
REFERENCE ONLY

UNIVERSITY OF LONDON THESIS

Degree Year Name of Author ^ ^ '

\

COPYRIGHT
This is a thesis accepted for a Higher Degree of the University of London. It is an
unpublished typescript and the copyright is held by the author. All persons consulting
the thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author and
that no quotation from it or information derived from it may be published without the
prior written consent of the author.

Theses may not be lent to individuals, but the Senate House Library may lend a copy
to approved libraries within the United Kingdom, for consultation solely on the
premises of those libraries. Application should be made to: Inter-Library Loans,
Senate House Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written
permission from the Senate House Library. Enquiries should be addressed to the
Theses Section of the Library. Regulations concerning reproduction vary according
to the date of acceptance of the thesis and are listed below a s guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the
author. (The Senate House Library will provide addresses where possible).

B* 1962 -1974 . In many cases the author has agreed to permit copying upon
completion of a Copyright Declaration.

C. 1975 -1988 . Most theses may be copied upon completion of a Copyright
Declaration.

D. 1989 onwards. Most theses may be copied.

This thesis comes within category D.

has been deposited in the Library of .

This copy has been deposited in the Senate House Library, Senate House,

LOANS

Malet Street, London WC1E 7HU.

C:\Documents and Settings\lproctor\Local SettingsNTemporary Internet Files\OLK8\Copyright - thesis (2).doc

The Expectation Violation Analysis
Framework:

The analysis and evaluation of interesting
news by means of inconsistency with

expectations

Emma Louise Byrne

Department of Computer Science
University College London

PhD
October 2005

UMI Number: U591691

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U591691
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

Large volumes of news are available around the clock and around the world. It is increasingly
difficult to sort interesting from uninteresting news. Information filtering and retrieval have ad
dressed this problem by comparing lexical information in documents with a query or profile of
user’s interests. However, this approach does little to address the fact that the most interesting
news is usually that which is unexpected. This thesis presents a framework that addresses this
problem by reasoning about the information in reports, comparing it with the general knowledge
of background information and expectations. This framework makes it possible to identify and
rank unexpected, and therefore interesting, news.

The Expectation Violation Analysis (EVA) framework presented here draws reasoned conclusions
as to why the information in a report is or is not interesting. The EVA framework contains a set
of background knowledge and a set of expectations which represent the usual state of the world.
When a report contains information that contradicts this knowledge and these expectations then
that report contains information that is of interest.

This thesis demonstrates that the EVA framework supports the development of a system that rates
news reports for interest together and explains why the report was considered unexpected.

This thesis also shows that the set of all expectations is very large. It is demonstrated that the
strength of expectations is related to the implication order of the antecedents and consequents of
those expectations. A method for generating expectations based on news reports and background
knowledge is presented, as is empirical work that indicates the approach is plausible. Also pre
sented is a novel extension to the event calculus that permits reasoning about missing states.
These extensions support the development of expectations and background knowledge that make
it possible to reason about time.

Acknowledgements

I would like to acknowledge the help and guidance of my supervisor, Dr Tony Hunter, without
whom this research would not have been possible. I would also like to thank Professor Janet
McDonnell and Professor John Washbrook for their help and their invaluable and inspiring com
ments.

I would like to thank my colleagues at UCL who have been so instrumental in my progress,
whether as sounding boards, sources of interesting references or, not least, moral support. Among
these I would like to single out Dr Simone Stumpf for her unfailing encouragement, and Robert
Bowerman for his insightful critiques of my developing work. Last, but never least, my heartfelt
thanks to my husband, Dr David Comey for guidance on machine learning, text mining, thesis
writing, and for having my dinner on the table after many a long day’s writing up.

This work was supported by EPSRC grant (GR/R22551/01) Logic-based Technology for Mea
suring Inconsistency of News Reports.

Emma Byrne
June 2005

1

Contents

1 Introduction 6

1.1 The challenge of identifying interesting n e w s ... 6

1.2 The nature of in terest.. 7

1.2.1 A combined view of in terest... 9

1.3 Interest and the Expectation Violation Analysis framework................................. 11

1.4 Introduction to the th e s is .. 11

1.4.1 Publications.. 14

2 Knowledge in the EVA Framework 16

2.1 Introduction... 16

2.2 Basic definitions... 17

2.3 Representing news reports in first order logic .. 18

2.3.1 Structured news reports... 19

2.3.2 News atoms and access ru les.. 21

2.4 Background knowledge... 23

2.4.1 Domain f a c ts .. 23

2.4.2 Domain ru le s .. 24

2.4.3 The event m o d e l .. 25

2.4.4 Representative s e ts ... 27

2.5 Expectations about n e w s ... 28

2.6 An example user interface for an EVA system .. 29

2

2.7 Discussion of Chapter 2 ... 31

3 Expectations in the EVA Framework 32

3.1 Relationships between reports, background knowledge and expectations 33

3.2 Measuring expectation strength.. 38

3.3 Types of violations of expectations... 42

3.3.1 Cohort violations of expectations ... 43

3.3.2 State dependent and state independent expectations.................................. 45

3.3.3 Uninteresting violations of expectations.. 46

3.4 Compilation of consistency checking.. 52

3.5 Discussion of Chapter 3 ... 54

4 The set of expectations 56

4.1 Marker formulae and expectations... 56

4.2 Values and the set of expectations ... 59

4.2.1 Antecedent order and expectation values.. 59

4.2.2 Consequent order and expectation v a lu e s ... 61

4.2.3 Expectation order and expectation v a lu e s ... 62

4.2.4 Special case expectations.. 70

4.3 Reducing the information held on the set of expectations..................................... 72

4.4 Conclusion to Chapter 4 .. 78

5 Generating working expectations 80

5.1 The set of working expectations.. 81

5.2 Algorithms for the generation of working expectations.. 84

5.2.1 Data structures... 85

5.2.2 Functions used by the working expectation generator............................... 87

5.2.3 The process of generating the set of working expectations 98

5.3 Conclusion to Chapter 5 ...102

3

6 Simulation of the working expectation generator 106

6.1 Definitions and methods ...108

6.1.1 The representative set generator...108

6.1.2 Predicate symbol distributions..110

6.1.3 Measures of convergence: recall and p rec is io n ...116

6.1.4 Testing the working set genera to r..119

6.1.5 Artificial representative s e t s ...123

6.1.6 The effect of knowledge representation on the predicate distribution . . . 124

6.1.7 Predicate symbols distributions in the Reuters and Economist corpora . . 125

6.1.8 The effect of other distributions...127

6.2 Simulation 1: Measuring convergence in the set of working expectations................ 128

6.3 Simulation 2: Determining the effect of using fewer representative se ts 130

6.4 Simulation 3: Determining the effect of a more expressive language135

6.5 Simulation 4: Favouring conjunctive expectations.. 138

6.6 Discussion of Chapter 6 ..140

7 Narratives in EVA 143

7.1 The situation calculus and the event calculus.. 144

7.2 The event calculus and the EVA fram ew ork.. 146

7.2.1 State rules and state m o d e ls 147

7.2.2 State m o d e ls ...149

7.3 Events and the event m odel... 152

7.3.1 Combining events records with the state m o d e l.....................................153

7.4 Using an event m odel.. 154

7.5 State interpolation.. 155

7.6 An example event model for the business d om ain ..165

7.7 Discussion of Chapter 7 ... 168

8 Existing Research Findings and their Relevance to EVA 170

4

8.1 The EVA framework contrasted with information management.............................. 171

8.1.1 Information retrieval... 172

8.1.2 Information content filtering . . . 175

8.1.3 Collaborative filtering .. 176

8.2 The EVA framework versus methods of identifying novelty and interestingness . 177

8.2.1 Topic Detection and T rack ing ...178

8.2.2 General Impressions... 178

8.2.3 Deviations .. 179

8.3 Techniques investigated for use in the EVA fram ew ork.. 180

8.3.1 Wider results concerning the measure of inconsistency................................180

8.3.2 Information th eo ry ...181

8.4 Working expectations generator versus machine learn ing183

9 Conclusions and Discussions 185

9.1 Discussion..185

9.2 Areas for further research..187

9.3 Contributions... 189

A Key definitions 191

B List of Sets and Symbols 193

5

Chapter 1

Introduction

The number of news reports published online is now so great that it is impossible for any person
to read all of them. Not all of these reports are equally interesting. Automating the identification
and evaluation of interest in news is therefore a potentially valuable goal. For the purposes of
this thesis, interesting news is that which is contrary to expectations. In the Expectation Violation
Analysis (EVA) framework proposed in this thesis, expectations, news reports and background
knowledge are represented by logical formulae. These three sets of knowledge are at the heart of
the EVA framework.

The overall goal of the research presented here is to formalise the EVA framework and in par
ticular to define notions of interestingness, analyse the set of expectations, propose a method for
generating expectations and explore a method for reasoning about time. The current study is re
stricted to the domain of business news, but the solution proposed can be adapted to any news
domain for which a set of expectations can be generated and that is sufficiently restricted such
that a body of background knowledge can be collected.

This introductory chapter examines why the identification of interesting news is a useful goal and
why it presents a particular problem. It then examines several different notions of interest. Finally
it outlines the contribution this research will make and the structure of the thesis.

1.1 The challenge of identifying interesting news

Much has been done to address the problems of information overload. Information retrieval and
information filtering are two well known approaches, for example. However, news reports present
a unique challenge: news reports are, by their nature, frequently updated and their interest value
is short lived; news is often most interesting because it is unexpected and news is also heavily

6

context dependent, that is, the assumption is made that the reader has knowledge of the entities
involved in and the historical context for the events described.

Current methods for dealing with information overload such as information retrieval and infor
mation filtering (IR/IF) [BC92] work by looking for documents that are relevant to keywords in
a query or a profile. These approaches work well for most bodies of information, but keyword
filtering has two main drawbacks with respect to filtering news:

• Keywords do not focus on the examination of the context of the report, that is, the terms
that are indexed come only from the document itself or meta-information that is explicitly
coded in the document or index. Related information from databases and other sources is
not usually examined. When analysing the interestingness of news, it is necessary to be
able to consider such background knowledge, as it forms the context for the report. For
example, a news report that details the activities of Marks and Spencer pic. may not state
that Marks and Spencer pic. is a British high-street retailer, listed on the sock exchange as
such information is held to be common knowledge. However, that same information may
be essential in deciding whether or not the news in the report is interesting.

• Keyword filtering does not address the unexpectedness of information. Keyword searches
match terms in a report without requiring any deeper understanding of the expected be
haviour of entities in the real world. As a result, these systems do not decide whether the
news in a report is unexpected. For example, news of a large utility company, such as
Enron, going bankrupt is (or was) unexpected. It would be necessary to formulate key
word searches that matched a variety of unexpected situations, in order to identify such
behaviour. To do so is problematic in the light of the variety of unexpected, and often un
thinkable, possible events.

The unique features of news reports demand a special approach for identifying and explaining
their interestingness. Such an approach should take into account the context of the report and
expectations about the world. The EVA framework is such an approach.

In order to identify interesting news it is necessary to understand what interestingness is. The next
section presents the findings from several fields within computer science and cognitive science
and defines interest for the purposes of the EVA framework.

1.2 The nature of interest

To address the interestingness of news reports it is necessary to define what it means for a news
report to be interesting. Researchers in the fields of knowledge discovery in databases, machine
learning, machine creativity and cognitive science have explored the characteristics that make

7

information interesting. The first thing to note is that, whilst there is no agreement on a single
definition of interest, three features are common to most definitions:

1. Interest has what is sometimes referred to as an intrinsic component [Sch79, ST96]. The
intrinsic component is those items that are of interest to what Perelman and Olbrechts-
Tytecha [POT69] call the universal audience, an audience made up of hypothetical rational,
informed members. Interest also has what is sometimes called an extrinsic component, that
is, items that are of interest to a particular audience. For example: if my brother were
to declare bankruptcy, that would be interesting to me, as a particular audience, but of
little interest to the universal audience. In contrast, the news that Bill Gates had declared
bankruptcy could be considered interesting to the universal audience.

2. The second common feature is that there is an ordering over interest: it is possible to define
some things as more interesting than others.

3. Finally, there is agreement that interest is at least partially due to the unexpected nature of
the interesting object or, at the very least, things that are expected are not as interesting
as things that are unexpected. This is related to the information theory notion that news of
something improbable has more “information value” than news of something probable.

Interest is a notion of use in knowledge discovery in databases (KDD). KDD is the process of
identifying potentially useful new patterns in data. However the number of patterns generated is
often too great to be assessed effectively by the user. Interestingness measures have been intro
duced as a way of reducing the number of patterns presented to the user. In [ST95] and [ST96]
Silberschatz and Tuzhilin recognise that interest has both an intrinsic component and an extrinsic
component. Silberschatz and Tuzhilin subdivide extrinsic interest into actionability (whether the
information is of use in relation to the desires and intentions of the user) and unexpectedness
(whether the information is inconsistent with the beliefs of the user). To illustrate: news that in
terest rates are going up, thus making one’s mortgage more expensive is actionable, by means of
paying off one’s mortgage, or selling one’s home, even if it is not unexpected. In contrast, the
abdication of Queen Elizabeth II in favour of Prince Charles would be unexpected but, for most
of us, not actionable.

A different perspective, that of Piatetsky-Shapiro and Matheus ([PSM94]), is that interest is due to
the ‘novelty, utility, relevance and statistical significance’ of the discovered knowledge. Novelty
is closely related to the notion of unexpectedness, as, for information to be unexpected, it must
be novel. Statistically significant information is defined as numerical data that is deviant from
the usual range, and therefore unexpected. Relevance and utility are closely related to the notion
of actionability: for information to lead to action related to the user’s desires and intentions, the
information must be relevant to those desires and intentions and must also be useful in informing
that action in some way.

8

The idea that interest is at least in part due to unexpectedness or surprisingness is also reflected
in results from the field of cognitive science. The findings support the hypothesis that a report
is significant to users both because of that report’s general appeal (intrinsic interest) and the
user’s own beliefs, desires and intentions (extrinsic interest). The cognitive science literature also
supports the notion of degrees of interest. Schank addressed the notion of unexpectedness and, in
[Sch79], proposes that unexpected events are interesting and that “things are interesting in direct
proportion to their abnormality”. However, Schank’s notion of a degree of interest is informal and
no measures are suggested.

One of the differences between intrinsic and extrinsic unexpectedness is the notion of the audi
ence. Intrinsic unexpectedness relates to what would be unexpected for a hypothetical universal
audience. Assuming that such an audience could exist, the expectations that they hold can be ap
proximated by the objective probability of an event’s occurrence. In contrast, extrinsic unexpect
edness is based on the particular audience’s subjective reckoning of the normality of an event’s
occurrence. A person’s expectations about what is normal are influenced by cognitive noise, that
is, any cognitive effect that accounts for some of the differences between the measured probability
of an event and that person’s subjective impressions of that event’s probability. Several mecha
nisms have been identified that are responsible for this noise in human cognition. However, the
findings presented in [Plo93] demonstrate that measured probabilities do give an approximation
of the expectations held by most people.

In [OP87], Qrtony and Partridge differentiate between unexpectedness and surprisingness. They
claim that, in order for something to be unexpected there must be an expectation, which is explicit,
whereas surprise arises from events that challenge assumptions, which are implicit. Therefore,
assumptions differ from expectations in that they are never consciously expressed but they are
what Ortony and Partridge call “practically deducible”. The term “deducible” is not used in a
logical sense: a practically deducible assumption is one which can be arrived at from the agent’s
current knowledge without “many and complex inferences”. This difference is not universal: one
person’s expectation may be another’s assumption. However, with regard to the EVA framework,
the term assumption has no real meaning, as all expectations in an EVA system will be made
explicit, a priori. However, an EVA system may contain expectations that are held by the user
as assumptions. For simplicity’s sake, the term surprise will not be used, and we will restrict
discussion to unexpectedness. It should be understood, however, that such unexpectedness may
be experienced by the user as unexpectedness or as surprise.

1.2.1 A combined view of interest

The results given above provide an intuition of what a notion of interestingness might be. In
this section, the terms that will be used throughout this thesis are presented. I propose a view of
interest that combines the various findings discussed above within a single framework.

9

Measures of
interestingness

ExtrinsicIntrinsic

Deviation Surprisingness Actionability

Figure 1.1: A schema of the components of interest.

Figure 1.1 presents a synthesis of the findings outlined above. Interest is divided into intrinsic and
extrinsic components, as suggested by Silberschatz and Tuzhilin and Schank.

The extrinsic component of interest in this combined taxonomy is subdivided into actionability
and surprisingness. Actionability is a reflection of the relevance of that information to a particular
task at hand and the utility of the information. Surprisingness in this definition encompasses both
of what Ortony and Partridge call unexpectedness and surprisingness. In this thesis, the term
surprisingness will be used to refer to an extrinsic element of interest that arises when information
is inconsistent with a given user’s beliefs. Surprise is then a reflection of the user’s subjective
probability of events.

The intrinsic component of interest includes an element that will be referred to in this thesis as
unexpectedness. Unexpectedness is the interest that arises when news violates expectations that
have a high measured probability of not being violated. The intrinsic component also includes
a deviation measure. Deviation is a numeric measure that indicates to what degree a number is
outside some expected range. It can be argued that deviation is a special case of unexpectedness,
where ranges of values are definitions of expected values.

The terms expectations and unexpectedness will be formalised in Chapters 2 and 3. For now it
is enough to know that expectations are rules about usual behaviour, and that they may be vio
lated. This thesis will concentrate on unexpectedness as a measure of interest for two reasons:
unexpectedness is not only a measure of interest in its own right, but is also a good indication of
interest that arises from surprise and is a way of identifying deviations. Secondly, unexpectedness
supports a measure, or at the very least, a ranking, of interest. The stronger the expectation that is
violated, the more interesting the violation. One drawback is that unexpectedness is not necessar
ily indicative of actionability as actionability is largely dependent on the relevance of a document
to the user’s task. It is not the intention of this thesis to address relevance as it is already well
understood due to the work done in the fields of information retrieval and filtering. It is intended
that the EVA framework could complement, rather than replace, traditional information retrieval
and filtering methods.

10

1.3 Interest and the Expectation Violation Analysis framework

As in the adage, “When a dog bites a man, that is not news. When a man bites a dog, that is
news”1. Information that is unexpected is of interest and news in particular owes much of its in
terest to unexpectedness. Many published news articles confirm or reiterate knowledge that the
reader would already be expected to know, or else concerns events which are, to some degree,
predictable. The more predictable the information in a news report, the less interesting that in
formation is. In the case of business, technical, and scientific news, where new discoveries or the
reversal of trends are noteworthy, unexpectedness is largely responsible for the interest-value of
news. It is therefore a worthwhile goal to automate the identification of unexpected news.

The EVA framework proposed in this thesis supports the development of a system that will present
a user with a set of reports that are ranked or rated for interest. By representing expectations,
domain knowledge and the information in a news report as classical formulae, the violation of an
expectation can be characterised as a type of logical inconsistency. In an EVA system, violations
of expectations are used to identify unexpected news.

A system based on the EVA framework is able to take news reports, a set of background knowl
edge and a set of expectations in the form of logical formulae. An EVA system can identify
inconsistencies between these reports and background knowledge and expectations. Furthermore
an EVA system can give an explanation for why a report is interesting in terms of the expectation
that is violated and background knowledge that is deemed relevant and give a measure of unex
pectedness. Finally, the EVA framework supports the automatic generation of expectations based
on news reports and background knowledge. The EVA framework is described in more detail in
Chapter 2.

1.4 Introduction to the thesis

This section presents the scope of the thesis, the proposed contributions and an outline of the
thesis structure.

Scope of the thesis: The EVA framework is a theoretical framework that supports the develop
ment of a system to identify and evaluate interesting news by means of identifying viola
tions of expectations. The framework also supports the presentation of an explanation for
the decision to classify this news as interesting and the ranking interest over reports. The
thesis will concentrate on the identification of unexpected news and the generation of a set
of expectations that are at the heart of an EVA system.

Attributed to Charles Anderson Dana, Editor of the New York Sun, 1882

11

Contributions: The overall contribution of this thesis is a logic-based framework that supports
the identification and evaluation of interesting news reports. A system based on the frame
work analyses news reports in the form of logical formulae and returns those reports that
are unexpected with respect to a set of expectations and a set of background knowledge.
Unexpected news reports are presented to the user, along with relevant background knowl
edge and a measure of the expected degree of interest in the news report. This work is
unique in that logic has so far not been applied to the problem of identifying interesting
news. The advantage of this approach is that the content of news is analysed at a semantic
level, taking into account background knowledge, rather than at a lexicographic level (that
is, searching by keywords). This allows interesting events to be identified and a justification
for the decision to rate an article as interesting to be given. The justification presented to the
user may include information from the news report and details of the expectation violated
along with relevant facts derived from the background knowledge.

The thesis presents four major contributions and several minor contributions. These contributions,
and their location within the thesis, are outlined in figure 1.2 on page 15.

A summary of the chapters in this thesis is given below:

Chapter 2: news of events that are unexpected is, in general, more interesting than news of
events that are expected. It is therefore a useful goal to automate the identification of news
that is unexpected. Chapter 2 presents the EVA framework that enables the identification
and evaluation of unexpected news. This framework consists of a set of news reports in
the form of logical facts, a set of background knowledge in the form of logical facts and
rules and a set of expectations in the form of logical rules. The set of background knowledge
provides contextual information that is relevant to reports. This background knowledge also
may include a set of facts and rules pertaining to the relations between states and events.
This set, collectively called the event model, enables the construction of narratives from
sequences of news reports, thus providing historical context for news. Unexpected news is
identified by searching for inconsistencies between an expectation and a consistent set of
facts from a news report and the background knowledge.

Chapter 3: expectations are used by an EVA system to identify news that is unexpected. It
is possible for news and facts derived from the set of background knowledge to either
contradict or to confirm an expectation. Chapter 3 defines expectations and the relationships
between expectations, news and background knowledge. This chapter also defines measures
of the strength of expectations. Chapter 3 defines how inconsistency can be identified in a
way that is computationally viable.

Chapter 4: for any domain, as defined by the set of predicate symbols, constant symbols and
connectives in the language, there is a set of all possible expectations. It is useful to under
stand the characteristics of this set. Chapter 4 defines the set of expectations and demon

12

strates that the implication order of the expectations in the set is related to the order of the
strength of those expectations. These orders can be harnessed to identify those expectations
that are strong enough to be of use in recommending reports.

Chapter 5: for even quite restricted languages the set of all possible expectations is very large.
An undirected search for the best expectation to characterise the interestingness of a news
report is impractical. Chapter 5 presents a heuristic that reduces the set of expectations to
be searched. This set, the set of working expectations, contains only those expectations that
are sufficiently strong that a violation of any one of those expectations would be interesting.
This set is also small enough to be searched on receipt of each report.

Chapter 6: the heuristic presented in Chapter 5 is key to the viability of an EVA system. It is
therefore useful to validate the heuristic empirically. Chapter 6 presents a set of simulations
that empirically assess the performance of a prototype of a working expectation generator.
The results of these simulations demonstrate that the set of working expectations can be
generated more effectively in some domains than in others. Those domains in which the
variance between probabilities of certain events is high are most suitable for the generation
of expectations. Chapter 6 also demonstrates that business news is a suitable domain for
the application of the heuristic that generates the set of working expectations.

Chapter 7: the set of background knowledge provides contextual information that complements
news reports. One important subset of the background knowledge is an event model. An
event model supports the construction of a narrative of related events from a series of news
reports. This narrative provides context for later news reports. Chapter 7 presents a method
for constructing an event model based on Kowalski and Sergot’s event calculus and explains
its use within the EVA framework. This chapter also explores the problem of unreported
events and defines functions that can infer what these events may have been. The event
calculus allows narratives to be derived from news reports. However, the Kowalski and
Sergot formulation of the event calculus assumes complete information. As this is not a
safe assumption to make concerning news reports, where much information is unstated, the
event interpolation operator was devised. The event interpolation operator allows complete
narratives to be created, even where information is lacking by identifying rules in the event
model that can be used to reason abductively about missing states.

Chapter 8: the EVA framework was not developed in isolation. There are several bodies of liter
ature that are relevant to the work presented in this thesis. Chapter 8 discusses the literature
that is relevant to the EVA framework. The findings from various domains are presented
with respect to methods of measuring inconsistency, identifying interesting information and
generating rules. The EVA framework is considered in relation to these approaches and its
relative strengths and weaknesses discussed.

Chapter 9 concludes with a summary and a discussion of the findings in this document. Chap
ter 2 sets out a programme for a framework that will fulfil the goal of identifying and

13

reasoning about interest in news. In subsequent chapters, the useful formal properties of
the framework are developed. Outstanding issues are explored with suggestions for future
research directions. Chapter 9 also discusses ways in which the results from this thesis can
be exploited in other domains including identifying inconsistencies in information merg
ing systems and defining the space of all possible templates for an information extraction
system.

1.4.1 Publications

Results from Chapter 2 were published in [BH04] and results from Chapter 4 were published in
[BH05]. Material in section 2.6 has been developed to explore the explanatory abilities of the EVA
framework, and has been accepted for publication ([Byr05]). Material from Chapters 5, 6 and 7
will be submitted for publication at a later date. Work from Chapters 5 and 6 will be published
as a presentation and evaluation of the heuristic for generating a set of working expectations.
Work from Chapter 7 will be published as a discussion of the use of the event calculus and the
interpolation operators presented in this thesis as a way of creating and maintaining an event
model.

14

Figure 1.2: The structure of this thesis and the major and minor contributions

15

Chapter 2

Knowledge in the EVA Framework

2.1 Introduction

Chapter 1 introduced the notion that unexpected news is of more interest than news that is ex
pected. Current information management techniques do not focus on the identification of unex
pected information. The Expectation Violation Analysis (EVA) Framework addresses the need
for a technique to identify unexpected information by identifying violations of expectations by
news reports. Inputs to an EVA system consists of a set of news reports, a set of background
knowledge and a set of expectations. An implemented system based on the framework is called
an EVA system. The sequence of activities within the EVA framework is shown in figure 2.1.

Expectations
BackgroundEvent Model

Knowledgebase

^News
Report in
v XML .

FilteredIdentify Event Identify
Inconsistencies

Translate to
logic

Figure 2.1: The EVA process.

The input to an EVA system is a stream of news reports in structured text format such as XML.
The process of an EVA system is then to: (1) translate each incoming news report into logic;
(2) identify the events featured in each report; (3) identify inconsistencies between each report,

16

together with a set of background knowledge, and a repository of expectations; (4) evaluate each
inconsistency for significance and (5) output interesting reports, highlighting violations of ex
pectations. The activities will be the same for a wide variety of domains but the background
knowledge and set of expectations need to be created for each domain.

The rest of this chapter is laid out as follows. Section 2.2 reviews some basic definitions for
classical logic. Section 2.3 formalises the notion of structured news reports, defines how they can
be represented as logical literals, and presents access rules that are used for accessing information
encoded in news reports. Section 2.4, defines the set of background knowledge which includes a
set of facts and a set of rules. A special subset of the background knowledge is an event model
that supports reasoning about sequences of events. Event models are fully defined in Chapter 7.
Section 2.5 defines expectations, which are key to identifying unexpected information.

2.2 Basic definitions

The symbols used throughout this thesis are those of classical first-order logic. This includes the
usual symbols V and 3 for quantification, the symbols A, V, —► and -> for logical connectives
and h for the classical consequence relation. Other symbols denote predicate symbols, function
symbols, constant symbols, variable symbols and sets of such symbols.

Definition 2.2.1. Let T be a set of function symbols, C be a set of constant symbols and V be
a set of variable symbols. I f c G C then c is a term. I f v G V then v is a term. If f G T and
t i , . . . , tn are terms then f (t i, ...,tn) isaterm. For all terms t, if t incorporates a variable, thent
is an unground term, otherwise t is ground term. I f f { t i , ..., tn) is a term, then ti is a subterm
and...andtn is a subterm. I f t is a term, then t G subterms(t), and for any term t' G subterms(t),
the subterms o ft ' are in subterms(t).

Definition 2.2.2. Let V be a set of predicate symbols, and T be a set of terms. l f t \ ,..., tn G T
andp G V then p(t\ ,. . . , tn) is a predicate. Ifp{ti ,. . . , tn) is a predicate and t\ and... and tn are
ground terms, then p(ti ,. . . , tn) is a ground predicate, otherwise it is an unground predicate. An
atom is a ground predicate. A literal is either a predicate (i.e. a positive literal) or the negation
of a predicate (i.e. a negative literal).

Definition 2.23. Let a be a literal, terms(a) is the set o f terms in a as follows:

terms(p(ti,..., t n)) = subterms(ti) U ... U subterms(t„)
terms(-ip(ti, ...,tn)) = subterms(ti) U ... U subterms(tn)
terms({ai, ...,a„}) = terms(ai) U ... U terms(o:n)

17

Definition 2.2.4. L e tp i(ti , . . . , t j) , ...,pn(tk> tn) be predicates, a is a formula iff:

a = Pi(h, —itj) A ... A ...,£„) or
a = p i (t u ...,tj) V ... Vpn (tfc,...,tn) or
//a*, oij are formulae then

a = ati A ... A ck* or
a = a* V ... V a* or
a = ->«i or
a = ati ak

Definition 2.2.5. Let x, y, z be variable symbols and a, b, c be constant symbols. A grounding
set is a set o f equalities between variable and constant symbols.

Example 2.2.1. Let $ = {x = a ,y = b,c = d}. $ is a grounding set.

Definition 2.2.6. Let $ be a grounding set and a be a formula. A grounding is a function
ground (a, $) that gives the results of substituting each variable x in each predicate in a with
constant c where the grounding x = c is in $.

Example 2.2.2. Let a(b(x), c(y), d(z)) A e(x) be a formula where x, y and z are variables. Let
the grounding set $ be {y = j ohn, z = b e tty }.

ground(a(b(x), c(y),d(z)) A e(x),$) = a(b(x), c(john),d(betty)) A e(x)

Definition 2.2.7. Let a be a formula such that the variables in a are x i, ...,xn. $ is a total
grounding set if there exists a set o f constants { c i,..., Cn} such that for each Xj € { x i,..., xn}
there exists Cj € {c i,..., Cn} and such that Xj = Cj € $.

Example 2.2.3. Let a(b(x), c(y), d(z)) A e(x) be a formula where x, y and z are variables. Let
the grounding set $ be {x = f red, y = j ohn, z = betty}. $ is a total grounding set and

ground(a(b(x), c(y), d(z)) A e(x), $) = a(b(fred), c(john), d(betty)) A e(fred)

For the sake of simplicity, throughout this thesis, unless explicitly specified, all grounding sets are
total grounding sets and all ground formulae are completely ground, that is, they do not contain
variable symbols.

2.3 Representing news reports in first order logic

This section examines news atoms, which are logical facts. It is assumed that each report is
provided in the form of structured text. An item of structured text is a set of semantic labels
together with a word, phrase, sentence, null value or a nested item of structured text associated

18

with each semantic label. As a simple example, a report on a corporate acquisition could use
semantic labels such as “buyer”, “seller”, “acquisition”, “value”, and “date”. Some news agencies
store news reports as structured text. In addition, technologies such as information extraction
[CL96, CWL99, CiiOl, SHWA03] are expected to significantly increase the amount of structured
text available.

2.3.1 Structured news reports

Techniques exist to handle, analyse, and reason with data in structured text form, including merg
ing potentially inconsistent sets of news reports [HunOOa, Hun02a, Hun02c], and deriving in
ferences from potentially inconsistent sets of news reports [HunOOc, HunOOd, BH01, HunOl].
Structured text can be naturally viewed in logic, as each item of structured text can be represented
by a formula of classical logic, which means that consistency checking and inferencing can be
undertaken with structured text using domain knowledge.

This section also introduces the notion of i) news atoms as facts extracted from news and ii) of a
set of background knowledge used in conjunction with news atoms and iii) how these can be used
to create a representative set of facts arising from news and selected background knowledge.

Structured text can be used to publish semi-structured data, where text entries are unstructured
text, or structured data such as relational data [FMST01]. It is possible to apply integrity con
straints to structured text data [FSOO]. This supports the validation of the data input to an EVA
system. Because of the structured nature of such documents, data can easily be transformed into
logic [HunOOb].

Throughout this thesis it is assumed that the structured text news is made available. In practice
this may need to be extracted from news reports. The degree of accuracy with which such data
extraction could be carried out has not been put to the test, although some information extraction
was performed on news from the Economist and Reuters (see Section 6.1.7). In the business
domain, news tends to be reported in a largely homogeneous fashion, that is, the same form
of words appears frequently when reporting certain types of events. This simplifies the task of
generating templates. It remains to be shown that the output from information extraction systems
is presently at the degree of reliability that an EVA system would require, but current applications
of information extraction tools are encouraging (for example, [CBLJ04]).

Each structured news report is an XML document, but not vice versa, as defined below.

Definition 2.3.1. Let r be a tag name (i.e. an element name), if} be a text entry (i.e. a phrase
represented by a string) and ..., vn be structured news reports. R is a structured news report

19

iff

R = (r)V»(/r) or
R = <r)» iJ...>i/n (/T)

Example 23.1.

(w eatherreport)
(date) 23 A pril 1999 (/date)
(location)

(c ity) London (/c ity)
(country) UK (/country)

(/lo ca tio n)
(today) cold (/today)
(tomorrow) sunny (/tomorrow)
(log) 23 A pril 1999 (/log)

(/w eatherreport)

An example o f a structured news report

Each structured news report is isomorphic to a tree, with each tag name being represented by a
non-leaf node and each text entry being represented by a leaf node. Furthermore, each subtree in
a structured news report is isomorphic to a ground term where each tag name is represented by a
function symbol and each text entry is represented by a constant symbol. Hence, each structured
news report can be represented by a ground logical atom in classical logic as follows.

Definition 23.2. A report atom is a ground atom that is the representation of a structured news
report in first order logic. Let (r) ^ i ,..., ̂ >n (/r) be a structured news report, t\ be a ground term
that represents ifii and...and tn be a ground term that represents ipn. r (t i , ..., tn) is the report
atom for (t)V>i , i ’ni/r).

Example 23.2. Consider the following structured news report.

(auction report)
(buyer)

(name)
(f i r stname) J ohn(/f i r stname)
(surname)Smith(/surname)

(/name)
(/buyer)
(property) Lot37 (/property)

(/auct ionreport)

20

This report can be represented by the following report atom:

au c tio n rep o rt (buyer (name(f i r s t name (John), surname(Smith))), p roperty (Lot37))

Each structured news report is isomorphic to a report atom and the semantic label of the root of
a structured news report is the predicate symbol of the corresponding report atom. In the rest of
this chapter, the root of the structured news report in each example, and the predicate symbol of
the corresponding report atom, is the symbol repo rt.

2.3.2 News atoms and access rules

News atoms are ground predicates extracted from report atoms. Access rules extract ground pred
icates nested within report atoms. These predicates can then be directly used with other informa
tion in the background knowledge.

Definition 2.3.3. Let p{ti, ..., tn) be a report atom. A news atom for this report is a literal that
represents information in the report atom. A news atom is o f the form p (s i , ..., sm) where p is a
predicate symbol and s i , ..., sm are in subterms(ti) U ... U subterms(£n).

The news atoms that are obtained for a given report atom are defined by a set of access rules.
Access rules may be manually generated and may be based on information extraction templates
used. These templates would define the structure of news atoms, which in turn determines the
structure of access rules. Alternatively they may need to be learnt. It is assumed in this thesis that
a set of access rules, T, is readily available.

Definition 23.4. Let a, be formulae without implication symbols, x be the variables in
a, and let the variables in /3\.../3n be a subtuple or equal to x. A rule that extracts news atoms
from a report atom, denoted an access rule, is a first order formula of the form

Vx a -» Pi A ... A /?„

Generalised Modus Ponens is used to derive ground news atoms from report atoms and access
rules. Modus Ponens is a rule of inference. From a conditional statement and the assertion of that
statement’s antecedent, it is necessary to conclude that the consequent of that statement holds.
Generalised Modus Ponens is a rule of inference that permits groundings in first order formulae.
If a grounding $ exists for the antecedent of a first order formula, such as an access rule, then
that grounding is applied to the consequent of that same formula in order to derive the ground
consequent.

Definition 2.3.5. Let T be a set of access rules and let p be a report atom, access(p, T) is the
smallest set of news atoms obtained by exhaustively applying the report atom p for a structured

21

news report to the access rules in T using generalised modus ponens and conjunction elimination
as defined below.

access(p,r) = {ground(0i,$),...,ground(£n,$) | Vx!, .. . ,xk a fa A ... A /?„ G T
and ground(a, $) is p}

Example 2.3.3. Let p be the following report:

re p o r t(f orecast(date(25July01), c i ty (Malaga), today (sunny)))

Suppose the set o f access rules, I \ contains the following:

Vx,y,z rep o rt(fo recast(d a te (x), city (y), today(z))) —►
date(x) A location(y) A today(z)

r applied to p results in:

date(25July2001), location(M alaga), today(sunny) G Access(p, T)

Suppose r also contains the following access rule:

Vx,y rep o rt(fo recast(d a te (x), c ity (y), today (sunny))) —> sunnyWarning(x, y)

As a result,

sunnyWarning(25July2001, Malaga) G Access(p, T)

Text entries in structured news reports are usually heterogeneous in format. For example, the for
mat of date values is unconstrained (12/12/1974; 31st Dec 96; 12 Nov 2001 etc.) as is the format
of numbers and currency values (3 million; 3,000,000 GBP; $4, ¥500K etc.). This heterogeneity
can be handled in logic by various kinds of equivalence axioms [HunOOa, Hun02a, Hun02c]. To
simplify exposition in this thesis, it is assumed that a preprocessor will convert these text entries
into a standard format, that is, the input to an EVA system is homogenous. If entries are not ho
mogenous, inconsistencies may arise that are “noise”, rather than the result of unexpected news.
It is assumed that the application of access rules to news reports always results in a consistent set
of news atoms.

22

2.4 Background knowledge

Background knowledge consists of rules and facts that can be considered alongside information
from news reports in order to provide context. Background knowledge may come from a variety
of sources including databases, domain experts, machine learning and earlier news reports. Only
the background knowledge that is relevant to a particular report is considered when identifying
inconsistencies with expectations. Section 2.4.4 formalises relevance and defines a representative
set as a consistent set of facts derived from background knowledge and a news report. Background
knowledge includes domain facts, domain rules and an event model. These are defined in this
section. It is assumed that the set of facts derived from domain knowledge is internally consistent,
and that it also consistent with the set access(p, T).

For many domains, background knowledge is readily available. Facts may be extracted from
databases, such as the Kompass database of businesses, the ABI/Inform database of companies
and the Economist Intelligence Unit countries database. Domain rules are readily available in the
form of regulations, laws, and ontologies. Event models can be automatically constructed from
reports previously received by an EVA system.

Background knowledge consists of relatively static information. That is, we expect that back
ground rules and facts do not need to be changed regularly. Information that is more dynamic is
generated from news reports by means of one or more event models (see Section 2.4.3). Domain
rules also differ from access rules, in that access rules are used to transform news atoms into
predicates that can be used for further reasoning, whereas domain rules are used to generate new
knowledge.

2.4.1 Domain facts

Domain facts may come from a set of domain specific databases. These hold data concerning key
entities. In the mergers and acquisitions domain these would include companies, subsidiaries, key
personnel, turnover, business activities and so on.

Definition 2.4.1. The domain facts are a set of ground literals (i.e. atoms and negated atoms).

Example 2.4.1. For the mergers and acquisitions domain, domain facts may include the follow
ing.

in(London, UK)
memberOf (United Kingdom, EU)
s e c to r (P ir e l l i , tyreAndCable)
- is e c to r (P ire l l i , finance)
- is e c to r (P ire l l i , food)

23

In many domains such as mergers and acquisitions news, there is much information available in
existing relational databases that can be used as domain facts. Domain facts may include negative
literals. These may be listed explicitly as negative literals or they may have been obtained by
the closed world assumption [Rei78]. There may be restrictions on which types of facts may be
subjected to the closed world assumption. The implementation details are not considered further
in this thesis.

2.4.2 Domain rules

Domain rules may come from several sources including machine learning and domain experts.
Domain rules differ from expectations in that they are “hard rules” that are considered to be
inviolable.

Definition 2.4.2. Let a and 0 be unconditional formulae, x be the variables in a, and let the
variables in ft be a subtuple or equal to x. A domain rule is a formula of the form

Vx ot 0

Example 2.4.2. The domain rule that all companies in the FTSE 100 share index are public
limited companies (PLCs) could be expressed as follows:

Vx ftselOO(x) —> plc(x)

The domain rule that companies do not launch takeover bids for companies they already own
could be expressed as:

Vx,y takeover(x, y) —► -«ovns(x,y)

Domain rules are also ideal for representing ontologies. Special predicate symbols define rela
tions between entities, such as partO f, typeOf. In several domains there are already standard
ontologies. For example, in the business domain, Standard Industry Classification (SIC) codes are
used to classify sectors of industrial activity.

Example 2.4.3. The following are domain rules that can be derived from the SIC codes:

Vx softwareCompany(x) —> computerPrograimingAndDataProcessingCompany(x)
Vx computerProgrammingAndDataProcessingCompany(x) —>

businessServicesCompany(x)
Vx businessServicesCompany(x) —)■ serviceCompany(x)

24

Example 2.4.4. The following are domain rules that could apply to the mergers and acquisitions
domain:

1)Vx ftselOO(x) —> l is te d (x)
2)Vx, y buyer(x) A ta rg e t (y) -> -iowns(x, y)

Rule 1 states that if company x is one of the FTSEIOO (Financial Times Share Index top 100)
companies then company x must be a ’’listed” company, that is, listed on the stock exchange.
Rule 2 states that if company x wishes to buy company y then company x does not currently own
company y.

2.4.3 The event model

Reports do not normally exist in isolation. There is an underlying narrative which concerns a
number of entities that are related in some way over a period of time. In most domains, reports
form narratives such that each report tells part of an ongoing story. In the mergers and acquisitions
domain for example, a narrative may begin with rumours of an impending bid, continue with
news of a bid being made, then go on through the negotiations until the bid is finally agreed on
or rejected. All reports are part of at least one narrative and all narratives contain at least one
report. Some approach that captures and reasons with these narratives is a necessary part of the
background knowledge.

Narratives link entities, events and states. Whilst some expectations are applicable to all entities
in all states, others are only applicable to entities in certain states. For example, companies in the
state of bankruptcy are expected not to launch takeover bids. In order to apply this expectation it
is necessary to know whether an entity is in the state of being bankrupt. This requires an event
model, or some similar way of representing the order of events and states in first order logic.

There are certain words and phrases in news reports that indicate events that change the state of
entities. In the domain of mergers and acquisitions for example, phrases include “agree”, “com
plete”, and “approve”. These words or their synonyms are used to indicate when a state changes.
Additional information about narratives is usually found in close proximity to these phrases in
news reports, such as dates, entity names and the tense of the phrases (for example, “shareholders
will approve” indicates a different state to “shareholders have approved”).

The event calculus introduced by Kowalski and Sergot [KS85] is one approach to capturing and
reasoning with events in news. There are other approaches to dealing with state and event informa
tion but the event calculus has the advantages of being appropriate for a Prolog implementation,
of not being subject to the frame problem and of having clear semantics. The event model is
modular and as such can be replaced by any other approach that results in a model that can be
interrogated by event queries. The event model is presented in detail in Chapter 7.

25

From an event model it must be possible to derive facts that record which states hold at which
timepoints. The example below demonstrates how this could be achieved using the event calculus.
The details of this example will be explored in Chapter 7. Informally, states are descriptions of
the position in which an entity may find itself: bankrupt, subject to a takeover bid, profitable and
so on. Entities are the elements of the domain that can perform some action or be in some state.

Definition 2.4.3. Let a state be a ground predicate that denotes the state of one or more entities
and a timepoint be a constant that represents a time point of any granularity, such as a date or a
time. holdsAt is a meta level predicate that relates states to timeperiods. For some state, s, and
some timepoint of any granularity, t, holdsAt(s, t) means that state s holds at timepoint t.

Example 2.4.5. Let t = 15/12/03 and lets = takingOver(m orrisons, safeway). The ground
predicate holdsAt(takingOver(m orrisons, safeway), 15/12/03) indicates that on the 15th
December 2003, Morrisons was in the process of mounting a takeover bid for Safeway.

Let t = 2004 and let s = prim eM inister (tonyB lair, uk).
holdsA t(prim eM inister(tonyB lair, uk), 2004) indicates that Tony Blair was the UK Prime
Minister during 2004.

In this example we see that a timepoint may have non-zero duration. A timepoint of granularity
g has duration g. However, duration can also be bounded by timepoints of lesser granularity.
For example, the timepoint 2004 has the same duration as the period bounded by the timepoints
01/01/2004 and 31/12/2004. Duration and granularity will not be discussed further in this
chapter.

The holdsAt predicates can be incorporated in expectations to restrict that expectation’s appli
cability to only those entities in a given state as in the following example:

Example 2.4.6. The following expectation states that a company that has launched a takeover
bid is expected to be profitable:

Vci,C2 £ companies, t (E tim es holdsAt(biddingFor(ci, C2), t) —>•
holdsAt (prof i t able(ci), t)

The expectation given in the above example demonstrates clearly the way in which the event cal
culus meta-predicates can be used in expectations. The event calculus is only one way of creating
an event model. There may also be other specialised subsets of the background knowledge that
would benefit from a similar formalism expressed using meta-predicates. Again, this is beyond
the scope of this particular thesis.

26

2.4.4 Representative sets

When assessing the potential violation of an expectation by a report it is necessary to ensure that
only the subset of the background knowledge that is somehow relevant to that report is considered.
Let A be the set of background knowledge. The function match (p, T, A) returns the subset of A
whose members are all the facts in A that concern the entities in p. Informally, entities are things
with a distinct, not necessarily concrete, existence. Marks and Spencer pic, the FTSE 100 share
index and Britain are examples of entities. Distinct from entities are things such as attributes, such
as monetary values for example, and actions or events, such as the making of a bid. Entities are
also used to identify cohorts, as defined in Section 3.3.1.

Definition 2.4.4. Let pbe a report, let T be a set of access rules and let A be a set of background
knowledge. The set match (p, T, A) is a set of literals that can be derived from A and p such that
there are one or more constants in each literal that appear as constants in one or more literals in
access (p, T):

match(p, T,A) = {a(pi, ...,pj)|access(p,T) U A b a{p i,...,p j) and
there exists fi{q\,..., qk) G access(p, T)
such that there exists Ph G p i ,..., pj and qi G q \, ..., qk where ph = qi}

Example 2.4.7. Let pbe a report and let T be a set of access rules. Let
access (p, T) = {prof itable(ba)}. Let A be a set of background knowledge. Let

A = (a ir lin e (b a) , a ir l in e (ry a n a ir) ,
b r i t ish (ba), b r i t ish(marksandspencer),
irish (ry an a ir),re ta ile r(m ark san d sp en cer),
Vxprof itab le (x) —> -ibankrupt(x)}

match(p,r, A) contains all literals in A which share a constant symbol with the literals in
access(p, T). Therefore match(p, T, A) = {airline(ba),b ritish (ba),-ibankrup t(ba)} .

The weakness of this definition arises from the fact that constant symbols that are not entities may
incorrectly add to the set match (p, T, A) as the following example demonstrates:

Example 2.4.8. Let

access(p, T) = {buyer (ryanair), target(buzz),bidvalue(GBP15.6m)}

Let

{shareIssue(w ellingtonU nderw riting, GBP15.6m)} C A

match (p, T) will include the fact shareIssue(w ellingtonU nderw riting, GBP15.6m). How
ever, the only relevance of this fact to the report p is that the share issue value of Wellington

27

Underwriting PLC is identical to the value of the bid made by Ryanair for Buzz.

No study has been undertaken to determine the extent of this problem. However, this weakness
could, at least partially, be overcome by typing constant symbols and only identifying matches
between constant symbols of certain types (e.g. company names, industry sectors) and excluding
matches of other types (e.g. dates, values). It is also possible that techniques of assessing rele
vance, from fields such as information retrieval, may lead to a better match (p, T) function. This
issue will not be addressed further in this thesis.

It is now possible to define a set that contains all the facts in a report p and the set of background
knowledge that is relevant to p. The set representatives^, T, A) is the union of the literals ex
tracted from a report and the subset of relevant literals from A. representatives(p, T, A) is a first
order representation of the situation which is in the report.

Definition 2.4.5. Let p be a report, T be a set of access rules and A be a set of background
knowledge. The set of all facts relevant to p, the representative set is a set such that:

representatives^, T, A) = access(p, T) U match(p, T, A)

We assume that representatives^, T, A) is a consistent set.

Example 2.4.9. Let pbe a report and let T be a set of access rules. Let

access(p, T) = { a ir lin e (ry a n a ir) , takeover(ryanair, buzz)}

and let

match (p,T, A) =
{ i r ish (ry a n a ir) , prof ita b le (ry a n a ir) , -'prof i t ab le (buzz),}

The set

representatives^, T, A) =
{ a ir lin e (ry a n a ir) , takeover (ryanair, buzz),
i r ish (ry a n a ir) , p ro f ita b le (ry a n a ir) , -iprof i t ab le (buzz)}

2.5 Expectations about news

Expectations are formulae that capture general patterns concerning news reports and background
knowledge. The set of expectations is at the heart of an EVA framework as it is central to the
identification of unexpected information. Unlike background rules, which it is assumed are always
correct, it is assumed expectations will be violated by representative sets some of the time. In a
sense, an expectation is a form of defeasible or default rule. Violations of expectations allow the

28

system to identify information which is unusual but not necessarily incorrect.

Definition 2.5.1. Let e*i, ...,an,/3 be unground literals and x be free variables occurring in the
literals. An expectation is a formula of the following form

Vx q:i A ... A a„ —> /3

where for all */ground(ai A ... A a„ , $) is a ground formula, then ground(/9, 3>) is a ground
formula.

Examples of expectations are given in Example 2.5.1 and Example 2.5.2 below.

Example 2.5.1. The expectation “A company is expected to have sufficient available capital to
be able to cover a bid” can be represented as follows.

Vc G companies, v G bidValue,m G monetaryValue
bidTendered(c, v) A availab leC apita l(c ,m) —f m > v

Example 2.5.2. The expectation ‘A company is expected to bid for a target in a sector which
supplies or is supplied by that company’s sector or that is compatible with the company’s sector”
can be represented as follows.

Vx, y G companies ta rg e t(x ,y) —>
(sector(x) = sector(y) V supp lie r(sec to r(x), sector(y))V

su p p lie r (sec t or (y), sector(x)) V com patible(sector(y), sector(x)))

Good expectations are those that are rarely violated by news reports. The more accurately an
expectation reflects the behaviour of entities in the real world, the more interesting the news is
that violates it. A method for generating a set of good expectations with respect to the information
in news reports is presented in subsequent chapters.

2.6 An example user interface for an EVA system

The example user interface in Figure 2.2 demonstrates the various types of knowledge in the EVA
framework. This is a non functional prototype and is only one example of an interface for an EVA
system. It is included here to demonstrate the potential uses of the different sets of knowledge
in the EVA framework. An EVA system would continually filter news from a live feed. News, in
structured text form, would be converted to logic. A representative set would then be generated
from the news report and relevant background knowledge. The representative set would then be
analysed to identify which, if any, expectations it violates. The resulting set of news, background
knowledge and expectations can be presented to the user. One example interface is shown below.

29

newsHound

I ReportLatest Reports

NTT OoCoa&s repots 4 H -o&m @©P ysm ip
fsfpwta?

makes, bid of 3.1 foitsfco <38** for
£&'s'$nnntft$«

s ★ is ir is Ik

Cfasxs repors 43? v&fc» GBP ptzM for)ast$»f*e«foBfos

NTT DoCoMo's profits wiped out
The company says next genarason mcfxte sates wte soar
The Japanese mohite phone gt̂ rt NTT DoCoMo's net profits were aJroos* wipeti aot
during die year to Marco
The cxxnpsrty. which pioneered 'i-irwde? irtefretassnafcted niobiie phones and third-
generation (3<3> nwhke services, btemed failed oversees fovesanents for 8s misiwtime
But the fac- that the company stayed #i the Hack name as a ?ajrp«s». because its
cwn predictions last month bad indicated fhai it would make a toss for the year
NTT OoCoMo reported net pnatte of 882m yen (£4.$m; S6 ?m|. down fe w tea: year's bet profits of 365 5bn yen
The company's operating profits rose 29% to t.OGflfco yen white its sates rose 1<M% fo1;i?Cbo yen.

B&cxground facteV<xtaphor»-M,annesir«!n reports 13 ijstson
GS)P kx& for test y»» OoCcsMo is tisted on the Hatxj <km? 07 May 2002 DotioMo announces

1 rnifiion Van pmfets
02 Apr 2001 DoGaMo snnour'cesijrzwcmim t#m% * . . (5re-iaiodmpomp WWX CkCoMo annotmces profit for last

&imtei
01 Mar 2001 £foCfcM» buys-NT!for 23 •mifltun Vat
05 Mar 2001 DoC<fMo bids 2COwCoMti k »n avefmdsiia

Rdecoetnuu yks&ot *> secs:

Figure 2.2: An example graphical user interface for an EVA system created by the author

In the above example it is assumed that the user wishes to prioritise their reading of news such
that the most unexpected news is displayed first. They may wish to read the entire report, and they
may require contextual information and explanation as to why the report has been recommended.
The user may be able to set parameters, such as the cut off point for unexpectedness, beyond
which reports will not be displayed, or the length of timeline given.

In this example, the information presented is displayed in a number of panes. The Report pane
shows either the original, free text news report, or else a version created from the structured text
by a natural language generator. The Latest Reports pane shows the list of interesting reports
given as a headline, a one sentence summary and a short phrase that identifies the expectation that
has been violated. For example the first story is interesting because it is an “Unexpected result”.
This pane gives a star value to each report, indicating the degree of interest arising from that
violation. The provenance of this value will be defined in the next chapter. All the user needs to
be aware of is that the higher the star rating, the more interesting the report.

Background information is also presented to the user. The Cohort pane contains information about
other entities that have recently violated the same expectation. Cohort violations are defined in
detail in Section 3.3. Information about cohort violations allows the user to examine emerging
trends. Finally, relevant background knowledge is presented in two panes at the bottom of the

30

<

window. The Background Facts pane contains general contextual information that is relevant to
the report. This information is a subset of match (p, T, A) and excludes information from the event
model. The information from the event model is presented in the Time Line pane. The example
interface shown here presents the user with information from all of the sets of knowledge in the
EVA framework.

2.7 Discussion of Chapter 2

In Chapter 1 it was argued that there is a need for a framework that supports the development of a
system that can identify and rate unexpectedness in news reports. This chapter has introduced the
EVA framework, which addresses that need. The framework contains three sets of information:
news reports, background knowledge and expectations.

Expectations are rules that reflect the expected events for a domain. Background knowledge con
sists of rules and facts that provide context for information in news reports. The set of background
knowledge includes an event model that supports reasoning about states and events. News reports
come from structured text news and are converted into logical facts. These facts are then com
bined with background knowledge and compared with expectations in order to identify interesting
information.

31

Chapter 3

Expectations in the EVA
Framework

Inconsistency is usually regarded as something to be avoided in logic. As a result of ex falso
quodlibet, reasoning from an inconsistent set of formulae leads to unsafe conclusions. The least
sophisticated method for dealing with inconsistency is to treat it as an error, and to avoid reason
ing from inconsistent sets of data. More sophisticated approaches such as truth maintenance and
belief revision aim to eradicate inconsistency, thus returning the data to a state from which reason
ing can take place. However, the EVA framework proposed in this thesis exploits inconsistency.
Inconsistency between facts and an expectation is harnessed as an indicator of an unexpected
event.

The EVA framework uses unexpectedness as a measure of interest. Unexpected information is
information that violates an expectation that more or less accurately represents the real world
events. An expectation is violated by information that confirms the expectations’s antecedent
whilst negating its consequent. As a measure, unexpectedness has several advantages:

1. Unexpectedness has clear semantics: the violation of an accurate expectation clearly indi
cates an unexpected event. Such an indication is Boolean in nature (a report violates an
expectation or it does not) but as we shall see later, the strength of the expectation that is
violated can be used to rate the interest-value of a given report.

2. When identifying unexpectedness, it is possible to also take account of information in a set
of background knowledge. This is useful, as background knowledge provides the context
that supports a wider understanding of the information in news reports.

*
3. Expectations can be based on real data: the same reports that are analysed for interest can

later be used as a basis from which an EVA system can learn what is and is not expected.

32

This is a significant advantage to the EVA framework: an EVA system would incorporate
a self updating, autonomous expectation generator similar to that presented in Chapters 5
and 6.

In order to identify unexpected information it is necessary to know what is and is not expected.
To this end, the EVA framework, as defined in Chapter 2, includes a set of expectations. Unex
pected information is discovered when a report, along with a relevant subset of the background
knowledge, violates an accurate expectation. In this chapter, Section 3.1 defines the relations be
tween representative sets and expectations. Section 3.2 defines the way in which the strength of
expectations is measured. Section 3.3 defines special types of violations of expectations and dis
cusses their significance. Section 3.4 introduces a method of checking for inconsistency between
representative sets and expectations that is computationally viable.

3.1 Relationships between reports, background knowledge and
expectations

The notion that interest is identified when expectations are violated was informally introduced in
Section 2.1. This section now presents definitions of violations of expectations as well as firings
and confirmations of expectations. Each report results in a representative set,
representatives^, T, A), as in Definition 2.4.5. Each expectation, e, consists of an antecedent and
a consequent. It is necessary to identify when a representative set implies a ground version of an
expectation’s antecedent, a ground version of an expectation’s consequent or a ground version
of the negation of an expectation’s consequent. The representative set may also imply a ground
version of the negation of the antecedent. However this does not convey any information other
than that the expectation does not apply to the report in question. Therefore, the implication of
the negation of the antecedent is not of interest.

It is sometimes necessary to consider the antecedent or the consequent of an expectation in isola
tion. The functions antecedent(e) and consequent(e) are defined for convenience of notation.

Definition 3.1.1. Let E be a set of expectations and e = Vx a (3 be an expectation in E.
antecedent(e) is a function from any expectation e, or any ground expectation ground(3>, e), to
the set of all formulae in the language such that

antecedent(Vx a —> /?) = Vx a

where the universal quantifier is omitted if e is ground.

Example 3.1.1. Let e\ = Vc,s sec to r(c ,s) —> prof i ta b le (c) be an expectation in E. It
follows that antecedent(ei) = Vc, s secto r(c , s).

33

Let $ be a grounding set $ = {c = ry an a ir, s = a ir l in e } . The formula ground(4>, e) =
se c to r(ry an a ir, a ir l in e) —» prof i t able (ryanair). As a result,

antecedent(ground($,e)) = se c to r(ry an a ir, a ir l in e)

Definition 3.1.2. Let E be a set of expectations and e = Vx a —> j3 be an expectation in E.
consequent(e) is a function from any expectation e, or any ground expectation ground($, e), to
the set o f all formulae in the language such that

consequent(Vr a -»•/3) = Vx /?

where the universal quantifier is omitted if c is ground.

Example 3.1.2. Let e = Vc, s se c to r (c, s) —> prof itab le (c). It follows that consequent(e) =
Vc, s prof itab le (c).

Let $ be a grounding set = {c = ry an a ir, s = a ir l in e } . The formula ground($, e) =
sec to r (ryana ir, a ir l in e) —> prof i ta b le (ryanair). As a result,

consequent(ground($,e)) = prof i t ab le (ryanair)

Note that the set of all universally quantified variables is used for both the antecedent and conse
quent of the expectation. This is to avoid the necessity of identifying which variables appear in
the consequent and which appear only in the antecedent.

If representatives^, T, A) implies a ground version of antecedent(e) then we say that pfires that
expectation.

Definition 3.1.3. Let e be an expectation, T be a set of access rules, A be a set of background
knowledge and pbe a report, e is fired by p iff there exists a grounding set $ such that ground (e, <3>) =
e$ and

representatives^, T, A) h antecedent(c$)

Example 3.1.3. Let e be the expectation

Vx b r itish (x) A department St ore (x) —>• takeoverTarget(x)

Let T be a set of access rules, A be a set of background knowledge and pbe a report. Let $ be a

34

grounding set,{x = marks&spencer}.

L e t : ground(e, $) =
british(m arks& spencer) A departmentStore(marks&spencer) —>

takeoverT arget (marks&spencer)

access(p, T) = {-itakeoverTarget(marks&;spencer)}

match(p, T, A) =
{departmentStore(marks&;spencer),british(marks&:spencer)}

representatives^, T, A) =
{-itakeoverTarget(marks&spencer)} U
{departmentStore(m arks& spencer),britisb(marks&spencer)}

ground(antecedent(e), $) =
british(m arks& spencer) A departmentStore(marks&spencer)

As a result, representatives(p, T, A) h antecedent(e<j>) therefore p fires e.

Note that neither the consequent of e nor its negation need be implied by representatives^, T, A)
in order for e to be fired.

If representatives^, T, A) implies a ground version of -iconsequent(e) then we say that p attacks
that expectation.

Definition 3.1.4. Let e be an expectation, T be a set of access rules, A be a set of background
knowledge, p be a report and $ be a grounding set. ground(e, <£) is attacked by a report p iff
there exists a grounding set $ such that ground(e, $) = e<j> and

representatives^, T, A) I— iconsequent(e<j>)

Example 3.1.4. Let e be an expectation Vx a ir lin e (x) V bank(x) —> prof itab le (x), T be
a set of access rules, A b e a set of background knowledge, p be a report and $ be a grounding
set,{x = marks&spencer}.

ground(e, $) = airline(m arks& spencer) V bank(marks&spencer) —> prof i t ab le (marks&spencer)

35

Let

access(p, T) = {-iprof itable(marks&spencer)}

match(p, r , A) = {retail(m arks& spencer)}

representatives^, T, A) =
{-iprofitable(m arks& spencer)} U {retail(marks&;spencer)}

ground(consequent(e), $) = prof itable(m arks& spencer)

As a result, representatives(p, T, A) I— iconsequent(e^) therefore p attacks e.

Note that the antecedent of e need not be fired in order for consequent (e) to be attacked. Also,
representatives^, T, A) is consistent but if p attacks e then the union of representatives^, T, A)
and {consequent^)} will be inconsistent. The inconsistency arises from the inclusion of the
ground consequent, consequent(e<j>).

If representatives^, T, A) implies a ground version of consequent(e) then we say that p supports
that expectation.

Definition 3.1.5. Let e be an expectation, V be a set of access rules, A be the set of background
knowledge, pbe a report and $ be a grounding set. The expectation ground(e, $) is supported
by a report p iff there exists a grounding set $ such that ground (e, $) = and

representatives^, T, A) I- consequent(e$)

Example 3.1.5. Let e be an expectation Vx a ir lin e (x) V bank(x) —> prof i t ab le (x), T be a
set of access rules, A be a set of background knowledge and pbe a report. Let $ be a grounding
set,{x = ryanair} .

ground(e,$) = a ir l in e (ry a n a ir) V bank(ryanair) —> prof ita b le (ry a n a ir)

Let access(p, T) = {prof i t ab le (ryanair)}

match(p, T,A) = { a ir l in e (ryanair)}

representatives^, T, A) = {prof i t able (ryanair)} U { a ir l in e (ryanair)}

ground(consequent(e), $) = prof i t ab le (ryanair)

representatives^, T, A) h consequent(e^), therefore p supports e.

36

Note that the antecedent of e need not be fired in order that the consequent e be supported.

An EVA system identifies as interesting information that which violates an expectation. In order
for an expectation to be violated, it must be both fired and attacked by the same representative set.

Definition 3.1.6. Let e be an expectation, let T be a set o f access rules, A b e a set of background
knowledge and p be a report. Let $ be a grounding set. e is violated by a report p iff there is a
grounding set $ such that ground (e, 3>) = and

representatives^, T, A) h antecedent(e$) A -iconsequent(e^)

Example 3.1.6. Let e be an expectation Vx a ir lin e (x) V bank(x) -> prof i t ab le (x), T be a
set of access rules, A b e a set of background knowledge and pbe a report. Let $ be a grounding
set,{a = buzz}. ground(e, $) = a irline(buzz) V bank(buzz) —> prof i t ab le (buzz) and

access(p, T) = {-iprof itable(buzz)}
match(p, T,A) = { a ir l in e (buzz)}

representatives^, r , A) = {-iprof i t ab le (buzz)} U {airline(buzz)}

ground(antecedent(e) = a irline (buzz) V bank(buzz))

ground (consequent(e), $) = prof itab le(buzz)

It then follows that

{-iprof i t ab le (buzz), a i r l in e (buzz)} h
a irlin e (b u zz) V bank(buzz) A -iprof itab le(buzz)

therefore p violates e.

If a report both fires and supports an expectation then that report confirms that expectation is, in
this case, representative of the real world.

Definition 3.1.7. Let e be an expectation, let T be a set of access rules, A b e a set of background
knowledge and pbe a report, e is confirmed by a report p iff there is a grounding set $ such that
ground(e, <£) = e<j> and

representatives^, T, A) I- antecedent(e^) A consequent^)

Example 3.1.7. Let e be an expectation Vx a ir lin e (x) V bank(x) -» prof itab le (x), T be a
set of access rules, A be a set of background knowledge and pbe a report. Let $ be a grounding

37

set, {x = ryanair} . It then follows that

ground(e,3>) = a ir l in e (ry a n a ir) V bank(ryanair) —> p ro f i ta b le (ry a n a ir)

Let:

access(p, T) = {prof i t able (ryanair)}

match(p, r,A) = { a irlin e (ry an a ir)}

representatives^, T, A) = {pro fitab le(ryana ir)} U { a ir lin e (ry an a ir)}

ground(antecedent(e) = a i r l in e (ryanair) V bank (ryana ir))

ground(consequent(e), $) = prof i ta b le (ry a n a ir)

{prof i ta b le (ry a n a ir) , a i r l in e (ryanair)} b (a ir lin e (ry a n a ir) V bank (ryanair)) A
prof i t ab le (ryanair) therefore p confirms e.

3.2 Measuring expectation strength

The EVA framework uses a confirmation measure to rate the strength, accuracy and coverage of
expectations. Expectations, by their very nature, may be violated by news reports. In other words,
it is possible for a representative set to cause the antecedent and the negation of the consequent
of a ground expectation to hold, resulting in an inconsistency with the expectation. The stronger
the expectation that is violated, the more interesting that violation is.

Confirmation theory is a subject that has developed within the fields of statistics, probability
theory, and the philosophy of science. The need for such a theory arises because evidence e
rarely establishes conclusively that some hypothesis h is true, but e may nonetheless confirm or
corroborate h to some degree [GGH+92]. Confirmation theory investigates the relation which
holds between h and e when e confirms h to some extent, but does not establish it completely.

Recall from section 2.3.2 that the evidence comes in the form of representative sets. Represen
tative sets are consistent sets of facts derived from the news reports and background knowledge
available to an EVA system.

For any two reports pi and p2 and their associated representative sets representatives^!, T, A)
and representatives^, I \ A), if representatives^!, T, A) violates ei and representatives^, I \ A)
violates €2 , which of p\ and p2 is more unexpected? For each expectation e, there are several mea
sures of interest that depend on the set of reports, II, the set of access rules, T and the set of back
ground knowledge, A and that give an indication of the relative strengths of any two expectations.
These are defined below.

38

Three of these measures are dependent on either the antecedent or the consequent of the expec
tation. The fired value for an expectation records how many members in the set of all reports, II,
have led to representative sets that imply a ground version of antecedent(e). The attacked value
for an expectation records how many reports in II lead to a representative set that implies a ground
version of -iconsequent(e) and the supported value for an expectation records how many reports
in II have lead to a representative set that implies a ground version of consequent(e).

The set of reports that leads to the firing of an expectation, denoted fset(e, II, T, A), is defined as
follows:

Definition 3.2.1. Let T be a set of access rules, A be a set of background knowledge, e be an ex
pectation and II be a set of reports. The subset of II whose members fire e, denoted fset(e, II, T, A)
is as follows:

fset(e, II, r , A) = {p G II | there exists a grounding set $ such that ground(e, $) = e<j> and
representatives^, T, A) h antecedent(e$)}

For ease of notation in later definitions, fired (e, II, T, A) = |fset(e, II, T, A) |

The set of reports that attack an expectation is that expectation’s aset. The attacked value for an
expectation is dependent on the size of the aset:

Definition 3.2.2. Let T be a set of access rules, A be a set of background knowledge, e be
an expectation and U be a set of reports. The subset of II whose members attack e, denoted
aset(e, II, T, A) is as follows:

aset(e, II, T, A) = {p G II | there exists a grounding set $ such that ground(e, $) = e<j, and
representatives^,T, A) I— consequent^)}

For ease of notation. attacked(e, II, T, A) = |aset(e, II, T, A)|.

The set of reports that support an expectation is that expectation’s sset. The support value for an
expectation is dependent on the size of the sset.

Definition 3.23. Let T be a set of access rules, A be a set of background knowledge, e be
an expectation and U be a set of reports. The subset of II whose members support e, denoted
sset(e, II, T, A) is as follows:

sset(e, II, T, A) = {p G II | there exists a grounding set $ such that ground(e, <b) = e<j> and
representatives^, T, A) I- consequent(e<j,)}

For ease of notation. support(e, II, T, A) = |sset(e, II, T, A) |.

The next two measures to be defined are dependent on the whole of the expectation. The violated
value for an expectation records how many reports in II have lead to a representative set that

39

implies ground(antecedent(e)A-'Consequent(e), 4>). The set of reports that violate an expectation
is that expectation’s vset. The violation value for an expectation is dependent on the size of the
vset.

Definition 3.2.4. Let T be a set of access rules, A be a set of background knowledge, e be
an expectation and II be a set of reports. The subset o f II whose members violate e, denoted
vset(e, II, T, A) is as follows:

vset(e, n,r, A) = {p G n I there exists a grounding set $ such that ground(e, $) = e# and
representatives^, T, A) h antecedent^#) A -iconsequent(e#)}

For ease o f notation, violated (e, II, T, A) = |vset(e, II, T, A)|

The confirmed value for an expectation records how many reports in II have lead to a represen
tative set that implies ground(antecedent(e) A consequent(e), $). The set of reports that confirm
an expectation is that expectation’s cset. The confirmed value for an expectation is dependent on
the size of the cset.

Definition 3.2.5. Let T be a set of access rules, A be a set of background knowledge, e be
an expectation and II be a set of reports. The subset of II whose members confirm e, denoted
cset(e, II, T, A) is as follows:

cset(e, II, T, A) = {p G II | there exists a grounding set $ such that ground(e, $) = e# and
representatives(p, T, A) I- antecedent(e#) A consequent(e#)}

For ease of notation. confirmed(e, II, T, A) = |cset(e, II, T, A)|

Two further values are expressed as ratios between those values that depend on the whole ex
pectation and those values that depend only on the antecedent. The accuracy value measures the
strength of an expectation with respect to the number of times it has been fired and not attacked,
and the validity value measures the strength of an expectation with respect to the number of times
it has been fired and confirmed.

Definition 3.2.6. Let T be a set of access rules, A be a set of background knowledge, e be an
expectation and U be a set of reports. Let fired (e, II, T, A) be the number of reports in II that
fire the antecedent of e. Let violated (e, II, T, A) be the number of reports in II that both fire the
antecedent of e and attack the consequent ofe, given the same grounding set.

//■fired(e, II, T, A) > 0 then

i tt t 1 a \ violated(e,II,r, A)accuracy(e,n, T, A) = 1 -

If fired(e, II, T, A) = 0 then accuracy(e, II, T, A) is undetermined.

40

Definition 3.2.7. Let F be a set of access rules, A be a set of background knowledge, e be an
expectation and U be a set o f reports. Let fired(e, II, T, A) be the number of reports in II that
fire the antecedent ofe. Let confirmed(e, II, T, A) be the number of reports in II that both fire the
antecedent ofe and support the consequent ofe, given the same grounding set.

I f fired (e, II, T, A) > 0 then

7/’fired(e, II, T, A) = 0 then validity(e, II, T, A) is undetermined.

If the closed world assumption were to be applied to the facts in representatives (p, T, A) then
each report that does not support an expectation will attack it and vice versa. Therefore

validity(e,II,r, A) = accuracy(e,II,r, A)

However, the closed world assumption will not be used as to do so would lead to unsafe inferences
based on what is likely to be incomplete information. Therefore, the validity and accuracy values
for any given expectation are not necessarily equal.

Firing, confirmation and accuracy values can be used to rank violations of expectations. The
higher the confirmation value, the more unlikely it is that an expectation will be violated, hence
the more interesting a violation of that expectation will be. Knowing the order over values of
accuracy, validity and coverage can enable us to determine the relative strength of expectations.
The ordering is simply the order relation over positive real numbers, for the accuracy and validity
values, and natural numbers in the case of the coverage value.

Definition 3.2.8. Let > be the usual ordering over real numbers. For any set o f expectations E,
any set of background knowledge, A, any set of access rules, T and any set of reports II, e\ G E
is more accurate than e2 € E iff accuracy (ei, II, T, A) > accuracy(e2 , n , T, A).

ei G E has greater validity than e2 G E iff validity (ei, II, T, A) > validity(e2 , II, T, A).

ei G E has better coverage than t 2 € E iff fired(ei, II, T, A) > fired(e2 , n , T, A).

These three values allow us to determine the strength of an expectation with respect to its ability to
identify unexpected information. The coverage value records the number of reports that have lead
to that expectation being fired. This is a measure of the amount of “evidence” there is, on which
the accuracy and validity values are based. The accuracy value indicates how well the expectation
represents the real world (as reported in the news reports), as it is a measure of the proportion of
times that the expectation has not been violated. The validity value is a yet more stringent test of
whether the expectation represents the real world, as it records the proportion of news reports fire
the expectation that also confirm the consequent of that expectation.

41

Other measures may be needed for specific purposes. For example, if one of the aims was to
present explanations then perhaps expectations with the greatest “explanatory power” might be
favoured. This may be measured by the number of predicates in the expectation for example.
However, for the purposes of determining how well an expectation represents the real world, a
combination of validity and coverage or accuracy and coverage is appropriate.

The question at the beginning of this section was: for any two representative sets
representatives^!, T, A) and representatives^, I \ A), if representatives (pi, T, A) violates ei
and representatives^, T, A) violates e2, which of pi and p2 is more unexpected?

The measures defined above give a partial answer: If accuracy(e2 , n , r , A) <
accuracy(ei,II,r, A) then, all other things being equal, p\ is more interesting than p2- If
validity(ei,II,r, A) < validity(e2 , I I ,r , A) then, all other things being equal p\ is less
interesting than p2 . If fired(ei, II, T, A) < fired(e2 , II, T, A) then all other things being equal, p1
is less interesting than p2, as there is less evidence for the validity and support of ei than e2.

The question arises: what is to be done when violated(ei,II, T, A) > violated^, II, T, A) but
fired(ei,II,T, A) > fired(e2 , I I ,r , A)? Which expectation is the stronger? There are several
choices that can be made concerning the combination of strength values. In certain contexts it may
be most appropriate to choose a single one of the three measures as the indicator of expectation
strength. The measures may be combined using some function of difference, such as the Euclidean
distance, or in some order such as the lexicographic order. The choice of measure will depend on
what is most appropriate to the context under consideration and will not be addressed further in
this thesis.

3.3 Types of violations of expectations

When a report violates an expectation, this may be an indicator of interesting information. Sev
eral violations of the same expectation by a number of different entities, within a short period,
may indicate a cohort violation of expectations. Cohort violations of expectations are defined in
Section 3.3.1.

There is a subset of expectations that are only applicable to entities known to be in a certain
state. If the event model introduced in section 2.4.3 is used then any expectation that contains a
holdsAt predicate is state dependent. All other expectations are state independent.

It is possible that some violations of expectations are not the result of interesting information.
In section 3.3.3, the various reasons for uninteresting violations of expectations are set out and
suggestions made regarding identifying interesting from uninteresting violations of expectations.

The above categories are not mutually exclusive, that is, there may be an interesting cohort vi-

42

olation of a state dependent expectation, an interesting singular violation of a state dependent
expectation or an uninteresting cohort violation of a state dependent expectation and so on.

3.3.1 Cohort violations of expectations

Definition 3.1.6 defines a single entity violation of an expectation. For the rest of this thesis, only
expectations that are violated by single entities will be considered. However, some violations of
expectations only become interesting when a number of entities all exhibit the same unexpected
behaviour. This section presents definitions that are of use if these types of violations, which we
will call cohort violations of expectations, are to be considered. The enitityCount function (which
is defined below) allows us to determine how many entities appear in a set of reports.

Definition 3.3.1. Let pbe a report, Z be a set of news atoms, T be a set of access rules and A be
a set of background knowledge. An entity classifier, denoted entity., (p, T, A), assigns the value
True if the news atoms in Z appear in representatves(p, T, A) and False otherwise.

entityz (p, T, A) = True i f fZ C representatives^, T, A)

Example 3.3.1. Consider the following representative set:

representatives^, T, A) = {act (bidMade), ta rg e t (Sabena), buyer(BritishAirways)}

It follows that:

entity {target(Sabena)}(p ,r, A) = True
entity^bayer(Briti8hAirway8)j(p, T, A) True
entity {target(Sabena) buyer(Briti8hAirHay8̂ (p, T, A) True
entity {-target (S a b e n a) , buyer(Ryanair)}(P»r »A) = False

Definition 3.3.2. Let Y be a set of predicate symbols and Z be a set of news atoms. The set
entitySet(Y) is a set of entity classifiers such that for each entityz E entitySet(Y), the following
two conditions hold: (1) for each p{q\ ,..., qn) E Z, p E Y; and (2) for each p E Y, there exists
ap(qi,...,qn) E Z.

Definition 3.3.3. Let {p±, ...,pn} be a set of reports, T be a set of access rules and A a set of
background knowledge and Y be a set of predicate symbols.

entities({pi, ...,pn},r, A, Y) = {entityz E entitySet(Y)|
3pi E {/>!,...,pn) s.t. entityz (pi,T, A) = True}

and

entityCount({pi,...,pn} ,r , A,Y) = |entities({p!, ...,pn} ,r , A, Y)|

43

Example 3.3.2. For the set o f reports {p\ , P2 ?P3 }> where

representatives (pi, T, A) = {act (bidMade), t a rg e t (Sabena), buyer (B rit ishAirways)}
representatives^, I \ A) = {act(bidMade), ta rg e t (Ryanair), buyer (B rit ishAirways)}
representatives^, r , A) = {act (bidMade), target(Northwest),buyer(Am erican)}

then entityCount({pi,p2 ,P 3 } ,r , A, {target}) = 3, entityCount({pi,p2 ,P 3 } ,r , A, {buyer})
= 2, andentityCount({pi,p2 , ^3 },T, A, { target,buyer}) = 3.

In general, for entityCount({pi,..., pn}, T, A, Y), semantic labels are needed to delineate appro
priate entities. For example, for companies, Y = {name, location} would allow for compa
nies with the same name but different locations to be differentiated. Similarly, for staff records,
Y = {f irstnam e, lastnam e,b irthdate} may be appropriate.

Let us now examine cohort violations of expectations. As with the definition of a singular vio
lation, it is assumed that the news reports are consistent with the background knowledge. Using
this assumption, a cohort violation of expectations is defined as follows:

Definition 33.4. Let { p i,..., pn} be a set of reports, T be a set o f access rules, A be a set of
domain knowledge, E be a set of expectations, and e G E. A cohort violation occurs when more
than one entity is reported as violating that expectation.

{p i,..., pn} is a cohort violation ofe

iff
there exists a non-empty Ysuch that entityCount({pi,..., pn}, T, A, Y) > 1
and
violates(representatives(pi, T, A), e)
and...and
violates(representatives(p„, T, A), e)

Example 3.3.3. Suppose the set of domain facts A includes the following facts

-iprof i t ab le (Amazon), -iprof itable(Boo), -iprof i t able(Yahoo)

and that a set o f reports, {p i,..., Pn} is received such that the following is a subset of the access
predicates representatives^!, T, A) U ... U representatives(pn, T, A).

{shareMovement(Amazon,up), shareMovement(Boo,up), shareMovement(Yahoo,up)}

Suppose also that the expectations E contains the following

Vc 6 companies -iprof ita b le (c) —> -ishareMovement(c,up)

44

This leads us to conclude that the news reports taken with the background facts and the above
expectation lead to an inconsistency. Furthermore,

e n tity C o u n t({ p i,pn},r, A, {shareMovement}) = 3.

Specification of the set of semantic labels Y for the entityCount function needs to appropriately
delineate entities. Inappropriate specification may distort the results as illustrated by the following
example. To avoid this kind of problem, it is possible to assume that the sets Y are selected in
advance by hand for each expectation, and therefore form part of the meta-knowledge.

Example 3.3.4. Assume that the following set of reports all violate the same expectation:

representatives^!, T, A) =
{act (bidMade), ta rg e t (Sabena), buyer (B rit ishAirways)}

representatives^, T, A) =

{act (bidMade), ta rg e t (Ryanair), buyer (B rit ishAirways)}
representatives^, T, A) =

{act (bidMade), ta rg e t (Northwest), buyer(BritishAirways)}

Hence, entityCount({pi,p2 ,P 3 } ,r , A, { targ e t, buyer}) = 3, corresponding to three unique
tuples made up of the entity features. Yet entityCount({pi,p2,P 3 } ,I \ A ,{buyer}) = 1, and so
this set of reports may suggest that the behaviour which violates this expectation is particular to
one company acting as a buyer.

To clarify the difference between singular and cohort violations. For a cohort violation, the con
dition entityCount({pi, ...,pn},r, A,F) > 1 holds for some non-empty Y . For the singular
violations, there is the implicit condition entityCount({p}, T, A, Y) = 1 holding for some non
empty Y that is always satisfiable.

A cohort violation of an expectation must consist of a number of violations falling within a short
period. The question of the period of time that is appropriate will not be addressed in this thesis
and is a subject for further work.

3.3.2 State dependent and state independent expectations

Some expectations hold for all entities at all times, whereas others hold only for entities in given
states. The event model, as defined in Section 2.4.3, is what allows us to identify the state of a
given entity and so identify which of these expectations (referred to as state dependent expecta
tions) should hold.

State dependent expectations apply to an entity e at timepoint t if and only if there exists a state s

45

that holds at time t for entity e.

Definition 3.3.5. Let e, be an entity, let a be a state predicate symbol, s = o(e) is a state. A state
dependent expectation is an expectation whose antecedent contains the holdsAt(s, t) relation.

Example 3.3.5. The expectation “A company which is unprofitable will not be expected to have
a rising share price” can be represented by the following state dependent expectation.

Vc £ companies, t £ tim ePoints
holdsA t(unprofitable(c), t) —» ->shareMovement(c, t , r is in g)

Example 33.6. Consider an event in the event model that allows us to conclude:

holds At (inAdministr a t ion(R ailt r ack) ,02/02/2002)

Suppose the system then receives a report that is represented by the following report atom:

re p o rt (company (Rai I t rack), annualreport (re s u lt (prof i t),
amount (GBP292m), date(02/02/2002))

And from this suppose it is possible to derive

holdsAt (prof i ta b le (R a iltra c k) , 02/02/2002)

Now suppose there exists a state dependent expectation in E such that

Vc € Companies, t £ Time
holdsAt (prof i ta b le (c) ,t) -4 ->holdsAt(inAdministration(c), t)

Hence it is possible to derive -iholdsA t(inA dm inistration(R ailtrack), 02/02/2002) and
therefore the expectation is violated.

3.3.3 Uninteresting violations of expectations

It is assumed throughout this thesis that all violations of expectations are the result of the receipt
of unexpected information. In this section that assumption is suspended as, in reality, it may be
possible for a report to violate an expectation and yet for that report to refer to facts that are
uninteresting. For example: if some error in the report or the background facts causes these facts
to be misinterpreted or misrepresented within an EVA system. These errors may arise out of
misinterpretation errors, that is, the expectation checker failing to recognise thesaurus variants of
a term, or from a a misrepresentation error, that is, errors in the presentation of the news report.
Misrepresentation errors may include such errors as typographical errors or factual errors in the
report.

46

Throughout this section it will be assumed that the set of background knowledge is exhaustive,
that is, the closure of the set of background facts contains all the information that it is necessary
to know. It will also be assumed that the set of background knowledge is correct. This assumption
simplifies certain definitions and is a reasonable assumption to make. The background facts can
be kept largely current and correct by a variety of methods from the fully automatic to the fully
manual. Providing the background knowledge is mainly correct we can be confident that the
majority of representative sets generated from it are correct.

This section will demonstrate how each of these types of error may arise and suggest strategies
for dealing with them. Let us first address misinterpretations. Synonyms, metonyms and format
ting variants are used by authors of natural language documents to maintain the reader’s atten
tion. Collectively, synonyms, metonyms and reformatting are referred to as thesaurus variants.
Metonyms and format variations are special cases of synonymy, but present particular challenges
as thesauruses tend not to list metonyms and format abbreviations.

Synonyms are strings of one or more words which have sufficiently similar meaning to another
string that substitution of one for the other in a sentence leaves the meaning of the sentence
unchanged.

Metonyms are strings of one or more words which idiomatically refer to an entity designated
by another string (for example, “Number 10” for the office of the British Prime Minister).
Substitution of metonyms in a sentence leaves the meaning of the sentence unchanged.
Metonyms are highly context dependent: the meaning of the phrase“Number 10” in a news
report concerning British politics would be different to the meaning of the same phrase in
a report of the music charts for instance.

Format variation are strings that are subject to case or white space differences or that have been
abbreviated. If t and t' are strings of one or more words, t' is a reformatted version of t
when one of the following applies: (1) t has more white space or non-printing characters
than t' \ (2) Letters in f are in a different case than those in t'\ or (3) t contains abbreviations
of terms in t ' . Format abbreviations are usually not to be found in thesauri.

Example 3.3.7. Let the following be a free text report:
“British Airways lobbied the Prime Minister for a moratorium on plans to increase fuel duty.
Number 10 said that BA and other airlines can no longer be exempt from fuel taxes ”

In the above text the words “duty” and “tax” are synonyms; “Number 10” is a metonym for
“Prime Minister” and “BA” is a format variant of “British Airways”.

Synonyms, metonyms and format variants, known collectively as thesaurus variants, create diffi
culties at two stages in the EVA process: during the generation of the set match(p, T, A) and in

47

the grounding of expectations. The following examples will help to illustrate these points. Firstly,
the difficulty of generating the set match (p, T, A):

Example 3.3.8. Let p be a report, V be a set of access rules. Let

access(p, T) = {lobbies(britishA irvays,num berlO ,fuelD uty)}

and

A = |a ir lin e (b a) ,p o litic ia n (p rim eM in is te r) , levy(fuelTax)}

By Definition 2.4.4, match(p, T, A) = 0 as there is no match between the constant symbols in
access(p,r) and those in A. If match (p, T, A) could process thesaurus variants, the following
set would be produced:

match(p, T, A) = {a irlin e (b a),p o litic ian (p rim eM in is te r), levy(fuelTax)}

Likewise, when grounding expectations it is necessary that thesaurus variants are recognised as
otherwise they may lead to false positive or false negative groundings of expectations.

Example 33.9. Let

representatives^, T, A) =
{mobilePhoneCo(l-2-l), mobilePhoneCo(tmobile),
takeover (t-mobile, one-2-one),prof itable(one2one)}

representatives(p, T, A) should violate the following expectation:

Vci, C2 mobilePhoneCompany(ci) A mobilePhoneCompany(c2)A
takeover(ci, C2) —> -iprof i ta b le (c 2)

However, unless the thesaurus variants are recognised, representatives^, T, A) would no violate
that expectation.

It is therefore evident that some means of identifying thesaurus variants is required. One such
method is to define a thesaurus as a set of labels, each associated with a set of words that are syn
onyms, metonyms or format variations of one-another. Some thesaurus variants may be obtained
from existing thesaurus records, others may need to be coded manually. Knowledge bases used
in information extraction provide much of this type of information. These labels can be included
in the knowledge base A and a specialised set of facts.

Definition 33.6. Let ci, ...,cn be canonical entry labels that uniquely identify each canonical
entry and t i , . . . , tn each be a string of one or more words. The set of labelled canonical terms,

48

to be used in place of one of the thesaurus variants, denoted the canonical set is a follows:
canonicalSet = {ci, (ti), ...,Cn(tn)}

Definition 33.7. Let canonicalSet = {ci, (£1) , cn(tn)} be a canonical set, e\ , ..., en be entry
labels that uniquely identify each set of thesaurus variants and t i , . . . , tm each be a string of one
or more words. Let {t j ,..., tk} and { £ / , tm} be sets of terms such that each member of a set is
a thesaurus variant of the other members of that set. The set of labelled sets of thesaurus variants
is as follows:

thesaurusVariants = {e \(tj , ..., tk), .., en(ti , ..., £m)}

For each e„ in the set of thesaurus labels { e i , e n} there is a cn in the set o f canonical labels
Ci j ■..) cn.

Example 3.3.10. Let canonicalSet = {car(car)} and let

thesaurusVariants = {car(automobile, motor, wagon}

Definition 3.3.8. Let e „ (£ i , tm) £ thesaurusVariants, tj,tk be strings of one or more words
and tj,tk be subterms o fen(ti,..., tm) £ ThesaurusVariants iff one of the following applies:

1. tj is a synonym for tk

2. tj is a metonymfor tk

3. tj is a reformatted version oftk

For all tj € subterms(ei(£i, ...,£m)), ...,subterms(en(£„, ...,ta)), tj can be substituted for the
canonical version tj £ subterms(ci (£i)) U ... U subterms(cn(£n)) if the label emfor the set that
includes term tm is equal to the label of the canonical set cm that contains tj.

substitution(tj) = {£̂ | tj G subterms(c„(£^)) and
tj G subterms(en(£i, ...,tn)) anden = cn}

Abbreviations may be derivable within articles. For example within an article which mentions
British Petroleum and then goes on to use the abbreviation BP, it is probably safe to assume that
BP is an abbreviation for British Petroleum. However, the inverse process, deriving full names
from abbreviations, is not so straightforward. Treating abbreviations as thesaurus variants may
work in limited domains. For example, in the domain of company reports BP is probably an
abbreviation for British Petroleum, however, in medical journals, it probably refers to blood pres
sure. If the domain is known, it may be possible to treat common abbreviations as a thesaurus
variant of the full term.

49

The function substitution(tm) can be applied to all reports prior to the application of any other
function, thus ensuring that the terms in the resulting representative set representatives (p, T, A)
are in canonical form. It is assumed that the facts derived from A also contain only canonical
terms. By this method, all misinterpretation errors can be avoided.

I now address misrepresentation errors, which fall into one of three categories: typographical
errors; text structuring errors and factual errors in reports.

As typographical errors are not predictable, they cannot be spotted using the substitution(tm)
function defined above. Therefore there is no set that can be created that can be used to capture and
correct these errors. However, this is an error that may be corrected at the information extraction
stage. If the information extraction engine is equipped with an effective spell checker it can use
its knowledge of parts of speech and likely patterns of words to select the most likely correct
rendering of the misspelt word. Whilst this is not a guaranteed solution, the number of expected
typographical errors is low and therefore should not unduly affect the performance of an EVA
system.

Incorrect classification of extracted information arises where a text entry in the structured text is
contained between the wrong pair of tags. This creates a difficulty when matching representative
sets with expectations as in the following example:

Example 33.11. Let pbe a report and T be a set of access rules. Let

access(p, T) = {takeover(ryanair, ireland)}

and

match (p, T,A) =
{basedln(ryanair, ire land), country (ire land), a i r l in e (ryanair)}

The set representatives(p, T, A) appears to tell us that the airline Ryanair has launched a takeover
bid for the country, Ireland. This is because the report p contains a fact where a country has been
misclassified as a company in the set access(p, T), as the predicate takeover should only ever
refer to two companies. This would lead to a false positive violation o f the expectation:

Vci, C2 a ir l in e (c i) A country(c 2) —>■ -itakeover(ci, C2)

Such errors could be considered “noise”. The degree of noise will largely be determined by the
efficacy of the information extraction process that generates news atoms. No work has yet been
done to determine the frequency or effect of such noise in the representative set. This remains a
question for further study.

It is difficult to identify a characteristic pattern that arises in the case of text misclassification

50

that would allow us to identify misclassified text and to deal with it. A gazetteer is a list of
words of a single type, used by information extraction engines. An example of the “Animal”
gazetteer for instance may be “Aardvark, African elephant, albino monkey, ant, antelope...zebra”.
Misclassification errors usually result from an ambiguity over the part of speech or the gazetteer
to which a term belongs. As the type of a term classifies either its meaning, part of speech or both,
any attempt to use typing to solve this problem will undoubtedly fall foul of the same ambiguities.

However, misclassification is fundamentally an information extraction issue. Therefore the prob
lem of misclassification is beyond the scope of this thesis. It will be assumed from hereon that all
information received in structured news reports is correctly classified, or sufficiently well classi
fied to provide a representation of the real world that is approximately accurate. To do so is not
unreasonable. Many statistical and machine learning techniques are satisfied with providing an
indicative measure of accuracy rather than “book accuracy”.

Factual errors in reports also cause problems with the matching of representative sets with expec
tations, as in Example 3.3.11. They are also difficult to identify unless the error is such that the
facts in the representative set are somehow rendered inconsistent, as in Definition 3.3.9.

Definition 3.3.9. Let p be a report, T be a set of access rules and A be a set of background
knowledge, which is assumed to always be correct, p contains an erroneous fact if

representatives^, T, A) h_L

However, facts may be in error and yet not lead to an inconsistency. If factual errors are not in
consistent with background knowledge, they are impossible to detect within the EVA framework.
However, we assume that reports are factually accurate and the problem of erroneous information
does not receive further discussion in this thesis.

In the situation that a report is known to lead to a misrepresentation error it can be disregarded as
a potential source of useful information, or it can be dealt with by some other means. However, if
a report is not identified as being misrepresentative when it indeed is, that report may generate a
false negative, not violating an expectation that should be violated, or a false positive, violating a
report that should not be violated. If greater accuracy is required, one way to improve performance
is to require more than one source for any claim of extraordinary interest. There is much work
that addresses the difficulty of merging information in reports. A review can be found in [HS04].
This issue will not be addressed further in this thesis.

For the sake of simplicity it will be assumed, unless explicitly stated, that all violations are single
entity violations of state independent expectations. The principles discussed from here onwards
are applicable to all types of expectation violation unless stated otherwise. It will also be assumed
that all misinterpretation and misrepresentation errors have been eliminated. As such all inconsis
tencies between representative sets and expectations are indicative of unexpected, and therefore
interesting, information.

51

3.4 Compilation of consistency checking

Checking whether a set of formulae is consistent is in general an undirected activity. For ex
ample, given a set of formulae it is possible to construct a semantic tableau. But this potentially
involves decomposing every formula in the set into literals. For finding violations of expectations,
this involves an inordinate amount of unnecessary search since only a relatively restricted set of
formulae needs to be considered for each expectation.

One solution to this problem is to compile the consistency checking for each expectation. Rather
than checking the consistency, directly proving whether or not each expectation has been violated
is a directed activity and therefore does not rely on the use of search methods. This is achieved
by rewriting each expectation into another formula that is called a viaduct as follows:

Definition 3.4.1. Let label(e) be the label of an expectation of the form Vxi, ...,£* c*i A .. A
a„ —»• /3. A rule that can be used to check for the violation of an expectation, denoted a viaduct,
is a formula of the following form:

V x i Q ! i A .. A an A -i/? —> v io la tio n (lab e l(e))

If E is a set of expectations, viaduct(-E) is the set of viaducts obtained from E.

Example 3.4.1. Let expectation e\ =

Vx prof itab le (x) A large(x) —>• lis ted (x)

The viaduct for ei =

Vx prof itab le (x) A large(x) A -ilis ted (x) —»• v io la tio n (lab e l(e i))

Reasoning with viaduct(.E) and reasoning with E is identical in the sense that the set of expecta
tions that are identified as being violated is identical. This is demonstrated below.

Proposition 3.4.1. Let p be a structured news report, T be a set of access rules, A be a set of
domain knowledge, E be a set of expectations and e G E. Let e = Vari,..., oti A ... A a n -» /?.

p is a violation ofe £ E iff the following two conditions hold:

(1) viaduct(-E) includes the following viaduct

Vzi, ...,£* A ... A a n A —> v io la tion (labe l(€))

(2) there exists a grounding set $ such that

access(p, T) U match(p, A) h ground(ai A ... A a n A ->0, $)

52

Proof. The following conditions are equivalent: p is a violation of e E E

(1) iff p violates c and e E E
(ii) iff representatives^, T, A) U {e} b_L and e E E
(iii) iff 3 a grounding set $ s.t. representatives^, T, A) b ground(-iconsequent(e), 4>) and

representatives^,T, A) b ground(antecedent(e), $)
and e E E

(iv) iff 3$ s.t. representatives^, T, A) b ground(e, 4>)
andantecedent(e) A ->consequent(e) -> v io la tio n (lab e l(e)) E viaduct(iS).

□

The use of viaducts is a method of compiling consistency checking. Proposition 3.4.1 shows that
consistency checking is maintained as in the original definition for a violation of an expectation.

The following example illustrates that compilation loses the ability to identify inconsistencies
arising from representatives^, T, A). In other words, there may be a number of possible sub
sets of representatives^, T, A) U E that are inconsistent but that these cannot be detected if
viaduct(.E) is used, rather than E. Given that we assume that there are no inconsistencies in
representatives^, T, A), this is not a problem within the EVA framework.

Example 3.4.2. Let a(d) and b(d) be in access(p, T) for some report p. Also let two o f the ex
pectations in the set of expectations, E be

Vx a(x) —> c(x)
Vx b(x) -» -'c(x)

Clearly, the set {a(d),b(d), Vx a(x) —> c(x), Vx b(x) —► ->c(x)} is inconsistent.

However, this inconsistency is not a violation of an expectation.

A key advantage of compilation of consistency checking is the increase in computational viability.
Viaducts turn checking whether a given news report p violates an expectation into a decidable
problem of classical prepositional logic. Consistency checking for classical logic is expensive
in general. Deciding whether a set of prepositional classical formulae is consistent is an NP-
complete decision problem [GJ79]. Furthermore, deciding whether a set of prepositional classical
formulae T is a minimal inconsistent set involves (1) checking that T is inconsistent and (2)
checking whether each maximal subset of T is consistent. If the cardinality of T is k, then doing
(2) involves k consistency checks, where k is no more than linear in the size of the input. Hence,
this decision problem is equivalent (modulo polynomial time) to the original PSAT problem.
However, if the problem is considered as an abduction problem, where the existence of a minimal
subset of a set of formulae that implies a contradiction is sought, then the problem is in the

53

second level of the polynomial hierarchy [EG95]. Even worse, deciding whether a set of first-
order classical formulae is consistent is an undecidable decision problem [BBJ02]. This means
compilation of consistency checking is highly advantageous.

Using viaducts reduces checking whether a given news report p violates an expectation to a decid-
able problem, which makes implementation possible. A Prolog implementation would incorporate
a meta-interpreter (adapted from [SS94]) that evaluates each viaduct in turn.

3.5 Discussion of Chapter 3

This chapter presents the methods used by the EVA framework to both identify and to measure
the unexpectedness of information. Information from news reports and background knowledge
is considered interesting, with respect to the corpus of expectations, if and only if that informa
tion violates one or more of those expectations. The notion of a violation has a clear meaning,
resulting, as it does, from the concurrent firing and attacking of an expectation. Searching for
inconsistency between representative sets and expectations is a directed activity by means of the
viaducts introduced in Section 3.4.

However, there are outcomes other than violation arising from the relation between news, back
ground facts and expectations. Whilst these outcomes may not identify interesting information,
they are of use in assessing the strength of expectations. If a representative set does not fire an
expectation then that expectation is not relevant to the facts in that representative set and need not
be considered any further. If an expectation is both fired and supported by a given representative
set then that representative set confirms the expectation. Confirmation increases the validity and
accuracy of the expectation by providing evidence that the expectation correctly describes the
usual state of the world. In the absence of the closed world assumption a representative set may
fire an expectation yet neither attack nor support it. This strengthens the accuracy of the expec
tation, providing evidence that this expectation does not contradict situations in the real world.
Violation of an expectation weakens the evidence that an expectation represents the real world
and so decreases accuracy and validity.

These relationships are therefore of interest not only when identifying interesting news reports but
also when measuring the reliability of expectations. Central to the EVA framework is the need to
evaluate the violations of expectations. This evaluation is a form of measuring of inconsistency.
The more valid or more accurate an expectation is, the more significant the inconsistency aris
ing when the expectation is violated. The violation of a highly valid expectation indicates that
the reported behaviour is in direct contradiction to that expected given the situation described in
the antecedent of that expectation. The violation of a highly accurate expectation merely indi
cates that the reported behaviour is unusual given the situation described in the antecedent of the
expectation.

54

The measures proposed in this chapter have several advantages: they have clear semantics based
on the occurrence of ground instances of the antecedent and consequent in reports and background
knowledge. These measures are also based on real world events and thus have a meaningful
derivation. The measures can be calculated in constant time, making them ideal for implementa
tion.

The values for expectations should change over time as rules continue to be fired by the reports
received. Continued violations of an expectation suggest a trend emerging which should lead
to a change in the strength of the expectation which is violated. For example, there may be an
expectation in the domain of mergers and acquisitions, where it is expected that a company will
sell off subsidiaries, indicating a market going through a period of decentralisation. There may
also be an opposing expectation that companies will buy other companies, indicating a period
of consolidation. Given that every time an expectation is violated its confirmation decreases by
some degree and the confirmation of the opposing expectation increases by the same degree, the
strength of these expectations acts as a self-setting market state indicator.

In order to determine which rules are currently accurate, it may be necessary to give greater
weight to the results of more recent firings than to firings further in the past. In order to achieve
this, each firing and its associated outcome can be assigned a weight which decreases with time.

Secondly, applying confirmation theory to information regarding a cohort of entities is more dif
ficult than applying it to singular violations. Recall that, for a cohort violation to take place, there
needs to be more than one representative set involved in a relation with a given expectation during
a given time. These relationships would be recognised by a human reader as forming a pattern.
For cohort violations, it is necessary to consider how to delineate sets of representative sets in
order to achieve the following goals:

• maximizing the number of entities involved in the violation;

• minimizing the time frame considered for the violation and

• maximizing the specificity of the entity specification.

As an interim measure, rather than propose an aggregation of these goals, the user should be able
to vary the time frame considered for the violation, and thereby see whether the relative number of
entities violating the expectation differs from the number of entities not violating the expectation.
In the longer term further work may provide clearer guidance on how to apply cohort information
to confirmation theoretic measures.

55

Chapter 4

The set of expectations

The EVA framework, presented in outline in Chapter 2, identifies interesting information by iden
tifying (consistent) representative sets that, together with an expectation about the behaviour of
entities in the world, leads to an inconsistency. The set of expectations is therefore central to the
EVA framework. This chapter presents a set of definitions that formalise a set of expectations for a
given language. This chapter demonstrates that there is an order over expectations that determines
the relative strengths of those expectations.

This chapter is structured as follows: Section 4.1 defines the set of expectations and an ordering
over those expectations. Section 4.2 demonstrates that there is a relationship between the order
of expectations in this set and the order of their coverage, support and attacked values. Finally,
Section 4.3 demonstrates that this relationship facilitates the search for desirable expectations.

Results for validity values can be proved dually from the results for accuracy values and results
for ssets can be proved dually from the results for vsets. Therefore, proofs for validity will not be
given.

The contributions in this chapter are that: antecedents and consequents can be partially ordered
by logical entailment (e.g. Vx a A/? I- Vx a) and that antecedents and consequents can be ordered
in to such a way that the precedence relation between two formulae determines the order of the
values for those formulae.

4.1 Marker formulae and expectations

A set of marker formulae is a set of unground, universally quantified, unconditional formulae for
a given language that excludes function symbols. A set of marker formulae is representative of all

56

possible antecedents and consequents for a given language. That is, for each possible antecedent
or consequent there is a marker formula that is its logical equivalent in the set of marker formulae.
For any language with a finite number of predicate symbols, no function symbols, an upper limit
on the arity of predicates and the length of formulae, there is a finite number of antecedents and
consequents.

This section defines sets of marker formulae and the expectations that can be generated from
them.

Definition 4.1.1. Let P be set of predicate symbols, V be a set of variable symbols and n the
maximum arity of literals formed from P and V. The set of marker formulae formed from P and
V, denoted M is as follows:

M = {Vu a\p G P, V\ , ...vj G V , 1 < j < n , v = (vi, anda = p (vi,...,v j) or

The above definition results in an infinitely large set of formulae, as there is no limit on the length
of conjunctions or disjunctions. However, we will assume some limit is placed on the length of
disjunctions and conjunctions in the set M, thus restricting M to a finite set.

Example 4.1.1. Let P = {pi,P 2 }- Let V = v2 }- Let n = 1. M =

W i --pi(vi)
Vvi P i (v i) A p 2 (v\) ,

Vui,v2 P 2 M Vpi(vi), Vv2 P 2 M Vpi(v2)}

There is an ordering over a set of marker formulae based on the consequence relation (b). For any
two formulae a i , a 2 G M , if {cn } h a 2 then we say that en is equally or less general than a 2.

Definition 4.1.2. Let ■< be the consequence order relation over A such that:

W i f3\ , Vv2 fa G M and
Vv a = ViJi or'iv a = W 2 -> 0 2 or
Vv a = Vvi, V2 0i A 0 2 or
'iv a = 'iv i , v2 0i V 0 2

{Vvi pi{vi),
Vvi P2{v 1),

W 2 pi{v2),
Vv2 P2(v2),

V a i a 2 G M, ai ■< a :2 i j f{ai} b a 2

We extend the notation as follows:

1 : For all a i a 2 i f cn -< a;2 and a 2 2 ? ot 1 then cn -< a 2

2 : For all cn a 2 i f cn ^ ck2 and a 2 ■< a i then a i = a 2

3 : For all cn a 2 i f a i a 2 and a 2 a i then c n ||a 2

Example 4.1.2. Let {Vx prof itab le (x), Vxprof ita b le (x) A bank(x)} C M.

57

It is the case that {Vx p ro f ita b le (x) A bank(x)} h Vx prof i t ab le (x), therefore

Vx p ro f ita b le (x) A baitk(x) -< Vx prof itab le (x)

It is also the case that {Vx p rof i t ab le (x)} I/ Vx prof itab le (x) A bank(x), therefore

Vx p ro f i t ab le (x) ^ Vx prof i t able (x) A bank(x)

ThusVx p ro f i ta b le (x) A bank(x) -< Vx p rof i t ab le (x).

Proposition 4.1.1. Trivially, the pair {M , ■<) is a partially ordered set.

Example 4.1.3. Let x be a tuple of variables x i , ..., Xk where k is some positive integer. Let A
contain the formulae Vx aA/3, Vx a, Vx j3, Vx a V ft. The consequence relation h holds between
the formulae is as follows:

{Vx a A /?} h Vx a,
{Vx a A ft} I- Vx 0,
{Vx a} b Vx a V (3
{Vr 0} h Vx a V

So for the pair (M, ■<) the following orders hold:

Vx a A j3 -< Vx a,
Vx a A (3 -< Vx /?,
Vx a A P -< Vx a V /?,
Vx a -< Vx a V
Vx (3 -< Vx a V /?

For any language it is possible to generate a finite set of expectations based on the formulae in
the set A, where each expectation may not exceed a certain length, or if the inclusion of logically
equivalent expectations is not permitted.

Definition 4.1.3. Let x , y, z be tuples of variables. Let A the set of all marker formulae. Let ®
be a function that combines tuples of variables such that (^i, Vj) © {vk , v n) = (v i , vn).

For example, (w, x) © (y, z) = (w, x, y, z). Let

E = {Vx a —> f3\Vy a G M and Vz f3 € M and x = y © z}

E is a set of expectations.

The set of expectations is therefore the set that contains every pair of antecedents and consequents,
joined by the conditional relation (-») and universally quantified outermost.

58

In the following definitions, antecedents and consequents of expectations are drawn from the set
of unconditional formulae, M , and expectations are members of the set E. The pair (^ , M) is
the partial ordering over the set M by the consequence relation, K

4.2 Values and the set of expectations

The set of all expectations for a given language, assuming no function symbols, predicates of
finite arity and no repeated literals, is finite. But for even relatively restricted languages it is very
large. It is useful to be able to predict which expectations are the most useful. Being able to derive
the order of the strength values of expectations from the consequence order of those expectations
enables such predictions to be made.

For any expectation, e, set of reports, II, set of access rules, T and set of background knowledge,
A, the value fired(e,II,r, A) is a function of the set of representative set and the antecedent
of c. The value attacked(e, II, T, A) is a function of the consequent of e and the set of rep
resentative sets. The values violated(e,II,r, A) and confirmed(e,II,r, A) are functions of the
antecedent and consequent of e and the set of representative sets. For definitions of the functions
fired(e,II,r, A), attacked(e,II,r, A), violated(e, II, T, A) and confirmed(e, II, T, A), refer to
Section 3.2.

This section demonstrates that the order of the antecedents and consequents of any pair of expec
tations determines the fired, confirmed and attacked values of those expectations. Section 4.2.1 on
antecedent order and expectation values, proves the link between the order of the antecedents of
two expectations ex and ey and the order of the values fired(ex, II, T, A) and fired(ey, II, T, A).
Section 4.2.2 on consequent order and expectation values, demonstrates that the order of the con
sequents of expectations ex and ey is related to the order of the values attacked(ex, II, T, A) and
attacked(ey, II, T, A) and the order of supported(ex , II, I \ A) and supported(ey, II, T, A). Sec
tion 4.2.3 on consequence order and expectation values, shows that the relative ordering of two
expectations ex and ey is related to the order of the values violated(ex, I I ,T,A) and
violated(ey, I I , r , A) and to the order of the values confirmed(ex, II, T, A) and
confirmed (ey, II, T, A).

4.2.1 Antecedent order and expectation values

The consequence order of two antecedents determines their relative fired values. The fired value
of an expectation is a function from the antecedent of that expectation and the set of representative
sets to the range of positive integers.

Proposition 4.2.1. Let E be a set of expectations. For all ej, e* G E such that
{antecedent^)} b antecedent^*) and {antecedent^*)} b antecedent(ej), the set of reports

59

that fires ej, fset(ej,II, T, A), is identical to fset(€*, II, T, A) fo r a given set o f reports II, access
rules T and background facts A. As a result, fired(ej, II, T, A) = fired(e*, II, T, A).

Proof Let p be a report and A be a set of background facts, and T, a set of access rules. For all
antecedent^!), antecedent^), if {antecedent^!)} b antecedent^) then antecedent^!) -<
antecedent^). It follows that for all p if there is a grounding set such that representatives^, T, A) b
antecedent(ground(ej, 4>j)) then there is a grounding set 4>* such that representatives^, T, A) b
antecedent(ground(efc, <!>*)).Likewise, for all p if there is a grounding set such that representatives^, T, A) b
antecedent(ground(efc, <!>*)) then there is a grounding set <£., such that representatives^, T, A) b
antecedent(ground(ej, $ j)). Therefore

fset(ej, II, T, A) = fset(e*, II, T, A))

By Definition 3.2.1 for all e„, fired(c„,II,r, A) = |fset(en,I I , r , A)|, therefore
fired(€j,II, r, A) = fired(e*,II,r, A). □

For any ordered pair of antecedents, antecedent^!) ^ antecedent(e2), itisthecasethatantecedent(e2)
will be fired at least as often as antecedent^!).

Proposition 4.2.2. For all ej, e* such that antecedent(ej) ■< antecedent^), it follows that
feet(cj, II, T, A) C fset(efc, II, T, A) and therefore

fired(ej,II,r, A) < fired(e*, II,T, A)

Proof. Let p be a report and A be a set of background facts, and T, a set of access rules.
Given that for all antecedent^), antecedent(e*), if antecedent(ej) ■< antecedent^*) then
{antecedent^)} b antecedent(e*), it follows that for all p if there is a grounding set 3>j such
that representatives^, T, A) b antecedent(ground(ej, 4>j)) then there is a grounding set $*
such that representatives^, T, A) b antecedent(ground(e*, #*)). Therefore

fset(cj,II,T, A) C fset(ejk,II,T, A))

By Definition 3.2.1, if fset(ej,II,T, A) C fset(ej, II, T, A) then fired(eJ 3 II, T, A) <
fired(efc,n ,T ,A). □

Example 4.2.1. Let T be a set o f access rules and A be a set of background facts. Let e\ =

a ir lin e (x) A ftselOO(x) —> prof itab le (x) and € 2 = a ir l in e (x) —> prof itab le (x). It
follows that antecedent^!) -< antecedent^).

Let ground(ei, $ 1) = a ir lin e (b a) AftselOO(ba) —> p rof i t ab le (ba) and ground (e2, $ 2) =
a ir lin e (b a) —> prof i t able (ba).

60

Let p\ be a report such that representatives^!, T, A) I- a ir lin e (b a) A ftselOO(ba). Conse
quently pi fires ci and e2.

Let P2 be a report such that representatives^, I \ A) h a ir lin e (b a) . Consequently p2 fires e2

but not ei.

All reports which fire t i are in both fset(airline(x) Af tselOO(x) —> prof ita b le (x), II, T, A)
and fse t(a irline(x) —> p rof i ta b le (x) ,I I ,r , A), but some reports which fire e2 may be in
fset(a irline(x) —► prof i ta b le (x) ,I I ,r , A) but not fse t(a irline(x) A f tselOO(x) —>•
prof i t abl e(x) ,H,T, A). Thus fset(ei, II, T, A) C fset(e2 , I I ,r , A) and, by Definition 3.2.1,
fired(ei,II) < fired(e2, II).

4.2.2 Consequent order and expectation values

The attacked value of an expectation is a function from the consequent of that expectation and
the set of representative sets to a positive integer. The negation of two logically equivalent conse
quents will be ground by the same reports. This knowledge is used to direct the generation of a
working set of expectations (more details are given in Chapter 5).

Proposition 4.2.3. Let E be a set of expectations. For all ej, e* £ E such that
consequent^) ■< consequent^*) and consequent^) -< consequent^), aset(e,) is identical
to aset(ejfc). As a result, attacked(ej) = attacked(efc).

Proof. Let p be a report and A be a set of background facts, and T, a set of access rules.
Given that for all consequent(ei), consequent(e2), if consequent(ei) ■< consequent(e2) then
{consequent(ei)} I- consequent(e2), it follows that for all p if there is a grounding set such
that representatives^,T, A) I-----'Consequent(ground(e/t, then there is a grounding set
such that representatives^, T, A) I— iconsequent(ground(ej, $ j) . Likewise, for all p if there
is a grounding set such that representatives^, T, A) h -■consequent(ground(eJ , 4>j) then
there is a grounding set such that representatives^, T, A) I— >consequent(ground(efc, <!>*) .
Therefore

aset(ej, II, T, A) = aset(ejfc, II, T, A))

By Definition 3.2.2 for all e„, attacked(en, II,T, A) = |aset(en,I I , r , A)|. Therefore
attacked (€j, II, T, A) = attacked(e*, II, T, A). □

For any ordered pair of consequents it is the case that the consequent that is lower in the order
will be attacked at least as often as the consequent that is higher in the order.

61

Proposition 4.2.4. Let E be a set o f expectations. For all ej, e* € E such that
consequent(ej) ■< consequent(efc) aset(ej) C aset(e*). A sa result, attacked(ej) < attacked(e*).

Proof. Let tj and e* be expectations, p be a report and A be a set of background facts, and T a set
of access rules. If consequent^) ■< consequent(e*) then {consequent^)} b consequent^*).
Thus for all p if there is a grounding set $* such that representatives^, T, A) b

ground (-iconsequent(e*), $*) then there is a grounding set $ j such that representatives(p, T, A) b
ground(-<consequent(ej), $ j). Therefore aset(e*,II, T, A) C aset(ej, II, T, A).

By Definition 3.2.2, if aset(e*, II, T, A) C aset(ej, II, T, A), attacked(e*, II, T, A) <
attacked(€j,II,r, A). □

Example 4.2.2. Let T be a set of access rules and A be a set o f background facts. Let e\ =

a ir lin e (x) —> prof itab le (x) A ftselOO(x) and € 2 = a ir lin e (x) —> prof ita b le (x) be
expectations. Therefore consequent^!) b consequent(e2)

Let $ 1 and $ 2 be grounding sets. Let ground(ci, $ 1) = a ir lin e (b a) -4 prof i t ab le (ba) A
ftselOO(ba) and ground(e2 , $ 2) = a ir lin e (b a) -» prof itab le (ba)

Let there be a report p i such that representatives (pi, T, A) I— if tselOO(ba). Consequently, p\
attacks t \ but not €2 .

Let there be a report p2 such that representatives^, T, A) I— iprof i t ab le (ba). Consequently,
P2 attacks ci and €2 .

Thus all reports that attack € 2 are in both aset(ei, II, T, A) and aset(e, II, T, A), but some reports

that attack € 2 may be in aset(airline(x) —t prof itab le (x) A ftselOO(x), II, T, A) but not
aset(airline(x) —> prof itab le (x),II , T, A). Thus aset(e2 ,II,T , A) C aset(ei, II,T, A) and
attacked(e2 ,II) < attacked(ei,II,r, A).

4.2.3 Expectation order and expectation values

Expectations with logically equivalent antecedents have identical fsets and expectations with log
ically equivalent consequents have identical asets. Logically equivalent expectations have identi
cal vsets but do not necessarily have the same fset or asets. Therefore it is not enough to know
that ci is logically equivalent to € 2 to determine the relationship between the values for ei and the
values for e2

Proposition4.2.5. Let e\ and € 2 be two logically equivalent expectations. vset(ei,II,r, A) =
vset(e2 , I I , r , A).

Proof. Let ej and e* be expectations, p be a report and A be a set of background facts, and T a set
of access rules. If (ej) is logically equivalent to (ejt) then for all p, if there is a grounding set <&k

62

such that representatives^, T, A) bantecedent(grounde*, $*)) A -iconsequent(grounde*, <!>*))
then there is a grounding set 4>j such that representatives(p, T, A) I- antecedent(groundej, A
->consequent(groundej, $j)) . Likewise, for all p, if there is a grounding set such that

representatives^,T, A) h antecedent(grounde:?, $j)) A ->consequent(ground6 j, $,•))

then there is a grounding set such that

representatives^,T, A) h antecedent(grounde&,$k)) A ->consequent(groundefc, $*))

Therefore vset(e/k, II, T, A) = vset(cj, II, T, A).

By Definition 3.2.4, if vset(efe,II, T, A) = vset(e_,-, II, T, A), violated(e*,II,r, A) =
violated(ej, I I , r , A). □

For two logically equivalent expectations, e\ and €2 , the order of accuracy(ei, II, T, A),
accuracy (€ 2 , II, T, A) is determined solely by the consequence order of the antecedents of ei and
C2 -

Proposition 4.2.6. Let E be a set o f expectations. For all em, en 6 E, ifem is logically equivalent
to en and antecedent(cm) ■< antecedent(e„) then accuracy(em, II, T, A) <
accuracy(en, II, T, A).

Proof Let II be a set of representative sets. Let em and en be logically equivalent expectations.
Let |vset(em, II, T, A)| = vsetsize. By Proof 4.2.5, vset(em, II, T, A) = vset(e„, II, T, A). Con
sequently, |vset(en,I I , r , A)| = vsetsize.

Letantecedent(em) ■< antecedent(e„) then, by Proof 4.2.2, fset(em, II, T, A) C fset(€n, I I , r , A)
It follows from Definition 3.2.6 that accuracy(em, II, T, A) < accuracy(en, II, T, A). □

It therefore follows that for a set of logically equivalent expectations, those expectations with the
most specific antecedents will be the ones that are the least accurate, as the coverage for such
expectations is lower than for expectations with more general antecedents, whilst the violated
value remains the same, if the expectations are logically equivalent.

Example 4.2.3. The following expectations are all logically equivalent:

ei = Vx p(x) A q(x) —> r(x)
€ 2 = Vx q(x) A - t (x) —> - ’p(x)
e3 = Vx p(x) -»■ -,q(x) V r(x)
e4 = Vx ->r(x) -4 -ip(x) V -iq(x)

By Proposition 4.2.5, fo r any set o f reports, II, access rules T and background knowledge, A,

63

vset(ei, II, T, A) is identical to vset(e2 ,II, I \ A), which is identical to vset(e3, II, T, A), which
is identical to vset(c4 , II, T, A).

By definition 4.1.2, an teceden t^) ■< antecedent^) and antecedent^) ^ antecedent^).
According to Proposition 4.2.6, fse t(e i,II,r, A) C fset(e3 , I I , r , A) and fset(e2 , I I , r , A) C

fset(e4 ,n , r ,A) .

As a result, accuracy(ei,II,r, A) < accuracy (e3, II, T, A) and accuracy(e2 , I I , r , A) <
accuracy(e4 , II, T, A).

Expectations with less general antecedents pose the strongest test for accuracy for the expecta
tions. That is, it is much more difficult to fire such expectations. Such expectations also have
greater explanatory power. That is, the less general the antecedent of an expectation, the more
specific a description it is. For example Vx b r i t is h (x) A a ir l in e (x) is more specific than
Vx b r it is h (x) . Therefore, less general antecedents are only fired in specific circumstances and,
as such, have far greater discrimination between types of situation than general antecedents. It is
therefore suggested that expectations with least general antecedents be favoured over those with
shorter antecedents when creating the set of expectations.

For an expectation and its contrapositive, the vsets for those expectations are identical (see Propo
sition 4.2.5). However, as the antecedents are not comparable using the consequence relation, the
order of the accuracy and confirmation values for contrapositive expectations is not fixed.

Proposition 4.2.7. Let 6 1 , 6 2 be expectations, such that t\ is the contrapositive o f €2 . Therefore

accuracy(ei) is independent o f accuracy (6 2), that is, the order of accuracy (ei) and a ecu racy (6 2)
is not fixed.

Proof. The following is a counterexample that demonstrates that accuracy (ei) is independent of
accuracy^). Let ei = Vx a —> f3 and 6 2 = Vx ->(3 —> ~^a.

Let
representatives^!, T, A) h {<*, ->0}
representatives^, T, A) h {->a:, ->{3}
representatives^,T, A) t- {a }
representatives^,T, A) h {<*}

After the receipt of P2 , the values for ei and e2 are as follows:
accuracy coverage

Cl 0 1

€ 2 0.5 2

After receipt of P4 the values for ei and 6 2 are as follows:

64

accuracy coverage
€l 0 . 6 6 3
€ 2 0.5 2

Therefore the accuracy of ei is independent of the accuracy of C2 - □

If two expectations have logically equivalent antecedents, but the consequent of one expectation
is more general than the other, the expectation with the more general consequent is as accurate,
or more so than the expectation with the less general consequent.

Proposition4.2.8. Let e i,e 2 be expectations. Let antecedent(ei) be logically equivalent to

antecedent^). Let consequent^!) ^ consequent^)- It therefore follows that
accuracy(ei,II,r, A) < accuracy(e2 , n , r , A).

Proof By Proof 4.2.1, given that antecedent^!) is logically equivalent to antecedent^),
fse t(e i,II,r, A) = fset(e2 ,n , T, A). By Proof 4.2.4, as consequent(ei) ■< consequent^),
aset(€2 , II, T, A) C aset(ei, II, T, A) and so vset(e2, II, V, A) C vset(ci,II, T, A).

It follows from Definition 3.2.6 that accuracy(ei,II,r, A) < accuracy(e2 , n , T, A). □

Generalising the antecedent of an expectation whilst keeping the consequent constant results in an
unpredictable change in the confirmed and accuracy value for those expectations. This is because
the change in antecedent results in both a larger vset and a larger aset, but the increase in the size
of these sets is not necessarily proportionate.

Proposition 4.2.9. Let E be a set o f expectations. For all €j, e* € E if antecedent(ej) ■<
antecedent(ejt) and consequent^) is logically equivalent to consequent^*) then

fse t(e j,II,r, A) C fset(e*, I I ,I \ A) and vset(e j, n ,T , A) C vset(e*,II,r, A)

Proof. By Proof 4.2.3, as consequent^!) is logically equivalent to consequent(e2), aset(e2, II, T, A) =
ase t(e i,II ,r , A). By Proof 4.2.2, given that antecedent(ei) ■< antecedent(e2),
fset(ei, II, T, A) C fset(e2 , II, T, A) and so it follows from Definition 3.2.4 that vset(e2, II, T, A) C

v se t(e i,n ,r ,A). □

Generafising the antecedent of an expectation leads to an unpredictable change in the accuracy
and confirmation values. By Proof 4.2.2, a generalisation in antecedent leads to a larger fset. By
Proof 4.2.9, a generalisation in antecedent leads to a larger vset and cset. Therefore, generalising
the antecedent of an expectation leads to an increase in both the numerator and the denominator of
the equation accuracy(e, II, T, A) = 1 - |f fe ,n ,’r ,a } | • Consequently confirmation^!, II, T, A)
is independent of confirm ation^,II,T ,A) andaccuracy(€i,II,r,A) is independent of
accuracy(e2 , II, T, A):

65

Proposition 4.2.10. Let E be a set o f expectations. For all t j , t k € E, if antecedent(ej) X
antecedent(c*) and consequent^) is logically equivalent to consequent^*) then

accuracy(ej, II,T , A) is independent o/accuracy(e*,II, T, A).

Proof The following is a counterexample:

Let €\ = V x a —> 7 and €2 = Vic a A j3 —>■ 7 . Let
representatives^!, T, A) b {a , ->7 }

representatives^ , I \ A) b {a , /?}
representatives^ , T, A) b {a , /?, - 1 7 }
representatives^ , T, A) b {cr}

representatives^,T, A) b {a }

After the receipt o f p3, the values for ei and 62 are as follows:
accuracy coverage

€l 0.33 3
€ 2 0.5 2

After the receipt o f p%, the values for ei and €2 are as follows:
accuracy coverage

ei 0 .6 5

C2 0.5 2

Therefore the accuracy of e\ is independent of the accuracy of 6 2 . □

If two expectations, e\ and e2 differ such that antecedent^!) ■< antecedent(e2) and
consequent^!) ■< consequent^!), it is tempting to believe that e2 must be more accurate than

e i . By Proof 4.2.2 the more general antecedent will have a larger fset than the more specific

antecedent and by Proof 4.2.4, the more general consequent will have a smaller aset than the

more specific consequent. However this need not be the case. This means that it is not possible to
determine, a priori the order of the accuracy values of those expectations.

Proposition 4.2.11. For any two expectations, t j , t k £ E, i/an teceden t^) ■< antecedent(e*)
and consequent^) ■< consequent^*) then e* is more general than t j . That is to say, tk will be

fired more and attacked less than t j .

The order o/accuracy(ej, II, T, A) and accuracy(e*, II, T, A) cannot be predicted from the con
sequence order o f a ntecedent (e j) and antecedent^*).

Proof. By Proof 4.2.2, if antecedent(e7) ■< antecedent(e*) then fired(ej,II,T, A) <
fired(e*, II, T, A). Therefore the denominator in the formula

/ n x. * n |violated(e7, II, T, A)|
a c c u ra c y ^ ,n ,I \ A) - - |fjred(ej) ^ r? A)[

66

is smaller than the denominator in

/ n t' a\ 1 |violated(e*,n,r,A)|accuracy^, n,r, A) = 1 - A)|

However, it is possible that the vset(e*,II,T, A) < vset(ej,II, T, A), thus also increasing the
numerator. As consequent^) ■< consequent^*), it therefore follows that
attacked (c*, II, T, A) < attacked II, T, A).

If aset(ej, II, T, A) £ vset(e*, II, T, A) and aset(e*, II, T, A) £ vset(€j,II, T, A) then the in
equality in size between aset(e*, II, T, A) and aset(ej, II, T, A) cannot guarantee that
vset(efc, II, T, A) < vset(eJ 5 II, T, A).

As the difference in size between vset(e*, II, T, A) and vset(e*, II, T, A) is not wholly dependent
on the difference in size between fset(e*,II,r, A) and fset(e*, II, T, A), the order of
accuracy(ej,II,r, A) and accuracy(e*,II,r, A) cannot be predicted from the order of
an teceden t^) and antecedent^*) □

Example 4.2.4. Let ei = a ir l in e (x) —> p ro f i ta b le (x) and let e2 = a ir lin e (x)A
b r it is h (x) —> p ro f i ta b le (x) A l is te d (x)

Let pi be a report such that

representatives^!, T, A) h
a ir lin e (a irW a le s) A b ritish (a irW ales)A
p ro f itab le (a irW ales) A -d is ted (a irW ales)

As a result, values for the two expectations are given in Table 4.1:

fired violated accuracy
€l 1 0 1
C2 1 1 0

Table 4.1: Values for ei and e2 after receipt of p\ .

Let p2 , p3 and p4 be additional reports such that

representatives^, T, A) h
airline(B A) A british(B A) A pro f itable(BA) A listed(BA)

representatives^, T, A) h
a ir lin e (b u z z) A -iprof itab le (buzz)

representatives^, T, A) h
a ir lin e (sw issA ir) A -iprof itab le (sw issA ir)

67

The values for the two expectations are shown in Table 4.2:

fired violated accuracy
Cl 4 2 0.5
^ 2 2 1 0.5

Table 4.2: Values for ex and € 2 after receipt of p4.

Let report p5 contain facts such that representatives^, T, A) I- a ir lin e (a ir2 0 0 0)A
b r it ish (a ir2 0 0 0) A p ro f itab le (a ir2 0 0 0) A lis ted (a ir2 0 0 0). The updated values for the
two expectations are now as in Table 4.3:

fired violated accuracy
€l 5 2 0 . 6

« 2 3 1 0 . 6 6

Table 4.3: Values for ei and € 2 after receipt of p5.

So we see that, on receipt o f p\, was the more accurate expectation. By receipt of p§, 62

was the more accurate. This example illustrates that there is no way o f predicting the relative
strengths o f these expectations merely by knowing the relative order o f their antecedents and
their consequents.

If two expectations, ei and €2 , differ such that antecedent^!) < antecedent^) and consequent^) ■<
consequent(ci), by Proof 4.2.2 fset(ei,II, T, A) < fset(e2 , I I , r , A) and by Proof 4.2.4, aset(e2 > n ,r , A) <
aset(ei, II, T, A). Again it is not possible to predict the relative accuracy and confirmation values
for these expectations.

Proposition 4.2.12. Letej,ek 6 E. /^antecedents) ■< antecedent(e*), am/consequent^*) ■<
consequent(ej) and tj is not logically equivalent to e*, accuracy(eJ 5 II, T, A) is independent of
accuracy(e*,II,r, A).

Proof. By Proof 4.2.2, if an tecedent^) -< antecedent(e*) then fired(ej, II, T, A) <
fired(e*, II, T, A). Therefore the denominator in the formula

/ __ __ . . |violated(e7- ,I I ,r , A)|
accuracy^, II, I \ A) = - |fired(€jj r? A)|

is smaller than the denominator in

/ n t1 a \ 1 |violated(e*,n,r, A)|accuracy(«t ,n , r ,A) = 1 -

However, the numerator may grow or shrink, as there is no requirement that if vset(ej, II, T, A) =

68

0 then vset(e*,II,r, A) = 0 also. Therefore it is possible for vset(ej) = 0, resulting in
accuracy(cj) = 1 0 0 % while vset(e i) > resulting in accuracy(ej) < 1 0 0 % and it is also
possible that vset(ey) > 0 , resulting in accuracy(ej) < 1 0 0 % while vset(ej) = 0 , resulting in
accuracy(ej) = 1 0 0 % □

Example 4.2.5. Let e\ = Vx a ir l in e (x) A b r i t is h (x) —V p ro f ita b le (x) and let e2 =
Vx a ir l in e (x) —> p ro f ita b le (x) A lis ted (x) .

Let there be a report p\ such that representatives^!, T, A) b a ir lin e (a irW a le s)
A b ritish (a irW ales) A p ro f itab le (a irW ales) A -ilis ted (a irW ales)

As a result, values for the two expectations are as in table 4.4:

fired violated accuracy
ei 1 0 1
€2 1 1 0

Table 4.4: Values for and € 2 after receipt of p\ .

Let there be additional reports pz, and ps such that representatives^, T, A) h a i r l i n e (BA) A
british(B A)A prof itable(BA)Alisted(BA)anr/representatives(p3 , T, A) b a irline(bm i)A
b ritish (b m i) A -iprof i t able(bmi). The values for the two expectations are once again up
dated:

fired violated accuracy
ei 3 1 0.66
€2 3 2 0.33

Table 4.5: Values for ei and 6 2 after receipt of /9 3.

Let p4, p5, pq and P7 be a sequence of reports about profitable airlines whose nationality is not
known to be British such that:

representatives^,T, A) h
a ir lin e (q u a n ta s) A p ro f i t ab le (quant as)

representatives^, T, A) b
a ir lin e (e m ira te s) A p ro f ita b le (e m ira te s)

representatives^, T, A) b
a i r l i n e (a l i t a l i a) A p ro f i t a b l e (a l i t a l i a)

representatives(p4 , T, A) b
a ir l in e (e a s y je t) A -iprof i ta b le (e a s y je t)

69

The values for the two expectations are as shown in Table 4.6:

fired violated accuracy
Cl 3 1 0.66
C2 7 2 0.715

Table 4.6: Values for e\ and e2 after receipt of pj.

So we see that, on receipt of pi, t \ was the more accurate expectation. By receipt o f p7 , e2

was the more accurate. This example illustrates that there is no way of predicting the relative
strengths of these expectations merely by knowing the relative order o f their antecedents and
their consequents.

4.2.4 Special case expectations

There are expectations that, due to their syntax, have values that are predictable. Definitions for
and proofs regarding these types of expectations are given below:

Definition 4.2.1. Let e be an expectation such that {antecedent(e)} b -L. e is a non-firing expec
tation.

Example 4.2.6. The expectation Vx a(x) A -ia(x) —► /3(x) is a non-firing expectation.

Proposition 4.2.13. A non-firing expectation is an expectation whose fired value is always zero
and whose accuracy is consequently undetermined.

Proof. Let e be an expectation such that {antecedent(e)} b ± .Recall from Definition 2.4.5 that
any representative set representatives^, T, A) \f _L. Therefore no representative set
representatives^, T, A) b antecedent(e). As a result, fired (e, II, T, A) = 0 for any set of reports,
II, access rules, T, and background knowledge, A. Recall from Definition 3.2.6 that for any e such
that fired(e, II, T, A) = 0, accuracy(e, II, T, A) = undetermined. □

Definition 4.2.2. Let e be an expectation such that {consequent(e)} b _L. e is an automatically
violated expectation.

Example 4.2.7. The expectation Vx a(x) —> fl(x) A ~V?(x) is an automatically violated expec
tation.

Proposition 4.2.14. Let e be an automatically violated expectation, accuracy(e) = 0 or is unde
termined

Proof If e is an automatically violated expectation then {consequent(e)} b _L and, therefore,
{-■consequent(e)} b T. Given that 0 b T and that for any representatives^, T, A), 0 C
representatives^, T, A), representatives^, T, A) I— iconsequent(e).

70

As a result, any representatives(p, T, A) that fires e also violates e. Therefore accuracy (e, II, T, A) =
0 if e has been fired, or is undetermined otherwise. □

Definition 4.2.3. Let e be an expectation such that {antecedent(e)} b T . e is an automatically
firing expectation.

Example 4.2.8. The expectation Vx a(x)V-ia(x) —> /3(x) is an automatically firing expectation.

Proposition 4.2.15. Let e be an automatically firing expectation. For any set of reports, II, set of
access rules, T and set o f background knowledge, A, for all p € II there exists a grounding set $
such that representatives^, T, A) b antecedent(ground(e, 4>)).

Proof. If e is an automatically firing expectation then {antecedent(e)} b T . Given that 0 b T

andthatforany representatives^, T, A), 0 C representatives(p, T , A), representatives^, T, A) b
antecedent(e). As a result, any representatives^, T, A) fires e. □

Definition 4.2.4. Let e be an expectation such that {consequent(e)} b T . e is an inviolable
expectation.

Example 4.2.9. The expectation Vx a(x) —» /3(x) V ~<(3(x) is an inviolable expectation.

Proposition 4.2.16. Let e be an inviolable expectation, accuracy(e) = 1 or is undetermined.

Proof. If e is an inviolable expectation then {consequent(e)} b T , and {-iconsequent(e)} b ± .

Recall from Definition 2.4.5 that any representative set representatives^, T, A) I/ _L Therefore
no representative set representatives^, T, A) I— iconsequent(e). As a result, violated(e, II, T, A) =
0 for any set of reports, II, access rules, T, and background knowledge, A. Therefore
accuracy(e, II, T, A) = 1 or is undetermined. □

Definition 4.2.5. Let e be an expectation such that {antecedent(e)} I iconsequent(e). e is a
self-defeating expectation.

Example 4.2.10. The expectation Vx a(x) -4 ->a(x) is a self-defeating expectation.

Proposition 4.2.17. Let e be a self-defeating expectation, accuracy(e) = 0 or is undetermined.

Proof. Let representatives(p, T, A) b antecedent(e). Because the consequence relation is tran
sitive, if antecedent(e) b -iconsequent(e) then representatives^, T, A) b -iconsequent(e).
Therefore for all representatives^, T, A) 6 fset(e, II, T, A), representatives^, T, A) e
vset(e, II, T, A). As a result accuracy(e, II, T, A) = 0 if e is fired, or undetermined otherwise.

□
Definition 4.2.6. Let e be an expectation such that {antecedent(e)} b consequent(e). e is a
self-reinforcing expectation.

Example 4.2.11. Expectation Vx a(x) —> a(x) is a self-reinforcing expectation.

71

Proposition 4.2.18. Let ebea self-reinforcing expectation, accuracy(e) = 1 or is undetermined.

Proof. Let representatives^, T, A) h antecedent(e). Because the consequence relation is transi
tive, if a ntecedent(e) h consequent(e) then representatives^, T, A) b consequent(e). Therefore
for all representatives^, T, A) e fset(e,II,r, A), representatives^, T, A) ^ vset(e,II,r, A).
As a result accuracy(e, II, T, A) = 1 if e is fired, or undetermined otherwise. □

It is therefore possible to conclude that there expectations that are of no use in determining
whether a report is interesting. The values for such expectations are determined wholly by their
syntax.

4.3 Reducing the information held on the set of expectations

The set of expectations is very large and therefore it is necessary to ensure that the amount of
information that is held concerning each expectation is kept to a minimum. The set of antecedents
and consequents for a language £ can be divided in to three subsets, the set of quantified literals,
the set of disjunctive formulae and the set of conjunctive formulae. Due to the properties of the
expectations in E it is possible to record only the fset, aset and sset values for the set of quantified
literals. This section will demonstrate that it is possible to derive an upper bound on the fset, aset
and sset for any other expectations in E from these sets by determining the unions or intersections
of some of these sets.

There is a set of quantified formulae in M such that all members of the subset are quantified
literals. This will be referred to as the literal layer.

Definition 4.3.1. Let M be the set of all unground, universally quantified formulae for a lan
guage that includes only predicate symbols and variables. The set o f unground, universally quan
tified literals in M , denoted literal Layer (M), is

literal Layer (M) = {Vx a , Vx ->e*|Vx a and Vx ~>a e M and Vx a is an unground literal}

Definition 4.3.2. Let literalLayer(A) be the set of all unground, universally quantified literals
up to arity n for a language. The set of conjunctive formulae in A such that no two logically
equivalent formulae are in that set, denoted conjunctiveFormulae(M), is as follows:

conjunctiveFormulae(M) = {Vxa G M |

Vxa b V xi,..., X k a i A ... A a* and
Vxi Vx* otk € literalLayer(M)}

There is a set of quantified formulae in a given language that are logically equivalent to disjunc

72

tions of the quantified atoms in literalLayer(M) for that language.

Definition 4 3 3 . Let literalLayer(M) be the set o f all unground, universally quantified literals up
to arity n for a language. The set of disjunctive formulae in A, denoted disjunctiveFormulae(M),
is as follows:

disjunctiveFormulae(M) = {Via G M |
Vxa h Vxi, ...,x* a i V ... V otk and
Vxi ai,...,V x* ak G literalLayer(M)}

The set M is large even for quite restricted languages. Therefore the less information that needs
to be stored regarding the members of the set M , the better. It is not necessary to record fset or
aset values for antecedents or consequents that are not members of quantifiedLiterals(M) (see
Definition 4.3.1). It is only necessary to record the fsets and asets for the atomic antecedents and
consequents, that is, those in literalLayer(M). These can be used to place bounds on the fsets and
asets for all disjunctive and conjunctive antecedents and consequents.

For any expectation with a conjunctive antecedent, the fset for that antecedent is the intersection
of the fsets of the single literals that are the conjuncts in that antecedent. Note that in the following
proposition and proof the tuples xi...x* are assumed to be disjoint. That is, for all Xi...Xj in
x i ...a;*, if a variable is in Xi then it is not in X*.As such the conjunctive antecedent Vx a i A...Aa*
is ground by the same grounding sets that ground Vxi a\ ...Vx* a* .

Proposition 4.3.1. Let e be an expectation. Let antecedent(e) = Vx c*i A ... A ak, let
consequent(e) = /9, {Vxi ai...Vx 7 a*} C quantifiedLiterals(M) and let x = xi © ... © x*.
Let /3 be any consequent. It follows that fset(e, II, T, A) = fset(Vxi c*i —> j3, II, T, A) f l ... D
fset(Vxfe ak -»• /? ,II ,r,A).

Proof. The reports in fset(e, II, T, A) are exactly those p for which there is a grounding set $
such that representatives^, T, A) h antecedent(ground(e, 4>)) which is exactly that set of those
p for which representatives^,T, A) I- ground(Vxi ai,4>) A ... A ground(Vxfc c*fc,<i>). Thus
fset(€,n,T ,A) =

fset(Vxi c*i —> consequent(e),II, T, A) f l ... nfset(Vx* ak -> consequent(e),II,r, A)

□
Example 4.3.1. Let T be a set of access rules and A b e a set of background facts. Let /3 be some
arbitrary consequent,

ei = Vx a ir l in e (x) —> (3
€.2 = Vy ftselOO(y) —> (3
€ 3 = Vx,y a ir l in e (x) A ftselOO(y) —> j3

73

Let II be a set of reports {pi, P2, p3, P4} such that

representatives(pi,r, A) I- a ir lin e (b a) ,
representatives^, I \ A) I- ftselOO(ba),
representatives^, r , A) h a ir lin e (b a) A ftselOO(ba)
representatives^, T, A) h a ir l in e (ry a n a ir) A ftselOO(marksAndSpencer)

It follows that

fset(ei,II,r, A) = {pi ,p3 ,p4},
fset(e2 ,II, T, A) = {p2, Pa, P4 >,
fset(e3, n, T, A) = {p3,p4},
fset(ei, II, T, A) fl fset(e2, II,T, A) = {p3 ,p4}

However, there are useful antecedents in which variables are repeated across the conjuncts. For
example, e4 = Vx a ir l in e (x) A ftselOO(x) —> consequent^). It is the case that
fset(e4 , II, T, A) C fset(e3, II, T, A) from the example given above. Therefore |fset(e3, II, T, A)|
is an upper bound on the size of fset(€4 , II, T, A).

Example 4.3.2. Let T be a set o f access rules and A be a set of background facts. Let /3 be an
arbitrary consequent and

€\ = Vx a ir l in e (x) —> fi
e2 = Vy ftselOO(y) —> /?
e3 = Vx, y a ir l in e (x) A ftselOO(y) —> [3
e4 — Vx a ir l in e (x) A ftselOO(x) —>

Let II be a set of reports {p \, p2 , p3 , P4 } such that

representatives(pi,T, A) h a ir lin e (b a) ,
representatives(p2 , r , A) I- ftselOO(ba),
representatives(p3 , r , A) h a ir l in e (b a) A ftselOO(ba)
representatives(p4 , r , A) h a ir l in e (ry a n a ir) A ftselOO(marksAndSpencer)

It follows that

fset(ei,n,r, A) = {pi,p3,P4},
fset(e2,n ,r , A) = {p2,p3,P4>,
fset(e3,II,r,A) = {p3,p4},
fset(e4,II,r, A) = {p3},

For any expectation with a disjunctive antecedent, the fset for that antecedent is the union of the
fsets of the single literals that are the disjuncts in that antecedent:

74

Proposition 4.3.2. Let e be an expectation, antecedent(e) = a i V ... V a* where
{Vxi ai...Vxi a * } C quantifiedLiterals(M), x = x \ © ... © X * and consequent(e) = /?. It then
follows that

fset(e, II, T, A) = fset(Vxi a \ —> /3, II, T, A) U ... U fset(Vx* a* —► /?, II, T, A)

Proof. The reports in fset(e, II, T, A) are exactly those p for which there is a grounding set $
such that representatives^, T, A) b antecedent(ground(e, $)) which is exactly that set of those
p for which representatives(p,T, A) b ground(Vxi a i ,$) V ... V ground(Vxfc a * ,#). Thus
fset(e,II,r, A) =

fset(Vxi o:i —>■ consequent(e), II, T, A) U ... Ufset(Vx& ak —> consequent(e),II,r, A)

□
Example 4.3.3* Let T be a set of access rules and A be a set of background facts. Let /3 be an
arbitrary consequent and let

6 1 = Vx a ir l in e (x) —► (3
€ 2 = Vy f tselOO(y) —>■ (3
€3 = Vx,y a ir l in e (x) V ftselOO(y) —> (3

Let = {x = ba} be a grounding set. Let II be a set o f reports {pi, p2) such that

representatives(pi,r, A) b a ir lin e (b a) ,
representatives(p2 , r , A) b ftselOO(marksAndApencer)

It follows that

fset(Vx a ir l in e (x) -* /3,II,T, A) = {pi},
fset(Vy ftselOO(y) ->• /? ,II ,r , A) = {p2},
fset(Vx, y a ir l in e (x) V ftselOO(y) —> /?, I I ,I \A) = {pi,p2},
fset(Vx a ir l in e (x) —y /?,II,r, A) U fset(Vx ftselOO(x) —> {3,H,T,A) = {pi,p2}

Note that the tuples X\ ,..., x 2 are disjoint, but as only one of Vx a ir l in e (x) or Vy f tselOO(y)
need be fired in order to fire Vx, y a ir l in e (x) V f tselOO(y), it does not matter whether x and
y are ground by the same or different constants.

For any expectation with a conjunctive consequent, the aset for that consequent is the union of
the asets of the single literals that are the conjuncts in that consequent:

Proposition 4.3.3. Let e be an expectation and let consequent(e) = Vx a\ A ... A a*, where
{Vxi o:i...Vxi ayt) C quantifiedLiterals(M) and x = x\ 0 ... 0 x* and let antecedent(e) =

75

Vx ft. It follows that

aset(e,II,T, A) = aset(Vx ft -» c* i,II,r, A) U ... Uaset(Vx ft -> a fc, I I , r , A)

Proof The reports in aset(e, II, T, A) are exactly those p for which there is a grounding set 4>
such that representatives^, r , A) b -iconsequent(ground(e, $)) which is exactly that set of
those p for which representatives(p, T, A) b ground(Vxi -,a i , $) V ... V ground(Vxfc -<a:*, $).
Thus aset(e, II, T, A) =

aset(antecedent(e) a i , II, T, A) U ... U aset(antecedent(e) —> a/., II, T, A)

□
Example 4.3.4. Let V be a set of access rules and A be a set of background facts. Let a be an
arbitrary antecedent and let

€i = Vx a —> prof itab le (x)
€ 2 = Vy a —► highSharePrice(y)
€ 3 = Vx,y a —> p ro f ita b le (x) A highSharePrice(y)

Let $ = {x = ba} be a grounding set. Let Ube a set of reports {p\ , P2 } such that

representatives(pi, T, A) I— iprof ita b le (b a),
representatives^,I\ A) I— ihighSharePrice(ba)

It follows that

aset(e i,II ,r , A) = {pi},
aset(e2, I I , r , A)) = {p2},
aset(e3, I I , r , A)) = {p!,p2 },
aset(ei, II, T, A) U aset(e2, II, T, A) = {px, p2 }

Note that the tuples x i ,. . . ,x 2 are disjoint, but as only one of Vx p ro fita b le (x) or
Vy highSharePrice(y) need be attacked to attack Vx, y p ro f ita b le (x) A highSharePrice(y),
it does not matter whether x and y are ground by the same or different consequents.

For any expectation with a disjunctive consequent, the aset for that consequent is the intersection
of the asets of the single literals that are the disjuncts in that consequent:

Proposition 4.3.4. Let e be an expectation, consequent(e) = Vx a \ V ... V ak where
{Vxi ai...Vxi C quantifiedLiterals(M) and x — xi © ... © Xk and let antecedent(e) =
Vx p. It follows that aset(e, II, T, A) = aset(Vx ft —> 0 :1 , II, T, A) fl ... fl aset(Vx f3 -*
a * ,n , r , A).

76

Proof. The reports in aset(e, II, T, A) are exactly those p for which there is a grounding set $
such that representatives^, T, A) I- ->consequent(ground(e, $)) which is exactly that set of
those p for which representatives^, T, A) b ground(Vxi ->ai, 4>) A ... A ground(Vz* ~'Cik, $)•
Thus aset(e, II, T, A) =

aset(antecedent(e) —»■ a i,I I , T, A) D ... fl aset(antecedent(e) —>■ a*, n,r ,A)

□

Note that in the following proposition and proof the tuples x i .. .Xk are assumed to be disjoint. That
is, for all Xi...Xj in x\...Xk, if a variable is in Xi then it is not in Xk- As such the disjunctive conse
quent Vx a i V.-.Va* is ground by the same grounding sets that ground Vxi e*i and... and Vxi ak-

Example 4.3.5. Let T be a set of access rules and A b e a set of background facts. Let a be an
arbitrary antecedent and let

ei = Vx a —> p ro f i t ab le (x),
€ 2 = Vy q: —> highSliarePrice(x)
e3 = Vx,y a -¥ prof ita b le (x) V highSharePrice(y)

Let II be a set o f reports {pi, p2, p3 } such that

representatives^!, T, A) I— >prof itab le (b a),
representatives^,I\ A) I— ihighSharePrice(ba),
representatives^, T, A) I— >(prof itab le (b a) V highshareprice(marksAndSpencer))

It follows that

aset(ei,n,r, A) = {pi,p3},
aset(e2 , I I , r , A) = {p2 ,P3 },
aset(e3, ,n,T, A) = {p3},
aset(ei, II, T, A) n aset(e2, II, T, A) = {p3 }

In the above proposition and proof the tuples X\...Xk are assumed to be disjoint. However, there
are useful consequents in which variables are repeated across the disjuncts. For example, in
64 = antecedent(ei) -¥ a ir l in e (x) V ftselOO(x). It is the case that
fset(e4, II, T, A) C fset(e3, II, T, A) from the example given above. Therefore |fset(e3, II, T, A) |
is an upper bound on the size of fset(e4, II, T, A), as the following example demonstrates:

77

Example 4.3.6. Let T be a set of access rules and A b e a set o f background facts. Let

= Vx antecedent(ei) —>■ a ir l in e (x)
€ 2 = Vy antecedent(e2) -> ftselOO(y)
€ 3 = Vx, y antecedent^) —> a ir l in e (x) V ftselOO(y)
6 4 = Vx antecedent(e2) —> a ir l in e (x) V ftselOO(x)

Let n be a set o f reports {p\ , p2, p3, / ? 4 } such that

representatives^!,T, A) b ->airline(ba),
representatives^, T, A) b ->ftselOO(ba),
representatives^, T, A) b - .a ir lin e (b a) A -if tselOO(ba)
representatives^, T, A) i— ia ir lin e (ry a n a ir) A -iftselOO(marksAndSpencer)

It follows that

aset(ei, II, r, A) — {pi»p3 ,p4}'»
aset(e2 , I I , r , A) = {p2 ,P 3 ,P4 },
aset(e3 ,II, T, A) = {p3,p4},
aset(e4 ,II, T, A) = {p3},

It is therefore possible to derive the upper bound on the fset and aset of any formula in
conjunctiveFormulae(M) or disjunctiveFormulae(M) as long as the necessary fsets and asets
for the formulae in quantifiedLiterals(M) are known. This significantly reduces the amount of
information which needs to be stored. This information can then be used to generate a set of
expectations, as demonstrated in Chapter 5.

4.4 Conclusion to Chapter 4

A set of marker formulae is used to represent the set of all antecedents and the set of all conse
quents. For any pair of expectations ei, e2 £ E, e\ may have a logically weaker antecedent or
consequent, a logically stronger antecedent or consequent, both or neither.

Knowing which of these two expectations has the stronger antecedent and or consequent can
also enable us to deduce which will have the greater fired, accuracy and confirmation values.
Section 4.2 enumerates the deductions that can be drawn regarding the order of values from the
logical order of antecedents and consequents. These deductions allow us to draw some useful
conclusions: firstly, that there are some expectations whose values are fixed; secondly that the
unknown values for expectations can be approximated from known values from other, logically
related expectations and finally; that information need only be kept on some members of M
(namely the single literals), in order to be able to deduce the values for all expectations in E.

78

A summary of the findings in this chapter is as follows:

• The consequence relation between the antecedents of two expectations determines the order
of the fired value of those expectations (Section 4.2.1).

• The consequence relation between the consequents of two expectations determines the or
der of the attacked and supported values for those expectations (Section 4.2.2).

• There are special case expectations whose values are determined by their syntax (Section
4.2.4).

• Bounds on the fsets, ssets and asets of conjunctive and disjunctive formulae can be derived
from the fsets, ssets and asets for quantified literals (Section 4.3).

The next chapter wifi demonstrate how this knowledge that arises from the ordering of expec
tations can be further harnessed to create a subset of the set of expectations, the set of working
expectations, that will be used to analyse interesting news reports.

79

Chapter 5

Generating working expectations

Chapter 2 introduced the Expectation Violation Analysis (EVA) Framework. Core to this frame
work is a set of expectations, facts from news reports and a set of background knowledge. Chap
ter 3 demonstrated that the relationship between a report, relevant background knowledge and
an expectation can be used to identify interesting information and that expectations of differing
strengths can be used to rank the unexpectedness of information. Chapter 4 demonstrated that it
is possible to predict the relative strengths of expectations from their implication order.

However, the set of expectations is very large even for relatively small languages. As a conse
quence it is unfeasible to consider every expectation with respect to each report in the search
for interesting information. It is necessary to identify a subset of the set of expectations that is
small enough to be searched. This set is known as the set of working expectations. This chapter
presents a novel approach for constructing such expectations based on the evidence in a set of
representative sets.

There are several ways a set of working expectations can be obtained: firstly, by having a set
of expectations that is generated by a domain expert; secondly, by using a machine learning
technique or thirdly, by exploiting the ordering properties of the set of expectations to identify the
set of working expectations. The first of these methods, using the skills of an expert together with
those of a knowledge engineer, has several drawbacks: the process is time consuming, relies on the
subjective judgment of one or more individuals and does not lend itself to automatic updating. The
second approach is more feasible: there may be machine learning methods suitable for generating
the set of working expectations. However, the third option has the advantage that, by exploiting
the inherent properties of the set of expectations, it is possible to learn more about expectations
such as: what are the qualities that make a “good” expectation, and how such expectations are
distributed though the set of expectations.

This chapter is structured as follows: Section 5.1 defines the set of working expectations and

80

Section 5.2 defines algorithms that generate the set of working expectations. Finally Section 5.3
concludes this chapter with an analysis of the strengths and weaknesses of this approach to gen
erating the set of expectations that need be considered when identifying interesting news.

5.1 The set of working expectations

This section defines the set of working expectations, a subset of the set of expectations. The set
of working expectations must have the following properties:

1. The set of working expectations is small enough to search on receipt of each report

2. Each member of the set of working expectations has a coverage value that is greater than a
given threshold

3. Each member of the set of working expectations has an accuracy value that is greater than
a given threshold

The first condition ensures that the set of working expectations can be used to identify interesting
news in real time. Conditions two and three ensure that the expectations chosen are representative
of reported events in the real world. The set of working expectations is generated bottom up from
the literals in the language, rather than by removing expectations from the expectation set.

The set coveredAntecedents(M, II, T, A, minCoverage) is the set of all antecedents with fsets
above a given threshold. This threshold is chosen either in response to the need for a given level
of accuracy or coverage in a domain or else in response to the need to restrict the size of the set
of working expectations.

Definition 5.1.1. Let II be a set of news reports, V be a set o f access rules, A be a set of back
ground facts and M be a set o f formulae. Let (3 be an arbitrary consequent. Let minCoverage be
the lower threshold on the size o f the fset of an antecedent. The set of antecedents whose coverage
is larger than minCoverage, denoted is as follows:

coveredAntecedents(M, II, T, A, minCoverage) =
{a|a: € M and
fset(a —> (3, II, T, A) > minCoverage}

Example 5.1.1. Let M be a set of universally quantified, unground literals. For the purposes of
this example let these be zero-place literals. Let M be the marker formulae that can be derived
from the symbols a, (3 and 7 and the symbols A, V and

Let the following be the fsets for the literals in M :

81

fset(a) = {pi, p z , p3, p4, ph }
fset(-ia) = {pQ, p7, p8, p9, p10 }
fset(^) = {pl,/>2,/>5,A5}
fset(-i^) = {p3, P4, P7, /9g, />9, pio }
fset(7) = {pi,p2>
fset(-<7) = {p3, p4 , p5, p6, P7, />8, P9, />io }

coveredAntecedents(M, II,r, A ,2) =
a —ia f3 — i /? 7 — 17

a A a A ->/? a A 7 a A -17 /3 A 7 /? A -17
a A fl A 7 a: A A -17 a A -</? A - 7 ->a A /? A -17 ->a A -</? A -17

It is possible to exploit the property that for all d , e2 G E, such that antecedent (ex) ^
antecedent(e2), fset(ei,II,T, A) < feet(e2 , I I , r , A). We can use this knowledge to reduce
the number of fsets that need to be calculated: if |fset(e2,I I , r , A)| is less than the threshold
minCoverage then it is not necessary to generate the set fset(ei,I I ,T ,A) as
|fse t(e i,II,r, A)| < fset(e2,n , r ,A) .

Example 5.1.2. Using the figures from Example 5.1.1, there are five two conjunct antecedents
that have fsets that are smaller than the threshold size minCoverage. Three of these are logically
inconsistent (and therefore non-firing) antecedents a A -**, /3 A ->/? and 7 A ->7. The other two
are ->a A 7 and -\fj A 7. It is therefore not necessary to generate any antecedents that are higher
in the consequence order than any o f these five.

If the fsets for each of the possible three conjunct antecedents for this language were to be gen
erated, it would be necessary to create and evaluate 20 fsets. However, from the fsets from single
literals it is predictable that for 15 of the 2 0 antecedents will have an fset smaller than the min
imum threshold size, as the fsets for these antecedents will be the intersections of fsets that are
themselves smaller than the threshold. Therefore it is only necessary to evaluate five from 20
antecedents, a saving of 75% of the fset calculations which would be performed otherwise.

In the worst case scenario, no fset is smaller than the threshold and so all fsetsmustbecalculated.
The best case scenario is that a number of “branches” of the space of antecedents are ruled out
early on in the search. Further work is needed to calculate what the average savings are that we
can expect from this approach.

The set goodExpectations(M, II, T, A, minCoverage) contains all those expectations whose
antecedents have an fset value greater than minCoverage and whose consequent is not a conjunct
in the antecedent.

Definition 5.1.2. Let M be a set of unground, universally quantified literals, U be a set of re
ports, r be a set of access rules and A be a set of background facts. Let minCoverage be

82

a threshold value, and E be the set o f expectations. The set of expectations such that the an
tecedent of each expectation is in the set covered Antecedents(M, II, T, A, minCoverage) and
the consequent o f each expectation is a single literal, not appearing in the antecedent is denoted
goodExpectations(M, II, T, A, minCoverage) and is as follows:

goodExpectations(M, II, T, A, minCoverage) =
{'ix y a —> /9|Vxa G coveredAntecedents(M, II, T, A, minCoverage) and

Vy/3 G M and
Vxa I/ Vy/9 and
Vxa I/ 'iy -

Where y is a subtuple of x.

The initial condition ensures that all expectations in goodExpectations(M, II, T, A, minCoverage)
will have coverage that is greater than or equal to minCoverage. The second condition ensures
that all consequents in goodExpectations(M, II, T, A, minCoverage) are single unground liter
als and that these are universally quantified outermost in the expectation. Condition three prevents
the inclusion of self-reinforcing expectations (Definition 4.2.6) in
goodExpectations(M, II, T, A, minCoverage) and condition four prevents the inclusion of self-
defeating expectations (Definition 4.2.5) in goodExpectations(M, II, T, A, minCoverage).

Given M , II, T, A, maxCon, minCoverage and minAccuracy,
workingExpectations(M, II, T, A, minCoverage,minAccuracy) returns the working set of
expectations. Each expectation in that set is a member of the set returned by
goodExpectations(M, II, T, A, minCoverage) and has an accuracy value of at least minAccuracy.

Definition 5.1.3. Let minAccuracy be a lower threshold on accuracy values, M be a set of
unground universally quantified literals, II be a set of reports, T be a set of access rules and A
be a set o f background knowledge. Let minCoverage be a lower threshold on the size of the fset
for an antecedent. The working set o f expectations, denoted
workingExpectations(M, II, T, A,m inCoverage,m inAccuracy) is the subset of
goodExpectations(M, II, T, A, minCoverage) such that each expectation has accuracy greater
than minAccuracy.

workingExpectations(M, II, T, A, minCoverage , minAccuracy) =
{e|e G goodExpectations(M, II, T, A, minCoverage)

and accuracy(e, II, T, A) > minAccuracy}

The condition that, for each expectation € in the set returned by workingExpectations,
accuracy(e) > minAccuracy ensures that the accuracy of all expectations in the working set is
greater than minAccuracy.

83

Recall the necessary properties of the set of working expectations were defined such that the
set should be small enough to search and contain only those expectations that have sufficiently
high coverage and accuracy values. The set returned by workingExpectations contains only those
expectations whose coverage is greater than minCoverage and whose accuracy is greater than
minAccuracy. It then follows that these values can be set at such a level as to restrict the size of
the set of working expectations to one that is small enough to be searched for violations.

Example 5.1.3. Let the set o f unground literals in a language be

M = {Vx a(x),Vx ->a(x), Vx -i/?(x),Vx 7 (x),Vx -vy(x)}

Let the reduced set o f antecedents, coveredAntecedents(M, II, T, A, minCoverage) —

{Vx a(x)
Vx ~>/?(x)
Vx /3(x) A a(x)
Vx j3(x) A ->7 (x)
Vx ~>(3(x) A -*7 (x)
Vx ~>/3(x) A -iq:(x) A ->7 (x)
Vx a(x) A 7 (x)

Vx ->a(x)
Vx 7 (x)
Vx /3(x) A ->oi(x)
Vx -</?(x) A a(x)
Vx 0(x) A -iQ:(x) A ->7 (x)
Vx -'ft(x) A -ia(x)
Vx -\5(x) A a(x) A -^ (x)

Vx /?(x)
Vx -^ (x)
Vx /3(x) A 7 (x)
Vx f3{x) A a(x) A 7 (x)
Vx a(x) A ->7 (x)
Vx /3(x) A a(x) A ->7 (x)
Vx ->a(x) A -»7 (x) }

77ie set goodExpectations(M, II, T, A, minCoverage) and their related values are shown in Ta
ble 5.1.3 on page 105. I f minAccuracy = 0.8 and minCoverage = 4 there are six expectations
in Table 5.1.3 that would be in the set returned by workingExpectations:

workingExpectations(M, II, T, A, minCoverage, minAccuracy) =

{Vx -ia(x) -» ~>/3(x), Vx ->a:(x) -> -^ (x), Vx ~</3(x) -> ~</y(x),
Vx ->7 (x) —> - <0(x) Vx _i/5(x) A -ia(x) -4- ->7 (x), Vx -iq:(x) A ->j(x) —> - >(3(x)}

Thus, the working set of expectations is reduced to 14% of the size o fE (44 expectations).

The set workingExpectations(M, II, T, A, minCoverage, minAccuracy) is a declarative definition
of the expectations that will be searched on receipt of a report. The next section presents algo
rithms that will generate this set.

5.2 Algorithms for the generation of working expectations

This section presents algorithms to generate the set of working expectations. Section 5.2.1 presents
some simple data structures, based on arrays, for representing the data required for the algorithms.

84

Section 5.2.2 presents some subsidiary algorithms. The main algorithm is presented in the Section
5.2.3.

The algorithm that generates the set of working expectations, makeWorkingExpectations, re
turns an array of expectations that is equivalent to the set of working expectations defined in the
previous section. The input to makeWorkingExpectations is an array of literals; an array of
representative sets; an integer value representing the maximum conjunction size of antecedents;
an integer value representing the minimum feet size of an expectation in the set of working expec
tations; and a floating point value in the range [0 , 1] which represents the minimum accuracy of an
expectation included in the set of working expectations. The main algorithm calls the functions
degrounding, makecoveredAntecedents and accuracy shown in Section 5.2.2.

The degrounding function takes a ground formula and returns a deground version. The accuracy
function receives as input an expectation and a set of reports and returns the accuracy value for
that expectation. The makecoveredAntecedents function takes as input an array of literals,
an array of representative sets, an integer value representing the maximum conjunction size of
antecedents and an integer value representing the minimum feet size of an expectation in the set
working expectations and returns the array of antecedents whose coverage is greater than or equal
to the value coverage and whose length is less than or equal to maxCon. The data structures used
in these algorithms are as shown in the next section.

5.2.1 Data structures

For the sake of simplicity, all data structures are based on arrays. The following data structures
are used in the algorithms given in this chapter, but does not preclude the use of other structures,
objects for example, in an implementation.

• A predicate symbol is represented by a string and for the purposes of these examples will
be one of a |b |cindei, where index is an integer greater than zero. A negated predicate is a
string that, for the purposes of the following examples will be one of no ta |no tb |no tc or
e l s e n o b C

• A constant is represented by a string that, for the purposes of the following examples will
be one of m|n|o or else m^dex where index > 1 .

• A variable is represented by a string that, for the purposes of the following examples will
be one of x |y |z or else x inde i.

• A degrounding symbol is a unique identifier, vindei, where index > 1, that replaces all in
stances of a constant in a formula thus allowing the identification of formulae which, when
deground, are logically equivalent. The next section looks at the process of degrounding in
detail.

85

• A literal is represented by an array of variable length [1 , n] such that position 1 holds
a predicate symbol that may or may not be negated and positions 2, ...,n hold either a
constant, a variable or a degrounding symbol. Universal quantification is assumed over all
variables.

• A conjunction is represented by a variable length array of literals [[l i t e r a l ^ ,..., [l i t e r a l j] ,
where n > 1 such that each literal is a conjunct. Variables are assumed to be universally
quantified outermost.

• An expectation is represented by a two place array [[con junction][literal]] where
[conjunction] is an antecedent and [l i te r a l] is the consequent. Quantification of vari
ables is assumed to be universal and outermost.

• A representative set is a variable length array of ground literals, representing the infor
mation extracted from a report and the associated information from the set of background
facts.

• The array representative sets is a variable length array containing one representative set
for each report received by the system.

• An aset, a vset and an fset are all variable length arrays [index i,..., in d ex j where n > 1
and in d e x i,..., indexn are indices of the representative sets array.

Examples of some of the above data structures are presented below:

Example 5.2.1. [b,m] is a ground, monadic literal equivalent to the literal b(m). [a, x, y] is an
unground, dyadic literal, representing the literal Vx, y a(x, y). [nota, x, y] an unground, negated
dyadic literal, representing the literal Vx, y -ia(x, y)

Example 5.2.2. [[a, x, y] [b, x]] is a conjunction equivalent to the formula Vx, y a(x, y) A b(x).

Example 5.2.3. [[[a, x, y], [b, x]], [c, y]] is equivalent to the expectation Vx, y a(x, y) A b(x) —>

c(y).

Example 5.2.4. [[a,m,n], [b,n], [c,m]] is a representative set, equivalent to the set
{a(m, n),b(n),c(m)}.

Example 5.2.5. Let repS et be an array of representative sets:

repSetfl] = [[a,m,n], [b,m], [notc,n]]
rep S e t[2] = [[a,n, o], [b,n]]
repSet[3] = [[notb,n], [c, o]]
repSet[4] = [[b,m], [notc,o]]
repSetf...] = ...
repSet[j] = [[a,m,n], [b,n], [c,m]]

86

Example 5.2.6. Let [[[a, x, y], [b, x]][c, y]] be an expectation. Let repS et be the array of repre
sentative sets.

repSet[l] = [[a,m,n], [b,m], [notc,n]]
rep S e t[2] = [[a, n, o], [b, n]]
repSet[3] = [[notb,n], [c,o]]
repSet[4] = [[b,m], [note, o]]
rep S e t[5] = [[a,m,n], [b,n], [c,m]]

The fset for the antecedent [[a, x, y], [b, x]] is [1,2]. The aset for the consequent [c, y] is [1,4].
The vset for the expectation [[[a, x, y], [b, x]][c, y]] is [1].

5.2.2 Functions used by the working expectation generator

To determine whether an expectation should be a member of the set of working expectations it
is necessary to determine the coverage and accuracy values for that expectation. This is achieved
by creating the vset and fset for the expectation and its antecedent respectively. It is necessary to
create a ‘deground’ version of each (ground) representative set in order to identify matches with
(unground) expectations. Degrounding is achieved by replacing each constant with a degrounding
symbol. For each pair of constants c\ , C2 in the representative set and a symbol v, if ci = c2 and
the degrounding symbol that replaces c\ = v then the symbol that replaces c2 = u.

Example 5.2.7. Let a and b be predicate symbols. Let m, n, o be constants. Let a(m, n, o) A b(m),
a(o,n,m) A b(o) and a(m,n, o) A b(o), be formulae. Let the degrounding symbol for the first
constant in each formula be Vi, the degrounding symbol for the second constant in each formula
be v2 and the degrounding symbol for the third constant in each formula be v3. Replacing the
constants in the formula a(m, n, o) A b(m) with the degrounding symbols results in the formula
a(vi, v2, v3) A b(vi). Replacing the constants in the formula a(o, n, m) A b(o) with the degwund-
ing symbols results in the formula a(vi, v2, v3) A b(vi). Replacing the constants in the formula
a(m, n, o)Ab(o) with the degrounding symbols results in the formula a(vi, v2, v3) Ab(v3). There
fore it is evident that the first and second formulae are ground versions of the same unground
formula, whereas the third formula is a ground version of a different formula.

In order to create the array of degrounding symbols, it is first necessary to extract all the constants
from the literals in the representative set, in order to determine the order in which each constant
first appears.

Definition 5.2.1. Let repS et be a representative set. ex trac tC o n stan ts (repSet) returns an

87

array o/all constant symbols in repSet.

ex t r a c t Cons t an t s (repSet)
1 constantsQ
2 c u rre n tL itte ra lQ
3 counter 0
3 fo r i in 1 to length(repSet)
5 c u rre n tL ite ra l «— repSet[i]
6 fo r j in 2 to le n g th (c u rre n tL ite ra l)
7
8

counter «— counter + 1
const an t s[counter] «— c u rre n tL ite ra l[j]

9 r e tu rn constan ts

Example 5.2.8. extractConstants([[a,m , n, o], [b,m, n]]) returns [m, n, o,m, n].

Once the constants have been extracted from repS et it is necessary to identify the order in which
each constant first appears as this will determine the index of the degrounding symbol that will re
place each instance of that constant in the representative set. The function makeDegroundingSet
takes the array of constants returned by ex trac tC onstan ts and returns an array in which each
constant appears only once, in the order in which it first occurs in the representative set.

Definition 5.2.2. makeDegroundingSet (constants) creates an array of the unique constant
names in the array constan ts. Line 4 checks to see that a constant is not already present in
degroundingSet before adding it to that set:

Example 5.2.9. makeDegroundings([m, n, o, m, n]) = [m, n, o].

The function subRepSet accepts a representative set and a set of literals and returns a subset of
the representative set that contains only those literals with the predicate symbols that appear in
the set l i t e r a l s .

Definition 5.2.3. Let l i t e r a l s be a set o f literals and repS et be a representative set.

makeDegroundingSet (constan t s)
1 degroundings «— [|
2 varcount 1
3 fo r i in 1 to leng th (constan ts)
4 i f constan ts[i] no t in degroundings
5 degroundings [varcount] •<— constan tsfi]
6 varcount varcount + 1
7 re tu rn degroundings

88

subRepSet (repSet, l i t e r a l s)
1 repCount «— 0
2 rep s «— \\
3 c u r r e n tL i te r a l 4— |]
4 currentR ep 4— []
5 fo r i in 1 to le n g th (l i te r a ls)
6 c u rre n tL ite ra l 4— l i t e r a l s [i]
7 fo r j in 1 to leng th(repS et)
8 currentRep 4— repSet[j]
9 i f c u rre n tL ite ra l[l] = currentRepfl] and
length{currentLiteral) = length(currentRep)
10 repCount 4— repcount -j- 1
11 reps [repCount] 4— currentR ep
12 re tu rn reps

Example 5.2.10. Let

repS et = [a[m, n, o], b[m, o]]

and let

l i t e r a l s = [[b,x,y]]

subRepSet([a[m, n, o], b[m, o]], [[b, x, y]]) returns [[b,m, o]]

Once the array of degrounding symbols is returned by makeDegroundingSet s, it is possible
to deground the representative set. This is done by replacing each instance of a constant with a
degrounding symbol. The degrounding symbol used will be the one with the index that matches
the position of that constant in the array of degrounding symbols.

Definition 5.2.4. Let repS ets be an array of representative sets and l i t e r a l s an array of
literals. deground(repSets, l i t e r a l s) converts each constant in a representative set to a de-

89

grounding symbol. A degrounding symbol is of the form vindex.

deground(repSets, l i t e r a l s)
1 fo r i in 1 to leng th (repS ets)
2 cu rren tR epset 4- subRepSets(repSets[i], l i t e r a l s)
3 constS e t 4— ex tractC onstan ts(cu rren tR epse t)
4 degroundingSet 4- makeDegroundingSet (const Set)
5 fo r j in 1 to leng th(curren tR epset)
6 c u r re n tL ite ra l 4— curren tR epset [j]
7 fo r k in 2 to le n g th (c u rre n tL ite ra l)
8 fo r m in 1 to length(degroundingSet)
9 i f degroundingSet[m] = cu rren tL ite ra l[k]
10 cu rren tL ite ra l[k] 4— “vB”
11 curren tR epset[j] 4— c u rre n tL ite ra l
12 repS et s[i] 4- curren tR epset
13 re tu rn repS et s

Example 5.2.11. Let repS et --

[[[a, m, n, o], [b, m, n]], [[a, o, m, n], [b, n, m]], [[a, m, n, o], [b, m, o]]]

At line 2, subRepSet(repSets[l], [[a, x,y, z], [b,x, y]]) = [[a,m, n, o], [b,m,n]],
subRepSet(repSets[2], [[a,x,y,z], [b,x,y]]) = [[a,o,m,n], [b,n,m]] and
subRepSet(repSets[3], [[a, x, y,z], [b,x, y]]) = [[a, m, n, o], [b,m, o]].

At line 4, when i = 1, degroundingSet = [m, n, o]. when i = 2, degroundingSet = [o,m, n].
When i = 3, degroundingSet = [m, n, o].

So deground(repSets, [[a, x, y, z], [b, x, y]]) returns

[[[a, vi, v2, v3], [b, Vi, v2]], [[a, vi5 v2, v3], [b, v3, v2]], [[a, vl5 v2, v3], [b, v1? v3]]]

Representative sets must be deground, that is, their constants converted to placeholders, in order
to create unground formulae that will make up the expectations in the working set. It is important
to preserve the “place” of each constant however, hence the need for degrounding symbols. An
example will illustrate this:

Example 5.2.12. Let there be three representative sets:

R ep se tl : { tak eo v e r(ry an a ir,b u zz),p ro fitab le (ry an a ir)}
Repset 2 : {takeover(boots,unichem),prof itable(unichem)}
Repset 3 : { takeover(safew ay,m orrisons),prof itable(safew ay)}

90

Repsets 1 and 3 deground to {takeover(v1? v2),p ro f ita b le (v i)} (a takeover in which the
bidder is a profitable party), whilst repset 2 degrounds to {takeover(vi, v2), p ro f i ta b le (v 2)}
(a takeover in which the target is the profitable party). These would result in the generation o f
quite different expectations.

Definition 5.2.5. Let degroundRepSet s be an array of deground representative sets. The or
der of degrounding symbols in a representative set is analogous to the order of variables in an
expectation. Each unique order of degrounding symbols must be identified.

group (degr oundRepSet s)
1 uniqueSetCount 4- 0
2 uniqueDegroundRepSets <— []
3 fo r i in 1 to length(degroundrepSets)
4 i f degroundRepSets[i] i s not in uniqueDegroundRepSets
5 uniqueSetCount 4- uniqueSetCount + 1
6 uniqueDegroundRepSets[uniqueSetCount] 4- degroundRepSets[i]
7 r e tu rn uniqueDegroundRepSets

Example 5.2.13. Let degr oundRepSet s be an array of deground representative sets.

degr oundRepSet s [l] = [[a, vx, v2, v3], [b, vi, v2]]
degr oundRepSet s [2] = [[a, vl5 v2, v3], [b, v3, v2]]
degr oundRepSet s [3] = [[a, vl5 v2, v3], [b, vl5 v2]]

So the array returned by group (deground, repSets) is

uniqueDegroundRepSets[l] = [[a, Vi, v2, v3], [b,vi, v2]]
uniqueDegroundRepSets[2] = [[a, Vi, v2, v3], [b, v3, v2]]

The set of working expectations is the set of expectations that have high coverage values and
high accuracy values. The first step in creating the set of working expectations is to generate the
set of antecedents with a coverage value greater than some threshold, and then to create the set
of all expectations from these antecedents such that the accuracy of each expectation is greater
than some threshold. The algorithms coveredAntecedents and makeGoodExpextations are
presented here, along with supporting functions.

The antecedents in the set of working expectations are formed from conjunctions of literals.
makeConjunctions takes a set of literals and an integer conSize and returns all conjunctions of
size conSize. The array l i t e r a l s contains one literal for each predicate symbol in the domain.
The order of variables is immaterial in this function.

Definition 5.2.6. m akeC on junctions(lite ra ls , conSize) returns an array of all conjunc
tions of l i t e r a l s of length conSize. There are no duplicated elements in the array returned.

91

Example 5.2.14. makeConj unctions ([[a, x, y, z], [b, x, y], [c, x]], 2) returns the array:

conjunct ions [1] = [[a,x,y,z], [b,x,y]]
conjunct ions [2] = [[a, x, y, z], [c, x]]
conjunct ions [3] = [[b, x, y], [c, x]]

The function makecoveredAntecedents calls the functions introduced above in order to gener
ate the set of conjunctions up to a size of maxCon and return those with a fset size larger than or
equal to the threshold value coverage.

The function m akeFset(conjunction, repS ets) returns the fset for conjunction. A subcon
junction (call it subconjunction) of a conjunction (call it conjunction ') is any conjunction
such that all conjuncts that appear in subcon j unct ion also appear in con j unct ion'. We exploit
the property that for all conjunction ', subconjunction, fset(conj unct ion') C

fset(subconj unct ion) to reduce the number of fsets generated.

The set generated by the function m akecoveredA ntecedents(literals, repS ets, coverage)
is identical to the set coveredAntecedents(M, II, T, A, minCoverage) defined in Definition 5.1.1
and contains all those antecedents whose coverage is greater than the given threshold, coverage.

92

Definition 5.2.7.

m akecoveredA nteceden ts(literals, repS ets, coverage)
1 firedC on junctions 4- []
2 firedC onjunctionsC ount 4- 0
3 degroundConj unct ions 4- Q
4 uniqueDegroundConjunctions «- [|
5 fo r h in 1 to le n g th (l i te r a ls)
6 i f leng th (m akeF set(lite ra ls[h],repS ets)) > coverage
7 f iredConjunctionsCount 4— f iredC onjunctionsCount + 1
8 f iredC onjunctions[f iredConjunctionsCount] 4- l i te ra ls fh]
9 fo r i in 2 to maxCon
10 con junctions|] 4- m akeC on junctions(lite ra ls, i)
11 fo r j in 1 to length(conj unct ions)
12 i f a l l subconjunctions of conjunct ions [j] of s iz e i — 1 a re in

firedC on junctions and
length(m akeFset(conjunctions[j], rep o rts)) > coverage

13 f iredConjunctionsCount 4- f iredConjunctionsCount + 1
14 f i r edCon ju n c tio n s [f iredConjunctionsCount] 4— conjunct ions [i]
15 coveredAntecedentsCount 4- 0
16 coveredAntecedents 4— []
17 fo r k in 1 to len g th (f i r edCon junctions)
18 degroundConjunctions 4—

degr ound(makeFset (f iredCon j unct ions [k], r epSet s) , f iredCon j unct ions [k])
19 uniqueDegr oundCon j unct ions 4- group(degr oundCon j unct ions)
20 fo r 1 in 1 to length(uniqueDegroundExpectations)
21 coveredAntecedentsCount 4- coveredAntecedentsCount + 1
22 coveredAntecedents[coveredAntecedentsCount] 4—

uniqueDegroundExpectat ions[l]
23 re tu rn coveredAntecedents

Example 5.2.15. Let l i t e r a l s be an array of literals l i t e r a l s = [[a, x, y, z], [b, x, y], [c, x]].
Let maxCon = 3 and minCoverage = 4. Let the array of representative sets, repS ets =

repS etsfl] = [[a,n, o,m], [b,n, o]]
repSets[3] = [[a,m,n, o], [b,m, o]]
repSets[3] = [[a,m,n, o], [b,m,n]]
repSets[4] = [[a,n,m, o], [b,n,m]]
repSets[5] = [[b,m, n], [c, o]]
repS ets [6] = [[b,m, o], [c, o]]
repSets[7] = [[a,m,n, o], [b,m,n], [c, o]]
re p S e ts [8] = [[a,m,n, o], [b,n, o], [c, o]]

93

The loop that begins at line 5 checks the size of the fset for each literal in l i t e r a l s . Those
literals whose fsets are larger than or equal to the threshold value coverage are added to the set
i iredCon j unct ions.

At line 14, f iredCon ju n c tio n s =

f iredCon ju n c tio n s [1] = [[a, x,y, z]]
f iredConjunctions[2] = [[b,x,y]]
f i r edCon ju n c tio n s [3] = [[c,x]]
f i r edCon ju n c tio n s [4] = [[a, x, y, z], [b, x, y]]
f i r edCon ju n c tio n s [5] = [[b, x,y], [c,x]]

At line 22, coveredA ntecedents =

coveredAnt e cedent s [1
coveredAntecedents [2
cover edAnt ecedent s [4
coveredAntecedents[5
coveredAntecedents[6
coveredAntecedents[7
coveredAntecedents[8

[[a, v i,v 2,v3]]
[[b,V!,V2]]
[[a, v i,v 2,v3],[b ,v i,v2]]
[[a, v i,v 2,v3], [b,vl5v3]]
[[a, vl5v2,v3], [b, v2, v3]]
[[b,vi,v2,],[c ,v3]]
[[b.Vi.vz.JJc^J]

The order of variables also effects the consequent of an expectation. If any literal in an expectation
is an rc-ary predicate where n > 1 then there are several possible versions of that consequent. The
set of ground representative sets allows us to identify those consequents such that the variable
order results in an expectation that is accurate.

First it is necessary to create the set of expectations that have sufficiently large fsets to be in the
set of working expectations and then to test those expectations for accuracy. Generating the set of
working expectations by first restricting by coverage and then by accuracy is more efficient than
if the order were reversed (this will be shown in Section 5.3). The set coveredAntecedents is
a set of place-dependent antecedents.

The function makeGoodExpectations returns a set of expectations which are of the required
form and have sufficient coverage to be members of the set of working expectations. The function
makeGoodExpectations uses makecoveredAntecedents to generate an array of deground
antecedents. In order to do so, makeGoodExpectations identifies those literals that can be used
as consequents to form expectations from the antecedents in coveredAntecedents. The set of
all reports that lead to a violation of an expectation in that set is identified. These representative
sets are then deground in order to generate vsets for all variable orderings over those expectations.

The vset for an expectation is the intersection of its aset and its fset. In order to deal with place

94

dependent version of expectations it is necessary for the v se t function to return a vset for each
place dependent versions of the expectation, a s e t is an array of report identifiers, f s e t is an
array of report identifiers and v se t is the intersection of f s e t and ase t:

Definition 5.2.8. Let a s e t be an array of report identifiers and f s e t be an array of report iden
tifiers. makeVset (a se t, f s e t) returns an array of the report identifiers common to both sets.

makeVset(aset, f s e t)
1 v se t «— [|
2 fo r i in 1 to le n g th (fse t)
3 i f f se t[i] in a se t
4 add f se t[i] to v se t
5 r e tu rn v se t

Example5.2.16. Let p i,...,p 8 be reports. Let f s e t = [1,2,4,5,7,8]. Let a s e t = [1,3,6,8].
v se t = [1,8].

The function makeDegroundExpectations([[antecedent], [consequent]], repS ets) returns
expectations generated with respect to a set of unique deground versions of representative sets.

Definition 5.2.9. Let [[antecedent], [consequent]] be an array that contains a deground con
junction and an unground literal respectively. Let repS ets be the set of representative sets. Let
makeFset (antecedent) be a function that returns the reference to each representative set that
fires the antecedent. Let makeAset (l i t e r a l) be a function that returns a reference to each rep
resentative set that attacks that literal. Let v se t (ase t, f s e t) return an array o f references that
are present in both a se t and f s e t . Let degr oundL ite ral (l i t e r a l , degr oundRepSet) return
the deground version o / l i t e r a l that appears in degr oundRepSet, /o r example, the function
degroundLiteral([b,x], [[a,V i, v2], [b, Vi]]) returns [b, Vi]. Let con ta in s (element, array)
return a boolean, true if the element is present in the array and false if it does not.

The function makeFset (an te cedent, repSets) takes an antecedent and the set of represen
tative sets and returns an array o f the indices of all representative sets which lead to a given
antecedent being fired. The function makeAset (consequent, repS ets) takes a consequent and
the set of representative sets and returns the indices o f all representative sets which lead to a
given consequent being attacked.

The function makeVset (ase t, f s e t) returns the array of the indices o f all representative sets
which lead to a given expectation being violated, by generating the intersection of f s e t and
a se t

95

makeDegroundExpect a t ions ([[antecedent], [consequent]], repS ets)
1 degroundExpectations [j
2 degroundExpectationCount 4- 0
3 groundRepSets 4— []
4 groundRepSetCount4— 0
5 f s e t 4— m akeFset(antecedent, repSets)
6 a se t 4— makeAset(consequent, repSets)
7 v se t 4- makeVset(f s e t, a se t)
8 fo r i in 1 to leng th (v se t)
9 groundRepSet Count 4— groundRepsSetCount + 1
10 c u rre n t Index 4- vset[i]
10 groundRepSets [groundRepSet Count] 4- repS ets [curren t Index]
11 degroundRepSets <— deground(groundRepSets, [[antecedent], [consequent]])
12 fo r j in 1 to length(deground, repSets)
13 curren tD egroundL iteral

4— degroundL iteral(negated(consequent), degroundRepSetsfj])
14 currentD egroundExpectation 4— [[antecedent], negated([currentD egroundLiteral])
15 i f not(contains(currentD egroundE xpectation, degroundExpectations))
16 degroundExpectationCount 4— degroundExpectations + 1
17 degroundExpectations[degroundExpectationCount]

4— currentD egroundExpectation
18 re tu rn degroundExpectations

Example 5.2.17. Let [[antecedent], [consequent]] = [[[a, Vi, v2, v3], [b, vi? v2]], [note, x]]. Let
repS ets —

repS ets[l] = [[a,m,n, o], [b,m,n], [c,m]]
repSets[2] = [[a,m,n, o], [b,m,n], [c, o]]
repSets[3] == [[a,m,n, o], [b,m, o], [c,m]]
repSets[4] = [[a,m, n, o], [b,m,n]]
repSets[5] = [[b,m,n], [c,m]]

At line 5, makeFset (antecedent, repS ets) = [1,2,4]. At line 6, makeAset (consequent, repSets) =
[1,2,3,5]. At line 1, makeVset(f s e t, a se t) = [1,2]

The loop that begins on line 8 returns the representative sets indexed by the array vset.

groundRepSets[l] = [[a,m, n, o], [b,m,n], [c,m]]
groundRepSets[2] = [[a,m, n, o], [b,m,n], [c, o]]

96

At line 11, degroundRepSets becomes

degroundRepSets[1] = [[a, vi, v2, v3], [b,v2,v3], [c, v±]]
degroundRepSets[2] = [[a, v1} v2, v3], [b, v2, v3], [c, v3]]

makeDegroundExpectations([[[a, Vi, v2, v3], [b, v2, v3]], [note, x]], rep sS ets) returns:

degroundExpectations[l] = [[[a, v1? v2, v3], [b, v2, v3]], [[note, vj.]]]
degroundExpectations[2] = [[[a, v1? v2, v3], [b, v2, v3]], [[note, v3]]]

The function makeGoodExpectat ions ensures that no literals in the antecedent, nor any of their
negations are used as the consequent of an expectation. In order to do so, a simple function
negated is called.

Definition 5.2.10. The function negated takes a literal and, if that literal is a positive literal,
then the negated version o f that literal is returned. I f that literal is a negative literal then the
positive version o f that literal is returned.

n e g a te d (l i te ra l)
1 i f l i t e r a l i s negative
2 re tu rn p o s it iv e l i t e r a l
3 e ls e
4 re tu rn nega tive l i t e r a l

Example 5.2.18. Let l i t e r a l = [a, x]. n e g a te d (l i te ra l) returns [nota, x]. Let l i t e r a l =
[nota, x]. n e g a te d (l i te ra l) returns [a, x].

The function makeGoodExpectations firstly generates the set of antecedents with fsets larger
than minCoverage, thus excluding from goodExpectat ions all those expectations with insuffi
cient coverage. The function then generates the deground expectations that have those antecedents
and returns these as the array goodExpectations.

Definition 5.2.11. Let l i t e r a l s be the set of all literals, repS ets be the set of representa
tive sets for each report indexed by the report identifier. Let maxCon be the maximum conjunc
tion size of an antecedent and minCoverage be a lower bound on an expectation’s coverage
value. m akeG oodExpectations(literals, repSets,minCoverage) returns an array of ex
pectations, goodExpectations such that for each expectation e coverage(e) > coverage.
At line 7 expectations are created by choosing a literal for the consequent such that neither
that literal nor its negation are a conjunct in the antecedent. The set generated by the function
m akeG oodExpectations(literals, repSets,minCoverage) returns the set o f expectations

97

goodExpectations(M, II, T, A, m inCoverage) defined in Definition 5.1.2.

makeGoodExpectat io n s (l i t e r a ls , repS ets, minCoverage)
1 expectationC ount <— 0
2 goodExpectations 4- []
3 coveredAntecedents <— m akecoveredA ntecedents(literals, repS ets,

minCoverage)
4 fo r i in 1 to length(coveredA ntecedents)
5 fo r j in 1 to l e n g th (l i te r a ls)
6 i f l i t e r a l s f j] i s not in coveredAntecedentsfi] and

8
7

n e g a te d (lite ra ls [j]) i s not in coveredAntecedents[i]
partD egroundExpectation [[coveredA ntecedents[i]][literals[j]]]
degroundExpectations

■f- makeDegroundExpectat ions (partDegroundExpectation,
repS ets)

9 f o r k in 1 to length(degroundExpectations)
10
11

expectationCount «— expectationC ount + 1
goodExpectations[expectationsCount]

•<— degroundExpectations[k]
12 re tu rn goodExpectations

Example 5.2.19. Let l i t e r a l s = [[a, x, y, z], [b, x, y], [c, x]]. Let

coveredAntecedents = [[[[a, vl5 v2, v3], [b, vi]], [[[a, v i,v 2, v3], [b,v2]], [[[b, vi], [c, vx]]]

makeGoodExpectations returns

5.2.3 The process of generating the set of working expectations

The makeWorkingExpectations function uses the accuracy of expectations to select those that
will be included in the working set. The calcu lateA ccuracy(repSets, antecedent, consequent)
function is responsible for calculating those accuracy values.

Definition 5.2.12. Let a s e ts be an array of arrays of report identifiers. Let f s e ts be an array
of arrays o f report identifiers. Let an teceden t be a conjunction of literals and consequent be

[[[[a, vl5 v2, v3], [b, v^], [c, v^],
[[[a, vi, v2, v3], [b, vi]], [c, v2]],
[[[a, v i , v2, v3], [b, v2]], [c, v3]],
[[[a, vi, v2, v3], [b, v2]], [c, v2]],
[[[b> viL [c> vi]]L [a > v2, vi, v3]]]

98

a literal. calculateAccuracy (repSets, antecedent, consequent) returns the accuracy for
the expectation antecedent —> consequent.

calcu lateA ccuracy(repSets, antecedent, consequent)
1 f s e t 4— m akeFset(antecedent, repSets)
2 v se t 4- m akeVset(aset, f s e t)
3 a c m r a r v 4- 1 - length(Tset)O accuracy 4- 1 length(fset)
4 r e tu rn accuracy

Example 5.2.20. Let l i t e r a l s be an array of literals [[a, x, y, z], [b, x, y], [c, x]].

Let rep S e ts=

repS ets[l] = [[a,n, o,m], [b,n, o]]
repSets[2] = [[a,m,n, o], [b,m, o]]
repSets[3] = [[a,m, n, o], [b,m, n]]
repSets[4] = [[a,n,m, o], [b,n,m]]
repSets[5] = [[b,m,n], [c, o]]
repSets[6] = [[b,m, o], [c, o]]
re p S e ts [7] = [[a,m,n, o], [b,m,n], [c, o]]
repSets[8] = [[a,m,n, o], [b,n, o], [c, o]j

L etcoveredAntecedents=

coveredAntecedents[l] =
coveredA ntecedents [2] =
coveredAntecedents[3] =
coveredAntecedents[4] =
coveredAntecedents[5] =
coveredAntecedents[6] =
coveredAntecedents[7] =
coveredAntecedents[8] =
coveredAntecedents [9] =

[[a, v1,v2,v3]]
[[b,vi,v2]]

[[c» vi]]
[[a, v i ,v 2,v 3],[b,v1,v 2]]
[[a, v1,v 2,v 3],[b,v1,v 3]]
[[a, vi, v2, v3], [b, Vi, v2], [c, v3]]
[[a,vi,v2,v 3],[c ,v3]]
[[b,Vi,v2],[c ,v3]]
[[b, vi, v2], [c, v2]]

coveredAntecedents[10] = [[a, vi, v2, v3], [b, vi, v2], [c, v3]]
coveredA ntecedentsfll] = [[a,vi,v2,v3],[b,v2, v3],[c, v3j]

Recall that f s e t is an array of indices corresponding to the members of repSets that have fired

99

the antecedent. The f s e ts for these antecedents are

fset([a,vi,v2,v3], repS ets) = [1,2,3,4,7,8]
fset([b,vi,v2], repS ets) = [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8]
fset([c,vi], repS ets) = [5,6,7,8]
feet([[a,v1,v2,v3],[b,v1,v2]], repS ets) = [1,3,4,5]
fset([[a,vi,v2,v3],[b ,v i,v3]], repS ets) = [2,7,8]
fset([[a,v!,v2,v3], [b, vl5 v2],[c ,v3]], repS ets) = [7]
fset([[a, vl5 v2,v3],[c,v3]], repS ets) = [7,8]
fset([[b, vi, v2], [c,v3]], repS ets) = [5]
fset([[b, vi, v2],[c,v2]], repS ets) = [6]
fset([[a, vi, v2,v3],[b, vi, v2],[c,v3]], repS ets) = [7]
fset([[a, vi, v2,v3],[b,v2,v 3],[c,v3]], repS ets) = [8]

Let coveredAntecedents[i] be [a, vi, v2,v3], which is the antecedent o f the expectation
It follows that [[a, vi, v2, v3], [c, v3]]. fset(coveredAnte cedent s[i], repS ets) = {p7,po). Let
l i t e r a l s [j] = [notb,x,y]. The literal b does not appear in [[a, vi, v2, v3], [c, v3]] and so
[notb,x,y] can be used as a consequent. Let a se t(li te ra ls [j] ,re p S e ts) = {p7,pz} there
fore

intersection(fset(coveredA ntecedents[i], repSets), a s e t(li te ra ls [j] , repS ets)) = {p-?, p%}

The reports pi and p% are then deground:

deground[7] = [[a, Vi, v2, v3], [b, vi, v2][c, v3]]

deground[8] = [[a, v u v2, v3], [b, v2, v3][c, v3]]

The deground version of in tersection(coveredA ntecedents[i], aset([b, x, y])) is grouped
into two place-distinct expectations. Thus there are two vsets:

vset([[[a,vi,v2,v3],[c,v3]],[notb ,v i,v2]]) = [7]

vset([[[a,vi,v2,v3],[c,v3]],[notb,v2,v3]]) = [8]

From this the accuracy o f the two expectations can be calculated

The accuracy o/[[[a, vt , v2, v3], [c, v3]], [notb, vi5 v2]] = 1 - ^

100

The accuracy of[[[a, vi, v2, v3], [c, v3]], [notb, v2, v3]] = 1 - ^

The function makeWorkingExpectations returns an array of expectations whose coverage and
accuracy is above a given threshold. It uses the preceding algorithms to generate the set of ex
pectations with sufficient coverage, goodExpectations. It then returns those expectations in the
array returned by goodExpectations with a sufficiently high accuracy value.

Definition 5.2.13. Let l i t e r a l s be the set o f literals in the universe, rep S ets be the set of
representative sets for each report indexed by the report identifier. Let maxCon be the maximum
conjunction size o f an antecedent and minCoverage and minAccuracy be a lower bounds on an
expectation ’s coverage and accuracy values.

makeWorkingExpectations returns an array of expectations, w orkingExpectations such
that for each expectation e coverage(e) > minCoverage and accuracy(e) > minAccuracy. The
array returned by the function

makeWorkingExpectat io n s (l i t e r a ls , repS ets, minCoverage, minAccuracy)

is identical to the set workingExpectations(M, II, T, A, minCoverage, minAccuracy) defined
in Definition 5.1.3.

makeWorkingExpectat io n s (l i t e r a ls , repS ets, minCoverage, minAccuracy)
1 expectationC ount 4— 0
2 vorkingSet 4- [|
3 goodExpectations 4— m akeG oodExpectations(literals, repS ets,

minCoverage)
4 fo r i in 1 to length(goodExpectations)
5 i f accuracy(goodExpectations[i]) > minAccuracy
6 expectationC ount 4— expectationCount + 1
7 w orkingExpectations [expect a t ionCount] 4— goodExpections[i]
8 re tu rn w orkingExpectations

Example 5.2.21. Let the set goodExpectations =

goodExpectationsfl] = [[[a, vi, v2, v3], [b, vi]], [c,vi]]
goodExpectations[2] = [[[a, vi, v2, v3], [b, vj.]], [c, v2]]
goodExpectations[3] = [[[a, v1? v2, v3], [b, v2]], [c, v3]]
goodExpectations[4] = [[[a, vl5 v2, v3], [b, v2]], [c, v2]]
goodExpectations[5] = [[[b, vi], [c, vi]]], [a, v2, vi, v3]]

Let minAccuracy = 0.8. Let accuracy([[[a, vl5 v2, v3], [b, vA]], [c, vi]]) = 0.65.
[[[a, vi, v2, v3], [b, vi]], [c, vi]] is not added to the array workingExpectations.

101

Let accuracy([[[a, v1? v2, v3], [b, vi]], [c, v2]]) = 0.85. expectationC ount = 1 and
w orkingExpectations = [[[[a, v1} v2, v3], [b, v^], [c, v2]]].

Let the third and fourth expectations have accuracy values of 0.3 and 0.6 respectively. They will
not be added to workingExpectations.

Let accuracy([[[bjVt], [c, vi]], [a, v2, vi, v3]]) = 0.9. expectationCount = 2 and
workingExpectations = [[[[a, v1} v2, v3], [b, vx]], [c, v2]], [[[b, vx], [c, Vl]]], [a, v2, v1} v3]]].

When the junction makeWorkingExpectat ions terminates, it returns the array
[[[[a, vi, v2, v3], [b, Vl]], [c, v2]], [[[b, Vl], [c, Vl]], [a, v2, v1? v3]]].

In order to determine which expectations will be members of the set workingExpectations,
it is necessary to determine which expectations have an accuracy value greater than or equal to
minAccuracy. The function makeWorkingExpectat ions returns the array of expectations in
makeGoodExpectations with accuracy greater than or equal to minAccuracy. Accuracy is a
function of the number of times an expectation has been violated versus the number of times it
has been fired.

5.3 Conclusion to Chapter 5

The size of the set of expectations, E, makes it impossible to search the whole set for violated
expectations on receipt of every report. Generating the set of working expectations is a good
solution to this problem. Firstly, the approach of generating the working expectations from the
set of literals results in the set of expectations that are most useful for recommending reports.
Only those reports that have violated an expectation that has both a high coverage value and a
high accuracy value are presented to the user. The members of the set of working expectations
are exactly those expectations that are both well covered and highly accurate.

Given that the coverage of an expectation is also used to determine that expectation’s accuracy,
generating coverage values before generating the violated or supported values is more than gen
erating the violated and supported values first. Note also that restricting the members of the set
of working expectations to those expectations that are both highly covered and highly accurate
can also ensure that the set of working expectations is restricted to a workable size. Some initial
sampling of the set may be necessary to decide the correct thresholds to ensure that the set of
working expectations is smaller than the maximum number of expectations that can be searched
effectively on receipt of each report.

A critical advantage is that the calculation of accuracy values for expectations can be carried out
separately from the application of those expectations to reports. As the timeliness of recommend
ing reports is crucial, removing the delay arising from the calculation of accuracy and coverage

102

values on receipt of each report is highly desirable.

Additionally, the cost of calculating the accuracy and coverage value for each expectation in
the set is high. Generating the working expectations by initially identifying antecedents with
high coverage values reduces the number of expectations that must be generated and evaluated.
The expense of calculating the accuracy and coverage of an expectation is amortised over the
evaluation of several reports.

The set of working expectations is generated according to the requirements of the EVA frame
work. Should these requirements alter, it is a simple matter to change the definition of the working
set. For example, thus far only violations of expectations by a single entity have been considered.
However, Chapter 2 introduces the notion of cohort violations; (see Section 3.3.1) that is, vio
lations of expectations that involve more than one entity. The algorithm presented here may be
modified to maximise the number of entities involved in the cohort whilst minimising the time
frame over which the events occur and maximising the specificity of the entity specification.

A further advantage of this approach is that it is only necessary to consider those orders of vari
ables that occur within expectations that have been fired. Only permutations of variables that
appear in a representative formula will appear in the fset for a literal.

Finally, recalculating the accuracy values for expectations at intervals permits the use of only
the most recent n reports rather than the set of all reports received. Doing so enables the system
to respond to changes in behavioural trends over time by altering the strength of expectations
accordingly.

There is a minor concern that the expectations chosen for the set of working expectations are
those with high coverage values. As a result of this, an EVA system is able to spot unexpected
behaviour in response to common circumstances but not able to spot unexpected behaviour in rare
circumstances. However, this problem is not of great concern, as by definition, most reports will
be of the common type. A different method may be devised that is able to identify rarely fired but
useful expectations, but this is beyond the scope of this thesis.

Section 5.2.2 defines an algorithm that is used to deground representative sets, in order that they
may be related to unground expectations. This is adequate, given that the expectations as defined
in the EVA framework are unground and universally quantified. However, it may be the case
that expectations that are partially ground are of use in certain circumstances. For example, a
constant in an expectation could restrict the applicability of that expectation to a unique entity, a
specific location, a particular industry sector and so on. Plotkin discusses a method of generalising
formulae in [Plo70] such that generality is determined by the subsumption relation between two
formulae. As such, it is possible to generalise from a ground, or partially ground, formula to a
number of other partially ground or an unground formula.

Example 5.3.1. Let p ro f i ta b le (b r i t is h a irw a y s) A se c to r (b ritish a irw a y s , av ia tio n)
be a formula. The degrounding algorithm defined in this chapter would render the deground

103

version of this formula as:

Vx, y p ro f ita b le (x) A secto r(x , y)

However, the generalisation method suggested by Plotkin permits three possible generalisations:

Vx p ro f i ta b le (x) A secto r(x , av ia tio n)
Vx p ro f i ta b le (b r itish a irw a y s) A se c to r(b r itish a irw a y s , x)
Vx,y p ro f i t ab le (x) A se c t or (x, y)

Were the EVA framework to require us to consider partially ground expectations, Plotkin’s ap
proach to generalisation would be ideal. However, it is not the intention to examine partially
ground expectations in this thesis.

It is worth noting that partially ground expectations can never have higher coverage values than
a fully deground version of the same expectation. Therefore the method for generating the set
of working expectations proposed here would discriminate against partially ground expectations
and would perhaps need to be modified to overcome this drawback. This is a potential area for
further work.

Once generated, the set of working expectations does not take into account any changes in the set
of representative sets or the background knowledge. Should the predicate and constant symbols
in the language change, then the set of working expectations would need to be recreated afresh.
Likewise, the set of working expectations should be regenerated often enough to take account of
any changes in the relative frequency of reported events.

The algorithms presented here provide one possible way of identifying working sets of expec
tations. Many of these algorithms suffer from the fact that they rely on several nested loops.
However, as the simulations in the next chapter demonstrate, a prototype system based on these
algorithms is able to generate sets of working expectations in a practical fashion.

In conclusion, the working set of expectations is a set of expectations that is small enough to be
searchable and yet contains only those expectations that are strong enough to identify interesting
news. Generating the set of working expectations in this manner is a good solution to the problem
created by the large size of E.

104

e fset(e) vset(e) accuracy(e)
Vx a(x) -* 0(x) {Plj/?2,P3?/>4,P5} {P3,P4} 0.6
Vx a(x) -» ->/3(x) {pi 5 P2 ■> P3 5 Pa j P5 } {pi,p2,p5} 0.4
Vx a(x) —> 7 (x) {Pl,p2,p3,p4,P5} {P3,P4,p5} 0.4
Vx a(x) —> ~>7 (x) {Pl ? P2 j P3 j PA •> P5 } {p l»P2 } 0.6
Vx -ia(x) —> fi{x) {P6,P7>P8,P9,Plo} {P7,P8,P9,P10} 0.2
Vx ->a(x) —> ->0(x) {P6,P7,P85P9,Plo} {P6} 0.8
Vx ->a:(x) —> 7 (x) {P6,P7,P8,P9,P10} {P6,P7,P8,P9,P10} 0
Vx -ia(x) —> ->j(x) {P6,P7?P8jP9jP1o} {} 1
Vx /?(x) -> a(x) {Pl,P2,P5,P6} {P6> 0.75
Vx /3(x) —» -«a(x) {Pl,P2,P5,P6} {P1,P2,P5} 0.25
Vx /?(x) —> 7 (x) {Pij P2 5 P5 5 P6} {P5,P6} 0.5
Vx /?(x) -> ->7 (x) {P1,P2,P5»P6} {Pl»P2> 0.5
Vx -'P(x) -¥ a(x) {P3,P4,P7,P8} {P7,P8} 0.5
Vx ~>/3(x) -¥ -«a(x) {P3,P4,P7,P8} {P3,P4> 0.5
Vx -i|5(x) —» 7 (x) {P3) P4 j P7 j P8 } {P3,P4,P7,P8} 0
Vx -\#(x) —» -^(x) {P3,P4,P7,P8} {} 1
Vx 7 (x) —>■ a(x) {Pij P2 } {} 1
Vx 7 (x) —> ->a(x) {Pl,p2> {p l5 P2 } 0
Vx 7 (x) -¥ f3(x) {PI5P2 } {} 1
Vx 7 (x) -» ~i/3(x) {Pl,p2> {P1)P2} 0
Vx -17(x) -» a(x) {P3 5 P5 5 P8 5 P9 5 PlO } {P3,P5} 0.4
Vx ->7 (x) —> -ia(x) {P3?P5jP85P9jPio} {P8,P9,Plo} 0.6
Vx ->7 (x) -4 /9(x) {P3,P5,P8jP95Pio} {P3,P8,P9, Pio} 0.2
Vx ~*7 (x) —> ~>/3(x) {P3,P55P8,P9,P10} {P5} 0.8
Vx /?(x) A a(x) —>• 7 (x) {Pi 1 p2 5 P5} {p5 } 0.66
Vx /3(x) Aa(x) —> ->7 (x) {Pl,P2,P5} {Pl 5 P2> 0.33
Vx /?(x) A -ia(x) —> 7 (x) {P6> {P6} 0
Vx /?(x)A-«a(x) —> ->7 (x) {P6> {} 1
Vx ->/?(x) A c*(x) —» 7 (x) {P3 j P4 } {P3,P4> 0
Vx -ij3(x)A«(x) —> ->7 (x) {P3,P4} {} 1
Vx ~'/3(x) A~>a(x) -* 7 (x) {P7,P85P9,Plo} {P7jP8,P9,Pio} 0
Vx A ->a(x) —>•
->7(x)

{P7,P8,P9,Plo} {} 1

Vx /?(x) A 7 (x) —» o:(x) {PI7P2 } {} 1
Vx /?(x) A 7 (x) —» ->a(x) {Pij P2 } {pl 1 P2> 0
Vx /?(x) A ~ ŷ(x) —»• a(x) {P5,P6} {P5> 0.5
Vx /?(x) A ->'y(x) —> ->o:(x) {P5,P6} {P6> 0.5
Vx -</3(x) A -^(x) —>■ a(x) {P3>P4,P7,P8,P9} {P7,P8,P9} 0.4
Vx ~'P(x) A ~i'y(x) ->
->a:(x)

{P35P4jP7,P8,P9} {P3,P4> 0.6

Vx a(x) A 7 (x) —>• /?(x) {pl>P2} 11 1
Vx o:(x) A 7 (x) —>• ~i/3(x) {Pl>P2} {Pl5 P2 I 1
Vx a(x) A -^(x) -* /3(x) {P3?P4,P5} {P3,P4> 0.33
Vx a(x) A 7 (x) —> -i/9(x) {P3,P4,P5} {P5> 0.66
Vx ->a(x) A ->7 (x) —► /?(x) {P6,P7,P8,P9,P10} {P7,P8,P9,Plo} 0.2
Vx -iq;(x) A 7 (x) —»■ ->l3(x) {p6 1 P7 5 P8 5 P9 > PlO } {P6> 0.8

Table 5.1: Expectations and the firing and attacking sets for example 5.1.3

105

Chapter 6

Simulation of the working
expectation generator

Chapter 2 introduced the EVA framework. Chapters 3 and 4 defined expectations. Chapter 5
demonstrated that the set of expectations can be reduced to a subset: the set of working expec
tations. This set is central to the EVA framework as it is the set of expectations that is used to
identify interesting news items. It is therefore imperative that this set can be created in a manner
that is computationally viable and that the set itself is manageable and meaningful (these terms
will be elaborated on below).

A prototype working expectation generator was built following the definition and algorithms pre
sented in Chapter 5. This prototype formed the basis for a series of simulations. These simulations
demonstrate that it is possible to generate a set of working expectations that is manageable, that is,
the size of the set of working expectations is small enough to be easily searched. The simulations
also demonstrate that these sets of working expectations are meaningful. In order for these sets
of working expectations to be meaningful, identical inputs should result in identical outputs and
“similar” inputs should result in “similar” outputs. Measures of similarity are defined in the next
section. Additionally, the simulations demonstrate that the process of generating the set of work
ing expectations is computationally viable, that is, the input needed and time taken to generate
the set of working expectations is reasonable.

There are four simulations whose results will be presented in this chapter. These simulations
address the questions of manageability, meaningfulness and viability raised above.

• Simulation One (Section 6.2) demonstrates that, given a large enough set of representative
sets, the set of working expectations converges to a canonical set, which will be defined
in that section. It is necessary that, given similar sets of representative sets and identical

106

threshold values as inputs, the system should generate similar sets of working expectations.
This is because the members of the set of working expectations are entirely dictated by
the membership of the set of representative sets and the thresholds chosen. Simulation One
shows that for populations of representative sets with the same predicate symbol distribu
tion the set of working expectations is, for most distributions, identical or highly similar.

• Simulation Two (Section 6.3) provides an indication of the similarity between of working
sets of expectations given sets of representative sets of various cardinalities. This provides
an understanding of the amount of evidence (in the form of representative sets) required to
generate sets of working expectations with high precision and recall values. High precision
and recall values suggest that the set of working expectations is a good approximation to
the canonical set of working expectations.

• Simulation Three (Section 6.4) demonstrates the effect of increasing the complexity of the
universe by increasing the number of degrounding symbols. The more complex the uni
verse, the greater the size of the set of expectations. As the size of the set of expectations
grows, the number of representative sets required to result in convergence to a canonical
set also increases. Simulation Three examines the effect of increasing the number of de-
grounding symbols on the ability of the system to generate the set of working expectations.

• Simulation Four (Section 6.5) demonstrates a method for biasing the set of working expec
tations towards those expectations with long antecedents. Expectations with more specific
(i.e. longer) antecedents provide a more useful indication of interesting behaviour. How
ever, expectations with shorter antecedents have equal or greater fired values than longer
ones (see Proposition 4.2.6 for an explanation). Therefore, all things being equal, the set of
working expectations is more likely to contain expectations with n conjuncts antecedents
than with n + 1 conjuncts. Simulation Four demonstrates that a stepped coverage threshold
is capable of biasing the set of working expectations such that it contains expectations with
longer antecedents.

The decision was taken to carry out these simulations using artificially created representative
sets, rather than extracting news from real reports. The motivation behind this decision is twofold:
artificially created data may be better understood than genuine data. The process of generating the
representative sets ensures familiarity with the characteristics of that data, such as the distribution
of predicate symbols, the arity of predicates, the cardinality of representative sets and so on. It is
possible to test the prototype’s performance under a variety of different scenarios by varying the
characteristics of the sets of representative sets. These advantages outweigh the potential loss of
information that results from not using real reports in the simulations. The results gathered from
an analysis of business news reports from Reuters and The Economist magazine in Section 6.1.7
suggest that real data from the business domain is similar to one of the probability distributions
used to create artificial representative sets. As such, we can expect similar performance when
using reports from the business domain to those that result from using simulated data.

107

This chapter is structured as follows: Section 6.1 presents the algorithms used to run the simu
lations and defines the measures that are applied to the results. Section 6.1.5 elaborates on the
reasons for using automatically generated representative sets and presents the different character
istics that these representative sets may have. This section also highlights the dangers of ontolog
ical bias, where the choice of the structure of the language can profoundly affect the performance
of the working expectation generator. This section also demonstrates that the distribution of pred
icates for a corpus of business news conforms closely to the Zipf distribution. Sections 6.2 to 6.5
present the simulations introduced above and their results. Section 6.6 presents a summary of the
findings and argues that the working expectation generator as defined in Chapter 5 is computa
tionally viable and creates meaningful and manageable results.

6.1 Definitions and methods

The definitions of terms, predicates, literals and groundings should be taken as those given in
Section 2.2. A representative set is a set of literals containing information extracted from a report
and from the background knowledge, as given in Definition 2.4.5. This section defines the method
and tools used in carrying out the simulations presented in this chapter. Two sets of real news
stories were used at various points during this work. The Economist corpus is a set of 470 weekly
digests of, on average, 19 reports per digest, taken from the period January 2000 to August 2004.
The Reuters corpus is a set of 4,049 business news articles from the period September 1996 to
August 1997.

The computing environment in which the simulations were run was a PC running Windows 2000
on a 1.8 GHz Pentium 4 processor with 1 gigabyte of RAM. The time for a single run varied from
simulation to simulation but, in the worst recorded case, took no more than seven minutes to run.
The less challenging simulations took less than one minute per run.

6.1.1 The representative set generator

In order to test the performance of the working expectation generator it is necessary to provide
some input in the form of representative sets. For the justification for generating the representative
sets automatically see Section 6.1.5. In this way it was possible to examine the effect of different
probability distributions (Section 6.1.2) and different degrees of complexity in the universe.

Sets of representative sets are generated by a system that accepts four parameters: the number
of representative sets to be generated; the number of constant symbols in the language; the arity
of literals and the predicate symbol distribution. Representative sets are sets of ground atoms.
The representative set generator creates representative sets using the Java random number gener
ator. Each parameter of each representative set is determined using the random number generator

108

according to the following probabilities:

• Number of literals in representative set: fixed probabilities shown in Table 6.1. These prob
abilities were chosen to be representative of the size of news reports from the Economist
and Reuters corpora.

• Whether the literal is negated or positive: fixed probabilities: P(positive)=0.5, P(negated)=0.5

• Constant symbol, where, for some n, each constant is in the set { c i , Cn) : fixed proba
bility, J

• Predicate symbol: probability is dependent on the predicate symbol distribution chosen by
the experimenter. Probabilities are given in Table 6.2.

The number of representative sets and the distribution are sent to the representative set generator
as input. For each representative set to be generated a random number is chosen that fixes the
number of literals in the representative set. For each literal, the predicate symbol is chosen using
a random number generator. The distribution chosen by the experimenter determines which pred
icate symbol is generated by each random number. Further random numbers determine whether
the literal is negated and the subscripts of the constants.

Number of literals 2 3 4 5 6
Probability 0.2 0.4 0.15 0.15 0.1

Table 6.1: Fixed probabilities governing the number of literals in each representative set.

The following algorithm is responsible for generating the set of representative sets:

Definition 6.1.1. Let cRandomNumber be a random number. Let the Junction
integer(cRandomNumber,maxConstants) convert a Jloating point number an integer in the
range 1, ...,maxConsts.

Let sRandomNumber be a random number and pRandomNumber be a random number. Let
getSetSize(sRandomNumber) return an integer that will determine the number of literals in the
representative set, according to the representative set size distribution in Table 6.1. Let
getPredSymbol(pRandomNuinber, p red ic a te D is tr ib u tio n) return a predicate symbol ac
cording to the distributions shown in Section 6.1.2.

Let each representative set be an object (informally, a collection of different data types)
{atomSign, predSymbol, constan ts} where atomSign is either null or takes the value -i,
predSymbol is one o f the predicate symbols in the universe and constan ts is an array of strings,
each of which is a constant symbol from c i , ..., cn.

The function g enera teP i(p iS ize , m axC onstan ts,p red icateD istribu tion , a r i ty) returns
a set o f p iS ize representative sets whose predicate symbols are chosen according to the distribu

109

tion p re d ic a te D is tr ib u tio n and whose constants are numbered with an integer in the range
0 , maxConstants. The arity o f predicates is a r i ty .

g enera teP i(p iS ize , maxConstants, p red ic a te D is tr ib u tio n , a r i ty)
1 repsetsQ
2 counter 4— 0
3 fo r i in 1 to p iS ize
4 rep se ts[i] 4— generateRepset(m axConstants, p re d ic a te D is tr ib u tio n , a r i ty)
5 re tu rn rep se ts ;

The function generateRepset(m axConstants, p re d ic a te D is tr ib u tio n , a r i ty) returns a
single representative set. Let c o n ca t(s trin g , in teg er) concatenate a string and an integer
such that concat ("c", 1) returns "c l" . Let "-i" be the negation symbol.

generateRepSet(maxConstants, p red ic a te D is tr ib u tio n , a r i ty)
1 re p se t []
2 sRandomNumber 4— nevRandomNumber()
3 repS etS ize 4- getSetSize(sRandomNumber)
4 fo r i in 1 to se tS iz e
5 do
6 negRandomNumber 4— newRandomNumber()
7 i f negRandomNumber < 0 .5
8 negSymbol= " "
9 e ls e
10 negSymbol = " -i"
11 pRandomNumber 4— newRandomNumber()
12 predicateSym bol 4-

getPredSymbol(pRandomNumber, p red ic a te D is tr ib u tio n)
13 fo r j in 1 to a r i ty
14 cRandomNumber 4- newRandomNumber()
15 constSymbols[k] 4-

concat("c", integer(cRandomNumber,maxConstants))
16 w hile { li te ra lS ig n , predicateSym bol, constSymbols) in re p se t
17 re tu rn re p se t

6.1.2 Predicate symbol distributions

Representative sets are created by the representative set generator (see Section 6.1.1). Each repre
sentative set is a set of ground literals. The representative set generator must create these literals

110

from the set of predicate symbols, V = {pi, ...,pn}, the negation operator, and the set of
constant symbols, C = {ci, Predicate symbol distributions are used to determine the
probability with which each predicate symbol occurs in the set of representative sets.

Predicate Symbol: Pi P2 P3 P4 Ph P6 Pi P8
One Up 0.51 0.07 0.07 0.07 0.07 0.07 0.07 0.07
Five Up 0.17 0.17 0.17 0.17 0.17 0.05 0.05 0.05
Three Up 0.15 0.15 0.15 0.11 0.11 0.11 0.11 0.11
Big Three 0.3 0.3 0.3 0.02 0.02 0.02 0.02 0.02
Uniform 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
Pseudo Gaussian 0.002 0.021 0.136 0.341 0.341 0.136 0.021 0.002
Rat Gaussian 0.05 0.1 0.15 0.2 0.2 0.15 0.1 0.05
Pseudo Zipf 0.4 0.2 0.13 0.1 0.08 0.06 0.02 0.01

Table 6.2: Predicate symbol distributions for universe of 8 predicate symbols (exact figures).

There are eight predicate symbol distributions presented in Table 6.2 and Figures 6.1 and 6.2: the
Uniform distribution has a single level of probability, distributions One up, Three up, Five Up and
Big Three have two levels of probability (these will be referred to as stepped distributions), the
Pseudo Gaussian and Flat Gaussian distributions have four levels of probability and the Pseudo
Zipf distribution has eight levels of probability. The Pseudo Gaussian, Flat Gaussian and Pseudo
Zipf will be referred to as the natural distributions. These distributions were chosen as it was
felt that, although the values chosen are somewhat arbitrary, the distributions are varied enough
to adequately represent the range of possible distributions of predicate symbols in representative
sets.

The figures given in Table 6.2 are the exact probabilities of each predicate symbol occurring,
whether in a positive or negative ground predicate. The negation symbol has an even chance of
being applied to a predicate. Therefore, if (c i ,..., cn) is a possible tuple of constants then the
probability of the ground predicate p i(c i , ..., Cn) being generated is the same as the probability
of the ground predicate ->pi (ci,..., cn) being generated.

Example 6.1.1. Let the probability o f predicate symbol p\ being generated be 0.5. Let the prob
ability of the tuple o f constant symbols (ci,C2) being generated be 0.3. the probability of the
negation symbol being applied to a predicate is 0.5. The probability of the predicate p\ (ci, C2)
being generated is therefore 0.5 x 0.3 x 0.5 = 0.075. Likewise, the probability o f the predicate
-p i (ci, c2) being generated is therefore 0.5 x 0.3 x 0.5 = 0.075.

The Uniform distribution is the distribution in which each predicate symbol is equiprobable, so
there will be little or no difference between the coverage value of antecedents of the same length
and little or no difference between the attacked value of each constant. In a set of expectations of
equal antecedent length, there should be no expectation that has a significantly higher accuracy
or coverage value than any other.

Example 6.1.2. Let \C\ = 2. The possible values for c are then (ci,ci), (ci,C2), (c2 ,ci), and

111

Five Up Distribution

0.4
0.35
0.3

2> 0.25
1 02

illli
2 3 4 5 6 7 8

Predicate Symbol

Three Up Distribution

One Up Distribution

0.4
0.35
0.3

£■ 025
02

0.15
0.1

0.05

2oa.

1 2 3 5 6 74 8

Predicate Symbol

Big Three Distribution

2- 0.25 * 0.25

o 0.15

—

Predicate Symbol

1 2 3 4 5
Predicate Symbol

Figure 6.1: The stepped distributions of predicate symbols as given in Table 6.2.

(C2 , C2). Each tuple is equiprobable. The probability of each ground literal being negated is 0.5.
The probability ofp\ — 0.125. Let the probability of a predicate symbol p be probability (p), the
probability o f a tuple of constants t be probability(t) and the probability of a negation symbol n
(where n = [->, null]) be probability(n). The probability o f any one literal (for example -p i (t))
is probability^) x probability(pi) x probability^), which equals 0.5 x 0.125 x 0.25 = 0.0156.

The One Up distribution is the simplest of the stepped distributions, where one predicate symbol
(pi) is much more likely to be generated than any other. Consequents whose predicate symbol
is pi are therefore much more likely to be attacked than others. Antecedents for which pi is the
predicate symbol of one of the conjuncts are also more likely to be fired than those for which pi
is not the predicate symbol of one of the conjuncts.

Example 6.1.3. Let \C\ = 2. The possible values for c are then (ci,ci), (0 1 , 0 2), (c2 ,ci), and
(C2 , C2). Each tuple is equiprobable. The probability of each literal being negated is 0.5. In the
One Up distribution, the probability o fp i — 0.51. Let the probability of a predicate symbol p
be probability(p), the probability of a tuple of constants t be probability (t) and the probability
of a negation symbol n (where n = [->, null]) be probability(n). The probability of any one
literal (for example ~>pi(t)) is probability(-*) x probability(pi) x probability(t), which equals
0.5 x 0.51 x 0.25 = 0.0643.

112

Uniform Distribution Pseudo Gaussian Distribution

0.35 -

a- 0.25 0.25 -

Predicate SymbolPredicate Symbol

Flat Gaussian Distribution Pseudo Zipf Distribution

0.25 0.25 .

P 0.15

0.05 -

3 4 5 6
Predicate Symbol

3 4 5
Predicate Symbol

Figure 6.2: The natural distributions of predicate symbols as given in Table 6.2.

The Three Up distribution has a slightly higher probability of predicate symbols p i , p? or ps
occurring (P = 0.15) thanp4, ...,P8 (P — 0.11). Therefore those expectations whose antecedents
containpx, orp 3 or a combination thereof as conjuncts are more likely to occur than those that
do not. However, the difference in these probabilities is small, which means that this distribution
is susceptible to the effect of small differences in the output of the random number generator.

The Three Up distribution is more complex than the One Up distribution as there is a much higher
probability of certain combinations of predicate symbols occurring than others.

Example 6.1.4. For the Three Up distribution, the probability of the predicate symbols pi and
P2 occurring together in a two literal representative set is 0.0225 whereas the probability ofpi
and p4 occurring together in a two literal representative set is 0.0165 and the probability of p4

andps occurring together in a two literal representative set is 0.0121.

The Five Up predicate symbol distribution is another stepped distribution. The difference between
the levels of probability is more pronounced than for the Three Up distribution. There are also
strong probabilities of co-occurrence between p \ , ...,ps.

Example 6.1.5. For the Five Up distribution, the probability of predicate symbols pi and P2

occurring together in a two literal representative set is 0.0289 whereas the probability of p\ and

113

Pe occurring together in a two literal representative set is 0.0085 and the probability of pg and
P7 occurring together in a two literal representative set is 0.0025.

The Big Three distribution was included to highlight the effect of a larger difference between
the levels of probability assigned to predicates. The difference between the levels of probabil
ity for pi, ...,p 3 and p4, ...,p$ in the Big Three distribution is much greater than the difference
in the Three Up distribution. This distribution should result in a small number of well covered
antecedents and five rarely attacked consequents.

The probabilities of co-occurrences are highly variable:

Example 6.1.6. For the Big Three distribution, the probability of predicate symbols p\ and P2

occurring together in a two literal representative set is 0.09 whereas the probability of predi
cate symbols p\ and p4 occurring together in a two literal representative set is 0.006 and the
probability ofp 4 andps occurring together in a two literal representative set 0.0004.

The Pseudo Gaussian distribution is natural in that it mimics, as closely as practical, the normal
or Gaussian distribution. The normal distribution has been found to provide a reasonable approx
imation of the distribution of data in many situations and is often used in statistical analysis when
the true distribution of a dataset is unknown. It is not possible for the predicate distribution to be
identical to the Gaussian distribution as, under the Gaussian distribution the curve is continuous
and tends towards zero but extends infinitely. For implementation purposes it was necessary to
have eight probability values that sum to one in order that each random number generated is at
tributable to one of the eight outcomes. There are four levels of probability in this distribution,
with a large difference between the levels.

Example 6.1.7. Let \C\ = 2. The possible values for c are then (ci,ci), (ci,C2), (c2 ,ci), and
(c2 , C2). Each tuple is equiprobable. The probability of each literal being negated is 0.5. In the
Pseudo Gaussian distribution, the probability o f px = 0.002. Let the probability of a predicate
symbol p be probability(p), the probability of a tuple o f constants t be probability(i) and the
probability of a negation symbol n (where n = [—>, null]) be probability(n). The probability of
any one literal (for example “Pi (t)) is probability(->) x probability(pi) x probability(t), which
equals 0.5 x 0.002 x 0.25 = 0.0003.

The probabilities of co-occurrences are highly variable as the following example demonstrates:

Example 6.1.8. For the Pseudo Gaussian distribution, the probability of predicate symbols p4
andps occurring together in a two literal representative set is 0.1163 (to 4dp) whereas the prob
ability of predicate symbols p\ and pg occurring together in a two literal representative set is
vanishingly small, at Ax. 10-6 .

The Flat Gaussian distribution is a symmetrical distribution but in the differences between the
levels of the probabilities are much smaller than in the Gaussian distribution. Because the differ
ence between the probability levels is less pronounced than in the Pseudo Gaussian distribution,

114

this distribution is more susceptible to variations in the output of the random number generator.
There is also a smaller spread of probabilities of co-occurrence than under the Pseudo Gaussian
distribution:

Example 6.1.9. For the Flat Gaussian distribution, the probability o f predicate symbols p4 and
Ps occurring together in a two literal representative set is 0.04 whereas the probability o f pred
icate symbols p\ and p$ occurring together in a two literal representative set is much lower, at
0.0025.

The Pseudo Zipf distribution is another natural distribution, based on the Zipf distribution, used
in domains such as web content distribution ([SGD+02]), natural language processing ([Sen98])
and economics ([FocOl]). For implementations sake a simplified form is used. The spread of
probabilities of co-occurrence is wide:

Example 6.1.10. For the Pseudo Zipf distribution, the probability of predicate symbols p\ andp2

occurring together in a two literal representative set is 0.08 whereas the probability o f predicate
symbols py and p% occurring together in a two literal representative set is much lower, at 0.0002.

These distributions will be referred to throughout the chapter. They are used in the generation
of representative sets that are used as input to the prototype during the simulations. A variety of
predicate distributions are used in order to test the behaviour of the working set generator under
a variety of conditions.

In order to determine the which predicate distribution was most representative of the news in the
Economist and the Reuters corpora, a number of templates were created for use in the Biorat
information extraction tool (see[CBLJ04]). Section 6.1.7 examines the distributions within these
corpora. Briefly, they share the characteristics of the Pseudo Zipf distribution used in this simula
tion. Likewise, the size of the set of the space of all expectations is similar to that in some of the
simulations presented here. It is possible to be confident that the working expectation generator
would perform similarly on the data extracted from these corpora as it would on the simulated
data, as the characteristics are very similar. However, the simulations also provide us with a range
of data that demonstrate the sorts of expectation spaces that would be suited to the use of the
working expectation generator, regardless of the domain.

The effect of noise on the working expectation generator has not been examined. In order to deter
mine the rates of noise in the corpora available it is necessary to undertake a manual examination
of the reports therein. Due to time constrains this was not possible and the question remains open
for future work.

115

6.1.3 Measures of convergence: recall and precision

In order to evaluate the working expectation generator it is necessary to understand its perfor
mance. The measure of this performance must be related to the purpose of the working expecta
tion generator, which is to generate a set of working expectations that is a meaningful represen
tation of the universe described in the set of representative sets and the background knowledge.
Therefore, if the working set of expectations is truly representative of the events described in the
representative sets, sets of representative sets describing similar sets of events should result in
similar sets of working expectations.

If this is the case, two simulations, described by the same language and distribution, may result
in different sets of representative sets and background knowledge but should still result in similar
sets of working expectations. The degree of similarity between these sets can be measured by
their convergence. When two or more sets of working expectations have identical membership
then they have converged:

Definition 6.1.2. Let R i , ..., Rn be sets of representative sets and k G N be a coverage threshold
and a in the range [0,1] be an accuracy threshold. Let workingset(H, k, a) be the set of expecta
tions whose coverage based on the set R is greater than k and whose accuracy based on the set
R is greater than a.

workingset(R j,n ,a) — workingset(i2fc, k , a) iff:

workingset(i2j,/c, a)\workingset(Hfc,K,a) = 0

and

workingset(i2jfc,/c,Q!)\workingset(i2j , K,a) = 0

workingset(.Ri, k , a) , ..., workingset(i?Tl, k , a) are fully converged iff:

workingset(J?i, n ,a) = ... = workingset(i?„, k , a)

Example 6.1.11. Letworkingset(i2i,/c, a) = {€1 , 6 2 , 6 3 } andworkingset(R2, k, a) = {e1 , 6 2 , 6 3 }.
workingset(l?i, k, a) \workingset(i?2 ,n ,a) = 0. Therefore w ork ingse t^ i, k, a) and
workingset(i^2 , n, a) are fully converged.

However, at lower levels of evidence (that is, fewer representative sets) the working expectations
generator is more prone to the effects of small changes in representative sets. As shown in Section
6.1.2, the difference between the probability of the most commonly produced representative set
and the least commonly produced representative may be extremely large. In this case, even at
small levels of evidence, there will be a set of common expectations that occur in all sets of
working expectations and a set of expectations that occur in no sets of working expectations.

116

However, less differentiated distributions lead to a greater variety of working expectations. There
is less chance of full convergence. It is, therefore, necessary to have a measure of this partial
convergence.

Definition 6.1.3. Let R \ , ..., be n sets of representative sets and k € N be a coverage thresh
old and a in the range [0,1] be an accuracy threshold. Let workingset(i2,«, a) be the set of
expectations whose coverage based on the set R is greater than k and whose accuracy based on
the set R is greater than a. I f

workingset(i?i, k, a) f t ... D workingset(i2 „, k, a) ^ 0

then workingset(i?i,«, a)...workingset(.Rn, k, a) are partially converged.

Let

aveSetS' e — lwor^'nSset(-^1’/c’Q:)l + ••• + |workingset(i2„,«, a)j
n

Let

convergedSetSize = |workingset(J?i, a) f l ... fl workingset(-R„, /c, a)\

The function

convergedSetSizeconvergence =
aveSetSize

Example 6.1.12. Let workingset(i?i,/c, £*) = {€1 , 6 2 , 6 3 } and let workingset(i2 2 , a) =
{€1 , 6 2 , 6 4 }. workingset(i?i, /c, a) n workingset(i?2 ,« ,a) = {6 1 , 6 2 }.

As a result, aveSetSize = 3, convergedSetSize = 2 and convergence = 0.6667 (4 decimal
places)

Very large numbers of reports may be required to reach a state of full convergence. However, as
later results will demonstrate, there is a trend such that the greater the number of representative
sets supplied to the working expectation generator, the greater degree of convergence there will
be.

Whilst not requiring total convergence, the canonical set of working expectations is a set of expec
tations drawn from several executions of the working expectation generator using the same values
for a and k and independently generated representative sets of the same distribution. The outputs
from these executions are compared and the common members identified. If there is sufficient
commonality then the common members form the canonical set.

Definition 6.1.4. Let R \ , R n be sets of representative sets, a be a lower bound on accuracy

117

and k be a lower bound on coverage. Let workingset(i?i, k, a) , ..., workingset(i2n, k, a) be the
working sets o f expectations generated with respect to R i,...,Rn, a and k. Let the common set
of expectations, commonSet(/2i. ..R n,«, a) be a set of expectations such that each expectation
is in at least 90% of the sets workingset(i?i, a) , workingset (Rn, k, a).

commonSet(i2i...Rn, k, a) = canonicalSet(.Ri....Rn,K, a) ifandonlyif

|commonSet(*1....R„,«,a)| > 0.9 x ly°*ing>et(fli,«,a)l + - + |workingset(fl„, K, Q)|
n

Otherwise there is no canonical set for the set of working sets. This ensures that common sets that
are unrepresentative of the individual working sets, because they are small, are excluded from
consideration. I f the cardinality of the canonical set is less than 90% of the average working set
size, then it will not be used as a basis of comparison.

Whilst the 90% bound is chosen arbitrarily, it ensures that the canonical set of working expec
tations contains at least 90% of the expectations generated and these expectations are in at least
90% of the sets of working expectations generated. This allows us to be confident that the canon
ical set is a good representation of the real world in that it includes those expectations that at
least 90% of working sets agree should be present and at the same time insists that the sets of
working expectations should be consistent, on average, 90% of the time. Note that a canonical
set is required only for the purposes of the simulation. An EVA system need only create a single
working set of expectations in order to identify interesting news reports, as long as it is possible
to be confident that the domain has characteristics that lead to high levels of convergence.

The canonical set is used to examine the performance of the working expectation generator. The
recall measure determines how many false negatives (with respect to the canonical set of expec
tations) are excluded from the set of working expectations and the precision measure determines
how many false positives are included in the set of working expectations.

Definition 6.1.5. Let R i , ..., Rm be m sets of representative sets of a given predicate symbol dis
tribution and maximum arity, Rn be a set o f representative sets created using the same predicate
symbol distribution, a be a threshold on accuracy and k be a threshold on coverage.

The number o f canonical expectations is,

canonical(i?i, ...,Rm,K, a) = |canonicalset(.Ri,..., Rm, k , a)|

The number of retrieved expectations is, retrieved (.Rn, k, a) = |workingset(Rn, k, en)|.

The number of those canonical expectations that have been retrieved is,
retcan(J?i, . . . ,Rm,Rn, K,a) = |canonicalset(i?i, fl workingset(i?„, K,a)|.

118

The recall value, the proportion of retrieved expectations that are canonical, is

r p r a l l f 7? 7? 7? *• — r e ^ c a n (~ ^ l> - i ^ **)recall^Ki, ...jitmjitnjAc, a; ■ i/ d d \canomcal(iti, ...,Rm,K,a)

The precision value, that is, the number of retrieved expectations that are canonical is,

retcan(#i, ...,R m,R n,K,a)
precision =

retrieved (Rn, k , a)

The working expectation accepts as input a set of representative sets (hereafter referred to as R), a
real number threshold value for accuracy, a and an integer threshold for coverage, k. The system
returns a set of expectations whose accuracy is above the threshold a and coverage is above the
threshold k, given R.

The set R is created using a representative set generator (see Section 6.1.1). The set of represen
tative sets is generated to a given size and distribution. The working expectation generator was
fully tested prior to deployment. The output for each predicate symbol distribution was plotted to
ensure that the atoms in R were generated with the correct frequency.

6.1.4 Testing the working set generator

In order to carry out the simulations, it was necessary to ensure that the working expectation
generator was a faithful reproduction of the definitions in Chapter 5. Testing was carried out to
uncover any discrepancies that may suggest either a) that the implementation was incorrect with
respect to the definitions in Chapter 5 or that b) the sets in Chapter 5 were incorrectly defined.

In this chapter the definition of the working expectation generator is the same as that in Chapter 5.
The first stage is to create the set coveredAntecedents(M, p, T, A) according to Definition 5.1.1.
Secondly the set goodExpectations(M, repSets, maxCon, minCoverage) is created according
to the Definition 5.1.2. Finally the set
workingExpectations(M, repSets, m axCon , minCoverage, minAccuracy) is generated accord
ing to Definition 5.1.3.

• Literals In Chapter 5 the data type for a literal is an array containing a predicate symbol
that may be negated and one or more terms. In the Java implementation used as the basis
for the simulations in this chapter, the data type is an object. The class is used by both the
representative set generator and the working expectation generator. The object’s attributes

119

are:

p u b l i c c l a s s l i t e r a l {
b o o le a n n e g a t e d ; true if is a negative atom, false otherwise
S t r i n g p re d S y m b o l; the predicate symbol
S t r in g [] t e rm s ; either constants or variables

}

In order to ensure that the set of possible expectations is a manageable size, the universe
was restricted to 8 predicate symbols and their negations: 16 unground predicates in total.
In the first run, the language was restricted to monadic predicates and one degrounding
symbol. In later runs the language was expanded to include dyadic predicates and up to
four degrounding symbols.

• Representative sets are as defined in Chapter 5. The class is used by both the representative
set generator and the working expectation generator. A representative set is an object with
the following attributes:

p u b l i c c l a s s r e p r e s e n t a t i v e S e t {
lo n g i d e n t i f i e r ;
a to m [] r e p r e s e n t a t i v e S e t ;

}

The variable i d e n t i f i e r is used as an indexing variable, in order that fsets and asets can
be arrays of longs rather than arrays of representative sets.

The set of representative sets is a static object, Repsets, that acts as a container for rep
resentative sets. The class is used by both the representative set generator and the working
expectation generator. The attribute definition is as follows:

p u b l i e c l a s s Rep s e t s { //the set of all representative sets
r e p r e s e n t a t i v e S e t [] R e p s e t s ; //an array of representative sets
i n t c o u n t e r ; / / position of the highest representative set in Repsets
i n t p o r t i o n ; //the size of Repsets

}

Representative sets are pushed on to the end of the array Repsets. The variable counter
records the position of the most recent representative set to be added to Repsets. Represen
tative sets, once added, are never removed in this implementation. The variable p o rtio n is
used as a parameter to define the size of the array of representative sets, Repsets and can
be increased during execution.

The probability distributions are only relevant to the generation of representative sets and,
consequently, do not appear in the working expectation generator. The code for the predi
cate symbol generator that implements the Big Three distribution over 8 predicate symbols

120

is as follows:

p u b l i c s t a t i c i n t m a k e B ig T h r e e ln d e x (f lo a t in d e x R a n d){
i f (in d ex R an d < 0 . 3)

r e t u r n 0 ;
e l s e i f (in d ex R an d < 0 . 6)

r e t u r n 1 ;
e l s e i f (in d e x R a n d c O .9)

r e t u r n 2 ;
e l s e i f (i n d e x R a n d < 0 .9 2)

r e t u r n 3 ;
e l s e i f (in d e x R a n d c O .9 4)

r e t u r n 4 ;
e l s e i f (in d ex R an d c 0 . 9 6)

r e t u r n 5 ;
e l s e i f (in d ex R an d c 0 . 9 8)

r e t u r n 6 ;
e l s e

r e t u r n 7 ;

}

The integer returned is the index for the predicate symbol of a literal in the representative
set being generated. The comparison operators in the switch statements compare a random
number in the interval [0,1] with the cumulative probability of each predicate symbol index
being generated.

• Threshold values for coverage and accuracy, as defined in Chapter 5 were supplied as
parameters to the working expectation generator. Cutoffs varied from 0 to 1 for the accuracy
threshold and 0, 5,000 and 10,000 representative sets for coverage. Each set of threshold
values was used as input to 10 runs of the system.

• Output The set of representative sets and the set(s) of working expectations were written
to files for further analysis. Below is an example of the output from the representative set
generator:
R eport
l i s te d (c o n s ta n t 0 ,c o n s ta n t l) ln o ts h a re r is e (c o n s ta n t i , constantO)

R eport
ln o ts h a re r is e (c o n s ta n t l , co n s tan t0)b u y e r(co n stan t 1, constantO)

R eport
ln o ts h a re r is e (c o n s ta n t l ,c o n s ta n tO) ln o ts h a re r is e (c o n s ta n t0 ,c o n s ta n t1)
b a n k ru p t(co n s tan tO ,co n s tan tl)

R eport

121

ln o tsh .a re rise (co n s tan tO , c o n s ta n tl)b u y e r(c o n s ta n t 1, constantO)
ln o tn e w jo b s (c o n s ta n ti, c o n s ta n tO) ln o ts h a re r is e (c o n s ta n tl , constantO)
b an k ru p t(c o n s ta n tO ,c o n s ta n t1)

The following is an extract of the output from the working expectation generator. The @
character delimits entries. The text entry is the expectation that has been generated; the
first numeric value is the coverage for that expectation and the second numeric value is the
accuracy of that expectation:

ln o ts h a r e r is e (v 0, v t) A ln o tb u y er(v i, v0) -» s h a re r is e (v i , v0)@351@0.93162394
ln o ts h a r e r is e (v 0, Vi) A ln o tb u y er(v i, v0) —> new jobs(vi, v0)@351@0.92022794
ln o ts h a r e r is e (v 0, Vi) A ln o t buyer (vi, v0) -> lno t bankrup t (vi, v0)@351@1.0
ln o ts h a re r ise (v o , Vi) A ln o tb u y er(v i, vo) —► ln o ts h a re r is e (v i , vo)@351@1.0
ln o ts h a r e r is e (v 0, vi) A ln o tb u y er(v i, v0) -> lno tnew jobs (vi, v0)@351@1.0
lno tnew jobs(v0, vi) A l i s te d (v i , v0) —> l i s te d (v 0, vi)@363@1.0
lnotnew jobs(vo, vi) A l i s te d (v i , Vo) ln o t buyer (vo, Vi)@363@ 1.0
lno tnew jobs (v0, vi) A l i s te d (v i , v0) —> ln o t bankrup t (v0, vi)@363@1.0
lnotnew jobs(vo, Vi) A l i s te d (v i , v0) —> ln o tsh a re r ise (v o , Vi)@363@1.0

In order to test the working expectation generator, it was run with a set of representative sets and
the values a = 0 and k = 0, thus generating all possible expectation given the language. These
expectations and their values were recorded on a spreadsheet and the values examined to ensure
that they were correct with respect to the set of representative sets.

Those expectations whose accuracy and coverage values are greater than a and k respectively are
the expectations that should be the members of the set of working expectations according to the
definitions in Chapter 5. The working expectation generator was run again with the values of a
and k and the set of working expectation generated compared with those identified manually.

In all cases (all distributions, monadic and dyadic predicates, number of degrounding symbols
between 1 and 8, various cutoff points) the working expectation generator generated all and only
those expectations predicted by the manual analysis. This indicates that the system functions
generates the set of working expectations as defined in Chapter 5.

It was also necessary to determine that these expectations were indeed indicative of the expec
tations that may be held by an individual with access to the information presented in the repre
sentative sets used as input. Manual analysis was carried out to ensure that only the expectations
that were truly representative of the world as described in those representative sets were included.
Of course, this relies on the assumption that the expectations that have the highest accuracy and
coverage are most likely to be analogues of the expectations that a well informed person may
hold. See the discussion of interest in Chapter 1 for the reasons behind this assumption. To deter
mine whether this is actually the case would require work with human subjects, something that is
beyond the scope of this thesis.

122

6.1.5 Artificial representative sets

The simulations presented in this chapter use data from the representative set generator rather
than “real” data. The first advantage of this approach is that there is no need to format the data
as it is created in structured format, whereas real data would require converting to structured text
format before it could be used. Secondly, the use of news reports world require the development
of a set of related background facts, which is not necessary for the generation of representative
sets. Thirdly, generating the data ensures that the characteristics of those data (arity, predicate
distribution etc.) are well understood. Finally, the most significant advantage of using generated
representative sets rather than real data is the ability to generate a range of types of representative
sets reflecting universes of different complexity as defined by the language and the distribution
of predicate symbols.This allows conclusions to be drawn concerning the suitability of an Expec
tation Violation Analysis (EVA) system as a method for spotting interesting news in a variety of
domains.

The disadvantage of using simulated representative sets is that there is no indication as to whether
the results obtained are representative of the results that would be obtained from real news reports.
To counter this, analysis of the business news reports from the Economist and Reuters was un
dertaken. This analysis indicates that the results for the simulations that use representative sets
generated according to the Pseudo Zipf distribution are representative of the results we would
expect using news from these two sources.

In order for an EVA system to be useful it is necessary there is a subset of all possible expectations
that are significantly more likely to be fired and less likely to be violated than others in the domain.
This is most likely when the probability of the co-occurrence of certain predicate symbols in
representative sets is high.

The following simulations demonstrate that distributions in which certain co-occurrences of cer
tain predicate symbols are significantly more probable than others tend to result in better perfor
mance of the working expectation generator. The Pseudo Gaussian and Pseudo-Zipf probability
distributions are more suited to the generation of a set of working expectations than distributions
such as the Uniform distribution. This has implications for the suitability of the EVA method to
different domains. Statistical analysis of news and background data can demonstrate the type of
distribution of predicate symbols in that domain and, by examining which of the predicate symbol
distributions examined in this chapter it most closely represents, then it is possible to decide on
the suitability of the method to that domain. That news from the Reuters and Economist corpora
has a Zipf-style distribution will be shown in Section 6.1.7. This demonstrates that the framework
supports a practical system that can be applied to news from these sources.

123

6.1.6 The effect of knowledge representation on the predicate distribution

The choices made regarding knowledge representation affect the distribution of predicate sym
bols. If few predicates of high arity are chosen then the distribution will be closer to uniform than
if predicates of a lower arity are chosen, as the following examples will demonstrate:

Let there be a report: “Loss making dutch airline, Buzz, has recently been acquired by the prof
itable irish carrier, Ryanair for GBP 15.6million” and a report “Tobacco giant R.J. Reynolds’
acquisition o f cigarette manufacturer Brown and Williamson was approved by the FTC today, the
26th June, and will proceed at a cost to R.J. Reynolds of USD2.6bn”

A language that has few predicate symbols and many terms per predicate may represent the above
reports as follows:

Example 6.1.13. Representative set

pi = { ta k e o v e r (ry a n a ir ,p ro f ita b le , i r i s h ,
buzz, u n p ro f ita b le , dutch,
n u l l , GBP15.6m, n u ll)}

and representative set

P2 = { tak e o v e r(r .j .reyno lds, n u l l , n u ll ,
brown& william son, n u l l , n u l l ,
26/06/05 , USD2.6bn, FTC)}

The above example results in a distribution of predicate symbols that is uniform or near uniform.
This is a consequent of the fact that each report will result in one and only one predicate symbol.
That predicate symbol occurs in the representative set for each report.

A language that has many predicate symbols and favours few terms in predicates may render the
reports as follows:

Example 6.1.14. Representative set

pi = {b u y er(ry an a ir), ta rg e t(b u z z) , price(GBP15.6mil),
p ro f i t (ry a n a ir) , ->prof i t (buzz)
c o u n try (ry a n a ir , ire la n d) , country(klm , n e th e r lands)}

and representative set

p2 = {buyer (r .j .reyno lds) t a r g e t (brown&williamson),
d a t e(26/06/05), p r ic e (USD2.6bn), r e g u la to r (FTC)}

124

The renderings in Example 6.1.14 will result in more complex distributions than the rendering
in 6.1.13 due to the greater number of possible permutations in the predicate symbols resulting
from reports. It would, therefore, be desirable to insist on a normal form for the representation
of data. This normal form should be generative, and should result in an ontology that balances
simplicity (fewer predicate symbols) with discriminatory powers (more predicate symbols). This
would ensure that two domains could be compared as like with like, provided the ontology for
each is in the normal form.

A method of data normalisation, Boyce-Codd Normal Form (BCNF) is widely used in relational
database design (for example see [AA93], ppl93-208). It is a generative method and results in
a compact data structure that reduces the likelihood of inconsistent data. While this method of
normalisation is not designed for the purposes of designing an ontology, it does address data
structure. We require a set of facts that is as compact and yet as expressive as possible and BCNF
addresses this need. I will therefore suggest that this be the normalisation chosen and that the
question of whether a normalisation could be devised that is better suited to the working expecta
tion generator remains open for future work.

In order to apply BCNF to the ontology for a domain it is necessary that we consider predicate
symbols to be the names of relations (database tables) and constants to be attributes of those re
lations. Briefly, BCNF consists of five increasingly demanding normal forms. First normal form
(INF) requires that in each relation (predicate) there be no repeating columns of data. All repeat
ing columns must be removed to another relation. For data to be in second normal form (2NF) it
must be in (INF) and must also be free of repeated rows of data. For data to be in third normal
form (3NF) it must be in 2NF and also have no value in any relation that is not dependent on the
key. Fourth normal form structures are those that meet the requirement for 3NF and that also have
no multivalued (many-to-many) relationships.

There exists a fifth level of normalisation that removes redundancy that is not removed by any of
the previous normal forms. The fourth and fifth normal forms are rarely used.

I would suggest the use of 3NF as the normal form for the design of ontologies. It may be that
there is a normal form that is more suited to the EVA framework, but developing this form is
beyond the scope of this thesis.

6.1.7 Predicate symbols distributions in the Reuters and Economist cor
pora

A corpus of 4049 articles relating solely to business news and dating from September 1st 1996
to August 1st 1997 were selected from the Reuters news feed archive. Each of these articles
dealt with a single “story”, that is, there was a clear delineation of the event under discussion
and other entities and events were only discussed if relevant to the central story. A corpus of

125

470 news digests were selected from The Economist’s e-mail feed. These digests date from 29th
January 2000 to 20th August 2004. Each of these digests contains several report summaries of
between one and five sentences. The mean number of summaries per digest is 19.4 with a standard
deviation of 4.8. Each summary relates to one story and approximately half the summaries relate
to business while the other half relate to politics and world current affairs in general. Both the
Reuters and the Economist feed have global coverage.

A subset of these corpora was used to determine a set of predicates required to describe the news
stories. A set of 16 predicate symbols was defined according to BCNF. These predicate symbols
were adequate to describe over 90% of the stories in the subsets of both corpora and a significant
amount of the background information provided in the Reuters news reports 1. An information
extraction tool, BioRAT [CBLJ04] was used to extract occurrences of information that could be
represented by these predicates from the Reuters and Economist corpora.

The results are shown in Figure 6.3. The distribution of the frequency of predicate symbols
roughly conforms to Zipf’s Law. Considered separately, both the Economist and the Reuters cor
pus also conform to a Zipf distribution, although the order of frequency of the predicate symbols
is different, for example: in the Reuters corpus, the “Sell” predicate is ranked 8th whereas in the
Economist corpus the same predicate is ranked 10th. This appears to be related to the different
time frames covered by the two corpora. As the results from the simulations will show, the method
of generating working expectations simulated here is highly appropriate to this distribution.

Occurence of predicates In the Reuters corpus Predicate occurrence in the Economist Corpus

16000

14000

12000

10000

8000

6000

4000

2000

0
1 g 3 S

E3 E * pa

Figure 6.3: The distribution of predicates in the Reuters and Economist corpora.

'Because of the abridged nature of the digests, very little background information was available in the Economist
corpus.

126

6.1.8 The effect of other distributions

Thus far it has been assumed that all constant symbols in representative sets are equiprobable. The
same assumption has been made about the negation symbol. In reality it may be that the constant
symbols and negation are drawn from non-uniform distributions. However, by assuming these
to be uniform, the predicate symbol distribution provides a good approximation of the overall
distribution of atoms as will be demonstrated below.

As the probability of an atom -p i(c i,c 2) occurring is prob(pi) x prob(->) x prob(ci,C2), the
predicate symbol distribution alone provides a good approximation of the overall distribution of
literals. The assumption is made that the probability distributions for predicate symbols, constant
symbols and negation are independent of one another. The probability of each tuple of constants
is constant for each predicate symbol. Likewise the probability of negation is constant for each
predicate symbol.

Proposition 6.1.1. Let the distributions of constants, predicate symbols and negation be inde
pendent. Let P (p i) be the probability of predicate symbol pi occurring. Let P(p2) be the prob
ability of predicate symbol p2 occurring. Let P(pi) > P(p 2)- For any tuple o f constants c,
P(pi(c)) > P(p2{c)).

Proof Let the probability of an atom p\ (c) be P(pi) x P(c) x (1 — P (- 1)). For the atoms pi(c)
and P2 {c), P(c) x (1 — P(->) is constant.

Let P(c) x (1 — P(-i)) = n. P(pi(c)) = P (p i) x n and P(p 2 (c)) = P{j>i) x n. Therefore if
P(Pi) > p (P2), P(pi(c)) > P{p2{c)). □

For any independent distributions of predicate symbols, constant symbols and negation, the dis
tribution of atoms will be an amalgam of all three distributions.

Example 6.1.15. Let the constant and predicate symbol distributions be independent of one an
other. Figure 6.4 shows the distribution of atoms where a predicate symbol distribution and a
constant symbol distribution are combined. The figure on the left shows the effect of combining a
Pseudo Zipf predicate distribution and a Pseudo Gaussian constant distribution, whereas the fig
ure on the right shows the effect of combining a Pseudo Zipf predicate distribution and a Pseudo
Zipf constant distribution.

Figure 6.4 clearly demonstrates that the underlying predicate symbol distribution is a good indi
cator of the overall probability distribution o f the atoms in the representative sets, without having
the additional complexity of considering the distributions o f constant or negation symbols.

127

Combined Zlpl and Gaussian Distribution Combined Zipf and Zipf Distribution

0.3

0.25

0 2

0.15

0.1

0.05

0

Q C 1

Bc2
QC3

□ C4

■ C5

Q c6

■ C7

p1 p2 p3 p4

Predicate Symbol

p1 p2 p3 p*

Predicate Symbol

Q C1

B c2

p c 3

pc4
■ c5
Qc6
■ C7

Figure 6.4: Distributions of atoms under the Zipf (predicate) and Gaussian (constant) distribu
tions, and distributions of atoms under the Zipf (predicate) and Zipf (constant) distributions. The
clusters of bars are atoms with a common predicate symbol. The bars of identical shading are
atoms with common constant symbols.

6.2 Simulation 1: Measuring convergence in the set of working
expectations.

This simulation demonstrates whether, given sufficient evidence, the set of working expectations
for a given predicate symbol distribution and given threshold values converges to a canonical set
of expectations (see Definition 6.1.4 for a definition of the canonical set).
Success condition: that the simulation shows the degree to which the set of working expectations
converges for each predicate symbol distribution.

The parameters of the simulation were as follows:

• Atoms In order to restrict the set of possible expectations to a manageable size, the universe
was restricted to 8 predicate symbols and their negations. In the first run, the language was
restricted to monadic predicates and one degrounding symbol. In later runs the language
was expanded to include dyadic predicates and two degrounding symbols.

• Representative sets The simulations were run with 10,000 representative sets and tested
for convergence to a canonical set. If convergence had not occurred, then the simulation
was run with 20,000 representative sets. If convergence still had not occurred then the
simulation was run with 50,000 representative sets.

• Predicate symbol distributions There were 10 runs for each of four natural and four
stepped predicate symbol distributions (See section 6.1.2 for details).

• Threshold values The threshold values were different for each distribution and were cho
sen to restrict the size of the set of working expectations to as near to 100 as possible in

1 2 8

order that the set of expectations should be easily analysed.

• Output The set of representative sets and the set(s) of working expectations were written
to files for further analysis.

In order to determine the canonical set for each distribution, the working expectation generator
was given 10 independently generated “training sets” of representative sets. For all distributions
except the Uniform distributions, One Up and Three Up, convergence occurred at 10,000 sets of
representative sets. The One Up distribution converged at 20,000 sets of representative sets, the
Three Up distribution converged at 50,000 sets of representative sets. The universal distribution
does not converge at 50,000 sets of representative sets and does not exhibit any tendency to con
verge. It is not expected that the uniform distribution would lead to convergence as no combination
of n unground literals would occur significantly more frequently than any other combination of
n unground literals in the output from the representative set generator.

Once the canonical sets had been obtained, the working expectation generator was then run again
with 10 independently generated sets “test sets” of 10,000 representative sets for each of the non-
uniform distributions. The output from the working expectation generator for each of these 10
runs was compared with the canonical set to determine the recall and precision values.

Table 6.3 gives the average recall and precision measures over the 10 runs for each distribution
where representative sets consist of unary ground predicates. There is no canonical set, and there
fore no recall or precision figures, for the Uniform distribution due to the non-convergence of
working expectations based on representative sets with the Uniform distribution.

Distribution Recall Precision
One up 1.00 0.50
Three up 0.87 0.99
Big Three 1.00 1.00
Five up 1.00 1.00
Pseudo Gaussian 0.96 0.97
Flat Gaussian 1.00 0.99
Pseudo Zipf 1.00 1.00

Table 6.3: Average recall and precision results for the working expectation generator: unary pred
icates, 10 runs over 10 independently generated sets of 10,000 representative sets.

Recall was complete or near complete (96% or above) for all distributions except the Three Up
distribution (Figure 6.3). Precision was complete or nearly complete (97% or above) for all but
the One Up distribution (Figure 6.3). Therefore, for most distributions, 10,000 representative sets
are sufficient to create the canonical set with a high degree of confidence.

The simulations of binary predicate representative sets were restricted to four distributions only:
three up, Big Three, Pseudo Gaussian and Pseudo Zipf. The Uniform distribution was excluded as
it does not converge and therefore cannot provide meaningful recall or precision values. The Three

129

Up and Big Three distributions were chosen as representatives of the stepped distributions and
the Pseudo Zipf and Pseudo Gaussian were chosen as representatives of the natural distributions.

Distribution Recall Precision
Pseudo Gaussian 1.00 0.99
Three up 1.00 0.98
Big Three 1.00 1.00
Pseudo Zipf 0.98 0.92

Table 6.4: Recall and precision results for the working expectation generator: binary predicates,
10 runs over 10 independently generated sets of 10,000 representative sets.

For all four distributions, convergence occurred at 10,000 sets of representative sets. The recall
results in Table 6.4 clearly show that, for all four of the above distributions, the canonical set is
identifiable from a set of 10,000 representative sets. The precision results in Table 6.4 show that
the majority of those expectations generated are those that are members of the canonical set.

Conclusion: This simulation demonstrates that the canonical set is identifiable and that there is
a high degree of precision and recall with respect to the canonical set for most distributions. The
next simulation examines whether recall and precision can be maintained with fewer representa
tive sets provided as input.

6.3 Simulation 2: Determining the effect of using fewer repre
sentative sets

For this simulation a canonical set of expectations was created by running the working expectation
generator with sufficiently large sets of representative sets to ensure convergence to a canonical
set over ten runs. The purpose of the simulation is to determine how many representative sets are
required for each distribution, such that the working expectation generator generates the expecta
tions in that canonical set with precision and recall values > 90%.
Success condition: the simulation will show that, for each distribution, performance degrades as
the size of the set of representative sets decreases and to what degree there is a degradation.

The parameters of the simulation were as follows:

• Atoms The universe was restricted to 8 predicate symbols, all of which could be negated.
In the first run, the language was restricted to monadic predicates and one degrounding
symbol. Later the language was extended to dyadic predicates and two degrounding sym
bols. Even in this relatively restricted language the upper bound of |£ j ~ 2.36 x 1011
where antecedents and consequents are restricted to a maximum length of five conjuncts or
disjuncts.

130

• Canonical Set The working expectation generator was run with increasingly large numbers
of representative sets (min R = 10,000, max R = 50,000) until a cutoff point was identi
fied that resulted in convergence on a canonical set of working expectations of cardinality
of an near 100 as possible.

• Representative sets The simulations were run with 10,000 representative sets , 1,000 rep
resentative sets and 100 representative sets . Each simulation consisted of 10 runs using ten
independently generated sets of representative sets.

• Predicate symbol distributions The experiments were run 10 times over each of seven
predicate symbol distributions: three natural and four stepped predicate symbol distribu
tions. See Section 6.1.2 for details of predicate symbol distributions.

• Threshold values Threshold values were chosen to ensure that the canonical set of working
expectations should have as near to 100 members as possible.

• Output The set of representative sets and the set(s) of working expectations were written
to comma separated value files for further processing.

Pseudo Flat Gaussian Pseudo Zipf Pseudo Flat Gaussian Pseudo Zipf
Gaussian Gaussian

Distribution Distribution

0 10.000 RepSets

01 .000 RepSets

□ 100 RepSets

Distribution
Recall at n RepSets Precision at n RepSets

n= 10,000 n= 1,000 n=100 n= 10,000 n=l,000 n=100
Pseudo Gaussian 0.96 0.97* 0.88 0.97 0.97* 0.81
Flat Gaussian 1.00 0.88 0.71 0.99 0.92 0.75
Pseudo Zipf 1.00 0.99 0.96 1.00 1.00* 0.71

Figure 6.5: Recall and precision results for the working expectation generator: unary predicates
only; natural distributions (*Change from previous value is not significant at p=0.005 when tested
with the two-tailed t-test)

The results in Figure 6.5 show that the recall of working expectations generated from the set
of representative sets created using the natural distributions decreases as the size of the set of
representative sets decreases. The decrease in recall for the Pseudo Gaussian distribution between
10,000 sets of representative sets and 1,000 sets of representative sets is not significant at p =
0.005 but all other decreases in performance are significant at p = 0.005. Nevertheless, recall is

131

still high (88% for the Pseudo Gaussian distribution and 96% for the Pseudo Zipf distribution) at
100 sets of representative sets.

When provided with representative sets that are subject to the Pseudo Gaussian and the Pseudo
Zipf distributions, the working expectation generator is resistant to lack of evidence. When pro
vided with representative sets that are subject to the Flat Gaussian distribution on the other hand,
the working expectation generator performs less well. At 1,000 sets of representative sets recall
is 88% but at 100 sets of representative sets recall has dropped significantly (at p = 0.005) to
71%. The working set generator is expected to miss many of the canonical expectations at low
levels of evidence.

The results in Figure 6.5 also show the precision of working expectations generated from a set
of representative sets that are subject to the natural distributions. These values also tend to de
crease as the number of representative sets decreases. However, the decrease in precision for the
representative sets that are subject to the Pseudo Gaussian and Pseudo Zipf distribution between
10,000 representative sets and 1,000 representative sets is not significant at p = 0.005. The de
crease in precision for each distribution is such that at 100 representative sets precision is 81%
or less. The decrease in precision between 1,000 representative sets and 100 representative sets
is significant (p=0.005) for all distributions. Therefore at low levels of evidence it is not possi
ble to place much confidence in the ability of the working expectation generator generating only
canonical expectations.

One Up Three Up Five Up Big Three One Up Three Up Five Up Big Three

Distribution Distribution

B 10,000 RepSets

H 1,000 RepSets

0 100 RepSets

Distribution
Recall at n RepSets Precision at n RepSets

n= 10,000 n= 1,000 n=100 n= 10,000 n= 1,000 n=100
One up 1.00 0.87 0.71 0.50 0.26 0.22
Three up 0.87 0.59 0.52* 0.99 0.86 0.62
Five up 1.00 1.00* 0.77 1.00 0.93 0.66
Big Three 1.00 1.00* 1.00* 1.00 1.00* 0.75

Figure 6.6: Precision and recall results for the working expectation generator: unary predicates
only; stepped distributions. (* Change from previous result is not significant at p = 0.005 when
tested with the two-tailed t-test)

The results in Figure 6.6 show that recall of working expectations generated from a set R created

132

using the stepped distributions tends to decrease as the number of representative sets decreases,
with the exception of the Big Three distribution, whose performance remains constant with 100%
recall. With input of 1,000 representative sets, the Three Up distribution is showing very poor
results for recall. With input of 100 representative sets, all of the stepped distributions, with the
exception of the Big Three distribution, have recall of less than 80%.

The results in Figure 6.6 also show the precision of working expectations generated from a set
of representative sets created using a stepped distribution. This also decreases as the number of
representative sets decreases. When the representative sets are subject to the One Up distribution,
precision results are poor at all numbers of representative sets. There is a marked decrease in
performance as the number of representative sets is reduced for the One Up distribution, resulting
in a final precision value of 22%. The One Up and Three Up distributions also show a significant
(p=0.005) decrease in precision values as the number of representative sets decreases. At 1,000
representative sets, the precision values for both the Three Up and Five Up distribution are still
sufficiently high enough to be confident in the ability of the working expectation generator due
to the high number of false positive results. However, with only 100 representative sets as input,
the precision values for had all of the stepped distributions had fallen significantly (p=0.005) and
were below the confidence threshold of 90%.

In a simple universe with unary predicates, the Pseudo-Gaussian, Pseudo Zipf, Big Three and
Five Up distributions are most resistant to a lack of evidence.

Three Up Big three Pseudo Zipf Pseudo
Gaussian

Three Up Big three Pseudo Zipf Pseudo
Gaussian

Distribution

q 10,000 RepSets
B 1,000 RepSets

□ 100 RepSets

Distribution
Recall at n RepSets Precision at n RepSets

n= 10,000 n= 1,000

8IIa n= 10,000 n= 1,000 n=100
Three Up 1.00 0.89 0.68 0.99 0.92 0.69
Big three 1.00 0.94 0.81 1.00 0.96 0.88
Pseudo Zipf 0.98 0.90 0.88 0.92 0.68 0.37
Pseudo Gaussian 1.00 0.96 0.88 0.98 0.78 0.37

Figure 6.7: Recall and precision results for the working expectation generator: binary predicates;
all distributions

Figure 6.7 shows the effect of reducing the number of representative sets on the recall and pre
cision in a universe that contains only binary predicates. These simulations were carried out on
two stepped distributions (Big Three and Three Up) to allow a comparison of the effects of large

133

and small differences in stepped distributions, and also on the Pseudo Gaussian and Pseudo Zipf
distribution. These were felt to be sufficient to give an overall picture of the behaviour of the
working expectation generator as the Pseudo Gaussian, Pseudo Zipf and Big Three distributions
are the most resistant to degradation of performance, whilst the Three Up distribution is more
prone to degradation and is a good representation of the stepped distributions.

Figure 6.7 shows a significant degradation in recall as the number of representative sets is reduced.
However, for all distributions, 1,000 sets of representative sets results in recall > 0.89. When the
number of representative sets is reduced to 100, the recall for all distributions has fallen below
the confidence threshold of 90%, but recall values for the natural distributions are still close to
that threshold, at 88%. Therefore, even at very low levels of evidence, the working expectation
generator is able to generate a useful proportion of the canonical set of expectations in universes
where the predicates follow a natural distribution.

Figure 6.7 also shows a significant degradation in precision as the number of representative sets is
reduced. For the Pseudo Gaussian and Big Three distributions, input of 1,000 sets of representa
tive sets results in precision values > 0.92, therefore the number of false positives is low. Input of
100 representative sets results in very low precision values for all but the Big Three distribution.

Conclusion: For most distributions there is a clear degradation in both recall and precision as
the number of representative sets used as input to working expectation generator decreases. This
degradation is not linear and the performance of the working expectation generator is “robust”,
maintaining good performance even at small numbers of representative sets under certain dis
tributions. Of the distributions tested, the least robust performance occurs when representative
sets are subject to the Three Up distribution. This can be contrasted with the relatively high lev
els of performance displayed when representative sets are subject to the Big Three distribution.
I hypothesise that the difference is due to the difference in the variance between the levels of
probability. The larger difference between the probabilities in the Big Three distribution (three
predicates at P=0.3 vs five predicates at P=0.02) results in greater differences between the cov
erage and accuracy values of expectations than the smaller interval of the Three Up distribution
(three predicates at P=0.15 vs five predicates at P=0.11). This in turn results in a canonical set
that is less likely to be perturbed by random fluctuations in the occurrence of predicates symbols
in representative sets.

Recall values are, in general, high even with as few as 100 representative sets. However, preci
sion at such a low number of representative sets is very low and so using so few representative
sets is undesirable if false positive results are to be minimised. At 1,000 sets of representative
sets however, recall and precision results are good for all except the Three Up distribution. This
demonstrates that, for a language for which the upper bound on \E\ ~ 2.36 xlO11, as few as 1,000
representative sets is sufficient to identify a set of working expectations that bears close relation
to the canonical set of expectations. The next simulation demonstrates the effect of increasing the
upper bound on \E\.

134

n degrounding symbols Size of E
n=2 5.99 x 1010
n=3 4.33 x 1015
n=4 3.46 x 10iy
n=5 7.94 x 10™
n=6 4.63 x 10^
n=7 1.35 x 1024
n=8 2.41 x 10™

Table 6.5: The maximum size of E for a language with n degrounding symbols, 7 predicate
symbols and a maximum unconditional formula size of 5 literals.

Recall that the news in the Reuters and the Economist corpora closely follows the Pseudo Zipf
distribution. The performance of the working expectation generator is robust when presented
with representative sets that are subject to the Pseudo Zipf distribution. As a result, relatively few
articles from these corpora would be necessary in order to generate a set of working expectations
that is representative of the canonical set of expectations.

6.4 Simulation 3: Determining the effect of a more expressive
language

This simulation determines how the ability of the working expectation generator to generate ex
pectations with high levels of precision and recall is affected by the complexity of the universe,
as determined by the maximum size of \E\.
Success condition: the simulation must indicate the degradation of performance associated with
the increasing complexity of the universe.

The parameters of the simulation were as follows:

• Atoms The universe was restricted to 7 predicate symbols and their negations. The lan
guage was restricted to dyadic predicates. Simulations were run with a maximum number
of degrounding symbols in the range of 2 to 8. Table 6.5 gives the upper bounds on \E\ if
antecedents and consequents are restricted to a maximum of five conjuncts or disjuncts in
length.

• Canonical Set The working expectation generator was run with increasingly large numbers
of representative sets (max 50,000) until a canonical set of expectations was generated .

• Representative sets The simulations were run with 10 independently generated sets of
10,000 representative sets.

• Predicate symbol distributions The experiments were run 10 times over each of 4 pred-

135

icate symbol distributions: the Pseudo-Gaussian distribution and Pseudo-Zipf distribution
were used to represent the natural distributions. The Three Up and Big Three distributions
were used to represent the stepped predicate symbol distributions to examine the effect of
different degrees of variance between probabilities.

• Threshold values Threshold values were chosen to ensure that the canonical set of working
expectations should have as near to 100 members as possible.

• Output The set of representative sets and the set(s) of working expectations were written
to comma separated value files for further processing.

Distribution Distribution

q 2 Degrounding
Symbols

■ 3 Degrounding
Symbols

□ 4 Degrounding
Symbols

Distribution

Recall with n
Degrounding Symbols

Precision with n
Degrounding Symbols

n=2 n=3 n=4 n=2 n=3 n=4
Three Up 0.88 0.6 0.20 0.95 0.51 0.20
Big Three 1.00 1.00* 0.93 0.94 0.95* 0.93
Pseudo Zipf 1.00 0.97 0.97* 0.99 0.98* 0.97*
Pseudo Gaussian 1.00 0.97 0.99 0.97 0.97* 0.98*

Figure 6.8: Recall and precision results for the working expectation generator: up to 4 deground
ing symbols, input of 10,000 representative sets (*Change from previous value is not significant
at p=0.005 when tested with the two-tailed t-test)

Figure 6.8 summarises the effect of increasing the number of degrounding symbols in the uni
verse from two to four on recall. Once again, it is the Three Up distribution that is most prone
to degradation of performance, managing recall of only 0.2 for a universe with four degrounding
symbols. The Big Three distribution shows minor but significant (at p=0.005) reduction in per
formance for a universe with four degrounding symbols, but the recall value is still high at 0.93.
The natural distributions show minor changes, but no great degradation in performance.

Figure 6.8 also summarises the effect of increasing the number of predicate symbols in the uni
verse from two to four on precision. As with recall, it is the Three Up distribution that is most
prone to degradation of performance, managing only precision of 0.2 for a universe with four
degrounding symbols. The Big Three distribution shows minor, insignificant (at p=0.005) reduc
tion in performance for a universe with four degrounding symbols, but the recall value is still

136

high at 0.93. The degradations in the results for the natural distributions are not significant at
p=0.005. The Pseudo Gaussian distribution shows a minor increase in precision as the number of
degrounding symbols rises from three to four, but this increase is insignificant at p = 0.005 and
should most probably be regarded as a statistical anomaly.

Recall with n Degrounding Symbols
Distribution n=2 n=3 n=4 n=5 n=6 n=7 n=8
Pseudo Gaussian 1.00 0.97 0.99 1.00 0.97 0.95* 0.97*
Pseudo Zipf 1.00 0.97 0.97* 0.98* 0.95 0.96* 0.96*

Precision with n Degrounding Symbols
Distribution n=2 n=3 n=4 n=5 n=6 n=7 n=8
Pseudo Gaussian 0.97 0.97* 0.98* 0.98* 0.94 0.96* 0.95*
Pseudo Zipf 0.99 0.98* 0.96* 0.97* 0.96* 0.95* 0.96*

Table 6.6: Recall and precision results for the working expectation generator, two to eight de-
grounding symbols, input of 10,000 representative sets (*Change from previous value is not sig
nificant at p = 0.005 when tested with the two-tailed t-test)

Table 6.6 summarises the effect of increasing the number of degrounding symbols to eight. These
simulations were run on the natural distributions only, as the performance for the Three Up dis
tributions with > 4 degrounding symbols has degraded to such an extent that it is impossible to
create a canonical set of working expectations with an input of 50,000 representative sets. Over
all, recall and precision never fall below 0.94 for either of these distributions. Once again, some
recall and precision values actually rise as the number of degrounding symbols increases. How
ever, these increases are insignificant at p = 0.005 and should also be regarded as a statistical
anomalies.These results demonstrate that, when presented with representative sets that are sub
ject to one of the natural distributions, the working expectation generator is exceptionally robust
in the face of increasing complexity.

Conclusion: The recall and precision values for three of the four distributions (Big Three, Pseudo
Gaussian and Pseudo Zipf) are only slightly affected, if at all, by the increase in the number
of degrounding symbols. For these distributions, increasing the complexity of the universe by
increasing the number of degrounding symbols is not a significant problem. However, for the
stepped distribution with the small difference in probability levels (Three Up), the degradation in
performance is large and significant. Therefore not all distributions are guaranteed to be robust in
the face of complex universes.

However, when input is subject to one of the non-uniform natural distributions, the performance
of the working expectation generator is very robust. Even in universes with up to eight deground
ing symbols, recall and precision never fall below 0.94 for both the Pseudo Gaussian and Pseudo
Zipf distribution. Consequently, even for universes with a large number of degrounding sym
bols, a good performance can be expected under the natural distributions. Further investigation is
needed to determine why the performance of the working expectation generator is more robust
when presented with representative sets that are subject to the natural distributions than when

137

presented with representative sets that are subject to the stepped distributions. One possible ex
planation again takes into account the fact that the natural distributions have the greatest variation
in the levels of probability (Pseudo Gaussian: max=0.341, min=0.002, Pseudo Zipf: max=0.4,
min=0.01, Big Three: max =0.3, min=0.02, Three Up: max=0.15, min=0.15). The greater the vari
ation in probability values, the greater the difference between coverage and accuracy values for
expectations and therefore the easier it is for the working expectation generator to discriminate
between members of the canonical set and non members of the canonical set.

6.5 Simulation 4: Favouring conjunctive expectations

This simulation evaluates the effect of favouring expectations with longer antecedents. The sys
tem is modified such that antecedents of longer length have a lower fired threshold value than
those of a shorter length.
Success condition: The sensitivity of each predicate symbol distribution to changes in the thresh
old value that favour longer antecedents is determined.

• Atoms The universe was restricted to 5 predicate symbols and their negations, dyadic pred
icates and three degrounding symbols.

• Canonical Set No canonical set was required, as the object of the simulation is to identify
the proportions of the sets of working expectations that are of 1 to 6 conjuncts in length.

• Representative sets The simulations were run with 10,000 representative sets.

• Predicate symbol distributions The experiments were run 10 times with input that was
subject to the Pseudo-Gaussian distribution and 10 times with input that was subject to the
Pseudo-Zipf distribution.

• Threshold values Threshold values were a = 0.9 and k — [2,500,5,000].

• Output The set of representative sets and the set(s) of working expectations were written
to comma separated value files for further processing.

In previous simulations, the sets of working expectations generated consisted almost exclusively
of expectations with single conjunct antecedents. No expectations were generated with antecedents
of more than two conjuncts. This is because, as demonstrated in Proposition 4.2.2, the longer the
antecedent, the less likely it is to be fired. Reducing the coverage threshold for expectations with
longer antecedents increases the chances of those expectations being generated by the working ex
pectation generator. Tables 6.7 to 6.10 demonstrate that the larger the reduction factor, the greater
the likelihood of expectations with longer antecedents being generated, from no five-conjunct an
tecedents at the reduction factor of 2 to between 7% and 16% of expectations having five conjunct
antecedents at a reduction factor of 10. N.B. There are no working expectations at k = 5,000

138

Overall % of
antecedents with Re

n=2
duction

n=4
factor

n=8
af n

n=10
1 literal NA 0% 0% 0%
2 literals NA 62% 19% 13%
3 literals NA 38% 33% 37%
4 literals NA 0% 29% 39%
5 literals NA 0% 19% 11%

Table 6.7: Percentage of all working expectations with one to five literals in the antecedent where
the reduction factor is n, k = 5,000 and a = 0.9. Pseudo Zipf distribution. N.B: No expectations
generated at n = 2

with a reduction factor of 2.

Overall % of
antecedents with Re

n=2
duction

n=4
factor c

n=8
)f n

n=10
1 literal 60% 13% 4% 2%
2 literals 40% 38% 18% 17%
3 literals 0% 35% 30% 35%
4 literals 0% 14% 36% 39%
5 literals 0% 0% 12% 7%

Table 6.8: Percentage of all working expectations with one to five literals in the antecedent where
the reduction factor is n, k = 2,500 and a = 0.9. Pseudo Zipf distribution..

Overall % of
antecedents with Rec

n=2
iuction

n=4
"actor o

n=8
f n

n=10
1 literal 100% 2% 1% 1%
2 literals 0% 60% 20% 17%
3 literals 0% 38% 31% 30%
4 literals 0% 0% 28% 36%
5 literals 0% 0% 20% 16%

Table 6.9: Percentage of all working expectations with one to five literals in the antecedent where
the reduction factor is n, k = 5,000 and a = 0.9. Pseudo Gaussian distribution.

Conclusion: The results of this simulation demonstrate that expectations with longer antecedents
can be generated by reducing the threshold for coverage for expectations with longer antecedents.
The downside of this approach is that it requires a change to the algorithm used to generate the
antecedents. The original algorithm exploits the monotonicity of coverage values to reduce the
number of antecedents that need to be generated. Reducing the threshold for longer expecta
tions means that the monotonicity of coverage values cannot be exploited. For a universe with 7
predicate symbols, dyadic predicates only, five degrounding symbols and a maximum antecedent

139

Overall % of
antecedents with Re

n=2
duction

n=4
factor c

n=8
>f n

n=10
1 literal 64% 15% 4% 5%
2 literals 36% 44% 16% 15%
3 literals 0% 41% 31% 30%
4 literals 0% 0% 36% 40%
5 literals 0% 0% 3% 10%

Table 6.10: Percentage of all working expectations with one to five literals in the antecedent where
the reduction factor is n, k = 2,500 and a = 0.9. Pseudo Gaussian distribution.

length of 5 conjuncts, by exploiting the monotonicity of coverage values, the minimum number
of expectations that will be generated and evaluated is 78,400, whereas if monotonicity is not ex
ploited, the minimum number of expectations that will be generated and evaluated is 2.93 x 1012
(see Table 6.5. Therefore, biasing the working expectation generator towards longer antecedents
comes at the price of much higher computational demands.

6.6 Discussion of Chapter 6

This chapter presents a set of simulations and their results. Section 6.1 presents the definitions and
methods used in the simulation. This section also presents the representative set generator that is
used to generate the input to the simulations. These representative sets are generated, rather than
being extracted from news reports, in order that the attributes of these representative sets (prob
ability distribution of the predicate symbols, arity, number of degrounding symbols) are known
and can be varied. Among the attributes to be varied are the predicate symbol probability distribu
tions. There are eight predicate symbol probability distributions that are used in the simulations:
four “natural” and four “stepped” distributions. A study of corpora of reports from the Economist
and Reuters shows that the probabilities of predicate symbols in news concerning business from
these sources tend to follow the Zipf distribution.

Simulation One demonstrates that given input subject to different predicate symbol distributions,
the working expectation generator performs differently in terms of how well it can create sets
of expectations that converge to a canonical set. The Uniform distribution for example does not
converge at all. Once a canonical set has been created, input subject to the Three Up distribution
leads the working expectation generator to perform badly in terms of both recall and precision.
The output from the working expectation generator has poor precision when the input is subject
to the One Up distribution.

Simulation One suggests that performance appears to be correlated with the spread of probability
values in the predicate symbol distribution. The hypothesis that a greater range of probability

140

values leads to better performance is strengthened by the observation that input subject to the Big
Three distribution leads to better performance than representative sets subject to the Three Up
distribution. However, the Flat Gaussian distribution leads to better performance than the Pseudo
Gaussian distribution, regardless of the fact that the Flat Gaussian distribution has less variation
in probability values. This suggests that the spread of probability values is not the only factor that
determines performance.

Simulation Two demonstrates that reducing the number of representative sets available as input to
the working expectation generator has a detrimental effect on the precision and recall values for
input from all distributions. As in Simulation One, all distributions are not equally affected. The
Big Three, Pseudo Zipf and Pseudo Gaussian distributions in particular lead to less degradation
than other distributions. This again supports the hypothesis that a large variance in probability
values is helpful when determining the set of working expectations.

Simulation Three examines the effect of increasing the size of the set of expectations on the
performance of the working expectation generator. Larger expectation spaces lead to some degra
dation in performance, which is again more noticeable in the distributions with the least variation
in probability. The decline in performance is insignificant for input subject to the Pseudo Gaus
sian and Pseudo Zipf distributions. This suggests that, for these distributions at least, even very
large expectation spaces do not present a problem.

The expectations in the set of working expectations are biased towards those with short an
tecedents. This is due to the monotonic relationship between the antecedent ordering and coverage
values. Simulation Four demonstrates that it is possible to bias the working expectation genera
tor towards longer antecedents, at the cost of reduced computational efficiency. Nevertheless, the
working expectation generator still functions adequately in relatively small sets of expectations.
Future work may determine whether there are heuristics that can create expectations with longer
antecedents without sacrificing computational efficiency.

In summary, the results of these simulations show that some distributions, particularly those with
highly variable probability values, lead to better results from the working expectation generator
than others. The spreads of probabilities for the Economist and Reuters corpora are similar to
the Pseudo Zipf distribution, which has proved particularly robust to increasing sizes of E and
decreasing numbers of representative sets. It is therefore possible to be optimistic that the working
expectation generator would work well on business news from these sources, as well as other news
that displays a probability distribution that is widely variable.

Further work may explore several different avenues including:

Whether there is a better heuristic for generating sets of working expectations that are biased
towards longer antecedents? The current method must evaluate all of the expectations that have
conjunctive antecedents and single literal consequents. Even for relatively small universes, this
results in a very large space to explore. There may be other, more efficient, ways of searching

141

these expectations.

What would be the effect of “typing” constants and variables? For example: literals with the
predicate symbol m erger could be restricted to constant symbols drawn from the set of constant
symbols that denote companies, such as merger(glaxowelcome, sm ithklinebeecham), and
forbidden from accepting constant symbols that denote dates, places, people etc. By restricting
constants and variables in predicates to ones of a particular type, this will reduce the size of E, by
reducing the permutations of constants and variables that need be considered for each predicate
symbol. Whilst adding typing information to the language would increase its complexity, would
the concomitant decrease in the size of E be sufficient to justify doing so?

What is the effect of a floating threshold for accuracy and coverage to generate the working set of
expectations? Is it possible, after initially polling a sample of some n expectations to determine
the cutoff points for some top m% of expectations?

How many representative sets are needed to alter the members of a working set in the light of
changes in the predicate symbol distribution of the representative sets? If the set of working ex
pectations begins in one stable state (that is, fully trained to correctly represent the predicate sym
bol distribution of the representative sets), how many representative sets with the new predicate
symbol distribution of the representative sets are needed before the set of working expectations
reflects the news distribution?

These issues are beyond the scope of this thesis and they present promising avenues for further
research.

142

Chapter 7

Narratives in EVA

Reports do not normally exist in isolation. There is an underlying narrative which concerns a
number of entities related in some way over a period of time. In most domains reports form
stereotypical narratives where each report tells part of an ongoing story. In the mergers and acqui
sitions domain for example, a narrative may begin with rumours of an impending bid, continue
with news of a bid being made, then go on through the negotiations until the bid is finally agreed
on or rejected. All reports are part of at least one narrative and all narratives contain at least one
report.

Narratives are characterised by entities and changes in the states of those entities. However, the
transition from state to state may not be clear-cut. There may be iterations of sequences of states,
states may be omitted or reordered, it may not even be clear where one state ends and another
begins. Nonetheless, an understanding of states is imperative if the unfolding of a narrative is to
be understood. The progression of states forms the narrative which relates reports and entities to
events. The event calculus is exploited in order to capture these narratives.

Whilst some expectations are applicable to all entities in all states, others are only applicable to
entities in certain states. For example, companies in the state of bankruptcy are expected not to
launch takeover bids. In order to apply this expectation it is necessary to know whether an entity
is in the state of being bankrupt. This requires an event model.

In order to represent and reason with narratives, it is necessary to model states and changes of
state. Certain phrases are indicative of changes of state. In the domain of mergers and acquisitions
for example, phrases include agree, complete, and approve. These words or their synonyms
are used to indicate when a state changes. Additional information about narratives is usually
found in close proximity to these phrases in news reports, such as dates, entity names and the
tense of the phrases (“shareholders will approve” is a very different state to “shareholders have
approved”).

143

Event modelling consists of three parts: state models, event records, and the event calculus. The
result of event modelling is an event model for a domain that may be populated using informa
tion in news reports. An event model can therefore be regarded as an up-to-date repository of
information about a set of stories. A given domain may have a number of different event models
capturing different kinds of stories in the domain, though for simplicity, individual event models
only are considered here.

There are several approaches to dealing with temporal information using logic (for a review see
[MS02]). In this chapter, Section 7.1 introduces the situation calculus and the event calculus,
which are two such approaches. Section 7.2.1 introduces state rules and defines a may in which
these can be used to generate a state model. Section 7.3 defines events and the way in which
events and state rules together result in an event model. Section 7.4 discusses the way in which
the event model can be used to support the identification of interesting information within the
EVA framework. Section 7.5 defines state interpolation operators. These are an extension to the
Kowalski and Sergot event calculus that allow for the identification of unrecorded states. Section
7.6 is an extended example of an event model in the domain of business news.

7.1 The situation calculus and the event calculus

Reasoning about time and sequence using logic is used in planning and in explanation generation
tasks and is also useful in the EVA framework. Knowledge of which states hold and at what time
is required, as some states prevent, permit or demand certain types of behaviour from entities in
a domain. For example, companies in the state of being bankrupt are prevented from launching
takeover bids for other companies.

The situation calculus, introduced by McCarthy and Hayes in 1969 [MH69] is recognised as the
first attempt to address reasoning about states and time using logic. This was followed by the event
calculus, introduced by Kowalski and Sergot in 1985 [KS85]. The situation calculus and the event
calculus are both logical formalisms for relating events, states and timeperiods. As originally
defined, the situation calculus reasons about hypothetical, branching sequences of events which
result in states that affect all entities. The situation calculus is a powerful method for reasoning
about several possible sequences of events that could have led to a particular situation. However,
the situation calculus, as originally defined, was prone to the frame problem [Mor90]. The frame
problem is the difficulty of ensuring that states only change as a consequence of related events.
Hanks and McDermott characterised the frame problem with the example of the Yale Shooting
Problem (YSP) in [HM86]. Informally put, the YSP states that if a gun is loaded, then the gun
is held for a while, then the gun is fired at Fred, that Fred should die. In the original formulation
of the situation calculus it is necessary to explicitly state that holding on to the gun for a period
of time does not cause the gun to become unloaded. Evidently, the need to state the effects that
actions do not have quickly makes using the situation calculus cumbersome.

144

Kowalski and Sergot introduced the event calculus primarily as a way of avoiding the frame prob
lem. The event calculus as originally defined dealt only with non branching sequences of events.
The event calculus is also monotonic, that is, updates can only add knowledge. It is therefore pos
sible to assimilate events into an ordered narrative, even if they are received out of chronological
order. This is very useful in domains where information may emerge in an unordered way. The
event calculus consists of three ontologies: event types; events and states. All events are of an
event type: for example, the takeover of Safeway by Morrisons is an event of the takeover type.
Events initiate and terminate states: for example, the takeover of Safeway by Morrisons initiates
the state of Safeway being owned by Morrisons and terminates the state of Safeway being an
independent company.

In contrast with the situation calculus, in the event calculus events, rather than timepoints, are
primitives. That is to say, time frames are defined by the events that begin and end them, rather
than events being defined by the times at which they occur. This is in contrast to the original
definition of the situation calculus in which timepoints are primitive and situations are defined
by the timepoints at which they obtain. This distinction means that the event calculus is able to
reason about concurrent events and events whose timepoints are not known, whereas the situation
calculus, as originally defined, does not.

Much has been made of the similarities and differences between the situation calculus and the
event calculus in recent years. Both formalisms relate events to states and both can be imple
mented in a declarative language, such as Prolog. However, the event calculus, as originally de
fined, lacked the ability to reason with multiple branches of possible events. The event calculus
was also prone to over-commitment because of its use of negation as failure [Rei78]. This meant
that, in the event calculus, events that were unreported were deemed not to have happened. The
original formulation of the situation calculus on the other hand was not appropriate for construct
ing narratives or for dealing with concurrent events.

Over time, work has been carried out to address the relative shortcomings of the situation cal
culus and the event calculus. In [Sch90], Schubert presented a monotonic solution to the frame
problem in the situation calculus. In [PR93], Pinto and Reiter added the ability to construct linear
paths in situation calculus models by using events as primitives (as in the event calculus). This
gave the situation calculus the narrative capabilities of the event calculus. In [MS94] Miller and
Shanahan presented another approach to constructing narratives whilst conserving the primacy of
timepoints. As a result, two of the main drawbacks of the situation calculus were eliminated.

However, work also continued on the event calculus. In [MS96] Miller and Shanahan added the
ability to reason about continuous change to the event calculus by means of incorporating axioms
from the differential calculus. Because of the event calculus’ ability to deal with concurrency
of events, the formalism presented in [MS96] is ideal for modelling complex dynamic systems.
In [Sha97], Shanahan proves the event calculus as defined in [MS96] can be used as a planner
that is both sound and complete. In [MS02], Miller and Shanahan present extended definitions

145

of the event calculus that include the ability to reason about events with duration, time lines with
explicit beginning and end points, precondition rules for events and gradual change in state. These
features may be adopted to represent particular features of particular domains.

In [Pro96] Provetti adds the ability to construct branching sequences of possible events to the
event calculus. Provetti demonstrates that, now that the event calculus can deal with branching
sequences of events in a way that has a sound and complete Prolog implementation, the event cal
culus now subsumes all versions of the situation calculus. In [KS97] Kowalski and Sadri demon
strate theoretically that, when restricted to timepoints that are defined by states and events, the
event calculus is more powerful than the Situation calculus.

Inarguably, the differences between the situation calculus and event calculus have been eroded
and in the process, the shortcomings of both approaches have been addressed. However, as EVA
does not require the ability to reason about multiple potential histories nor the ability to reason
about continuous change, the original formulation of the event calculus, as defined in [KS85] will
be used as a basis for the event model in the EVA framework. This formalism has a simple, clear
semantics and is easily implemented in Prolog. However, the commitments made by the use of
the Negation as Failure operator are too strong for the proposes of the EVA framework. Therefore,
a modification is presented here that allows the event model to interpolate missing events where
these have gone unreported.

7.2 The event calculus and the EVA framework

The EVA framework proposed in this thesis enables the identification of interesting news by
looking for information that is inconsistent with expectations. Some of these expectations are
only applicable to entities in certain states. For example, the expectation that company X will
float on the stock exchange is applicable only to companies that are not already listed on the stock
exchange.

The original form of the event calculus, as presented in [KS85] is ideal for reasoning about states,
events and entities. The event calculus defines rules and metapredicates that can be used to build
up models of series of events. There are three ontologies in the event calculus: event types, events
and states. Definitions of these ontologies will be presented in this section.

Section 7.2.1 demonstrates that the set of event types can define all possible state transitions for a
domain. The event type definition is supplemented in this thesis with a state model. A state model
is a directed graph whose nodes correspond to states and whose arcs correspond to events. The
relations between nodes and arcs are defined by the event types. The state model is therefore the
definition of all possible sequences of events.

146

7.2.1 State rules and state models

In the original definition of the event calculus, presented in [KS85], time periods are identified by
the events that begin and end them. For each domain, it is possible to define a set of rules in which
the head has the predicate symbol initiates or terminates. These rules define the relationships
between events and states for each domain.

Definition 7.2.1. Let states be a set of unground literals, events be a set of labels that uniquely
identify individual events. Let s G states and e G events. Let a be an unconditional formula
and x be a tuple o f the variables in s and a.

Vx a —>• initiates(e, s) is an initiates rule and'ix a —> terminates(e, s) is a terminates rule.

Example 7.2.1. The rule, “A company announcing its bankruptcy initiates a state where that
company is bankrupt ” could be represented as:

Vc G companies, e G events, act(e,bankruptcy) A ob jec t(e , c) —y
initiates(e, bankrupt (c))

Example 7.2.2. The rule, “An enterprise is no longer state-owned once it has been privatised”
can be represented as:

Vc G companies, e G events a c t(e ,p r iv a tise d) A ob jec t(e , c) —>
terminates(e, stateowned(c))

In [KS85], Kowalski and Sergot also define general rules that apply to all domains. These rules
make it possible to determine, in relation to an event, whether a state holds.

Definition 7.2.2. Let e be an event label and s be a state. The general rule “State s holds after
event e ife initiates s ” is:

Ve G events, s G states, initiates(e, s) —)• holds(after(e, s))

The general rule “State s holds before event e if e terminates s ” is:

Ve G events, s G states, terminates(e, s) -» holds(before(e, s))

Example 7.2.3. That a company is bankrupt after the event of announcing its bankruptcy would
be rendered:

Ve G events, c G companies initiates(e, bankrupt(c)) —>• holds(after(e, bankrupt(c)))

That a company is state owned before the event of its privatisation would be rendered:

Ve G events, c G companies terminates(e, stateowned(c)) —> holds(before(e, stateowned(c)))

147

It is of course possible to define the rules that allow us to derive holds(after(e, s)) and
holds(before(e, s)) directly from the definitions of the events:

Example 7.2.4. A direct definition of the rule with the head holds(before(e, stateowned(c)))
would be

Vc G companies, e € events a c t(e ,p r iv a tise d) A ob jec t(e , c) —>
holds(before(e, stateowned(c)))

However, the indirect definition provides a set of general rules that are compact and are applicable
to any domain. For these reasons, Kowalski and Sergot separate the domain specific initiates and
terminates rules from the general holds before and holds after rules.

Kowalski and Sergot define start and end predicates that determine the events that stare and end
each period, where a period is a continuous state.

Definition 7.23. Let s be a state and e an event. That the period after(e, s) is begun by event e
is formally defined as:

Ve G events start(after(e,s),e)

That the period after(e, s) is ended by e' is formally defined as:

Ve G events after(e,s) = before(e',s) -» end(after(e,s),e/)

That the period before (e', s) is begun by event e is formally defined as:

Ve G events before(e',s) = after(e,s) -> start(before(e', s), e)

That the period before (e', s) is ended by the event e' is defined as:

Ve G events end(before(e/, s), e')

in [KS85], Kowalski and Sergot also define a set of general, domain independent rules that de
termine which states hold at a given timepoint. In order to do so, the time periods after(e, s) and
before(e', s) define a time period during which state s holds and which is bounded by events e
and e' . These rules determine whether two events begin and end the same time period.

It is first necessary to determine whether there is some event that interrupts the state between
those two events. An event interrupts a state, s if it begins another state s' that is exclusive of s.
s is exclusive of s' if s is incompatible with s' or if s is equal to s', s is incompatible with s' if s
and s' cannot hold simultaneously. Incompatibility is defined by rules for specific domains.

Example 7.2.5. Vx,y,z G companies y ^ z —> incompatible(owns(y,x), owns(z,x))

148

Definition 7.2.4. For any states, s and s ', those states are exclusive if they are identical or in
compatible:

exclusive(s, s')
incompatible(s, s ') -» exclusive(s, s ’)

A state s is broken by an event that begins a state s ' that is exclusive to s:

Definition 7.2.5. For all events e, e', e*, and all states s and s* . Let tim e(e) be the timepoint at
which event e occurred.

broken(e , s, e') if:
holds(after(e*, s *)) and
exclusive(s, s*) and
time(e) < time(e*) < time(e')

broken(e,s,e') if:
holds(before(e*, s*)) and
exclusive(s, s*) and
time(e) < time(e*) < time(e')

The state s , begun by event e is the same state s, ended by event e' if e happened before e' and
the period between e and e' is unbroken:

Definition 7.2.6. Let s be a state and let e be an event. The state after(e , s) = before(e', s) iff

holds(after(e, s)) and
holds(before(e', s)) and
tim e(e) < time(e') and
not broken (e , s , e')

Kowalski and Sergot define a set of meta predicates that enables us to define events that begin
and end states. These can then be used to construct abstract narratives. These allow us know what
sequences of events and states are possible.

7.2.2 State models

A state model is an abstract definition of the possible events that can take place in a stereotyp
ical narrative, along with the ordering of these events. This model is based on the initiates and
terminates rules as defined in Definition 7.2.1.

149

© s

Figure 7.1: The graphical representation of the rule e —> initiates(e, s).

S

Figure 7.2: The graphical representation of the rule e —»• terminates(e, s).

Definition 7.2.7. A state model is a directed graph, whose nodes correspond to states and whose

a change in their state.

The state model defines the relationships between events and states for a given domain. Each event
begins and/or ends a period of time for which a state holds. The state model can be represented
by a set of formulae which is assumed to exhaustively define all possible orderings of events and,
by extension, states.

In [KS85], Kowalski and Sergot graphically represent states and events. Arcs represent states
and nodes represent events. Only those events that have been reported and the states that can
be inferred from those events are represented. However, it is possible to take the initiates and
terminates rules in definition 7.2.1 and use them to graphically represent hypothetical sequences
of events and states:

Definition 7.2.8. For all initiates rules such that e is an event, s is a state and e —> initiates(e, s),
the graphical representation of this rule is given in Figure 7.1. For all terminates rules such that
e is an event, s is a state and e —> terminates(e, s), the graphical representation of this rule is
given in Figure 7.2.

Definition 7.2.9. Let e, e' be events and s be a state. If after(e, s) = before(e', s) then the nodes
e and e' are nodes that are joined by the arc s. The graphical representation of this rule is given
in Figure 7.3.

Figure 7.3: The graphical representation of the rule e —»• initiates(e, s) ande' —> terminates^', s)
and after(e, s) = before(e', s).

arcs correspond to events. A state of an entity is an attribute o f an entity with limited duration.
An event takes place at a point in time at which one or more entities do something to bring about

0 s 0

150

Whereas Kowalski and Sergot apply this graphical representation to reported events and the de
rived states only, the following example demonstrates how such graphical representations can be
derived from the initiates and terminates rules to represent all possible sequences of events and
states.

Example 7.2.6. Let the following be a set of simplified initiates and terminates rules for the merg
ers and acquisitions domain. N.B: the subscripts on the event identifier variables are included for
the purposes of clarity in the graphical representation. These variables should not be mistaken
for constant symbols.

Vei G events, Ci,C2 G companies ac t(e i,b idF or) A buyer(ei, Ci)A
ta rg e t(e l 5 c2) -> initiates(ei,bidFor(ci, c2))

Ve2 G events, ci, c2 G companies ac t(e 2, approvesBid) A buyer(e2, ci)A
ta rg e t(e 2, c2) A body(e2, board) -» terminates(e2 ,b idFor(ci, c2))

Ve2 G events, ci, c2 G companies ac t(e 2, approvesBid) A buyer(e2, Ci)A
ta rg e t(e 2, c2) A body(e2, board) —> initiates(e2, takeover(ci, c2))

Ve3 G events, c i ,c 2 G companies ac t(e 3 , re jec tsB id) A buyer(e 3 , ci)A
ta rg e t(e , c2) A body(e3, board) —> terminates(e3 ,b id fo r(c i, c2))

Ve4 G events, c i ,c 2 G companies a c t(e ,re je c tsB id) A buyer(e, c^A
ta rg e t(e , c2) A body(e, reg u la to r) —> terminates(e, takeover(ci, c2))

Ve5 G events, c i ,c 2 G companies ac t(e, approvesBid) A buyer(e, Ci)A
ta rg e t(e , c2) A body(e, reg u la to r) —> terminates(e, takeover(ci, c2))

Ve5 G events, c1? c2 G companies act(e, approvesBid) A buyer(e, ca)A
ta rg e t(e , c2) A body(e, re g u la to r) —> initiates(e, owns(ci, c2))

Figure 7.4 represents the state model that can be derived from these rules.

151

Figure 7.4: A simplified example of a state model for the mergers and acquisitions domain based
on the rules in Example 7.2.6

7.3 Events and the event model

An event model is a set of object-level and meta-level formulae that is the union of the set of state
rules and a set of event records. Event records are a repository of information obtained from news
reports. As each news report is applied to the sets of access rules and event rules, the set of event
records is increased. State rules are then used to create an event model that relates reported events
to states. Each event model is self-contained. This means each event model can be regarded as a
separate module.

Based on this modularity, the system may have more than one event model based on different
state rules. Furthermore, the underlying version of event calculus can differ.

An event record is a set of facts that share a unique event identifier and, together, describe a
reported event. An event rule is a rule that constructs an event record from the facts extracted
from a news report by an access rule.

Definition 7.3.1. Let a and fi be conjunctions of predicates. Let x be a tuple o f the variables in
a. Let e be a variable that is a place holder for a unique event identifier and let p be a predicate
symbol. An event rule is a rule such that ifp (x i) is a conjunct in a then p(e, x \) is a conjunct in
fj. VaGe a —> (3. is an event rule

Example 7.3.1. The following is a event rule:

Vb, t , v 3e buyer (b) A ta rg e t (t) A a c t (launchBid) A value(v) —>
buyer(e,b) A ta rg e t (e, t) A ac t(e, launchBid) A value(e, v)

The rule sates that for any event in which a buyer, b launches a bid of value v for target t there is
an event identifier, e, which is used as a unique identifier in an event record.

Event rules are then used to generate event records, which are sets of ground predicates, united
by a unique identifier, that describe an event:

Definition 7.3.2. Let repSet be a representative set and T,be a set of event rules. An event record

152

for repSet with respect to E, denoted event (repSet, E), is as follows:

event(repSet, E) = {ground(a(e, x \ , Xk), $) | there exists a grounding set $ s.t
ground(a(xi, € repSet
andT, b Vzi, 3e; a (x lr ..,x n) -> a(e ,x i , . . ,x n)
and e w a unique event identifier }

7Vo/e, e w a unique identifier if and only ife has not been used in any other event record.

Example 7.3.2. Let

Vb, t , v 3e buyer(b) A ta rg e t(t) A ac t (launchBid) A value(v) —>
buyer(e, b) A ta rg e t(e , t) A ac t(e , launchBid) A value(e, v)

in E and repS et = {buyer (ryanair), ta rg e t (buzz), ac t (launchBid), value (gbp 15m)} and
$ = [b = ry a n a ir , t = buzz, v = gbpl5m]. Let ei be an event identifier that is not used in any
other event record. event(repSet, E)=

{buyer (ei, ry an a ir),
ta rg e t (ei, buzz)
ac t(e i, launchBid)
value (ei, gbpl5m)}

Once a set of event records has been constructed they can be applied to the event model. This
gives us a way of representing the states in which we find entities at a given time.

7.3.1 Combining events records with the state model

The event records extracted from representative sets by means of the set of event rules and the
Event operator can then be applied to the initiates and terminates rules, as defined in Definition
7.2.1. It is then possible to determine the states that are begun or ended by that event.

Example 7.3.3. Given the initiates rule

Vc,e ac t(e , bankruptcy) A ob ject(e, c) —> initiates(e, bankrupt(c))

and the representative set

{act (bankruptcy), object(U SA irlines)

and the event rule

Vc 3e ac t (bankruptcy) A object(c) —> a c t (e, bankruptcy) A ob jec t(e , c)

153

results in the set

event(repSet, £) = {act(ei, bankruptcy), ob jec t (ei,USAirlines)}

This event record, together with the initiates rule leads to the conclusion that

holds(after(ei, bankrupt (USAirlines)))

7.4 Using an event model

In [KS85] Kowalski and Sergot define the holds A t meta predicate that can be used to determine
which states hold at which time points.

Definition 7.4.1. Let th e a timepoint of any duration and p be a period of duration greater or
equal to t.

t in p iff:
start(p, ei) andend(p,e2) and
tim e(e i,ti) andtime(e2, t2) and
t\ < t < t2

Knowing the periods during which states hold allows us to determine whether a time point falls
within that period and therefore whether a given state holds at a given timepoint.

Definition 7.4.2. Let s be a state, e be an event and t be a timepoint. That state s holds at
timepoint t (denoted holds At(s, t)) is determined by the following rules:

holds(after(e, s)) A t in after(e, s) —> holdsAt(s, t)

and

holds(before(e, s)) A t in before(e, s) -»• holdsAt(s, t)

Example 7.4.1. Let

{act (ei, bidFor), buyer (ei, bmw), ta r g e t (ei, rover)}

{act(e 2 , approvesBid), buyer (e2 , bmw), ta rg e t (e2 , rover), body(e2 , shareholders)}

be event records.

154

Let

Ve G events, ci, c2 G companies act(e,bidFor) A buyer(e, Ci)A
targ et(e ,c2) —> initiates(e,bidFor(ci, c2))

Ve G events, ci, c2 G companies ac t(e, approvesBid) A buyer(e, Ci)A
ta rg e t(e , c2) A body(e, board) —>• terminates(e,bidFor(ci, c2))

be initiates and terminates rules.

Let the time o fe x be 1st December 1993 and the time o fe2 be 13th February 1994. Let t be 12th
January 1994. By definition 7.4.1, t is in the period begun by et and ended by e2. The initiates
and terminates rules, together with the general holds rule, determine that

holds(after(ei, bidFor(bmw, rover)) A holds(before(e2, bidFor(bmw, rover))

therefore, by definition 7.4.2, at time t , holdsAt(t, bidFor(bmw, rover))

The definition of representatives^, T, A) can now be modified in order to explicitly include facts
from the event model that were preciously held to be implicit in A:

Definition 7.4.3. Let pbe a report, T be a set o f access rules and £ be an event model. The state
that holds at the time of the event reported in p are:

states(p, T, £) = {s|£ h holdsAt(t, s) and
tim e(t) G access(p, T)}

Let A b e a set of background facts. A representative set for p, I \ £ and A is:

representatives^, T, A) = access(p, T) U match (p, T, A)U
states(p, T, £)

7.5 State interpolation

The above definitions are sufficient when information about events is complete, which is the as
sumption that Kowalski and Sergot made when devising these predicates in [KS85]. In the domain
of news reports however there will be times when there is no recorded initiating or terminating
event for a state. This leads to difficulties as the following example will demonstrate:

Example 7.5.1. Let

{act(ei, bidFor), buyer (ei, ry an a ir) , ta rg e t (ei, buzz)}

155

NdForfryanajr̂ buzzI _
„ taj<eoyertfyanair,bu^ owns{ryana ir, buzz)

Figure 7.5: The states and events as described in example 7.5.1

and

{act (e2 , approvedBid), buyer (e2 , ryana ir), ta rg e t(e 2 , buzz), body (e2 , shareholders)}

be event records, and the set of initiates and terminates rules be:

Ve G events, ci,C 2 G companies act(e,b idFor) A buyer(e, ci)A
ta rg e t(e , c2) —> initiates(e,bidFor(ci, c2))

Ve G events, ci, C2 G companies act(e, approvesBid) A buyer(e, Ci)A
ta rg e t (e,C2) A body (e, board) -> terminates(e,bidFor(ci, C2))

Ve G events, Ci,C2 G companies ac t(e, approvesBid) A buyer(e, Ci)A
ta rg e t(e , C2) A body(e, board) —> initiates(e, takeover (ci, C2))

Ve G events, cl 5 c2 G companies act(e, re jec tsB id) A buyer(e, ci)A
ta rg e t(e , C2) A body(e, board) —> terminates(e,bidf or(ci, C2))

Ve G events, ci, c2 G companies a c t(e ,re je c tsB id) A buyer(e, Ci)A
ta rg e t(e , C2) A body(e, reg u la to r) —¥ terminates(e, takeover(ci, c2))

Ve G events, ci,C 2 G companies act(e, approvesBid) A buyer(e, ci)A
ta rg e t(e , c2) A body(e, reg u la to r) -» terminates(e, takeover(c l 5 C2))

Ve G events, C i,c2 G companies act(e, approvesBid) A buyer(e, Ci)A
ta rg e t(e , C2) A body(e, reg u la to r) —>■ initiates(e, owns(ci, C2))

Therefore the sequence of states initiated and terminated by e \ and e2 is as pictured in figure 7.5.

The problem with this example is as follows: in definition 7.4.1, in order to determine the period

156

in which a time point t falls, that period must be explicitly begun and ended by a pair of events.
However, in Example 7.5.1 two states are begun, one state is ended but no state is both begun and
ended. Therefore it is not possible to conclude that a time point t falls in any particular period.

This difficulty can be partially overcome by identifying those states that, while not explicitly
terminated, can be deduced to be terminated by the existence of later states.

In Example 7.5.1, there is no event that explicitly terminates the state b idF or(ryanair, buzz).
However, there is an event that terminates the state takeover (ryanair, buzz). We can see from
the state model that the state takeover(ryana ir, buzz) could only have been initiated by an
event that simultaneously terminates bidFor (ryana ir, buzz). Therefore between e± and e2

there must be at least one event e' that initiates takeover (ryana ir, buzz) and simultaneously
terminates bidFor (ryana ir, buzz).

We have a state model that we know to be a complete description of the possible sequences of
states and events for a domain. Therefore we can exploit this to identify intervening events that
are unreported. This means that we can alter the definition of start and end given in Definition
7.2.3, in order to take into account the existence of unreported states.

Firstly we require two new &efmtiions:precedes and follows.

Definition 7.5.1. Let e be an event and s be a state.

precedes (e, s) iff.
there exists an initiates rule such that initiates(e, s) or
there exists a state s' such that initiates(e, s') and

terminates(e', s') and precedes(e', s)

The terminates and precedes rules embody the canonical sequences of events as derived from
state models such as those in Figure 7.6. By querying the rules that describe state models we know
what hypothetical states may exist between to events that do not begin and end the same state.
State models provide us with exhaustive lists of the potential events and states for a given narrative
and may be generated manually by a domain expert. Alternatively it may be possible that state
models be derived from news reports by machine learning, but if some states characteristically go
unreported, this may not be a viable solution.

Example 7.5.2. Let

{a c t(e i, b idFor), buyer(ei, ry a n a ir) , t a r g e t (el5 buzz)}

and

{act (e2, approvedBid), buyer(e2, ry a n a ir) , t a r g e t (e 2, buzz), body(e2, sh a reh o ld e rs)}

157

be event records and the set of initiates and terminates rules be

Ve G events, Ci,C2 G companies act(e, bidFor) A buyer(e, Ci)A
ta rg e t(e , C2) —> initiates(e,bidFor(ci, C2))

Ve G events, ci, C2 G companies ac t(e, approvesBid) A buyer(e, ci)A
ta rg e t(e , C2) A body(e, board) —> terminates(e, bidFor (ci, C2))

Ve G events, ci, C2 G companies act(e, approvesBid) A buyer(e, Ci)A
ta rg e t(e , c2) A body(e, board) —► initiates(e, takeover(c l 5 C2))

Ve G events, Ci,C2 G companies a c t(e ,re je c tsB id) A buyer(e, ci)A
ta rg e t(e , C2) A body(e, board) —> terminates(e,bidf or(ci, c2))

Ve G events, ci, C2 G companies a c t(e ,re je c tsB id) A buyer(e, Ci)A
ta rg e t(e , C2) A body(e, reg u la to r) —>■ terminates(e, takeover(ci, C2))

Ve G events, ci, C2 G companies ac t(e, approvesBid) A buyer(e, ci)A
ta rg e t(e , c2) A body(e, reg u la to r) —► terminates(e, takeover(ci, C2))

Ve G events, ci, C2 G companies act(e, approvesBid) A buyer(e, ci)A
ta rg e t(e , C2) A body(e, reg u la to r) —► initiates(e, owns(ci, C2))

To determine precedes(ei, owns(ryanair,buzz)): e\ does not initiate owns (ryanair, buzz).
There is however a state s' such that an event e could initiate: bidFor (ryanair, buzz). Let e'
terminate bidFor (ryanair, buzz). If this were so, e' would have to be

{act(e;, re jec tsB id),buyer(e 7,ry an a ir) , ta rg e t(e , buzz),body(e', shareholders)}

or

{act(e7, acceptsB id), buyer(e/, ryana ir), ta rg e t(e , buzz), body(e/, shareholders)}

If s' = {ac t (e', acceptsBid), buyer(e', ryana ir), ta rg e t(e , buzz), body(e/, board)}, does
it follow that precedes(e', owns(ryanair, buzz)) ?

158

e' does not initiate owns (ryanair, buzz). However e' may initiate takeover (ryana ir, buzz).
Let e" terminate takeover (ryanair, buzz). I f this were so, e" would have to be

{act(e", rejectsB id),buyer(e", ry an a ir) , ta rg e t (e, buzz), body(e", board)}

or

{act(e'', acceptsB id), buyer(e", ry an a ir) , ta rg e t (e, buzz), body(e", board)}

I f e" = {ac t(e", acceptsBid), buyer(e", ry an a ir) , ta rg e t(e , buzz), body(e", board)} ,
does precedes(e//, owns (ryanair, buzz)) hold?

e" initiates owns (ryanair, buzz), therefore precedes(e",owns(ryanair,buzz)),
precedes(e', owns (ryanair, buzz)) and precedes(ei, owns (ryana ir, buzz))

Definition 7.5.2. Let e be an event and let s be a state.

follows(e, s) iff.
there exists an terminates rule such that terminates(e, s) or
there exists a state s' such that terminates(e, s') and

initiates(e', s') and follows(e', s)

Example 7.5.3. Let

{act(ei, bidFor), buyer (ei, ry an a ir) , ta rg e t (ei, buzz)}

and

{act (e2 , approvedBid), buyer (e2 , ryana ir), ta r g e t (e2 , buzz), body (e2 , shareholders)}

be event records and the set of initiates and terminates rules be

Ve G events, Ci,C2 G companies act(e,b idF or) A buyer(e, Ci)A
ta rg e t(e , c2) —>■ initiates(e, bidFor (ci, C2))

Ve G events, ci, C2 G companies act(e, approvesBid) A buyer(e, ci)A
teirget(e, C2) A body(e, boeird) —¥ terminates(e, bidFor(ci, c2))

Ve G events, ci,C 2 G companies act(e, approvesBid) A buyer(e, ct)A
ta rg e t(e , c2) A body(e, boeird) —> initiates(e, takeover(ci, c2))

159

Ve G events, Ci,C2 G companies act(e,rejectsB id) A buyer(e, Ci)A
target(e, c2) A body(e, board) —> terminates(e,bidfor(ci, c2))

Ve G events, c i ,c 2 G companies a c t(e ,re je c tsB id) A buyer(e, Ci)A
ta rg e t(e , c2) A body(e, reg u la to r) —> terminates(e, takeover(ci, c2))

Ve G events, ci, c2 G companies ac t(e , approvesBid) A buyer(e, Ci)A
ta rg e t(e , c2) A body(e, reg u la to r) -> terminates(e, takeover(ci, c2))

Ve G events, c i ,c 2 G companies ac t(e, approvesBid) A buyer(e, Ci)A
ta rg e t(e , c2) A body(e, reg u la to r) -> initiates(e, owns(ci, c2))

To determine follows(e3 , b idF or (ry a n a ir , buzz)), first determine that e$ does not terminate
b idFor (ry a n a ir , buzz). There is however a state s' such that an event e could terminate:
ta k e o v e r(ry a n a ir , buzz). Let e' initiate tak eo v e r (ry a n a ir , buzz). I f this were so, e ' would
have to be

{act(e/, acceptsB id),buyer(e;, ryana ir), ta rg e t(e , buzz), body(e;, shareholders)}

I fe ' = { a c t(e7, a c cep tsB id),b u y e r(e ',ry an a ir) , ta rg e t(e ,b u zz),b o d y (e ',b o a rd)} , is it
the case that follows(e', b idF or (ry a n a ir , buzz)) ?

e' terminates b idF or (ry a n a ir , buzz), therefore, follows(e/,b id F o r(ry an a ir ,b u zz)) and
follows(ei, b idF or (ry a n a ir , buzz))

Definition 7.5.3. Let e be an event and s be a state. That the period after (e, s) is begun by event
e is formally defined as:

Ve G events start(after(e, s),e)

That the period after(e, s) is ended by e' is formally defined as:

Ve G events follows(e', s) A ->3 e*such that
follows(e*,s) A time(e*) < time{e') —» end(after(e, s), e')

That the period before (e', s) is begun by event e is formally defined as:

Ve G events precedes(e, s) A e*such that
precedes(e*, s) Atim e(e) < time(e*) —»• start(before(e', s),e)

160

That the period before (e', s) is ended by the event e' is defined as:

Ve G events end(before(e',s),e')

These new definitions for begins(s, e) and ends(s, e) now means that the Definition 7.4.2 now
returns two states for the example given in Example 7.5.1. This is an improvement in the amount
of information returned. The original definition provided no information about the states that may
hold at a given timepoint. The new definition increases the information we have about the state at
a given timepoint by restricting that information to a subset of the possible states.

Example 7.5.4. Let

{act (ei, b idFor), buyer (ei, ry a n a ir) , t a rg e t (ei, buzz)}

and

{act(e 2 , approvedBid), buyer (e2 , ry an a ir), ta r g e t (e2 , buzz), body(e2 , shareholders)}

be event records and the set of event records be

Ve G events, cl 5 C2 G companies act(e, bidFor) A buyer(e, Ci)A
ta rg e t(e ,c 2) -> initiates(e, b idFor(c1? c2))

Ve G events, ci, C2 G companies act(e, approvesBid) A buyer(e, ci)A
ta rg e t(e , cf) A body(e, board) —> terminates(e, bidFor (c l 5 C2))

Ve G events, ci, c2 G companies act(e, approvesBid) A buyer(e, ci)A
ta rg e t(e , C2) A body(e, board) —)• initiates(e, takeover(c l 5 c2))

Ve G events, ci,C 2 G companies act(e, re jec tsB id) A buyer(e, cj)A
ta rg e t(e , C2) A body(e, board) —> terminates(e,bidf or(ci, C2))

Ve G events, ci, c2 G companies a c t(e ,re je c tsB id) A buyer(e, Ci)A
ta rg e t (e, C2) A body(e, reg u la to r) —> terminates(e, takeover(ci, C2))

Ve G events, ci, c2 G companies ac t(e, approvesBid) A buyer(e, Ci)A
ta rg e t(e , C2) A body(e, reg u la to r) —> terminates(e, takeover(ci, C2))

161

Ve G events, ci,C2 € companies act(e, approvesBid) A buyer(e, Ci)A
target(e, C2) A body(e, regulator) —> initiates(e, owns(ci, c2))

According to definition 7.5.3, e-i now ends bidFor (ryana ir, buzz) and e\ now initiates
takeover (ryana ir, buzz). Therefore, according to Definition 7.4.1, iftim e{e\) < t< time(e 2)
then t is in both the periods where state b idFor(ryanair,buzz) holds and where state
takeover(ryana ir, buzz) holds.

Therefore, using the new definition, data is derivable about two possible states that may hold at
time t. This is an improvement, for our purposes on the original definition, which provided no
information at all about the possible states that may hold at time t as we can now draw tentative
conclusions about those states which may hold, as well as being able to rule out those states that
definitely do not hold. However, this definition as it stands returns only the first and the last of
an unknown sequence of events that may hold at time t. We will now examine a definition that
allows us to enumerate all the possible states that may have fallen between those first and last
states.

Definition 7.5.4. Let e, e* be events, s and s ' be states. The minimum set of all possible states
that may hold between two events:

interveningStates(e,s) = {s ' |precedes(e, s) and
e* s.t. precedes(e*, s) and time(e*) > time(e) and

precedes(e', s) andinitiates(e, s*) andfollows(e',s*)and
initiates^', s ')

Example 7.5.5. Let

{act (ei, bidFor), buyer (ei, bmw), ta rg e t (ei, rover)}

{act(e 2 , s e l l s , bmw, rover)}

be event records and the following be a set o f initiates and terminates rules:

Ve G events, ci,C 2 € companies act(e,b idF or) A buyer(e, Ci)A
ta rg e t (e,C2) —> initiates(e, bidFor (ci, C2))

Ve G events, ci, C2 £ companies act(e, approvesBid) A buyer(e, Ci)A
ta rg e t (e, C2) A body (e, board) —»• terminates(e, bidFor (ci, C2))

162

Ve G events, ci, c2 G companies act(e, approvesBid) A buyer(e, Ci)A
target (e, c2) A body(e, board) —> initiates(e, takeover (ci, c2))

Ve G events, c i ,c 2 G companies act(e, re jec tsB id) A buyer(e, c*)A
ta rg e t(e , c2) A body(e, board) —> terminates(e,bidf or(ci, c2))

Ve G events, ci, c2 G companies a c t(e ,re je c tsB id) A buyer(e, ci)A
ta rg e t(e , c2) A body(e, reg u la to r) —► terminates(e, takeover(ci, c2))

Ve G events, c i ,c 2 G companies ac t(e, approvesBid) A buyer(e, ci)A
ta rg e t(e , c2) A body(e, reg u la to r) —> terminates(e, takeover(ci, c2))

Ve G events, ci, c2 G companies ac t(e, approvesBid) A buyer(e, ci)A
ta rg e t(e , c2) A body(e, reg u la to r) —)• initiates(e, owns(ci, c2))

Ve G events, c i,c 2 G companies ac t(e, s e l l s , ci, c2) —> terminates(e, owns(ci, c2))

It is the case that precedes(ei, owns (bmw, rover)) and that there is no recorded event that pre
cedes owns (bmw, rover) that is later than event ei. It is also the case that there are hypothetical
states begun by events that both precede owns (bmw, rover) and follow bidFor (bwm, rover)
therefore

interveningStates(ei, owns(bmw, rover)) = {bidFor (bmw, rover),
takeover (bmw, ro v er) ,
owns (bmw, rover)}

The new definitions go some way to increasing the information we can derive about states from
the event records. There remain two shortcomings however: deriving that a timepoint falls in a
state with no recorded preceding events and deriving that a timepoint falls in a state with no
recorded following events.

Definition 7.5.5. An event e is an initial event, that is, initial(e) iff:

3 s G states such that terminates(e, s) and
->3e' G events s.t. precedes(e', s)

163

Example 7.5.6. Let

Vc G companies, e G ev en ts a c t(e ,p r iv a t i s e d) A o b je c t(e , c) —>
terminates(e, stateow ned(c))

be a terminates rule and

{ac t(e i, p r iv a t is e d) A o b je c t(e ,b r itish G a s)}

be an event record. Let there be no en such that initiates(en, sta teo w n ed (b ritish G as)).

By Definition 7.5.5, ei is an initial event.

Definition 7.5.6. An event e is an terminal event, that is terminal(e) iff:

3 s G states such that initiates(e, s) and
S e ' G events s.t. follows(e', s)

Example 7.5.7. Let

Vci,C2 G companies, e G ev e n ts ac t(e ,b id A ccep ted) A buyer(e, ci)A
t a r g e t (e c2) A body(e, re g u la to r) —> initiates(e, owns(ci, C2))

be an initiates rule and

{act(e i,b idA ccep ted) A b uyer(e ,m orrisons), t a r g e t (ei, safeway), body(ei, re g u la to r)}

be an event record. Let there be no en such that terminates^, owns(m orrisons, safeway)).

By Definition 7.5.6, ei is an terminal event.

If an event is an initial event, then the state which that event terminates is assumed to hold at all
points up to that event. If an event is a terminal event, then the state which that event initiates is
assumed to hold at all points since that event.

Definition 7.5.7. Let s be a state, e be an event and t be a timepoint. The rules determining
whether holdsAt(s, t) must be changed to incorporate knowledge of terminal and initial events.

(holds(after(e, s)) A t in after(e, s))V
(holds(after(e, s)) A t > time{e) A terminal(e)) -> holdsAt(s,t)

and

(holds(before(e, s)) A t in before(e, s))V
(holds(before(e, s)) A t < time{e) A initial(e)) —> holdsAt(s,£)

164

Example 7.5.8. Let

{act(ei, approvesBid), buyer (ei, ry an a ir) , ta rg e t (ei, buzz), body (ei, regu la to r)}

be an event record and the following be an initiates rule:

Ve G events, ci,C 2 € companies act(e, approvesBid) A buyer(e, Ci)A
ta rg e t(e , c2) A body(e, reg u la to r) —> initiates(e, owns(ci, c2))

There is no event e 2 such that tim e(e2) > tim e(ei), therefore terminal(ei). Let the time ofe± be
September2003 and t be the 1st January 2005. By Definition 7.5.7, holdsAt(owns (ryana ir, buzz), t),
as the state that Ryanair owns Buzz was initiated in September 2003 and has not been terminated
since.

7.6 An example event model for the business domain

This section is an extended example of a state model and an event model for the business domain.

Firstly let the following be the initiates and terminates rules for the domain:

Vei G events, ci,c 2 G companies act (ei, bidFor) A buyer{e\,c\)/\
target(e1,c2) —> initiates(ei,bidFor(ci,c2))

Ve2 G events, c \,c2 € companies act(e2, approvesBid) A buyer {e2,c\)/\
target(e2,c2) A body(e2, board) —> terminates(e2, bidFor(ci, c2))

Ve2 G events, C\,c2 G companies act(e2, approvesBid) A buyer(e2,C\)/\
target{e2,c2) A body(e2, board) —> initiates(e2, takeover(ci,c2))

Ve2 G events, c \,c2 G companies act(e3 ,rejectsBid) /\buyer(e3 ,c\)/\
target(e,c2) A body{e^,board) —> term inates^,fad/or(ci,c2))

Ve4 G events, c \,c2 G companies act(e,rejectsBid) A buyer{e,c\)A
target(e,c2) A body(e,regulator) —> terminates(e,takeover(ci,c2))

165

Figure 7.6: A simplified example of a state model for the mergers and acquisitions domain based
on the rules in Example 7.5.7

Ve5 E events, ci,C2 E companies act(e, approvesBid) A buyer(e,C\)A
target(e,C2) A body(e,regulator) —► term inates(e,tafceouer(ci,C2))

Ve5 E e v e n t s , Ci,C2 E c o m p a n ie s a c t (e , a p p r o v e s B id) A b u y e r { e ,c {) A

target(e,C2) A body(e, regulator) —► initiates(e, owns(0 1 , 0 2))

Figure 7.6 represents the state model that can be derived from these rules.

Recall from 7.2.2 that the general rule “State s holds after event e if e initiates s” is:

Ve E e v e n t s , s E s t a t e s , initiates(e, s) -» holds(after(e, s))

and the general rule “State s holds before event e if e terminates s” is:

Ve E e v e n t s , s E s t a t e s , terminates(e, s) —» holds (before (e, s))

Let r i, r*2 , 7 -3 and r 4 be representative sets:

r i : {act (bidF o r), buyer (ryana ir), ta rg e t (buzz)}
r^- {act(approvesB id), buyer (ry an a ir) , t a r g e t (buzz), body (re g u la to r)}
r 3 : { ac t (approvesBid), buyer (m orri sons), t a r g e t (s a f eway), body (shareho lders)}
r4: {ac t (approvesBid), buyer (m orri sons), t a r g e t (s a f eway), body(regu la to r)}

Let S, the set of event rules, be

{Vb, t 3e buyer (b) A ta r g e t (t) A a c t (bidFor) —>
buyer(e,b) A ta rg e t(e , t) A a c t(e , b idFor),

{Vb, t , d 3e buyer(b) A t a r g e t (t) A ac t(b id F o r) A body(d) —>
buyer(e,b) A t a r g e t (e , t) A a c t(e , b idFor), Abody(e,d)

166

Therefore

Events(ri,E) = { ac t(e i, b idFor), buyer (ei, ry a n a ir) , t a r g e t (ei, buzz)}
Events(r2 , S) = { a c t(e 2 , approvesBid), buyer (e2, ry a n a ir) , t a r g e t (e 2, buzz),

body(e2, re g u la to r)}
Events(r3, E) = { a c t(e3, approvesB id),buyer(e 3,m orrisons), t a r g e t (e 3, safeway),

body(e3, sh areh o ld ers)}
Events(r4 , E) = { ac t(e 4 , approvesBid), buyer(e4,m o rriso n s), t a r g e t (e 4 , safeway),

body(e4 , re g u la to r)}

The above event records lead us to the conclusions that:

a c t (ei, b idFor) A b u y er(e i,ry an a ir)A
ta rg e t(e i ,b u z z) -> initiates(ei, b idF or (ry a n a ir , buzz))

a c t(e 2 , approvesB id) A buyer(e2 , ry a n a ir) A ta r g e t (e 2 , buzz)A
body(e2 , sh a reh o ld e rs) —> te rm in a tes^ , tak eo v e r(ry an a ir,b u zz))

a c t (e2 , approvesB id) A buyer(e2 , ry a n a ir) A t a r g e t (e2 , buzz)A
body(e2 , r e g u la to r s) —> initiates(e2 , ow ns(ryanair,buzz))

a c t(e 3, approvesB id) A buyer(e3,m orrisons) A t a r g e t (e 3, s a f eway)A
body(e3, sh a reh o ld e rs) —> initiates(e3, ta k e o v e r (ry a n a ir , buzz))

a c t(e 3, approvesB id) A buyer(e3,m orrisons) A ta r g e t (e 3, serfeway)A
body(e3, sh a reh o ld e rs) —> terminates(e3, b id F o r (ry a n a ir , buzz))

a c t(e 4 , approvesB id) A buyer(e4 ,m orrisons) A ta r g e t (e 4 , safeway)A
body(e4 , r e g u la to r) —> terminates(e3,ta k eo v e r(ry an a ir ,b u z z))

a c t(e 4 , approvesBid) A buyer(e4 ,m o rriso n s) A t a r g e t (e 4 , s a f eway)A
body(e4 , r e g u la to r) —> initiates(e4 , owns(ryemair, buzz))

167

This event model can then be used to determine the states that hold for entities at given times,
using Definition 7.5.7: Let

ei = Vx,y bidFor (x,y) —> prof itab le (x)

and

€ 2 = Vx,y takeover(x,y) —> p ro f itab le (x)

be expectations and let

{t imePo in t (t 1), -ipr of i t ab le (ry an a ir)}

be a set of facts extracted from a news report, p\

Let time(e 1) < t\ < time(e 2). From the above event records, state model and the definition of
holdsAt(s,£) in Definition 7.5.7, it is possible to derive holdsAt(bidFor(ryanair,buzz), ti)
and
holdsAt(takeover (ryanair, buzz), ti) . The facts bidFor (ryanair, buzz) and
takeover (ryana ir, buzz) can then be added to representatives^!, T, A). Therefore
representatives^!, T, A) violates € 1 and €2 .

Likewise, let

6 2 = Vx,y,z owns(x, y) —> -ibidFor(y, z)

be an expectation and let

{t imepo in t (t 2), prof itab le(m orrisons)}

be facts extracted from report p^.

Let 6 4 < £2 • Therefore, by Definition 7.5.7, holdsAt(owns(morrisons, safeway), t 2). The fact
owns (morri sons, saf eway) is in states(/?2 > I \ E). Therefore representatives^, T, A) fires, but
does not violate, e2.

7.7 Discussion of Chapter 7

In order to reason about expectations that hold only for given states it is necessary to be able
to determine which states hold at which timepoints. One way of achieving this is with a logical
calculus of states and events. This chapter has demonstrated that it is possible to reason about
the narratives in news reports by using the event calculus as defined in [KS85] with some novel

168

extensions that permit the interpolation of missing state information. The event calculus was
chosen as the basis for the event models illustrated in this chapter because it has clear semantics,
can cope with simultaneous sequences of events and is easily implemented in Prolog, thus making
it ideal for an implemented EVA system. The extensions suggested in this chapter preserve these
advantages.

In this chapter, the event calculus is used to generate event models. However, there is no reason
why another formalism may not be used, as long as it is able to produce a set of facts analogous
to states(p, T, E) for any given report p, set of access rules, T and event model E. in order to use
the event model in an EVA system, it is necessary only to know states(p, T, E), the method by
which the set is produced is not relevant to the evaluation of reports with respect to expectations.
As such, event models can be viewed as being modular.

An EVA system may in practice have more than one event model in order to deal with different
types of narratives. In the mergers and acquisitions domain for example, it is necessary to keep
track of the state of a company’s key performance indicators such as profit, earnings per share,
and so on. An event model may exist to record and reason with events pertaining to company
figures that is totally separate to the event model for merger activities.

The modifications to the event calculus presented in Definitions 7.5.3 and 7.5.7 result in more
information than the original definitions in [KS85]. In the original formulation, the function
holdsAt(f, s) only holds for states with explicit start and end points. The result of this is that,
in the case of missing events in the narrative, no information is provided about the states between
two timepoints. In Definition 7.5.7, the function holdsAt(f, s) is modified so that it holds for all
possible states on the path between two events, assuming that there are no repetitions of states.
As a result it is possible to tentatively apply state dependent expectations that are relevant to
those hypothetical states. This may result in false positive firings, confirmations and violations of
expectations, but at least allows some conclusions to be drawn when there are missing states.

The original formulation of the event calculus did not allow us to derive information about unter
minated states. Due to the up-to-date nature of the reports that are assessed by an EVA system, it is
likely that many of the states relevant to events in the reports are, as yet, unterminated. The second
advantage of the modifications to the event calculus presented here is that terminal states (those
that are not yet terminated, either directly or indirectly) can be derived by using the extended
formulation in Definition 7.5.7.

The event models for an EVA system are, then, specialised sets of background knowledge, with
their own axioms and functions. There may be other types of knowledge for certain domains that
also benefit from specialised definitions. It is envisaged that these too could be defined in a similar
way to event models, and queried by a function analogous to states(p, T, E) that will return a set
of facts relevant to a given report.

169

Chapter 8

Existing Research Findings and
their Relevance to EVA

This chapter will discuss the Expectation Violation Analysis (EVA) framework with respect to
the existing state of the art. A summary of these conclusions is presented below whilst detailed
information will be given in sections 8 . 1 and 8 .2 .

The EVA framework is not the first attempt to solve the problem of information overload. It
is however the first approach that addresses the problem of identifying news that is interesting
because of its unexpectedness. There is a wealth of literature that covers other approaches to
identifying information and there is a danger that the EVA framework, due to its applicability to
filtering large volumes of information may be seen as “just another information retrieval tool”.

I would argue this is not the case, as the current focus of the development of Information Retrieval
and Filtering (IR/EF) tools is almost entirely relevance-oriented and does not address unexpected
ness. The TREC (Text Retrieval Conferences) provide a standard corpus of texts and developers
of IR/IF systems demonstrate the effectiveness of their systems with respect to this corpus, by
measuring recall and precision rates for queries addressed to it.

In contrast to IR/IF, the EVA framework has no measure of relevance and so would not be suitable
for searching for documents that are relevant to queries. An EVA system would identify reports
containing unexpected information. Current IR/IF systems do not aim to identify unexpected
information. The EVA framework, whilst it is an information management approach, is a distinct
but complementary approach to those of IR and IF.

Another way of managing information is collaborative filtering. In collaborative filtering it is
users rather than documents that are classified, specifically into groups with similar tastes. Users
who have expressed similar tastes are grouped by some method. The recommendation of an item

170

by one group member is considered to be a reliable recommendation for other members of that
group. The advantage of such an approach is that it exploits the user’s ability to make qualitative
judgments. The drawback is that the first person to view an item must do so without a recom
mendation, thus punishing early or frequent searchers. This is known as the cold start problem.
One of the qualitative judgments that can be made by a user is whether a particular item (for
example, a news report) is unexpected. However, the collaborative filtering method is particularly
inappropriate for the purposes of news filtering due to the cold start problem.

The EVA framework is also not the first attempt to identify unexpected or novel information.
Approaches arising from the data mining, machine learning and machine creativity communities
also seek to identify unexpected information. Topic Detection and Tracking (TDT) is a method
that arose from the field of information filtering and is a way of identifying the occurrence of
topic threads in streams of documents or of topic clusters in static sets of documents. However,
TDT is only concerned with the novelty of the topic and not the unexpectedness of the information
concerning that topic.

Belief driven approaches do attempt to identify unexpectedness. These approaches attempt to
capture the user’s a priori expectations and use these expectations to identify rules identified by
data mining that are extrinsically unexpected (that is, unexpected with respect to that particular
user’s reported worldview). Unlike the EVA framework, belief driven approaches rely on the
presence of an expert user in order to generate a set of beliefs. An EVA system has no need of
expert input as it has the ability to learn a set of expectations from news reports and background
knowledge.

The identification of deviations in numerical values is one way of identifying intrinsic unexpect
edness (that is, unexpectedness with respect to the usual run of events). Numerical deviations
are only applicable to quantitative information whereas the EVA framework is concerned with
qualitative information.

The comparisons between the EVA framework and other approaches to information management
and to the identification of unexpected information will now be considered in detail.

8.1 The EVA Framework contrasted with information man
agement

Clearly, the EVA framework is not the first attempt to make large volumes of information more
manageable to their users. Information retrieval, information filtering and collaborative filtering
are three popular and well researched methods of information management. However, I will ar
gue that the EVA framework is more than ‘just another information management method’: there
are clear and significant differences between all of these methods and the EVA framework that

171

represent a step change away from traditional relevance or cluster based information management
systems.

8.1.1 Information retrieval

Information retrieval (IR) has flourished as a means of dealing with large numbers of documents.
Whilst IR predates the world wide web and began as a discipline of library science, the aim re
mains the same: to present a user with the information that matches their needs. Over recent years
this approach has been adapted to the specific needs of retrieving electronically-stored informa
tion. A user presents the IR system with a query, which is then matched against a relatively static
set of documents, from which the user is presented with those documents which exactly or closely
match their query.

The Boolean retrieval model is an exact match approach. Queries consist of keywords joined
by the Boolean connectives representing conjunction, disjunction and negation. Documents are
treated as sets of words. The Boolean retrieval model is an “exact match” model, which partitions
the document space into two sets: documents which match the query and documents which do not
[War92]. Documents are not ranked further beyond identifying whether they are members of the
set of relevant documents. Boolean retrieval is one of the oldest methods of information retrieval,
but its reliance on an exact match between the query term and the document makes it limited in
its effectiveness [FuhOl].

Term Frequency/Inverse Document Frequency (TF/EDF) is a ranking technique that has been em
ployed in both information retrieval and information extraction [Sek03]. Such weightings can
help to improve the usefulness of the results from a query matching system by adding ranking in
formation. Inverse Document Frequency (IDF) is —log n /N where N is the number of available
documents and n is the number of documents in this set which contain the term. IDF identifies
terms which are good differentiators of documents (those with a low n /N ratio) from those which
are poor differentiators. Term Frequency (TF) is a count of the number of occurrences of a term
in a document and documents are weighted by the frequency of highly discriminating terms from
the query [PC98]. For example, in the query “big AND cats AND leopards” the term “leopard” is
likely to be a better discriminator (4,160,000 Google hits as at 12/01/05) than “big” (241,000,000
Google hits) and “cat” (127,000,000 Google hits). Therefore occurrences of the term leopard will
be more heavily weighted than occurrences of the terms ”big” or ’’cat”.

Exact match methods rely on matching words in documents to those in queries. Stemming in
creases the number of hits by looking for terms which are related but are different parts of speech
by truncating the term. For example the query ‘stemming4 would also return documents con
taining the terms ‘stem’, ‘stemmed’, ‘stemmer’ and so on. Indexing on stems, rather than full
terms, also reduces the size of the index file. Compression factors of over 50% can be achieved by
indexing on stems [Fra92]. However, stemming can be misleading. For example the query ‘mute’

172

may find also documents which match ‘m utable’, ‘m utate’, ‘m utation’ because of inappropri
ate stemming, when we really may prefer to match ‘silent’ or ‘speechless’. In short, lexigraphic
similarity is insufficient to capture (and often unrelated to) semantic similarity.

The vector space model (VSM) [Voo99] is a best match approach to IR that treats each word in
queries and in documents as a dimension in a high-dimensional space. The vectors of queries and
documents are compared by using a measure of spatial similarity: the cosine of the angle between
the vectors. The closer the angle between the document and the query the greater the likelihood
that the document is relevant to the user. This approach is more flexible than Boolean matching as
it allows for similarities between documents and query terms to be identified and does not demand
an exact match. The VSM approach is more likely to identify words with similar meanings than
the stemming approach as, as mentioned above, lexigraphic similarity is often a poor indicator
of semantic similarity. However, because of the number of terms required in order to generate a
useful lexicon, and the relatively low number of documents each term will appear in, the vector
space model tends to result in a sparsely populated space of very high dimension. Such a space
leads to difficulties in making useful generalisations about term associations.

Latent Semantic Indexing (LSI) addresses the problems that arise from the use of natural language
documents by organising textual information into a semantic structure. The method compares
co-occurrence frequencies of terms and derives associations between them. These associations
usually denote related concepts and a query is automatically augmented with terms which occur
in the associations of the terms in the query. For more details see [RLDL97]. Different users
may use different words to mean the same concept, such as “car” and “automobile”, or they may
use the same word to mean different concepts, for example “train” (noun: mode of transport) and
“train” (verb: to teach or learn a skill). Latent semantic analysis reduces the number of dimensions
in the original vector space by identifying concepts: groups of co-occurring terms which describe
the same idea. Using LSI rather than raw textual data both reduces the size of the space to be
searched and also allows for more sophisticated addressing of users’ queries; a user may submit
the query “car” and have returned documents which do not contain the word car but do contain the
word automobile for example. For a review of approaches to LSI see [DDL+90]. Papadimitriou
et al demonstrate in [PTRV98] that LSI can be used to improve the retrieval performance of
information retrieval systems by capturing the underlying meaning of terms in the document.

Probabilistic retrieval (See [Fuh92, CCH92] for reviews) is based on the principle that documents
should be ranked based on the probability that they are relevant to the query. A document will be
retrieved if the cost of retrieving it given the probability it is relevant is lower than the cost of not
retrieving it [FuhOl]. The probability of a document d being relevant to a query is given as:

Pr(rel\d)

173

and the probability of it not being relevant is given as

Pr(rel\d)

The cost of retrieving a document may include factors such as the business of the server and the
network and the complexity of the query [LLH05], as well as the monetaiy cost (subscription
price, bandwidth charges) of obtaining the information. This must then be offset against the bene
fit of obtaining that information if it is relevant, or added to the cost of examining that information
if it is not relevant. Therefore the overall cost, the total costs minus the total benefits, of retrieving
a document are:

Cret,rei when the document is relevant and Cret —t when not relevant

and the cost of not receiving a document is

^Vei,rei when the document is relevant and when not relevant

The economic cost of retrieving a document d is:

ECret = Pr(rel\d)Cretlrel + P r (r e l \d) C ret,7Tl

and the economic cost of not retrieving d is:

EC—t = Pr(rel\d)C -tjrel + P r ^ C - ^

If ECret < EC-^t then the document should be retrieved. Documents can be ranked by the proba
bility of their relevance to the user. These probabilities are usually derived from a Bayesian model
of the probability of the document being relevant. However, alterative models of uncertainty, such
as Dempster-Shafer theory of evidence, have been used to handle uncertainty in structured doc
uments for example in [Lal97, LV04, FO04]. The Dempster-Shafer method is particularly suited
to the retrieval of documents in structured format as the combination rule provides a way of
accumulating evidence for the document’s relevance from different sections of that document.

Further advances in the field of information retrieval include the provision of cross-language
information retrieval (see [McC99, BHH+00] for background material) and the use of machine
learning to improve the performance of information retrieval systems (see [Bal97, Che95, BVSL02,
OYOl, SPKOO] for highlights of these advances). Logic has been applied to the task of informa
tion retrieval in several ways. A number of inference mechanisms that determine the ‘aboutness’
of a document with respect to a query have been proposed (for a review see [LB98]).

However, these advances and refinements in information retrieval have not addressed the question

174

of how to identify unexpected information. The EVA framework is a distinct but complementary
approach to information retrieval. IR systems, concentrating as they do on relevance, are very
good at responding to information requirements that can be expressed as queries such as “Find
all terrorist activities that have taken place in South America”, for example. The EVA framework
has no concept of a query and no measure of relevance and so would not be suitable for ad
dressing such an information need. However, no IR system can respond to the information need
“Find all unexpected information about terrorists” as none of these techniques has any measure
of unexpectedness.

Information Retrieval The EVA Framework
Identifies documents that contain information
that is relevant to a query.

Identifies news reports that are unexpected
with respect to background knowledge and
some expectation.

Information retrieval may be brought together with the EVA approach in order to develop a more
fully rounded approach to recommending news. The two approaches could be used in tandem,
with information retrieval being used to pre-filter news that is relevant to a given keyword, and
the EVA system being used to identify news items that are unexpected.

8.1.2 Information content filtering

Information filtering (IF) is another method of dealing with large numbers of documents. IF filters
a dynamic stream of documents according to static user profiles in contrast to IR, where the set
of documents is largely static but queries are dynamic. Belkin and Croft present an overview
of the similarities and differences in [BC92]. For the purposes of this section, discussion will
be restricted to information content filtering1. Once again, it is necessary to understand how the
information filtering approach to information management differs from the EVA approach.

The same methods used to select and rank documents in information retrieval can be used to se
lect and rank documents in information filtering. Because of the relatively static nature of user
profiles, compared to the dynamic nature of the queries used in information retrieval, these pro
files can be refined over time using measures such as relevance feedback, learning and belief
revision [BCCN94, CCH92, Cal98, Cha99, PB97, ZS01] as well as identifying new topics in the
flow of filtered documents [ZCM02]. The developments in Topic detection and Tracking will be
addressed fully in Section 8.2.1.

Given the similarities of information filtering to information retrieval, it is unsurprising to realise
that the contrast between IF and the EVA framework is similar to the contrast between IR and the
EVA framework: IF is concerned mainly with matters of relevance rather than unexpectedness.

’This is in contrast to collaborative filtering, which will be addressed in Section 8.1.3

175

Information Filtering The EVA Framework
Identifies documents that contain information
that is relevant to a profile.

Identifies news reports that are unexpected
with respect to background knowledge and
some expectation.

As with information retrieval, information filtering could be used alongside the EVA approach in
order to identify news that is both unexpected and relevant to a user’s profile. Pre-filtering, by an
information filtering system, could be applied before news is presented to an EVA system.

8.1.3 Collaborative filtering

Collaborative filtering addresses the lack of qualitative information from content based filtering
in that it uses ratings given by human users to recommend items. The advantage of using other
humans as filters is that they find it easy to deal with natural language and can also factor in
elements such as the credibility of the source of the document, the style of the document and the
“quality” of the document, based on the timeliness or accuracy of the information for example
[Rie94].

Because of the static nature of user profiles, it is possible to identify clusters of users with similar
long-term information needs. A variety of techniques have been developed to identify clusters,
including probabilistic approaches, statistical measures and machine learning techniques. Ter-
veen and Hill provide an overview of collaborative filtering systems in [TH01]. All collaborative
filtering approaches use some method to group users into clusters with shared tastes, identified
by similarities in their ratings of items. Once such clusters have been identified, user relevance
feedback from some cluster members can be used as recommendation measures for other cluster
members.

There is a drawback to collaborative filtering, known as the “cold start problem”. Where there
are items in the data set which no-one has rated it is impossible to recommend those items based
on collaborative means. To circumvent this difficulty, Schein et al. [SPU02] propose a hybrid
method, which takes content information for the unranked item and compares it with content
information for ranked items. Similarities between items are identified and recommendations are
made based on these similarities.

Because of the difficulties of the cold start problem, collaborative filtering is most applicable in
domains where user tastes and available items are both relatively static. Good examples of this are
e-commerce applications where items are recommended to users of e-commerce sites based on
other shoppers purchases [SKR01], and in systems which recommend films such as Movielens
[RIS+94]. In [UF98], Ungar and Foster present and evaluate a number of possible clustering
methods and in [SKKROO], Sarwar et al analyse the effectiveness of a variety of collaborative
filtering based recommender systems.

176

The overriding strength of the collaborative filtering approach is that it exploits the user’s ability
to make qualitative judgments. These judgments then form the basis of recommendations to other
users and may capture qualities such as the unexpectedness of certain information. However, as
already stated, the cold start problem makes the collaborative filtering approach inappropriate for
filtering news where the timeliness of the recommendation of a news report is essential. Neverthe
less, collaborative filtering does have the great strength of being able to harness the judgments of
users. Therefore it may be possible for the EVA framework to form the basis of a hybrid collabora
tive filtering system where the judgments of users could be used to improve the recommendations
of an EVA system, similar to the approach presented in [SPU02].

Collaborative Filtering The EVA Framework
Identifies groups of users with similar tastes
and uses these to propagate users’ qualitative
judgments.

Identifies unexpected news reports that
should be unexpected for all users.

It is possible to solicit feedback from users of an EVA system to determine which unexpected
news items they find to be most interesting. This data could then be used to filter the news pre
sented to the user, both on an individual basis and also by clusters. Current clustering techniques
could be applied to the space of expectations in order to determine what is most surprising to cer
tain clusters of users. Alternatively, clusters could be created of users that rate news as interesting
depending on certain features of the representative set, such as the presence of certain predicate
or constant symbols.

8.2 The EVA framework versus methods of identifying novelty
and interestingness

The EVA framework is not the first approach to identifying interesting items. Topic detection and
tracking (Section 8.2.1) grew out of the information filtering community and enables the identi
fication of reports of events that were previously unreported. The general impressions (Section
8 .2 .2) approach is a method of identifying interesting rules discovered in data mining based on the
prior beliefs of domain experts. The deviations approach (Section 8.2.3) uses statistical methods
to identify unexpected numerical values. A review of several methods of measuring interesting
ness can be found in [TKS02]. These methods have been applied to inter alia, bank loan data

f [IG01], web navigation logs [CooOO] and the rules of cricket [RR01]

177

8.2.1 Topic Detection and Tracking

Topic detection and tracking (TDT) is a method of identifying the first and subsequent appear
ances of a topic in a stream of documents. The approach began with a pilot study, supported by the
US Defense Advanced Research Projects Agency (DARPA), the findings of which were reported
in [ACD+98]. The findings of this study were that TDT could be regarded as a special case of
information retrieval, but within a more restricted domain. As a result, a number of domain spe
cific strategies could be brought to bear on the problem. A number of tracking methods such as
K-nearest neighbour, decision trees and probabilistic queries were applied with similar success to
the problem of retrospective TDT, that is, identifying topic threads in sets of documents that have
already been received. Such retrospective TDT has been applied to problems of clustering web
pages by topic [HDZS01]. Yang et al found that online clustering, clustering documents as they
emerge, is more difficult than retrospective clustering but is possible [YCB+99]. A review can be
found in [PAOO].

While TDT is able to detect novel topics, that is, thematic areas that have been recently introduced
to a stream, they do not identify whether the information concerning that topic is in any way
unexpected. However, the approach could complement the EVA framework by providing a way
in which news articles could be pre- or post-filtered by topic.

Topic Detection and Tracking The EVA Framework
Identifies topic threads in a news feed or clus
ters of topics in static collections of docu
ments..

Identifies unexpected news reports without
regard for topic.

TDT could be used to determine whether there are multiple stories in a news report, and to identify
individual stories within that report. These could then be sent to an EVA system as separate news
stories, thus improving the performance of the system. Techniques used to identify topic threads
could also be used to draw together related news stories, perhaps leading to the identification of
cohort violations. This is an area that merits further study.

8.2.2 General Impressions

The general impressions approach to identifying interesting rules obtained by data mining was
introduced by Liu et al [LHC97]. In this approach, domain experts were asked to enumerate their
impressions for a given domain. Rules discovered by data mining were then compared with the
beliefs that the general impressions of the experts revealed. The syntactic distance between a rule
and a belief is based on the structure of the rules: if the antecedent or consequent of a rule is in
accordance with a belief then that antecedent or consequent is “similar” to the belief. Conversely,
if the antecedent or consequent of a rule is not in accordance with a belief then that antecedent

178

or consequent is “far from” to the belief. If the antecedent of rule is similar to a belief whilst the
consequent is far from that same belief (or vice versa) then that rule is considered unexpected
and therefore of interest. Padmanabhan and Tuzhilin extend the idea of a belief driven means of
identifying interesting rules in [PT98] by restricting the definition of interestingness to that of log
ical contradiction with an impression. Sahar [Sah99] improves the efficiency of the approach by
asking the user to rank a few rules, after they have been discovered. The user gives their impres
sion of a few generated rules that, if deemed uninteresting, would automatically imply that many
other discovered rules are uninteresting. This approach is similar to the EVA framework in that
inconsistencies between expectations and findings are the hallmarks of interesting information.

Whilst these belief-driven approaches attempt to identifying information that is unexpected from
the point of view of a user they have two drawbacks when considered as methods for identifying
interesting news. Firstly, the approach relies on the specification of a limited domain. For any
thing other than a limited domain, the number of beliefs it would be necessary to elicit becomes
unmanageably large. Secondly, the beliefs must come from an expert user. For a general news
filtering system of unrestricted domain these restrictions are not practical. As a general point, it
is also extremely difficult to ensure that users exhaustively formulate their beliefs a priori (see
[OP87] for further details).

The EVA framework, in contrast, generates its own expectations with respect to evidence in the
form of news reports and background knowledge. These rules do not require the intervention of
an expert in order to formulate them. Whilst the EVA framework does not preclude the inclusion
of expert-generated expectations in the knowledgebase its strength rests mainly on the fact that it
does not rely on expert-generated expectations.

General impressions The EVA Framework
Attempts to extract the user’s a priori expec
tations in order to identify interesting rules.

Generates expectations from news and back
ground information that can be used to iden
tify unexpected information.

The expectations generated by an EVA system are based on the analysis of a stream of news
reports and so represent the usual state of the world, as reported in those news stories. However,
as discussed in Chapter 1, the user’s view of what is surprising may not be the same as that
predicted by the frequency of reported events. It may be possible to extract some of the user’s
expectations via the general impressions approach. However, as mentioned above, the general
impressions approach is not well suited to wide domains.

8.2.3 Deviations

In [PSM94], Piatetsky-Shapiro and Matheus introduce the Key Findings Reporter (KEFIR) sys
tem. KEFIR is a system that was originally applied to healthcare data mining to identify value

179

measures and the impact of deviations in those measures. KEFIR’s strength is in identifying inter
esting trends and anomalous values, as these can then be used to control costs or improve patient
outcomes, for example. Deviations are considered interesting proportional to the estimated pos
sible benefit that would arise from taking some action based on that deviant value.

The KEFIR system is a method of identifying data that is unexpected and of using that unex
pectedness as an analogue of interest. The KEFIR system succeeds as a method for identifying
actionable quantitative measures, but its focus on numerical values means that it is unable to cope
with qualitative data.

The Deviations approach The EVA Framework
Forms a range of expected values based on
the statistical analysis of qualitative data.

Generates a set of expectations based on the
analysis of logical formulae.

The EVA framework can cope well with qualitative data but does have a shortcoming with regard
to quantitative data: a range of expected values must be expressed as the consequent of an expec
tation in order to identify unexpected numbers in the EVA framework. Therefore the deviations
approach exploited by a system such as KEFIR may also be of benefit as a complement to an
EVA system.

8.3 Techniques investigated for use in the EVA framework

There is also a body of literature that has been used in creating the EVA framework. Some of this,
such as the Event Calculus, has been used directly. Details of how these have been used appear
in the preceding chapters. However there are other techniques that have been investigated but not
employed such as inconsistency measurement, information theory and machine learning.

8.3.1 Wider results concerning the measure of inconsistency

The EVA framework is unusual in that, rather than trying to eliminate or measure inconsistency,
the aim is to identify inconsistency between facts and rules and, where this inconsistency arises
to measure unexpectedness by the strength of the rule that is violated. However approaches to
measuring inconsistency were examined in the hope that they may provide some insight into
measuring the unexpectedness of information.

Several approaches for measuring or ranking inconsistency exist: in the diagnostic systems liter
ature there are proposals that offer preferences for certain kinds of consistent subsets of incon
sistent information [KW87, Rei87]; in proposals for belief revision, epistemic entrenchment is
an ordering over formulae which reflects the preference for which formulae to reject in case of

180

inconsistency [Gar8 8]; in proposals for drawing inferences from inconsistent information there
is a preference for inferences from some consistent subsets (e.g. [Bre89, BDP93]); in proposals
for approximating entailment, two sequences of entailment relation are defined (the first is sound
but not complete, and the second is complete but not sound) which converge to classical entail
ment [SC95]; and in proposals for partial consistency checking, checking is terminated after the
search space exceeds a threshold which gives a measure of partial consistency of the data. How
ever, none of these proposals provide a direct definition for degree of inconsistency. Likewise
they are concerned mainly with the elimination of inconsistency, which is not the aim of the EVA
framework.

In belief revision theory, and the related field of knowledgebase merging, there are some pro
posals that do provide some description of the degree of inconsistency of a set of formulae. For
example, the Dalai distance [Dal8 8], essentially the Hamming distance between two prepositional
interpretations, can be used to give a profile of an inconsistent knowledgebase. Unfortunately, this
does not provide a very succinct way of describing the degree of inconsistency in a given set of
formulae, and it is not clear how we could compare sets of formulae using this approach. Further
more, operators for aggregating these distances, such as the majority operator [LM98], egalitarist
operator [Rev97], or the leximax operator [KP98], do not seem to be appropriate summaries of
the degree of inconsistency in the original knowledgebase since they seek to find the most appro
priate model for particular kinds of compromise of the original knowledge. Related techniques
for knowledgebase revision are similarly inappropriate as again the approaches aim to eliminate,
rather than to identify and exploit inconsistency.

A general characterization of inconsistency has been based on quasi-classical logic, which is a
form of paraconsistent logic with a more expressive semantics than Belnap’s four-valued logic.
Inconsistent knowledge is analysed by considering the conflicts arising in the minimal quasi-
classical models for that knowledge. These models are the basis of a measure of coherence for
each knowledgebase, and of a measure of significance of inconsistencies in each knowledgebase
[Hun02b]. Whilst this is potentially useful in various applications such as comparing hetero
geneous sources of information, it does not help in evaluating inconsistencies arising through
violations of expectations. In the EVA approach, we evaluate the inconsistency on the basis of the
expectation rather than all the formulae involved in the inconsistency.

8.3.2 Information theory

The notion of measuring interesting information may be thought as of falling within the purview
of the wider problem of measuring information content. Indeed, [HH01] demonstrates that mea
sures of information content are among the best ways of identifying interesting discoveries in
data mining. The concept of measuring information was introduced by Claude Shannon in 1948
(the paper is reproduced in [Sha93]). His formula for the information content, 1(E), of a mes
sage states that the information value of a message decreases as the probability of that message

181

occurring, P(E) , increases. This is captured by the following formula:

1(E) = -logP (E)

Thus each message represents a point in the space of all possible messages. The more improb
able a message is, the more possibilities it eliminates, making it more informative. Therefore,
unexpected news is considered to have more information content than expected news.

The work on information theory that has the most resonance with the EVA framework is presented
by Lozinskii in [Loz94a]. Lozinskii presents a measure of the information content of consistent
formulae, based on the supposition that information increases with the addition of formulae which
do not render the set inconsistent and which are not logical consequences of the existing set.

Applying Shannon’s measure of information, Lozinskii proposes that the information in a set of
prepositional formulae T, composed of n different atom symbols, is the logarithm of the num
ber of models (2n) divided by the number of models for the maximally consistent subsets of T
[Loz94a]. This information theoretic measure increases with additions of consistent information
and decreases with additions of inconsistent information.

Definition 8.3.1. Fora set S with the equivalence classes of the models of S, Mod(S), and the
number of variables in S, nThe quantity of information, I(S) is:

I(S) = n - log\Mod(S)\

In [Loz94b], Lozinskii goes on to describe how this measure can be applied to an inconsistent
set S. For an inconsistent set of formulae the quantity of information in the set does not increase
monotonically with the introduction of new formulae, as, in addition to adding new models, the
new formula may ‘fracture’ the set into a greater number of maximally consistent subsets. The end
effect is that each maximally consistent subset imparts information as to the possible values for
variables (the equivalence classes of models), but as the number if maximally consistent subsets
increases, the less certain we can be that we can pick a model from any particular one of these
sets. In order to model this, Lozinskii devises a formula which links the number of maximally
consistent subsets of S with the models of each of these maximally consistent subsets called
quasi-models.

Wong and Besnard [WB01] point out that the Lozinskii’s measure is syntax sensitive and it is
affected by the presence of tautologies in T. To address this, they suggest the use of a normal
form for the formulae in T that is obtained by rewriting T into conjunctive normal form, and then
applying disjunction elimination and resolution exhaustively. However, this approach does not
provide a direct measure of inconsistency since for example, the value for {a} is the same as for

Lozinskii’s work is interesting for the insight it gives us into how inconsistency may affect in

182

formation content. However, within the EVA framework, if an inconsistency arises between a
representative set and an expectation it is not necessary to search for maximally consistent sub
sets of the knowledge base. We allow the expectation to be inconsistent with the representative
set and instead use the strength of that expectation as a measure of the unexpectedness of the facts
in the representative set.

8.4 Working expectations generator versus machine learning

Machine learning can be thought of as consisting of three main approaches: supervised learning,
unsupervised learning and reinforcement learning. Supervised learning approaches, such as FOIL
[Qui90] rely on a training set that contains examples of the concepts that are to be learnt. If we
wish to use such a method to learn to differentiate between expected and unexpected news, we
must present the learner with classified examples of interesting and uninteresting news reports.
However, there is the difficulty that the features the learner uses to determine whether a report
is interesting or not may be highly context dependent and specific to the articles in the training
set. Also, as “what is expected” changes over time, the trained system may find itself providing
predictions of unexpectedness that are out of step with reality. The process of retraining a unsu
pervised learning system is labour intensive. In contrast, an EVA system automatically updates
the expectations it generates in the light of new information from reports and background knowl
edge. Therefore the EVA framework supports a system that is more responsive to change than a
system that relies on supervised learning.

Unsupervised learning is learning in which there is no feedback from a trainer. Unsupervised
learning is most often used in situations where labelling the training data is too expensive to
be practical. The working expectation generator presented in Chapter 5 is a specialised form of
unsupervised learning. There are several pre-existing techniques of unsupervised learning that
address clustering. These include the k-means approach, which handles numerical data, in which
each point assigned to nearest cluster iteratively; the fuzzy-c means clustering, which is similar
to the k-means approach but clusters numeric points in a ’’fuzzy” fashion, rather than dividing the
data points into crisp sets; and the hierarchical clustering approach which classifies data points
using some distance measure. The hierarchical clustering approach could be applied to Dalai
distances but, given that the distances between formulae are not of interest to the EVA framework,
this approach too is not applicable to the EVA framework.

Inductive logic programming (ILP) is an unsupervised method of generating logical formulae that
can generate rules that classify a set of examples. ILP was examined as a method for generating
expectations for the EVA framework but found to be unsuitable in its present form. Whilst ILP is
ideal for generating rules that divide data sets into crisp clusters, the EVA framework relies on a
method that generates rules based on high probabilities. The ILP approach could be modified to
generate fuzzy sets, rather than crisp sets, resulting in rules that capture a set of those examples

183

that is mainly, but not necessarily exclusively positive. The modification of ILP in order to make
it suitable as a method for generating expectations rather than hard rules is a possible area for
further exploration.

A third type of learning, reinforcement learning is used where preexisting labels are not required.
The output from the learner is given a post-hoc quality rating by the user, but the learner does
not have to be provided with a correct answer. Therefore a reinforcement learning method would
not require the identification of interesting rules a priori. It is possible that the working expec
tation generator, which is at present an unsupervised learning approach, could be developed as
a reinforcement method expectation by asking the user to rate the reports presented to them.
Incorporating reinforcement into the working expectation generator may be addressed in future
work.

Given the highly novel nature of the EVA framework there is little literature that is directly rele
vant to the approach presented in this thesis. However the literature presented here helps to better
delineate the scope of the EVA framework as a method of (i) generating expectations that are
representative of highly probably behaviour in the real world in a fashion that is distinct from
other methods of machine learning and, (ii) identifying information that is inconsistent with those
expectations in a way that is distinct from other methods of identifying and measuring inconsis
tency or unexpectedness and (iii) recommending news reports to users in a way that is unlike the
mainly relevance-focussed methods of information retrieval and filtering.

184

Chapter 9

Conclusions and Discussions

9.1 Discussion

The identification and evaluation of interesting news is a potentially valuable goal. Much work
has already been done to address information overload in non-news information. However, news
presents two particular challenges: firstly, the identification and evaluation of news must be done
in a timely fashion, as the usefulness of news declines rapidly over time. Secondly, the interest
that arises from news is due at least in part to the unexpectedness of the information. Current
approaches do not address unexpectedness and instead rely on measures of relevance to a query
(information retrieval and filtering) or on similarity of tastes (collaborative filtering).

The Expectation Violation Analysis (EVA) framework presented in this thesis addresses the chal
lenges presented by news by looking for unexpected information with respect to a pre-generated
set of expectations. The framework accepts as input news reports in the form of first order logic
facts, background knowledge as first order logic facts and rules and expectations as first order
logic rules. Identifying unexpected information is then a matter of identifying inconsistencies be
tween a consistent set of facts from a news report and relevant background knowledge and one or
more expectations.

In addition to identifying interesting news, expectations also indicate the degree of unexpected
ness of an item of news. Each expectation also has an accuracy and a validity value that indicate
how representative that expectation is of events in the real world. Each expectation also has a
coverage value that indicates the strength of the evidence for that expectation’s accuracy and va
lidity. These measures are based on evidence from news reports and background knowledge and,
as such, have a meaningful derivation and clear semantics.

There is a partial ordering over antecedents and consequents that provides much useful infor

185

mation regarding the relative strengths of the fired values of antecedents and the attacked and
supported values of consequents. The higher an antecedent is in the antecedent order, the easier it
is to fire that antecedent Likewise, the higher a consequent is in the consequent order, the easier
it is to support and the harder it is to attack that consequent.

It has been proved that logically equivalent expectations may have different coverage, accuracy
and validity values, depending on the order of antecedents and consequents. Some decision must
then be made to decide which of each set of equivalent expectations should be used in order that
comparisons between expectations should be equitable. Therefore the expectations that are used
to evaluate news are all of the form of a single literal consequent and an antecedent that is a
conjunction of one or more literals.

The set of all expectations in this form is large for even quite limited languages. It is therefore not
viable to search the entire set on receipt of each news report. A heuristic is required in order that
reports can be evaluated in a timely fashion. The approach presented in this thesis is to identify
a set of working expectations. This is a set of expectations that is small enough to be searched
on receipt of a news report but that contains all those expectations that, when violated, indicate
the occurrence of an interesting event. Therefore all members of the set of working expectations
must have high coverage and high accuracy and/or validity.

Chapter 5 presents a method for generating sets of working expectations by identifying an
tecedents with high coverage values and then generating a set of highly accurate/valid expecta
tions from those antecedents. Chapter 6 demonstrates the viability of this approach to generating
a set of working expectations. The simulations show that it is possible to reliably create a set of
working expectations with a small number of representative sets and in a universe with a large
number of expectations. Chapter 6 also examines the possibility of biasing the working expecta
tion generator towards generating expectations with longer antecedents. This is possible, but at
the cost of decreased computational efficiency.

Chapters 2 through Chapter 6 present a framework that makes it possible to develop a system that
can identify and evaluate unexpected information in a timely manner. Thus the EVA framework
meets the challenge of identifying and evaluating interesting news in order to recommend that
news to a reader.

Chapter 7 presents a means by which the background knowledge in an EVA system can also in
corporate knowledge of sequences of events and states. Event and state data is a highly useful
addition to the background knowledge of an EVA system, as it is then possible to develop expec
tations that apply only to entities that are in given states. The approach presented in this thesis
is a modified version of the Event Calculus, first developed by Kowalski and Sergot in [KS85].
I have proposed a modification to the formalisation to include the ability to interpolate missing
information about events. However, the event model is modular, and any approach that permits
the representation of states and events in first order logic could be used in its place.

186

Chapter 8 critically examines work that is related to that presented in this thesis and discusses the
strengths and weaknesses of the EVA framework with respect to these other approaches. The EVA
framework is unique in that it addresses the issue of unexpectedness in news and also in that it
makes it possible to present the user with a justification of the decision to rate news as interesting.
Furthermore, a system based on the EVA framework is able to do so in a timely, computationally
viable way. The EVA framework does not attempt to address the issue of relevance, but it is
envisaged that an EVA system could work alongside a traditional information retrieval or filtering
method which would address relevance as a pre- or post-filtering operation.

Machine learning techniques could potentially be used to search for good expectations, but the
working expectation generator presented in this thesis, that exploits the properties of the set of
expectations, works well as a heuristic for reducing the set of expectations to be searched. In
formation theory and the measurement of inconsistencies were examined for use as measures of
unexpectedness, but measuring unexpectedness by means of the strength of expectations has a
clear semantics and is easily derivable from news reports and background knowledge. Therefore
the work presented in this thesis is a novel and worthwhile contribution to the state of the art in
interest detection and evaluation.

9.2 Areas for further research

Overall the EVA framework provides a novel approach to identifying interesting news stories.
It addresses the specific challenges posed by news: the timeliness of recommendations and the
identification of unexpected information. As such it is a viable basis from which to develop a
more sophisticated solution. The areas for refinement described below suggest ways in which
such development may take place.

There are several areas of work that merit further exploration. These areas are those where a richer,
more expressive formalisation may be possible, where a more computationally viable approach
may be taken or both.

Cohort violations were presented in Section 3.3.1. However, for the sake of clarity, the rest of this
thesis has concentrated solely on singular violations of expectations. Future work to determine
the effect of cohort size on expectation strength would be valuable: as more members of a cohort
violate an expectation, that expectation becomes weaker. So, although it is reasonable to expect
that the emergence of a cohort would increase the degree of interest in a set of events, under the
current definition the estimate of interest decreases. One way of addressing this issue would be
through a set of simulations that examines whether delaying the updating of expectation values
in order to give a cohort time to emerge would be useful.

The full ramifications of the state interpolation operators are yet to be examined. As the event
model is a useful but not a necessary element of the EVA framework and the event interpolation

187

operators are a useful but not a necessary element of the event calculus, it was decided not to
pursue the formalisation of these operators any further. However, further work would address
the validity and computability of the state interpolation operators and the applicability of these
operators within the EVA framework.

The difficulty of biasing the working expectation generator towards expectations with long an
tecedents is yet to be resolved. The method suggested in Chapter 6 must evaluate all of the expec
tations in E that have conjunctive antecedents and single literal consequents. Even for relatively
small languages, this results in a very large space to explore. Likewise there remain difficulties
with the efficiency of the working expectation generator algorithm. At present the algorithm uses
deeply nested iterations (up to four levels deep). Such deep nesting results in an algorithm that is
computationally expensive. However, there may be other, more efficient, ways of searching these
expectations arising from the machine earning literature. Further work could lead to the identi
fication of other potential algorithms from the machine learning field. A comparative study of
these methods would look at the computational viability of these algorithms and their ability to
generate the most useful expectations.

The question of identifying expectations that are rarely fired but highly useful also remains open:
where there are the relatively infrequent occurrence of some combinations of predicate symbols
there will be expectations that are relatively rarely fired. Nevertheless, some of these expectations
may be particularly useful in identifying interesting news. Further work would identify an alter
native learning strategy that would identify these expectations based on very little evidence. More
sophisticated statistical techniques, or the development of some heuristics may be of use here.

Throughout the thesis expectations have been defined as unground (or deground) formulae, con
taining no constants. However, the approach to inductive generalisation taken by Plotkin [Plo70,
Plo71], in which constants are substituted for variables wherever there is a difference in the
nomenclature of those constants, may present us with a more flexible approach. To illustrate,
consider the following representative sets:

pi = companyType(ryanair, a i r l in e) , p ro f i ta b le (ry a n a ir)

p2 = companyType(ba, a i r l in e) , p ro f i t a b le (ba)

the approach taken in this thesis has been to completely deground p\ and p\ in order to relate
them to some expectation:

e = Vx com panyT ype(x,y),profitable(x)

However, this results in the loss of some important information: the fact that both of these prof
itable companies are airlines. Plotkin’s approach is to substitute variables for only those constant

188

symbols that differ. This would result in the following expectation:

e = Vx companyType(x, a ir l in e) ,p ro f itab le (x)

Taking such an approach would vastly increase the size of the set of potential expectations. How
ever it would lead to a more expressive set of expectations. Further work would demonstrate
whether this inductive generalisation approach could be exploited by the expectation generator,
thus resulting in a richer set of expectations.

Currently all representative sets are given equal weight when determining the accuracy of an
expectation. If later representative sets are given higher weighting than older ones the set of
working expectations will be more representative of current than long term trends. Further work
would determine whether and how best to weight representative sets in order that more recent
information has a greater influence on expectation values that older information. Simulations
may help to determine how these weights should decline over time (linearly, exponentially...) and
examination of real world data should suggest the frequency with which trends tend to alter and
thus what rates of decay should be applied to those weights.

In this thesis, the possibility of “typing” constant symbols has not been addressed. It may be that
typing the elements of the language used by an EVA framework would enable the identification
of expectations that generalise by type. This would result in greater expressive power.

Example 9.2.1. Let b ritish a irw ay s be a predicate symbol of type a ir l in e . Rather than gen
eralising the statement p ro f i ta b le (b r i t is h a ir l in e s) to Vx p rof itab le (x), it would be
possible to generalise by type: Vx € a i r l in e prof itab le (x).

Currently, some typing information is incorporated by means of predicates such as
a ir lin e (b r itish a irw a y s) in the set of background knowledge. Whether introducing explicit
types would increase expressive power without an excessive increase in complexity is a question
that deserves further study.

9.3 Contributions

To recap the contributions presented in Figure 1.2 on page 15, the major contributions of this
thesis are:

A framework that is of use in identifying and evaluating interesting news in a timely fashion,
presented in Chapters 2 and 3. Such a framework is presented here, with the identification
of inconsistency between news, background knowledge and expectations as the indicator
of interesting information. The framework incorporates news reports as a set of first order

189

logic facts, background knowledge as a set of first order logic facts and rules and expecta
tions as a set of first order rules. Also presented is a directed method for identifying such
inconsistencies, by means of viaducts.

A theoretical analysis of the set of all possible expectations for a language. Properties of the
set of expectations (accuracy, validity and coverage) are defined and their relation to the
relative order of expectations is proved in Chapter 4.

A method of generating a working subset of the expectation set, by exploiting the properties
of the set of expectations is defined in Chapter 5.

The Empirical work presented in Chapter 6 demonstrates that this approach generates a useful
subset of expectations.

Minor contributions are:

Modifications to the Event Calculus that support reasoning about missing events in narratives
(Chapter 7). Such a modification is necessary when dealing with streams of news reports
as it is not possible to assume that all events will be reported.

Justification of the EVA framework per se, and with respect to existing findings in the literature
can be found in Chapter 8 .

190

Appendix A

Key definitions

Definition Reference Page
Grounding set 2.2.5 18
Grounding 2 .2 . 6 18
Access rule 2.3.4 2 1

access (p, T) 2.3.5 2 1

match(p, T, A) 2.4.4 27
representatives^, T, A) 2.4.5 28
Expectation 2.5.1 29
Antecedent 3.1.1 33
Consequent 3.1.2 34
Fired 3.1.3 34
Attacked 3.1.4 35
Supported 3.1.5 36
Violated 3.1.6 37
Confirmed 3.1.7 37
fset(e,II,r, A) 3.2.1 39
aset(e, II, T, A) 3.2.2 39
sset(e,II, T, A) 3.2.3 39
vset(e, II, T, A) 3.2.4 40
cset(e, II, T, A) 3.2.5 40
accuracy(e, II, T, A) 3.2.6 40
validity(e, II,r, A) 3.2.7 41
Order over values 3.2.8 41
Marker formulae 4.1.1 57

(cont...)

191

Definition Reference Page
Implication order (X) 4.1.2 57
The set of expectations (E) 4.1.3 58
Non-firing expectation 4.2.1 70
Automatically violated expectation 4.2.2 70
Automatically firing expectation 4.2.3 71
Non-violating expectation 4.2.4 71
Self-defeating expectation 4.2.5 71
Self-reinforcing expectation 4.2.6 71
Literal layer 4.3.1 72
coveredAntecedents(M, II, T, A, minCoverage) 5.1.1 81
goodExpectations(An, II, T, A, minCoverage) 5.1.2 82
workingExpectations(An, II, T, A, minCoverage, minAccuracy) 5.1.3 83
makeGoodExpectations(Zi£era£s, repSets, minCoverage) 5.2.11 97
Full convergence 6 .1 . 2 116
Partial convergence 6.1.3 117
Canonical set 6.1.4 117
initiates and terminates rules 7.2.1 147
holds rules 7.2.2 147
start and end rules 7.2.3 148
exclusive and incompatible rules 7.2.4 149
broken rules 7.2.1 149
State model 7.2.7 150
Event rule 7.3.1 152
precedes rule 7.5.1 157
follows rule 7.5.2 159
State interpolating start and end rules 7.5.3 160
Intervening states 7.5.4 162

192

Appendix B

List of Sets and Symbols

Individual Set
Predicate Symbols P l , - ,P 2 P
Function Symbols f l •> •••> fn F
Constant Symbols fl, 6 , Cl, . Cn C
Variable Symbols Vi , . . . , v n j x , y , z V
Terms tn T
Literals <*>0,7
Groundings x ~ a , y = b... $
Report Atoms P it• ■ • j Pn n
Access Rules r
Background Knowledge A
Unground Formulae Vx a, Vy /?... M
Expectations €i, Cn E
Antecedents antecedent^!) , antecedent(en)
Consequents consequent(ei), ...,consequent(en)

193

Bibliography

[AA93]

[ACD+98]

[Bal97]

[BBJ02]

[BC92]

[BCCN94]

[BDP93]

[BH01]

[BH04]

[BH05]

[BHH+OO]

[Bre89]

Paolo Atzeni and Valeria De Antonellis. Relational database theory. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1993.

J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic detection and
tracking pilot study. In Proceedings of the DARPA Broadcast News Transcription
and Understanding Workshop, pages 194—218,1998.

Marko Balabanovic. An adaptive web page recommendation service. In W. Lewis
Johnson and Barbara Hayes-Roth, editors, Proceedings of the First International
Conference on Autonomous Agents (Agents’97), pages 378-385, New York, 5-8,
1997. ACM Press.

G Boolos, J Burgess, and R Jeffrey. Computability and Logic. Cambridge University
Press, 2002.

Nicholas J. Belkin and Bruce W. Croft. Information filtering and retrieval: Two sides
of the same coin? Artificial Intelligence, 35(12):29-38, December 1992.

John Broglio, James P. Callan, W. Bruce Croft, and Daniel W. Nachbar. Document
retrieval and routing using the INQUERY system. In Text REtrieval Conference
(TREC-3), pages 22-29,1994.

S Benferhat, D Dubois, and H Prade. Argumentative inference in uncertain and in
consistent knowledge bases. In Proceedings of Uncertainty in Artificial Intelligence
(UM’93), pages 1449-1445. Morgan Kaufmann, 1993.

Ph Besnard and A Hunter. A logic-based theory of deductive arguments. Artificial
Intelligence, 128:203-235,2001.

E. Byrne and A. Hunter. Man bites dog: Looking for interesting inconsistencies in
structured news reports. Data and Knowledge Engineering, 48(3):265-285,2004.

E. Byrne and A. Hunter. Evaluating violations of expectations to find exceptional
information. Data and Knowledge Engineering, In Press, 2005.

M. Braschler, D. Harman, M. Hess, M. Kluck, C. Peters, and P. Schuble. Evalu
ation of systems for cross-language information retrieval. In Second International
Conference on Language Resources and Evaluation (LREC). Athens, Greece, 2000.

G Brewka. Preferred subtheories: An extended logical framework for default rea
soning. In Proceedings of the Eleventh International Conference on Artificial Intel
ligence (IJCAI’89), pages 1043-1048,1989.

194

[BVSL02]

[Byr05]

[Cal98]

[CBLJ04]

[CCH92]

[Cha99]

[Che95]

[CirOl]

[CL96]

[CooOO]

[CWL99]

[Dal8 8]

[DDL+90]

[EG95]
f

[FMST01]

Maria J. Martin Bautista, Mara-Amparo Vila, Daniel Sanchez, and Henrik L. Larsen.
Intelligent filtering with genetic algorithms and fuzzy logic. In B. Bouchon-
Meunier et al, editor, Technologies for constructing intelligent systems, pages 352-
377. Physica-Verlag GmbH, 2002.

E. Byrne. Because men don’t bite dogs: a logical framework for identifying and ex
plaining unexpected news. In Workshop on Explanation Aware Computing (EXACT
2005). AAAI fall symposium, 3-6 November 2005. To appear.

Jamie Callan. Learning while filtering documents. In Proceedings of the ACM SIGIR
Conference, pages 224-231,1998.

D.P. Comey, B.E Buxton, W.B. Langdon, and D.T. Jones. Biorat: extracting biologi
cal information from full-length papers. Bioinformatics, 20(17):3206-13, November
2004.

James P. Callan, W. Bruce Croft, and Stephen M. Harding. The INQUERY retrieval
system. In Proceedings ofDEXA-92, 3rd International Conference on Database and
Expert Systems Applications, pages 78-83,1992.

Philip K. Chan. A non-invasive learning approach to building web user profiles. In
KDD99 Workshop on Web Usage Analysis and User Profiling, 1999.

H. Chen. Machine learning for information retrieval: Neural networks, symbolic
learning, and genetic algorithms. Journal of the American Society for Information
Science, 46(3): 194-216, April 1995.

F. Ciravegna. Challenges in information extraction from text for knowledge manage
ment. Intelligent Systems and Their Applications, 16(6):88-90,2001.

J Cowie and W Lehnert. Information extraction. Communications of the ACM,
39:81-91,1996.

R. Cooley. Web usage mining: Discovery and application of interesting patterns from
web data, 2 0 0 0 .

Sally J. Cunningham, Ian H. Witten, and J. Littin. Applications of machine learning
in information retrieval. Annual Review oflnformation Science, 34:341-384,1999.

Mukesh Dalai. Investigations into a theory of knowledge base revision: Preliminary
report. In Paul Rosenbloom and Peter Szolovits, editors, Proceedings of the Seventh
National Conference on Artificial Intelligence, pages 475—479, Menlo Park, Califor
nia, 1988. AAAI Press.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. Indexing by latent semantic analysis. Journal of the American
Society oflnformation Science, 41(6):391-407,1990.

T Eiter and G Gottlob. The complexity of logic-based abduction. Journal of the
ACM, 42:3-42,1995.

Mary F. Fernandez, Atsuyuki Morishima, Dan Suciu, and Wang Chiew Tan. Publish
ing relational data in XML: the silkroute approach. IEEE Data Engineering Bulletin,
24(2): 12-19,2001.

195

[FO04]

[FocOl]

[Fra92]

[FSOO]

[Fuh92]

[FuhOl]

[Gar8 8]

[GGH+92]

[GJ79]

[HDZSOl]

[HHOl]

[HM8 6]

[HS04]

[HunOOa]

[HunOOb]

[HunOOc]
/

[HunOOd]

[HunOl]

Bahadorreza Ofoghi Farhad Oroumchian, Ehsan Darrudi. XML information retrieval
by means of plausible inferences. In 5th International Conference on Recent Ad
vances in Soft Computing, pages 542-547, Nottingham UK, 2004. RASC 2004.

S. Focardi. Clustering economic and financial time series: exploring the existence of
stable correlation conditions. Technical report, The Intertek Group, 2001.

W. B. Frakes. Stemming algorithms. In W.B. Frakes and R. Beza-Yates, editors,
Information Retrieval: Data Structures and Algorithms. Prentice Hall, 1992.

Wenfei Fan and Jerome Simeon. Integrity constraints for XML. In Symposium on
Principles of Database Systems, pages 23-34,2000.

Norbert Fuhr. Probabilistic models in information retrieval. The Computer Journal,
35(3):243-255,1992.

Norbert Fuhr. Models in information retrieval. In F Crestani M Agosti and G Pasi,
editors, Lecture Notes in Computer Science 2001. Springer-Verlag, Berlin, 2001.

P Gardenfors. Knowledge in Flux. MIT Press, 1988.

D Gabbay, D Gillies, A Hunter, S Muggleton, Y Ng, and B Richards. The rule-based
systems project: Using confirmation theory and non-monotonic logics for incremen
tal learning. In S Muggleton, editor, Inductive Logic Programming. Academic Press,
1992.

M Garey and D Johnson. Computers and Intractability. W H Freeman, 1979.

Xiaofeng He, Chris H. Q. Ding, Hongyuan Zha, and Horst D. Simon. Automatic
topic identification using webpage clustering. In IEEE International Conference on
Data Mining, pages 195-202,2001.

Robert J. Hilderman and Howard J. Hamilton. Evaluation of interestingness mea
sures for ranking discovered knowledge. Lecture Notes in Computer Science,
2035:247-259,2001.

Steve Hanks and Drew McDermott. Default reasoning, nonmonotonic logics, and the
frame problem. In Proceedings of the Fifth National (U.S.) Conference on Artifcial
Intelligence, pages 328-333. Morgan Kaufman, 1986.

A Hunter and R Summerton. A knowledgebased approach to merging information.
(Submitted), 2004.

A Hunter. Merging potentially inconsistent items of structured text. Data and Knowl
edge Engineering, 34:305-332,2000.

A Hunter. Merging potentially inconsistent items of structured text. Data and Knowl
edge Engineering, 3:305-332,2000.

A Hunter. Ramification analysis using causal mapping. Data and Knowledge Engi
neering, 32:1-27,2000.

A Hunter. Reasoning with inconsistency in structured text. Knowledge Engineering
Review, 15:317-337,2000.

A Hunter. Hybrid argumentation systems for structured news reports. Knowledge
Engineering Review, 16:295-329,2001.

196

[Hun02a]

[Hun02b]

[Hun02c]

[IG01]

[KP98]

[KS85]

[KS97]

[KW87]

[Lal97]

[LB98]

[LHC97]

[LLH05]

[LM98]

[Loz94a]

[Loz94b]
/

[LV04]

A Hunter. Logical fusion rules for merging structured news reports. Data and Knowl
edge Engineering, 42:23-56,2002.

A Hunter. Measuring inconsistency in knowledge via quasi-classical models. In
Proceedings of the National Conference on Artificial Intelligence (AAAI’02), pages
68-73. MIT Press, 2002.

A Hunter. Merging structured text using temporal knowledge. Data and Knowledge
Engineering, 41:29-66,2002.

N. Ikizler and H. A. Gvenir. Mining interesting rules in bank loans data. In A. Acan
et al, editor, Proceedings of the Tenth Turkish Symposium on Artificial Intelligence
and Neural Networks, pages 238-246, Gazimagusa, Cyprus, 2001. TAINN.

S Konieczny and R Pino Perez. On the logic of merging. In Proceedings o f the Sixth
International Conference on Principles of Knowledge Representation and Reasoning
(KR’98), pages 488-498. Morgan Kaufmann, 1998.

Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of events. In
Foundations o f Knowledge Base Management (Xania), pages 23-55,1985.

Robert Kowalski and Fariba Sadri. Reconciling the situation calculus and event cal
culus. Journal o f Logic Programming, 31:39-58,1997.

J De Kleer and B Williams. Diagnosing mulitple faults. Artificial Intelligence, 32:97-
130,1987.

M. Laimas. Dempster-shafer’s theory of evidence applied to structured documents:
modelling uncertainty. In ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 110-118,1997.

M. Laimas and P.D. Bruza. The use of logic in information retrieval modelling.
Knowledge Engineering Review, 13:1-33,1998.

Bing Liu, Wynne Hsu, and Shu Chen. Using general impressions to analyze discov
ered classification rules. In Knowledge Discovery and Data Mining, pages 31-36,
1997.

W. Liu, Z. Liao, and J. Hong. Query cost estimation through remote system con
tention state analysis over the internet. Web Intelligence and Agent Systems: an In
ternational Journal, To appear, 2005.

J. Lin and A.O. Mendelzon. Merging databases under constraints. International
Journal of Cooperative Information Systems, 7(l):55-76,1998.

E. Lozinskii. Information and evidence in logic systems. Journal of Experimental
and Theoretical A.I., 6:163-193,1994.

E. Lozinskii. Resolving contradictions: A plausible semantics for inconsistent sys
tems. Journal of Automated Reasoning, 12:1-31,1994.

M. Laimas and P. Vannoorenberghe. Indexation et recherche de documents XML par
les fonctions de croyance (modelling XML retrieval with belief functions). In Pre
miere Conference en Recherche dTnformation et Applications (COR1A’04), 2004.

197

[McC99]

[MH69]

[Mor90]

[MS94]

[MS96]

[MS02]

[OP87]

[OYOl]

[PAOO]

[PB97]

[PC98]

[Plo70]

[Plo71]

[Plo93]

[POT69]

[PR93]

J. McCarley. Should we translate the documents or the queries in cross-language
information retrieval? In 37th Annual Meeting of the Association for Computational
Linguistics, pages 208-214,1999.

John McCarthy and Patrick J. Hayes. Some philosophical problems from the stand
point of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelli
gence 4, pages 463-502. Edinburgh University Press, 1969.

Leora Morgenstem. Knowledge and the frame problem. International Journal of
Expert Systems, 3(4):309-343,1990.

Rob Miller and Murray Shanahan. Narratives in the situation calculus. Journal of
Logic and Computation, 4(5):513-530,1994.

Rob Miller and Murray Shanahan. Reasoning about discontinuities in the event cal
culus. In Proceedings of the 5th International Conference on Principles o f Knowl
edge Representation and Reasoning (KR96), pages 63-74. Morgan Kaufmann, 1996.

R Miller and M Shanahan. Some alternative formulations of the event calculus.
In Computational Logic: Logic Programming and Beyond, volume 2408 of Lecture
Notes in Computer Science, pages 452-490. Springer, 2002.

A. Ortony and D. Partridge. Surprisingness and expectation failure, what’s the dif
ference? In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, pages 106-108,1987.

Masayuki Okabe and Seiji Yamada. Interactive document retrieval with relational
learning. In Proceedings of the 2001 ACM symposium on Applied computing, pages
27-31,2001.

R. Papka and J. Allan. Topic detection and tracking: Event clustering as a basis for
first story detection. In W. B. Croft, editor, Advances in Information Retrieval, pages
97-126. Kluwer Academic Publishers, 2000.

Michel Pazani and Daniel Bilsus. Learning and revising user profiles: The identifi
cation of interesting web sites. Machine Learning, 27:313-331,1997.

Jay M. Ponte and W. Bruce Croft. A language modeling approach to information
retrieval. In Research and Development in Information Retrieval, pages 275-281,
1998.

G D Plotkin. A note on inductive generalization. Machine Intelligence, 5:153-163,
1970.

G. D. Plotkin. A further note on inductive generalization. Machine Intelligence,
6:101-124,1971.

S. Pious. The psychology of judgment and decision making. McGraw-Hill, London
- New York, 1993.

Chaim Perelman and L. Olbrechts-Tyteca. The New Rhetoric: A Treatise on Argu
mentation. University of Notre Dame, 1969.

J. Pinto and R. Reiter. Temporal reasoning in logic programming: A case for the
situation calculus. In Proceedings of the International Conference on Logic Pro
gramming, pages 203-221,1993.

198

[Pro96] Alessandro Provetti. Hypothetical reasoning: From situation calculus to event calcu
lus. Computational Intelligence Journal, 12(3):478-498,1996.

[PSM94] G. Piatetsky-Shapiro and C. Matheus. The interestingness of deviations. In KDD-94,
Seattle, WA, 1994.

[PT98] Balaji Padmanabhan and Alexander Tuzhilin. A behef-driven method for discover
ing unexpected patterns. In Knowledge Discovery and Data Mining, pages 94-100,
1998.

[PTRV98] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh Vem-
pala. Latent semantic indexing: A probabilistic analysis. In Proceedings of the
Seventeenth ACM S1GACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS98), pages 159-168,1998.

[Qui90] J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239-
266,1990.

[Rei78] R Reiter. On closed world databases. In H Gallaire and J Minker, editors, Logic and
Databases, pages 55-76. Plenum Press, 1978.

[Rei87] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57-
95,1987.

[Rev97] P Revesz. On the semantics of arbitration. International Journal of Algebra and
Computation, 7:133-160,1997.

[Rie94] P. Resnick N. Iacovou M. Suchak P. Bergstorm J. Riedl. GroupLens: An Open Archi
tecture for Collaborative Filtering of Netnews. In Proceedings of ACM 1994 Confer
ence on Computer Supported Cooperative Work, pages 175-186, Chapel Hill, North
Carolina, 1994. ACM.

[RIS+94] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. GroupLens: An Open
Architecture for Collaborative Filtering of Netnews. In Proceedings of ACM 1994
Conference on Computer Supported Cooperative Work, pages 175-186, Chapel Hill,
North Carolina, 1994. ACM.

[RLDL97] B. Rehder, M.L. Littman, S. Dumais, and T.K. Landauer. Automatic 3-language
cross translation information retrieval with latent semantic indexing. In Proceedings
ofTREC6, pages 233-239. NIST, 1997.

[RR01] J. F. Roddick and S. Rice. What’s interesting about cricket? - on thresholds and
anticipation in discovered rules. SIGKDD Explorations, 3(1): 1-5,2001.

[Sah99] Sigal Sahar. Interestingness via what is not interesting. In Knowledge Discovery and
Data Mining, pages 332-336,1999.

[SC95] M Schafer and M Cadoli. Tractable reasoning via approximation. Artificial Intelli
gence, 74:249-310,1995.

[SchT9] R. Schank. Interestingness: Controlling inferences. Artificial Intelligence,
12(3):273-297,1979.

[Sch90] L.K. Schubert. Monotonic solution of the frame problem in the situation calculus:
An efficient method for worlds with fully specified actions. In R. Loui H. Kyburg
and G. Carlson, editors, Knowledge Representation and Defeasible Reasoning, pages
23-67. Kluwer, 1990.

199

[Sek03]

[Sen98]

[SGD+02]

[Sha93]

[Sha97]

[SHWA03]

[SKKROO]

[SKROl]

[SPKOO]

[SPU02]

[SS94]

[ST95]

[ST96]

[THOl]
v

[TKS02]

Yohei Seki. Sentence extraction by tf/idf and position weighting from newspaper
articles. In Proceedings of the Third NTCIR Workshop on research in information
Retrieval, Automatic Text Summarization and Question Answering, 2003.

Jean Senellart. Locating noun phrases with finite state transducers. In COLING-ACL,
pages 1212-1219,1998.

S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy. An analysis of internet
content delivery systems. In Proc. of the Fifth Symposium on Operating Systems
Design and Implementation (OSDI)., 2002.

C. E. Shannon. A mathematical theory of communication. In N. J. A. Sloane and
A. D. Wyner, editors, Claude Elwood Shannon: Collected Papers, pages 5-83. IEEE
Press, New York, 1993.

Murray Shanahan. Event calculus planning revisited. In Sam Steel and Rachid
Alami, editors, Recent Advances in AI Planning, 4th European Conference on Plan
ning, ECP’97, Toulouse, France,, Lecture Notes in Computer Science, pages 390-
395. Springer, 1997.

M. Surdeanu, S. Harabagiu, J. Williams, and P. Aarseth. Using predicate-argument
structures for information extraction. In Proceedings of the ACL, Sapporo, Japan,
pages 8-15. ACL, 2003.

Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. Analysis
of recommendation algorithms for e-commerce. In ACM Conference on Electronic
Commerce, pages 158-167,2000.

J. Ben Schafer, Joseph A. Konstan, and John Riedl. E-commerce recommendation
applications. Data Mining and Knowledge Discovery, 5(1-2):115-153,2001.

Ingo Schwab, Wolfgang Pohl, and Ivan Koychev. Learning to recommend from pos
itive evidence. In Intelligent User Interfaces, pages 241-247,2000.

Andrew I. Schein, Alexandrin Popescul, and Lyle H. Ungar. Methods and metrics for
cold-start recommendations. In Proceedings of the 25th annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2002.

L Sterling and E Shapiro. The Art of Prolog. MIT Press, 1994.

Abraham Silberschatz and Alexander Tuzhilin. On subjective measures of interest
ingness in knowledge discovery. In Knowledge Discovery and Data Mining, pages
275-281,1995.

A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge dis
covery systems. IEEE Trans. On Knowledge And Data Engineering, 8:970-974,
1996.

L. Terveen and W. Hill. Beyond recommender systems: Helping people help each
other. In J. Carroll, editor, HCI in the New Millennium, pages 487-509. Addison
Wesley, 2001.

P. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for
association patterns. In Proceedings of the Eight ACM SIGKDD International Con
ference on Knowledge Discovery and Data Mining, pages 32-41,2002.

200

[UF98]

[Voo99]

[War92]

[WB01]

[YCB+99]

[ZCM02]

[ZSOl]

L. Ungar and D. Foster. Clustering methods for collaborative filtering. In Proceed
ings of the Workshop on Recommendation Systems. AAAI Press, Menlo Park Califor
nia, 1998.

Ellen M. Voorhees. Natural language processing and information retrieval. In SC IE,
pages 32-48,1999.

S. Wartik. Boolean operations. In W.B. Frakes and R. Beza-Yates, editors, Infor
mation Retrieval: Data Structures and Algorithms, pages 264-292. Prentice Hall,
1992.

P. Wong and P. Besnard. Paraconsistent reasoning as an analytic tool. L.J. o f the
IGPL, 9(2):217-229,2001.

Yiming Yang, Jaime Carbonell, Ralf Brown, Tom Pierce, Brian T. Archibald, and Xin
Liu. Learning approaches for detecting and tracking news events. IEEE Intelligent
Systems, 14(4): 32^13,1999.

Y. Zhang, J. Callan, and T. Minka. Novelty and redundancy detection in adaptive
filtering. In Proceedings of the ACM SIGIR, pages 81-88,2002.

Byoung-Tak Zhang and Young-Woo Seo. Personalized web-document filtering using
reinforcement learning. Applied Artificial Intelligence, 15(7):665-685,2001.

201

Index

access rules, 21,40
accuracy, 37, 39,40,49, 50,63,109,113
accuracy threshold, 114,115
accuracy, book, 49
actionability, 8,10
antecedent, 31, 56,58
antecedent order, 58, 59,62
antecedent, atomic, 72
antecedents, generalising, 64
antecedents, logically equivalent, 61,64
antecedents, order of, 67,69,78
aset, 61,71
assumptions, 9
attacked, 34, 36,55, 58,60
automatically firing expectation, 70
automatically violated expectation, 70

background knowledge, 7
belief revision, 177
best match retrieval, 170

canonical set, 105,115,124
change in state, 143
cohort violations, 41-44,101,183
cold start problem, 168,173
collaborative filtering, 167,173
confirmation theory, 37
consequence order, 56,58,59,62,65
consequence relation, 56,57, 63, 71
consequent order, 58,61,67,69,78
consequent, atomic, 72
consequents, logically equivalent, 61
constant symbols, 17
contrapositive, 63
convergence, 105,113,124
coverage threshold, 114,115
coveredAntecedents, 89

Dalai distances, 179
databases, 23
degrees of interest, 9
degrounding, 84, 86
degrounding symbols, 105

deviations, 10,176
directed graph, 143
domain facts, 23
domain rules, 23, 24
duration, 143

entities, 25
event record, 141
event rules, 149
event type, 143
event types, 142,143
ex falso quodlibet, 31
exact match retrieval, 169
expectation, 9
expectation order, 55,61
expectations, logically equivalent, 61
explanation, 11
extrinsic interest, 8-10

fset, 61,71
function symbols, 17

general impressions, 175
Generalised Modus Ponens, 21
ground predicate, 17
grounding, 18
grounding set, 18

inductive generalisation, 184
inductive logic programming, 180
information filtering, 6, 10,167
information overload, 6
information retrieval, 6,10, 167,169
intrinsic interest, 9,10
inviolable expectation, 70

KEFIR, 176
knowledge discovery in databases, 8
knowledgebase merging, 177

latent semantic indexing, 170
literal, 17
literal layer, 71

202

machine learning, 179
makeCoveredAntecedents, 84
makeGoodExpextations, 89
makeWorkingExpectations, 83
marker formulae, 55-57,78
mergers and acquisitions, 24
minAccuracy, 82, 83,100
missing states, 13,166

news atoms, 21
news reports, 30, 37
non-convergence, 126
non-firing expectation, 69

partially ground, 101
period, 145
precision, 105,115,116,126-134,137,138
predicate symbols, 17
probabilistic retrieval, 170

quantified formulae, 71

recall, 105,113,115,126-134,137,138
reinforcement learning, 180
relevance, 7, 8, 10,167
report, 20,21,31,32, 96
representative set, 106
representative set generator, 106, 107, 117—

119,126,137
representative sets, 37,182
representative sets, weighting, 185
representatives^, T, A), 27

scenarios, 105
self-defeating expectation, 71
self-reinforcing expectation, 71
sequence of events, 146
sequence of states, 146
set of expectations, 71
similarity, 105
simulation, 182
simulations, 104-106, 116, 117, 119, 120,

123,125-127,130,132,133,135,
137,138

situation calculus, 141-143
specif case expectations, 69,78
sset, 71
Standard Industry Classification codes, 24
state, 25,140-145
state dependent expectation, 41,44,166
state interpolation, 141,152,165,183
state model, 141,143,146,147

state rules, 141,149
state transition, 143
state, unrecorded, 141
states, 25,147,148
stemming, 169
strength, 55
structured news report, 19, 20
structured text, 19, 30
subterm, 17
supported, 35, 36, 38, 55,100
surprise, 9,10
symbols, typing of, 27

term, 17
term frequency, 169
timepoint, 25
timepoints, 25,142,143,165
topic detection and tracking, 168,174
typing symbols, 185

unconditional formulae, 55
unground predicate, 17
unreported events, 154
unsupervised learning, 179,180
user interface, 29
utility, 8

variable symbols, 17
vector space model, 170
violation, 37
vset, 61

working expectation generator, 13,104,106,
113-120,122, 125-138

Yale Shooting Problem, 141

203

