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ABSTRACT

With the advent of high-throughput screening technologies, key constraints associated 

with identifying potential drug candidates are being removed -  the bottleneck in the 

timely delivery of new drugs will inevitably shift toward process development. 

Conventionally, the pilot plant studies required for process design only start when there 

is confidence that the drug candidate will make it to market. This means that this 

development period is very limited, and the flowsheet that enters the manufacturing 

phase is often sub-optimal. Collaborative work at UCL has been developing new 

strategies that aim to change this paradigm. The use of scale-down experiments in the 

drug discover)' phase, in conjunction with modelling techniques, has been shown to be 

capable of providing more robust process definition early on in development. Such 

methodologies allow the study of more process options and hence rapid identification of 

optimal conditions, and thus mitigate the risks associated with equipment capital 

investment. Further advantages are that the experiments require less material, and can 

be done prior to. as well as in parallel to, pilot plant development. Scale-down can also 

be useful for the analysis of existing processes, e.g. for validation and troubleshooting, 

especially where material is valuable and/or scarce.

This thesis describes the design and development of a scale-down device for membrane 

filtration, with a focus on tangential flow microfiltration for primary clarification. The 

device uses a rotating disk suspended above a static membrane surface to generate 

surface shear, in order to mimic the global, hydrodynamic conditions found in 

commercial crossflow modules. Results are presented showing how filtration 

performance of the scale-down device (3.5x1 O^m  ̂membrane area) correlates well with 

pilot scale data (0.1m') for a range of representative biological materials including 

yeast, bacterial and mammalian cell cultures. Methodologies for confident assessment 

of microfiltration performance are given, which are capable of dealing with different 

feedstocks, membrane types, and a range of operating strategies, using greatly reduced 

quantities of feed. The steps required to design and build the next generation of 

filtration scale-down device for rapid process development are also addressed, along 

with a discussion of the related business and regulatory issues that shape the industry.
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General Introduction

Chapter 1 General Introduction

1.1 Introduction

This thesis aims to establish methods for the fast prediction of the processing conditions 

needed to yield acceptable flux and transmission performance of tangential flow 

membrane operations. The design, development and verification of a scale-down 

device and experimental methodology to mimic tangential flow filtration (TFF) systems 

are described. It contributes to the process engineering science base for a new 

generation of filtration devices with the capacity to produce a step change in the way 

conventional early stage filtration studies are conducted.

This initial chapter provides the context for this research, giving general information on 

the current methods and uses of scale-down simulations in bioprocesses. The specific 

research aims and objectives are then stated along with a description of the thesis 

structure.

1.2 Scale-down in bioprocesses

The length, complexity and costs of pharmaceutical research and development have 

continued to increase steadily over the last few decades. The vast majority of drug 

candidates never reach the market and of those that do, only a third generate enough 

revenue to compensate for the large research and development costs (Burnett et al., 

1991: Bregar, 1996). Much effort has gone into speeding up drug discovery and 

considerable innovation has lead to the development of combinatorial libraries, high 

throughput screening techniques and the new disciplines of proteomics and generics. 

However, in order to avoid a bottleneck at the process development stage similar levels 

of effort and innovation are required (Nicholson, 1998; Willoughby et al., 2004). The 

concept of process scale-down provides an opportunity for this since more information 

can be generated using less material and in less time. The critical challenge is to 

determine how scale-down can be used to produce accurate, quantitative and reliable 

process data.
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General Introduction

The follo’̂ ving pages will examine the requirement and roles of scale-down models in 

bioprocess development discussing the different requirements for scale-down models, 

depending on their intended use. Sections 1.2.2 and 1.2.3 subsequently examines 

methods for the generation of scale-down models and the level of accuracy they are 

required to have. Several examples of existing scale-down models are described in 

Section 1.2.4, and the possibility of using these models in conjunction with one another 

is considered in Section 1.2.5. Further issues pertaining to the use of scale-down 

models, such as the combination of scale-dowTi devices with other methods of process 

modelling and hence, the development of an ultra scale-down (USD) methodology are 

explained in Sections 1.2.6 and 1.2.7 respectively.

1.2.1 Requirement for scale-down in bioprocesses

In traditional process development the scale of operations is gradually increased to 

arrive at a working production-scale purification process. For economic reasons most 

process development work is not completed at the final scale, but instead involves 

extensive use of pilot and laboratory-scale equipment to predict and optimise the 

performance of the large-scale process. Each stage of the potential production process 

is tested at laboratory scale, from fermentation to purification, recovery, polishing and 

formulation.

This usually involves a significant number of large-scale trials to cope with the changes 

in behaviour or efficiency of production-scale process equipment. The complex nature 

of biological materials makes them difficult to characterise and their behaviour difficult 

to predict. The lack of predictive tools has meant that bioprocess design has been a 

largely empirical process relying heavily on pilot plant trials and the experiences of the 

design team. This approach is increasingly becoming unfeasible due to the significant 

costs associated with material consumption in pilot plants, and due to the difficulty of 

scheduling process trials in already stretched pilot or production facilities.

The response to this dilemma has come in the shape of improvements in equipment, 

experimental design, and computer modelling. The most popular approach to mitigate 

these concerns is the use of scale-down models of bioprocess unit operations. Scale- 

down can be defined as the attempt to mimic the operation of production- scale
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equipment in geometrically similar laboratory-scale models that exhibit the same 

behaviour and performance without requiring the same amount of process material. 

Ultra scale-down (see section 1.2.7 below) is an extension of this, using models which 

may not be geometrically similar in conjunction with mathematical models (Boychyn et 

al. 2001; Lamping, 2003; Reynolds, 2005; Willoughby et al., 2004).

One of the first reported uses of scale-down techniques in bioprocessing was by 

Oosterhuis et al. (1985) who found that they were able to reproduce performance of a 

large fermenter by mimicking the fluctuations of nutrient concentrations in smaller 

vessels. Since then, the concept of scale-down has found wide application in 

biotechnology, reaching far beyond the original application fermentation development 

into the simulation of protein purification operations and more recently, whole process 

sequences. Currently, research groups have started investigating the performance of 

key unit operations using vastly reduced quantities of feed (millilitre scale), as a result 

of advances in microfluidics and liquid handling technologies (Lamping, 2003; 

Chandler and Zydney, 2004). The use of scale-down techniques has several advantages 

over the other improvement approaches, and these are described below.

Scale-down versus pilot plant studies
If good scale-down mimics of manufacturing equipment can be developed these 

constitute a more advantageous strategy than pilot-plant studies given the extreme 

importance of time-to-market, and the high value of the process streams. Scale-down 

laboratory’ devices enable the more rapid integration of unit operations into a process 

resulting in an earlier and possibly more accurate indication of the true overall process 

performance. Furthermore, this concept allows the very economical exploration of a 

greater number of process options that can be achieved at pilot-scale in the same amount 

of time. Scale-down trials save money and time because they require smaller volumes 

of process materials, are easier to handle, operate and clean, require less personnel 

resource and reduce energy consumption.

Scale down versus modelling
Unlike purely chemical systems, biological feedstocks have many uncharacterised 

components in terms of their size, structure, charge, hydrophobicity etc. Even a great 

percentage of the defined constituents have unknown responses to various
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environmental conditions and stresses. This leads to considerable uncertainty (usually 

±30%) in generic models. Nevertheless, these models can be very helpful in designing 

scale-dowTi experiments, the outputs from which can be used to improve the simulation. 

Varga et al. (1998) utilised this approach to refine the accuracy of a natural yeast 

homogenisation model to predict for a recombinant strain from ±30% to ±10%. Scale- 

do’SMi models may be utilised with process modelling to accelerate development and 

corroborate performance of the predicted manufacturing process with respect to some 

difficult-to-measure variable, and this is considered further in section 1.2.6 and Chapter 

2 .

Well performing scale-down models are capable of delivering the same information as 

trials on their large-scale counterparts, but without the expense of time and resources 

that inevitably goes with pilot or production-scale process trials.

1.2.1.1 The roles of scale-down

Scale-down models can fulfil a number of roles during process development and 

throughout a bioproduct’s lifetime. Bylund et al. (1999) highlighted the two 

independent circumstances in bioprocess development when a scaling methodology is 

required: to facilitate scale up of a new process and to evaluate modifications to an 

existing one. However as scale-down technology improves the models are also 

becoming useful tools during the early stages of process development and during 

process validation.

Role 1: Process Development
During bioprocess research and development the aim is to determine a series of steps 

that will capture the product from the fermentation broth and concentrate and purify it to 

the required level. Since there are a wide variety of alternative operations that could be 

used to achieve this there is a need to screen rapidly a large number of options. Scale- 

down techniques can be used to assist in this task by rapidly assessing the feasibility of 

a number of different operations and evaluating alternative options. For example, if the 

feed seems to be shear insensitive, and the yields obtained by the filtration experiments 

are not sufficient, then an alternative unit operation such as centrifugation ought to be
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considered. It must be noted, however, that such considerations are only relevant until 

the process flowsheet has been specified.

This example serves to highlight the intrinsic value of adopting scale-down methods 

since they can make the required information available at a much earlier stage of 

process development than would be possible by conventional pilot-plant based 

development strategies. Figure 1.1 below outlines the interaction between scale-down 

tools and process development.

Figure 1.1: Generation and use o f  scale-down models in process development (adapted 

from Sw eere et al, 1987).

As indicated by the schematic in Figure 1.1, the results of the scale-down analysis form 

the basis of the practical design of the scale-down simulation. The basis for the 

selection of aspects that need to be included in the scale-down simulation and 

approaches to their experimental representation are discussed in section 1.2.2.

As at the early stages of process development the objective is simply to determine 

which operations are actually feasible, the accuracy requirements are low and the 

investment in the scale-down model can therefore also be low. Once the flowsheet has 

been specified, and the interaction between unit operations becomes a criterion for
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process optimisation, the quality of the scale-down data needs to increase. This 

variation in accuracy between different stages is considered further in Section 1.2.3.

Role 2: Optimisation of existing processes
The yield and purity obtained in a particular process is improved via the use of process 

optimisation (Zhou and Titchener-Hooker, 1999). This is concerned with making 

observations on the effects of changing process variables in the pilot plant or laboratory 

and subsequently transferring the results to production scale. However, the question of 

what to change and by how much is critical. Methods are needed to test the impact of 

different process changes with minimal use of time and resources, and to evaluate if the 

regulator}' requirements for post-approval changes are feasible to execute.

A scaled-down model of an individual unit operation can be a very useful tool. The 

potential uses for such a model include evaluating the sensitivity of an operation to 

changes in feedstock, process optimisation and assessing the impact of any suggested 

process changes. In more general terms, a scale-down model should allow better 

understanding of the process. Predicting the effects of changes to an existing process at 

small scale removes the expense of testing at large scale, and the need to run larger pilot 

scale tests for troubleshooting and further optimisation and the identification of process 

limits would be reduced (van Reis et al. 1997).

Obviously, the degree of optimisation possible relies on the quality of the scale-down 

procedures used. However, in almost all situations scale-down experiments can be used 

to find specific process parameters that assist with process optimisation. Obtaining 

these values by experimental means is often easier than by purely theoretical means 

since the level of understanding required is likely to be lower; in some cases 

experimentation is the only way to find a particular parameter.

Limitations in the accuracy and reliability of current scale-down models have restricted 

their use as tools for process optimisation, and pilot or full-scale verification is still 

necessary. However, these models are nevertheless useful as they can narrow the range 

of process variables and highlight particular aspects of a process that could be 

improved. As the accuracy of scale-down techniques improves it may be possible to 

eliminate large-scale optimisation studies and simply verify the performance of the
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process designed at the laboratory-scale. If the model is sufficiently accurate then a 

biopharmaceutical corporation could demonstrate and validate its equivalence to the 

production scale process; undoubtedly, the requirements of a scale-down model to do 

this are significant, since the model will need to accurately simulate all aspects of the 

performance of the large-scale operation. The development and validation of such a 

model may be difficult and resource intensive, but the potential savings made by 

minimising disruption to the manufacturing process would justify this.

Role 3: Validation Studies
Scale-dowTi can also be used for validation studies (van Reis et al., 1997; Winkler et al., 

2000). For example, most companies generate a '‘process capability specification" 

wherein the known variability of data is determined for a certain number of runs, almost 

always fewer than ten, usually less than five (Bobrowicz, 1999). This validation effort 

is flawed in that more runs are required to establish process variability and 

specifications usually need to be made before scale-up and optimisation changes to the 

process; accurate scale-down models could resolve both of these issues.

Although validation requirements would be reduced to a certain extent; a small number 

of large-scale trials would still be required for the regulatory approval process, and such 

studies will always be best performed in the manufacturing facility to be licensed 

(Gardner et al., 1996).

1.2.2 Methods of developing scale-down models

The creation of scale-down models is a multi-step procedure shaped both by the 

requirements of process development and the available resources. The principle of 

scale- down, i.e. the dedicated simulation of the performance, as well as the 

shortcomings, of large-scale equipment in bench-scale experiments requires knowledge 

of those aspects in which the behaviour of common laboratory equipment differs from 

its large-scale counterpart. The creation of a scale-down model is therefore initiated by 

a thorough analysis of the operation or process to be simulated. Methodical approaches 

to conducting this scale-down analysis will be discussed in the subsequent sections.
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1.2.2.1 Scale-down analysis

There are ts\'o objectives when creating a scale-down model, the first is to identify the 

scale-dependent aspects of a large-scale operation and the second is to minimise the 

number of parameters to be scaled.

The identification of scale-dependent aspects of large-scale process behaviour forms a 

classical chemical engineering problem that has been treated extensively in the literature 

on process scaling (Atkinson and Mavituna, 1991) and a number of different approaches 

have been developed and successfully applied in chemical engineering. However, to be 

useful for biopharmaceutical process development such approaches should fulfil certain 

requirements as \\ill be discussed below.

The second objective of keeping the number of relevant parameters to be simulated to 

the minimum possible is less easily accomplished. Since the reaction of the biological 

material to changes in the processing environment is generally not knowTi, there will be 

a frequent need for experimental evaluation of the influence of individual parameters on 

the performance of an operation. As a whole, a scale-down analysis therefore combines 

theoretical and practical approaches to arrive at a definition of the requirements for a 

valid scale-do'WTi simulation of the process under study.

A number of strategies exist for scaling various operations and each unit operation has 

its owm specific scaling criteria, but some generalisations can be made. Tactical 

methods for scaling include fundamental methods, semi-fundamental methods, 

dimensionless analysis, regime analysis, heuristics, trial and error, and combinations of 

the above (Oldshue, 1985; Atkinson and Mavituna, 1991). An overview of the steps 

involved in the generation and application of a scale-down model in biopharmaceutical 

process development is shown in Figure 1.2.

Which of these strategies works best will depend upon the operation being scaled down 

and the intended use of the scale-down model. The main criterion for the applicability 

of these methods to the scale-down analysis of biopharmaceutical operations is their 

ability to tolerate the scarcity of the fundamental knowledge-base of processes in 

biotechnology. In that regard trial and error probably represents the most generically
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applicable technique, but is of little practical value for scale-down analysis since no 

information on scaling behaviour of the system is obtained.

rules of 
thumb

literature
correlations

poor
experience

heuristics

r

Nosimilar
data?

Yes

scale-down simulation

theor\^-based methods
• (semi-) fundamental 

description
• dimensional/regime analysis

Scale-down analysis

experimental methods
• mechanistic analysis
• product reaction to process 

environment

Figure 1.2: Overview o f the application o f process analysis to the creation o f scale- 

down simulations.

Fundamental methods of scaling are based on a complete mathematical solution of the 

fundamental equations such as mass balances, transport terms, kinetics and equilibria 

that describe a process. Since the sheer number of such equations can be large, semi- 

fundamental methods facilitate the situation by making simplifying assumptions, such 

as plug flow, a well-mixed reactor etc. Even then, the resulting mathematical 

framework is often of considerable complexity, making it unwieldy for practical use. 

More importantly, the level of fundamental understanding required for the generation of 

accurate descriptions of e.g. cell growth kinetics is rarely available in biotechnology. 

Fundamental methods themselves are therefore of little practical importance for 

biopharmaceutical process development, even though they can be used to great effect in 

combination with other techniques, such as regime analysis or heuristic rules (Atkinson 

and Mavituna, 1991).
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Dimensional analysis is based on the characterisation of a system by dimensionless 

ratios of groups of parameters. These dimensionless numbers represent the ratio of 

characteristic times of individual processes within the system. By keeping them 

constant during scaling the relative importance of individual processes is maintained 

(Zlokamik, 1983), but in biotechnological systems however it is rarely possible to arrive 

at a complete description of a process in terms of dimensionless numbers.

The use of regime analysis, e.g. based on characteristic times, has therefore been 

suggested to identify the governing regime of the process under study, which then has to 

be kept unchanged during scaling (Sweere et al., 1987). Since characteristic times can 

be obtained from a variety of sources including experiments and reasonably accurate 

correlations from the literature, the method is particularly suitable for application in 

biopharmaceutical process development. Regime analysis defines the most important 

mechanism of a scaling problem, rather than eliminating insignificant variables. For 

example, if the controlling factor is dependent on the fluid dynamics of the system due 

to resistance to diffusion, then the regime is djmamic e.g. mass transfer through a fouled 

membrane. In regime analysis, the first stage is to ascertain what the ruling regime is in 

a particular operation. It is important to define a characteristic parameter on which to 

base laboratory scale experiments, especially before the construction of any specialised 

equipment.

In summary, scale-down analysis plays a crucial role in the generation of scale-dowTi 

models. Since failure to simulate relevant phenomena in the scale-dowm model will 

result in misleading results, the objective of scale-down analysis is to identify all aspects 

of the behaviour of a large-scale operation that need to be included in the scale-down 

simulation. At the same time however, it is necessary to keep the number if parameters 

to be included to a minimum in order to facilitate the practical design of the scale-down 

model.

1.2.2.2 Principles of similarity

Regardless of the scaling method used, the deciding criterion for the successful creation 

of a scale-down model is the resulting similarity to the large-scale operation. In 

chemical engineering two systems are termed similar if they are geometrically.
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mechanically, thermally and chemically alike (Sweere et al., 1987). Similarity in all 

four aspects can generally not be achieved for most engineering systems.

Principles of similarity  ̂ are concerned with the relations between physical; systems of 

different sizes and it is thus fundamental to the scaling-up or down of physical and 

chemical processes. It is concerned with discovering the ratios of magnitudes within the 

system which govern its special and temporal configuration, irrespective of the 

measured scale. The four states of similarity are discussed below.

Geometric similarity, or miniaturisation, is intuitively the most accessible way of 

designing scale-down simulations. The use of dimensional analysis during the scale- 

down analysis, for instance, automatically leads to geometric similarity (Sweere et al., 

1987). Geometric similarity is achieved when for every special point in one body there 

exists a corresponding point in the other. The points are linked by a scale ratio. An 

example of a criterion for geometric similarity is the maintenance of a constant path 

length in tangential fiow filtration. Geometric similarity of the equipment simulating 

the real operation may not be required if the ruling regime is better modelled with an 

alternativ e geometry; the important criteria at this stage is that laboratory experiments 

must be representative of what goes on at production scale.

However, since not all processes change equally with the systems dimensions, 

geometric similarity in scale-down models can produce misleading results. In the 

example of fermentation scale-down, the small-scale reactors could only simulate either 

the hydrodynamic conditions in the large-scale fermenter or the mixing conditions, but 

not both at the same time (Oldshue, 1985). Similarly, miniature models of centrifuges 

will not reflect the conditions of acceleration and shear that prevail in the production- 

scale device. However, miniaturisation can in some cases be successful as 

demonstrated by the reduction of the feed capacity of a pilot-scale disk-stack centrifuge 

through the insertion of spacer blanks in the centrifuge bowl, thus permitting studies of 

centrifuge performance on significantly reduced amounts of feed material (Mannweiler 

and Hoare, 1992).

Considerations leading away fi-om geometric similarity are typically the result of regime 

analysis and related scaling methods. Their logical consequence is to avoid geometric
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similarity in the scale-down model in favour of a more realistic representation of the 

governing mechanisms. In the case of fermentation this leads to the design of small- 

scale reactors that permit the simulation of both the hydrodynamic conditions and the 

mixing regime in the large-scale fermenter, e.g. through the installation of riser tubes or 

two-compartment reactors (Oosterhuis et al., 1985; Bylund et al., 1999). In 

centrifugation this concept has recently been taken one step further by fully splitting the 

scale-down simulation of a large-scale centrifuge in two sub-models (a shear cell and a 

laboratory centrifuge) that each mimic one aspect of the behaviour of the large-scale 

device (Boych>n et al., 2001).

Mechanical similarity is an extension of geometric similarity to stationary or moving 

bodies which are subjected to forces. One type of mechanical similarity is kinematic 

similarit}! this is achieved when the particles within geometrically similar moving 

systems trace out geometrically similar paths in corresponding intervals of time e.g. the 

deposition of cells onto a membrane surface.

Thermal similarity is concerned with systems in which there is a flow of heat. It 

requires geometric and kinematic similarity.

Chemical similarity is concerned with reacting systems in which composition varies. It 

is achieved when corresponding concentration differences are in constant ratio, and 

requires geometric, kinematic and thermal similarity.

Similarity criteria are dimensionless quantities and may be derived by dimensional 

analysis provided that all the variables that govern the system are known. 

Dimensionless numbers can be used to ensure that a scale-up or scale-down model is 

fundamentally similar to the original. However, dimensional analysis can lead to false 

conclusions if a significant variable is omitted from the problem, and alone this method 

does not give information about the forms of the functions which link individual 

parameters together (Coulson and Richardson, 1990).

The design of scale-down simulations responds to a number of factors such as the 

phenomena to be simulated, the requirements for analytical installations and sampling, 

the amount of material available for testing as well as the availability of resources such
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as time and labour. The deciding criterion however is the degree of similarity to the 

large-scale operation that needs to he achieved. Since similarity in all aspects cannot be 

realised (see above) scale-down models have to focus on maintaining similarity where it 

is needed whilst neglecting it elsewhere. The identification of those aspects of 

similarity that matter for an individual scale-down problem partly results from the scale- 

down analysis, but may require additional experimentation to ascertain the reaction of 

the biological material to certain phenomena. The approach to the design of a scale- 

down model is therefore, to some extent, a result of the method employed during scale- 

down analysis.

1.2.2.3 Practical design of scale-down mimics

Before creating a scale-down model for a particular operation a thorough understanding 

of the industrial operation is required. This should identify the important operating 

parameters as well as highlight the key differences between the industrial operation and 

commonly used laboratory equipment. After this, the basis for scaling needs to be 

identified i.e. which aspects of the large-scale operation need to be reproduced in the 

scale-down mimic?

Nonetheless, determination of the critical operation parameters and recreation of the 

product environment may not be sufficient to develop a good scale-down model as the 

equipment used in large-scale industrial operations is often fundamentally different 

from the experimental apparatus used in a laboratory. For accurate scale-down, 

engineers seek to create laboratory-scale models, which simulate the behaviour of 

production-scale devices, particularly the reduced efficiency often encountered during 

scale-up. This could be accomplished in some cases by fabricating a geometrically 

similar, small-scale replica of the industrial machine. However, this is often 

uneconomical, and for some equipment e.g. high-speed centrifuges and filter presses 

this is simply not feasible. Another strategy is to modify the existing piece of industrial 

equipment in such a way that it requires only a fraction of the process material to give a 

similar performance.

It must also be considered that industrial equipment is usually made from stainless steel 

and the processes are heavily automated and controlled; in contrast laboratory
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equipment is often made of glass or plastic and the level of control and automation is 

much lower. The effects of this on performance may be negligible but they should be 

considered when comparing a scale-down model to a larger operation. For example the 

location of sample points and instrumentation can affect the results they yield and 

biological products have a tendency to adsorb to certain materials. Thus, in order to 

develop an accurate scale-down model, it is often useful to consider not just a specific 

piece of equipment but also the ancillaries such as pumps, piping, valves and detectors 

etc.

The critical challenge is to determine how scale-down models can be used to produce 

accurate, quantitative and reliable process data.

1.23 Accuracy, reliability and extent of scale-down models

A central question in the use of scale-down models relates to the reliability of the data 

obtained. Reliability in this respect refers both to the numerical accuracy of the 

parameter values compared to measurements from the large-scale equipment and to the 

validity of trends or critical parameters found in the scale-down model compared to the 

actual behaviour of the large-scale device. The numerical accuracy of scale-down 

models depends on several factors which partly counteract each other. Overall, the 

control and determination of process parameters at small scale is easier due to the 

difficulty of obtaining representative measurements of, for instance, spatially distributed 

variables at large-scale (Sweere et al., 1987). However, at very small scale, the 

influence of the analytical instruments on process parameters can in itself lead to 

significant deviations in the measurement parameter values (Gagnon, 1997). Table 1.1 

shows some examples of comparisons between scale-down prediction of parameter 

values and the results of large-scale measurements. Overall, a deviation of scale-down 

data of less than 10% from the large-scale parameter values seems attainable.

At least equally important as the numerical accuracy of scale-down models is the ability 

of scale-down data to predict trends in the behaviour of large-scale equipment. Simple 

scale- down models can usually only provide a “yes/no” answer regarding the 

importance of a certain phenomenon in the large-scale system (Bylund et al., 1999). 

The value of such information on large-scale process behaviour, however inaccurate in
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absolute parameter values, should not be underestimated since it can save long and 

fhiitless large-scale process trials, or help to avoid surprises during process scale-up.

The ability of scale-down simulations to predict the sensitivity of large-scale process 

performance to operating parameters depends to a large extent on the effort invested 

during the generation of the scale-down model. However, some constraints to this exist.

System Performance

Measure

Scaling

factor

Accuracy of 

prediction *

Reference

E. Coli fermentation Biomass yield 800 -1.2 Bylund et al. 

(1999)

Soya protein 

precipitation

Precipitate particle 

size

740 26.1 Bell et al. 

(1983)

Yeast homogenate 

precipitation

Total protein 

precipitated

700 -6.3 Boychyn

(2000)

Centrifugal 

precipitate removal

Clarification 600 2.3 Boychyn et al. 

(2001)

High-pressure

homogenisation

Cell debris particle 

size distribution

10 ~o Siddiqi (1998)

Expanded bed 

adsorption

Product

breakthrough

curve

-200 6 Willoughby et 

al. (2004)

Ultrafiltration Protein yield 212 1.2 van Reis et al. 

(1997)

Ultrafiltration Processing time 212 4.8 van Reis et al. 

(1997)

Table 1.1 Examples o f the accuracy o f scale-down prediction ofpilot-scale equipment 

performance. * Accuracy is calculated as % deviation o f the scale-down prediction o f  

the individual parameters from their actual value in the large-scale process.

In situations where two aspects of large-scale process behaviour cannot be scaled 

simultaneously, but nonetheless both influence the process result, the development of a 

reliable scale-down model will be difficult. More importantly the existence of non-
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scaleable parameters, such as gravity or a characteristic dimension of a system, places a 

lower limit on the size of scale-down simulations. That such a limiting dimension need 

not be microscopic is illustrated by the following example. The presence of the walls of 

a chromatographic column disturbs the uniformity of the packing due to geometric 

effects in the near wall region, and due to frictional support of the bed by the column 

wall in a zone extending 20 -  30 particle diameters into the column (Shalliker et al., 

2000). For a t>pical laboratory column of, for instance, 2.5cm diameter and filled with 

a process chromatography resin of a particle size of 100pm, this translates to an outer 

shell of 2-3mm thickness of bed disturbance which can give rise to misleading results in 

small-scale trials.

The numerical accuracy that is actually required from scale-down models is likely to 

depend on the stage of process development during which scale-down is employed, as 

highlighted previously in 1.2.1 above. Particularly in the early stages of process 

development a rapid and reliable assessment of the overall ability of a certain unit 

operation to deliver the required purification performance is more valuable than an 

accurate prediction of the precise performance of that operation, which might still be 

subject to change during the further course of the process development project (Storey, 

2000).

As a product prepares for entry into clinical trials the process development team must 

transfer the manufacturing process that was used in the laboratory into the pilot plant. 

This change of scale inevitably leads to some undesirable changes in performance due 

to the different environmental and operating conditions. These changes can be difficult 

to predict and may delay the production of clinical trial material while thee process is 

adjusted to rectify its performance. The use of suitable scale-down models can predict 

these changes in performance; therefore any surprises when scaling up can be avoided 

and the production of clinical trial material is not delayed. Obviously the level of 

accuracy required from the scale-down models is much greater at this stage than during 

actual processing. However, the availability of resources is likely to be greater since the 

importance of getting the process right at this stage is considerable, and any delays to 

development are highly undesirable.
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To conclude, the reliability of scale-down models is influenced by several factors, such 

as the scale of operations, the analytical tools and the nature of the system to be scaled. 

An evaluation of the reliability of scale-down models must take into account the actual 

requirements of the intended application. The stage of the development project will 

determine the extent of validation work required to demonstrate both the numerical 

accuracy and the overall reliability of a scale-down simulation.

1.2.4 Scale-down of bioprocess unit operations

This section aims to give a brief introduction to the scale-down of bioprocess unit 

operations. Recent examples of where scale-down techniques have been successfully 

applied to bioprocess equipment are listed in Table 1.2.

Unit Operation Literature references

Fermentation Bylund 1999; Lamping, 2003

Homogenisation Siddiqi, 1997; Chan et al. 2006

Jet mixing Baker, 2001; Meacle 2003

Precipitation Bell et al., 1983; Boychyn, 2000; Pampel, 2002

Centrifugation Boych>Ti, 2000; Hutchinson et al., 2006; Salte et al., 2006

Depth filtration Re>molds, 2005

Ultrafiltration van Reis et al., 1997

Expanded bed adsorption Willoughby et al., 2004

Chromatography 

(including membrane, ion 

exchange, adsorption, 

affinity, annular etc.)

Winkler et al., 2000; Kelley et al. 2004; Reynolds, 2005; 

Neal, 2005; Siu et al., 2006, Salisbury et al., 2006

Table 1.2 Examples o f bioprocess unit operation scale down.

A large amount of work on scale-down models has been produced; a good review of 

this field is given by Maybury (1999) and Titchener-Hooker et al. (2008). The 

approaches utilised in each of the above cases vary according to the type of operation 

and the extent of scale-down (in terms of processing volume). Attempts at scaling 

almost every bioprocess operation have been made, but their general applicability and
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scope of operation is still an area for improvement. In particular, scale-down of 

tangential flow membrane filtration has been restricted to linear scaling, limiting it’s 

potential for ultra scale-down.

1.2.4.1 Scale-down of the entire unit operation

Most scale-down models only deal with the core function of a unit operation down i.e. 

the ''processing” part of the unit operation and are not suitable for studying secondary 

operations such as cleaning and regeneration. Industrial processes may also have 

intermediate holding or transfer stages between key operations, which may involve a 

number of pumps and valves and a network of pipes. Since these factors can have an 

effect upon the product e.g. shear damage in pumps or protease activity in a holding 

vessel, they need to be accounted for is scale-down models.

Conversely, the use of disposable technology in bioprocesses is becoming more popular 

(Novais, 2001). For example, several companies no longer reuse the membranes used 

in separation applications, due to the high cost and difficulty of the cleaning step 

validation (Meacle et al., 1999). The impact of batch-to-batch variations between these 

disposable items adds an additional parameter to the host of processing variables, and 

should therefore be able to be assessed by the scale-down methodology.

Finally, the process sequence up and downstream of the operation being scaled-down 

should be considered in terms of the interaction and constraints they provide the 

processing step. Examples of the issues arising include the following:

• Variability of the preceding unit operation will impact on the operation of the 

downstream step.

• More rapid processes at the small-scale may fail to detect the effects of pH, ionic 

strength, temperature or proteases and other agents on product stability over 

prolonged times.

Where practical, the above production details should be considered and incorporated 

into the scale-down experimental methodology. This aspect is extended further to the 

modelling of process sequences in the folowing section.
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1.2.5 Scale-down of whole processes

Scale-down process simulations are principally based on scale-down mimics of 

individual unit operations. However, even though most of the published work on scale- 

down focuses on individual unit operations, it is important to realise that the concept of 

a '‘stand-alone" unit option has little practical meaning in process development. The 

purpose and design of any unit operation is defined in the context of the process within 

which it operates, and is thus equally determined by the output of operations further 

upstream as by the requirements of downstream processing steps (see section 1.2.4.1). 

Current approaches to scale-down usually see one operation studied and optimised at a 

time, this type of approach means that overall process performance is likely to be sub- 

optimal (Groep et al., 2000). Scale-down simulations of process sequences employed in 

the recovery of proteins have in recent years received growing attention both in 

academia and in industrial application (Maybury, 1999; Gadam et al., 2001; Varga et 

al., 2001; Pampel et al., 2001; Neal 2005).

Creating scale-down models of process sequences can be difficult as process scale- 

down faces all of the problems encountered in the development of scale-down models 

of individual unit operations (c.f. section 1.2). In addition to this, the way in which the 

individual unit operations depend on each other in their performance has to be 

represented accurately in the laboratory (Zhou and Titchener-Hooker, 1999; Groep et 

al.. 2000). The failure to include relevant aspects of large-scale process behaviour into 

the scale-down simulation can produce misleading results and hence undesirable 

surprises during process scale-up. While past experience offers some guidance as to the 

aspects which are most likely to affect process performance, the complex behaviour of 

biological macromolecules tends to inflate the number of potentially relevant influences 

which might need to be included in the scale-down model. A systematic approach is 

therefore needed which permits engineers to first collect all factors to potentially 

contribute to process performance and subsequently to conduct a methodical evaluation 

of the most relevant parameters. Ultimately this would yield a set of essential process 

parameters and interactions which need to be included in the design of the whole 

process scale-down model.
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In order for whole bioprocesses to be scaled down current scale-down models will need 

to be improved and very accurate scale-down models that are capable of producing 

material representative of the large-scale are required. As well as improving accuracy, 

the scope of scale-down models will need to be increased to incorporate all aspects of a 

particular process stage.

1.2.6 Interaction of scale-down with process modelling

Process modelling and scale-do'sv’n share a common objective in their attempt to reduce 

an operation or process to manageable elements either for mathematical representation 

or for experimental simulation. The shortcomings of purely theory-based prediction of 

bioprocess behaviour have been touched upon in the previous sections (see section 

1.2.1). Scale-down can help alleviate this situation by providing supporting data at 

crucial junctures, thus improving the overall reliability of modelling results (Varga et 

al., 1998; Varga, 2001; Zhou and Titchener-Hooker, 1999a). However, mathematical 

models can also serve as an important extension of the range of scale-down simulations 

by providing rapid interpolation and extrapolation of the data obtained in scale-down 

trials. In particular, computational fluid dynamics are increasing becoming an 

important tool in the development of scale-down models simulation, where they can 

provide a degree of insight into the process that would be difficult to obtain on a purely 

experimental basis (Boychyn et al. 2001; Meacle 2003).

Another point of particular interest is the joint application of scale-down process mimics 

and economic process models, since both techniques can provide complementary 

information for process development. Economic process simulations are increasingly 

being employed in process development not only for the examination of absolute project 

feasibility but also in the more detailed fashion of comparing alternative process designs 

for their economic efficiency at large scale (Vasquez-Alvarez et al., 2001). The benefit 

gained from the use of economic process models in development is maximised the 

earlier this source of development information is exploited (Fulton, 2001).

Existing tools for considering economic information during process development 

comprise a wide range drawn from the chemical processing industries and, lately, 

process simulation software packages specific to bioprocesses (Petrides; 1994). The
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core of economic process simulations consists essentially of pricing information for 

equipment and material used, unit operation models and mass balances to estimate 

consumption of resources and production as well as a set of rules of accounting used to 

convert this information into financially meaningful statements. As for other process 

models, scale-down can play a central role in the application of economic process 

simulations during process development by providing new and realistic information on 

the performance of individual unit operations or process sequences. The relation of 

scale-down to economic process simulations is not one-way though. Economic process 

information can also be used to advantage in the generation of scale-down models, by 

highlighting aspects of process behaviour that have a particularly strong bearing on 

economic process performance and therefore should receive special attention in the 

development of the scale-down mimics.

Pampel (2000) identified a strong s>nergy between scale-down experimentation and 

economic models in process development work to resolve a yield-productivity conflict 

in the recovery of proteins from transgenic milk. It was shown that in process 

optimisation work situations could arise where scale-down mimics and economic 

models have to be used in a complementar}' fashion in order to resolve key questions of 

process performance. In such situations both sources of information had to be 

considered as mutually dependent on each other. The use of modelling within a scale- 

down methodology is discussed further below and in Chapter 2 of this thesis.

1.2.7 Ultra scale-down concept

Currently, scale-down in bioprocess development is viewed as the use of pilot-scale 

equipment on a 1 to lOOL scale. Ultra scale-down (USD) aims to use lO’s of millilitres 

of material i.e. taking the operation down to laboratory scale. This leap in magnitude 

presents several challenges to engineers, including hardware design and the 

development of analytical techniques that can cope with smaller process samples. 

Below is a summary of the challenges for an USD device:

1) Mimic large-scale performance on 1-lOOmL scale. The USD device should:

a) produce material representative of the large scale process

b) obtain data on the performance of that operation
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2) Use data from the device to extrapolate to other process conditions, and hence define 

windows of operation.

3) Use data to project process solutions (e.g. assess changes to upstream operations) e.g. 

via USD indices.

Thus USD can be defined as the combination of a scale-down device that mimics the 

whole unit operation, semi-empirical modelling techniques, and a sub-set of material 

properties data, which is specific to each bioprocess feed.

Both USD and traditional scale-down methods are quick, simple and inexpensive to 

perform. However, USD techniques have several advantages over their traditional 

counterparts. The major limitation of the traditional techniques is that they tend to 

focus on a few important parameters and rely solely upon calculating how these 

parameters should be scaled down. As a result of this, traditional scale-down methods 

often represent an ideal situation that cannot be achieved at large scale since important 

process considerations are ignored. The effect of this is that the scale-down methods 

over predict the performance of large-scale equipment. Ultra-scale-down techniques 

take into account all aspects of large-scale operation including scale-down parameters, 

mode of operation and ancillary equipment. Factors such as shear in centrifugation 

(Boychyn et al., 2001), cake structure and formation in depth filtration (Reynolds et al., 

2003) and diffusion effects in chromatography may impact upon the performance of an 

operation and so need to be considered.

USD techniques incorporate these factors either by mimicking them directly within the 

scale-down devices, or by establishing a correction factor in the associated modelling 

(Reynolds et al., 2003). Overall, USD techniques through a greater understanding of 

large-scale processes allow the production of representative process material, improve 

the quality of process data and enable better process understanding. All this should 

contribute to more streamlined process development with fewer unforeseen process or 

operational issues.

Figure 1.3 below depicts the components of USD and compares it qualitatively to 

current process development procedures. Along the bottom axis are the initial phases of 

product development. Conventionally, pilot plant development only starts when there is
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confidence that the drug candidate will make it to market. This means that time is very 

limited for process development, often requiring the process to be right first time.

The development and implementation of USD techniques for process development aim 

to change these rules. The use of scale-down experiments in the drug discovery phase, 

in conjunction with modelling techniques should lead to more robust process definition 

earlier on, and is therefore superior to current techniques.

CONVENTIONAL 
METHODOLOGY

Pilot plant development

USD
METHODOLOGY

Scale-down 

Bloprocess modelling \ 

! Confirmatory pilot trials

Drug Growing Process set
discovery clinical for approval

promise

Figure 1.3 Comparison o f USD methodology M'ith current techniques.

In essence, the use of USD devices that require millilitres of material means that 

experimentation can begin in the lab (before the pilot plant is built). Individual unit 

operations can be optimised and the interactions between upstream and downstream 

components can be studied, leading to a better overall flowsheet. In addition, it allows 

the study of more process options and hence rapid identification of optimal conditions, 

and assessment of unit operation integration, and potentially delayed risk of capital 

investment.
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1.3 Summary and Conclusions

The discussions in Chapter 1 have highlighted the importance of small-scale 

experimentation for the development of biopharmaceutical processes. Aspects that are 

important for the use of scale-down models in process development include their 

generation, and the quality of the data obtained. However, it is also clear that the 

generation of scale-dowTi models is no trivial undertaking. It is crucial to arrive at a 

reliable representation both of the primary purpose of an operation as well as secondary, 

often subtle influences of the process environment on the biological product, all the 

while keeping the complexity of the scale-down model down to a manageable level.

Two further aspects of scale-down that are of particular interest to process development 

were highlighted. Section 1.2.5 refers to the possibility of simulating not only 

individual operations, but also whole process sequences in the laboratory by using 

appropriate scale-down mimics. The interest in process scale-doA\Ti results from the 

convenience and efficiency of conducting whole process studies at bench scale, as well 

as from the need for a method that permits the identification and investigation of the 

complex, often long-reaching interactions that occur in large-scale biopharmaceutical 

processes. The second aspect of the use of scale-down mimics in process development 

relates to their interaction with other t\pes of process simulations. Section 1.2.6 

identified especially the combination of scale-down with computer modelling as an 

attractive field of study, since the capabilities and requirements of both types of process 

simulation effectively complement each other.

Section 1.2.7 described the integration of a scale-down device with bioprocess 

modelling techniques and material properties data to give rise to an ultra scale-down 

(USD) methodology. The USD concept is based on creating laboratory scale mimics of 

production-scale processes and identifying and simulating the key features that 

determine the performance of the large scale process equipment. The overall benefits of 

an USD methodology can be summarised as follows:

• Minimise labour and feedstock usage i.e. more studies can be conducted at small 

scale, given the same resources and time constraints as conventional pilot-scale 

studies;
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• Aid to process development and validation, plant troubleshooting, process 

optimisation, comparability protocols;

• More economical to run multiple trials;

• Sanitisation trials involving spiking with contaminants, which cannot be done with 

actual production equipment, may be carried out e.g. viral clearance studies;

• Studies can be performed while pilot plant is being commissioned;

• Reduce risks involved with capital expenditure, by providing parameters for 

equipment selection;

• Process mimicked directly from laboratory to industrial scale and back i.e. studies 

can provide information for process development, and troubleshooting/optimisation 

once the process has been scaled up.

1.4 Research aims and objectives

The aim of this thesis is to develop an USD methodology for TFT. The specific

objectives used to achieve this are as follows:

• To review and evaluate flux and transmission models for TFT for their suitability of 

use for a USD methodology.

• To design and build a prototype USD TFT scale-down device which is suitable for 

various filtration operations such as concentration, diafiltration and normal flow 

filtration (NFF). This would include the incorporation of suitable instrumentation 

into the design of the TFF scale-down device, and specification of the ancillary 

filtration equipment.

• To verify the results obtained from the scale down device against data generated 

using conventional, pilot-scale equipment, i.e. to commission the system, with 

“real”, complex biological media.

• To define a way to compare different membrane/feed combinations in order to rank 

the filtration performance e.g. in the form of a USD index for membrane TFF.

• To define a graphical method to present the USD data in a pragmatic and 

industrially relevant way.

• To show an appreciation and understanding of the impact of the USD concept on 

bioprocess business aspects.
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Further developments in this area, used in conjunction with the work in this thesis 

should lead to refinements of the USD methodology in order to make it a commercially 

viable design tool for the rapid assessment and evaluation of TFF for bioprocess 

applications.

1.5 Thesis structure overview

Chapter 1 has given an overview of the motivation for ultra scale-down (USD) and its 

benefits. A review of the approaches taken to scale-down several bioprocess unit 

operations has been presented, and highlighted the lack of application of such 

methodologies to tangential flow membrane filtration (TFF).

The following chapter presents the theory behind scale-down of TFF for bioprocess 

applications, culminating in a strategy for the development of a USD methodology for 

this unit operation. Theoretical considerations for membrane filtration are further 

extended in Chapter 2 with a review and discussion of the flux and transmission models 

available for TFF. focusing on microfiltration (a fuller review of the main approaches 

previously considered in the literature is given in Appendix 1). Parameters for use as a 

"filtration index" are discussed as a way of assessing the "filterability" of different feeds 

in relation to each other, in order to comply with the definition for USD. The concept 

of Window s of Operation is applied, and suggestions for graphical methods by which to 

present the data generated from the USD experiments and modelling are given.

Chapter 3 presents a scale-down device for TFF and the rationale behind its 

development. This device is intended for use in conjunction with the modelling 

approaches described in Chapter 2, and is therefore referred to as the TFF USD 

(tangential flow filtration ultra scale-down) device.

For ease of reference, the materials and methods used for all the experiments presented 

in this thesis (Chapters 5, 6, and 7) are collated together in Chapter 4.

Chapter 5 presents data from preliminary experiments using yeast-based feeds (whole 

cell and homogenate) to test and validate the TFF USD device against conventional 

filtration equipment. The data is used as inputs into the models described in Chapter 2,
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and the output compared to the experimental results. A program listing of one of these 

models is included in the appendices.

The verification work is continued in Chapter 6, using a complex bacterial feed (an E. 

coli lysate), extending the scope of operation to diafiltration. In addition, the “filtration 

index” for this feed is determined fi-om the data generated at both scales.

Chapter 7 completes the verification work undertaken with an industrial partner, by 

presenting data using mammalian cell broths, and therefore demonstrating the 

applicability of the TFF USD device for yet another major class of bioprocess feed.

Finally, to place this research into context. Chapter 8 presents a discussion of the related 

business and regulatory issues that shape the bioprocess industry.

This thesis concludes with recommendations for the steps required to design and build 

the next generation of filtration scale-down device for rapid process development in 

Chapter 9.
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Chapter 2 Membrane Filtration in Bioprocesses

2.1 Introduction

Now that the motivation for scale-dowm has been described in Chapter 1, the following 

pages provide the relevant information required for the scale-down of membrane 

tangential flow filtration. It begins with a review of the pertinent background theory of 

membrane filtration. This is followed by an overview of modelling in bioprocess 

engineering; in particular membrane filtration modelling approaches are presented to 

give an awareness of the literature data and modelling tools available. This is followed 

by an examination of several recently published models, which will be reviewed in 

terms of their pragmatism for use in conjunction with a scale-down model for TFF.

This chapter culminates with a proposal for an USD methodology for TFF, which will 

be used as the basis of the experimental research described in Chapters 3 to 7. Finally, a 

method for presenting the results from USD experimentation and/or modelling known 

as Windows of Operation (WinOps) is discussed, and a format for such a "Window" is 

suggested for TFF.

2.2 Background theory to membrane filtration in bioprocesses

Membrane filtration is a major unit operation in the bioprocessing industries. Despite 

its prominence as a separation step its performance is frequently sub-optimal due to lack 

of knowledge of how best to operate the membrane module in conjunction with the 

remaining bioprocess sequence. This feature holds true for both upstream (cell culture) 

stages and the impact on subsequent steps (e.g. high-resolution operations). In addition, 

whilst many fundamentally-based models exist for membrane flux, few academic 

workers have tackled the equally pressing problem of product transmission where 

behaviour can be markedly dynamic and highly system-specific, depending both on the 

membrane characteristics and those of the process downstream. Filtration theory is a 

well studied field and some background theory is presented below.
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2.2.1 Membrane filtration

Membrane filtration is a popular choice in many bioprocess flowsheets. A good review 

on the reasons for selecting this unit operation is given in Cheryan (1986). Membrane 

filtration can be defined as the separation of particles of one size from particles of 

another size in the range of approximately 0.01 pm through 20 pm. It is a pressure 

driven separation of solids from liquids (on a size basis) using a porous membrane. The 

fluid may be either a liquid or a gas. The membrane passes materials, which are soluble 

and low in molecular weight, and retains colloids, particles and dissolved solids that are 

larger than the membrane pore size.

Membrane processes may be separated into several sub-classes based on the size of the 

species being separated; microfiltration (MF), ultrafiltration (UP), reverse osmosis 

(RO), nanofiltration (NF) and electrodialysis (ED), but for bioprocess applications MF 

and UF are the key unit operations, and are therefore focused on here. Membrane 

filtration uses in bioprocesses include:

• Concentration -  reduction of process stream volume.

• Cell har\'esting/recycling or washing.

• Cell removal -  to limit bioburden.

• Buffer exchange -  to prepare the process stream for further downstream 

processing or formulation.

• Debris removal -  to protect e.g. chromatography columns.

• Product sterilisation.

The pore sizes of MF membranes range from 0.05pm to 10pm which makes it useful for 

the retention and concentration of microorganisms, cellular fragments, precipitates, etc 

(Mateus et al., 1993); applications of MF include therefore cell harvesting, cell debris 

removal, waste-water treatment and non-thermal sterilization (Mulder, 1996). These 

applications include even the processing of more fragile cells, such as mammalian cells, 

since the loss of viability is not significant when a peristaltic (Ng and Obegi, 1990) or a 

rotary lobe pump (Rudolph and MacDonald, 1994) is used.

The pore sizes of the membranes used in UF range from Inm to 0.05pm, which 

corresponds to 1 to lOOOkDa size retention (Millipore, 1992). It is typically used to 

separate, purify and concentrate large molecules such as proteins in solution.
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polysaccharides, antibiotics and pyrogens. It can also be used to process cells and 

colloidal suspensions (Mateus et al., 1993).

Membranes with pore sizes in the range 300-1000kDa are at the boundary between MF 

and UF membranes and can present better performance than MF for clarification. In 

fact, since pore plugging is affected by components of similar or smaller diameter than 

the pores, it will be less prone to occur when operating with tighter membranes 

(Marshall et al. 1997).

2.2.1.1 Membrane materials and module configurations

Membrane material selection is dependent on several factors including particulate size, 

hydrophobicity and the concentration of feed. Selection of the proper module design is 

a choice that depends on many factors. Some membrane materials are only available in 

certain module designs. Depending on the findings of initial membrane screening 

studies one may find that a particular membrane type works best for an application. 

Membrane material may then dictate module selection. Other considerations include 

cost, space constraints, ease of use at the final scale, solvent resistance, and ability to 

clean, autoclave or steam-in-place (CIP or SIP).

Membranes can be found in different module configurations as shown in Table 2.1. 

Different modules are appropriate for specific applications and have different hold-up 

volumes which may affect the overall yield and performance. Descriptions of these are 

widely available in the literature e.g. Cheryan (1986), and will not be described further 

here. If possible, more than one membrane material and module design should be 

evaluated for a particular application during process development.
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Table 2.1: Qualitative comparison o f various commercially available membrane 

module configurations (after Mulder, 1996).

2.2.1.2 Modes of operation

The two main ways in which feeds are contacted with the membrane, which creates the 

pressure gradient that acts as the driving force for the separation, are:

• Normal flow filtration (NFF) or dead-end filtration -  the feed is contacted 

perpendicularly to the membrane surface. Only batch operation is possible.

• Tangential or crossflow filtration (TFF) -  the feed is contacted parallel to the 

membrane surface. Continuous operation is possible.

These modes are shown in Figure 2.1 below and a comparison of the two methods is 

given in Table 2.2. Since TFF is the more versatile of the two modes, it will be the 

focus of the discussion below.
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•  •  •  •  •
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Figure 2.1: Schematic o f (a) Normal flow filtration (NFF) and (h) Tangential Flow filtration (TFF).

Process seal Clarification Concentration Diafiitration Steriie fiitration Benefits Limitations

NFF  Operating steps: Install, Flush, 

SIP, Integrity Test (IT), Proeess 

Feedstoek, Reeover Product, (Post 

Use IT)

Yes No No Yes *Simplicity in scale up 

and implementation

♦Multiple selective and 

scaleable options

♦No reuse possibilities 

♦High disposable costs 

♦No high solids loading

TFF Operating steps: Flush, 

Integrity Test (IT), Buffer Flush, 

Charge feed, concentration/ 

Dialfiltration processing. Recover 

Product, CIP, SIP, Storage

Yes Yes Yes No ♦Most efficient option 

for cell recovery 

♦Robust systems widely 

available at all scales

♦High capital cost 

♦More difficult to 

operate 

♦Validation 

requirements greater

Table 2.2: Comparison o f NFF and Tî F
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2.2.2 Basic principles of tangential flow filtration

Crossflow or tangential flow membrane filtration has been a popular topic in 

biotechnology for over three decades. The terminology of crossflow filtration is not 

well defined, for the purposes of this thesis tangential flow filtration (TFF) is the 

appellation chosen. The level of activity is reflected in the large body of literature 

available on the subject, but examples of scale-up and large-scale applications remain 

limited. These efforts have been driven by a number of factors, mainly the need to 

develop processes appropriate for the recovery of new high-value biologically derived 

products, the syntheses of which were made possible by an explosive advance in 

biological sciences (see Chapter 1). Changes in the underlying technology have been 

evolutionary, not revolutionary.

TFF is the most general term to describe the various techniques by which slurries of 

particles or solutions of macromolecules are recirculated across the surface of a 

filtration medium with only a fraction of the liquid volume permeating the membrane 

per pass. Through various mechanisms, depending on the particle sizes in the feed 

stream, tangential flow reduces the accumulation of materials on the membrane surface, 

allowing filtration to continue beyond the point that would be possible using traditional 

dead-end or normal flow filtration (NFF).

A general schematic of TFF is shown in Figure 2.2 below. The filtered stream is 

referred to as the permeate and the non-permeable portion of the feed is called the 

retentate. The permeate rate per unit of membrane area is defined as the flux (J). The 

flux determines the amount of membrane area required for a given separation. The 

volume of the permeate is usually small compared to that of the feed (this is referred to 

as a low conversion ratio).

A t}q)ical batch crossflow filtration system comprises a tank connected to a recirculation 

loop, which includes a pump and the membrane, as well as some instrumentation such 

as pressure gauges, flowmeters and temperature probes (see Figure 4.1 in Chapter 4). In 

flux control mode a control valve or a second pump is installed on the permeate line. 

This configuration allows the creation of the high performance tangential flow filtration 

(HPTFF) system, which has been developed to reduce the pressure drop along the
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membrane which can be as high as SOkPa.m*̂  (Huisman et al., 1997). This system has 

been developed to facilitate a crossflow both on the feed side and on the permeate side, 

thus guaranteeing a uniform low transmembrane pressure. HPTFF has been reported to 

facilitate the separation of species of similar size (van Reis et al., 1999).

FEED

F membrane

RETENTATE

R

■ mmmmi:ËËiSil
PERMEATE 

P

*11

F = R + P F » R »  P

Figure 2.2: General schematic o f crossflow or tangential flow filtration

In the case of removal of solid contaminants (e.g. clarification of cell lysates), the 

solution is recirculated via the loop and the purified stream passes out through the 

membrane. Further recovery of the product can be achieved with constant volume 

diafiitration, which is the addition of pure buffer to the tank at the same rate as the 

permeation rate. This has however the disadvantage of diluting the purified stream.

Concentration of products (e.g. proteins or cell harvesting) is achieved in the same way 

but in this case the membrane retains the desired product. The diafiitration step is used 

to wash away any contaminants (Quirk and Woodrow, 1983) and can also be used for 

buffer exchange, without altering the product concentration.

TFF is a balance of two main parameters, shear rate and pressure. The transmembrane 

pressure (TMP), which forces material across the membrane and the shear at the 

membrane surface, which causes a back transport of material thus reducing fouling and 

gel layer formation (Cheryan 1986). Shear at the membrane surface can be created 

either by moving the broth past the membrane, by recirculation pumping, or by moving 

the membrane past the broth, by rotating or vibrating the membranes (Lee et al., 1995). 

Theoretically, the higher the shear at the membrane the higher the permeate flux that 

will be achieved. There are however, upper limits, shear can damage cells and cause
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aggregations of proteins which lead to impurities and loss of product (Zeman and 

Zydney 1996). The other factor acting at the membrane is the transmembrane pressure 

(TMP). The TMP is the pressure difference between the broth side, (feed stream and 

retentate) and the purified side (permeate).

However, there are many additional factors which influence TFF performance, and 

these are detailed in section 2.2.3 below.

2.23 Factors determining TFF performance in bioprocesses

The various factors and parameters that influence the performance of a given TFF

separation are related to the membrane material, the nature of the process feed, and the

membrane module configuration.

2.23.1 Membrane related parameters

These parameters are related to the membrane material itself.

Product size versus pore size

The pore size of a membrane is the diameter of the particle that is retained by the 

membrane. Pore sizes are usually measured in micrometers (pm). Pore size ratings 

refer to the size of the particle or organism retained by the membrane. Some of the 

more common biological particles filtered and their approximate size ranges are;

• Bacterial cells, 0.1 pm to 30pm;

• Viruses, 0.1pm to 0.05pm;

• Red blood cells, 5.0pm to 10pm;

• Yeasts, 0.6pm to 4pm;

• Chinese hamster ovary (CHO) cells, 10pm to 30pm.

When the particle size is increased there is an increase in the flux through the membrane 

(Kroner et al., 1984). The particulate material that collects at the membrane surface will 

pack to form a layer of higher porosity. According to the Carman-Kozeny relationship 

the resistance (Rg) of the solid cake is given by:
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R [2.1]
A

The specific cake resistance a  is given by:

a=180 [2.2]

These equations assume that the particles are rigid and spherical, which is generally 

untrue of biological materials; proteins are usually compressible and may be linear, 

globular, branched etc.

Quantifying the size distribution of the feed stream can be difficult, as many ly pical 

feeds have a size range close to the limits of detection of sizing equipment (Brown and 

Kavanagh, 1987). For biological feed streams, parameter variation in the fermentation 

or lysis stages will lead to variations in the size distribution.

Spread in the pore size distribution of a membrane can reduce the performance of the 

system as pore plugging will occur if there is an overlap between the pore and particle 

size distributions (Brown and Kavanagh, 1987).

Use of an ultrafiltration membrane could lead to higher flux performance than a MF 

membrane (Lee, 1989, Gatenholm et al., 1998), presumably because the retained solids 

roll along the ultrafiltration membrane surface, as they cannot be trapped in the pores. 

Similar flux improvements using tighter membranes have been reported by other 

workers (Brown and Kavanagh, 1987, Bailey et al., 1990).

Tarleton and Wakeman (1993) have seen that there is a higher proportion of finer 

material in the fouling layer than there is in the bulk liquid and McDonogh et al. (1992) 

have seen that there is a size gradation in the concentration polarisation layer; the 

smaller particles are situated closer to the membrane. The size distribution within the 

layer is thought to cause fouling layer disengagement when the yield strength of the 

compacted fines is reached. This disengagement leads to a sudden increase in flux.
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However, transmission performance is not necessarily improved by using a smaller pore 

sized membrane. A point may be reached where the effective pore size is reduced to 

such an extent that the required product is no longer transmitted.

Reismeier et al. (1989) investigated different membranes and feeds mixtures and found 

that the specific cake resistance increased as the pore size was reduced. The most 

effective solution to this is to use a membrane with sufficiently large pores to give a 

reduced specific cake resistance \\ithout increasing the degree of pore blocking.

Membrane Porosity

This is the measure of all of the open spaces (pores) in the membrane; generally, 

membranes have 50 to 90% open space. A nominal pore size rating (c.f. absolute) 

describes the ability of the filter to retain 60 to 98% of the particulates that are equal to 

or greater than the rated size (note: Nominal Pore Size Ratings vary widely among 

different filter manufacturers). Flow rate is directly proportional to the porosity of the 

membrane i.e. more pores equal a higher permeate flow rate.

Thermal Stability

There is always a maximum temperature at which the membrane and its housing will 

remain stable. Thermal stability is important when considering sterilisation and 

cleaning protocols. There is a relationship between chemical compatibility and thermal 

stability. Many t>pes of membrane material are compatible with a chemical at room 

temperature, but not at elevated temperatures. Most materials are stable up to 100°C 

when exposed to aqueous solutions. If organic solvents are used the maximum 

temperature could be as low as 50°C.

Chemical Compatibility

Chemical compatibility is defined as the ability of a membrane to resist select 

chemicals, to prevent damage to the pore structure and the membrane material. This 

also prevents the shedding of particles or fibres. To select the proper membrane and its
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housing, the compatibility of the membrane with the fluid must be established. 

Temperature, concentration, and length of exposure time affect chemical compatibility.

The materials used in the manufacture of membrane materials are carefully chosen for 

their resistance to a wide range of chemical solutions. An understanding of the 

compatibility between the fluid to be filtered and the membrane elements is essential.

Surface chemistry effects

Membrane and protein surface chemistry will alter the fouling behaviour of the system. 

Hydrophilic membranes possess an affinity for water. Hydrophilic membranes can be 

wetted with virtually any liquid and are the preferred material for aqueous solutions. 

Hydrophobic filters repel water. A hydrophobic membrane will not wet in water but 

will wet in low surface tension liquids such as organic solvents. Once a hydrophobic 

membrane has been wetted by an organic solvent, aqueous solutions will pass through.

If the membrane is hydrophobic then thermodynamics dictate which species will adsorb 

onto the membrane. The use of hydrophilic membranes has been suggested for 

improved performance (Kroner et al., 1984; Lojkine et al., 1992; Fane and Fell, 1987; 

Van den Berg and Smolders, 1988). Other pre-treatment methods may also be used to 

provide favourable surface chemistry (Fane et al., 1991). The presence of surfactant 

molecules (such as antifoam used in the fermentation) in the process stream may lead to 

a loss in membrane filtration performance, as these will adsorb onto the membrane. A 

significant decline in flux is seen when surfactant dispersions are filtered (Akay and 

Wakeman, 1993; Fane et al., 1992).

Batch-to-batch variability

The membrane manufacturing process is complex and slight variations can be expected 

between different membranes, and from coupons cut from different areas of the same 

membrane sheet. This is especially true between membranes from different 

manufacturers.
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Extractables

Extractables are contaminants that elute from the membrane material or device that may 

adversely affect the quality of the permeate. These contaminants may include wetting 

agents in the membrane material, manufacturing debris, sterilisation residuals, 

adhesives or additives in polymer or housing components, colorants, and mould release 

agents, etc.

Leaching out of extractables generally occur at temperatures over 50°C. The type and 

amount of extractables vary with the type of liquid being filtered. Extractables can 

affect filtration in almost every application e.g. in cell culture they can kill cells, and 

they can affect the recovery of microorganisms. They are a serious concern, especially 

for regulatory and validation issues.

2.23.2 Feed related parameters

These can be further sub-divided into stream properties e.g. temperature, pH, viscosity, 

product concentration, and product properties e.g. hydrophobicity, shape (globular, 

linear), size, compressibility.

Component Shape

The shape and mechanical characteristics such as compressibility of the feed 

components are factors that influence filtration behaviour. For example, the particle 

size difference between the product and the contaminants will determine the efficiency 

of the separation. The compressibility of the proteins present will also determine the 

nature of the fouling or gel layer that forms at higher transmembrane pressures.

Viscosity

This determines a liquid's resistance to flow. The higher the viscosity of a liquid (at a 

constant temperature and pressure), the lower the flow rate and the higher the 

differential pressure required to achieve a given flow rate.
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Temperature

The temperature can alter the flux in one of two ways (Kroner et ah, 1984). 

Temperature increases can promote protein aggregation by altering the solubility of 

proteins and other solutes in then feed. Temperature changes will also affect the 

viscosity of the process stream, in some cases dramatically. This will lead to higher 

fluxes if other factors remain unchanged (Kroner et al., 1984; Lojkine et al., 1992).

Chemical environment

The chemical environment can influence the performance when proteins are present in 

the feed, such as the pH and ionic strength of the buffer solution will alter the surface 

charge on proteins present. When the protein is at its pi (isoelectic point) the degree of 

adsorption is higher (Bowen and Gan, 1992; Hanemaajer et al., 1989). This is thought 

to be a result of the absence of charge shielding of the protein, which stabilises the 

structure, reducing the degree of deformation. When the protein is deformed it is likely 

to adsorb on the membrane in order to shield the exposed hydrophobic groups. The 

presence of charge shielding molecules will also increase the effective size of the 

proteins, increasing the permeability of the fouling layer.

Concentration

The higher the concentration of the feed, the higher the effects of concentration 

polarisation. This dynamic phenomenon directly impacts on flux and product retention.

Electrostatic effects

It has been shown that electrostatic effects dominate permeation behaviour under some 

circumstances. For several proteins, it has been shown that a maximum transmission is 

achieved at their isoelectric point; a secondary maximum was observed between the 

isoelectric points of the protein and the membrane (Bums and Zydney, 1999). Specific 

ionic composition, as well as pH and ionic strength also affect permeation 

(Balakrishnan et al., 1993; Menon and Zydney, 1999). These investigations showed 

that the effective size of the proteins could be manipulated by changing pH, ionic
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Strength and ionic species, thus changing their extent of electrostatically-based 

exclusion from the membrane pores.

These investigations were, however, conducted using pure proteins in clean solutions. 

For real-world biological process streams, it is unlikely that such effects could be 

predicted (or would be measured) based on the properties of a single broth component, 

since the presence and interactions of other components e.g. cells, proteins, salts etc. 

would need to be considered.

Feed Variability

The feed stream for bioprocess unit operations is usually subject to batch-to-batch 

variations. Attempts should be made to minimise these for obvious reasons, but they 

will have to be accounted for during the design and optimisation stages.

Another source of feed variation is the presence of process aids such as antifoams, 

which are used in the fermentation step, or ciyopreservation agents, which may be 

employed during hold-steps. Relatively little has been wxitten about this topic, but it 

has been often observed that the presence of antifoam during TFF processing will 

significantly reduce the flux. Among other factors, the extent of this effect will depend 

on the concentration of the antifoam and the temperature relative to the cloud point. For 

many common antifoams, such as P2000 (polypropyleneglycol 2000) cloud point is 

slightly below ambient. Silicone oils, such as Tegosipon T52, do not exhibit cloud 

point behaviour at temperatures of interest in biological systems (Russotti and Golden, 

2000).

If cell concentration is the basic goal of the process, the problem can be minimised by 

filtering at a temperature below the cloud point or by increasing membrane area. 

Passage of an antifoam is typically highly temperature dependent, with almost complete 

retention by polymeric membranes above its cloud point. The latter of these actions 

should only be done of changes in membrane material and/or antifoam are not possible.

If the process objective is to recover a soluble component such as a protein in the 

permeate, the problem becomes much more difficult. Kroner et al. (1986) showed that
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the presence of as little as 0.1% P2000 increased the retention for several different 

enzymes from 5% to 50%. Higher antifoam concentrations and operation at higher 

TMPs exacerbates the effect. Such higher retentions are undesirable because they result 

in a disproportionate increase in the extent of diafiitration required to achieve a 

specified product recovery, increasing not only the scale of the TFF system but 

downstream volumes as well.

Effect o f  pH and ionic strength

The separation achieved by MF or UF is mainly size-based but it is also affected by 

chemical and physical interactions between materials, the membrane and the solvent (Le 

and Atkinson, 1985). The ionic strength and the pH of the buffers used especially 

important. For example Menon and Zydney (1999) mention cases where the 

transmission of bovine serum albumin (BSA) decreases by nearly two orders of 

magnitude as the NaCI concentration is reduced from 150 to 1.5 mM. Le and Atkinson 

(1985) also report maximum protein transmission with higher buffer ionic strength in 

lysate microfiltration. These authors interpret the low transmission at low ionic strength 

to be a result of an enlargement of the enz>me through swelling or association with 

other proteins. A similar effect is obser\ ed as a result of the pH of the buffer, with 

reported maximum transmission near the isoelectric point of the protein (Menon and 

Zydney, 1999; Le and Atkinson, 1985). This effect is also attributed to swelling. On 

the other hand Huisman et al. (2000) observed a minimum for BSA transmission at its 

isoelectric point. This was attributed to the high fouling levels resulting from increased 

hydrophobic interactions and aggregation.

Effects of ionic strength and pH are therefore dependent on the magnitude of the 

electrostatic and hydrophobic interactions between the different components in the 

system. As a result, studies made with pure protein solutions as the feed material may 

not address the complexity of real industrial process streams. For example Kuberkar 

and Davis (1999) noted that transmission decreases when another protein species is 

added to the protein solution, possibly through formation of a secondary protein 

membrane. However protein layer formation could be prevented by addition of whole 

yeast cells, which probably formed a cake on the membrane surface and thereby 

prevented protein aggregates from approaching and fouling the membrane.
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2.23.3 System related parameters

These parameters are related to the filtration equipment and operating procedures. 

Operating mode

There are two common modes in which TFF is operated in industry. They are:

• Constant pressure -  Flux is allowed to decline with time, and pump speeds are 

varied to maintain constant TMP.

• Constant flux -  A pump is placed on the permeate line, and TMP is allowed to 

vary ^\ithin specified limits.

The second of these is currently favoured in bioprocess industries, as it minimises 

membrane fouling.

Dijferential Pressure

This is the difference between the pressures on each side of the membrane. A high 

pressure on one side forces the filtrate through the membrane to the lower pressure on 

the other side; as the membrane begins to clog or foul, differential pressure increases.

AP = PjxiET ~ ÔlTLET

Transitional TMP can be defined as the pressure at which the species concentration at 

the membrane surface C%, rises to the “gel” concentration for that species, Cmax, 

according to gel polarisation theory. Operating at this point, it would be expected that 

the thickness of any polarisation layer would be minimised while obtaining the 

maximum flux possible. Increasing TMP above the transitional value increases the 

thickness of the polarisation layer, without an improvement in flux. According to the 

concentration polarisation model, there should be no penalty for operating further out in 

the pressure-independent regime (apart from the increase in pumping duty). However, 

it is suspected that the polarisation layer compacts over time and becomes an 

irreversibly bound fouling layer (Nagata et al., 1998), which would result in a time 

dependent decrease in filtration performance.
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Transmembrane Pressure (TMP)

The pressure drop across the membrane determines the flowrate of material through the 

membrane. TMP is defined as:

[2.4]

TMP is a measure of the pressure acting on the materials in the broth, in the direction of 

the membrane surface. Again, theoretically the higher the TMP the stronger the force 

acting on the broth and the higher the permeate flux (see equation [2.5] below). 

However a limit is reached, for a given shear rate, there is a point at which the TMP is 

forcing material to the membrane surface faster than the back-transport away from the 

membrane is removing it. This is called concentration polarisation and the region 

where increasing TMP no longer increases permeate flux marks the experimental limit 

at that shear rate.

At low TMP the degree of polarisation will be such that the polarised material is 

removed by back-transport (mechanisms that have been proposed include BrowTiian 

diffusion, shear enhanced diffusion, inertial lift and tubular pinch theories).

Eventually a pressure will be reached where the rate of solute convection towards the 

membrane exceeds the rate of back transport, the rate limiting flux is then reached, and 

the flux is then unchanged by further increases in TMP, the membrane is then said to be 

concentration polarised. This form of flux behaviour was first described for 

ultrafiltration (UF) (Porter, 1972), but has also been seen in many microfiltration (MF) 

applications (Brown and Kavanagh, 1987; Shimizu et al., 1993).

Operation at higher TMP’s leads to lower flux and transmission performance, as 

polarisation and other fouling effects will be increased (Lee et al., 1995). It has been 

demonstrated by several workers that the start-up TMP of a membrane process can 

significantly affect the long-term performance. If high TMP is used at the start, the high 

initial fluxes will lead to more polarisation, and ultimately to lower fluxes (Attia et al., 

1991; Haarstrick, 1991; Field, et al., 1995). If the initial TMP is lower then it is often 

possible to operate for longer periods without significant loss of performance. This can
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be achieved by controlling flux flowrate, and gradually increasing the TMP as any 

fouling occurs (Maiorella et al., 1991; van Reis et al., 1991).

In TFF there will be a pressure drop along the length of the module due to frictional 

effects. This can lead to a TMP gradient along the length of the membrane, resulting in 

a lower TMP at the outlet than the inlet. Use of countercurrent permeate flow or 

HPTFF (see section 2.2) can eliminate the effects of the retentate side pressure drop. 

This type of system was used by Gésan-Gesiou et al. (1993) who saw that it initially led 

to lower fouling of the membrane, presumably because polarisation effects were 

controlled by keeping TMP constant along the length of the membrane.

Flux

As an alternative to controlling the TMP to dictate filtration performance, the permeate 

flux may be controlled. The flux (J) through the membrane may be expressed by 

application of Darcy's law, where membrane and the fouling layers (including 

concentration polarisation and fouling) are considered as two resistances in series, Rm 

and R/r respectively:

where J is the volumetric flux (m.s~^), AP is the hydraulic pressure difference between 

the feed and permeate sides of the membrane (Pa), also known as the transmembrane 

pressure (TMP), p is the dynamic viscosity (Pa.s), Rf is the fouling resistance (m.s~*), 

Rm is the membrane resistance (m.s~^), and AH is the osmotic pressure difference 

between the feed and permeate sides of the membrane (Pa). AH is negligible for 

microfiltration.

The flux at which to operate is chosen to be sub-critical flux. The critical-flux 

hypothesis is that on start-up there exists a flux below which a decline of flux with time 

does not occur (Field et al., 1995). It can be determined by stepping up the flux rate and 

is the flux at which TMP becomes unstable.
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Recirculation velocity

The flow of feed tangential to the membrane acts to minimise the build up of material at 

the membrane surface. Increasing the recirculation velocity (Vc) increases the rate of 

mass transfer by reducing the concentration boundary layer thickness, so that higher 

fluxes can be obtained for the same TMP. The transmission performance is not 

necessarily improved by increasing Vc. Fouling and polarisation on the membrane 

surface is reduced by the increased crossflow, but there will be no effect on any internal 

fouling of the membrane, which determines the transmission performance (Attia et al.,

1991). Flux is related to recirculation rate by a function of the form (Lojkine et al.,

1992):

Jo cv ; [2 .6]

Various values for the constant n are quoted in the literature, depending on the 

experimental system.

The TMP at which the transition between pressure and mass transfer control increases 

with recirculation velocity. Thus, operation at higher rates would be expected to lead to 

improved performance, in practice recirculation rate is limited by the pumping 

requirements, and also by limitations in the shear stress the product can be exposed to 

before damage occurs.

2.23.4 Phenomena causing flux decline

Flux decline could be attributed to one or more of the following:

• Cake formation

• Concentration polarisation

• Physical pore plugging

• Surface or fouling through chemical adsorption

The performance of a filtration membrane changes with time presenting a typical flux 

decline: there is a sharp initial drop followed by an apparent steady state after a few 

hours of operation (Patel et al., 1987). The discrepancies between ideal and real 

behaviour are due mainly to concentration polarisation and fouling effects described
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below. Actual process fluxes can be less than 5% of the pure water fluxes (Mulder, 

1996).

Concentration polarisation is a reversible process, but in practice a continuous decline in 

flux is observed, as well as significant changes in protein transmission, which is 

controlled by a combination of increasing wall concentration and solute transport 

(Chen, 1998). Concentration polarisation arises when proteins or other large solutes 

create a further resistance to the flow of permeate in addition to those of the membrane 

and the boundary layer. These components are rejected by the membrane and form gel- 

type layers on the membrane (Cheryan 1986), resulting in a detrimental effect on MF 

and UF performance. The modelling of this phenomenon is described in section 2.3 and 

Appendix 1.

The term "‘fouling'’ is widely used to encompass any phenomenon that is deleterious to 

membrane performance. The term “fouling"’ will be restricted to phenomena that 

cannot be reversed under common conditions of TFF operation. Fouling includes 

adsorption, pore blocking, precipitation and cake formation (Mulder, 1996; Zeman and 

Zydney, 1996).

The simplest mode of fouling is pore plugging i.e. when a fraction of the recirculation 

particles are sufficiently small to enter the pore structure of the membrane, but cannot 

pass through it (Hermia, 1982).

Flow reduction due to irreversible accumulation of particles on the membrane surface is 

common. This type of fouling can be due to particle-particle or particle-membrane 

interactions, such as adsorption. Protein aggregation may occur due to pumping (shear 

damage) or as a result of strong electrostatic and/or hydrophobic interactions (Kelly and 

Zydney, 1997). Fouling will occur as a result of the deposition of these aggregates on 

the membrane surface. Marshall et al. (1997) concluded that proteins reduce 

performance of UF membranes through deposition on the membrane surface as a 

dynamic cake layer, whereas they reduce the performance of MF membranes through 

pore plugging.
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For MF membranes, it has been suggested that the mechanism of protein fouling is also 

concentration dependent, with pore plugging dominant under dilute conditions while 

surface deposition is more prominent at higher concentrations (Bowen and Hall, 1995). 

Particle aggregation is very specific to the system under study and generalisations are 

difficult. Hydrophobic membranes are generally considered to be more prone to protein 

adsorption fouling; use of hydrophilic or modified membranes can moderate this effect.

The hydrophobicity of cells can vary greatly among different species. It is also possible 

to change the cell surface characteristic through variations on growth medium, 

especially through changes between defined and complex media (see section 2.2.3.2 

above). In some cases it may be found that a soluble broth component is adsorbing to 

the cell or membrane surface and mediating the aggregation interaction. The effect of 

this occurrence can be amplified by cell deformation. This results in a reduction or 

elimination of interstitial spaces restricting flow. It may be expected that animal cells 

would be most susceptible to this t\pe of effect, but filtration is typically performed at 

low TMP's to avoid cell lysis. A similar effect for systems containing a broad 

distribution of rigid particles can also be considered; this is true during the filtration of 

mycelial broths or broth lysates (homogenates). It is also well documented that soluble 

components form a gel layer at the membrane, which becomes the controlling resistance 

to flow.

Permeation fouling is fouling with respect to the permeation of soluble components 

through the membrane. This is important since many harvest applications seek the 

recovery of these species in the permeate. Despite the use of microfiltration membranes 

with pore sizes in the micron range, it is not uncommon to encounter incomplete 

permeation of solutes such as proteins and smaller components. This is most frequently 

attributed to the formation of a gel layer.

According to Chen (1998) long term membrane fouling may be reduced if initial solute 

deposition is controlled. This can be achieved in a low fouling or polarization regime 

by controlling start-up, pressure, wall concentration or flux (Chen 1998). Constant flux 

operation provides better results than constant pressure operation because it avoids 

overfouling during initial stage of filtration (Field et al., 1995; Defrance and Jafifrin,
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1999a). Effectively MF membranes have inherently high permeability values and rapid 

fouling will occur if the initial flux not limited (van Reis et ah, 1997).

Field et al. (1995) considered the fouling effects on the flux to be the sum of irreversible 

and reversible fouling effects. According to these authors, as the TMP is increased and 

provided that a critical value of flux is not exceeded the behaviour is reversible, i.e., 

pressure can be reduced and the same fluxes are again observed. If the critical flux is 

exceeded, reducing the TMP does not restore the original flux, operation at a constant 

flux just below its critical value will allow a compromise between high fluxes and long 

term operation without fouling (Defrance and Jaffrin. 1999b).

In light of these phenomena, several approaches have been developed in order to 

minimise them, and these are discussed in the following section.

2.2.4 Mitigation of flux decline phenomena

Membrane performance may be improved using turbulence or reversal of 

transmembrane pressure. For example the periodical removal of the transmembrane 

pressure by closing the permeate valve and circulating the feed solution through the 

membrane module can result in good flux recovery. However the performance of this 

method depends on the filtration period and the stopping period (Zahka and Leahy, 

1985; Tanaka et al., 1995). Tanaka et al. (1995) improved flux recovery during the 

microfiltration of yeast through the introduction of air bubbles, which enhance the 

sweeping effect resultant from the stopping of permeation.

Flux recovery can also be achieved by replacing the feed stream with a rinsing buffer 

(Novais, 2001). Nakanishi and Kessler (1985) investigated the effect of different 

variables in the efficacy of this method in the ultrafiltration of skimmed milk, and 

included transmembrane pressure, convective transport to the membrane due to the 

permeation (opened or closed permeate valve) and temperature. Their results indicate 

that high velocities and low TMP can achieve more than 98% removal of the deposit 

composed of milk proteins. Also Shorrock and Bird (1998) observed that the majority 

of the cellular cake can be removed with this method after the microfiltration of yeast
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under strongly fouling conditions. The removal of the fouling resistance also appeared 

to be removed more rapidly at higher temperatures (50°C and 60°C).

Other methods make use of intermittent operation of the feed pump to increase the flux 

(Tanaka et al., 1995) or imposing vibrations on the filtration module (Schluep and 

Widmer, 1996). One popular method is back flushing (or back pulsing), where the 

permeate flow direction is changed at a given frequency in order to remove the fouling 

layer resulting in a higher average flux (Fischer, 1996; Meacle et al., 1999). This 

method is however not applicable to delicate membranes (e.g. polymeric) that might 

rupture when the flow is reversed (Kumzovich and Piergiovanni, 1996).

More recently devices generating Dean vortices have been exploited to reduce the 

extent of fouling (Kluge et al., 1999; Gehlert et al., 1998). In such modules spiral 

wound or helical coil design is used so that the retentate is forced to twist inducing a 

secondary flow with counter-rotating vortices. These re-entrain the deposits back into 

the bulk solution. The limitation of these devices is the additional pumping energy 

required, although it has been reported that their performance per unit energy is higher 

than that of traditional designs.

As fouling reduces plant throughput and membrane selectivity (Marshall et al., 1997), 

eventually the membrane requires extensive cleaning or replacement, and this is 

discussed further in section 2.2.5.

2.2.5 Membrane cleaning

Since membranes lose performance as a consequence of fouling effects they have to be 

cleaned (regenerated) between batches if they are to be reused. Membrane cleaning is a 

critical issue when considering the economics of the process; for many biological 

applications, membranes must be regenerated reproducibly and efficiently so that 

process performance is consistent with respect to flux and permeation. Cleaning 

methods have to be repeatable and consistent and their effectiveness is usually evaluated 

by comparing the pure water flux or normalized water permeability (NWP) after 

cleaning with the NWP before the process (Millipore, 1998a). However, this approach 

does not always give the best indication. Cheryan (1986) reported that although only
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40% to 50% of water flux could be recovered after TFF of Aspergillus niger broth, flux 

of the process stream was not severely affected.

The temperature and pH limits that the membrane material can tolerate need to be 

considered when evaluating various cleaning protocols. Also, the volumes and cost of 

the cleaning reagents will affect the economics of the unit operation. These factors 

must therefore also be considered when selecting a membrane for a particular 

application. Membrane regeneration protocols must be evaluated empirically; a good 

starting point is to follow the membrane manufacturer’s instructions. Typical cleaning 

agents include nitric, phosphoric and hydrochloric acid, sodium hydroxide, sodium 

h>pochlorite and enzyme detergents that contain proteases. Depending on the feed 

components, other enzymes can also be used. These protocols must be robust i.e. 

suitable for validation requirements.

Although chemical cleaning is considered the most important method to restore the 

membrane’s performance (Mulder, 1996), it is time consuming and costly as it typically 

requires multiple steps (Rudolph and MacDonald, 1994) including:

• system flushing of process material with buffer,

• system cleaning with recirculating base,

• system flushing of base with reverse osmosis (RO) water,

• system cleaning and recirculating with acid,

• system flushing of acid with RO water,

• testing efficacy of cleaning by checking NWP.

For this reason the downtime associated with dealing can account for a significant 

percentage of total cycle time (see Table 2.3).

Additionally the cleaning procedure needs to be validated, which is also cost and time 

consuming. For this reason some companies do not always reuse the membranes 

(Meacle et al., 1999), and disposable options are becoming increasingly popular 

(Novais, 2001)
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Table 2.3: Typical operating cycle for filtration (adapted from Millipore Technical

The choice of the membranes may also be affected by their susceptibility to cleaning, 

when re-use is required. For example Bailey and Meagher (2000) found in a 

comparison of different membranes that the best performing membrane (cellulose 

acetate) could not be chosen due to difficult cleaning as a result of the sensitive nature 

of the pol>Tner.

As a result, this element of the unit operation must not be ignored during scale-down of 

TFF. The scale-down methodology should facilitate the evaluation of different 

membrane t>q)es, and their regeneration parameters. In hardware terms, the scale-dowTi 

device must be able to cope with the higher flowrates and temperatures encountered 

during cleaning, and also the materials of construction must be compatible with the 

chemicals used.

2.2.6 Optimising TFF performance

When examining the feasibility of utilising TFF two main issues are of concern: filtrate 

flux and product transmission (or retention). Regardless of the application, it is 

desirable to achieve as high a flux as possible for several reasons. High flux is 

beneficial from an economic standpoint since greater flux requires less membrane area 

and often less pumping capacity. Smaller membrane requirements and a smaller pump 

will decrease capital costs as well as the cost of the utilities associated with the cooling
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and cleaning systems. Furthermore, equipment footprint will be minimised, which will 

in turn reduce facility cost. Also, a short cycle time may be required, especially if 

product stability is an issue.

Product transmission (or retention) is an obvious consideration since the goal of any 

downstream unit operation is to obtain as high a yield as possible. It is helpful to 

clearly define goals with respect to retention or permeation of product as well as other 

feed components before examining the feasibility of a TFF process. Initial experiments 

should be designed to look at these aspects. Using membrane manufacturer 

recommendations on parameters such as feed volume per membrane area (defined as 

load), TMP, and crossflow rate are a good starting point for experimentation. After 

determining whether or not TFF is a feasible operation, optimisation of these parameters 

can begin.

In these initial experiments, it is important that concentration is carried out to a degree 

which will be representative of the final desired concentration factor, various membrane 

materials and pore sizes should be examined in these initial screening experiments. 

Flux may be strongly dependent on membrane material and/or pore size depending on 

what the main inhibitor of flux is, and will therefore guide membrane selection (see 

section 2.2.3. It will also allow determination of the range of fluxes one may encounter 

for a particular application.

2.2.6.1 Implications for the TFF USD methodology

In the experiments conducted to examine flux and transmission behaviour with a variety 

of membranes, samples of the retentate and permeate need be assayed for product and 

other compounds of interest. Hence, the ability to sample from the inlet and outlet 

streams of the TFF scale-down device is required; this has significant implications when 

small volumes of feed are involved (see Chapter 3).

Also, it would be advantageous to be able to test the membrane material post-processing 

to determine whether or not chemical adsorption was occurring, or assess cleaning 

effectiveness. The ability to remove the membrane from the device for e.g. examination
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under a microscope could provide valuable insights into the process; currently 

membranes can only be tested in this way by destruction of the cartridge they are held in 

(R. Kuriyel, Millipore Corporation, personal communication, 2001).

The optimisation procedure does not only have ramifications for the scale-down device, 

but also for the other USD methodology components. For a given feed and membrane 

material arrangement, there will be an optimal point of operation that will give the best 

performance in terms of flux and transmission. These are the key performance 

indicators for the unit operation. Once this combination has been fixed, the 

optimisation of the other processing parameters can begin. In order to optimise a TFT 

step, there is a trade-off between the following parameters, which are all inter-related:

• Membrane area

• Processing time

• Diafiltration buffer volume

• Product purity

• Product concentration

• Operating cost

Where these trade-offs are made are process specific, and the large number of variables 

highlight the need for pragmatic representation of the data produced during process 

development in order to make informed choices. This requirement is considered further 

in section 2.6. Another method of examining the interaction between these variables is 

through process modelling, which is reviewed in section 2.3 below.

2.3 Modelling in bioprocesses

More accurate process modelling can enable accelerated design and optimisation of 

bioprocesses. This has lead to an impetus to develop computer tools for the 

biotechnology industry (Zhou and Titchener-Hooker, 1999). In order for this to be 

achieved, accurate and reliable models for individual unit operations are required. Due 

to the complexity of biological interactions, these models often require empirical data 

and guidelines are needed as to how bioprocess models are best used in conjunction 

with scale-down models to enable USD methods. For example, the model parameters
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that a scale-down device might provide should be defined. Also, the interactions 

between modelling and scale-down trials will influence any experimental strategy; 

fiilly-factorial design of experiments may not be required if it is possible to extrapolate 

information from a sub-set of data using the mathematical models developed.

Generally, the purpose of computer tools and modelling is to evaluate and extrapolate 

from existing data information that would be time consuming or costly to attain from 

pilot plant experimentation alone. Feasibility studies and parameter sensitivity are areas 

that could be investigated without the requirement of using scarce and costly process 

material. Also, time and labour savings should be made.

There are fundamentally two t>pes of models, physical or mathematical. Physical 

models (in this study, these are scale-down mimics) try to replicate the physical 

processes that occur in unit operations. These scale-down devices, which imitate the 

behaviour of industrial scale units operations have been previously discussed in Chapter 

1. Mathematical models give a mathematical description of an operation relating the 

process outputs with its inputs. Mathematical models can be further divided into 

theoretical and empirical categories.

Theoretical Models are based on a fundamental understanding of the underlying 

physical, chemical and biological process in operation. The advantage of theoretical 

models is that they can easily be adjusted to allow for new situations. However, true 

theoretical models often take a large effort to develop due to the understanding that is 

necessary. Once a theoretical model has been developed it is necessary to evaluate the 

performance of the model against experimental data.

Empirical Models are produced simply by finding a relationship between the inputs and 

outputs from a set of designed experiments for a unit operation. The empirical model 

can be in the form of a correlation or a neural network (where artificial neurons relate 

inputs to outputs -  see Appendix 1). The advantage of empirical models is that they are 

much easier to develop than theoretical models when the underlying processes are too 

complicated and difficult to understand. However empirical models are only valid for 

the conditions under which they are developed and therefore the application of such 

models is limited.
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The hybrid of these two categories is known as “semi-empirical” modelling, and is 

where model parameters are experimentally determined. Scale-down devices can be 

used in conjunction with each type for model verification, experimental data production, 

and model parameter evaluation respectively. A complete review of model 

development and evaluation is given by Varga et al. (1998) and a schematic to the 

development method is given in Figure 2.3 below.

Essentially, when a model is developed, it is analysed to test the sensitivity of 

parameters and accuracy against real data in order to validate it. Any discrepancies can 

be used to refine the model, in an iterative process, until the outputs are acceptable i.e. 

the accuracy of prediction meets the level defined by the model user. In bioprocess 

engineering much effort has been devoted to the development of models. However, this 

effort has mainly been focused on the fermentation stage of bioprocesses to date. 

Downstream processing has been relatively neglected, as it is less well understood 

(Gritis and Titchener-Hooker, 1989), particularly as novel downstream unit operations 

are often used in bioprocesses.

Narodoslawsky (1991) states that a major problem with bioprocess simulation is a lack 

of comparison between models and actual industrial process data. Typically the unit 

operations in bioprocesses are batch or semi-continuous and therefore require dynamic 

models (Petrides, 1994). Additionally biological material is often complex and labile 

(damaged by shear, heat and pH) and also there is very little physical property data for 

biomaterial or methods for predicting their likely values (Petrides, 1994). Hence, semi- 

empirical methods have to be employed, in order to experimentally determine these 

parameters.

In short, bioprocess modelling is not a trivial endeavour, and is still very much work in 

progress for many unit operations. The following section presents an overview of 

modelling approaches to membrane filtration, and aims to give an appreciation of the 

challenges faced by researchers in this field.
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Figure 2.3: Traditional approach to model development (after Varga et al, 1998). * 

Model validity may be assessed e.g. against a certain percentage accuracy o f  

prediction.
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2.3.1 Overview of membrane filtration modelling approaches

Membrane filtration is a major unit operation in the bioprocessing industries. Whilst 

many fundamentally-based models exist for predicting membrane flux, few academic 

workers have tackled the equally pressing problem of product transmission where 

behaviour can be markedly dynamic and highly system-specific, depending both on the 

membrane characteristics and those of the process upstream.

Membrane filtration, particularly TFF, is a very complex process. Some of the 

variables that influence permeation flux and retention are membrane type and 

chemistry, module geometry, particle size distribution, nature of particles, interaction 

between particles and with the membrane, fluid dynamics, operating mode, pressure, 

temperature, pH and ionic strength of the media. This is a formidable set of variables, 

and to date no unified theory exists to provide a rigorous expression for permeate flux 

and retention for TFF.

There is an immense body of work describing attempts to model membrane filtration, 

and the main approaches are described in more detail in Appendix 1. Methods based on 

resistance-in-series (Van den Berg and Smolders, 1988; Song and Emeliech, 1995; 

Cheryan, 1986), concentration polarisation (Chen, 1998; Porter, 1972), flux (Zydney 

and Colton, 1986; Brown and Kavanagh, 1987; Davis and Leighton, 1987; Belfort et al., 

1994), fouling (Hermia, 1982), force balance (Stamakis and Tien. 1993; Hwang et al., 

1996), transmission (Ferry, 1936; Okec, 1998; Novais, 2001), statistical (Okec, 1998), 

neural networks (Domier et al., 1995; Niemi et al., 1995; Meyer et al., 1998; Delgrange 

et al., 1997) and computational fluid dynamics (Karode and Kumar, 2001; Wiley and 

Fletcher, 2002) are discussed.
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In addition to the many operational variables encountered during TFF, filtration 

behaviour is also dependent on the mode and phase of operation. Figure 2.4 below 

outlines these different modes.

Batch Continuous

DiafiltrationConcentration

Constant
volume

Constant
concentration

Ultrafiltration or 
microfiltration?

Constant TMP or constant 
permeate flux?

Constant
concentration

(permeate
recycled)

Figure 2.4: Modes o f tangential flow filtration

Differences in model calculations also need to be made to account for differences in 

membrane geometry, such as spiral and tubular polymeric modules (Krishna Kumar et 

al., 2004), hollow fibre bundles (Silva et al., 2000), and coiled hollow-fibre designs 

(Kluge et al., 1999; Baruah et al., 2005).

Existing theories render the problem tractable by concentrating, at best, on only a few 

aspects of the problem. Therefore, for any given case, different theories may yield 

widely divergent results. In applying a theoretical model, extreme care must be 

exercised to check the specifics of the case critically so as to evaluate the dominant 

parameters and compare these with model assumptions. It is quite possible, particularly 

with complex suspensions such as biological feeds, that no one class of phenomena is 

dominant. In such a case, an existing model may not give the true picture and a new 

model may need to be evolved to capture the dominant phenomena. Usually, for 

microfiltration at constant transmembrane pressure, there is a rapid decline of
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permeation flux due to concentration polarisation and pore constriction, followed by a 

quasi steady-state where there is a gradual decline in permeate flux due to particle 

deposition and an increase in particle concentration (and hence viscosity) of the bulk 

solution (Belfort et al., 1994; Nagata et al., 1988).

Several models exist that attempt to evaluate the quasi steady state permeate flux. 

These models are based on equilibrium between transport to and back-transport of 

particles from the membrane wall. It is important to note that these models are valid in 

the laminar flow regime for fully retentive membranes, deal with pressure independent 

permeation flux regime, and ignore any particle interactions with the membrane. 

Prediction of permeation flux in the pressure-dependent and transient regimes has also 

been addressed in the literature (Romero and Davis, 1988 and 1990).

The main features of TFF performance that have been observed in practice and hence, 

must be reflected by a model are:

• Pressure independence of the flux once a certain pressure is reached

• Power law relationship between flux and crossflow velocity

• Quasi-steady state obtained when the retentate concentration is constant

• Flux and transmission decline due to concentration polarisation and fouling.

Most microfiltration models have their origins in ultrafiltration theory; few are fully 

fundamental, although some workers (Bowen et al., 1996, Song and Elimelech, 1995) 

have made advances in the application of fundamentals to microfiltration. The general 

problem with fundamental approaches is that the assumptions used in the model 

development are normally not valid in many practical applications, e.g. that the 

polarising solids are spherical and non-interacting. Much of the fundamental work by 

Bowen et al. (1996) requires detailed knowledge of thermodynamic properties of the 

system. In the case of multicomponent streams, such as biological feeds, these 

parameters are essentially impossible to determine.

While abundant models of TFF processes are available, few of them are useful in 

making predictions of filtration behaviour of a particular fermentation broth and 

membrane product a priori. The models generally account for those elements that
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contribute to reversible decreases in flux, i.e. aspects that can be described using mass 

transfer analysis. Contrary to most practical applications, most models ignore cell-cell, 

cell-membrane, and other component interactions and other physical interactions and 

therefore they do not account for irreversible phenomena, which contribute to what is 

generally termed as fouling.

The speciflc nature of bioprocesses, such as cell aggregation under certain conditions, 

accumulation of cells and/or proteins at the membrane surface, extent of cell lysis etc. 

means that they must be evaluated on a case-by-case basis. As such, there is no 

substitution for experimentation, and therefore semi-empirical models are expected to 

provide the most useful data. For bioprocess applications, microflltration at constant 

flux is the most popular mode of operation and hence only models capable of handling 

these conditions were investigated further in this thesis.

2.3.2 Recently published TFF models

With the acknowledgement that a priori models for TFF are unlikely to be accurate for 

bioprocess applications, several recently published models were evaluated for use as 

part of an USD methodology for TFF. The aim was to select a set of pragmatic flux and 

transmission models with which to predict performance of existing and new TFF 

separations using minimal experimental data derived from appropriate USD trials.

The following sections briefly describe two of these models and comments are made of 

how they would be used in conjunction with a scale-down device.

2.3.2.1 Hydraulic resistance-in-series model

Carrère et al. (2001) describe the microflltration process via a hydraulic resistance-in- 

series model developed for modelling the clarification of lactic acid producing 

fermentation broths. The permeate flux was expressed by

J  =----------- — -----------  [2.7]
Pp{Rm + Ra-\rRpF Rc)

where TMP is the transmembrane pressure, and pp is the permeate viscosity. Rm is the 

hydraulic resistance of the membrane, obtained from the filtration of pure water, and Ra
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is the resistance due to the adsorption of matter onto the membrane e.g. proteins from 

the feed solution. The latter parameter is time dependent and tends towards a steady- 

state value, Rass, correponding to the adsorption equilibrium, and can be described by

Ra = R a^,(\-e '")  [2 .8]

The next contribution to resistance in equation [2.7] is Rp, or the resistance due to 

concentration polarisation. This is again an experimentally determined parameter, and 

the authors combine this parameter with Ra to extend equation [2.2] to give

Ra + Rp = 4- )(1 -  e" '̂ ) [2.9]

where Rc is the resistance of the deposit formed at the membrane surface

Rc = — a„ [2.10]
A

where m is the mass of the deposited layer, and ao is the specific cake resistance, which 

is dependent on transmembrane pressure as follows

a,=aTM P"  [2.11]

The compressibility index of the cake is n, and a  is an experimentally determined 

constant and is a factor of the dominant particle size and shape. The cake layer mass m 

can be obtained by integration of the mass balance across the membrane

dm
~dt~

J C ~ { C „ - C ) \ a  [2.12]
à ;

where A is the membrane area, C and Cm the bacterial cell concentratins in the retentate 

and at the membrane wall respectively, and S the cake thickness. Since the 

concentration in the bulk is much lower than at the membrane wall, equation [2 .12] can 

be simplified to

dm
O

[2.13]

By assuming the complete retention of cells, the variation in retentate cell concentrtaion 

in a batch system can be calculated from
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C VC = ------^ ----  [2.14]
Vq — A jjd t

0

where Vo is the feed volume. However, these equation ignore species transmission, and 

therefore some further model development was necessary.

To include transmission as a variable, the starting point is to split equation [2.14] up 

into

dV^  = -A J  [2.15a]
dt

C V
C = ^ r  [2.15b]

The overall volumetric mass balance is given by

Fo=Ta B1 1 6]

Assuming the volume of the cake layer is negligible compared to the other terms,

component balance would be

= Caf/* + CfPp [2.17]

The experimentally observed transmission may be defined as

7’* = ^  [2.18]
^  R

Substituting [2.16] and [2.18] into equation [2.17], and rearranging for Cr gives

r V
Cj, = ---------- ^ --------  [2.19]

This equation may be used instead of equation [2.15b]. The value of Tots is a constant.

For constant volume diafiltration, the relationship

[2.20]
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has been described (Novais, 2001), where To and a are experimentally determined 

parameters.

The above system of equations can be solved using MATLAB (Mathworks Ltd, UK) 

software (Carrère et al., 2001) or Visual Basic (Microsoft Corporation), which was done 

to produce the data in Chapter 5 (see Appendix 2 for program listing). The experiments 

required to determine the model parameters are summarised in Table 2.4.

Equation Parameter Method of Determination

[2.7] Rm Water flux measurements.

[2.9] (R&ss Kpss) 
and b

Fitting of model results to data from TFF of permeate 

from previous experiments.

R^s Placing the membrane in contact with the feed for 24 

hours (Meireles et al., 1991).

[2 .11] a Fitting of model results using least square method 

(Levenberg-Marquardt algorithm) to data from constant 

TMP TFF experiments.

n NFF experiments to create plots of specific resistance 

versus TMP.

[2.13] Steady-state fluxes obtained during TFF at constant 

concentration (permeate recycled).

[2.17] Tobs Ratio of concentration of product in the feed to permeate 

concentration obtained during TFF at constant 

concentration (permeate recycled).

a Fitting of model results to data obtained during TFF at 

constant concentration (permeate recycled).

Table 2.4: Synopsis o f dedicated experiments for determining parameters for the 

resistance-in-series model

Several repetitions of each experiment are required to obtain accurate data, and roughly 

fifteen experiments would be required to determine the parameters listed above. If this 

were to be done using conventional pilot-scale equipment, approximately twelve days
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and 20L of feed would be required. This would be quite a significant addition to the 

already constrained process development schedule and would probably not be justified.

Assuming all of these experiments could be done at USD scale (i.e. less than O.IL of 

feed) it would be possible to complete these tasks using 1.5L of feed. Using a single 

scale-down device and disposable membranes i.e. no time required for membrane 

regeneration, the experiments could be completed within three days.

Carrère et al. (2001) found good agreement of model predictions to performances 

obtained from independent TFF trials of the Lactobacillus delbrueckii fermentation 

broth. In order to quantify the success of the model, the authors used a mean error value 

£i. where

= mean
 ̂ /  — J Imodel experimental | 

•^experimental j

[2.21]

The paper reported some acceptable model errors for constant transmembrane pressure 

filtration of (average model mean error: 7.7%), but the error was almost three times 

larger for constant flux filtration (average model mean error: 22%), which is the most 

popular mode of operation for bioprocesses. Transmission of the lactic acid was not 

investigated, so this aspect was not evaluated.

The applicability of this semi-empirical modelling approach to other experimental 

systems would be interesting to see. The results of such analyses are given in Chapter 5 

with a yeast-based feed.

2.4.2 Aggregate transport model

Baruah and Belfort (2003, 2004) have published a series of papers on the development 

of a methodology which they have termed the “aggregate transport” model. It is one of 

the first examples of a microflltration model which aims to predict the length averaged, 

pressure-independent permeation flux a priori, as well as predicting yield of a target 

species for poly-disperse solutions.
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Successful validation of model results with transgenic goat’s milk were presented 

(Baruah et a l, 2003; Baruah and Belfort, 2004) that verified the ability of the model to 

predict filtration behaviour during constant volume diafiltration experiments, conducted 

under constant flux conditions. The model does not require experimental input c.f. the 

Carrère resistance-in-series model, but some of the model parameters could be more 

accurate if they were empirically derived. The methodology can be divided into twelve 

steps which are summarised below. Additional equations excluded from the publication 

are also included to show the full system of calculations required for the model.

Step I : Determine the particle size distribution of the feed suspension and evaluation of 

the equivalent spherical radii. This would usually be obtained from size exclusion 

chromatography or particle sizing equipment if available.

Step 2: Evaluate the suspension viscosity by experimental methods or estimation using 

the modified Einstein-Smolochowski equation

^  = \ + [2 .22]
%

Step 3: Evaluate the maximum back-transport velocity, for a particle at the proposed 

operating wall shear rate, assuming full retention for all solutes:

w, = max[B(a, , I ,  «), 5 (a, , I ,  /?), /(a ,,/,T , n) [2.23]

where B, S and 1 denote the functionalities of the prominent flux equations summarised 

in Table 2.5. For the first iteration of the model, the value of <j)w can be set to 0.64, 

which is the maximum packing density for rigid mono-disperse spheres ((|)m).

Step 4: Estimate the maximum aggregate packing volume fraction for all particles, (|)m at 

the wall. For poly-disperse solutions, this could be much larger than the value of 0.64 

used above. For example, for a feed comprising of three sizes of particle such that 

> 10«2 > 1 OÔZg the following relation may be used

=(^„+0.74(1- « i j  [2.24]

In this special case, (j)M = 0.96.
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Step 5: Iterate for all particle sizes and selection of the particle that gives the minimum 

permeation flux (lowest back-transport velocity) at the given wall shear rate. The 

corresponding permeation flux is the predicted one.

Step 6: Evaluate the packing density for other particle sizes (aj for y # 1) at this 

permeation flux. The values of (|)%j can be calculated from

J  = max[B(a, ,y,<l>̂ ,,(t>̂ ,L,n),S (a, , T, «), I  {a, ,y ,L ,n) [2.28]

for all 7 ^ 1 .  For particles whose back-transport is governed by inertial lift (equation 

[2.25]) can be estimated by using the mass balance and the propensity of the particle to 

lift off. For example, if there is only one such particle jl, check if Uji > lOJ. If yes, (|)wji 

= 0 as the particle is readily lifted from the membrane wall. Otherwise,

= A/ [229]

where j  ^  jl. If their is more than one particle that is governed by inertial lift,yil and 

yi2 , there contributions to the cake at the wall can be approximately apportioned in the 

direct ration of their volume fractions in the bulk solution and inverse ratio of their back 

transport by

M̂ji 1 + 2= Af [2.30]

Kji\ ■ ■ K-ji2 "  %n“bi2 • %n“jn ^

where j  ^  yll or 712 and Wyn, Uju < lOJ. This logic can be extended for more than two 

particles whose back-transport is governed by inertial lift.

Step 7: Check 2 ^ ,  < (/>m and other packing constraints. If packing constraints are 

satisfied then proceed to Step 8, otherwise use

^'^■icorrected [2.32]

For the particle selected in Step 5, re-evaluate J  based on <j>̂ncorrected instead of 0.64 by 

repeating Steps 3 and 5.
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Table 2.5 Summary o f prominent back-transport and lift equations (after Baruah and Belfort, 2003)
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Step 8: Evaluate interstitial packing density, K̂ imtersuce, of the smallest particle by using

A icorrected [2.33]
ijcorrected

Step 9: On the basis of the corrected packing density of each particle, estimate the 

minimum pore diameter 2rminimum from geometric considerations:

2/̂  — timin imum i

K , i :

-2

ylb  ̂-4ac [2.34]

Equation [2.34] is derived from considering face-centred cubic packing for the cake 

where there are four spherical particles per cube.

Step 10: Estimate the yield of target species (with equivalent radius rs) in the permeate 

by calculating the observ ed sieving coefficient So:

S„ =
(1-5 'Jexp - J

[2.35]

where the actual sieving coefficient Sa is obtained from

5'̂  QxpjPeJ 
S .+ e x p (? e „ )- l

s„ = [2.36]

The wall Peclet number, is obtained from

D
[2.37]

where Ôm is taken as the side of the face-centred cube of the particles of radius a, that 

forms the controlling cake for transmission. In general, the governing case for flux and 

product transmission (corresponding to VmMmum) may be different. Hence,

= a — a, 13 [2.38]
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The intrinsic sieving coefficient Soc is obtained by

s ,  = (1 -  x f  [2  -(1  -  -i)']exp(-0.7146A' ) [2.39]

where Ferry's coefficient (X) is the ratio of the two particle radii 

A = — ^  [2.40]

The parameters s  and is estimated from

[2.41]

^ [2.42]

Returning to equation [2.35] the mass transfer coefficient k for the selected particle 

can be determined from the following series of equations (Zeman and Zydney, 1988)

1 . ”  [2.431

Sh = p K e“Sc*' ::Jl \ =:zzjl [2.44]
L J D

Sc = - ^  [2.45]
pD

Re = - ^ ^  [2.46]

D = [2.47]
(STTTja,)

The yield of the target species in a diafiltration experiment can be evaluated after 

diavolumes by using

yield = 1 -  e x p ( - ) [2.48]

Step 11: There are three possible scenarios corresponding to low, intermediate, and high 

shear rates. For low shear rates, the observed sieving coefficients are high, so no further 

refinement of the model is required. For intermediate shear rates. So is further corrected
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by using the stagnant film flux equation for non-retentive membranes (for

^ 7 >> ̂ i^rm eate) •

J  = k\n permeatei

permeatei

= A:ln [2.49]

for the transmitted species in Step 3. Steps 3-10 are repeated until the values of So 

obtained by equations [2.29] and [2.41] are within 10% of each other. For high shear 

rates, So ~ 0, implying no transmission of the smallest particles, and hence no further 

iterations are required.

Step 12: Construct a plot of predicted J and yield versus wall shear rate for the pressure- 

independent regime (>Jcrit).

The aggregate transport model is obviously more complex to understand than the 

resistance-in-series model presented in section 2.3.2.1, although it was possible to 

construct a spreadsheet for the model using Excel software (Microsoft Corporation) to 

produce the results presented in Chapter 5. The iterations required may also render this 

approach impractical as a tool for USD, in terms of pragmatism. However, a only scale- 

down device could be required for model validation.

Accurate information regarding the wall shear rate is required, which may prove to be 

difficult to obtain for complex geometries such as commercially available flat-sheet 

cassettes (see Chapters 3 and 8). In addition, accurate materials property data (particle 

size distribution and viscosity) is required, and these may not be readily available for 

complex biological feeds. Finally, the model is applicable to diafiltration, which limits 

its use for bioprocess TFF operations, where a concentration step is often employed.

The model is expected to provide a conservative estimate, but this may compensate for 

the neglecting of particle-particle interactions e.g. aggregation and particle adhesion to 

the membrane. As with the resistance-in-series model (Carrère et al., 2001), the model 

described above will be tested with another experimental system in Chapter 5 to 

establish its applicability.
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2.4 Ultra scale-down of membrane TFF

This section aims to give a brief overview of the areas to be considered during the 

development of a scale-down methodology for TFF. This topic is expanded upon 

further in Chapter 3.

Scaling of microflltration equipment is difficult for a number of reasons, due to the 

large number of variables to be considered and their complex interactions. Example 

parameters include membrane loading (volume of feed processed per unit area of 

membrane) and the inherent variability of the membrane material at larger scales can 

also affect reproducibility (Lee et al., 1995; Russotti et al., 1995a).

The scaling and optimisation of tangential flow filtration (TFF) has progressed greatly 

once the importance of concentration polarisation effects (see section 2.2.2) for 

membrane performance had been recognised. As a result, measures that are capable of 

reducing the thickness of the stagnant boundary layer, such as increased tangential flow 

velocity or turbulence promoters, have been employed to preserve membrane 

performance at the original level.

However, the downside of these advances is the addition of more factors to consider in 

order to maintain the similarity of flow conditions when scaling membranes to avoid 

alterations to the concentration polarisation behaviour (van Reis et al., 1997). In 

addition to the parameters traditionally kept constant in the scaling of membrane 

operations, such as the membrane material, the ratio of filtrate volume to membrane 

surface area, channel geometry, retentate and filtrate pressure (Brose et al., 1996), it is 

therefore necessary to consider further factors. These include the feed flow rate and 

temperature, channel height and length, turbulence promoters, potential entrance and 

exit effects as well as the overall system geometry with regard to flow distribution (van 

Reis et al., 1997).

The adherence of precise tolerances in the manufacture of membrane modules 

meanwhile enables the scale-down of membrane systems to proceed according to the 

principle of multiplication of elements (Sweere et al., 1987), where linear scaling of the 

system through the addition of identical, small-scale elements is possible (van Reis et
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al., 1997). Due to the importance of the membrane material for the separation result, 

the emphasis in the development of membrane systems meanwhile shifted towards 

methods that enable the rapid, small-scale screening of a variety of different 

membranes, similar to scouting procedures employed in chromatography (Han et al.,

2000). However, accurate scale-down of membrane filtration operations can only be 

achieved by maintaining fluid dynamic parameters that are independent of scale (van 

Reis et al., 1997).

There are some major assumptions made in current linear scale-down methods which 

limit their applicability in practice; it is assumed that membrane characteristics, degree 

of fouling, pressure, temperature and crossflow velocity will be duplicated in the larger 

model to give the same observed flux and separation factor as in laboratory tests. The 

emphasis on using such scale-down devices is that they are a “design tool” rather than a 

system for direct scale-up.

In order to truly scale-down TFF, the operation of ancillary filtration equipment such as 

pumps, connectors, holding vessels etc. should also be reproduced as accurately as 

possible at the small scale. Construction materials may also differ; stainless steel is 

preferred at large scale, whilst glass and plastics dominate at laboratory scale. This can 

influence the retention of components e.g. virus spikes (Sofer, 1998) and needs to be 

evaluated carefully. Laboratory pumps tend to deliver more accurately than large scale 

pumps, and are liable to cause changes in buffer temperature with the potential 

consequences discussed above. Other design-related factors pertain to required 

functions which may be difficult to realize at large scale, such as the option to 

completely drain the system of feed without a buffer flush.

In the literature excellent results have been obtained for the reproducibility of 

microflltration permeate flux and product transmission for different processing volumes 

(van Reis et al., 1997; Brose, et al., 1996). These studies have, however investigated 

simulated or model feeds. It is important that real bioprocess feeds are used in order to 

understand how a large scale broth will affect membrane performance since rheology, 

morphology and concentrations of solutes, suspended solids and residual oils will be 

variables and will affect filtration behaviour. Also, as truly scaleable crossflow 

filtration is a relatively new process to be adopted by the biotechnology industry, it is
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important to show reliable techniques in order to model or simulate the operation of 

larger equipment i.e. at the pilot or production scale (Mannweiler and Hoare 1992).

It has been suggested that the membrane is as the only constant for both small and large 

scale filtration (de-los-Reyes et al., 1990). Different geometries behave differently in 

distinct ways at various scales (Brose et al., 1996), but these differences could be 

described mathematically and so could be taken into account for a prediction between 

scales. Consequently, and as a result of the complex nature of the relationship between 

the different phenomena that occur in bioprocess TFF, computer simulations based on 

experimental results have been used in order to cope with the large number of variables 

(Okec, 1998). Other methods to provide a structured approach to scaling experiments 

include decreasing the number of factors investigated e.g. van Reis et al. (1997) cites 

constant membrane channel length as a more effective method of linear scale-up.

By taking into account the above discussion, it is possible to compile a sequence to 

create an USD methodology for TFF; a proposal is given in Figure 2.5 below.

The starting point is to study published data and select/develop dynamic process models 

for MF for flux and transmission. The model inputs define what experimental data is 

required, and hence define the requirements for the data that needs to be obtained via 

experimentation. With the aid of factorial experimental design, an initial protocol can 

be defined. Data at this stage may be used to improve the original models.

In parallel, a scale-down device needs to be designed and fabricated which can 

faithfully mimic the global processing conditions of the larger-scale equipment. It is 

with this device that the scale-down experiments are to be conducted. However, 

verification with a well characterised feed using conventional (pilot-scale) equipment is 

necessary initially to validate the data generated. This comparison can be used to refine 

the process modelling, device and experimental techniques.

The next step is the representation of the data generated in an easily interpreted and 

pragmatic way that will facilitate the decision making in process development. This 

includes the comparison of the use of different membrane materials, operating 

parameters, and perhaps their sensitivity to changes in upstream operations (see Chapter
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1 and Section 2.5). Finally, iteration of this loop with more complex feeds and different 

membrane types should lead to confidence in the ability of the mathematical models and 

scale-down device to provide a true process mimic, and hence the development of a 

generic methodology for the USD of membrane TFF.

Development 
of assays & 
scale-down 
equipment

I Existing data 

▼
Transmission & dux 

model analysis

Experimental 
protocol for scale 

down mimic

Pilot-scale
verification

New biological 
system and/or 

mentorane 
properties

Data analysis 
relevant for 

process design

methodology

Figure 2.5 Development o f an USD methodology for membrane filtration within 

bioprocesses.

2.5 USD index for TFF

As discussed in Chapter 1, USD indices are required to enable the assessment of 

changes from upstream operations. For chromatography, this has taken the form of a 

"fouling factor” or fouling index (Reynolds, 2005). This index is essentially a ratio that 

gives an indication of how successful the unit operation was in processing a particular 

feed. An analogy is the use of the dimensionless Reynolds Number to characterise
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whether flow in a pipe is laminar or turbulent i.e. how well the fluid is being mixed. It 

provides a means of comparing one set of operating conditions with another, and could 

also be used to as an indicator of the impact of variations in upstream operations.

For example, the data obtained from trials using two different membrane materials 

could be compared; a single indicative number is easier to digest than multiple sets of 

experimental results. Another example of the use of a USD index could be to quantify 

the effect of variations in feed concentration on filtration performance -  a sub-set of 

USD trials could be used to demonstrate whether the defined filtration operation could 

economically process the ''worst case” feed. This idea is explored further in Chapter 7, 

using a mammalian cell culture, which often shows variability in the fermentation 

culture.

The literature provides three suggestions for a TFF index:

(a) Modified fouling index (MFI): Use plots of tfV versus V from either NFF or constant 

flux experiments to determine as specific cake resistance "n” or "a” (Brauns et al., 

2002).

(b) Critical flux (Jcnt): Flux stepping experiments to determine the flux below which 

there is no deposition on the membrane surface (Howell et al., 1991).

(c) Critical ratio o f permeation flux to wall shear rate (J/r^): Several researchers have 

shown that that there is a critical ratio between wall shear rate and permeate flux beyond 

which protein transmission drops drastically and permeation flux does not increase with 

increasing transmembrane pressure (Gésan-Guiziou et al., 1999).

Only (a) is strictly a "fouling index”, which is directly comparable to the index 

proposed for chromatography (Reynolds, 2005), but knowing the specific cake 

resistance from a NFF trial may not be useful for defining TFF operation. Membrane 

fouling has been classified as reversible (cake formation) and irreversible (internal pore 

plugging, absorption etc.). With bioprocess streams, it is difficult to tell which 

phenomenon is dominant, and it varies considerably between different feeds and
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membrane types. Indeed, more than one regime may be dominant during different 

stages of processing. Typically, one tries to minimise reversible fouling in order to 

maintain high fluxes. Information on how fouled a membrane is after processing may 

useful when developing a cleaning (regeneration) scheme, but only qualitative data is 

required i.e. whether the manufacturer’s recommended procedures does the job or not.

Options (b) and (c) give an insight into the processing conditions required to filter using 

TFF successfully. However, by also considering the recirculation rate, option (c) is 

more comprehensive. Figure 2.6 below is a representation of a plot similar to that 

produced by Gésan-Guiziou et al. (1999), showing the evaluation of the critical 

operating ratio (J/iw) during the microflltration of skimmed milk. The idea was to plot 

flux data from constant flux or constant pressure trials conducted, against the calculated 

membrane wall shear rate. Data was obtained for experiments where operating 

conditions could be maintained and for those where the conditions did not remain 

stable.

The division between these two sets of data provides the limit of robust operating 

conditions. The gradient of this line (critical operating ratio) also offers a convenient 

ratio of which to compare data from different membrane/feed combinations; greater 

exploration of the parameter limits is enabled by the use of USD trials. Extrapolation of 

this line so that it intersects with the x-axis provides the critical erosion shear stress 

(Twco), which is the limit under which there is no transport of particles away from the 

membrane at zero flux (J = 0 LMH). The value of this is a function of the membrane 

material and the solution to be filtered i.e. it is a measure of performance which is 

independent of flux or TMP parameters. It provides the minimum limit of crossflow 

required to process the material, using the specified membrane material.
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Figure 2.6: Representative plot ta determine the critical ratio o f permeation flux to wall 

shear stress (J/Tŷ ) (after Gésan-Guiziou et al, 1999).

Either the critical operating ratio or the critical erosion shear stress obtained from this 

t>pe of plot could provide a suitable USD index. These values will be determined for 

different membrane/feed combinations and their application discussed further in 

Chapters 5, 6 and 7.

2.6 Windows of operation

The amount of data that potentially can be produced from modelling of a unit operation 

can be large and may be difficult to interpret, and hence the modelling efforts may not 

be justified in terms of the time required, or use of time and resources for other process 

development activities e.g. regulatory submission support documentation. In order to 

avoid this pitfall, the representation of the data must be given careful thought at the 

outset of the exercise. The methodology flowchart presented in Figure 2.5 (section 2.4) 

specifies the output of industrially relevant data, and this needs to be presented in a 

pragmatic format.
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The concept of Windows of operation (WinOps) is an attempt to develop simple and 

easily interpreted graphical techniques using computer algorithms for the design and 

analysis of bioprocesses (Woodley and Titchener-Hooker, 1996). The desired output of 

this area of research is a set of computer tools for the analysis of data from either 

experimental or mathematical bioprocess simulations (Griffiths, 2007). Enabling the 

user to evaluate the characteristics of the bioprocess will ultimately lead to them being 

able to determine how best to operate such a process.

The primary focus of this current area of research analyses how the control variables 

should be set to attain the product at the desired specification. This sort of information 

is useful for later stages of process development in order to optimise production when 

relatively large quantities of drug are needed for clinical trials. Although economic 

viability plays a very important role in examining a bioprocess, it is also essential that 

the bioprocess is able to meet product purity criteria and also environmental criteria. 

An inability to achieve these goals could result in severe penalties for the manufacturing 

companies. An early, but detailed analysis could indeed reveal problems with the 

capacity of the preliminary design in attaining these goals.

Bioprocesses are generally run batch-wise with limited automatic control, therefore 

simply finding the optimum operating point and tr>dng to run exactly on it is likely to 

lead to variability (Samatli et al., 1996). The Window is defined as an operational 

space, which may be constrained by economics limitations, biological effects or 

physical laws. The authors demonstrate how putting two variables on graph axes and 

plotting the region of feasible operation can visually display the WinOp. Control 

variables are generally placed on the axes of the Window and the output variables are 

used as constraints.

The advantage of having a feasible region to operate in rather than trying to operate at 

the optimum point is demonstrated clearly by Samatli et al. (1996) who show a WinOp 

for centrifugation generated using two control variables on the axis and the optimum 

point. The optimum point lay on the boundary of the WinOp meaning that a small 

operating error could lead to the process lying outside the feasible operating region. In 

addition to control errors biological process have an element of inherent variability
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introduced by the cells themselves and it is essential that this be taken into account 

whilst operating a process.

A further example of the utilisation of WinOps is provided by Zhou and Titchener- 

Hooker (1999) where a WinOp approach is used for evaluating a sequence of unit 

operations, using a yeast alcohol dehydrogenase (ADH) process as an example. 

WinOps for different fermenter growth rates were produced and overlaid on a graph 

with centrifuge flowrate and homogeniser pressure on the axes. The authors show how 

the different fermentation conditions lead to very different operating Windows and, 

counter-intuitively, the highest growth rate produces the smallest operating Window. 

However, the paper also indirectly highlights a weakness with the WinOp’s approach in 

that bioprocess operations have multiple control variables and a Window plot can only 

visualise two control variables (the interaction of three parameters could be visualised if 

another WinOp is overlaid on the same plot).

2.6.1 Windows of operation for TFF

This section suggests a plot for presenting the data from modelling and scale-down 

experiments to clearly show the feasible region of operation for a TFF separation.

The starting point was to evaluate examples of similar plots in the literature, of which 

there are few. Van Reis and Saskena (1997) developed an optimisation diagram for 

membrane separation, based on the inherent trade-off between the product yield and the 

degree of purification. The axes of these plots were dimensionless parameters i.e. the 

ratio of sieving coefficients (5), and a new parameter NAS, where the number of 

diavolumes, N  is determined from

N = —  [2.43]
V

and AS is the difference between the sieving coefficients. A family of selectivity curves 

can be plotted on these axes to give a purification-yield graph. However, this approach 

can only be of use for binary solutions where the sieving coefficients are known for 

each solute; this is hardly ever the case, or even an approximation, for the 

microfiltration of bioprocess streams.
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The difficulty in choosing the axes variables for a WinOp for TFF is that they not only 

need to be useful for identifying optimal process conditions during industrial operation, 

but must be obtainable data at the USD scale. The table below lists possible axes titles 

for a TFF rig of fixed membrane area:

X axis Example Units Y axis Example Units

Wall shear rate Pa %Transmission

Wall shear stress Pa.s Critical flux (Jcnt) m .̂m' .̂s'^

Feed crossflow rate m .̂s'^ Critical mass flux mg.m'^.s'^

Linear velocity -1m.s No. of diavolumes

Table 2.6: TFF Window o f operation axes candidates.

Continuing from the discussion about the TFF USD index (section 2.5), the obvious 

axes for a WinOp would then be wall shear rate versus Jcnt- However, as transmission 

of the target species is also a key performance indicator (Fischer, 1996), this also needs 

to be accounted for. The use of critical mass flux (concentration of target species in 

permeate multiplied by the critical permeate flux) addresses this issue. Figure 2.3 

below shows a possible WinOp.

In order to test the suitability of this plot for use in a USD methodology, the WinOp 

needs to be populated with actual data produced from small-scale experiments and 

modelling results. This will be attempted in Chapters 5, 6 and 7 with a range of 

biological feed systems.
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1. Lower wall shear stress limit - 
critical erosion shear stress (Xwco) 
under which there is no transport of 
particles away from the deposit at 
when there is no permeate flux i.e. 
J= OLMH. Xwco depends on the 
membrane and the solution to be 
filtered.

4. Process constraints in terms 
of processing time (t) time and 
minimum acceptable yield (% 
product recovered) e.g. 80% 
transmission of target species 
and 50LMH. This region will 
change if membrane area, 
process time or transmission 
limit are altered. It is 
independent of wall shear 
stress.

2. Region above critical mass flux curve. This 
curve can be obtained by flux-stepping 
experiments, or using a flux/transmission model. 3. Upper wall stress limit 

(Xwcmax) '  product or cells 
damaged/ pumping cost too 
high/transcartridge pressure 
drop unacceptable.

5. Feasible region of operation. 
One would pick a point on 
which to base operation 
conditions near the apex of the 
peak to maximise flux, but not 
too close so that variations in 
feed or membrane batch could 
be allowed for.

Figure 2.1: Window o f operation for crossflow microfiltration.
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2.7 Summary and conclusions

Attempts at the scale-down of membrane filtration have been made, but due to the 

complexity and sheer number of variables involved with this unit operation, work is still 

in progress. An overview of the background theory for membrane filtration was given 

as a thorough understanding of this topic is necessary in order to develop an accurate 

scale-down mimic.

This chapter has also given an overview of the modelling techniques applied to 

bioprocess applications, particularly to TFF. The key model output parameters for TFF 

are values for permeate flux and transmission of key species. Critical operating 

conditions beyond which flux and transmission performance decline provide the upper 

limits of operation, and the evaluation of these parameters through computer modelling 

techniques and/or scale-down experiments is required during process development. 

Two published models were discussed with, a view to employing them in a USD 

methodology for TFF. The resistance-in-series model approach clearly identified points 

at which empirical data determined from using a scale-do^\ii device would be of benefit. 

The aggregate transport model relies less on empirical data, but is much more complex 

and requires greater understanding of the underlying equations, and only when 

confirmatory experimental trials have been done can one have confidence in the 

numbers generated.

A way of comparing different feed/membrane material combinations was suggested in 

the form of a USD index. This TFF index is the critical erosion shear stress (Xwco), 

which is defined as the crossflow velocity limit under which there is no transport of 

particles away from the membrane at zero permeate flux conditions.

Finally, a method of graphically representing the data generated by modelling efforts 

and/or a sub-set of scale-down experiments was proposed. This WinOp for TFF aims to 

portray industrially relevant data in an easily interpreted form for use during process 

development activities. The following chapter continues the development of a USD 

methodology for TFF by describing the development of a scale-down device to mimic 

the larger scale operation, and hence produce more accurate data for use in conjunction 

with the models described above.
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Chapter 3 Development of a Scale-down Device to Simulate 

Tangential Flow Microfiltration

3.1 Introduction

In order to develop a USD methodology for the rapid evaluation of tangential flow 

filtration (TFF), according to the schematic presented in Chapter 2, a device to perform 

the scale-down experiments is required (see Figure 2.5). The following sections 

describe the development of a rotating disk device for this purpose.

The design of effective membrane processes typically requires a considerable amount of 

process development. This can include testing of membranes made from different 

polymers or with different pore sizes, screening of buffer pH and ionic strength to 

determine conditions for optimal selectivity and/or product stability, and examination of 

a range of transmembrane pressures or filtrate fluxes to achieve high throughput while 

minimising fouling (see Chapter 2). Currently, this type of process development is 

typically done sequentially, testing one set of conditions followed by another, possibly 

with the use of a statistical design methodology to minimise the number of experiments 

needed to explore a wide range of variables.

With multiple parameters influencing membrane processes (pH, type and concentration 

of solute, buffer choice, pressure, temperature, recirculation rate etc.) and several 

choices of membrane material (cellulose, polyethersulfone etc.) membrane users would 

benefit enormously from the successful application of a scale-down methodology.

Once the decision has been made to utilise filtration for a bioprocess purification, it 

typically takes four weeks to develop a filtration process for a new feed (R. Kuriyel, 

Millipore, personal communication). The subsequent scale-up of this process to pilot- 

scale takes yet more time.
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3.1.1 Scaling of TFF

Brose et al., (1996) and van Reis et al. (1997) demonstrated that predictable scale-up of 

membrane filtration could only be achieved by maintaining fluid dynamic parameters, 

which are independent of scale. This is accomplished by controlling the following:

• Operating parameters: feed crossflow velocity, transmembrane pressure, fed-batch 

ratio i.e. feed to membrane loading, and temperature.

• Module geometry: channel length, height, turbulence promoter and entrances/exits, 

as well as cassette manufacturing and tolerances.

• Design materials: membrane material and pore size, turbulence promoter and 

encapsulant compression.

• System geometry: comparable flow distribution in the filter module and ancillary 

equipment.

It was stated by van Reis et al. (1997a) that for linear scaling of a TFF system, a 

constant path length is required. Currently the three main vendors of flat sheet TFF 

systems supply membrane cassettes of varying area based on this premise, and many 

bioprocess equipment manufacturers advocate linear, or geometric, scaling because of 

its simplicity.

Scale-dowTi could be accomplished, in some cases, by modifying an existing piece of 

industrial equipment in such a way that it requires only a fraction of the process material 

to give a similar level of performance (Mannweiler and Hoare, 1992). Another strategy 

is to fabricate a geometrically similar, small-scale replica of the industrial machine. 

This is usually the idea behind pilot-plant equipment.

In the case of membrane filtration, scale-down has taken the form of commercially 

available devices, such as those listed in Table 3.1 below. These devices are 

complemented by systems such as the Pellicon (Millipore), the Sartocon Slice^^ 

(Sartorius), or the Filtron Centramate^^ (Pall). These systems integrate the ancillary 

equipment into a whole filtration rig, which include filter holders, feed reservoirs, 

recirculation pumps, and pressure gauges. Process monitoring software is also often 

supplied, making them an attractive option to process development scientists.
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Device

Format

Description Mode of 

filtration

Nominal 

membrane 

area (m )̂

Examples

(Manufacturer/

Tradename)

Cassette Flat-sheet

cassette

TFF 0.005 to 0.01 Millipore/Pellicon XL™; 

Pall/Minimate™; 

Sartorius/Sartocon 

Slice™; 

Whatman/ULTRAN'^^

Hollow

fibre

Thin tube loop TFF 0.0016 to 

0.0026

GE Healthcare/Midgee^^

Stirred

cell

Stirrer bar 

suspended 

over flat sheet 

membrane

NFF 0.0004 to 

0.0042

Millipore/Amicon'T^

Table 3.1: Some existing commercial tangential flow scale-down devices

Using linear scaling, a 400-fold linear scale up of tangential flow filtration has been 

achieved, without any need for an intermediate stage (van Reis et ah, 1997). Successful 

linear scaling of commercially available cassettes has also been demonstrated (see 

Figure 3.1). Currently, the smallest available flat-sheet filtration devices contain 

0.005m' of membrane area (see Table 3.1); for a representative loading c.f. industrial 

scale trials, each experiment would require approximately 0.5L of process material. 

Use of a smaller membrane area is limited by the cartridge geometry. Also, as the cost 

of each filtration device is not insubstantial, they are not necessarily disposable items, 

and will therefore need to be cleaned and sanitised before and after each experiment.

To reduce the volume of material required further, non-linear scaling and/or use of 

novel protocols and devices are necessary. For example, Boychyn (2000) showed that a 

bench-top centrifuge could mimic the typical performance of a large-scale centrifuge by 

subjecting the material to shear in a rotating disk device prior to centrifugation. This 

treatment mimicked the shear damage experienced by the feed in the entrance zone of 

the industrial machine.
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Device Comparison: 6  % BSA at 6  Flux vs TMP
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Figure 3.1: Linear scale-down o f Pellicon 2 Mini (O.lm^) to Pellicon XL (0.005m^)

(data courtesy o f Millipore Corporation, MA, USA).

For non-linear scaling of tangential flow filtration, the critical parameter to maintain in 

TFF is the wall shear rate (y^) (Fischer, 1996). This should theoretically be possible 

whilst reducing membrane area, membrane cartridge hold-up and filtration rig hold-up. 

However, certain parameters remain that are unable to be predicted by current scaling 

methods such as the impact of pumps, valves and instrumentation, which are intrinsic to 

any microfiltration operation. To fit within the goals of ultra scale-down i.e. mimic 

large-scale performance with 1-lOOmL feed volumes for each experiment (see Chapter 

1), a membrane area less than 0.0005m^ would be required (see Figure 3.2).
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Manufacturing 

Pilot-Plant

Laboratory

USD

0.05 0.5 10 500

Material Required (L)

Figure 3.2: Scaling o f flat-sheet TFF (pictures courtesy o f Millipore Corporation,

3.1.2 Challenges for a TFF scale-down device

Scale-do™ of TFF would allow rapid feasibility studies and the exploration of more 

process options c.f. conventional laboratory scale-devices with respect to:

• Membrane material & pore size

• Processing parameters that optimise flux & transmission

• Diafiltration design

• Cleaning protocols

In conjunction, only small volumes of process material would be required, which is 

desirable during process development, as representative material is often in short 

supply.

To be a reliable mimic of large-scale, any scale-down device must be able to process the 

same feeds, in particular with realistic solids loadings. It must also be able to generate 

material of similar content and specification in contaminant profile to the large-scale
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counterpart. In this respect the scale-down approach also aims to provide a truly 

preparative operational mimic in that the output of a scale-down device must be 

equivalent in all respects to that generated at scale (see also Chapter 1). Table 3.2 

below lists criteria that a scale-down device for TFF for bioprocesses should fulfil in 

terms of the actual device hardware, its capability and its functionality.

Characteristic Criteria to be met

Hardware • Easily test different membrane materials.

• Allow for sampling of inlet and outlet streams.

• Enable representative feed loadings (volume of feed processed 

perunit area of membrane).

Capability • Mimic average shear rate at membrane surface of the larger scale 

process.

• Account for material damage due to shear, air/liquid interfaces, 

retentate recycle, local pressure drops etc. found in industrial scale 

filtration rigs.

Functionality • Operate in constant transmembrane pressure (TMP) and constant 

flux modes.

• Perform concentration, diafiltration, recycle.

• Capable of membrane regeneration (cleaning and sanitisation).

• Capable of normal flow (NFF) or tangential flow (TFF) filtration.

Table 3.2: Attributes o f a scale-down device for TFF 

3.1.2.1 Caveats of working at small scales

As described in Chapter 1, discrepancies often arise between laboratory predictions and 

industrial performance. These are commonly due to differing geometries between 

laboratory-scale and process scale devices and the interaction of process material with 

ancillary equipment at the larger scale (e.g. shear effects).
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Therefore, to surmount these difficulties, several other points should be considered 

when scaling down TFF to process volumes of less than O.IL. These include:

* Membrane uniformity: Due to the current nature of polymeric membrane manufacture, 

polymeric membranes do not have a uniform pore size distribution. Hence, for very 

small areas, the average pore size or MWCO may differ considerable from membrane to 

membrane, or from between sections of the same membrane sheet. A methodology for 

assessing variations in the pore size distribution could therefore be employed. As such 

small membrane areas would be used for a smaller scale device, it is important to 

account for this variation as any variability will be accentuated. Alternatively, specially 

developed membranes that have a more even pore size range may be used; for example, 

Millipore manufacture 3 mm diameter membrane disks for life sciences applications that 

display less batch-to-batch variation compared to conventional membrane disks.

* Difference in hydraulic permeability: Chandler and Zydney (2004) found that

different membrane geometries exhibited different resistances to water, despite using 

the same membrane, and this was attributed due primarily to the large parasitic pressure 

losses in the cartridge and/or to a loss of effective membrane area associated with flow 

between the pleats.

•Feed loading: It is important to keep the fed-batch ratio i.e. the amount of feed 

processed per unit area of membrane comparable to typical industrial-scale processes. 

For example, 1.25xlO'^L of Chinese Hamster Ovary cells (CHO) were harvested with 

180m^ membrane area in TFF mode (van Reis et al., 1991) i.e. a loading value of 

approximately 70L.m'^.

•Smoothness o f feed flow: For low volumes and flowrates, peristaltic pumps are

commonly used. However, the resulting pulsatile flow may not be representative of the 

pumping characteristics in a large-scale rig, where centrifugal, rotary and gear pumps 

are common. The effect of pulsed flow on the dynamics of microfiltration has been 

well documented (Levesley and Hoare, 1995; Fischer, 1996; Meacle et al, 1999).
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* Instrumentation to determine flux, crossflow velocity and pressures: The contributions 

of components, such as gauges and rotameters, will have a greater relative effect on 

hold-up and general rig hydrodynamics at a smaller scale of operation. Where possible, 

instrumentation should be non-invasive to the process.

* Taking samples for assay: Taking a ImL sample for analysis from lOOL of feed is 

insignificant, but taking the same amount from lOmL and the feed is reduced by 10%. 

Hence, assays need to be developed that require minimal amounts of material and/or 

strategies of extrapolation from sparse datasets will be required.

Thus, considerable care must be taken in scaling results from small scale systems 

employing flat sheet membranes to larger-scale devices with more complex flow 

patterns.

3.2 Proposal of a scale-down device for tangential flow filtration

Having highlighted the issues to be borne in mind during the design of a scale-down rig, 

the following section describes the engineering specifications of a scale-down device to 

mimic tangential flow filtration.

The obvious place to start when scaling down a unit operation is to look at the general 

principles of similarity (see Chapter 1), the rules of scaling and previous related 

examples in the literature. It is also worth looking at the scale-down of other unit 

operations, which have similar process duties e.g. such as centrifugation (Boychyn et 

al., 1998).

3.2.1 Scale-down approaches

Unfortunately, linear scale-down of flat-sheet TFF is not feasible, whilst maintaining 

the same channel length as used in industrial-scale filter and the membrane area under 

O.OOOSm̂  to meet the requirements of a device for USD (see section 3.1.1). For 

example, the Pellicon (Millipore, USA) series of cassettes have a channel length of 

approximately 0.155m (C. Christy, Millipore Corporation, personal communication,

2001); the width of a similar cassette with a membrane area of 0.0005 m  ̂would be just
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under 0.0033 m. Clearly this is not a practical size of membrane to manufacture or 

handle in the laboratory. It must also be noted that many membranes are usually 

commercially available as circular disks, the widest diameter currently available being 

0.142 m (source: Cole Parmer Product Catalogue, 2005), which could not be cut to the 

correct length.

Hence, a non-linear approach needs to be considered. Fortunately, the literature 

suggests a possible solution in the form of a rotating disk filtration system. Lee et al. 

(1995) investigated the use of a novel rotating disk dynamic filtration system (Pall 

Corporation, USA) for the microfiltration of recombinant yeast cells. The study 

demonstrated the superior filtration performance of the new unit, but interestingly 

identified a critical rotational speed below which behaviour was comparable to that of a 

flat sheet system, at a given membrane loading level.

The existence of other TFF module formats e.g. hollow fibre, spiral wound, should also 

be noted. A device that would be general enough to predict behaviour across this range 

of geometries (not just flat sheet configurations) would be ideal. The development of a 

scale-dowm device for TFF based on a rotating disk design is considered below.

3.2.2 Rotating disk filtration

Rotating disk, high shear or so-called dynamic filtration has been in use in the chemical 

industry for over four decades. The reader is directed to the established work of Murkes 

and Carlsson (1988) for a comprehensive review of the theory and to Culkin et al. 

(1998) for examples of industrial hardware and application of this technology. Many 

novel dynamic filtration systems have been reported in the literature, a selection of 

which are listed in Table 3.3 below.

In such systems, the high shear rates generated by the rotating disk at the membrane 

surface yield very high permeate fluxes by minimising concentration polarisation and 

fouling effects. Unlike traditional TFF, it is possible to control shear intensity 

independently from the main flow of the suspension through the filtration unit. This 

offers the advantage of lower pressure drops across the module and the membrane. As a 

consequence of this decoupling of shear force and pressure generation, shear rates can
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be easily optimised and precisely controlled to maximise filtration performance (Vogel 

et al., 2002).

Description Mode of 

filtration

Nominal membrane 

area (m )̂

Literature

References

Rotating disk dynamic 

filtration system

TFF 0.137 Lee et al., 1995

Controlled shear 

filtration for animal 

cell separation

NFF 0.515 Vogel and Kroner, 

1999

Rotating disk device TFF 0.190 Bouzerar et al., 

2000

Cone and plate test cell 

for ultrafiltration

NFF 0.442 Vasan et al, 2002

Rotating disk filter for

crossflow

microfiltration

NFF 0.500 Pessoa and Vitolo, 

1997

Vibrating disk dynamic 

filtration system

TFF 0.200 Postlethwaite et al., 

2004

Table 3.3 Rotating disk devices in the literature

The fluid dynamics of rotating disk filters have also been investigated quite thoroughly. 

Due to their relatively simple geometry, it has been possible to model rotating disk 

devices by CFD (Rudniak and Wrohski, 1995; Serra et al., 1998; Castilho and Anspach, 

2003). These papers described prediction of the fluid dynamics in various rotating disk 

filtration systems, and use the models developed to estimate shear stresses in such 

modules and to investigate different designs. Semi-empirical correlations to relate disk 

rotation to shear rate have also been developed (Schlicting, 1968; Vogel and Kroner 

1997; Bouzerar et al., 2000), and these have been shown to provide an adequate 

estimate of the shear rates generated in such devices. Similar calculations are 

performed below in order to check the feasibility of the proposed device design 

performing in a comparable manner to that of a flat-sheet filter.
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3.2.2.1 Hydrodynamics of rotating disk devices

Let us consider a disk with rotation speed co, operating parallel to the membrane surface 

and located at an axial distance 5 above it (see Figure 3.3 below).

Figure 3.3: Schematic o f a rotating disk filter.

The flow is characterised by two Reynolds numbers; the axial and radial turbulence, 

which are defined by equation [3.1] and [3.2] respectively.

Re. = cos [3.1]

Re. = (or
V

[3.2]

where r is the local radius and s is the gap height between the membrane and the disk 

surfaces (see Fig. 3.3). The transition Reynolds number based on disk radius and tip 

velocity was defined as 3 x 10  ̂by Schlichting (1979). However, this value is reduced 

to 2 X 10^ if based on the stationary plate, or in this case, the membrane 

(Randriampianina et al., 1997).

Assuming that there is no radial net flow and that the surfaces are solid, four different 

flow types can now be distinguished (Murkes and Carlsson, 1988) which are 

summarised in Table 3.4 below.

The boundary layers are separated by an inviscid core of fluid with angular velocity 

where 0>A>1. The velocity entrainment factor (Â:) is an experimentally determined 

parameter that is a function of the pressure drop across the module, as well as the fluid 

and disk material and geometry. It can be measured by placement of pressure sensors 

on the casing of the device (Bouzerar et al., 2000). Values of k between 0.3 and 0.5
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have been quoted in the literature for smooth rotating disks (Murkes and Carlsson, 

1988, Vogel and Kroner, 1999).

Region Res Rer s/r

Laminar flow, narrow gap I <4 <2x10

Laminar flow, two separate boundary layers II >4 <2x10^

Turbulent flow, narrow gap III - >2x10^ >0.05

Turbulent flow, two separate boundary layers IV - >2x10^ <0.05

Table 3.4: Flow patterns in rotating disk filters

3.2.2.2 Calculation of shear rate in a rotating disk device

The principle parameter to maintain when scaling TFF is the shear rate at the membrane 

surface (see Chapter 1, section 1.4 and section 3.1.1 above). Hence, it is necessary to be 

able to determine the shear rates that are generated in the device.

The following empirically derived equations have been used by several authors to 

calculate the local shear stress in a rotating disk device:

^ .^ ^ = C p v '\k < o Ÿ ^ ^ r  [3.3]

[3.4]

where C is a constant, values of which are given in Table 3.5 below.

Laminar flow Turbulent flow L it references

1.81 0.057 Schiele (1979)

0.77 0.0296 Bouzerar et al. (2000)

Table 3.5; Values o f wall shear stress constants (C) for rotating disk device 

correlations.

The difference in the constants in Table 3.5, as explained by Bouzerar et al. (2000), is 

due to the calculation of the stress at the surface of the rotating disk, rather than the 

surface of the stator i.e. the membrane. However, the parameters used, in their
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similarity solution for the azimuthal velocity induced near a stationary plate by a 

rotating fluid, were specific to the device used by Bouzerar et al. (2000).

Based upon laminar flow theory (Lee et al., 1995), the shear rate experienced by a 

particle within a rotating disk chamber changes with radial position. As noted earlier, a 

method of mitigating this phenomenon is the use of a conical-shaped rotor (Vogel and 

Kroner, 1999) since this generates a uniform shear field across the stationary surface 

(c.f. cone and plate viscometers). Thus, the local radius (r) is no longer a variable 

parameter.

For a conical rotor of radius R, with a small inclination angle (see Fig. 3.2) (a), 

Reynolds number is described by

Re = [3.5]
V

The average shear rate in the gap between the conical rotor and the membrane (h) can 

be calculated by

However, for small rotor heights (h/smax<0.1 ) the local average shear rate can be 

assumed to be constant over the whole gap between the rotor and the stator. The wall 

shear stress can be estimated by equations [3.3] and [3.4] above. Wall shear rate (y%), 

assuming Newtonian behaviour, can then be determined by

7 = —  [3.7]

The assumption of Newtonian behaviour is valid for dilute suspensions and many 

fermentation broths, as long as there is no cell lysis.

A basis for comparison of performance for a plane rotor should be considered at half the 

maximum gap width of the conical rotor (Vogel and Kroner, 1999) i.e. the gap (j) 

between an equivalent plane rotor and the membrane can be calculated using equation 

[3.8] below (see Figure 3.4):
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s = — tan a+ h 
2

[3.8]

II membrane

Figure 3.4: Schematic o f the determination o f an equivalent plane rotor axial gap to a 

conical rotor.

There have been several attempts in the literature to determine parameters such as 

torque (T), power input (P), and energy dissipation per unit mass (e) (Cherry and 

Papoutsakis, 1986, Lee et ah, 1995). In such devices, these enable characterisation of 

the Kolmogorov microscale of turbulence and therefore provide an insight into the 

amount of damage caused by the rotor to particles in the feed. However, as the purpose 

of the microfiltration USD is to mimic conventional TFF, such calculations would only 

be useful if an equivalent analysis were possible for formats such as membrane 

cassettes. To date, the latter has not been achieved (see Chapter 9 for a further 

discussion).

As a corollary, this lack of understanding of the actual shear rates encountered in a 

“real” industrial TFF system, i.e. in the rig and the membrane device, is another issue 

that complicates the design of a non-geometric mimic. Shear damage during processing 

may be caused by the recirculation of the feed through constrictions and components 

such as pumps, flowmeters and valves. Membrane cassettes may also contain areas of 

high local shear at the entrance and exit ports (this is analogous to the centrifuge 

example quoted in Chapter 1). Therefore, pre-treatment of the feed and/or intelligent 

operation of the USD device may be required in order to mimic the whole unit operation 

e.g. the exposure of the feed to a high-shear environment before processing to simulate 

the hydrodynamics encountered of the industrial equipment (Boychyn et al., 2000).
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3.2.3 Theoretical calculation of the wall shear rate in a rotating disk 

filter to mimic a flat-sheet filter

Table 3.8 below is a summary of the results of calculations, using the equations 

described above, to estimate the rotational speeds one would need to run a rotating 

device in order to mimic a commercial TFF system. Both a plane disk rotor and a 

conical rotor, which are equivalent according to the definition given above (Vogel and 

Kroner, 1999), are considered.

Example calculation:

The maximum wall shear rate in a Prostak^^ device (Millipore, MA, USA) when 

harvesting CHO cells is approximately 4,000s'^ (R Kuriyel, Millipore Corporation, 

personal communication, 2003). What rotational speeds would be required in a USD to 

mimic these wall shear rates?

It is assumed that the global shear rate is independent of feed flowrate, which is 

generally the case for dynamic filtration devices (Bouzerar et al., 2000). It is also 

assumed that because the rotational speeds will be low, and the disk radius small, radial 

variations in shear are insignificant i.e. r=R (Bouzerar et al., 2000). Hence, the 

equations developed by Schiele (1979) can be used without integration across the rotor 

radius to estimate the magnitude of the global shear rate in the device.

Rotor Calculation Method Rcr Rcs Yw G)

type (N/m (s'̂ ) (rads' )̂

Plane Schiele (1979) 6.3 x 10' 3.5 x lO"* 4 4ÔÔÔ Ï6Ô

Plane Bouzerar et al. (2000) - 5.4x 10̂  4 4000 318

Conical Vogel et al. (1999) 6.5x 10̂  5.9x10"^ 4 4000 160

Table 3.6: Summary o f example calculation results, using equation [3.4]. Fluid 

parameters: p=1000kgm'^, rj=0.001Pa.s, v=9.8xlO'^m^s'^.Rotating disk parameters: 

disk radius=^0.015m, conical rotor height from membrane (h) =0.002m, conical rotor 

inclination angle 4 degrees = O.Olrads, equivalent plane disk height from membrane 

(s)=0.0023m (equation [3.8]).

117



Device Development

According to the definitions described in Table 3.4, the flow patterns in the device at 

these conditions are in region IV i.e. turbulent flow with separate boundary layers. The 

values are comparable to those cited in the literature (Vogel and Kroner, 1999) in terms 

of magnitude. It is interesting to note that the angular velocity calculated by the method 

developed by Bouzerar et al. (2000) is double the requirement determined by the 

Schiele method (see Table 3.8). This implies that the wall shear rate at the disk surface 

is twice the wall shear rate at the membrane surface.

In order to mimic conventional filtration, the wall shear rate at the membrane surface 

has to be matched, but the possibility of stream component damage due to the high local 

shear rates at the disk edge has also to be considered. However, this phenomenon may 

prove to compensate for shear damage due to feed recirculation and entrance/exit effects 

in a TFF system (see Chapter 1).

The above example supports the concept that it should be possible to attain similar 

global wall shear rates found in conventional flat-sheet TFF systems by careful selection 

of the operating conditions of a rotating disk device. At these conditions flux and 

transmission behaviour should therefore also be comparable. The next stage of 

investigation entails the construction of such a device and experimental validation of its 

performance and utility as a scale-down mimic for TFF.

3.3 Design and construction of a scale-down device for TFF

In light of the findings of previous studies on rotary disk filtration units, and the criteria 

of a device for TFF USD, a device to mimic flat-sheet TFF is proposed in the following 

section. The design calculations will be described, as well as details of the final 

mechanical specification for the prototype microfiltration USD.

3.3.1 Device mechanical options

The mechanical options available can be summarised into the following categories:

a) Materials o f construction: housing, disk, membrane support, mechanical seals etc.;

b) Filter housing: size and shape, ability to maintain pressures required during 

filtration;
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c) Membrane attributes: size and shape of filter, located either on the rotor or the 

stator, support method;

d) Disk attributes: shape, diameter, position in relation to membrane, position in 

relation to the filter housing;

e) Inlet and outlet configuration: placement of the feed, retentate and permeate ports.

These options are discussed in turn below, with respect to the development of a USD 

device for TFF.

a) Materials o f construction

As the device will process biological feeds, it is important to construct it from 

biologically inert materials. These materials must be cleanable, and be able to 

withstand any pressure build up due to pumping and restriction of flow of the process 

fluids. As temperature affects filtration behaviour, the device materials in contact with 

the process fluid must have a low specific heat capacity i.e. not exchange heat to or 

from the surroundings or the fluid.

For the purposes of a protot>pe design, a transparent material for the module housing 

would allow direct visualisation of the filter chamber, and therefore facilitate the correct 

priming of the filter and assessment of mixing.

b) Filter housing

For simpler fabrication, and analysis of fluid dynamics, a circular housing has been 

utilised for existing rotating disk filters. The size of the housing will depend on the 

hold-up requirement of the filtration rig i.e. as small as possible for USD requirements, 

but will mainly be dictated by the limitation imposed by fabrication techniques.

TFF is a pressure driven separation (see Chapter 2), and therefore the device must be 

able to maintain the necessary pressures generated on the retentate and permeate sides 

due to flow restriction by valves (backpressure). Thus, the design of chamber and the 

mechanical seals on the rotor shaft must be pressure tight.
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c) Membrane attributes

Devices in which the membrane mounted onto the rotor or the retentate exits through a 

hollow shaft through the membrane have been described (Murkes and Carlsson, 1988, 

Lee et al., 1995). However, as fabrication of such devices is complex, they will not be 

considered in the context of a microfiltration USD; the membrane will be located on the 

base of the unit.

d) Disk attributes

Bouzerar et al. (2000) also investigated the effects of disk geometry and position in 

relation to the filter and its housing. The authors found that permeate flux was 

independent of the disk to membrane (axial) gap, but increased when the gap from disk 

to housing (radial gap) was increased by 3mm. Brou et al. (2002) also describe the 

addition of radial vanes to the rotating the disk, which decreased fouling. The 

application of this modified style of disk to microfiltration of yeast suspensions, and its 

implications on power consumption and flux has also been studied.

Another important phenomena that has been noted is the variation of shear rate, and 

hence filtration as a function of radial distance from the axis of rotation (Bouzerar et al., 

2000). At low rotational speeds, cake formation is not prevented in the central part of 

the membrane. The implications on global performance of a range of shear rates across 

the membrane surface and in the module e.g. at the disk tip, are significant, especially 

for bioprocess stream components that are prone to damage by high local shear rates 

and pressure drops, such as cells and proteins (Levy et al., 1999).

In order to mitigate this radial variation Vogel and Kroner (1999) describe the use of a 

smooth, conically shaped rotor to establish a controlled shear field in which baby 

hamster kidney (BHK) cells experience a significant hydrodynamic lift away from the 

membrane surface, whilst maintaining cell viability.

With respect to the TFF USD, maximising flux is not the prime concern, so 

enhancement of the shear rate by modifications by e.g. radial vanes, is not necessary. 

However, minimisation of the radial variation of shear across the membrane surface 

may be important. Although the disk radius of the TFF USD would be much smaller
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than the devices described above (and therefore radial variation minimal) it would be 

wise to consider the use of a conical rotor, if it proved to be feasible to fabricate.

f i  Inlet and outlet configuration

The influence of device geometry and angular velocity on rotating disk performance is 

described by Bouzerar et al. (2000). Several inlet and outlet configurations were tested 

(see Figure 3.5).

Figure 3.5: Rotating disk module showing inlet and outlet configurations (after 

Bouzerar et al, 2000). Note that the device is mounted vertically.

At low speeds of rotation (below SOOrpm) the variations of permeate flux, and inlet and 

outlet pressure drop were similar for all five configurations. However, the peripheral 

pressure for configuration (v) was markedly higher. The authors’ objective was to 

optimise permeate flux, and configuration (v) gave the best performance, especially at 

higher rotational speeds (up to ISOOrpm).

However, the objective of the TFF USD is not to optimise filtration, but rather to mimic 

conventional filtration. Hence, the position of the ports need only to be designed for 

ease of access, and to ensure that proper mixing occurs in the filter, and that the filter 

surface is not bypassed.

Taking these issues into consideration, a prototype TFF USD device was fabricated in- 

house (Biochemical Engineering Workshop, UCL). A description of this device is 

given in the following section.
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3.3.2 Device Overview

Figure 3.6 shows photographs of the prototype device used for the scale-down 

experiments in this thesis.

»

 ̂ 5 6 7 8 1

Figure 3.6 : Photographs o f a purpose-built rotating disk device.

The device has the following features making it superior to existing scale-down devices:

• Uses 25mm membrane disks: Commercially available, disposable membrane disks 

can be used, obviating membrane cleaning if desired. The area available for 

filtration is 15 times smaller than commercial scale-down devices (see Table 3.1) 

and therefore much smaller volumes of feed are required for each experiment.

• Clear filter housing: the Perspex® chamber allows direct visualisation of the 

feed/retentate; this helps in ensuring proper mixing is occurring, and that all air 

bubbles are removed during device priming.

• Conical disk: the conical geometry and small diameter of the rotating disk negates 

radial variation in the shear produced at the membrane surface i.e. a uniform shear 

field is produced.

• Ability to adjust disk height and geometry: The construction of the rotary shaft seal 

was designed so the rotor is removable, and therefore can be replaced with rotors of 

different shapes and sizes, allowing for future modifications.
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• NFF capability: By sealing off the inlet and outlet ports, the device can function as a 

NFF unit, comparable to a stirred cell.

3.3.2.1 Mechanical specifications

Table 3.7 below summarises the options selected for the scale-down device prototype. 

Once the device had been fabricated and pressure leak tested with compressed air and 

water, the ancillary equipment to form a scale-down filtration rig could be selected.

Device

component

Discussion

Filter

housing

Perspex was used to construct the filter housing because it is non- 

corrosive, transparent, easy to machine, and has low water absorption. 

The support structures were made of an aluminium alloy with stainless 

steel screws and knurled nuts. Aluminium alloy was chosen because it is 

non-corrosive, easy to machine, cheap, lightweight, and of reasonable 

fatigue life. The rotor seal was made of a silcone o-ring mounted into a 

Delrin® (a general purpose mechanical plastic that has FDA/USD A 

dairy approval for food contact) support. The internal diameter was 21 

mm.

Membrane As stated above (see Chapter 1), the objective of USD is to scale 

systems down so they only require lO’s of millilitres of process material. 

With this in mind, and considering commercially available membrane 

formats as well as the ramifications of small membrane area on overall 

pore size distributions, it seems sensible to base a microfiltration USD 

on the widely available 25 mm circular disks (area of -0.0005 m^), 

which most membrane materials can be manufactured to. For a feed 

loading of 100 Lm'^ (typical of industrial applications), this would mean 

that less than 50 mL of feed would be required for each scale-down 

experiment.
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Device

component

Discussion

Membrane

support

The membrane will need to be sealed into place; a common method is to 

use a gasket or o-ring seal (see Figure 3.7).

o-rmg
25mm membrane disk 

membrane support plate

filtrate outlet 

base plate

Figure 3.1: Detail o f membrane support

Assuming an o-ring thickness of 2 mm, the available area for filtration 

would then be 3.46 x 10*̂  m  ̂ (this is almost fifteen times smaller than 

other scale-down devices currently available). As polymeric membranes 

are fragile, they need to be supported; this was achieved by using a 

support plate taken from a commercial device (Amicon stirred cell, 

Millipore, MA, USA), which has grooves etched into it to allow 

permeate flow, whilst supporting the membrane coupon.

Disk/rotor As the thickness of the o-ring is 2 mm, a clearance from the chamber 

wall of 2 mm would allow the disk to rotate above the whole area of the 

membrane, whilst maintaining a sufficient distance from the housing. 

The rotating disk above the membrane was therefore designed to be of 

diameter (R) 17 mm. It was constructed from stainless-steel 316 L; the 

conical disk itself was 3 mm thick at the centre, with a 5° angle to the 

horizontal. The rotor shaft was also 3 mm thick, and held into the filter 

housing with a custom-made Delrin® /silicon lip seal. The axial gap 

between the membrane and the disk were set by using specially made 

height-setting spacers (jigs); the disk was suspended 1 mm above the 

membrane surface for the experiments described in this thesis.
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Device

component

Discussion

Inlet and 

outlet 

configura

tion

Two opposing pipelines were created in the side of the filter housing, to 

allow recirculation of the feed/retentate. One port was put higher than 

the other to facilitate mixing within the chamber. As well as an inlet and 

outlet port, an additional port was added to enable the removal of air 

bubbles during system priming, and to enable flow normal to the 

membrane so that the device could function as a NFF device, as shown 

in Figure 3.8 below).

NFF/
priming rotor

inlet

chamber

outlet

Figure 3.8: Schematic o f feed/retentate port locations on the TFF USD 

device

The inlet pipes were fabricated from 1mm inner bore stainless steel 

tubes fixed into the Perspex housing using cyanoacrylate glue.

Disk drive 

motor

A DC-Micromotor was used to rotate the disk. A speed control card and 

feed back system was employed to keep speed constant, and a 

tachometer was added to the unit so that the rotation speed could be 

measured. The rotation speed range was set to be 0 to 5000 rpm, based 

on previous shear calculations (see section 3.2.2.2), with an accuracy of 

ilOrpm.

Table 3.7; Mechanical design on the scale-down device for TFF

3.3.3 Ancillary equipment selection

Figure 3.9 below shows a schematic of the scale-down rig and its ancillary equipment. 

The arrangement is the same as the conventional filtration rig, but on a smaller scale.
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Hence, the same experimental protocols, such as constant volume diafiltration, could be 

kept the same.

Feed 
reservoir ~

Ice-bath '
Magnetic__

stirrer plate

Retentate line

P1

1 1000  1 9

o
Rotor controller 

P2

Recirculation
Pump

P3

TFF USD 
device

Backpressure
valve

Permeate Permeate 
valve pump

Figure: 3.9: Schematic o f the TFF USD filtration rig (not to scale)

The feed reservoir used was a small plastic beaker, which was placed within a larger 

beaker full of ice (to maintain feed temperature during processing). The feed (retentate) 

was mixed using a magnetic flea, and placing the reservoir on a magnetic stirrer plate.

The retentate pump selected was a Gilson Minipuls-3 peristaltic pump (Gilson, WI, 

USA), which uses Ismatec Tygon R-3603 two-stop tubing (Cole Parmer Ltd, London, 

UK). Tygon was selected due to its biological and chemical inertness i.e. it would not 

be affected by the feed or cleaning fluids. Gilmont laboratory direct reading flowmeters 

(Cole Parmer Ltd, London, UK) were used to calibrate the pump. This pump is 

relatively pulse-free, which is desirable for small-scale operation (see section 3.1.2.1)

The transmembrane pressure was measured by digital manometers (Catalogue no. EW- 

68603-04, Cole Parmer Ltd, London, UK). These gauges were regularly calibrated 

according to the manufacturer’s instructions using compressed nitrogen gas.

A DC-Micromotor, 10.5 Watt, 24 Volt Linear Controller (LC 3002 System Faulhaber, 

Electro Mechanical Systems Ltd, Aldermaston, UK) was used to rotate the disk. The 

disk rotation in rpm was displayed on an LED panel.
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Needle valves (Cole Parmer Ltd, London, UK) were used to control the backpressure 

and the permeate flow. Permeate flow was also controlled by a Pharmacia peristaltic P- 

1 pump (Amersham Biosciences, UK), which again used Ismatec Tygon R-3603 two- 

stop tubing (Cole Parmer Ltd, London, UK), but of a smaller internal diameter than the 

retentate tubing.The arrangement of the equipment was optimised to minimise the hold 

up of the rig; this was determined to be less than 3mL. Once the rig design had been 

finalised, the assessment of the ability of the device to mimic larger scale, flat-sheet, 

TFF filtration could begin, and this work is described in Chapters 5, 6 and 7.

3.4 Summary

The rationale behind the development of a non-geometric scale-down device to mimic 

TFF has been described above. The device uses a rotating disk to create turbulence at 

the surface of the membrane, which is usually achieved by feed recirculation in flat- 

sheet devices. The device was designed to meet the criteria set out for ultra scale-down 

i.e. mimic large-scale performance with 1-lOOmL feed volumes for each experiment 

(see Chapter 1). The TFF USD device approximately provides a 300-fold scale-down to 

traditional pilot-scale equipment (O.lm^ cassettes), the benefits of which have been 

outlined in Chapter 1.

The issues surrounding the use of such small scale devices, and small amount of process 

material have been discussed, and mitigating strategies proposed to address them. 

These strategies were incorporated into the selection of the TFF ancillary equipment, as 

well as the device operating procedure, which is described further in Chapter 4.

A theoretical calculation has been presented to support the hypothesis that the rotating 

disk device can generate the membrane wall shear rates encountered in conventional 

flat-sheet devices. In order to see whether maintaining this operating parameter can 

faithfully mimic filtration behaviour in terms of flux and species transmission requires 

empirical studies. This has been achieved by comparison with commercially available 

devices, using representative biological process streams (yeast suspension, yeast 

homogenate, a bacterial lysate, and a mammalian cell broth) in Chapters 5, 6 and 7 

respectively. For convenience, the materials and methods used for all these studies are 

collated in Chapter 4.
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Chapter 4 Materials and Methods

4.1 Introduction

The following chapter describes the experimental protocols, equipment, and materials 

used throughout this thesis. These techniques have been grouped together as such to 

avoid repetition in each chapter and for ease of reference.

Section 4.1 and 4.3 give details of the filtration equipment and protocols employed, 

whilst sections 4.4 to 4.7 relate to the feed systems investigated in Chapters 5, 6 and 7.

4.2 Filtration equipment

The TFF USD rig has been detailed in Chapter 3, but the conventional filtration rigs 

used in thesis are described below.

4.2.1 Pilot-scale

The pilot-scale filtration rig used was a ProFlux® M l2 rig (Millipore Corporation, MA, 

USA), with a baffled reservoir. A schematic is given in Figure 4.1 below. Two 

Masterflex® L/S™ (Cole-Parmer Instrument Company, IL, USA) peristaltic pumps 

were incorporated; the retentate recirculation pump was an Easy-Load® II Model 

777201-62 and the permeate flux control pump was a Quick-Load® Model 70201-24. 

The rig also included three pressure transducers to measure inlet, outlet and permeate 

pressures connected to a digital display. The Pellicon 2-mini cassettes (Millipore 

Corporation, MA, USA) fitted into a stainless steel cassette holder were used with this 

rig.

128



Materials and Methods

Pressure
transducer

Membrane
Process

Tank
Peristaltic

Pump

Diafiltration
Buffer

Waste
Permeate

 -{><-------
Backpressure

Valve

Sampling

Figure 4.1: Diagrammatic representation o f the Proflux M l 2 rig in one pump format 

connected to the Pellicon Mini cassette holder. Pj. P2 and P3 are the inlet, outlet and 

permeate pressure transducer respectively.

4.2.2 Laboratory-scale

A LabScale™ TFF System (Millipore Corporation, MA, USA) was also used for the 

diafiltration studies in Chapters 5 and 6 . The rig schematic was similar to the one 

iillustrated in Figure 4.1 above. Two Watson-Marlow (Watson-Marlow Bredel, 

Falmouth, UK) peristaltic pumps were incorporated; the retentate recirculation pump 

was a 505Du pump with a six-roller R2 head, which enabled smoother flow using a 

special y-shaped tubing element. The permeate flux control pump was a 500Di pump 

with 4 rollers. The rig also included three bourdon-type pressure transducers to measure 

inlet, outlet and permeate pressures. The Pellicon XL cassettes (Millipore Corporation, 

MA, USA) were used with this rig.
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4.23 Membrane formats and types

Several types of format were used for the studies:

• Pellicon 2 mini (Millipore, USA), flat-sheet cassettes of area O.lm^;

• Centramate (Pall, UK), flat-sheet cassettes of area O.lm^;

• Pellicon XL (Millipore, USA), flat-sheet cassettes of area 0.05m^;

• Precut 25mm disks (Millipore, USA; Pall, UK);

• In-house prepared 25mm disks (membrane sheet kindly supplied by D. LaCasse, 

Millipore, USA). The disks were cut from the middle of the sheet using a titanium 

die and punch press to reduce variability and great care was taken when handling the 

sheet not to touch the coupons with bare hands.

Table 4.1 lists the details of the membrane types and formats used for the experiments 

described in this thesis.

Feed System Pore size/ 

MWCO

Membrane

Material

Format Membrane 

Area (m̂ )

Manufacturer

S. cerevisiae 

whole cell 

suspension

0.65pm Durapore® Pellicon 2-mini 

cassette, V-screen 

25mm disks

0.1

3.46 X lO"*

Millipore

S. cerevisiae 

homogenate

0.1pm Durapore® Pellicon 2-mini V- 

screen cassette, 

25mm disks

0.1

3.46 X 10-̂

Millipore

E. coli lysate lOOOkDa Biomax® Pellicon 2-mini V- 

screen cassette, 

Pellicon XL 

cassette,

25mm disks

0.1

0.05

3.46 X 10"*

Millipore

Mammalian

cell

fermentation

broth

0.2 pm Supor®-200 Centramate cassette, 

25mm disks

0.1

3.46x10-^

Pall

Table 4.1: Membrane materials and formats used
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All membranes were air-integrity tested and subjected to water permeability tests prior 

to use. Those not within the manufacturer’s recommended ranges were regenerated 

(cleaned and sanitised) and retested, or in the case of the 25mm disks, discarded.

4.3 Filtration protocols

A ty^pical experimental protocol for the filtration experiments is listed below:

(i) Wet the membrane.

(ii) Air integrity test.

(iii) Water flux tests.

(iv) Buffer conditioning.

(v) With Permeate valve closed, slowly drain buffer and replace with feed.

(vi) Ramp up the feed pump to the desired crossflow velocity, and slowly 

open the permeate valve.

(vii) Ramp up the permeate pump to the desired setting.

(viii) Perform the filtration experiment.

(ix) Buffer flush.

(x) Water flush.

(xi) Water flux tests.

(xii) Clean the membrane.

(xiii) Water flush.

(xiv) Water flux tests.

(xv) Storage solution flush.

There were several types of filtration experiment, each of which are described below. 

Also, steps (xii) to (xv) are not applicable to the 25mm disks, which were single-use.

4.3.1 Air integrity testing

These were conducted as per manufacturer’s recommendations (Technical procedures, 

Millipore, USA), using compressed air at 3barg pressure. If air flow through the 

membrane exceeded 5 x 10'  ̂ m .̂s'  ̂ (Scm^.min'^) air flow, then the membrane was 

rejected.
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4.3.2 Conventional filtration experiments

Flux was measured using a balance (model BB2400 Metler-Toledo Ltd., Leicester, 

U.K.) and stopwatch over 1 min intervals after steady state permeate flux had been 

reached. The feed was kept below 12°C during filtration using a cooling jacket on the 

reser\'oir tanks, and agitation ensured that the suspension remained homogeneous.

4.3.2.1 Determination of critical flux

To find the optimal operating conditions for the system, flux was raised by step 

increments at fixed time intervals and transmembrane pressure (TMP) was monitored. 

Permeate was recirculated back into the tank to maintain a constant concentration of 

solids and product (see also Section 4.3.2.2). Permeate samples were taken after flux 

stabilisation in order to assess the percentage of transmission, defined as the ratio of 

antibody fragment concentration in the permeate to that in the retentate. The critical 

flux region was the point at which the TMP increased rapidly at a fixed imposed flux.

4.3.2.2 Total permeate recycle experiments

Buffer conditioning, with a buffer volume equal to 25% of the feed volume, was 

performed before ramped addition to the process tank of the feed. With the permeate 

pump off. backpressure valve closed and sampling valve open the buffer flowed out of 

the system. When the feed approached the sampling valve, this valve was closed 

rapidly and the backpressure valve opened simultaneously (buffer conditioning is 

necessar)' to avoid air pockets in the permeate side, which may have a detrimental effect 

on transmission (Meagher et aL, 1994)). The speed of the feed pump was increased to 

the desired value and the retentate valve was closed partially in order to maintain some 

backpressure. At this point (taken as t=0) the permeate pump was started at the desired 

value and the transmembrane pressure (TMP) was set at by adjusting the retentate valve. 

The permeate was continuously fed back into the process tank. Samples were taken 

from the retentate and from the permeate at regular intervals. The inlet, outlet and 

permeate pressures were monitored throughout the process.
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4.3 2.3 Concentration experiments

These procedure was as used in section 4.2.2.2, but the permeate was collected in a 

separate reserv oir i.e. not recycled.

4.3.2 4 Diafiltration experiments

These were conducted in the same manner as the concentration experiments (see section 

4.2.2.3), but diafiltration buffer was added to the feed reservoir at the same rate of 

permeate removal. This was achieved by using an identical pump to that on the 

permeate line at the same settings, and monitoring tank level visually to ensure a 

constant volume was maintained.

4.3 2.5 Membrane cleaning

Between experiments the membrane system was flushed with RO water, cleaned and 

sanitised according to the manufacturers' recommendations with O.IN sodium 

hydroxide at 40°C, for 0.5h, flushed with RO water and then followed by O.IN 

phosphoric acid at 40°C. for 0.5h (Cassette Maintenance Procedures, Millipore, USA). 

For the CAT trials (Chapter 7). the membranes were cleaned with a 0.1% SDS solution 

at 40°C. for 0.5h (Cassette Operating Instructions, Pall, UK).

Pure water flux was measured at different feed flows after cleaning to assess the 

effectiveness of the cleaning step. The membrane was considered clean once the clean 

water flux test exceeded 80% of the original value. When lower values of water flux 

were obtained the cleaning procedure was repeated.

4.33 TFF USD experiments

Due to the nature of the TFF USD device, the set-up procedure was different to that of 

the cassettes, as the membrane disks were removeable. The differences to the 

conventional procedures are described below.
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4.3.3.1 Unit assembly and buffer priming

The membrane disks were into put the membrane support plate (shiny side up), wetted 

with RO water, and the o-ring placed on top, taking care not to touch the membrane 

surface. Latex gloves were worn to avoid transferring skin proteins to the equipment.

The support plate was then put into position within the unit, and sealed in place by 

tightening the knurled screws. The TFF USD device was then attached to the ancillary 

equipment via small bore Tygon® tubing (Cole Parmer Instrument Company, UK) with 

C-flex® luer (Cole Parmer Instrument Company, UK) connections.

The unit was hydraulically pressure tested by filling \\ith RO water and checking for 

leaks. The disk was also rotated to check the shaft seal. The unit was emptied of water, 

prior to the air integrity test, which was conducted by placing the air supply to the top 

port of the chamber, and following the procedure as in section 4.2.1.

The unit was primed with buffer by recirculating the buffer around the rig and tilting the 

chamber so any air bubbles rose to the top of the chamber. The air was vented via the 

top port. The filtration experiments were then carried out as described in section 4.2.2.

4.33.2 NFF experiments

The NFF experiments were conducted by sealing the inlet and outlet ports, and feeding 

via the top port. Although left in place, the disk was not rotated for these experiments.

4.33.3 Cleaning procedures

The disks were disposable, and once the unit was disassembled, and the membrane 

removes, the parts were rinsed thoroughly in RO Water, IM sodium hydroxide solution 

and rinsed again before each experiment. All tubing was disposable also, and prior to 

the studies at Cambridge Antibody Technology, the unit was autoclaved, and new 

tubing used. All surfaces of the ancillary equipment were sanitised using isopropyl 

alcohol.
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4.4 S. cerevisiae whole cell suspension and homogenate

Yeast alcohol dehydrogenases are tetrameric isoenz>Tnes of a molecular mass of 

approximately 141kDa. As intracellular soluble proteins, they provide a suitable system 

for work involving recovery and purification operations of typical bioprocess unit 

operations. In addition, commercially available packed baker's yeast {Saccharomyces 

cerexisiae) provides a cheap and reproducible starting source material. Feeds were 

freshly prepared prior to each experiment. All chemicals were obtained from Sigma- 

Aldrich Ltd, Dorset, UK, unless otherwise stated.

4.4.1 S. cerevisiae suspension preparation

Packed baker's yeast (J.W. Pike Ltd., UK) was suspended in phosphate buffer (O.IM 

KH2PO4. pH 6.5) to give a final wet weight concentration of 50 g packed weight L '\ 

For transmission studies, alcohol dehydrogenase (ADH) from Saccharomyces 

cerexisiae (>300 units ADH/mg protein, catalogue number A3263, Sigma-Aldrich Ltd., 

UK) was added to the whole yeast cell suspension to give a final concentration of 200 

units.L'^ feed.

To prepare the S. cerexisiae homogenate suspensions, packed baker's yeast (J.W. Pike 

Ltd., UK) was suspended in phosphate buffer (O.IM KH2PO4, pH 6.5) to give a wet 

weight concentration of 500g.L'^ packed weight and disrupted using a high pressure 

homogeniser (Manton-Gaulin Model Lab 60, APV, Crawley, Sussex) at 500barg for 5 

discrete passes, resulting in at least 98% release of intracellular contents. The 

temperature of the suspension was maintained at 5-10°C during homogenisation using a 

glycol cooling system. The yeast homogenate concentration was then adjusted using 

phosphate buffer to a final wet weight concentration of 50g packed weight L '\

4.4.2 S, cerevisiae suspension analytical techniques

Feed, retentate and permeate samples were collected into eppendorf tubes, which were 

kept on ice. At the end of each experiment, the samples were spun down at 13 OOOrpm 

(-14 OOOg) for 10 minutes in a Microfuge™ 11 (Beckman, CA, USA) at room
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temperature. The recovered supernatants were assayed for total soluble protein content 

and ADH activity as described below.

4.4.2.1 Total protein assay

Total protein concentrations were determined using the BIO-RAD protein assay (BIO

RAD Laboratories, Hemel Hempstead, Hertfordshire, U.K.). The assay is based on the 

colour change of a dye (Coomassie Brilliant Blue G-250 in acidic solution) when 

binding to protein occurs (Bradford, 1976). The dye-binding response to protein 

concentrations has been found to give an accurate but not entirely linear response. The 

dye reagent (BIO-RAD Laboratories, Hemel Hempstead, Hertfordshire, U.K.), supplied 

as a five-fold concentrate, was diluted using RO water.

50pL of sample and 2.5mL of diluted assay reagent were mixed in a cuvette and the 

absorbance at 595nm was recorded after 5 minutes in a DU® Spectrophotometer, 

(Beckman Instruments (UK) Ltd., High Wycombe, UK) and blanked against 2.5mL of 

reagent with 50 pL of RO water. For very dilute samples, or samples taken from scale- 

down experiments (^ 5 p g  protein.mL'^) a microassay procedure was followed. In this 

case O.SmL of sample or standard was mixed with O.SmL of assay reagent for protein 

concentration determination. Samples were diluted with phosphate buffer to produce a 

response ranging from 0.1 to 0.9 absorbance units and assayed in triplicate. The 

standard error in the assay was usually found to be less than 18%.

Protein concentrations were determined from a standard curve determined for each 

batch of dye reagent made. Bovine serum albumin (BSA), was used as the protein 

standard, for which a range of dilutions (0.2 - l.Omg.mL*' for the standard assays, 5- 

25pg.mL'^ for the microassays) were used.

4.4.2 2 Alcohol dehydrogenase activity

ADH activity was assayed using the method described by Bergmeyer (1983). The rate 

of reaction was measured spectrophotometrically by monitoring the change in
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absorbance of the solution at 340 nm with ethanol as substrate. Nicotinamide-adenine 

dinucleotide (NAD^) is reduced during the reaction:

Ethanol + NAD^ o - Acetaldehyde + NADH +

The enzymatic activity (E) expressed in units of activity per millilitre of solution, is 

given by equation 4.1.

where 8340 is the extinction coefficient = 6.22cm^.pmof^ and is the rate of change
At

of absorbance at 340nm, Vs is the sample volume added to the cuvette, Vc is the total 

volume in the cuvette and %  is the dilution factor.

The assay mix contained 0.18M NAD^, O.IM glutathione, 0.62M semicarbazide 

hydrochloride and 3.5% v/v ethanol (BDH, Merck Ltd., Dorset, U.K.). Samples were 

diluted using phosphate buffer (O.IM KH2PO4, pH 6.5) so that the maximum 

absorbance change was less than 0.7 absorbance units/min. 0.05mL of each sample was 

added to 3mL of assay mix; this small sample volume was also suitable for samples 

taken from scale-down experiments. The reaction was monitored for 60s and repeated 

in triplicate for analytical purposes. The standard error in the assay was usually found 

to be less than 12%.

4.5 E. coli lysate

Previous work at UCL studied the membrane filtration of a periplasmic Fab’ antibody 

fragment expressed by Escherichia coli (Novais, 2001). To make use of this existing 

data, further experiments were conducted using pilot-scale and scale-down filtration 

rigs. All chemicals were obtained from Sigma-Aldrich Ltd, Dorset, UK, unless 

otherwise stated.
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4.5.1 Bacterial strain and plasmid

The strain used in the fermentation was a wild type E. coli W3110 (ATCC 27325) 

transformed with the plasmid pAGP-4. The plasmid pAGP-4 encoded the 

chloramphenicol resistance gene (Cm) and the 4D5 Fab’ antibody fragment directed 

against the extracellular domain of pi 85™^ and derived from HumAb4D5 (Carter et 

al., 1992). Coding sequences for the Fab’ light chain and heavy chain Fd’ fragment 

were arranged in a dicistronic operon under transcriptional control of the E. coli tac 

promoter inducible by addition of isopropyl-p-D-thiogalactopyranoside (IPTG) or 

lactose. Each antibody chain was preceded by the E. coli omp A signal sequence to 

direct secretion to the periplasmic space.

4.5.2 Fermentation and cell harvesting

A single 45OL fermentation was carried out with defined medium. The protocol is 

described elsewhere in Novais (2001). The cells were harvested from the fermentation 

broth with a CARR P6 Powerfuge (CARR Separations Inc, Franklin, MA) at 17 000 

rpm (19 OOOg) and at an operating flow rate of 60 Lhr'\ Feed was pumped through the 

centrifuge using a Watson Marlow 605Di Peristaltic pump (Watson Marlow Ltd., 

Falmouth, UK). The cell paste was then frozen in 1kg lots and stored at -80°C.

4.53 Lysate preparation (periplasmic release)

Periplasmic extraction buffer was prepared by dissolving pre-weighed quantities of 

Tris[hydroxymeth>i]aminomethane (Trizma Base) and Ethylendiaminetetra-acetic acid 

(EDTA) in water purified by reverse osmosis (RO water, 20-60p.S.cm'^) to a final 

concentration of lOOmM and lOmM respectively. The pH was adjusted to 7.4 with HCl 

or H3PO4. Frozen E. coli cell paste was resuspended in periplasmic extraction buffer, 

which was preheated to 40°C, to a final concentration of 283g of cells (wet weight) per 

2L of buffer (47g dcw.L*'). After thorough mixing using a magnetic stirrer, the mixture 

was heated to 60°C for 3 hours in a LH Series 210 fermenter (LH Fermentation, 

Inceltech UK Ltd, Berkshire, UK) stirred at 300rpm. The resulting spheroplast 

suspension was then left to cool down to ambient temperature and used for filtration
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experiments immediately or stored in a refrigerator for up to 2 days. This suspension is 

referred to as the lysate or feed in this thesis.

4.5.4 Fab’ detection and quantification by ELISA

A microplate-based Enzyme-Linked Immunosorbent Assay (ELISA) was used as a 

means to quantify Fab' antibody fragment. As such small quantities of sample are 

required for this type of assay, it was suitable for experiments conducted at all scales of 

filtration. All chemicals were obtained from Sigma-Aldrich Ltd, Dorset, UK, unless 

otherwise stated.

4.5.4.1 Sample preparation

All feed, retentate and permeate samples were stored at -20°C until required. The 

impact of overnight freezing versus overnight storage at 4°C has been previously 

assessed for the lysate (Novais, 2001). The frozen sample did show a higher quantity of 

Fab* fragment, but the difference between the two measurements was 8%, less than the 

error of the ELISA assay (assay error -11%, Bowering, 2000) and hence not deemed 

significant.

The samples were the thawed at room temperature prior to centrifugation at 13 000 rpm 

(-14 000 g) for 10 minutes in a Microfuge™ 11 (Beckman, CA, USA). The 

supernatant was then diluted (usually 1:100) with PBS and analysed as described below.

4.5 4.2 ELISA analysis

NUNC 96 well maxisorp immunoplates (Life Technologies Ltd, Paisley, UK) were 

coated overnight at 4°C with HP6045 (a murine monoclonal antibody, Celltech 

Chiroscience Ltd) at a concentration of 2pg ml'^ in PBS. After 4 washes with 

PBS/Tween in a Columbus Plate Washer (Tecan UK Ltd, Reading, UK), purified Fab’ 

standard (2 lanes), a blank of sample conjugate buffer (1 lane) and samples (9 lanes) 

appropriately diluted in sample conjugate buffer (usually 1 in 100) were added to the 

top row of the plate. A series of 1 in 2 serial dilution was performed on the plate with
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100|il of sample conjugate buffer and the plate was covered with cling-film. It was then 

incubated for one hour on a 3-D rocking platform STR9 (Stuart Scientific, UK) at room 

temperature at SOrpm. The wash step was then repeated and lOOpl of GDI2 peroxidase 

(The Binding Site Ltd, Birmingham, UK) was added to each well in a dilution of 1 in 

2000 of sample conjugate buffer. The plate was again incubated on a rocking platform 

in the same conditions as before for a further hour. Another wash step was carried out 

and lOOpl of the substrate solution was added to each well. The absorbance at 630nm 

was recorded with a Titertek Multiskan PLUS MK II microplate reader (Flow 

Laboratories, High Wycombe, UK) after 5 to 7 minutes. The concentration of Fab’ was 

determined from a standard cuive prepared for each plate (see section 4.5.4.4).

4.5.43 ELISA buffers

PBS and PBS/Tween was made by dissolving pre-prepared sachets in IL of RO water. 

The final pH was 7.1-7.3.

Sample conjugate buffer was prepared by dissolving 6.05g of tris amino-methane, 2.92g 

NaCl, Ig of casein and 0.1 mL of Tween-20 in IL of RO water. The pH was adjusted to 

7.0 with concentrated HCl and the solution was filtered with 0.22pm filter paper 

(Whatman, UK) before storage at 4°C.

The substrate solution was prepared immediately before use by adding lOOpL TMB 

solution (lOmgL*' of 3,3',5,5'-tetramethylbenzidine) dissolved in dimethylsulphoxide, 

(DMSO) and lOOpL of H2O2 (1 in 50 solution of 30% w/w H2O2 in RO water) to lOmL 

of acetate buffer (O.IM sodium acetate/citric buffer pH 6.0).

4 5.4.4 Production of Fab’ standards

Purified 4D5 Fab’ standards for the calibration of the ELISA assays were obtained from 

clarified periplasmic extracts of pre-harvested cell paste, using packed bed affinity 

protein A chromatography. The details of the procedures are given elsewhere (Novais 

2001 ; Bowering 2000) and will therefore not be repeated here.
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Purified Fab’ was exchanged into a buffer of lOOmM acetate pH5.5, containing 125mM 

sodium chloride and 0.02% sodium azide, for long term storage. The concentration of 

the resulting solution was determined from the absorbance at 280nm, using the Beer- 

Lambert equation

Algo = Gcl (4.2)

Where; Aigo = absorbance at 280nm

8 = extinction coefficient = 1.43 for a 1 mg.mL'^ solution (Bowering, 2000) 

c = concentration (mg.mL'*)

1 = path length = 1cm

4.5.5 Diafiltration buffers

The diafiltration buffer was prepared by dissolving a pre-weighed amount of sodium 

chloride (Sigma Chemicals, UK) in RO water to a final concentration of ISOmM. This 

buffer was adjusted to either pH 7.4 or pH 8.3 using a IM sodium hydroxide solution 

(Sigma Chemicals, UK).

4.6 Mammalian cell fermentation broth

For reasons of commercial sensitivity, the details of this experimental system are not 

described here, as they are proprietary to Cambridge Antibody Technology Ltd (CaT). 

The fermentation broth used was a murine hybridoma culture expressing an antibody 

(MAb) which were stored for several days at 4°C i.e. zero cell viability. The broth was 

diluted further 1 in 2 with PBS as only small quantities were available for 

experimentation. The monoclonal antibody (Mab) product concentration was 

determined by a Protein A chromatography assay.

4.7 Summary

The above sections have outlined the protocols used to generate the results which are 

presented in the following chapters, beginning with verification of the TFF USD device 

with yeast-based feeds (Chapter 5).
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Chapter 5 Verification of TFF USD Device with Yeast 

Suspensions

5.1 Introduction

Follo's\ing the development of a novel device in Chapter 3 to mimic tangential flow 

filtration, the next step was to test the system using typical bioprocess feeds, and to 

compare the results with data obtained from conventional devices. Results are 

presented showing how data from the scale-down device (<50mL) correlates well with 

pilot-scale results (lOL) for a range of representative bioprocess materials. It is 

demonstrated how typical tangential-flow microfiltration experiments can be conducted 

using greatly reduced quantities of feed. This work provided the necessary precursor to 

industrial verification trials undertaken in collaboration with Cambridge Antibody 

Technology Ltd, which is reported in Chapter 7.

Successful scale-down of any unit operation depends on the availability of relevant 

material for study i.e. material that is representative of the preceding operation at 

process scale conditions. Large-scale equipment will probably never perform as well as 

its ideal laboratory counterpart due to changes in time constants, mode of operation and 

shear, despite innovative improvements made by manufacturers (Boych>n et al., 2000).

The rotating disk device developed in this study offers the opportunity to account 

independently for shear degradation during filtration as shear is decoupled from the 

recirculation rate; during the TFF of fermentation broths, shear stresses often cause 

damage to cells/proteins, or cause aggregation. Shear effects are often ignored in the 

control and optimisation of filtration processes, although they may influence the 

filtration behaviour (Shimizu et al., 1993). Such investigations were not carried out 

here, as yeast cells and yeast homogenate feeds are relatively shear insensitive c.f. other 

bioprocess streams, and neither cell lysis, nor product damage have been observed in 

conventional bioprocess equipment (Lee et al., 1995; Okec, 1998).

This chapter describes the work carried out to compare the performance of the TFF 

USD and commercially available cassettes operating under similar conditions, using 

common bioprocess feeds {S. cerevisiae suspensions), and evaluate the models
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described in Chapter 2. The first section describes the estimation of wall shear rates in a 

conventional flat-sheet device, as non-linear scaling of TFF requires that the shear rate 

at the membrane surface be maintained (see Chapter 3). The filtration systems, 

materials and experimental methods used are described in detail in Chapters 3 and 4. 

Flux data will be presented as units of LMH (L.m’̂ .h*̂ ). Although these are not strictly 

S.I. units, they are the industry standard, and are almost universally employed in the 

literature.

5.2 Estimation of wall shear in a filtration cassette

Scaling of membrane filtration unit operations, whether scaling linearly or non-linearly 

requires keeping shear at the membrane surface (wall shear) constant (Brose et al., 

1995, van Reis et al., 1997). Hence, in order to scale up or down, or change membrane 

module t>pe, it is necessary to calculate the shear rates generated in manufacturing scale 

equipment, at the desired operating conditions. The following section describes a 

method to estimate these values for a Pellicon 2 mini, V-screen, cassette (Millipore, 

USA). This was the conventional device chosen to compare the TFF USD device 

against.

A typical membrane filtration cassette comprises of a stack of rectangular membranes 

arranged in pairs in which two discrete systems of flow passages are provided for 

conducting liquids along opposite surfaces of each membrane; that is to say, a first 

system for conducting feed liquid or retentate, and a second system for conducting 

permeate. The longitudinal edge portions of adjoining membranes of each two 

successive pairs are bound together in a cured binder along the entire length of the 

edges such that a fluid tight seal is formed between these adjoining membranes in a 

marginal zone behind these edges. The construction of commercially available devices 

is proprietary to the manufacturer, and therefore precise details of cassette construction 

are not readily available in the public domain. This is a major obstacle to the definitive 

characterisation of such devices and necessitates the use of approximate methods.

The Pellicon 2 mini module has a membrane area of O.lm^ incorporated within a 

rectangular cassette. Mass transfer is enhanced by the presence of a net-like turbulence 

promoter (V-screen), also called a spacer, which is inserted between each membrane
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fold. The V-screen is an open-channel spacer suitable for high viscosity feeds and high 

product concentrations. Freudenberg'*’’̂  borders (non-woven support substrate) provide 

a gap in the feed channel, minimising the potential intrusion of the screen into the 

membrane (C. Christy, Millipore Corporation, personal communication, 2001). The 

membrane unit is encased in a rigid end-cap, to provide sealing compatibility with the 

associated filter holder hardware. A schematic of the cross-section of the cassette is 

illustrated in Figure 5.1.

Plan View End Elevation

Retentate

Membrane

Permeate

Permeate

Membrane If
X 3

Feed

Turbulence
Promoting

Screen

Feed Support
Substrate

Figure 5.1: Schematic o f the feed channel o f a Pellicon 2 mini, V-screen, cassette.

Due to the complex geometry, calculation of the wall shear rate is not a trivial matter, 

although some attempts have been made in the literature. Current methods include: 

Pressure drop calculations (Da Costa et al., 1994);

• Computational fluid dynamics (CFD) (Serra et al., 1995; Li et al., 2004);

• Biological probes: insect cells, mammalian cells (Vandanjon et al., 1999; Kelly 

et al., 2004).

The most common approach is to correlate shear rate to pressure losses along the 

channel length, or transcartridge pressure drop (APtc). The simplest method is to 

consider the filtration channel as a rectangular duct. Many authors have used the 

following equation to estimate wall shear based on the calculated open channel 

dimensions (Patel et al., 1987; Lee et al., 1995; Pamham and Davis, 1995):

T.., = 6 u [5.1]
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where u is the feed velocity and b is the effective channel height (based on the pressure 

drop within the feed channel). The pressure drop of the device is determined 

experimentally. Such calculations are complicated by the following factors:

• Only part of the pressure losses are due to friction at the wall.

• The presence of a screen affects the effective channel width and cross-sectional 

area.

• The channels in all screened devices are subject to some slight deformation resulting 

in changes in the flow characteristics.

• Flow is not well developed and is difficult to characterize as laminar or turbulent.

The most sophisticated methods employ computational fluid dynamics (Pellerin et al., 

1995; Weisner et al., 1998; Li et al., 2002), but their use is limited to simplified spacer 

design and module dimensions. Such modelling is labour intensive and was not 

possible in the time available for this project.

However, Da Costa et al. (1994) presented a semi-empirical model to model pressure 

drop for channels containing several industrial spacer designs. The authors noted that in 

spacer-filled channels, the transcartridge pressure drop is not all due to frictional losses 

at the walls. Viscous drag and form drag due to the spacer and kinetic losses due to 

directional flow change also contribute to pressure losses along the length of the 

cassette. According to their estimations of pressure drop components (Da Costa et al., 

1994), viscous drag on the chaimel walls (APf) contributed approximately 2 to 7 % of 

the pressure drop (depending on spacer type and fluid velocity) e.g. for feed velocities 

around lm s '\

AP^=0.07AP,, [5.2]

Nevertheless, equation [5.2] may give a conservative estimate as Karode and Kumar 

(2001) suggest that the relative contribution of the pressure drop terms used by Da 

Costa et al. (1994) may not have been correct, even though overall channel pressure 

drop was successfully determined.

Hence, a rough value for wall shear rate may be estimated by determining transcartridge 

pressure drop, although caution is advised in the use of such approximate values to
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equate flux performance between devices. Actual testing will always be required when 

employing this method.

As suggested above, another approach to estimate the shear rates encountered in a 

complex geometry is to use a biological probe (Vandanjon et al., 1999; Kelly et al., 

2004). This idea is explored further in Chapter 9. Nevertheless, again only an 

approximate range of the shear rate in the cassette can be estimated using this method.

5.2.1 Calculation of hydraulic mean diameter

Most pressure drop equations are derived for circular pipes. For turbulent flow in a duct 

of non-circular cross-section, the hydraulic mean diameter (du) may be used in place of 

the pipe diameter and the formulae for circular pipes can then be applied v^ithout 

introducing a large error (Coulson and Richardson, 1990). This method of approach is 

entirely empirical. The parameter dn is generally defined by:

dn = 4 x  cross-section of the flow channel [5.3]

wetted circumference

For a rectangular channel of height h, and width w, this becomes

However, for laminar flow this method is not applicable, and exact expressions relating 

the pressure drop to the velocity can be obtained for ducts of certain shapes only. 

Hence, the Reynolds number should be checked using equation [5.5]

Re = ^ Re>2000 for transition or turbulent flow [5.5]

Newer definitions of hydraulic diameters for turbulence promoter are available in the 

literature but they have been developed for specific types of spacer geometry e.g. 

circular rods (Zimmerer and Kottke, 1996).

Table 5.10 lists the dimensions used in the calculations for the Pellicon 2 mini cassette.
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inches m

Channel height (h) 0.03 0.000762

Channel width (w) 1.2 0.03048

Channel length (1) 6 0.1524

Area available fo r  crossflow (m^) 2.32 x i a ^

Table 5.1: Pellicon 2 mini cassette dimensions (C. Christy, Millipore Corporation 

France, personal communication).

Using this information and equation [5.4], the value of dn = 0.0015m for the Pellicon 2 

mini cassette was calculated and used in the analysis below.

5.2.2 Experimental determination of wall shear rate

Supposing a fluid is flowing through a circular pipe of length / and radius r (diameter d) 

over which the change in pressure due to friction is AP/, then a force balance on the 

fluid in the pipe gives (Coulson and Richardson, 1990):

-  âsPf7tr~ = l7trl{-T^. )

where is the wall shear stress.

Replacing d  with dn gives the following equation for a rectangular geometry: 

—

So from equation [5.4] this becomes 

■ 2l(h + M-)

Shear stress (r) and shear rate (y) are related by the following equation

[5.6]

[5.7]

[5.8]

r = [5.9]
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where p is the fluid dynamic viscosity.

There are correlations for estimating pressure drop when the fluid velocity is known, but 

for a complex and unknown geometry, such as the Pellicon 2 mini cassette, 

experimental determination of pressure drop on the retentate side of the cassette is 

required. Thus, the wall shear rate can be estimated.

De-ionised water was recirculated through the cassette at different flow rates, and the 

inlet, outlet and permeate pressures were recorded. The Proflux M l2 filtration rig was 

employed, details of which are give in Chapter 4. During operation, the permeate port 

was closed so that the transmembrane pressure was zero i.e. fluid flow was only along 

the cartridge. Table 5.2 gives the measured values of pressure drop and the calculated 

wall shear rate in the Pellicon 2 mini cassette at the conditions tested.

The wall shear rate values in Table 5.2 compare well \\ith those estimated by CFD 

modelling of a spacer filled channel (Karode and Kumar, 2001). Shear rates at the 

channel faces for several spacers at an inlet velocity of Ims'^ were between 100 and 

7000s'\ However, it should be noted that the flow at these feed velocities are not 

turbulent (Re<2000) so it may not be valid to use the mean hydraulic diameter 

substitution. As a result, such an approximate calculation of wall shear rate cannot be 

relied upon to equate flux performance between devices; experimental validation is 

required.

Flowrate (L.h ') velocity (m.s' )̂ Reynolds number TMP (kPa) Yw(s')

31.8 fr38 271 21 3210

49.8 0.60 424 28 4281

76.2 0.91 649 34 5351

105 1.26 895 48 7491

139.2 1.66 1186 62 9631

Table 5.2: Experimentally estimated wall shear rates in the Pellicon 2 mini cassette.

The empirical approach finally used was to infer the wall shear rate values of the 

cassette from comparative data produced by the TFT USD device. Flux (J) versus
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transmembrane pressure (TMP) (excursion curves), were generated with the 

conventional TFF device, and similar plots were generated with the TFF USD by at a 

selected rotating disk speed. The determination of the shear at the membrane in the TFF 

USD is somewhat easier (see Chapter 3), and if filtration performance is identical, then 

it should be reasonable to assume that the wall shear rate is equivalent i.e. the effective 

global shear rate in the cassette can be estimated.

5.3 Transmembrane pressure correlation constants

The key driving force of a filtration is the transmembrane pressure (TMP). This is 

defined as the differential between the average global pressure on the retentate side and 

the pressure on the permeate side (see equation [2.4], Chapter 2).

TMP =  -  -Pz-EM/E.rT [5.10]

In order for a scale-do^\n device to mimic larger equipment, one would expect it to be 

able to generate similar TMP values i.e. to achieve a target flux value the same TMP 

would be required. However, this may not be the case, especially for a non-geometric 

scale-down device such as the TFF USD. The reasons for this are considered below.

Pressure gradients along the cassette

The operation of conventional flat-sheet cassette filtration involves a dynamic 

relationship between feed recirculation rate, the resultant retentate side pressure drop 

and flow patterns on both side of the membrane. This generates a gradient of pressures 

along the length of the cassette, but the industry standard is to calculate TMP as the 

average of the inlet and outlet pressures on each side of the membrane (see equation

[5.10]). Although co-current flow was used to minimise the TMP gradient along the 

cassette (see Chapter 2), there will be local variations of TMP depending on the position 

along the channel.

The TFF USD device decouples the wall shear rate from the feed recirculation rate, and 

has much simpler flow patterns (see Chapter 3). Consequently, the TFF USD device 

operation can only aim to mimic the average, global filtration behaviour of a cassette 

device.
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Differences in membrane hydraulic resistance

Normalised water permeability (NWP), is the established method used to determine the 

resistance of the membrane to fluid flow, as well as for assessing the cleanliness of a 

cassette. This method involves measuring the passage of clean water through the 

membrane under standard pressure and temperature conditions. NWP is calculated by:

NWP = -----------= - ------ [5.11]
A*TMP TMP

where R is the water flux through clean membrane (L.h‘ )̂, F is a temperature correction 

factor (= 1 at 25 °C), A is the membrane area (m^), and TMP is the transmembrane 

pressure (kPa). By measuring NWP over a range of TMP values, a plot of flux versus 

pressure drop data can be obtained. Linear regression of the data gives the hydraulic 

permeability (the reciprocal of which is the membrane resistance).

Chandler and Zydney (2004) calculated hydraulic resistance (from NWP measurements) 

using a variety of membranes in different NFF formats a pleated XL-2 capsule 

(Millipore, MA, USA), membrane disks, 96-well plates and syringe filters. The 

resistance values differed significantly between the devices, despite them containing 

similar membranes (same material of construction and pore size). The resistance of the 

pleated XL-2 capsule was significantly greater than that obtained with the other formats. 

This increase in resistance was suggested to be due to parasitic pressure losses in the 

entrance or exit to the capsule in combination \\ith the pressure losses and/or to a loss of 

effective membrane area associated with flow between the membrane pleats.

Experimental data obtained with small circular disks cut from the membranes contained 

within the XL-2 module and then placed in a 25mm stirred cell, were in much better 

agreement with the data for the flat-sheet membranes, although these values were still 

about 30% smaller than the water flux evaluated in the other formats. The reason for 

this discrepancy may have reflected an unusually large resistance to flow for the 

particular lot of membrane used in the XL-2 capsule examined in the study, or it could 

have been associated with the stresses on the membrane caused by the pleating 

operation.
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The Pellicon 2 device format has a few factors that increase the apparent hydraulic 

membrane resistance. Firstly, there is a screen (turbulence promoter) in the feed 

channel of the device (see Figure 5.1); the screen actually blocks off a fraction of the 

membrane area, typically 25-50%. The second factor is the permeate channel 

restriction; the permeate channel is limited in height so it causes a pressure drop due to 

flow restriction, also increasing the measured resistance. Hence, the calculated 

membrane resistance of the coupon held in the TFF USD device should be much lower 

than that of the membrane within the cassette device. Consequently, the effect of the 

apparent hydraulic membrane resistance is examined below.

However, the actual membrane permeability is not exploited in bioprocess TFF 

applications (D. LaCasse, Millipore Corporation USA, personal communication, 2004), 

as it is the concentration polarisation (or gel) layer that is the main barrier to filtration 

(Balakrishnan et al., 1993). Thus, the effect of the discrepancy in the water 

permeability on the overall scaling strategy is not expected to affect transmission or flux 

trends, but would affect the observed TMP values from each device. The measured 

TMP data from cassette filtration would be proportionally higher than TFF USD TMP 

data, for equivalent flux rates, in the pressure dependent regime. This is to say, at sub- 

critical flux values, where the relationship between flux (J) and TMP should be similar 

to the pure solute fluxes (Porter, 1977; Cheiy an, 1986), the TFF USD TMP data would 

have to be multiplied by the ratio of the hydraulic resistance values.

Figures 5.2 shows water permeability data obtained with a Pellicon 2-mini cassette and 

a membrane coupon of the same membrane material held in the TFF USD device (see 

Chapter 4 for the experimental protocol). Linear regression of the data gives the 

hydraulic resistance of each membrane. For the Pellicon 2 mini cassette Rmxassene = 

0.09LMH.kPa'^ (3.24 x lO'^m'^), and for the TFF USD membrane coupon, Rm,TFFUSD = 

0.007LMH.kPa' (2.52 x 10''V ) .
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Figure 5.2: Determination o f hydraulic membrane resistances for 0.65pan hydrophilic 

Durapore membranes (Millipore, MA, USA) in a Pellicon 2-mini v-screen cassette ( ^ ,  

and membrane coupons o f the same material held in the TFF USD device (O). Linear

regression lines give Rm.cassene ( ------ ) = 0.09LMH.kPa'^ (correlation coefficient =

0.93) a n d R „ , j f f u s d ( -  - - ) =  O.OOJLMH.kPa' (R‘ = 0.98).

System pressure

The complex geometry of a filtration cassette and the position of the pressure measuring 

instruments contribute to the measured TMP value. These include pressure losses that 

occur in the inlet and outlet pipework, cassette holder, entrance and exits within the 

cassette, and within the narrow cassette channels. The contribution of these components 

are difficult to quantify and pinpoint precisely, but combined can dramatically affect the 

measured T M P of the cassette device. The measured TM P (TMPobserved) in a cassette 

format is expected to be much higher than the real TM P (TMPactuai) that the membrane 

is exposed to (D. LaCasse, Millipore Corporation USA,, 2004 communication).

This phenomenon is apparent at the start of a filtration when the flux rate is zero (i.e. the 

permeate valve is shut, t = 0), there is a measurable TMP value. This is the pressure
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required purely to recirculate the feed around the retentate side of the filter, without 

necessarily providing any driving force for filtration (TMP). This value is expected to 

be much greater for the complex cassette geometry, than for the relatively simple TFF 

USD device. In order to compare TMP data from both scales, it would be necessary to 

also account for this difference.

In light of the above discussion, even though flux values can be equated between the 

two devices, the same will not hold true for TMP values. For comparison of TFF USD 

TMP values with those obtained from the pilot-scale equipment, compensation for the 

constant difference in system pressure {kTMPj=o) and the ratio of the hydraulic 

permeabilities {kum) is required i.e.

^^^cassene ~ TMP [5-12]

where

= Ô P̂cosseaeĵ Q ~ ™ PtFFL̂SDj=o)

and

k ,.  = f [5.14]
^̂ TFFUSD

in order to equate the TMP values.

5.4 Saccharomyces cerevisiae whole cell suspension trials

This work is represented by the pilot-scale verification box in Figure 1.7 (see Chapter

1). The aim of these experiments was to compare and contrast filtration performance 

between a Pellicon 2-mini cassette (Millipore, USA) and the TFF USD device. To 

present a valid comparison to conventional filtration, the scale-down TFF device needs 

to demonstrate comparable filtration in terms of concentration polarisation/fouling 

behaviour, and therefore separation performance in terms of permeate flux and 

component transmission or rejection.
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In order to test the scale-down device, it was important to use a relatively simple, but 

relevant bioprocess feed stream; a Saccharomyces cerevisiae whole cell suspension was 

selected as a “model” system; the feed is generally reproducible and fouling should be 

negligible, allowing for easier cleaning and regeneration of the membrane. Also, the 

system is well documented in the literature and relatively high flux values (50 to 

lOOLMH) were expected, which facilitated measurement on the small scale.

Transmission of a target molecule is just as important as flux behaviour in bioprocesses, 

as it is often the product of interest. To study this aspect of filtration, the whole cell 

suspension was spiked with ADH (see Chapter 4), so transmission data could be 

compared by taking permeate samples at fixed time intervals.

It is important to state that the aim of the comparative experiments was to show whether 

or not the TFF USD device was capable of mimicking the overall filtration behaviour of 

the conventional device during t>pical filtration process development experiments.

5.4.1 Determination of disk rotation speed, recirculation rate and feed

volume for the TFF USD device

The TFF USD rig was operated as a conventional rig, where feed flow rate and retentate 

backpressure are used to control the TMP. In order to make a fair comparison between 

the devices, the filtration hydrodynamic conditions must be kept similar i.e. wall shear 

(see section 5.2), recirculation rate and membrane loading (see Chapter 1).

Wall shear rate is decoupled from tangential flowrate in a rotating disk filter; it is the 

rotating disk that generates the shear at the membrane wall (Vogel et al., 1999). As 

discussed in Chapter 3, previous studies have suggested that a rotating disk device could 

mimic a cassette filter, and that there was a critical rotational speed below which 

behaviour was comparable to that of a flat sheet system, at a given membrane loading 

level (Lee et al., 1995). The approach taken to identify this TFF USD device disk 

rotation speed was to operate it at a permeate flux that matched the critical flux point 

determined at pilot-scale and incrementally decrease the rotation speed until the TMP 

became unstable i.e. use the wall shear rate as the variable parameter.
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However, confirmatory experiments are required to show that the TFF USD device at 

operated at the selected disk speed is indeed able to mimic the conventional technology 

during typical filtration experiments e.g. critical flux determination (see below), 

concentration, and diafiltration (see Chapter 6), before applying the inferred wall shear 

rate from the TFF USD device, to the conventional filter.

The feed (retentate recirculation) flow rate (Qcassette) for the 0.1m" pilot scale device was 

set at 60L.h'\ based on the rule of thumb that recirculation rate is usually 6 to lOL.min' 

\fr" for bioprocess applications (R. Kuriyel, Millipore Corporation USA, personal 

communication, 2002). The equivalent flow rate to the pilot scale filter was calculated 

using the same rule, giving Q tffu s d  = 0.21L.h'\ Although this would not generate the 

equivalent wall shear rate at the surface of the membrane (due to the device geometry), 

this at least ensured the same feed frequency through the filtration rig i.e. the same 

number of passes, which may be of importance if trying to reproduce any degradation 

with shear encountered in the rig.

Finally, the feed loading was also kept the same (lOOL.m ") during any experiments that 

were not operated in recycle mode. Each circular 25mm disk held in the TFF USD 

device had an effective area of 3.46xl0‘̂ m“ (see Chapter 3) therefore 0.35L of feed was 

used for each scale-do\\Ti experiment, c.f. lOL for the pilot-scale experiments.

5.4.2 Results: 5. cerevisiae whole cell suspension

The following section describe the flux and transmission results obtained during 

constant feed concentration (permeate recycle) conditions. Full details of the materials 

and methods for the experiments are given in Chapter 4.

5.4.2.1 Determination of critical flux

The first parameter chosen for the comparison of the two filtration devices was the 

value for critical flux (see Chapter 1), as this is key information of interest for filtration 

scale-up. Critical flux is defined as the mean flux (i.e. the permeate flux observed) for 

which the first deposit appears on the membrane (Field et al., 1995). Such a critical flux 

corresponds to a transition from concentration polarisation to cake formation (Chen et
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al., 1997), or a transition from reversible to irreversible fouling (Defrance and Jaffrin, 

1999). The fouling threshold can be studied with a “stepping"’ flux experiment (Chen, 

1998) and can be detected when the TMP starts increasing at a fixed imposed flux. This 

indicates that irreversible deposition has occurred. The determination of critical flux is 

required to determine the optimal operating conditions of a TFF process.

Figure 5.3 below shows the results of a flux-stepping experiment obtained to determine 

the critical flux region for a S. cerevisiae cell suspension, spiked \\ith alcohol 

dehydrogenase (ADH), using the conventional pilot-scale rig (see Chapter 4 for 

protocol).
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Figure 5.3: Relationship betw een flux rate (—) and TMP for Pellicon 2-mini v-screen 

cassette, feed recirculation rate 60L.h'^ (# /  Critical flux determination with 

50g.dcw.L'^ S. cerevisiae whole cell suspension, spiked with SOU.mL'^ ADH. 0.65pm 

hydrophilic Durapore membrane (Millipore, MA, USA). Total permeate recycle.

The data shows that the TMP values became unstable at a flux value of 35-40LMH i.e. 

the critical flux region was identified. In order to determine the equivalent TFF USD 

disk rotation speed, an experiment was conducted operating it at this flux value, and 

gradually lowering the disk rotation speed, to identify the corresponding critical wall 

shear rate. This data is presented in Figure 5.4, and identifies that the TMP behaviour
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became unstable at a rotational speed of 500rpm. Also worth noting is the 

corresponding TMP values generated by the TFF USD device, which are an order of 

magnitude lower that those obtained using the cassette device, under similar filtration 

conditions.
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Figure 5.4: Relationship betw een TFF USD disk rotation speed and TMP, at permeate 

flux 40LMH, feed recirculation rate O.llL.h'^ (O). Critical wall shear rate 

determination w ith 50g.dcw\L^ S. cerevisiae w hole cell suspension, spiked with SOU.mL' 

 ̂ ADH. 0.65/am hydrophilic Durapore membrane (Millipore, MA, USA). Total 

permeate recycle.

Figure 5.5 shows results from a flux-stepping experiment using the TFF USD device at 

a disk rotation speed of 500rpm, to confirm whether or not this disk rotation speed 

generated the equivalent filtration behaviour as the conventional cassette device, in 

terms of critical flux determination. The results identify the critical flux region as being 

between 35 and 40LMH, which is identical to the values determined from the equivalent 

cassette data. This supports the hypothesis that a rotating disk device can produce 

similar filtration behaviour to that of a flat-sheet device (see Chapter 3).
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Figure 5.5: Relationship betM een flux rate (—) and TMP for a 25mm membrane coupon 

held in the TFF USD device, feed recirculation rate 0.21L.h'\ disk rotation 500rpm 

(O). Critical flux determination w ith 50g.dcM\L'^ S. cerevisiae whole cell suspension, 

spiked with SOU.mL'^ ADH. 0.65/urn hydrophilic Durapore membrane (Millipore. MA, 

USA). Total permeate recycle.

Despite the critical flux regions being almost identical, the TMP values obtained at 

similar imposed flux values are an order of magnitude different, as predicted in Section 

5.3. Figure 5.6 show a comparison of the data shown in Figures 5.3 and 5.5, in terms of 

J versus TMP data (excursion curves). However, the TFF USD data has been corrected 

{TMP'tffusd) to account for the TMP compensation constants (see equation [5.12]) 

using the following parameters: TMPcassette, t=o = 32kPa (see Figure 5.3), TMPtffusd, t=o = 

O.OlkPa (see Figure 5.5), Rnicassette = O.lLMH.kPa'* (see Figure 5.1), RmTFFUso= 0.07 

LMH.kPa’* (see Figure 5.1).
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Figure 5.6: Comparison o f excursion curves obtained w ith a Pellicon 2-mini v-screen 

cassette, feed recirculation rate ôOL.h’̂  (M). and a 25mm membrane coupon held in the 

TFF USD device, feed recirculation rate 0.21L.h'\ disk rotation 500rpm (®). Total 

permeate recycle filtration o f 50g.dcM\L^ S. cerevisiae whole cell suspension, spiked 

with SOU.mL'^ ADH. 0.65jjm hydrophilic Durapore membrane (Millipore, MA, USA). 

TFF USD data corrected for differences in initial system TMP (krMp. t=o =32kPa) and 

hydraulic permeability (kRj„ =12.82) using equation [5.12].

The similarity of the filtration data supports the idea that the TFF USD device can 

mimic the cassette filtration behaviour, in terms of flux and TMP, albeit compensated to 

account for initial system pressures.

As an aside, the wall shear rate generated in the pilot scale device can be estimated, as it 

should be identical to that of the TFF USD device, if the filtration behaviour is identical. 

The calculated wall shear rate in the TFF USD device at 500rpm was 528s'^ (equation

[3.4], see Chapter 3), and so it is this value that could be used for scale-up or modelling 

purposes (see Section 5.6).
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5.4.2 2 Comparison of filtration behaviour at constant operation 

conditions

To confirm that cassette filtration behaviour can be truly mimicked by the TFF USD 

device, filtration experiments at stable operating conditions (total permeate recycle, sub- 

critical flux) were performed at both scales. This mode of operation is useful for 

process characterisation since it maintains the same feed conditions throughout the 

process.

Figure 5.7 shows TMP behaviour during a total permeate recycle experiment conducted 

at 20LMH (sub-critical flux, where an actual process may be operated) at both scales. 

Data is shown for TFF USD experiments where permeate samples were and were not 

taken for transmission studies, to assess the impact of sampling, which may be of 

concern at the USD scale (see Chapter 3).

The data shows that TMP at both scales initially increases, as concentration polarisation 

occurs (Cheryan 1986) reaching a steady value after a stabilisation period (Defrance and 

Jaffrin, 1999). The stabilisation period is longer for the cassette data, perhaps due to the 

complex flow paths within the cassette. This confirms that 20LMH is a stable operating 

condition at both scales (as predicted by the critical flux experiments discussed above). 

The stabilised TMP values are also similar to those obtained during the flux stepping 

experiments in Figure 5.3 giving confidence that the filtration is repeatable at both 

scales.

Comparison of the TFF USD data values from experiments where samples (50pL 

aliquots) were and were not taken for transmission studies shows that the sampling 

regime had no significant impact on the filtration behaviour. Ten samples were taken in 

total, accounting for less than 1.5% of the total feed volume of 0.035L (see section 

5.4.1). The ADH transmission during the constant flux experiments shown in Figure 

5.7 is presented in Figure 5.8.
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Figure 5. 7: TMP behmiour during constant flux filtration at 20LMH Pellicon 2-mini 

v-screen cassette, recirculation rate 60L.h'^, w ith permeate samples taken for offline 

analyses ( "), and a 25mm membrane coupon held in the TFF USD device, 

recirculation rate 0.21L.h'\ disk rotation SOOrpm, w ith permeate samples taken (O), 

and without (^). 50gU^ S. cerevisiae, whole cell suspension, spiked with SOU.mL'^

ADH. 0.65pm hydrophilic Durapore membrane (Millipore, MA, USA). Total permeate 

recycle. Feed to membrane area ratio lOOL.m'^. TFF USD data corrected for 

differences in initial system TMP (kTMP. t=o ^32kPa) and hydraulic permeability (kRm 

^12.82) using equation f5.12].

The transmission level began at 100%, as was expected for the relatively large pore 

membrane used (c.f. ADH molecule size). However, once stable operating conditions 

had been reached only around 80% of the ADH permeated through the membrane, as 

the S. cerevisiae cells had formed a concentration polarisation cake layer (see Chapter

2) and perhaps also adsorbed to the membrane (Hanemaaijer et al., 1989). Again, the 

data from the two devices correlates well, supporting the hypothesis that the pilot-scale 

device filtration performance can be mimicked by the TFF USD device.
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Figure 5.8: Assessment o f ADH transmission during constant flux operation at 20LMH, 

Pellicon 2-mini v-screen cassette, recirculation rate 60L.h'^(A), and a 25mm 

membrane coupon held in the TFF USD device, recirculation rate 0.21L.h'\ disk 

rotation 500rpm (A). 50gdcw'.L'^ S. cerevisiae, w hole cell suspension, spiked w ith

SOU.mL^ ADH. 0.65pm hydrophilic Durapore membrane (Millipore, MA, USA). Total 

permeate recycle. Feed to membrane area ratio 1OOL. m' .̂

Each experiment took the same time to complete, but only a fraction of the feed material 

was required to obtain the key results with the TFF USD device (see Chapters 1 and 3).

5.5 S. cerevisiae homogenate trials

Following the promising results obtained with the S. cerevisiae whole cell feed, a S. 

cerevisiae homogenate (details are given in Chapter 4) was also chosen to test the 

device with a multicomponent feed stream, which would intrinsically capture all of the 

possible effects of multiple complex contaminant interactions on filtration performance. 

Such interactions are critical since they will ultimately determine the effectiveness of 

any large-scale separation (van Reis et al., 1997).
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The same series of experiments conducted for the whole cell suspension were repeated 

for the homogenate using a lOOOkDa Biomax membrane, and the data presented in 

Figures 5.9 to 5.14 below. This membrane material was selected because of the 

manufacturer’s claim of ultra low protein adsorbancy (Millipore Technical Data Sheet - 

PF1402EN00, 2002), and its pore size should allow the transmission of ADH molecules 

(141kDa tetramer). Figure 5.9 shows the hydraulic permeability data of this membrane 

in encased in the two different formats.
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Figure 5.9: Determination o f hydraulic membrane resistances for lOOOkDa Biomax 

membranes (Millipore, MA, USA) in a Pellicon 2-mini v-screen cassette (M), and 

membrane coupons o f the same material held in the TFF USD device (O). Linear

regression lines give Rmxassem (------)  = 0.14LMH.kPa'^ (correlation coefficient =

0.94) andR„,TFFVSD(- - - )  = O.OULMH.kPa’ (R  ̂ = 0.92).

As with the 0.65pm Durapore membranes used for the whole cell suspension 

experiments, there is a marked difference between the hydraulic resistances of the 

membrane held within the cassette c.f. the coupon held in the TFF USD device. 

However, the ratio {kum = 10) is much lower, which may be a result of the tighter pore
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size distribution (lOOOkDa molecular weight cut-off is approximately equivalent to 

0.1pm pore size diameter).

5.5.1 Results: S. cerevisiae homogenate trials

Figures 5.10, 5.11 and 5.12 below show the data obtained from critical flux 

determination experiments using the yeast homogenate suspension, and the 

determination of the pertinent TFF USD disk rotation speed. The critical flux region 

appears to be just under 20LMFI for the cassette filtration, and the TFF USD device 

operated at 2500rpm (wall shear rate 5900s'\ calculated using equation [3.4]).
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Figure 5.10: Relationship betw'een flux rate (—) and TMP for Pellicon 2-mini v-screen 

cassette, feed recirculation rate 60L.h'^ (■ / Critical flux determination with 

50g.dc\\’.L'^ S. cerevisiae homogenate suspension. lOOOkDa Biomax membrane 

(Millipore, MA, USA). Total permeate recycle.

164



Verification with Yeast Suspensions

I

2000 3000 4000

Rotating Disk Speed (rpm)
5000

Figure 5.11: Relationship between TFF USD disk rotation speed and TMP, at permeate

flux 20LMH, feed recirculation rate 0.21L.K^ (O). Critical wall shear rate 

determination with SOg.dcw.L'^ S. cerevisiae homogenate suspension. lOOOkDa Biomax 

membrane (Millipore, MA, USA). Total permeate recycle.
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Figures 5.12: Relationship between flux rate (—) and TMP for a 25mm membrane 

coupon held in the TFF USD device, feed  recirculation rate 0.21L.h'\ disk rotation 

speed 2500rpm (O). Critical flu x  determination with 50g.dcw.L^ S. cerevisiae 

homogenate suspension. lOOOkDa Biomax membrane (Millipore, MA, USA). Total 

permeate recycle.
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Figure 5.13 shows the comparison of the flux-stepping experiment data, with the TFF 

USD data compensated for the differences in initial hydraulic membrane resistance and 

system pressure. Again, there is excellent agreement between the two sets of data, 

giving confidence in the ability of the TFF USD device’s ability to be used as a scale- 

down model for the cassette device.
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Figures 5.13: Comparison o f excursion curves obtained with a Pellicon 2-mini v-screen 

cassette, feed recirculation rate 60L.h'^ ( ^ ,  and a 25mm membrane coupon held in the 

TFF USD device, feed recirculation rate 0.21L.h'\ disk rotation 2500rpm (®). 

SOgdcw.L^ S. cerevisiae homogenate suspension. lOOOkDa Biomax membrane

(Millipore, MA, USA). Total permeate recycle. TFF USD data corrected for

differences in initial system TMP (kxMP, t̂ o =6kPa) and hydraulic permeability (kRm 

=12.82) using equation [5.12].

Figure 5.14 illustrates the selectivity of the membrane in both formats, in terms of ADH 

and total soluble protein during recycle experiments conducted at 17LMH (sub-critical 

flux). Again, it can be seen that the data from the two devices correspond well. The 

data shows that less than half of the available soluble protein is transmitted through the 

membrane, and only about 1% of the product of interest (ADH) is recovered. However, 

this highlights one the benefits of USD; the early assessment of this membrane type and 

operating conditions means that time is available to investigate other options to give 

acceptable yields.
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Figure 5.14: Assessment o f  ADH (A, A) and total soluble protein transmission

during constant flux filtration o f  SOgdcw.L'^ S. cerevisiae homogenate suspension at 

17LMH. Pellicon 2-mini v-screen cassette, recirculation rate 6 0 L h ' ^ a n d  a 

25mm membrane coupon held in the TFF USD device, recirculation rate 0.21Lh'\ disk 

rotation 2500rpm (A,<>). lOOOkDa Biomax membrane (Millipore, MA, USA). Total 

permeate recycle. Feed to membrane area ratio lOOL.m'^.

The next step in the TFF USD methodology outlined in Chapter 2 (Figure 2.5) is the 

assessment of the semi-empirical models proposed in Chapter 2, using data obtained 

from the simpler of the two feed systems (whole cell suspension).

5.6 Assessment of TFF models

Once confidence in the ability of the TFF USD to mimic conventional equipment had 

been established, it could be used to generate data to be used in conjunction with the 

models described in Chapter 2. The following sections give examples of the attempts 

made with one of the feed types described above (whole cell suspension), and hence a 

preliminary evaluation of each of the two models is made.
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5.6.1 Resistance-in-series model

The section below describes the application of the hydraulic resistance-in-series model 

proposed by Carrère et al. (2001).

J  =----------- — -----------  [5.14]
R a R p  + Rc)

The model equations were coded using Visual Basic (Microsoft Corporation, USA), and 

a program listing is included in the Appendix 2. The experiments described in Table 

2.4 (Chapter 2), were performed using the TFF USD device and whole S. cerevisiae 

cells spiked with ADH. Table 5.3 lists the determined values i.e. the model inputs.

These input parameters were checked against literature values, and were found to be 

similar. Using these values, the simulation was run for constant TMP concentration 

mode to assess flux and transmission behaviour prediction. The data was then 

compared with actual experimental results, by presenting them in the form of parity 

plots (see Figures 5.15 and 5.16).

The model over-predicted the values of permeate flux (J) by 40%, using the input values 

listed. However, the calculated mean error 8i (using equation [2.21], see Chapter 2) is 

0.05, which is considered a low deviation, suggesting that there is a constant off-set 

which could be associated with an inaccurate model parameter value e.g. the value of 

the membrane resistance.

The model under-predicts the transmission values by 8%. However, the values are well 

within the sensitivity of the ADH assay. In addition, the calculated mean error Si is 

0.033, which is considered insignificant.
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resistance-in-series model (Carrère et al, 2001). (See Chapter 2, Table 2.4)
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Figure 5.15: Parity plot o f  resistance-in-series model predictions versus experimental 

flux measurements ( for constant TMP filtration o f a M'hole yeast suspension, using 

the parameters listed in Table 5.3. Dashed line ( ---- ) indicates 60% o f predicted value.
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Figure 5.16: Parity plot o f resistance-in-series model predictions versus experimental 

transmission measurements (A ) for constant TMP filtration o f a whole yeast

suspension, using the parameters listed in Table 5.3. Dashed line ( ----- ) indicates

108% o f predicted value.
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However, the modelling effort is only justified if the model is capable of accurately 

predicting other operating conditions, without having to repeat the same experiments.

Unfortunately, the resistance-in-series model parameter determination protocols are 

specific to one set of operating conditions. A new set of experiments to determine the 

parameters would be required if an operating parameter were to be changed e.g. re- 

evaluation of (D/ô)Cm, To, and a would have to be done if the crossflow velocity were 

to be changed. Indeed, all of the experiments would need to be repeated if one were to 

change the membrane material. This obviates the need for a method to model the 

operation, as process development time would be better spent conducting actual trials.

5.6.2 Aggregate transport model

Baruah et al. (2003 and 2004) developed a predictive model for the microfiltration of 

transgenic goat milk using hollow fibre filters. A spreadsheet was developed to perform 

the calculations outlined in Chapter 2 using Excel (Microsoft Corporation, USA). 

However, an obstacle was encountered when attempting to modify the model to cope 

\\ith the TFF USD geometry. The equations for calculation of the mass transfer 

coefficient (̂ mtc) call for the hydraulic diameter (J//) of the device (see Equation[5.3]). 

However, for the TFF USD, there is no flow channel as such, and this parameter is 

therefore incalculable.

As equivalence between the flux and transmission performance of the TFF USD device 

and a conventional cassette has been demonstrated, it was assumed that the mass 

transfer coefficient would also be the same. Hence, the geometry of the cassette may be 

used for the model input parameters, but the USD device would provide the equivalent 

wall shear rate value.

An attempt to apply the aggregate transport methodology to the S. cerevisiae whole cell 

suspension system was made. The parameters used were as follows:

• Module Data (R. Kuriyel, personal communication, 2001): Module length 0.1524m; 

pore size 0.65pm; hydraulic mean diameter, dn = 0.115m. Operating conditions:
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temperature 298K; shear rate 528s’  ̂ (based on an equivalent TFF USD experiment 

conducted at SOOrpm).

• Particle sizes bulk concentrations and intrinsic viscosity (Okec, 1998): 1.41kDa at 

1%, (ADH molecules), 3pm at 3.2% and 7pm at 0.5% (yeast cells). Target particle 

radius = 14nm, intrinsic viscosity 2.2 x 10'^Pa.s.

Despite much effort, it was not possible to achieve sensible results with these input 

parameters. Perhaps this was because of trying to apply the model to the different 

device geometry (invalid value of dn) than the hollow fibre format the model was 

originally developed for.

As a result, it would be reasonable to state that the model methodology in its present 

format would not be able to fit the USD methodology criteria of being a pragmatic 

development tool. In addition, the time spent on modelling may have been better spent 

conducting actual experiments. Also, empirical data is currently more valuable in terms 

of regulatory application support documentation (Winkler, 2000).

5.7 Summary and conclusions

A protot>pe rotating disk filter was proposed as a TFF USD device (see Chapter 3). 

Data from comparative experiments with conventional filtration equipment, using 

representative bioprocess feeds, imply that the TFF USD is able to mimic the overall 

cassette performance to the degree required to obtain information for scale-up, in terms 

of flux and TMP conditions (having compensated for differences in membrane 

hydraulic resistance, and initial system pressures); hence, the scale-down device has 

been successfully verified against the conventional technology.

The equating of wall shear rate between the devices was complicated by the inability to 

estimate accurately the wall shear rate in the cassette, due to its highly complex 

geometry. Instead, an empirical approach was used to match the filtration behaviour, 

and thus infer the wall shear rate in the cassette by calculation of the shear rates 

generated in the rotating disk device. However, this method is not ideal, especially 

when an objective of USD is to obviate the need for pilot-scale verification.
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The latest semi-empirical models available for TFF were evaluated using the simpler of 

the two feeds. The resistance-in-series approach proved to be able to model the 

empirical data adequately (insignificant mean errors), but the main drawback of this 

method is its inability to extrapolate to other operating conditions, without repetition of 

the parameter-determining experiments. The attempt to apply the aggregate transport 

model to describe the S. cerevisiae whole cell suspension filtration was unsuccessful. 

Only a pragmatic modelling approach is useful to process development scientists, as 

empirically derived data is still preferred over simulated data e.g. for use in regulatory 

submission support documents.

Referring to Figure 2.5 (Chapter 2) the next steps is to test the device further with other 

bioprocess feeds e.g. bacterial and/or mammalian cell broths. In addition, the 

experiments described above were conducted in recycle mode; actual processing 

operations such as diafiltration and concentration need to be investigated to complete 

the verification of the TFF USD against conventional modules. This work is described 

in Chapters 6 and 7.

173



Device Verification with Bacterial Lysate

Chapter 6 Verification of TFF USD Device with a Bacterial
Lysate

6.1 Introduction

The development of a generic methodology for TFF USD requires several iterations 

around the flowchart loop (see Figure 2.5, Chapter 2) with various combinations of feed 

and membrane materials, in order to give confidence that the TFF USD device is a true 

mimic of conventional equipment. The aim of these experiments was to demonstrate 

the capability of the TFF USD device with a bacterial lysate system, and new membrane 

material to show that the system was generic as defined by it's capacity to generate data 

with a range of bioprocess feed systems and to extend the comparison with pilot-scale 

data to include diafiltration experiments.

The clarification of a periplasmic antibody fragment (Fab’) from an Escherichia coli 

lysate was chosen to test the TFF USD device. Further details of the feed are given in 

Chapter 4. The scientific and commercial interest in antibodies and antibody-based 

molecules is significant within the bioprocess sector, with several recombinant products 

already in the market place. The high affinity and specificity of antibodies for the target 

antigen has been exploited in a wide variety of therapeutic, diagnostic and industrial 

applications ranging from the treatment of inflammation and autoimmune diseases to 

the detection and control of environmental pollution. The Fab’ can be detected by a 

microplate-based ELISA assay, allowing for rapid assay of samples taken to study 

transmission behaviour. The minute amounts of material required by this sensitive 

assay made it suitable for the sampling regime required for the USD experiments.

This choice of experimental system was selected for the following reasons:

• Representative of a bioprocess feed of current commercial interest;

• Collaborative work at UCL to provide fermentation material;

• Previous work characterising the system, and the development of reliable 

production and assay techniques within the department (Bowering, 2000);

• Existing pilot-scale data to corroborate pilot-scale data obtained, and to compare 

the filtration results with (Novais, 2001).
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Unfortunately, the pilot-scale data available was conducted at a membrane loading of 

lOL.m'^, which would have meant an equivalent TFF USD feed volume of less than 

0.004L, which was clearly not practical to use given the USD system hold-up. Due to 

the limited amount of lysate material available, the Pellicon XL labscale system was 

therefore employed, as according to the manufacturer’s data (see Chapter 3, Figure 3.1) 

this device was designed to provide a linear scale-down of the Pellicon 2 mini cassettes. 

This decision enabled an investigation of the scalability of the Pellicon cassettes, as well 

as a 20-fold reduction in the amount of E. coli lysate used for each conventional 

experiment.

The results show that the TFF USD device was again able to produce scale-up data 

comparable to those obtained using conventional filtration devices, despite the increased 

complexity of the feed.

6.2 Results: E. coli lysate

As part of the study to test that a rotating disk device could mimic flat-sheet cassette 

filtration behaviour, the TFF USD device needed to be tested with a range of 

representative bioprocess feeds.

As described in Chapter 5, the first step was to identify the wall shear rate required at 

the USD scale that would give the same critical flux value obtained at pilot-scale. 

Experiments evaluating the behaviour of transmission of the antibody fragment through 

the membrane were then performed, both in total permeate recycle mode of operation 

and constant volume diafiltration.

The following section describe the flux and transmission results obtained from a series 

of experiments devised to assess the ability of the TFF USD device to mimic 

clarification of an E. coli lysate using commercially available cassette devices 

(laboratory and pilot-scale) containing lOOOkDa Biomax membranes (Millipore, MA, 

USA). Full details of the materials and methods for the experiments are given in 

Chapter 4.

175



Device Verification with Bacterial Lysate

6.2.1 Determination of hydraulic permeability correlation factor

Figure 6.1 shows water permeability data from each of the three device formats.
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Figure 6.1: Determination o f hydraulic membrane resistances for lOOOkDa Biomax 

membranes (Millipore, MA, USA) in a Pellicon 2-mini v-screen cassette (tf), a Pellicon 

XL cassette ( and membrane coupons o f the same material held in the TFF USD

device ( O ) .  Linear regression lines give Rm.cassette ( ------- ) = O.lLLMH.kPa'^

(correlation coefficient = 0.94), Rm.xzcasseae (----) = O.lSLMH.kPa'^ (R  ̂ = 0.98) and

R m .T F F U S D  (— ) ~ 0.01 SLMH.kPa  ̂ ( R ^  = 0.92).

As expected, the hydraulic membrane resistance of the membranes in the cassette 

formats are virtually identical, confirming that it is the membrane format (not area) that 

is responsible for the difference in permeability. Linear regression of this data provided 

the TMP compensation constants (IcRm) used to convert the TFF USD data so it could be 

compared with cassette data.

6.2.2 Determination of critical flux and critical wall shear rate

The results of a flux stepping experiment using a lOOOkDa Biomax Pellicon 2 mini 

cassette (pilot-scale) are shown in Figure 6.2 below. The data indicated that the critical 

flux region is approximately 35-40LMH. This was also the value found by Novais 

(2001) during a similar experiment.
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Figure 6.2: Relationship betw een flux rate (—) and TMP for Pellicon 2-mini v-screen 

cassette, recirculation rate ôOL.h'  ̂ ( ^ .  Critical flux determination with E. coli lysate 

(equivalent cell concentration 47gdcw\L'^). lOOOkDa Biomax membrane (Millipore, 

M i, USA). Total permeate recycle. Feed to membrane area lOOL.m'^ (feed volume IL).

Figure 6.3 shows the results of a similar experiment conducted with the manufacturer’s 

own scale-down device, the Pellicon XL cassette (membrane area O.OOSm̂ , 20-fold 

scale-down). Again, the critical flux region appears to be 35-40LMH, supporting the 

manufacturer’s claim that the Pellicon series of cassettes are linearly scaleable (see also 

Chapter 3, Figure 3.1). Therefore, it was this flux value that was selected to operate the 

TFF USD device was at, in order to empirically determine the equivalent disk rotation 

speed (Figure 6.4).

From this experiment, a disk rotation speed of 3500rpm was chosen to conduct the 

comparative TFF USD experiments for the E. coli lysate system. By using equation

[3.4] (see Chapter 3), it is possible to infer that the average wall shear rate in the 

Pellicon cassette was 9774s‘  ̂ (turbulent flow, as Re > 2500), which is the key 

information required for scale-up of the process.
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Figure 6.3: Relationship betw een flux rate (—) and TMP for Pellicon XL v-screen 

cassette, recirculation rate 3Lh'^ (^ ). Critical flux determination with E. coli lysate 

(equivalent cell concentration 47gdcw.L'^). lOOOkDa Biomax membrane (Millipore, 

MA, USA). Feed to membrane area lOOL.m'  ̂(feed volume 0.5L).

35

30

25

15 -
CL

10 -

2000 3000 4000 5000 6000

Rotating Disk Speed (rpm)

Figure 6.4: Relationship betw^een TFF USD disk rotation speed and TMP, at permeate 

flux 40LMH, feed recirculation rate 0.21L.h'^ (O). Critical wall shear rate 

determination with E. coli lysate (equivalent cell concentration 47gdcw>.L'̂ ). lOOOkDa 

Biomax membrane (Millipore, MA, USA). Total permeate recycle. Feed to membrane 

area JOOL.m'  ̂(feed volume 0.04L).

178



Device Verification with Bacterial Lysate

The data from the flux stepping experiments are presented in Figure 6.5 and a 

comparison of the excursion curves generated at all three scales is shown in Figure 6.6, 

using the TMP compensation factors given in Table 6.1.
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Figure 6.5: Relationship betw'een flux rate (—) and TMP for a 25mm membrane coupon 

held in the TFF USD device, recirculation rate 0.21L.h"\ disk rotation 3500rpm (O). 

Critical flux determination with E. coli lysate (equivalent cell concentration 47gdcw.L' 

)̂. lOOOkDa Biomax membrane (Millipore, MA, USA). Total permeate recycle. Feed 

to membrane area lOOL.m'^ (feed volume 0.04L).
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Device Membrane hydraulic 

resistance kRm (m *)

Initial system pressure 

k x M P ,t= o  (kPa)
Pellicon 2 mini cassette 0.126 6.89

Pellicon XL cassette 0.138 4.00

TFF USD 0.013 0.138

Table 6.1: TMP compensation factors determined from E. coli lysate experiments.
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Figure 6.6: Comparison o f excursion curves obtained with a Pellicon 2-mini v-screen 

cassette, feed recirculation rate 60L.h'^ (■), a Pellicon XL v-screen cassette, feed 

recirculation rate SL.h'^ (^ ), and a 25mm membrane coupon held in the TFF USD 

device, feed recirculation rate 0.21L.h'^ disk rotation 3500rpm (0). lOOOkDa Biomax 

membrane (Millipore, MA, USA). Total permeate recycle filtration o f E. coli lysate 

(equivalent cell concentration 47gdcw.L'^). Pellicon XL and TFF USD data corrected 

for differences in initial system TMP and hydraulic permeability using values given in 

Table 6.1 and equation [5.12].
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Figure 6.6 confirms several things, the first being that the Pellicon XL cassette is indeed 

a good linear scale-down of the Pellicon 2 mini cassette. Secondly, the TFF USD 

device can generate comparable flux and TMP data to the cassette devices non-linear 

scale-down, despite being a non-linear scale-down and requiring almost 300 times less 

material. However, the use of the TMP compensation factors is required, and these 

constants need to be determined for every retentate recirculation rate and membrane 

combination that is being investigated. The next stage of these comparative 

experiments was to assess the transmission behaviour of the target molecule of interest 

(Fabl.

6.23 Comparison of Fab’ transmission behaviour

The flux-stepping experiments were repeated and samples taken to investigate the 

transmission behaviour of the Fab' molecules during the flux-stepping experiments. As 

shown on Chapter 5, sampling should have had little or no effect on the filtration 

behaviour.

Figures 6.7(a) and 6.7(b) show the comparison of the transmission data in the form of 

permeate flux versus percentage transmission and permeate flux versus mass flux 

(defined as the flux rate multiplied by the concentration of target species in the 

permeate) of the Fab’ respectively. Figure 6.7(b) would be the format required for 

generating a Window of Operation (see Chapter 2), and also indicates the region of 

optimum performance in terms of product flux and transmission more clearly.

The key results is that beyond the critical flux region (35-40LMH), the percentage Fab’ 

transmission (%Tpab ) starts decreasing, and that the maximum %Tpab' coincides with the 

maximum mass flux rate of the antibody fragment (see Figure 6.7(b)).

Yet again, the data generated from both devices are similar, despite there being almost a 

300-fold difference in scale. The fact that the optimum point for product transmission 

corresponds to the maximum permeate flux indicates that there is little or no 

fractionation of species (Fischer, 1996). Based on these results, the lysate should be 

processed at a controlled flux of less than 40L.m'^.h'\ but as high as possible so as to 

allow for a high productivity. These conditions should allow for longer term operation
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due to the lower extent of fouling observed below the critical flux (Deffance and Jafffin, 

1999).
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Figure 6.7 (a) and (b): Assessment o f Fab’ transmission during flux stepping 

experiments, total permeate recycle. Pellicon 2-mini v-screen cassette, recirculation 

rate 60L.h'^ (■), and a 25mm membrane coupon held in the TFF USD device, 

recirculation rate 0.23L.h'\ disk rotation 3500rpm (O). E. coli lysate (equivalent cell 

concentration 47gdcw.L'\ lOOOkDa Biomax membrane (Millipore, MA, USA). Data 

points are the mean value o f the results obtained from two or three dilutions o f each 

permeate and retentate sample during the ELISA.
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This information was used to perform the diafiltration experiments described in the next 

section, which were consequently conducted at 34LMH

6.2.4 Diafiltration studies

The next phase of experimentation involved diafiltration of the lysate. The materials 

used and experimental protocols used are described in Chapter 4. Constant volume 

diafiltration has often been used to remove soluble proteins from cell lysates (Bailey 

and Meagher, 2000; Meagher et al., 1994). The advantage of this technique is that is 

avoids concentration of the non-permeated species, therefore maintaining similar 

physical properties of the retentate.

Species transmission decreases over time in constant volume diafiltration (Forman et 

al., 1990; Meagher et al., 1994; Novais, 2001). This decrease is exponential, and 

Novais (2001) showed that it follows a first order decay relationship

[6.1]

where Tots is the observed transmission of product. To is the initial transmission value at 

the start of the diafiltration, a is a constant, and t is time (h).

Figure 6.8 shows the transmission results from diafiltration experiments using both the 

laboratory (Pellicon XL) and pilot scale (Pellicon 2 mini) systems. The similarity of the 

results suggest that it would be reasonable to continue the experimental comparisons 

with the Pellicon XL lab-scale device, therefore reducing the demand for the lysate feed 

material.

Considering the inherent error in the ELISA assay, the two sets of data imply that the 

transmission performance was the same. Assuming that the transmission behaviour 

follows an exponential decay (Novais, 2001), the important data points to consider are 

the initial transmission values. The experiments conducted to obtain the data in Figure 

6.8 took 1.1 hours; if only the initial values are required, shorter durations should be 

acceptable to obtain the model parameters. Table 6.2 shows the model parameters 

obtained by fitting equation [6.1] to the data, and by only using the first eight points of 

the Pellicon XL data (diafiltration time = 0.4 hours).
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Figure 6.8: Effect o f diafiltration volume on percentage transmission o f Fah \ Constant 

volume diafiltration at 34LMH with 150mM NaCl buffer at pH 7.4. Pellicon 2-mini v- 

screen cassette, recirculation rate ôOL.h'  ̂ (■), and a Pellicon XL v-screen cassette, 

recirculation rate 3Lh'^ (♦). E. coli lysate (equivalent cell concentration 47gdcw.L'^). 

lOOOkDa Biomax membrane (Millipore, MA, USA). Feed to membrane area lOL.m' .̂ 

Data points are the mean value o f the results obtained from tw o or three dilutions o f 

each permeate and retentate sample during the ELISA.

Device Diafiltration 

time (h)

Model Equation Parameter r 2*

To a

Pellicon 2 mini 1.1 92 -0.70 0.94

Pellicon XL 1.1 106 -0.82 0.92

Pellicon XL 0.4 94 -0.77 0.91

Table 6.2: Transmission decay model parameters obtained from fitting Equation [6.1] 

to data shown in Figure 6.7. ^Correlation coefficient between data points and equation 

curve.

The model parameters are very similar, and therefore it was decided to conduct further 

experiments using this shorter experimental time.
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As mentioned above, a loading value of 1 OL.m*̂  equates to a feed volume of less than 

4mL on the TFF USD scale, which is less than the hold-up volume fore the device. For 

this reason, the Pellicon XL experiment was repeated with a loading of lOOL.m’̂ . It 

must be noted that this should not be interpreted as a limitation of the TFF USD system, 

as lOL.m'^ is not a typical value seen in industry (van Reis et al., 1997; C. Christy, 

Millipore Corporation USA, personal communication). Figure 6.9 shows how the two 

datasets compared, with each other and with the data from the Pellicon XL experiment 

at the lower feed volume to membrane area.
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Figure 6.9: Effect o f diafiltration volume on percentage transmission o f Fab \ Pellicon 

XL v-screen cassette, feed to membrane area lOL.m'^, exponential decay curve %T =

94e~^ \̂ correlation coefficient = 0.91 ( ----- j; Pellicon XL v-screen cassette feed

to membrane area lOOL.m'^, %T = 95e'^^\ = 0.95 ( ^ , -------- ); 25mm diameter

coupon held within the TFF USD device, feed to membrane area lOOL.m' ,̂ %T = 93e'

R  ̂ = 0.73 (O ,------ -). Constant volume diafiltration at 34LMHwith 150mMNaCl

buffer at pH 7.4. E. coli lysate (equivalent cell concentration 47gdcw.L'^). lOOOkDa 

Biomax membrane (Millipore, MA, USA). Data points are the mean value o f the results 

obtained from two or three dilutions o f each permeate and retentate sample during the 

ELISA.
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The first thing to remark on is that the data obtained at both scales matches well, 

confirming the ability of the TFF USD device to mimic the transmission behaviour seen 

with a cassette device. The second point of interest is that although the initial 

transmission (To) values obtained using the Pellicon XL cassette were similar, the decay 

constant {a) at the higher loading value was greater (aiooL.m' = -1.7 c.f. aioL.m' = -0.8)

i.e. Fab’ transmission decayed more rapidly, although the feed concentration was kept 

constant. This result suggests that either cake deposition or fouling was more rapid. 

However, as the purpose of these experiments was to validate the TFF USD device, 

further investigation of the effect of loading on transmission behaviour was not 

considered.

6.2.4.1 Use of the TFF USD device to optimise diafiltration 

performance.

The final phase of experiments with the E. coli lysate was an investigation of the effect 

of diafiltration buffer on transmission performance. The aim of these experiments was 

to highlight the potential of the TFF USD device to be used for process development 

and unit operation optimisation activities previously excluded because of time or 

material availability constraints.

Novais (2001) showed that diafiltration buffers of different conductivities altered 

diafiltration performance. It has also been shown that transmission should increase with 

increasing buffer ionic strength, and is highest at the pi of the target protein (Le and 

Atkinson, 1985; Bowen and Gan, 1992). Consequently, diafiltration performance 

should be improved using a buffer at pH 8.3, which is the isoelectric point of the Fab’ 

molecule (Bowering, 2000). The data shown in Figure 6.10 supports the theory, but 

there is not a significant improvement in the rate of transmission decay (flpH7 4= -L9 c.f. 

a pH8.3= -1.2). However, there was not a significant difference in the ionic strength of 

the buffer either.
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Figure 6.10: Effect o f buffer composition on percentage transmission o f Fab\ 

Exponential decay curve for 150mM NaCl buffer at pH  7.4%T = 93e'^ \̂ correlation

coefficient R‘ = 0.92 (O,  j, and 150mM NaCl buffer at pH8.3, %T = 97e'^^\

correlation coefficient R‘ = 0.92 ( 0, - - -). 25mm coupon held within the TFF USD 

device. Constant volume diafiltration at 34LMH. E. coli lysate (equivalent cell 

concentration 47gdcw.L'^). lOOOkDa Biomax membrane (Millipore, MA, USA). Feed 

to membrane area loading lOOL.m' .̂ Data points are the mean value o f the results 

obtained from tMO or three dilutions o f each permeate and retentate sample during the 

ELISA.

The effect of buffer composition experiments are exemplary of the type of study that the 

TFF USD device could be used for during process development. Such investigations 

are currently not feasible due to scarcity of feed material etc. (see Chapter 1). This 

aspect is discussed further in Chapter 7.

6.3 Summary and conclusions

The preceding sections have outlined some of the experiments conducted to challenge 

the TFF USD device with a representative bioprocess feed (bacterial lysate containing 

Fab’), and successfully confirmed that comparable filtration behaviour to that obtained 

at pilot-scale (300-fold scale-down) and laboratory scale (60-fold scale-down) can be 

generated.
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In addition, the performance of the commercially available scale-down filtration 

cassette (Pellicon XL, membrane area = 0.05m^) was shown to indeed be a linear scale- 

down of the pilot-scale device (O.lm^), as per the manufacturer’s claims.

The capability of the TFF USD device to mimic diafiltration behaviour was shown, and 

the transmission of the product of interest (Fab’) followed a very similar exponential 

decay pattern during diafiltration to the results achieved using the laboratory-scale 

cassette. The use of only the first few data points gave sufficiently comparable 

parameters during the fitting of the transmission model equation described by Novais 

(2001), shortening the experimental time further.

The benefits of the TFF USD device were also exploited (small feed requirements and 

quick equipment turnaround) to conduct a series of exploratory experiments 

investigating the effect of a change of diafiltration buffer on the mass flux of the Fab’. 

As predicted by the theory, product transmission did improve when a buffer closer to 

the pi of the molecule was utilised.

The usefulness and relevance of the TFF USD device would be ultimately shown by 

successful application in an industrial context. This work is presented on the next 

chapter in the form of a case study undertaken in collaboration with an industrial 

partner.
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Chapter 7 Case Study: Evaluation of a Mammalian Cell Broth 

Filtration Using TFF Ultra Scale-Down Techniques

7.1 Introduction

The following chapter describes the work carried out during an EngD industrial 

placement at Cambridge Antibody Technology Ltd (known as Medlmmune, as of 

October 2007). Cambridge Antibody Technology (CaT) is a biopbarmaceutical 

company using its capabilities and technologies in the discovery and development of 

new and innovative antibody medicines in selected therapeutic areas, such as asthma, 

rheumatoid arthritis and cancer treatment (http://www.cambridgeantibody.com, 2008).

This collaboration was organised to challenge the TFF USD device and methodology 

with a mammalian cell culture, another class of biological feed (c.f. yeasts and bacteria). 

Mammalian cells principally differ from bacterial and yeast cells in that they lack a cell 

wall. Consequently they are more sensitive to shear stress (Cherry and Papoutsakis, 

1986), and are also more temperature labile. Hence, they offer greater challenges for 

industrial production techniques (Russotti and Goklen, 2000).

The separation of monoclonal antibodies (MAb's) from animal cell cultures, using 

membrane filtration, has been well documented in the literature (Ng and Obegi, 1990; 

Maiorella et al., 1991; van Reis et al., 1991; Krishnan et al., 1994; Vogel and Kroner, 

1999; Russotti and Goklen, 2000; Baruah and Belfort, 2004), and will not be described 

further here. The overall placement project aim was to extend the application of the 

TFF USD technology for the scale-down analysis of flux and product transmission 

during microfiltration to mammalian cell broths. As a result of the use of the USD 

experiments, a methodology would be developed for the rapid identification of suitable 

operating strategies for the clarification of products based upon CaT materials known to 

be problematic with respect to separation.
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7.1.1 Objectives

The original objectives for the experiments to be conducted during the placement were

as follows:

1. Comparison of the tangential flow filtration ultra scale-down (TFF USD) device 

with conventional technology (Centramate cassette, Pall, UK).

2. Assessment of broth filtration behaviour with different membrane materials.

3. Definition and determination of a filtration performance index to compare different 

feed streams

4. The study of flux and transmission behaviour during concentration and diafiltration 

(DF).

5. An investigation into the effect of different buffers of diafiltration performance.

6. Definition and population of a "Window of Operation"’ to aid identification of a 

suitable region for operation.

7. To devise a strategy to identify the optimal fermentation hard est point with respect 

to filtration performance.

Due to time constraints (and the company fermentation schedule), the investigation to

identify the optimal fermentation harvest point (objective 7) was not conducted, but the

benefits of doing such a study is discussed further in Chapter 10.

7.2 Results: Mammalian Cell Broth

The following sections describe the results obtained by the experiments conducted to 

meet the objectives set out above. The materials and methods used are described as 

much as possible in Chapter 4 (see section 4.6), and the assistance of CaT personnel to 

this work is gratefully acknowledged. To protect any proprietary information, certain 

data pertaining to the CaT fermentation material will be presented in terms of arbitrary 

units e.g. product concentrations.

7.2.1 Comparison of TFF USD with conventional technology

The commercially available device selected to compare the TFF USD results with was 

again a flat-sheet cassette (Pall, UK). CaT filtration techniques had previously used
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hollow fibre cartridges for the particular broth type that was being studied, but 

membrane coupons of the same material as this were unavailable.

As with the work described in Chapters 5 and 6, the filtration data must be comparable 

in terms of flux behaviour and product transmission for the TFF USD device to be a 

good mimic of the conventional filter, even with a challenging mammalian cell culture.

Table 7.1 gives the mean hydraulic membrane resistance values determined from water 

flux tests carried out before each filtration experiment.

Device Hydraulic membrane 

resistance (m^)

Correlation Coefficient 

R:

Pall Centramate cassette 1.91 X 10'‘“ 0.97

TFF USD 1.8 X 10 " * 0.94

Table 7.1: Hydraulic membrane resistance o f 0.2jam Super-200 membranes (Pall, UK) 

in cassette and coupon formats. *Average o f data from permeability tests on 14 

membrane coupons.

As with the other membrane materials in previous chapters, the hydraulic resistance of 

the membrane coupon held within the TFF USD device is an order of magnitude lower 

than that of the membrane held in the cassette (see Chapter 5).

7.2.1.1 Determination of critical flux and critical wall shear rate

Figures 7.1 and 7.2 below shows data obtained from flux stepping experiments with the 

Pall Centramate cassette and the TFF USD operated at a disk rotation speed of 900rpm 

respectively. Both sets of data indicate a critical flux region between 27 and 31 LMH.

Figure 7.3 shows a comparison of the two sets of data in terms of the relationship 

between permeate flux and transmembrane pressure; the TFF USD data has been 

modified by the TMP compensation factors for hydraulic permeability and initial 

system pressure (see Chapter 5). Again, there is excellent agreement between the data 

sets generated with both devices.
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Figure 7.1: Relationship between flux rate (—) and TMP for 

Centramate cassette, recirculation rate 60L.h'^ (K). Critical flux 

determination with CaT broth (AL1-29OCT04). 0.2pm Supor

membrane (Pall, UK). Total permeate recycle. Feed to membrane 

area lOOL.m'  ̂(feed volume IL).
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Figure 1.2: Relationship between flux rate (—) and TMP for a 25mm 

membrane coupon held in the TFF USD device, recirculation rate 

0.21L.h'\ disk rotation 3500rpm (O). Critical flux determination with 

CaT broth (ALI-29OCT04). 0.2pm Supor membrane (Pall, UK). Total 

permeate recycle. Feed to membrane area lOOL.m'^ (feed volume 

0.0^4).
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Figure 7.3: Comparison o f relationship betM’een flux rate and TMP data obtained with 

a Centramate cassette (■) and a 25mm membrane coupon held in the TFF USD device 

at 900rpm (0 ) . 0.2pm Supor membrane (Pall, UK). Total permeate recycle filtration 

o f CaT broth (ALI-29OCT04). TFF USD data corrected for differences in initial system 

TMP and hydraulic permeability using values given in Table 7.1 and equation [5.12].

The calculated shear rate at the membrane wall in the TFF USD device at 900rpm 

(using equation [3.4], see Chapter 3) is approximately 1400s'\ This value is in the 

region that mammalian cell clarification has previously been performed (Maiorella et 

al., 1991).

7.2.1.2 Comparison of Mab’ transmission behaviour

Samples of permeate and retentate were taken during repeats of the flux-stepping 

experiments to investigate the transmission behaviour of the Mab’ molecules. Figure 

7.4 shows the comparison of the transmission data from both experiments in the form of 

permeate flux versus mass flux of the Mab’ product. The data shows that TFF USD 

filtration is capable of mimicking cassette filtration in terms of transmission behaviour, 

as well as flux performance.
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Figure 7.4: Assessment o f Mab' transmission during flux stepping experiments, total 

permeate recycle. Centramate cassette, recirculation rate 60L.K^ (■), and a 25mm 

membrane coupon held in the TFF USD device, recirculation rate 0.23L.h'\ disk 

rotation 900rpm (O). 0.2pm Supor membrane (Pall, UK). CaT broth ALI-29OCT04). 

Data points are the average value o f the assay results obtained from tw'o replicates o f  

each permeate and retentate sample.

It is interesting to note that, unlike the Fab’/bacterial lysate system, the transmission of 

the Mab’ appears to continue to increase beyond the critical flux region. This may be 

due to the higher concentration of cells in the fouling layer causing aggregation of the 

intracellular proteins, allowing for easier passage of the Mab’ molecules (Krishnan et 

al., 1994). This suggests that the optimum operating point (in terms of product yield) 

may not be at stable operating conditions i.e. at constant flux or TMP, and thus the use 

of depth filtration or allowing the filter to foul may be a better option for maximising 

product yield.

One of the advantages of the TFF USD device is that both of these options could be 

investigated rapidly, with small amounts of feed material. By capping off the retentate 

ports, and feeding the broth into the top port of the TFF USD device (see Chapter 3),
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depth filtration could be mimicked (see also Chapter 10). Deliberately letting the filter 

foul to optimise product yield would be allowable if the filters used at production scale 

were disposable (Meacle et ah, 1993; Novais, 2001), or if they could be successfully 

cleaned after processing (see Chapter 1). This would directly influence the choice of 

membrane material and module type selected for scale-up studies.

7.2.2 Membrane material selection

A series of experiments were conducted to illustrate how different membrane materials 

could be assessed using the TFF USD device during initial process development studies. 

Often, time and feed material restrictions prohibit this type of study for bioprocesses 

(see Chapter 1). The choice of membrane and pore size is usually selected on the 

advice of a membrane manufacturer (C. Spicer, CaT, personal communication, 2005).

By keeping the feed type (CaT broth ALI-29OCT04) and operating conditions constant 

(permeate recycle, disk rotation speed ISOOrpm) three types of membrane coupon were 

assessed for flux performance (Figure 7.5), product transmission (Figure 7.6), and 

membrane regeneration after cleaning (Table 7.2). This disk speed (equivalent shear 

rate at the membrane 3000s'^) was selected based on the findings of Maiorella et al. 

(1991) suggesting that this was the critical average wall shear rate above which damage 

to mammalian cells of different t>pes occurs. The cleaning procedure used is described 

in Chapter 4, and complied with the recommendations of the membrane manufacturer.

The data shows that there is no significant difference between the filtration performance 

of the different membranes, despite the wide range of pore sizes (-0.1 pm to 0.45pm), 

suggesting that the secondary membrane of cell debris is the controlling barrier to 

product transmission (Cheryan, 1986). However, the excursion curves presented in 

Figure 7.5, show that higher permeate fluxes can be obtained with the 0.2pm Supor 

membrane; increased throughput would mean shorter processing times.
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Figure 7.5: Comparison o f excursion curves obtained with different 

25mm membrane coupons held in the TFF USD device. JOOOkDa 

Biomax (A), 0.2pm Supor (0)  and 0.45pm hydrophilic Durapore ( 0 )  

membranes. TFF USD device disk rotation I500rpm, total permeate 

recycle filtration o f CaT broth (ALI-29OCT04). Curve lines shown for 

easier interpretation o f data.
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Figure 7.6: Comparison o f relationship between permeate flux and 

product flux obtained with different 25mm membrane coupons held in 

the TFF USD device. lOOOkDa Biomax (A), 0.2pm Supor (O) and 

0.45pm hydrophilic Durapore (O) membranes. Device disk rotation 

1500rpm, total permeate recycle filtration o f CaT broth (ALl- 

29OCT04). Data points are the average value o f the assay results 

obtained from two replicates o f each permeate and retentate sample.
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Membrane
Material

Pore size/ 
MWCO

Manufac
-tarer

Initial
Hydraulic

Permeability
(LMH/kPa)

Post-cleaning
Hydraulic

Permeability
(LMH/kPa)

%Recovery 
of Hydraulic 
Permeability

Hydrophilic
polyethersulfone

(Biomax)
lOOOkDa Millipore 101 88 87

Hydrophilic
polyethersulfone

(Supor-200)
0.2pm Pall 233 233 100

Hydrophilic 
PVDF (HVLP 

Durapore)
0.45 pm Millipore 496 441 89

Table 7.2: Comparison o f water permeability data for various membrane coupon 

materials before and after filtration o f CaT broth ALI-29OCT04.

This simple set of experiments (which took less than a day to complete) gave valuable 

insight into the effect of the membrane material on the filtration of the CaT broth i.e. it 

was not a significant parameter that warranted further investigation. Having ruled out 

this variable so quickly using such small amount of material (potentially very early on 

in the process development cycle, see Chapters 1 and 8), the investigation of other 

filtration parameters could be conducted in the quest to optimise the purification 

process. The following section describes the data obtained during an investigation into 

the effect of variability in the feed on the filtration behaviour.

7.2.3 Effect of feed batch variation

Biological cultures are inherently variable in terms of final cell concentrations, product 

concentration, etc. However, scaling techniques for fermentation have long been 

established (Oosterhuis, 1983; Lamping 2003), and much effort is made to minimise 

this variation during scale-up and between production batches. Figures 7.7 and 7.8 

show the filtration behaviour of two different batches of material produced by the 

fermentation process development team. Although similar in terms of cell 

concentration and product titre, the key difference between the two feeds was the cell 

viability (ALI-29OCT04 had been held in cold storage). Details of the two feed batches 

are given in Table 7.3.
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Figure 1.7; Comparison o f excursion curves obtained w ith 25mm membrane coupons 

held in the TFF USD device. CaT broth AL1-29OCT04 (0 ) and CaT broth KM- 

02DEC04 (O). 0.2pm Supor membrane (Pall, UK). Device disk rotation ISOOrpm. 

Total permeate recycle.

40

]q(Ü

B
c
2 ,
X
3

O
3

O

20

♦

O

o

o

20 40
Perm eate Flux (LMH)

60

Figure 7.8: Comparison o f relationship between permeate flux and product flux 

obtained with 25mm membrane coupons held in the TFF USD device. CaT broth ALl- 

29OCT04 (0 )  and CaT broth KM-02DEC04 ( O), 0.2pm Supor membrane, device disk 

rotation 15OOrpm, total permeate recycle filtration. Data points are the average value 

o f the assay results obtained from two replicates o f each permeate and retentate 

sample.
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Fermentation ID ALI-29OCT04 KM-02DEC04

Fermentation volume (L) 20 100

Time held in storage at 4°C (days) 28 1.5

Cell concentration (units.L ) 61.8 68.9

Product concentration (units Mab .L ) &53 0.63

Cell viability (%) < 1 >60

Table 7.3: Details o f CaT broths used in feed batch variation experiments.

The data indicates that cell viability is an important parameter in terms of the filtration 

operation. Figure 7.7 shows that a much lower critical flux region was identified using 

the older broth (ALI-29OCT04). This would be expected, as greater quantities of 

intracellular proteins would be released into the feed, and the lysed cell debris would 

foul the filter more quickly. However, as Figure 7.8 shows, the difference in product 

flux is not great. In fact the older broth gave larger product fluxes, despite having a 

lower initial product concentration (see Table 7.3). This is concurrent with literature 

examples where although fouling is more severe in the presence of cell debris, the 

formation of a secondary cake layer prevents the formation of a dense protein layer, 

therefore improving overall transmission rates (Kuberkar and Davis, 1999).

The impact of the cell viability on filtration performance is discussed further, with 

relation to the fermentation harvest point in Chapter 10. The effect of the diafiltration 

buffer on the filtration performance was investigated, and the results presented in 

section 7.2.4 below.

7.2.4 CoDcentration/diafiltration studies

Constant volume diafiltration (DF) is often used to separate biological molecules fi'om 

complex fermentation feeds, to avoid concentration of the non-permeated species 

(Meagher et al., 1994). The standard operating protocol for filtration of similar CAT 

fermentation broths involved a 10-fold concentration before starting DF, so as to reduce 

the amount of DF buffer required. Hence, this procedure was used to produce the data 

presented in Figure 7.9 and 7.10.
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The permeate flux value was set at 30LMH, which was below the critical flux region 

previously identified (see Figure 7.7) for both of the feed batches investigated. During 

the filtrations, the TMP increased in first 20mins (stabilisation period) then settled to a 

constant value, confirming the sub-critical flux operation. Again, a greater filtration 

driving force was required to filter the older broth, which is concurrent with the data 

presented in section 7.2.3 above.
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Figure 7.9: Comparison o f TMP data during constant flux filtration (1.7h concentration 

at SOLMH, followed by 0.5h constant volume diafiltration with PBS at 30LMH) 

obtained with 25mm membrane coupons held in the TFF USD device. CaT broth ALI- 

29OCT04 (0 ) and CaT broth KM-02DEC04 (O). 0.2pm Supor membrane. Device disk 

rotation ISOOrpm.

Figure 7.10 shows the product and cell solids concentration profiles obtained during the 

KM-02DEC04 filtration. The data confirms that the cells are retained within the 

retentate and as the cell solids were concentrated, so was the product. This indicates 

that product was partitioning with cells, and that diafiltration may be necessary to 

optimise product recovery.
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Figure 7.10: Retentate concentration profiles o f product (O) and cell solids (M) during 

constant flux filtration (1.7h concentration at SOLMH. followed by 0.5h constant volume 

diafiltration with PBS at SOLMH). CaT broth KM-02DEC04. 0.2pm Supor membrane 

(Pall, UK). Device disk rotation ISOOrpm. Data points are the average value o f the 

assay results obtained from two replicates o f each permeate and retentate sample.

Figures 7.11 (a) and (b) shows the product transmission data, in terms of percentage 

transmission and product concentration in the retentate, obtained during the same 

experiment. The exponential decay transmission relationship described by equation 

[6.12] (see Chapter 6) was fitted, showing that product transmission declined rapidly 

during the concentration phase, but that the use of diafiltration only marginally reduced 

the rate of decline. Presenting the data in terms of product concentration in the retentate 

makes it easier to consider the data in terms of product yield (see Figure 7.11(b)).
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Figure 7.11(a): Product transmission behaviour during constant flux 

fdtration at SOLMH 1.7h concentration ( ^), exponential decay curve

%Tconc = 80e'^ ̂ ‘, correlation coefficient = 0.94 (------), followed by

0.5h constant volume diafiltration with PBS ( O), %Tof = 50e'̂  ̂̂ ‘, =

0.70 ( ---- ). CaT broth KM-02DEC04. 0.2 pm Supor membrane (Pall,

UK). Device disk rotation ISOOrpm. Data points are the average value 

o f the assay results obtained from two or three replicates o f each 

permeate and retentate sample.
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Figure 7.11(b): Product concentration in retentate during constant flux 

filtration at SOLMH. 1.7h concentration ( 0), exponential decay curve

[Mab\ ret]cone = 14.8e'^‘̂ \̂ correlation coefficient R^ = 0.99 (------ ),

followed by 0.5h constant volume diafiltration with PBS (O), [Mab\ 

ret],,,.- = = 0.97 ( - - - )  CaT broth KM-02DEC04. 0.2urn

Supor membrane (Pall, UK). Device disk rotation ISOOrpm. Data 

points are the average val ue o f the assay results obtained from two or 

three replicates o f each permeate and retentate sample.
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The product transmission data is described well by the exponential decay relationship 

described in equation [6.1] (Chapter 6). Extrapolation of this curve allows the 

prediction of when transmission would drop below an acceptable level, and therefore 

the ability to see the trade-off between processing time, DF buffer requirements and 

product yield.

An example of how this may be done is given in Table 7.4. For example, say that the 

process development target for the filtration step was 80% product recovery, the number 

of diavolumes required to achieve this 2. However, if the yield required was 90%, 

double the number of diavolumes would be required (N=4). It would also mean double 

the amount of filtrate to be processed by further bioprocess steps e.g. chromatography. 

The effect of membrane area could also be investigated, but it must be noted that the 

decay curve coefficients are only valid for the flux rate and concentration time period of 

the empirical data.

Initial Feed Volume L 100 100 100
Product Concentration in Feed 
([Mab’, retjfeed)

units Mab'. L'̂ 15 15 15

Membrane Area (A) m' 0.1 0.1 0.1
Operating Flux (J) LMH 30 30 30
Concentration phase;
Time (t) h 1.7 1.7 1.7
Final retentate volume L 5.1 5.1 5.1
Product Concentration in Retentate 
([Mab’, retjconc)

units Mab'. L'̂ 7.2 7.2 7.2

Diafiltration
Time (t) h 3.4 6.1 8.5
No. of diavolumes (N) diavolumes 2 4 5
Volume DF buffer L 10.2 18.2 25.4
Volume of Filtrate L 153 233 305
Final Product Concentration in Retentate 
([Mab’, retjop)

units Mab'. L"̂ 3.0 1.5 0.8

Overall Product Yield % 80 90 95

Table 7.4: Example predictive calculation results for amount o f diafiltration buffer (and 

filtration time) required to achieve specified step yields. Product concentrations

calculated from [Mab ret] com = and [Mab \ retJ^F = 7. le
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As suggested in Chapter 1, this information could be also be linked to cost data (e.g. 

cost of buffer, or cost of membrane area) to look at the trade-off between filtration time 

and product yield from an economic perspective. This is discussed further in Chapter 9.

7.2.5. Diafiltration buffer studies

The poor transmission data obtained by using PBS as a DF buffer (-40%, see Figure 

7.11(a)) warranted an investigation into the effect of the type of buffer used (see also 

Chapter 6). The feed type and operating conditions were kept constant for each 

experiment, and pH was also monitored (data not shown as pH values remained 

constant). The Mab' product pi was approximately 6.6, so the filtration pH profile had 

to avoid going through this point, as this could cause irreversible damage to the 

molecule structure (R. Turner, CaT, personal communication, 2005).

Figure 7.12 shows the overall step yields obtained during constant flux diafiltrations 

with three different CaT DF buffers. A marked improvement (almost 20%) in yield can 

be seen with the use of Buffer B, and thus this should be considered as an alternative for 

the DF operation. However, the effect of this change in buffer environment on the 

efficacy of the Mab’ product molecule would have to be verified beforehand.
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Figure 7.12: Effect o f type o f diafiltration buffer on product yield. Buffer A pH6.1 (A.), 

PBS pH7.1 (< )̂, Buffer B pH8.6 (■ /  Constant volume diafiltration at SOLMH for Ih. 

CaT broth KM-02DEC04. 0.2fjm Supor membrane (Pall, UK). Device disk rotation 

ISOOrpm. Error bars are the maximum and minimum calculated yields from assay 

sample replicates.
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Further study on the effect of the DF buffer composition would be recommended from 

these initial findings. The data obtained above was using only O.IL of feed, in a few 

hours.

7.3 TFF USD index and WinOp generation for a mammalian cell broth

As discussed in Chapters 1 and 2, the data obtained from scale-down experiments needs 

to be presented in an industrially relevant form i.e. the key data should be easily 

interpreted (see Figure 1.6, Chapter 1). In addition, the definition of a USD index for 

TFF would allow the data obtained from different feed/membrane combinations to be 

compared by a single figure (see Figure 2.6, Chapter 2), facilitating the use of this 

information during whole process modelling (see Chapter 1).

Figure 7.13 shows a plot constructed to determine such a filtration performance USD 

index. The plot differs slightly from Figure 2.6 in that instead of plotting shear stress 

(Zw) against permeate flux the shear rate (/%) was used (this is acceptable if the broth 

rheology is Newtonian i.e. constant over the range of shear). In addition, the units of 

flux converted to a linear velocity (m.s‘ )̂, so that the gradient of the critical ratio of 

permeation flux to wall shear rate line can be expressed as essentially a resistance value 

(m'^). The use of this information is discussed further in Chapter 9.

It is below this line, that the filtration parameters should be set for stable operation at 

larger scales. The plot can also be used as the basis for a Window of Operation (see 

Chapter 2, Figure 2.7). A hypothetical WinOp is shown in Figure 7.14 for this feed and 

membrane combination, based on Figure 7.13.

This visual representation conveys the range of shear rates and permeate flux rates that 

should be investigated during larger scale trials at a glance (see Chapter 2). It identifies 

operating conditions which would be robust i.e. repeatable within specified tolerances, 

which is of great importance during production. The WinOp also simply illustrates that 

if the process design target flux was e.g. 10 xlO'^ms'\ the process is not possible with 

the membrane tested, prompting investigations into different membrane materials, 

alteration of the fermentation conditions, or even seeking an alternative unit operation 

for the processing step.
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Figure 7.13: Plot to determine the critical ratio o f permeation flux to wall shear rate 

(J/Ym = 0.37m'^) for constant flux filtration o f KM-02DEC04, with a Supor-200 

membrane (Pall, UK). Unstable operating points (X), stable operating points ( +). 

Critical erosion shear rate cO = 91s' .̂

The gradient of the line dividing stable operating points from unstable operation is the 

USD index. From Figure 7.13 the value determined for the particular broth was 0.37m" 

and characterises the filtration of this feed with one parameter. This singe value can 

be used to compare different feed batches or membrane materials side by side. The 

higher the USD index, the easier the filtration is to perform i.e. higher fluxes using a 

wide range of recirculation rates gives stable operation.
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Figure 7.14: Window o f Operation for TFF o f KM-02DEC04 and Supor-200 

membrane, generated using USD data.

Key:

1 Region below critical erosion shear rate (filter would block instantaneously) % 0.91s'\

2 Operation unstable (above critical flux) e.g. the membrane would foul rapidly above

5x10^ m.s'  ̂ (20LMH) below a wall shear rate of 1800s'\

3 Maximum wall shear rate obtainable in large-scale device (or maximum shear rate

product can be exposed to (set at 2900s'* from literature value)

4 Flux rate too low for a reasonable processing time (15LMH selected here, using a

O.lm^ area).

5 Feasible region of operation i.e. design area for scale-up.

7.4 Summary

This practical case study has given examples of the application of the USD device and 

methodology in a real bioprocess development scenario.
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The data presented in this chapter has shown a successful comparison of TFF USD with 

a conventional filter with a mammalian cell culture, confirming it’s capacity to generate 

data for another class of bioprocess feeds. Using minimal amounts of valuable feed 

material, the impact of several parameters affecting filtration performance including the 

operating shear rate, operating flux, membrane material, DF buffer pH, and cell viability 

were investigated.

The importance of these parameters to the filtration step were quickly established by the 

TFF USD trials, and an example of how the data may be used for prediction of larger 

scale operation was given. A Window of Operation was also populated, with the aim of 

visually presenting the data in a pragmatic way, and identifying robust points of 

operation for use as design inputs for the production scale process.

The potential of the use of this data to be used in conjunction with cost modelling has 

been highlighted, and this is discussed further in Chapter 9.
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Chapter 8 Business Aspects, Validation and Regulatory 
Concerns

8.1 Introduction

During an Engineering Doctorate candidates receive training in management, validation 

and commercial awareness as well as carrying out novel research. In this chapter, 

knowledge and skills which had been developed during the business and transferable 

skills course elements of the EngD programme were applied.

In this thesis the design of a novel device for the scale-down of tangential flow filtration 

has been presented. The work described in the previous chapters details the research 

conducted on the development and testing of this scale-down device to mimic pilot- 

scale tangential flow filtration (TFF) operations. The results from this work indicate 

that such a system could be useful for process development, after some refinements are 

made. The use of small-scale experiments in conjunction with intelligent data analysis 

would enable such a device to predict the behaviour of the operation at manufacturing 

scale. The next step is to define how such a methodology can be best used as a 

commercial tool for filtration process development and to describe the specifications for 

such a system. In turn, this will allow a plan for commercialising the product to be 

created.

In order to develop further understanding of the industrial environment in which TFF 

development work is performed, the following chapter provides the following:

• An appraisal of current process development practices;

• An assessment of the impact of USD on the management of the process 

development pathway;

• A discussion of the validation issues surrounding membrane filtration and the 

use of scale-down devices for regulatory compliance studies;

• A specification of the important features for a TFF USD system to be used for 

commercial process development.
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Finally, the considerations required for the potential commercialisation of a TFF USD 

device are reviewed.

8.2 Current process development practices

The central challenge in the development of a biopharmaceutical product is to derive 

from a complex, unstable and inherently variable biological material, a product of 

defined, reproducible characteristics and predictable effect for use in medical 

applications (Pisano, 1997). The progress of the biological sciences in understanding 

the ruling mechanisms of life has enabled an ever wider array of techniques for the 

customisation of organisms to specific tasks as well as yielding a vast number of new 

metabolic targets for novel medical treatments. However, this tremendous advance in 

understanding and research capabilities has not been paralleled by a similar extent of 

progress in the process sciences. This has lead to the situation where development of 

processes capable of supplying purified biopharmaceuticals, economically and at large 

commercial scale, is increasingly becoming the bottleneck in the introduction of novel 

compounds to the market (Novais, 2001).

Process development procedures for pharmaceutical and biotechnology products have 

been well documented and reviewed (Pisano, 1997; Wheelwright, 1991; Pampel, 2000; 

Lamping, 2003, Reynolds, 2005, Neal, 2005, Gardner, 2005) and therefore, only a brief 

overview is given below.

8.2.1 The traditional biopharmaceutical product development cycle
The development cycle of a biopharmaceutical product takes it from discovery through 

clinical trials to market launch and continues until manufacturing is stopped either due 

to lack of demand or for economic reasons. The time to develop and market a new 

medicine varies widely, with some drugs only taking four years and others taking as 

long as fifteen years (Wheelwright, 1991). The product development cycle varies for 

each drug but process development follows a structure defined by the regulatory 

environment. Figure 8.1 below details a typical development cycle which illustrates the 

stages that are generic for the manufacture of every bioproduct.
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Figure 8.1: The key stages in product development and how they coincide with process 

development (after Pisano 1997).

Drug discovery forms the beginning of the development cycle. Using the advanced 

research tools at their disposal, scientists aim to turn biomedical understanding or 

biomolecular discoveries into promising leads. Recently this process has been greatly 

accelerated by the advent of comprehensive genome and proteome information and 

corresponding high-throughput screening techniques. Nonetheless, a well-known rule- 

of-thumb suggests that out of the 10,000 candidates studied at this point, only about 20 

ultimately warrant further investigation.

The predominant objective of pre-clinical development is to accumulate sufficient data 

to enable a decision as to whether the candidate molecule should be taken onto 

financially and resource expensive clinical trials. The main activities are laboratory- 

based, and include preliminary toxicity testing in animal models, an assessment of the 

pharmacological and pharmacokinetic properties of the compound and initial studies of 

potential delivery routes.

Clinical trials proceed through three phases. Phase I trials, usually on a small number of 

healthy human volunteers, are directed at evaluating the drug’s safety in terms of side- 

effects. Phase II trials, usually on a larger group of patients suffering from the condition 

to be treated, and also involving placebo groups, are conducted to establish dosage and 

initial efficacy of the drug. Phase III trials are conducted to demonstrate definitive
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safety and efficacy of the drug. Phase III trials may require several years to complete 

(Pisano, 1997).

Following successful completion of Phase 111 clinical trials, the accumulated data both 

on clinical aspects as well as the validation of the manufacturing process is submitted to 

the regulatory authorities for approval. Only then can a company start producing and 

selling the new drug, and recuperate the investment it has made in research and 

development (R&D) efforts.

Process development is a parallel activity to product development, and it performs 

multiple tasks within the overall product development cycle (see Figure 8.1). The goal 

of process development is to move from a process that has been developed for 

laboratory developmental work and that is pottentially complex, inefficient and difficult 

to scale, to one that is practical, efficient, robust and safe (Pisano, 1997). Process 

development encompasses all the work involved in the transition between the initial 

discovery phase and final commercial production.

Process development can be divided into three phases:

• Process synthesis which entails developing analytical methods, evaluation and 

exploration of cell line and purification methods at small scale and laboratory 

scale production of material for preclinical studies.

• Pilot-plant development which covers the scale up, evaluation and optimisation 

of the complete process.

• Commercial process transfer and start-up, which involves transferring the 

technology to the commercial manufacturing plant. This could include tasks 

such as optimisation of a process under commercial conditions and the 

validation of the manufacturing process.

Figure 8.1 also shows how these three phases interact with the overall product 

development cycle. Process development during clinical trials pursues three major tasks 

which often have conflicting objectives. On one hand, the growing amounts of material 

to satisfy the short-term demands of clinical trials require significant processing 

capacities. On the other hand, a process suitable for production at full manufacturing 

scale has to be developed and data generated for submission to the regulatory
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authorities. As Phase III trials approach the need to obtain validation data on a process 

representative of that ultimately installed in the manufacturing plant rapidly decreases 

the flexibility of process development to seek alternative options (see section 8.2.2). 

Since the manufacturing facility has to be commissioned well before the completion of 

clinical trials, so as to avoid delays during the approval procedure, the pressure on 

process development to deliver a robust and economic manufacturing process early on 

becomes even greater.

The growing need for material quickly increases the scale of the process as clinical trials 

approach. The entrance into clinical trials has historically marked the transfer of the 

process to pilot-scale production. However, as material demands for clinical trials 

escalate, more and more processing capacity is committed to satisfy these needs. At the 

same time, the flexibility in terms of process technology is significantly reduced since 

the material provided for clinical trials should be produced by similar technological 

means as the ultimate product. As clinical trials progress, these constraints intensify the 

need to fix the manufacturing process technology both to supply Phase 111 trials and to 

commence validation studies of the manufacturing process. Therefore, while overall 

process development mostly accompanies the product development cycle, the actual 

time available for dedicated screening and implementation of process technology is 

relatively small. In addition, conventional process development methods are being 

exposed to changing demands and pressures which are considered further below.

8.2.2 Pilot-scale development
Traditionally pilot-scale studies have been exploratory in nature due to the fact that very 

little is usually known about the purification of the candidate drug in the early stages of 

development. Of particular importance is the scale of production; this directly 

influences the performance of a biotech-process, and hence it’s viability. These “scale- 

up” effects are difficult to predict because there is little knowledge about exactly what 

variables might affect the process, in terms of individual unit operations and interactions 

between these stages. The emphasis of process development is to get the process 

sequence and operating parameters defined as quickly as possible.
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The time and monetary constraints surrounding pilot plant trials preclude 

biopharmaceutical companies from thoroughly optimising a process. The current 

financial and regulatory environments are creating downward pressure on revenues 

(caused by shorter product life cycles, pressure by governments to produce cheaper 

drugs and increased competition) and upward pressure on manufacturing costs (caused 

by the increasing complexity of new drugs and stricter regulatory requirements) 

(Titchener-Hooker et ah, 2001). Hence, the pressure to be first to market and to 

mitigate the risk of lost capital investment if a drug fails to get to market, outweighs the 

pressure of having an optimum purification process. The result is often an unwieldy, 

inefficient, and costly manufacturing process.

In general, pilot plant studies are time consuming expensive and require dedicated 

equipment (Zhou et ah, 1997). Consequently, the traditional stance adopted by 

biopharmaceutical companies toward process optimisation has been to delay it until 

there was a reasonable certainty that the drug would be approved. This is in an attempt 

to avoid committing resources on drugs that would never make it to market. In practice, 

this meant investing heavily in process development/optimisation only when drugs got 

to Phase III clinical trials. Pilot-scale development was only considered a success when 

it did not get in the way of product launch. Creating an optimised process was not a 

high priority, as this was considered a threat to the aim of keeping process development 

off the critical pathway to product launch.

The reasons that have previously prohibited biopharmaceutical manufacturers from 

investing resources on process optimisation are three-fold. Firstly, extraordinary 

premiums have in the past been paid for successful biological drugs. This, and the 

possibility of market exclusivity during the lifetime of the product patents, has further 

reinforced the strategy of concentrating on product innovation rather than process 

improvement (Pisano, 1997; Wheelwright, 1991). Secondly, process optimisation is 

difficult and costly to conduct given the complex behaviour of biotechnological 

products and the high value of the bioproduct and biological reagents. Thirdly, the tight 

regulatory environment surrounding the production of biopharmaceuticals constrains the 

ability of companies to introduce significant changes to a process once it has been 

approved by the regulatory authorities (Mercer and Seely, 2000). As a result, the lack 

of economic benefit, together with the apparent difficulties described above has, to date.
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led biopharmaceutical companies to consider the optimisation of process performance 

as secondary to that of establishing a validated process in the first place (Farid et ah, 

2000).

However, shrinking patent lifetimes, and the advent of generic competition combine to 

exert pressure even on established manufacturers of bioproducts. Consequently, process 

performance and efficiency has become an area of increasing interest. Whilst the 

regulatory hurdles surround process changes continue to be high, manufacturers have 

begun to consider these as a problem to be dealt with rather than avoided. In doing so, 

process development pursues three main sources of competitive advantage; first to 

market, high quality (in terms of purity, activity, dependability, or flexibility) and low 

cost (Wheelwright, 1987). These advantages are mutually dependent and optimisation 

of one can only be realised at the expense of others (see Figure 8.2).

to market

Optimal
process

High qualityLow cost ^

Figure 8.2 Benefits o f an optimised manufacturing process showing interdependence o f  

the three main sources o f competitive advantage.

In summary, the overall goal of process development is to make as much of the product 

as required, of the necessary quality, as cheaply as possible and in the shortest amount 

of time possible. Having a high performance, robust, economic and well understood 

process established early on can avoid costly delays later on in development 

(Bobrowicz, 1999). Section 8.3 below discusses how scale-down techniques, in 

particular ultra scaledown (USD) methodologies, could help to achieve this aim.
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8.3 The impact of USD mimics on the management of process 

development
It has been demonstrated that scale-down, through rapid and simple experiments, can 

provide much of the information needed during the early stages of process development 

(Varga et ah, 2001). Since process synthesis seeks only to conduct a feasibility study of 

process alternatives, the data required from scale-down models of individual unit 

operations would not have to be overly accurate, and more weight would likely be 

placed on the rapid generation of performance data for a large number of alternative 

operations (Morrow et al., 2001). For optimum use of the resulting data mathematical 

models of unit operations could be employed and fed with actual scale-down data at 

critical junctures in the emerging process.

The availability of USD methodologies has caused a rethink of process development 

strategies. It has been proved that thorough investigation of the manufacturing process 

leads to improved yields accelerates throughput and reduces manufacturing cycle times 

(see Figure 8.3). These improvements all lead to reduced costs of manufacture and 

provide an advantage in terms of the potential for a company to market first with a new 

class of drug.

USD mimics, such as those described in Chapters 1 and 3, offer process engineers the 

opportunity to recreate the conditions of a manufacturing scale process on a laboratory 

bench top. This means that any process that utilises the unit operations that USD has 

the ability to mimic can be investigated at the start of the development cycle. In 

addition, this is at a fraction of the cost in terms of time, material and facilities. The 

results from these scale-down investigations ensure that process development is kept off 

the critical path and that a robust, effective purification process is delivered early on 

with a minimum number of pilot scale trials needed modify it. As a result, a 

biopharmaceutical company can be first to market. Complementary software would 

allow inputs from individual operations to be integrated into one whole purification 

process model. This allows process engineers to make changes to one unit operation 

and then monitor the effect on the whole process in terms of yield, efficiency and cost 

(Pampel, 2000; Neal, 2005).
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Figure 8.3: The impact o f USD approaches on the capacity to gain process 

understanding in advance o f commitment to a particular manufacturing route. 

Application o f USD provides additional time for exploratory studies by comparison with 

conventional approaches to process development.

8.3.1 Use of TFF USD as a tool for process development
The application of scale-down methods during the individual phases of process 

development results in different requirements regarding the accuracy of the scale-down 

models, the level of detail employed and the time available for their generation (see 

Chapter 1, section 1.2.3). The ability to produce information at a laboratory scale using 

greatly reduced quantities of feed, that predicts and mimics the industrial scale, has 

interesting implications for the initial downstream process design and optimisation and 

how it is managed.

Towards the entrance into clinical trials, process development is faced with the task of 

transferring a process developed in the laboratory to the pilot plant. Resulting changes 

to the overall environment, analytical and monitoring capabilities as well as the type of 

equipment used frequently leads to undesirable changes in process performance, and 

associated loss of time for their rectification. Scale-down models employed prior to
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process transfer can help to avoid most of such surprises, provided that critical 

parameters can be identified correctly represented during the generation of the scale- 

down models.

Scale-down models used during process scale-up require both a higher level of detail 

and a higher accuracy than would be called for during process synthesis. At the same 

time, the willingness to commit resources to the improvement of scale-down models 

increases since the potential benefits increase. Models used at this stage would 

therefore be carefully developed and validated, the prime concern being to detect and 

subsequently avoid potential issues resulting firom the shift to process scale technology.

The TFF USD experiments described in Chapters 5 and 6 would only be used for 

process research, but this would result in a variety of impacts for the other stages as 

process definition at an early stage is improved. These impacts are discussed below and 

have been divided into the key process development tasks shown in Figure 8.1 i.e. 

process research, pilot-scale development, and technology transfer and start-up.

a) Impact on process research: Using the TFF USD for process development would 

generate far more data than using current methods, thus allowing a better understanding 

of the system and allowing smoother scale-up. The data would also be of a higher 

quality if factors, such as shear degradation that occurs in manufacturing scale 

equipment could be accounted for in the small-scale experiments. The TFF USD device 

created in this EngD uses disposable membrane disks, obviating the need for cleaning 

after each experiment, and therefore allowing quicker equipment turn-around. This 

could mean that different (better) membrane/operating conditions are chosen giving a 

more efficient process. As the system is so much smaller than current pilot-scale rigs, 

less feed, buffer and floor space is required.

b) Impact on pilot development, scale-up and production o f material for clinical trials: 

If the TFF USD methodology were used correctly, a significant amount of process 

development work could be completed at a small scale in a very small amount of time. 

More data on the best process would be obtained before the pilot development stage; at 

best it would be possible to directly scale-up from the pilot-plant with a process that is 

very close to the final scale. In addition, it would be beneficial for process validation if
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the product finally on the on the market is the same as the product that was used for 

clinical trials. As process screening increases the speed of development, it should be 

possible to ensure that even Phase I trials are completed with material produced using a 

near-final production technique.

c) Impact on technology transfer and start-up: As a result of the initial development 

stages yielding more information and potentially taking less time there should be 

positive consequences for technology transfer. As the process would be better 

understood, start-up should run directly as planned with no delays.

Apart from the obvious economic reasons, there are other impacts on the strategy for 

process development

• The process is locked earlier, and therefore specification of the manufacturing 

scale process can commence;

• A drug candidate that does not have a viable process can be dismissed at an 

early stages of process development instead of wasting valuable process 

development resources;

• Fewer delays in production start-up would allow earlier product launch.

Another consequence of the TFF USD methodology is its use for whole process 

optimisation. The development of purification techniques tends to run parallel to 

fermentation optimisation. Traditionally, a clarification filtration process was 

developed for the broth that gave the maximum yield during fermentation; variables 

such as harvest time, and media components were not optimised in terms of the 

filtration. Rapid experiments to assess filtration feasibility would allow input into the 

decision processes of the fermentation scientists i.e. a feed back loop that would identify 

the trade-offs between the two unit operations.

Additionally, material must be provided to further the development of operations further 

downstream, such as chromatography. For the best optimisation of these purification 

operations, the test material provided must be as similar to that produced using the final 

production process as possible, as even minor changes to media or impurities could 

affect the unit operation performance significantly. USD models aim to mimic the 

manufacturing scale process, and hence satisfy this requirement better than current
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methods. Again the trade-offs between the different unit operations could be evaluated 

in terms of process feasibility and economics, allowing for optimisation of the whole 

process (see Chapter 9).

In order for the use of scale-down methodologies to be used as an aid for process 

development, they must comply with the regulations governing the bioprocess industry. 

These requirements are discussed in the following section, along with the concept of 

using USD tools to generate the validation data needed to gain process approval.

8.4 Regulatory and validation issues arising from the use of USD 

mimics during process development
Before a new biological product is brought to market, regulatory approval of the process 

and the product must be obtained. Regulatory requirements and industry standards have 

increased dramatically over the past three decades which has led manufacturers to 

increase their spending in order to achieve a compliant process (Winkler, 2000). The 

United States’ Food and Drugs Administration (FDA) is responsible for licensing all 

new drugs that are sold in the USA, and is often considered to be the benchmark. There 

are equivalent regulatory organisations for other parts of the world, such as the 

European Medicines Agency (EMEA).

One important requirement of all the major regulatory bodies is that the manufacturing 

process must be fully validated. Process validation is defined by the US Food and Drug 

Administration (FDA) as “Establishing well documented evidence which provides a 

high degree of assurance that a specific process will consistently produce a product 

meeting its pre-determined specifications and quality attributes”. Essentially, this 

means providing evidence that a process does what it was designed to do.

Validation can be a lengthy and expensive process but it is crucial to ensure product 

safety and quality. As well as regulatory requirements and gaining approval, thorough 

validation of a procedure has other benefits such as increasing the robustness and 

reliability of a process and reducing the number of failed batches. Consideration of 

validation issues should begin as early as possible, usually at the laboratory
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development stage since the process will need to be validated before clinical trial 

material can be manufactured and released.

As a consequence of rapidly changing technology, approaches to validation are also 

being modified; it is important that a company keeps up to date with the latest trends 

(e.g. risk based approaches to equipment operation). The vast majority of process 

validation work is carried out at full or pilot plant scale. However, in some situations it 

is advantageous either in terms of time, cost or safety to carry out validation studies at 

small-scale (Sofer, 1996).

The next section discusses the issues surrounding the use of a TFF USD device for 

validation purposes, and will outline the validation procedures for the unit operation.

8.4.1 Scale-down as a tool for validation
Good scale-down methods can make validation of a large-scale process easier by 

enabling greater process knowledge and understanding. Since much of the data that 

would be too expensive to create at large scale can be generated using scale-down 

techniques a thorough study of the process responses is possible. This makes it easier to 

define critical process parameters and set operating limits and acceptance criteria for the 

process.

The accuracy required of a scale-down model used for conducting validation studies is 

high; equivalency in terms of performance between the model and the full-scale process 

must be demonstrated. However this can remove some of the burden of validating the 

full-scale process. For example, to prove the process is consistent, consecutive batches 

at full or pilot-scale are executed using exactly the same equipment and protocols as 

would be produced during routine manufacturing. In the USA, this is typically a 

minimum of three batches; in Europe five batches are required. However, in many 

cases three runs are not sufficient due to performance differences on scale-up which 

mean that product specifications or processing conditions have to be adjusted. Scale- 

down models can be used to set more realistic specifications so that the number of 

verification runs required can be kept to the minimum. This results in considerable 

savings in time and resources.
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In addition, some validation studies, such as virus removal, are difficult to conduct at 

large scale (Sofer, 1996). The most comprehensive way to measure virus clearance is 

using virus spiking studies, where a known virus titre is added to the feedstock for a 

step and the numbers of viruses present in the feed stream after that step are calculated. 

Performing this type of study in a full-scale plant would be dangerous and it would be 

nearly impossible to prove that all the viruses have been removed from the facility. 

However, an accurate scale-down model of the step could be used to determine the level 

of virus clearance that could be expected much safer and controlled environment 

(Morfeld et al., 1996). Others studies, such as chromatography matrix lifetime 

evaluation, are practically impossible to conduct unless performed in automated scale- 

down experiments (Sofer, 1996).

USD mimics such as the one developed in Chapter 3 allows initial process development 

work to be carried out at a very small scale which requires only very small quantities of 

material. This would allow a company wishing to develop and market a product to 

conduct more research on purification process should it wish to. This in turn could 

generate more evidence that the manufacturing process is robust and reproducible since 

a greater number of experiments could be conducted testing the manufacturing process 

to verify its design.

However, if this information were to be submitted as a part of the validation process the 

USD device itself would have to be validated. This would involve the standard 

installation, operation and performance qualifications required for any piece of 

bioprocess. In order to do this the manufacturer of any USD device would have to 

provide evidence and details of the working ranges/conditions within which the device 

has been tested to show that when used under the tested operating conditions, it will 

generate results that compare to the full-scale process.

Scale-down models of chromatographic separations have probably gained the widest 

application in the industry. This popularity mostly relates to their application in scale- 

down scouting and optimisation as well as process validation studies (Winkler et al., 

2000). The benefit of small-scale models for work is most obvious in chromatography 

due to the high price of packing materials. It was demonstrated that small-scale 

prospective validation studies could accurately predict the performance of
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chromatography resins at manufacturing-scale (O’Leary et ah, 2001). The resulting 

rules for the validation of scale-down chromatography models can therefore serve as a 

guideline to the requirements that scale-down models of other unit operations will have 

to satisfy.

8.4.2 Validation of membrane TFF processes
The validation process issues related to membrane filtration in bioprocesses are well 

documented, and specific guidelines are available for membrane filtration from 

manufacturers and the appropriate regulatory authorities e.g. FDA, EMEA. Many 

publications are available which describe how to qualify TFF systems and validate TFF 

process steps, as well as covering topics such as installation qualification, performance 

qualification, when to validate, and validation issues for TFF operators. Michaels 

(1991) provides an industrial perspective of the general principles outlined in the FDA's 

guideline as applied to the specific problem of validating a TFF process.

The validation of a filtration process starts with the equipment qualification of the filter 

module. The majority of this (approximately 90%) is completed as part of installation 

of the equipment but the remaining percentage is product and process specific. 

Equipment qualification consists of installation qualification (IQ) and operational 

qualification (OQ).

For a filter module, the IQ and OQ confirm that each component of the system meets 

the manufacturer’s design criteria, including any valves and pumps associated with the 

device. IQ studies establish confidence that the process equipment and ancillary 

systems are capable of consistently operating within established limits and tolerance. 

OQ provides documented verification that the equipment and ancillary systems perform 

as intended throughout anticipated operating ranges.

Process performance qualification (PQ) is the documented evidence that a process 

operated within established parameters performs effectively and reproducibly to 

produce a product that meets predetermined specifications and quality attributes. 

Process qualification is aimed at ensuring process consistency. Process performance 

can be defined in terms of a number of parameters/ such as yield and purity of product
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which must be reproducible within a defined operating range. Generally parameters 

that are validated during the PQ are defined within broad ranges during the development 

stages of a process, but are narrowed as understanding of the process is gained through 

experience. For TFF these parameters include recirculation rates, membrane loading 

and either flux or transmembrane pressure.

With the advances in scale-down techniques, it may be possible to use data from smaller 

scale experiments to reduce the number of PQ trials at full-scale. Section 8.4.3 looks at 

the factors that need to be considered if a TFF USD methodology were to be used for 

this purpose.

8.4.3 Design considerations for a TFF USD device to be used for 

validation purposes
The EMEA defines the different scales use in the development of a manufacturing 

process:

1) Laboratory scale - These are produced at the research and early development 

laboratory stage; they may be of a very small size (e.g. 100-1000 times less than 

production scale). The purpose of these batches is the definition of critical product 

performance characteristics and thereby to enable the choice of the appropriate 

manufacturing process.

2) Pilot scale - Pilot scale batch size should correspond to at least 10% of the future 

industrial-scale batch. The role of pilot scale batches is to enable smooth passage to the 

industrial scale product without major production difficulties, by developing and 

optimising a robust and reproducible manufacturing process.

3) Industrial scale - These batches are of the size which will be routinely produced 

during the marketing phase of the product.

The TFF USD would therefore be classed as a laboratory scale device. Despite the 

large scaling factor it should be able to provide useful data for process development. It 

is possible that information gathered from such studies could show an understanding of
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a process or could be used to set critical process parameters. However, if this 

information were to be used for regulatory means, proof of comparability between 

scales would be required (see section 8.4.1). The type of data that would be required to 

show comparability between manufacturing scale and USD scale would be:

• Comparability of species fractionation throughout the entire filtration process;

• Comparability of productivity throughout the entire filtration process;

• Comparability of end-product quality.

Each of these points should be tested over a number of scales to ensure that the mimic is 

valid and to check the extent of the comparability.

8.4.3.1 Materials and apparatus
An accurate scale-do'wn model will include all pipe work and auxiliary equipment 

associated with the operation. A mimic of a filtration unit will also consist of the 

material supply lines, pipe work, detectors, valves and pumps. It is important that all 

these components are represented as any changes to the system could result in a change 

in performance. It is also preferable to keep materials of construction for any wetted 

parts the same at both scales. This is because different materials may adsorb proteins or 

leach contaminating molecules into the process streams. Obviously it is not always 

possible to use the same materials of construction at the two scales but great care should 

be exercised to ensure that whatever material is used does not interfere with the process.

The membrane used in the scale-down mimic must be exactly the same as the 

membrane used in the commercial process i.e. the same manufacturer as well as 

material and pore rating.

5.4.3.2 Buffers and Feedstock
Every company will have its own, well-established protocols for large-scale buffer 

preparation. In order to validate a laboratory mimic the same protocols should be 

shown at a larger scale to ensure all the properties of the buffer are retained. It is also 

important that the ingredients used in buffer preparation are of the same standard as that 

used at commercial scale. So if water for injection (WEI) is used to make buffers at the 

industrial scale it must also be used for the laboratory mimic.
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The concentration of salt, protein, product and other components in the feedstock must 

be identical at both scales. Ideally for validation studies actual feedstock from the 

industrial process should be used. However, at small scale the addition of material to 

the feed, such as a viral spike, can have an effect on concentration, ionic strength and 

pH. The consequences of any changes are variable and may be hard to detect. To avoid 

any undesirable effects the pH and/or ionic strength should be adjusted to the 

appropriate values. If it is not possible to get the conditions exactly as they are in the 

commercial process, then a statistical design of experiments (DOE) approach could be 

used to determine the sensitivity of the process to the parameters. If the process is 

insensitive to any given parameter then it may not be essential to maintain that 

parameter upon scale-down.

8.4.3.3 Operational considerations
There are a great many process parameters that need to be considered when scaling 

down membrane TFF (see Chapters 1 and 3). Although, the volumetric feed/retentate 

flow rate should be suitably reduced, either the linear recirculation velocity or residence 

time (or both) should be maintained in order to replicate the contact times at industrial 

scale. These affect concentration polarisation, so if they are changed it will be 

necessary to show that the change has negligible effect on performance.

Another factor to be considered is the temperature of the operation. Temperature can 

affect the viscosity of solutions, alter the rate of particle aggregation and disrupt the 

conformation of a protein. It is therefore important that the temperature of the process 

is controlled at both scales. This applies not just to the membrane module itself but to 

all elements of the filtration system, e.g. if cleaning buffers are maintained at 50°C at 

the industrial scale then the laboratory experiments should also keep the buffers at this 

temperature.

Validation studies that may be performed using the TFF USD include membrane 

regeneration and module cleaning studies, as well as the core unit operation. Studies to 

demonstrate the number of times that a filter cassette could be reused may result in 

operational cost savings. Cleaning studies at small-scale would not only establish that a
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certain protocol was effective, but would also allow for the investigation of the impact 

of different procedures on membrane lifetime.

8.5 Factors to consider for the commercialisation of a TFF USD device
In an increasingly competitive environment process economy is a key issue in the 

management of bioprocesses. Reducing the number of processing steps can lead to 

savings in operational cost and processing time and will improve the overall process 

yield (Novais 2001).

Companies such as Millipore Corporation are market leaders in the production of 

filtration membranes and devices, which allow the combination of concentration and 

purification within a single unit operation. However, in order to remain in such a 

position, it is important that their products for this unit operation are able to keep up 

with advances in the field and customer requirements.

Below is a discussion of the steps required for the potential commercialisation of the 

TFF USD device. These are:

• Definition of the product concept

• Assessment of the market and the barriers to market

• Preparation for product launch

• Further product pipeline

8.5.1 Product definition
The device described in Chapter 3 could, with some refinements (see Chapter 9) be 

developed into a marketable product. However, its benefits are only realisable in 

conjunction with a small-scale filtration rig and instrumentation and a method of 

analysing the data generated.

The TFF USD tool should therefore be marketed as part of a complete package 

comprising of the device itself, a Good Manufacturing Practices (GMP) compliant rig, 

guidelines for USD methodology experimentation and associated software for 

analysing, comparing and storing the data generated.
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The extent of the development of the “ancillary” product parts will depend on the 

market sectors which the product is aimed at. For example, if the device were to be 

marketed as a validation tool, it must meet with the material requirements listed in 

section 8.4.3.1.

8.5.2 Accessing the market and extracting financial value
This section outlines the issues to consider before the commercialisation of the TFF 

USD device. It could be used as the starting point for a business plan to attract external 

or internal organisation support.

8.5.2.1 Market size and share
As discussed above, the TFF USD has the potential to be used during drug discovery, 

process development, process validation and process improvement. Any institution 

active in these areas are potential customers for the TFF USD product e.g. academic 

centres, specialist biotech companies, multinational pharmaceutical companies and 

contract manufacturing organisations (Neal, 2005).

Financial remuneration for developing the TFF USD package could be in the form of 

charges for process development services, training courses, as well as the sale of the 

device, software and ancillary equipment required to conduct these scale-down studies.

Investigation into the number of such institutions would provide the starting point to 

make an assessment of the potential market available. How much of that market share 

could be obtained would depend on the competition.

8.5.2.2 Barriers to market - competition
The two areas of potential competition for the TFF USD device are the hardware (the 

apparatus) and software (equipment control, process simulation) components.

In terms of hardware, there are external and internal competitors. The external 

competitors are the lab-scale systems available fi'om other filtration equipment 

manufacturers such as Pall, Sartorius, GE Healthcare, Whatman (see Chapter 3).
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Internal competition is from Millipore’s own devices, such as the laboratory scale 

Pellicon XL system and the Advanced Process Development System (APDS) for 

Tangential Flow Filtration (Kierans and Shaw, 2004).

The competitive advantage of the TFF USD is its ability to evaluate membranes from 

different manufacturers, which is currently not possible. In addition, it provides the 

possibility of removing the membrane post-filtration for membrane absorbance tests, 

e.g. look at product absorption using SEM, without having to destroy a costly cassette. 

The multi-functionality of the device in terms of its ability to perform TFF and NFF 

experiments is also a unique feature which differentiates it from existing products.

Software for equipment control is often particular to the device, and is usually 

inexpensive to develop. Modifications to an existing software package, which is GAMP 

(relevant production software governing regulations) compliant could be an option, 

would make product development easier.

The main process simulation packages that are currently used in the biopharmaceutical 

industry only offer batch operation modelling, and modelling of TFF is often grossly 

simplified. The software developed for the TFF USD tool would use input parameters 

based on actual empirical data generated by using the TFF USD device. The resultant 

process model would hence be superior in validity and comprehensiveness to the 

simulation models based on theoretical algorithms only.

8.53 Preparation for product launch
The initial phase of the commercialisation project would be devoted to developing the 

hardware and software in order to bring them up to current good manufacturing practice 

(cGMP) standards. During this time, parallel work with potential customers’ process 

development teams could be undertaken to demonstrate the technology with respect to 

the major drug classes. Direct comparison with the traditional process development 

scheme would enable quantification of the cost benefits obtained using the USD 

methodologies. Product performance must be verified and validated. In addition, 

application documents explaining how and when the product can be used in real life 

examples would have to be prepared.
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Different areas such as pricing, marketing tools, name, in-house training etc. have to be 

considered and as the project and final product specifications develop, there is a need to 

finalise decisions in order to be ready for product launch. It is also imperative that any 

literature that is prepared for marketing tools be approved by legal and regional 

departments. Products typically have to be registered and so names must be carefully 

chosen such that they convey all aspects and selling points.

Preparation discussions revolve around a number of areas. The product price is a 

crucial decision; too high and it would not be an attractive option to customers and too 

low and the company would stand to make losses if there were any problems for 

example \\ith production. It is also important to be able to justify prices to customers 

by use of economic appraisals. Forecasts for post launch also have an impact on pricing 

decisions. It is imperative that these forecasts be as realistic as possible as ultimately, 

deviations from these forecasts could lead to changes in profit and loss and could also 

lead to bad pricing decisions. The product marketing strategy must also be considered.

Getting a product to market does not necessarily ensure its success or that of the 

company. The product may fail for a number of reasons such as poor design, lack of 

resource for continued support, no market need for the product, bad marketing etc. By 

clearly defining the various project phases for a new product development, risks can be 

minimised as projects can be terminated at early stages if they are not viewed as 

potential successes. Careful structuring of a project leads to successful products as all 

areas are considered before the product “hits the shelves”.

8.5.4 Extension of the product pipeline
In order to remain competitive, companies must also seek to develop their products 

post-launch i.e. improve them in terms of functionality and/or expand their range of 

application. For example, in terms of the device modification, the addition of torque 

measurement and/or disk geometry to the rotating disk would allow the device to 

function as a rheometer to give viscosity data for test fluids. Extension of the disk 

rotation speeds (shear range), would mean the device could function as a shear device, 

for centrifuge scale-down experiments (Boychyn et al., 2001).
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The ultimate vision would be the ability to integrate with other unit operation USD 

devices such as bioreactors or chromatography. Similar components e.g. luer-lock 

connections would make use of the entire range of scale-down equipment attractive. 

Software could also be developed to allow the results from each individual operation to 

be integrated together into a whole process model (see Chapter 1).

However, all modifications must be subject to the same product development phases as 

the original product in order to assess the market demand, and therefore revenue 

potential as well as the compatibility with the company’s core objectives.

8.6 Summary and conclusions
The overall biopharmaceutical development cycle forms the framework within which 

process development acts to achieve its goals. The development of a biopharmaceutical 

product follows the overall stages of discovery, preclinical development, clinical trials 

and approval. Process development is in a central position within the product 

development cycle with regard to interaction and exchange of information.

Process development summarises the activities surrounding the design, implementation 

and optimisation of a specific process (Boychyn, 2000). The aim of process 

development is to create a sequence of operations capable of delivering as much of the 

desired product as needed, at the required quality and as at low a cost and in as short a 

time as possible. Against the backdrop of increasing numbers of successful 

biopharmaceutical products and an ever more competitive market, strong expectations 

are therefore set on process development as the crucial step in turning laboratory 

science into functioning, economically viable products (Lendrem, 2000).

As clinical trial times are now shortening due to more efficient design, improved data 

handling and streamlining of regulatory guidelines the window for process development 

is also shrinking. Improving the efficiency and hence the process productivity can 

avoid delays during development, since this production of material use in clinical trials 

is often the limiting step. Effective process development will also help to avoid scale- 

up problems and facilitate easier process validation.
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The ‘standard’ development timeline of a new drug is largely dictated by regulatory 

requirements of the country in which the drug will be sold. These tend to involve 

rigorous validation procedures, which can be long and costly and have a high failure 

rate. The TFF USD described in this thesis could be validated if the user could 

demonstrate that it was a reliable mimic of an industrial filter (see Chapters 5, 6 and 7). 

Once validated the TFF USD could be used to investigate a number of process variables 

in the laboratory using minimal time and resources. Several full-scale runs would still 

be required for process validation as part of process qualification (PQ). However, good 

scale-down techniques would enable some aspects of the process to be tested and fine- 

tuned in the laboratory thus minimising the risk of expensive, unforeseen problems at 

full-scale. Ultimately, the process knowledge and experience gained from scale-down 

work could keep the number of validation runs to a minimum and facilitate faster 

regulatory approval.

Speed to market is essential to maximise revenue during patent life (Dunnill and Davies, 

1998) and, as a result, there is a demand for novel methods to accelerate process 

development and validation. USD techniques offer a promising solution to this 

dilemma.

In summary, successful commercialisation of a TFF USD device would require the 

development of a product that incorporates the device and data analysis software, which 

need to comply with GMP and GAMP guidelines. Additionally, to maintain market 

competitiveness, the extension of the uses of the device, e.g. as a shear cell for 

centrifugation USD, should also be considered. This discussed further in Chapter 9.
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Chapter 9 Conclusions and Possibilities for Future Work

9.1 Introduction

This final chapter provides an overall review of the scientific approach adopted as the 

framework for the research presented in this thesis (see Figure 9.1). It begins by 

restating the initial aims and objectives and assessing if these have been achieved, 

followed by a summary of the main conclusions made throughout this thesis.

1. Identify the 
Problem \

7. Formulate 2. Do background
conclusions research

8. Refine 
the 

method
6. Analyse the 3. Develop a 

hypothesis\results

5. Test the ^___ 4. Design the
hypothesis experiments

Figure 9.1: Flowchart to illustrate the steps involved in the scientific method.

Recommendations for future development of this research (refinement of the scientific 

method) are then made covering suggestions for an improved of TFF USD device 

prototype, comparison with other commercial filtration operations (e.g. vibratory 

membrane filters), the integration with upstream and downstream unit operations (see 

Chapter 1), and finally, a method to empirically assess the shear rates found in 

membrane filtration devices and rigs using a biological shear probe.
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9.2 Research achievements

The aim of this thesis was to develop a USD down methodology for TFF. The original 

objectives set at the start (see Chapter 1, section 1.4) are restated below along with a 

discussion of how, and to what extent, they have been met.

Objective (step 1, Figure 9.1) : Define the need for USD methodologies in bioprocess 

development

A review of the driving forces for improved process development was given in Chapter 

1, and expanded up on and placed in a business context in Chapter 8.

Objective (step 2, Figure 9.1): To review and evaluate flux and transmission models for 

TFF for their suitability o f use for a USD methodology.

A detailed review of the literature pertaining to membrane filtration, particularly for 

bioprocess applications has been presented (see Chapter 2 and Appendix 1). The 

complexity of the feed stream parameters and dynamic relationship between the 

numerous parameters (e.g. permeation rate, solute concentration, TMP etc.) mean that 

the predictive modeling of membrane filtration is not a trivial matter.

A semi-empirical resistance-in-series model proposed by Carrère et al. (2001) was 

applied to the yeast whole suspension, and was able to describe the flux and 

transmission behaviour with reasonable accuracy (see Appendix 2 for program listing). 

However, the effort required to determine the model input parameters, versus the time it 

would take to conduct actual filtration trials did not seem justifiable, especially because 

extrapolation of the model results for different operating conditions is not possible 

without repetition of the parameter-determining experiments.

A recent predictive model, called the aggregate transport model (Baruah and Belfort, 

2003) was also reviewed. Recreation of the results presented in the literature was 

difficult, and the application to the different filter geometry (cassette versus hollow 

fibre) and feed stream did not produce sensible results. However, given more time and 

investigation into the sensitivity of the model to the input parameters, further attempts at 

applying this model should be made.
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The use of the exponential decay relationship proposed by Novais (2001) was 

successfully applied to describe the behaviour of product transmission during 

concentration and diafiltration, and an example of how the model results could be 

utilised was given in Chapter 7.

Objective (steps 3 and 4, Figure 9.1). : To design and build a prototype USD TFF scale- 

down device which is suitable for various filtration operations such as concentration, 

diafiltration and normal flow filtration (NFF). This would include the incorporation o f  

suitable instrumentation into the design o f the TFF scale-down device, and specification 

o f the ancillary filtration equipment.

The hypothesis of this research was suggested by Lee et ah, (1995) stating that there 

existed a disk speed below which the behaviour of a rotating disk dynamic filtration 

system was comparable to the performance of a flat sheet cassette device.

The development of such a non-geometric scale down device was presented in Chapter 

3, along with a discussion of the caveats of working with such small volumes of 

material, and definition of the TFF USD filtration rig.

Objective (step 5, Figure 9.1): To verify the results obtained from the scale down device 

against data generated using conventional, pilot-scale equipment, i.e. to commission the 

system, with “real”, complex biological media.

The work presented in Chapters 5, 6 and 7 has shown how the TFF USD device has 

been able to mimic commercially available flat-sheet devices in terms of flux, 

transmission and expected transmembrane pressures (using compensation factors). The 

verification of the scale-down data with pilot scale trials has demonstrated that filtration 

behaviour can be reproduced during flux-stepping, recycle, concentration and 

diafiltration operations, using challenging biological feeds (yeast, bacterial and 

mammalian cell based), using only a fraction of the material required for conventional 

process development experiments.
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Objective (step 6, Figure 9.1): To define a way to compare different membrane/feed 

combinations in order to rank the filtration performance e.g. in the form o f a USD index 

for membrane TFF.

The use of a USD index would be useful for the integration of the TFF USD device 

results into whole process scale-down simulations (see Chapter 1, and section 9.3 

below). It also provides a way of ranking the effectiveness of different feed/membrane 

combinations with a single parameter, making the presentation of trial results more 

pragmatic for process development decisions. The use of either the critical erosion wall 

shear rate, or the critical ratio of permeate flux to wall shear rate, (originally proposed 

by Gésan-Guiziou et al, 1999) was proposed, as these values were relatively easy to 

determined (see Chapter 7), and fitted the criteria for this index (outlined in Chapter 2).

Objective (step 6, Figure 9.1): To define a graphical method to present the USD data 

in a pragmatic and industrially relevant way.

The concept of "Windows of Operation” (WinOps) (Zhou and Titchener-Hooker, 1999) 

was applied to TFF, and proposals made for the plot axes in Chapter 2. Such a WinOp 

was populated with empirical data (see Chapter 7) to illustrate the feasible region of 

operation that should be investigated further or used for the scale-up procedure. 

However, the full extent of how this method of visually representing this data and 

population with predictive model results, as suggested by Griffiths (2007) was not 

explored, but warrants further study.

Objective: To show an appreciation and understanding o f the impact o f the USD 

concept on bioprocess business aspects.

Chapter 9 presented a discussion of the current procedures and pressures involved in 

bioprocess development, and an assessment of the impact of USD methodologies on the 

management of the process development pathway. To place this research in an 

industrial context, a discussion of the validation issues surrounding membrane filtration 

and the use of scale-down devices for regulatory compliance studies was also given, and 

finally the considerations required for the potential commercialisation of a TFF USD 

device were outlined.

On the whole, the original objectives set out at the start of this thesis were met, and the 

general outcomes of the work undertaken to achieve this is summarised below.
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9.3 General conclusions

The use of a rotating disk device to mimic the filtration of complex biological feeds 

using commercially available flat-sheet cassette devices is possible. Despite the non

geometric scale down, and use of only a fraction of the valuable feed material (300-fold 

reduction), a demonstration of how the TFF USD device developed is able to mimic all 

aspects of filtration behaviour has been given. This included permeate flux rates, 

product transmission rates and the prediction of the transmembrane pressures that would 

be seen at the larger scale, with the use of TMP correlation factors.

Good scale-down models can reduce the need for lengthy and expensive pilot-plant 

trials by allowing much of the process development to be performed in the laboratory. 

Scale-down experiments can be used to assess different process options, optimise 

individual unit operations, evaluate operational robustness and accelerate validation. 

The principle advantage of scale-down is that process development can begin at an early 

stage in product development since only small quantities of process material are 

required. The minimal use of resources also reduces the investment involved in the 

early, high-risk stages of a project.

Other benefits of scale-down include simpler handling and operation, reduced energy 

consumption, and the ability to carry out a number of experiments very quickly. The 

biggest limitation of scale-down is the accuracy of the laboratory mimics and 

demonstrating to the regulatory agencies that the mimics are capable and reliable in 

producing data representative of the large-scale process.

This thesis has looked at scale-down of TFF to aid rapid and efficient filtration process 

design. It has been demonstrated that careful design and operation of scale-down 

mimics to overcome the inherent differences between laboratory and industrial-scale 

operations can yield reliable process data to aid in process development studies. 

However current techniques still have room for improvement and there are several other 

potential uses for this scale-down technology that remain largely unexplored. This 

following section discusses some of the directions this research could take in the future.
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9.4 Possibilities for future work

Suggestions for the future development of this research are made in the following 

sections. The continuation of the identification of a suitable predictive model to be used 

within the TFF USD methodology has been stated above so will not be repeated here. 

Also, concepts such as whole process modelling, and linkage of the USD data to cost 

models will not be reiterated as they are described fully elsewhere (Pampel, 2000; 

Novais 2001; Reynolds, 2005), although this is the obvious progression of the research 

work.

9.4.1 Other uses for the TFF USD device

The comparative experiments described in Chapters 5, 6 and 7 demonstrate the ability 

of the TFF USD device to mimic flat-sheet cassette devices. However, there is no 

reason why the device could not be used to mimic other membrane filtration devices 

such as vibratory membrane filters e.g. a Pallsep dynamic MF system (Pall, UK) where 

commercially available scale-down models are not yet available.

The experiments to determine the parameters for the resistance-in-series model 

demonstrated the capability of the TFF USD device to be used for NFF, membrane 

absorbance tests etc., but these could be extended to investigate other filtration steps 

such as sterile filtration, or virus reduction steps (depth ultrafiltration).

The feed systems investigated in this thesis were not shear labile at the operating 

conditions selected. Operation of the TFF USD device to purposely shear the feed to 

mimic the operation of industrial filtration pumps and valves could be considered. 

Extension of the disk rotation speed range would mean the device could function as a 

shear device, e.g. to mimic centrifugation (Neal, 2005).

Finally, with some modification (e.g. addition of torque measurement), the device could 

also function as a basic rheometer to give viscosity data for test fluids. Further 

suggestions for hardware modifications are discussed below.
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9.4.2 Investigation of the impact of upstream variations

On of the uses of the TFF USD device that became apparent during the placement at 

CAT was its use to determine the optimum point to harvest the mammalian cell 

fermentation in terms of filtration yield. This could have been conducted by taking 

fermentation samples at different time-points, and using the TFF USD protocol, 

complete the following tasks:

• Determination of operating window for worst sample (most difficult to filter).

• Estimate no. of diavolumes required to achieve a given yield by modelling 

transmission (see Chapter 7).

• Use costing data to look at trade-off between harvest point and filtration time. 

Factors to include are the cost of buffers, membrane area required etc.

As described in Chapter 1, scale-down mimics have been developed for other unit

operations such as fermentation (Lamping, 2004) and centrifugation (Boychyn, 1998), 

and these could also be used to study the interaction of the two processing steps. With 

certain modifications, the TFF USD device could also be used as a shear cell, in order to 

conduct centrifugation USD (see Table 9.1).

9.4.3 Next generation of TFF USD device prototype

Since the completion of this work, the TFF USD filter has been modified and tested 

(Ma, unpublished). This device has incorporated the following improvements:

• The ability to vary the chamber volume fi*om ImL to 3mL using a series of inserts

mounted at the top of the unit chamber. This reduces the feed volume required for

the TFF USD experiments even further. Reduction of the membrane area could be 

achieved by using a wider o-ring (therefore achieving greater loadings with less feed 

material, but still using commercially available membrane coupons.

• The addition of a cooling coil around the motor drive and two cooling jackets at the 

top and base of the chamber to maintain operating temperature;

• The use of the AKTA Crossflow System (GE Healthcare, UK Ltd, 

Buckinghamshire, UK) instead of the filtration rig described in Chapter 3. This 

commercial system allows automatic data recording and greater accuracy of flow 

and pressure control and measurement through non-invasive instruments. The
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associated software has many useful features such as the ability to adjust the 

permeate pump rate based upon flux or pressure measurements. It enables industrial 

operating conditions to be mimicked very easily in the laboratory and reduce the 

laboriousness of experiments. A similar filtration system has also been marketed by 

the Millipore Corporation (Kierans and Shaw, 2004), for use with the Pellicon XL 

cassettes, but could be adapted for the TFF USD device.

• Assuming that the feed material is not affected by the hydrodynamic conditions 

found in the large-scale retentate loop, then retentate recirculation is not required, as 

the effective crossflow is mimicked by shear at membrane created by disk. The 

operation of the device in this way has reduced the feed requirement further, and 

simplified the experimental set-up.

Further modifications that could be made are discussed in the next section.

9.4.3.1 Device hardware improvements

Further improvements to the device need to be made before it could be made into a 

commercially available device (see Chapter 8). The following section proposes an 

improved TFF USD device prototype, with the benefit of hindsight. Figure 9.2 shows a 

schematic of the TFF USD device compared with a suggested improved prototype 

design.

(a) Original device (b) Improved device

Figure 9.2: Schematics o f TFF USD device prototype designs.

In addition, either device could be mounted horizontally, making it easier to prime 

(avoid air bubbles in the chamber). However, the new format would require a feed 

channel to be drilled through the rotor shaft to enable NFF, which may make fabrication
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more difficult. The advantages of the revised design are listed in Table 9.1, along with 

some other hardware improvements.

Factor Description of Improvement

Flow

hydrodynamics

Shear profile more uniform (no disk edges), which also makes CFD 

modelling easier.

Calculation of 

mass transfer 

coefficient

The equations for calculation of the mass transfer coefficient for 

modeling purposes call for the hydraulic diameter {dn) of the device 

(see Chapter 3). The simpler internal geometry makes this easier to 

calculate accurately.

Chamber

volume

The chamber volume is reduced without the need for inserts. 

Variation of volume could be achieved by altering the rotating disk 

height.

Sampling ports The use of septum based sampling ports would minimise the volumes 

taken for offline analysis, and speed up the time taken to sample.

Cleanability The device should be constructed out of materials that can be easily 

sterilised (i.e. autoclavable), which is desirable for use in industry.

Base

attachment

A screw-on base (c.f. Amicon stirred cell design, Millipore, USA), to 

replace the awkward knurled nuts would facilitate the device set-up.

Connectors Permanent connectors (e.g. female luer ports) for attachment to 

tubing, sampling ports or to the filtration rig components.

Disk speed A disk drive motor allowing a greater range of disk rotation speed 

would allow the use of the device as a shear cell for e.g. centrifugation 

USD (see section 9.4.2).

Table 9.1: Additional hardware improvements to TFF USD device prototype.

The simplification of the internal geometry facilitates evaluation of the device 

hydrodynamics. However, as the purpose of the microfiltration USD is to mimic 

conventional TFF, such calculations would only be useful if an equivalent analysis were 

possible for complicate formats such as membrane cassettes. The final section of this 

thesis describes to empirically assess the shear rates found in membrane filtration 

devices and rigs using a biological shear probe.
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9.4.4 Assessment of shear levels encountered in complex engineering

environments: application to tangential flow filtration systems

As highlighted in Chapter 3, the ability to estimate the shear levels encountered in 

complex geometries, such as a membrane filtration cassette, is limited. This is an issue 

in membrane filtration in bioprocesses for two reasons: firstly because biological 

entities (cells, product or contaminants) may be shear sensitive (Joshi et ah, 1996), and 

secondly because the shear rate at the membrane surface is the key parameter to 

maintain between different scales of operation (van Reis 1997). During tangential flow 

filtration cells are submitted to shear stresses due to the repeated passage through pumps 

and flow-control valves. Shear degradation may also occur within the filter module 

itself, particularly at the entrance region where the feed channels are very small 

(typically 0.5mm to 0.75mm channel height). Conversely, high shear stresses may be 

desirable during processing. Some research has been done into the combined lysis and 

filtration of fermentation broths (Meagher et al., 1994). A practical and simple method 

of characterising the shear levels encountered at various points in the processing 

equipment would be useful.

Computation of the actual shear rates encountered in downstream processing equipment 

is highly complicated; the most sophisticated attempts employ computational fluid 

dynamics (CFD) (Pellerin et al., 1995; Karode and Kumar 2002). However, little 

attempt has been made to validate these results with physical data.

Several studies have been conducted using biological entities to estimate the shear 

levels encountered in processing equipment. The approach uses the fact that such 

materials may be permanently degraded when exposed to shear (see Table 8.2 below).

The use of plasmid DNA to assess the shear rates encountered in a device is an 

attractive option, due to advances in the availability of pure solutions of supercoiled 

plasmid DNA and a reliable and fast fluorescence based assay method to detect plasmid 

breakage in very dilute solutions (Rock et al., 2004). Shear sensitivity of plasmids is 

dependent on plasmid size as well as molecule structure: i.e. larger plasmids degrade 

more easily, and linear forms are more prone to shear degradation than the open-circular 

form, while the open-circular is more prone than the supercoiled form.
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Biological probe Processing Equipment Reference

Red blood cells Capillaries Zydney and Coulton 1986

Globular proteins Centrifuge Narendranathan and Dunnill, 1982

Mammalian cells 

(CHO)

Capillaries, Tangential 

flow filtration 

(Prostak®)

Kelly et al., 2002

Algal cells Tangential flow 

filtration

Jaouen et al., 1999; Vandanjon et al., 

1999

Plasmid DNA Capillaries Levy et al., 1998, Meacle et al. 2007

Table 9.2 Biological probes to assess shear degradation in the literature

The shear device to produce the breakage curves in the studies presented in Meade et 

ah, (2007) was a capillary tube system, but a rotating disk device such as the MF USD 

could also be used. It has been shown that capillaries and rotating disks give consistent 

levels of DNA degradation at similar levels of fluid stress (Meacle, 2003; Levy et ah, 

1999). Preliminary experiments were conducted during this EngD, but were not 

completed due to time limitations. Plasmid degradation in the capillaries was shown to 

be one of first order decay, as reported by Meacle (2007). It was confirmed that 

supercoiled plasmid degradation was a function of (i) plasmid size, (ii) level of shear, 

and (iii) time of exposure to the shear field; degradation was inversely proportional to 

molecular weight of the scDNA and degradation followed a first order exponential 

decay.

A flowchart outlining an experimental methodology using a plasmid probe to assess 

levels of shear-induced degradation in bioprocess equipment is shown in Figure 9.3. As 

well as estimating the maximum global shear rate encountered during processing, it may 

also be useful to determine which rig components are responsible for the shear damage; 

alternative equipment may be an option if the feed is being damaged e.g. the use of a 

diaphragm valve instead of a needle valve to control backpressure. A methodology to 

apply this to the identification of regions of high shear stress, and hence reduction of the 

global shear stresses encountered in a tangential flow filtration rig is shown in Figure 

9.4.
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Grow and purify supercoiled DNA^
I

Characterise the shear degradation of 
the plasmid solutions^ as a function of 

shear rate, molecule size & no. of passes 
using a shear device e.g. a capillary 
rheometer. Calculate a degradation 

constant.

Run a plasmid solution'  ̂through the 
equipment for a fixed period of time®, 
taking samples for analysis at regular 

intervals. Operation should be at typical, 
steady-state® process conditions.

Analyse the samples for supercoiled 
DNA with Picogreen assay.

Does the plasmid break at 
these conditions?

The strain rates encountered in the
equipment are below the degradation

value for this plasmid solution®.
%

STOP

Choose a prasmid solution thatTiegrades  ̂
at the maximum shear rates encountered 
in the filtration rig or of behaves similarly 
 to the the process feed®.______
Recirculate the plasmid solution through 

the rig element̂ ® for a fixed period of 
time®, taking samples for analysis at 

regular intervals. Operation should be at 
typical, steady-state® process conditions.

Analyse the samples for supercoiled DNA 
with Picogreen assay.

Does the plasmid break at 
these conditions?

This element is not the main cause of 
shear damage in the rig

Modifŷ  ̂ the 
element to 
minimise 
damage 

potential OR 
change the rig 

processing 
conditions.

Have all elements o 
the rig been tested?

r_ S T O P ^

Figure 9.3: Procedure to evaluate the maximum shear rates 
encountered in hioprocess equipment using a plasmid DNA shear probe

Figure 9.4: Procedure to evaluate the shear rates o f membrane 
Jiltration rig components using a plasmid DNA shear probe.
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Notes for Figures 9. S and 9.4:

 ̂The supercoiled content of the plasmid DNA should be above 90%.
 ̂The PicoGreen assay is accurate in the range of lOOng/mL to 500ng/mL. A plasmid solution 

of 0.2pg/mL is recommended (Meacle, 2003).
 ̂A degradation constant must be determined by curve-fitting, or estimation from a single pass.
 ̂The first solution selected should be one that is anticipated will degrade. The next solution 
should have a higher threshold shear stress.

 ̂This may be 30 minutes or a typical batch processing time.
® Unsteady flows accelerate DNA fragmentation (Lengsfeld et al., 2002). In order to avoid 

artefacts from poor start-up procedures, it is suggested that the buffer is circulated in the 
filtration rig until steady state conditions are achieved, and then the plasmid is introduced.

 ̂The definition of “breakage” will need to be clearly defined e.g. as a minimum percentage of 
supercoiled DNA loss.

* Corollary: the strain rates in the rig are above the degradation value of the penultimate solution 
tested in Figure 8.2.

’ The last plasmid solution that showed degradation in the whole-rig characterisation.
^®Filtration rig elements include the feed reservoir, feed pump, any instrumentation, the 

membrane device, any valves and the pipework.
^̂ For example, a pinch valve may be used instead of a needle valve to control retentate 

backpressure.

Preliminary data obtained by recirculation of pure supercoiled plasmid solutions around 

the Ml 2 Pro flux filtration rig and Pellicon 2 mini cassette (data not presented) showed 

that such experiments are feasible, and prompt the further study of this approach as a 

generic probe for fluid stress in bioprocess equipment.

9.4.5 Summary of suggestions for future work

To summarise, the research presented in this thesis provides the precursor for the 

following research: 

• Process modelling of TFF and linkage to cost data and eventually to a whole 

bioprocess modelling approach;

• Population of WinOps with semi-empirical model data and experimental validation 

of the results;
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Extension of the TFF USD device to also function as a rheometer and/or shear cell 

for centrifugation USD;

An investigation into the impacts of changes to upstream unit operations e.g. the 

identification of an optimum fermentation harvest point in terms of filtration 

optimisation, and cost efficiency;

Use of the TFF USD device to mimic other filtration modules, such as NFF, hollow 

fibre modules, or dynamic filtration devices;

Hardware improvements to the TFF USD device and ancillary rig to facilitate 

experimentation;

Use of a biological probe to assess the shear levels encountered within the complex 

geometries found in bioprocess equipment.
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Appendix 1 Membrane Filtration Modelling

A l l  Introduction

The following pages provide a literature review of attempts made to model membrane filtration, 
in terms of flux, fouling behaviour and transmission.

A1.2 Modelling flux 

Al.2.1 Resistance-in-series models

The flux of liquid (J) through a porous membrane is directly proportional to the pressure across 

the membrane (Ap) and inversely proportional to the viscosity (p) of the permeating fluid. 

D’Arcy’s Law describes this relationship:

J = ^  [Al.l]

However, this equation suggests that the flux will increase indefinitely as the Ap increases, 
which is clearly not the case; this is because the effects of retained material have not been taken 
into account. The retained material will be transported towards it by convection, due to the flow 
of permeate, which will create an additional resistance at the membrane Rcp, the resistance due 
to concentration polarisation. Some of the retained material will form an organised layer on top 
of the membrane to a “cake”, which is denoted by the resistance R̂ . The cake resistance is 

dependent on particle size and Ap (for compressible particles). Solutes present in the feed may 
also be adsorbed onto the membrane and into its pores, creating an additional hydraulic 
resistance, Rp. These resistances can be combined in series (Van den Berg and Smolders, 
1988):

J=--------------^2--------------  [A 1.2]
(t)+RcP (t))

The time dependence of Rc and Rp describe the transient flux decline. Rcp will be directly 

proportional to Ap, but will eventually plateau.

The above equation differs from the comparable UF model because there is no correction for 
osmotic pressure effects due to the retention of proteins. In most situations these effects are
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negligible in MF as the concentration of proteins will not be high enough (Song and Elimelech, 
1995). If the concentration is high then

J=-------------------------------  [AI.3]
P(R m+I^c(*)+R cp+Î^fO))

Hence, resistance-in-series models correlate flux to TMP accounting for effects of the 
membrane substrate, concentration polarisation and fouling in a group of additive resistance 
terms. This model is frequently employed to correlate and compare data obtained with a single 
experimental apparatus while varying the membrane or feed material. Flux, permeate viscosity 
and TMP are measured directly, allowing calculation of the total resistance, Rtot.

The intrinsic resistance of the membrane, Rm, is usually measured with a clean water feed prior 
to introducing the experimental feed, which allows the calculation of the sum of the remaining 
resistances. The deconvolution of these resistances can be achieved by using an experimental 
protocol, that limits the contributions of the various terms at certain points in the procedure.

Substitution of more elaborate expressions for individual resistance terms can extend the 
usefulness of the resistance model. Noting that the thickness of the concentration polarisation 

layer should be proportional to TMP, Cheryan (1986) replaces R̂ p with 0(TMP)“, where 0  is 
further specified as a function of the crossflow rate.

Biological materials, such as microbial cells, are compressible and show a decrease in the void 
fraction and an increase in the specific resistance as the pressure is increased. This makes 
estimation of the cake resistance difficult. The resistance due to irreversible fouling can only be 
estimated from experimental data. The total hydrodynamic resistance of the membrane can be 
used to predict flux using the equation:

[AI.4]
mR,„,

where TMP is the transmembrane pressure (Pa) and R̂  is the total hydrodynamic resistance (m" 

').

R t  can be defined as the sum of the membrane resistance ( R m ) ,  the cake resistance (Rc) and the 
resistance due to blocking of the pores (Rt,), which are related by the following equation 
(Kawakatsu et al., 1993):

248



Appendix 1

R.=R„+Ro+Rb [Ai-5]

The membrane resistance can be measured using the clean water flux. When using pure water 
equation [A 1.4] becomes:

[A 1,6]
RR.

The resistance of the membrane can then be calculated by plotting flux against transmembrane 

pressure, the gradient of the graph being l/R^p. It is more difficult to measure the cake 
resistance and the resistance due to blocking of the pores.

The formation of fouling cake and boundary layers as has been explained previously, are causes 
of flux decline. Fouling is caused by solute/solid -  membrane interactions that result in a 
physical adsorption of the solute/solid to the membrane. This can occur at the surface or within 
the pores (surface or entrapment respectively); the resulting cake impedes the flow of material 
through it, which can be worsened by the compression of the cake (Kawakatsu et al., 1993). 
The velocity boundary layer builds up because of friction between the static membrane and the 
fluid stream which reduces the crossflow velocity at the membrane surface. This in turn reduces 
the shear and therefore the back-transport of material away from the membrane surface.

Figure A 1.1 is a representation of the concentration boundary or gel layer. This gel layer is 
caused by the transport of solutes to the membrane surface faster than they can be removed by 
the crossflow and faster than they can pass freely through the membrane. This concentration 
polarisation can inhibit the passage of solutes across the membrane due to concentration or 
repulsion by the accumulation of like-charged proteins.
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Figure A 1.1: A diagram showing the boundary layer effect. A gel-like layer builds up at 

the membrane. The concentration o f cells increases as the membrane is approached, from  

Ch - the bulk concentration in the feed stream to Cg the gel concentration at the wall 

(Porter 1972).

In crossflow filtration it is the shear caused by the tangential flow that minimises these 

boundaiy layer effects. Flux decay due to fouling and concentration polarisation can be 

minimised by increasing crossflow (Reismeier et ah, 1989; Gyure 1992). Shear can also be 

increased through the use of cartridge designs which include the use of turbulence promoting 

spacer screens within the feed channel (da Costa et al., 1991) this causes the formation of 

vortices which enhance shear at the membrane surface. This can lead to deleterious effects, 

since vortex formation and high crossflow rates can lead to air entrainment and it has been 

shown that air-liquid interfaces are the most common cause of protein dénaturation in tangential 

flow filtration systems (Narendranathan and Dunnill 1982). Interactions between protein and 

the membrane is greater when calf serum albumin (CSA) is denatured and a build up of protein 

at the membrane surface reduces flux.

Al.2.2 Concentration polarisation models

Concentration polarisation can be modelled with the stagnant film theoiy (Chen, 1998). 

According to this model the solutes in the feed are transported to the membrane surface by 

convective flow and removed by permeation through the membrane or by back diffusion into 

the bulk (Figure A1.2):

JC,=JCp-D æ
dy

[A1.7]
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Where J is the flux through the membrane, Cb and Cp are the concentrations of the solute in the 

bulk and in the permeate respectively, D is the solute diffusion coefficient dy is the coordinate 

in the direction perpendicular to the membrane surface. Axial diffusion and axial convection 

terms in the stagnant boundaiy layer are considered to be negligible.

Figure A 1.2 Schematic representation o f the solute transport within the concentration 

polarization boundary layer (adapted from Zeman and Zydney, 1996, and Le and Atkinson,

Integration over a boundary laver of thickness 5 and defining C, as the concentration at t the 

membrane surface gives:

J=kln
vCb-Cp;

[A1.8]

Where k is the mass transfer coefficient:

k = 2
Ô

[A1.9]

Considering the retained solutes accumulate on the membrane surface a new concept of true 

transmission (as opposed to the observed transmission) can be introduced:

_ C p
actual

Cw 

And hence

[Al.lO]
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Tobs=---------------------------   [AI . II]

The observed protein transmission is therefore expected to increase with increasing 

concentration polarization as the protein concentration at the membrane surface increases 

(Huisman et ah, 2000).

The membrane may be defined as a semi-permeable barrier between two homogenous phases 

and its selectivity can be expressed by the retention factor (R):

R= C f - C p '

V y

[A l.12]

Where Cf is the solute concentration in the feed and Cp is the solute concentration in the 

permeate. The value of R varies between 1 (complete retention of the solute) and 0 (solute and 

solvent pass through the membrane freely) (Mulder, 1996). Alternatively, the concept of 

transmission (T) can be used, defined as:

1-R=—^  [A1.13]
Cf

The concentration polarisation model assumes that the limiting resistance to flow is provided by 

a dynamically formed thin layer of retained solutes or solids between the bulk solution and the 

membrane surface. The dynamic layer is assumed to have a fixed concentration of solutes or 

solids but varying thickness or porosity. In such a scenario, the permeate flux rate is 

independent of the pressure driving force or the membrane permeability since the dynamic 

boundary layer resistance to permeate flow will adjust itself until the convective transport of 

retained species to the membrane surface equals the back diffusive transport to the bulk stream 

(Porter, 1972). This balance within the layer is described by

JC=D—  [A1.14]
dy

Integration across the boundary layer gives an expression of the permeate flux rate as a function 

of the wall and bulk concentrations, and the mass transfer coefficient.

J=k„ln
vC w

[A1.15]
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The mass transfer coefficient and the wall concentration are unknown and need to be estimated. 

The wall concentration can be estimated by assuming that the boundary layer resembles a layer 

of closed-packed spheres having 65-75% solids by volume (Porter, 1972). The mass transfer 

coefficient can be estimated using analogous solutions for heat transfer such as the Dittus- 

Boelter correlation for fully developed turbulent flow.

[A1.16]

Porter (1972) has shown with measurements of fluid velocity as a function of the pressure drop 

that a definite transition from laminar to fully developed turbulent flow occurs at a Reynolds 

number of -2,000. The recirculation rate and the inner membrane diameter are easily 

determined.

The diffusion coefficients of suspended species can be estimated using the Stokes-Einstein 

relationship.

D= k J [A1.I7]

Correlations to estimate the diffusivity of spherical molecules and macromolecules are available 

in the literature as given by Porter (1972) and Kawakatsu et al. (1993).

It is generally accepted that in UF the concentration of proteins at the membrane will increase 

until a gel layer forms a concentration Cq, and that once this point is reached, no more protein 

can enter the polarised layer (Porter, 1972). This concentration of protein can be estimated from 

the linear plot of Jum, the limiting flux versus In Cb as the intercept on the In Cg axis (please see 

Figure A1.3 below).

In J

InC,

In Cl

Figure A 1.3: Determination o f the gel concentration.
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However, different workers have obtained different values of Cg, bringing into question the 

physical significance of the gel concentration. There is therefore still debate over the 

applicability of concentration polarisation based models.

When these equations are used to predict flux, the values obtained are up to two orders of 

magnitude lower than measured flux values. This phenomenon has been termed the “flux 

paradox” (Green and Belfort, 1980). Plots of J versus In Cb obtained using MF data ((Brown 

and Kavanagh, 1987) were sigmoidal in nature, rather than linear, showing the breakdown of 

the gel polarisation with MF.

Al .2.3 Back-transport models

This breakdown is thought to be due to the fact that the back transport cannot be predicted using 

the Stokes-Einstein equation, as the mass transport away from the membrane is higher (Brown 

and Kavanagh, 1987, Porter, 1972). Various possible mechanisms for improved back transport 

have been suggested, some of which are outlined below.

Lateral migration (also known as “tubular pinch”) is one such theory. Particles in a flowing 

suspension will tend to migrate away from the walls of the tube in which they are flowing. This 

is thought to be a result of inertial forces acting on the particles (Green and Belfort, 1980).

Calculations of these inertial lift forces show that the lift velocity would be smaller in 

magnitude than the velocity of the permeate towards the membrane (Davis and Birdsell, 1987). 

Flux performance was successfully predicted for laminar flow by considering the polarised layer 

as a flowing liquid with a certain viscosity containing a feed of another viscosity (Davis and 

Birdsell, 1987). By considering the concentration-polarised material as a non-Newtonian fluid, 

and the bulk liquid as Newtonian, they were able to obtain excellent predictions of flux 

performance during the UF of latex particles.

Zydney and Colton (1986) considered the nature of the flow of particulates in a suspension. 

Particles will rotate, collide and overtake neighbouring particles, which are travelling along 

lower streamlines. Such interactions will lead to a net lateral migration of the particles. As 

these interactions are dependent on the random position of particles at that time, the motions of 

individual particles will also be random and can then be modelled by an effective diffusivity 

coefficient or shear enhanced diffusivity.

Davis and Leighton (1987) proposed that shear induced lateral migration is responsible for the 

back transport in a laminar flow system where the concentration polarisation layer flows along
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the membrane. Davis and Sherwood (1990) used the concept of shear induced diffusivity with 

concentration dependent viscosities to predict permeate flux. This theory has also been used in 

the development of a model that can predict the time dependent flux decline (Romero and 

Davis, 1990), once again for laminar flow conditions. This assumption is the main drawback of 

the shear enhanced diffusion models reported.

Efforts to models filtration behaviour during cell harvest applications have generally either 

modified resistance-in-series concepts or the gel polarization model. In concentration 

polarisation theory, a high concentration of retained species accumulates at the membrane 

surface and provides additional resistance to flow. Modelling efforts focus on the pressure- 

independent region of operation, where mass transport effects dominate.

Direct application of this UF model to MF of particulates using Brownian motion particle 

diffusivity results in significant under prediction of flux c.f. experimental observations. 

Augmentation of back transport has been attributed to shear-induced diffusion and inertial lift. 

Comprehensive reviews of the efforts to model these interactions have been written (Belfort et 

al., 1994) specifically as they apply to MF, and also discuss surface transport models. They 

conclude that given limited testing of the various models, none can be considered dominant, and 

that different mechanisms may dominate under different specific conditions.

For practical purposes, it is the functionality that the different models ascribe to key operating 

parameters such as flux and particle size that is important for the correlation of experimental 

data. Assuming that the feed suspensions are dilute and composed of non-adhesive spherical 

particles, which form cake layers that dominate the resistance to flux, the equation for flux to be 

reduced to

J  = cy''a  ç ^Ü îj '' [A l.18]

A comparison can be made of the dependence of flux that the different models predict for key 

parameters (see Table A l.l).

The Brownian diffusion model predicts a much weaker dependence of flux on shear rate than 

the other models. The Brownian and shear-induced diffusion models predict similar weak 

inverse dependences of flux on feed concentration and filter length, whereas the other two 

models predict no effect of these parameters. All the models predict a different dependence of 

flux on particle size, although only the Brownian diffusion model counter-intuitively predicts a
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decrease of flux with increasing cell size. They also all predict that flux decreases with 

increasing suspension viscosity, apart from the surface transport model.

Practical experience suggests that all these parameters will play a role in determining the steady- 

state flux, but that their pure effect anticipated in these models may be masked by the many 

irreversible phenomena which are likely to contribute to observed performance.

*normalised to prediction by Brownian diffusion

Table A l.l:  Parametric dependence o f long-term flux for various transport mechanisms (after 

Belfort et al, 1994).

Al.2.4 Fouling models

Hermia (1982) developed several models, which describe the fouling of membranes during 

filtration, and hence determine the flux performance. These are summarised in Table A 1.3 

below.
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These fouling models were derived for normal-flow filtration (NFF). Field et al. (1995) have 

modified these equations for use in tangential or crossflow filtration (TFF) by including terms to 

account for back transport. These modified equations have then been used to determine the 

fouling mechanism in different forms of MF.

The accumulation of rejected feed components on the membrane surface as a result of 

convective flow under an applied pressure gradient, often termed concentration polarisation, is 

thought to be responsible for the initial sharp decline in permeate flux rates during crossflow 

microfiltration. The build up of rejected material and the associated boundary layer on the 

membrane surface is limited by the back diffusion of feed components into the main velocity 

stream, which runs parallel to the membrane surface. At steady state, the rate of convection of 

material to the membrane surface equals the diffusion of material from the boundary layer to the 

main flow path. However, crossflow microfiltration systems exhibit a decline in flux with time 

under constant operating conditions. This phenomenon can be attributed to a process often 

termed membrane fouling. Membrane fouling is an irreversible and time-dependent process 

caused when a membrane adsorbs or its pores are plugged by some feed components (Patel et 

al., 1987). The narrowing or blocking of pores results in a lowering of the permeate flux rate.

Table Al. 2: Membrane filtration fouling models (after Hermia, 1982)

Several models have been developed to describe time dependent nature of filtration processes. 

Many of these models have been developed for dead-end filtration, but modified versions for 

use in crossflow filtration by including terms that account for back transport are available. Patel
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et al. (1987) used a power law relationship to describe their data obtained from crossflow 

microfiltration experiments.

Jt = Jit-b [A1.24]

The fouling index, b, is indicative of the rate of fouling. Higher values indicate higher rates of 

fouling. The value of b ranges from ~0.1 to -0.8 for yeast whole cells and yeast homogenate.

Hermia (1982) developed several models to describe the mechanisms of membrane fouling 

during dead-end filtration. The complete blocking filtration law assumes that each particle 

reaching the membrane participates in the blocking phenomenon by pore sealing. Thus, 

particles are not superimposed upon the other, and the portion of the membrane surface area 

blocked is proportional to the filtered volume. The resulting flux-time relationship is described 

by equation A 1.25.

Jt = Joe-kt [A 1.25]

The intermediate blocking law also assumes that a particle reaching an open pore will seal it, 

but evaluates the probability of a particle reaching an open pore. Assuming a homogenous 

suspension, the increment in blocked area due to particles reaching an open pore is proportional 

to the ratio of unblocked and blocked surface area since the likelihood of a second particle layer 

settling on an existing layer or on free surface is equal. Equation A 1.26 describes the 

intermediate blocking filtration law.

J, = Joe-l'V  [A 1.26]

The standard blocking filtration law assumes that the pore volume decreases proportionally to 

the filtrate volume by particle deposition on the pore walls. Assuming the membrane consists 

of a set of pores of constant diameter and length, and using Poiseuille's equation, Hermia 

derived an expression for the flux as a function of the time of filtration.

Jn
J = ------[A1.27]

(l+kjQt)2

The cake filtration model assumes the resistance to filtrate flow is composed of a membrane 

resistance and a cake resistance. The resulting flux-time relationship is described by equation 

A1.27:
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 ̂ (1+kJ^t)^'^

Foley et al. (1995) presented a deposition model developed for crossflow filtration systems that 

included a back diffusion term. In this model, the net accumulation of matter on the pore walls 

was expressed as a difference between the rate of deposition and the rate of removal.

—  = v ^ -k ^ h  [A 1.29]
dt F' I

The fouling layer thickness is the difference in pore radii of fouled and unfouled membrane. 

h = rQ -r [A 1.30]

Integrating equation A 1.31 gives an expression for the fouled pore radius as a function of the 

filtration time.

— =1—^ ( ] . e  [A1.31]
'o ""f'o

Most models consider one aspect of the fouling phenomenon. In reality, a combination of 

effects i.e. increased hydraulic resistance due to concentration polarisation and fouling, pore 

blocking and osmotic pressure effects will occur simultaneously.

The modelling of fouling has been researched for some time, as has already been discussed, 

though the mechanisms of fouling are not well understood. Although protein is filtered by the 

cake formed on the membrane in MF, it is not filtered according to molecular weight. Different 

factors such as charge, hydrophobicity and formation of aggregates must be involved 

(Hemandez-Pinzon et al., 1997). Also, in a ‘clean’ system, blocking of the membrane is not 

caused by a uniform mono-molecular layer in cattle serum albumen (CSA) solution. It tends to 

build up around the pore entrances. Fouling by proteins can also be reduced by changing the 

materials of construction of the membrane. Using a hydrophilic structure reduces the amount of 

protein binding by changing the surface chemistry in such a way as to reduce the protein- 

membrane interaction or to operate away from the isoelectric point on the protein which reduces 

the chance of precipitation and therefore adsorption
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A l.2.5 Force balance models

The basic principle of these models is to determine the forces acting on a particle close to the 

membrane so that it is possible to predict whether it will settle on the membrane (causing 

fouling) or to be re-entrained into the flow. Stamakis and Tien (1993) developed a solids 

fouling model for TFF based upon the premise that not all the particles convected towards the 

membrane will form a cake and lead to fouling; some will be lifted away. A force balance 

model was developed (forces acting on the particle were due to the crossflow and permeate 

flow) and successfully applied to published, experimental data. A similar approach was also 

taken by Hwang et al. (1996). They envisage that forces due to lateral lift will act on the 

particle, shear induced diffusion, electrostatic interactions with the membrane, a drag force, 

gravity and Brownian motion. Flux performance was successfully predicted for late particles.

However, neither of these models allowed for particle-particle interactions in the polarised 

layer. The parameters required for modelling are extremely difficult to determine for biological 

systems.

Al.2.6 Overview of flux models

The concentration polarisation model is only applicable in the pressure independent region. The 

resistance model is only applicable in the pressure dependent region. There seems to be two 

extremes to the models available in the literature; those that are based on fundamental 

principles, and those that are purely empirical. Which of these are practical in an engineering 

sense has yet to be resolved.

Models with variable physical properties are well described in the literature. However, the 

requirement for large numbers of data/parameter estimation means that these models are not 

suitable for practical applications so will not be described here. Instead, included below is a 

table below provides a summary of the main, fundamental microfiltration models in the 

literature and recommendations of the types of systems they are most useful for (after Bowen 

and Jenner, 1995).
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Theory Model equation Model

Para

-meters

Comments Feed type

recommended for

(a) Gel-polarisation 

theory with 

concentration 

dependent diffusivity 

and viscosity.

•̂ lim “ ^ J D (C )

For laminar flow, solved numerically. 

Accuracy of the prediction is limited due to 

available physical property data.

Macromolecules 

MW> 10̂  Da

J  =

D(C ) = D (C ) /D ,(Q )

drj

d = y

(b) Gel-polarisation 

theory with

D = D ( C J .

h i
In DiC)

For laminar flow, solved numerically.

An approximation of (a) valid for Cg/Cy »  

I ; the predictive difference when compared 

to (a) is » ± 10% between O.OSgcm'̂  < Cy < 

7gcm'^

Macromolecules 

MW> 10̂  Da

261



Appendix 1

Theory Model equation Model

Para

-meters

Comments Feed type

recommended for

(c) Osmotic pressure 

theory.
J  = |A p |- |M  

^ ïï = k(CJ~7t(C^)

» ^ a ,C 'e x p
/ = !

Solved by trial and error.

Requires knowledge of the osmotic 

pressure as a function of concentration to 

get at least the coefficients a. ; generally 

good agreement with experimental data.

Macromolecules 

10"<MW> 10̂

(d) Boundary layer 

resistance theory.
J  = 1̂ 1

J - v J v ,  D 

K,

Solved by trial and error.

No gel-formation at the membrane surface 

is required; excellent experimental 

agreement with dextran solutions.

Macromolecules 

IO^<MW> 10̂
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Theory Model equation Model

Para

-meters

Comments Feed type 

recommended for

(e) Empirical model 

which includes the 

osmotic pressure 

theory with a flux 

dependent mass 

transfer coefficient 

and concentration 

dependent viscosity.

,  _ Ku;:cf
exp(l)A"

K, X ,y

or

A, X, X,

y

Parameters have to be obtained through an 

experiment; experimental agreement is very 

good for different solute and membrane 

types and hydrodynamic conditions.

Macromolecules
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Theory Model equation Model

Para

-meters

Comments Feed type

recommended for

(f) Shear-induced 

hydrodynamic 

diffusion theory with 

concentration 

dependent viscosity 

and effective 

diffusivity.

L — %

p . 4-1 dx

x... = -

QcMh)= J f P i t ) d(f)

d(j)

f  \

1 + 1.5 

V u.ooy0.58

D{C) = 0.33(^'[l + 0.5exp(8.8(z))]

For laminar channel flow, solved 

numerically.

Applies for the case of a large cake 

resistance compared to membrane 

resistance; Jo is not specified in the model, 

therefore, it is suggested that Jq must be 

either experimentally determined at limiting 

conditions or approximated by 

Jo = good agreement is

obtained for many microfiltration 

experiments under different operation 

conditions.

Fine particles 

(and colloids).
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Theory Model equation Model

Para

-meters

Comments Feed type

recommended for

(g) Film model
J  = k. In

For mass transfer controlled systems where 

Jp is independent of pressure. Describes 

concentration polarisation.

Mass transfer coefficient needs to be 

estimated from literature or experiment.

Fine particles 

(and colloids).

(h) Gel polarisation 

theory •̂ lim -  ^
f c . Assumes 100% solute rejection. 

Limitations include:

• Does not distinguish between 

laminar and turbulent flow;

• Cg = f(Cb, Vcrossflow) ^ constant;

• Jp 0, when C  ̂ Cg caicuiaigj,

• No dependence of membrane 

properties implied.

Flowever, still regarded as the most 

convenient model from a practical point of 

view.

Fine particles 

(and colloids).

Table A 1.3: Fundamental equations for microfiltration flux modelling
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A1.3 Modelling transmission

Ferry (1936) proposed that membranes could be considered as sieves, which pass or stop 

molecules or particles according to their size. The membrane-sieving coefficient is defined by 

equation A 1.32.

[A1.32]

Ferry used simple steric considerations to describe the sieving characteristics of perfectly 

isoporous membranes for monodisperse systems. The sieving characteristics are evaluated in 

terms of the effective pore size defined as the diameter of the smallest molecular or particulate 

species, which absolutely fails to penetrate the membrane. The difference between the average 

pore diameter and the effective pore diameter is attributed to adsorption effects. The membrane 

structure is assumed to consist of parallel cylindrical capillaries of circular cross-section. Ferry 

also assumed that the solution remained homogenous throughout filtration.

The filtering solution follows uniformly distributed streamlines in the bulk phase, but these 

streamlines become concentrated near pore openings. According to Poiseuille flow, the velocity 

distribution at the centre of any pore to the walls of the pore is given by equation A 1.3 3.

u (r) = U o ( l - ^ )  [A1.33]

The volumetric flowrate is given by equation Al .34 below

Q = — -  = f2;rru(r)dr = [Al .34]
dt J 2

Particles migrating towards a pore, as a result of the suspension flow, will have a probability of 

penetrating the pore. This probability is equal to unity for particles whose centres fall within a 

concentric circle having a radius equal to (R - rp), where rp is the particle radius, otherwise

there is no penetration. This steric limitation introduces a statistical sieving coefficient. Thus, 

neglecting Brownian motion, the number of particles entering a pore is equivalent to the number 

of particles whose velocities exceed the hydrodynamic velocity corresponding to that at the 

limiting probability radius.

^  = j2;rru(r)dr = C^;ru„ (R - ) ' -  [A1.35]
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The concentration in the permeate is given by

R - r . V  ( R

R R
[A1.36]

Thus, the sieving model is described by

X =  2
V Ry

[A1.37]

The retention coefficient curve can be estimated from

a  = 1 - x  = [1 -(1 [A1.38]

Several factors have been ignored in the derivation of the sieving model. These include the 

influence of operating conditions and the effect of concentration polarisation on membrane 

performance, and the changes in selective behaviour of the membrane with processing time. 

Also, the criterion for particle penetration may be too restricting. Cherkasov (1990) revealed 

inadequacies in the sieving model by testing the theory on empirical data obtained from 

ultrafiltration and microfiltration experiments. The results of his experiments showed a 

dependence of the retention coefficient on the particle-to-pore size ratio, but this relationship 

was sigmoidal with a critical relationship.

= 0.3 ± 0.2 [A1.39]

X-cr represents the particle-to-pore size ratio at which there is a sharp fall in membrane 

permeability.

Literature implies a common mechanism responsible in determining the performance of a 

membrane system i.e. fouling. Transmission is a function of the total resistance (membrane and 

cake) and of the operating conditions (flux and transmembrane pressure).

Transmission = f
1

V ^TOTAL J
= f

J
TMP

[A1.40]

Novais (2001) presents a good literature review on past attempt to describe transmission, and 

developed a model for an E. coli lysate process. The decline in transmission could be modelled 

by an exponentially decreasing curve which was a function of the initial transmission value (To), 

and filtration time.
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7’* = V - ‘” [A1.41]

This experimental work indicated that fouling was likely to be only partially responsible for the 

decline in transmission. Indeed, an important finding was that small amounts of “non- 

available” product may be responsible for the decline of the observed transmission. 

Aggregation or volume increases constitute possible reasons why some product may sot be 

available for the separation. This result is particularly relevant as the feed material used was a 

real process stream, as opposed to pure protein solutions, which constitute the basis for most 

studies found in the literature. This means that experimentally observed transmission does not 

correspond to the actual %T of the system.

Balakrishnan et al. (1993) suggested that transmission values of greater than 100% indicate 

enrichment of the protein in the permeate i.e. fractionation of the species was occurring in this 

UF operation. However, Okec (1998) and Novais (2001) showed that little or no fractionation 

took place with microfiltration.

A1.4 Statistical models

Algorithms available for least-squares optimisation problems often use the steepest descent 

method or a Taylor-series method. Palosaari et al. (1986) used a random search method to 

simulate the reverse osmosis of ethanol and acetic acid. In the method, the best value was 

initially found by a random search, and subsequent iterations were conducted in a progressively 

reduced search area. Iterations were continued until the search area was reduced by a given 

amount. The random search was repeated several times and the most successful random 

minimisation was accepted as optimal. Once the weighted parameters of the neural network 

model are determined, simulations of the process can be carried out within the range of 

variables used in the experiments.

To establish which process variables have the most significant effect on the performance of a 

membrane system, a method of experimental design can be used. This method allows the 

abstraction of structured information from physical systems with a minimum of 

experimentation.

Experimental design is defined as a combination of statistical techniques for the structured 

analysis of experimental data. Haaland (1989) gives a comprehensive guide to experimental 

design in biotechnology. A typical design for screening physical systems usually takes the 

following form:
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• Perform experiments in a structured methodical manner;

• For each trial, determine a value for the response factor;

• Calculate values for main effects and interactions by manipulation of the response factors;

• Identify the important main effects and interactions by using pareto charts;

• Determine those experimental factors which are not masked by the experimental error by

estimating the noise level and the use of normal probability plots;

• Resolve any interactions between factors by the use of interaction plots.

Full factorial designs are the most commonly used experimental design procedure because they 

are simple to implement and easy to interpret. The main features include Pareto charts, which 

identify significant main effects and interactions of process variables, and normal probability 

plots, which identify main effects and interactions which are large in comparison to the 

experimental error.

In a typical two level design, i.e. a 'high' setting and a 'low' setting for each variable or factor, 

experiments are performed for each combination of variable settings. The outcome of each 

experiment is measured by a value determined for the response factor. A full factorial design 

investigates all of the possible combinations of settings for each variable, allowing the 

independent estimation of signals associated with each variable and with a combination of 

variables (Haaland, 1989). The number of experiments that have to be performed in a k-factor,

n-level full factorial design is n^. The number of experiments in the design is the sample size. 

The sample size for full factorial designs may become large. In such cases, fractional factorial 

designs are often used for screening physical systems. Such a design approach will inevitably 

lead to some information loss and possible ambiguity about variable interactions.

To investigate the effect of 4 factors, including the membrane pore size, the cell concentration, 

the recirculation rate and the transmembrane pressure, on the performance of the membrane 

system, a 3-level fractional factorial design was used by Okec (1998). The values were 

determined by fitting the experimental data to the fouling model described by Patel et al. (1987).

Okec (1998) developed a model, for a yeast/ADH system, based on a statistical approach and 

uses Pareto charts and normality plots to establish which variables have significant effects on 

the membrane separation process. A statistical model, based on linear regression, to predict 

permeate flux rates was developed. Fitting a statistical model to predict the response value 

involves constructing a linear model using regression analysis.
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R = P  + Pl  A + P 2 B  + P 3 C  + P4 (A*C) + P5 (B*C) + P6 (A*D) + Py (B*D) + Pg (A*B*D) + 

error [A 1.42]

where R is the residual value

A, B, C, A*C, B*C,... are the significant effects and interactions

p is the intercept term

Pi = j ĝ  m are the model coefficients

The applicability of such a model to a broader range of membrane pore size, cell concentration 

and recirculation rate is questionable. As the particle size to the membrane pore size ratio (A,) 

decreases, the filtration mechanism is altered from a predominant screen filter to a predominant 

depth filter. Kawakatsu et al. (1993) concluded that the relationship between the particle size 

and the membrane pore size was important for determining the steady-state permeate flux rate. 

They also concluded that in the filtration of compressible particles such as Sacchromyces 

cerevisiae, the steady-state permeate flux rate reached a minimum when A = 10. This 

observation is consistent with the results found by Okec (1998), within the experimental error, 

since at A = 8, the steady-state permeate flux rate is at a minimum for the experiments 

conducted. If other biological systems exhibit the same behaviour, it would be interesting to 

determine whether the significant effects and interactions, for the same range of A, are identical 

and also if the ratios of the coefficients in equation [A 1.42] remain the same.

The use of fractional factorial experimental design as a methodology for assessing the 

significant effects and interactions of process variables including the membrane pore size, the 

cell concentration, the recirculation rate and the transmembrane pressure on the performance of 

microfiltration has been shown. Analysis of the experimental data using a Pareto chart showed 

that the membrane pore size had the most significant effect on the performance of the physical 

system examined in this thesis. O f the 15 possible main effects and interactions, 8 were found 

to have a significant effect on the performance of the system. Process optimisation procedures 

should begin with the most significant effects and interactions.

Using a statistical approach, a linear model for the prediction of the steady-state permeate flux 

rate was developed (Okec, 1998). This approach was more accurate than that using a 

concentration polarisation model characterised by single microfiltration experiments. However, 

the statistical approach tends to be more specific and requires several experiments to develop.
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A l.5 Dynamic modelling of TFF using neural networks or CFD

For a given product/membrane combination, it is often difficult to predict the effects of 

operating conditions and of the duration of filtration on the fouling rate. A model that can 

predict the evolution of membrane fouling during filtration as a function of operating conditions 

and history would therefore be a valuable tool, especially for optimisation of operation 

parameters.

As described above, membrane fouling is a consequence of a number of dynamic and 

simultaneous phenomena; convective mass transfer through the membrane, back-diffusion 

caused by high local concentrations (concentration polarisation), shear-induced hydrodynamic 

back-transport, electrochemical interactions between the product and the membrane and 

possible chemical and microbiological instabilities in the feed stream. Considering the diversity 

of these phenomena, the development of a dynamic model based on the known principles of 

transfer, that globally represents fouling, is extremely difficult. Therefore, dynamic-knowledge- 

based models specific to microfiltration are scarce in the literature. The few models proposed 

so far only define certain phenomena, do not take into account operating conditions as a whole 

or make use of parameters that are difficult to determine experimentally.

As a result modelling techniques based on the direct analysis of experimental data (descriptive 

models) appear to be a good alternative to the models based on phenomenological hypotheses 

(knowledge-based models). As a tool of dynamic simulation, these “black box” models, 

although not explicative, can be used to represent the experimental results and are suitable to 

globally describe the considered phenomena. The effects of operating conditions on fouling and 

its dynamic behaviour are often not linear; hence the classical descriptive linear models cannot 

be used. Considering their features, connective models or neural networks should allow one to 

account for the non-linearity of the many phenomena that contribute to flux decline.

Domier et al. (1995) Niemi et al. (1995) and Meyer et al. (1998) used neural networks model 

crossflow microfiltration systems. In their work, the output variables included the permeate 

flux rate and the membrane rejection characteristics. However, different workers used different 

inputs to describe their models. Domier et al. (1995) included the transmembrane pressure and 

the recirculation rate as input variables. Niemi et al. (1995) included the aforementioned 

variables, the feed concentration and the temperature as input variables.

The main advantage of using neural networks is the ease of implementation and the accuracy of 

model predictions. However, the training requirements of the simulator and the specificity of 

generated models are significant drawbacks.
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Delgrange et al. (1998) applied neural networks for the prediction of ultrafiltration 

transmembrane pressure during drinking water production. An artificial neural network (ANN) 

was also developed for cell harvesting of Escherichia coli, through a shear-enhanced module, 

by Meyer et al. (1997). The effects of seventeen process parameters were investigated. 

However, a large number of experimental data were required for model development, and the 

model was not tested against further data. The authors concluded with the major limitation of 

the neural network approach; eveiy filtration process has to be considered as an individual 

problem. The model developed is an individual solution and represents a problem-orientated 

approach.

At the other extreme of dynamic modelling is computational fluid dynamics (CFD); rather than 

a “black box” approach, it uses finite element analyses and detailed mathematical equations to 

model fluid flow in different geometries. Ongoing development of commercial computational 

fluid dynamics software (CFD) and increasing computer power are continuously improving the 

conditions for the simulation of the three-dimensional and turbulent flow in unit operations. It 

is now generally accepted that Reynolds- averaging Navier-Stokes equations and modelling the 

Reynolds-stresses with an appropriate turbulence model is a promising method of flow 

behaviour modelling (Jenne and Reuss, 1999).

Karode and Kumar (2001) and Wiley and Fletcher (2002) present comprehensive literature 

reviews of attempts to apply CFD techniques to membrane filtration, as well as CFD models for 

flow in membrane channels. These models were successfully verified against classical solutions 

available in the literature, but both publications highlighted the fact that accurate modelling of 

and concentration polarisation is prohibited by the complex couplings of the flow equations and 

variable solution properties; overly simplified expressions for the dependence of viscosity and 

diffusivity on solution concentration produced misleading velocity and concentration profiles.

The demanding mathematics and high order numerical schemes required for valid models has 

kept CFD in the realms of academia, and as with neural networks, the quality of the output data 

can only ever be as good as the quality of the input data; such physical properties of biological 

systems are mostly empirically derived, and therefore limited in their application.

272



Appendix 2

Appendix 2 Resistance-in-series Model Program Listing

Below is the program listing (Visual Basic, Microsoft Corporation, USA), for the resistance-in- 

series model described in Chapter 2, and used to create the data presented in Chapter 5.

Dim A, DP, mu perm, VO, CO, tfinal, Rm, Rss, Rass, Rpss, b, alpha, n, JLMH, Op As Single 
Dim Ra, Rp, RaRp, Rc, DdeltaCm, Coeffi, Coeff2, alphaO, dmdt, dVrdt, J, m, C, Or, V, Vr, Tobs 
As Single 
Dim t, h As Double
Dim row_copy, column, X_copy As Integer

Sub CONSTTMPO 
'Clearing away the old results
Worksheets("tmp model results").Range("b9:f400").Clear

'Membrane, rig and feed details 
A = Worksheets("inputs").Range("b3")
DP = Worksheets("inputs").Range("b4") 
muperm = Worksheets("inputs").Range("b5")
VO = Worksheets("inputs").Range("b6")
CO = Worksheets("inputs").Range("b7") 
tfinal = Worksheets("inputs").Range("b8")

'Experimental data
Rm = Worksheets("inputs").Range("f3")
Rss = Worksheets("inputs").Range("f4")
Rass = Worksheets("inputs").Range{"f5")
Rpss = Worksheets("inputs").Range("f6") 
b = Worksheets("inputs").Range("f7")
Coeffi = Worksheets("inputs").Range("f8")
Coeff2 = Worksheets("inputs").Range("f9") 
alpha = Worksheets("inputs").Range("f10") 
n = Worksheets("inputs").Range("f11")
Tobs = Worksheets("inputs").Range("f12")

'Initial conditions 
t = 0 
X = 0 
Vr = VO 
Cr = CO 
Cp = 0 
Ra = 0 
Rp = 0 
RaRp = 0 
Rc = 0 
m = 0
DdeltaCm = 0 
J = (DP / (muperm * Rm)) 
alphaO = alpha * DP  ̂ (n)

'Iteration loop
h = Worksheets("inputs").Range("j3") 
rowcopy = 9 
column_copy = 2

While t <= tfinal
Worksheets("tmp model results"). Range("b4"). Value = t
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Worksheetsftmp model results").Range("c4").Value = J 
Worksheetsftmp model results").Range( d4").Value = Cr 
Worksheetsftmp model results").Range("e4").Value = Vr

If (X Mod 100) = 0 Then

Worksheetsftmp model results").Range("b4").Copy
Worksheetsftmp model results").Cells(row_oopy, column_copy).PasteSpecial Paste;=xlValues 
Worksheets("tmp model results").Range("c4").Copy
Worksheets("tmp model results").Cells(row_copy, column_copy + 1).PasteSpecial 
Paste:=xlValues
Worksheets("tmp model results").Range("d4").Copy
Worksheets( tmp model results").Cells(row_copy, column_copy + 2).PasteSpecial 
Paste:=xlValues
Worksheets(”tmp model results").Range("e4").Copy
Worksheetsftmp model results").Cells(row_copy, column_copy + 3).PasteSpecial 
Paste:=xl Va lues 
row_copy = row_copy + 1 
End If

'Permeate flowrate and concentration assumed to be constant over small time steps

DdeltaCm = (Coeffi * Log(Cr)) - Coeff2 
dmdt = (J * Cr - DdeltaCm) * A 
dVrdt = -(A * J) 
t = t + (0.2*h)
X = X +  1
RaRp = (Rss) * (1 - Exp(-b * t))
J = (DP / (muperm * (Rm + RaRp + Rc)))
Cr = ((CO * VO) / (Vr + Tobs * (VO - Vr)))
Rc = (m / A) * alphaO 
m = C * (VO - Vr)
Vr = Vr + (h * dVrdt)
Wend 
End Sub

Sub CONSTFLUXO
'Clearing away the old results
Worksheets("J model results").Range("b9:f400").Clear

'Membrane, rig and feed details 
A = Worksheets("inputs").Range("b17")
JLMH = Worksheets("inputs").Range("b18") 
muperm = Worksheets("inputs").Range("b19")
VO = Worksheets("inputs").Range("b20")
CO = Worksheets("inputs").Range("b21") 
tfinal = Worksheets("inputs").Range("b22")

'Experimental data
Rm = Worksheets("inputs").Range("f17") 
Rss = Worksheets("inputs").Range("f18") 
Rass = Worksheets("inputs").Range("f19") 
Rpss = Worksheets("inputs").Range("f20") 
b = Worksheets("inputs").Range("f21") 
Coeffi = Worksheets("inputs").Range("f22") 
Coeffi = Worksheets("inputs").Range("f23") 
alpha = Worksheets("inputs").Range("f24") 
n = Worksheets("inputs").Range("f25")
Tobs = Worksheets("inputs").Range("f26")

274



Appendix 2

'Initial conditions 
t = 0 
X = 0 
Vr = VO 
Cr = CO 
Cp = 0 
Ra = 0 
Rp = 0 
RaRp = 0 
Rc = 0 
m = 0
DdeltaCm = 0 
J = JLMH / 3600000 
DP = J * (muperm * Rm) 
alphaO = alpha * DP  ̂ (n)

'Iteration loop
h = Worksheets("inputs").Range("j17") 
row_copy = 9 
column_copy = 2

While t <= tfinal
Worksheets("J model results").Range("b4").Value = t 
Worksheets("J model results").Range("c4").Value = DP 
Worksheets("J model results").Range("d4").Value = Cr 
Worksheets("J model results").Range("e4").Value = Vr 
Worksheets("J model results").Range("f4").Value = J

If (X Mod 100) = 0 Then

Worksheets("J model results").Range("b4").Copy
Worksheets("J model results").Cells(row_copy, column_copy).PasteSpecial Paste;=xlValues 
Worksheets("J model results").Range("c4").Copy
Worksheets("J model results").Cells(row_copy, column_copy + 1).PasteSpecial 
Paste:=xlValues
Worksheets("J model results"). Range("d4"). Copy
Worksheets("J model results").Cells(row_copy, column_copy + 2).PasteSpecial 
Paste:=xlValues
Worksheets("J model results").Range("e4").Copy
Worksheets("J model results").Cells(row_copy, column_copy + 3).PasteSpecial 
Paste:=xlValues
Worksheets("J model results").Range("f4").Copy
WorksheetsfJ model results").Cells(row_copy, column_copy + 4).PasteSpecial 
Paste: =xlValues 
row_copy = row_copy + 1 
End If

DdeltaCm = (Coeffi * Log(Cr)) - Coeff2 
dmdt = (J * Cr - DdeltaCm) * A 
dVrdt = -(A * J) 
t = t + (0.2*h)
X = X+ 1
RaRp = (Rss) * (1 - Exp(-b * t))
DP = (J * (muperm * (Rm + RaRp + Rc)))
Cr = ((CO * VO) / (Vr + Tobs * (VO - Vr)))
'Cp = (((CO * VO) - (Cr * Vr)) / (VO - Vr))
Rc = (m / A) * alphaO 
m = m + (h * dmdt)
Vr = Vr + (h * dVrdt)
Wend 
End Sub
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Nomenclature

NOMENCLATURE

A Membrane Area

a Exponential Decay Constant For Tobs

ADH Alcohol Dehydrogenase

Am Membrane Area

BSA Bovine Serum Albumin

2
m

C Concentration Of Retained Species g

Cb Bulk Concentration Of Retained Species g.L'^

cGMP Current Good Manufacturing Practices

CI? Clean-In-Place

Cyv Wall Concentration Of Retained Species g

D Diffusion Coefficient Of Retained Species ^

DCW Dry Cell Weight

DF Diafiltration

DNA Desoxyribonucleic Acid

dp Particle Diameter m

ED Electrodialysis

EDTA Ethylenediaminetetraacetic Acid

ELISA Enzyme Linked Immunoabsorbant Assay

EMEA The European Medicines Agency

F Feed

Fab’ Antibody Fragment

FDA USA Food And Drug Administration

HPTFF High Performance Tangential Flow Filtration

IQ Installation Qualification

IT Integrity Test

J Permeate Flux Rate L.m' .̂h'^

k Constant

Kav Apparent Partition Coefficient

kb Boltzman Constant j

km Mass Transfer Coefficient ms'^

Lmem Membrane Module Length m
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Nomenclature

LMH

Mab’

MF

MWCO

NF

NFF

NWP

OD

OQ

P

A?

PBS

PQ

Q

QA

QC

R

R&D

Re

Rm

RO

Rs

^total

SIP

SOP

t

T

TFF

TMP

UF

USD

V

WFI

Litres Per Metre Squared Per Hour 

Monoclonal Antibody 

Microfiltration 

Molecular Weight Cut-Off 

Nanofiltration

Normal Flow (Dead-End) Filtration 

Normalised Water Permeability 

Optical Density 

Operational Qualification 

Permeate

Transmembrane Pressure

Phosphate Buffered Saline 

Performance Qualification 

Volumetric Flowrate 

Quality Assurance 

Quality Control 

Retentate

Research And Development 

Reynolds Number

Membrane Resistance To Permeate Flow

Reverse Osmosis

Resistance Of Solid Cake

Total Resistance To Permeate Flow

Sanitise-In-Place

Standard Operating Procedure

Time

Absolute Temperature 

Tangential Flow Filtration 

Transmembrane Pressure 

Ultrafiltration 

Ultra Scale-Down 

Filtrate Volume 

Water for Injection

N.m
-2

3 -1
m s

m

m

m

s

K

kPa
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Nomenclature

WinOp Window of Operation -

Greek Letters

a Power Constant -

P Intercept Term -

X Membrane Sieving Coefficient -

Ô Boundary Layer Thickness m

ÔC Cake Layer Thickness m

S Cake Void Fraction -

G34O Extinction Coefficient At 340nm cm .pmol

<t> Volume Fraction Of Particles -

y Shear Rate -1
s

X Particle-to-Pore Size Ratio -

V Kinematic Viscosity 2 -1 
m .s

a Retention Coefficient -

X Shear Stress N .m '^

CJ Retention Coefficient -

X Particle-to-Pore Size Ratio -

X Membrane Sieving Coefficient -

V Kinematic Viscosity m 'ls '

a Specific Cake Resistance m‘‘

Ps Viscosity of the Suspension N.s.m'^

0) Disk Rotation Speed rad.s"'
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