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Abstract

Quantum information theory is an exciting, inter-disciplinary field, combining elements of condensed 

matter theory, quantum mechanics and information theory. In this thesis, I shall make a modest 

contribution to this field by examining entanglement in many-body systems with more than two levels.

In the first section, I consider the dynamics of a system of qutrits—three-level quantum systems—  

which are coupled through an SU(3)-invariant permutation Hamiltonian. Each term in this Hamil­

tonian is a nearest-neighbour permutation operator, and thus this Hamiltonian may be considered a 

generalisation of the standard SU (2)-invariant Heisenberg Hamiltonian, in which every term (up to the 

addition of the identity operator) is a nearest-neighbour permutation operator for two-level system. 

The system considered has the topology of a cross, and thus may be considered (to a limited extent) 

analogous to a beam-splitter. The aim of the study is to establish a Bell singlet state between two 

distant parties.

Building on this work, I shall go on to consider the ground state of a system made up of many-level 

systems coupled by the same Hamiltonian; I shall show that this state is a generalisation of the two-level 

singlet to many levels and many systems. It thus has a high degree of symmetry. I will consider its 

application in entanglement distribution through measurements (localisable entanglement), and discuss 

how it may be physically implemented in systems of ultracold atoms, through the Hubbard model.

I shall also show that in the famous valence bond solid (the ground state of the Affleck-Kennedy- 

Lieb-Tasaki spin chain), all the entanglement present in the state may be extracted from a single copy 

of the chain; this is in contrast to gapless, critical chains, in which only half the total entanglement is 

extractable from a single copy.

This thesis does not exceed 100,000 words.
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Foreword

The early twentieth century saw the development of two pillars of modern physics: quantum  

mechanics and general relativity. Together, they have revolutionised our world, paving the 

way for disruptive techologies such as transistor-based computation, satellite communication 

and, more recently, the internet. W hilst general relativity concerns itself with the very large 

(planets and galaxies, for example), quantum  mechanics is the theory of the very small; indeed, 

the theory gives rise to a fundamental lengthscale (the Planck length), on which space may be 

considered ‘grainy’. Ever since the idea of the ‘atom ’ was first mooted by the ancient Greeks, 

scientists have been probing ever smaller particles and lengthscales; this strange, counter­

intuitive world is the realm of the quantum  theory.

Time and again the theory has passed the test of experimental falsification, and has given 

rise to many technological advances. From a practical point of view, then, the theory has 

been immensely successful. However, it forces scientists to radically overhaul their conceptual 

view of the universe. Phenomena wholly counter to mankind’s experience of the everyday, 

‘classical’ world (not least with respect to determinism and locality) are characteristic of the 

theory. Indeed, despite being one of the forefathers of the theory, Albert Einstein presented, 

with co-authors Boris Podolsky and Nathan Rosen, a ‘paradox’ purpotedly highlighting the 

inadequacies of quantum mechanics as a ‘complete theory’ of nature. He subsequently stated  

his dissatisfication with the probabilistic nature of the theory through the famous quote: ‘God 

does not play dice’.

Erwin Schrodinger also considered the bizarre behaviour of composite systems predicted by 

quantum  mechanics, and used the German word Verschrankung to describe the ‘stronger-than- 

classical’ correlations between particles. More recently, John Bell derived an inequality th a t any 

theory of nature should satisfy, were it to satisfy our intuitive concepts of locality and reality; 

quantum mechanics violates this inequality, and thus one must accept the non-local (or non-
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realistic) nature of quantum mechanics2. This strong correlation—now named entanglement— 

cannot be avoided. Indeed, it is now regarded as the essential signature of quantum  mechanics 

and routinely referred to as a ‘resource’: the power behind proposed quantum computers. 

Abstract notions of such machines were proposed independently by Paul Benioff and David 

Deutsch in the 1980s (building on the ideas of Yu Manin and Richard Feynman), and were 

intended to be a quantum analogue of the famous Turing machine in classical computer science 

(a machine th a t can solve any algorithmic process). Quantum  computers are believed to be 

able to efficiently solve classically intractable problems, such as factoring, and cracking RSA 

cryptography. They may also be suitable for simulating other physical (quantum) systems.

In parallel, the idea th a t physics should be a theory of information arose: what one knows 

about the universe, and what information one can extract from it. Building on Claude Shan­

non’s work on information theory in 1948, Edwin Jaynes described statistical mechanics (the 

physics of many-particle systems) in term s of information and the maximum-entropy principle. 

The modern field of quantum  information theory now attem pts to link quantum mechanics and 

information in an analogous manner.

Underlying both quantum  com putation and quantum  information is the concept of entan­

glement. These endeavours have both blossomed in recent years, bringing together physicists, 

mathematicians, computer scientists and engineers, some motivated by a desire to build such a 

quantum  computer, some by the promise th a t it will give scientists a deeper understanding of 

the physical world. This thesis makes a very modest contribution to this work by studying the 

entanglement th a t exists in, and may be extracted from, various many-body physical systems. 

The work included has been published in the following three papers:

‘Entanglement creation and distribution on a graph of exchange-coupled qutrits’

Christopher Hadley, Alessio Serafini and Sougato Bose 

Physical Review A, 72, 052333 (2005)

‘Multilevel m ultiparty singlets as ground states and their role in entanglement distribution’ 

Christopher Hadley and Sougato Bose 

Physical Review A , 77, 050308(R) (2008)

‘Single-copy entanglement in a gapped quantum  spin chain’

Christopher Hadley

Physical Review Letters, 100, 177202 (2008)

2 Although strictly, there are no loophole-free experiments!
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The thesis is divided into five parts. In P art I, I introduce the modern notions of quantum  

mechanics and entanglement. The introduction begins from first principles, and only basic 

notions of physics and mathematics are assumed. I conclude by providing a brief overview 

of the central themes in quantum  information theory and quantum computation, in order to 

provide the motivation for the study of entanglement in subsequent chapters.

In P art II, I propose a spin-based system which performs the tasks of entanglement gener­

ation and distribution, both essential for the development of a quantum  computer. This work 

was performed in collaboration with Sougato Bose and Alessio Serafini. P art III is concerned 

with how much entanglement can be extracted from a single copy of a given system, as opposed 

to the usual asymptotic limit, and I show th a t for one type of system, this is equal to the entan­

glement extractable from an infinite number of copies. Finally, in Parts IV and V, I consider a 

state with a very high degree of perm utational symmetry, characterise some of its properties, 

and discuss its implementation in various physical systems describable by the strong coupling 

limit of the Hubbard model. This work was performed in collaboration with Sougato Bose.

Full references to background literature are provided, and many of the introductory sections 

conclude with suggestions for further reading.

Christopher Hadley 

London, November 2008
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In this part, I  shall introduce the main concepts required for any work in the field of quantum 

information; specifically, quantum mechanics, entanglement, and the link between this and information 

processing. The introduction is written to be accessible to non-specialist physicists, and is relatively 

self-contained. Full references are given, including suggestions fo r further reading.



Chapter

Quantum mechanics

As anticipated in the foreword to this thesis, quantum mechanics is a highly counter-intuitive 

physical theory. It is also a highly successful description o f nature. In this Chapter, I  shall 

introduce the theory from first principles, along with the required mathematical notation, and 

attempt to show how many o f the key concepts follow directy from the postulates. As one would 

expect for such a fundamental theory, many excellent introductory texts have been written, 

references to which are given in the ‘further reading’ section.

1.1 Postulates of modern quantum mechanics

Quantum  mechanics is one of the two pillars of modern physics (the other being general rela­

tivity), and has been verified time and again in the laboratory. The origins of the theory he in 

the early twentieth century, when Max Planck was studying black-body radiation; he considered 

what would happen if energy were divided into discrete quantities called quanta. This idea was 

further developed by Albert Einstein when he additionally quantised radiation, and applied it 

to the photoelectric effect. The modern conceptual understanding of quantum mechanics is 

quite different to what became know as the old quantum theory, but it was this idea of dividing 

physical quantities into discrete units that laid the foundation for the ‘quantum revolution’.

Despite the incredibly complex phenomena th a t it describes (not to mention some of the 

more bizarre physical predictions and philosophical interpretations), the modern theory itself 

follows from only a handful of postulates. These are listed below in order to give a quick 

overview of the subject, and are subsequently discussed in more detail, along with many other 

key concepts and consequences of the postulates. The introduction I present here is driven by 

the desire to explain quantum mechanics from an information theoretic point of view, introduc­

ing operators, observables and other concepts from the point of view of what information can

13



1.1. Postulates o f modem quantum mechanics 14

be extracted from the system. The main consequence of this way of thinking about quantum  

mechanics is the elevation of ‘entanglement’ from a mere quirk (at best) or nuisance (at worst) 

to  a central theme of the theory; indeed, it is now regularly described in the literature as a 

‘resource’. The approach is quite abstract, introducing a handful of postulates and the associ­

ated mathematics, rather than considering the more standard ‘waves in boxes’ or ‘wave packet 

dynamics’ more frequently encountered in undergraduate texts. This is motivated by, and in­

tended to highlight, the fact th a t most results in quantum information theory are completely 

general; i.e. they are not peculiar to any particular physical implementation or system. In this 

introduction (and in the subsequent Chapter on entanglement), I wish to show how many of 

the key concepts arise without even considering which system the results may be applied to. It

is for this reason th a t discussion of physical implementations is fairly cursory.

P o s tu la te  1 (S ta te  v e c to rs ) . Any closed physical system has a complex vector space asso­

ciated with it, called the state space. This space is an inner-product (Hilbert) space, usually 

denoted Tt. A single state (a pure state) of the physical system is described by a vector \ip) €  Tt 

of unit length in this space, called the state vector. An ensemble o f pure states (a mixed state) 

may be described by a density matrix p, an operator acting on the state space.

P o s tu la te  2 (M e a su re m e n ts ) . Measurements o f a physical quantity on a quantum system are 

represented by a set of measurement operators {M i} which act on the state space in question. 

This set of operators corresponds to a single physical quantity, where the index i refers to the 

possible outcomes of the measurement. When a measurement is made on a system in a mixed 

state p, the state o f the system becomes

M ipM /
Pi — / + \ (1-1)

tr yM- M ipj

with probability p{i) =  t r  (M ^M ip). The operators satisfy the constraint M jM i  =  I , re­

flecting the summation o f probability to unity. For a measurement on a pure state \ip), the 

post-measurement state Equation (1.1) reduces to

m  = -  g <h>> , (i.2)
J l^ p  M \M i

with probability p(i) — (ipi | M /M i | ipi).

P o s tu la te  3 (U n ita ry  t im e  ev o lu tio n ). The time-evolution o f a closed physical system  

described at time t \  by a density matrix p (t\) is a unitary transformation depending solely on 

the times ti,t<2 ; i.e. the state p fa )  o f the system at time £2

p fa )  — U (ti,t2 ) p (t\) U ( t i , t2 y .  (1-3)



1.1. Postulates of modem quantum mechanics 15

For a pure state [ ‘ \ )), this reduces to

m 2)) = u ( t 1, t 2) iV'(^i)) • ( i-4)

P o s tu la te  4 (S y stem s o f  m an y  d is tin g u ish a b le  b o d ie s ) . In a composite system o f two or 

more particles, the state of each part will be represented by a vector in an appropriate vector 

space, as prescribed by the first postulate. The overall state o f the system belongs to a larger 

vector space, formed by taking the tensor product (or direct product) of the these spaces. Namely, 

i f  a system consists o f n  smaller systems, where system j  is prepared in the state | £ H j

(for j  € [l,iV y, the overall state m il be

I V O l ®  I V O a ®  l ^ n ) n  (L 5 )

which resides in a composite vector space, denoted

H i <S>H2 ® (1.6 )

For brevity, the tensor product symbols are often omitted, and the state is denoted thus:

f o M i l V 0 2 - - ' l  V O „ -  ( i -7)

P o s tu la te  5 (S y stem s o f  m an y  in d is tin g u ish a b le  b o d ie s ) . .Composite sytems o f several 

indistinguishable particles should be eigenstates o f all possible permutation operators, and must

be either completely symmetric or antisymmetric under such operations. These are termed

bosonic and fermionic statistics, respectively1. This gives rise to Pauli exclusion: no two 

fermions may exist in the same state at the same space2.

Having introduced the postulates, it is now instructive to consider each in turn, and show 

how they give rise to other concepts in quantum mechanics.

1.1.1 Postulate 1: state space

P u re  s ta te s

As already stated, a pure state is denoted \ip) in Dirac notation (the notation | )  is called a ‘k ef).

This object is a vector with unit norm. The simplest example is that of a two-level system,

where there are two possible states: |0) and 11). The fundamental departure from classical

mechanics here is th a t a quantum  system can exist in a superposition, such as a |0 )  -f (311).

1More generally, states can have parastatistics, when identical particles transform according to  Young 

tableaux other than those that are com pletely symmetric or com pletely antisymmetric; these, however, are

not observed in nature. In two dimensions, quasi-particles called anyons can also exist.
2 This is erroneously referred to as the Pauli exclusion principle, but it is a consequence o f the permutational 

symmetry, not a principle!

33



1.1. Postulates o f modem quantum mechanics 16

This two level system is referred to  as a qubit, to reflect its nature as a quantum  generalisation 

of a bit (binary digit). In general, if a quantum  mechanical degree of freedom has d possible 

values, it may be denoted by a vector IV’) =  Y li= 1 vi IV**)* a vector space Tt ~  <Dd. In this 

thesis, this will be referred to as a qudit. The complex numbers ( J j G C  are amplitudes, onto 

which is imposed the normalisation condition Y l i vi vi =  1 (where v* is the complex conjugate 

of Vi), for reasons that will become clear later on. A general pure state of a d-level system thus 

has 2d — 1 degrees of freedom (since a complex number is described by a real and imaginary 

number, and the normalisation constraint removes one degree of freedom). The set of vectors 

dV’i)} is called a basis set, and may be used to expand any given vector |i/’} as above by choosing 

appropriate amplitudes.

Kets have counterpart objects called ‘bras’ {(f>\, which are complex-valued linear functions 

on the vector space Tt, i.e. for any a, ft £ <D

{<t>\ (a  |0> +  /? |1»  =  a  <4>|0) + /J (<j>\ 1>. (1.8)

These objects themselves form a basis for a different vector space Tt', the adjoint space of Tt. By 

considering the number of vectors needed to expand an arbitrary state in both Tt and T t', one 

can see th a t these spaces have the same dimension. Moreover, one can see th a t the counterpart 

of a vector |ip) £ Tt is {ij)\ £ Tt'. This allows us make the statem ent th a t basis sets (or bases) 

are orthonormal if (V’tlV’j) =  &ij for all i , j  £ [l,d\. To simplify matters, physicists normally 

speak of a quantum  system and its associated ‘vector space’, as opposed to the two spaces Tt 

and 7i ! .

A particularly useful function associated to a vector space <Cd is the inner product (•, •) 

which is a function <Dd x <Dd —* <D, given by

iP\4>) := I0j> j (L9)
\  i i /  i=l

The normalisation condition can therefore be denoted (-01 -0) =  1. This vector space is hence 

referred to as an inner product space-, for systems with finite d, this is identical to a Hilbert 

space. Physicists use these term s interchangeably, leaving mathematicians to argue over the 

difference! It is worth noting th a t the states \ip) and e1̂  |ip) are physically indistinguishable 

(again, this will become clear after measurement has been introduced); the quantity 0  £  R  is 

called a global phase and has no effect on physical reality. The state  could thus equally well be 

described by the ray e1̂  |^ ) for all <j>.

M ix ed  s ta te s

The state vector is not the most general way of describing a state in quantum  mechanics. The 

density operator approach allows for a description of an ensemble of pure states, which may
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be used to describe the state of a physical system whose state is not completely known. The

density operator for a system with an ensemble of state {|V’)}> each occurring with probability 

Pi is given by the operator

Quantum  mechanics can either be formulated in terms of density operators, regarding the pure 

state as a special case, or in term s of pure states, regarding the density operator as a way of 

describing ensembles through the above definition.

One might naively think of the density operator as describing a physical machine which 

creates the state |V’i) with probability pp, physically, the state indeed being one of the (|V;i)}i 

but with the experimenter ignorant of which i. However, this interpretation, whilst appealing, 

is not quite correct, since there is an infinite number of ensembles giving rise to the same density 

matrix, according to the following theorem given in Nielsen and Chuang [166] but originally 

discovered by Schrodinger [213] and extended by Jaynes [134, 135], and Hughston, Jozsa and 

Wootters [130].

T h e o re m  6 (U n ita ry  fre e d o m  in  en sem b le s) . The sets o f states {|^i)} and {|<&)} generate 

the same density matrix p i f  and only if

where Uij is a unitary matrix.

L in ea r a lg eb ra

It is clear from the preceeding two sections th a t the natural language for quantum  mechanics 

is linear algebra. The reader is assumed to be familiar with basic concepts such as vectors, 

basis sets and elementary vector operations, which have been introduced implicitly above. For 

a basic overview, the reader is recommended to read the basic introduction in the textbook by 

Nielsen and Chuang [166].

1.1.2 Postulate 2: measurement and operators

One of the most radical departures of quantum mechanics from the classical world is th a t 

the observer becomes a central part of the description of nature. In classical mechanics, it is 

assumed th a t the physical s tate  of a system is independent of whether it is being observed. 

However, quantum mechanics has a definite prescription for how observation affects a physical 

system.

( 1.10)

(1 .11)
3



1.1. Postulates of modem quantum mechanics 18

In this thesis, I shall only consider the simplest form of measurement, the projective, or von 

Neumann , measurement. In this case, the observable A has the following spectral decomposition:

A = Y l aiPi (112)
i

where P* =  |ai) (<2 j| is the projector onto the space with eigenvalue (and eigenvector |aj)). 

The values {a*} are the possible outcomes of the measurement. If a system is initially in the 

pure sta te  \ip), then upon measurement of outcome a*, the state of the system is projected to

A = ;  (113)
v w )

where p(i) =  {ip \ Pi \ ip) is the probability of th a t outcome occurring. All physical observables 

have an associated Hermitian operator A, to guarantee th a t its eigenvalues are real (the con­

verse is not true—there are Hermitian operators with no physical observable associated, since 

superselection rules often prohibit what can and cannot be measured).

A hugely im portant aspect of quantum  mechanics is the existence of incompatible measure­

ments. This means th a t there are sets of observables that any given state cannot simultaneously 

diagonalise. This concept is expressed through the commutator, if [A, B ] :=  A B  — B A  =  0 then 

it is possible to simultaneously diagonalise A  and B. It is this th a t gives rise to the uncertainty 

principle. If the ‘uncertainty’ in observables (given measurements on an infinite ensemble of 

systems identically prepared) is (A a)2 — (A2) — (A)2 and (A/3)2 =  ( B 2) — (B)2, then

A c A p  (1.14)

The implication of this is th a t systems cannot simultaneously possess physical values of observ­

ables th a t do not commute. It is often asserted th a t there is a fundamental limit to the accuracy 

to which we can describe the physical world: an improvement in knowledge of A results in a 

decrease in knowledge of B ; however, the true statem ent is not that we cannot observe these 

values with arbitrary precision, but th a t such precise values do not exist.

1.1.3 Postulate 3: unitary evolution

S ch ro d in g e r’s E q u a tio n

In the case of continuous-time evolution, this postulate may be stated slightly differently, in 

the form of Schrodinger’s E quation :

= (1.15)

where H  is an Hermitian operator, and h is Planck’s constant3. This has the solution (1.3),

where U( t i , t 2 ) =  ex p (—i(^ 2 — t \ )H/K).  There is thus a one-to-one correspondence between a

3h =  6.626 19 X 10-34 J s. It is because this constant is so small that quantum effects are negligible on the  

human scale. The fully classical lim it o f the theory can be obtained by setting h —► 0.
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continuous time evolution, and an evolution where the state is only described a t the initial and 

final times t \  and £2 -

The quantity H  is called the Hamiltonian; it effectively provides a complete description 

of the system under consideration. Its form is not prescribed by quantum  mechanics alone; 

in this formulation, quantum mechanics merely sets the stage on which phenomena occur, 

leaving the details of the physical interactions to theories such as quantum optics and quantum  

electrodynamics.

Q u a n tu m  o p e ra tio n s

Unitary evolutions can be combined with measurements, in the form of quantum  operations. 

These are density m atrix tranform ations p —» p' =  £{p) th a t can be written through the 

operator-sum representation:

S ( p )  =  Y . E k p E l  ( 1 .1 6 )
k

where Ek is a linear operator, and ® (where inequality means some information

about the system has been obtained through measurement).

This form is often used for modelling decoherence (essentially the loss of ‘quantum ness’) 

when a system interacts with an environment. In this context, the system under consideration 

is called open, whereas the unitary evolution above holds for closed systems.

1.1.4 Postulate 4: distinguishable particles and the tensor product

The tensor product is a way of joining vector spaces together into bigger spaces. As already 

stated, s tate  vectors for composite systems live in such a space. One can also compose operators 

in this way: if an operator A  acts on state |ui) E H 1 , and B  on state fa )  € H 2 , then the overall 

effect is th a t of an operator A <8> B  acting on |^i) <g> fa )  E H i <8> H 2 -

It is worth noting that given a mixed state for a composite system, one can find a reduced 

density matrix, giving the best possible description of one’s knowledge of that subsystem alone. 

This is given by the partial trace. Suppose two experimenters, Alice and Bob, share a state  

described by a density matrix p a b ', the best possible knowledge Alice could have about the 

system is given by

Pa  — U" B p A B  ( 1 1 7 )

where tr  b  denotes th a t the system is traced over Bob’s system. The resultant m atrix pA is 

called the reduced density matrix of Alice’s system4.

4This anticipates the discussion of entanglem ent in the following Chapter: if the overall state is pure, then
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Conversely to the partial trace, one can always find a purification to a mixed state; th a t 

is, one can find a pure state in a larger space, such th a t when the extra vector space is traced 

over, one retrieves the intial mixed state.

1.1.5 Postulate 5: indistinguishable particles and permutation sym ­

metry

In the classical world, it is in principle possible to distinguish between every particle, and follow 

the dynamics of each (although computationally infeasible). For example, one could label all the 

balls on a pool table, and always be able to distinguish between them. However, in the quantum  

world, particles can be totally indistinguishable, with there being no possible measurements to 

distinguish between them {i.e. there is no way to physically ‘label’ them). Because of this, the 

tensor product structure is inadequate for indistinguishable particles, unless one confines the 

state to a particular subspace of the composite space.

Consider a set of particles a t locations i t  , • • • , rjv, described by a wavefunction ip{r i , • • • , r^v)- 

One can define a permutation operator Pij that performs the operation

Pijfp{r i , - -  - , r i , - - - r jV) =  ‘0( r i , - - -  , r j r -- , r i r - - rN)] (1.18)

i.e. it swaps the locations of particles i and j .  For indistinguishable particles, one requires 

the overall physical wavefunction to be an eigenstate of this operator; otherwise one could use 

the perm utation operator to distinguish between such particles. Since two applications of the 

permutation should bring the state back to the initial s ta te5, PijPij I'F) =  A2 |vp) =  |\l>) and thus 

A =  ±1. These eigenvalues correspond to completely symmetric (A =  +1) and antisymmetric 

states (A =  —1); particles with such wavefunctions are called bosons and fermions, respectively, 

after Satyendranath Bose and Enrico Fermi, respectively. Systems of many fermions thus have 

a wavefunction of the form

'&F(rl r - - r N ) =  - j =  ^ 2  si&n(p ) p bl’{r i ) - - - ^ ( r N)]] (1.19)
v- /v - P e s N

where the functions {^(r^)} are one-particle wavefunctions; the operator P  is an element of the

permutation group S n , and the sum is over all such operators. The function sign(P) gives +1

whether or not the reduced density matrix is pure indicates whether Alice and Bob’s subsystem s are separable 

or entangled; a separable pure state will have pure reduced density matrices, whereas an entangled pure state  

will have mixed reduced density matrices.
5This is not strictly true: it would be perfectly acceptable for two applications of the operator to  introduce 

a global phase e 1̂ , as long as this is complemented by the presence of supers election rules forbidding the 

observation of this phase.
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for even permutations, and —1 for odd permutations. The bosonic counterpart is

V B (ri,  • • • *n ) =  H  P [ ^ i ) - - ' ^ n )}- (1-20)
PesN

A more convenient description of such states is the second quantisation. One defines creation 

and annihilation operators—denoted and c, respectively—th at add or remove a single particle 

to the system; one then replaces the above notation with the occupation number representation. 

A state of N  fermions then becomes
OO

K ; - •• ;nN) =  Yl (4 ) I0) ’ (L21)
Tlfc

k=1

where ra* is the occupation number of mode i {i.e. the number of particles in this state). N atu­

rally for fermions (given the above definitions), ni can only be 0 or 1. For bosons, the equivalent 

state is

« Y *
■ ■ ]nN) = FT /= = r l°> • (L22)AA - 'n k\

J k J

k= 1

It follows from the definition of these operators that they satisfy the following commutation 

and anti commutation relations

fermions : {c*, c t} =  6ij; (1.23)

bosons: [6fc,6/] =  5fcz. (1-24)

In both cases, the occupation of a mode is given by the number operator (or nk =

b \h )-

1.1.6 Interactions, Hamiltonians and Lagrangians

The above formulation of quantum  mechanics says nothing about forces, or the nature of any 

particular unitary evolution or measurement. This is because many of the ideas surrounding 

entanglement are independent of any particular physical implementation. Moreover, this for­

mulation of quantum mechanics merely gives a mathematical framework; particular details of 

the physics of any given situation are left to theories such as quantum optics [19, 218], which 

specify the Hamiltonian (or, equivalently, the Lagrangian).

1.1.7 Further reading

An enjoyable account of the fascinating series of discoveries leading up to E instein’s ‘photo­

electric’ paper are given in the textbook by Longair [160]. Standard introductory texts to the 

modern theory quantum mechanics include those by Sakurai [207] and Shankar [219], although
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these mostly introduce quantum  mechanics from the approach of wave mechanics. A more 

advanced, abstract introduction useful for the purposes of studying quantum  information the­

ory and the foundations of quantum  mechanics is the insightful textbook by Peres [178]. A 

particularly clear introduction to the physics of indistinguishable particles is given by Gross 

et al. [99]. Contemporary introductions to quantum mechanics from a quantum  information 

theoretic point of view are given by the excellent textbook by Nielsen and Chuang [166], and 

the lecture notes by Preskill [191].



Chapter

Entanglement

Quantum information theory promotes ‘entanglement ’ from a paradox purpotedly highlighting 

the inadequacies o f quantum mechanics, to a central pillar o f our contemporary understanding 

of the natural world. In the Chapter that follows, I  shall describe the historical development of 

our understanding o f this concept, introduce from first principles the modem understanding of 

entanglement, discuss its quantification, and attempt to elucidate its role in the contemporary 

understanding of quantum mechanics and nonlocality. Its application in quantum computation 

and quantum information theory will be discussed in subsequent Chapters.

2.1 Verschrankung and ‘spooky action at a distance’

The development of quantum theory in the twentieth century not only forced physicists to 

overhaul their scientific understanding of the world, but it also raised some uncomfortable 

philosophical questions. Many of the finest minds in the history of modern physics have strug­

gled to interpret and answer these issues, and it has only been in recent years th a t satisfactory 

answers have been proposed. As Niels Bohr is reputed to have said: “anyone who is not shocked 

by quantum  theory has not understood it” 1. We are now, fortunately, enlightened enough to 

consider entanglement a resource, a concept to be embraced, but its history has certainly been 

problematic.

Einstein’s dissatisfaction with quantum  mechanics has been well-documented, and is fa­

mously encapsulated in the quote “God does not play dice” 2. However, it was not the inde­

terminism of quantum theory th a t troubled him the most; rather, it was the position of the

1 As quoted in Reference [245].
2 This oft-quoted remark is paraphrased from a letter to Born in 1926: “Quantum mechanics is very impres­

sive. But an inner voice tells m e that it is not yet the real thing. The theory produces a good deal but hardly 

brings us closer to the secret o f the Old One. I am at all events convinced that He does not play dice” [37].

23
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notion of objective reality—or, as we shall see, lack of it—in a quantum  theory. As Wolfgang 

Pauli states in a letter to Max Born [37], “Einstein’s point of departure is ‘realistic’ ra ther than 

‘deterministic’ ” . Einstein believed th a t every element of nature (objective reality) should have 

a counterpart in a complete description of nature. As recalled by Albert Pais [172, 173], “We 

often discussed his notions of objective reality. I recall th a t during one walk Einstein suddenly 

stopped, turned to me and asked whether I really believed th a t th a t the moon exists only when 

I look a t it. The rest of this walk was devoted to a discussion of what a physicist should mean 

by the term  ‘to exist’ ” .

In 1935, along with Boris Podolsky and Nathan Rosen, Einstein published a now-classic 

paper entitled ‘Can quantum-mechanical description of physical reality be considered com­

plete?’ [73]—often simply referred to as the ‘EPR  paper’—in which the three authors present 

an argument to answer the title question in the negative: that is, quantum mechanics must 

be considered an incomplete theory. They sta rt from the assumption th a t every element of 

physical reality must have a counterpart in the physical theory, with the following definition of 

‘physical reality’:

“If without in any way disturbing a system, we can predict with certainty (i.e. with 

probability equal to unity) the value of a physical quantity, then there exists an 

element of physical reality corresponding to this physical reality” .

The central thrust of their argument is the following Gedankenexperiment. Imagine two 

particles interacting a t a time t  =  0. The particles are subsequently moved to distinct re­

gions of space, far apart (a space-like interval, in the language of relativity [67, 71, 72]) and 

have no further contact. The overall wavefunction of the two particles may be calculated by 

Schrodinger’s E quation .

Now suppose an experimenter with access to system I wishes to measure a physical quantity 

A. Using the precepts of the conventional quantum theory, the outcomes of such an experiment 

are given by the set of eigenvalues {a*}* and the eigenvectors {ui(xi)}i, where x i is the set of 

variables describing the first system. The overall wavefunction 'I' of the two systems may then 

be written

OO

^ ( x i , X2) =  ^ V ,n(x2)«n(^ i), (2.1)
n=  1

when considered as a function of the first system. The functions { ^ ( ^ 2 )} are merely the 

coefficients in this expansion. It is clear th a t if a measurement of A  gives the outcome a*., then 

the state  of system I becomes Uk(x 1 ), and th a t of system II, iftk(%2 )- The authors describe this 

as the process of reduction o f the wave packet. Likewise, if the experimenter wishes to observe 

a physical quantity B, with eigenvalues {6*}* and eigenvetors { ^ (x i)} , the s ta te  should be
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written
OO

* ( x i f* 2 ) = E ^ ( * 2K ( * l ) .  (2 ‘2)
s=  1

In this case, it is clear that a measurement of B  with outcome br , will leave system I in the 

state vr {x\),  and system II in state <~pr 0^2 )■

The argument then proceeds by claiming th a t through two different possible measurements 

of the state of system I, system II is left in two different possible states. But, since the two 

systems no longer interact after t — 0, no real change of system II can take place, and thus it 

is possible to assign two different wave functions to the same ontic reality. Furthermore, since 

the choice of measurement cannot (by assumption) affect system II at all, the values of the 

physical observables must already have had physical existence.

If the two observables A  and B  are chosen to be non-commuting observables (the canonical 

example being position and momentum, which were known to be incapable of simultaneously 

possessing values in the theory), then there appears to be a problem. For, by the preceding 

argument, they must both have had values prior to measurement; but quantum  mechanics is 

incapable of endowing these quantities with simultaneous values. Therefore, quantum  theory 

must provide an incomplete description of physical reality. As EPR  put it [73]:

“either (1) the quantum-mechanical description of reality given by the wave function 

is not complete or (2) when operators corresponding to two physical quantities do 

not commute the two quantites cannot have simultaneous reality. S tarting then 

with the assumption th a t the wave function does give a complete description of 

the physical reality, we arrived at the conclusion th a t two physical quantities, with 

noncommuting operators, can have simultaneous reality. Thus the negation of (1) 

leads to the negation of the only other alternative (2). We are thus forced to 

conlcude that the quantum-mechanical description of physical reality given by wave 

functions is not complete” .

Quantum  theory will, according to the authors, only ever be a partial description of the natural 

world. This, according to Leon Rosenfeld, had a deep impact on Bohr: “this onslaught came 

down to us as a bolt from the blue” [205].

It is often claimed that the paper dismisses quantum theory because the collapse of the wave 

function must allow instantaneous changes a t system II when system I is measured (giving rise 

to so-called ‘spooky action a t a distance’). This, however, was not the argument of EPR , but 

a central assumption; indeed, they entirely dismiss the notion of observables only possessing 

reality when measured:



2.1. Verschrankung and ‘spooky action at a distance’ 26

“This makes the reality of P  and Q depend upon the process of measurement carried 

out on the first system, which does not disturb the second system in any way. No 

reasonable definition of reality could be expected to permit this” .

It is only later on th a t this objection surfaces.

Schrodinger subsequently corresponded intensely with Einstein, resulting in the publica­

tion, in 1935 and 1936, of a series of papers [211, 212, 213] in which he introduced the term  

‘entanglement’ (or Verschrankung in German) to describe the special correlations between two 

particles th a t have previously interacted. He also introduced his own paradox, which has come 

to be known as Schrodinger’s cat3. Instead of regarding entanglement as something to be 

circumvented if possible, he regarded it as a central theme of the quantum theory:

“I would not call th a t one but rather the characteristic tra it of quantum mechanics 

the one th a t enforces its entire departure from classical fines of thought. By the 

interaction the two representatives (of ^-functions) have become entangled” .

He then went on to develop an idea called quantum steering4, in which two experimenters 

(now conventionally named ‘Alice’ and ‘Bob’) share a particular quantum  state, and Alice 

attem pts to prepare a state in Bob’s laboratory be performing certain operations in her own 

laboratory. In some sense, this can be thought of as a generalisation of the modern idea of 

teleportation [26, 130]

“Another way of expressing the peculiar situation is: the best possible knowledge 

of a whole does not necessarily include the best possible knowledge of all its parts, 

even though they may be entirely separated and therefore virtually capable of being 

best possible known, i.e .o i possessing, each of them, a representative of its own ...

It is rather discomforting that the theory should allow a system to be steered or 

piloted into one of the other type of state at the experimenter’s mercy in spite of 

his having no access to it” .

This now gives rise to more objections: if one accepts th a t quantum theory is complete, and 

th a t observables have ontic reality only after observation, then an entangled pair of particles 

might seem to cause problems for causality. Specifically, if Alice performs measurements on 

her half of an entangled state she shares with Bob (with a space-like separation), then the 

collapse would appear to involve information being transferred faster than the speed of fight 

{superluminal signalling). Moreover, an observer can always find a frame of reference in which 

the collapse of Bob’s system occurs before Alice’s measurement.

3 A discussion of this is beyond the scope of this exposition of noniocality!
4 The idea of steering has been put on a modern footing by W iseman et al. [248].
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In March 1947, Einstein writes again to Born [37], stating th a t he cannot seriously believe 

in the quantum  theory because of the spukhafte Fernwirkungen (‘spooky action a t a distance’) 

proposed by Schrodinger. A year later, in May 1948, Born tries to persuade Einstein [37] th a t

“It seems to me th a t your axiom of the ‘independence of spatially-separated objects 

A and B ’ is not as convincing as you make out. It does not take into account the fact 

of coherence; objects far apart in space which have a common origin need not be 

independent. I believe th a t this cannot be denied and simply has to be accepted.”

Alas, Einstein did not live to see that m atter approach resolution. In the 1960s, John Bell 

came close to doing so [20, 21, 22] by proposing a Gedankenexperiment based on the spin-singlet 

state I# - ) =  (|0)A |1)B — |1)A |0)b )/\ /2 , building on the work of David Bohm [34, 35]. In so 

doing, he put the problem on a much more rigorous footing. Bell’s seminal paper [20] considered 

what would happen if one supplemented quantum mechanics with hidden-variables; the values 

of these variables have an objective, physical existence before measurement, and the outcome 

of a measurement depends on some function of these variables; such a model would be called a 

local hidden-variable model.

The brilliance of Bell’s work was to forget about quantum mechanics, and to ask what 

constraints a theory of nature should satisfy were it realistic (i.e. observables have an objective 

reality before observation) and local (i.e. the outcome of one experiment can in no way affect 

the outcome of another, if there is a space-like separation between them). In the version of 

his thought experiment as refined by Clauser, Horne, Shimony and Holt [60], two observers, 

Alice and Bob, perform measurements on a spin-singlet state  as above (now invariably referred 

to as a Bell, EPR, or EPR-Bohm , singlet state). By considering various combinations of the 

outcomes, one can derive an inequality th a t must be satisfied by all realistic, local theories. 

Then, by considering average outcomes in quantum mechanics, one can see th a t the inequal­

ity is violated; th a t is, nature cannot be described by a realistic, local theory! This result 

was first experimentally verified by Freedman and Clauser [89], and subsequently by Aspect 

et al. [16, 15], with the conclusion5 that quantum mechanics does not permit local hidden- 

variable models! This counter-intuitive result has revolutionised modern physics, and paved 

the way for the contemporary studies of quantum information theory and the interpetation of 

quantum mechanics. Indeed, Bell’s theorem has been dubbed “the most profound discovery 

of science” [224]. The Bell-CHSH argument was subsequently tightened up by Greenberger et 

al. [96], using a beautiful thought-experiment removing the need to consider average quantities 

or counterfactual reasing.

5 These experiments, all subsequent experiments, contain loopholes, and thus strictly, one need not accept 

the nonlocal, nonrealistic nature of quantum mechanics.
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The resolution of the problem of the instantaneous information transfer is th a t no informa­

tion is transmitted}. Since the outcome of the measurements is probabilistic, this effect cannot 

be used to deterministically send information, as forbidden by the special theory of relativity. 

In a recent critique [42] of EPR, Gilles Brassard and Andre Allan M ethot state  th a t E PR  

were correct in asserting the unreasonableness of allowing instantaneous action, and claim th a t 

their mistake was claiming th a t quantum theory does not provide a description of the states 

of syterns I and II independently: only pure states were given ontic existence in their study. 

Through the density-matrix formalism, however, one can indeed partially describe the states of 

sytems I and II separately. If one takes the epistemological viewpoint that the state  of system 

II is nothing more than the density matrix describing all possible knowledge of it, one can claim 

th a t it is only when this result is communicated to the experiment a t system II th a t this system 

is updated, and this information transfer is strictly limited by the speed of light6.

Research into nonlocality continues, and there are several open problems to answer, and 

loopholes to close. Nevertheless, the general consensus amongst physicists is th a t the universe 

cannot be described by a local hidden-variable model, and that Schrodinger was correct th a t 

entanglement is “the characteristic tra it of quantum mechanics” . Despite this consensus, how­

ever, nonlocality and Bell’s theorem continue to cause conceptual difficulties, as can be seen 

in the following quote from a letter from an executive director of a Californian think-tank to 

the then US Under Secretary of Defense for Research and Engineering, informing him of the 

mind-boggling implications of nonlocal correlations [165]:

“If in fact we can control the faster-than-light nonlocal effect, it would be possible ... 

to make an untappable and unjammable command-control-communication system 

at very high bit rates for use in the submarine fleet. The important point is that 

since there is no ordinary electromagnetic signal linking the encode with the decoder 

in such a hypothetical sytem, there is nothing for the enemy to tap or jam. The 

enemy would have to have actual possession of the “black box” decoder to intercept 

the message, whose reliability would not depend on separation from the encoder nor 

on ocean or weather conditions ... ” .

2.2 Entanglement from first principles

Before proceeding to the quantification of entanglement, and its use in quantum  computation, 

it would be instructive to introduce the contemporary understanding of entanglement from first 

principles: how does it arise physically and mathematically?

6 This is similar to  the final step in the teleportation protocol [26].
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Physically, when independently-prepared systems interact, their statistical independence is 

destroyed. The systems become ‘correlated’; i.e. a measurement of a quantity on one system 

will be correlated statistically with the outcome when a (possibly different) m easurem ent is 

performed on the other system (that is, given an infinite ensemble of such pairs of systems). 

This is as much a classical concept as a physical one; the difference lies in the degree of the 

correlation. As we shall see, quantum  mechanics permits ‘stronger-than-classical’ correlations. 

So what is the root of this?

The postulates of quantum  mechanics state that the overall state of a composite system is 

the tensor product of the states of the subsystems. This is in contrast to the classical situation, 

where the overall s ta te  would be a Cartesian product. This, coupled with the existence of 

superpositions, allows the existence of nonseparable pure states (i.e. pure states th a t cannot be 

written as a direct product of other states). This can easily be demonstrated through a simple 

example: imagine a composite system of subsystems A  and B  in a pure state. Suppose their 

individual states reside in Hilbert spaces H a ,b , respectively. Then their overall state (according 

to Posulate 4) resides in a Hilbert space H a  <S*Hb - If system A is in a pure s tate  \tp) A , and 

the system B  in state \4>) B , the overall state is \ift}A \<j>) B - However, another, perfectly valid 

state is the superposition (|ip)A \<j>)B +  \<f>)A \ii>)B) / a n d  one can prove th a t it is impossible 

to find vectors |£}A and |x}# such th a t this can be written as a product state 1^)^ |x)#- This 

is termed an entangled—or nonseparable—pure state.

This notion can be tightened slightly through the Schmidt decomposition: it can be shown 

th a t all bipartite pure states can be brought to a standard form.

T heorem  7 (Schm idt d ecom position  [77, 208]). For a general bipartite state |\I') E H a <S> 

H b , where <3i\mHA,B — dA,B there exists a decomposition

d

W  =  S v /^ | e i>®l/i>.  A( > 0 V i  (2.3)
1 = 1

where d =  min(d,4 )dB). The positive coefficients A* are called Schmidt coefficients, and the 

number o f non-zero Schmidt coefficients is called the Schmidt rank.

Proof. This follows directly from the singular-valued decomposition, an im portant result in 

Unear algebra [114, 166], □

The Schmidt decomposition is an incredibly useful and powerful tool in studying many-body 

quantum mechanics, giving rise directly to a number of im portant results. It is now clear why 

the superposition (\ip) A \4>)B + \<f>) a  IV7)s)/ 'v /2 given above cannot be written as a product state: 

it has Schmidt rank d = 2. It is straightforward to see th a t all product states have Schmidt 

rank d =  1; the Schmidt rank is thus clearly an indicator of the presence of entanglement. It
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also follows directly from the decomposition th a t the entanglement properties depend only on 

the coefficients, since these are independent of local basis changes (equivalent to local unitary 

operations). Another consequence is th a t the reduced density matrices of the subsystems A  

and B  have the same eigenvalues, since the reduced density matrices are pa  = Yli=i ^  Iei) (e*l

and pB = Y,i= 1 I/i) </il-

The definition of a separable state can be made more rigorous by considering mixed, rather 

than pure, states, to allow for classical uncertainty.

D efin ition  8 (C lassically-correlated  sta tes [244]). Let p be the density m atrix of a bipar­

tite system A <8> B. If the state can be written

P = Y l Pip(iA) ®PiB)' (2-4)
i

where the positive quantities pi sum to unity, and the operators p\A'B  ̂ are valid density opera­

tors on H a ,b , then the state is said to be classically-correlated or separable. This can trivially 

be generalised to systems with more than two subsystems.

The naming of this state as ‘classically-correlated’ is justified, since the correlations in the 

state can be very easily simulated by a state created through the following classical procedure. 

Suppose Alice and Bob are in distant laboratories, with state-preparing devices. Each device 

prepares a physical systems in a particular state, dependent on some input i. Imagine now 

that elsewhere there is a random generator, which outputs the number j  with probability p j . 

This number is communicated to Alice and Bob’s machines, which then prepare the respective 

states. If one understands the density operator to describe one’s ignorance of the state as much 

as its physical reality, then one can see th a t the overall description of this state (if one does not 

know the outcome of the random number generator) is given by the probability distribution 

(2.4). It can also be seen th a t the expectation values of observable quantities and 

on the respective subsystems is given by

tr [p  X ^  <g> * < B>] = Y , P i tr |/>iA)* (A)] tr [p*B)* (B)] • (2-5)
i

The outcomes and correlations thus depend solely on the random number generator, which may 

be a purely classical device7. Note th a t this state does not have to be prepared using a classical 

device, but th a t its statistical properties may be simulated by a system th a t is purely classical. 

There is a maximally-correlated state, with the largest possible classical correlation [195]:

d

p = Y l aij  i™>(/?i- (2-6)
*.j = i

7 Even though in reality it is believed to be impossible to  build a  perfectly random  number generator classically.
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2.2.1 Separability criteria

Deciding whether a given quantum  state (represented by a density operator p) is separable or 

not is, in general, a tough mathematical problem [131, 230]. Indeed, it has been shown by 

Gurvits [100, 101] th a t the separability problem is computationally intractable (more specifi­

cally, it belongs to the complexity class NP-hard, thus making it as difficult as some of the most 

im portant problems in complexity theory8). This result at first glance might seem quite mis­

erable, but it is this intractability th a t gives entanglement some of its mystique, and provides 

the power of a quantum  computer.

Nevertheless, many im portant separability criteria have been obtained. Although I shall 

not make use of these in this thesis, I shall briefly state for completeness the Peres-Horodecki 

criterion—of param ount importance for its connection with distillability and negativity—and 

the definition of an entanglement witness.

D efin ition  9 (P eres—H orodecki criterion  [116, 179]). The partial transpose of a multi­

partite density matrix is given by taking the tranpose of only one of the subsystems. Given 

a bipartite density m atrix p of a state shared by Alice and Bob, the elements of the density 

matrix after a partial transpose has been taken with respect to Alice’s subsystem are given by

(p  A )m n,ni/ =  Pnn,mw> ' (2*7)

where Latin indices refer to Alice’s subsystem, and Greek indices to Bob’s. Separable states 

have a positive partial transpose (i.e. pTji > 0), since the partially-transposed density matrix 

must still be a valid density matrix; thus the existence of a positive partial transpose (‘P P T ’) 

is necessary for a state to be separable [179]. In some cases, it is also sufficient: this is true for 

density matrices on <C2 <8> C 2 or <D2 <8> C 3 [116].

D efin ition  10 (E ntanglem ent w itn esses [116]). A density matrix p is entangled if and 

only if there exists an Hermitian operator W  such that

tr  (W p) <  0, (2.8)

where tr  (W  ps) > 0 for any separable state ps-

2.3 Quantifying entanglem ent

As we have seen, quantum mechanics permits the existence of nonseparable states th a t violate 

local realism, and there are many criteria to decide whether a general state is separable or

8 A discussion of the different complexity classes relevant to  quantum information theory is beyond the scope  

of this thesis, but an introduction accessible to physicists is given in Nielsen and Chuang (166].
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not. However, there are in fact degrees of entanglement: some states are more entangled than  

others.

For the case of pure states, this was hinted a t by the Schmidt decomposition. Considering 

the reduced density matrix of one of the subsystems, one can see th a t Schrodinger was justified 

in claiming th a t the best possible knowledge of a system is not the sum of the knowledge of its 

parts; if an experimenter only holds part of an entangled system, he or she will have incomplete 

knowledge of the state (since the reduced density matrix of his or her subsystem will be mixed). 

If the overall sta te  is such th a t it gives rise to reduced density matrices of maximal ignorance— 

so-called maximally-mixed states, proportional to the identity operator—then these states may 

be considered as having the maximum amount of entanglement possible. These states are called 

maximally-entangled states, with all Schmidt coefficients equal to 1/d.

D efin ition  11 (M axim ally-entangled  b ipartite, pure sta tes). A state |\&) G <8> C d is

maximally-entangled if its reduced density matrices are proportional to the identity operator; 

i. e. the state may be written

1 d
w  =  i” > <2-9)

At the other extreme, separable pure states will have pure reduced density matrices. Of 

course, for mixed states the situation is considerably more complicated. Indeed, as we shall see 

below, there is no unique measure of entanglement!

Insights from  inform ation  theory

Why should physicists concern themselves with the degree to which a particular state is entan­

gled, other than pure curiosity? W ith the rise of quantum information theory and quantum  

computation, physicists should certainly be concerned with such a question; through the in­

sights of Feynman [84, 85, 86], Deutsch and others, entanglement has come to be considered 

a resource, allowing the solution of nonclassical problems. The first direct link between the 

amount of entanglement (or a t least, the entropy, which as we shall see, is often a measure 

of entanglement) and the degree to which it is useful came with Schumacher’s compression 

theorem [140, 217, 166]. This, and other results from information theory, along with uses of en­

tanglement, will be briefly discussed in Chapter 3: for now, I shall just discuss the quantification 

of entanglement.

LOCC paradigm

So how should one go about quantifying entanglement? The modern theory of entanglement 

has the starting point of entanglement manipulation: how various entanged states can inter­

converted by spatially-separated parties, particularly through a class of protocols called local 

operations and classical communications (‘LOCC’).
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This spatial separation was introduced earlier, along with classically-correlated states (2.4); 

in this case, Alice and Bob were assumed to be in spatially-separated, laboratories. This sepa­

ration is nearly always insisted upon, even though it is not strictly necessary. There are two 

reasons for doing so. Firstly, it avoids confusion with the apparent nonseparability of certain 

states of overlapping identical, indistinguishable particles. These states are often nonseparable 

by virtue of the requirement of symmetric (bosonic) or antisymmetric (fermionic) to tal wave- 

functions (Postulate 5). However, there is no way that this apparent ‘entanglement’ can be 

exploited (which is the whole aim of quantum information theory) or destroyed, since to do 

so would violate the postulate th a t the states must have ‘good’ symmetry. One can see th a t 

in this case th a t these composite states do not have a true tensor product structure (in the 

case of fermions, the wedge product is more approriate). By enforcing th a t subsystems are 

spatially-separated, we avoid such misconceptions, since spatially-separated laboratories are, 

of course, physically distinguishable. Secondly, and more pragmatically, the aims of quantum  

cryptography, information theory and computation often involve sharing entanglement over 

long distances, as a resource for communication or computation.

In systems of more than two subsystems, there are of course several ways to group the 

subsystems. It is therefore im portant to state, when quantifying entanglement, which partition 

th a t quantity is with respect t o . This gives rise to different types of entanglement when three 

or more particles are considered, a theme th a t will be explored in more detail in Section 2.4. 

For now, I shall focus on bipartite entanglement, the discussion of which will introduce most 

of the key concepts w ithout the complication of having multiple subsystems.

The requirement of spatial separation gives rise to the LOCC paradigm. In its simplest 

setting, the bipartite case, this consists of two distant laboratories, where the experimenters 

(usually named Alice and Bob) have access to part of a shared quantum system (see Figure 

2.3). On their part of their system, the experimenters can perform local quantum operations, 

described by completely-positive maps. In addition, Alice and Bob have access to a classical 

communication link. It is assumed th a t there is no ‘cost’ of communicating this way (i.e. there 

is no limit to the amount of classical information they can send). Whilst in practice, of course, 

they could not send an infinite amount of classical information, quantum information theory is 

concerned with quantifying and characterisation of the solely quantum  resource (and of course, 

classical bits cannot be used to send quantum  b its). This paradigm was originally recognised by 

Charles Bennett et al. to be the appropriate description of entanglement manipulation, since 

entanglement is nonincreasing under such operations [27, 29]. W ithin this paradigm, many 

results have been obtained, relating to entanglement manipulation of single copies of pure 

states, asymptotic state manipulation (i.e. given an infinite number of specimens of a state), 

and mixed state manipulation. Each of these will be discussed in tu rn  below.



2.3. Quantifying entanglement 34

Classical communication

C X /x/v/x/vO
Local Local
operations {A} operations {A}

Figure 2.1: Local operations and classical communications: Alice and Bob share a quantum 

state described by some density matrix p, and have access to part of the state (denoted by the 

circles). They can perform local unitary or projective operations on these parts of the system, 

and can correlate their results through classical communications.

First, let us begin with the mathematical characterisation of such operations. Recall th a t 

the most general quantum operation is a probabilistic map

AW
trA(p)

such th a t the trace does not increase, and the map is completely positive. T hat is,

(2.10)

A(p) =  I > p v ;  1. (2.11)
i

The operators {V*} are called Kraus operators, and their domain and codomain are, in general, 

different. This operation takes place with probabilty tr  A(p). If the map is trace-preserving, 

then the probability is equal to unity and Yli I, and the map A is called a quantum

channel.

Within this formalism, local operations can clearly be seen to have the form A(p) =  A^&A#; 

i.e. the operation is fully separable. W hat about classical communication? Clearly classical 

communication allows the outcomes to be classically-correlated, and analogously to a separable 

state, one can define separable operations as follows:

D efin itio n  12 (S ep a rab le  o p e ra tio n s  [193, 233]).

A(p) =  J ^ (A j ® B j) p (A \ (g> Bj).  (2.12)
i

where £ \  A \ A { ® B l B { -  I  ® I.

It was originally believed th a t LOCC operations are exactly the same as separable opera­

tions; it is now known that this is not the case. Bennett et al. gave in 1999 an example of a 

separable operation tha t requires a finite amount of quantum communcation9. Nevertheless, 

all LOCC protocols can be written as a separable operation, and such operations are useful

9The inequivalence of LOCC and separable operations follows from nonlocality without entanglem ent [28]; 

this is a mathematical quirk giving rise to the existence of global orthonormal bases that are not products of
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as a tool to study LOCC, since the m athematical characterisation of LOCC is tricky [68], and 

moreover, LOCC protocols are a strict subset of separable operations.

There is a further ingredient th a t is often considered: postselection. This means th a t some 

possible outcomes are not considered, perhaps because the measurement performed is not com­

plete (or ‘ideal’ in the language of Asher Peres [178]), or we discard some knowledge of the 

system. This gives rise to a stochastic separable operation.

D efin ition  13 (S tochastic  separable operations [233, 193]).

A( ) =  (2.13)
t r Y . i (A i® B i) p ( A \ ® B \ y

where now Yli Ai ® B }B i <  I(g> I.

A special example of such an operation is the so-called local-filtering operation, which plays 

an im portant part in entanglement distillation [25, 93, 119], but which will not be discussed 

here. Analogously to LOCC, one can consider stochastic LOCC  (‘SLOCC’), where one performs 

LOCC with a certain probability.

2.3.1 Exact pure state manipulation

The question as to what degree a single pure state may be manipulated was originally considered 

by Lo and Popescu [159], who studied various optimal strategies for the inter-conversion of 

entangled states by local operations. Prior to that, all results pertained to the asymptotic 

limit, which will be discussed subsequently in this Chapter.

It was subsequently shown by Michael Nielsen [167] that the possibility of deterministically 

transforming one state to another is related to the Schmidt coefficients of those two states. A 

state \,ip) may be converted to a state \<f>) if and only if the nonincreasingly-ordered Schmidt 

coefficients {A ^^} majorise [30] the coefficients ( A ^ ^ }; this means that for all k  € [l,d] the 

following inequality holds:

(2.14)
j  = 1 j= 1

This statem ent means th a t the vector A ^^  majorises the vector A ^ ^ , and may alternatively 

be denoted A ^ ^  -< A ^ ^ . This result may be interpreted as stating th a t one state  can be 

converted into another if and only if the subsystems of the initial state are more mixed than 

those of the desired target state; i.e. the first state is more entangled. This gives an intuitive

two local orthonormal bases— states described by such vectors cannot be distinguished by spatially-separated  

experimenters through LOCC! It is worth noting in passing that there is much evidence that nonlocality and 

entanglement are very different resources; indeed, there are states that no do not violate any Bell inequality, 

but may still be used for teleportation [188].
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understanding of what is meant by one state  being more entanged than another: here, a more

entangled state is more ‘powerful’ in the sense th a t it may converted to a larger number of 

states than a less entangled state. Indeed, the maximally-entanged state (2.9) (with maximally-

im portant consequence of the inequality (2.14) is th a t LOCC transformations are, in general, 

irreversible, since the process can only be reversed if and only if the Schmidt coefficients of the 

two states are equal (although, this irreversibility may be lifted in the asymptotic limit).

This result was then generalised to a strategy for converting arbitrary bipartite states by 

Guifre Vidal [240], who showed th a t the optimal probability of conversion is given by

the quantities {£*} are a set of entanglement monotones [239], which will be discussed below, 

and in some sense may be considered a complete set of entanglement measures for bipartite, 

pure states. Further results in this direction were obtained by Jonathan and Plenio [138], 

including the surprising result of entanglement catalysis. This is the result th a t there are some 

transformations |t/>) —*■ \4>) which are impossible, but with the help of an extra state |£), the 

transformation \ip) <S> |£) —> \4>) <8> |£) is possible! The state |£) plays a role reminiscent of that 

of a catalyst in chemical reactions.

2.3.2 Asymptotic state manipulation; operational measures

Of course, in realistic, physical situations {i.e. in the laboratory) one usually comes across mixed 

states. Entanglement in this setting may be considered ‘noisy’. A question then naturally aris­

ing is whether this may be converted into a form of entanglement that we already understand, 

or is more useful. In 1996, Bennett et al. showed [25] th a t indeed it is possible to  distill pure 

entanglement from noisy states in the asymptotic limit. At roughly the same time, Peter Shor 

and Andrew Steane developed quantum error-correction, with the aim of protecting quantum  

information from decoherence (which has the effect of making pure states into mixed states) 

[221, 225]; this was subsequently shown to be intimately related with distillation [29].

Can noisy entanglement always be distilled? In 1997, the Horodecki family showed [119] 

that all two-qubit states are distillable; however, in 1998, the same authors went on to  prove 

the existence of entangled states th a t cannot be distilled [117]. Thus there are two types of 

entanglement: that which can be distilled, and th a t which cannot. The latter type is called 

bound entanglement, and gives rise to many questions relating to the fundamental nature of

10Majorisation may be further linked with entanglement; if a state is separable, then the density m atrix of 

its subsystems must majorise that of the total state (i.e . A(p) X \ ( p a ) and A(p) X X (p s)) ,  giving rise to  the  

statement ‘separable states are more disordered globally than locally’ [168],

mixed subsystems) may be converted to any bipartite state, justifying its nam e10. One greatly-

mm
d

where (2.15)
j= k
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entanglement11. I shall mention here only one, which is whether bound entanglement is useful 

in the same sense of normal entangled states (as we shall see in the next Chapter), or whether 

it is just a curiosity; in fact, as shown by Lluis Masanes in 2005 [162, 163], all entangled states 

are useful for something. Thus, as suggested by the Horodecki family [122], instead of defining 

entangled states as nonseparable (Werner’s original definition [244]), one could define them  as 

those states th a t can perform some nonclassical task.

D efin ition  14 (D istillab le en tan glem ent, E d ) .  Consider a sequence of LOCC operations12 

{An} acting on n  input pairs in a collective state p®n , each in a space H  =  H a ®  K b , th a t map 

these states onto a state A (p®n ) G (<C2)®m <S> (<C2)®m. We denote the set of operations V  and 

call it a protocol; if the final state approaches m copies of the EPR  singlet | ^ _ ), i.e. the fidelity

F  , A(p®n)) := ^ - ® m |A(p^n) |^ - ® m^ -> 1 (2.16)

in the limit n  —* oo then we call V  a distillation protocol. The distillable entanglement is defined 

as the supremum over all such protocols of the rate of singlets distillable in the asymptotic 

(n —► oo) limit:

771
E d (p ) — sup D-p where D p  := lim — . (217)-p n—>oo n

Qualitatively speaking, one may consider this quantity to measure the number of EPR  singlets 

convertible from a given state per copy of th a t state, in the limit of an infinite number of copies;

D efin ition  15 (E ntanglem ent cost, E c ). In the reverse situation, one may consider the 

amount of entanglement required (in terms of EPR  singlets) to make an artibrary state. One 

starts from m  copies of the EPR  singlet I’i ' - ), and attem pts to make n  copies of a s tate  p. If 

the output of the process is the state  A ( |^ _ )®m), one requires the similarity of this sta te  with 

p, measured again by the fidelity13 F(A (|'If~)®m), p®n ) tends to unity in the n  —► oo limit. The 

cost is defined thus:

771
Ec{p) = su p Cp  where Cp(p) := lim — . (2.18)

p  n—>oo n

The entanglement cost of a state may be considered the number of quantum bits an exper­

imenter Alice needs to send to Bob in order for him to make a copy of th a t s tate  [166] (in 

addition to LOCC). It is not known whether it is equal to the entanglement o f formation, E p , 

(an axiomatic measure, introduced below) for mixed states, although Ep — E c  for pure states.

11 The reader is referred to the review by the Horodecki family [122] and references therein.
12One could similarly restrict attention to  P PT  operations, and obtain the PPT -distillable entanglem ent 

[196, 197]
13In fact, in the case of both E c  and E p  one may equivalently use either the trace-norm, the Uhlm ann fidelity 

or the Bures norm [194].
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Transform ation o f  general sta tes

The notions of entanglement distillation and cost may be generalised to general asym ptotic 

state transformations via LOCC. If Alice and Bob want to convert n  copies of a s tate  p to m 

copies of a state  a, and F(A(p®n ), or®™) —» 1 as n  —* oo (where A(p®n) is the output state  

of their protocol), then the largest possible asymptotic ratio m /n  is the ra te  of conversion, 

denoted R{p —* a); i.e.

171
R(p  —> a) := sup lim — . (219)

■p n —»oo Tl

One can then see th a t Equations (2.17) and (2.18) are special cases: E o (p ) = R (p  —► ( ^ 1 )

and E c  = 1 /R (\* ~ )  (^ ~ | -► p)

R eversib ility  and bound entanglem ent

The procedures of distilling entanglement from noise, and making a general state from maximally- 

entanged states are defined in a mutually-dual way; but are they really two facets of the same 

phenomenon? For pure bipartite states, the processes are reversible, and E c  =  E d - This 

reversibility is reminiscent of C arnot cycles in thermodynamics [83, 189], which seems all the 

more compelling when one recasts quantum  mechanics in terms of accessible information, and 

the power to perform some nonclassical task.

Alas, these processes in general are not reversible, and the thermodynamical analogy is not 

quite rigorous. This is due to the existence of bound states, as mentioned above. These states 

require entanglement for their creation, but no entanglement can subsequently be distilled. 

There is a fundamental irreversibility here, the most profound consequence being the absence 

of a unique measure of entanglement [120, 251]. W ithin the thermodynamical analogy, bound 

entangled states can be considered as heat baths [229]: energy is needed to create the bath, 

but no work can be extracted from it.

Nevertheless, in the bipartite pure state (due to the non-existence of bound states), the 

processes are reversible. Thus one might expect th a t E c  = E d , and the amount of entanglement 

is characterised by a single number. Indeed, this is true [189]. Using the thermodynamical 

analogy and considering the extractable mechanical work, it can be shown th a t for a bipartite 

state both quantities are equal to the von Neumann entropy of one of either of the subsystems.

D efin ition  16 (von N eum an n  entropy). The von Neumann entropy of a sta te  p of a d-level 

system is defined

d
S(p) =  - t r p lo g p  =  - ^ A i l o g A i ,  (2.20)

i— 1

(where {A*} are the eigenvalues of p), analogously to the Shannon entropy of a classical prob­

ability distribution X , H ( X ) =  — Pi log p*. Throughout this thesis logarithms are taken to
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the base 2, which have an interpellation in terms of the number of bits or qubits th a t may be 

transm itted using classical or quantum  channels.

The Schmidt decomposition (2.3) ensures th a t the entropy of either subsystem in a bipartite 

state 4s equal (since the density matrix eigenvalues of each part are equal). This gives rise to 

the definition of the ebit as a fundamental unit of bipartite entanglement: a subsystem of 

maximally-entangled qubit state has von Neuman entropy equal to unity, and thus these state  

may be considered a ‘un it’ (or even ‘building block’) of entanglement: a state w ith a von 

Neumann entropy S(p) would require S(p) singlets to be shared between Alice and Bob for its 

construction via asymptotic LOCC. Note that the irreversibilty in the regime of single copies 

implied by the majorisation criterion (2.14) is lifted when one has an infinite number of copies 

of states. More generally, a maximally-entangled state of dimension d has entropy logd.

2.3.3 Axiomatic measures

Since there is no unique measure of entanglement, how should physicists proceed? So far, two 

of the entanglement measures introduced have ‘operational meanings’; th a t is, they quantify 

the possibility of performing some specific task. One could invent a whole class of measures 

relating to such tasks. But is it possible to define generic measures?

One direction would be to consider what constraints such measures would satisfy, were they 

to exist. This approach was first used by Vlatko Vedral et al. [233, 234], who put forward a class 

of distance-based measures, and subsequently by Vidal [239], who proposed the idea th a t the 

only criterion required was monotonicity. In fact, all other reasonable criteria can be shown to 

follow directly from this. The definition given is quite general, and works for both bipartite and

m ultipartite systems, although for most of the discussion below I shall focus on the bipartite

case.

D efin ition  17 (E ntanglem ent m onotone [239]). An entanglement monotone is any scalar 

p(p) th a t does not increase on average under local quantum operations.

K H p)) < P(p)- (2.21)

This is directly equivalent to two conditions. Firstly, the entanglement monotone cannot in­

crease by local quantum  operations (or deterministically in the case of stochastic local quantum  

operations); i.e.

p{p) > ^ 2 p k p (p k ) ,  (2.22)
k

where pk =  treifc(p) and pk = Uk{p)/Pk for some operation performed on the ith  party 

Secondly, the entanglement shared between Alice and Bob cannot be increased by discarding
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(or ‘forgetting’) knowledge obtained about the system:

9 k p { p k )  >  P  Q k p k j  , (2.23)

where { q k , P k }  is some ensemble of state such that p  =  J2k QkPk-

Together, these conditions imply th a t separable states have a constant value of p ,  since 

all separable states are interconvertible by LOCC. This value must clearly be the minimal 

value, and can be taken to be zero, since we are only interested in differences in entanglement 

between states. Also note th a t the nonincreasing value of the monotone refers to the average; 

there may be operations th a t probabilitically increase entanglement14, but these cannot be used 

to increase entanglement determinisitically.

Since any separable operation15 may be written as a combination of local unitary operations, 

local von Neumann measurements, and the addition and dismissal of ancilliary particles, the 

condition (2.23) may be seen to be equivalent to the following more intuitive criteria: p  must 

be

(i) invariant under separable unitaries U

M  =  p(V pU ly, (2.24)

(ii) nonincreasing under local von Neumann measurements with outcomes { p k , P k }

p(p) > ^T p kp (p k );  (2.25)
k

(iii) invariant under the addition of ancilliary particles Q

p { p )  =  P i p ®  P q ) \  (2.26)

(iv) nonincreasing under the dismissal of part Q of the system

p(p) > p ( tr Qp). (2.27)

O ptim al local conversion  rates

The above list of criteria allows us to see that the conversion probability (2.15) of two bipartite, 

pure states as a special case of condition (2.22). Indeed, suppose Alice and Bob started  with

the state p , and wished to make the state p', using a LOCC strategy with outcomes {pfc} with

probabilities {p*;}. One of the possible outcomes is the desired state: p\ := p'. Clearly

p(p) > $ 2 pkP(Pk) ^  PiM pi); (2.28)

14This is called ‘gambling with entanglem ent’ [40].
15Bear in mind that physically we are interested in LOCC, rather than separable, operations, but it has 

already been noted that for m ost purposes the study of separable operations suffices to give som e insight into  

the problem; also, in this case, if a measure is a monotone for separable operations, it will be a m onotone for 

LOCC.
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from which it immediately follows th a t the probability of success p(p  —> p') is given by

(229)
Therefore the maximal probablity of success for general strategies is given by

P(P -+ p ') =  ^  7-K> (2-30)/* p{p')

for some choice of monotone p. The choice of monotone that saturates the inequality (2.30) gives 

the optimal strategy. Conversely, the inequality indicates th a t there is at least one monotone 

th a t is conserved during any optimal strategy.

The study of monotones suggest th a t in in the nonasymptotic, exact regime of single spec­

imens, one needs an entire family of measures to fully describe the power of the entanglement 

present in a state. Since we have previously considered entropic measures, the set of o-entropies 

might be a candidate for such a family. These quantities are a set of measures of uncertainty 

used in differing circumstances, of which the von Neumann entropy (2.20) is a special case. They 

are defined S a (p) =  log tr  pa/ ( l  — a), and are sometimes referred to as Renyi entropies [203], 

However, by considering the interconversion of several copies of states (although still a finite 

number of them), one can show th a t the entropy does not suffice to describe the entanglement 

properties of a state.

One attractive property of the a-entropies S a is additivity. This is the property th a t for 

some state  p, S a (p®n) — n S a (p). Therefore, using this choice of monotone, the inequality 

(2.29) reads

-  Sg(p&n) S a (fi)
V{P P) ~  Snip'®") Sa{p'Y ( ' )

Therefore, the expectation value of the number N '  of copies of the target state  successfully 

made by the protocol {N') := Y In ' p (p “ * P ') ^ '  can 86611 t°  be upper-bounded by the ratio 

of the entropies:

m < M ±  (232)
N  - S a ip' ) ’ { ' J

where the initial number of copies is N . This has the startling implication th a t in general, the 

rate of conversion N '/N  of N  copies of p to N ' copies of p' is not given by the ratio of their 

von Neumann entropies for finite N  and N ',  as is the case for the asymptotic regime [25, 189] 

(as we saw in Section 2.3.2).

Entanglem ent m onotones: a sym p totic  versus exact regim es

So what about the asymptotic limit? This regime is im portant, as it is the natura l description 

for both quantum channel capacities [25] and the ‘thermodynamics’ of entanglement [189]. 

How does one reconcile the existence of a multitude of measures in the finite regime with the
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unique (in the bipartite case, a t least) measure—the entropy—in the asym ptotic regime? This

apparent problem is resolved by the addition of further requirements in the asym ptotic regime:

those of partial additivity and continuity.

D efin ition  18 (A sym ptotic  en tanglem ent m easure [68, 118]). In addition to the re­

quirements to be an entanglement monotone, a good asymptotic entanglement measure must 

satisfy:

(i) partial additivity:

E(p®’') = nE(j>y, (2.33)

(ii) continuity: iflimn_.cc (V'®n |pnlV’®n) =  1, then

i|£(V-® n) - £ ( P n ) | ^ 0 ,  (2.34)
n

where pn is a joint state of n  pairs.

Partial additivity means th a t if Alice and Bob share a stationary, memoryless source, pro­

ducing pairs of states p, then the to tal entanglement grows linearly with the number n  of 

pairs produced. Plenio and Vedral [183] originally considered full additivity as an essential 

requirement: i.e. E(p<g>cr) =  E(p) +  E (a). However, the existence of bound entanglement gives 

indications th a t the entanglement of distillation is not fully additive [121], so according to the 

Horodeckis’ rule th a t ‘entanglement of distillation is a good measure’ (i.e. any postulate not 

satisfied by E d should be rejected [118]), this additivity need not be imposed (in fact, a lot of 

measures are subadditive: E (p  <8> a ) <  E(p) +  E(tt)).

Asymptotic continuity was considered as a requirement by Vidal [239], who considered the 

behaviour of the family of a-entropies in the asymptotic regime, and showed th a t the von 

Neumann entropy occupies a privileged position, in agreement with Popescu and Rohrlich’s 

result for pure states [189]. The continuity requirement allows for a completed uniqueness 

theorem, stating that for pure states, any measure of entanglement satisfying all the axioms 

listed above must be equal to the entanglement of formation Ep.

The Horodecki family subsequently showed th a t for mixed states, any measure of entangle­

ment satisfying all these axioms lies between the entanglements of distillation and formation 

[118] (i.e. E d <  E  < Ep)- These results were further sharpened by Donald et al. [68].

Exam ple o f  ax iom atic m easures

There are a whole host of axiomatic measures in the literature, constructed to give the desired 

properties. An exhaustive list and discussion of such measures is well beyond the scope of this 

thesis, but for reference I shall list a few well-known examples. For a more comprehensive list, 

the reader is advised to consult the review by the Horodecki family [122].



2.4. Multipartite entanglement 43

Distance-based measures—This class of measures assumes th a t the closer (according to some 

measure of ‘distance’) a state  is to the set of fully separable states, the less entanglement it 

contains. Thus

E D{p)=  inf D {p,a) (2.35)
<t£S

for some distance measure16 and the set of separable states S . An im portant example is

the relative entropy of entanglement [233]: S(p\a) =  tr  p(logp—logo-), which plays an im portant 

role in quantum information theory [166].

Convex roof measures—Starting from a good measure for pure states E, one can extend it to a 

mixed state p =  Pi IV̂ ) (V’t I through the following:

E{p) = m iY ,P iE {\i> i)), (2-36)
i

where the infimum is taken over all ensembles th a t reconstruct the state p. All such measures 

are monotonic [239]. The most im portant measure built in this way is the entanglement of

formation E p, where the measure used for pure states is the von Neumann entropy of the

reduced density matrix of \^i).

Logarithmic negativity—Given a bipartite state p, one can calculate the partial transpose, and 

sum its negative eigenvalues, A*. This gives the negativity, A f =  ^ A.<0 A* [243, 255]. This can 

be used to form the logarithmic negativity:

Af +  1E *  = log— — , (2.37)

which is monotonic, and an upper-bound to the entanglement of distillation.

2.4 M ultipartite entanglem ent

Entanglement in systems of many parties exhibits a vastly richer structure, due in large part to 

the increasing number of param eters required to describe a state fully. The notion of tripartite  

entanglement was first discussed in the case of N  — 3 qubits by Coffman et al. [61]. It was 

noticed th a t if two parties are entangled, the degree to which either of them can be entangled 

to a third party is limited. Specifically, if parties A, B  and C  are entangled, the following holds:

E a \b  +  E A\C < E A\(b c ) (2.38)

where E ^j is the entanglement between i, j ,  as measured by the concurrence-squared. The 

difference between the two sides of the inequality gives a quantity th a t cannot be accounted for

16 Although this need not be a metric in the standard sense.
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for n < N ,  then the system may be said to be n-separable; i.e. the parts oi 

be separated by large distances, and there will be no entanglement between 

the state may be said to be fully separable. One may also consider what s< 

be required to make a larger entangled state. If in this case each of the |tpi 

more than k systems (n > N/ k ) ,  then the state is ‘k-producible’. If a state 

by (k  — l)-party  entangled states, the state is said to be genuinely fc-partite < 

The simplest example of m ultipartite entanglement is the tripartite, qi 

shown by Diir et al. [70] tha t in this case there are two inequivalent types 

not producible from bipartite entanglement (i.e. the right-hand side of the ir 

nonzero). These states are the Greenberger-Horne-Zeilinger state

|GHZ> =  - ^ ( |0 ,0 ,0 )  +  |1 ,1 ,1» ;

and the VF-state

\W) = -J=(|0,0,1) +  10,1,0) +  |1 ,0 ,0» .

The inequivalence here refers to the fact that these states may not be intercon 

This was shown by considering the number of parameters required to describ< 

the number of parameters tha t can by changed by LOCC.

The inequality (2.38) may be generalised to more than three parties, givin 

degrees of residual entanglement [1]. For more than three parties, there is i 

number of inequivalent types of entanglement [70].

2.5 Further reading

The study of nonlocality in physics, and its connection to the interpretation 

chanics, continues to provoke argument, and the interested reader is directe 

Bub [45], Dickson [66], d ’Espagnat [64], and Grib and Rodrigues [98] for a] 

many of the philosophical issues in this area. The more general quantum me
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by Peres also contains an insightful, thorough discussion [178]. The recent volume of Bell’s 

papers on the subject (including th a t which introduces what we now call B ell’s theorem) is also 

illuminating [22].

The study of the quantification of entanglement has also blossomed in recent years (driven 

by the application to quantum  information theory), and there are still many open problems 

regarding its characterisation. Particularly clear review articles include those by Brufi [44], 

the Horodecki family [115, 122], and Plenio and Virmani [187]. The usual texts on quantum  

information also include good introductions [166, 191], particularly to ‘operational measures’. 

The thesis by Christandl [54] also includes a thorough description of the various measures of 

entanglement, their relationships, and applications to information theory.



Chapter ----------------------------------------

Quantum information theory

In this Chapter, I  shall briefly introduce some of the main concepts in the newly developed fields 

of quantum information theory and quantum computation. These fields provide the motivation 

for the study of entanglement (aside from its fundamental interest), and give rise to the concept 

of entanglement as a physical resource.

3.1 Simulation of physical systems; the quantum  com­

puter

As we have seen in the preceeding two Chapters, quantum mechanics provides a qualitatively 

different description of the physical world to classical mechanics. However, could one (in prin­

ciple) simulate a quantum system through purely classical means? T hat is, could one build a 

computer operating on classical principles, that could efficiently simulate the quantum  world? 

The answer is believed to be no (although this remains an unsettled m atter). W hilst small 

quantum systems (systems of a handful of particles) can be simulated (inefficiently) on classi­

cal computers, the number of parameters required to decribe such a state grows exponentially 

with the number of particles. In fact, with each additional qubit added to a system in a pure 

state, the number of possible states doubles, rendering efficient classical simulation infeasible.

Indeed, there are some problems th a t are not just infeasible to solve using a classical com­

puter, but impossible1. The notion of what may or may not be computed was made rigorous 

by Alonzo Church and Alan Turing, two pioneers of computer science. Turing proposed an 

abstract computer called a Turing machine; the set of problems this machine can solve is ex­

actly the same as the set of problems one can solve through an algorithm. Moreover, there

1 Following the work of Kurt Godel and others, we know that the answer to  H ilbert’s Entscheidungsproblem —  

whether there is an algorithm to  solve any problem— is ‘no’.

46
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is a universal Turing machine th a t can efficiently simulate any other Turing machine. In this 

context, ‘efficiently’ means th a t the problem is solved in a time th a t scales only polynomially 

in the length of the problem. This gives rise to the strong Church-Turing thesis: a universal 

Turing machine can efficiently simulate any algorithm. This thesis is now further strengthed 

to allow for a probabilistic Turing machine.

In 1985 David Deutsch attem pted to discover whether or not there were systems of compu­

tation th a t could not be simulated by a Turing machine. And, since the universe is quantum, 

his starting point was quantum mechanics, and the simulability of physical systems. In the 

process of doing this, he introduced the universal quantum  Turing machine2. It remains an 

open question as to whether such a device can simulate arbitrary physical systems, but its 

theoretical existence proved th a t computers built on quantum principles are in principle more 

powerful than standard, classical computers.

Following Deutsch’s work, a handful of quantum algorithms have been discovered. These 

fall into two classes: those based on the quantum Fourier transform (such as Peter Shor’s fa­

mous algorithm for finding prime factors, and algorithms for breaking RSA cryptography), and 

those based on Lov Grover’s search algorithm; these offer exponential and quadratic reduc­

tion, respectively, in computational resources. The complexity class of problems solvable on a 

quantum computer remains to be seen.

3.2 Entanglement as a resource

W hat differentiates quantum and classical computers? While there are many unanswered issues 

surrounding this question, it is generally agreed that entanglement is the essential ingredient. 

Perhaps this is not surprising in light of Schrodinger’s assertion: “I would not call th a t one but 

rather the characteristic tra it of quantum mechanics” [212]. In the standard picture of quantum  

computers, the circuit model, the computer is initialised in a particular state, and a standard 

set of operations is performed on this state: single particle unitary operations, together with the 

controlled NOT operation (in the computational basis ( |0 ) , |1)} this is |0) (0| <8>I+ |1) (1| <8><xx ). 

Together, these suffice to perform any computation. In such a model, the entanglement is 

effectively inserted into the system through the controlled NOT operations.

A completely different, but essentially equivalent, model of computation has been developed 

much more recently : measurement-based quantum  computation [198,199, 200]. In such a model, 

a highly-entangled state (a cluster state [43]) is initially prepared, and the computation proceeds 

through measurements on individual qubits in various measurement bases. In this model, the 

role of entanglement is much clearer than in the circuit model, since one sta rts  with a highly

2 Quantum Turing machines were independently proposed by Benioff [23].
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entangled state, and entanglement is ‘consumed’ during the computation.

3.3 Information theory

In parallel to developments in computer science, the twentieth century also saw considerable 

work on information theory, the theory of communication. This began in earnest in 1948 when 

Claude Shannon mathematically defined the notion of ‘information’ [220]. The concept of 

entropy initially arose in the fields of statistical mechanics and thermodynamics, but Shannon 

considered questions from the viewpoint of information theory: how much knowledge does one 

possess of an information source?

D efin ition  19 (Shannon entropy [220]). The Shannon entropy of a random variable X  

producing a value Xi with probability pi is

=  logpi. (3.1)
i

The interpretation of this quantity is two-fold: on the one hand, one may consider it to 

be the ‘am ount’ of information one gains, on average, by measuring the value of the variable 

X ; on the other, one may regard it as the uncertainty of one’s knowledge of the value of X  

before a measurement is taken. Building on the first interpretation is Shannon’s noiseless coding 

theorem, which states th a t the number of ‘bits’ (binary digits) required to store the value of 

the variable X  is given, on average, by H (X ).  This can be extended to strings of variables, 

giving rise to Shannon’s noiseless channel coding theorem. Analogously, a theorem for noisy 

(lossy) channels also exists, and Shannon showed that the probability of error in transm itting 

information through such channels can be limited by error-correcting codes.

In 1995, Ben Schumacher proved Schumacher’s noiseless channel coding theorem [217], 

which quantifies the amount of classical information th a t can be sent through a quantum  

channel (or equivalently, the resources required to store or send a given piece of information), 

and in 1996, Schumacher’s noisy channel coding theorem [216], the analogous case for noisy 

channels3. These theorems give rise to the notion of a ‘qubit’ as the quantum  counterpart of 

the ‘b it’.

Shannon’s work was built upon by Edwin Jaynes in 1957 [134, 135], who recast statistical 

mechanics from an information theoretic point of view. His main result (now known as Jaynes’s 

principle, or the principle of maximum entropy) was th a t the physical sta te  of a statistical 

ensemble is that which maximises the entropy. The work of Shannon and Jaynes paved the

3 No such theorem is yet known for quantum information through noisy quantum channels, although quantum  

error correcting codes have been developed.
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way for the modern way of describing the physical world in term s of what one knows of it, and 

what can be inferred of it.

3.4 Quantum information theory

As we have seen, two strands of thought emerged in the twentieth century unifying computer 

science and physics: th a t computation is essentially a physical process, and one should quantify 

the physical resources required to solve mathematical problems (‘information is physical’4); 

and th a t physics can be considered to be a theory of our knowledge of the universe (‘physics 

is informational’ [139]). Underlying both of these ideas is the notion of entanglement, the 

fundamental departure of quantum mechanics from the classical world. It is the aim of quantum  

information theory to rigorously understand and quantify entanglement, much as the aim of 

thermodynamics in the nineteenth century was to understand energy; and it is the aim of 

quantum computation to harness it as a resource.

Much research effort is also being directed into quantifying the entanglement th a t exists 

naturally, and can be controlled, in naturally occuring physical systems, or those studied in 

condensed m atter physics. The aim here is to see which physical systems can be exploited for 

quantum computation, and to see whether knowledge of entanglement increase one’s knowledge 

of the physics of such situations. The research in this thesis is in 'this direction.

3.5 Further reading

The idea th a t computers operating according to quantum rules might simulate physical systems 

more efficiently than classical computers was developed independently by Manin and Feynman 

[84, 85, 86],

An excellent introduction to the ideas of the quantum  Turing machine, complexity classes 

of problems, the circuit model, and the modern quantum  algorithms is given in the textbook 

by Nielsen and Chuang [166], and the lecture notes by Preskill [191]. Deutsch’s book [65] also 

contains a discussion of quantum computers. A basic introduction to computer science is the 

textbook by Goldschlager and Lister [94].

Further work on the link between physics and information theory was undertaken by Bennett 

[24], Landauer [155] and Szilard [228].

4This phrase was coined by Rolf Landauer.
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Extraction of entanglement 

through dynamics
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For entanglement to be useful as a resource, it needs to be shared between laboratories separated 

by large distances. In this Chapter, I  shall propose a scheme to extract entanglement through the 

natural dynamics of a system of coupled three-level quantum systems. The interactions between nearest- 

neighbours creates entanglement, which then propogates through the system, and is extracted through 

local measurements.

This Chapter is based on the work in Reference [104]■



Chapter

Creation and distribution of 

entanglement

In this Chapter, I  shall propose a scheme that performs entanglement generation and distri­

bution, both essential for distributed quantum computation. This system used is a graph of 

three-level spin systems, coupled through a permutation Hamiltonian.

4.1 Introduction

In any potential realisation of a quantum computer, or a system th a t performs some quantum  

information theoretic task, the establishment of entanglement between spatially separated sys­

tems is vitally important. To date, a great deal of research has been undertaken into performing 

these the creation and distribution of entanglement separately; i. e. entangling some quantum  

systems through some process, and then distributing those systems through some other process.

The latter aspect of this has been studied extensively in the context of state transfer. This is 

the process of moving a quantum state from one spatial location to another, w ithout disturbing 

or observing it: quantum states by their very nature are fragile, and hence difficult to move 

without inadvertently performing a measurement. The state cannot even be observed and 

re-created at a distant location, since this would only be possible with an infinite number of 

identically-prepared systems. Such state transfer protocols usually s ta rt by initialising a spin 

chain in a particular state (not an eigenstate of the Hamiltonian), and then placing an additional 

spin a t one extreme of the chain in the desired state to be transferred. At a certain time t  — 0, 

the Hamiltonian is ‘switched on’, including a coupling between the additional spin and the end 

spin of the chain. After some time has elapsed, the state will have arrived a t the spin a t the 

end chain with some probability.
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Imperfect state  transfer in homogeneous {i.e. all nearest-neighbour couplings) has been stud­

ied by Sougato Bose [38] and V. Subrahmanyam [226], and it has also been shown by Daniel 

Burgarth et al. tha t pair of such chains permit perfect state transfer, given sufficient time 

[46, 47, 48]. Other schemes for perfect state transfer have been proposed, relying on engineered 

couplings [55, 56, 145, 169, 252], state inversion [7], graph state generation [59], m ultiqubit 

encoding [108, 171], and spin ladders [156].

Imperfect state transfer has also been studied for other systems: chains of harmonic os­

cillators [186], imperfect artificial spin networks [176], spin rings with flux [39] many-particle 

states [157], quantum dot arrays [63, 169], Josephson junction arrays [204], photons in cavity 

QED [57] and flying atoms [31]. Related studies have also been undertaken on the dynamical 

propagation of entangled states [11], the ‘superballistic’ distribution of entanglement [87] and 

the realisation of quantum memories [92, 222].

A natural corollary of state transfer is entanglement transfer. By transferring one half of 

an entangled state through such a procedure, entanglement can be established over long dis­

tances. However, such schemes say nothing about how the entanglement might be created. 

The ability to create and distribute entanglement within the same protocol would be a useful 

development. Such schemes have indeed been proposed for chains of harmonic oscillators (sys­

tems with continuous degrees of freedom at each lattice site) [76,175, 177, 185]. In the context 

of discrete variable systems (i.e. spin chains), it is straightforward to see th a t if a single spin 

in a homogeneous chain of spin-1/2 systems is ‘flipped’ (i.e. its state is inverted), any other 

two spins in the sytem will be very slightly entangled a t some subsequent time. However, 

this, in general, will be mixed-state entanglement, and far from maximal. Ideally, one would 

like to establish maximally-entangled states, enabling greater communication or com putational 

capacity. In principle, this could be achieved by entanglement distillation [25], although this 

would only work perfectly in the asymptotic limit. Another possiblity, also difficult, would be 

to use chains with engineered couplings; th a t is, nearest-neighbour couplings artificially chosen 

to give perfect state transfer and hence perfect entanglement transfer [253]. However, these 

chains would be harder to produce than those with uniform couplings. So, a naturally arising 

question, then, is the following: is it possible to create a Bell state between spatially separated 

parties using chains of quantum systems with homogeneous couplings?

4.2 SU(3) perm utation Hamiltonian

In this Chapter, I shall consider a spin graph-based scheme th a t performs both the conclusive 

creation and distribution of entanglement, avoiding the difficulties of interfacing systems per­

forming these tasks separately. I shall propose a protocol, the result of which shall be th a t two
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distant parties, Alice and Bob, share a maximally-entangled Bell state

^  [ I  +  1 ) a  I - 1 ) b  +  I ~ 1) a  I + 1) b ]  » (4.1)

which may then subsequently be used for some quantum information theoretic task. I shall

only consider maximally-entangled states, in order to avoid the requirement of distillation and 

purificiation.

Most protocols studied in the general area of state or entanglement transfer s ta rt with the 

Heisenberg model, given by the Hamiltonian

When the identity operator is added to Equation (4.2), this Hamiltonian becomes the permuta­

tion Hamiltonian. T hat is, each term  is a permutation operator Piji which exchanges the qubit 

states a t lattice sites i and j  '• Pij |,0 )j  \4>)j  =  14>)i \%l))j -  This Hamiltonian will be discussed in 

more detail in Chapter 9.

However, in this Chapter, I shall consider a graph of qutrits (three-level quantum  objects, 

with states labelled {—1,0, +1} coupled by SU(3) permutation operators. This is a generalisa­

tion of the Heisenberg Hamiltonian (4.2). I shall consider two graphs—a cross and loop—for 

comparison. Let each vertex of the graph be labelled by an index n  £ [1, TV], and let {Sp(n )}  

be the generators of the group SU(3) a t the n th  qutrit satisfying the algebra [148]

(4.2)
(iJ )

where the s* =  (s f ,s? ,s? )  is the quantum spin satisfying

i s2 =  s(s + 1). (4.3)

[s£(m),S'(n)] = C  { ^ ( n )  -  S ^ S ^ n ) }  . (4.4)

The indices a, {3 refer to the states, and Sp(n) swaps the states labelled by a  and (3 a t vertex 

n. The Hamiltonian is thus [148, 201, 227]

H  = J  Y ,  Pr (4.5)
(m,n)

where the operator

(4.6)

permutes the states a t vertices m and n  and the sum is taken over all neigbouring vertices1 

m, n  and all states a, (3. An im portant point to note is th a t the generators may be given either

1 The sign of J  is unimportant, as this only sets the energetic ordering of the states— the initial state here is 

not an eigenstate of the Hamiltonian, and thus dynamics is the important issue.
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bosonic [13] or fermionic [148] representations in terms of creation and annihilation operators 

according to S ^ (n ) = (n)c£(n). The physics is representation independent, giving rise to a

variety of potential physical implementations: implementations of the perm utation Hamiltonian 

will be considered in P art V.

The state of the whole system may be described in terms of basis vectors |V>) =  IV’i) ®

. . .  (8> \iPn ), residing in a H ilbert space of dimension 3N , where \ij)n) is the state a t the n th  site. 

However, since the Hamiltonian merely permutes states, the numbers of +1 and — 1 excitations 

are individually conserved; thus one may describe the state in terms of a smaller basis. I shall 

here consider the case where there is always one qutrit in either of the states ±1, and thus for 

convenience use the compact basis {|i, j ) } ^ j =1, where i , j  are respectively the indices of the 

lattice sites where the states +1 and —1 reside; this basis has size NP2 = N (N  — 1).

The scheme requires minimal control, requiring only the encoding of two qutrits in a pure 

state by a third party, Charlie (a local unitary), a local projective measurement by both Alice 

and Bob, and a global ‘resetting’ of the lattice. The scheme shares some of the advantages of 

the dual-rail based scheme [46, 47, 48], which, although interpretable as a single SU(3) chain, is 

only a scheme for transm itting quantum states or entanglement already generated. The scheme 

proposed here differs in th a t it additionally generates the entanglement during the protocol.

Bob

-© -40
Alice

N - 1

Charlie

Figure 4.1: The ‘cross’ graph of qutrits: each circle represents a three-level quantum  system 

with states {—1,0 ,+ 1}, and the number inside the circle is the vertex index n  € [1, AT]; lines 

between qutrits represent the permutation operator (4.6). The qutrits are numbered such th a t 

all the even indices are in  Alice’s arm of the graph, and all the odd indices are in Bob’s arm of 

the cross. The rectangles show the limitations of each party ’s control.

4.3 Protocol: one measurement

Initially, each lattice site is set to the state |0). For the cross (Figure 4.2), Charlie has control 

of sites 1 and 2, and encodes these in the state | +1) x | —1)2 (or equivalently 11,2) in the reduced
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N - 2

N -1

Figure 4.2: The ‘loop’ graph of qutrits: as before, each circle represents a qutrit, labelled n. 

Note th a t the Charlie’s qutrits could be close together, with Alice and Bob separated by a 

large distance, or Charlie could be replaced by two distant parties, each in control of one of the 

qutrits N f  2 and N / 2 — 1.

basis). For the loop (Figure 4.2), Charlie has control of vertices N /2  and N /2  — 1 and encodes 

these in the similar state \N /2 , N /2  — 1).

The system is then allowed to evolve under the Hamiltonian (4.5). Under this evolution—as 

it only swaps states of neighbouring qutrits—the system is always in a state with exactly one 

qutrit in |+1), one in | —1) and the remainder in |0). After a given time Alice and Bob perform 

at their respective qutrits the composite, local projective measurement

M  =  [ I+ 1 )a  ( + 1 | a  +  I- 1 ) a  (- 1 U] ® [I+1)b  ( + 1 |b  +  l- l ) s  (- 1 |b] » (4 -7)

which effectively tests for the Bell state since the terms |±l)_a ( i l l ^  ® |± 1 )#  (=kl|s

always give null results. This allows the presence of a global state to be tested through local 

measurements. Each of the parentheses of M  performs a coarse-grained measurement a t either 

Alice or Bob’s qutrit which differentiates between states |±1) and |0), but does not distinguish 

between |+1) and |—1); i.e. it gives the same eigenvalue +1 for both outcomes |+1) and | — 1), 

while it gives a different eigenvalue 0 for the outcome |0). I shall not discuss precise details 

of such a coarse-grained measurement but only mention the fact th a t it is allowed by quan­

tum  mechanics2. After the measurement, Alice and Bob perform classical communication to 

compare measurement outcomes. If both have positive measurements (i.e. both of their mea-

2 The precise mechanism may vary from one physical implementation o f our protocol to  another. In optical 

lattices, for example, if three internal atomic levels are being used to represent the states |0), |+ 1 ) and | — 1), 

then by applying a laser of appropriate frequency and polarisation Alice or Bob can s e le c t iv e ly  send an atom
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surements register |±1), Alice and Bob conclusively3 share the state  (4.1); if the wavefunction 

in the ( |i, j)}  basis is l aiJ  H>-?) immediately before the measurement this occurs with a

probability

p ^ (£ )  =  -  |a7v,jv-i +  ajv-i,7v|2 • (4.8)

I have calculated numerically this probability for both the cross and the loop, for various sizes 

N  of these. The probability is plotted against time in units of 1 /  J  (Figures 4.3 and 4.4).

Results for the cross show a characteristic initial peak shortly after the state for all N  ^  5 

(the case N  = 5 is special due to the symmetry of the system in this case). The time a t 

which the peak occurs would be the optimum time to measure. For the loop, there is less of 

a characteristic pattern, although there remains a large peak. The simplest case N  = 4 has a 

periodic peak probability of 1/2. For both graphs, the peak probability decreases with N  (see 

Figure 4.5).

4.4 Protocol: repeated measurements I

In order to improve the probability of success, one can repeat the protocol many times until 

success occurs. If the peak probability of success is p, the cumulative probability after n 

repetitions of this protocol is
n

P (n) = £ P(1 - Pr ' .  (4.9)
k=l

Since this is a geometric progression, it is clear that limn_>oo P ( n ) — 1 • The question is how 

quickly this converges. In Tables 4.1 and 4.2 I have calculated the number of measurements 

required to obtain success with a probability of at least 0.90, 0.95 and 0.99 for the cross and 

loop respectively, when measurements are taken at the peak of the probability. In general it is 

clear th a t to obtain success with probability in excess of some q, the number of measurements 

n  must satisfy

One can see th a t the probability of success converges relatively quickly; however, the system 

needs to be reset a t each stage after an unsuccessful measurement. If the three levels of each 

qutrit are represented by hyperfine levels of atoms, with energy of atoms in |0) lower in a 

magnetic field than atoms in |±1), then the resetting can be achieved by applying a uniform

in the state |0) to  an unstable excited state. When this state spontaneously decays (rather im m ediately), the

fluorescence will tell us that the atom  was in the state |0). The absence o f fluorescence would imply that the

atom was in either of the states | +  1) or | — 1) but not reveal whether it was actually | +  1) or | — 1).
3In this context, ‘conclusive’ means that when success occurs, Alice and Bob are aware of this.
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Figure 4.5: Peak probability of success as a function of N  for one measurement

magnetic field to the system and bringing it to its ground state (this resetting process, of course, 

is not unitary). Optical pumping, as used to initialise quantum registers in optical lattices, can 

also be used [210]. In other physical implementations, dissipatively cooling the system to a 

ground state could be possible.

Note th a t in principle, resetting could be achieved through local actions of Alice and Bob. 

Upon unsuccessful measurement, Alice and Bob continue to measure periodically, and when 

one of them receives an excitation, he or she swaps the qutrit out of the system for a new qutrit 

in the state  |0). Alice and Bob continue until two excitations have been removed in this way; 

they then know th a t the whole lattice is in the initial state.

4.5 Protocol: repeated measurements II

In order to reduce the number of times the system is reset, I shall now consider a slightly 

different protocol. First, let us consider in more detail what happens when the measurement 

(4.7) is applied. This measurement distinguishes between |±1) and |0) a t each site. There are 

thus four possible outcomes:

(i) both measurements are negative, giving the state |0)A |0)B, with the excitations remaining 

elsewhere in the system;

(ii) Alice’s measurement is positive, and Bob’s negative, giving one of the states4 |± 1 )A |0)s ;

(iii) Alice’s is negative, and Bob’s positive, giving one of the states 10)^ |± 1)# ;

(iv) both are positive, and Alice and Bob share the state

In each case, the resultant overall wavefunction will be different. If the wavefunction in

4The measurement cannot distinguish between these.
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N 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

0.90 6 6 9 9 10 10 11 12 12 13 13 14 15 15 16 16

Q 0.95 8 8 11 12 13 13 14 15 16 16 17 18 19 20 20 21

0.99 11 11 17 18 19 20 21 23 24 25 26 27 29 30 31 32

Table 4.1: Cross: number of measurements required to obtain a t least the desired probability 

of success q for various N .
N 4 8 12 16 20 24 28 32 36

0.90 4 4 14 22 23 26 57 81 110

Q 0.95 5 5 18 28 30 33 73 105 143

0.99 7 8 27 44 46 51 113 161 220

Table 4.2: Loop: number of measurements required to obtain at least the desired probability 

of success q for various N .

the {|i, j} }  basis is E # j = i  ai,j \hJ)  immediately before the measurement, these will be for the 

both cross and the loop, respectively:

, , v Y ^ T j h  ai,3 \hj )  , , x EJL7 W - I J  \N -  h j )  +  flj.A T -l \j, N  -  1»
l ^ l )  =  - T =  o -  i 1^2) =  — ^---------/..==■ : =  = . --------------------- = ------------ J

M 2 + K * - i l 2)

, ,  v +a j , N \ j ,N))  1
M  = 1 -  |V»s) = - 7 = { \ N - 1, N ) + \ N , N - 1)]; (4.11)

V T ^ i  ( I ^ I 2 +  K n I2) ^

where Alice’s qutrit is a t vertex N  — 1 and Bob’s a t N,  and of course E i / j = i  la i j | 2 — 1-

If the measurement is unsuccessful, one ends up with one of the states |Vh-3 )- Since the 

measurement has not totally destroyed the amplitude of the excitations existing in the system, 

another measurement may be taken some time later. However, it is difficult numerically to 

consider simultaneously the separate evolutions of the states iV’i-a)- Since the states IV’2 ,3 ) 

are asymmetric (i.e. Alice and Bob do not have the same local states), let us consider taking 

repeated measurements on the outcome iV’i), which posseses the same symmetry a t the target 

state and thus seems most likely th a t it will lead to this.

Consider now the protocol where a t each measurement, if the outcomes |'02,3) occur, Alice, 

Bob and Charlie reset all qutrits to |0) and s ta rt again. All possible outcomes are represented 

diagrammatically in Figure 4.5. It is clear th a t the cumulative probability of success occurring 

by the n th  measurement without having to re-start is then

pn(«lt ... = ? < , * > ( « , ) + n  ??>(*<) (4i2)
j=2 i = l

for n  measurements at times t i_n . Alice and Bob’s strategy should be to attem pt to maximise
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•uccessSuccessSuccess'

Start
Measure-Measure- Measure-

Figure 4.6: Diagrammatic representation of protocol discussed in Section 4.5. Alice and Bob’s 

route through the diagram starts  on the left. At each measurement, there are three types of 

outcome: success, a state (upon which they carry on, represented by rightwards arrows), 

or state ^ 2 ,3 ) (upon which they reset and sta rt again, represented by downwards arrows).

this with respect to £i-n , where pj^(£») is the probability of outcome k £  {1, 2,3, S} at the ith  

measurement.

When considering only one measurement, the optimum strategy is to measure when the 

probability of success was at a peak. Here however, three strategies naturally present themselves 

when considering a t what time each successive measurement should be taken:

(i) measure when the probability of success is a t a peak, as above;

(ii) measure when the probability of states 1̂ 2 ,3 ) is at a minimum, so we are minimising the 

amount of wavefunction one is ‘throwing away’;

(iii) measure when the difference between the probability of success and the probability of 

receiving the states |'0 2 ,3 ) is maximised.

There is an im portant point to notice here: since one is taking measurements when the 

single event probability of success is at a maximum, the time of the n th  measurement depends 

on the route taken through all the possibilities in Figure 4.5. Any problems caused by this 

could be rectified by taking measurements at regular time intervals, such th a t =  hr  for all k, 

where r  is some interval of time. However, I shall continue to optimise the probabilities a t each 

stage according to the three strategies (i)-(iii), since taking measurements a t regular intervals 

may cause some measurements to be taken at troughs in the success probability, thus causing 

the system to require more measurements.

A moment’s thought should convince one that the cumulative probability of success will 

tend towards unity with increased number of measurements, since Alice and Bob should re­

ceive the state eventually. Let us denote single event probabilities by lower-case p ’s, and joint 

probabilities with upper-case P ’s. Now, one resets the state on measurement of either of the
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states |'02,3) - The probability of receiving either of these and thus requiring re-starting a t the 

Tth measurement is p ^ \ t i )  =  p ^ i f i )  + P 3 ^(^)-

The total probability of receiving the state by the n th measurement is then

Pn{t\i • • • , tn) =  Pn (t \ > • • • ? t n) +  p\j* (t\)P n—\(t2, ■ ■ • j tn)
n-1 ( j - 1 ^

+  2  I f P t/^ jO T n - jfe + l, • • • »*») (4.13)
j=2 [i=l )

= Pn{ti, . . . , t n) + i ( i i , . . . ,  £n_ i)

j=2 U=1 J

where the last line follows from the fact th a t Pn-j( t j+ 1 , . . . ,  tn ) =  Pn- j { t \ , • • •, t n-j )-  This for­

mula for the total cumulative probability can be found iteratively, since one can find Pn+i (£i, . . . ,  

from knowledge of P i (£ i),. . . ,  Pn( t i , • • •, tn ). Note that the Pn are already known from previous 

numerical calculations.

For this protocol to work with arbitrary precision, one would like it be to the case th a t

lim P n (£ i,...,£ n ) =  l. (4.15)n—► oo

I shall give now a simple argument th a t this is indeed the case. Let m be the number of times 

the system has to be reset, and n  the number of measurements taken, and make the assumption 

th a t the probability pjj of having to reset is non-zero a finite number of times, such th a t as 

n  —► oo, so too does m  —* oo. It is then possible to say th a t the probability of success occurring 

between the j th  and (j + l ) th  resettings is always greater than or equal to the probability p of 

the initial peak, since measuring again can only increase or have no effect on the cumulative 

probability. This then implies
m

lim P „ (£ ! ,...,£ „ )  > lim V ^ p ( p - l ) fc_1, (4.16)n—► oo m—kx>
k =  0

but the right-hand side of (4.16) is equal to unity, and thus (4.15) is satisfied.

I have found the quantity Pn (£ i,. . .  , t n) for various values of n  and TV, and found th a t 

this quantity does indeed converge to unity, but much more slowly than the simple repetition 

proposed in Section 4.4. For small systems though, the rate of convergence using the two 

protocols is comparable (see Tables 4.3 and 4.4); however, the protocol based on the conditional 

resetting of the system has the obvious advantage th a t the system does not need to be reset at 

each stage.

It was noted above th a t there was an initial peak in the success probability, after which 

the probability was much diminished. This peaks becomes much diminished on subsequent 

measurements, causing the convergence of the success probability to slow as the excitation 

disperses over the system.
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Protocol II Protocol I

Measurement N  = 5 N  = 7 N  =  9 N  = 5 N  = 7 N  =  9

1 0.3429 0.3426 0.2482 0.3429 0.3426 0.2482

2 0.5294 0.5091 0.3966 0.5682 0.5679 0.4735

3 0.6667 0.5937 0.4794 0.7162 0.7160 0.6216

4 0.7620 0.6614 0.5344 0.8136 0.8133 0.7189

5 0.8280 0.7061 0.5737 0.8775 0.8772 0.7828

6 0.8741 0.7461 0.6065 0.9195 0.9192 0.8248

7 0.9066 0.7857 0.6311 0.9471 0.9468 0.8524

8 0.9301 0.8214 0.6510 0.9652 0.9649 0.8705

9 0.9478 0.8481 0.6678 0.9771 0.9769 0.8825

10 0.9608 0.8687 0.6831 0.9850 0.9847 0.8903

Table 4.3: Cross: convergence of probabilities under protocol proposed in Section 4.5 compared 

with simple repetition, as discussed in Section 4.4.

Protocol II Protocol I

Measurement N  = 4 N  = 8 N  = 12 N  — 4 N  = 8 N  = 12

1 0.4998 0.4658 0.1586 0.4998 0.4658 0.1586

2 0.7333 0.5566 0.2485 0.7498 0.7146 0.2920

3 0.8578 0.6085 0.3234 0.8748 0.8475 0.4042

4 0.9242 0.6522 0.3959 0.9374 0.9186 0.4987

5 0.9596 0.7056 0.4623 0.9687 0.9565 0.5782

6 0.9785 0.7350 0.5179 0.9843 0.9768 0.6451

7 0.9885 0.7740 0.5676 0.9922 0.9876 0.7013

8 0.9939 0.8061 0.6128 0.9961 0.9934 0.7487

9 0.9967 0.8424 0.6509 0.9981 0.9965 0.7885

10 0.9983 0.8646 0.6863 0.9990 0.9981 0.8221

Table 4.4: Loop: convergence of probabilities under protocol proposed in Section 4.5 compared 

with simple repetition, as discussed in Section 4.4.
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4.6 Summary

I have proposed a system th a t performs both the creation and distribution of entanglement. 

These tasks are fundamental to  any physical realisation of a quantum computer or quantum  

‘circuit’, where the ability to create entanglement in situ without needing to interfacing different 

physical systems would be ideal. The protocol, for example, could be used to establish a 

shared Bell s tate  between two optical lattice quantum computers or two quantum  dot quantum  

computers w ithout interfacing atomic systems or quantum dot systems with photons. It is 

also directly motivated by schemes of entanglement transfer and entanglement generation and 

transfer with minimal control cited in the introduction. As opposed to the previous protocols 

of the la tter class, here we conditionally establish a perfect Bell state between Alice and Bob.

The system conclusively creates a maximally-entangled Bell state with a certain probability, 

which varies with the size of the lattice. This probability may be improved by repeating the 

measurement, or using the more complicated protocol for small lattices. Advantages of the 

scheme include the ability to continue to take measurements without destroying the information, 

and the fact th a t Alice and Bob test for a global state using local measurements and classical 

communication. The only stage th a t requires a global action is the resetting of the lattice, 

though in principle this may also be performed through local actions.

The probability of success can be slightly lower than desired, for larger lattices, but it is 

possible for this to tend to unity upon repetition, and it may be the case in future work th a t the 

inclusion of the states 1*02,3) causes the system to converge without needing to reset. W ith the 

existing protocols qutrits separated by a distance of 33 lattice sites (for a cross of N  =  35) can 

share a Bell state with 90 percent probability of success in just 16 measurements. This might 

be a reasonable separation of two distinct quantum processors which need to be connected for 

greater processing power.
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As we have seen in the introduction, the amount of entanglement present in a physical system  

is often measured with respect to the amount of entanglement one can distill from this system (i.e. the 

number of EPR singlets it can be converted into), in the asymptotic limit. However, in realistic, physical 

scenarios one often only has access to a single copy of a physical system. How much entanglement can 

be extracted from a single specimen? How is this related to the amount of entanglement accessible in 

the asymptotic lim it?

In this part, I  shall introduce a system for which all the entanglement present may be extracted from  

a single-copy in the thermodynamic lim it (i.e. in the lim it of a large number of subsystems), along with 

many of the background concepts, such as gapped and gapless spin chains, the Haldane conjecture, and 

the paridgmatic Affleck-Kennedy-Lieb-Tasaki spin chain.

This Chapter is based on the work published in Reference (102].



Chapter

Valence bond solids

In this chapter, I  shall introduce the valence bond solid, the ground state o f famous A ffleck- 

Kennedy-Lieb-Tasaki Hamiltonian, which was given as the first example of a one dimensional 

system satisfying the famous Haldane conjecture. I  shall review several background results, and 

discuss the recent extension o f the notion o f valence bond solids to matrix-product states.

5.1 ID  spin chains and the Haldane conjecture

The behaviour of quantum  mechanical ferro- and antiferromagnets is an incredibly im portant 

area of research for a variety of reasons. Not only do such models provide explanations of a 

wide variety of physical phenomena (such as magnetism and superconductivity), but provide 

the simplest models with which to test quantum mechanics. These models are naturally con­

sidered in condensed m atter physics, but are also attracting a lot of attention from quantum  

information theorists looking for candidate systems for quantum computers, and to understand 

the entanglement th a t arises naturally in many common physical systems.

The simplest such system is a ‘spin chain’; a one dimensional array of quantum  spins 

localised a t regular intervals. Each spin is given an index, and usually interacts with its nearest- 

neighbours through some Hamiltonian. The starting point for most discussion of spin chains is 

the Heisenberg model, with the Hamiltonian

H  =  J  ^ 2  si • sjS (5-1)
(id)

where the s* =  is the quantum spin satisfying

1 ^ X 1  =  s2 = s (s +  l),  (5.2)

located a t the lattice site with label i, and (i , j)  denotes th a t the summation is over nearest- 

neighbour spins. The constant J  is termed an exchange constant, since its physical origin is
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the exchange interaction (itself arising from the electrostatic Couloumb interaction and Pauli 

exclusion) [33].

If the spins in Equation (5.1) were classical spins (i. e. vectors th a t can point in any direction), 

then its ground state (5.1) would be with all spins parallel for J  < 0 (.ferromagnetic), and 

nearest-neighbours antiparallel for J  > 0 (antiferromagnetic). This antiferromagnetic state 

spontaneously breaks the spatial symmetry (since there are two ways in which it can occur), 

and possesses what is known as Neel order. For quantum spins, the true antiferromagnetic 

ground state is slightly different, due to quantum fluctuations (and the fact th a t the Neel state 

is not an eigenstate of the Hamiltonian), but the Neel state captures the essential qualitative 

features of the state. For the large s limit, the ground sate approaches the Neel state, since the 

spins become ‘classical’ (in the sense of the Bohr correspondence principle).

In this model, excitations are essentially described by spin-flips {i.e. a spin pointing in the 

opposite direction to th a t in which it would point in the ground state) ‘sm eared’ across the 

chain. These are called spin waves. These are described in some detail (for both the ferro- 

and antiferromagnetic cases) in the review by Affleck [2]), and are a simple form of the Bethe 

ansatz [141, 142, 143, 151]. This picture predicts th a t the two-point correlation functions 

{i.e. quantities such as (s?Sj))  have a power-law decay, and th a t there are excitations with 

arbitrarily low energy {i.e. there is no gap in the energy spectrum immediately above the ground 

state) in the limit of an infinite chain, often referred to as the infinite volume or thermodynamic 

limit.

W hat should one expect the behaviour to be for other isotropic, one dimensional quantum  

antiferromagnets? One might naively expect all such systems to behave in the same manner. 

However, in 1983, Haldane conjectured that integer-spin antiferromagnetic Heisenberg chains 

have a finite gap above the ground state (and exponential decay of correlation functions), and 

only the half-odd-integer are gapless (and power-law decay of correlation functions) [105, 106, 

107]. This has since become known as the Haldane conjecture. Indication of the correctness of 

this conjecture were given experimentally and numerically, and, in 1986, it was shown th a t the 

Lieb-Shultz-M attis theorem [158] can be extended to all half-odd-integer systems, but fails for 

those with integer spin [5]. This theorem states th a t for spin-1/2 chains, the energy gap in the 

thermodynamic limit is zero.

The first example of a spin chain satisfying the Haldane conjecture were given by Affleck, 

Kennedy, Lieb and Tasaki [3, 4]. They proved th a t the ground state of the M ajum dar-Ghosh 

Hamiltonian [161] has a gap in the energy spectrum, and it also has exponential decay of 

correlation functions. However, the ground state is degenerate, and the choice of ground state 

breaks the translational invariance of the Hamiltonian. Affleck et al. went on to show th a t 

there exists an antiferromagnet with exponentially decaying correlation functions, a gap in the
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spectrum, a unique ground sta te  and translational invariance. This is the valence bond solid  

(VBS).

The Haldane conjecture remains a conjecture, although the extension of the Lieb-Schultz- 

M attis theorem mentioned above has been proved rigorously [5], and it has been shown th a t 

all gapped systems have exponentially decaying correlations [109, 111].

5.2 Valence bond solids

The valence bond solid is the ground state  of the Hamiltonian

N

H  =  ^ 2  [si -St+1 -£(s< -Si+i)2] , (5.3)
i =  1

for the value (3 =  —1/3. The case (3 = 0 is the standard Heisenberg Hamiltonian (5.1), and the 

case f3 = 1 can be solved the by Bethe an satz and shown to have a unique ground state [17, 18]. 

This Hamiltonian for /3 = —1/3 is often referred to as the AKLT model, or AKLT chain, after 

the authors who discovered its connection with the Haldane conjecture.

Consider this Hamiltonian acting on a finite lattice of size N . At each lattice site, there is 

a spin of magnitude 1 (i.e. there are three possible spin states). The to tal spin of two adjacent 

lattice sites can add up to 0, 1 or 2. The projection of the spins i and i + 1 on to the space of 

total spin S  can be denoted Ps(&i +  Si+i). Now,

1 1 2 1TMsi +  Si+i) =  -S i -Sf+i +  - ( s i  -Si+i) + - .  (5.4)
z  b 3

Suppose one makes the Hamiltonian

N

H  = Y , Hi Hi = P^ Si +  Si+>); (5 -5)
i= 1

then since H  > 0, if a state  |\k) exists such th a t H{\ ^}  — 0 for all i, then this will be the 

ground state. Remarkably, such a state exists. This state is known as the valence bond solid, 

and can be represented in term s of ‘virtual spins’. Suppose a t each lattice site one places 

two virtual spins, each with two possible states (i.e. spin-1/2), maximally-entangled with the 

nearest virtual spin on an adjacent lattice site. At each lattice site, the two virtual spins are 

projected on to the totally symmetric subspace—recall th a t two spin-1/2 systems can be added 

up to a symmetric (S  =  1) and antisymmetric space (-5 =  0). As can be seen from the diagram 

(Figure 5.2), there are two spin-1 /2 ’s a t the extremeties of the chain, which are not part of any 

‘bond’. There is freedom in these spins’ choice of state, and there is thus a four-fold degeneracy 

in the ground state of the Hamiltonian (5.3) with (3 =  —1/3. In the thermodynamic limit, the
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— o
+p+ V #  \p +

Figure 5.1: The VBS state has an interpretation in term s of ‘bonds’ between spins, where 

each bond is a maximally-entangled state of two sp in-5 /2’s, and a t each bulk spin the s ta te  is 

projected (dotted circles) to the symmetric space of to tal spin.

ground state is unique. For the finite case, removing these sp in -l/2 ’s makes the final state:

N  N

i*> = <g>a,*'®l*->iV+1. (s-6)
k = l  i = 0

where Pk,k' projects virtual spins k, k ' on to the symmetric subspace (spanned by the Bell 

states {|vk+) , l ^ ) } ) .  This state is then the unique ground state of the modified Hamiltonian 

[80]

N - 1

i =  1
Si ' Si + i  +  —(Sj • Sj+ i ) 2 +  1*0,1 +  l *N, N+l i  (^-7)

where the extra terms project the end-most spin-1 and spin-1/2 onto a spin-3/2 space:

2 2
7̂ 0,1 — ^(1 T  ®° " KN, N+1  =  7j(l + S N - S N + 1 ).  (5.8)

There is no problem in removing the end sp in -l/2 ’s, since their removal makes no difference 

in the thermodynamic lim it1. It can be shown th a t the above system is gapped, and th a t the 

correlation functions in the thermodynamic limit are [3, 4]

^  -  3  ) o • (5-9)

A further representation of this state arises if one replaces the spins with Schwinger bosons. 

In this representation, two bosonic modes are associated with each bulk spin; the ‘spin’ is 

represented by the difference in the occupation numbers of these modes. The state may then 

be written [14]

N

|VBS) =  n ( ° M +1 -  < M +1) |0>, (5.10)
i = 0

1In fact, all ‘finite size effects’ decay exponentially [81, 90], which makes sense in the light of H astings’s result 

that correlations in gapped system s always decay exponentially [109, 111].
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where a j, b\ are bosonic operators, and the spin operators are defined as

S + = o f 6 i (5.11)

S r  =  «<&,? (5.12)

S t  = (a\ai - b ] b i) l2  (5.13)

with the constraint a t a* +  b\bi = 2  S. This representation will be discussed further in the next 

Chapter.

The AKLT spin chain can be extended to the case of larger spins. In this case, one replaces

the E PR  singlets between virtual spins with maximally-entangled states of size S  x  S , and

projects on to the space of symmetric subspace of total spin J. The chain then consists of N  

spins of magnitude S, with two sp in-5 /2’s a t either end. In the Schwinger boson representation 

this is written

i v b s ) = n ^ i  -  6.ta’+i)s  i°> - (5 i 4 )
i= 0

where now a]a* + b]bi = 2 S . This is the unique ground state  of the Hamiltonian

N - l  2 S

H  = E E A j P j j + i  +  7To,i +7r/v,AH-1) (5.15)
j=l J = S + 1

where the operator Pj,j+1 projects bond spins j ,  j  + 1 onto the (symmetric) subspace of to tal 

spin J , and the A j  are arbitrary positive coefficients. The boundary terms 7To,i, ttn,n +i are 

similarly defined to project the end spin S  and S /2  onto the total spin J  subspace.

5.3 M atrix-product states; simulability

In the original AKLT papers [3, 4], Hamiltonians were constructed to give valence bond struc­

tures as the exact ground state for different dimensions and geometries. Inspired by this, Fannes 

et al. extended this formalism to the case of infinite translationally-invariant ID systems, and 

termed such states finitely-correlated states [82]. This idea can be extended yet further to finite 

systems, and those without translational invariance, through the notion of matrix-product states 

(MPS) [181, 241]. This class of states provides a neat representation of many states naturally

arising in both condensed m atter and quantum  information theory, and can often be used to

efficiently describe such a sta te  classically. I shall follow the notation of Reference [181].

Consider a general m ultipartite state |tp) £ (<Cd)®N , describing a ID array of N  quantum  

systems, each with d states (i.e. there is a d dimensional Hilbert space at every lattice site). At 

every lattice site, two ‘virtual spins’ are assigned, each of dimension D. Each virtual spin shares 

a maximally-entangled state (unnormalised) 11) — X)a=i I0*’ a ) with the nearest virtual spin
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on an adjacent lattice site. This is called a bond, and D  the bond dimension. In an analogous 

manner to the VBS state, a projection operator is applied a t every lattice site (or ‘bulk spin’):

d D

A  = Y .  Y .  (5.16)
i= 1 a , /3 = l

Greek indices are used for the virtual systems, Roman indices for the bulk systems. Identifying 

Ai,a ,f3 as the component (a\Ai\(3) of the matrix one can see th a t repeated application of 

this map a t adjacent lattice sites gives

d

|v>) =  tr  [Ah ,ijv ). (5.17)

In general, the bond dimension can vary from bond to bond, and the projection m atrix can 

also vary. Allowing for site-dependent maps A ^  of size Dk x Dk+i corresponding to site k  and 

bond dimensions Dk and Dk+i, one obtains the most general form of a m atrix-product s ta te2:

h/>) =  tr  I/4!!1 • • ■ >**)•• (5-18)
*1 >•" ,*N = 1

As an example of an MPS representation, one can see clearly that the spin-1 valence bond solid

(5.6) is represented in this form by the matrices [231]

A i = a z A 2 = V2<t+ A 3 =  -y /2 a ~ .  (5.19)

P art of the difficulty of simulating the dynamics (or even calculating ground state properties) 

of a many-body system in condensed m atter physics is that the number of param eters requried 

to describe the state  grows exponentially with the number of constituent systems in the overall 

state. This, of course, is what gives a quantum system the potential to act as a quantum  

computer, since it has the potential to store a much larger number of param eters than a 

classical device. However, many quantum systems can be efficiently simulated by a classical 

device, and knowing when this is possible is useful for two reasons: first, it allows physicists 

to easily calculate expectation values of certain properties of such systems; and second, it 

gives some insight in to what properties of states make them  amenable to being a resource for 

quantum computation.

Indeed, the main motivation behind the introduction of MPS was to be able to efficiently 

describe the low-energy dynamics of certain Hamiltonians with small-range interactions. All 

m ultipartite states can be represented in the form (5.18) if one allows for large enough bond 

dimensions; if the bond dimension D  grows only poly normally with the number of subsystems 

N , then one can efficiently simulate the dynamics and properties of this system with a classical 

device, and exactly calculate various properties of the state. Fortunately, many of states of

JA given representation is not neccessarily unique, although there is often a canonical form [181].
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interest in condensed m atter theory have such a representation, including the ground states 

of various physically interesting Hamiltonians. MPS thus provide a powerful tool with which 

to study various ID systems, and it turns out th a t it is very easy to calculate certain global 

properties to a reasonable accuracy (although not, of course, entanglement).

These states can be used to represent ground state of various physical systems [236] (partic­

ularly gapped systems, but also some critical systems), are a suitable variational basis for the 

highly successful density matrix renormalisation group technique [209, 246, 247], and can be 

extended to two or more dimensions (as projected entangled pair states—PEPS [129, 180]). The 

com putational complexity of finding MPS and PEPS, and their computational power has also 

been extensively studied [214, 215], and stabilizer states are known to have an interpretation 

in term s of a valence bond solid [58, 235]. In fact, the study of MPS, DMRG and PEPS is 

a flourishing field, and it would be impossible to provide a comprehensive summary of their 

various uses.

5.4 Entanglem ent properties of valence bond solids; area 

laws

The entanglement naturally present in the ground states of various physics systems is of great 

interest. There are several ways this can be investigated. One is to calculate the entanglement 

between two spins in a spin chain; this is nearly always a mixed state, and m ust be quantified 

through a quantity such as negativity. Another is to calculate how much entanglement can 

be ‘localised’ between certain spins by performing local measurements on the remaining spins 

(this gives rise to the notion of localisable entanglement*, which I shall consider in Chapter 8). 

However, the most common way is to calculate the block entropy (see figure 5.4).

The ideal situation for quantum  information processing is to possess an entangled pure state; 

thus the best way to ‘use’ the entanglement present in the ground state of a physical system is 

to bipartition the system, and measure the bipartite entanglement present. Since one is usually 

interested in the thermodynamic limit, the system is normally bipartitioned into a block in the 

middle of the chain, and the remainder (see Figure 5.4). Since the state  should be pure, the 

block entropy, should be equal to the entanglement of the block with the remainder, because of 

the Schmidt decomposition (2.3). This idea can be extended to lattice systems in two or more 

dimensions; indeed, an early motivation for the study of block entropies was the discovery th a t 

the entropy of a black hole scales with the surface area of the event horizon (approximately 

one bit of information per Planck area) [36, 41, 113, 223]. This is called an area law. W hether

3 This quantity has been calculated for deformed AKLT chains by Verstraete et al. [237].
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Figure 5.2: The block entropy measures the entanglement of a block (typically of size L ) with 

the remainder of the chain (typically of length N ). A more useful partitioning from the point 

of view of entanglement distribution might be to ‘cu t’ the chain in half, and then to give either 

half to distant experimenters, Alice and Bob. However, partitioning the system into a block 

and the remainder is useful from a mathematical point of view; one can consider the scaling 

of the block and the chain separately, without having to worry about the effects of having 

‘half-infinite chains’. The single-copy entanglement considered here is measured with respect 

to this partitioning of the system.

or not the zero tem perature entropy (i.e. the entanglement) of a block of a two dimensional 

spin lattice also scales w ith the area is thus an interesting question (it is believed th a t most 

quantum states exhibit a volume scaling [249]).

In fact, gapped systems do indeed satisfy an area law; the leading term  in the entropy is 

proportional to the ‘area’ of the boundary between the two regions. This can be understood as 

being related to the number of E PR  singlets ‘cut’ by the partitioning [8, 53]. For the case of 

ID systems, this is of course a constant. The block entropy thus saturates to a constant bound 

as the length of the chain and block increase (the area law holds in the thermodynamic limit) 

[80, 144, 181, 242]. Indeed, the scaling of the Renyi entropy is given by [52, 137, 146, 147, 242]

Sa (pL) ~  I  ( l  + 1 )  log?, (5.20)

where pi, is the reduced density m atrix of a block of length L, and £ is the correlation length. 

In the gapless case, the block entropy violates the area law by a logarithmic correction:

S a (pL) ~  logL; (5.21)

i. e. the entropy diverges logarithmically with the block length, although this is still exponentially 

smaller than one would expect for most quantum states.

Area laws [62, 110, 184, 249] indicate th a t the correlations in a system are very short-ranged, 

and th a t the entanglement is somehow ‘localised’ around the boundary between regions4. Since 

gapped quantum systems have markedly short-ranged entanglement, the area laws hold par­

ticularly accurately in this case; gapless systems can have slightly longer correlation lengths,

4 This (heuristic) argument has recently been made rigorous by considering the mutual inform ation  between 

two regions in a system [249].
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Block
entropy

G a p p e d

* L

Figure 5.3: Scaling of block entropy: for gapped systems, the block entropy scales to a constant 

bound related to the number of singlets ‘cu t’; for gapless systems, it diverges logarithmically 

with the length of the block.

and thus the area law is slightly violated, as above. In fact, the existence of a strict area law 

in a given ID system indicates the existence of an efficient m atrix-product representation of 

th a t system [249], and the short correlation lengths in gapped systems explains why they are 

so amenable to simulation as MPS.
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Single-copy entanglement

In this chapter, I  shall review the formal definition o f the single-copy entanglement, along with 

results obtained by others relating to critical, gapless spin systems. I  shall then show that 

for the A K L T  chain, the single-copy entanglement is equal to the von Neumann entropy in 

the thermodyamic limit. That is, all the entanglement present (according to the asymptotic 

measure) may be distilled from  a single specimen of the chain.

6.1 Introduction

As we have seen in the previous chapter, an im portant quantity in many-body system is the 

block entropy. This is equal to the entanglement between the block and the remainder of the 

system in the asymptotic limit. Of course in realistic, physical situations one might only have 

access to a single specimen of a particular system, and the von Neumann entropy in this case 

gives merely an upper bound to the distillable entanglement. An interesting question then 

arising is how much entanglement can be deterministically distilled from a single-copy of a 

system.

As mentioned in Chapter 2, the entanglement of a single specimen has been considered 

before, in term s of the types of state another can be converted to via LOCC. Nielsen’s ma- 

jorisation theorem (2.14) gives a rigorous criterion for the possibility of conversion of a pure 

state \ij>) to another pure state |<j>). However, only recently was the distillable entanglement 

in the exact regime formally defined. In the asymptotic limit, this is defined as the number 

of maximally-entangled states one can distill; analogously, Jens Eisert and Marus Cram er [75], 

and Roman Orus et al. [170] defined the single-copy entanglement as the number of E PR  sin­

glets deterministically distillable from a single specimen of a given system. They further showed 

th a t for gapless quantum spin chains close to criticality this is exactly half the von Neumann

77
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entropy: th a t is, half the entanglement present may be distilled in a single process1.

However, a large class of spin chains of interest are gapped. These have substantially dif­

ferent entanglement properties, as mentioned in the previous chapter. It would therefore be 

interesting to know whether gapped chains also exhibit different behaviour in the context of 

single specimens. While this remains an open problem in general, I shall in this chapter provide 

an example giving indications th a t this is indeed the case. Specifically, I shall show th a t the 

celebrated spin-S AKLT chain [2, 3, 4] introduced previously has a single-copy entanglement 

equal to the von Neumann entropy for all 5 ; i.e. all the entanglement present in the spin chain 

may be distilled in a single process.

D efin ition  20 (S ingle-copy en tan glem ent [75]). The single-copy entanglement (with re­

spect to a particular bipartition) is defined [75] as the maximal number of singlets one can 

deterministically distill from a single-copy of a specimen in a single process; i.e. the single-copy 

entanglement is E \ — logM , if M  is the largest m  for which the transformation

P  * |*0m) (V̂ ml (6-1)

is possible under local operations and classical communication with unit probability (where 

\'(pm) =  N> i) /  y/m, the maximally-entangled state of dimension m x m )2. Applying

Nielsen’s m ajorisation criterion (2.14) to a bipartition of a spin-S chain into a block of length 

L  and the remainder, this holds if and only if

K TV"
for all K  £ [1,M], (6.2)

fc=i

where (a j;, • • • , ) are the nonincreasing eigenvalues of the reduced density m atrix of

the block of length L. As pointed out by Eisert and Cramer [75], this is contained within the

stronger criterion th a t ctj <  1/M ; i.e. the majorisation reduction of the (2S +  l ) L-level system 

(the block) must be a t least as mixed as the reduced density m atrix of one half of the M  x M  

maximally-entangled state. One can then define the single-copy entanglement

Ei(p)  =  log [ l / a j ]  =  -  loga}. (6.3)

Note th a t this may alternately be found from the a-entropy (also called the Renyi entropy)

Sa(p)  =  lo g trp a / ( l  — a) by taking the limit a  —*■ oo [203] (by allowing a  to take many

values, this may be used as a class of entanglement monotones—called the o-entropies—with

the desired additivity properties [122]).

1The single-copy entanglement has also been studied recently by Peschel and Zhao [182], and Zhou et al. [254].
2A maximally-entangled state of two M -level system s is equivalent to lo g M  qubit singlets, as these have the

same Schmidt decomposition [159].
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6.2 Critical, gapless system s

Using the tools of conformal field theory, Orus et al. found th a t for all translationally-invariant 

quantum spin systems th a t can be mapped onto an isotropic, quadratic system of fermions 

(via the Jordan-W igner transform ation), the single-copy entanglement of a block of length 

L  is exactly half the von Neumann entropy in the thermodynamic (L —» oo) limit: both 

logarithmically diverge with L  [170]. Explicitly,

As we saw in the previous chapter, it is known th a t for gapped systems, the block entropy 

saturates to a constant bound [80, 144, 181, 242]. This qualitatively different behaviour of 

the entropy suggests th a t the single-copy entanglement might also have substantially different 

behaviour in gapped systems. As a first step in obtaining a general statem ent regarding gapped

example of a chain satisfying the Haldane conjecture [2, 3, 4], and introduced in the previous 

chapter. To perform this calculation, I shall use the Schwinger boson representation.

+ 0 ( 1 / L ) (6.4)

where c is the conformal field theoretic central charge.

6.3 Non-critical, gapped system s

systems, it would be instructive to  consider the VBS ground state of the AKLT chain, the first

6.4 Coherent spin state approach to  the VBS

The ground state of the spin-51 AKLT chain (5.15) may be written in the Schwinger boson 

representation [14] as

N
|VBS) =  n ( a t(,t+ i _ 6t ot+ i)S |0) (6.5)

where at and b\ are bosonic creation and annihilation operators, and the spin operators are 

defined as

S+ = ajbi 

Str  =  ojftt

(6 .6)

(6.7)

(6.8)

with the constraint a t a* +  b\bi = 2 S  (where S  is the spin eigenvalue given by S2 =  S (S  +  1)). 

This representation effectively replaces spins of largest eigenvalue S  with two bosonic modes,
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^ Mode a Mode b

Figure 6.1: Schwinger boson representation: each spin of magnitude S  is replaced by two 

bosonic modes. Half the difference in the occupation of these modes gives the ^-component of 

spin, S z .

whose collective state encodes the spin (see Figure 6.4). The eigenstates of the spin operators 

S2 and S z are then given by (see the Appendix for more details)

(a^)s+m(b^)s ~m

An alternative representation of state  (6.5) is given in terms of coherent spin states, the less 

well-known relative of the coherent oscillator states often studied in quantum optics [19, 218] 

and considered the most ‘classical’ of quantum  states. The coherent oscillator state is defined 

to be an eigenstate of the bosonic annihilation operator a; analogously, the coherent spin state 

is defined as an eigenstate of the spin raising operator S + [192] .as

^  =  (1 +  H 2)2S exp^ S ~"> I5 ’ ^  ’ (6>1°)

where |5, m) is the spin state  with (S2) =  5 (5  +  1) and (S z) =  m, and p  is a complex number. 

Parametrising this with p  =  e1̂  tan(0/2) gives

|fl,0> =  £  (611)
m = —5  V '  '

where (u , v ) := (e1̂ 2 cos(0 /2 ), e~1(̂ /2 sin(0/2)). This state has a clear geometric interpretation: 

the state  |0, 0) may be represented by the unit vector 17 =  (0,0) {i.e. a point on the unit sphere). 

Therefore the overlap between two such states may be found geometrically to be

2 5

<0,0 |0',0') =

and thus

0 0' . 0  0' icos -  cos — -f sin -  cos — e ^  v ’ (6 .12)

|< 9 ,0 |9 ',0 ') l=  ( 1 +  “ n ' )  . (6.13)

Note th a t these states form an overcomplete set, and have the following completeness relation:

/  dfi |fi) <17| =  I. (6.14)
25  +  1 

47T
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We thus have

(6 i s )

For S  = 1/2 this representation gives the well-known Bloch sphere.

Comparing Equation (6.11) to  the form of the eigenstates of S2 and S z given by the Schwinger 

boson representation 6.9, one can clearly see th a t an alternative representation of a sta te  may

be made by making the replacement

a 1 —>u, a —> (6.16)
ou ov

and multiplying by y / (25)! wherever operators occur in pairs. Therefore, denoting the coherent 

state |f2) one may write [14, 90]

N

<ft|VBS) =  J ]  , / ( 2 S ) W i + i  -V iU i+1)s ; (6.17)
i= 0

and hence
N

| (ft| VBS) | 2 =  n ( 2 S ) ! M <+ 1  -  W +1|2S (6.18)
i = 0

=  n ( 2 S ) ! ( i ^ J W ) S . ( 6 . 1 9 )

(ij) '  '

This approach was used by Freitag and Miiller-Hartman [90] to calculate all two-spin correlation 

functions, and more recently by K atsura et al. [144] to calculate the block entropy of the VBS 

state.

6.5 Single-copy entanglem ent of the valence bond solid

Having introduced the coherent spin state representation, I shall now go on to apply it to the 

calculation of the single-copy entanglement for the VBS state. As we have already seen, a 

standard measure of the bipartite entanglement present in a many-body system is given by the 

block entropy; i.e. the entanglement of a block of L  contiguous spins with the remainder of the 

chain. I shall use the same partition to calculate the single-copy entanglement. In order to 

calculate this, one first needs to find the reduced density m atrix pl  of these L  spins. Beginning 

with the density operator for the whole system, one may use the partial trace to find the reduced 

density matrix

pL = t r j€BLp, (6 .2 0 )

where the notation j  £ B l  denotes th a t the trace is taken over all spins not contained within 

the block Bl of L  spins.
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The trace of any operator in the coherent spin representation is

(6 .21)

and therefore one obtains

P l  =
1—r d n  <0,1 VBS) <VBS|ftj) 

47r (VBS I VBS)
(6 .22)

/ r u  Ilfc-i Tk,k+1 |« i)o  ( ^ i | ® |n L)L+i
r t~jL  dtlj t~tL  1 m  

J 1 1  1 4tt l l f c = l

(6.23)

where the transfer matrix

T k , k + i  '■= (1 — & k  • i ) 5 / 2 5 (6.24)

and in the first line I have om itted numerical factors. Katsura et al. found [144] th a t this is 

independent of the length of the total chain N , and therefore without loss of generality one 

can set L — N . Following the methods of Katsura et al. and Freitag and M iiller-Hartmann 

[90, 144], one may find the eigenvalues of this matrix (replacing S  —> S /2  for the end spins) 

The following decomposition in terms of Legendre polynomials may be used [90, 95]

with I Q(X )  =  1 / 4 7T, I i (X )  = 3 J*f/4 7 r(*S' / 2  +  l ) 2. These polynomials form a complete set of 

isotropic, two-site tensor operators.

To find the block entropy for general S, one can use this method to find the eigenvalues of 

the reduced density matrix, and use the standard formula (2.20) for the von Neumann entropy. 

This was found to approach 2 log(S-l-l) exponentially fast in L  (the thermodynamic limit) [144], 

confirming the conjecture of Vidal et al. th a t the block entropy of a gapped integer spin chain 

reaches saturation for all S  [242]. For the purposes of finding the single-copy entanglement, 

only the largest eigenvalue is required.

(6.25)

from whence it follows th a t

(6.26)

where

(6.27)

and I i ( X ) is an Ith order polynomial in X  determined recursively through the relationship
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The density m atrix is diagonal in the basis of the total spin of spins 0 and L  +  1. These

spins, of course, add up to several multiplets in the usual manner of spin addition, and so there 

will be degeneracy in the eigenvalues. One thus requires the largest value of

where X(a)  := so • s^+i =  a(a +  l) /2  — S/2(S/2  +  1). The calculation of the single-copy 

entanglement only requires the eigenvalues, and thus one omits the weights (2a +  1 ).

This distribution is found recursively, determined by the coefficients Ij[X(a)].  The largest 

values are given by the cases a = S  and a =  0 for L even and odd, respectively. For even L, 

the required value is

which is exactly equal to the von Neumann entropy, as found by K atsura et al. [144], The proof 

for L  odd follows analogously.

(Pa) = tr  {PapL,} (6.29)

where Pa is the projector on to the subspace of total spin a. This multiplet distribution (i.e. the 

eigenvalues multiplied by their weight) is given by [90]

(6.31)

and thus the largest eigenvalue is

(6.32)

(6.33)

This gives the single-copy entanglement:

E x =  — log Ai

21og(S +  1) -  logA(0) i + 1  1 1 +  ^

Since A(j) < X(j + 1) for all j ,  and A(0) =  1, it is clear th a t in the thermodynamic limit L  —> oo 

(as considered in the critical, gapless case [170]), this becomes

E x - * 2 1 o g (S + l) (6.36)
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It therefore is the case th a t all the entanglement present in the VBS state  (the ground 

state of the gapped spin-S' AKLT Hamiltonian) may be distilled from a single-copy: one can 

distill with certainty a maximally-entangled state, the dimension of which is related to S'; of 

course, in the case the log (S’ +  1) is not an integer, the dimension of the maximally-entangled 

state would be given by 2[log(5 +  1)J. This would appear to have an intuitive explanation 

in terms of the valence bond picture of the state: the entanglement between a block and the 

remainder of the chain is related to the number of bonds ‘cut’ by the boundary (indeed, this 

is similar to the reasoning behind area laws [62, 110, 184, 249] although the analogy is not 

strict in this case, since the entanglements of formation and distillation are only equal in the 

asymptotic limit), and is further evidence of the qualitatively different behaviour of gapped 

chains to gapless chains. One should contrast this with the critical case [170], from whence 

one can distill with certainty (in the L —► oo limit) a maximally-entangled state  of arbitrary 

dimension (i.e. an infinite single-copy entanglement); the crucial, qualitative difference is th a t 

this is still only half the to tal amount of entanglement present.

6.6 Summary and open problems

In this chapter, I have dem onstrated th a t all the entanglement present in the valence bond solid 

ground state of the gapped AKLT Hamiltonian for arbitrary 5  may be distilled with certainty in 

a single process. This qualitative difference to the behaviour of gapless, critical chains provides 

further evidence that the entanglement present in gapped systems is of a fundamentally different 

nature.

It is an open problem as to the behaviour of single-copy entanglement in general gapped 

systems, but this result provides the first indication th a t the behavoiur is quite a departure from 

the case of gapless systems, and I hope th a t this will provide a stepping-stone to a statem ent 

for general gapped systens.



Part IV 

Antisymmetric states
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Symmetry plays an important role in physics; symmetric states often correspond to physically im ­

portant states, and have curious properties by virtue of their symmetry. In this section, I  shall consider 

a specific multipartite state with a high degree of symmetry under the permutation of its subsystems. I  

shall consider its behamour under local projective measurements, and elucidate its entanglement prop­

erties.

This Chapter is based on the work published in Reference [103],



Chapter

Multi-party, multi-level singlets

In this chapter, I  shall introduce some highly symmetric many-body states called ‘multi-party, 

multi-level singlets’, or ‘qudit singlets’. I  shall show that local measurements on some of these 

qudits project the unmeasured qudits onto a smaller singlet, regardless of the choice of mea­

surement basis at each measurement, and the outcome of that measurement. It follows that 

the entanglement is highly persistent, and that through local measurements, a large amount 

of entanglement may be established between spatially-separated parties for subsequent use in 

distributed quantum computation.

7.1 Introduction

Entanglement between spatially-separated systems is a pivotal resource in quantum  information 

theory, enabling distributed or networked quantum computation. There is thus an enormous 

interest in extracting this resource from various many-body systems [1 0 ], in particular through 

measurements [238]. In such schemes, the measurement bases have to be carefully optimised. 

Could there be other systems offering a more flexible method of entanglement extraction, and 

could the amount of entanglement exceed the currently-known limits? This is indeed the case 

for a particular quantum state, the qudit singlet, which I shall consider in this chapter.

I shall first show that if N  parties share an TV-level singlet, and M  parties perform successive 

measurements (each in a random basis), the remaining parties share a singlet of N  — M  sys­

tems, regardless of the choice of measurement bases (measurement in the same basis has been 

previously considered [49]). A direct consequence of this is th a t these states have a very high 

localisable entanglement (without the need to optimise the local measurement basis), and the 

highest possible persistency of entanglement (the robustness of a m ulti-party entangled state 

to local measurements [43]).
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7.2 Qudit singlets: definition

A qudit is a generic d-level system; qudit singlets \ s f f )  are A -partite states with the property 

U ^N \ S ^ )  =  | s f f )  (up to a global phase), where U is an arbitrary one-qudit unitary operation. 

For the case d =  N , they may be written

S J—  Cm,--- ,nN ) • • • , a n N) > (?•!)

where cn i) . . . ,n N is the generalised Levi-Civita symbol, and the state is w ritten in the basis 

{ |ai)}f= 1  at each qudit. The sum is taken over all permutations of incides (n i, • • • , njv}, and 

crucially, is antisymmetric with respect to the permutation (or ‘exchange’) of any two qudits; 

th a t is,

Pij <?>(«)) =  -  | s f  >(«)) (7.2)S N

for i , j  G [1, N ], where for given states 1^)  ̂ G H i , \<j>)j G H j,  the permutation operator Pij swaps 

the states according to

Pa M i  \4>)j = M i M j . (7.3)

and has eigenvalues ±1. This operator was introduced in the postulates of quantum  mechanics, 

since Posulate 4 asserts th a t m ultipartite states must be eigenstates of this operator. However, 

it must be emphasised th a t this postulate holds for states of identical, indistinguishable parti­

cles; although the state here is an eigenstate of such permutation operators, the particles are 

‘localised’ a t particular vertices on a lattice, and thus are physically distinguishable. This is of 

particular importance when, in P art V, I shall discuss the possible realisation of such a state 

using identical particles th a t are made distinguishable by confining their locations to lattice 

vertices.

The qudit singlet has some curious properties and applications. It was previously shown by 

Adan Cabello1 that it may be used to solve problems lacking classical solutions (such as liar 

detection, the N  strangers problem, and secret sharing [49, 50, 51]. It has also been shown to be 

applicable in m ultiparty remote state preparation [6 ], and for encoding qubits in decoherence- 

free subspaces [150].

7.3 The effect o f local measurements

I shall show th a t when N  parties share such a state, and some of them perform measurements 

on their qudits in randomly chosen bases (varying from party to party), a qudit singlet is

1 Cabello has termed such states ‘supersinglets’ [51].
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still established between those unmeasured qudits, in a basis related to th a t used for the last 

measurement. To demonstrate this, I will make use of the property [6 ] U =

1 (g) and introduce the notation | S ^ 1 1^(/3; /?/)) to denote an (N  — l)-singlet

written in the basis {|A)}£Li at  each qudit, with level \f3i) absent (i.e. t r pi\f3i)(j3i \ =  0 for all i 

where pi is the reduced density matrix of the ith  qudit).

T heorem  21. When an N-singlet \s f f\a c ) }  written in a basis { |ori)} is measured at one site 

using an arbitrary basis := {U the state obtained is a product of a state \j3i) at the

measured site and a smaller singlet | ftf)) written in the basis {|/%)}.

Proof. Consider the outcome when one performs a von Neumann measurement {\{3t) (/?*|} at 

one qudit. W ithout loss of generality, let this measurement be on the qudit labelled 1. Since 

I(3i) {/3i\ = U |oi) (ai\ t / t  we may write

|A) - l AN)
>7V («))

= U\cti) 

= U \a t) AN)
57V

>(<*))

( « ) ) • (7-4)

To proceed, note th a t the iV-singlet may be re-written in the form

TV

4 * V ) )  =  - 4 l > ) i+ 1  IQ<>1
^ l=l ’ ’

and it thus follows that

I ®  U ® " - 1 | s j f  > ( « ) ) ,  N  =  £ ( - ) i+1  IQ‘ >1 ®  £ /®W“ 1 | S NW- l 1) ( « ; « i ) ) 2 • ( 7 .5 )
’ ’ N i=l ’

W hilst | ai)) is a singlet written in the basis at each qudit, one can see

th a t the term  f/®7V_1 |iS '^ 11̂  (a ; a*)) is a singlet written in the {|/?/)};/* basis2. Thus if the 

measurement outcome is |/?*), the overall state is projected to

S<,N>(a))
/  !,••• ,7V

=  ( - ) i+1  | A > i  ®  | s i T - f W  M ) .  n  . ( 7 .6 )
2 ,--  ,7V

where || - • • || denotes the norm of the state in the numerator of the fraction, in order to normalise 

the state. This completes the proof. □

The significance of the above theorem is revealed when one considers successive measure­

ments a t different qudits. Indeed, by iterating the above proof, it becomes apparent th a t by 

measuring in a different basis a t each qudit, the remaining, unmeasured qudits will be projected 

to a singlet in a basis related to th a t used for the final measurement.

2 These are not  the same state, since the bases are not complete in the TV-dimensional space.
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C o ro lla ry  22. I f  M  parties perform successive measurements in arbitrary bases (where the 

m th party uses the basis B m = {|c»!̂ m^)}i/i,- - , m - i  =  {FI™i U ^ \ a i°^)})’ ^ e  remaining parties 

share an (N  — M )-singlet in the Bm  basis at each qudit, with the restriction that at each 

measurement, the basis transformation operates on a space whose dimension is one less than 

the previous transformation; i.e. at the Ith measurement the ba^is may be transformed by any 

acting on the subspace <CN~l.

Proof. Consider measuring in the basis { |a ^ ) }  on the state resulting from the previous mea­

surement, namely, |a | 1^)i|5 ^ ^ 1^(a^1 ^ ; a ^ ) ) 2 ,... ,n - Applying Theorem 21 on the smaller sin­

glet, one can see th a t the final state is

7(JV-2 ), (2 ). (2) (2)
* / i 3 /  2

(7-7)

In general, if M  measurements are taken, we have (upto a global phase)

( 1 ) \  . . .  ( M ) \  (M) . n ( M ) A
" ' A  / M N ~M 1 ’ /  M+l , -  ,N ’ ( *>

where n  =  {n\, ■ • • , u m ) is a vector, the elements of which are the indices of the vectors of the 

basis B m  excluded from the (N  — M)-singlet. □

It must be noted th a t the proof—see Equation (7.4)—makes use of the property U®N =

\S{nN)). This holds only when the U®N operates on the space occupied by the singlet 

if one were to put this state within a larger space, a separable unitary operation on the whole 

n-partite space would not (in general) give this invariance. Thus in order to iterate the proof, 

it is essential to make the restriction th a t a t each successive measurement the dimension of 

the unitary transformation decreases by one. So, a t the Ith  measurement, one would be able 

to transform the basis by a unitary U^l\  such th a t there is a submatrix operating on N  — I 

levels (which levels are operated on depends on the previous outcomes), and ‘1 ’ on all diagonal 

elements corresponding to the remaining levels.

In fact, this restriction may be lifted slightly. It is well known [202] th a t any d x d unitary 

matrix can be written as a product of two-level unitaries through the decomposition Ud =  

Vi • • • Vfc, where the operators {V^} are two-level operators, and k < d(d — l) /2 . The original 

proof of this was intended to show how to break down a d-level operator into a series of beam 

splitters [218]. This then gives

Ud ® U d = (Vi ® Vx) • • • (Vfc <g> Vfc), (7.9)

allowing one to use at measurement the subset of d x d unitaries th a t factorise such th a t the 

two-level matrices {V^} either act within the subspace supporting the singlet, or its complement 

(i.e. the matrix element linking the singlet subspace to the rest of the space is zero). This is
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because those factors operating on the complement act as the identity on the singlet, and those 

operating on the singlet subspace have the rotational invariance property.

But what would happen if one measured in an arbitrary basis? To answer this, one should 

consider the effect of operating on a 2 -singlet with a more general unitary operator, w ritten in 

the form (7.9). Those factors V* <8 > V* that do not operate on any part of the singlet subspace can 

be removed successively from the right of the operator (7.9), until the right-most factor links 

one of the levels of the singlet with a different level. Suppose the ith  factor in (7.9) operates 

on levels j ,  A; in a basis (|/)}f=1, and the whole operator Ud <8 > Ud is applied to a singlet of levels 

j ,m .  Then

(Vi ® Vi) ■ • ■ {Vi ® Vi){\jm) -  Im j))  =  (Vi <8 > Vi) • • • (V*_i <g> V ^ )  {{Vi | j »  |m) -  |m> (V, \j) ) ) .

(7.10)

This remains a singlet, albeit in a different subspace. In general, when an n-singlet is operated 

on by a separable unitary Ilf* 1 (where d > n), the state remains an n-singlet, but (in general) 

lies within a different subspace of the n n-dimensional n-partite Hilbert space acted on by U f n . 

Thus one can conclude th a t for any measurement, one still obtains a singlet, but for those 

measurement bases not satisfying the constraints given above, the singlet moves into a different 

subspace.
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Entanglement properties

In this chapter, I  shall consider some o f the entanglement properties of the qudit singlet. Specif­

ically, I  shall show that the measurement property proven in the previous chapter implies that 

the state has a very high localisable entanglement (the amount of entanglement available to 

be concentrated between two subsystems through local measurements), and the highest possible 

persistency of entanglement (the robustness of the entanglement to local measurements).

8.1 Localisable entanglem ent

As we saw in the chapter on entanglement, there is a vast array of entanglement measures, 

each best suited for different purposes. Perhaps the most physically-relevant is the amount of 

entanglement one can establish between spatially-separated subsystems for subsequent use in 

networked quantum computation. Indeed, it was with this motivation th a t localisable entan­

glement was introduced [238].

D e fin itio n  23 (L ocalisab le  e n ta n g le m e n t [190, 238]). The localisable entanglement is 

defined as the maximum amount of entanglement establishable between two subsystems i and 

j  in a m ultipartite state by performing local measurements on the other spins. If measuring in 

a given basis M  establishes the bipartite state \ips) between i and j  with a probability ps , then 

the localisable entanglement is

Eij = max J2PsE(\i>s)), (8 .1 )
S

where e := {ps, iV’s)} is an ensemble of pure states of at least 2N~2 elements, associated with 

the choice of measurement basis M , and E(-) is some measure of entanglement. For pure states, 

the von Neumann entropy (2.20) is the unique asymptotic entanglement monotone, although 

a measure called concurrence is also easy to calculate in this context [136, 190, 238]. The
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definition can be extended to mixed states in a straightforward way [190], where the choice of 

entanglement measure E(-) could be (for example) the entanglement of formation.

Through numerical calculations, it has been shown th a t a maximally-entangled sta te  of a 

2 * 2  system {i.e. a standard E PR  singlet | ^ _ ) =  ( |0 ,1) — |l ,0 ) ) / \ /2 )  can be established in 

this way. However, any realistic scheme for distributed quantum computation would require a 

much larger amount of entanglement.

Using the above measurement related properties of qudit singlets, one can now consider 

the role of TV-singlets in entanglement distribution. As mentioned above, the establishment 

of successively smaller singlets a t each measurement is independent of the choice of measure­

ment basis, and the outcome of the measurement. Thus, it is always possible to establish a 

maximally-entangled sta te  between any two subsystems of the state. This is a qualitative dif­

ference in mechanism of entanglement localisation to those systems studied previously, since 

maximisation of the localisable entanglement in general requires careful optimisation of the lo­

cal measurement bases, and averaging over all possible outcomes. This then gives the maximum 

avergage entanglement localisable by measurements. However, for the singlet, even if one se­

lected the basis randomly at each measurement, one can always establish a maximally-entangled 

state between the unmeasured parties.

Moreover, another im portant difference emerges if one considers the entanglement estab- 

lishable between two subsystems {i.e. groups of constituent systems), rather than two individual 

constituents, of a system {e.g. blocks of spins in a ID chain, rather than individual spins). In 

models studied so far, the entanglement establishable between two subsystems has no reason 

to differ from that of two individual parts; however, by performing local measurements on a 

qudit singlets, a larger amount of entanglement can be established in this way. Suppose th a t 

Alice and Bob each hold n  qudits of an N-singlet. By measuring the remaining qudits, they can 

establish a 2n-singlet between them. This is equivalent to sharing a maximally-entangled state 

of dimension D  x D  (where D  := (2̂ ) )  or logD  EPR  singlets [189], since the 2n-singlet can be 

written in a Schmidt decomposition of (2”) terms of equal amplitude (see figure 8.1), and upto 

local unitaries this is equivalent to YliL i N) H) / V D . Thus the localisable entanglement of qudit 

singlets (when the notion is generalised to two subsystems) can be much larger in comparison 

to those systems studied so far.

8.2 Persistency of entanglem ent

An important consideration from a practical point of view is the ease of destroying the entan­

glement present. This can be quantified by the persistency of entanglement

D efin itio n  24 (P e rs is ten c y  o f  e n ta n g le m e n t [43]). For a state  of N  qudits, the persistency
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Figure 8.1: Two subsystem localisable entanglement. Here, Alice and Bob have access to 

the boxed qudits. By performing arbitrary measurements on the other qudits (in random  

directions), they can establish a 6 -singlet between them.

of entanglement P  is defined as the minimum number of local von Neumann measurements 

such that, regardless of the measurement outcome, the state is completely separable. For a 

pure state, it is clear th a t 0 <  P  < TV — 1.

This quantity may be used to model an environment th a t interacts with a system through 

random, local measurements. Since the  establishment of successively smaller singlets is inde­

pendent of both the basis choice and outcome, it is easy to see that TV — 1 measurements always 

need to be performed to completely disentangle the state (there is no way to optimise the basis 

to reduce this number). Thus these states have the highest possible persistency of an TV-partite 

state (for comparison, the multi-qubit cluster, GHZ and W  states have persistencies [TV/2J, 1 

and TV — 1, respectively [43]).

8.3 Block entropy

I shall briefly mention the scaling of the block entropy. As mentioned in Section 5.4, this is 

the entanglement of a block of spins with the remainder of the system. By taking a Schmidt 

decomposition across an arbitrary partitioning of qudits, one can see th a t the block entropy of 

this state  is log ( ^ ) . This is in contrast to the usual behaviour for gapped systems, where the 

entropy is usually proportional to the block’s ‘area’, and to the case of gapless spin chains in 

ID where it is proportional to log L.

This suggests th a t the state does not admit an efficient matrix-product state decomposition; 

Vidal’s criterion [241] for efficient classical simulability is th a t the number of param eters does 

not scale any faster than log TV (where TV is the number of subsystems) when more subsystems 

are added. This suggests th a t these singlet states may have some use in solving nonclassical 

problems, although this remains an open problem.

8.4 M ultipartite entanglem ent

As we have seen, qudit singlets may be used to distribute a large amount of entanglement 

between two parties, but what is the nature of this entanglement? Is the sta te  genuinely
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m ultipartite entangled, or is producible from bipartite entanglement alone? Here I shall show 

th a t a singlet of TV parties and TV levels is indeed TV-partite entangled.

A natural first step in understanding multipartite entanglement would seem to be to attem pt 

to.extend the Schmidt decomposition to an arbitary number of systems. Such a generalisation 

does not really exist: one can take a similar decomposition, but the number of term s is not the 

minimum of the dimensions of each subsystem. However, one can write an TV-partite state  in 

the form

R

1̂ )  = X )c £ |* 1 >"-Kjv)» (8-2)
i— 1

and define a quantity called the Schmidt measure Ps [74], which quantifies the minimum number 

of product terms required to expand the state: Ps =  log mini?. However, this measure is, in 

general, very difficult to compute. More importantly, it does not quantify genuine m ultipartite 

entanglement: it only distinguishes entangled and completely separable states with respect 

to a particular partioning of subsystems. In order to use it to make statem ents regarding 

m ultipartite entanglement, one must compute this quantity with respect to every possible 

partition of the s ta te’s subsystems.

Instead, I shall take here a different, but related, approach. The approach is strongly related 

to the iterative method first used by Diir et al. [70] to show the existence of two different types 

of tripartite  entanglement (the so-called GHZ and W  states), and also the more recent work 

by Lam ata et al. [153, 154] to rederive the same result from a slightly different perspective.

Imagine taking a bipartition of an TV-partite system, with one part being a single spin or 

qudit (a d-level quantum system), and the other being the remainder of the system. One may 

write a bipartite Schmidt decomposition for this state. If the state is separable with respect 

to this partition, the Schmidt number (equivalently, the rank of the reduced density m atrix of 

either subsystem) will be unity; otherwise, it will be an integer greater than or equal to two. 

If all such bipartitions of the state into a single subsystem and the remainder have rank unity, 

then the state is fully separable: one need not investigate the entanglement properties of the 

state further.

If there exists a t least one such bipartition for which the Schmidt number is greater than 

unity (equivalently, the von Neumann entropy of either part of the partition is greater than 

zero) then the state has some degree of entanglement present. However, a t this stage one cannot 

state whether this is bipartite, tripartite, or generally n-partite, entangled; all th a t can be said 

is that this state contains ‘a t least’ bipartite entanglement with respect to this partitioning. It 

may be 2-producible (i.e. it may be produced from bipartite entanglement alone), or it may be 

Ar-producible (i.e. it may be produced from fc-partite entangled states, where 2 <  k  <  TV).

Using the information obtained thus far, one can ‘discard’ those subsystems th a t are not
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entangled with the remainder of the system (those with reduced density matrices of rank unity) 

and investigate these no further. Now take a further bipartition of the remainder of the state, 

with part A  containing two subsystems, and part B  the remaining, entangled subsystems. 

Again, one can find the rank of this decomposition. If it is unity, then the two subsystems 

in part A  of the decomposition are bipartite entangled. This can be repeated with part B, 

by considering all possible bipartitions into two subsystems and the remainder. This method 

can be iterated, taking all bipartitions with one part containing n  subsystems, increasing n  

incrementally, until all partitions with larger subsystems give separable states. The system 

may be said to contain between n \-  and 712-partite entanglement, where n \  is the smallest 

value of n  giving rise to bipartitions with Schmidt number unity, and + 1  the value for which 

all bipartitions containing ra2 +  1 subsystems in one part of the partition have rank unity. It 

must be said th a t this m ethod will, for general states, be very laborious. One might expect 

it to be intractable for large N  in the light of the fact th a t deciding whether or not a state is 

separable is computationally intractable [100, 101, 131]. However, clearly for highly symmetric 

states the number of partitions to be taken is greatly reduced.

One may thus use the Schmidt number of bipartitions to detect genuine m ultipartite entan­

glement. However, this m ethod merely detects whether the entanglement in a particular state 

may be made up of smaller entangled states, and their size; it does not detect which entan­

glement class the state belongs to. As stated by Diir et al. [70] there are, in fact, an infinite 

number of entanglement classes for systems of more than four particles, even for a given pro- 

ducibility—since the number of param eters that need to be changed in order to transform one 

state in to another grows exponentially with the number of subsystems, whereas the number 

of parameters used to describe an invertible, linear operator (these correspond to stochastic 

operations and local communications) grows linearly.

W hat may be said of the nature of the entanglement in multilevel m ultiparty singlets using 

this method? Fortunately the state is highly symmetric, making the investigation considerably 

simpler. In fact, since the singlet may be written in terms of smaller ones (due to the perm uta­

tion group S n - i being a subgroup of S n ), one may perform the argument by iteration, in the 

spirit of the work by Lam ata et al. [153, 154]. One begins by writing the N-singlet as

sJf’w) = -4 E(-)i+1 Mi N.
One can show th a t this is the smallest Schmidt decomposition across the 112 . . .  N  partition by 

taking the single-valued decomposition with respect to the coefficient m atrix as split between 

sites 1 and the remainder [114, 153, 154]. Thus the state is maximally-entangled across the 

split 1|2 . . .  N , since the state  is supported in <CN on both sides of the split and so the maximal 

Schmidt rank is N . The crucial observation here is th a t if the (N  — l)-singlet ISat-i) is (N  — 1)-
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partite entangled, then so is the TV-singlet, since the number of subsystems entangled can not 

decrease with the addition of another subsystem, and the new subsystem is entangled with 

the remainder. So, if the (TV — l)-singlet is (TV — l)-partite  entangled, the TV-singlet is TV- 

partite entangled However, we know th a t the 2-singlet is bipartite entangled, and therefore by 

induction on TV, all TV-singlets are TV-partite entangled.



Part V

Physical realisation 

of antisymmetric states
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In this part, I  shall review the Hubbard model, and briefly discuss its importance in both condensed 

m atter physics and the growing field of ultracold atoms. I  shall go on to show that in a particular regime 

of this model in one spatial dimension, it effectively becomes a permutation Hamiltonian, and thus its 

ground state is the qudit singlet considered in Part IV.

This Chapter is based on the work published in Reference [103].



Chapter

Permutation Hamiltonians

In this Chapter, I  shall briefly introduce permutation Hamitonians, and show that they may be 

considered a generalisation o f the Heisenberg model. I  shall then go on to prove that the qudit 

singlets studied in the previous Chapter arise naturally as the ground states o f this Hamiltonian.

9.1 The H eisenberg and perm utation Ham iltonians

The familiar isotropic Heisenberg Hamiltonian (<r% • <rJ ) acting on two qubits i, j  is equiva­

lent (when the two-qubit identity operator is added) to the permutation operator Pij. The 

natural generalisation of this Hamiltonian for d-level systems is a sum of perm utation oper­

ators Pij [227], For a general network of qudits (some arrangement of qudits connected by

permutation operators) one may use the language of graph theory and ascribe a finite graph 

G  {V(G), E(G )}, where V (G ) denotes its set of vertices and E(G ) its set of edges—if ( i , j)  

are adjacent vertices, ( i , j )  € E(G ). At each vertex we associate a d-level Hilbert space. I 

shall avoid the term  lattice a t this stage, since this implies a regular arrangement of qudits; the 

following results hold for more general networks, making graph theory the natural description. 

The Hamiltonian is then written

H =  £  JilPii- (9-1)
i , j eE( G)

The operator
d

Pij =  £  S i( i )S $ ( j )  (9.2)
a , (3=1

permutes the states of the Hilbert spaces at vertices i and j ,  where {Sp(n )}  are the generators 

of the group SU (d) at vertex n  satisfying the algebra

[s£(m ), S '(» )]  =  C  {«£S?(n) -  ^ S £ ( n ) } , (9.3)
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where the indices a, (3 refer to  the state  labels, and the operator S ^ (n )  destroys the sta te  (3 

and creates a  at the vertex labelled n. As noted in Chapter 4, an im portant point is th a t 

the generators of SU(d) may be constructed from either fermionic or bosonic creation and 

annihilation operators, Sp{n) = c\{n)cp{n). There are thus many potential realisations of such 

a Hamiltonian (this will be discussed in Chapter 10).

9.2 Qudit singlets as ground states

The ground state of quantum  spin chains are generally very hard to find. For the perm utation 

Hamiltonian

H =  Y .  (9-4)
i , j eE( G)

the solution is, in general, very complicated, and requires the use of the Bethe ansatz [227]. 

However, as with most physical systems, there is a particular regime of the model th a t can be 

solved with ease. Specifically, this is the case where the number of vertices of the graph G  is 

equal to the number of levels a t each graph site i {i.e. if there are N  graph vertices, there is a t 

each graph vertex a Hilbert space of dimension N , and thus the whole state space is {(&N )®N ). 

I shall now provide a simple proof th a t the qudit singlet (7.1) arises as the ground state in this 

case, for all couplings Jij > 0  (antiferromagnetic); this proof relies on some straightforward 

lemmata.

L em m a 25. The lowest possible energy state of a permutation Hamiltonian has energy equal 

to that of an eigenstate of all {P ij\i,j  E E{G )} with eigenvalue —1.

Proof. By definition, the ground state  must minimise the energy {ip\H\ip). Now

min ('ip\H\'ip) >  V"* min (ip\ JijP a \ip). (9-5)

The smallest eigenvalue of P\j is —1, thus min {'ip \ P ^ \ xp) =  —1; it follows th a t

min {ip\H  \ip) > J^.  (9.6)

Equality exists for an eigenstate of all terms in the Hamiltonian {i.e. the set of operators

{Pij\i, j  € E{G)}) and if this state exists, it is the ground state. □

L em m a 26. I f  a state is an eigenstate of all operators in the set {P ij\i ,j  E E{G )}, it is an

eigenstate of all operators { P ij\i ,j  E [1, JV]}.
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Proof. Consider first a linear chain with nearest-neighbour permutations. Any other perm uta­

tion may be written as a product of an odd number of nearest-neighbour permutations, e.g.

P13 =  P23P12P23; (9 -7)

in general

Pl,k =  P l , k - lP k - l , kP l , k - l -  (9.8)

Thus an eigenstate of all nearest-neighbour permutations must also be an eigenstate of all 

possible permutations. This can be readily generalised to any connected graph, since any 

‘p a th ’ through the graph is equivalent to a ID chain of nearest-neigbour connections; thus any 

perm utation in any graph can be w ritten as a product of an odd number of nearest-neighbour 

permutations. □

T h e o re m  27. The ground state of a permutation Hamiltonian on N  N-level systems is an 

N-singlet.

Proof. The above lem m ata show th a t a state antisymmetric under all permutations is a valid 

ground state; since a qudit singlet for d = N  by definition satisfies this, it is a valid ground

state. It can easily be shown to be the unique ground state by assuming the existence of another

distinct ground state \<f>) 7  ̂ \ S ^ ) .  Being a ground state, |<f>) must minimise the to tal energy, 

leading to {(f>\ Pij 14>) =  —1 for all i , j .  This implies \<f>) =  \ S ^ ) .  This is a contradiction and 

thus there cannot be another ground state. □

Therefore, the completely antisymmetric state 7.1 arises as the ground state  of the anti- 

ferromagnetic Hamiltonian. W hat about the ferromagnetic case? In this regime, all couplings 

Jij <  0 ; following the argument of the above proof, the ground state  must be the completely 

symmetric state

5 wV)(a ) )  =  -^=y (9-9)
' {««}

i. e. the sum of all possible permutations, with a coefficient of + 1  in front of each term.



Chapter

Hubbard model

The permutation Hamiltonian considered in the previous Chapter may seem a natural extension 

of the Heisenberg Hamiltonian, or a natural Hamiltonian to consider when one has particles 

hopping around on an otherwise empty lattice. However, how does this Hamiltonian arise from  

already known physical models? In this Chapter, I  shall show how this Hamiltonian arises from  

a strong coupling regime o f the well-known Hubbard model, for the fermionic case, and briefly 

discuss how it can also arise in the bosonic case. I  shall first introduce the Hubbard model, then 

discuss the strong-repulsion limit, and finally discuss the preparation method for obtaining the 

singlet as the ground state in one spatial dimension.

10.1 Introduction

Recent years have seen much development at the interface of condensed m atter theory and the 

theory of ultracold atoms, and both fields have also been studied from the vantage point of 

quantum information. One of the central models in condensed m atter theory is the Hubbard 

model, with both bosonic and fermionic varieties. This model has many fascinating phases, 

and provides physicists with a way of understanding many physical phenomena, ranging from 

magnetism to superconductivity. Recent experimental demonstrations th a t one can imple­

ment a traditional condensed m atter model in optical lattices have provided physicists with 

the potential to simulate tailor-engineered ‘spin’ models [97, 232], opening up the possibilty of 

engineering systems suitable for quantum  computation.

It is already well-known [78, 8 8 ] th a t the Heisenberg Hamiltonian (ferromagnetic or anti­

ferromagnetic) may be obtained as an effective Hamiltonian in the strong coupling regime of 

the two-level Hubbard model (either fermionic or bosonic), a paradigm in condensed m atter 

physics [79] and more recently considered with ultracold atoms in optical lattices [69, 152].
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I shall in this Chapter extend this perturbation theoretic calculation to systems with larger 

number of energy levels, and show th a t the SU(d)-invariant permutation Hamiltonian may be 

obtained as an effective Hamiltonian in the strong coupling regime of the d-species Hubbard 

model Hamiltonian. The derivation given is for the fermionic case, but with the addition of 

a hard-core interaction, and fine tuning of the inter-species interactions, one may obtain the 

same result from the bosonic case.

10.2 The Hubbard m odel

The behaviour of individual particles in a quantum solid is incredibly complex. There are 

huge numbers of particles, interacting in myriad ways; a full description of their behaviour is 

intractable, both analytically and numerically. Fortunately, however, there are several sim­

ple approximate models serving to give physicists detailed insight into the behaviour of such 

systems. One of the simplest is the Hubbard model.

This model is named after John Hubbard, who published a series of articles introducing 

the Hamiltonian in order to describe the behaviour of electrons in narrow energy bands in 

condensed m atter systems [123, 124, 125, 126, 127, 128]. The original articles assumed th a t 

electrons moved around on a static lattice (formed by a regular distribution of ions). The 

dynamics of the N  electrons are given by the Hamiltonian

N (  ? \
H  = E  (  2 k  +  V' ( x <))  +  E  V c(*‘ -  x i ) ' (101)

i=l '  i ^ j

where V} is the periodic potential given by the ions, Vc the electrostatic Coulomb repulsion 

e2 /47reo|xj — Xj | 2 between the electrons, and p 2 /2m  the kinetic energy operator. By making 

a ‘mean-field’ approximation (assuming each electron moves in an ‘average’ field set up by the 

dynamics of the others) and second-quantising the equations, one ends up with the following 

Hamiltonian:

N

H =  tai j  ( c l i c °3 +  c l j c ° i )  +  U U  ^ 2  n 1 i n i i . (1 0 .2 )
(ij)  <7=T.l 1=1

The notation (ij) denotes th a t the sum is taken over some lattice (with ions localised a t its 

vertices), and the two possible spin states of the electrons are labelled with the pseudospin 

notation: f, j . The operator is the creation operator for the electron in sta te  a  a t lattice 

site i. The first term in the Hamiltonian (10.2), which I shall denote H 0, is the ‘hopping’ term, 

where is the hopping integral between lattice sites i and j  for species <7 ; and the second 

term, H i, is the on-site interaction, where t / j j  > 0. Full details of this derivation are given in 

the standard texts on the Hubbard model [79, 8 8 ].
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This is the original form of the Hubbard model, although there are now countless variations. 

The term  ‘Hubbard model’ is often used as a generic term for all such models. The importance 

of these models stem from their applicability to a variety of physical phenomena. One of the 

most relevant is to condensed m atter theory is superexchange. The standard exchange interac­

tion occurs when wavefunctions of atoms ‘overlap’, and the Coulomb interaction between their 

electrons, coupled with Pauli exclusion, causes an effective spin-spin interaction between the 

atoms, w ithout the spins physically interacting [33]. This wavefunction overlap is typically very 

short-ranged; however, on a lattice such interactions can be mediated over longer distances by 

virtual hopping processes. These are thus called super-exchange interactions, due to the longer 

range. These have recently been directly observed experimentally [232], and are the underly­

ing mechanism by which the Hubbard model can ‘simulate’ magnetic systems (including spin 

chains). Since these effective interactions are mediated by quantum tunneling (and influenced 

by particle statistics), such magnetism is often referred to as quantum  magnetism [206]. It has 

also been proposed by Anderson th a t these interactions may play an im portant role in high 

tem perature superconductivity [1 2 ], adding further interest to such models.

The bosonic version of the Hubbard model (the Bose-Hubbard model) has also been ex­

tensively studied, predominantly in the field of optical lattices [9, 32, 91, 132, 133]. Although 

fermions can also be studied in such systems, bosons are easier to cool for practical reasons, 

and thus the Bose-Hubbard model has itself become the focus of much interest a t the so-called 

‘interface’ between condensed m atter and atomic physics. Such systems offer great potential 

to realise many exotic phases of m atter, but also are a strong candidate for the realisation of a 

universal quantum computer.

10.3 Strong-repulsion: effective Heisenberg antiferromag- 

net

Before considering the d-species case, it would be instructive to review the well-known derivation 

of the Heisenberg Hamiltonian (5.1) from the strong-coupling limit of the two-level Hubbard 

model, as considered by Emery [78] and Fradkin [8 8 ]. A slightly different, but effectively 

identical, derivation for the fermionic case is given in the book by Essler et al. [79]; a generalised 

Schrieffer-Wolff derivation also gives the same result [69, 112].

Consider the standard one-band Hubbard model:
N

H  =  -  51 l ii ( Cl i C"j  +  4 j c<ri) +  Un J 2 n ^ n li- (10-3)
(ij) cr=T ,1 t=l

This model need not just describe the evolution of electrons, but may be used to describe the 

evolution of a two-species system encoded in internal energy levels of atoms located a t vertices
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in a network, labelled with ‘pseudospin’ notation: f, | .  The notation corresponds to th a t used 

in Equation (10.2).

W hilst the value of the interaction cannot really be tuned once the atom used to encode 

the ‘species’ has been chosen, the hopping integrals could fluctuate due to slight fluctuations 

in the inter-atomic spacing; therefore I shall allow for general hopping integrals Uj. I shall 

also allow for hopping integrals to vary for ‘up’ and ‘down’, in a similar manner to Kuklov 

and Svistunov [152] and Duan et a l [69]. The sum is taken over some network of N  vertices, 

each of which has a two-level system (a qubit) and {ij) denotes the set of lattice sites th a t are 

connected {i.e. qubits placed in these lattice sites interact).

The derivation takes place in the half-filled regime {i.e. there are no unoccupied sites, and 

no sites with doubly occupancy) in the strong coupling limit t y  for all {i.e. the

chemical potential has been tuned such th a t the number fluctuations have been eliminated, 

and the energy cost of leaving this subspace is very large). In this limit, Ho may be treated as 

a perturbation to H i and one obtains an expansion in terms of powers of tjj /  U .

Let |a) be any of the 2N states with every lattice site singly occupied by a spin (either up 

or down). Now H i |o) =  E i |a) and H  |^ )  =  E  I'l'} for any eigenstate |^ ) . Thus we can write

(E  -  H i) |¥ ) =  Ho |* > , (10.4)

which has the formal solution

(10.5)

( ia6 )a

where H i |a) =  E i |a), and P  =  I  — Y la |<*) (a l projects onto the space of perturbed states. 

Defining | ^ a ) as the solution of

l^a) =  lQ> + — Hi l^ Q) (10 7)

a n d a a := (a\Ho\'&) / { E —E i),  it is clear th a t |^ )  =  X)a aa |\I>a ). This gives a recursive relation

for | ^ a ) -  Iterating to first order, one obtains

I 'M  -  |a) + E  - H t 110 |a> (10 8)

=: |a) -  j j H „  |<*>. (10.9)

Since (a'li/olc*) =  0, this gives
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This is the same as the Schrodinger Equation for Hamiltonian H q = —H q/U , where H'0 is the 

effective spin-spin interaction. This can be shown by expanding H q/U :

H ' = - j j L = - Y  Y  tj2u L + ch Cai) ( clk c& + ch c^ ) • (10-n )
tt2 +ol ft
a" E E

<X,P= t,i (ij),(kl>

Upon expansion of the two parentheses, one must bear in mind the hard-core constraint: since 

we have assumed th a t the energy C/|| is very large, states with double-occupancy (with opposite 

pseudospin) a t any given lattice site will have an extra energy U relative to those with single­

occupation everywhere, and by assumption this is a large energy cost. States with the same 

pseudospin are forbidden by Pauli exclusion in the fermionic case; and can be neglected in 

the bosonic case by adding a large on-site interaction for particles of the same species (at this 

stage, this need not be ‘hard-core’ in the sense th a t the probability is strictly zero; as long 

as the probability of this is comparable to the probability of double-occupation of species of 

opposite pseudospin).

This constraint implies th a t if the operator (cpkcpi +  c^cp k j  moves a particle from site k 

to site I, the application of the operator (^aicaj  +  must either move it back, or more

a particle of the opposite pseudospin from I to k. Thus, upon expansion, one only keeps terms 

such th a t (i, j )  =  (k , I) or ( i , j )  =  (I, k).  This gives:

(i) {h i )  =  (M )

(Cai C<xj +  ( C/3iC#7 +  CA?'C/3i)

=  Ci i Ca j Cl i Ĉ  +  CL  C<*3C\ j CP \  +  Ci j C^ cp i C(3ĵ  +  c l j C g j c l j C f r  (10 .12)

d ou b le  occu p an cy  = ^ c ^ C/aic ^ c Qj double occu p an cy

=  £ { Ci i Cf3iCl j C aj  +  C p iC a ic l jC p j  } ; (10.13)

(ii) ( h j )  =  ( l , k )

( CL C<*j +  C^ajCai^ (yC\ j CPi +  c j?icA7')

= C\iCctjc\jCpi + clica j4 iCPj + C1 + Cl j C*iCpiCM (10-14)
= £ c L c/9i c 0 3 c <*} dou ble occu p an cy  double occu p an cy  = 4 c ^ c Qic U c ^

=  € { CL  cPjcl i Caj  +  c\ j cccic\jcp i} ; (10.15)

where £ denotes the particles statistics (£ =  T l  for bosons, £ =  — 1 for fermions1). This thus

1This allows the bceonic com mutation relation \ca {, c ^ ]  =  &ij&ap and the fermionic anticom m utation relation 

{C ai,c^ .} =  8ij6a p to be written together as cU c^ j -  ^c^.cai — SijSa p.
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gives the effective Hamiltonian

H ' =  - j f -  =  -  2^ tij ( c L ^ ^ + c ^ c ^ )  (10.16)
<*,/3=T,l (ij)

= -  Yl cl*chc«i- (1<U7)
a .^ =T .l (ij)

For the case of isotropic couplings (t]j — t ^ )  this is in fact the two-body, two-level exchange 

operator [227], which is equivalent to the spin-1/2 Heisenberg Hamiltonian (5.1) (when the 

identity operator is added). The identity term  may be neglected, since this just adds a constant 

to the ground state energy, and the remaining Hamiltonian is

(10.18)
(ij)

with exchange couplings =  4££?•/!/. It is clear th a t the bosonic case gives the ferromagnetic 

regime, and the fermionic case the antiferromagnetic regime. The bosonic case may also be 

shown to be equal to the ferromagnetic Heisenberg Hamiltonian, if one allows for general 

species-dependent tunneling integrals, and adds a hard-core interaction [69, 152] (the above 

derivation assumed th a t the on-site repulsion was large, but not neccessarily ‘hard-core’, and 

gave the ferromagnet for the bosonic case). W ithout this extra term, and with isotropic cou­

plings, the bosonic case gives the ferromagnetic counterpart to the above Hamiltonian.

As previously noted by Duan et al. the ability to simulate the full range of Hamiltonians 

(both ferromagnetic and antiferromagnetic) with bosons alone is im portant, since bosonic atoms 

are generally easier to cool in an optical lattice [69].

10.4 Strong-repulsion: d-species perm utation

It is straightforward to extend the above analysis to an SU(d)-invariant perm utation Hamil­

tonian. As previously mentioned, such a Hamiltonian may be considered a generalisation of 

the Heisenberg model, where the Pauli matrices are replaced with the generators of the group

SU(d). As we have already seen, such a Hamiltonian may be written (allowing for general

couplings)

H =  (10.19)
(ij)

The sum is taken over some network of qudits. Generalising the Hubbard Hamiltonian (10.3) 

to a model allowing for d species gives:

d
T i p i . ( 10 .20 )

o’—1 i  a ^ a r
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We continue to consider the model in the limit U t^ , this time in the 1 /d-filling regime (to

The Hubbard model has been used to describe many physical systems; the regime relevant 

here is realisable with ultracold atoms in optical lattices. Two-level atoms a t 1/2-filling realise 

the Heisenberg model [152], and atoms with d degenerate levels—e.g. d hyperfine levels [174] 

where d =  10 is routine with 40K [149] and much higher d is possible with Er [164]—can 

realise the perm utation Hamiltonian. The fermonic case is straightforward: as shown above, 

isotropic couplings suffice to realise the permutation Hamiltonian. The bosonic case, however, 

requires the addition of a hard-core repulsion (to completely eliminate double-occupancy), and 

careful tuning of species-dependent tunneling integrals, since the isotropic case in the bosonic 

regime gives the ferromagnetic permutation Hamiltonian, rather than the a rdz-ferromagnetic 

Hamiltonian.

To prepare the singlet, a d-site optical lattice is first loaded with d-level atoms in the 

translationally-invariant state  | l ) <g)d (with all tij ~  0). An inhomogenous B -field coupled to 

the hyperfine levels is applied to select this as the unique ground state within the 1/d-filling 

regime and to allow parity to be broken in the subsequent evolution. The ratios U j / U  are then 

increased adiabatically (the standard method for ground state preparation in optical lattices

[97]) to reach finite, but small tij <C U (still in the M ott insulator regime); similarly the 13-field 

is slowly tuned to zero. The system ’s state  evolves to the final ground state: the singlet.

ensure single-site occupancy). The analysis continues analogously to the spin-1/2 case, but the 

effective Hamiltonian in the case of isotropic tunneling integrals (£7. =  t ^  for all a) is now

« '=  -  £  E  - j f  C ^ C ^ C a i ,  (10.21)
(3=1 {ij)

which is exactly the exchange Hamiltonian (10.19) required, for fermions (£ =  —1) or bosons

10.5 Preparation of qudit singlets in ID
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Chapter

Summary

In this thesis, I have made a very modest contribution to the field of quantum  information 

theory by studying the entanglement extractable from several many-body systems, and the 

properties of the entanglement naturally present. I have listed below the main results of each 

section of the thesis.

Part II: E xtraction  o f  en tan glem ent from  dynam ics

For entanglement to be useful as a resource, it needs to be shared between laboratories separated 

by large distances. In this section, I proposed a scheme to extract entanglement through the 

natural dynamics of a system of coupled three-level quantum systems. The interactions between 

nearest-neighbours creates entanglement, which then propogates through the system, and is 

extracted through local measurements.

This work is published in Reference [104].

Part III: E xtraction  o f  en tan glem ent from a single specim en

The amount of entanglement present in a physical system is often quantified with respect to the 

number of EPR-singlets it can be converted into, in the asymptotic limit. However, in realistic, 

physical scenarios one often only has access to a single-copy of a physical system. How much 

entanglement can be extracted from a single specimen, and how is this related to the amount 

of entanglement accessible in the asymptotic limit?

In this section, I introduced the formal definition of the single-copy entanglement, and 

showed th a t for paridgmatic Affleck-Kennedy-Lieb-Tasaki chain, the single-copy entanglement 

is equal to the von Neumann entropy in the thermodynamic limit, in contrast to the case of 

gapless chain close to criticality.

This work is published in Reference [102].

I l l



112

Part IV: A n tisym m etric  sta tes

In this section, I considered a specific m ultipartite state with a high degree of symmetry un­

der the perm utation of its subsystms. I showed th a t local measurements on some of these 

qudits project the unmeasured qudits onto a smaller singlet, regardless of the choice of mea­

surement basis a t each measurement, and the outcome of that measurement. It follows th a t 

the entanglement is highly persistent, and that through local measurements, a large amount 

of entanglement may be established between spatially-separated parties for subsequent use in 

distributed quantum  computation.

This work is published in Reference [103].

Part V: Physical realisation  o f  an tisym m etric sta tes

In the section, I review the Hubbard model and its importance in many-body physics, and 

showed th a t in a particular regime of this model in one spatial dimension, it effectively becomes 

a permutation Hamiltonian, and thus its ground state is the qudit singlet considered in P art 

IV.



Chapter J_  ____

Open problems

Following on from the work in this thesis, a number of open problems present themselves; all 

these avenues for future research lie within the broader area of symmetry and entanglement of 

many-body systems.

Single-copy en tan glem ent

The behaviour of the single-copy entanglement for gapped systems remains an open problem, 

and the initial motivation for studying the single-copy entanglement of a bipartition of a valence 

bond solid was as a first step in obtaining a more general statem ent regarding the relationship 

between this quantity and the presence of absence of a gap in the energy spectrum. An im­

mediately apparent problem, then, for future work is to extend this analysis to general gapped 

systems; presumably this would be done through the formalism of matrix-product states.

Since gapped systems are particularly amenable to efficient classical simulation through 

matrix-product states, it would appear th a t there would thus be an indirect relation between 

the simulability of a given state and its single-copy entanglement.

Im plem entation  o f  th e  p erm utation  H am ilton ian  in  optical la ttices

In P art V, I showed th a t the perm utation Hamiltonian can be obtained from the Hubbard model 

in the strong-coupling limit, in principle. However, it is unclear whether this is physically 

realistic, given current experimental technology. In future work, I would like to explore the 

feasibility of this implementation, especially in the light of recent observations of superexchange 

interactions in optical lattices. The fact th a t these states can be used to encode many qubit 

states is decoherence-free subspaces suggests th a t one could implement a quantum  ‘memory’ in 

an optical lattice, if one had the ability to generate such states.

Sym m etry in  m any-body system s and en tanglem ent classes

The qudit states studied in P art IV are highly antisymmetric, and one of my aims for future
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research is to obtain a deeper understanding of this symmetry, and th a t of related states. In 

particular, I wish to explore the connection between symmetries present in physical states of 

many-body systems, the entanglement class to which th a t state belongs, and its robustness to 

environmental noise (modelled by local measurements).

U se o f  m an y-b od y  sy stem s as a resource for quantum  com putation

A fruitful avenue for future research is to find out what physical states th a t are already known 

may be used for such measurement-based quantum computation. The qudit singlets might 

be useful as a potential resource, since they do not admit an efficient classical approximation 

(according to Vidal’s criterion [241]). I wish to understand whether this is indeed the case, and 

whether there is a connection between the per mutational symmetry of a given state, and its 

power as a com putational resource.

I intend the central themes of my future research to be

•  to quantify the am ount of entanglement occurring in physical systems, particularly with 

the aim of sharing entanglement over large distances for subsequent use as a communica­

tion or computational resource;

•  to see whether the study of such entanglement may be used to understand the structure 

of such states, and provide any physical insight;

•  to find out what sort of state interesting in quantum information theory may be feasibly 

generated in regimes of well-known physical models, particularly in systems of ultracold 

atoms;

•  to understand the connection between the symmetry of a physical state, its physical 

properties, and its interest in quantum  information theory.
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Appendix a :

Spin coherent states

The coherent state  for oscillators [19, 218] is defined in term s of the number basis (|n)} thus:

|a) =  —̂ =e~la l / 2 exp(aa l)  |0 ) ; (A .l)
v 7r

this is defined to be an eigenstate of the annihilation operator a. By anology, the spin coherent 

state [192] is defined to be an eigenstate of the spin raising operator 5+ thus:

M  =  (i_jq ^ |2 )2g exP(^5 - )  \s , s >, (A.2)

where 15, m) is the spin sta te  with S2 =  5 (5 + 1 ) and S z — m , and fi is a param eter. Parametriz­

ing this with pi =  tan  9/2  gives

|1 2 ) = ^ c o s ^  exp tan  ^ e,^5_ |  |5 ,5) (A.3)

/  0 \ 2S ™ m!(25)!
=  { m 2 j  ? ( t a n 2 j  m! V ( 2 5 ^ m ) [  $  ~ m ) (A.4)

m —0

=  £  ^  
m ——S  V '

where the state is now denoted |f2) to make it obvious th a t there is a geometric interpretation: 

each state defined by (0, <f>) is equivalent to a point on the unit sphere. In the last fine I have 

used the definitions (u ,v ) — (e1̂ 2 cos(0/2), e-1^ /2 sin(0/2)).

We thus have

<n|S , m )  =  , /  ( S 2+Sm (A.6)

Comparing this to the Schwinger boson representation

|S , m > =  ( £ 0 ^ , 0 ) ,  (* .7)
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we see th a t one can replace the operators a* and by the numbers u and v, respectively, and 

multiplying by y j (25)! when they occur in pairs.

Note th a t these states form an overcomplete set, and have the following completeness rela­

tion:

f  dft |Cl) (fi| =  I  (A.8)
47r J

In this representation, for any operator A

(A) = f  d n  (n\A\n) . (A.9)
47T J

Further properties of this state are given in Reference [192].
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