 2 -1 7 4

In c o m p le te d e b a te tra c k in g , 1 6 6 -1 6 9

T y p e A , 166

T y p e B , 1 6 6 -1 6 8

T y p e C , 1 6 8 -1 6 9

in c o n s is te n c y , 1 5 ,4 4

re s o lv in g , 15, 2 2 ,6 2 , 192

in c o n s is te n t

k n o w le d g e b a s e , 28

c o n f irm a tio n , 3 9 - 4 0 ,7 4 ,7 8 - 8 0

e v id e n c e , 15

ju d g e o u tc o m e s , see c u m u la tiv ity

p re m is e s , 2 9

re a s o n in g , 31

in o rd in a te , 1 6 9 -1 7 2

In o rd in a te d e b a te tra c k in g

T y p e A , 1 6 9 -1 7 0

T y p e B , 1 7 0 -1 7 1

T y p e C , 171

T y p e D , 1 7 1 -1 7 2

in v a lid a tio n , 7 0

ju d g e

q u a lita tiv e , see e x is te n tia l ju d g e

q u a n tita tiv e , see q u a n tita tiv e ju d g e

ju d g e 1.0, B e n fe rh a t, 5 1 -5 2 , 5 4 , 194, 2 0 8

d e f in itio n , 51

e x a m p le , 5 1 ,5 4

ju d g e 2 .0 , F ra n k lin , 5 1 - 5 2 ,5 4 , 5 9 - 6 1 ,6 3 , 194, 208

d e f in itio n , 51

e x a m p le , 5 1 ,5 9

ju d g e 2 .1 , F ra n k lin p lu s u n d e rc u t, 6 0 - 6 1 , 2 0 8

ju d g e 3 .0 , G a rc ia S im a ri, 193, 1 9 8 -2 0 3 , 2 0 8

d e f in itio n , 200

e x a m p le , 201

tre e m a rk in g , 200

ju d g e 4 .0 , ex te n s io n o f G a rc ia S im a ri, 1 9 9 ,2 0 3 ,2 0 8

d e f in itio n , 2 0 3

e x a m p le , 203

ju d g e 5 .0 , B e s n a rd H u n te r , 2 0 4 ,2 0 8

d e f in itio n , 2 0 4

ju d g e 6 .0 , th is th e s is , 195, 1 9 9 ,2 0 3 -2 0 8

d e f in itio n , 2 0 6

e x a m p le , 2 0 7

s tre n g th , 2 0 6

ju d g e 7 .0 , e x te n d s th is th e s is , 199, 2 0 7 -2 0 8

d e f in itio n , 2 0 7

ex a m p le , 2 0 7

ju d g e , c o m m o n fo rm , 4 9 -5 2

d e f in itio n , 4 9 , 50

ex a m p le , 5 1 ,5 4

p ro p e r tie s , 1 9 2 -1 9 6

in fo rm a lly in tro d u c e d , 14

k n o w le d g e b a se , 2 3 -2 7 , 174

in fo rm a lly in tro d u c e d , 14

la b e lle d d e d u c tiv e sy s te m , 2 3 , 163

la b e lle d fo rm u la e , 2 4

la n g u a g e C, 2 3 ,2 8 , 3 2 ,9 9

L D S , see la b e lle d d e d u c tiv e sy s te m

m att, 1 7 8 ,2 2 6

d e fin itio n , 180

in fo rm a lly in tro d u c e d , 175

m o tiv a tio n , 1 7 5 -1 7 8

u s e in d e b a te tree , 183

m a x im a l d ire c t c o n f irm a tio n re b u tta l, 1 3 7 -1 3 8

d e f in itio n , 137

Index 254

u se in m a tt fu n c tio n , 180

m a x im a l d ire c t c o n f irm in g c o n f irm a tio n , 155

m a x im a l d ire c t p re c lu s iv e u n d e rc u t, 1 2 9 -1 3 1

d ef in itio n , 130

e x a m p le , 130

d ia g ra m o f, 129

m o tiv a tio n , 107

u se in m a tt fu n c tio n , 180

m e ta k n o w le d g e , 15, 1 8 ,1 9 5 , 196

a w a re ju d g e , 1 9 6 ,2 0 6

m in c o n , 1 7 ,2 9 - 3 5 , 5 8 ,1 0 9

c o m m o n n o ta tio n , 3 4

L D S n o ta tio n , 30

m in im a l c o n s is te n t a rg u m e n t, see m in c o n

m o n o -a tta c k , 7 1 ,7 6 - 7 8 ,9 0 ,1 0 3 , 124 , 157

m o n o -p a ir e n la rg e m e n t, see e n la rg e m e n t , m o n o -p a ir

m o n o -ta rg e t, 7 1 ,7 6 - 7 8 ,9 0 ,1 2 4 ,1 2 5 ,1 2 8 , 132, 143,

1 6 6 ,1 7 7 , 202

m o tio n o f a d e b a te , 1 4 ,1 5 , 5 4 ,1 9 6 , 2 0 1 , 2 0 3

m u lti-a tta c k , 7 1 ,7 6 - 7 8 , 103

m u lti -p a ir e n la rg e m e n t, see e n la rg e m e n t, m u lti -p a ir

m u lti- su p p o r t, see e n la rg e m e n t, m u lti -p a ir

m u lti- ta rg e t, 7 1 ,7 6 - 7 8 ,1 2 5 ,1 2 7 , 1 3 1 ,1 3 2 ,1 3 6 , 151,

177, 2 0 2

m u tu a l d e s tru c t io n , 150

n e g a tio n , 2 3 , 4 3 ,4 4 , 5 5 , 6 2 , 6 4 , 7 2 , 127, 2 1 7

n o -re c y c lin g c o n s tra in t, 1 6 1 -1 6 5 , 1 6 8 -1 6 9 , 1 7 4 -

176, 183, 186, 197

n o d e , see v e r te x

n o ise filte r, 15, 5 4 , 190, 195 , 2 0 4

n o n -m o n o to n ic , 16, 83 , 101

N R C , see n o re c y c lin g c o n s tra in t

o f f tree , 1 7 0 -1 7 3 , 176

on tree , 170

on to lo g y , 15, 196

o p aq u e , 1 7 8 ,2 2 6

d e f in itio n , 181

m o tiv a tio n , 1 7 5 -1 7 8

u se in d e b a te tree , 183

O sc ar, 2 1 8 ,2 1 9

p a th

d e fe n d in g , 182

le a f to ro o t, 1 6 3 ,1 8 6

le n g th , 1 8 7 ,1 8 8

P o llo c k u n d e rc u t, 6 2 -6 4

p re c lu s io n , see p re c lu s iv e u n d e rc u t

ta u to lo g ic a l, see ta u to lo g ic a l p re c lu s io n

p re c lu s iv e u n d e rc u t, 6 9 - 8 3 ,1 7 9 - 1 8 3

d e f in itio n , 7 0

e x a m p le , 7 0 ,7 8 ,8 1 ,1 3 0

p ro p e r tie s , 7 6 -8 1

c a n d id a te , 6 9 ,7 0 ,8 2

d ire c t, see d ire c t p re c lu s iv e u n d e rc u t

in v a lid a tin g , 7 1 ,8 2 ,1 3 2

m o tiv a tio n , 7 2 - 7 6

re fle c te d , see re fle c te d p re c lu s iv e u n d e rc u t

ta u to lo g ic a l, 7 4

p re c lu s iv e u n d e rc u t b e tw e e n c o n tra d ic tio n s , 1 7 9 -1 8 3

d e f in it io n , 179

e x a m p le , 179

p ro fe s s io n a l d e b a te , see d e b a te , p ro fe s s io n a l

p ro p o se r , 38

p ro x y , 123 , 1 3 9 ,1 5 8 , 1 7 2 -1 7 4

q u a lita tiv e ju d g e , 168, see e x is te n tia l ju d g e

q u a n tita tiv e ju d g e , 1 5 ,5 1 , 168, 193, 2 0 4 -2 0 8

re b u tta l, 4 6 - 4 9

d ire c t c o n f irm a tio n , see d ire c t p re c lu s iv e u n d e r­

c u t , d ire c t re b u tta l b e tw e e n c o n f irm a tio n s ,

d ire c t c o n f irm in g c o n f irm a tio n

d ire c t c o n f irm a tio n fu n c tio n , see d ire c t re b u tta l

b e tw e e n c o n f irm a tio n s

a w a re ju d g e , 193

d ire c t a rg u m e n t, see d ire c t re b u tta l b e tw e e n a r­

g u m e n ts

d ire c t e x c lu d e d , 166

e n g e n d e rs re b u tta l, 95

e n g e n d e rs u n d e rc u t, 9 0

e q u a l to an u n d e rc u t, 68

in fo rm a lly in tro d u c e d , 16

n o n -ro o t e x c lu d e d , 166

re f le c te d a rg u m e n t, see re f le c te d re b u tta l b e ­

tw e e n a rg u m e n ts

Index 255

re fle c te d co n firm a tio n , see re f le c te d re b u tta l b e ­

tw ee n c o n f irm a tio n s

re so lv e in co n s is ten cy , 61

re b u tta l b e tw e en a rg u m e n ts , 4 6 - 4 8

d efin itio n , 4 6

ex a m p le , 4 6

p ro p e r tie s , 4 6 - 4 7 ,6 7

re b u tta l b e tw e e n c o n f irm a tio n s , 4 8 - 4 9

d e f in it io n , 4 8

p ro p e r tie s , 4 8 - 4 9

r e d u c e d re f le c tio n , 120 , 1 3 9 -1 4 0 , 146 , 1 5 3 -1 5 7 ,

1 6 6 -1 6 8

d ia g ra m o f, 140

re f le c te d a rg u m e n t, 8 9 - 1 2 1 ,1 2 3 , 132

a c t in g a s p ro x y , 1 3 9 ,1 5 8 , 1 7 2 -1 7 4

a c t in g a s re flec to r , 184

re f le c te d a tta c k

a s su m p tio n -b a s e d (A B A), 100

re f le c te d a t ta c k b e tw e e n a rg u m e n ts , 9 2 - 9 5

d e f in it io n , 9 2

e x a m p le , 98

p ro p e r t ie s , 9 3 - 1 0 2

d ia g ra m o f , 92

re f le c te d a t ta c k b e tw e e n c o n f irm a tio n s , 1 3 8 -1 4 6

d e f in it io n , 138

re f le c te d c a n o n ic a l u n d e rc u t, 1 0 2 -1 0 5

d e f in it io n , 102

e x a m p le , 102, 107

p ro p e r t ie s , 1 0 3 -1 0 5

d ia g ra m o f, 105

m o n o -p a ir e n la rg e m e n t , 1 0 8 -1 1 2

m o tiv a tio n , 105

re flec te d c o n f irm a tio n , 1 2 2 -1 5 7

re flec te d c o n f irm in g a rg u m e n t, 123 , 1 4 7 -1 5 1

d e f in itio n , 147

e x a m p le , 148, 154

p ro p e rtie s , 1 4 8 -1 5 1

d iag ra m o f, 147

re flec te d co n firm in g c o n f irm a tio n , 123 , 1 5 1 -1 5 5

d e f in itio n , 151

e x a m p le , 1 5 2 ,1 5 4

p ro p e r tie s , 1 5 2 -1 5 5

d ia g ra m o f, 151

re f le c te d p re c lu s iv e u n d e rc u t, 1 2 3 -1 2 6

d e f in itio n , 123

e x a m p le , 124, 1 3 0 ,1 3 2 , 140, 141, 145

p ro p e rtie s , 1 2 4 -1 2 6

d ia g ra m o f, 123

m u lti-p a ir e n la rg e m e n t, 1 4 2 -1 4 5

re fle c te d re b u tta l b e tw e e n a rg u m e n ts , 1 1 2 -1 1 8

d e f in itio n , 113

e x a m p le , s im p le , 113

e x a m p le , 154

p ro p e rtie s , 1 1 4 -1 1 8

d ia g ra m o f, 114

m o tiv a tio n , 1 1 3 -1 1 4

re fle c te d re b u tta l b e tw e e n c o n f irm a tio n s , 1 3 3 -1 3 6

d e f in itio n , 133

e x a m p le , 134

p ro p e rtie s , 1 3 4 -1 3 6

d ia g ra m o f, 133

re f le c tin g a rg u m e n t, see re f le c to r a rg u m e n t

re f le c tin g c o n f irm a tio n , see re f le c to r c o n f irm a tio n

re f le c tio n , see re f le c te d

a sy m m e try o f c a rd in a lity , 112

a w a re ju d g e , 195

d is to r te d , see d is to r te d re f le c te d

e n la rg e d , see e n la rg e d re fle c te d

e x a c t, see e x a c t re fle c te d

g ra n d p a re n t, see B a se P ro p o s itio n s F o m ­

in A B A fram ew o rk , 9 8 -1 0 2

re d u c e d , see re d u c e d re f le c te d

sca le d , see s c a le d re flec te d

s c a lin g fa c to rs , su m m a ry , 156

s y m m e try o f e x is te n c e , 111

re flec tio n s c a lin g fac to r, 1 5 6 ,1 7 6

d o w n tree , 120, 1 3 8 -1 4 6

u p tre e , 1 5 3 -1 5 5

re flec to r a rg u m e n t, 9 3 , 9 8 , 103, 106, 108, 110, 111,

1 1 7 ,1 2 0

ab se n t, 107

a ll p o ss ib le , 137

a t h e a d o f ch a in , 92

a t ta il o f ch a in , 1 4 7 -1 5 3

Index 256

m u ltip le , 135

o n e spec if ic , 137

re f le c to r c o n firm a tio n , 8 6 ,1 2 4 , 133 , 1 3 8 -1 7 2

ab se n t o r em p ty , 129

a ll p o ss ib le , 1 2 9 -1 3 1

d e fe n d in g c o n f irm a tio n , 139

is ta rg e t c o n f irm a tio n , 134

sp ec if ic , 127

re flex iv e a rg u m e n t, 97

re in s ta te m e n t, 101 , 173

re p e t i tio n o f a rg u m e n ts , 188

re p e t i t io n o f a s s u m p tio n s , 15, 2 6

re p e t i t io n o f a tta c k , see re f le c tio n

re p e t i t io n o f c la im , 1 5 ,5 0 ,1 6 3

re s o lv in g in c o n s is te n c y , 1 5 ,2 2 , 6 2 , 192

re so lv in g p o w e r, 193

s c a le d re f le c tio n , 1 3 8 - 1 4 6 ,1 5 3 - 1 5 5

sc a lin g fa c to r , 1 3 8 -1 4 6 , 1 5 3 -1 5 5

S c h w a rz e n e g g e r , A rn o ld , 7 3 , 88

s e l f c o n f irm a tio n , 3 5 , 3 7 , 5 3 , 7 6

se m i-a b s tra c t , see a s s u m p tio n -b a s e d a rg u m e n ta tio n

S h e r lo c k H o lm e s , 73

s ta le m a te , 14, 5 4 ,6 0 - 6 2 ,1 1 2 , 192, 1 94

s tr ip p in g o f f la b e ls

d e f in it io n , 2 5 ,4 3

e x a m p le , 2 5 ,4 3

p ro p e r t ie s , 2 6 - 2 7

s u p p o r t , 3 0 , 3 4

e q u a l to c la im , 3 4

m e rg in g , 116 , 143

c o n s is te n t, 8 0

e m p ty se t, 4 6 , 6 7

e q u a l to re fle c to r , 102, 112

m erg in g , 110, 140, 157

p re d ic ta b le b y re f le c tio n , 9 0 , 9 1 , 103

sh o rten in g , 9 3 , 108, 110, 116 , 140 , 143 , 154,

167

sh o rten in g , ex a m p le , 109

s tr ic t su b se t, 9 3 ,1 0 8 ,1 1 6

s u b se t o r equa l to , 103, 116

s u p p o r t , a t ta c k e d , 57

ta il o f c h a in , 8 4

ta rg e t c o n f irm a tio n , see c o n f irm a tio n , ta rg e t

ta rg e t c o n tra d ic tio n , see c o n tra d ic tio n , ta rg e t

ta rg e te d a tta c k tu p le , 86

ta u to lo g ic a l

a rg u m e n t, 3 0 ,3 4

a tta c k in g c o n f irm a tio n , 71

ca n o n ic a l u n d e rc u t, 67

c o n f irm a tio n , 3 5 ,3 8 ,4 1 ,4 4 , 8 0

d e d u c tio n , 27

d e fe n d in g c o n f irm a tio n , 71

p re c lu s io n , 7 4 ,7 5 ,7 8 - 8 0

ta rg e t c o n f irm a tio n , 71

ta u to lo g y , 2 3 , 2 7 , 30 , 3 4 , 3 8 , 4 2 , 4 4 , 4 6 , 5 9 , 7 5 - 7 6 ,

7 8 -8 0

th re sh o ld fo r e v id e n c e , 1 5 ,1 9 5 ,1 9 6 ,2 0 4 , 2 0 6 ,2 2 1

to o l fo r a rg u m e n ta tio n

C a S A P I, 2 1 9

O sc a r , 2 1 9

A ra u c a ria , 3 5 , 1 9 7 ,2 1 8

A rg D F , 2 1 8

A rg u e tu P ro lo g , 2 1 8

A rg u M e d , 1 9 7 ,2 1 8

A sp ic , 2 1 8

C a S A P I, 2 1 8

O sc a r, 2 1 8

th is th e s is , 2 1 8 -2 3 2

Z e n o , 2 1 8

T o u lm in , S te p h e n , 58

tra c k in g a d e b a te , see d e b a te , tra c k in g

tru n c a te , to n e a re s t in teg e r , 32 , 3 3 ,4 4

T y p es o f In c o m p le te n e ss , see In c o m p le te d e b a te

trac k in g

T y p es o f In o rd in a te n e ss , see In o rd in a te d e b a te t r a c k ­

in g

T ypes o f R e fle c tio n

T y p e 1 ,9 2 - 9 4

T ype I, see also re f le c te d c a n o n ic a l u n d e r­

cu t, re flec te d re b u tta l b e tw e e n a rg u m e n ts ,

re flec te d a tta c k b e tw e e n a rg u m e n ts , r e ­

flec ted p re c lu s iv e u n d e rc u t, m a tt

T ype II , 1 3 3 -1 3 6

Index

TVpe II , see also re f le c te d re b u tta l b e tw e e n

c o n firm a tio n s , re f le c te d a t ta c k b e tw e e n

c o n f irm a tio n s , m a tt

T ype ID , 1 4 7 -1 5 1

T y p e ID , see also re f le c te d c o n f irm in g a ig u -

m e n ts , o p a q u e

T ype IV , 1 5 1 -1 5 5

T ype IV , see also re f le c te d c o n f irm in g co n f ir ­

m a tio n s , o p a q u e

T y p e V, 217

U M L , see U n if ie d M o d e ll in g L a n g u a g e

u n d e rc u t , 57

a s su m p tio n -b a s e d a rg u m e n ta tio n (A B A), 58 ,

5 9

a w a re ju d g e , 194

c a n o n ic a l , see c a n o n ic a l u n d e rc u t

e f fe c t, 5 9 - 6 2

fu ll , 6 0

g ra d e d , 6 0 ,2 0 4

n o n e , 6 0

e n g e n d e rs re b u tta l, 91

e n g e n d e rs u n d e rc u t , 9 6

e q u a l to a re b u tta l, 68

in fo rm a lly in tro d u c e d , 16

P o llo c k , 6 2 - 6 4

p re c lu s iv e , see p re c lu s iv e u n d e rc u t

W ig m o re , 5 8 - 6 2

u n fo u n d e d , 27

co n f irm a tio n , 2 5 , 2 7 , 3 5 , 3 8 ,4 1 , 4 3 ,4 4 , 4 8 , 71

U n if ie d M o d e llin g L a n g u a g e , 2 1 9 ,2 2 2

v e rte x , 8 2 , 8 6 , 159, 164, 169 , 1 7 7 -1 7 8 , 1 8 2 -1 8 8 ,

2 0 0 - 2 0 7 ,2 1 9

v erte x re p e titio n , 164

v e r te x s ize , 186

v erte x s tren g th , 2 0 5 -2 0 8 , 221

v isu a l lan g u a g e , 221

v isu a lisa tio n o f a rg u m e n t g ra p h s , 165 , 178 , 1 9 7 ,2 1 9

W a rm H o u s e d eb a te tree

d ia g ra m o f, 230

W a rm H o u s e e x a m p le , 228

Wigmore undercut, 58-62

A thesis which is accepted by the University for the award of a R esearch D egree is placed in the L
in the University of London Library. The copyright of the thesis is retained by the author.

As you are about to submit a thesis for a Research Degree, you are required to sign the declarator
is separate from any which may be m ade under arrangements with the C ollege at which you h a v e ,
internal candidates only). The declaration will be destroyed if your thesis is not approved by the
rejected or referred for revision.

To be completed by the candidate

NAME IN FULL (Block Capitals) Robert Godfrey Bowemm,
TITLE OF THESIS TRACKING AND TUD/tINTt T)5 feATES &

ARGUMENTATION i THE ROLES Of CONFIRMATION,
 ?g£n_UsrnKI AND RE FLECTION ________________
DEGREE FOR WHICH THESIS IS PRESENTED Pht> computer s<
DATE OF AWARD OF DEGREE (To be com pleted by the University)______________________3 —1-

DECLARATION

1. I authorise that the thesis presented by m e in *[2007] for examination for the MPhil/PhD
of London shall, if a degree is awarded, be deposited in the library of the appropriate Collec
London Library and that, subject to the conditions set out below, my thesis be m ade avail!
inter-library loan and copying.

2. I authorise the College or University authorities as appropriate to supply a copy of the abstrac
in any published list of th e se s offered for higher d eg r e e s in Britisn universities or in any s
consultation in any central file of abstracts of such tn eses .

3. I authorise the College and the University of London Libraries, or their designated agents
digital copy of my thesis for the purposes of inter-library loan and the supply of copies.

4. I understand that before my thesis is m ade available for public reference, inter-library loan £
statement will have been included at the beginning of my thesis: The copyright of this thesis
no quotation from it or information derived from it may 6 e published without the prior writt€

5. I authorise the College and/or the University of London to make a microform or digital copy c
a s the archival copy for permanent retention in substitution for the original copy.

6. I warrant that this authorisation d o es not, to the best of my belief, infringe the rights of any

7. I understand that in the event of my thesis being not approved by the examiners, this declar

*Please state year.

5 Aff.l TOO?DATE V ' Hr’ U * - w I SIGNATURE

Note: The University’s Ordinances make provision for restriction of a c c e s s to an MPhil/PhD thes
only in certain specified circumstances and for a maxiumum period of two years. If yo
restriction, p lease enquire at your College about the conditions and procedures. External
at the Research D egree Examinations Office, Room NBQ1 (North Block), S en a te House.

THIS DECLARATION MUST BE COMPLETED AND RETURNED WITH T
MAIN EXAMINATION ENTRY FORM

