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“Science is a wonderful thing if one does not have to earn one’s living at it.”

Albert Einstein



A b s t r a c t

Sym m etry Breaking and Directed Transport of
Cold Atom s in Optical Lattices

M alika G oonasekera, U n iversity  C ollege London

Ph.D. Thesis, November 2004

The central theme of this thesis is the directed transport of cold atoms in op­

tical lattices. Several methods for producing such an outcome are proposed, ex­

perimentally realised and characterised, in both dissipative and non-dissipative 

regimes. Accordingly, this thesis may be thought to be composed of two parts.

The first section reports results of directed transport in non-dissipative opti­

cal lattices, where we used the atom optics realisation of the delta-kicked rotor 

(DKR) as a model system. Initial experiments performed on this system showed 

evidence of dynamical localisation, the signature of quantum chaos, and we ex­

ploited the presence of the momentum boundary (a barrier to diffusion arising 

from the approximation of delta-kicks with finite width impulses) to produce 

asymmetric momentum diffusion.

Breaking the DKR system symmetries produced directed diffusion due to 

chaotic dynamics alone. We observed directed transport in a spatially symmetric 

system whenever temporal symmetry was broken, and also when the spatial and 

temporal symmetry of the DKR were simultaneously broken.

We also report the first experimental evidence for a ‘double-DKR’, where 

experiments performed using a kick sequence composed of closely spaced pairs 

of kicks instead of single kicks caused significant alterations in the observed 

behaviour of the kicked rotor system. The origin of this new behaviour was 

explained in the framework of kick-to-kick correlations and our results were



found to be in excellent agreement with numerical simulations.

The second part of this thesis describes the realisation of a Brownian ratchet 

in a 3D dissipative lattice, where fluctuations between different potential sur­

faces acted as the source of noise. These fluctuations were rectified by the 

application of a periodic, bi-harmonic driving force, which broke the tempo­

ral symmetry of the system. Both current reversal and stochastic resonance 

behaviour characteristic of a Brownian ratchet were observed.
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C h a p t e r  1

Introduction

The manipulation of atoms with laser light is a highly active research area cur­

rently, with its significance recognised by Nobel prizes in 1997 and 2001 for 

the techniques of laser cooling and Bose-Einstein condensation respectively. Of 

particular relevance to this thesis are cold atoms in optical lattices. These or­

dered samples of atoms in periodic potentials created by light form a versatile 

experimental test-ground for many phenomena, ranging from Bragg scattering 

studies in (defect-free) optical lattices similar to the investigations of crystalline 

structures in solid state physics to Mott-insulator transitions in Bose-Einstein 

condensates similar to those occurring in superconducting materials in con­

densed matter physics. Directed transport studies in particular are useful in 

modelling molecular motors and, as electronics continue to shrink in size, may 

have future applications in studies of electron transport in nanoscale circuitry.

The subject of this thesis is the directed motion of laser-cooled caesium 

(Cs) atoms in optical lattices, a regular array of potential wells formed by the 

interference pattern of several laser beams. This presents a highly tunable 

environment for experiments since most parameters can be easily adjusted by 

changing the properties of the laser fields involved. For instance, the amount 

of noise in the system can be varied by changing the detuning from resonance 

of the laser beams comprising the lattice. In all cases, preferential motion of

1



2

the atoms is derived in the absence of any external bias by simply breaking the 

spatial and temporal symmetries of the system.

This thesis can be roughly divided into two sections according to the amount 

of noise present in the system. In the first part, the laser beams are detuned 

far from resonance such that the momentum diffusion of atoms may be studied 

in a system with a very low decoherence rate and where the forces involved are 

deterministic. It is now possible to realise a delta-kicked rotor, the paradigm 

model for studying quantum chaotic behaviour. Secondly, the lasers are brought 

much closer to resonance to increase the photon scattering rate and directed 

motion is generated in a dissipative regime where a Brownian motor may be 

actualised.

The structure of this thesis is as follows. Chapter 2 introduces the laser 

cooling techniques used in preparing cold Cs atoms and the methods used for 

data collection and analysis. A brief introduction to quantum chaos, the delta- 

kicked rotor (DKR) and some experimental results confirming the presence of 

quantum chaotic behaviour are given in Chapter 3. The approximation of delta- 

kicks by pulses of finite temporal width causes a modulation of the diffusion 

constant describing atomic energy growth. Chapter 4 demonstrates how this can 

be used to produce asymmetric momentum diffusion when used in conjunction 

with our moving lattice technique to vary the initial atomic momentum. This 

chapter also includes an investigation of directed transport in a mixed phase 

space, where asymmetric momentum diffusion can be achieved by engineering 

stable structures in the DKR phase space.

Chapter 5 reports the results of two ways in which directed diffusion may 

be generated in a non-dissipative system. Firstly, the optical potential is pulsed 

according to a two-period kick sequence to break the temporal symmetry of the 

system. This introduces a cosinusoidal momentum dependence into the diffusion 

constant that can be exploited to produce asymmetric diffusion. The addition 

of a linear potential gradient that alternates sign with successive kicks to this 

system breaks the spatial symmetry of the lattice and provides a second mech­

anism for directed transport. In Chapter 6, asymmetric momentum diffusion is
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made possible by non-negligible kick-to-kick correlation terms in the diffusion 

constant that axise when a sequence of closely spaced kick pairs is used to pulse 

the optical lattice.

Chapter 7 contains the results of an experimental realisation of a Brownian 

ratchet, where directed diffusion results from the rectification of noise in the 

optical lattice. This system is unusual because the source of fluctuations in the 

system is optical pumping between potential surfaces of the different ground 

state sub-levels. Finally, Chapter 8 concludes this thesis with a brief summary 

of the salient results and a discussion of experiments planned for the future.
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Cold atom  preparation

This section presents an introduction to magneto-optical trapping, the tech­

niques used to trap and cool atoms that underlie all the experiments described 

in this thesis and describes the experimental setup at UCL. As ways of cooling 

atoms were historically developed before they were trapped, discussion begins 

with laser cooling, methods designed to produce a narrow velocity distribu­

tion centred near zero velocity and increase atomic phase space density, before 

outlining trapping schemes.

Once the atoms are trapped and cooled, they are localised in an optical 

lattice created by the interference pattern between several laser beams. The 

lattices involved differ in type depending on the nature of the experiment. Ex­

periments investigating quantum chaos and transport in non-dissipative regimes 

use a simple far-detuned, ID lattice formed by overlapping two beams whilst the 

realisation of a Brownian ratchet requires a near-resonant, 3D optical potential 

(covered in greater detail in Chapter 7).

The final section in this Chapter describes the how the preceding theory 

is realised experimentally using our magneto-optical trap. As all experiments 

described herein are conducted using caesium (Cs) atoms, all numerical values 

refer to Cs unless otherwise stated.

4



2.1. Laser cooling and trapping 5

2.1 Laser cooling and trapping

Laser cooling and trapping techniques has opened up new avenues in physics re­

search by allowing unprecedented control over atoms and atomic motion. Atom 

trapping experiments regularly cool up to 109 atoms down to micro-Kelvin tem­

peratures, thus enabling precision measurements of the spectroscopic properties 

such as atomic transition frequencies and lifetimes for use in atomic clocks. 

Magneto-optical traps are also used to cool atoms to low enough temperatures 

where it is possible to form optically bound lattices. Magneto-optical trapping 

is also the first stage en route to a Bose-Einstein condensate after which evapo­

rative cooling is used to increase the phase space density of the trapped atoms 

to reach the quantum degenerate regime.

The importance of these developments has been recognised by Nobel Prizes 

awarded to proponents of this field from Claude Cohen-Tannoudji, William 

Phillips and Steven Chu for the development of cooling and trapping techniques 

in 1997 and the 2001 Nobel to Wolfgang Ketterle, Carl Wieman and Eric Cornell 

for the achievement and early experiments on a Bose-Einstein condensate [1].

2.1.1 Doppler Cooling and optical molasses

Letokhov (as cited in [2]) first suggested the use of radiation pressure to trap 

atoms in 1968. This was later followed by proposals for trapping ions from 

Wineland and Dehmelt [3] and for cooling neutral atoms from Hansch and 

Schawlow [4] in 1975. The basic mechanism in laser cooling is the conservation 

of energy and momentum in a cycle of photon absorption and emission.

Consider the simple example of a two-level atom moving in a light field 

created by two counter-propagating laser beams tuned slightly below atomic 

resonance (i.e. red detuned). A beam propagating in the opposite direction to 

the atom is Doppler-shifted closer to resonance, whilst the beam propagating 

in the same direction as the atom is red-shifted further away from resonance. 

Absorbing a photon causes an atom to recoil in the direction of incident light 

but the Doppler shift causes a difference in the number of photons scattered
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Figure 2.1: The force as a function of atomic velocity for an atom illuminated by two 
counter-propagating beams. The horizontal axis shows the dimensionless parameter 
2kv/F, where k =  2tt/A is the laser wavevector and T is the natural linewidth. The 
force due to a single beam is shown by the dotted lines, whilst the solid line gives the 

total force of the two beams combined.

from each beam, resulting in a net velocity-dependent force that opposes the 

motion of the atom. Due to the involvement of the Doppler shift in this process, 

it is known as Doppler cooling.

An analytical form for the force is difficult to find but it can be shown 

that each laser beam exerts a force with a Lorentzian velocity dependence [5], 

the form of which is sketched in figure 2.1. At low intensities and for small 

velocities |w|, the total force on the atom (solid line) can be found by summing 

the contributions from each beam (dotted lines). For laser excitation with light 

of frequency ojl that is tuned below the atomic transition frequency u>a by an 

amount A  = ujl — uJa (called the detuning), the total force F  is:

F  = - 0 v  (2.1)

where P is the damping coefficient.

The velocity dependence in equation 2.1 is important because it allows for 

compression of the atomic velocity distribution. Atomic velocities are damped 

towards v =  0 provided that they initially fall inside the velocity capture range, 

corresponding to the linear region of figure 2.1.
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This situation can easily be extended to three dimensions by using six laser 

beams to form three orthogonal standing waves such that the atom is illuminated 

from all directions and will everywhere see a viscous damping force opposing its 

motion. As similar equations govern the motion of a particle in viscous medium, 

the cooled atoms are referred to as an optical molasses.

At low intensities the excited atoms decay via spontaneous emission, which is 

a stochastic process. Because the direction of the emitted photon is uncorrelated 

with the direction of absorption, spontaneous emission causes no net change 

in the atomic momentum when averaged over a large number of absorption- 

emission cycles.

The change in the atomic momentum caused by the recoil due to a single 

spontaneous emission event is analogous to a step in a random walk characterised 

by a diffusion constant D. This can be used to quantify the final kinetic energy 

of the atoms (similar to the analysis of Brownian motion) using k s T  =  -j.

A more detailed, three-dimensional analysis taking into account the fluctuat­

ing number of photons absorbed (as cited in [6]) yields the Doppler temperature, 

To, defined as the Doppler cooling limit that occurs when the mean atomic ki­

netic energy is equal to the energy width of the cooling transition:

kBTD = ^  (2.2)

where 7 is the natural linewidth of the excited state. The radiative lifetime of 

this state ^ = 30 ns for the 6P |  state of Cs. This corresponds to a Doppler 

temperature of To =  125 pK  and a ID velocity of vd = ■\JkBM D ~  9 cms-1 .

2.1.2 Sub-Doppler cooling

The first experiments on an optical molasses of sodium atoms, conducted by Lett 

et al, reported surprisingly low temperatures of 40 pK  [7], far below the pre­

dicted Doppler temperature of 240 pK. To explain their results it was necessary 

to drop the simplified model of a two-level atom and consider the field polari­

sation and the effects of optical pumping between hyperfine states [8, 9, 10].
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In the one-dimensional case of two counter-propagating beams with orthogo­

nal, linear polarisations, called the lin_Llin configuration, the polarisation of the 

resultant standing wave varies rapidly over the one wavelength. It changes from 

being linear to circularly polarised after an eighth of a wavelength, to orthog­

onal linear at £ through to opposite circular polarisation over half an optical 

wavelength, as drawn in figure 2.3.

The linXlin scheme is most simply explained using a fictitious atom with a 

Jg = 1/2 -¥ Je = 3 / 2  transition, for which the squared Clebsch-Gordan (Cge) 

coefficients and necessary polarisations are shown in figure 2.2. The magnitude 

of the a.c. Stark shift or light shift depends on the Cge coefficients, which in 

turn depend on the magnetic quantum number and polarisation of the light 

field, so the light shift is different for different magnetic sub-levels.

By comparing the Cjje coefficients, we can see that for pure a+ light the 

M g = + |  sub-level experiences a shift that is three times larger than that of 

the M g = — |  state and vice versa at sites of a "  polarisation. Polarisation 

gradients therefore lead to a periodic spatial modulation of the light shift of the 

energy levels [11]:

U±(z) = y  [-2  ±  cos(2kLz)] (2.3)

for the ground (plus) and excited (minus) states where Ll is the laser wavevector 

and where

ft2
° “  3 A2 + r 2/4 (2- )

where T is the natural linewidth of the transition and fi =  ~ê '° {e\r\g) is the 

definition of the on-resonance Rabi frequency for a transition with Clebsch- 

Gordan coefficient Cge «  1 for an atom at position coordinate r.

The cooling mechanism relies on optically pumping an atom nearing the top 

of one potential hill into the lower lying state, figure 2.4. Each optical pumping 

event emits a photon of higher energy than that absorbed, thereby dissipating 

energy into the radiation field.
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| e, -3/2 >  | e, -1/2 >  |e, +1/2 >  |e, +3/2 >
 -̂--------------   F----------  71------------ 7

n , x  /  , /
\  \  /  /

\  1 \  /  1 /
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Figure 2.2: The C%e coefficients and required polarisations for a Jg =  1/2 —► Je =  3/2
transition.

lin lin cF lin

7J2

Figure 2.3: The variation in the polarisation of the standing wave formed by two 
counter-propagating laser beams with orthogonal, linear polarisations ex and ey in the

lin X lin configuration.
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This process continues until the atom no longer has enough kinetic energy 

to climb another hill. The atoms become localised in the potential wells and 

form an optical lattice with long range order and a regular structure reminiscent 

of a crystal (see for instance [11, 12, 13, 14] and references therein for a more 

thorough discussion of optical lattices).

Because of the parallels between this scheme and the punishment meted out 

to the legendary king of Corinth (to spend eternity pushing a boulder up a 

hill only for it roll down just before reaching the top) [15] it is called Sisyphus 

cooling.

Two counter-propagating, circularly polarised beams generate another sub- 

Doppler cooling process known as a+a~ polarisation gradient cooling. For this 

configuration, the amplitude of the polarisation remains uniform everywhere 

but the direction of the polarisation vector changes by 2n over one wavelength 

and is discussed in [8].

Sisyphus cooling has maximum efficiency when the atomic velocity is such 

that an atom moves one quarter of a wavelength between optical pumping 

events. It can be shown that the friction coefficient in this case is larger than 

that of Doppler cooling by a factor of 2 ^  but the momentum diffusion con­

stant is of the same order so the final temperature is lower than the Doppler 

temperature by about the same factor [5].

So far we have considered a fictious Jg = 1/2 —► Je = 3/2 transition but 

a real atom is more complex. Hyperfine splitting means any energy level is 

actually a manifold of 2F  -I- 1 potential surfaces, where F  = I  + J  labels the 

total angular momentum of that state (J  is the total angular momentum of 

the electrons and I  is nuclear spin). Magnetic quantum numbers therefore do 

not adequately describe the system because the eigenstates of the light shift 

operator are no longer pure Zeeman states but rather different superpositions 

of the magnetic sub-levels, except at sites of pure circular polarisation. The 

description of Sisyphus cooling outlined above, however, remains applicable in 

the case of a F  —> F' = F  + 1 transition, as in our cooling scheme [11].

The Sisyphus cooling phase can be considered to be at an end once the atoms
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Figure 2.4: Schematic representation of Sisyphus cooling for a Jg =   ̂ —► Je =  § 
transition. An atom climbing up a potential hill is preferentially pumped into the 
lower lying magnetic ground state. As the photon absorbed has a lower frequency 
than the emitted photon some of the atomic energy is lost with each optical pumping 
event and this process continues until the atoms do not have enough kinetic energy to 

climb any more hills and become localised in the potential wells.
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ie>

Figure 2.5: Intra-well cooling. Optical pumping between different potential surfaces 
continues to cool the atoms once Sisyphus cooling ends.

have lost enough kinetic energy to become localised in the potential wells but 

(stochastic) optical pumping between different potential surfaces can further 

lower the atomic temperatures. This process, known as intra-well cooling, is 

pictured in figure 2.5.

At the very centre of the potential well, the polarisation is purely circular 

and there is little possibility of a transition to a different potential surface. 

Although the atoms cannot escape from the wells, they retain enough kinetic 

energy to oscillate about the bottom of the wells. As they move away from 

the centre of the well they can see some light of the opposite polarisation and 

experience a non-zero probability of a transition into a different sub-level. The 

atoms lose energy when they are pumped into a lower lying potential surface, 

which further reduces the temperature of the ensemble.

2.1.3 M agneto-optical trapping

Optical molasses itself is not a trap. As the optical Earnshaw theorem implies, 

a scattering force proportional to light intensity will have zero divergence and 

form an unstable trap as the atoms are free to diffuse until they reach the 

surface of the interaction region and escape. Trapping and cooling ions had 

been experimentally achieved by 1985 [16] but trapping neutral atoms proved a 

more difficult task until Jean Dalibard suggested adding an external magnetic
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Figure 2.6: A 2D representation of the principles behind a MOT, showing the Zeeman 
splitting of the energy levels for a Jg = 0 —> Je = 1 transition. The excited level Je is 
split into three sublevels, with transitions to each state driven by different polarisations 
(top left box). If illuminated by two counter-propagating beams tuned below the 
resonance frequency (bottom left box) and of the appropriate polarisation, the atoms 
experience a position-dependent restoring force and are pushed towards the origin

2 =  0 (right box).

field to alter the linear dependence of force on intensity such that the optical 

Earnshaw theorem no longer applied. The first magneto-optical trap based on 

this principle was successfully demonstrated by Raab et al in 1987 [17]. A stable 

trap is produced by using a weak external magnetic field gradient to introduce a 

position-dependent force on the atoms. The interaction between the atom and 

the magnetic field, called the Zeeman effect, causes a small, position-dependent 

shift in the atomic energy levels. The magnitude of the splitting is proportional 

to the magnetic field strength,B:

A E  =  M j g j p s B  (2.5)

where p b  is the magnetic dipole moment of the atom, gj is the Lande g-factor 

and M j  is the magnetic quantum number.

Figure 2.6 depicts the Zeeman splitting for a two-level atom with a fictional 

Jg = 0 -> Je = 1 transition. A weak magnetic field B =  bzz with a linear 

field gradient splits the first excited state of the atom into three sub-levels, 

M j  =  0, ±1. The spatially varying shift in the energy of the excited state



2.1. Laser cooling and trapping 14

leads to a spatially varying scattering rate when the atoms are illuminated by 

circularly polarised light that can drive transitions between the magnetic sub- 

levels.

For two beams counter-propagating in the z-direction that are circularly 

polarised as shown in figure 2.6, atoms with positive z co-ordinates will see the 

M j  =  — 1 level shifted closer to resonance, scatter more a~ photons than a+ 

photons and be pushed towards the origin. In the atomic frame of reference, 

the polarisation of the light field is the same everywhere so atoms moving in 

the negative z direction will also be pushed towards z = 0. Thus in addition 

to the viscous damping force on their velocity, the atoms also experience a 

position-dependent restoring force, F  as kz  for small z. The only requirement 

for confinement is that the atomic velocity is sufficiently low for the atomic 

magnetic moment to adiabatically follow changes in the field direction, which 

generally holds for laser cooled atoms.

Both types of Sisyphus cooling mechanisms mentioned in the previous section 

are present in a real 3D molasses due to its complex polarisation topography 

[18], so sub-Doppler temperatures are possible to attain in MOTs. That the 

final temperature in a MOT is proportional to the light shift and below the 

Doppler limit has been shown many time in literature, for example [19, 20, 21].

The cooling transition in caesium is 62S i/2(F  =  4) -> 62P3/2(F  =  5) D2 

line but occasional off-resonant optical pumping into the 625 i/2(F  =  3) ground 

state is possible because the hyperfine splitting between the Fe = 4 and Fe = 5 

hyperfine states is small. This ends the cooling cycle as this sub-level is too 

far from resonance for further excitation. Hence a second repumper laser is 

required to introduce a small amount of light resonant with the 62£ i/2(F  = 

3) -> 62P3/2(F  =  4) transition to close the cooling cycle. A schematic of the 

energy levels structure of Cs (showing the magnitude of the hyperfine splitting) 

is given in figure 2.7.

The very first experimental MOTs were loaded from chirp-cooled atomic 

beams but Carl Wieman’s group showed it was possible to load a MOT from 

just background vapour [22]. This experimentally easier method is the one we
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Figure 2.7: The hyperfine energy level structure of caesium. The cooling transition is 
the 62Si /2(F =  4) —► 6 2P3/ 2(F =  5) D2 line and the repumper is 625 i/2(F =  3) —>

62P3/2(F =  4).
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adopt, using a standard six beam MOT with a vacuum cell filled with dilute 

Cs vapour. The cell is surrounded by anti-Helmholtz coils and three circularly- 

polarised standing waves, one in each orthogonal direction, that intersect in the 

region of zero magnetic field.

The trap density is limited by fluorescence from some atoms being absorbed 

by others and also by collisions but there are various methods of increasing 

trap density should it be necessary, including ‘dark MOTs’ [23]. Several other 

configurations for MOTs axe also possible, for example mirror-MOTs that trap 

atoms near the surface of a current carrying conductor [24] and pyramid MOTs 

[25].

In addition, there are two other basic types of trap: optical dipole traps 

and magnetic traps. Optical dipole traps use the force exerted on the induced 

electric dipole of an atom when it is in a  radiation field whereas magnetic traps 

utilise the splitting of energy levels in the presence of a magnetic field but neither 

of these traps cool. A detailed discussion of such traps can be found in [5, 2].

The MOT, however, remains by far the most popular choice for the experi­

mentalist for reasons of practicality, ease and low cost of assembly and robust­

ness. We use a MOT because it combines cooling and trapping; it is possible to 

switch from one process to the other by simply changing the detuning of the laser 

fields and switching off the magnetic coils. A MOT can tolerate some intensity 

mismatch and beam misalignment, as well as not requiring pure polarisations 

to operate.

2.2 A note on recoil units

Recoil units provide a useful way of quantifying the dynamics of cold atoms in 

optical lattices. The recoil energy, Er = is defined as the kinetic energy 

an atom gains by absorbing a photon and the corresponding recoil frequency, 

ujr = = 27r x 2.1 kHz for caesium (Cs).

The absorption of a  single photon causes the atom to recoil in the direction 

of incident light and change its velocity by an amount called the recoil velocity
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vr = j j - ,  where Ma is the mass of the atom, k is the laser wavevector, h =  

=  1.054 x 10-34 Js rad-1 and h is Planck’s constant.27T

2.3 Experim ental Setup

The setup of the quantum chaos experiments differs significantly from that of 

the Brownian ratchet experiments but there are large parts of the apparatus 

that remain unchanged and do not need to be reviewed twice. This section 

will therefore provide an account of the experimental set-up designed to achieve 

a MOT, which is common to both, and leave more detailed discussion of the 

experimental method to the relevant sections.

M O T configuration

A schematic of our experimental setup is presented in figure 2.8. The MOT 

beams are derived from a single ‘trap’ laser that is seeded by a 100 mW grating- 

stabilised ‘master’ diode laser. The linewidth of the master laser is narrowed 

using a reflection grating to feed back the first order into the laser, known as the 

Littrow configuration, and results in a marked narrowing of the laser linewidth 

but also a considerable loss of output power which is why a master-slave setup 

is used. The 150 mW slave diode lasers take on the spectral characteristics of 

the master laser by preferentially amplifying the frequency mode seeded by the 

master laser with no significant loss of output power.

The output of the trap laser is passed thorough an acousto-optic modulator 

(AOM) that shifts the frequency of the beam down by 80 MHz. The zero 

order from the trap AOM is passed through yet another 80 MHz AOM and the 

emerging -1 order used as the imaging beams. The -1 order of the trap AOM is 

split into three beams of approximately equal intensity using a combination of 

beam-splitting cubes and halfwave-plates for use as the trap beams.

They are manipulated such that they are incident on a vacuum chamber in 

all three orthogonal directions and retro-reflected to form the three standing 

waves required for trapping and cooling. Quarterwave-plates in front of the
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vacuum chamber ensure that the polarisations axe as described in section 2.1.3 

and correct for trapping.

A few mW of another 100 mW, grating-stabilised ‘repumper’ diode laser is 

passed through an AOM and the -1 order overlapped with the trap beams to 

provide the repumping light.

Coarse adjustment of the laser frequency is accomplished by changing the 

laser diode current and fine tuning by adjusting the voltage to a piezo-electric 

crystal to rotate the diffraction grating. The frequencies of the master and 

repumper laser beams are set relative to the appropriate transition by using 

saturated absorption spectroscopy. A small part of each beam is picked off 

using a beamsplitter, retro-reflected through a Cs vapour cell and passed on to 

a photodiode to get the saturated absorption signal. The principle behind this 

scheme is described in much greater detail (but for rubidium) in [26].

The master laser is used to seed a second ‘slave’ laser, referred to as lattice 

laser, that produces the lattice beams used to create the near-resonant lattice 

used in the Brownian ratchet experiments (discussed in greater detail in Chapter 

7) and a separate Titanium:Sapphire laser (not shown) is used to form the far- 

detuned ID optical potential used in the quantum chaos experiments.

The vacuum chamber of our MOT contains dilute caesium vapour at about 

10~9 mBar and is surrounded by two water-cooled anti-Helmholtz coils that 

produce a magnetic field gradient of around 10 Gauss per cm across the trapping 

region. Three additional sets of magnetic coils in the Helmholtz configuration 

are used to produce a uniform field to compensate for the terrestrial field of a 

few hundred milliGauss.

An excellent description of the construction of a standard 6-beam MOT can 

be found in [27], whilst specific details about how the MOT used at UCL was 

built may be found in [28].

E xperim ental cycle

The atoms are first trapped and cooled in the MOT for around 2 seconds be­

fore the anti-Helmholtz coils are switched off and they are cooled in an optical
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molasses for a further 25-30ms. The temperature of the atoms at this point 

is about 6/zK. The next stage depends on the nature of the experiment: the 

atoms are loaded into a far-detuned ID optical lattice for quantum chaos ex­

periments or into a 3D near-resonant lattice for directed motion experiments in 

the dissipative regime.

The lattice beams are then switched off and atoms are allowed to ballistically 

expand for 10-20 ms before being exposed to near resonant light and imaging 

the fluorescence on a cooled CCD camera. The images are recorded in 8-bit 

tiff format using a WinView program that averages five frames (therefore five 

experimental cycles) per photo and are analysed using Matlab. The momentum 

distribution can be directly inferred from the spatial distribution of the scattered 

light. A Matlab program calculates the background-corrected first and second 

moments of the atomic momentum distribution:

JPN(P)dP
< " >  -  TWpW (2-6)

/ 2) _  f p 2N(p)dp
{P > f  N(p)dp (2-7)

In the case of our chaos experiments, equation 2.6 is directly equivalent to 

the mean momentum and \{p2) to the mean energy of the atomic distribution. 

In the Brownian ratchet experiments, equation 2.6 may be used to calculate the 

centre of mass velocity. These assumptions remain valid so long as the initial 

distribution remains narrow N(x,  0) N (x,t) .

A second program calculates the normalised momentum distributions for 

each measurement and in both programs the error in each data point is cal­

culated using the standard deviation of the five frames averaged to give the 

intensity distribution N(p).

The whole experimental sequence takes around three seconds and is con­

trolled by a LabView program that can be used to alter most experimental 

parameters. It governs the timing of the experiment (how long the atoms are 

held in the MOT and molasses, for example) and also controls the rf frequency
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to the AOMs and the current to anti-Helmholtz coils, as well as switching all 

the laser beams, the magnetic field gradient and the camera shutter.

2.4 Summary

Laser-cooling caesium atoms is the starting point for all the experiments per­

formed in this thesis. These are well established techniques, discussed many 

times in literature, so this chapter has presented only a basic introduction to 

the theoretical concepts involved in preparing cold atoms and how they axe im­

plemented experimentally. A detailed description of the construction and early 

characterisation of the MOT used in all our experiments can be found in [28].

The crucial part of the experiments lie in what is done to the cold atoms after 

they are cooled and before they are imaged. The various techniques involved 

in this phase differ significantly between experiments so are dealt with in the 

relevant sections, beginning with some introductory experiments on quantum 

chaos in the next chapter and concluding with the realisation of a Brownian 

ratchet (Chapter 7).



C h a p t e r  3

Quantum chaos

This chapter begins with a brief history of chaos and introduces classically 

chaotic behaviour using the concept of a delta-kicked rotor, a freely rotating 

rotor that is subjected to a series of instantaneous impulses. This model sys­

tem is then extended to provide a phenomenological description of quantum 

chaos. This chapter concludes with experimental results showing dynamical 

localisation, a quantum interference effect that results in the suppression of dif­

fusive energy growth and characterises the presence of quantum chaos in the 

delta-kicked rotor.

3.1 Introduction to  chaos

The study of dynamical chaos originated from Henri Poincare’s solution to a 

problem posed at a contest in honour of King Oscar II of Sweden and Norway 

in the late nineteenth century. The apparent descriptive completeness of New­

tonian mechanics had prompted a question regarding the future stability of the 

universe to which Poincare submitted the winning response. He showed that 

this generalisation of the three body problem did indeed have a stable solution.

Published to much acclaim, all copies were later withdrawn when it was 

pointed out his proof contained a serious error. Poincare reworked his solution 

and republished his findings as the prize-winning entry but, contrary to his

22
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previous attempt, now concluded that the stability of the solar system could 

not be guaranteed.

This prompted further study leading to his most famous conclusion: ‘small 

differences in initial conditions produce very great ones in the final phenomena’ 

[29] and was the beginning of a new branch of mechanics now called classical 

chaos. In 1917 Einstein published a paper questioning how chaos manifested 

itself in the quantum regime [29] but interest in quantum mechanics and a lack 

of available computing power shifted focus away from non-linear dynamics.

Progress stagnated until the mid-twentieth century when Edward Lorenz, 

a meteorologist, rediscovered chaos in weather patterns when he re-ran a com­

puter simulation with very slightly different starting conditions and found widely 

diverging outcomes. Mathematicians Steven Smale and Philip Yorke revived 

interest in studying non-linear oscillators in the 1970s whilst Robert May, a 

biologist with a background in theoretical physics, discovered period-doubling 

in animal population growth and decline.

The key concept of universality, developed by Mitchell Feigenbaum, allows 

all non-linear systems to be analysed using the same general method of discrete 

mappings. Another important work to emerge was the Kolmogorov-Arnold- 

Moser (KAM) theorem for calculating the effect of small perturbations on the 

regular structure of systems and identify those perturbations causing the system 

to exhibit chaotic behaviour.

No real world system can be described by linear dynamical equations but 

by neglecting noise and other dissipative effects we can construct simplified, 

deterministic model systems that yield useful results and proven predictions - 

the most successful of which is quantum mechanics, linked to classical physics by 

Bohr’s Correspondence Principle that states the results of classical mechanics 

should be recovered in the macroscopic limit.

The advances made in the field of atomic physics, some of which are cata­

logued in Chapter 2, has made it possible to create systems with high enough 

quantum numbers that enable physicists to test the Correspondence Principle 

and thus investigate if classically chaotic behaviour has a quantum analogue in
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the semiclassical regime. The study of such systems is generally called quantum 

chaos.

Classical studies of chaos depend on the precise knowledge of initial con­

ditions but such measurements are constrained by the Uncertainty Principle 

in quantum systems. At first glance, therefore, it would appear that it is not 

possible to observe chaos on the quantum scale. This apparent contradiction 

of the Correspondence Principle was later explained by Feynman’s path inte­

gral formulation of quantum mechanics, which states that a quantum system 

will display the complexities of the underlying classical system. The quantum 

dynamics of classically chaotic systems can exhibit signatures of chaos such as 

‘quantum scars’ (regions of enhanced probability in the wavefunction that cor­

respond to classical periodic orbits) [30, 31] but also purely quantum effects like 

tunnelling [32].

Chaos can be found in surprisingly simple systems like the driven pendulum 

[33], the double pendulum [34] and in hydrogen atoms in magnetic [35] or mi­

crowave [36] fields. Many experimental studies have modelled quantum billiards 

using microwaves in cavities [37] or looked at chaotic transport in semiconductor 

superlattices [38] but the most utilised model is possibly the delta-kicked rotor 

(DKR). First proposed by Graham et al in 1992 [39], it has been thoroughly 

studied by many other groups since [40, 41, 42, 43]. Its popularity with exper­

imentalists stems from the high degree of control available over experimental 

parameters and its ease of implementation.

The DKR was first realised using cold atoms in an optical lattice by Mark 

Raizen’s group at the University of Texas [44] and this is the model system 

we adopt for our investigations into directed motion. To date, it has been 

used to investigate dynamical localisation (the quantum suppression of classical 

diffusion) [45]; chaos-assisted tunnelling [46]; and quantum resonances, where 

the effect of successive kicks accumulate constructively and the energy growth 

is described by anomalous diffusion [47].
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3.2 The delta-kicked rotor

The classical delta-kicked rotor (DKR) is a freely rotating rotor, suspended in 

space and subjected to instantaneous pulses or kicks. In this instance consider 

a molecule (simplified to a dipole) kicked by a pulsed electric field of amplitude 

e<). For this planar rotor disturbed by a series of delta-function pulses according 

to (t — nT) for time t and kick period T, the Hamiltonian is a function of 

angular momentum, angle and time:

H (L , d,t) = -I- ntocos(6) ^ 2  ~ n T ) (3.1)

where I  is the moment of inertia, 0 is the angle the rotor makes with the vertical 

axis, n  is the dipole moment and L  here represents angular momentum. The 

rotor evolves freely in time until a kick abruptly changes its angular momentum 

to value dependent on the angle of the rotor to the electric field at the moment 

it receives the kick. This free evolution is described by the first term in the 

Hamiltonian and the effects of the kick by the second term in equation 3.1. 

Hamilton’s equations of motion axe given by the first derivative of equation 3.1:

dH
L — — =  fieosinS W  -  n T ) (3-2)

d i ~  i  (3 3)
This deceptively simple system has no analytical solution. If Ln,0n label

the angular momentum and angle immediately prior to kick number n and

Ln+i,0n+i are their values preceding kick number n +  1, the solution to the

above equation can be described by a standard mapping [48] that is found by

integrating the equations of motion with respect to time:

ln+1 = In Ksin{9n)

0n-1-1 =  0n “I" ln+1 (3-4)

where ln = L n j  is the scaled angular momentum and the stochasticity parame­

ter, K  =  peoT2/1, describes the strength of the kick. Iterations of the standard
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Figure 3.1: Poincare surfaces of section for several values of the stochasticity param­
eter, K  =  0 .5 ,1 .0 ,2 .0  and 5.0. The red and blue lines join up successive iterations 
of the standard map, thereby plotting changes in the rotor energy over time. When 
K  =  0.5 (below the critical value K crit =  0.96), the phase space mainly comprises 
of stable islands and invariant curves that keep the rotor bounded in momentum. A 
trajectory started on stable island remains confined on it (green line). As the kick 
strength increases, phase space becomes more chaotic with fewer regions of integrable 
motion remaining. Correspondingly, the trajectories explore a larger part of the DKR  

phase space and the energy of the classical DKR grows diffusively.

mapping for a given set of initial conditions can be plotted as points on a two- 

dimensional stroboscopic plot called a Poincare surface of section. Figure 3.1 

shows four such sections of cylindrically symmetric phase space for K =  0.5, 1, 2 

and 5 and two possible trajectories in each. The plots show 300 iterates of initial 

conditions 0o = ir ,/0 =  —27r -I- m n/20  for m  = 0,1, ...,80. The coloured lines 

illustrate the divergent behaviour of two trajectories started very close together 

by joining the points denoting successive iterations for two closely spaced initial 

conditions (0,1) = (0.7hn, 7r) and (0,1) =  (0.75057T, 7r).

The phase space predominantly shows stable trajectories or tori (solid black 

lines in figure 3.1) for small values of K  that break up to form chaotic regions 

as the kick strength increases. The stable trajectories corresponding to regular 

motion are called K AM surfaces or invariant curves since all iterations beginning 

on the curve will be mapped back on to it.

The quasi-elliptical contours form wdiat are called ‘stable islands’ and the
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unbroken lines stretching across the are known as sealing curves. These cor­

respond to different types of regular motion. In the case of a pendulum, for 

example, the stable islands correspond to libration but the sealing curves de­

note continuous rotation where the pendulum goes over the top. The number 

of stable islands depends on the magnitude of K. Beyond K  «  5, there are no 

significant stable structures remaining and the phase space is said to be globally 

chaotic.

From figure 3.1 it is clear that sealing curves must be crossed if the rotor is 

to gain momentum with each kick. However, if any tori did intersect it would 

mean two distinct futures shared the same past and violate causality. In effect, 

the KAM surfaces restrict the rotor energy growth by separating non-integrable 

regions of phase space. Correspondingly, the trajectories shown by the red and 

blue lines for K  =  0.5 in figure 3.1 are restricted to a very small region of phase 

space by KAM tori and any trajectory started on or joining a stable island 

remains confined to it, as shown by the green line on figure 3.1.

As the stochasticity parameter is increased, the separatrix (the demarcation 

between chaotic and regular regions) breaks up and chaotic regions begin to 

appear. At the critical value of the stochasticity parameter numerically deter­

mined by Greene [49] and estimated by Chirikov [48], K crit = 0.96, the final 

invariant curve (the so-called Golden Torus [50]) is destroyed and the rotor is 

able to absorb energy from the external driving field.

The mean energy of an ensemble of rotors can be written:

where the correlation function is given by an ensemble average over all

phase space:

n —1

(3.5)

Cm—m' ( K s i n d m s i n d m ' ) .  (3 .6)

These kick-to-kick correlations are short-time correlations because they only 

depend on the time difference (m  — m '). In the limit of large K, 9n is assumed to
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be fully randomised such that the trajectories of equation 3.4 perform a random 

walk in phase space and the rotor energy grows diffusively and without limit. 

The growth rate is described by E  = Dqit, where the quasi-linear diffusion 

constant Dqi is given by:

D„  *  ^  (3.7)

The diffusion constant D (K ) deviates from its quasi-linear value because 

of non-zero kick-to-kick correlations at small K. A more thorough analysis by 

Rechester et al [51] that takes into account of higher order correlations shows 

that the diffusion constant now has an oscillatory dependence on K  that varies 

about its quasi-linear value Dqi :

D(K)  =  -  J2(K) -  J*(K) + J l (K )  + ...] (3.8)

to the second order in Bessel functions of K. These higher order kick-

to-kick correction terms become very important later, in the case of directed 

motion (Chapter 5).

3.2.1 The quantum delta-kicked rotor

The quantum delta-kicked rotor (QDKR) can be treated with analogy to the 

classical case by replacing the angular momentum and angle variables by their 

respective operators, L  —>• L = —ihd/dB  and 0 —> 0, and iterating the rotor 

wavefunction \fr using a mapping operator that is the time evolution operator 

of the rotor over one period r  of the driving force:

[(n +  1) r] =  t/tf  (t = nr) (3.9)

The system Hamiltonian comprises a kick operator and a free evolution

operator that governs the system between kicks, U(t , 0) = UfreeUkick, where

the free evolution operator is given by:

Ufr„  = (3.10)
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and the kick operator can be written:

Ukick =  (3.11)

Whereas K  completely specifies the classical kicked rotor, the quantum case 

is described by two independent control parameters (r describing the free evo­

lution operator, k the kick operator) that multiply to give the stochasticity pa­

rameter K  = tk and an effective Planck’s constant fie// (where |̂ L, #J =  iheff)  

the unit of system action that governs how classical or quantum a system is.

The quantum case diverges from the classically predicted diffusive energy 

growth and saturates because of a quantum interference effect known as dy­

namical localisation. This is discussed in more detail in section 3.3.

Another purely quantum effect found in a delta-kicked rotor system is a 

quantum resonance. Whenever r  is an integer multiple of n, the kick evolution 

operator is unity and the phase of the momentum eigenstates is not randomised 

between consecutive kicks. The momentum imparted by each kick accumulates 

constructively and leads to enhanced transport such that ballistic (quadratic) 

energy growth may be observed instead of dynamical localisation. Quantum 

resonances have been thoroughly studied experimentally by Oberthaler et al 

[52] and by others in [53, 54, 55].

The presence of stable islands also cause deviations from quasi-linear diffu­

sion. Structures that influence the system dynamics exist at any value of K, 

even when K  > 4 and phase space is considered globally chaotic. In particu­

lar, stable structures dubbed accelerator modes result whenever AT is a rational 

multiple of 27t because of the periodicity of phase space in momentum [47]. 

The position of these stable accelerator modes coincide with the maxima of the 

diffusion constant, which has an oscillatory dependence on AT as shown by equa­

tion 3.8. Trajectories are attracted towards the accelerator modes and ‘stick’ 

to their boundaries for a large but finite number of kicks, thereby reducing 

transport. The introduction of this correlated behaviour (called Levy flights) 

modifies the random-walk nature of diffusive energy growth (from E  = Dt to 

E  = Dt^,fi  ^  1). This is known as anomalous diffusion and has been experi­
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mentally demonstrated by Klappauf et al [47].

3.2.2 Cold atom  realisation of the delta-kicked rotor

The cold atom realisation of the delta-kicked rotor (DKR) is one of the most 

commonly used models to study chaotic dynamics as its simplicity makes it 

easy to implement experimentally. Consider the behaviour of an atom in a 

one-dimensional standing wave of laser light: if the detuning of laser beam is 

much larger than the natural linewidth, the internal structure of the atom can 

be neglected and it can be treated as a point particle in a sinusoidal optical 

potential arising from the spatial variation of the AC Stark shift. Pulsing this 

1-D optical lattice on for very short times simulates the delta-kicking. The 

Hamiltonian H  describing the motion of the atom in this potential is analogous 

to that of a driven rotor with the exception that H  is now a function of position, 

momentum and time H  = H (x ,p ; t ) rather than angular momentum and angle:

H  = r l  +  V<>cos(2kLx) Y ,  f ( t  ~ «T)  (3.12)
n

where Vo is the potential depth, M  is the atomic mass, k^ is the laser wave vec­

tor and the last term describes a train of integer n square pulses of width tp

separated by a period T  (where tp T). The equivalence of this model to 

the DKR can be seen if position, momentum and time are scaled to get to the 

dimensionless form of the Hamiltonian:

H = £  + K co s(< l> )Y f(T -n )  (3.13)
n

where scaled position <f> = 2kl x , scaled momentum is given by p =  (4ttT / M A) p 

and scaled time r  =  t /T .  The scaled Hamiltoninan is therefore TL =  he%T H.

The commutation relation [<j>, p] = i8urT  defines the scaled unit of system 

action or effective Planck’s constant heff = 8u rT  where u)r =  2n x 2.1 kHz 

is the recoil frequency for the Cs D2 line. The stochasticity parameter is now 

given by:
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K  =  (3.14)

and the potential depth Vq:

T  = T x l W  <315>
for intensity I  and saturation intensity I8at =  1.12 mWcm-2 for the Cs D2 

cooling transition. The natural linewidth of the cooling transition is T =  27r x 

5.22 MHz and A is the detuning from resonance.

The stochasticity parameter can be experimentally controlled in three sep­

arate ways: by changing the potential depth, the pulse duration tp and by the 

effective Planck constant he//  via the kick period T. Due to the high degree of 

control available over experimental parameters, the cold atom realisation of the 

DKR is often used to investigate quantum chaos.

3.2.3 Experimental setup

The caesium atoms are first trapped and cooled to around 6 /zK, as described in

Chapter 2. These atoms are then transferred into a far-detuned optical lattice

that is pulsed to simulate the delta-kicks. The lattice beams are derived from a 

single Coherent1 MBR-110 Titanium:Sapphire (Ti:S) ring laser pumped by an 

8W frequency-doubled neodymium-doped yttrium orthovanadate (Nd:YV04 ) 

Verdi laser. The laser output is passed through an acousto-optic modulator 

(AOM) and retro-reflected through the MOT vacuum cell to form a ID intensity 

lattice. A halfwave-plate ensures the correct, linear polarisation of the lattice 

beams. The schematic of the experimental setup is shown in figure 3.2.

The Ti:S has a maximum output power of 1W at 852 nm, the Cs D2 line. 

Such large power is required because the potential depth Vo oc / /A  but the scat­

tering rate oc I / A 2, so the lattice beams must be detuned by several thousand 

linewidths for coherent momentum transfer. If the scattering rate is too high,

1 Coherent Inc. S100 Patrick Henry Drive, Santa Clara, CA 95054, USA, www.cohr.com.

http://www.cohr.com
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Figure 3.2: A schem atic of the experim ental setup used to study dynamical locali­
sation. The laser beam  is retro-reflected through the Cs vapour chamber to form a 
ID  lattice. Fast-switching of the acousto-optic m odulator(AOM ) pulses the lattice to

sim ulate delta-kicking.

decoherence destroys dynamical localisation by making atomic diffusion possible 

once more [56] and the signal-to-noise (SNR) ratio becomes unacceptably low.

Coarse tuning of the Ti:S is achieved by micrometer adjustm ent of an intra­

cavity birefringent plate whilst monitoring the wavelength on a wavemeter. The 

frequency can then be scanned over a 40 GHz range using the control panel tha t 

fine tunes a pair of intra-cavity Brewster plates. It is set a t resonance with the 

Cs D2 line by using a beam splitter to send a small part of the beam through 

a Cs vapour cell and scanning for fluorescence. We do not lock the frequency 

using a reference cavity since the Ti:S frequency output is stable (less than 1% 

change) over about 15 minutes, and any drift is compensated for by resetting 

the frequency periodically.

A Crystal Technology2 3080-112 AOM controls the frequency of each beam 

and enables fast switching of the beam when triggered by a fast rf switch from 

Mini-circuits3. It is driven by a Rohde & Schwarz4 SMY01 rf generator at a 

frequency /  =  80 MHz. The maximum diffraction efficiency into the first order 

of the AOM is around 70% at 852 nm and there are slight losses at optical

2Crystal Technology Inc. 1040 East Meadow Circle, Paulo Alto, CA 94303, USA.
3Mini-circuits Europe, Dale House, Wharf Road, Frimley Green, Camberly, Surrey, GU16 

6LF, www.minicircuits.com.
4Rohde & Schwarz GmbH & Co. KG Miihldorfstrasse 15, D-91671, Miinchen, www.rohde- 

schwarz.com.

http://www.minicircuits.com
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interfaces that attenuate the power to about 680 mW per beam. A variable 

voltage source is used to control the lattice beam intensity by attentuating the 

amplitude of the rf sent to the AOM.

A kick sequence of fixed duty cycle rf =  ^  is used to trigger fast rf switches 

controlling the rf to the AOMs through which the Ti:S beams pass. The pulse 

sequence is first drawn out using a CAD program that breaks up the whole 

sequence into 1024 pixels. This limits the possible pulse lengths for a given 

duty cycle rf = ^  as they must be a whole number of pixels. These sequences 

are uploaded to a Thurlby Thandar5 TGA1230 arbitrary waveform generator 

where the duration of each pixel is specified. The minimum it is possible to 

assign is 33.33 ns per pixel but in practice the minimum pulse time is restricted 

by the rise time of the AOM to about 100ns. The generator is also used to set 

the number of kicks by looping the sequence (or part sequence) the required 

number of times.

A combination of changes to the beam intensity and detuning is used to 

set the stochastcity parameter. The error in K  is estimated at around ten per 

cent, largely attributed to inaccuracies in measuring the Ti:S beam diameter 

and intensity. The diameter of the Ti:S beam must be sufficiently greater than 

that of the atomic cloud if we are to infer that all atoms are subject to the 

same value of K .  If the beam is of a comparative or smaller size, the intensity 

variation in the beam profile suggests atoms towards the edge of the cloud will 

be subject to lower intensities and thus experience a smaller K.

In this case the e-1 beam diameter is 1.38 ±  0.05 mm and is larger than 

the width of the atomic cloud, estimated to be «  1 mm. The likelihood of 

any variation in K  affecting the results is further reduced by only processing a 

narrow strip of around 40 pixels taken through the centre of the cloud.

5Thurlby Thandar Instruments Ltd., Glebe Road, Huntingdon, Cambridgeshire, PE29 
7DR, www.tti-test.com.

http://www.tti-test.com
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Figure 3.3: Num erical sim ulations of classical and quantum  energy growth for various 
values of the effective P lanck’s constant is here denoted by a  E h e/ f  =  0 ,0 .2 5 ,1 .2 5 , 
courtesy of [59]. T he quantum  case deviates from the classically predicted energy 

growth and instead saturates after the break tim e V  (dotted lines).

3.3 Dynamical localisation

Numerical simulations have shown th a t contrary to the diffusive energy growth 

seen in the classical case when phase space is chaotic the quantum  kicked rotor 

follows the classical energy growth for only a short time before it deviates and 

the energy saturates, see figure 3.3. This quantum  suppression of classical diffu­

sion is known as dynamical localisation and has been experimentally observed 

in many different systems. It is seen in Rydberg atoms in a microwave field 

where the relative probability of ionisation is suppressed compared to classical 

predictions [57, 58], in the dissociation of molecules by a strong monochromatic 

field [48] and in atom  optics realisations of the kicked rotor [45, 44].

Dynamical localisation has been formally explained by analogy with Ander­

son localisation of electron transport in disordered solids in [60] but a simpler 

explanation can be given in term s of a  destructive interference effect by consid­
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ering the evolution of the atomic wavefunction following a kick:

| * „ +1) =  | *„) (3.16)

where | \&„) =  ^  C{ | 4>i) can be expanded in terms of its momentum eigen­

states 4>i of the potential.

The first exponential in equation 3.16 is the free drift term, the part of the 

operator governing the time evolution of the system between kicks. The second 

term specifies the kick operator, K .  Note the frequency of the phase evolution 

depends on the momentum p of each eigenstate. As atoms are kicked to higher 

momenta, the frequency of the phase evolution increases. The wavefunction is 

projected over an increasingly larger number of momentum states and eventually 

there are enough different frequency components for destructive interference. 

The system can no longer absorb energy and the momentum growth is ‘frozen 

out’.

Thus the quantum case follows the classically expected diffusive energy 

growth only for a short break time, <*, before saturating, as shown in figure 

3.3. The break time, and hence the level at which the quantum DKR energy 

growth saturates, depends on the effective Planck’s constant:

<* «  £5-  (3-17)
D_

l e f f

The break time is defined by the time taken to reach the saturation energy 

value of the quantum DKR should the energy growth follow the classical growth 

rate, illustrated by the dotted lines in figure 3.3.

Experimentally, dynamical localisation manifests itself with a characteristic 

exponential momentum profile [60, 48]. Figure 3.4 presents a series of normalised 

momentum distributions plotted on a natural log scale where dynamical locali­

sation is evidenced by the straight lines forming the wings of the distribution.

For this experiment, the Ti:S output is passed through an acousto-optic 

modulator (AOM) and retro-reflected through the cell to form a ID intensity 

lattice that is pulsed by fast switching of the AOM to simulate the delta-kicks.
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Figure 3.4: Numerical simulation (top) and experimental results (bottom) of dynam­
ical localisation he/f  for various numbers of kicks. The simulation is for K  =  5, 2000 
kicks with momentum labelled I and the experimental results for K  = 3.4, hefj = 1 
(momentum labelled p =  I). As the number of kicks increase, the energy saturates 

and the distribution becomes dynamically localised.
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The intensity of the Ti:S beam is approximately I  = 3000Isat, which gives a 

potential depth Vo/heff  = 8.2 MHz.

The optical lattice is detuned by roughly 2000 natural linewidths to give K  = 

3.4 ±  0.3 and a low photon scattering rate of around 500 s-1 . This corresponds 

to about 2 x 10-4 scattering events per kick so ensures a good signal-to-noise 

ratio and coherent momentum transfer.

The distributions shown are for a kick sequence with pulses of duration 

tp = 417 ns. The period between kicks T  — 9.47 /zs, giving heff = 1. The 

lattice is pulsed according to a bi-periodic kick sequence T(1 — 6) : T ( l  + b), 

b = 0.2. The chirp parameter b is discussed in detail in Chapter 5, suffice 

it to say that chirping kicks enlarges the non-integrable regions in phase space 

thereby allowing greater experimental freedom and the experiment to be carried 

out a lower value of K.

With no localisation present, the momentum distribution is a Gaussian, 

as shown by the unkicked distribution (black line). The distribution shows 

straighter sides after 6 kicks (red line) but it is not quite yet the triangular 

momentum profile signifying dynamical localisation. As the number of kicks 

increase, the wings of the distribution become straighter and extend further 

away from the origin until the system can be said to be fully localised after 60 

kicks (dark blue line) because of the near overlap between it and the 90 kicks 

distribution (light blue). The signal noise at low N(p)  is amplified by plotting 

the distributions on a natural log scale and the discontinuities in the plots result 

from the background subtraction done when processing the results in Matlab.

Previous studies have shown that the presence of any decoherence in the 

system can destroy the effects of dynamical localisation [61], so it is important 

to have a low scattering rate in future experiments exploring this regime.

The localised momentum distributions can be expressed using the form 

N(p) = exp(—p/L) ,  where L is the localisation length and can be used to 

characterise dynamical localisation. The localisation length is given by [62]:
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K 2
L *  J r ~  (3-18)Crieff

The factor of 1/4 was determined numerically by Shepelyansky [63] and is spe­

cific to the case where the rotor evolution is described by the Standard Map 

(i.e. periodic kick sequences). The localisation length is related to the break 

time by:

t* »  t -~ - (3.19)
eff

In a plot of ln[N(p] vs p, the localisation length is given by d[ln^ pW =  - j - .  A 

linear fit to to the wings of the momentum distribution can therefore be used to 

estimate L. Figure 3.5 presents our results for the average localisation length L 

as a function of the square of the stochasticity parameter K 2. This experiment 

is conducted similarly to the previous one, with the exception that the kick 

sequence employed here is periodic such that equation 3.18 remains valid. The 

gradient given by a linear fit (red line) to this plot is 4»a according to equation 

3.18 so can be used to  estimate the effective Planck’s constant of the system.

In calculating L here, the gradient of a wing is measured from only the 

middle portion of the dataset; the da ta  near the peak is unreliable because the 

spatial and velocity distributions are not deconvolved from each other and we 

also neglect the very noisy data  at the edge of the distribution. Note that the 

vertical scale on the plot of experimental data  in figure 3.4 is regardless labelled 

N(p), since at no point in this thesis do we deconvolve the two distributions.

The value of K  is varied by adjusting the rf level to the acousto-optic mod­

ulator controlling the lattice beams. The minimum value of K  used is 3.4, so 

that phase space is predominantly chaotic, and the maximum possible value 

(K  =  12.8) is limited by noise. In each case the beams are 3000r detuned from 

resonance and the kick sequence used has 30 pulses of tp = 307 ns at intervals of 

T  = 20.4ps, which corresponds to an effective Planck’s constant of hef f  =  2.2. 

A quick calculation of the standard map break time for the largest value of K  

used, y  =  5, suggests 30 kicks is ample to guarantee dynamical localisation.
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The localisation lengths are calculated as before but the distributions are 

first smoothed by five point adjacent averaging. A momentum distribution is 

shown for one of the data points, specifically K  = 5.5, in the inset of figure 

3.5. The data gives a value of he//  =  2.9 ±  0.3, in close agreement with what is 

expected. Any deviation at large K  is most likely due to a high scattering rate 

(over 900 scattering events per second) that resulted in decoherence, whilst the 

presence of stable islands affects diffusion (hence L) at small K.

3.4 Summary

This chapter presents some background to the topic of chaos and describes how 

the delta-kicked rotor, a paradigm model for studying quantum chaos, can be 

implemented using cold atoms in a pulsed ID optical lattice. The results of two 

simple investigations into the signatures of quantum chaos illustrate the validity 

of using this model: the first showing dynamically localised momentum distri­

butions with their characteristically triangular profiles and a second experiment 

demonstrating the expected scaling of the localisation length with the effective 

Planck’s constant of the system.
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P ulse shape effects in the  
delta-kicked rotor

The closest experimental approximation to delta-kicks we can achieve is a train 

of square pulses of narrow but finite temporal width tp. This approximation 

causes deviations from the expected behaviour of the DKR by modulating the 

kick strength such that it falls to zero at certain momenta. This ‘momentum 

boundary’ limits the phase space available for atomic diffusion to within the 

confines of a certain range of momenta, the width of which depends on the 

pulse duration tp.

This chapter presents experimental evidence for the presence of the momen­

tum boundary and describes how it may be used in conjunction with the moving 

lattice technique to achieve asymmetric momentum diffusion. The moving lat­

tice method (detailed in section 4.2) may also be used to explore the regions of 

phase space beyond the boundary.

4.1 The m om entum  boundary

The momentum boundary is a barrier to diffusion arising from the approxima­

tion of delta-kicks by finite width pulses. Initially studied by Bliimel et al in the 

context of molecular rotation excitation [48] and later for cold atoms in a pulsed 

optical potential by Mark Raizen’s group at the University of Texas [62], the

41
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presence of the momentum boundary in the cold atom realisation of the DKR 

is most easily explained in terms of the semiclassical picture of an atom moving 

in a ID potential.

As the atom moves a finite distance over the duration of a kick, the overall 

value of the kick strength must be averaged over tp. If the atom travels a 

whole lattice period during one kick, the kick strength averages to zero and 

the atom is said to have reached the momentum boundary. This occurs when 

p = pb = ± M \ / 2 t p, or in dimensionless units:

MX2 T

A more detailed analysis by Klappauf et al [64] has shown that the stochasticty 

parameter is related to the pulse shape through its Fourier transform which, for 

a square pulse, leads to a momentum-dependence in K  of the form:

=  K sin(np/pb) 
nP/Pb

The positions of the momentum boundaries correspond to the zeroes of the 

equation 4.2, with the first boundary given by equation 4.1.

Figure 4.1 depicts the rotor phase space for finite width kicks and for 120 

iterations of the standard map when K  = 5.3. The momentum boundary is 

at pt, =  42.5 =  13.57T and all trajectories are started within p — ±pb (left 

panel). The rotor phase space is predominantly chaotic but restricted to a strip 

p = 2pb wide. That is to say, diffusion is limited to the region encompassed by 

momentum boundary for atomic trajectories started within ±pb.

An enlargement of the region around the momentum boundary with trajec­

tories started either side of pb (right panel) reveals a narrow, integrable band 

parallel to the position (<f>) axis. There is no energy growth in this area but 

chaotic regions in which diffusive energy growth is possible can be found either 

side of pb.

Figure 4.2 presents results showing the effect of the momentum boundary 

on an atomic distribution prepared around p = 0. The experimental procedure
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Figure 4.1: The rotor phase space for K  = 5.3, 120 kicks w ith the m om entum  boundary  
at pi  =  13.57T (left). T h e right panel is an enlargem ent of the region around the  

m om entum  boundary, showing the region o f regular m otion at p = pb.

and setup are similar to  th a t of the investigations into dynamical localisation 

(see figure 3.2 in C hap ter 3 for a  schem atic of this setup). Caesium atom s are 

laser cooled to  around 6 p K  then loaded into a ID lattice formed by retro- 

reflecting a single laser beam  through the vacuum chamber of the M OT. The 

lattice is pulsed to  give 120 kicks for each experim ental cycle by fast switching 

of the acousto-optic m odulator controlling the laser beam. The beam  intensity 

is roughly I / I sat =  2900 and the  laser is 4000T detuned from resonance to  give a 

potential depth of approxim ately Vo/Ti =  3.9 MHz. The kick period in all cases 

is T  = 18.9//S, which gives an effective P lanck’s constant value of fief f  =  2.

The black line shows a  typical dynamically localised distribution for K  = 

3.0, t p  = 379ns.  The m om entum  boundary is located a t pb = 319, too far away 

for it to have any effect on the  m om entum  profile. As the pulse time is increased 

to t p  = 947 ns (K  = 7.4, red line) and the momentum  boundary is reached, 

there is a  sharp drop in the  m om entum  profile a t a  point p & pb = 128.

The blue line shows how a further increase in the pulse time to  t p  = 1894 ns 

(K  = 14.8, pb = 63.8) brings the  m om entum  boundary even closer to  the origin. 

The cut-off is not as pronounced as before and the distribution looks rounded 

due to the closeness of the  boundary. The noise recorded in this experiment is
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Figure 4.2: Experimental results showing the sharp fall-off in the momentum profile 
associated with the momentum boundary for pb =  63.8,128 (vertical dotted lines).

amplified for small intensities by plotting the results on a natural log scale.

Recall that the diffusion constant D  oc K 2 and that using square pulses 

instead of delta kicks means D  now has sinc-squared dependence on momentum 

with D ( K eff ,p)  falling to zero at the momentum boundary. The break time 

t* is proportional to the diffusion constant so undergoes a similar modulation. 

The finite-width kick approximation, therefore, affects both how long and how 

fast the atoms absorb energy from the driving field and has a significant effect 

on momentum diffusion.

The atoms in the part of the distribution positioned closer to the boundary 

will only have a short time over which they can absorb energy from the driving 

field and their kinetic energy growth (E  oc Dt)  will be zero at p =  pb. Our 

moving lattice technique, detailed in the next section, provides an easy way of 

changing the initial atomic momentum to investigate what effects the boundary 

may have on diffusion and also to position the atomic distribution in the region
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Figure 4.3: A schematic of the experimental apparatus used in the moving lattice 
technique. The laser beam is split in two by a beamsplitting cube (labelled PBS) and 
passed through separate acousto-optic modulators (AOM1 and AOM2). Both ‘arms’ 
of the lattice are set at equal intensities using a halfwave-plate (HWP1) and the second 

halfwave-plate (HWP2) sets the relative parallel polarisations (black arrows).

of phase space beyond the momentum boundary.

rotor phase space. One method of controlling the initial atomic momentum p0 by 

cooling to a non-zero velocity by the addition of a uniform magnetic field [65, 66]. 

Here, however, we introduce a small frequency difference between the lattice 

beams to form a ID travelling interference pattern in the laboratory frame. 

The atoms remain stationary but have a non-zero initial atomic momentum p i 0 

in the frame of the moving lattice. A schematic of the experimental setup used 

to produce the moving lattice is shown in figure 4.3.

The caesium atoms are first trapped and cooled to around 6 pK,  as de­

scribed in Chapter 2. These atoms are then loaded into a far-detuned optical 

lattice that is pulsed to simulate the delta-kicks. Unlike the setup used to inves­

tigate dynamical localisation and the momentum boundary, where the lattice 

was formed by a single retro-reflected beam, two counter-propagating beams 

with parallel linear polarisations are overlapped to form the ID potential.

These beams are derived from a single Titanium-Sapphire (Ti:S) laser with

4.2 The moving lattice technique

The ability to control the initial atomic momentum allows access to all of the
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a maximum output power of 1W at 852nm (Cs D2 line). Such large power is 

required because the potential depth Vb oc I / A  but the scattering rate Ts <x 

/ /A 2 so the lattice beams must be detuned by several thousand linewidths for 

coherent momentum transfer.

The Ti:S output is split into two components of equal power using a com­

bination of beam-splitter and halfwave-plates (one to set relative intensity and 

the other to ensure the polarizations of the two beams are parallel). Each beam 

is then passed through a separate acousto-optical modulator (AOM) driven by 

two phase-locked Rohde & Schwartz SMY01 rf generators at a frequency /  =  80 

MHz. The two first order beams counter-propagate through the vacuum cham­

ber of the MOT to form the kicking potential.

The maximum diffraction efficiency into the first order of the AOM is around 

70% at 852 nm and there are slight losses at optical interfaces that attenuate the 

power to about 275 ± 5  mW (measured) in each beam. Both AOMs are triggered 

by an arbitrary waveform generator as described in the previous chapter.

The two Crystal Technology 3080-112 AOMs allow independent control over 

the frequency of each beam, enabling a small frequency difference 2A/  to be 

introduced between them that causes the lattice to move at a speed A A /  ms-1 in 

the laboratory frame. The atoms remain stationary but have a non-zero initial 

mean momentum plo in the frame of the moving lattice that can be controlled 

by changing the magnitude of A /. Note the subscript ‘L ’ is used to denote the 

co-moving frame.

Other methods used to introduce a non-zero po, such as cooling to a non­

zero velocity by the addition of a uniform magnetic field [66, 65], broaden the 

atomic distribution and alter the position of the atoms on the imaging screen, 

thus limiting such techniques to the field of view of the camera. Our method 

ensures the atoms remain centred on the camera screen.

The maximum frequency difference it is possible to introduce when /  =  80 

MHz is Af = ±1.25 MHz on these rf synthesizers. In practice this is further 

restricted to ±1 MHz, a limit set by the deflection of the first order beam 

from the AOM (A 8 / A f  «  0.1°/MHz) and equivalent to a maximum possible
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p^/Thk i  «  120. Beyond 1 MHz, the beams move off the atomic cloud which 

diminishes the kick strength and some realignment of the kicking beams is re­

quired.

The mean momentum is taken to be the first moment of a background- 

corrected Gaussian spatial distribution, (p) — ? and the atomic energy

is quantified by the second moment:

E _ ( f ) _  f  P z N ( p ) d p

2  2  f N ( p ) d p  ( 4 '3 )

The errors are calculated using the standard deviation of the five frames aver­

aged to give the intensity distribution (i.e. N(p))  for each data point.

4.3 Transport by restricting phase space

The sinc-squared modulation discussed in section 4.1 can be used in conjunc­

tion with the moving lattice technique to generate highly asymmetric momen­

tum diffusion in the DKR. Consider the variation of the diffusion constant as a 

function of momentum, as shown in figure 4.4. When the distribution is cen­

tred at the maximum of D ( K , plo) at pl = 0 (red line), the atoms are free to 

diffuse equally far in both directions (indicated by the solid red arrows) before 

reaching the momentum boundary. Both wings of the atomic momentum distri­

bution experience approximately the same diffusion constant and the resulting 

momentum diffusion is symmetric.

If the atomic distribution is placed further away from the main peak, for 

example at plq =  29.2 (in green), the diffusion constant is locally asymmet­

ric such that phase space available to the atoms is more restricted on one side 

than the other. This leads to highly asymmetric diffusion, illustrated by the 

unequal thicknesses of the green arrows. Positioning the atoms on the momen­

tum boundary, plo = 2 n T / tv = 43 in dimensionless units, results in very little 

diffusion because D ( K , p l ) is so small. There is however a slight difference in 

the magnitude of the diffusion constant across the atomic distribution due to 

the relative sizes of the maxima of D ( K , p l ).
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Figure 4.4: The sinc-squared modulation of the diffusion constant as a function of 
dimensionless momentum pL, the atomic momentum in the moving lattice frame. The 
initial atomic distribution centred at plo =  0 (red) can expand symmetrically but the 
distribution centred near pLo =  29.2 (green) cannot as it is severely constrained by the 
momentum boundary. A little diffusion is possible when the atoms are centred on the 
momentum boundary itself {plo =  42.5, blue) because the wings of the distribution can 
experience a small, locally asymmetric D(K,p) .  The thickness of the arrows denotes 

the relative magnitude of the diffusion in the indicated direction.
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Figure 4.5 presents some momentum profiles for various values of initial 

atomic momentum, p^o = 0,29.2,42.5 in an experiment where the momentum 

boundary occurs at pb = 42.5 =  13.57T and K  = 5.3. The horizontal axis is 

the dimensionless momentum in the lab frame p  so the momentum boundary 

Pb =  42.5 is displaced by an amount plo in each case.

The experimental parameters are tp =  (1.42±0.02)/xs and T  =  (9.47±0.02)/zs 

such that heff = 1 for the results shown. The atomic distribution is positioned 

at different points along the D ( K ef f , p ) curve using the moving lattice technique.

The black line shows the initial or ‘unkicked’ distribution. If the atoms are 

positioned at plo =  0 (A / =  0 kHz, red line), momentum diffusion is very nearly 

symmetric. The slight asymmetry is probably due to a small misalignment of 

the beams that form the kicking potential. The shoulder in the momentum 

profile approximately coincides with the position of the momentum boundary 

Pb = 43 ±  1.

Preparing the distribution at plo — 29.2 (A / =  245 kHz, green line) results 

in a highly asymmetric momentum profile because the atoms experience a locally 

asymmetric diffusion constant that is near-zero at the positive momentum side 

of the distribution.

There is very little diffusion when the atomic distribution is positioned very 

close to the momentum boundary, p l  = 42.5 (A / =  350 kHz, blue line). A small 

amount of diffusion is present because the wings of the atomic distribution can 

experience a non-zero, locally asymmetric diffusion constant even though the 

main peak is centred on the momentum boundary. Diffusion towards negative 

momenta will be greater than diffusion to the right due to the relative sizes of 

the maxima of D ( K eff,pL,)-

Figure 4.6 highlights the asymmetry present in the momentum profiles of 

figure 4.5 by plotting \p\ . N(p)  as a function of the atomic momentum in the lab­

oratory frame. The dotted lines mark the positions of the momentum boundary 

in the laboratory frame. For the atomic distribution centred at pio = 0 (red), 

there is reasonable agreement between the position of the momentum boundary 

Pb = 42 ±  1 and the fall-off in diffusion.
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Figure 4.5: Generating asym m etric diffusion by restricting the rotor phase space. In 
this experiment, the m om entum  boundary is at p  =  42.5. When the atomic distribu­
tion is positioned at pL =  0, m omentum  diffusion is (almost) symmetric. At p l  =  29 
(red line) the positive side of the m omentum  distribution (on the right) experiences 
a much smaller diffusion constant, which results in a highly asymmetric momentum  
profile. There is very little diffusion when the atomic distribution is positioned very 
close to the momentum boundary, p l  =  42.5 (blue line). The unkicked distribution is

given by the black line.

When plo =  29 (green), the momentum boundary is at pb =  14 ±  1, —72 ±  2 

and we have the largest momentum asymmetry. There is very little diffusion 

towards positive momenta, whilst for negative momenta diffusion increases until 

the momentum boundary then begins to decrease.

When plo =  42.5 (in blue), the momentum boundary is given by pb = 

0, -85  ± 2 in the laboratory frame. Diffusion towards positive momenta is 

minimal (c.f. the unkicked distribution) and the small amount of diffusion 

towards negative momenta drops sharply beyond the momentum boundary.

The asymmetry seen in figures 4.5 and 4.6 is quantified by the first moment 

of the atomic distribution, as discussed in Chapter 2, section 2.2 and in section 

4.2. Figure 4.7 plots this asymmetry as a function of the atomic momentum in



4-3. Transport by restricting phase space 51

500
No kicks
Plo = 0 
Plo = 29.2 
Plo = 42.5

400

300

TO

100

-50 0 50 100-100

Dimensionless momentum, p

Figure 4.6: The asym m etry is highlighted by plotting \p \ .N ( p ) as a function of the 
dimensionless m om entum  in the laboratory frame p  for initial atomic momenta in the 
co-moving frame plo =  0 (red), 29 (green), 42.5 (blue). The position of the momentum  
boundary, shown by dotted  lines of a m atching colour, is accordingly shifted by an 
amount plo in the lab frame. The unkicked distribution is given by the black line.
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Figure 4.7: Variation of the asymmetry, quantified by the first moment of the atomic 
distribution, as a function of the initial atomic momentum in the frame of the moving

lattice plo-

the frame of the moving lattice for the same experimental parameters as above. 

The moving lattice method is now used to vary the initial atomic momentum 

from pi  =  0 to 73, thereby allowing access to the area of phase space beyond 

the momentum boundary (which cannot be reached using a static potential) 

and demonstrating the utility of this technique.

The distribution is initially (almost) symmetric so the momentum asymme­

try is close to zero. As p l  increases, the phase space becomes restricted on one 

side by the momentum boundary, which causes an asymmetry in the momen­

tum profile. The asymmetry is dependent on both the gradient of the diffusion 

constant (dD /dp ) and that of the break time (dt*/dp). The magnitude of the 

asymmetry |(p)| roughly follows this trend: it is largest between 20 > Plo > 40, 

when the difference of D(K, p l o ) across the atomic distribution is maximal, and 

very nearly falls to zero at the positions of the momentum boundary.

There is a small but finite (p) in the area past the first momentum boundary.
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The size of the asymmetry in this region is smaller than that in the area before 

the first boundary because D ( K eff,pi,)  is smaller in this region and is positive 

(unlike the current between 0 < Pl < 42.5) because the gradient of the diffusion 

constant is of opposite sign.

The finite pulse width approximation to delta kicks can, therefore, have a 

significant effect on atomic diffusion. The presence of the momentum boundary 

can produce an asymmetry in the momentum profile so particular care must 

be taken in future investigations of directed diffusion to ensure the boundary is 

positioned far away from the region of interest. The results of this section are 

also presented in [67].

4.4 Exploring m ixed phase space

This section presents results of an exploration of the rotor phase space to illus­

trate the efficacy of our moving lattice technique by mapping stable structures 

in phase space as a function of the atomic momentum in the frame of the lat­

tice, p l - In addition to being used to generate directed transport by engineering 

barriers to diffusion in the system’s phase space [67], this method may prove 

to be a useful tool in investigating chaos-assisted tunnelling between two phase 

space resonances (corresponding to regions of regular motion) in the quantum 

driven pendulum [68] or in realising a purely deterministic Hamiltonian ratchet

[69].

The behaviour of atoms in the vicinity of stable islands has been studied 

previously in the context of accelerator modes [47]. These islands represent 

regular motion and trajectories starting on or joining a stable island will always 

be mapped back on to it, thereby reducing momentum diffusion. Their presence 

restricts the atomic energy growth so will be seen as dips in a plot of the atomic 

energy against pL- The energy growth is investigated for various kick strengths 

for two different values of the effective Planck’s constant, he// =  0.25 and 1.

Figure 4.8 shows numerically obtained phase space portraits for values of the 

stochasticity parameter used in this experiment, K  =  0.7,1.5,2.7,4.1. At the
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Figure 4.8: Poincare section plots of phase space for different values of kick strength  
parameter, K  =  0.7, 1.5, 2.7, 4.1. D im ensionless m omentum  is shown on the vertical 
axis, dimensionless position on the horizontal axis. W hen K  is small, phase space 
exhibits regular, unbroken structures that lim it the energy growth of the atoms. As 
K  increases, the contours (or tori) break up, allowing the atom s to gain energy by 

executing a random walk in the chaotic regions of phase space.

smallest kick strength K  =  0.7, the rotor phase space has large stable islands 

located at p/ir =  0, ±2. This is below the critical value of K  =  0.96 so very 

little atomic energy growth is possible. As the kick strength is increased, phase 

space becomes increasingly chaotic and the stable islands (which remain centred 

in the same position) shrink in size.

The experimental method follows the discussion of the previous section, with 

Cs atoms laser cooled to 6 p K  and the detuning of the kicking potential varied 

between 500 and 5000 natural linewidths to get the above range of K. Cooling 

to this temperature corresponds to an initial l / \ / e  momentum width of ap =  

0.69 ± 0.06 for fte//  =  0.25 and ap =  2.7 ±  0.6 for heff =  1.

It is necessary for the the pulse width tp <£ T  to avoid the presence of 

the momentum boundary, which can have a significant effect on diffusion as 

demonstrated elsewhere in this chapter. The kick sequence for he// =  0.25 had 

a pulse duration of tp =  379 ±  20 ns and a period of T  =  2.37 ±  0.20/zs whilst 

tp = 296 ±  20 ns, T  =  9.47 ±  0.02^/s for fre//  =  1- The differences in tp result 

from the limitations of the CAD program used to draw the waveforms.
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The results are presented in figure 4.9. For both cases of he// =  0.25 and 

1 and at small values of K , stable islands significantly affect diffusion and the 

results clearly reflect the 27r separation of the stable islands in phase space. 

There is a peak in the energy growth when the initial momentum is such that 

the majority of atoms are situated in a chaotic region. Conversely, when the 

initial momentum is such that the atomic distribution is positioned over a sta­

ble structure, the energy growth is minimal but does not fall to zero because, 

although the distribution may be directly centred on an island, the wings of the 

distribution can extend into the chaotic regions making diffusion possible for a 

small number of atoms.

There is very little energy growth at K  = 0.7, as expected, since tori still 

exist to keep the atomic momentum bounded. As the stochasticity parameter 

is increased, these tori vanish and the momentum width of the stable islands 

decreases. A smaller fraction of atoms are now constrained in momentum be­

cause the width of the atomic distribution remains fixed and the corresponding 

increase in the peak atomic energy for larger K  can be seen in our results.

The minimum atomic energy will be higher for larger values of K  because 

the smaller stable islands mean a larger number of atoms will lie outside the 

contours of these structures and be free to move. At K  = 4.1, phase space 

is nearly globally chaotic and the 2n periodicity is correspondingly (almost) 

absent.

Our ability to resolve stable structure in phase space depends on the dimen­

sionless width of the initial atomic distribution and hence on the value of he/f.  

The dimensionless width of the initial distribution is crp/7r =  0.22 for Tieff  = 0.25 

and (jp/7r =  0.87 for he//  =  1, so a small fie/ /  gives a narrow distribution that 

allows for greater resolution (figure 4.10).

As heff increases, the wings of the atomic distribution spread further across 

phase space and a larger proportion of atoms reside over chaotic areas. When 

heff = 0.25, approximately 98% (±  3 standard deviations (s.d.’s) from the 

mean) of the atomic distribution falls within the stable island when K  = 0.7 

but is distributed over a significantly larger area (nearly all of the phase space
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Figure 4.9: The mean atomic energy as a function of initial starting momentum plo for 
(a) heff = 0.25,AT =  0.7,1.5,2.7 and (b) heff = 1 , K  =  1.5,2.7,4.1. The magnitude 
of the energy growth increases as phase space becomes more chaotic (K  increases). 
When the stochasticity parameter is below the critical value (K  =  0.7 case) the atom 
remains bounded in momentum space and energy growth is minimal. The circled 

distributions are shown in detail in figures 4.11 and 4.12.
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Figure 4.10: The initial atomic distributions for he/f — 0.25,1 superimposed on a 
phase space portrait of K  = 0.7. The 1/e width of the distribution ap/ n  = 0.22 when 
heff =  0.25 and crp/ n  = 0.87 when heff = 1. The shading indicates the percentage of 
the distribution lying within 1 (darkest), 2 and 3 (lightest blue) standard deviations

of plo =  0.

unit cell) when he/f =  1. Those atoms within ±1 s.d. of the mean pL =  0 

(around 68% of the distribution) in the latter case occupy a region greater than 

the momentum width of the stable island so results taken at small values of heff 

are expected to exhibit greater resolution.

The difference in the resolution of stable structures in phase space may be 

seen by comparing the data for K  =  1.5,2.7 for the two values of Tieff in figure 

4.9. The peaks in atomic energy are very well defined when ?ieff =  0.25 but 

rather less well when heff =  1. These differences in resolution may be quantified 

by defining a contrast function, C:

'max 'min

'minm ax
(4.4)

✓ 2 \

where Emax,min are the maximum and minimum values of energy E  =  

for a given value of K  and effective Planck’s constant heff. The results for the 

parameters investigated in this experiment are given in table 4.1.
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heff K C, contrast fn

2.7 0.57 ± 0.21
0.25 1.5 0.50 ± 0.04

0.7 0.358± 0.001

4.1 0.25 ± 0.11
1.0 2.7 0.21 ± 0.02

1.5 0.146 ±0.001

Contrast function

C — Emax " Emin 

Emax ■*" Emin

Table 4.1: Values of the contrast function for the results of figure 4.9.

The magnitudes of the contrast function for he//  =  0.25 range between 0.36 

and 0.57, much larger than those when 7te//  =  1 which lie between 0.15 and 

0.25. Comparing the values of C for K  = 1.5,2.7 suggests that the contrast is 

approximately three times greater when he//  =  0.25 than when hef f  =  1.

The difference in diffusive behaviour caused by centring the atomic distri­

bution on a stable island rather than in chaotic phase space is better illustrated 

in figure 4.11 for hef f = 0.25, K  = 1.5. Phase space at this magnitude of K  

comprises of sizeable stable islands at p/ tt = 0, ±2 surrounded by a chaotic sea 

(figure 4.8).

When the initial atomic momentum is Plo/ tt =  0, the majority of atoms are 

confined by a stable island so there is very little diffusion and the momentum 

profile is a narrow Gaussian. If instead the distribution is started at Plo/ tt =  1, 

in a chaotic region of phase space, the momentum profile is much broader as 

diffusive growth is possible. These two profiles are circled in dark green and 

red respectively on figure 4.9, where they correspond to minimal and (almost) 

maximum energy growth as expected.

The left panel of figure 4.12 portrays the momentum profiles that result 

from starting the atomic distribution close to a stable structure for the same 

initial conditions. At plo/ tt =  0.5 (dark blue line), the atoms are positioned 

in chaotic phase space such that the right-hand (more positive momenta) side 

of the distribution is closer to a stable structure than the left. Recall that
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Figure 4.11: M om entum  profiles illustrating the difference in m om entum  growth  
caused by starting th e atom ic d istribution  on a stable island (pl o / tt =  0, dark green 
line), which constrains m om entum  diffusion, or in chaotic phase space (p l o / k  =  1, red 
line), where energy growth is possible. T he points corresponding to  these profiles are 

ringed in these sam e colours on figure 4.9.

the width of the atom ic distribu tion  is <rp/7r =  0.22 so the right edge of the 

atomic distribution here coincides with the outerm ost K AM surface of the stable 

resonance a t Plo/ tt = 0. Diffusion for atom s closest to  the island (positive 

momenta side of the distribution) is highly constrained by KAM tori bu t atom s 

initially on the left side of the distribution can diffuse through a much larger 

area of chaotic phase space. This results in a  slightly asym m etric momentum 

profile, favouring negative m om enta.

The situation is reversed when Plo/ k =  1-5 (light blue line). The presence 

of the stable island a t p/-n = 2 restricts the spread of the rotor wavefunction 

towards negative m om enta in phase space and the resulting m omentum  profile 

has the opposing sym m etry abou t Pl  = 0.

The difference between these two distributions is made clearer by the right 

panel on figure 4.12, where the m odulus of the first moment of the m omentum 

distribution |p/y • N (p^) \  is p lo tted  against atom ic momentum. The difference 

in the area under the peaks of each curve is a m easure of the asym m etry in the 

momentum profile and the two plots are near m irror images of each other. As 

before, these profiles are circled in the same colours on figure 4.9.
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Figure 4.12: M om entum  profiles show ing th e effect o f starting the atom ic distribution  
on either side of a stable island. L eft panel: T he dark blue line shows the m om entum  
profile for p l o / t* =  0.5 when diffusion towards positive p t  is suppressed. T he light 
blue profile is for plo =  1-5, w hen diffusion towards negative p l  is constrained. Right 
panel: The opposing asym m etry is m ore clearly presented by p lotting the first m om ent 
of the atom ic distribution |p |iV (p )||. T he points corresponding to  these profiles are 

ringed in these sam e colours on figure 4.9.

In conclusion, this brief investigation has dem onstrated the utility  of the 

moving lattice technique in accessing areas of phase space and shown the effect 

of stable islands on diffusion. We conclude th a t it is therefore necessary to 

make K  > 4 to  ensure any asym m etry observed is unrelated to  regular islands 

in phase space. The results of this investigation are presented in [70].

4.5 Summary

This chapter introduced the concept of the  m om entum  boundary, created by ap­

proximating delta-kicks with finite-width pulses, th a t produces a  sinc-squared 

dependence on the initial atom ic m om entum  in the diffusion constant. This 

modulation was used in conjunction with the moving lattice technique to gener­

ate asymmetric diffusion. This technique enables the initial atom ic momentum 

to be changed easily and allows access to areas of phase space th a t cannot be 

reached using a  sta tionary  potential. Its utility was dem onstrated using a sim­

ple investigation to  m ap the stable structures in phase space, which can also 

modify diffusion.

It is therefore im portan t th a t  no significant structures remain in phase space 

and to avoid the m om entum  boundary  by ensuring th a t tp T  when observing
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asymmetric momentum diffusion in the delta-kicked rotor that is purely due to 

chaotic dynamics, as discussed in Chapter 5.



C h a p t e r  5

Sym m etry breaking in the D K R

This chapter introduces two ways in which highly asymmetric momentum diffu­

sion of cold atoms in an optical lattice can be generated in the absence of noise 

or external driving forces and instead using only chaotic dynamics. Breaking 

the temporal symmetry of the DKR by employing a two-period pulse sequence 

makes the kick-to-kick correlation terms in the diffusion constant non-negligible. 

In particular, diffusion is influenced by the non-zero correlations between next- 

but-one kicks that introduce a cosinusoidal momentum dependence to the dif­

fusion constant. When coupled with the moving lattice technique to control the 

initial atomic momentum, this results in a locally asymmetric diffusion constant 

that can be exploited to produce directed transport.

In the second method, a linear potential gradient of alternating sign is added 

to the kicking potential to break spatial symmetry such that the atoms expe­

rience an additional inertial force in the atomic reference frame. Temporal 

symmetry is broken by using a two-period kick sequence to satisfy Curie’s Prin­

ciple (that directed motion will result if spatio-temporal symmetry is broken 

[71]) and achieve directed diffusion.

62
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Figure 5.1: T he tw o-period kick sequence w ith  T\ =  T (1  —b) and T2 =  T (1  + 6 ) ,  where
b <C 1 is th e chirp param eter.

5.1 Directed motion by breaking temporal sym­
metry

Deterministic ratchets have been the  subject of much scrutiny in recent tim es 

[72, 73]. It was long thought th a t  breaking bo th  spatio-tem poral sym m etry [74] 

or a mixed phase space [75] was necessary to  generate directed diffusion in a 

‘clean’, non-dissipative system . Recent work by M onteiro et al [76], however, 

has proposed an experim entally realisable m ethod of achieving directed diffusion 

from purely determ inistic dynam ics th a t  does not rely on stable islands in phase 

space or engineering an asym m etric potential. The tem poral sym m etry of the 

system is broken by a  two-period kicking cycle th a t  introduces a cosinusoidal 

momentum dependence in the  diffusion constant which, when used in conjunc­

tion with the moving la ttice  technique, can be be used to  generate asym m etric 

diffusion.

5 .1 .1  M o d ify in g  th e  d iffu sio n  c o n s ta n t

The tem poral sym m etry of the  D K R  is broken by introducing a  small deviation 

away from period-one kicks via a  chirp param eter b (b -C 1) and using a two- 

period kicking cycle T(1 — b) :T (1  + b )  instead of regular, single-periodic kicks. 

This cycle, sketched in figure 5.1, can be w ritten:

0 0  1

F w  =  E E / ( i - " ( r ‘ + I ’! > - rar‘ ) (5 1 )
n = 0  m = 0

such th a t the kicks occur a t t = T i, (T j+ T 2), Xj +  (T i+ T 2), (T i+ T 2) +  (T i+ T 2) , ... 

where Tj =  T(1 — b) and  T2 =  T ^ l +  b).
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Jonckheere et al have shown that introducing a chirp parameter modifies the 

next-but-one kick correlations to include a momentum dependence such that the 

diffusion constant now takes the form [76]:

D(K,p,b)  = ~ ( 1  -  2 J2 (K)cos(2 pb) + ...) (5.2)

where J2 {K ) is a second order Bessel function and p is the atomic momentum. 

The 2 J 2 {K)cos(2 pb) term is called the C2  correction and described correlations 

between next-but-one kicks.

The diffusion constant is now a cosinusoidal function of the atomic momen­

tum, as represented in figure 5.2 as a function of atomic momentum in the 

moving lattice frame pi,. If the atoms are positioned at plo = 0, the diffusion 

constant is locally symmetric about the mean momentum and atoms diffuse 

equally far in both directions (left panel).

Asymmetric momentum diffusion can be generated by using the moving 

lattice technique to change the initial atomic momentum such that the diffusion 

constant is locally asymmetric (right panel on figure 5.2). The asymmetry 

in momentum is expected to vary as the derivative dD /dpL • The cos{2 pi,b) 

variation of the diffusion constant gives maximal asymmetry when p = (2m — 

l)7r/46 and symmetric diffusion when p =  m w / 2 b (where m is an integer). A 

modulation of the diffusion constant also results in a modulation of the break 

time since D  oc t*. This acts to enhance atomic momentum growth when

D(K,p,b) is large and constrain momentum growth when D(K,p,b)  is small.
2

The scaled Hamiltonian of the chirped kick system is given by H = +

K c o s <I)F(t ) and a similar analysis to that in Chapter 3 (detailed in [50, 59]) 

shows that for a two-period kicking cycle the trajectories in phase space are 

now iterations of the following equations:

Pn+l  — Pn ~~ Ksin{(f>n ) (5-3)

<f>n+1 =  <i>n +  P n + l ( l  +  H ~  1 ) ” ) ( 5 .4 )

where n is the kick number.
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Figure 5.2: The cosinusoidal momentum dependence of the diffusion constant
D(K,p,b) (blue) and the initial atomic distribution N(p) (black) for (a) plo =  0

and (b) plo =  5.

The position mapping now has an extra 6-dependent term when compared 

with the Standard Map for a regular kick sequence (equation 3.4 in Chapter 

3). The effect of this additional parameter is to enlarge the chaotic regions 

present in phase space for any given value of K , as can be seen in figure 5.3. 

The left panel of the figure plots the phase space for K  =  3.5 in the case of 

regular kicks (6 =  0) for wrhich regions of regular motion occur at p /n =  0, ±2. 

The middle panel shows the same range of phase space for the same value of 

K  when the chirp parameter 6 =  0.2. Phase space is now significantly more 

chaotic; cantori still exist at p/i :  =  0 but the stable islands at p/ir =  ±2 have 

disappeared completely. Expanding the region of phase space plotted shows 

the 27T periodicity of the standard map has been replaced by 57r periodicity 

when 6 =  0.2. This is equivalent to a periodicity of 7t/6, in agreement with the 

analytical results of [76, 59].

The difference in the energy growth caused by chirping the kicks can also 

be observed in the momentum profiles for regular and chirped kick sequences. 

Figure 5.4 shows the momentum profiles and their corresponding phase space 

plots for an atomic distribution prepared at plo =  0 when 6 =  0.2, i f  =  1.5 and 

heff =  0.25. The pulse duration of the kick sequence used was tp =  384 ±  20 ns 

and the kick period T  =  2.40±0.02/rs. The stochasticity parameter K  =  1.5±0.2 

required the kicking potential to be detuned by approximately -3000r and the 

momentum boundary is located at pb =  40 ±  2.
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Figure 5.3: The difference in phase space caused by chirping the kick sequence. The 
left panel plots iterations of the standard map for K  =  3.5,6 =  0 (regular kicks). The 
middle panel plots the results of equation 5.3 when 6 =  0 for the same value of K. The 
2tt periodicity has now been replaced by a 7r/6 =  57r periodicity in momentum (right

panel).

When the kick sequence in regular (b =  0, blue line) the momentum pro­

file displays only a small deviation from the unkicked distribution (black line). 

Chirping the kick sequence breaks up a significant fraction of the KAM surfaces 

restricting atomic motion, allowing a larger fraction of the atomic distribution 

to diffuse and so broadens the momentum distribution (b =  0.25, red line).

The momentum profile of the regular kick sequence (blue line) follows that of 

the unkicked distribution for small |p| but then deviate significantly, suggesting 

some energy growth is possible for atoms in the wings of the distribution whilst 

most of the atoms (those located within one s.d. of p =  0) remain confined by 

the stable island at p/ir =  0. Chirping the kick sequence breaks up most of 

the KAM surfaces restricting atomic motion so greater momentum growth is 

possible and the blue line correspondingly deviates from unkicked distribution 

much earlier (i.e. at much smaller |p|).

A further caveat to gaining maximal asymmetry is what is called the ratchet 

time in [50]. The name derives from the idealised case of a Hamiltonian ratchet, 

where dissipative effects can be neglected such that the directed motion is due
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Figure 5.4: Momentum profiles and the corresponding phase space plots for regular 
kicks (b =  0, in red) and chirped kicks (b =  0.2, blue) when K  =  1.5. The black line 
is the unkicked distribution. The atoms axe started at pLo =  0 in both cases and, as 

expected, the momentum growth is larger when the kick sequence is chirped.

purely to determ inistic mechanics. Like the break tim e th a t determ ines the 

duration over which the system  can absorb energy, the next-but-one kick cor­

rection term  acts over a  finite tim escale - the  ratchet tim e t rat - defined as the 

time taken for the m om entum  asym m etry to  reach 95% of its sa tu ra tion  value. 

An analytical form for the  ra tchet tim e, as derived in [50], is:

*rat **
where D = D(K,p ,  b).

The classical diffusion ra tes are different for positive and negative m om enta 

over the tr timescale, D + and D~  say [50]. This is the  period over which the 

asymmetry accum ulates. Beyond t r , the rates equalise and the atom ic energy 

growth can once again be described by the quasilinear value, D + «  D~  «  D ~

The clearest experim ental signature is predicted when the break tim e and 

ratchet time become com parable [76], t * / t r ~  Db/heff ~  1. If the break tim e 

is much smaller than  trat, there  is little  tim e for the m om entum  asym m etry to 

accumulate before the system  localises. Beyond the finite lifetime of the C 2  cor­

rection trat , the energy growth continues a t the  quasilinear rate , which worsens 

the experimental signal-to-noise ra tio  of the asym m etry signal and makes the
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detection of the asymmetry less favourable.

5.1.2 Asymm etric m omentum profiles

Experimentally, we use the moving lattice technique detailed in the previous 

chapter to vary the initial atomic momentum and thereby vary the local diffusion 

constant across the momentum profile. The parameters are chosen such that 

neither the momentum boundary nor stable islands in phase space can affect 

diffusion. The position of the momentum boundary is checked by calculation 

(its presence can also be seen in the momentum profiles) and the phase space is 

carefully examined to ensure no stable structures remain in each case.

For atoms are started at plo =  0, the diffusion constant is locally symmetric 

across the atomic distribution and diffusion is expected to be symmetric (as 

shown by the left panel in figure 5.2). When the initial atomic momentum is 

non-zero, the diffusion constant is locally asymmetric and directed diffusion is 

possible.

Figure 5.6 presents some typical momentum distributions where directed 

diffusion is evident by the asymmetry in the profiles. In this investigation, the 

kick sequence has a chirp parameter 6 = 1 / 8  and the stochasticity parameter 

K  =  2.1. The kick period T  =  2.37 =1= 0.02/zs gives an effective Planck’s constant 

of hef f  =  0.25 and 80 pulses of duration tp =  379 ±  20 ns ensures that the 

momentum boundary at pb =  40 ±  2 has no effect on diffusion and that there is 

enough time for the system to localise.

The phase space plots for these conditions are shown in figure 5.5. Iterating 

the Standard Map (that is, using a regular kick sequence) for K  =  2.1 reveals 

the presence of stable structures occurring with 27r periodicity in momentum 

(left panel). Chirping the kick sequence, however, breaks these tori up so that 

no significant barriers remain to influence diffusion when 6 = 1 / 8  (right panel).

Maximum asymmetry is expected when pLo/it =  ±2 for 6 = 1/8 following 

the analysis in section 5.1.1 and indeed it can be seen that the momentum pro­

files corresponding to these starting momenta are highly asymmetric. When 

the initial atomic momentum is plo = +27T (in red), the momentum profile is
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K =2.1, b = 0 i : K =2.1 , b = 1/8

a s e g s i

Figure 5.5: Phase space p lots for h ej  /  =  0.25, K  =  2.1 when the chirp param eter 6 =  0 
(right) and 6 = 1 / 8  (left), confirm ing th a t the stable islands are replaced by cantori 
when the kicks are bi-periodic. A ny m om entum  asym m etry should therefore be due

to  chaotic dynam ics alone.

heavily skewed to the right bu t this trend is reversed for = —2 -k where more 

atoms are pushed to  higher m om enta on the left side of the profile. This is be­

cause the gradient of D (K ,p ,b )  across the atom ic distribution for p l o / k  =  +2  

varies in opposite sense to  th a t  of p lo /t t  =  —2. The variation of the diffusion 

constant with respect to the atom ic distribution is schem atically shown on the 

panels on the right of figure 5.6 for (a) P lo /tt  =  + 2  and (b) P lo /tt  =  —2. The 

distributions corresponding to  the maximum  gradients are very nearly m irror 

images of each other with the discrepancies m ost likely due to  a  slight misalign­

ment of the kicking beams. The inset shows more clearly the asym m etry in the 

momentum profile associated w ith a  s tarting  m om entum  of P lo /tt  =  2.

5 .1 .3  T im e  e v o lu tio n

The time evolution of the asym m etry of the m om entum  profiles in figure 5.6 

(6 =  1/8) can be seen in figure 5.7 for several different starting  momenta. 

The evolution is difficult to  see by plotting  a  series of profiles so instead the 

asymmetry is quantified by the  first moment of the atom ic distribution, (p) =  

f  pN (p )dp / f  N (p)dp .  This is p lo tted  against the num ber of kicks (in two kick
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Figure 5.6: Momentum profiles illustrating the difference between starting the atoms 
at (a) plo =  2n  (red) and (b) plo =  (blue) when the kick sequence is chirped by 
a factor b =  1/8. The diffusion constant in locally asymmetric in both cases and the 
momentum asym metry that results is skewed in opposite directions, thus reflecting the 
relative gradients of D ( K ,  p, b) experienced by the atoms (pictured on the panels on the 
right). The symmetric unkicked distribution (black line) is included for comparison.

Inset: The asym metry can be clearly seen in the momentum profile for plo =  27t.

steps) to  build up a  p ictu re o f  th e  t im e  evo lu tion  o f  th e asym m etry. T h e varia­

tion o f the diffusion co n sta n t across th e  a tom ic d istrib ution  is figuratively  rep­

resented in panels (a )-(d ) on  figure 5 .7 . In all cases, th e asym m etry  se ttle s  to  

w ithin 10% o f its  final value after around  60 kicks.

W hen plo =  +27T (red lin e, p anel (b )), th e a to m s are p osition ed  such th at  

they experience th e m axim u m  p o ssib le  gradient o f  diffusion con stan t across 

the d istribution . T h e grad ient is p o sitiv e  so resu lts in  a p ositive  asym m etry. 

In the plo =  +67T (green , panel (c )) in stan ce, th e  gradient o f  th e  diffusion  

constant across th e a to m ic  d istr ib u tion  is o f th e  o p p o site  sign and th e  resu lting  

asym m etry is n egative . N o a sy m m etry  is ex p ected  w hen th e a tom s are started  

off at plo  =  0, 47t (b lack, b lu e lin es resp ective ly ) b ecau se th e  diffusion con stant 

is locally  sym m etric but (p)  is n ot q u ite  zero in e ith er case. T h is offset can be 

attributed  to  som e sm all a sy m m etry  in th e  in itia l a tom ic d istrib ution  resu lting  

from a slight m isa lign m en t o f  th e  b eam s com prising th e  kicking p oten tia l. T he  

m agnitude o f th e offset in (p) for each  set o f  resu lts varies b ecau se it is im possib le  

to  exactly  rep licate th e  sta rtin g  con d ition s w hen se ttin g  up each experim ent.
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Figure 5.7: Time evolution of the asym m etry (p) for a chirp parameter b =  1 /8  
when (a) plo =  0 (black), (b) plo — 27T (red), (c) plo — 4<r (blue) and (d) plo — 
6tt (green). The position of the atom ic distribution (coloured lines) relative to the 
diffusion constant (black line) are drawn on panels (a)-(d). There is little asymmetry 
when the diffusion constant is locally sym m etric (cases (a) and (c)) but the asymmetry 
grows with kick number when D ( K , p , b )  is locally asym metric until it saturates after 

about 60 kicks (cases (b) and (d)).
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Figure 5.8: Phase space portraits for various chirp parameters b =  0 ,1 /3 2 ,1 /1 6  when 
A =  3.3. W hilst phase space exhibits stable islands with 2n  periodicity for a regular 

kick sequence (6 =  0), it can be assumed to be globally chaotic for 6 =  1 /32 ,1 /16 .

5.1.4 A sym m etr ic  m om en tu m  diffusion resu lts

The previous results in this chapter have shown that it is possible to achieve 

asymmetric momentum diffusion of cold atoms in a pulsed optical lattice by 

breaking the time symmetry of the system using a two-period kick sequence. We 

now investigate the variation of the asymmetry as a function of the initial atomic 

momentum for two different chirp parameters b = 1 /32,1/16 to determine if the 

directed diffusion in the system is due to the Hamiltonian dynamics.

The experimental param eters are slightly altered to match the conditions in 

Jonckheere et al [76]. The kick period is increased to T = 9.47±0.02//s and the 

pulses have a measured full-wddth half maximum of tp =  296 ±  20 ns such that 

tp/T = 1 / 3 2  and the momentum boundary has a negligible effect on diffusion 

(pb = 27rT/tp). The sequence consists of 160 two-kick cycles, enough to ensure 

t > t*, trat • The effective Planck’s constant Ae/ /  =  1-0 and the stochasticity 

parameter K  = 3.3 ±  0.3. Figure 5.8 shows the phase space portraits for these 

conditions. Stable islands are present in the case of the Standard Map (6 =  0) 

but no tori exist to affect diffusion when the kick sequence is chirped.

Figure 5.9 plots our experimental results for the asymmetry as a function



5.1. Directed m otion by breaking temporal sym m etry 73

10- ■ b = 1/16 
•  b = 1/32

A
Gl
V

£
1
E
E>.■S)
< f t *

-2-

-4  -

20 300 10

Initial atomic momentum in lattice frame, pL/jt

Figure 5.9: The periodic variation of asymmetry (p ) as a function of initial atomic 
momentum in the moving lattice frame pLo for b =  1 /3 2 ,1 /1 6 . The dotted lines are 

sinusoidal fits to  the experim ental data with a period ir/b.

of the initial atomic momentum in the frame of the moving lattice for —4 < 

Plo/tt < 36 for two different chirp parameters b =  1/32 (in red) and 1/16 

(blue). Dashed lines in identical colours mark functions of the form f ( p L o )  =  

Aosin(2-npiob) -I- B, where the coefficients Ao and B are arbitrarily chosen to 

fit the experimental data.

The momentum asymmetry oscillates with the predicted period i r / b  for both 

sets of data, as confirmed by the sinusoidal fits to the data. These fits are in 

excellent agreement with the experimental data over a large range of plo, until 

P l o  ~  30 in the b  =  1/32 case and p l o  ~  25 when b =  1/16.

The detuning of the kicking potential is checked every 10 readings but we do 

not realign the lattice over the atomic cloud so these discrepancies are possibly 

due to the increased deflection of the first order beam from the acousto-optical 

modulators controlling the beams that form the lattice. The beams move by 

0.1°/MHz so causes a slight deflection of around 0.03° for plo «  30. A signifi­

cant deflection (around 1 MHz) will reduce the magnitude of the stochasticity 

parameter experienced across the atomic distribution and change the dynamics
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of the system. The vertical offset is most likely due to some slight asymmetry 

in the initial distributions.

Since the periodic variation of the asymmetry matches the period of the C2  

correction, the asymmetry can be (at least partly) attributed to the next-but- 

one kick correlation term and hence to deterministic forces.

In conclusion, it is possible to  introduce momentum asymmetry into a system 

by breaking temporal symmetry by pulsing the optical potential using a chirped 

kick sequence and changing the initial atomic momentum using the moving 

lattice technique. These results are also presented in [77].

5.1.5 Chirp param eter dependence

The magnitude of the asymmetry in figure 5.9 is larger when the chirp parameter 

is smaller (b = 1/32). The ratchet time t r oc 1/b2  so we can expect a twofold 

increase in the chirp param eter to result in a factor of four difference in the 

relative amplitudes as the time over which atoms can accumulate asymmetry 

quadruples. This would be true if the experimental parameters were adjusted 

between runs to keep the ratchet time comparable to the break time (which was 

not the case in this experiment) and the diffusion constant scaled linearly with 

b. The break time is less than the ratchet time when b = 1/32 so the system 

localised before reaching maximum asymmetry.

With this in mind, we explore the time evolution of the asymmetry for three 

different values of the chirp parameter b =  1/8,1/16,1/32. All experimental 

settings are identical to those used in the previous experiment, detailed in section 

5.1.4. The starting atomic momentum is picked to give the maximum possible 

positive asymmetry, that is to say D{K,p,b)  =  (2n — l)7r/46, so  is plo = 

27r,47r,87r for b = 1 /8 ,1 /16 ,1 /32  respectively. The results are presented in 

figure 5.10.

In all instances the magnitude of the asymmetry increases with time but 

reaches saturation only for the largest value of b investigated. The rate of the 

increase depends on b, with the gradient greater for larger values of the chirp 

parameter. It is possible to estimate the ratchet time when 6 = 1 / 8  but the
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Figure 5.10: The chirp parameter dependence of the asymmetry (p), here demon­
strated by plotting (p) as a function of the number of kicks for three values of the 
chirp parameter b =  1 /8 ,1 /1 6 ,1 /3 2 .  The continuous lines axe the results of an expo­

nential fit to the data of the form (p ( t )) =  (p)Sat(l — e ~ t^ r ).

asymmetry does not saturate within the timescale of the experiment when the 

chirp parameter is smaller.

The time for which the potential is pulsed cannot be increased because the 

atoms fall out of the interaction region but an exponential fit to the existing 

data of the form (p(t)) =  (p)sat (1 —e~t/ ,3r) can be used to give a useful estimate 

of tr. The factor Pr is the characteristic time constant of the asymmetry growth 

and, if the definition of t r as the time taken to reach 95% saturation value is 

adopted, is related to the ratchet time by tr =  p rln20. The initial rate of growth 

of the asymmetry is given by R(p) — Q =

The values of the break time, required for comparison, can be extracted 

from plots of the atomic energy as a function of the number of kicks, figure 

5.11. On a plot of the atomic energy against time, the Standard map break 

time is measured by the intercept the saturated energy value makes with the 

classically predicted energy growth E =  Dt  [50].

A more appropriate method of analysis for the purposes of comparison is 

to fit the atomic energy growth by a function of identical form to that used in 

analysing the ratchet time, E{t) =  Esat{ 1 -  e~t/l3'). Here p* is a characteristic
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Figure 5.11: Exponential fits to  the energy growth when the chirp parameter b = 
1 /8 ,1 /1 6 ,1 /3 2 . The fits are of the form E ( t )  =  E sat( 1 -  e - t / / r ), where the charac­

teristic tim e constant /3* is proportional to the break time.
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b  . R<a> P r P*
1/8 0.08 ±0.01 31 ±  4 69 ± 6
1/16 0.06 ±0.01 145 ±23 131 ±  15
1/32 0.03 ±0.01 414 ±120 220 ±  50

Table 5.1: Results of the exponential fits to the asymmetry growth in figure 5.10 
and to the atomic energy growth in figure 5.11. The coefficients f3r and (3* are the 
characteristic times constants of asymmetry and energy growth respectively and 

describes the initial growth rate of (p).

time constant that is related to the break time t*. The characteristic timescales 

/3r , 13* and estimates of the asymmetry growth rate are tabulated in figure 

5.1.

In addition to quantifying the growth rate of the initial asymmetry, this data 

allows a rough check of equation 5.5 to be carried out:

t r ( b = l / 1 6 )  _  4  ?  ±  l  *r(6=l/32) =  2 .9  ±  1 ( 5 .6 )

* r ( 6 = l / 8 )  t r ( b =  1 /16 )

The inverse-squared relationship between tr and b in equation 5.5 holds (within 

experimental errors) for 6 = 1 / 8  and 6 =  1/16 but does not for £r(6=i/i6) and 

t r (b= 1/32). The poor fit may be accounted for by comparing the characteristic 

times constants for ratchet and break times. In the case of the smallest chirp 

parameter investigated here, 6 =  1/32, the ratchet time is exceeded by the break 

time and the asymmetry saturates at a smaller value than it should because the 

system localises before the maximum asymmetry can be accumulated.

The converse is true for 6 = 1 / 8  (i.e. t r < f ) ;  the system has become fully 

asymmetric but the signal-to-noise ratio of the momentum profiles is degraded as 

the there has not been enough time for maximum atomic energy growth. The 

break time and ratchet time are matched only when 6 =  1/16, the optimum 

conditions for observing asymmetry according to [76].
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5.2 D irected  m otion  by breaking spatiotem po­
ral sym m etry

In this section, we describe a method of generating directed diffusion that is 

based on a ‘rocking ratchet’, a much studied model for directed motion that is 

described in greater detail in Chapter 7. The general requirement for a rocking 

ratchet is a periodic external force of zero mean that breaks the spatial symmetry 

of the system [71]. We do this by the addition of a linear potential gradient 

A that alternates sign with successive kicks. The total potential can now be 

written:

V(<f>) = Kcoscj) +  A(f>(-l ) n (5.7)

Recall that <j> is the scaled position and n  labels the number of kicks. Com­

bining this new potential with the chirped kick sequence yields the following 

Hamiltonian for the system (in scaled units):

P̂
K  = Y  + \Kcos<f> +  ^ ( - l ) n]^ (r)  (5.8)

where F ( t ) ,  as defined in equation 5.1, describes a two-period kick sequence 

T(1 — 6) : T(1 +  b).

Deriving the equations of motion from equation 5.8 and following the steps 

described in Chapter 3, we find that the phase space mapping now depends on 

three parameters K, A  and b:

Pn+l = Pn Ksin{<f)n-\-1) +  A( 1) (5*9)

<f>n+l =<f>n+Pn{ l  +  6(—l)n) (5.10)

The introduction of the linear potential gradient also modifies the C2  cor­

rection term such that the diffusion constant is now described by:

K ^
D (K ,p ,b ,A )  = — [1 -  2J2 (K )cos(2pb-A ) + ...] (5.11)



5.2. Directed motion by breaking spatiotemporal symmetry 79

The diffusion constant varies cosinusoidally with atomic momentum and has 

a period of n/b  once more so the asymmetry oscillates with the gradient of 

D{K,p,b,A)  [76]. The potential gradient A acts as a phase shift, enabling the 

diffusion constant to be made locally asymmetric with respect to the initial 

atomic distribution by changing the magnitude of A. The asymmetry in mo­

mentum is therefore also expected to display a cosinusoidal dependence on A, 

with the positions of maximum asymmetry occurring when A  =  (2m — l )n /4  

and minima when A is an integer m multiple of ir.

5.2.1 Accelerating the lattice

The moving lattice experimental apparatus requires only a slight adjustment 

to incorporate a linear potential gradient. Previously, applying a frequency 

difference 2 A/  between the two beams overlapped to form the kicking potential 

caused the interference pattern formed by these two beams to move at a constant 

speed A A / .

Varying the frequency difference to one lattice beam A/(£) with time causes 

the lattice to accelerate by a =  f  • This is equivalent to subjecting the 

atoms to an inertial force in the reference frame of the moving lattice. The 

Hamiltonian describing this system may be written:

rp-'
H  = 7 :t t  +  V0 cos(2kLx ) +  M ax  (5.12)2 M

where x and p are variables in the accelerating frame.

The above equation is identical to equation 5.8 when converted into scaled 

units, with the explicit form of the potential gradient now given by A = 2ki,aTtp. 

Linearly ramping A f ( t )  by an amount v  over one kick period T  corresponds to 

a linear acceleration of a = \ v / 2 T  and therefore a linear potential gradient of 

A  = 27xvtp. Such a frequency ramp superimposed on a chirped kick sequence is 

sketched in figure 5.12. The sign of A can be changed by accelerating the lat­

tice in the opposite direction. Frequency chirping the lattice is experimentally 

achieved by modulating the output of one rf synthesizer by a sawtooth function
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Figure 5.12: Atoms can be subjected to a linear potential gradient by introducing 
a time-varying frequency to accelerate the kicking potential. Linearly ramping the 
frequency of one lattice beam by an amount v  in tim e T  results in a potential gradient 
A  =  27rotp. A two-period kick sequence with T\ = T ( l  — b) and T% =  T(1 + 6 ) (b «  1) 

is used to  break temporal symmetry.

derived from an arbitrary waveform generator.

The atoms are laser cooled to about 6 pK  (corresponding to a dimensionless 

rms momentum width =  2.8 ±0 .1  when heff =  1) and centred at plo =  0 in 

this series of experiments. The diffusion constant is made locally asymmetric 

by changing a via the magnitude of v. This is easily accomplished using the rf 

synthesizer control panel. The kick sequence has a chirp parameter b =  1/16 and 

is composed of pulses of duration tp =  296 ±  20 ns and period T =  9.47 ± 0.02/zs 

and where care has been taken to ensure the momentum boundary p^/ix =  64±4 

has a negligible effect on atomic momentum diffusion.

The effective Planck’s constant of the system is hef f  =  1 and the stochas- 

ticity parameter is chosen to be K  =  2.6 ±  0.3. That phase space is sufficiently 

globally chaotic at this value is verified by the phase space portraits in figure 

5.13. Stable islands occur at a periodicity of 2tt when the kick sequence is 

unchirped but very few cantori remain when b =  1/16 to affect diffusion.

Figure 5.14 illustrates the effect of varying the sign and magnitude of the 

potential gradient. In the absence of a potential gradient, A =  0 (black), the 

diffusion constant is locally symmetric and there is no asymmetry visible in 

the atomic profile. The variation of D(K ,p ,b ,A )  becomes asymmetric across 

the momentum profile when A is non-zero, with the gradient of the diffusion 

constant varying in opposing senses for A =  +7r/2 (red) and A =  —n/2  (blue). 

Maximum asymmetry is expected at these momenta and accordingly the atomic 

distribution is skewed towards negative momenta when A =  7r/2 in contrast to
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Figure 5.13: Phase space portraits for the conditions used in the accelerated-lattice 
experiments K  =  2.6 ,5  =  1/16. Stable islands are present at a periodicity 27t when 
the kick sequence is regular but only cantori axe present (at an altered periodicity of 
n/b) when the sequence is chirped by a factor b =  1/16. When the linear potential 
gradient A = n/2, the remaining cantori are shifted by +47T along the momentum

axis.

greater energy growth for positive momenta when ,4 = —7t/2.

This difference can be examined in greater detail by plotting the first moment 

of the momentum distribution \p\ • N(p).  The magnitude of the asymmetry in 

the two cases A =  ± n /2  is (almost) equal and opposite, reflecting the relative 

values of dD /d p  experienced by the atoms.

Results of an experiment to determine the variation of the asymmetry as 

a function of the potential gradient for K  =  2.6,5 = 1/16 are presented in 

figure 5.16. Once again the asymmetry (p) is quantified by the first moment 

of the distribution. It is expected to oscillate with a period n/b  but the rf 

synthesizer only allows a maximum v — ±1.25 MHz, which limits the largest 

potential gradient it is possible to achieve to A =  ±3n/4.  The range of A 

investigated is therefore extended using the moving lattice technique to cool the 

atoms down to p i 0 =  8n. Overlapping two sets of data, taken with the atomic 

distribution centred on p i o =  0 (black dots) and p i o = +87T (red dots), allows 

the modulation of (p) to be investigated over slightly more than one period. 

The blue line is an Excel fit to the data of the form f(p)  =  1 + 3.5sin(2pb — A).
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Figure 5.14: The effect of imposing a linear potential gradient A  that alternates sign 
with the kick number on atom ic diffusion for K  =  2.6,6 =  1/16. The applied potential 
gradients are of opposite sign and correspondingly the momentum profile is heavily 
skewed towards negative m omenta when A  =  7r/2 (red) and towards positive momenta 
when A  = — ir/2 (blue). Diffusion is symmetric in the absence of a potential gradient

(black).
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Figure 5.15: The asymmetry is more clearly illustrated by plotting the first moment 
of the atomic distribution |p.| iV(p) for the momentum profiles in figure 5.14. That the 
magnitude of the asymmetry is of (almost) equal magnitude is made more apparent

by this plot.
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Figure 5.16: The variation of the momentum asymmetry (p) as a function of the 
applied linear potential gradient for K  =  2.6, b =  1/16. The results of two experiments, 
the first where the initial atomic momentum p to  =  0 (black) and second where p to  — 
8tt (red), are combined to map the oscillation of (p) over slightly more than one period. 

The numerical simulation (green) is courtesy of Monteiro et al.
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From the results, it is clear tha t the extra term A in the C2  correction due 

to incorporating a linear potential gradient in the system behaves like a phase 

shift in the diffusion constant. Maximum asymmetry is found when A =  ir/2. 

A numerical simulation (in green, courtesy of Monteiro et al) agrees well with 

the 2n periodicity of the data  but not in magnitude. The discrepancy in the 

size of A is most likely due to the assumptions made in the simulation that are 

not l>orne out experimentally. For instance, the simulation assumes a Gaussian 

distribution that is very narrow in both momentum and space but the actual 

momentum distribution is slightly wider and the spatial distribution is very 

much broader by comparison.

5.3 Sum m ary

In this chapter, asymmetric diffusion is first generated by breaking the tem­

poral symmetry in a  spatially symmetric system using a chirped kick sequence. 

This introduces a  cosinusoidal momentum dependence in the next-but-one kicks 

correlation term in the diffusion constant that can be exploited by the moving 

lattice technique to produce directed diffusion. The periodicity of the variation 

of the asymmetry is shown to be as expected, and the time evolution of the 

asymmetry as a function of the chirp param eter b is also investigated.

A second method of generating directed diffusion is achieved by breaking 

spatio-temporal symmetry in the accelerating frame of the system. Accelerating 

the kicking potential breaks spatial symmetry and is equivalent to the addition 

of an inertial term in the system Hamiltonian. This modifies C2  correction in 

the diffusion constant once again (it now depends on A) and leads to asymmetric 

diffusion when coupled with a chirped sequence that breaks temporal symmetry.



C h a p t e r  6

T h e d ou b le  delta-k icked  rotor

The subject o f the previous chapter was the generation of asymmetric momen­

tum diffusion by breaking temporal symmetry in spatially symmetric and asym­

metric system s. The mechanism responsible in both cases was the introduction 

of a chirp parameter b in the kick sequence. This made the term describing 

correlations between next-but-one kicks in the diffusion constant momentum  

dependent, which was exploited using the moving lattice technique to produce 

a momentum asymmetry in the system  that varied with a period n/b.

New corrections to the diffusion constant appear when 6 is so large that 

the kick sequence more closely resembles a ‘double’ kick sequence, a sequence 

composed o f pairs o f pulses occurring at regular intervals. Correlations between 

these kick pairs (i.e. between previously uncorrelated nearest neighbour kicks) 

and corrections coupling families of kicks lead to  a modulation of the diffu­

sion constant (hence energy growth) that can be used to exploited to generate 

directed diffusion.

6.1 D ou b le  kicks

The consequences o f approximating delta-kicks by finite width pulses has been 

investigated in [64, 67) and was also the topic of Chapter 3. The use of non-zero 

width pulses produces a modulation proportional to  its Fourier transform in the

86
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stochasticity parameter K  = ^ - hef f t p and hence a sinc-squared oscillation in 

the diffusion constant D  oc K 2  /4  that is reminiscent of the single slit envelope 

in diffraction experiments.

Continuing this analogy, a kick sequence that consists of pairs of closely 

spaced kicks (‘double kicks’) should hypothetically result in a modulation of K  

similar to the interference pattern seen in a Young’s double slits experiment, i.e 

the convolution of the sine function that is the FT of a square pulse and the 

cosine variation that is the FT of a comb function produces a fast modulation of 

the diffusion constant as sketched in figure 6.1. We therefore expect to observe 

a fast modulation of D(K)  corresponding to the cos2 fringes in the optical

A double kicks sequence with pulses of width tp separated by t 8  and an 

interval T  between successive kick pairs is pictured in figure 6.2.

The presence of two distinct periods in the kick sequence modifies the Stan­

dard Map such that the trajectories in phase space are now described by two 

sets of coupled equations:

where e =  ta/T .  An example phase space portrait for K  = 3.3, e = 0.1 is 

presented in figure 6.4.

Unlike the Standard Map case, the double-DKR phase space is distinctly 

stratified due to correlations between nearest neighbour kicks. These strata or 

‘momentum trapping regions’ coincide with trajectories with starting conditions 

pe = (2n +  l)7r for which the effect of one kick is cancelled by the following kick. 

This corresponds to an atom travelling half a lattice period A = A/2 during 

t 8  such that the total kick strength (which must be averaged over one period)

analogue.

(Pn+1 — "I- Pn'I'

Pn+1 =  Pn "I- Ksin<f>n + i

4>n+ 2 =  <t>n+ 1 +  P n+ 1̂

Pn+2 =  Pn+1 d" K sin<f>n+ 2

(6 .1)

(6 .2)

(6.3)

(6.4)
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Figure 6.1: The modulation of K  is related to the Fourier transform of the pulse shape 
so a modulation of the energy D  oc K 2 is expected to recall the interference pattern

of a double slits experiment.
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i i i r
0 T 2T t

Figure 6.2: A ‘double kicks’ sequence. Pairs of pulses of duration tp are separated by
ta and period T > / a.

U

Figure 6.3: Semi-classical picture of the atomic motion in a ID potential. The atom 
moves a distance A =  A/2 between kicks that are separated by ta and so covers one 
lattice period per kick pair. The combined kick strength of one kick pair sums to zero

as a result.

sums to zero, as depicted in figure 6.3.

The trapping regions do not correspond to fully integrable areas of phase 

space but most trajectories started at pe =  (2n -I- l)7r will remain confined 

within them. Conversely, enhanced energy growth is expected for trajectories 

with initial conditions pe =  2n7r (where the effect of one kick is reinforced by 

the following kick) and intermediate behaviour is expected for all other starting 

conditions.

In Chapter 5 we saw that breaking the temporal symmetry of the system 

by using a bi-periodic sequence with a chirp parameter b (such that T(1 -  b) : 

T(1 -I- 6)) introduces a momentum dependence to the diffusion constant:
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K =3.3 ,€  = 0.1

Figure 6.4: Phase space portrait for the double delta-kicked rotor, illustrating the ‘mo­
mentum trapping regions' for trajectories started at pe =  (2n +  l)7r. The parameters 
here are K  = 3.3 and e =  0.1, where e =  ta/ T  is the ratio between the time interval 

between the kicks in each pair ta and the period between kick pairs T.

D (K , p, b)“  K 2[ l-  - M K ) r o s ( 2 p b )  + . . .] .  (6.5)

The second term in equation 6.5 is the  C 2  correction th a t  describes correla­

tions between next-but-one kicks C 2(A \ p, b) = J2(K)cos(2pb). T he C 2  correla­

tions dominate diffusion over th e  typically  sho rt tim escale t r and the m om entum  

asymmetry oscillates as a function of th e  in itial atom ic m om entum  with a period 

7r/&, as confirmed by experim ent in C h ap te r 5.

A double kicks sequence could naively be considered to  be an extrem e case 

of the above (a normal kick sequence w ith a  very large value of b), bu t [78] 

reports that an analysis of m om entum  diffusion only in term s of the  C 2 {K ,p ,b )  

correction is unsuccessful a t describing th e  experim ental results. Instead, three 

completely new correction term s ap p ear w hen a  double kick sequence is intro­

duced: the C\ correction couples nearest neighbour kicks whilst the  other term s 

{Cc,\ and Cp) describe correlations betw een families of kicks.
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The Ci correction term describes the correlations between nearest neighbour 

kicks m and m + 1, Ci =  ( K 2 8in<f>msin<f>m+ i ) , where m  labels the kick number. 

In the contrast to all previous experiments described in this thesis (where nearest 

neighbour kicks were uncorrelated), the Ci correction is non-zero for the double 

delta-kicked rotor. Jones et al [78] have shown that this correction is Ci cx 

cos(pe) and acts over the shortest timescale (when compared with the other 

corrections) t c i  ~  10/ ( K e ) 2. For short times, therefore, the atomic energy 

growth can be written:

K 2
E  ^  -^ -[1  +  cos{pe)]t (6.6)

The energy growth is minimal when pe =  ±(2n +  l)7r and largest when pe =  

±2n7r for n =  0 ,1 ,2 , —

The Cg i-correction term acts to couple the second kick in a kick pair with 

all the kicks preceding it. This correction can be shown to be the sum of 

the correlations between the second kick in a pair (labelled kick j )  and all the 

kicks m before it, ( K 2 sin<f>msin<f>j) where m < j .  The individual terms

in the summation are very weak when compared with the C\ correction but 

they accumulate over time to make the Cgi correction dominant at the longest

timescales. Jones et al [78] have shown that this correction takes the form:

Cgi oc —cos(pe) (6.7)

with the same period of oscillation as the C\ correction but the opposite sign.

The Cgi correction therefore acts to make energy minima observed when 

the Ci  correction dominates into energy maxima at longer times, which may 

be thought counter-intuitive when the phase space structure is considered. The 

positions of the energy minima seen initially correspond to momentum trapping 

regions where no diffusion is expected. When the C g i correction dominates, 

therefore, maximal atomic energy growth corresponds to the majority of tra­

jectories escaping trapping regions. A Floquet state analysis of the effect of 

subjecting the atoms to a double kick sequence can be seen found in [79].
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On intermediate timescales, when \Cg\\ ~  \C\\ (so partially cancel each 

other out), the effects of the third type of correction Cp may be observed. This 

correction results from a series of n cosinusoidal terms Cpn ex K 2cos(npe) that 

sums to produce behaviour reminiscent of a Poisson sum formula cos(npe) =  

53n <5[pe -  (2n +  1) 7r]. For this reason, the Cp =  YhCpn correction is called 

the ‘Poisson term’. It results in inverted peaks in the energy maxima when 

pe =  (2n +  1)7r, corresponding to the positions of stable islands in phase space, 

but the physical mechanism responsible for this behaviour is as yet unknown.

A detailed analysis of these new corrections may be found in [80].

6.2 R esults

We begin our exploration of the double-DKR by investigating the transition 

from DKR (single kicks) dynamics to double-DKR dynamics by performing an 

investigation in which the chirp parameter is increased until the single kicks 

sequence begins to resemble the double kicks case. The results are presented in 

figure 6.5.

In this experiment, the Cs atoms are first cooled and trapped in our MOT 

then further cooled to about 6 p K  in an optical molasses. The trap/molasses 

beams are then turned off and the far detuned lattice beams switched on. No 

frequency difference is introduced between the lattice beams so that the atomic 

distribution is prepared at plo =  0 for all values of b.

The lattice beams are detuned by approximately —2000T to give a potential 

depth of V0/h  =  18 MHz and a stochasticity parameter of K  =  1.7 ±  0.2. The 

effective Planck’s constant is heff =  0.25 and the potential is pulsed 160 times 

(i.e. 160 kicks) in each experimental cycle.

All the kick sequences used are of the form T(1 +  b) : T(  1 -  b) and have 

the same pulse width (tp =  379ns) and period (T =  2.37/zs) but different chirp 

parameters: 6 =  0, 0.06, 0.24. The parameter e, used to characterise double 

kicks sequence, is related to the chirp parameter by e =  (1 — 6 )/( l +  6). Figure 

6.6 presents the phase space diagrams relevant to this experiment.
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Figure 6.5: The effect increasing the chirp parameter b has on a momentum profile. 
W hen b =  0.24, the kick sequence closely resembles a double kicks sequence with

e =  ( l — 6) / ( l  +  6) =  0.61.
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Figure 6 .6 : Poincare Surfaces of Section for K  =  1.7 and various chirp parameters 
5 =  0 ,0 .06 ,0 .24 . L eft panel: Stable islands occur with 2n  periodicity. M iddle panel: 
Phase space is more chaotic but small stable islands remain between p /n  =  ± 5 . Right 
panel: Momentum trapping regions are expected at p iir  =  ± 1 .6 ,4 .9 ,8 .2 ,1 1 .5  when 
b =  0.24. The first trapping region cannot be seen but the second region is clearly 
marked by a white line stretching parallel to the position axis. The third region is less 
well marked and very few trajectories appear beyond p ta 12, which roughly coincides

with the fourth trapping region.
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When 6 =  0, phase space is comprised of chaotic regions with stable islands 

at p — 0 ,2n7r. Since the dimensionless rms width of the atomic distribution 

(<7P =  0.7) is much smaller than the width of a stable island (p /n ~  1), diffusion 

is only possible for the small number of atoms in the wings of the distribution 

extending beyond the stable island. This gives rise to the shoulders seen in the 

momentum profile for 6 =  0 in figure 6.5 (green). The unkicked distribution 

(black line) is approximately a narrow Gaussian and included for purposes of 

comparison.

As the chirp parameter is increased to 6 =  0.06, phase space becomes 

more chaotic so greater diffusion is possible and the momentum profile develops 

greatly pronounced shoulders (blue line). The middle panel of figure 6.6 shows 

the corresponding phase space portrait. A few stable structures remain between 

/>/tt «  ±5 to inhibit diffusion. Beyond this, phase space appears to be glob­

ally chaotic and the atoms are free to diffuse until they reach the momentum 

boundary pt> =  39 ±  2. The momentum profile therefore has a narrow central 

region where diffusion is limited, with much wider wings beyond p «  10 and a 

sharp cutoff at the position corresponding to the momentum boundary.

The positions of the trapping regions are given by the minima in the cos 

term in equation 6.6. We expect to find regularly occurring trapping regions 

at p i 7r =  ±  (1.1 x (2n +  1)) and indeed it is possible to make out faint white 

lines marking the edges of momentum trapping regions at p/it  «  1,±5 in the 

phase space portrait. At this small value of 6, however, the correlations between 

nearest neighbour kicks is also very small, so the momentum trapping regions 

have little effect on diffusion.

When 6 =  0.24 (pink profile), the chirped sequence resembles a double kick 

sequence and the unusual, double-shouldered profile typical of the double-delta 

kicked rotor is observed. At this value of 6, c =  0.6 and the trapping regions 

are expected at p /n  =  ±1.6,4.9,8.2,11.5. The double-DKR phase space (far 

right panel in figure 6.6) appears to be made up of three distinct momentum 

trapping regions.

Whilst it is not possible to make out the first trapping region in the phase
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Figure 6.7: Numerical sim ulation, courtesy of Creffield et al (in preparation), showing 
the distinctive ‘staircase’ m omentum  profile of the double-DKR. The red dotted lines 

indicate m omentum  trapping regions.

space portrait, its expected position coincides extremely well with the first shoul­

der of the momentum profile (at p « 5 ) .  The second trapping region can be 

clearly seen in phase space and also agrees very well with the position of the 

second shoulder of the momentum profile (p «  15). The third trapping region 

(at p =  ±26) is not as clearly marked in the phase space portrait, nor is the 

cut-off in the momentum profile as clear.

Subsequent numerical analysis has confirmed the appearance of this unusual, 

double-shouldered ‘staircase’ profile, see figure 6.7 and [78].

The new correlation terms introduced by a double kicks sequence also have 

a momentum dependence. Figure 6.8 presents a series of momentum profiles 

for a double kicks sequence with b =  0.60, e =  0.24 as a function of the initial 

atomic momentum. We use the moving lattice technique to change the initial 

momentum and recall that the atomic momentum in the co-moving frame is 

denoted by the subscript ‘L \

In this series of experiments, the pulse width is t p = 470 ±  23 ns, the kick 

period T  = 3.78 ±  0.01/is and the separation between kick pairs is equal to two 

pulse widths t 8 = 2t p . The momentum boundary is located at pb = 51 ±  2. The
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effective Planck’s constant of the system is he/ /  =  0.40 and the kick strength 

K  = 5 ±  0.5.

The first panel shows the momentum profiles for an unkicked distribution 

(black), a distribution kicked with a regular kick sequence (blue) and atoms 

subjected to a double kicks sequence (red), all prepared at plo =  0. The profiles 

are all symmetric as expected. For purposes of comparison, we include the single 

kicks distribution in all the other panels.

The phase space for this system is illustrated in figure 6.9. We expect mo­

mentum trapping regions at p/7r =  ±  (4 x (2n  +  1)) but only two trapping re­

gions can be seen (at p/it «  ±10,30).

Comparing the momentum profile initially prepared at plo =  0 with the 

phase space diagram, we see that the edge of the first trapping region is in 

good agreement with the position of the first shoulder of the profile. A second 

shoulder is not observed because the momentum boundary inhibits diffusion 

beyond pt = 51 ±  2.

As the initial atomic momentum is increased, momentum asymmetry devel­

ops for both single and double-kicked distributions due to presence of the mo­

mentum boundary but it is immediately apparent that the double-shouldered 

‘staircase’ profile only appears when the sequence is composed of closely spaced 

kick pairs.

Consider the momentum profile for plq =  46. In this case, the momentum 

boundary is located at pb = 4 ±  0.2, —97 ±  5 in the laboratory frame. Diffusion 

is heavily restricted towards positive momenta because of the boundary but 

two shoulders are clearly defined on the negative momenta side of the atomic 

distribution. We estimate the positions of trapping regions to be p «  10,40,85 

(marked in green dotted lines on the diagram), the latter two in good agreement 

with the phase space diagram (p «  31,94).

A close examination of the atomic energy and asymmetry for single and 

double kick sequences shows some unexpected behaviour, figures 6.10 and 6.11. 

The effective Planck’s constant for this data is he/ /  =  1 and the stochasticity 

parameter K  =  3.4 ±  0.3. The pulse width tp = 296 ±  14 ns, kick period
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Figure 6 .8 : Momentum profiles of the double-DKR for various initial atomic momenta 
( P l o )  (in red). The kick strength is K  =  5 and e =  0.24. The momentum profiles for 
the single kicks case for otherwise identical experimental parameters are in blue whilst 
the unkicked distribution is shown in black. In the p lo  =  46 case, the green dotted  

lines roughly indicate the position of momentum trapping regions.



6.2. Results 98

Figure 6.9: Phase space portrait for K  =  5,c =  0.24(6 = 0.6) for the double-DKR.

T  = 9.47 ±  0.02/iS and the separation between kick pairs is equal to 2tp such 

that e = 0 .0 6 .  We expect energy minima due to the presence of trapping regions 

to occur at p e  =  ± (2n  +  l)7r, s o  at p  =  ±  ( 1 6  x (2n +  l)7r), n  =  0 , 1 , .... for this 

experiment.

In the case of single regularly spaced kicks, the energy is approximately 

constant as a function of the initial atomic momentum. Similarly the asymmetry 

of the distribution is of constant magnitude, regardless of the value of plq.

When the atoms are kicked with a double kick sequence however, this is no 

longer the case. The energy of the system oscillates and actually dips below 

the energy of the regular kick case over a small range of initial atomic momenta 

centred at p / i x  =  1 6 , which corresponds remarkably well with the predicted 

position of the first trapping region. Suggestions for exploiting this phenomenon 

as a momentum filter for cold atoms have been made [79].

Next we investigate the double delta-kicked rotor as a function of e =  ta/ T , 

by varying the separation between the kicks in each pair. Each correction term 

acts on a different timescale (the C\ correction being dominant at small times,
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Cgi at long times and Cp  a t intermediate times) but all timescales have a 

dependence on e. By varying e, therefore, we can observe the effect the new 

correction terms have on the energy growth of the double-DKR.

The results of this experiment are reported in figure 6.12, which plots the 

asymmetry as a  function of the initial atomic momentum, and figure 6.13, which 

shows the atomic energy as a function of the starting momentum, for e — t8/ T  

where t8 =  l.btp,2tp,3tp,4tp.

In this experiment, the period between kick pairs is T = 9.47 ±  0.02/xs and 

the pulse width tp = 296 ±  14ns so e = 0.047,0.063,0.125 and 0.156. The 

effective Planck’s constant is hef f  = 1 and the atoms are subjected to 100 pairs 

of kicks. The lattice beams are detuned by — 2000T, making the potential depth 

Vo/h =  11MHz and the kick strength K  = 3.3 ±  0.3. The phase space diagram 

for this value of K  and e =  0.1 is given in figure 6.4.

From figure 6.12, it can be seen that the oscillation of the asymmetry be­

comes more rapid as t8 becomes larger. The oscillation also becomes less sinu­

soidal as the separation is increased. The differences are due to the different 

kick-to-kick correlation terms that dominate in each case.
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The variation in atomic energy as a function of ts is more carefully inves­

tigated in figure 6.14, which plots energy as a function of the initial atomic 

momentum against the numerical simulations of Jones et al [78].

In the topmost panel of figure 6.14, the C\ correction is the dominant term 

and the atomic energy is a co-sinusoidal function of momentum. As the separa­

tion between the pulses in each kick pair is increased (second panel down), the 

Ci and Cgi corrections begin to cancel each other out. Accordingly, the atomic 

energy does not fall to as low a minium value and dips start to appear at the 

maxima as the Cgi correction acts to transform energy maxima into minima. 

At intermediate timescales, the Poisson correction becomes dominant and clear 

inverted peaks may be observed (third panel down). At even greater separa­

tions, these inverted peaks become much smaller because the Cgi correction 

dominates.

6.3 Summary

This chapter introduced and characterised the double delta-kicked rotor, where 

the DKR is kicked by a series of closely spaces pairs of kicks or double kicks 

rather than a regular kick sequence. Initially we showed that the double-DKR
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momentum profile was an unusual ‘staircase’ shape (quite distinct from the 

regular DKR case and in agreement with numerical simulations), due to the 

presence of new correction terms in the diffusion constant governing the double- 

DKR.

Three new types of kick-to-kick correlations were identified: the C\ correc­

tion that coupled (the previously uncorrelated) nearest neighbour kicks; the C g i  

correction due to non-zero correlations between the second kick in pair with all 

the kicks preceding it; and the Cp  correction that acted like a Poisson sum 

formula and produced inverted peaks in the rotor energy maxima.

The C\ correction lead to the formation of momentum trapping regions in 

the double-DKR phase space, corresponding to starting conditions for which the 

effect of one kick was cancelled by the following kick and hence lead to minimal 

energy growth. An investigation of the atomic energy as a function of initial 

momentum gave excellent agreement between the dip in the rotor energy and 

the expected position of the first momentum trapping region.

Finally, an experiment varying the separation between kicks in each pair 

and hence e = t8/ T  explored the different competing correction terms. At the 

smallest value of e investigated, the C\ correction dominated and minima in 

the atomic energy corresponded to  the positions of the trapping regions. As e 

increased, inverted peaks appeared in the energy maxima (Cp-correction dom­

inant) and then began to turn energy maxima into minima (C g i  correction 

dominant). These experimental findings were confirmed by numerical simula­

tions of excellent fit. The inverted peaks effect in the rotor energy could be 

exploited for use as a cold atom momentum filter [79].
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A Brow nian ratchet

A ratchet is a device that produces unidirectional motion from a system under 

no net bias. In particular, a Brownian ratchet generates directed motion (‘a 

current’) by rectifying random fluctuations. There has been much recent interest 

in studying such systems because it is thought that they may model molecular 

motors like kinesin, the protein responsible for muscular contraction [81, 82]. 

This chapter details a  method of realising a Brownian ratchet using cold caesium 

atoms in a  3-dimensional optical potential. A current of atoms is shown to be 

generated when the temporal symmetry of the system is broken by applying 

an oscillating force of zero mean to rectify random fluctuations (noise) in the 

optical lattice.

7.1 Introduction

Brownian motion is named after the botanist Robert Brown who made observa­

tions of random motion of pollen grains on water in 1827 and today it is known 

as the archetype of a random walk. Almost 80 years later, Brownian motion 

was set in a  more mathematical framework by Einstein, Smoluchowski and by 

Langevin (cited in [83]), who separated the forces acting on a particle suspended 

in a liquid into two parts: firstly random fluctuations that time-average to zero 

and secondly a viscous drag force that acts to damp any induced particle mo­

104
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tion. The amplitude of the fluctuations depends on the viscosity of the medium 

and also its temperature so is often termed thermal noise.

Ratchets driven by thermal noise are called Brownian motors [71]. The 

basic concept behind ratchets is easily explained using a Smoluchowski-Feynman 

ratchet, shown in figure 7.1 and realised on a molecular scale by Kelly et al in 

[84]. It consists of a set of paddles attached to a saw-toothed ratchet and pawl 

system by a frictionless axle. A weight is fixed near the middle of the axle to 

measure any work done by the paddles and the whole system is surrounded by a 

gas a t thermal equilibrium. In the absence of a temperature gradient, the effect 

of thermal noise is isotropic across the system.

At first glance, one expects the weight to be lifted by the combined action 

of the gas molecules colliding with the paddles and the pawl that permits the 

ratchet to turn in only one direction. This, however, is in essence a perpetual 

motion machine and so a ratchet where directed motion results from unbiased 

fluctuations violates the second law of thermodynamics. This ‘Brillouin’s Para­

dox’ was solved by Marian von Smoluchowski and popularised Richard Feyn­

man, who noted that gas collisions could occasionally lift the pawl to allow 

the ratchet to turn in the opposite direction. The net motion of the ratchet 

will be nil and the system will not have done any work lifting the weight sus­

pended by the axle. The presence of spatial asymmetry alone, therefore, does 

not result in directed motion and a temperature gradient or doing work on the 

system is necessary to realise a  ratchet that is permissable by the second law of 

thermodynamics [85].

Much of the recent interest in ratchets stems from the possibility that molec­

ular motors may employ an action similar to the ratchet effect, in contracting 

muscles for example. The hydrolysis of certain proteins (like adenosine triphos­

phate (ATP) or sodium-potassium adenosine triphospate (KTP) [83]) may pro­

duce fluctuations of the potential that may be rectified to generate directed 

motion of other proteins.

Studying the directed flow of particles also has relevance in the area of 

electronics and nano-electronics. In fact, it may be said that a Brownian motor
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Figure 7.1: A Smoluchowski-Feynman ratchet.

acts (almost) like a electrical rectifier [86]. As electronic circuitry becomes ever 

more miniaturised, building molecular ratchets may present a way of controlling 

the current in such a device.

The ratchet effect is an already familiar phenomenon, being used in self­

winding wristwatches and ratchet screwdrivers. Gear levers work according to 

the same principle. The first requirement is some way in which the spatial in­

version symmetry of the system might be broken. The Smoluchowski-Feynman 

ratchet illustrates the second requirement for directed motion, namely that the 

system is not in thermal equilibrium. Once these two conditions axe met, di­

rected motion is possible in a spatially periodic system.

Brownian ratchets can be separated into two basic classes based on the 

mechanism responsible for directed motion: flashing ratchets, where a stochas­

tic perturbation varies the shape of the potential without affecting its spatial 

periodicity, and tilting ratchets, wherein unbiased perturbations form an addi­

tional driving force on the particles and make the system dynamics spatially 

asymmetric. The magnitude and direction of the current depends usually on 

the fine tuning of a system param eter and also on the symmetries that exist in 

the system.

The typical signature of a Brownian ratchet is current reversal [87, 71, 88, 

89]. For a given level of noise, the current increases with the force amplitude
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(providing it is small). In this regime, the directed motion or reverse current 

is due to the rectification of fluctuations and the ratchet acts like a Brownian 

motor. As the driving force is increased further, the current reverses direction 

(now called the direct current) because deterministic forces dominate over the 

fluctuations and the particle can no longer feel the periodicity of the potential. 

Increasing the level of noise now acts to reduce the current and this regime 

corresponds to the rectification of forces due to harmonic mixing. This is current 

reversal and has been observed in various ratchet setups, including nanoscale 

ratchet pumps.

In the rectification of fluctuations regime, a Brownian ratchet also displays 

stochastic resonance-like behaviour [90, 91, 92]. This is characterised by a cur­

rent that initially increases with the amplitude of the fluctuations until an op­

timum is reached, then decreases as the noise level in increased further and 

confirms that the system acts like a fluctuations rectifier.

7.2 T ypes o f ratchet

Ratchets are categorised according to the amount of noise and dissipation present 

and further subdivided by the mechanism responsible for generating the particle 

current. Brownian ratchets are driven by thermal noise. Replacing random noise 

with deterministic chaos led to the discovery of noise-free dissipative ratchets, 

while ratchets with no friction terms form clean Hamiltonian ratchets wherein 

the particle current is generated by chaotic dynamics alone. Brownian ratchets 

remain the most widely studied ratchet type, due to their possible applications 

in biology.

There are two main types of Brownian ratchet that can be realised: those 

that bias Brownian motion by fluctuating the potential and those that do so 

using a fluctuating force that time-averages to zero. In the first type, called 

flashing or pulsating ratchets, a particle current is produced by intermittently 

pulsing (or flashing) an asymmetric potential [88, 91]. This is schematically 

represented in figure 7.2.
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Figure 7.2: Diagrammatical representation of a flashing ratchet, (i) Particles are ini­
tially localised at the minima of the ratchet potential, (ii) The potential is switched 
off for an arbitrary (typically short) tim e during which the particles are free to dif­
fuse symmetrically in space (iii) The potential is switched back on and the particles 
retrapped. More particles are trapped near the steep edge of the potential because of 
its asymmetric shape, which shifts the centre of mass of the particle distribution and

so leads to directed motion.

The particles (atoms or molecules, for example) are initially localised at 

the minima of a sawtooth potential. The potential is switched off for a short 

time during which the particles diffuse symmetrically and then pulsed back on. 

The particles are once again trapped at the minima of the potential but the 

probability of trapping a particle is greater by the steeper edge of the sawtooth, 

causing an imbalance in the direction of diffusion. The centre of mass of the 

particle distribution therefore moves preferentially in a direction defined by the 

shape of the potential (towards the left in this case). Work is done on the 

system when the ratchet potential is turned on so this model does not violate 

the second law.
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Figure 7.3: Sketch of the rocking ratchet potential. The total potential is a combina­
tion of the sawtooth potential ( U ) and a linear potential gradient that alternates sign 
each tim e the lattice is pulsed, ± xF o  (where Fo is the force on the particles). In this 
example, the total potential exhibits no minima in which particles can be collected 
when the potential gradient is positive. Trapping is only possible when xFo is nega­
tive. Due to this and the asym metric shape of the potential, directed motion in the

The second type of Brownian ratchet, called tilting or rocking ratchets, use 

an external driving force to make the system dynamics spatially asymmetric and 

are further subdivided depending on the properties of the driving force F(t). If 

F(t) is stochastic these ratchets are known as fluctuating force ratchets and when 

F(t) is a periodic function they fall into the category of rocking ratchets. The 

latter rocking ratchet [93, 94, 95] is the type of ratchet used in our experiments. 

In our case a spatially symmetric optical potential is subjected to a zero-mean 

bi-harmonic driving force but the principle of a rocking ratchet can be best 

illustrated using the following, simpler example. Consider a potential that is 

the combination of a sawtooth potential and a linear potential gradient ±F0 

that alternates sign each time the potential is pulsed, as illustrated in figure

When the total potential is a superposition of the sawtooth and linear po­

tential gradient of the form U (x ) =  Uo+xFo > 0, there are no potential minima 

present to catch the particles. If the linear potential gradient is of the opposite 

case, U (x ) = Uq — xF0 < 0, potential minima exist and trapping is possible.

negative direction (to the left) is possible.

7.3.
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The shape of the total potential results in net atomic motion towards the lower 

potential side but this motion is impeded in the case of the negative potential 

gradient. The overall net current in the example given in figure 7.3 is therefore 

to the left (negative x direction).

^  < Fo < the current of particles is a product of the asymmetry

of the potential and happens in the absence of noise so cannot be called a 

Brownian ratchet. If Fo < ^ a ) L  t îe asymmetry in the rocking potential 

is insufficient to generate directed motion and requires the presence of thermal 

noise to produce a current. In this regime, the system corresponds to a Brownian 

motor.

A Brownian particle of mass m in a ratchet potential U (x) can be mathe­

matically represented by the following equation of motion:

mx(t)  +  U' {x(t))  =  -T)x(t) +  f 0{(t) (7.1)

where 77 is the drag coefficient and £(£) is the thermal noise in the sys­

tem, which is Gaussian white noise that time-averages to zero and satisfies 

the fluctuation-dissipation relationship (£(£)£(«)) =  2r)ksTS(t — s), where fo =  

2ffksT  is the noise intensity. The first term on the left hand side of equation 

7.1 is the inertial term and U' (x(t))  =  -f^U (x(t)) is the (conservative) force 

resulting from interaction with the periodic potential. Together they describe 

the deterministic dynamics of the system whilst the terms on the right represent 

the thermal environment.

When the system exhibits free thermal diffusion, U' (x(t)) =  0 (the particles 

do not interact with the potential) and the mean square displacement (x2(t)) = 

2 describes a random walk characterised by a diffusion constant D  =

kBT/r).

For all other cases a statistical analysis can be used to derive a system- 

specific expression for the particle current. The results of such an analysis 

on a given system shows the particle current falls to zero when the system is 

in thermal equilibrium, thus satisfying thermodynamics. It also confirms the
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results of the Smoluchowski-Feynman ratchet thought experiment. The presence 

of asymmetry in the system potential alone does not produce directed particle 

motion. A full derivation of the expression for the particle current in the cases 

of a ‘clean’ (£(£) =  T  =  0), Hamiltonian ratchet and a flashing ratchet can be 

found in [50, 71].

As mentioned before, the Brownian motor we have realised may also be con­

sidered a rocking ratchet because the directed motion is a product of ac forces in 

the system that time average to zero. Unlike the system studied above, however, 

the periodic potential used is spatially symmetric and the mechanism responsi­

ble for generating a particle current may be elaborated further by considering 

the system symmetries and symmetry breaking. A comprehensive review of 

directed motion in spatially symmetric ratchets can be found in [71].

7.3 Sym m etry breaking

In [96], Flach et al outline the possibilities of generating a finite particle current 

by breaking the temporal symmetry of the system alone. For convenience, 

this analysis of directed diffusion in terms of the symmetries of the system is 

restricted to a Brownian particle in the regime of weak damping where friction 

can be neglected (77 =  0) and the system is described by equation 7.2. This 

regime does not correspond to a Brownian motor but is included as it gives a 

useful picture of the symmetries involved.

mx(t)  -I- f (x )  +  E(t) =  0 (7.2)

where f ( x )  = U' (x) and E(t) is a time-dependent driving force.

Let us now consider the reflection and translational symmetries for x and 

t in the system. If f (x )  is antisymmetric after an argument shift f(x + x) = 
—f{ x  +  x)> the system can be said to have f a symmetry. If E(t) is such that 

E(t + t )  = E (—t 4- r), it is said to possess E s symmetry while it has E& 

symmetry if E(t) is antisymmetric after a coordinate shift equal to any odd 

integer multiple of T / 2, E(t) = —E(t  +  T/2).



7.3. Symmetry breaking 112

This system is invariant under a reflection in x coupled with a shift in t 

(Sa := x  —> - x ,  t -¥ t +  T f  2) if f{x)  has f a symmetry and E{t) possesses 

E s symmetry. In addition, if E(t) possesses E s symmetry then equation 7.2 is 

invariant under the transformation Sb := t -> (—t -I- 2r).

These transformations 50 and Sb essentially produce new particle trajecto­

ries. For a trajectory x(t;xo,Po),p{t\xo,Po) with initial coordinates in position 

and momentum x0 = x(f0; x0,po) and po = p(to;xo,po) respectively, these are 

described by the following equations:

a /x ( t ;x 0,po )\ _  / - x ( t  +  T /2 ;x 0,Po+  2x )\ 
a \p ( t ;x 0,po)J \  - p ( t  +  T /2 ;x 0,po) /

a (x{ t]x0,po)\ _  (  x (—t +  2r; x0,Po) \  
b\p{ t;x0,po)J \ - p ( - t  + 2T;x0,po))

Note that the new trajectories generated by the symmetry functions carry 

the opposite sign of p when compared with the initial trajectories. The aver­

age particle velocity (x) is therefore zero, verifying that no net current can be 

produced when these symmetries are present in the system.

For the specific case of a spatially periodic harmonic potential U (x) =  cosx 

and a bi-harmonic periodic driving force E(t) = E\Cosu)t + E^cos{2u}t +  a), 

the symmetry Sa is broken if E i^  /  0 and Sb no longer holds if a  0, nrc 

or E h2 /  0. The detailed analysis of [96] shows the current is independent of 

the starting conditions and its direction only depends on the way in which the 

symmetries are broken. The average particle velocity produced by the symmetry
p*2 ̂

breaking is proportional to  ̂ 3? sina. The amplitude of the current can beP0“
found by averaging the particle velocity over po and its direction is determined 

by the sign of E^sina. The control parameter for the system is therefore a: the 

current falls to zero when a = 0, n7r and it is necessary for a  to be static in 

order to generate a non-zero current.

The current also vanishes as po oo, although the symmetries remain 

broken, when the system approximates the situation of a free particle moving in 

an external electric field. Their research further adds that no symmetry broken
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transport is possible when only one harmonic is present in f (x )  and E(t) and 

that the amplitude of the current may be controlled through the addition of 

noise.

Experimentally it is impossible to realise a truly non-dissipative ratchet such 

as the one described above. A small amount of noise always present in the system 

(since the temperature can never equal zero) but it is possible to approximate 

a Hamiltonian ratchet by using a large driving force [97] (see also section 7.5). 

In this regime the particle current is due to harmonic mixing in a non-linear 

medium. At such large driving forces, the anharmonicity of the potential has an 

effect on the force on the atoms (U'(x) is no longer oc —s inx ) and the non-linear 

mixing of the two harmonics u; and 2u produces a current I  proportional to the 

phase difference (j> between them (I  cx sin<t>).

The analysis of the symmetries of the system in the presence of noise and 

a small driving force is highly complex and the reader is referred to [96] for 2m 

in-depth explanation.

7.4 Cold atom  realisation o f a Brownian motor

To date, Brownian motors have been realised using molecules, nanoelectronics 

and optical potential systems [84, 82, 98, 86]. We now describe the realisation 

of a rocking ratchet using cold caesium atoms in a spatially symmetric 3D 

optical potential subjected to an external zero mean force composed of two 

harmonics. Fluctuations in the system arise from fluorescence cycles between 

different optical surfaces, which for small driving forces, are rectified by the 

applied force. In this regime the system corresponds to a Brownian motor.

A single lattice beam, say in the z direction, is phase modulated to produce a 

variation in the electric field of the lattice that provides the driving force required 

for directed motion. This time-dependent phase modulation is composed of two 

harmonics a ( t ) =  ao[Acoscjt +  ^cos{2(jjt — </>)] (where A, B  are both constants) 

and alters the electric field to include an a-dependence:
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Eo[exei{kLZ- ULt) _  (7 .5 )

where Eq is the real amplitude of the electric field and kL,u)i are the lattice 

wavevector and frequency respectively.

This is equivalent to accelerating the optical potential by Xa(t)/2  in the 

laboratory frame of reference. Dynamics in the reference frame of the moving 

potential U (2kz — a(t))  are given by the co-ordinate transformation z' = z — 

a ( t) /2 k i ,  and the acceleration a =  a(t) is equivalent to the atoms experiencing 

an inertial force:

F =  M a = ^ a ( t )  (7.6)
m r 2

F  =  —^  Q° (Acosut -I- Bcos(2ut — (f>)) (7.7)
2 k i

The periodic external force is therefore a combination of two harmonics of 

frequencies u j  and 2 u j  with a phase difference (f> between them, as desired for this 

realisation of a rocking ratchet. The relationship between the constants A  and 

B  as a function of centre of mass velocity was investigated in [97] and found 

to give a maximum current when A  =  B. Following this work, the constants 

A  and B  are set at unity in these experiments. The fundamental frequency u j 

is chosen to be roughly equal to the vibrational frequency of the lattice Q such 

that the results obtained are in the regime of a non-adiabatic driving force.

7.4.1 The Umbrella lattice

Ratcheting occurs only in one dimension (z direction) but a 3D potential is 

necessary for confinement in the other two directions to increase the interaction 

time and allow observation of the ratchet effect.

There are many beam configurations that produce 3D lattices (see, for exam­

ple, [99] for a review) and the topography of the lattice depends on the relative

orientation and polarisations of the beams. We employ an ‘Umbrella-like lattice’ 

beam configuration that consists of the interference pattern between four laser
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beams and forms a lattice with sites of pure circular polarisation (which gives 

long confinement times, hence optimum cooling, for atoms at the bottom of the 

wells).

This choice of configuration was also motivated by being able to easily inte­

grate the necessary extra optics into the existing experimental setup. There is 

space for the beams to be positioned in this way and it also allows independent 

control over the beam in the z direction without significant modification of the 

control program. The umbrella lattice is discussed in greater detail in the next 

section.

The 3D potential is formed by the interference pattern of four laser beams in 

the ‘umbrella-like configuration, figure 7.4. A 150 mW diode laser (the ‘lattice’ 

laser) is typically detuned by -10T from the Cs D2 line (recall that T = 5.22 

MHz). A combination of beam splitters and halfwave-plates are used to split 

the output of the lattice laser three times to form the four beams of desired 

intensity. A comprehensive review of 2D and 3D optical lattices can be found 

in [99, 14].

Beam 1, the ‘ratchet beam’, (fci) propagates in the x — y plane and is linearly 

polarised in the x-direction, = kz . The other 3 beams (£2- 4) lie along the 

edges of a triangular-based pyramid, at 120° to each other. Beams fc2-4 are
L . w  L

linearly polarised perpendicular to the plane of the beam and ki (ej =  ^  1) 

and all subtend (f> = 30° to k \ .

This choice of 4> requires the electric field amplitudes to be E\ =  e0, £ 2,3 =  

£o\/3 4- cos26 /6cos6 = eoy/5/6 , E 4  = £0 /3  to result in the desired spatially 

symmetric potential with minima of pure circular (a+ or a~) polarisation.

For atoms with a. Fg = F - > F e = F +  l  transition, there exist 2 F  -I- 1 

sub-levels and, as mentioned in Chapter 2, optical pumping between different 

ground state sub-levels continues to occur after the atoms have localised in 

the potential wells of the lattice. The Sisyphus cooling phase ends when the 

atoms have lost enough kinetic energy to become trapped in the lattice sites 

but they continue to oscillate at the bottom of the wells. Whilst a transition 

into another sub-level is highly unlikely at the very centre of a well, the atoms
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Figure 7.4: A 3-dimensional optical lattice in the ‘umbrella-like’ configuration. The 
beam polarisations are shown by thick black arrows.

can experience a non-zero probability of a transition into another sub-level (via 

an excited state) as soon as they shift off-centre. Transitions between different 

potential surfaces are random since optical pumping is a stochastic process, so 

introduces a randomly fluctuating force to the system.

Optical pumping between different potential surfaces also allows atoms that 

retain enough kinetic energy to move between neighbouring potential wells. An 

atom pumped into an excited state |e) can decay to a different ground state 

sub-level and become localised in an adjoining lattice site as illustrated in figure 

7.5. The atoms may move between adjacent sites with equal probability so the 

motion can be characterised by a random walk with a step size equal to one 

lattice period.

The optical pumping rate is quantified by =  Uo/A, wherein the potential 

depth U0 is calculated using the measured vibrational frequency and the con­

stant of proportionality is set at unity, and is given in measured scattering units 

(MSU) throughout this Chapter, which are equivalent to events per second (or 

Hz). The hitherto neglected geometrical factor can be calculated by performing
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le>

Figure 7.5: Atomic motion in a ID optical lattice, shown here for two potential surfaces 
U± for atoms with a Jg =  1/2 —> Je =  3/2 transition. Although the atoms are localised 
in the lattice sites, they have enough energy to oscillate near the bottom of the well 
and hence a non-zero probability of being optically pumped into an excited state. This 
may be followed by decay into a different potential surface thereby moving the atom

to an adjacent potential well.

Bragg scattering experiments [100].

The mechanism responsible for fluctuations in the ratchet system here de­

scribed is optical pumping between different ground state sub-levels in the um­

brella lattice, which makes the photon scattering rate T' the appropriate quan­

tity to denote noise levels:

r  a  Uo/A  (7.8)

where U q is the depth of a lattice potential well, A  is the lattice laser detuning 

from resonance and the constant of proportionality is a numerical factor specific 

to the geometry of the lattice.

The scattering rate is varied by changing the laser intensity I  and detuning 

simultaneously, thereby keeping the potential depth U q oc I /A  the same for 

all experiments. Changes in the detuning are compensated for by changing 

the beam intensity via the rf level to the lattice AOMs whilst monitoring the 

vibrational frequency of the lattice using probe transmission spectroscopy (see 

section 7.4.3).
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Figure 7.6: Pictorial representation of the equipment stages involved in the phase
modulation of the lattice.

7.4.2 Phase m odulating th e lattice

The spatial symmetry of the atomic dynamics is broken by introducing an 

external bi-harmonic driving force F  = Fo[Acosujt +  Bcos{2ujt — 0)] via a 

phase modulation of the ratchet beam (beam 1, k\) using a function a(t) = 

ao[Acos(ujt) +  B/4cos(2ut — </>)]. The output of the lattice laser is first split 

into two components, the ratchet beam and another beam that will later be 

split into the other three lattice beams. They are both passed through separate 

acousto-optic modulators, each one controlled by its own rf switch that is trig­

gered by a TTL signal from the experiment control program, before being sent 

through the vacuum chamber of the magneto-optical trap in the umbrellalike 

configuration.

Rather than phase modulating the ratchet beam directly, we apply a fre­

quency modulation $ m  that is linked to the phase modulation by its derivative:
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=  d a / d t  =  ao[Asin(ujt) +  — sin(2cjt -  <(>)]. (7.9)

The frequency modulation is accomplished by using the combined output of 

two TTi waveform generators in a master-slave setup (they then share the same 

reference clock) to modulate the rf level to the AOM controlling the ratchet 

beam. The rf source used is a SMY01 Rohde & Schwartz if  synthesizer.

Care must be taken to account for the master frequency (a;) dependence of <f>. 

A macro written into an Excel worksheet calculates this factor and the correction 

is double-checked by observing the combined waveform on an oscilloscope screen.

The frequency modulation is ramped up over a period of 2 ms and lasts for 

30 ms before being ramped down in 2 ms. The slow turn-on of the modulation 

is required to avoid transient effects. Following the recommendations of [97], we 

set A =  B  = 1 and <f> = n/2.  The modulation amplitude is controlled via the rf 

synthesizer. The set-up of the apparatus is pictured in figure 7.6.

The control parameter for this Brownian ratchet, the phase difference (j> in 

equation 7.6, is now the phase difference between the two harmonics and is 

easily adjusted using the waveform generator.

7.4.3 Probe transm ission spectroscopy

An atom near the bottom  of the potential, where the potential may be assumed 

to be harmonic, can be treated like a oscillator with a vibrational energy level 

spectrum En =  (n +  \)h.£lVib, where Qvib is the natural frequency of oscillation. 

The potential depth of the lattice is easily calculated if the vibrational frequency, 

f lVib, is known. In this instance, is determined by probe transmission 

spectroscopy [101], where a low intensity probe beam propagated through the 

lattice can drive stimulated Raman transitions between adjacent vibrational 

energy levels by either absorbing a photon from or emitting a photon into the 

pump (i.e. lattice) beam of frequency u.

In the semiclassical picture, the presence of a weak probe beam of fre­

quency causes a periodic modulation of the potential. When the probe detuning,
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Figure 7.7: A typical probe transmission spectrum.

&probe =  ^probe — ^lattice, equals the vibrational energy level spacing, the atom 

produces a resonant response.

The probe beam intensity is recorded as a function of its detuning from the 

lattice beam and the vibrational frequency extrapolated from the features in 

the signal.

Stimulated Raman transitions occur when the probe detuning is an integer 

m  multiple of the frequency spacing between vibrational levels:

27T X Sprobe ~  i m f l t ,jj>. (7.10)

This situation is illustrated in figure 7.8. For an atomic distribution localised 

in a lattice site, most atoms can be assumed to be in the lowest vibrational 

state with increasingly smaller fractions present in the higher vibrational levels. 

When 27t x  Sprobe =  + m f i ,  therefore, photons from the probe beam are absorbed 

(causing a loss in probe beam intensity), whilst absorption of photons from the 

lattice beam followed by stimulated emission into the probe beam occurs when
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  Lattice

Probe

Figure 7.8: Stimulated Raman transitions between two vibrational levels in the lattice. 
The size of the green circles indicate the relative population in each level.

2n x Sprob€ =  — m il (probe gain).

A typical spectrum is shown in figure 7.7. In our setup, a linearly polarised 

probe beam propagates through the MOT vacuum cell at a small angle to the 

ratchet beam but in the same plane kz. The frequency of the probe beam 

(wprofce) Is detuned from the lattice beams (ujiattice) by an amount S p ro be = 

U probe — u la ttic e  and swept across a range, typically 6 = ±(600 -  1000) kHz, in 

10 ms.

The sharp feature around 6 = 0 is a Rayleigh resonance, due to scattering 

from the moving interference pattern formed by the probe and lattice beams. 

The frequency separation between the peak and dip of the probe transmission 

signal (the Raman resonance) is then used to calculate the vibrational frequency 

and hence the potential depth of the lattice.

7.4.4 T he experim ental cycle

A typical experimental cycle, pictorially represented in figure 7.9, begins by cool­

ing and trapping the atoms in the MOT for around 2 seconds before switching 

off the trap’s magnetic field coils, detuning the trap beams further and cooling 

the atoms for a further 30 ms in an optical molasses. The trap/molasses beams 

are switched off and the atoms are loaded into the 3D potential for the ratchet­

ing phase. The modulation stage lasts for 30 ms but is slowly ramped up and
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1. MOT

4. Imaging

3. Ratchet potential

Figure 7.9: Pictorial representation of our experimental cycle, which lasts around 3
seconds.

down over a period of 2 ms to avoid any transient effects.

Finally the motion of the atomic distribution is observed by briefly illumi­

nating the atoms with near resonant light and imaging the scattered light using 

a cooled CCD camera (as described in Chapter 2). Each data point is an average 

of five frames and the centre of mass (CM) velocity of the atomic distribution 

along the z direction can be calculated using the first moment of the atomic 

distribution. Results of the CM velocity as a function of differing levels of noise 

are presented in section 7.5.

2. Molasses
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Figure 7.10: The centre of mass velocity, in units of recoil velocities, as a function of 
<j>, the phase difference between the two harmonics (frequencies u  and 2u>), which is 
the control parameter of the system for determining the magnitude of the current at

a given scattering rate.

7.5 R esults

The first investigation of this Brownian ratchet confirms directed diffusion is 

possible in this ratchet system. Figure 7.10 presents results of the centre of mass 

velocity as a function of the control parameter <f> which verifies the presence of 

a current in the system. The lattice vibrational frequency is 160 ±  10 kHz and 

the measured scattering rate T, =  540 ±  50 Hz. The results also show the 

expected oscillatory behaviour with <f> and hence that it is indeed the control 

parameter for the Brownian ratchet system at a given scattering rate. We notice 

that <f> = 7t/2 corresponds to the point at which the temporal symmetry of the 

system is maximally broken (hence maximum current).

We now fix 0 =  7r/2 and investigate the centre of mass (CM) velocity as a 

function of the driving force for several different scattering rates. Because this 

model system is relatively unexplored, and the physical reason for the rectifica-
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Figure 7.11: Results of a Monte Carlo simulation showing the current reversal be­
haviour expected in our Brownian ratchet.

tion of fluctuations is not yet known for the case of optical pumping between 

different potential surfaces, figure 7.11 shows the results of a Monte Carlo sim­

ulation of this system (with the exception that the simulation considers a ID 

lattice) from Jones et al [102]. The numerical simulation demonstrates a non­

zero current can be expected from that system and displays the current reversal 

behaviour characteristic of a Brownian lattice. At small a 0, the fluctuations are 

rectified and a reverse current is observed. This falls to zero when harmonic 

mixing begins to dominate the system dynamics. As the modulation ampli­

tude is increased further in the rectification of forces regime, the noise becomes 

a nuisance and the influence of the periodicity of the potential on the atomic 

dynamics is reduced so the current approaches zero once more

The experimental results are presented in figure 7.12. The data set has 

been smoothed by five-point adjacent averaging, which has unfortunately left a 

small vertical offset to the data. This offset is positive or negative depending 

on the scattering rate. The plots of the CM velocity in units of the recoil 

velocity as a function of the modulation amplitude are in very good agreement
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Figure 7.12: Experimented results showing the current reversal behaviour in a Brown­
ian ratchet for several different measured scattering rates, T' =  150,200,300,450,500  

Hz. The centre of mass velocity is given in units of the recoil velocity.

with the theory and the numerical simulation. For a fixed scattering rate, the 

reverse current increases with the amplitude of the force for small <*o ■ As q0 is 

increased further, the current decreases and reverses direction (becoming a direct 

current) as the rectification of forces dominates the rectification of fluctuations. 

The reduction in the magnitude of the direct current, seen in the numerical 

simulation, is not present in the experimental data because any further increase 

in ao is limited by the available range on the rf synthesizer.

The rectification of forces results from the anharmonicity of the potential 

at large driving forces. In a non-linear medium, the mechanism responsible is 

harmonic mixing. The non-linear medium here is the anharmonic potential and 

the two harmonics produce a force proportional to the phase difference between 

the two frequencies. This rectified force is F  ex siri(f) and fluctuations in the 

system no longer contribute to the generation of a current. In this regime,

1 » .

• r=  150 Hz
▲ 1 ’= 200  Hz
▼ r =  300  Hz
■ r=  4 5 0  Hz
• r =  500  Hz

■ •
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therefore, the system does not correspond to a Brownian motor.

Finally consider the behaviour of this system as a function of the scattering 

rate when «o is small. The relevant section, the reverse current regime, is 

expanded in figure 7.13. When the measured scattering rate is very small (T* = 

150 Hz, black circles), there is no reverse current (no positive displacement). 

As T' is increased, the magnitude of the reverse current initially increases for 

a fixed modulation amplitude. Noise acts to increase the current in the system 

(contrary to its behaviour in the regime of rectification of forces) until T1 =  450 

Hz. As the optical pumping is increased beyond this scattering rate, the current 

decreases once more. For example, the CM velocity is plotted as a function of the 

optical pumping rate for ao = 1.8 in figure 7.14. This stochastic resonance-like 

behaviour is characteristic of a  Brownian ratchet and confirms that this model 

system acts like a  fluctuations rectifier and that we have realised a Brownian 

ratchet.

7.6 Conclusion

In this chapter, we have realised a Brownian ratchet using cold caesium atoms 

in a 3D umbrella lattice as a model system. The source of noise in the sys­

tem is optical pumping between the potential surfaces of the different ground 

state sub-levels of the lattice and it is quantified by the optical pumping rate 

T'. The experimental results show the behaviour predicted both by theory and 

by numerical simulations. Current reversal and stochastic resonance-like be­

haviour is evident, confirming that this system corresponds to the realisation of 

a Brownian motor in the regime of small driving forces. The added importance 

of this realisation in the type of system used. All the experimental parameters, 

including the scattering rate, may be controlled by adjusting the parameters 

of the laser fields involved. Unlike solid state systems there are no defects in 

the crystal structure and optical lattices are a far more tunable system than an 

optical tweezers set-up. There is much potential for a system such as this for 

use in ratchet experiments, including forming a testing ground for deterministic
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Figure 7.13: Expanded section from figure 7.12, showing the regime of the rectification
of fluctuations.
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Figure 7.14: Plots of the centre of mass velocity (in units of the recoil velocity vr) 
as a function of scattering rate at a fixed modulation amplitude ao = 1.8 showing

stochastic resonance behaviour.

or Hamiltonian ratchets, see [50], when the driving force is large and noise is 

minimal.



Ch apter  8

Conclusion

This thesis has detailed several ways in which directed atomic transport can be 

realised using laser-cooled caesium atoms in optical lattices, roughly subdivided 

into methods of generating transport in dissipative regimes wherein a Brownian 

motor may be realised or those in non-dissipative regimes, when the dynamics of 

the system are deterministic and transport was generated using several different 

methods.

In the first part of this thesis (Chapters 3-6), we demonstrated how directed 

motion may be generated in a  non-dissipative regime by modelling a delta- 

kicked rotor (DKR) using cold Cs atoms in a pulsed, far-detuned optical lattice. 

The DKR is a freely moving planar rotor subjected to instantaneous impulses, 

which are not possible to realise experimentally. The square-pulse approximar 

tion to the delta-kicks introduced a sine-squared momentum dependence to the 

diffusion constant D (K ,p). The minima of D (K ,p) are called the momentum 

boundary, a  barrier to atomic diffusion that, when used in conjunction with 

the moving lattice technique, could be exploited to produce asymmetric diffu­

sion. The utility of the moving lattice technique was also demonstrated by the 

exploration of mixed phase space in Chapter 4.

In Chapter 5, the temporal symmetry of the DKR was broken by pulsing the 

potential according to a bi-periodic kick sequence T(1 — b) : T ( l  — b) with a chirp 

parameter b. This introduced a cosinusoidal momentum- and chirp parameter-

129
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dependence into the kick-to-kick correlation terms in the diffusion constant, 

specifically the C2  correction term quantifying correlations between next-but- 

one kicks. Directed transport was observed when the diffusion constant was 

made locally asymmetric, with the magnitude and direction of the momentum 

asymmetry dependent on po. The growth of the asymmetry was investigated 

and the expected periodicity of the oscillation of the asymmetry, 7r/6, was also 

verified experimentally.

Asymmetric diffusion was also produced as a result of breaking both the 

spatial and temporal symmetry of the DKR. Temporal symmetry was broken 

by chirping the kick sequence as before and a linear potential gradient that 

alternated sign with successive kicks was imposed on the optical potential to 

break spatial symmetry. The potential gradient A was achieved by chirping 

the frequency difference between the lattice beams to accelerate the potential 

and was equivalent to an additional inertial force in the reference frame of the 

lattice. The modulation of the diffusion constant in this case also depended on 

the magnitude of A. Results showing the generation of momentum asymmetry, 

its dependence on A and asymmetric momentum profiles were presented in 

Chapter 5.

In Chapter 6, we realised a ‘double delta-kicked rotor’ by using a kick se­

quence of closely spaced pairs of kicks (a double kicks sequence) that made 

the higher order correlation terms in the diffusion constant non-negligible. In 

particular, correlation terms that coupled families of kicks and non-zero correla­

tions between nearest neighbour kicks caused a fast modulation of the diffusion 

constant that generated a unique, double-shouldered momentum profile. Chap­

ter 7 presented evidence of a new type of Brownian ratchet, realised using the 

Cs atoms in a  near-detuned (hence dissipative) lattice and where the current 

of atoms was produced from unbiased fluctuations. Unlike ratchet systems in­

vestigated to date, the mechanism producing noise in this ratchet was optical 

pumping between the different ground state sub-levels of the lattice. The atoms 

were subjected to a zero-mean external force composed of two harmonics with a 

phase difference <j> between them, F  =  Fo[Acosu)t — Bcos(2cjt — (j>)] (A = B  =  1),
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which produced a current. Results are presented for several different levels of 

noise. Current reversal, the typical signature of a Brownian ratchet, was ob­

served as was stochastic resonance-like behaviour that confirmed the device 

acted like a fluctuations rectifier. The physical means by which a current is pro­

duced is not well understood in ratchets consisting of more than one potential 

surface and experiments are underway to bring this mechanism to light.
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