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Abstract

A study o f the retinal vascular pathology in the Royal College of 

Surgeons Rat: A model o f human retinal degeneration.

The leading causes of loss of vision in the developed world are the degenerative diseases 

of photoreceptors; in particular, age-related macular degeneration (AMD) and retinitis 

pigmentosa (RP). A common characteristic of these diseases is secondary damage 

affecting the vascular network, which is apparently initiated by photoreceptor loss. One 

problem with investigating the vascular consequences of these diseases has been the lack 

of a suitable animal model that can be used to investigate various potential treatments. 

This study has developed methods of quantifying retinal vascular damage in the 

pigmented Royal College of Surgeons (RCS) rat, which is characterised by the formation 

of vascular complexes and these methods have been used to explore strategies to retard or 

reverse this damage. This was done with the view to improving the retinal environment, 

thereby assisting other therapeutic strategies that target the primary defect causing the 

loss of photoreceptors. The work was divided into three areas: 1) investigation of the 

vascular effects of progressive photoreceptor loss and development of computerised 

image analysis to quantify changes, 2) pharmaceutical intervention to modify the normal 

sequence of events, 3) examination of the effects of RPE sub-retinal transplantation on 

the vascular network to determine how the retinal vasculature would react to the presence 

of transplanted human RPE cells at different time-points.

These three areas of study validate the use of naturally occurring events in the RCS rat to 

provide a model of vascular pathology in human retinal degenerative diseases. This 

contrasts with previous models, which have relied on creating wounds to simulate 

conditions that occurring in the diseased human retina.
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1.0 Literature Review For“A Study Of The Retinal

Vascular Pathology In The RCS Rat...”.

1.1 Aims
The primary goal of this project was to investigate the dynamics of the retinal vasculature 

in the pigmented dystrophic Royal College of Surgeons (RCS) rat that develop in 

conjunction with the appearance of pigmented cells in the inner retina. Vascular 

anomalies were observed in our laboratory (Villegas-Perez et al., 1998; Villegas-Perez et 

al., 1996) during investigations of ganglion cell loss in advanced retinal degeneration in 

the dystrophic RCS rat model and later vascular pathology in the rd mouse and RCS rat 

(Wang et al., 2000) (Wang et al., 2003).

This work has three major aims: 1) To investigate the vascular events that accompany 

progressive photoreceptor loss and to develop computerised image analysis methodology 

to quantify changes, 2) To develop pharmaceutical treatments to modify the secondary 

vascular events, 3) To examine the effects of sub-retinal transplantation of human retinal 

pigmented epithelium (RPE) cells on the retinal vascular network in the RCS rat.

These three areas of study utilised the naturally occurring events in the RCS rat as a 

model of vascular pathology that is relevant to human retinal degenerative diseases. The 

RCS retina provided an assay system for assessing pharmaceutical and cell-based 

modifications to the retinal environment with minimal disturbance of the natural 

conditions. This contrasts with previous models, which have relied on creating retinal 

lesions to simulate conditions occurring in the diseased human retina (Campochiaro and 

Hackett, 2003) or have used inappropriate non-pigmented animals (Seaton et al., 1994). 

The long-term objective of this work was to gain an understanding of the secondary 

vascular events in retinal degeneration and to enable manipulation of the retinal 

environment that could improve the outcome of potential therapies for human diseases of 

retinal degeneration.

1.2 Anatomy Of The Retina
Before any analysis of the vascular network of the retina can be undertaken a clear 

understanding of the basic structure of the retina is required.
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1.2.1 Development Of The Retina

The retina is the light sensing part of the eye containing the visual pigments that absorb 

and process light into neural impulses in the process called photo-transduction. The retina 

develops out of the neural tube early in embryonic life as two optic vesicles forming in 

the region that will become the animal’s head (Fig 1.1). These optic vesicles invaginate to 

form proto-eye structures called optic cups. The cells on the inner surface of the optic cup 

divide and differentiate into the seven different layers of the retina (Marquardt and Gruss,

2002), while the outer layers develop into the retinal pigment epithelium.

1
neural tube

2
neural tube surface ectoderm

♦ retina

formsj^

neural tube

brain

neural ectoderm

A
optic cup '  P!9"]ent\ H H epithelium 

optic vesicles

Figure 1.1 Eye Development, Three early stages of eye development, showing the origins 

of the retina, (picture courtesy of www.webvision.med.utah.edu).

Due to its origins in development the retina has many shared characteristics of neural 

tissue such as the blood-retinal barrier and the relative lack of extracellular matrix within 

the retina. Retinal progenitor cells have been found to produce a limited repertoire of cell 

types in an ordered sequence as the retina develops with ganglion cells generally being 

produced first. The order in which the retinal cells develop varies with different species 

but cones, horizontal cells and amacrine cells generally follow ganglion cells 

(development of different cells greatly overlap each other) with rods next and bipolar and 

Muller cells last (Cepko et al., 1996).

1.2.3 Retina Structure

The structure of the retina is complex and laminated in nature with alternating layers of 

cellular elements and interconnecting neural processes. These act to collect and process 

visual information before transmission to the visual centres of the brain via the optic 

nerve. Anatomically the retina forms seven major layers, bound between two membranes,
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the inner limiting membrane on the inner surface of the retina and Bruch’s membrane 

separating the RPE from the choroid.

As mentioned above there are seven major cell types within the retina of which there are 

numerous subtypes that vary from species to species. These cell types tend to populate 

distinct zones within the retina forming distinct anatomical layers of the retina as 

illustrated in figure 1.2 below.

bipolar cell
amacrine

cell

ganglion cell

choro id  y
pigment 

pithelium

outer segments

inner segments

outer nuclear 
layer (ONL)

outer plexiform 
layer (OPL)

inner nuclear 
layer (INL)

inner plexiform
layer (IPL)

ganglion cell 
layer (CCL) 

optic fiber layer
(o 'f d

Figure 1.2 Mammalian Retina. Cross section of the retina (left) with associated diagram 

(right) showing important cell types in signal transduction of light from the 

photoreceptors back to the ganglion cells and optic fibre layer which sends the visual 

signals to the optic nerve.

The exception to this is the Muller cells which extend processes from the photoreceptors 

to the ganglion cells layer where its lateral processes form the inner limiting membrane 

with basement membrane molecules. A good basic overview of the structure of the retina 

can be obtained online at the WebVision web site (Kolb, 2002). The neural cells of the 

retina form the bulk of the cellular mass of the retina. Starting with the photoreceptors, of 

which there are two basic types called rods and cones. There may be several different 

subtypes of each depending on the wavelengths of light required by the evolutionary
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niche of the animal studied (Bowmaker, 1998). The density of photoreceptors may also 

vary but much of that may be due to specialised adaptations such as the macula. The 

macula is a very densely packed cone rich region of the retina that is adapted for colour 

vision. Rat retinas may not require colour vision and have no macula but are rich in rod 

photoreceptors that detect monochromatic light levels and contrast. The photoreceptors 

extend from the RPE in to the outer plexiform layer where they connect via synaptic 

processes to the bipolar and horizontal cells. Both of these cells extend into the inner 

nuclear layer where they interact with a third class of cells, the amacrine cells. Processes 

from the bipolar cells and amacrine cells extend into the inner plexiform layer where they 

contact the synaptic terminals of the retinal ganglion cells which relay the signals through 

the optic nerve and hence to the visual centres of the brain

It has been known for some time that there are numerous sub-types of inner retinal cells 

which been described from as far back as Ramon y Cajal in 1892. The human inner 

nuclear layer contains horizontal cells (up to 4 subtypes), bipolar cells (up to 11 subtypes) 

and amacrine cells (up to 30 subtypes)(Kolb, 2003). The cells of the inner retina both 

process and transmit neural signals from the photoreceptors to the ganglion cells (up to 20 

sub-types). The exact sequences of these signals are still not fully understood, but it is 

believed that rods and cones use different pathways to process and transmit information. 

There have been attempts to count the different cell populations in retinae (Jeon et al., 

1998). These studies have not been able to discern cell type sub-populations but they 

show how different species can differ in cell distribution over the retina.

There are also three types of glial cells in the mammalian retina of which the most 

numerous are Muller cells. These cells have essential support functions to neural cells 

such as fuelling aerobic metabolism to nerve cells and removing waste end products from 

these cells. The other two types of glial cells are astrocytes and microglia, which are 

found in the optic fibre layer and alongside blood vessels.

The outermost layer of the retina is the RPE, a monolayer that is an essential regulatory 

component for the retina. The RPE and the photoreceptors interact within a 

glycosaminoglycan rich area called the inter photoreceptor matrix (IPM) The RPE is not 

directly involved in signal transduction but has an essential role in photopigment 

regeneration, nutrient transfer, maintaining the photoreceptors and the outer blood-retinal 

barrier. The RPE also maintains Bruch’s membrane: a basal lamina to which it is attached 

and which separates the retina from the highly vascular choroid.
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1.3 Rod And Cone Photoreceptors

The photoreceptors are the cells where phototransduction takes place in the retina and as 

such are the first step in the chain of information being relayed to the visual centres of the 

brain. There are two types of photoreceptors, called rods and cones due to the shape of 

their outer segments. Within those two types can be several sub-types which have 

evolved to detect different types of light depending on the evolutionary requirements of 

the species (Ahnelt and Kolb, 2000). To do this they have evolved different visual 

pigments, rods contain rhodopsin (Menon et al., 2001), which detect low intensity light. 

Cone photoreceptors contain opsins (Travis, 2005), which detect high intensity light of 

various wavelengths adapted for daylight conditions.

1.3.1 Photoreceptor Structure

The physical structure of these cells consists of long thin columns with two major 

segments and a synaptic terminal, as shown in figure 1.3.

CONE ROD

C
Q)
E|
O)

a>3O
C onnecting

cilium

Ellipsoidc

0)
c
c

N ucleus^

Synaptic

Figure 1.3 Photoreceptor structure (courtesy of The visual neurosciences by Chalupa & 

Werner)

Both rods and cones have their synaptic terminal in the OPL. The inner segment or cell 

body is located in the INL. It comprises of the nucleus and the cell organelles, such as the 

endoplasmic reticulum and Golgi apparatus, followed by a mitochondria rich area called 

the epsiloid. The epsiloid is responsible for delivering adenosine triphosphate (ATP) to 

the photoreceptor disks of the outer segments and for focusing photons onto the 

photoreceptor disks. The inner segments end with the photoreceptor cilium, a narrow 

constriction where proteins waiting to be formed into photoreceptor disks must pass 

before assembly into photopigment disks. The assembly of the photopigment
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membranous disks occurs at the base of the outer segments (OS). The OS are formed of 

many membranous disks formed into stacks that reach into the interphotoreceptor matrix 

(IPM) and contact the apical process of the RPE. There are between 500-2000 disks in 

each rod photoreceptor (Brown et al., 1963) with membrane-bound visual pigment 

molecules (aboutlO9 molecules to each photoreceptor cell) studded along the disks.

The stacks of rods and cones have slightly different structures in that the rods are sealed 

off by the surrounding plasma membrane whereas the cone stacks are connected and 

continuous with the plasma membrane and therefore open to the extracellular 

environment. Early electron microscopy of radioactive pulse chase experiments showed 

rod outer segment assembly and casting (Young and Bok, 1969) but due to the open 

structure of cone photoreceptors this was not immediately apparent with cones (Anderson 

et al., 1978). More recent research showed that the radioactive tracer diffused through the 

cones due to the open structure of the cone stacks. Cones do shed OS but with peak 

activity immediately after dark as opposed to rods whose peak casting time is after onset 

of light (Anderson et al., 1978; Besharse et al., 1977; LaVail, 1976).

Both processes can occur very rapidly and require the interaction of healthy RPE (Hall 

and Abrams, 1987) due to the vast quantities of OS disks, which must be phagocytosed 

by the RPE. The rate of turnover is affected by light levels and temperature, with 

alternating light/dark cycles being optimal, increased body temperature resulting in faster 

turnover (Hollyfield et al., 1977);(Besharse et al., 1977).

1.3.2 Distribution Of Photoreceptors

Because of their elongated structure and the densely packed environment of the retina 

(lacking significant extracellular matrix) it is nearly impossible to grow intact 

photoreceptors in vitro, a fact that has greatly limited research on these cells.

Rods and cones are arranged in a mosaic with usually many rods surrounding each cone 

with exceptions such as the primate fovea, which is a very cone rich central region of the 

retina and another being the tree shrew (Tupaia Belangeri) retina that has 95% cones with 

5% very small rods (Petry et al., 1993). In humans the composition is 95% rods to 5% 

cones, in rodents that are nocturnal animals it is 99% rods to 1% cones (Ahnelt and Kolb, 

2000; Peichl, 2005). The distribution of cones and rods also changes from central to 

peripheral retina, with the majority of cones being situated in the central retina. It should 

be noted that the ratio of cones to rods in primates and rodents are roughly the same away 

from the macula.
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1.3.3 Phototransduction

This study is not concerned with the metabolic pathways of phototransduction but a brief 

overview of the process helps explain the importance of the effect of the Mertk mutation 

in the RPE of the RCS rat that is central to this study.

The absorption of light by the photoreceptors of the retina is only the initial part of the 

cascade of reactions that comprise phototransduction. There are several steps, leading to 

the hyperpolarisation of the photoreceptor, which in turn triggers the synaptic release of 

the neurotransmitter, glutamate. This process, must be followed by recovery cascades 

before the photoreceptor can recover sensitivity (Jones et al., 1989). In cones, this process 

occurs very rapidly but requires many photons of light to be triggered whereas in rods, 

the process takes much longer but is up to 4 log units more sensitive requiring only 

several photons to be triggered.

The rods and cones have different photopigments responsible for absorption of light at 

differing wavelengths. Rods contain rhodopsin or porphoryin, corresponding to vitamin 

Ai aldehyde and vitamin A2 aldehyde based metabolisms respectively and cones contain 

iodopsin. Detailed structural analysis of rhodopsin, its binding sites and the transduction 

cycle can be found in several reviews (Bums and T., 2003; Menon et al., 2001).

Photoreceptor activation starts when sufficient photons are absorbed by rhodopsin, 

triggering biochemical changes that result in the separation of the retinal pigment from 

the rhodopsin (called bleaching). This in turn activates the G-protein, transducin which 

activates the effector protein, phosphodiesterase (PDE). The activated PDE hydrolyses 

cyclic guanosine monophosphate (cGMP), reducing cGMP levels in the cell, this closes 

the cGMP-gated Na+ and Ca2+ channels causing the photoreceptor cell to hyperpolarise 

and release glutamate from the terminal synapse.

Photoreceptor inactivation is still not entirely understood but its known to be an active 

process, critical for fast response in the visual system, especially in high light levels. To 

inactivate the photoreceptor, the molecules mentioned above have to be returned to their 

original state. Rhodopsin is shut off by phosphorylation of its COOH terminal domains 

by rhodopsin kinase, followed by arrestin binding to quench the catalytic effect of 

activated rhodopsin. Transducin and PDE must also be shut off. It is theorised that 

regulators of G protein signalling (RGS) proteins are responsible for shutting down both
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of these molecules when transducin is bound to PDE. Transducin cannot be turned off 

until it has bound to PDE.

The exact trigger for the inactivation sequence is not fully understood, but cytoplasmic 

calcium ion levels are thought to be instrumental in feedback circuitry controlling 

phototransduction (Hwang et al., 2003).

1.4 The Interphotoreceptor Matrix (IPM)
Under normal light microscopy it appears that the photoreceptor OS are in direct contact 

with processes of the apical RPE. However this is not the case as at higher magnifications 

(electron microscopy), using selective immunocytochemistry with lectins (Mieziewska et 

al., 1991) or alcian blue histochemistry, a glycosaminoglycan-rich area can be seen 

separating the photoreceptor OS from the RPE (Chen et al., 2004). This is the 

interphotoreceptor matrix (IPM) which envelopes the OS and acts as a transition layer for 

transport of vitamin A (Adler and Evans, 1985). The IPM is important in the attachment 

of the retina to the RPE (Hageman et al., 1995). Electron microscopy has also shown 

Muller cell processes terminating in the IPM (Bernstein, 1985). It is known that there are 

rod and cone specific areas in the IPM, which may have different biochemical 

microenvironments due to transport of the different rod and cone retinols and processed 

by-products (Mieziewska et al., 1991).

The IPM is composed of proteoglycans and glycosaminoglycans, such as hyaluronic acid 

and relatively high levels of chondroitin sulphates. These proteoglycans are believed to 

bind to pigment epithelial derived factor (PEDF) in the IPM (Alberdi et al., 1998) and 

may be involved in growth factor interactions within the IPM. The IPM, through retinoid 

binding protein (IRBP) plays a role in the retinol/vitamin A exchange (Adler and Evans, 

1985) between photoreceptors and the RPE, which makes it an extremely biochemically 

active site. Consequently any abnormalities in the IPM would have serious consequences. 

Mutations in interphotoreceptor matrix proteoglycan-1 have been implicated in several 

forms of Stargardt’s disease but have been eliminated as a candidate for others (Gehrig et 

al., 1998). The RCS rat has been shown to have abnormal IPM staining due to the 

formation of the debris zone (LaVail et al., 1981).
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1.5 The Retinal Pigmented Epithelium
The RPE has a role in all forms of photoreceptor degeneration either as the primary cause 

such as in the RCS rat (D'Cruz et al., 2000) or as a secondary consequence when the 

primary defect lies with the photoreceptors (Cideciyan et al., 1998). This is due to the fact 

that the RPE’s role in reprocessing of used photoreceptor photo-pigment for transport 

back to the photoreceptors is essential for healthy retinal metabolism.

1.5.1 The Structure Of The RPE

The structure of the RPE appears as a monolayer of darkly pigmented cuboidal cells, 

sandwiched between the photoreceptor outer segments/IPM and Bruch’s membrane to 

which they are anchored. The cells are not really cuboidal as they have many thin 

processes that reach out into the IPM where they interact with the photoreceptor’s OS. 

Bruch’s membrane is a basal lamina that forms the outer limits of the retina and separates 

the cells of the retina from the choroid but allows nutrients to pass from the highly 

vascular choroid to the retina (Bialek and Miller, 1994). Water and waste products flow 

back into the choroid to help maintain the correct physiological conditions in the outer 

retina. The intracellular structure of the RPE on the other hand is fairly complex due to 

the number of functions these cells accomplish.

The individual RPE cell structure can be separated into three functional areas, with the 

apical surface towards the photoreceptors having many long “end feet” which are 

intertwined with the rods, and reach into the inter-photoreceptor matrix to the shorter 

cone outer segments. The apical side contains the microtubules and microfilaments 

responsible for capturing and ingesting spent photoreceptor outer segments. It also 

contains most of the melanosomes, granules that contain the dark pigment melanin. The 

central portion contains the nucleus, Golgi apparatus and all of the organelles required for 

manufacturing, as well as phagocytic lysosomes for breaking down used OS disks (Bosch 

et al., 1993). The basal side adheres to Bruch’s membrane and provides as much surface 

area as possible for transport of nutrients and metabolites to and from the choroids via 

Bruch’s membrane. The RPE monolayer is maintained by tight junctions between 

adjacent RPE cells called zonula occludens that form near the apical surface.

1.5.2 Function Of The RPE In The Retina

The dark pigment of the RPE is melanin, found in granules called melanosomes 

throughout the apical surface of the cells, which may play a role in absorbing scattered
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stray light. A second pigment called lipofuscin is also present in the RPE. Lipofuscin 

increases with age and it starts to bind to melanosomes eventually causing them to fade 

(Delori et al., 2001). Lipofuscin is found throughout the nervous system, where it 

accumulates with age.

In humans further macular pigments, Lutein and Zeaxanthin, are found in the macula

where they accumulate with age according to dietary intake, and have been investigated

for their anti-oxidant properties to protect the macula (Davies and Morland, 2004).

Although the RPE forms a monolayer, the density of RPE cells varies across the retina

being more densely packed in the central retina than in peripheral retina where it tends to

be broader and flatter. This follows the distribution of photoreceptors; roughly there are

45 photoreceptors (rods) in humans and 300 in rats for each RPE cell (Marmor, 1998).

This along with knowledge of the rate of photoreceptor shedding allows calculations to

be made of how much OS are ingested and processed each day by a single RPE cell. This 
£

is about 3.68x10 opsins/RPE cell processed daily in humans and roughly ten times as 

much in rats and has been summarised for several species (Besharse and Defoe, 1998). 

The high metabolic turnover demonstrates just how essential the RPE is to healthy vision. 

From the viewpoint of retinal degeneration, the most important role for the RPE in the 

retina is in the turnover of photoreceptor outer segments, as elegantly shown by Young 

and Bok’s radioactive pulse chase experiments (Young and Bok, 1969). The RCS rat 

serves as a good example of what can happen if this process is impaired: the lack of OS 

metabolism results in the formation of the debris zone and rapid degeneration of the rod 

photoreceptors by apoptosis (Custer and Bok, 1975; Travis, 1998). The process of OS 

phagocytosis follows the sequence of OS detachment-RPE binding-intemalisation- 

digestion-recycling of vitamin A/retinol back to the photoreceptors (Bosch et al., 1993; 

Flannery et al., 1990). This process allows the reprocessing of the vitamin A/retinol 

essential for healthy photoreceptor metabolism.

The RPE perform a host of functions outside of OS ingestion, such as maintaining the 

outer retinal environment by controlling the blood-retinal barrier, maintaining osmotic 

regulation in the retina, production of growth factors and pigments, and transport of 

nutrients/waste to and from the choroidal blood supply. The RPE also plays an essential 

role in repair of damaged retina, with immunological functions and scarring of the retina 

all associated with the RPE.
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1.5.3 RPE And Retinal Degeneration

The RCS rat, Mertk (D'Cruz et al., 2000) mutation and its human orthologue MERTK 

(Gal et al., 2000) both present a photoreceptor degeneration due to a mutation in the 

receptor tyrosine kinase gene mer . In the RCS rat this causes a very specific fault, due to 

a deletion, producing a truncated protein, which halts the internalisation phase of rod OS 

phagocytosis by the RPE (Feng et al., 2002). In humans, mutations in MERTK, are found 

in a subset of RP patients (Gal et al., 2000). Antibody studies have shown binding of OS 

with Mertk (MERTK for human, Mertk for rat: tk refers to tyrosine kinase) to RCS RPE 

cells in vitro, but only when the Mertk fault was repaired by gene therapy could 

internalisation of OS take place at non-dystrophic levels(Vollrath et al., 2001). This is 

important, as it shows that the Mertk mutation does not disable the rest of the 

internalisation process, therefore correction of the human MERTK mutation is at least 

feasible. There is still some debate as to exactly how healthy RPE internalise OS but 

recent work has started to eliminate some of the possible candidates with two hypotheses 

being put forward. One group favours integrin aVp5 dependent binding of OS 

(Finnemann et al., 1997; Finnemann and Rodriguez-Boulan, 1999; Finnemann and 

Silverstein, 2001), resulting in focal adhesion kinase (FAK) signalling CD36 (scavenger 

receptor), and Mer (or Mertk blocked internalisation) mediated internalisation 

(Finnemann, 2003)(this step is blocked in the dystrophic RCS rat).

The second hypothesis is that OS phagocytosis is membrane-receptor mediated with RPE 

bound GAS6 (growth arrest specific gene6) being required for OS internalisation (Hall et 

al., 2001) as it is the cognate ligand for the tyrosine kinase family. This second hypothesis 

does not require the integrin avps (Hall et al., 2003) and is supported by experiments 

using primary cell cultures rather than passaged cells, as membrane changes due to 

passaging of cells give erroneous results in the first hypothesis. The exact mechanism is 

still unclear, and investigations continue.

The migration of the RPE, seen in later secondary events in the RCS dystrophy, may in 

part be due to oxidative stress (Bailey et al., 2004) due to the formation of the debris 

zone. This may partly explain why the RPE, eventually lifts off Bruch’s membrane and 

migrates onto the vasculature of the inner retina (Wang et al., 2003). This phenomenon is 

very similar to the classic “bone spicule” formations seen around blood vessels in 

clinically defined RP (Li et al., 1995). The exact trigger for this migration is unknown but
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may lie in the microenvironment around the tight junctions involved in RPE-RPE 

interactions, and/or the RPE basal surface attachments to Bruch’s membrane.

The fact that RPE cells are so active raises the questions why these cells migrate into the 

inner retina under conditions of retinal degeneration? and what are these cells doing once 

they get there?

1.6 Human Diseases Of Retinal Degeneration
The majority of cases of human retinal degeneration occur in aged individuals (age>65), 

with the increasing average age in the occidental world, diseases of retinal degeneration 

have become leading cause of blindness, with the most common being Age Related 

Macular Degeneration (AMD, or ARMD) and retinitis pigmentosa (RP); Less common 

are Stargardt’s disease, Usher’s syndrome and Leber’s Congenital Amaurosis. Both AMD 

and RP are in reality a complex group of diseases with related clinical pathologies, but 

different causal agents. RP is inherited and while some forms of AMD are clearly 

monogenic, there are also environmental factors that increase incidence, such as smoking 

and diet (Tomany et al., 2004). The incidence of these diseases has been studied 

extensively over time in large clinical studies (Bundey and Crews, 1984a; Bundey and 

Crews, 1984b; Bunker et al., 1984; van Leeuwen et al., 2003; Wang et al., 2004) and also 

in isolated communities where increased susceptibility/incidence has been recorded 

(Eichers et al., 2002). There are good reviews (Ingleheam, 1998) and resources such as 

RetNet (Daiger et al.) which list most of the inherited mutations currently known to cause 

human retinal degenerative diseases. It is clear that many of these disorders are closely 

related and patients may possess several sets of mutations complicate diagnosis, and 

future treatment.

1.6.1 Age Related Macular Degeneration

The most common group of retinal degenerative diseases is AMD, with an incidence of 

lin 3 patients over age 65 (Sommer et al., 1991). AMD is characterised by RPE 

dysfunction, resulting in build up of extracellular material (called drusen) between the 

RPE and Bruch’s membrane. Clinically AMD presents in two forms, dry and wet, both of 

which exhibit drusen. Dry AMD or geographic atrophy is characterised by an area of 

hypopigmentation, depigmentation or apparent lack of RPE usually round or oval in 

appearance allowing visualisation of the choroidal vessels. Wet AMD (also called 

disciform or exudative) is less common (10% of AMD cases) but much more serious; 

where patients may exhibit RPE detachments, major choroidal neovascularisation (CNV)
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associated with extensive hard exudative drusen and characteristic breaches in Bruch’s 

membrane (Bird et al., 1995). This leads to subretinal haemorrhaging with the potential 

total loss of vision (Bird et al., 1995). Dry AMD may not result in total blindness but loss 

of quality of life for elderly patients can be devastating. Changes in the retina due to 

AMD are preceded by gradual changes in the RPE and Bruch’s membrane, which are 

notoriously difficult to detect prior to the insurgence of clinical symptoms. Over the past 

decade there have been some far reaching surveys of which the largest have been the 

Beaver Dam, Blue Mountain (Wang et al., 2004) and Rotterdam (van Leeuwen et al.,

2003) studies, now collated (Tomany et al., 2004) which detail the incidence, onset and 

progression of AMD in large populations. Regular eye exams might allow earlier changes 

to be detected with the aid of fluorescein angiography and Amsler grids (Fink and Sadun,

2004) although recent attempts to computerise these tests have elicited mixed opinions 

(Zaidi et al., 2004).

There is no current cure for AMD, but some certain treatments such as radiation therapy, 

photodynamic therapy and removal of submacular CNV (Chong and Bird, 1998; Fine et 

al., 2000; Stokkermans, 2000)} have been shown to slow down its progression. High dose 

vitamins A & E, (3-carotene and zinc (Sackett and Schenning, 2002) (age-related eye 

disease study - AREDS) have been shown to lower the risk of developing AMD by 25%. 

A problem with this approach has been getting patients to adhere to the required 

treatment (Chang et al., 2003). Surgical treatments such as laser photocoagulation 

(Abdelsalam et al., 1999) and photodynamic therapy (Regillo, 2000; Wenkstem and 

Stokes, 2003) have been tried with limited success to control the choroidal 

neovascularisation of wet AMD as they do not address the underlying pathology. In 

macular translocation, a treatment where the retina is detached, the damaged part of the 

retina is moved away from the centre of vision then reattached with a relatively 

undamaged area of retina placed where it is needed most (Abdel-Meguid et al., 2003). 

These treatments can at best slow down the progression of AMD and can actually damage 

the retina if unsuccessful. Currently there is a lot of interest in anti-angiogenic 

pharmaceuticals, gene-therapy (Bainbridge et al., 2003) and cell based 

therapy/transplantation (Lund et al., 1997; Semkova et al., 2002)as possible cures, with 

clinical trials under way with most of the major pharmaceutical companies interested in 

this field. Treatments for dry AMD are currently limited to prevention (AREDS, 2001) 

and containment as its slow progression does not warrant high-risk surgical intervention.
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The genetics of AMD is still fairly under developed (Gorin et al., 1999; Guymer, 2001) 

but is of prime importance in understanding how this group of diseases develop.

Currently there is a lot of effort focused on this area (Abecasis et al., 2004; Rivera et al., 

2000) and genes such as ARMD1 (Schultz et al., 2003) have been mapped, showing how 

a mutation in the protein Hemicentin-1 is related to incidence of AMD in one family. 

Another group has shown that 1.7% of AMD patients have mutations in the fibulin 5 gene 

(Stone et al., 2004), fibulins being extracellular matrix proteins (ECM) found in the 

basement membranes (in this case Bruch’s membrane) involved in cell-ECM interactions. 

Recently several large groups have published data that shows that a mutation in 

complement factor H designated Y402h can increase the incidence of AMD in aged 

patients by over 43% (Edwards et al., 2005; Haines et al., 2005; Klein et al., 2005).

1.6.2 Retinitis Pigmentosa

This condition has been known to be inherited for some time. The family of RP diseases 

have an incidence of roughly 1/3500 (Bowne et al., 1999; Bundey and Crews, 1984a; 

Bunker et al., 1984; Ingleheam, 1998; Kaplan et al., 1990) and have been grouped 

together based on common clinical symptoms, electroretinographic responses and 

genetics (Phelan and Bok, 2000). A characteristic observation of RP is the appearance of 

pigmented cells that have migrated into the retina from the RPE. The pigmented cells 

accumulate in perivascular clusters throughout the peripheral retina sometimes referred to 

as “bone-spicule” formations. These manifest as a speckled appearance to the retina early 

in the disease with pigment deposits overlying the fundus. In more advanced cases 

histopathological examinations (Kolb and Gouras, 1974; Milam et al., 1998) have shown 

the degeneration of the rods as the primary consequence of many forms of RP with cone 

photoreceptor failure (John et al., 2000) occurring once rod failure reaches roughly 75% 

(Cideciyan et al., 1998). Other secondary pathological events include vascular attenuation 

(shared by advanced AMD) and changes to the optic nerve head (Milam et al., 1998).

This results in progressive night blindness and loss of peripheral vision for the patient due 

to loss of rod photoreceptors. RP is more commonly a slow progressive degeneration that 

can result in total blindness, but as it is familial, its onset can occur much earlier than 

AMD. Of interest to this study mutations in the MERTK gene appear to cause RP 

(Kumar, 2001), MERTK is the human orthologue of the Mertk mutation in the RCS rat. 

As with AMD there is currently no cure for RP but research into cell transplantation
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coupled with ex-vivo gene therapy (Lund et a l, 2001b) may offer the best hope for 

patients .

1.6.3 Stargardt’s Disease

First described by Karl Stargardt in 1909 (sometimes called fundus flavimaculatus). It 

presents as an autosomal recessive macular degeneration that causes an early onset loss of 

central vision. Most common in Scandinavian and Germanic families, it is one of the 

more common causes of juvenile macular degeneration. Genetic analysis has isolated the 

defect to chromosome lp21-22 and subsequently identified it as the ATP-binding cassette 

transporter (ABCR) gene (Amell et al., 1998; Rivera et al., 2000) (Allikmets et al., 1997) 

The defect is expressed in rod photoreceptors and is characterised by loss of transporter 

function leading to photoreceptor degeneration in the macular region resulting in much 

reduced visual acuity and loss of central vision. Another gene that has been identified is 

ELOV4 (Karan et al., 2004), but as yet the mechanism of how mutations in this fatty acid 

elongase gene can cause early macular degeneration is not known (this gene may be a 

factor in AMD as well). There are no current cures, but individuals may benefit from the 

use of low vision aids and orientation and mobility training. The early onset of 

Stargardt’s disease poses an additional challenge for potential treatments such as cell- 

based therapies, as the cells must survive for the rest of the patient’s life, or at least a 

significant portion without repeated reapplication.

1.6.4 Usher’s Syndrome

Usher’s syndrome is an inherited combination of profound hearing disability and 

progressive RP; the hearing disorder is present from birth and the RP onset is usually in 

adolescence. Usher Syndrome is the leading cause of deaf-blindness in the US with 10-

15,000 sufferers (FFB website). There are three classifications of Ushers Syndrome. Type 

1, where there is profound deafness present from birth, followed by RP symptoms by 5-6 

years of age. Type II (USH2), characterised by a milder hearing loss (present from birth) 

followed by a later RP-like retinal degeneration in adolescence. Type III is very similar to 

type II but has a much more rapid loss of hearing and seems to be most prevalent in 

families originating from Finland. Progress has been made in determining the genetic 

cause of Usher’s type Ha with recent research (Bhattacharya et al., 2002) identifying a 

novel basement membrane protein that has been localised to retina and the inner ear, 

where it is believed to play a role in development. People with Usher’s type Ila have
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mutations in the gene encoding the basement membrane protein usherin found in the 

retina and cochlea. The prospects for a cure are pretty much the same as for RP; with the 

exception that whatever treatment is eventually tried it must be effective over a much 

longer time span.

1.6.5 Leber Congenital Amaurosis

Leber Congenital Amaurosis (LCA) is a condition whereby patients suffer severe loss of 

vision from birth, with children failing to develop eye movements to stimuli and 

characteristically a flat electroretinogram (ERG). Genetic analysis has located several 

genes involved in LCA with progressive cone dystrophy (CORD5) found on chromosome 

17pl2-pl3 (Balciuniene et al., 1995). Also the gene RPE65 (also implicated in RP) that 

encodes a membrane associated protein involved in retinoid metabolism. This condition 

also frequently involves damage to the central nervous system and kidney malfunction 

suggesting that in utero damage to the retina or central nervous system has multiple 

effects. Due to the extremely early onset of LCA, gene therapy (Bennett, 2004) currently 

offers the only viable strategy, having proven successful with the Briard dog model 

(Acland et al., 2001). One requirement for this is that the defective retina has not lost its 

structural integrity; otherwise it is unlikely that restoration would be possible.

1.6.6 Current State Of Clinical Trials

Clinical trials are currently under way for several retinal degenerative diseases, with 

AMD being the main target due to the much larger patient base. Retinitis pigmentosa has 

a couple of clinical trials active but unfortunately there are no clinical trials active for 

Stargardt’s disease or Usher’s syndrome. Less common retinal degenerations will have to 

utilise whatever medical technology comes out of research into AMD and RP. Clinical 

trials are graded I-III to denote their proximity to marketable cures. Phase I trial typically 

determine safety and maximum dosage typically in small numbers of healthy volunteers, 

phase II trials test the effectiveness of the treatment in its target group and may involve 

large numbers. Phase III trials allow fine-tuning of the treatment with various dosage 

levels or strategies to control side effects. A full listing of those currently underway can 

be found in Gateways to clinical trials (Bayes et al., 2004).
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Treatment Clinical trial Strategy Company

VEGF trap (Saishin et al., 

2003)

Phase 1 Anti-angiogenesis Regeneron

Aventis + advPEDF (Imai 

et al., 2005)

Phase 1 Anti-angiogenesis GENVEC

Combrestatin (Stevenson et 

al., 2003)

Phase I/II Microtubule

polymerisation

inhibitor

Oxigene

Celicoxib with PDT (Rao 

et al., 2000)

Phase I/II Cox-2 inhibitor Genara

Anacortave acetate 

(Augustin et al., 2004)

Phase III Anti-angiogenic Alcon

Lucentis + PDT (Husain et 

al., 2005)

Phase III Anti-angiogenic Genetech

Figure 1.4 Clinical trials currently under way for retinal degenerative diseases.

Figure 1.4 shows six examples of clinical trials for AMD currently underway, two phase 

three, two phase I/II and two phase I comprising of a number of different approaches to 

the clinical problems in AMD. The majority utilise anti-angiogenesis strategies, 

sometimes in combination with photodynamic therapy (PDT) (Regillo, 2000), therefore 

they will be used to treat the symptoms of AMD but not the underlying pathology of the 

disease. These trials offer potential treatments but not cures for AMD.

The current outlook for RP patients is interesting with two clinical trials in progress, one 

in phase 1 trials is encapsulated human RPE cells genetically modified to express ciliary 

neurotrophic factor (CNTF)(Tao et al., 2002). A new trial just commencing will follow 

up the docosahexaenoic acid (DHA) coupled with Vitamin A trial (Berson et al., 2004a) 

which to treat RP patients. The first trial was not favourable generally but on further 

analysis it was found to slow RP in its early stages (Berson et al., 2004b).

The most common cause of these retinal dystrophies appears to be defects within the 

photoreceptors, with defects in the RPE second. Although it should be noted that, due to 

their interdependent relationship, primary defects in one quickly lead to secondary defects
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in the other. Later secondary effects commonly affect the retinal vasculature and neural 

connections of the retina. In many clinical cases these conditions will be moderately 

advanced and/or complicated by secondary events. Therefore, the ability to reduce some 

of those secondary effects, such as vascular damage, would be very useful in eventual 

treatments.

1.7 Animal Models Of Retinal Disease
An important first step in this study was to select an appropriate animal model. As a 

general rule, mammalian models are used to study human diseases due to underlying 

physiological similarities. Recently genetic analysis has made use of fish such as zebra 

fish to examine gene expression of important target genes (Li, 2001). This is possible due 

to the transparency of the larval stages of zebra fish growth allowing clear identification 

of gene expression during development.

1.7.1 General Considerations

There are many animal models of photoreceptor degeneration, in which photoreceptors 

degenerate at various rates due to intrinsic genetic defects usually in the photoreceptors 

themselves, but sometimes in ancillary cells such as the RPE.

The majority of retinal research utilises small animal models such as mice, rats, guinea 

pigs and zebra fish due to their inherent advantages of fast breeding cycles, ease of 

handling and animal husbandry as well as well defined genomes.

Rodent genomes are particularly well defined and this has enabled a rise in specifically 

designed mutations to remove specific genes (knock-outs), add-in specific genes (knock- 

ins) or change the levels of expression of certain gene products.

For retinal studies rats provide a good compromise between the advantages of a small 

rodent model while still exhibiting quantifiable visual function and supporting 

sophisticated surgical procedures.

Medium sized animal models such as rabbits, ferrets and cats have been used for 

anatomical studies due to historical precedent and also where a larger eye is required to 

practise more detailed surgical procedures (usually rabbits). Medium sized models 

generally do not have as well defined genomes severely limiting the opportunities for 

genetic manipulation; also the quantity and quality of available reagents are much 

reduced limiting cellular biology approaches to research on these models.
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Large animal models such as dogs and pigs tend to be used in transitional research where 

proof of principle has been proven in small animal models but a large animal study is 

usually required before approval can be given for human trails. These large models allow 

for extensive surgical intervention and long term studies that cannot be carried out with 

short-lived small animals. Dogs have been particularly useful as the various kennel clubs 

keep exacting breeding records allowing identification of useful genetic mutants such as 

the Briard dog (Acland et al., 2001) where mutations in the gene RPE65 (which is similar 

to human LCA) cause severe early onset retinal degeneration, This was corrected by 

recombinant adeno-associated virus (AAV) carrying wild type RPE65 delivered intra- 

occularly and the animals retinal development followed. Electroretinographic assessment 

showed a marked improvement in retinal function over control animals. Other groups 

have produced genetically engineered pigs (Petters et al., 1997) for use in studying long 

term cone photoreceptor survival in RP. These animals express a known human RP 

mutation (Pro347Leu) that results in rapid rod loss followed by gradual cone loss. This 

animal has a higher cone density and allowed long term studies to be conducted (20+ 

months).

1.7.2 Advantages Of Rodents As Models Of Retinal Degeneration

Visual acuity in the rat is much lower than in humans. In comparison to a human 20/20 

vision, a normal pigmented rat would have 20/600 vision, and albino rats around 20/1200 

vision (Prusky et al., 2002). This could imply that the rat is unsuitable for visual studies 

whereas in fact current behavioural experiments have shown that very consistent 

recordings of visual acuity can be obtained in experimental rodent models (McGill et al., 

2004) as well as electrophysiological data (Girman et al., 2003) and ERG (Sauve et al., 

2004).

Rodents offer many advantages to research of retinal degenerations, primarily due to their 

extremely well studied genome, and the extensive anatomical studies of the CNS and 

retina. The range of genetic strains available is vastly superior to any other animal model 

and if mouse eyes are too small, rat eyes are much easier to work with being large enough 

for surgical procedures (Lund et al., 1997). The availability of rodent specific antibodies 

and genetic probes are another major consideration. The disadvantages of rodent models 

are, lack of a macula (where comparisons with human are necessary), nocturnal activity, 

small size and comparatively short lifespan which limits studies on aged individuals.
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Albino strains should be investigated with special care, and avoided if comprehensive 

testing of visual function is to be attempted. This is due to two reasons: 1) the lack of 

pigment makes the animals susceptible to light damage to the retina and 2) albinos have 

been shown to have abnormal optic chiasma (Lund, 1975) which could further 

compromise interpretation of visual signals as well as underdeveloped central retina and 

reduced rod numbers (Jeffery, 1998).

Rodents have proven excellent for genetic knockouts (Reynolds et al., 2002), and growth 

factor efficacy experiments (LaVail et al., 1992; LaVail et al., 1998).

Three natural rodent models of retinal degeneration have been studied in some detail, 

each having relevance to human retinal degeneration. Two of these are mice in which the 

defect is intrinsic to the photoreceptor. The rd mouse, where degeneration results from a 

defect in the (32 sub-unit of cyclic GMP phosphodiesterase (Bowes et al., 1990) (Lem et 

al., 1992), and the rds mouse, where the defect lies in the peripherin/rds gene (Sidman 

and Green, 1965)(Connell et al., 1991). In both cases there is a resultant progressive 

degeneration of photoreceptor cells followed by secondary events such as vascular 

leakage and deformation of the vascular network (Wang et al., 2000), and eventually, loss 

of the ganglion cells.

1.7.3 The Royal College Of Surgeons Rat

The basis for these studies is the pigmented dystrophic RCS rat (rdy- P+)(Boume et al., 

1938)(LaVail et al., 1975). This naturally occurring mutation exhibits photoreceptor loss 

(Dowling and Sidman, 1962), due to a defect in the RPE cells (Chaitin and Hall, 

1983).The defect is a deletion in the gene for the receptor tyrosine kinase designated 

Mertk (D'Cruz et al., 2000). The mutation in the Mertk gene has the effect of blocking 

normal circadian driven rod outer segment phagocytosis (Bosch et al., 1993). In the 

dystrophic RCS abnormalities can be seen in the rod outer segments starting at 15 days of 

age (Davidorf et al., 1991) this is before the photoreceptors have fully matured. By P20 

both the inner and outer segments of the rods exhibit abnormal deformations and debris 

has started to build up between the outer segments and the RPE. The rods decrease in 

number, which can be detected by a concurrent reduction in the ERG, which becomes flat 

as the rat reaches maturity (Dowling and Sidman, 1962; Sauve et al., 2004) At first, 

changes to the RCS retina are only visible with electron microscopy (Davidorf et al., 

1991), but by 45 days light microscopy is able to pick out the reduction in the 

photoreceptor layer (Dowling and Sidman, 1962). This mutation eventually results in
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complete loss of photoreceptors (LaVail and Battelle, 1975). The lack of outer segment 

phagocytosis results in a build up in shed OS that are not metabolised by the RPE, which 

accumulate between the OLM and the RPE forming the characteristic RCS debris zone. 

One of the end products of normal OS metabolism is the return of pigment to the 

photoreceptor, which is essential for the assembly of new healthy OS. As the turnover of 

these cells is so rapid it does not take long for the photoreceptors to become stressed and 

descend down apoptotic pathways resulting in retinal degeneration (Travis, 1998). The 

reduction in rod photoreceptors has many secondary effects such as the debris zone and 

also gaps in the photoreceptor layer that allow cells that do not normally come into 

contact to interact. The photoreceptor cells are no longer supported by their neighbours, 

and cell-cell interactions are disrupted. Interestingly it is becoming apparent that the 

cones are more resistant to disruption at this level than the rods (Girman et al., 2005; 

Leveillard et al., 2004).

Viral gene transfer of the Mertk gene has been used to correct the RCS dystrophy 

(Vollrath et al., 2001) and in vitro studies have isolated the Mertk gene site of action to 

RPE phagocytosis (Feng et al., 2002) giving conclusive evidence that the Mertk gene is 

responsible for the dystrophy.

While the RCS rat dystrophy is not directly homologous to AMD, particularly as the rat 

has no macula, does not form drusen and only in very advanced cases exhibits choroidal 

neovascularisation. With these caveats, there are a number of similarities that make it a 

useful model for testing potential treatments, such as secondary vascular complications 

and neuronal cell death within the retina. Furthermore the RCS rat exhibits pigment 

migration into the retina with an occluded vascular network and associated changes 

possibly neovascular in nature. This close relationship between the RPE and vascular 

deformation was missed in early studies (Caldwell et al., 1989; Seaton and Turner, 1992) 

due to the use of RCS rats on albino backgrounds where the lack of pigment made 

anatomical examination more difficult. Later damage to the ganglion cells occur as blood 

vessels appear to be pulled into the retina after the integrity of the retina has been 

compromised (Villegas-Perez et al., 1998). Vascular leakage has been documented in the 

RCS rat making it one of the closest models to AMD currently available. The RCS rat 

also bears a close relation to RP in that both exhibit migration of pigmented cells into the 

inner retina (Li et al., 1995) and a gradual reduction in rod photoreceptors. There is a
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reduced vascular supply due to occluded vessels and vascular remodelling. Furthermore, 

loss of RGCs has been reported in advanced cases in both RCS rats (Villegas-Perez et al.,

1998) and RP patients (Santos et al., 1997), this is in excess of the natural reduction of 

RGCs seen in elderly patients (Gao and Hollyfield, 1992).

The pigment seen in the RCS inner retina during degeneration is very similar to that 

found in RP and is now known to be from the same source; aberrant RPE cells, that have 

migrated off Bruch’s membrane into the inner retina where they attach around the retinal 

vasculature (Li et al., 1995; Wang et al., 2003), There is still some debate about the origin 

of these cells which will remain until a reliable RPE marker is found but so far all major 

anatomiocal studies have concluded that they are in fact RPE (Li et al., 1995; Milam et 

al., 1998; Santos et al., 1997).

The development of these vascular complexes in the RCS rat has never been fully shown 

but figure 1.5 below shows a diagram of how they develop anatomically as seen in this 

study
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Figure 1.5 Showing the development of a VC in the RCS rat using figure 1.2 as a basis. 

The major changes in the RCS rat occur with the early death of the photoreceptors and 

the formation of the debris zone which may restrict the oxygen supply to the remaining 

photoreceptors and outer nuclear layer. CXells from the ONL are found to migrate into 

the debris zone in areas where the RPE looks disturbed eventually bridgeing the debris

31



zone. Between P60 and P80 blood vessels start tio sprout and enter the ONL in these 

areas Possibly in response to altered oxygen and nutritional requirements of the tissues. 

This forms a conduit that allows the RPE to migrate into the ONL onto blood vessels 

where they restrict flow, cause fenestrations and eventually leakage, forming vascular 

complexes and atrophy of the vessels (PI 50+)

Figure 1.5 shows a close up of an RCS vascular complex which is extremely close to the 

semi-thin pictures published By Li of human RP(Li et al., 1995), the black melanin 

granules (white arrows) can be clearly seen in the RPE surrounding the blood vessels and 

also the thickened ECM deposits around the vessel walls (black arrows).

Bruch membrane

Figure 1.5 A close up of a vascular complex taken from a semi-thin section at x250 mag. 

(insert from Figure 3.2.17). Scale bar represents 10 pm.

The differences are that the pigment appears to be more scattered than in classical human 

RP and does not form “bone spicule” like deposits when RCS retinea are viewed as flat 

mounts (see Figure 3.1.6), This may be due to the presence of the debris zone blocking 

mass RPE migration in the RCS rat. The RCS dystrophy is now known to be a subset of 

RP (Kumar, 2001) and as such they share common features such as the attenuation of the 

retinal blood vessels seen first in the capilliaries and venus vessels of the mid-ventral
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retina (Milam et al., 1998). At present there have been no fundus photographs published 

of the human orthologue of the RCS dystrophy so it is difficult to say exactly how its 

anatomical features differ from the RCS, although there has been an extensive cLSO 

study (Zambarakji et al., 2005) of the RCS rat, there has not been a difinative anatomical 

comparison carried out between the human and rat MERTK mutations.

The mechanism for the initiation of RPE migration is currently unknown but is thought to 

involve localized ischemia destabilizing the tight junctions between the RPE and the RPE 

and Bruch’s membrane (refs). The differences between Classical RP and the RCS rats 

occur in the exact mechanism of how the disfunction develops, with the RCS rat the 

defect is in the RPE which fails to phagocytose used rod outer segments leading to the 

formation of the debris zone and the apoptotic death of the rods (Travis, 1998). In 

classical RP the defect is usually in the rod photoreceptor itself and there is no formation 

of a debris zone. Without a detailed anatomical examination it is currently unknown 

whether the human form of the MERTK mutation results in the formation of a debris 

zone.

The migration of RPE off Bruch’s onto the venous vasculature and formation of thick 

layers of extracellular matrix around the vessels has been observed at the EM level in 

both human RP (Li et al., 1995)and the RCS rat (Villegas-Perez et al., 1998). This causes 

thickening of the vessel walls and resultant atrophy of the vessel. The vessel walls 

adjacent to the RPE develop fenestrations that allow leakage in both RP patients and in 

the RCS rat (Li et al., 1995; Stewart and Tuor, 1994; Zambarakji et al., 2005) While this 

may result in a reduction of oxygen and nutrient supply this may be offset by the 

reduction in photoreceptors (Milam ) making detection of these events difficult to 

interpret.

The possibility that the secondary photoreceptor loss may have downstream 

consequences has been largely ignored or missed due to inappropriate animal models 

used, but they are the focus of the work reported here.

1.7.4 Transgenic Rat Models

Two more recent rodent models worth mentioning are the transgenic Pro23His (P23H) rat 

and the S334ter rat. The P23H transgenic rat has a mutant mouse opsin gene identical to 

that found in 12% of American autosomal dominant RP patients inserted into its 

genome(Lewin et al., 1998). The mutation results from a histidine substitution in the
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rhodopsin gene giving an abnormal rhodopsin gene product that eventually kills the rod 

cells. ERG in these animals shows slow progressive rod dysfunction(Machida et al.,

2001) while initially cones remain normal, once the rods have degenerated the cones are 

also lost. This can be a relatively slow degeneration model.

The S334ter rat has a dysfunctional rhodopsin gene which results in extremely rapid 

photoreceptor degeneration starting at P6-8 with fully 50% of photoreceptors lost 

between PI 1&12 (Liu et al., 1999) This model is useful for investigating late effects of 

photoreceptor degeneration but due to its rapid rate of degeneration it is difficult to 

conduct comprehensive testing of functional vision with this model. Both the P23H and 

S334ter mutations are on albino backgrounds that necessitate breeding with pigmented 

rats (such as Long Evans) to give heterozygote pigmented offspring. As noted earlier 

albino animals are not optimal for assessing vision.

1.7.5 Animal Models of AMD

There has been no good naturally occurring animal models of AMD, This has led to the 

selective use of inappropriate models and the modification of other models of retinal 

disease to give a more “AMD-Like” model through physical trauma (Campochiaro and 

Hackett, 2003; Semkova et al., 2003)

The use of genetic manipulation to produce models had to wait for breakthroughs in 

identifying the important genes involved in AMD. A model of AMD should have the 

following characteristics. It should present a progressive photoreceptor degeneration 

affecting first cones of the central retina, it should in advanced cases exhibit choroidal 

neovascularisation breaching Bruch’s membrane into the subretinal space, it should 

develop drusen next to Bruch’s membrane. Optimally it should be found in an animal that 

has a macula (no rodents or small mammals). Another major obstacle to developing an 

animal model is that diseases that affect aged individuals are extremely expensive to 

mimic due to the length of time that the animals must be kept and the resultant losses due 

to death by natural causes before completion of the experiment. Consequently researchers 

are always trying to find models that do not involve aged animals. The following are a 

brief overview of those models that have been used. The first genuine attempts to develop 

serious models of AMD were surgical in nature using primates (Ryan, 1982) with 

subretinal injections of enzymes to disrupt Bruch’s membrane. Aged populations of 

Rhesus monkeys were discovered to exhibit AMD-like symptoms but their extreme cost 

and difficulty of handling has slowed research (Hope et al., 1992; Ulshafer et al., 1987).
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Physical damage using either laser photocoagulation or surgical removal of RPE has also 

been attempted (Del Priore et al., 1996; Ryan, 1982) but without knowledge of the 

underlying processes research was slowed until the genetic of AMD was better 

understood. With the major breakthroughs in understanding the genetics of AMD, 

particularly with the recent complement factor H genes (Edwards et al., 2005; Haines et 

al., 2005; Klein et al., 2005) and the finding that inflammation may play a major role 

(Bok, 2005),there has been a lot of activity in designing transgenic models of AMD 

(Elizabeth Rakoczy et al., 2006; Marx, 2006) (sadly these came too late to influence this 

study).

Examples of these mice models are the ELOVL4 mutants (of which our laboratory has 

performed several studies -  unpublished data) which are really models of Stargardt’s 

disease but include lipofuschin accumulation much like AMD (Karan et al., 2004). Alos 

of interest are the APO B100 mice which can be induced with diet and blue/green light to 

exhibit basal deposits much like drusen by 2 months of age (Espinosa-Heidmann et al., 

2004). Finally the CC12'/7Ccr2'/' mice which display a near complete list of AMD-like 

features with photoreceptor degeneration, Bruch’s membrane thickening and disruption, 

drusen, lipofuschin (Ambati et al., 2003)

These animals offer significant improvements on previous models and are all much more 

relevant to AMD than the RCS rat used in this study. That said this study is primarily 

concerned with producing a method of quantifying vascular damage and applying it in the 

RCS rat, this work could be modified to work in the mouse models listed above.
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1.8 Retinal Blood Supply And Secondary Events O f Retinal 

Degeneration

The retina is highly vascular, as would be expected with the extremely high metabolism 

of its constituent cells, but due to the mobility of the eye as a whole all blood flow must 

enter the eye via the choke point of the optic artery alongside the optic nerve as shown

below in Figure 1.7
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Figure 1.7 Diagram of the Ocular blood supply (courtesy of “Practical Viewing of the 

Optic Disk”
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1.8.1 Anatomy of the Retinal Vasculature

There are two main routes whereby the vascular system supplies the retina in most 

animals including both rodents and humans: these are the capillaries of the choroid and 

the retinal vasculature.
vitreous

Retinal vessels

iris cornea pupil /

vitreous

lens

retina

. optic nerve

|  ganglion cell layer

j .  inner plexiform layer 

>  inner nuclear layer 

]> outer plexiform layer ^

outer nuclear layer Avascular 
} region

inner segment

outer segment 
pigment epithelium

■ ■  choroid
Choroidal vessels

sclera

Figure 1.7 Retinal blood vessels (courtesy of Shen et al 2006

That said it is known that fluorescein angiograms fill the retina from the optic disk out 

and from the ciliary body in (Cunha-Vaz, 2004)simultaneously, therefore there must be 

some blood flow from the ciliary body into the peripheral retina. The vessels of the 

choroid are believed to supply the photoreceptors and RPE of the outer retina as shown 

in figure 1.7 above (Campochiaro, 2000). The retinal vascular network covers the entire 

retina from the optic disk to the furthest periphery. The vessels fan out from the optic disk 

in alternating main arteries matched with an equal number of returning veins. In humans 

there are four arteries originating from the central retinal artery whereas in RCS rat used 

in this study there are 5-6. Although there are minor differences between different species 

the general structure of the retinal vasculature remains very similar due to functional 

requirements. The only obvious anomaly is the human macula. This highly specialised 

region is largely avascular and is served by vessels around the fovea forming a ring like

37



(Zhang, 1994). Rats do not possess this structure that occupies a relatively small area of 

the retina.

The vascular network within most mammalian retinae, including rats is laminated with 

three distinct vascular plexi as (Paques et al., 2003).

An arterial plexus located in the inner plexiform layer and retinal ganglion cell layer with 

the venous plexus being largely located in the outer plexiform layer. An intermediate 

capillary plexus forms in between the arterial and venous plexi as the arterial vessels 

constantly branch into smaller arterioles and drain into venous capillaries. The main 

retinal arteries continuously branch after dispersing from the optic disk, forming branch 

arteries in the same plexus at either acute angles or 90° on both sides of the main artery. 

The main arteries can be followed out to the periphery where they finally branch in both 

directions and subdivide into smaller arteries that reach the periphery and the boundary of 

the ora serrata. At the periphery the retina is much thinner causing the vascular plexi to 

merge, the density of vessels are reduced and capillaries tend to be larger in size than in 

mid-central retina (Paques et al., 2003).

1.8.2 Cellular Interactions Of The Retinal Vasculature

The vessels of the retinal vasculature differ from blood vessels in other parts of the body 

in several ways, such as they possess many more interendothelial junctions and 

endothelial processes essential for fluid transport out of vessels. Retinal vessels are lined 

with approximately four times as many pericytes as normal vessels (Stewart and Tuor,

1994). These pericytes are embedded in the vessel walls instead of lining the out side and 

form part of the blood-retinal barrier (Leeson, 1979). In the retina Muller cells are also 

involved in the formation of barrier properties (Tout et al., 1993). Taken together these 

findings suggest adaptations to very high transport volumes and pressure.

The blood-retinal barrier (BRB) is a feature the retina shares with the brain, which 

confers immuno-privileged status to these tissues, in that the blood vessels are 

remarkably selective in what they will release into surrounding tissues. Retinal and 

choroidal blood vessels have more pores than normal blood vessels but retinal vessels 

also have more tight junctions allowing control over permeability, the choroidal vessels 

are outside of the BRB.

Another essential component of the blood retinal barrier is the RPE, which is responsible 

for active transport of nutrients from the choroid to the photoreceptors. From clinical 

observations it has been proposed that the endothelium of retinal blood vessels be
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designated the inner BRB and the RPE as the outer BRB (Cunha-Vaz, 2004) as a way of 

simplifying clinical assessments for fluorescein angiograms.

The retinal vasculature may enter a proliferative phase due to disease or injury. This can 

occur from inside the retina (retinal neovascularisation) where retinal vessels can grow 

out into the vitreous or from the choroid (choroidal neovascularisation or CNV) where 

vessels sprout from the choroid forming thick bundles, which can breach Bruch’s 

membrane. Retinal neovascularisation is usually preceded by excessive ischemia (Chan- 

Ling et al., 1995), which up-regulates growth factors such as VEGF, a potent angiogenic 

growth factor (Plate et al., 1992). There are other important factors involved such as 

PEDF and nitric oxide whose roles are presently under investigation. Choroidal 

neovascularisation differs from retinal neovascularisation in that the exact stimulus for 

retinal sprouting is unknown but in AMD patients it may involve the thickening of 

Bruch’s membrane with lipophilic material decreasing oxygen supply to the outer retina 

(Campochiaro, 2000). A more popular theory is that CNV is associated with 

inflammation possibly triggered by the accumulation of drusen, this is backed up by the 

recent findings on the importance of the complement genes in susceptibility to 

AMD(Edwards et al., 2005; Haines et al., 2005; Kijlstra et al., 2005; Klein et al., 2005; 

Marx, 2006)

1.8.3 Tools To Investigate Retinal Vasculature

The anatomy and dynamics of retinal blood supply has been studied using both non- 

invasive methodology such as fluorescein angiography (FA), indocyanine green 

angiography (Aydin et al., 2000) and scanning laser ophthalmoscopy (SLO) (Paques et 

al., 2003; Schmidt-Erfurth et al., 2001)as well as more traditional anatomical studies 

using trypsin digestion, methacrylate methylester corrosion casting (Zhang, 1994), also 

India ink , horseradish peroxidase (HRP) (Villegas-Perez et al., 1998) and Nicotinamide 

adenine dinucleotide phosphate-diaphorase (NADPH-d) staining (Wang et al., 2000). All 

of the methods previously used in the literature have advantages and disadvantages. For 

example SLO and FA were valuable to follow and record changes in vivo in animals or 

patients, but they both suffer disadvantages such as the inability to view peripheral retina 

and with SLO there is insufficient detail in the video images captured although this is 

improving with more advanced video technology (Bellmann et al., 2003; Zambarakji et 

al., 2005). In addition computerised image analysis is not yet integrated into the system 

making quantitative assessment difficult.
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Delicate corrosion casts (Zhang, 1994) using refinements like methacrylate methylester 

casting can be dissected and viewed using scanning electron microscopy. But are 

incredibly time consuming and delicate procedures, which are not suitable for use as a 

model to assess retinal vascular changes. Horseradish peroxidase (HRP) staining has the 

advantage of that it fills very small vessels and is quick and easy to use but it is prone to 

obscuring detail when vascular leakage occurs (Villegas-Perez et al., 1998). This may be 

very useful if vascular leakage is what is being assessed but FA and SLO can perform the 

same function in vivo, even in rodents. Fluorescein-labelled dextran has been used in a 

number of studies to assess the vasculature and while it binds to the vascular cell walls it 

requires fluorescent microscopy and fades, which in capturing and archiving high- 

resolution images can be problematic.

NADPH-d histochemical staining of whole mount retina preparations is useful for light 

microscopy studies of entire retinae. NADPH-d staining is quick, permanent and as the 

vessel walls are stained, rather than filled, leakage is not a problem. NADPH-d staining 

was originally used to stain brain tissue (Vincent and Kimura, 1992) but was found to be 

useful for retinal staining (Roufail et al., 1995). NADPH-D staining gives a permanent 

blue stain to the retinal vasculature, the reaction relies on the enzyme NADPH-diaphorase 

in the retinal endothelial cells where it catalyses inducible nitric oxide synthase (iNOS) 

production of Nitric Oxide, a potent vasodilator. The 'diaporases' are dehydrogenase 

enzymes that catalyze the dehydrogenation of the reduced forms of the co-enzyme NAD 

and NADP, i.e. they catalyze the reactions, NADPH—NADP+H. The hydrogen liberated 

then combines with the tetrazolium salt, in this case Nitro Blue Tetrazolium - (NBT) to 

form a formazan salt; which is visible at the site of enzyme reaction.
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Figure 1.9 NADPH Nitro Blue Tetrazolium

Vascular endothelial cells are stained blue with minimal to zero background expression 

that proved ideal for this study. Amacrine cells stain positively and if the reaction is left 

running overnight light staining of the nerve fibre layer could be seen. After the stained 

retinae are flat-mounted, they are amenable to high-resolution computerised imaging. In 

human tissue the stain can also show up photoreceptors (Diaz-Araya et al., 1993) 

NADPH-d has been shown to co-localise with neuronal nitric oxide synthase (nNOS) and 

differential-staining patterns under certain conditions may be a result of differing levels 

of NOS in the vasculature.

1.8.4 Retinal Degeneration And Its Effect On Retinal Vasculature

The abnormal vascular phenotypes seen in advanced retinal degenerations are secondary 

consequences caused by physical changes in the retinal architecture, or ischemia. There 

are two areas of concern from a clinical standpoint, choroidal neovascularisation as seen 

in wet AMD, and the abnormal interaction between the RPE and retinal vasculature as 

described in the RCS rat and advanced cases of human retinal diseases.

The onset of vascular damage is determined by the rate of retinal degeneration in the 

disease/model studied. This is clearly illustrated in the C57Bl/6J-rd le (rd) mouse, in 

which the retinal degeneration is rapid and has a very early onset so that the vascular 

network never actually has a chance to fully develop and differences are seen between 

littermates as young as 14 days (Matthes and Bok, 1984). Comparisons are made with 

albino RCS dystrophic rats of 1 month of age where there are no vascular abnormalities 

due to the retinal degeneration being of a much slower nature (vascular abnormalities do
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not occur in the pigmented dystrophic RCS rat until 2.5-3 months of age) (Wang et al., 

2003).

Descriptions of phototoxic induced retinopathy in Long-Evans rats (Bellhom et al., 1980) 

show vascular effects very similar to those found in the dystrophic RCS rat (Wang et al.,

2003). By perfusing with higher weight fluorescein-labelled dextrans, size specific 

vascular leakage was demonstrated indicating failure of the BRB and fenestration of the 

retinal vessels.

The following vascular changes are characteristic of vascular damage due to retinal 

degeneration. Initial loss of photoreceptors leads to a general thinning of the retina; 

vessels are seen to form coil-like formations in the arterioles and some thickening of the 

deep draining vessels. As more photoreceptors are lost the deeper vessels start to 

approach the RPE, and RPE cells are seen to leave Bruch’s membrane and move onto the 

deep vascular plexi. The trigger for this migration is currently unknown, but may involve 

changes to the RPE environment or chemotaxis of the RPE towards the vessels.(Wang et 

al., 2003)

Many areas of neovascularisation or vascular remodelling are seen as vessels are rerouted 

past obstructions. Finally once the photoreceptor layer has been lost the vascular network 

exhibits multiple sites of RPE cells enveloping vessels with large areas of non-perfusion 

of the deeper vessels, many shunt vessels are in evidence (Bellhom et al., 1980) to reroute 

blood past constricted veins and the vascular network is now dangerously compromised.

1.8.5 Choroidal Neovascularisation

The choroid provides the photoreceptors, IPM, RPE and Bruch’s membrane with 

essential nutrients. It is known that increased oxygen levels in the eye result in vascular 

regression and ischemia results in neovascularisation (Campochiaro and Hackett, 2003; 

Stone et al., 1995). Choroidal neovascularisation (CNV) from AMD is the commonest 

cause of severe blindness in elderly patients (study, 1991). This may involve lowered 

choroidal blood flow or thickening of Bruch’s membrane from accumulation of abnormal 

ECM. The deposition of abnormal ECM is also seen in Sorsby’s fundus dystrophy and 

appears to a preliminary to breaches in Bruch’s membrane. The choroidal blood vessels 

enter into localised areas of neovascularisation forming tortuous bundles of new vessels, 

which can breach Bruch’s membrane and enter the retina. Choroidal blood vessels are not 

part of the BRB and may be at a disadvantage in the biochemically active
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microenvironment surrounding the RPE and IPM, this could cause damage to the vessels 

leading to retinal haemorrhaging and blindness.

1.9 Models For Investigating Proliferative Vascular Diseases
There are several possible models that can be used to study retinal vascular changes, 

that can be divided into in vitro or in vivo models. Secondly the correct investigative tools 

must be matched to the model. Large animal models tend to allow closer approximation 

to clinical studies, where fluorescein angiography, Indocyanine green angiography and 

more recently confocal scanning laser ophthalmoscopy (cSLO) are the main tools for 

investigating the retinal vasculature. For genetic manipulations or more extensive longer 

term in vivo studies, rodent models, such as the RCS rat, rd and rds mice are more useful. 

It is now more common to see transgenic rodents such as the P23H and S334ter rats being 

investigated (Lewin et al., 1998; Liu et al., 1999).

1.9.1 In Vitro Vs. In Vivo Models

In vitro models are very useful for determining the specific viability of pathways and in 

simplifying systems so that complex interactions can be isolated.

Common in vitro models comprise of retinal cells grown in culture either from 

transformed cells or primary culture and can include RPE cell cultures (Steuer et al.,

2004) and retinal endothelial cells sometimes grown on collagen gels to simulate retinal 

vessel growth (Fan et al., 2002). While these models are useful they cannot reproduce the 

complex interactions that occur in an in vivo system.

In vivo systems such as the chick chorioallantoic membrane (CAM) assay (Ausprunk et 

al., 1975; Glaser et al., 1980), laser photocoagulation (Campochiaro and Hackett, 2003), 

transgenic knockout rodents (Lau et al., 2000) and retinal degenerative rodent mutants 

(Essner et al., 1980) have been used to investigate retinal vasoproliferative events. Rarely 

primate retinas have been investigated to model retinal vascular development (Provis,

2001) and diabetic retinopathy (Lebherz et al., 2005)

1.9.2 Laser Photocoagulation

Laser Photocoagulation utilising an argon laser to treat retinal neovascularisation or CNV 

has recently begun to be used as model of retinal angiogenesis (Campochiaro and 

Hackett, 2003; Ryan, 1982; Semkova et al., 2003). Laser Photocoagulation has been used 

in rabbits, primates and even mice to produce a model of CNV designed to approximate 

AMD by burning holes through Bruch’s membrane resulting in CNV. Attempts can then
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be made to modify this response using antiangiogenic compounds such as kinase 

inhibitors (Seo et al., 1999) which blocks several members of the protein kinase C family 

involved in VEGF signalling. This model is interesting in that it is one of the few that 

involves breaches in Bruch’s membrane but it is also flawed in that it causes a relatively 

large full thickness retinal bum wound right at the site to be investigated. This 

contamination of the site by the resulting wound healing process complicates any 

assessment of treatments.

Some other in vivo models involve intravitreal injections through the retina but these 

micro-wounds appear to have very local effects and are usually sited away from the main 

site of study minimising contamination of the tissue. The laser photocoagulation model as 

been used to investigate various growth factors (Kwak et al., 2000) and potential drugs 

but unless more proof can be obtained that the lesions created mimic actual CNV lesions 

in AMD rather than unnatural retinal bum wounds its usefulness is in question. Finally 

the resulting scar at the site of the laser bum does not in any way mimic the CNV found 

in clinical AMD studies (Semkova et al., 2003).

1.9.3 Transgenic Rodents

Transgenic rodents have made it possible to engineer knockouts that either omit essential 

factors or express missing factors to correct defects in known mutations. Transgenic 

animals do not comprise a single model for investigating retinal vasculature as such but 

as they are becoming essential in determining the effects of removing parts of the retinal 

pathways such as integrin knockouts (Reynolds et al., 2002), Interleukin-18 knockouts 

(Qiao et al., 2004) and along with gene therapy in correcting known genetic retinal 

defects as with the RCS rat (Vollrath et al., 2001) they should be included here. Knockout 

mice are slowly giving way to the more elegant gene therapy route as it can be extremely 

difficult to determine just how “normal” a surviving phenotype is. Knockouts that are 

missing an essential factor may well be non-viable and the phenotype consequently lethal 

to the developing embryo. More subtle differences may go undetected unless 

comprehensive behavioural testing is carried out. More relevant to ophthalmic research is 

the SPARC/Osteonectin knockout, which appears phenotypically normal until six months 

of age when it develops severe cataracts and ruptures in the lens capsule due to aberrant 

ECM interactions (Gilmour et al., 1998).
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1.9.4 The Vascular Secondary Effects Of The RCS Rat

The RCS rat has been known to develop abnormal vascular formations as a secondary 

consequence of retinal degeneration for some time (Essner et al., 1980) with several 

studies investigating the breakdown of the BRB as the retinal degeneration leads to 

progressively worse vascular damage (Essner et al., 1980). Sadly some early studies were 

compromised by being conducted with RCS rats on an albino background (Caldwell,

1989; Caldwell et al., 1989; May et al., 1996) which did not allow for clear visualisation 

of the formation of RPE/vascular complexes and also were handicapped by the short 

comings of albino animals for vision research. Albino animals have a point mutation in 

tyrosinase, an enzyme essential to melanin synthesis resulting in non-pigmented pigment 

epithelium and severe visual defects (Jeffery, 1998). These defects include a reduction in 

the amount of rod photoreceptors, underdeveloped central retina and defects in the optic 

chiasma leading to poor spatial awareness in vision, these animals are notoriously poor at 

visual behavioural tasks (Prusky et al., 2002). The pigmented RCS rat provides a 

naturally occurring example of slow onset progressive vascular damage that can be used 

as a model to investigate ocular angiogenesis.

1.9.5 Controlling Retinal Vascular Events

The models used in the preceding sections detail how retinal vascular abnormalities are 

investigated but not how they are controlled. There are many anti-angiogenic strategies of 

which the most common are surgical removal of CNV, anti-angiogenic drugs, growth 

factors and growth factor antagonists, low power photocoagulation and gene therapy. 

Surgical debridement of CNV membranes is commonly carried out for human retinal 

proliferative diseases and while it can be damaging if mistakes are made it is one of the 

few options available in the current clinical environment (Schmidt et al., 2003). 

Anti-angiogenic drugs are used to treat many disorders and research carried out in other 

fields such as cancer has recently been applied to the vascular problems inherent in retinal 

degenerative diseases with growth factors like PEDF and blocking peptides to VEGF as 

well as some potential therapies taken from cancer research such as angiostatin and 

endostatin (Hajitou et al., 2002). VEGF kinase inhibitors have been shown to block 

retinal neovascularisation (Seo et al., 1999)and are currently in phase II clinical trials for 

treatment of AMD CNV(2003). Another growth factor that receives a lot of attention is 

PEDF (details in section 1.10), which is a natural anti-angiogenic compound produces by
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the RPE involved in protecting the eye from abnormal neovascularisation (Tombran-Tink 

et al., 1991).

Argon laser induced photocoagulation of CNV membranes as discussed earlier is 

currently used to cauterise and seal damaged blood vessels in the retina but it does not 

stop the underlying pathology.

Gene therapy is a relatively new development for ocular diseases and at present all 

proposed gene therapy treatments are experimental or awaiting approval for phase I 

clinical trials. Proof of principal has already been shown with correction of LCA in the 

Briard dog (Acland et al., 2001) and in numerous small animal models gene therapy has 

been shown to reverse well known retinal dystrophies (Vollrath et al., 2001) and models 

of retinal ischemia induced neovascularisation (Bainbridge et al., 2002). Another use of 

gene therapy is to introduce genes into cells that are then placed into the eye using 

transplantation techniques (Lawrence et al., 2004). These cell-based therapies combined 

with gene transfer technology (ex-vivo gene therapy) may reduce safety issues over 

classic gene therapy. By improving the retinal environment by reducing vascular 

problems, these treatments may be used as either a pre-treatment or in combination with 

further potential cures for retinal degeneration.

1.10 Pigment Epithelium Derived Factor
PEDF is a retinal peptide involved in angiostasis of the retina with neuroprotective 

properties making it an excellent candidate for pharmaceutical intervention in retinal 

degenerative diseases. PEDF is a 50-kDa non-inhibitory member of the serine protease 

inhibitor (serpin) family of proteins. It was first discovered during investigations into 

differentiation of neuroblastoma cells by RPE cell conditioned media (Tombran-Tink and 

Johnson, 1989) and later isolated and named PEDF after the cells it was extracted from 

(Tombran-Tink et al., 1991). PEDF is known to be secreted from the RPE into the 

interphotoreceptor matrix (Tombran-Tink et al., 1995) and it is also secreted by the 

cornea and ciliary body, which accounts for the high levels of PEDF found in the vitreous 

(Ortego et al., 1996). PEDF levels have been approximately calculated at 1-2 pg/ml in the 

vitreous with l/5th of that in the aqueous and 10 times that figure in the IPM (although in 

much less volume). There is evidence that PEDF extracted from several tissues and the 

vitreous differs from PEDF extracted from the IPM in that the N-terminus is blocked (Wu 

et al., 1995), this may be a control mechanism for activation. Interestingly it is difficult to
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detect PEDF protein in the RPE (Karakousis et al., 2001), possibly due to the 

autofluorescence of the lipofuscin but mRNA can be detected suggesting that while it is 

produced by the RPE in the retina it is neither stored, nor active there.

PEDF is important in the retina because it is known to have neurotrophic, (Steele et al., 

1993) neuroprotective (Cayouette et al., 1999; DeCoster et al., 1999; Houenou et al., 

1999)and anti-angiogenic properties (Dawson et al., 1999; Ogata et al., 2002; Ohno- 

Matsui et al., 2001; Stellmach et al., 2001; Stitt et al., 2004) which allows it to protect the 

neural retina while also inhibiting neovascularisation, neither process is completely 

understood but both are of interest in retinal degenerative diseases such as AMD, RP and 

retinopathy of prematurity.
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1.10.1 Neuroprotective Properties Of PEDF

One of the first experiments with PEDF showed how it was neurotrophic to cultured Y79 

retinoblastoma cells where it induced a change in cell phenotype to neuron-like processes 

(Steele et al., 1993). This has been postulated to be due to PEDF inhibiting cell 

proliferation by influencing the mitotic cycle at key points, PEDF was also called early 

population doubling level cDNA-1 (EPC-1) as its expression is up regulated during cell 

cycle phase Go, thereby driving some cells towards differentiation. Since then PEDF has 

also been shown to be able to influence the survival of various types of neural cells such 

as immature cerebellar granule cells (but not mature cells)(Araki et al., 1998), developing 

primary hippocampal neurons (DeCoster et al., 1999), mouse photoreceptors from retinal 

degeneration (Cayouette et al., 1999), developing spinal motor neurons (Houenou et al., 

1999), cultured neurons from hydrogen peroxide induced apoptosis (Cao et al., 1999) and 

photoreceptors from light damage (Cao et al., 2001).

These cases share several similarities, in most cases the neuroprotective property requires 

pre-treatment or presence of PEDF for at least 1 hour in experimental systems (Cao et al.,

1999). Only a single application of PEDF is required to show an effect (Cao et al., 2001; 

Cayouette et al., 1999). The PEDF appears to trigger a biochemical change but with the 

photoreceptor studies it is not clear if the effect is direct or on supporting cells. PEDF can 

also protect the neural retina from ischemia, which is important in nearly all retinal 

degenerative diseases, and also it has been found to be extremely effective against the 

resulting neovascularisation that follows retinal ischemia (Stellmach et al., 2001).

1.10.2 Anti-Angiogenic Properties Of PEDF

PEDF has been described as the most potent anti-angiogenic compound produced in 

mammals (Dawson et al., 1999). Under normal conditions the retinal vasculature is held 

quiescent by an equilibrium reached between pro-angiogenic factors like VEGF, 

fibroblast growth factor-2 (FGF-2) and anti-angiogenic factors like PEDF which can be 

triggered by changing oxygen levels in the retina. Retinal diseases can change this 

equilibrium, especially those that involve large scale cell death or vascular proliferation 

such as retinal degenerations and proliferative diabetic retinopathy. There is a lot of 

information suggesting that PEDF and VEGF act as antagonists, if one increases the other 

decreases, but no direct link has been proven (Gao et al., 2001; Ohno-Matsui et al., 2001).
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PEDF expression is lowered under hypoxic conditions making it less effective at 

countering the pro-angiogenic effects of VEGF. Most vascular proliferative diseases 

involve at least localised ischemia, which in turn trigger growth factors, in the retinal 

environment the most important of these appears to be the PEDF/VEGF equilibrium 

(Ogata et al., 2002). The exact method for this interaction is currently unknown but clues 

are emerging that PEDF may induce apoptosis in new vessel endothelium thereby killing 

new vessel growth before it gets started (Volpert et al., 2002). This is presumably done by 

a cell surface receptor but to date no such receptor has been identified. In retinal 

transplantation studies the sham effect has been known to produce slightly improved 

retinal architecture over untreated retinae, recent evidence points to the action of PEDF 

up regulation at the site of penetrative ocular wounding (Stitt et al., 2004) which may 

account for this phenomena.

1.10.3 PEDF And Retinal Diseases

The PEDF gene has been linked to several retinal degenerative diseases and its location 

being associated with a known RP locus (RP13) on chromosome 17 (Goliath et al., 1996) 

and variations in the PEDF gene have been found in patients with Leber congenital 

amaurosis (Koenekoop et al., 1999). Mutations in the PEDF gene would have serious 

consequences for retinal angiostasis. PEDF is a prime candidate for pharmaceutical 

intervention in retinal degenerative diseases. PEDF levels have been shown to be lower in 

patients with proliferative diabetic retinopathy (Spranger et al., 2001), other retinal 

diseases with an angiogenic component may show similar findings.

Other properties of PEDF that may affect neuroretinal cells are its ability to directly affect 

microglia by increasing their metabolism and inhibiting proliferation (Sugita et al., 1997). 

In turn there was a secondary indirect effect on astrocytes, as PEDF-treated microglia 

release a soluble factor that reduces astrocyte proliferation. This was taken as evidence of 

a role for PEDF in regulating glial cells in the central nervous system. PEDF binds to the 

extracellular matrix by attaching directly to glycosaminoglycans (Alberdi et al., 1998), 

which is likely be essential for its role in the IPM as that is the main source of 

glycosaminoglycans in the retina.

1.10.4 Gene Therapy Delivery Of PEDF

Models of retinal proliferative vascular diseases or retinal degeneration with secondary 

CNV are excellent ways of testing gene therapy delivery of PEDF with a view to later
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clinical trials. One such trial used transplantation of iris pigmented epithelium cells 

genetically engineered to deliver PEDF via high capacity adenovirus (HC-ad) to both 

laser photocoagulation in Long Evans rats and into dystrophic RCS rats(Semkova et al.,

2002). In the Long Evans photocoagulation experiment, the adPEDF inhibited the CNV 

produced by the laser bum although it is not clear what the effect of the laser burning 

through the IPE transplant was. The RCS rats with adPEDF did exhibit more 

photoreceptor layers than controls but unfortunately the animals were sacrificed two 

months after transplantation (20 days) and they did not investigate the secondary vascular 

complexes forming in the RCS retina. If they had waited another month they could have 

flat-mounted the retina and looked at the effects on the vasculature without the 

complication of the wound healing response from the laser photocoagulation model.

Several other groups are investigating gene therapy delivery systems for evaluating PEDF 

effectiveness in retinal diseases. GenVec (Gaithersburg MD) has an exclusive licence 

from the Federal Drug Agency to conduct gene therapy phase I clinical trials using 

adPEDF which are currently underway run by Dr. L. Wei (Imai et al., 2005). PEDF was 

chosen as a potential antiangiogenic treatment for use in this study as it had known 

antiangiogenic properties in rodents and it was also neuroprotective which it was hoped 

would help maintain the cells of the retina. Some growth factors have shown conflicting 

responses with in vivo models as non-physiological concentrations resulting from 

inappropriate dosages can in fact be detrimental while more appropriate dosages can be 

beneficial. This is usually due to non-physiological dosages changing the equilibrium of 

growth factor profiles until the cellular environment deteriorates.
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1.11 Integrins In The Eye
Integrins mediate many interactions in the eye such as cell migration and proliferation as 

well as RPE phagocytosis (Elner and Elner, 1996) and angiogenesis (Hodivala-Dilke et 

al., 2003). This makes them an attractive target for pharmaceutical intervention in order 

to control retinal degenerative diseases. Integrins are present in the cornea, retina and 

choroid. The cornea primarily requires integrin functionality in corneal wound healing 

where corneal epithelial cells need to interact with and migrate on basement membranes 

utilising (X2P1, ot3pi and avpi integrins

1.11.1 General Overview And Structure Of Integrins

There are four main groups of adhesion molecules; integrins, immunoglobulins, selectins 

and cadherins. Of these, this study is concerned with the integrins, as they are involved in 

cell migration, proliferation, differentiation and activation through cell-cell or cell- 

extracellular matrix (ECM) interactions. Integrins are heterodimeric molecules 

comprising one a  sub-unit in conjunction with one p sub-unit; there are sixteen a  sub

units and eight p sub-units combining to give 21 known integrin pairs. Each integrin has 

intracellular, transmembrane and extracellular domains with the a  sub-unit being mainly 

responsible for specificity and the p sub-unit anchoring the assembly to the cell 

cytoskeleton (Cox et al., 1994). The a  sub-units are generally involved in cell-ECM 

interactions with collagens laminins fibronectin and vitronectin whereas the p sub-units 

are found on many cell types such as endothelial cells, epithelial cells fibroblasts and 

leukocytes (Elner and Elner, 1996).

Many integrins share a common binding motif known as the RGD sequence (named after 

the three amino-acids that comprise it -  arginine-glycine-aspartic acid) which is essential 

for binding to many ECM molecules such as fibronectin, vitronectin, collagens, laminins, 

fibrinogen and thrombospondin. There have been a number of reviews on the role and 

expression of integrins in the eye (Elner and Elner, 1996) and recently the retina (Clegg et 

al., 2000; Cox et al., 1994; Finnemann and Rodriguez-Boulan, 1999; Zhao et al., 1999). 

Integrin involvement in angiogenesis has been shown in P3 and ps knockouts (Hodivala- 

Dilke et al., 1999) and blocking studies where they have been shown to enhance 

pathological angiogenesis (Reynolds et al., 2002).
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1.11.2 Integrins In The Retina

The retina has a wider range of integrins but of most interest in this study are the integrins 

involved in RPE phagocytosis (section 1.7.3.) and in vascular cell interactions. The 

integrin avfe has been implicated in both vascular cell migration (Rupp et al., 2004), 

endothelial cell sprouting (Soldi et al., 1999)and in angiogenesis by activation of the 

VEGF-2 receptor. The integrin avPs is known to be involved in RPE binding prior to 

phagocytosis (Finnemann et al., 1997; Nandrot et al., 2004). These processes are 

extremely relevant to studies of retinal degeneration, but avP3 expression on RPE cells is 

known to be low (Anderson et al., 1995). Both of these integrins are also known to 

receptors for Vitronectin, a multifunctional protein involved in tissue remodelling, the 

immune system and neuronal development (Martinez-Morales et al., 1995). 

a5p i has been shown to be essential for the internalisation phase of phagocytosis of 

ECM fragments by RPE cells (Zhao et al., 1999) which may well be important in those 

models where a significant wound healing component is present but it is unknown if this 

is true for OS phagocytosis. The findings of D’Cruz and colleagues have implicated the 

integrin pair avPs in the RCS retinal dystrophy (D'Cruz et al., 2000) and this molecule is 

known to be involved in the binding of photoreceptor fragments to RPE (Lin and Clegg,

1998) making it a good candidate for blocking experiments.

1.11.3 Integrins In The RCS Rat

There have been very few studies investigating integrin expression in the RCS rat with 

one study on microglial cell invasion (Roque et al., 1996) and footnotes in the ongoing 

RPE phagocytosis debate (Hall et al., 2003; Nandrot et al., 2004).

The integrin pair avPs, is the only integrin receptor that localizes to the apical, phagocytic 

surface of RPE in vitro and in vivo (Finnemann et al., 1997) and therefore may have a 

role in the binding of photoreceptor outer segments to RPE and association with the 

Mertk gene for the RCS dystrophy. This is controversial (section 1.7.3) and it is unclear if 

the requirement for avPs is limited to in vitro assays only (Feng et al., 2002). Hall et al 

found that in primary RPE cultures from dystrophic RCS rats that antibody blocking of 

avps reduced RPE binding by 30-40% but not internalisation (Hall et al., 2003). Until 

more thorough in vivo studies are done this will remain unknown. The integrin pair ocspi 

may be a interesting target in the RCS rat as it has been shown to mediate motility in and 

RPE cells (Jin et al., 2000) and in increased expression in retinal vascular proliferative
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membranes (Robbins et al., 1994). Recent findings that dedifferentiated and proliferate 

RPE cells up regulate as protein levels (Proulx et al., 2003) may also be relevant for RPE 

motility in the RCS pathology.

1.12 Integrin Antagonists; Disintegrins
Molecules capable of modulating integrin expression could be very important candidates 

for pharmaceutical intervention in many pathological conditions, integrin antagonists if 

controlled and specific may be invaluable tools (Curley et al., 1999). Integrin antagonists 

can be divided into two groups 1) Artificial integrin blockers such as antibodies and 

blocking peptides created specifically to block certain receptors. 2) Natural inhibitors of 

integrins such as the snake venom derived disintegrins (Kamiguti et al., 1998).

This study was particularly interested in disintegrins for their small size, stability and 

effectiveness at blocking integrins. Disintegrins are small non-enzymatic RGD containing 

cystine rich polypeptides, they share some homology with the ADAMs family of 

metalloprotease-disintegrins found in mammals (Schlondorff and Blobel, 1999).

The primary function of the snake venom disintegrins is to disable the clotting system and 

damage blood vessel walls thereby causing massive haemorrhaging in the victim, 

although differing disintegrins may elicit a wide range of effects.

Disintegrin specificity is currently being studied by several groups and the full range of 

responses to these potent integrin antagonists are not yet known (Belisario et al., 2000; 

Marcinkiewicz et al., 1996), particularly their specificity to blocking different integrin 

pairs via their RGD recognition site (Marcinkiewicz et al., 1997).

1.12.1 Echistatin

A suitable candidate for this study is echistatin; a 5-kDa disintegrin extracted from the 

venom of Echis Carinatus (Gan et al., 1988). This decision was based on echistatins 

reported ability to inhibit RPE detachment and migration In vitro in a bovine RPE 

adhesion assay (Yang et al., 1996). It was speculated that by inhibiting the migration of 

the RPE cells into the inner retina of the dystrophic RCS rat it might be possible to retard 

the secondary vascular problems associated with the RCS pathology.
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Figure 1.9 Echis Carinatus aka Saw Scaled viper

Echistatin binds to and inhibits the platelet receptor anbP3 (Belisario et al., 2000) and the 

vitronectin receptor ayp3 (Nakamura et al., 1998) which is involved in 

neovascularisation. Echistatin can also inhibit (X5P1 (Wierzbicka-Patynowski et al., 1999) 

which has been implicated in the internalisation phase of RPE phagocytosis. By studying 

echistatin and other disintegrins such as eriostatin (Wierzbicka-Patynowski et al., 1999) a 

new range of artificial disintegrin analogues are being constructed with much higher 

specificity to target individual integrin units (Kumar et al., 2001).
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1.13 Retinal Transplantation History
The first attempts at retinal transplantation were purely surgical in nature with attempts to 

replace whole eyes. This coupled with the relatively primitive surgical facilities and lack 

of basic immunological knowledge available at the turn of the 19th century made success 

very unrealistic. Retinal transplantation was not considered feasible until successes were 

made in the field of neural transplantation in the late 2 0 th century.

1.13.1 Original Experiments

The first recorded experimentation in retinal or rather whole eye transplantation took 

place in may of 1885 by a Dr M. Chibret, according to an account by Dr Charles May of 

New York who documented an unsuccessful case of human whole eye transplantation 

and four subsequent cases of which unsurprisingly all were failures, even though the last 

did survive for approximately 18 days (with no mention of functional vision). Not 

discouraged Dr May experimented on 24 rabbits of which the first 18 were total failures 

(which he put down to his inexperience with the technique and difficulties keeping 

bandages in place) but the last 6  he judged successful as the eyes became attached and 

reconnected blood vessels (May, 1887). He went on to describe the eyes surviving after 

10 weeks, slightly smaller and with cloudy corneas. Dr May then felt suitably confident 

to take up a request to perform a similar operation on a human patient, transplanting an 

entire rabbit eye into a 29-year-old male recipient of sound health other than having lost 

sight in one eye. Dr May did not succeed with his ambitious experiment although the 

patient did express willingness to try again but as it took two weeks for the orbit to heal 

this was not considered.

Clearly what Dr May required for success was knowledge of modem immunology (xeno- 

grafting being unfavourable at best) and immuno-suppression (Cinader et al., 1971; 

Streilein et al., 2002); both of these pieces of information were a long time in arriving. 

Early transplants of foetal to maternal eyes were conducted by Royo and Quay in 1959 as 

a way around rejection before immuno-suppression was understood, but that was never 

going to be a viable treatment for human retinal diseases.

Modem retinal transplantation starts with the other immuno-privileged neural tissue: the 

brain. Transplantation of neural tissues in the late 1970’s and early 1980s showed that 

developing neural tissue could survive transplantation (McLoon and Lund, 1980). Sadly a 

pattern started to emerge with neural and then retinal transplants that as soon as a 

researcher published the next break-though an ambitious clinician would try it on patients
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(usually in countries with less active legal resources) claiming fantastic results that could 

not be reproduced (Molina et al., 1994)giving the field a less than respectable reputation. 

Transplantation techniques progressed through the 1980’s until the first retinal transplants 

were performed (Turner et al., 1988), from then there have been many advances and a 

gradual move away from transplanting retinal tissues to cell based therapies such as stem 

and Schwann cell (Lawrence et al., 2000; Young et al., 2000) based treatments and now 

genetically engineered cell treatments to correct specific genetic disorders (Vollrath et al., 

2001).

1.13.2 Clinical Problems

The clinical problems facing successful retinal transplantation are now well known 

although answers to many of them are not. This study is concerned with treatments 

towards human retinal degenerative diseases and as such the main questions are 1) 

Function - will the cells support or maintain visual function? 2) Availability of 

tissue/cells - can they be made available in sufficient numbers and be stored and applied 

easily? 3) Safety -  will they cause side effects? will they invade other tissues and produce 

tumours? Due to the possibility of various human diseases like HIV/hepatitis, explanted 

donated tissue may not be advisable and it is always in short supply 4) Survival - how 

long will the cells survive? will they require continual reapplication? This is important 

because patients are often unwilling to undertake continual surgical treatments (even for 

minor treatments) Another less important consideration is whether the cells/procedure 

will provoke an inflammatory reaction -  is immunosuppression required? which has its 

own side effects and considerable additional expense (Lund et al., 2001b).

Which cells to use and their source are very important, not just from the point of view of 

the recipient but also to the surgical team carrying out the surgery. Ideally the cells should 

be non-immunogenic to the host, stable and easy to grow and store and available in large 

numbers. Transformed cell lines such as ARPE19 human RPE cells have certain 

advantages in that they are stable and can be grown in vast numbers ready for patient use, 

they have been well characterised and are considered safe (Dunn et al., 1996; Kanuga et 

al., 2 0 0 2 ) but they do suffer eventual rejection in animal models even under 

immunosuppression.

Allografts survive somewhat better, but humans are not inbred (generally) so this 

typically requires extensive immunosuppression in humans, in rats this in combination
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with gene therapy has extended functional rescue further than previous experiments 

(Lawrence et al., 2004). Autografts of tissue extracted from the host, either of ancillary 

cells like Schwann cells (extracted in advance from peripheral nerves of the patient such 

as the perineal nerve grown in culture) may be a useful if controversial source. 

Autologous grafts such as iris pigmented epithelial cells suffer from the problems of 

harvesting sufficient cells from the patients which results in cells of suspect health with 

the same genetic disorder, Iris pigmented cell transplants have not shown long term 

efficacy(Semkova et al., 2002). Genetically modified retinal cells that produce natural 

chemicals such as PEDF and GDNF are another possibility (Lawrence et al., 2004).

Cell survival in the recipient may depend on several factors such as the anatomical site of 

delivery and timing of delivery of the transplant. Cells must be delivered into an 

anatomical site where they can integrate into the host retina without spreading into the 

vitreous or interfering with neural retinal function. The subretinal space is the only site 

that qualifies in the mammalian retina as it allows cells to be kept in place. The subretinal 

space is inside the BRB therefore it enjoys the immuno-protective benefits of the BRB as 

long as the delivery procedure does not damage the vascular network. The environment 

should be as healthy as possible, the studies discussed in this work have outlined the 

progressive degeneration of the entire retina set in motion by photoreceptor degeneration 

as modelled by the RCS rat (Caldwell et al., 1989; Davidorf et al., 1991; Essner et al., 

1980; Wang et al., 2003). These studies highlight the importance of early detection of 

retinal disease as in advanced cases the retinal environment may well be hostile to any 

cells transplanted greatly reducing their effectiveness no matter how compatible they 

would be. Changes in the RPE cells due to aging are also a consideration both as a source 

of cells and for the environment into which transplanted cells are placed (Boulton et al., 

2004).

The final end point for a successful procedure is not a healthy retina but functional vision 

and sadly any studies that do not follow transplants over long periods of time and do not 

use functional assays such as behavioural testing (McGill et al., 2004),

Electroretinograms (ERG)(Cuenca et al., 2004), or electrophysiology (Lawrence et al., 

2000) cannot claim complete success. Patients will not be impressed by doctors 

describing how healthy their retinas look if they cannot see the pictures themselves.
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1.13.3 Reconstruction vs. Rescue

Retinal transplantation can be broadly divided into two strategies which can be termed 

reconstruction and rescue respectively. Reconstruction is the more traditional 

transplantation approach where transplanted tissue or cells are placed in or on the retina 

with the expectation that they will take the place of the damaged cells and function 

normally. This may be done with whole or partial thickness retinal sheets (Del Priore et 

al., 2004) or cell aggregates (Kwan et al., 1999). This requires the new tissue or cells to 

successfully integrate as a unit into the already damaged host retina.

Rescue is where the transplanted cells do not assume the role of the recipient tissue but 

provide aid in the form of growth factors or other diffusible agents that improve the 

recipient cells propects of survival (Lawrence et al., 2000).

Detection of the transplant after application is necessary to determine the degree of 

integration into the host, which with retinal sheets is fairly easy by basic anatomical 

means but with cell aggregates this is not always apparent as the cells disperse in the 

subretinal space making determining the fate of transplanted cells difficult. Specific 

antibodies are required to determine the fate of cell aggregate transplants as green 

fluorescent protein (GFP) labelling does not last for effective time periods. Retinal sheets 

(Del Priore et al., 2004; Ghosh et al., 2004) were technically more difficult to apply 

being very difficult to micro-dissect cleanly, clearly these would not be a viable option 

for mass human therapies as even cadaver allografts would not be sufficient for the 

number of patients.

Current transplants appear to rescue photoreceptors from apoptotic death (Travis, 1998) 

either by production of missing growth factors or by supplying excess factors that reduce 

the effects of the abnormal biochemistry found in retinal disorders. There is currently no 

evidence that full integration of host and recipient cells takes place and very little 

evidence for improved visual functionality over that, which existed at or prior to the 

transplant being administered. There is however a growing body of data showing that 

transplants can rescue or at least temporarily halt the functional decline of the visual 

system in models of retinal degeneration (Cuenca et al., 2004; Girman et al., 2003; 

Lawrence et al., 2004; McGill et al., 2004; Sauve et al., 2002; Sauve et al., 2004). 

Transplants are generally viewed as explanted tissues/cells taken from a donor and placed 

into a recipient to replace non-functional tissues. In most retinal transplantation
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experiments it now appears that the donor cells are not replacing but assisting failing 

cells, as such cell aggregate transplants should really be thought of as cell based therapies

1.13.4 Success So Far

At present the state of the art as far as retinal transplants go is genetically modified 

Schwann cells producing glial cell line-derived neurotrophic factor (GDNF)(Lawrence et 

al., 2004) and iris pigmented epithelial cell transplants modified to produce PEDF at the 

same stage (Semkova et al., 2002). These strategies offer the best chance of success for 

the greatest number of patients as they provide strategies for groups of diseases rather 

than cures for specific disorders. They can be modified to suit particular degenerative 

disorders and they may allow less radical interventions to treat vasoproliferative retinal 

diseases with anti-angiogenic peptides. Retinal sheet transplants while technically 

feasible have the disadvantages of difficult initial dissection protocol coupled with 

difficulties of supply and screening of suitable tissues, the insertion protocol is well 

within the skills of good surgeons but it is not without risk. The best retinal sheet 

transplants have not been demonstrated to fully integrate into the retina and no functional 

assessment has been undertaken to determine if the transplant had improved vision or 

even interfered with the healthy vision of the porcine recipient (Del Priore et al., 2004; 

Ghosh et al., 2004).
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1.14 Image Analysis Of The Retina

Computerised image analysis of light microscopy is now a standard tool of cell biology 

with several key manufacturers supplying highly modular programs that can grow in 

complexity with the experience and knowledge of the user. Today nearly every 

manufacturer of microscopes offers their own image analysis program that is usually 

customisable to whatever configuration of microscope you might need such as Zeiss 

axiovision, Leica QWin quantitative software, and Olympus Microsuite, Nikon 

microscopes use Metamorph from Universal Imaging Corporation. These programs have 

the advantage of already being customised for their application. There are many other 

commonly used programs such as Image Pro Plus (media cybernetics) and ImageJ (a Java 

based cross platform application allowing users to run software on any computer system). 

The image analysis software used in this study has evolved out of tried and tested systems 

used to count retinal ganglion cells in whole mounted rodent retinae (Danias et al., 2002; 

Lafiiente et al., 2002; Wang et al., 2003). Early image analysis took advantage of the 

mathematical algorithms in Adobe Photoshop to process captured images so that the 

target cells would stand out from the background allowing quantification (Danias et al., 

2002) But over time this has been improved upon with dedicated image analysis 

programs such as Metamorph and Image pro plus (Wang et al., 2003)which can run 

multiple microscope accessories such as motorised stages, filter wheels and digital 

cameras. They also include a comprehensive suite of image manipulation algorithms to 

allow processing of raw images sufficient to increase signal to noise ratios allowing 

quantification beyond what was previously possible. These programs also include macro 

languages that allow grouping of processes to allow much greater automation of 

procedures. In quantifying cells or other biological features the main problem is usually 

in removing interfering background without altering the original target cells and in 

distinguishing individual cells in crowded populations. When trying to quantify vascular 

complexes in a flat-mounted retina the problems are slightly different. The main 

difference is that damage to the vascular network often results in a lack of vasculature 

and the computer systems are not very good at detecting a lack of target. Where vascular 

complexes occur there are a combination of features such as collapsed vessels, pigmented 

cells, aberrant shunt vessels avascular spaces and contorted vessels all of which comprise 

the vascular complex Which is why in this study it was necessary to use area of interest 

(AOI) analysis, whereby the operator traces an area of interest around the vascular
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complex, Which encompasses all of the factors above. The image analysis software can 

then calculate the area of the total AOI for the retina and compare it against a similar 

trace taken of the entire retina. For retinal flat-mounts it was found that the NADPH-d 

staining method gave the best signal to noise ratio with complete staining of every vessel 

allowing a complete retinal map to be assembled. From this map the combined areas of 

all vascular complexes could be extracted and analysed very quickly (in under an hour for 

each prepared flat-mount). Analysis of the data was performed using Microsoft Excel 

spreadsheet software due to compatibility with the imaging software. 3d analysis was not 

possible during the timeframe of this study and indeed is not yet possible due to 

constraints on the confocal microscopy technology. This would require extremely 

accurate stepping stage technology to be built into the confocal microscope and also 

require a fluorescent marker that is not susceptible to fading to allow multiple zseries and 

XxY series of images to be captured. This is not a feasible undertaking with current 

technology

1.15 Summary
Research into human retinal degenerative diseases is currently at an exciting stage with 

several strategies such as gene therapy (Bainbridge et al., 2003) and cell-based therapies 

(including stem cells) (Lund et al., 2003; Semkova et al., 2002) maturing towards clinical 

trials. Progress in pharmaceutical enhancement of existing treatments has further refined 

their efficacy. Advances in understanding the genetics of the two main disease groups, 

AMD and RP has been invaluable in guiding research (Edwards et al., 2005; Guymer, 

2001; Michaelides et al., 2003; Rivera et al., 2000). One area that is receiving special 

attention is angiogenesis within the retina. All retinal degenerative diseases have a 

vascular component that directly affects the health of the retina and indirectly the 

viability of any retinal treatment regime. This is reflected in four out of six current 

clinical trials mentioned earlier (figure 1.4) being based on anti-angiogenic treatments 

(Augustin et al., 2004; Husain et al., 2005; Imai et al., 2005; Saishin et al., 2003) as well 

as anti-angiogenic treatments from . As many retinal treatments are invasive in nature, the 

treatments themselves may alter the vascular pathology. The present study points to the 

dynamics of vascular pathology and how they may be visualised.
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2.0 Materials And Methods For “A Study Of The Retinal 

Vascular Pathology In The RCS Rat...”

2.1 Animal Model

Rodents were used due to the availability of suitable strains with analogy or homology to 

human retinal diseases. In addition, background experiments provided a foundation to the 

experiments conducted in this study, their short breeding time also allowed longer-term 

experiments necessary for this study. Most of this study utilises dystrophic and non- 

dystrophic (control animals) Royal College of Surgeons rats in which photoreceptor loss 

is due to RPE dysfunction. Long Evans rats were also used as a normal non-degenerative 

test animal.

2.2 Perfusion

Animals were given terminal anaesthesia of 25% Urethane (Sigma) atlml/lOOg animal 

weight, before being perfused with PBS followed by 4% paraformaldehyde (EM 

Science). This involved:

1. Intraperitoneal injection for terminal anaesthesia.

2. Opening of the chest cavity, cutting though ribs to access the heart.

3. Clamping of the descending aorta (to prevent PBS/Fix being pumped around all 

the body).

4. Cutting the right atrium to release blood after it has been pumped to the brain.

5. Cutting the left ventricle, inserting and clamping in place a 20-gauge 

feeding/intubation needle into the incision.

6 . Using a peristaltic pump (Masterflex. Cole Parmer), 80 ml PBS was pumped into 

the heart at rate of 1 Oml/minute to remove red blood cells from the head of the 

animal (to ensure none are left in the retina).

7. Pumping 80 ml of 4% paraformaldehyde through the upper body of the rat to 

ensure adequate fixation of the eyes.

8 . Placing a 4/0 suture dorsally through the outer musculature of the eye to mark the 

eyes position before dissection.

9. Carefully remove the eye, cleaning off as much external musculature as possible 

form the orbit of the eye.
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Some later experiments used immersion fixation where the animals were perfused with 

PBS and then the eyes dissected out, the sclera cut open and the eyeball immersed in 4% 

paraformaldehyde for 1 hour

2.3 Fixation

Light Microscopy Fixative

4% paraformaldehyde was used as a standard fixative for light microscopy as it was 

compatible with the histological procedures used in throughout this study. 

Paraformaldehyde was always used fresh. The following protocol was used to make up 1 

litre of fixative

1. 40g of paraformaldehyde were added to 800ml of distilled water.

2. 10 drops of 1M NaOH (EM Science) were added.

3. The mixture was stirred constantly and heated until all of the paraformaldehyde 

dissolved (taking care not to heat above 60°C where the paraformaldehyde would 

be dissociated).

4. The pH was adjusted to between 7.2 and 7.4.

5. 100ml of lOx PBS concentrate (EM Science) was added and the resulting volume 

made up to 1 litre by addition of distilled water.

Electron Microscopy Fixative

1. Modification of the standard paraformaldehyde protocol above to give 2.5% 

paraformaldehyde (25g in step 1)

2. 2.5% glutaraldehyde, (EM Science) 0.01% picric acid (Sigma) in 0.1 M cacodylate 

buffer (Sigma) pH 7.4 was added.

2.4 Flat-Mounting The Retina

All manipulation of the retinae was carried out using very fine sable 000 size paint 

brushes to ensure as little damage as possible.

Animals were perfused with 4% paraformaldehyde.

1. The sclera was punctured with a sharp needle reducing ocular pressure and 

allowing the sclera to be gripped with forceps.

2. The sclera was cut from ciliary body to ciliary body to form an X with the dorsal 

suture at the top of the X.
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3. The lens was carefully removed by applying pressure to the sides of the eye and 

cutting any zonular ligaments or iris, which impede the process.

4. The eye was fixed for a further ten minutes in 4% paraformaldehyde to allow the 

retina to stiffen prior to removal.

5. The eye was washed several times to remove the fixative and placed in a glass 

Petri disk lined with wax filled with PBS. The rest of this procedure was carried 

out under a Wild M3 dissecting microscope (Leica).

6 . Using the X cut into the sclera as a guide the orbit of the eye is cut with fine 

scissors to within several millimetres of the optic nerve (figure 2 .1 ).

7. The eyeball was then flattened into a Maltese cross using the flaps of sclera, 

which were pinned to the wax using fine dissection pins.

8 . The retina was carefully dissected away from the rest of the eye with special care 

being taken to remove excess vitreous and the zonular ligaments, which could 

prevent the retina from fully opening out.

9. The dorsal portion of the retina was marked by cutting a small notch in the outer 

edge of the periphery (figure 2 .1 ).

10. The optic nerve was cut after the entire retina has been detached, micro scissors 

were carefully placed under the retina and the optic nerve severed taking care not 

to damage the vasculature of the optic disk.

11. The detached retina was floated out into the PBS, any excess vitreous or debris 

can be carefully removed at this point using fine paintbrushes. The retina is then 

carefully manoeuvred onto a glass slide and flattened with the outer retina 

uppermost.

12. A square of very fine filter paper (Watmann, no. 50) was placed on top of the 

retina and the slide carefully blotted. The retina adhered slightly to the filter paper 

allowing it to be lifted off.

13. The retina (with filter paper backing) was placed in a glass vial (big enough for 

the paper to lie flat) with 4% paraformaldehyde and fixed once more for 1 hour.

14. The retinae were washed three times with PBS to remove the fixative.

15. The retinae were placed in a Petri dish full of PBS and the filter paper backing 

was carefully removed The retinae were then ready for staining.
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Fig 2.1 Flat-mount dissection showing a retina with four equal cuts made from the

periphery into the mid to central retina. A notch was cut into the peripheral dorsal 

retina where the suture had been attached and the four cuts placed to allow 

designation of the four quadrants dorsal, nasal, ventral and temporal retina.

2.5 NADPH-Diaphorase Staining Of The Retina

The protocol used in this study utilised a histochemical reaction between the enzyme 

NADPH-diaphorase (Sigma, D-1630) and NADPH tetrasodium (Sigma,) salt to visualize 

the vascular network. Some retinae were stained with an antibody raised against high 

molecular weight neurofilaments (RT97; generous gift of Dr. Roger Morris, KCL, Guy’s 

Hospital Campus, London).

Antibody pre-staining

1. RT97 antibody was prepared at a dilution of 1:1000 in PBS with 1% triton X 100 

(EM Science) detergent (to allow the antibody to penetrate the retina) and allowed 

to mix for 30 minutes.

2 . 1 ml of antibody was added to each retina in a flat-bottomed glass vial and they 

were incubated at 4°C overnight (agitated if possible).

3. The secondary antibody, fluorescein-isothiocyanate (FITC) conjugated goat anti

mouse immunoglobulin (IgG) (Sigma) was prepared at a concentration of 1:50 in 

PBS taking care not to expose the antibody to light.

4. The antibody mixture was carefully drained off and the retinae washed 3x with 

PBS.

5. The retinae were incubated at room temperature with the secondary antibody for 1 

hour, after which they were washed 3x as before.
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6 . A mixture of 0.02% NADPH-tetrasodium salt, and 0.04% nitroblue tetrazolium 

in PBS with 3% triton X-100 was prepared and mixed until it turned a purple 

colour (30 minutes).

7. The retinae were agitated in this solution for 90 minutes at 37°C until the vascular 

network could be clearly seen to the naked eye.

8 . The antibody mixture was carefully drained off and the retinae washed 3x with 

PBS.

9. The retinae were floated out in PBS and carefully mounted on microscope slides 

using 50:50 glycerol: PBS and sealing the coverslips with nail varnish.

10. The slides were placed in a fridge until set and stored in slide boxes at 4°C.

2.6 Pigment Foci Quantification

The vascular complexes were easily visualized by the associated pigment deposition that 

occurred due to the pigment epithelium migrating onto blood vessels where the retina had 

lost photoreceptors completely. Flat-mounts were counted manually using a DMR 

research Microscope (Leica) utilising lOx objective with a 2.5x photomultiplier with a 

manual clicker counter.

The following criteria were used to quantify the VCs.

1. All distinct areas of pigment deposition in association with vascular damage 

(VCs) were counted manually including small peripheral single cell events, which 

we believe were indicative of precursors to vascular complexes.

2. Each retina was counted three times and the counts averaged. If the counts varied 

by more than 1 0 % they were recounted.

3. Finally the counts for each group of retinae were averaged and standard errors of 

the mean (SEM) calculated using Microsoft Excel to show the data graphically 

followed by the F-test to give p values.
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Intravitreal Injection Of Pharmaceutical Agents

A 30-gauge steel needle (Beckman Dickson) was glued into a fine glass capillary 

tube and attached to a 10 pi glass micro-syringe (Hamilton) Leur fitting using 

Tygon micro tubing (Masterflex, Cole-Palmer).

Animals were anaesthetized with tribromoethanol (Avertain 20 mg/lOOg animal 

weight, Sigma); their heads immobilized using a custom-made mouth bar to assist 

in positioning of the head.

The left eye was chosen for pharmaceutical intervention (see figure 3.1.9) and the 

right eye was not treated in any way so that it could serve as an in animal control. 

The injection was placed just behind the ciliary body taking care to angle the 

needle so that the injection site would be self-sealing. Care was taken to avoid any 

large blood vessels in the area.

The cornea was punctured with a 24-gauge steel needle (Beckton Dickson) to 

relieve the ocular pressure when the pharmaceutical agent was delivered and 

reduce reflux of said agent. Without puncturing the cornea the ocular pressure 

would result in reflux of a considerable amount of the preparation, slow delivery 

after relieving pressure resulted in minimal if any reflux.

2  pi of pharmaceutical agent was delivered to the dorsal portion of the posterior 

chamber of the eye taking care not to damage the lens in any way (as damage to 

the lens capsule results in release of growth factors and potential scarring).

The animals were allowed to recover normally and the procedure repeated after 

two weeks (allowing plenty of time for the injection site micro injury to heal).

At 16 weeks of age the animals were harvested and perfused, the retinae were flat- 

mounted, stained and counted as detailed earlier.



2.8 Avertain Or Tribromoethanol Anaesthesia

1. A solution comprising of 4.67g of 2,2,2 tribromoethanol (Sigma) and 3.3ml of 100% 

ethanol was made up and sonicated until dissolved, should turn a light brown colour.

2. 250 ml of 70°C saline were added and mixed well.

3. The final solution was stored at room temp covered in foil.

2.9 Image Analysis

Originally the image analysis setup purchased from Scientific Imaging Management, 

comprised of several components, a research microscope (Leica DMRB) fitted with a 0.1 

pm stepping stage (Prior H28) and a low light CCD Camera (Hamamatsu C5985). The 

image analysis comprised of a computer workstation (AST) with a frame grabber (data 

translation DT3155) running PC Image (Foster Finlay Associates) and Metamorph 3 

(Universal Imaging Corp.). This system had been used to capture dark field fluorescent 

flat-mount images of neurofilaments and ganglion cells but unfortunately proved 

inadequate for transmitted light capture due to errors in capturing images and the manner 

in which they were assembled to produce large composite images. This involved 

producing three stages of 13x5 frames montaged then the three composite images 

assembled to produce a final 13x15 frame composite montage.

The system was upgraded to a custom built workstation running Image Pro Plus 3.5 

(Media Cybernetics) on a more advanced frame grabber (Snapper 8 , Datacell Ltd, UK), 

which enabled 13x15 frame montages of the entire flat-mounted retina to be produced. 

Images produced by this second generation system were 8 -bit greyscale, which for this 

study did not exhibit enough contrast between areas of vascular damage and background 

debris/pigment to allow automated counting. Manual counting had to be used to allow 

focusing changes and to discern colour definition of associated pigment and whether 

vascular bundles were abnormal. Computer technology did not allow totally automated 

counting in this system due to the inability of the computer to discern patterns of vascular 

complexes or to choose which vascular plexus to focus on.
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2.10 PEDF Preparation

PEDF was obtained from Pfizer Pic (originally sourced from Joyce Tombrand-Tink) 

along with an anti-PEDF rabbit polyclonal antibody. The PEDF was stored in Eppendorfs 

containing 10 mg PEDF in 1 ml PBS. As there were no certificates of purity with this 

delivery, prior processing was required to check purity and finally to reduce the volume 

down to 1 pg in 2 pi PBS. To reduce the volume down to a usable level, lyophilisation 

was attempted initially. Lyophilisation proved unsatisfactory as it resulted in dry PEDF 

mixed in with excessive salt residue.

Eventually the following method of reducing the volume was utilised: disposable PD-10 

columns (Amersham Pharmacia) containing Sephadex G-25M were used to separate the 

buffer from the PEDF under centrifugation, which proved satisfactory.

1. 3 1 ml Eppendorfs were decanted into the upper chamber of 1 PD-10 column and 

the column spun at 1 0 ,0 0 0 g for 2  hours until the volume in the upper chamber was 

reduced to roughly 50 pi (at least 3 PD-lOs were used at any one time).

2. The residual PEDF solution was decanted out of the upper chamber into a locking 

Eppendorf, sealed with parafilm (SPI supplies) and stored at 4°C for short-term 

use.

3. 5 pi of concentrated PEDF was taken to check protein concentration

2.11 PEDF Protein Assay

In order to deliver a dose of 1 pg in 2 pi of PBS the concentration of the PEDF sample 

had to be determined to allow accurate dilution

To determine PEDF levels in sample after concentrating in PD-10 columns, the 

DC protein microplate assay was used (Biorad)

1. Preparation of working reagent. 20 pi of reagent S is added to each ml of reagent 

A (working reagent).

2. 3-5 dilutions of a protein standard (BSA) containing from 0.2 mg/ml to 1.5 mg/ml 

proteins were prepared; a standard curve was produced for each run of the assay.

3. 5 pi of standards and samples were added to a sterile 96 well plate.

4. 25 pi of reagent A (alkaline copper tartarate soln.) was added to each test tube.

5. 200 pi of reagent B (dilute Folin reagent) was added to each test tube and 

immediately agitated.

After 15 minutes absorbencies were read at 750 nm
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In order to check the purity of the PEDF sample a western blot was performed using the 

anti-PEDF antibody to detect the protein from a SDS-page gel.

2.12 SDS-PAGE And Western Blot Of PEDF Sample

2.12.1 SDS-PAGE Of PEDF Samples

Equipment and reagents

Mini-slab gel electrophoresis apparatus, giving 0.5-1.0 mm thick mini-gels 

(Biorad Mini Protean II system)

4 x lower gel buffer 1.5 M Tris-HCl (Sigma) pH 8 .8 , 0.4% SDS)

4 x upper gel buffer 0.5 M Tris-HCl pH 6 .8 , 0.4% SDS)

30% acrylamide gel mixture (30% acrylamide (Sigma) and 0.8% N,N'- 

methylenebisacrylamide (Sigma)

10% ammonium persulphate (Sigma)

TEMED (N,N,N',N'-tetramethylethylenediamine) (Sigma)

2-methyl-1-propanol (alternatively, water-saturated 2-butanol) (Sigma) 

lOx electrophoresis buffer stock (0.25 M Tris base, 1.92 M glycine).

Method

1. Two gel plates ( 8 x 1 0  cm) were assembled separated by 1 mm spacers.

2. Separating gel mixture of the correct concentration was made up as shown below. 

Stacking gel mixture

Final % acrylamide 4 6 8 1 0 12 15

distilled water (ml) 3.0 2.75 2.42 2.09 1.75 1.25

4 x lower buffer (ml) 0 1.25 1.25 1.25 1.25 1.25

4 x upper buffer (ml) 1.25 0 0 0 0 0

30% acrylamide gel (ml) 0.7 1 .0 0 1.33 1 .6 6 2 .0 0 2.50

3. To start polymerization, 11 ml TEMED and 30 ml 10% ammonium persulphate 

were added to the separating gel mixture, briefly swirled and then transferred to 

the gap between the glass plates using a Pasteur pipette, the meniscus should be 

approximately 1 .5-2.0 cm from the top.

4. 0.5 ml of 2-methyl-1-propanol was layered on top of the acrylamide solution, and 

left to polymerize at room temperature for at least 30 min. The polymerized 

separating gel could be stored for a few hours at room temperature, or weeks at 4 

°C if sealed in an airtight bag, before adding the stacking gel. Once the stacking
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gel had been poured, however, the gel had to be run within 3 hours. The 2-methyl- 

1-propanol was washed out with distilled water and then any remaining drops of 

water were removed with tissue paper.

5. 11 ml TEMED and 30 ml 10% ammonium persulphate were added to the stacking 

gel mixture (see step 2  above), mixed and transferred to between the glass plates 

using a Pasteur pipette. A “well-forming” comb was placed between the glass 

plates taking care to avoid bubbles under the comb and left at room temperature 

for at least 2 0  min to polymerize.

6 . The comb was carefully removed, then the gel was placed in an electrophoresis 

tank containing lx electrophoresis buffer (made by diluting lOx electrophoresis 

buffer stock to lx  with distilled water, then adding SDS to a final concentration of

0.1 %). sample wells were flushed with electrophoresis buffer using a Pasteur 

pipette.

Running Of SDS-Page

Equipment and reagents

Power supply and apparatus for SDS-PAGE of proteins 

Vacuum gel drier

prestained non-radioactive markers (Rainbow markers; Amersham)

2x SDS sample buffer (10% glycerol, 5% 2-mercaptoethanol, 3% SDS, 62.5 

mM Tris-HCl pH 6 .8 , 0.2% Bromophenol Blue). Store in aliquots at -20 °C 

Fixing solution (25% 2-propanol, 10% acetic acid).

Method

1. The samples were transferred into 1.5 ml microcentrifuge tubes and combined 

with an equal volume of 2x SDS sample buffer. In order to estimate the size of 

any cross linked protein resolved in the gel, an additional sample containing 

prestained non-radioactive markers in SDS sample buffer has to be prepared.

2. Each microcentrifuge tube had its lid pierced with a needle, before the samples 

were placed in a boiling water bath for 5 min to denature the protein

3. The samples were loaded onto the SDS-polyacrylamide gel and 

electrophoresised at an appropriate voltage (check the manufacturer’s 

guidelines; usually 100 V) until the sample reached the interface with the 

separating gel, then at 160 V until the dye reaches bottom of the gel. The total 

running time for a typical mini-gel was 1.5 h.
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4. The gel was removed from the glass plates and fixed by incubating twice for 10

minutes in fixing solution at room temperature with gentle agitation.

5. The gel was placed on a piece of Watmann 3M paper and dried on a gel drier.

2.12.2 Western Blot Of PEDF Sample

Equipment and reagents

Blocking buffer: 10 g gelatin, 8.77 g NaCl, 6.06 g Tris base in deionised, distilled 

water (heat until dissolved, adjust the pH to pH 7.4 with HC1, make up to 1 litre 

with double distilled (dd) H2O)

Rinsing buffer: 2.5 g gelatin, 1.86 g EDTA, 8.77 g NaCl, 6.06 g Tris base, 

dissolved in deionised distilled water (add 50 ml normal goat serum, adjust the pH 

to 7.4, and bring the volume to 1 litre with distilled water)

Primary rabbit polyclonal antibody to PEDF (ab. 2520, Pfizer Pic)

Secondary antibody conjugated to peroxidase (affinity-purified peroxidase- 

labelled goat anti-rabbit IgG (0.1 mg/ml; Dako.))

Diaminobenzidine-hydrogen peroxide solution: 50 mg 3,3'-diaminobenzidine 

(Sigma.) in 100 ml of 50 mM Tris-HCl buffer, pH 7.5, containing 25ml of 30% 

hydrogen peroxide (filtered)

Coomassie blue staining solution: 200 mg Coomassie Brilliant Blue(Sigma), 40 

ml methanol, 10 ml glacial acetic acid(EM Science), 50 ml deionised distilled 

water (filter)

Destaining solution: 2 ml glacial acetic acid, 90 ml methanol, 8  ml deionised 

distilled water 

Plastic bags and bag sealer 

50 mM Tris-HCl, pH 7.5 

Method

1. The membrane (blot) was soaked in a tray containing 500 ml of the blocking

buffer for 2  h at room temperature with gentle agitation.

2. The membrane was rinsed in rinsing buffer three times at room temperature for 10

minutes with gentle agitation.

3. The blocked membrane was incubated with 40 ml of anti-PEDF (ab 2520, rabbit

polyclonal used at 1 : 2 0 0 0  dil.) primary antibody in a sealed plastic box at room 

temperature for 2  hours on a shaker.
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4. The membrane was rinsed once more in rinsing buffer three times at room 

temperature for 1 0  minutes with gentle agitation.

5. The membrane was incubated with 40 ml of the anti-rabbit peroxidase conjugate 

(diluted at 1 :2 0 0  with rinsing buffer) for 2  hours at room temperature.

6 . The membrane was rinsed in rinsing buffer three times at room temperature for 10 

minutes with gentle agitation followed by three rinses in 50 mM Tris-HCl buffer, 

pH 7.5.

7. For visualization of the antigen-antibody complexes, the membrane was 

incubated for 3-5 min in 100 ml of diaminobenzidine-hydrogen peroxide solution

8 . The membrane was rinsed in deionised distilled water, and then air-dried.

9. Visualization of the protein size markers was accomplished by staining the 

membrane in Coomassie blue (0.2%) staining solution for 2 min, then destaining 

the membrane in the destaining solution followed by rinsing in deionised distilled 

water and finally drying between filter papers.

2.13 Preparation Of Immunocytochemistry Samples

1. Rats were cardially perfused with PBS to remove blood cells but not fixed.

2. Their eyes were dissected out carefully and placed in plastic moulds filled with 

OCT with the dorsal region clearly marked for orientation.

3. The moulds were placed on steel blocks partially submerged in liquid nitrogen to 

snap freeze the samples.

4. Samples were stored at -70°C prior to cutting.

5. Samples were cut at 5 pm sections with 3 sections/slide using a cryostat (Leica 

3050CM) and stored at -70°C until needed.

2.14 Immunostaining - Using ABC Kit

1. Samples were removed from the freezer and allowed to warm to room 

temperature and placed in a humidified slide chamber.

2. A solution of 1% dried milk powder and distilled water was applied to the 

sections to block non-specific epitopes.

3. Sections were washed lightly in PBS.
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4. 250 pi of primary antibody was applied to each section; a Dako hydrophobic pen 

was sometimes used to stop the solution spreading across the slide, which would 

result in sections drying.

5. Sections were incubated overnight at 4°C.

6 . Appropriate secondary was antibody prepared; sections were washed 3x in PBS.

7. ABC solution was prepared according to Promega instructions, (40 pi soln. A, 40 

pi soln. B in 2.5 mis PBS, left to stand 30 min.

8 . Sections were covered with 250 pi ABC solution for 30 min.

9. Sections were washed 3x in PBS.

10. Sections were placed in filtered 1% nickel chloride (EM Science) in distilled 

water for 5 min.

11. The sections were transferred directly to Filtered DAB soln. (50Mg/100ml) in 

DAB buffer activated with lOpl of hydrogen peroxide and incubated for 3 min 

checking colour change.

12. The sections were washed 3x in PBS.

13. The sections were counter-stained (Cresol violet 0.5%) as required, dehydrated 

and mounted with DPX (Fluka Chemicals) mounting media.

Negative controls consisting of slides without the primary antibody and separate slides 

missing the secondary antibody were used with each staining run to determine if non

specific staining was occurring. Positive controls of either rat skin (for extracellular 

binding integrins) or rat spleen (for cellular binding integrins) were also run to prove that 

the antibodies did work correctly

2.15 Electron Microscopy

1. The eyes were perfused with EM fixative.

2. The Iris and ciliary body were dissected out allowing access to the lens.

3. The lens was removed.

4. A notch was cut into the nasal retina to allow positioning of eyeball for cutting 

dorsal-ventrally.

5. The eyes were post fixed in 1% Osmium tetroxide (Sigma) for 1 hour.

6 . The eyes were dehydrated through successive concentrations of ethanol (50%, 

75%, 90%, 95%, 100%X2).
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7. The eyes were immersed in two washes of 100% acetone in alcohol for ten 

minutes, then 50% TAAB embedding resin (TAAB laboratories, Aldermaston, 

UK) in acetone for ten mins then overnight in 75% resin in acetone agitated.

8 . The eyes were then transferred into 100% resin for 1 hour, agitated and then cured 

overnight in an oven at 65 °C.

9. A bright light (LED torch) was used to visualise the notch cut into the nasal 

portion of the, allowing orientation for dorsal-ventral cutting

10. Semi-thin 500 nm sections were cut on an ultramicrotome (Leica Ultracut) and 

stained with 1% toluidine blue in 1% borate buffer (sigma) to determine areas of 

interest.

11. Ultra-thin 50 nm sections were cut (using the same ultramicrotome) of targeted 

areas placed on copper grids and contrasted using uranyl acetate (EM Science) 

and lead citrate (EM Science).

12. The grids were viewed on a transmission electron microscope (Jeol 1010 in 

London, Hitachi H600 in Utah).

2.16 The “VC Assay” Image Analysis

1. The stepping stage (Prior H28, Prior scientific) was initiated and calibrated by 

maximal movement to allow the computer to calculate distances. Care was 

taken to ensure that all optics were moved out of the way of stage travel so 

that they would not be damaged

2. The slide was placed on the stepping stage and the stage driven to the east 

edge (north being away from operator) of the retina and its position set to 

origin. The stage was then driven to the furthest southern edge and then driven 

east until the distance from origin becomes 0. At this point the stage would be 

ready to commence scanning the entire retina so the set origin function would 

be used again to record the start point.

3. Full retinal map was assembled using Image pro Plus 4.5 (Media Cybernetics) 

using the acquire function with a 9x12 grid capturing with a Digital Insight 

(diagnostic Instruments) camera at 1400 x 1000 pixels using lOx objective 

with 2.5x photomultiplier. After calibration this worked out as 9805.466 pm x 

9338.52 pm for a total area of 9.1568xl07 pm2 of which a typical RCS rat 

retina at 4 months takes up approx. 4.5x107 pm2.
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4. The retinal map has a scale bar for 1000 pm overlaid using the measure- 

calibration-select spatial command.

5. Using the process-Trace objects command (pen Size 8 ) areas of interest were 

traced around individual vascular complexes. Care was taken to consistently 

draw the full extent of the vascular complex, with the area to be measured 

being inside the trace, not including the trace line itself.

6 . A trace image was generated of all the AOI using the generate trace image 

command within trace objects; this produced a black and white image of the 

AOI without the background image.

7. The trace line was then thickened to allow the program to accurately measure 

the area within each AOI using the Process-Filters-Morphological-Erode 

command, set to 3x3 cross on two passes. This eroded the edges of the bright 

objects and thickened the dark objects resulting in the trace line being 

thickened; this slightly eroded the AOI within but was necessary and 

consistent with all counts.

8 . The total area of the AOI were calculated using the measure-count/size 

function set to automatically count bright objects and ignore any bright objects 

in contact with the image edges. This meant that only the internal area of the 

traced AOI was counted.

9. The data were then transferred to a spreadsheet (Excel, Microsoft corp., Wa) 

using the direct data exchange (DDE to Excel) command within the Measure 

function window.

10. The area of the entire retina was counted by tracing a single AOI around the 

edge of the entire retina and following steps 6-9 above.

2.17 Semi-Thin Cutting Of Flat-Mounted Retinae

1. Coverslips were carefully removed from flat-mounted retinae under PBS.

2. The retinae were carefully detached from the slide using fine paintbrushes and 

transferred to a wide sample vial containing PBS.

3. The retinae were washed 2 more times in PBS to remove glycerol.

4. The retinae were dehydrated through successive alcohols, ten minutes for each 

concentration, 50%, 70%, 90%, 95%, 100%, and 100%.
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5. The retinae were immersed in two washes of 100% Acetone in alcohol for ten 

minutes then 50% resin in acetone for ten minutes then overnight in 75% resin in 

acetone agitated.

6 . The retinae were then transferred into 100% resin for 1 hour agitated.

7. The retinae were placed flat, ganglion cell side up between two sheets of plastic 

with mild weights on top to keep them flat and then cured overnight in an oven at 

65°C.

8 . The retinae were carefully peeled off their plastic backing and excess plastic cut 

away. The retinae were then trimmed with the nasal and temporal lobes removed, 

the remaining retina was divided into three separate zones of equal length, dorsal, 

central and ventral retina.

9. These three parts were stacked onto of each other with ventral on the bottom and 

dorsal on top, then placed in EM moulds with more resin and cured overnight at 

65°C in an oven

10. Sections were cut from the retinae at 1 pm on a microtome (Reichart Jung 2020) 

or ultramicrotome (Sorval MT 5000) and stained with 1% toluidine blue in 1% 

borate buffer.

2.18 Sub-retinal Transplantation

1 . Dystrophic RCS rats at 22-24 days of age (post-weaning) were anaesthetised 

as in section 2 .8  and positioned under a surgical microscope to allow full 

access to the target eye. The head was immobilised with a custom-made 

mouth bar clamped gently over the bridge of the nose.

2. A drop of Tropicamide ophthalmic solution 1% (Bausch & Lomb, Tampa, FL) 

was given to each eye to dilate the pupil allowing clear visualisation of the 

retina.

3. A rubber o-ring of diameter 1 cm was placed over the eye and Hypromellose 

HPMC 2% eye drops (Moorfields Eye Hospital) used to fill the o-ring 

allowing clear visualisation into the eye without drying out the cornea.

4. Slight pressure was applied to the sides to proptose the eye and a 4-0 silk 

suture was carefully tied around the eye to stop it from retracting back into the 

ocular orb.
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5. Using the tip of a 24-gauge disposable needle (Beckman Dickson), a hole was 

scratched through the sclera and the choroid allowing access to the sub retinal 

space

6. A fire blunted ultra-fine glass pipette was prepared attached to a 10 pi 

micropipette.

7. A 30-gauge disposable needle was used to puncture the cornea allowing relief 

of pressure in the eye during transplant insertion.

8. The micropipette was used to administer 2 pi of cell suspension (105 cells 

approx) in DMEM F12 media subretinally into the eye. During insertion, care 

was taken to introduce the pipette at an angle to allow the layers of the sclera 

and choroid to seal during retraction.

9. Then the glass pipette was retracted with great care taken to reduce reflux of 

transplant suspension. The retina could then be viewed, checking for retinal 

puncture. A successful transplant would result in a localised detachment or 

bleb on the inside of the retina.

2.19 Human ARPE19 Cell Culture

1. Human ARPE19 cells (CRL-2302) were obtained from the American Type 

Culture Collection (Manasses, Va)

2. Cells were quickly defrosted from storage and transferred into T-10 flasks 

containing DMEM/F12 media with 10% Foetal Calf Serum (FCS)

3. Cells were grown in T-10 flask s at 37°C in an incubator with 5% CO2 until 

confluent.

4. Cells were harvested using Trypsin 1% with ETDA, resuspended in 

DMEM/F12 with 10% FCS to inactivate the trypsin.

5. Cell suspension is centrifuged at lOOOrpm for 8 minutes and resuspended in 

DMEM/F12 without serum, and placed in an ice bath until transplantation.

6. Trypan blue cell viability assays were performed after each transplant session 

to check cell viability

2.20 Data Analysis & Statistics

As the sample numbers in these experiments were not even (due to the RCS litter size
being the main constraint on experimental design) paired t-tests were used to determine
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the p-values between two sets of data to show significance. This used MS Excel to 
determine if the variance in the data sets were equal using the F-Test. This was followed 
by paired t-tests for either equal or unequal variance as determined by the f-test.

All graphs were assembled using MS Excel and the error bars represent standard errors, 
data tables below the graphs show the data and number of retinas used.
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3.0 Experiments For “A Study Of The Retinal Vascular 

Pathology In The RCS Rat...”

3.0 Introduction
The results from this study are presented as three chapters.

Key points

1. Rate of development of vascular complexes (DVCs) associated with

photoreceptor loss in the RCS rat. This involved NADPH diaphorase

(NADPH-d) staining and image analysis of second order vascular events.

• NADPH-d staining was used to visualise the entire vascular network of the 

retina as well as pigmented cells, allowing evaluation of the relationship 

between the RPE and the vascular pathology.

• Baseline studies exhibited a quantifiable increase in VCs over time 

allowing the procedure to be used as an assay (VC assay).

• Manual image analysis of retinae was used to quantify either number of 

vascular complexes or absolute area of vascular complexes.

• Image capture technology was developed, allowing more sophisticated 

quantification of vascular complexes.

2. Modification of rate of retinal degeneration using PEDF and echistatin

• PEDF administered at three months slowed the rate of DVCs.

• Echistatin administered at three months increased the rate of DVCs.

• Echistatin did not cause DVCs in normal Long Evans rats.

3. Modification of rate of DVCs using human RPE cell line transplantation

• Early sub-retinal transplantation of human RPE cells dramatically slowed 

down the rate of DVCs.

• Transplantation at different time-points resulted in different effects on 

vascular pathology, with late transplantation increasing the DVCs.

• The transplant affected large areas of the retina, not just the region where 

the transplanted cells were localised.
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3.1 Calculation Of Rate Of Development Of Vascular Complexes 

Associated With Photoreceptor Loss In The RCS Rat

3.1.1 RCS Rat: Development Of Vascular Complexes

The aim of this part of the study was to investigate the progression of the naturally 

occurring vascular pathology of RCS rat retinae and determine whether quantification 

was feasible. The initial loss of rod photoreceptors caused by RPE dysfunction was 

followed by secondary vascular abnormalities and eventually damage to the retinal 

ganglion cell layer. RPE cells then migrated off Bruch’s membrane into the retina and 

associated with abnormal vascular formations. These VCs take several forms from the 

typical VC found in the mid to central retina where pigmented cells have attached 

themselves onto the venous vasculature and caused contortions of the vessels to much 

smaller single cells exhibiting RPE pigment commonly found on the peripheral retina 

attached to the vasculature (where there should be no pigmented cells at all). Also there 

were in advanced cases huge VCs that had merged, forming large extended areas where 

the venous vascular system and capillary bed (later the arterial system) had totally broken 

down. This was usually found at later time-points in the RCS pathology after total 

photoreceptor loss had occurred. The early work in this study counted pigment foci, 

which were the pigmented cells that had migrated into the retina as the retinal maps were 

initially only available as greyscale images

While other studies have referred to the vascular complexes as neovascular formations 

(Caldwell et al., 1989), there is little evidence to support the implication of newly formed 

vessels as opposed to contortion of existing vessels. Hence the more conservative 

terminology above. There may well have been neovascularisation in this model but this 

study did not address that facet of the RCS pathology. The development of these VCs 

could be clearly visualised by flat-mounting the retina at different time-points and 

staining both the blood vessels and the neurofilaments of the RGC layer.

Second order events initiated by RPE cells migrating off Bruch’s membrane onto the 

deep vascular plexus of the retina, were a consequence of overall thinning of the retina 

due to photoreceptor loss. Migrating RPE cells constricted vessels leading to loss of 

integrity in the blood/retinal barrier. These pigmented cells could be clearly seen in the 

RCS rat strain used here (Villegas-Perez et al., 1998). Many previous studies have failed
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to show the close interaction of RPE cells (Caldwell et al., 1989; Seaton et al., 1994) and 

the vascular defects as they have utilised albino strains of RCS rats. Selective staining of 

the vasculature using NADPH-diaphorase made it possible to examine both RPE cells 

and vascular anomalies together (Wang et al., 2003). The optic axon bundles were 

visualised using RT 97; an antibody to large molecular weight neurofilaments.

3.1.2 Experiments

A baseline experiment was set up using RCS rats at 2, 3, 4 and 5 months of age in order 

to investigate the development of vascular complexes. The (Villegas-Perez et al., 

1998)time-points were chosen based on preliminary experiments on a group on animals 

of different time-points. These showed that the first evidence of vascular pathology 

occurred at three months of age and by six months, the pattern of the vascular pathology 

was too complex for accurate pigment foci quantification. At least four animals were used 

for each time-point (minimum of 8 eyes).

The following techniques were utilised:

Flat-mounting of RCS rat retinae followed by NADPH-d staining of the vasculature. 

Manual counting or image analysis of AOI counts followed by data analysis using 

Microsoft Excel to quantify the development of vascular complexes. RT 97 

Immunostaining of the same flat-mounted retinae was used to determine the onset of 

damage to the optic fibre layer.

3.1.3 Two Months Baseline

The NADPH-d staining method exhibited very clear staining of the vascular network 

throughout the retina as shown in figure 3.1.1; a composite picture of a RCS rat retina at 

two months of age. The blood vessels show up blue with very little if any background 

staining. Whatever changes there may be going on at the cellular level within the retina 

there were no signs of vascular pathology at this time-point as shown in figure 3.1.1. The 

vascular network was undamaged and identical to that of a congenic (non-dystrophic) 

RCS rat seen in figure 3.1.2.
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Figure 3.1.1 Dystrophic RCS retina at 2 months of age, The dorsal portion of the 
retina is uppermost in the picture; this convention was used throughout this study.
Note the normal arrangement of darker staining arteries radiating out from the optic 
disc interspaced with the main draining veins. The small darkly staining cells scattered 
throughout the retina (see arrows in insert) are a subset of amacrine cells.

The insert shows the normal vascular network just ventral to the optic disc.
Scale bar represents 1000 pm.
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Figure 3.1.2 Non-dystrophic RCS rat retinae at 4 months of age exhibiting a 
normal vascular network devoid of any vascular complexes, very similar to 
Figure 3.1.1. The retina has not stained as well as figure 3.1.1 and has more 
background, hence the darker red colouration to the retina.
Scale bar represents 1000 pm

84



Vessels were arranged radially from the optic disc with typically about five-six main 

arteries supplying blood to the retina interspaced with five-six main veins into which 

blood drains from the retina to the optic disc. These vessels branch continuously into 

smaller vessels until they form interconnecting capillary beds that cover the entire retina. 

Vessels branching from the main draining veins do so at angles of between 90 to 160 

degrees from the optic disc side of the vessel. Arteries and especially arterial branch 

points tend to stain darker under the NADPH-d method, possibly due to the greater blood 

pressure requiring more NO activity (Nagaoka et al., 2002). The retinal vascular network 

is normally separated into two main focal planes (or plexuses) with the superficial plexus 

located in the inner retina associated with arterial vessels and the deep plexus in the outer 

retina draining into the venous system via large vessels to the optic disc. For the purposes 

of this study all figures will focus on the deep venous plexus as vascular complexes are 

initiated there due to their physical location closer to the RPE layer. At no point in this 

study were vascular complexes seen on major arterial vessels (although at later advances 

stages this may well occur). There were no vascular complexes visible at the two month 

time-point; also there was no damage of any kind to the optic fibre layer when stained 

with RT 97.

3.1.4 Three Months Baseline

At three months of age the first pathological changes were visible in the vascular network 

of the retina. These changes comprised of pigmented cells migrating off Bruch’s 

membrane onto blood vessels in areas where photoreceptors had been lost (Wang et al., 

2003)). The RPE cells that migrated into the retina could be distinguished from RPE still 

attached to Bruch’s membrane as they were on the same focal plain as the deep vascular 

plexus within the retina, whereas debris was limited to the surface of retina. These cells 

did not exhibit any of the morphological characteristics of macrophages in the flat mounts 

(compared with later flatmounts with transplants such as figure 3.3.9 insert a).Vascular 

complexes were seen to develop initially in the mid-ventral to central regions of the retina 

then throughout the ventral retina and finally spreading out over the entire retina with 

age.
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Figure 3.1.3 Development of vascular complexes. Illustrating the sequence of 

development of vascular complexes from initial single pigmented cells (arrows in a) 

through more involved multiple RPE involvement with the first signs of deformed 

vascular network in b), note the abnormal looping of the blood vessels around the 

vascular complex (arrows in b). Advanced vascular complexes such as c) and d) were 

rarely found until after 3 months and showed extensive damage to the normal vascular 

network in association with migrated RPE. Scale bar represents 100 pm.

The vascular complexes were formed by the attachment of pigmented cells (most likely 

RPE) to the venous vasculature where they appear to constrict and interfere with the 

blood flow and possibly with oxygen transport to the cells of the inner retina.

At three months of age dystrophic retinae such as figure 3.1.4 displayed very small 

vascular complexes in the ventral retina. These vascular complexes were more advanced 

immediately ventral to the optic disc (50-100 pm across) as in insert 3.1.4a (arrows) 

where the pigmented cells had affected the angles of the branching vessels: those vessels 

surrounded by RPE also appeared distended. The mid retinal vascular complexes were 

less developed as shown by insert 3.1.4b) where individual pigmented cells had not 

caused significant vascular damage other than distending of the vessel walls in the 

immediate area. These vascular complexes were typically found on branches of a main 

ventral deep draining vein. This finding had been observed in previous studies(Wang et 

al., 2000) and may be an indication of early vascular complex formation. The optic fibre 

layer exhibited no visible damage with the RT 97 staining. The vascular complexes in 

each retina were counted manually using a research microscope (Leica DMR) at x25 

magnification as described in section 2.6. Vascular complex counts were very low, 

typically around 20 / retina but consistent.
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Figure 3.1.4 Dystrophic RCS retina at 3 months of age. The red discolouration was 
from the RPE layer not completely detaching during dissection and increasing 
background staining from the NADPH-d process. Insert a) shows new vascular 
complexes forming ventral to the optic disc with less developed complexes, 
characteristically smaller causing less vascular disruption shown further out in the 
mid-ventral retina in insert b). Scale bar represents 1000 pm
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3.1.5 Four Months Baseline

By four months vascular complexes could be found throughout the ventral retina. Figure 

3.1.5a shows an area of concentration immediately ventral to the optic disc with more 

vascular complexes scattered throughout the ventral retina. The vascular complexes in 

insert 3.1.5a have developed to the point where they have caused very serious disruption 

to the venous network in comparison with figure 3.1.4. Vessels can be seen branching in 

all directions from the vascular complexes, which range from 100-300 pm in size. It 

appears that new connections have been formed between vascular complexes or the 

network has become so distorted physically that the original pattern has been lost. The 

vessels that have been affected are often distended and stain darkly suggesting 

vasodilatory stress. It is clear that many pigmented cells have migrated into the area: 

whether this is due to patchy photoreceptor loss or a more general thinning of the 

photoreceptor layer in the vicinity of blood vessels is unknown but the damage has been 

compounded by vessels being drawn into the area by physical force as the other vessels 

become more contorted.

The pigmented cells in the mid-ventral retina were by this time associated with clearly 

distorted vascular bundles, which in advanced cases such as in insert 3.1.5b extended out 

along the vessel for 200-400 pm where they obscured the underlying vessel.

The peripheral retina has started to show the appearance of small single pigmented cells 

strung along the deep draining vessels as shown in insert 3.1.5c. There were no visible 

abnormalities in the optic fibre layer. Pigment foci counts were more variable between 

animals at this time point averaging 40/ retina.
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Figure 3.1.5 Dystrophic RCS retina at 4 months of age. The continued development of 
the vascular complexes was clearly evident with scattered vascular complexes found 
from the optic disc out to the periphery of the ventral retina. Insert a) illustrate how 
advanced the VCs have become ventral to the optic disc in contrast to insert 3.1.4a. 
Insert b) shows how mid-ventral VCs have developed into much more extensive areas 
of damage. Insert C shows how more small single pigmented cell VCs spread further 
out from the ventral retina as time progresses. The Scale bar represents 1000 pm.
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3.1.6 Five Months Baseline

At five months of age (figure 3.1.6) individual vascular complexes had enlarged such 

that they were starting to fuse together in the region immediately ventral to the optic disc 

as shown by 3.1.6a making interpretation of manual quantification difficult. The vascular 

complexes had also started to spread into the temporal and nasal retinal regions as well as 

immediately dorsal to the optic disc. The area around the optic disc was much more 

densely populated than at previous time-points. Continued development of vascular 

complexes occurs near the periphery of the retina such as in 3.1.6b. The pigment foci 

counts were higher at an average of 57 but at later time-points manual counting of the 

vascular complexes would become less accurate as a means of quantification and 

alternative methods would need to be employed.

The first evidence of damage to the optic fibre layer was in evidence at this time with 

slight displacement of the ganglion cell axon bundles being visible in two areas (different 

retinas) where large vascular complexes were also present.

The second order RGC events were caused by the deformation of the vascular network 

eventually constricting optic axons resulting in eventual death of the RGCs. In order to 

visualise this process the NADPH-d reaction was utilised to show up the vascular 

network within the retina and immunofluorescence of the neurofilaments using RT 97 

antibody staining of the same flat-mounted retina was used to show damage to the 

neurofilament layer. Figure 3.1.7a clearly shows RT97 stained neurofilaments being 

constricted by a blood vessel (white arrow) at 5 months of age with a picture (figure 

3.1.7b) reproduced from Dr Jean Lawrence’s work (Villegas-Perez et al., 1998) showing 

a cross-sectional view of a nerve fibre stained with RT 97 visualised with DAB being 

pulled deep into the inner retina by a blood vessel (arrow).
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Figure 3.1.6 Dystrophic RCS retina at 5 months of age. The vascular complexes cover 
the area immediately ventral to the optic disc as shown in insert a) where the VCs have 
started to form a large area of interconnected VCs which will seriously disrupt blood 
flow in the ventral retina. Insert b) shows how the VCs have developed out in the 
peripheral retina. This time-point represents the limit of accurate manual counting of 
vascular complexes due to the merging of VCs especially near the optic disk. The light 
blue non-vascular staining pattern in the dorsal retina is due to pigment from the 
NADPH-d stain (blue formazan salt) adhering to residual vitreous.
Scale bar represents 1000 pm.
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Fig 3.1.7

Figure 3.1.7 Damage to optic axons in the RGC layer caused by blood vessels 

constricting axons. White arrows in 3.1.7a point to areas where optic axons on a flat- 

mounted five month old dystrophic RCS retina were displaced by blood vessels. Figure. 

3.1.7b shows a cross-sectional view where a blood vessel has pulled an optic axon 

(stained black) deep into the retina, there is a blood vessel in the centre of the loop (black 

arrow) of optic axon. Both pictures use the RT 97 ab at 1:1000 dilutions. Scale bar in A 

represents 200 pm , Scale bar in B represents 100 pm
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3.1.7 Summary Of Baseline

The development of the vascular complexes over time in the dystrophic RCS rat 

progressed in a steady manner and manual counts could be plotted as shown in fig 3.1.8. 

A very clear relationship between the number of vascular complexes and time could be 

seen in the chart below. The vascular complexes were seen to spread out from an 

epicentre slightly ventral to the optic disc, which spreads into the ventral retina before the 

leading edges spread into nasal and temporal and finally dorsal retina.
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Figure 3.1.8 Baseline pigment foci count 

Data Table

Time point Average Std Error

2 months 0 0

3 months 23..92 2.72

4 months 39..67 2.82

5 months 56.63 2.88

Significance

P-values 2 months 3 months 4 months 5 months
2 months
3 months 0.00038 4.80E-07
4 months 0.00038 0.00047
5 months 4.80E-07 0.00047

The data above showed that VC development progressed in a manner that lent itself to 

quantification. Some retrospective retinas were added from later studies such as the

# retinas
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injection protocol exp (Figure 3.2.5) This experiment opened up the possibility of using 

the rate of development of vascular complexes as an assay to test out pharmaceutical 

agents and other interventional approaches for their effectiveness at preventing the 

appearance of second order vascular events.Each of the time points showed significant 

differences from over time From the data it was decided that 3 months would be the 

optimum time to commence pharmaceutical intervention, followed by flat-mounting the 

retinas at 4 months of age. This would allow sufficient time scale for the effects of the 

compound to be seen on the development of the vascular complexes and also sufficient 

time for inflammatory reactions or any other untoward effects to become noticeable. For 

pigment foci counts between 3.5 and 4 months of age would be the optimum timeframe 

for quantification but with an area based system later time-points could be utilised 

allowing extensive dosage studies.
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Interestingly when the data was separated out for left and right eyes as shown in fig 3.1.9 

below: a clear bias was found for left eyes having slightly less vascular complexes but the 

differences were not significant between eyes of the same timepoint except for at 3 

months where the low numbers made differences more significant.
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Figure 3.1.9 Baseline right vs. left eye counts

Data table

Age Avg Std Error # retinas
Lt 3m 20.1666667 4.04717551 4
Rt 3m 29.0833333 2.89755644 4
Lt 4m 35.8333333 6.4125167 4
Rt 4m 38.9166667 6.40800281 4
Lt 5m 54 3.46410162 4
Rt 5m 59.25 4.69707356 4

Significance

P-values Lt 3m Rt 3m Lt 4m Rt 4m Lt 5m Rt 5m
Lt 3m 0.062 0.047 0.028 0.00036 0.00037
Rt 3m 0.062 0.195 0.117 0.0007 0.0014
Lt 4m 0.047 0.195 0.37 0.023 0.013
Rt 4m 0.028 0.117 0.37 0.042 0.021
Lt 5m 0.00036 0.0007 0.023 0.042 0.2
Rt 5m 0.00037 0.0014 0.013 0.021 0.2
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From this data it was decided that all further studies would use only left eyes to reduce 

data noise and possibly reduce the merging of complexes at the later time points.

As the damage to the RGC layer did not start until five months or later RT 97 staining 

was discontinued.
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3.1.8 Image Analysis

In an attempt to simplify the process of counting the pigment foci and associated vascular 

complexes an image capture and analysis system was employed.

This originally consisted of PC-image (Foster Finlay Associates) in conjunction with a 

frame grabber (Data Translation DT3155) to capture images from a CCD camera 

(Hamamatsu 5098) attached to a research microscope (Leica DMR) using a lOx objective 

in conjunction with a 2.5x photomultiplier. The microscope used a stepping stage (Prior 

H28) to move the sample after each image was captured. Metamorph (universal imaging) 

was required to montage these images into an entire retina; this required a grid of 15 

images by 13 giving a total of 295 images forming a single composite image of the entire 

retina. We found that that using the lOx objective with the 2.5x photomultiplier gave the 

best compromise of resolution adequate to view the vasculature of the retina while 

keeping the number of frames required to capture an entire flat-mounted retina within the 

capabilities of the computer technology. The computation was handled by a PC 

workstation (AST MS 166). PC-image controlled the stage from which distance 

calibrations were obtained; therefore Metamorph could not measure a composite image. 

This system was originally setup to count fluorescently labelled retinal ganglion cells but 

was unsatisfactory for quantification of vascular complexes.

While this system could give very good high-resolution greyscale images it could not 

make any meaningful measurements (such as area) and it could not distinguish between 

pigment foci and debris as the resulting picture could only be resolved in 8 bit greyscale 

(256 levels of grey) that was insufficient for differentiating pigmented cells from debris. 

Even with the choroidal debris being in a different plane of focus from the RPE cells the 

final two-dimensional image was still confusing. It was found after comparisons that full 

manual counting gave a more accurate and reproducible result for the assay so image 

analysis was put on hold until a better system could be found.
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Figure 3.1.10 an 8-bit image formed by the second generation image analysis system of a 

four-month-old RCS rat. The damage to the dorsal retina is from a two week old 

intravitreal injection; this approach was later modified to limit damage to the retina. VCs 

can be clearly seen in the nasal and ventral portions of the retina.

Due to the limitations of the image analysis setup a second generation system was 

commissioned; built around Media Cybernetics Image Pro Plus, a program that could 

control the stage, capture and analyse the images in one continuous process without 

resorting to other software. Improvements to the images captured were achieved by 

capturing less of the total image possible with the camera to reduce distortion caused by 

the curvature of the optics. Even with cropping, this resulted in a decrease in the number 

of images required to capture a complete retina but much greater detail. The more 

sophisticated computer equipment could cope with the increased memory requirements 

and produce images such as figure 3.1.10. Image Pro Plus was used to capture complete 

flat-mounted retinas and the feasibility of automating pigment foci counting tested.
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3.1.9 Pigment Foci Counts Using Image Pro Plus 4.X

Image Pro Plus (Media Cybernetics) was selected as an all in one solution as it had a very 

comprehensive macro language and excellent software drivers for image capture and 

stepping stage control. While the system was very able at assembling high-resolution 

digital images and making measurements accurate to 0.1 pm, for the purpose of this 

assay, it failed in one single criterion. The camera and frame grabber board could only 

capture in black and white.

In black and white mode the computer could only discern 256 shades of grey, which 

unfortunately did not give enough contrast to distinguish vascular complexes from debris, 

inflammatory cells and amacrine cells of which a subset were also stained by the 

NADPH-d staining protocol. The retina was not of uniform thickness and that resulted in 

a very noticeable gradient as the centre of the retina was thicker than the edges causing 

the edges to be much lighter than the optic disc area. These factors made accurate 

thresholding of the composite image impossible under with this system. Therefore it was 

not possible to count vascular complexes automatically with a black and white capture 

system. The system could be used to manually tag complexes as shown in figure 3.1.11 

but it became difficult to distinguish complexes in the presence of choroidal debris even 

though they are not in the same focal plane. Manually tagged counts of a montaged 

computer image were no more accurate than full manual counts so manual counts were 

continued, as they were quicker. Different staining regimes such as using fluorescent 

detection would not show up the pigment deposits and were not viable alternatives.
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Figure 3.1.11 Dystrophic RCS retina at 4 months showing manually tagged vascular 
complexes. Clearly this method was limited in by its inability to resolve VCs that were 
very close together especially where large extended VCs were present. Even small VCs 
in close proximity such as numbers 2 & 3 (insert) could arguably be considered a 

single VC and conversely large VCs such as number 12 (insert) could be split into 
two VCs. Scale bar represents 1000 pm
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3.1.10 Third and Final Generation Image Analysis

In order to provide a system of measurement based on area of VCs, a third generation 

image analysis system was developed, this time based around a Digital Insight Spot 

colour digital camera which captured images in 12 bit colour at a resolution of 1600 x 

1200 pixels. A colour picture being made up of red, green and blue elements requires 

three times as much information as a black and white image and this translated into very 

large amounts of memory on a computer which necessitated another upgrade of the 

computer workstation to accommodate the new images. Starwest computers (Salt Lake 

City) supplied a computer with enough memory (2Gb of Ram) to allow full colour 

capture. Aggressive cropping of the images (100 pixels on each side) prior to capture kept 

edge artefacts (either from the camera or the optics) from compromising picture quality. 

Section 2.16 details the process used to generate colour images and calculate the area of 

the vascular complexes.

The image analysis system captured images where it was possible to distinguish clearly 

between pigment foci and debris (due to differences in colour and focal plane), allowing a 

more accurate measure of the assay based on the area of disturbance associated with the 

vascular complexes. This was possible by manually drawing an area of interest (AOI) 

around the vascular complexes as shown in figure 3.1.12 and the image analysis system 

could calculate the total area of disturbance for that retina and export the data to 

Microsoft Excel. In the same way the area of the entire retina could be calculated. Total 

automation proved impossible as the system could not determine which vascular plexus 

to focus on, nor could it discern the extent of the vascular disturbance around pigment 

foci. This system of quantification was termed the VC assay.

All previous data were reanalysed using this system: all results from this point onwards 

refer to the VC assay rather then pigment foci counts. The archived NADPH-d stained 

retina from previous studies were still suitable for re-analysis using this more informative 

measure of vascular damage
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Figure 3.1.12 Dystrophic RCS retina at 4 months showing the VC assay method of 
quantification. This method was not limited by problems of resolution of VCs and was 
capable of capturing much more information in that by measuring area under VCs, 
accurate determination of VC size was possible. Scale bar represents 1000 pm
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3.1.11 Baseline “VC Assay”.

The original flat-mounts were still viable for analysis, while a few needed to be 

remounted due to PBS/glycerol leakage they were otherwise fine, providing another 

advantage of using the NADPH-d staining protocol.
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Figure 3.1.13 VC assay baseline AOI counts 

Data Table

Time point Area Std. Error # Retinas
2 months 0 0 8
3 months 140136.072 11363.4967 8
4 months 584990.334 160522.00 11
5 months 895430.937 63682.458 8

Significance

P-values 2 months 3 months 4 months 5 months
2 months
3 months 0.0038 0.0000038
4 months 0.0038 0.015
5 months 0.0000038 0.015

The figures above refer to area measured in pm2 with a typical 4-month-old RCS rat
7 2retina measuring a total area of around 4.5x10 pm .

T
nr

2 months 3 months 4 months 5 months
animal age

103



Figure 3.1.13 shows that there was slightly more variation at 4 months than with pigment 

foci counts but the data was still solid enough to be used as the basis of an assay.
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3.1.12 Discussion

The data obtained from this early study did indeed prove to be quantifiable and as the 

methods of quantification evolved it became clear that the data provided a suitable 

baseline for further studies. Using these methods it would be possible to investigate how 

different pharmaceutical agents or procedures would affect this progressive development 

of vascular complexes associated with the RCS dystrophic pathology. The use of 

NADPH-d staining in conjunction with RT 97 immunostaining allowed visualisation of 

the developing interaction between the vasculature and RPE cells and the further changes 

to optic axons. This interaction could only be seen using pigmented RCS rat and would 

have been missed in albino strains used in some previous studies. The range of vascular 

complexes seen in the later time-points made the VC assay much more informative as it 

gave a total measure of the progression of the vascular damage rather than the more 

abstract foci counts. The time course of the baseline data was dictated by the limitations 

of the pigment foci count as future advances in computer technology and software could 

not be predicted.

Had the technology been available earlier a more extensive timeline would have been 

possible using the VC assay, as this method was not affected by the merging of vascular 

complexes. The standard baseline experiment as it was still stretched over seven months 

(five month time course followed by analysis) making it a considerable investment in 

time, but nonetheless essential to determine the progression of the vascular complexes in 

the RCS pathology. Over the course of this study the image analysis system has evolved 

from being a basic tool to count cells into a powerful full colour-based system capable of 

taking multiple measurements throughout an entire flat-mounted rat retina. This evolution 

occurred over two years, fortunately allowing reassessment of archived flat-mount 

material using the VC assay procedure.

The use of the VC assay with the dystrophic RCS rat pathology presents itself as a unique 

tool in which it may be possible to assess drugs developed to help manage diseases where 

vascular proliferation causes problems within the retina. On a more basic level the VC 

assay could be used to quantify vascular effects of pharmaceutical agents in vivo. The 

image analysis system itself has many more capabilities that are not touched upon in this 

study, with a full suite of morphological filters and measuring tools many further
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calculations such as vessel diameters during retinal degeneration could be measured as 

well as cell counts within the retina for cellular infiltrate or amacrine cells (NAPDH-d 

stains a subset of Amacrine cells (Rexer et al., 1998).

The retinal ganglion cell layer was relatively untouched during this timescale, with a few 

samples showing minor disturbance as early as four months but even at five months there 

were only several small areas of deformed neurofilaments (as seen in figure 3.1.7). 

Consequently the RT 97 staining was discontinued from further studies: had the progress 

with the image analysis occurred earlier an extended time-line could have shown further 

effects of the dystrophic RCS pathology on the optic axons by using the area based VC 

assay quantification.
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3.2 Modification Of Rate Of Development Of Vascular Complexes

3.2.1 Aims

Chapter 3.1 showed that the development of vascular complexes in the dystrophic RCS 

rat proceeded in a linear fashion over a several month time window in manner that was 

amenable to quantification. A further aim of this study was to modify or eventually 

control formation of vascular complexes thereby improving the environment for 

treatments to correct the primary defect, the loss of photoreceptors. The data produced in 

the first chapter were robust and reproducible enough to provide the basis of the VC 

assay for comparison in testing pharmaceutical agents. It was hoped that the modification 

of the development of vascular complexes using specific probes might have two 

responses;

1. They could provide a potential treatment.

2. By using a probe of known function they could provide insight into the 

mechanisms that lead to formation of vascular complexes

3.2.2 Experiments

Based on the results of the previous chapter, the optimal timeline for pharmaceutical 

modification of the rate of development of vascular complexes in the RCS rat would be to 

administer treatments at 3 months of age and flat-mount the retina at 4 months. This 

allowed the RCS pathology to have advanced sufficiently that vascular complexes were 

present but had not developed to the stage where the original counting regimen would be 

unable to measure the result (the VC assay developed later did not have this limitation). 

Application too early may result in the compound being cleared from the system before 

there could be any visible effect. Experiments consisting of 8 animals were set up with 

three animals designated shams and five animal test subjects. The left eyes were injected 

with 1 jug of pharmaceutical agent in 2 pi of PBS, as described in methods. This protocol 

was based on previous studies (LaVail et al., 1992; LaVail et al., 1998) and was 

considered a reasonable starting point for this work. The right eye was not treated in any 

way to serve as an in animal control. Shams were injected with 2 pi of PBS in the left 

eye. Two pharmaceutical agents were tested, PEDF, a powerful natural anti-angiogenic 

compound produced in the RPE and ciliary epithelium. This was obtained from Pfizer but 

originally sourced from Dr Joyce Tombrand-Tink along with a rabbit polyclonal antibody 

to PEDF (Ab. 2520). The second candidate, echistatin (Bachem, San Carlos, Ca), an
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integrin blocking peptide extracted from the venom of the saw-scaled viper (Echis 

carinatus), which had been shown to retard RPE migration in vitro (Yang et al., 1996). It 

was hoped that by using these two reagents with different targets, it might be possible to 

dissect out the relative roles of migration and new vessel formation in the development of 

vascular complexes in the outer retina.

3.2.3 Initial PEDF preparation

The samples we received were stored frozen in vials of 10 pg/ml of 500 pi PBS. For this 

to be used for intra-vitreal injections as carried out by La Vail’s laboratory, a way had to 

be found to reduce the volume of the solution to give 1 pg/ 2pl. Secondly as no certificate 

of purity came with the samples, a way to verify the purity of the protein before in vivo 

use was attempted. Initially for the first PEDF experiment, freeze drying overnight was 

tried to reduce the volume of the PEDF followed by reconstitution in distilled water. This 

yielded the correct concentration of PEDF but with an excess of salts. It was hoped that 

the excess of salts would be immediately diluted on administering the PEDF into the 

vitreous and not cause a subsequent problem. Another technique that could have been 

used was micro-dialysis.

3.2.4 PEDF Pilot Experiment

The animals tested were healthy post-operatively and showed no signs of discomfort from 

the operations on their left eye or from the PEDF administered; their behaviour appeared 

normal throughout the experiment. Upon dissection of the eyes, it was found that some of 

the retinae were quite fragile and one sham retina was damaged beyond repair when flat- 

mounting.

The fragility of the retinae was most evident in the dorsal retina due to the injection 

protocol causing local vascular disruption and influx of inflammatory cells; very likely a 

basic wound healing response to the injection protocol. The untreated retinae were 

identical in appearance to those from the baseline experiments (figure 3.2.1) in that they 

exhibited the expected pattern of vascular complexes, moderately advanced in the 

epicentre just ventral to the optic disc (see insert) with smaller less advanced complexes 

sometimes spreading into the nasal, temporal as well as the ventral peripheral retina. The 

PEDF treated retinae (figure 3.2.2) exhibited slightly fewer vascular complexes and these 

were less well developed than the comparable sham (figure 3.2.3) operated. The injection 

site was clearly visible in the dorsal retina with inflammatory cells present and some local
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vascular damage resembling VCs. These VCs were discounted from the assay, as they 

were likely to have been caused by the wound to the retina resulting from the injection 

and not the naturally occurring RCS pathology. It should be noted that the PEDF treated 

retinae were compared with the sham treatment as they had undergone identical operative 

procedures and the untreated retinae were used as an in-animal control to determine if 

deviation from the baseline occurred. The sham retina (figure 3.2.3) also exhibited 

damage around the injection site with associated pigment, most of which was on the 

surface of the retina not in the same focal plane as the venous vascular plexus. There was 

some cellular infiltrate in the area of the injection site showing evidence of a wound 

healing-type cascade in progress. The insert in figure 3.2.2 shows typical VC 

development in mid-ventral retina.
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Figure 3.2.1 Untreated 4 month old dystrophic RCS rat exhibiting baseline vascular 
complex development concentrated ventral to optic disc as shown in the insert a). 
Further vascular complexes can be seen on branch vessel leading into the three 
ventral-most deep draining veins. Scale bar represents 1000 pm
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Figure 3.2.2 PEDF treated dystrophic RCS at 4 months from PEDF pilot experiment 
after treatment at 3 & 3.5 months. Injection site with associated damage is clearly seen 
in the dorsal retina. Insert a shows less developed peripheral VCs. Insert b shows the 
area ventral to the optic disc, normally this would be the epicentre of VC development 
but with PEDF treatment it is largely devoid of VCs. Image processed in black and 
white. Scale bar represents 1000 pm
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Figure 3.2.3 Sham 4 month old dystrophic RCS retina from PEDF pilot experiment 
showing extended VCs in mid-peripheral retina. The area around the optic disc also has 
some VCs. Injection site is clearly visible in dorsal retina. Scale bar represents 1000 pm.

112



The vascular complexes formed after treatment with PEDF not only differed in size but 

also in distribution with many small single pigmented cells scattered throughout the 

peripheral retina (figure 3.2.2a arrows) and a marked reduction in advanced vascular 

complexes directly ventral to the optic disc (figure 3.2.2b). The differences became clear 

after analysis (figure 3.2.4) with PEDF treatment showing a significant reduction in area 

covered by vascular complexes as compared with the sham retinae. Interestingly the 

sham-operated retinae exhibited more vascular complexes than the untreated retinae. This 

was an unexpected finding possibly attributable to secondary events associated with the 

wound inflicted on the retina by the delivery method. Previous work has shown that such 

injuries can cause release of a variety of growth factors (Cordeiro et al., 1999) and may 

also mobilise RPE cells. It should be noted that in the baseline data the left eyes (used 

here for PEDF & sham treatment) exhibited slightly fewer vascular complexes than the 

right eyes (untreated). The untreated retinae were included only for comparison with 

baseline data as a housekeeping control. The shams served as experimental controls 

differing from the test retinae only in that they lacked the application of the 

pharmaceutical agent.
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Figure 3.2.4 shows the data after analysis using VC assay; PEDF clearly reduced the 

incidence of VCs compared to the sham controls. The untreated animals exhibited 

unusually low incidence of VCs compared to the four-month baseline data but not 

significantly lower than the PEDF treated animals. The pilot experiment showed that 

PEDF could affect VCs at a concentration of 1 pg/ 2pl PBS.
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Figure 3.2.4 PEDF pilot experiment

Data table
Treatment Average Std Error # Retinas
PEDF 227108.564 50150.0133 5
Sham 712392.479 16151.9531 2
Untreated 173992.903 28133.6517 7
avg entire retina 47918789.2

Significance
P-values PEDF Sham Untreated
PEDF 0.00013 0.172
Sham 0.00013 0.0000015
Untreated 0.172 0.0000015

3.2.5 Delivery Of Pharmaceutical Agents

The fragility of the retinae in the PEDF pilot experiment was a result of too aggressive a 

delivery protocol. To improve on this a litter of RCS animals were allowed to grow to 

three months of age and the effects on the retina of intravitreal and sub-retinal delivery 

were compared.
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Sub-retinal injections were given to half the animals to determine how they differed from 

intra-vitreal injection after flat-mounting and to explore the possibility of an alternative 

delivery method. The injections were placed dorsally just behind the ciliary body taking 

care to avoid any blood vessels or damage to the ciliary body, since this would result in 

release of growth factors, which might contaminate baseline conditions further. The 

dorsal position was chosen to avoid damaging the ventral retina where the VCs were 

concentrated and as the pharmaceutical agents would be in solution they should diffuse 

through the vitreous. A second group received injections using 30-gauge steel disposable 

needles (Beckman Dickson) directly into the vitreous. The first series of injections 

showed that intravitreal injections (figure 3.2.5a) using glass needles resulted in much 

more physical damage to the retina than sub-retinal (figure 3.2.5b) and later that steel 

needles gave the best results (figure 3.2.5c). The animals were injected as detailed in the 

sections 2.7 for steel needles and 2.18 for glass needles.

Intravitreal injections using the steel needle resulted in the least damage to the dorsal 

retina and consequently the retinas were much easier to dissect out due to increased 

rigidity after fixation. The glass needle techniques required extensive damage to the 

schlera using a micro-blade or steel needle to expose bruch’s membrane and the RPE 

before insertion due to the fragility of the glass needle. An extensive wound healing 

response resulted in recruitment of inflammatory cells and damage to the retina with 

adhesions complicating dissection. Eventually it was possible to improve the injection 

protocol to cause minimal disturbance to the retina. This was important, as it would have 

been difficult to proceed with the VC assay if the delivery process caused excessive 

damage to the dorsal retina as the effects of this on the development of VCs could have 

complicated the normal RCS pathology. The release of growth factors during wound 

healing has been extensively studied in the eye (Cordeiro et al., 1999; Stitt et al., 2004) 

and in other tissues with large amounts of data suggesting that growth factor cascades are 

present in all wounding events (Ferguson and O'Kane, 2004). Nevertheless, such effects 

should be shown up by the shams, which would undergo identical procedures.
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Figure 3.2.5 Modified injection protocols using PBS, a) subretinal injection using glass 
electrode type needle, b) trans-retinal injection using glass pipette, c) trans-retinal 
injection using 30 gauge steel needle. Scale bar represents 50 pm.
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3.2.6 Final PEDF Preparation

For further studies using PEDF a better method of reducing the volume of the stock 

solution (10 pg in 500 pi) was found. The phosphate salts were removed using PD-10 

desalting columns (Amersham Biosciences; UK), which utilised gel filtration to reduce 

the volume by allowing salts to pass through while retaining the protein. This was 

followed by a DC Protein Assay (Biorad Laboratories; USA) to determine PEDF yield 

after filtration. A typical volume reduction would result in a yield of around 80% as 

plotted against a series of concentrations of stock protein (BSA) in the DC Protein Assay. 

Protein yield could be as low as 36% if centrifugation continued too long. Secondly as we 

received the PEDF samples with no purity certification, a western blot was performed 

using the rabbit polyclonal antibody 2520 (J. Tombrand-Tink via Pfizer) to determine 

PEDF stock purity. The sample had no significant contaminants as can be seen in the 

western blot in figure 3.2.6 where the PEDF was run against a set of known molecular 

weight standard proteins, (Promega) the only band present in the sample was at 50 kDa

for PEDF.

protein PEDF 
Standards sample

Figure 3.2.6 Western blot of PEDF sample

PEDF has a molecular weight of 46.3 kDa but has a carbohydrate side chain that 

increases its weight to 50 kDa in polyacrylamide gels (Wu et al., 1995).

3.2.7 Modification Of The Rate Of Development Of VCs

The flat-mounting protocol restricts the experiments to small batches of 7-8 animals (due 

to the time required for each preparation) from the same litter with similar survival times. 

It was decided to run several batches of animals and pool the results so that an adequate 

number of sham controls and tested animals could be obtained. In addition some animals

117



were processed for immunocytochemistry, wax histology and electron microscopy in 

order to obtain a clear picture of how the VCs develop. In total there were 42 additional 

animals, all three months old before commencement of procedures used for flat-mounts, 

Immunocytochemistry, wax histology and EM histology. The total numbers of animals 

for each protocol can be seen in figure 3.2.7 and also included four of the injection 

practise animals as shams with untreated right eyes. Four of the PEDF animals were 

given a single injection of PEDF for regulatory reasons but the effects were 

indistinguishable from double injections two weeks apart. In later experiments bilateral 

injections were performed and the use of untreated eyes were dropped due to sufficient 

numbers having been recorded. Figure 3.2.7 represents those eyes that survived the 

protocols in a usable state, hence the apparent loss of 10 eyes out of 84.

Flat-mount Immuno. Wax histology EM

PEDF 9 4 4 4

Echistatin 8 4 0 6

Sham 10 1 1 2

Untreated 17 1 1 2

Figure 3.2.7 Retinae used in six litters of animals to investigate VCs

Once more the right eyes were left untreated as housekeeping controls. PEDF was used as 

before to follow up on the results of the pilot experiment. Echistatin, an integrin 

antagonist was also used in an attempt to restrict RPE migration into the retina since prior 

work has shown a close correlation between RPE cells in the retina and the development 

of VCs (Villegas-Perez et al., 1998; Wang et al., 2003). Echistatin was obtained in 

lyophilised form with a certificate of purity so no prior preparation was necessary other 

than to reconstitute the protein in PBS at the required concentration (1 pg/ 2pl). All of the 

retinae were much less fragile than in the pilot experiment on flat-mounting with very 

little damage from the injection protocol visible but there were still the occasional retinae 

lost due to failure of the retina to detach. Of the 42 retinae flat-mounted, there was no 

correlation between treatment and failure of retina to detach and dissect out: untreated 

retinae were just as likely to be damaged.
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PEDF

Retinae treated with PEDF (figure 3.2.8) were broadly in line with those seen in the pilot 

PEDF experiment with fewer VCs and a different distribution of those VCs throughout 

the ventral retina in comparison with the sham retinae. The area around the optic disc still 

exhibited a few VCs (figure 3.2.8a) but there were fewer and they were smaller in size 

than in comparable sham injected retinae (figure 3.2.9a). The largest difference could be 

seen in the mid-ventral retinae (figure 3.2.8) where there were very few VCs compared 

with the shams (figure 3.2.9). The peripheral retinae in PEDF treated retinas showed very 

few developed VCs (figure 3.2.8b), with some retinae exhibiting very small single 

pigmented cells situated on blood vessels of the peripheral (such as in figure 3.1.3a) 

venous supply. The untreated retinae (figure 3.2.10) were unremarkable and showed the 

expected pattern of VCs found in the RCS baseline experiments. The result was broadly 

in line with the PEDF pilot experiment and confirms that PEDF at a concentration of 1 

pig/ 2pl could affect the development of VCs. It should be noted that the PEDF has not 

stopped the formation of vascular complexes, merely slowed down their development as 

compared with the baseline experiment and that this cannot be considered to be a 

“physiological dose”. There is clearly a cascade of events associated with the breakdown 

of vision in retinal degeneration and it appears that the application of certain factors such 

as PEDF can slow down the progress of this progression towards retinal dysfunction.
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Figure 3.2.8 Dystrophic RCS at four months of age treated with PEDF. The injection 
site is visible in dorsal-temporal retina (all treatments were applied to left eyes). Insert a) 
shows normal VC epicentre containing a few underdeveloped VCs. Insert b) shows more 
peripheral retina with reduced VC content, arrow shows a single pigmented cell attached 
to a vein that we believe may be an early stage of VC formation. The dark pigment in the 
ventral- nasal retina is choroidal pigment that did not detach during dissection. There are 
several smaller patches of pigment in the mid retina where the choroid had to be 

carefully detached but none of this pigment is in the same focal plane as the vasculature. 
Scale bar represents 1000pm.
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Figure 3.2.9 Dystrophic RCS at four months of age, sham treatment. Insert a) shows 
more advanced VC development around the optic disc than seen in figure 3.2.8.
Insert b) shows more peripheral retina where VC development is once more increased 
from figure 3.2.8. There were numerous areas in this retina where choroidal pigment has 
failed to detach and also in the ventral-temporal retina where removal of debris resulted 
in damage to the retinal flat-mount. Scale bar represents 1000pm.
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Figure 3.2.10 Dystrophic RCS at four months of age, untreated. Insert a) shows normal 
development of VCs at four months of age ventral to the optic disc. VCs can be seen in 
vessels branching from deep draining veins throughout the ventral retina and into the 
nasal retina (untreated retinae were always right eyes). Untreated retinae should not be 
compared directly with other treatments for two reasons 1) They have not received an 
injection piercing the retina and 2) they were all right eyes whereas treatments were 
applied to left eyes which have slightly reduced VC development as shown in 
figure 3.1.9. Scale bar represents 1000pm.
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Echistatin

The second pharmaceutical candidate used was Echistatin, an integrin antagonist known 

to block anbp3, otvp3 and aspi. avp 3 was known to play a role in cell migration, therefore 

echistatin could potentially block RPE migration as suggested by(Yang et al., 1996) in 

vivo. In the RCS model this could restrict the migration of RPE onto blood vessels and 

thereby disable one component of VCs. What actually happened was that the 

development of VCs was increased in retinas treated with Echistatin. The number of VCs 

did not actually increase dramatically but the overall size of some VCs was greatly 

enlarged (figure 3.2.11). The area around the optic disc (figure 3.2.11a) showed an 

increase in large well-developed VCs: this was not found with other treatments. The most 

obvious difference was in the mid ventral retina where large extensive VCs spread out 

over a relatively wide area (figure 3.2.11b) were present. These extensive areas of 

disturbance were the main impetus for upgrading the image analysis system to count area 

of VCs rather than counting numbers of VCs, since the latter approach gave the 

impression that Echistatin treated retinae were much less affected. This was not borne out 

by visual inspection.

With these results in mind a further echistatin experiment was set up using a rat strain that 

was not suffering from any degenerative eye diseases (Long Evans) with the aim of 

determining whether the echistatin effect was limited to dystrophic mutation or whether it 

could be used to create a retinal degenerative model in rats without a genetic defect. 

Exactly the same delivery method and concentrations of echistatin were delivered to a 

batch of eight Long Evans rats at 3 & 3.5 months of age and the retinas were dissected 

out and flat-mounted as before at 4 months.
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Figure 3.2.11 Dystrophic RCS at four months of age treated with echistatin.
The injection site is visible in the dorsal peripheral retina. Insert a) shows how advanced 
VCs in the optic disc have become after treatment with echistatin. Insert b) shows 
mid-ventral VCs far more developed than seen in previous retinae. The pinkish cast to 
the retina with clear patches is caused by some of the RPE layer remaining attached to 
the retina and picking up some staining from the NADPH-d staining protocol.
Scale bar represents 1000pm.
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None of the Long Evans rats exhibited any signs of vascular complexes or retinal 

disruption (figure 3.2.12); all retinae (treated, sham & untreated) appeared normal with 

no vascular abnormalities of any kind, consequently no image analysis was performed on 

these animals. Later work using congenic RCS rats and increasing doses of echistatin also 

showed no effect. This suggested that echistatin at this concentration could not affect the 

vasculature of rats that do not have some underlying retinal disorder. Only the RCS rat 

has shown any affect from treatment with echistatin at a concentration of 1 pg/ 2pi.

The image analysis date from these treatments shown in figure 3.2.13 clearly illustrates 

the relative effects of these treatments.
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Figure 3.2.12 Long Evans rat at four months of age treated with echistatin,
There are no signs of VCs or pigmented cells anywhere in the retina. This retina has a 
normal vascular structure much like the congenic RCS in figure 3.1.2.
Scale bar represents 1000pm.
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Figure 3.2.13 VC assay for pharmaceutical intervention. PEDF was significantly 

different from the sham controls with p values of 0.018 but echistatin with a P-value of 

0.29 did not, PEDF did not significantly differ from untreated P<0.05 

Data Table

Treatment average std Error # retinas
PEDF 273492.973 44624.2131 14
Echistatin 498744.154 115061.213 8
Sham 367228.805 66054.0271 10
Untreated 276139.51 30412.0808 11

Significance

P-values PEDF Echistatin Sham Untreated
PEDF 0.039 0.0186 0.2363
Echistatin 0.039 0.2962 0.062
Sham 0.0186 0.2962 0.05
Untreated 0.2363 0.062 0.05

One month after application, PEDF and echistatin had very different effects on the 

development of VC in the RCS rat. The sham retinae were the true controls for this 

experiment with both treatments exhibiting differences from the control although only
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PEDF differing significantly. In the data set there was one outlier for the sham retina and 

error bars were standard error of the mean for total area of VCs in the retinae.

3.2.8 Semi-Thin Histology

The flat-mount histology and image analysis both gave clear indications of differences in 

the VCs under the two treatments at the light microscope level but they did not show how 

the treatments affected the internal structure of the retina. For this semi-thin light 

microscopy and electron microscopy were performed of both whole eyes and retinal flat- 

mounts under the different treatments. Semi-thin sections were cut as described in section 

2.17. By four months of age, the dystrophic RCS retinae differed from congenic in that 

they had lost nearly all of their photoreceptors and a debris zone has built up between the 

photoreceptor layer and the RPE. This was due to a deletion in the Mertk gene, which 

results in the impairment of the RPE to phagocytose cast photoreceptor outer segments as 

discussed in the introduction.

Semi-thin histology of whole eye cup preparations with identical treatments to the flat- 

mounts as shown in figures 3.2.14 to 3.2.17 did not show any clear differences in 

anatomy. Of particular importance was the fact that none of the treatments resulted in 

rescue of photoreceptors. This is relevant as one possible explanation of the reduced VCs 

with PEDF (figure 3.2.14) could have been simply that PEDF through its neuroprotective 

properties allowed photoreceptors to survive forming a physical barrier to RPE migration. 

The larger vascular complexes which show up in echistatin treated retinae did show 

clearly in the ventral retina and were very easy to find when cutting through the eye cup 

but the depth of the debris zone and very sparse remaining photoreceptors were all 

characteristic of dystrophic RCS rats at 4 months of age. In all of the treatments there 

would occasionally be areas where the debris zone thinned out allowing the inner retina 

to come into contact with the RPE, which we believe may be indicative of an early stage 

leading to VCs formation (figure 3.2.14 insert). The presence of photoreceptors in the 

semi-thin sections did not preclude the presence of vascular abnormalities (figure 3.2.17 

insert) but the photoreceptor layer was so badly depleted by 4 months of age that its 

influence may have been negligible.

128



Figure 3.2.14 Dystrophic RCS retina semi-thin at four months of age after treatment with 
PEDF, stained with toluide blue. Insert shows ventral retina (x 158 mag.) with a thin 
broken layer of photoreceptors (black arrows) staining darkly, note the relatively thin 
debris zone separating the photoreceptors from the RPE layer (white arrows) in 
comparison with Figures 3.2.15 & 3.2.16, Scale bar represents 500pm.



Figure 3.2.15 Dystrophic RCS semi-thin at four months of age after sham treatment. 
Once more a thin layer of photoreceptors remained much as for figure 3.2.14. The insert 
shows an area ( x 158 mag.) where the debris zone has been bridged by cells from the 
inner retina allowing the RPE layer has come into contact with cells of the inner retina, 
which we believe may result in the formation of VCs although the RPE has yet to migrate 
onto the venous vasculature in this instance. Scale bar represents 500 pm.



Figure 3.2.16 Dystrophic RCS at four months of age, untreated semi-thin.
Insert (xl58 mag.)once more shows typical dystrophic RCS retinal structure of scattered 
remaining photoreceptors (white arrows) separated from RPE by the debris zone.
Scale bar represents 500 pm.



Figure 3.2.17 Dystrophic RCS at four months of age treated with echistatin, semi-thin.
Insert shows a close up of a VC (x 250 mag.) where the sparse remaining photoreceptors 
were even less common. The black pigment granules (white arrows) from the migrated 
RPE can be clearly seen as can the thickened vessel walls with ECM deposits (black arrows) 
as described in the literature. The pigmentation surrounding the vessels very closely 
resembles that described in the RP literature due to coming from the same source.
Scale bar represents 500 pm.



Several flat-mounted retinae were un-mounted from the PBS-Glycerol medium and 

processed for semi-thin histology to examine retinae in cross section retinae with known 

histological features. Retinae were cut dorsal to ventral at 500 pm thickness, 

perpendicular to the retinal surface for comparison as described in section 2.16. Again no 

differences in photoreceptor survival were observed in any of the treatments (figure 

3.2.18), so confirming the effects on the vascular network was not the result of 

photoreceptor numbers. There was no sign of the characteristic debris zone in these 

processed flat-mounts nor was there as much detail of the inner retina as seen in the 

normal semi-thins but this was most likely the consequence of the extensive processing.
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Dorsal retina Central Ventral

Figure 3.2.18 Dystrophic RCS at four months of age after treatment with PEDF. 
Semi-thin of flat-mounted retina treated showing cross-section of entire retina from 
dorsal to ventral. The three inserts show details of the retina in dorsal, central and ventral 
retinae after reconstruction using photomerge in Adobe Photoshop Elements 2.0.
Scale bar represents 100 pm.
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3.2.9 Electron Microscopy

Electron microscopy was used to determine if there were any major differences between 

dystrophic rats at four months of age treated with PEDF, Echistatin and sham controls in 

comparison with untreated 4 month old dystrophic RCS retinas using a small 

representative sample of 2 eyes with each treatment.

Electron microscopy revealed many features characteristic of dystrophic RCS rats such as 

strangely elongated end feet on RPE cells. The echistatin treated retinae exhibited some 

examples of breaches in Bruch’s membrane where large VCs had developed as shown in 

figure 3.2.19c. These breaches were not seen in any of the other retinas axamined. A 

further series of eyes wereprocessed for EM to determine if there were more breaches in 

bruch’s membrane (4 eyes with each treatment). The only clear differences seen were 

between the pigment granules found in PEDF (figure 3.2.20a&b) and echistatin (figure 

3.2.20c&d) treated retinae. No further breaches in Bruch’s membrane were seen 

probabl;y as breaches in bruch’s membrane are only seen in very late timepoints with 

dystrophic RCS rats and 12-18 month duration experiments were not feasible within the 

timeframe of this study. PEDF treated retinae consistently exhibited more pigment 

granules, which were much darker in contrast than in Echistatin treated retinae. The 

differences in granule contrast were consistent with samples processed within a single 

batch and photographed in the same session. There were also more phagosomes 

containing outer segment fragments (arrow) in the PEDF treated retinae than in echistatin 

treated retinae. As the exact mode of action of PEDF and its receptor/s are at present 

unknown or at least not published it is very difficult to determine exactly what these 

results mean. One possibility is that the increased presence of PEDF may have aided RPE 

phagocytosis but there is no vidence in the literature to support this. In the case of the 

echistatin treatment one clue may come from a study which found that echistatin blocked 

integrin asPi (Wierzbicka-Patynowski et al., 1999). Integrin aspi is involved in RPE cell 

phagocytosis of ECM (Zhao et al., 1999) possibly the reduction in phagosomes in the 

echistatin treatment may be due to Echistatin further impeding the already impaired RPE 

cells in the dystrophic RCS rat.
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Figure 3.2.19 Sections from four month old dystrophic RCS retinae processed for 
electron microscopy as described in section 2.15 a) untreated b) treated with echistatin 
showing strange RPE end feet and c) echistatin showing breaches in Bruch’s membrane.

136



: * . V  * # i

Figure 3.2.20 EM sections of four month old dystrophic RCS showing Bruch’s 
membrane after treatments, a & b) PEDF treated at x8k mag., c & d) echistatin treated 
at x8k mag. and e & f) sham treated retinae at x 1 lk mag. Note the more numerous dark 
vesicles in the PEDF treated retinae in comparison with the relatively sparse echistatin 
treated retinae. The echistatin may be exhibiting an unforeseen interference with the RPE
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3.2.10 Immunocytochemistry

Initial plans for analysing the effects of PEDF and echistatin treatments involved 

extensive immunocytochemistry of integrin sub-units, since such observations had not 

previously been made in the RCS rat. Figure 3.2.21 shows the planned antibody regime 

with concentrations derived from test staining on cryosections. Cryosections were cut 

from retina as detailed in methods 2.12 and 2.13, further sections were cut from skin and 

spleen for positive control controls. Antibodies were purchased from Santa Cruz Biotech 

chosen for its near complete range of integrin subunits available for use in the rat model 

and from Chemicon. Initial results for staining of a  subunits were inconclusive. 

Serendipitously the staining coincided with a visit to the Institute of Ophthalmology by 

Dr Kairbaan Hodivala-Dilke who presented a talk on vascular changes in p3 & p5- 

Integrin knockout mice on the retina (Reynolds et al., 2002) where similarities in the 

vasculature were seen to those occurring in the RCS pathology. After comparison and 

discussion of results with Dr Hodivala-Dilke and showing her both NADPH flat-mounted 

and integrin immunocytochemical staining, she recommended that we discontinue the 

immunocytochemistry. The commercial antibodies were not suitable for the tissues as 

they were they not specific enough to allow dissection of the integrin components in the 

retina. Wax histology did not add anything to the study and was also discontinued leaving 

the semi-thin histology to show cross-sectional views through the retina.
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Integrin Cat ref host origin Dilution

a l sc-6584 gt poly rat 1:50
a2 sc-6586 gt poly hmn 1:100
a3 sc-7019 ms mono rat 1:250
a4 sc-6591 gt poly hmn 1:100
a5 sc-6593 gt poly hmn 1:200
a6 sc-6597 gtpoly hmn 1:100
aL sc-6611 gt poly mus 1:50
aM sc-6614 gt poly mus 1:100
aV sc-6617 gtpoly hmn 1:100

pi sc-6622 gt poly hmn 1:100
P2 sc-6624 gt poly hmn 1:200
P3 sc-7311 ms mono 1:100
P4 sc-6628 gt poly hmn 1:100
P5 AB1926 rbbt poly hmn 1:100
P6 MAB2076Z ms mono hmn 1:250

Figure 3.2.21 Integrin Antibody Data

Note all antibodies with catalogue reference numbers starting with SC were sourced from 

Santa Cruz Biotechnology and (35 & (36 antibodies were sourced from Chemicon.

This clearly shows the differences in the anatomy of the two retinae where in the 

dystrophic animal there were very few photoreceptors left in contrast to the robust 10-12 

cell thick photoreceptor layer in the congenic RCS rat. The a4 staining pattern was 

clearly positive in the photoreceptor inner segments near to the cell body of the congenic 

rats but in the dystrophic staining is diffused throughout the debris zone where only 

fragments of photoreceptor inner segments would remain.
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Figure 3.2.22 Immunocytochemistry of retinal cross-sections. Examples of 4 month old 
dystrophic (figure 3.2.22a) retina with dramatically reduced photoreceptor layer and 
below that the debris layer where the photoreceptor inner and out segments should be. 
The five month old congenic (figure 3.2.22b) RCS retina exhibited normal retinal 
lamination found in rats without the dystrophic pathology. Both sections were stained 
with antibody sc-6591 to the a4 integrin subunit and counterstained using cresol violet 
GCL= ganglion cell layer, IPL= inner plexiform layer, INL= inner nuclear layer,
OPL= outer plexiform layer, PCB= photoreceptor cell bodies,
POS= photoreceptor outer segments, RPE= retinal pigmented epithelium.
Scale bar represents 100 pm
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3.2.11 Discussion

The two treatments: PEDF and echistatin, both clearly showed that it as possible to 

modify the development of the secondary vascular effects of the RCS pathology in a 

quantifiable manner. Using flat-mounted retinae stained with NADPH-d, the entire 

vascular network of the retina could be displayed (Wang et al., 2000), revealing the 

interrelationship of the RPE with the vasculature in vascular complexes in the pigmented 

dystrophic RCS rat. This interrelationship was not visible in studies using albino RCS rats 

(Caldwell, 1989). By recording the area occupied by vascular complexes in a dystrophic 

RCS rat retina, it is possible to assess the efficiency of antiangiogenic drugs without 

interference from wound or chemical trauma to the same area of the retina as both these 

processes can release growth factors that affect angiogenesis.

This is important as there is currently a lack of models for in vivo assessment of 

angiogenic/antiangiogenic drugs that utilise naturally occurring retinal vascular changes 

rather than laser induced retinal damage (Campochiaro and Hackett, 2003). In the latter a 

hole is burned into the retina entirely through into the choroid, this is supposed to emulate 

the breaches in Bruch’s membrane seen in AMD. This actually creates a large wound 

where the repair process not only relates to control of AMD-like vascular pathology, but 

also to wound healing of damaged tissue (Semkova et al., 2003). While it is true that 

administering pharmaceuticals into the eye trans-sclerally also involves making a wound 

through the retina, the wound was very small and in this case positioned as far from the 

area of effect (ventral retina) as possible. Possibly alternative delivery methods may in 

future remove the requirement for damaging the retina in any way, such as through the 

front of the eye in human surgery.

More traditional in vitro assays such as cell culture and the chicken chorioallantoic 

membrane (CAM) assay (Glaser et al., 1980) could be useful for answering questions 

such as whether or not certain molecular pathways were possible (i.e. can growth factor X 

reduce angiogenesis), but they could not prove whether the chemical would function 

identically in vivo. An example of this deficiency was the echistatin result where our 

original intention was to use echistatin to inhibit RPE migration (Nakamura et al., 1998; 

Yang et al., 1996): our actual result was the opposite. Crucially only in vivo assays could 

give any indication of how an animal with a competent immune system would react to
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application of a pharmaceutical agent. That said there is still the caveat that while no 

animal model would guarantee the performance of a particular pharmaceutical agent in a 

human patient.

Neither treatment used in this study managed to halt the development of vascular 

complexes completely. This was thought to be due to the continual loss of photoreceptors 

and further work was added to cut sections from the flat mounted retinae although no 

changes were observed in photoreceptor numbers between treatments. This was possibly 

due to the treatment delivery after significant photoreceptor loss being too late to counter 

the effects of the RPE defect (which started immediately after photoreceptor development 

(Davidorf et al., 1991)). The dosage regime of one or two injections may not have 

allowed a long enough window of effectiveness for the drugs before they were cleared 

from the vitreous (Wu et al., 1995). It may be possible to assess photoreceptor survival 

using the VC assay by administering treatments earlier and following up the VC assay 

with processing the flat-mounts for semi-thin histology as in section 3.2.8 or by 

immunostaining flat mounts with rod or cone specific antibodies. Alternatively constant 

dosage regimes of injections every week for several months or using a constant slow 

release delivery mechanism may result in increased photoreceptor survival. None-the- 

less, the minimal dosage regime used yielded quantifiable changes to the area of vascular 

complexes.

The strength of the VC assay procedure lay in its ability to give a global assessment of 

the entire vascular network of the retina over a significant period of time. This could 

allow future treatment regimes to be optimized in areas such as concentration of dosage, 

periodicity of dosage and length of treatment. Also possible would be combinations of 

pharmaceutical treatments with physical surgical intervention such as those currently 

carried out on human patients such as retinal translocation or retinal transplantation/cell 

based therapy. The rat eye may not be suitable for certain procedures (such as retinal 

translocation) but the VCs assay could be scaled up to larger animal models to 

accommodate these (providing the animal model had similar retinal pathology).

Further technological advances in computer equipment should allow much larger images 

to be assembled. The Image Pro Plus software used could assemble and quantify images 

up 36 K pixels which equates to a flat-mounted retina roughly 1cm (rat eyes used here
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are 12.6K x 12K pixels for approx. 1 cm ). Human eyes were roughly 4 cm when flat- 

mounted but the staining protocol works exactly as for rat eyes, which would allow 

assessment of eye bank sourced eyes with known retinal disorders once this software 

limit is breached. Alternatively lower magnification optics could be used to produce a 

smaller global picture of lesser resolution or selected areas could have been examined 

rather than the entire retina.

The vascular complexes observed in the flat-mounts were centred on an area just ventral 

to the optic disc generally following the course of one or more deep draining vessels as 

described in chapter 3.1, with much smaller less well developed vascular complexes 

found in the peripheral retina. The vascular complexes not only differed in the total area 

but also in the distribution of vascular complexes within the retina between the two 

treatments and their controls.

PEDF

PEDF treated retinae typically exhibited smaller complexes in the mid-ventral retina with 

many small-pigmented cells attached to peripheral vessels. PEDF has been shown to have 

considerable neuroprotective (Houenou et al., 1999; Imai et al., 2005) as well as potent 

anti-angiogenic (Dawson et al., 1999) properties. What this study has shown is that even 

with limited dosage of PEDF the cascade that results in the development of VCs in the 

dystrophic RCS retina may be slowed. PEDF may have through its anti-angiogenic 

properties reduced the secondary vascular effects associated with retinal degeneration, 

but recent advances in PEDF research have uncovered a host of further properties and 

interactions that complicate this assessment such as (Gao et al., 2001; Kijlstra et al.,

2005; Tombran-Tink, 2005).

Previous research has shown that in the rd and rds mice, PEDF has preserved 

photoreceptors (Cayouette et al., 1999; Imai et al., 2005) prolonging retinal function 

(Imai et al., 2005). The VCs assay measures vascular damage not photoreceptor survival 

therefore direct statements of PEDF function could not be deduced from this work. That 

said it is clear that from this work PEDF changed the profile of vascular complexes seen 

in the RCS rat by reducing their size. This study has not shown changes in photoreceptor 

survival (figure 3.2.14-18) but EM work did show increased numbers of pigment 

granules in the RPE (figure 3.2.20). These results suggest that the PEDF is affecting the
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RPE. Further work would have to be done to specifically target the RPE with PEDF 

possibly for intensive electron microscopy after PEDF treatment or perhaps using 

proteomics.

Sham injections

An interesting and unforeseen result with the VC assay was that the sham injections 

resulted in enhanced VC development in comparison to untreated animals. There are 

several possible explanations for this in that the injection site, small as it was, may have 

resulted in the release of growth factors that trigger a wound-healing cascade increasing 

the development of VCs (Cordeiro et al., 1999; Silverman and Hughes, 1990). Another 

possibility is that the media used in the sham injection injected into the subretinal space 

physically disrupts the debris layer changing the environment in the dystrophic retinae in 

favour of VC development, although this happens only in sites already susceptible to VC 

development (ventral retina). The sham injections were the true controls for the VC assay 

as they underwent the same procedures as both PEDF and echistatin treated retinae. The 

VCs found in the sham injections conformed to the same distribution and general 

morphology of those seen in the baseline experiment, they were slightly more numerous 

than in untreated retinae suggesting that sham injections did alter the development of the 

VCs.

Echistatin

Echistatin treated retinae exhibited large extended complexes mainly in the mid-ventral 

retinae far in advance of those seen in the baseline experiments of similar time points. 

These results were initially perplexing as previous in vitro studies suggested that RPE 

motility would be decreased by echistatin (Yang et al., 1996) not increased as seen in this 

assay by comparing the relative area covered by VCs. The results may be explained by 

several works which showed that the binding specificity of echistatin was much wider 

than previously known in that it not only blocked RGD sites affecting a vp3 but also 

blocked asPi which is involved in RPE phagocytosis of ECM (Wierzbicka-Patynowski et 

al., 1999; Zhao et al., 1999). It was therefore quite likely that the application of echistatin 

resulted in further aggravating the genetic defect in the RPE of the dystrophic RCS rat 

thereby accelerating the formation of the vascular complexes.
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Exactly why the RPE in the mid ventral retina should be affected more than other regions 

of the retina in RCS rats is currently unknown but as this is the area where the first VCs 

were found it is not surprising that this is where the effects of echistatin were most clear. 

The reduced numbers of pigment granules in the electron microscopy also points towards 

an effect on the RPE but the result showing a clear breach in Bruch's membrane (figure 

3.2.19c) unlike mechanical damage was intriguing in that it suggested further effects on 

the extracellular matrix that may well exacerbate damage to the retina. The lack of any 

visible effects of echistatin on the Long Evans rat suggests that the concentration used 

was either not sufficient to impair RPE function (if that is how echistatin affects the 

retina) or the healthy retina possessed some mechanism of protection. The effects of 

Echistatin in this model were disappointing but there is a possible future role of inducing 

breaches in Bruch’s mimicking AMD. There has recently been research into truncated 

echistatin analogues that specifically block single integrin pairs that would allow the 

experiment we originally envisaged to be carried out. Further, as more is learned about 

echistatins specificity/structure, it could be possible to block RPE phagocytosis entirely 

or target essential functions of other cell groups involved in retinal degeneration such as 

the vascular epithelium.

These results give hope that it may be possible to improve the underlying environment in 

more advanced cases of retinal degeneration thereby aiding therapeutic treatments that 

aim to correct or arrest the primary effects of human diseases of retinal degeneration.
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3.3 The Effects Of ARPE19 Cells Transplanted Sub-Retinally In The 

RCS Rat On Vascular Complexes

3.3.1 Aims

The long term aim of creating the vascular complex assay system in the RCS model was 

to determine if it was possible to improve the chance of successful treatment in more 

advanced cases of retinal disease such as with a typical patient with progressive loss of 

vision where interventional treatment would likely be a late stage event. In the context of 

studies using retinal transplantation or cell-based therapies applied to the eye, the effects 

of introducing cells sub-retinally into the eye on the vascular complex assay had to be 

ascertained. The act of introducing cells sub-retinally substantially changes the 

environment of the retina and specifically in this study it was unclear how this would 

affect the vascular complexes exhibited in the RCS pathology.

By using a cell line of known characteristics (human RPE cells of the ARPE19 lineage) 

transplanted and then harvested at differing time points, we hoped to determine the 

following:

1 .What would be the background effects of the xenotransplant procedure using the VC 

assay?

2. When would be the optimal time point for transplantation from the perspective of this 

assay?

3. When might be the optimal time to add therapeutic agents to the transplant?

3.3.2 Experiments

Our current research on retinal transplants has focused on the use of cell lines for the 

following reasons 1) for transplantation to be effective as a treatment, the cells must at 

least rescue visual function. 2) The cells must be safe to use, stable and extensively 

characterised. 3) It is impractical to screen primary cultures effectively for infectious 

pathogens (HIV, hepatitis) or potential pathogens (human variant BSE), the difficulty 

involved in preparing and purifying primary cultures limits their value for retinal 

transplantation. 4) The cells must be made easily available

A series of experiments was set up to determine how sub-retinal application of ARPE19 

cells applied for differing time regimens would affect the development of vascular 

complexes in the RCS retina. The normal transplant regimen would be to administer

146



transplants at 21-25 days of age immediately after weaning as early as possible in the 

sequence of photoreceptor degeneration.

Time-line T1H4 T1H7 T1H2 T3H4

One

Two

Three

Four

Five

Six

Seven

Figure 3.3.1 Time-line for original planned experiments (months) Note that early 

transplants actually occurred at 23-25 days not 1 month 

T1H3 Transplantation at 1 month, harvested at 3 months.

Typical early transplantation before significant photoreceptor death and VC development. 

Flat mounting when VCs should be advanced and directly comparable with data from 

previous chapters.

T1H7 Transplantation at 1 month, harvested at 7 months.

Typical transplantation time with animals left for a much longer time point to determine 

long term effects of transplantation on VC development that would normally be very 

advanced.

T1H2 Transplantation at 1 month, harvested at 2 months.

Short term survival experiment to investigate how the transplanted RPE integrate into the 

retina and the effects of the transplant on the vascular system at a time-point where there 

should be no VCs present.

T3H4 Transplantation at 3 month, harvested at 4 months.

Late transplantation into the retina to determine effects on retina of introducing cells after 

significant vascular damage had occurred and the majority of photoreceptors had been 

lost.
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All transplants were unilateral (left eye transplanted only) with the transplant placed in 

the ventral retina where it could provide local protection to the area most heavily 

damaged. The transplant procedure was carried out by the laboratory’s resident eye 

surgeon, Dr Bin Lu as detailed in section 2.18. All transplanted and sham animals were 

administered oral cyclosporine in their drinking water (210 mg/1) to minimise immune 

reactions to the transplants for the duration of the experiments under conditions identical 

to Coffey et al (Coffey et al., 2002).

3.3.3 Transplantation At 23 Days, Harvested At 4 Months

Initially as a trial, several litters of dystrophic RCS underwent the transplantation 

procedure. The animals were transplanted at P23 to introduce the transplant as early as 

possible before the dysfunctional RPE could cause major photoreceptor damage. These 

trial animals were left until they were four months old before harvesting and removal of 

their eyes to be processed for the VC assay. By four months there would normally be 

very few photoreceptors left in the dystrophic RCS rat retina but previous work in our 

laboratory had shown that sub-retinal transplants prolonged visual function past this time 

point (Coffey et al., 2002). This group consisted of 16 animals of which 4 were sham 

animals (injected with media only) and 12 were given human ARPE19 transplants of 

approx 2xl05 cells in 2 pi of media (DMEM FI 2, Invitrogen)

These animals were harvested and their retinae flat-mounted as discussed in section 2.4.

Unfortunately the staining failed due to fluctuations in the temperature during the 

incubation phase of the NADPH-d reaction. But a clear initial result of this experiment 

was that in every retina that had a transplant there were no pigmented cells visible in 

areas where there would normally have been VCs (figure 3.3.2); however the vascular 

component of the VCs was not initially visible due to failure of the staining so the retinas 

were restained. The untreated right eyes exhibited normal pigmented cells in the 

central/mid ventral retina. This result was clear enough to warrant further investigation of 

flat-mounted transplants. Image analysis of this result was not performed due to there 

being nothing to quantify in the transplanted retinae. The shams from this pilot also 

exhibited pigmented cells signifying VCs. These retinae were later restained
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Figure 3.3.2 Pilot transplant experiment. A four month old dystrophic retina that has 
received a sub-retinal injection of ARPE19 cells at P23. This image has been restained 
with NADPH-d and consequently had much higher background colouration, which has 
been removed by converting to a greyscale image. The hole in the ventral retina is where 
the injection site formed attachments to the retina, which had to be dissected out on 
flat-mounting. The transplant site can be clearly seen in the temporal retina 
(this was a left eye) and the lack of vascular complexes noted even though the vascular 
staining is not optimal. Scale bar represents 1000pm
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Figure 3.3.3 A four month old dystrophic retina showing an ARPE19 transplant injected 
at P23. Note the much smaller injection site in the temporal quadrant (arrow) that 
improved with practise from the first experiment. Also the lack of VCs and extent of the 
transplant are much clearer than in figure 3.3.2. Scale bar represents 1000pm.
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Figure 3.3.4 A four month old sham from the same experiment as figure 3.3.3. 
This retina has several extensive VCs (inserts a & b). Scale bar represents 1000pm
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Figure 3.3.5 Untreated four month dystrophic control from the same experiment as 
figure 3.3.3. The vascular complexes are comparable to four month baseline RCS with 
the dorsal retina clear of VCs (insert a) and the optic disk to mid-ventral retina exhibiting 
clear VCs (insert b). Scale bar represents 1000pm.
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Transplantation at P23 followed by harvesting at 4 months was repeated with a further ten 

animals, again there were no VCs visible (figure 3.3.3) in the ventral retinae. The 

transplant could be clearly seen and was attached over a wide area (approx. 20%) of the 

ventral/nasal retina. The transplant was robustly attached to the retina as seen in figure

3.3.3 at present this provides the most complete picture we have seen on how far 

surviving transplant had spread. Recent histological work in out laboratory had shown 

transplanted cells significant distances from the transplant site but it was difficult to 

determine the extent of the transplant in the retina from stained frozen cross sections. It 

was clear from this study that the effect on retarding the development of the VCs, 

especially around the optic disc extended further than was accountable for a local effect 

from the transplanted cells. Therefore the transplants mode of protection for the retina 

appeared to involve protecting against VC formation at a distance from the transplant. 

There were a lot of pigmented cells in the transplant area (as expected as the transplant 

was of RPE cells) but they were not in the same focal plane as any VCs and therefore did 

cause any confusion with VC associated pigmented cells.

Sham (figure 3.3.4) retinae exhibited clear VCs around the optic disc (figure 3.3.4a) and 

out in the peripheral retina where in this case some unusually large VCs (figure 3.3.4b) 

had developed. The sham injection site could be seen in the ventral retina (arrows) 

positioned at the edge of the retina just behind the ciliary body, it is clear that the 

injection caused minimal damage to the retina. Untreated retinae (figure 3.3.5) retinae 

also exhibited clear VCs, therefore the absence of VCs in the transplanted retinae were 

due to the ARPE19 cells placed subretinally in the ventral quadrant of the eye. In total 70 

animals received either ARPE19 transplants or sham injections in their left eyes as 

outlined below in figure 3.3.6: right eyes were used as unoperated controls.

Timing ARPE19 trans. Sham Untreated

T1H4 26 10 39

T1H2 8 0 8

T1H7 11 6 16

T3H4 5 0 5

Figure 3.3.6 Retinae used. Once more there were a few retinae lost in dissection

3.3.4 Transplantation At 23 Days, Harvest Six Months Later

In order to assess the long-term effectiveness of the results seen in section 3.3.2 another 

batch of animals were transplanted and left until the animals were seven months old.
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Retinae from these animals as shown in figure 3.3.7 exhibited numerous small VCs that 

were comparable to some untreated four month old baseline retinae(f!gure 3.1.6), this 

indicated that the transplanted ARPE19 cells have had some effect in reducing the 

development of VCs. This also matches previous work by Seaton(Seaton et al., 1994) but 

shows that they used time-points too late to see the complete effect. The transplant site 

could be clearly seen in the ventral retina where it occupied roughly 10% of the retina. 

This was a reduction of roughly 50% from the transplant size at three-month survival and 

was expected as previous studies in our laboratory had shown that transplant effects 

declined over time (Lund et al., 2001a). The untreated retinae were as expected with large 

VCs present, especially around the optic disc as seen in figure 3.3.8 insert. The sham 

retinae exhibited more VCs than the transplanted retinae and also than the untreated 

retinae but not by a significant margin. This may confirm data from section 3.2 where the 

sham controls were found to exhibit more area under VCs than untreated retinae The 

shams were not directly comparable with the pharmaceutical intervention shams as they 

used sub-retinal injections rather that the intravitreal route used in section 3.2. The 

transplanted retinas were roughly comparable with four month old baseline material 

(figure 3.1.5), not as should be expected for a seven month old dystrophic RCS. The 

ARPE19 cells have managed to slow the development of VCs in the retinae six months 

after transplantation
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Figure 3.3.7 Dystrophic RCS rat retina at 7 months of age having received ARPE19 

transplant at P23 days of age. The insert shows the area around the optic disc, which was 

lightly populated with VCs. The transplant is clearly visible extending from the ventral 

periphery well into the mid-ventral retina. Scattered VCs were found throughout the mid

peripheral ventral retina spreading into the nasal retina. Scale bare represents 1000 pm.
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Figure 3.3.8 Untreated dystrophic RCS rat retina from same animal as figure 3.3.7. 
NADPH-d staining not as pronounced but pigmented cells were still visible. VCs were 
much more numerous than transplanted material especially around the optic disc (insert). 
Scale bar represents 1000 pm.
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3.3.5 Transplantation At 25 Days, Harvested One Month Later

A set of animals were submitted for transplantation with ARPE19 cells (section 2.18) at 

P25 (two days later than normal) then harvested and their retinas flat-mounted as before 

with the aim of investigating a) how well the transplant integrates itself into the retina and 

b) the short term effects of introducing foreign RPE cells into the retina on the vascular 

network.

By viewing the flat-mounts at this early stage we hoped to gather insights into how the 

transplanted cells interacted with the host retina in order to improve the chances of 

successful transplantation or prolong the effects seen in the pilot transplantation 

experiment (section 3.3.2).

All of the transplanted retinae harvested at two months exhibited the same startling 

appearance (figure 3.3.9) in that these appeared at first glance to be VCs attached to 

vasculature in a large area spread out from the transplant site (figure 3.3.9a).

Interestingly there was a zone immediately around the transplant site, relatively devoid of 

pigmented cells but with intact vasculature. The transplant site showed pigmented cells 

along with limited cellular infiltrate suggesting that the transplant had breached the 

blood/retinal barrier, as this was not seen in the 4 month retinae, this must be a transient 

event.

157



Figure 3.3.9 A two month old dystrophic retina after ARPE19 transplantation at p23. 
The transplant area can be clearly seen (insert a). Note the abnormal VCs seen along 
vessels but without apparently damaging them (insert b). Scale bar represents 1000 pm.
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Figure 3.3.10 A two month old dystrophic untreated retina for comparison with 
figure 3.3.9, Note the complete lack of VCs just as with 2 month baseline retinae 
figure 3.1.1, Scale bar represents 1000 pm.
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On closer inspection it became clear that there were important differences between these 

VC-like formations and those reported in this study earlier. These pseudo-VC formations 

did not appear to cause vascular disruption and they tended to be attached to blood 

vessels for long stretches. This suggested that they were not the result of holes being 

opened in the retinal lamination due to photoreceptor loss. Another indication that these 

were not typical VCs was that the underlying vasculature exhibited very little damage: 

there were no abnormal loops or signs of new vascular growth and the capillary beds 

appeared intact. These pseudo-VCs were possibly pigmented cells migrating away from 

the transplant site by the only basement membrane available, the vascular network.

The untreated retinae at two months showed the normal vascular pattern as seen in figure 

3.3.10. It is very likely that the transplant procedure temporarily disrupted the retinal 

lamination allowing RPE to migrate onto the vasculature. It remains to be seen if these 

pigmented cells were from the transplant or the host RPE layer. The easiest method to 

determine this would be to use a human specific antibody to the ARPE19 cells which was 

not available to us in the timeframe of this study, also GFP labelled donor cells may still 

be visible after 1 month.

3.3.6 Transplantation At 3 Months, Harvest At 4 Months

These animals were set up to determine the effects of introducing a transplant after 

significant photoreceptor loss had already occurred. This experiment would confirm 

whether the effects seen in section 3.3.2 were caused by the interaction of the 

transplanted RPE with the naturally degenerating photoreceptors or independent of the 

presence of photoreceptors as our previous hypothesis required photoreceptors to be 

absent for VCs to develop; therefore late transplantation when photoreceptors had been 

greatly reduced should result in development of VCs.

Retinae that received transplants at three months of age (figure 3.3.11) exhibited 

advanced VCs for their time point with a few examples of the pseudo VCs found in 

section 3.3.4 but the majority were composed of the more typical dystrophic RCS VCs 

found after photoreceptors had been lost. These VCs had all of the characteristics that had 

been described earlier in this study with abnormal vascular loops, distended deep draining 

veins and destruction of the capillary bed especially around the optic disc (insert).
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The transplant site was visible just as with the one-month survival transplants in section

3.3.5 with associated cellular infiltrate but the VCs were if anything worse that expected 

for a four-month-old dystrophic RCS retinae. The insert in figure 3.3.11 shows advanced 

VCs that had started to combine into an extended network of VCs. These VCs were 

destroying the capillary bed and would eventually limit the blood supply to the peripheral 

retina. The peripheral retina had numerous examples of the smaller single pigmented cells 

attached to the venous system indicative of VC formation. The transplant in this 

experiment provided no protection to the retina; in fact late placement of the transplant 

appeared to be detrimental to the retinal vasculature in the dystrophic RCS rat model of 

retinal degeneration. This suggested that the effects seen in section 3.3.2 were dependent 

on photoreceptor survival and that the transplanted ARPE19 cells may have been 

responsible for rescuing the host photoreceptors.
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Figure 3.3.11 A four month old dystrophic retina after ARPE19 transplantation at P90. 
The extensive VCs are clearly visible especially around the optic disk (insert).
The transplant area is not as clearly defined as in other experiments.
Scale bar represents 1000 pm.
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3.3.7 Discussion

Viewing flat-mounted retinae from dystrophic RCS rats that had received subretinal 

transplantation of the human ARPE 19 cell line produced several interesting results that 

are summarised below:

a) Transplantation at 23 days followed by harvesting and flat-mounting at 4 months 

produces a retina devoid of VCs with an indication of the transplant area.

b) Sham and untreated retinae do not show this effect

c) Transplantation at 23 days followed by harvesting and flat-mounting at 7 months 

produced a reduced number of VCs relative to the controls with a smaller transplant area.

d) Transplantation at 25 days followed by harvesting and flat-mounting at 2 months 

produced an extreme amount of pigmented cells without vascular damage, presumably 

this eventually develops into situation a) above.

e) Transplantation at 3 months followed by harvesting and flat-mounting at 4 months 

produces many more VCs than untreated with significant damage to the vascular 

network.

The VC assay with image analysis was not used on these transplant experiments for two 

reasons: a) with the three month survival transplants there were no VCs visible which 

would have made the sham and untreated assay data irrelevant, b) with the 1 month 

survival transplants the pigmented cells did not form characteristic VCs as described 

earlier therefore direct comparisons could not be made with other time-points.

We know from previous lab work (Coffey et al., 2002; Girman et al., 2003; Lund et al., 

2001a; Wang et al., 2005b) and current studies that the ARPE 19 transplants provided 

some protection to the photoreceptors in the dystrophic RCS model. Depending on which 

parameters were tested, these transplants have been shown to rescue some vision as late 

as nine months of age in the RCS rat, which is effectively blind at three to four months 

(Girman et al., 2003). This appeared to work by protecting rod photoreceptors, which in 

this model were largely non-functional from an early age but they in turn ensured that the 

cone photoreceptors survived to provide the limited vision(Girman et al., 2005) 

(Leveillard et al., 2004). For these transplants to be effective we believe that they must be 

performed at as young an age as possible (immediately after weaning), before significant 

photoreceptor loss. We did not expect that the transplants would totally negate the 

formation of VCs at four months.
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What these experiments have shown is a snapshot of how the ARPE 19 cells integrate into 

the retina (1 month survival), protect the retina from vascular damage (3 month survival) 

and finally as the transplant effect reduces over time the cascade of events leading to VC 

formation once more continues (6 month survival).

Early One Month Survival

These transplants were at first glance confusing in that they showed an abundance of VCs 

that were not present in the later survival time-point at 4 months. Closer examination of 

the flat-mounts showed that there were several important differences to these supposed 

VCs in that they appeared to be encasing deep draining veins for long distances but were 

not associated with abnormal loops or serious constrictions of the vessels, also the 

capillary bed appeared undamaged. These factors indicated that these pseudo-VCs were 

not typical VCs seen in previous experiments in this study. There was an area clear of 

these pseudo-VCs around the transplant site. It appears that the transplant procedure 

disrupted the normal retinal environment (it would have resulted in a significant retinal 

detachment) sufficient to displace some of the RPE onto the vasculature even though 

there was still a significant photoreceptor layer in place. These errant pigmented cells 

must at some point after one month have then migrated back to the RPE layer or been 

cleared from the retina as they are not present two months later. This could be a phase 

involved in the integration of the transplant into the retina. A full investigation of these 

cells, using immunocytochemistry and electron microscopy to trace migration of these 

cells, was beyond the scope and time frame of this study.

The clear area around the transplant could be a result of the cellular infiltrate seen at the 

transplant site or be due to the RPE having migrated back to the RPE layer on Bruch’s 

membrane more quickly local to the transplant. It is interesting that the transplant has 

attached at all to the retina as normally the RPE layer and Bruch’s membrane would be 

removed by the flat-mounting protocol.

Three Month Survival

The three month survival transplants consistently produced retinae devoid of any VCs. 

Previous transplant experiments from our laboratory have demonstrated that ARPE 19 cell 

transplants could rescue portions of the photoreceptor layer (Lund et al., 2001a; Wang et 

al., 2005a) in the vicinity of the transplant. One possible explanation of the lack of VCs in 

ARPE 19 transplants at four months could be that the transplants rescue photoreceptors;
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thereby blocking the RPE from coming into contact with the vasculature in the inner 

retina and forming VCs.

The transplant could be clearly seen and provided a useful indication of transplant extent 

in the retinae that could be useful to quantify transplant survival using image analysis.

The effects of the transplant on VCs were clearly visible quite far from the closest margin 

of transplant suggesting that is effect was not limited to the location of the transplanted 

cells themselves. Recent work has shown photoreceptor rescue well beyond donor cell 

location (Wang et al., 2005b). Possibly a better test of this would be to place the 

transplant further from the epicentre of VC activity (dorsal to the optic disc). That said, in 

some retinae the closest extent of the transplant was as much as 2500 jam from the optic 

disc which in a retina averaging 9500 jam across was a significant distance. Therefore 

whatever the mode of action used to retard VC development in these experiments, it was 

effective over a distance. The sham and untreated retinae served as controls for the 

experiment and the animals respectively. Whatever the source of the pigmented cells 

along vessels in the one month survival retinae, none were in evidence two months later.

Six Month Survival

These retinae had VCs in evidence in a pattern that was seen for 4 month baseline 

dystrophic RCS flat-mounts, which as the animals were three months older suggested that 

the transplants were losing their effectiveness. Recent work in our laboratory has shown a 

reduction in donor cells over time (Wang et al., 2005b). Possibly the VC development 

was able to overcome the protection afforded by the transplant. The smaller transplant 

area suggests that the transplant may indicate a reduced effectiveness of the transplant 

over time. In each of these time points there has been a certain amount of cellular 

infiltrate visible around the transplant site that may also indicate that the protection 

provided by the oral cyclosporine-A was not adequate (Del Priore et al., 2003).

Late One Month Survival

From the stand-point of improving the chances of transplantation this experiment was not 

successful but it did provide interesting data in that it was clear that placing a transplant 

with its consequent retinal disruption into a retina which is already far down the cascade 

of degeneration results in a retina with enhanced damage to its vascular network.

Figure 3.3.11 clearly shows much more VCs than figure 3.3.7 which was 3 months 

older. This result while not totally contradicting Seaton’s work (Seaton et al., 1994) as it
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did show reduced VCs, it highlights differences in models (pink vs. pigmented eyed 

RCS) and confirm that early intervention is better.

Summary

The original aims of this chapter were to determine the effects of the ARPE 19 cell line 

transplants on the VC assay. This had interesting results in that at the correct application 

time and survival time-point of the procedure had been so successful that quantification 

using the assay was no longer relevant as there were no VCs present. It was clear that if 

the transplants were performed early enough in the cascade of events leading to VC 

formation, VC formation could be prevented from occurring for an extended period of 

time. Also it appeared that the mode of protection did not act directly but most likely 

through protection of the photoreceptor layer and that this protection was not limited to a 

local effect of the transplant.

To determine the optimal time-point for transplantation, further studies introducing 

transplants at possibly 1, 1.5 and 2 months of age would have to be performed but from 

the results of these experiments early transplantation would have the greatest chance of 

success. The optimal time point to add therapeutic agents would depend on the mode of 

action and target of the pharmaceutical in question, if photoreceptors for instance are the 

target then delivery should predate photoreceptor degeneration. The human ARPE 19 cell 

line may in time prove not to be the best cell line to use but it was the best available for 

this study in that it had been extensively characterised and proven to be safe (Dunn et al., 

1996; Kanuga et al., 2002). There is an established body of literature and experience from 

our laboratory and others in using ARPE 19 cells(Girman et al., 2003; Lund et al., 2001a; 

Wang et al., 2005b) and they were proven to be effective in preserving vision as tested by 

electrophysiology and behavioural (Coffey et al., 2002; McGill et al., 2004) methods.
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4.0 Discussion and Summary for “A study of the retinal

vascular pathology in the RCS Rat...”

4.1 General Overview

4.1.1 Original Aims

The original aims of this study were to quantify the vascular abnormalities resulting from 

the retinal degeneration in the RCS rat and to modify those changes (Seaton and Turner, 

1992; Villegas-Perez et al., 1998; Wang et al., 2003). After obtaining baseline data we 

proposed altering the dystrophic pathology with pharmaceutical intervention (LaVail et 

al., 1992; LaVail et al., 1998) and then with cell-based therapy intervention (Lund et al., 

1997; Lund et al., 2003). While this study has largely achieved those initial aims, it has 

not been without some surprising results that have altered the original plan of 

investigation. 1) A reproducible method of quantifying the vascular changes seen in the 

dystrophic RCS rat has been achieved (Wang et al., 2003). 2) The normal vascular 

pathology has been modified by pharmaceutical intervention both for the better and for 

worse. 3) The effects of a cell based therapy using ARPE 19 transplantation has been 

investigated with the conclusion that it too can affect vascular patterns and that early 

application appears to be important for efficacy. These results have also opened up 

further questions such as how does this model compare with other work (Seaton and 

Turner, 1992) and methods such as FA (Zambarakji et al., 2005), that lay outside the 

scope of this study.

Quantification of VCs has been attempted in the past using horseradish peroxidase- 

stained flat-mounts but HRP has the disadvantage of obscuring vasculature as soon as 

vessel leakage occurs and the animals used did not have pigmented retinas making VC 

counts difficult (Seaton et al., 1994; Seaton and Turner, 1992).

4.1.2 What Has This Study Achieved?

This study has provided a means of quantifying the vascular changes in the dystrophic 

RCS rat and in doing so has provided a novel assay system capable of testing anti- 

angiogenic pharmaceuticals in vivo, something that has been lacking in retinal anti- 

angiogenic research. The combination of flat-mounted NADPH-d staining with Image 

Pro Plus imaging software has allowed the development of the vascular complexes to be
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visualised and quantified in a reproducible manner. This assay system could be used to 

test various pharmaceuticals and in addition, therapeutic strategies such as cell based 

therapies. The startling differences between the ARPE 19 cells at three months after 

application compared with one month and six months after application clearly show that 

while the ARPE 19 cells are not in themselves a long term solution, the cell based therapy 

strategy shows promise. The later application of ARPE 19 cells at three months showed 

that timing is critical for success.

4.1.3 Where Did It Deviate From The Original Plans?

There were several potential areas of study that were eventually abandoned for various 

reasons as the study progressed. The intention to study the damage to the axons of the 

retinal ganglion cells visualised with the RT97 antibody (Villegas-Perez et al., 1998; 

Wang et al., 2000) was the first casualty. It was found with the baseline study that only 

very light damage to the RGC axons occurred by 5 months in the RCS rat, therefore 

investigating RT97 staining patterns was outside of the range employed here. One of the 

goals of this study was to try to automate the quantification of the VCs as much as 

possible to remove user bias. This was one area that did not prove possible due to the 

nature of the VCs. As the VCs are a complex of migrated RPE, blood vessels and 

surrounding avascular space (Wang et al., 2003), it proved impossible to manipulate the 

images sufficiently using the program to allow accurate thresholding (the image target 

could not be differentiated from the retina background). It was decided that the most 

meaningful measure of the VCs was the area of retina that they occupied and the only 

accurate method of determining this was to trace AOI around the VCs. Possibly further 

advances in imaging technology could allow full automation of this assay.

It was originally intended that a full analysis of integrin antibody staining patterns would 

be accomplished using a time course of frozen dystrophic and non-dystrophic RCS 

tissues collected for comparison with the flat-mounted baseline. After commencing this 

part of the study it quickly became apparent that interpreting these patterns was not trivial 

and consultation with Dr Hodivala-Dilke (Barts and The London, Queen Mary's School 

of Medicine and Dentistry) resulted in her advising us that commercial integrin antibodies 

available at that time were not sufficient to the task. At this point the emphasis of the 

study centred more thoroughly on testing the assay system. In 2001 my host laboratory 

moved from the Institute of Ophthalmology, London to the Moran Eye Centre, Utah with
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the result that we lost contact with Pfizer who were supplying us with PEDF. This had the 

effect of changing from our original plans to conduct pharmaceutical dosage experiments 

to investigating cell based therapies based on the ARPE 19 cell line (Lund et al., 2001a). 

These studies were an update and improvement on the earlier attempts at quantification 

(Seaton and Turner, 1992). Echistatin experiments did continue in Utah using Long 

Evans and congenic RCS. Vitreous collected from baseline retinae were also frozen and 

stored potentially to investigate PEDF levels but after moving they were sent to another 

lab for proteomics analysis that unfortunately was not fruitful.

4.1.4 Problems Overcome

The largest problem that had to be overcome with this study was in finding a meaningful 

way of quantifying the VCs. The initial pigment foci count was adequate to show 

differences between different treatments but it produced very arbitrary results that were 

open to criticism of excessive operator bias (especially in resolving merged VCs) (Wang 

et al., 2003). It took advances in both imaging (colour digital cameras) and computer 

technology (personal computers with at least 2 Gb of RAM) to allow sufficiently large 

colour images to be assembled to form complete retinal maps of the entire retina. In total 

over 200 flat-mounts were imaged for this project which in turn presented problems in the 

volume of data to be stored: fortunately technology kept pace with development of the 

imaging equipment evolving from zip disks to optical disks to CDs to DVDs.

The NADPH-d staining methods proved to be excellent at producing low background 

permanently stained vascular networks but it did prove to be fairly demanding in its 

sensitivity to temperature. The NADPH-d reaction is enzyme based and therefore will not 

work if the reaction temperature fluctuates more than a few degrees centigrade off 37°C. 

If the temperature is too low during the reaction, inadequate staining results with minor 

vessels being too faint to image. This could be remedied by carefully restaining with new 

reaction mixture but the result is rarely as good as freshly stained tissue. If the reaction 

temperature is too high excessive formazan salt is produced which adheres to the surface 

of the retina resulting in a dark blue retina which cannot be imaged in any way: entire 

experiments were lost to this problem.
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4.2 Biological Mechanisms Of Retinal Disease

4.2.1 Relevance Of The RCS Model

The relevance of the RCS rat as a model of retinal degeneration was confirmed with the 

discovery of the Mertk (D'Cruz et al., 2000) gene and its human orthologue MERTK as 

form of RP (Gal et al., 2000), and later with the reversal of the phenotype by gene therapy 

(Vollrath et al., 2001). The present work has shown that the pigmented RCS rat could 

also be used as a valuable in vivo assay system to test antiangiogenic compounds.

Controls were provided by using the congenic rats along with untreated dystrophies and 

sham controls (media or delivery vehicle only) for comparison with the treatment. 

Previous studies have noted that the delivery protocol can have effects on the retina 

(possibly due to growth factor release by the wound healing process) but these tend to be 

short lived (Lawrence et al., 2004; Sauve et al., 2002; Silverman and Hughes, 1990). This 

study makes no claims as to the status of photoreceptors or the inner retina, as it is solely 

concerned with visualising the vascular network and comparing the development of the 

characteristic vascular complexes. PEDF in particular could reduce vascular complexes 

by preserving photoreceptors (Cao et al., 2001; Cayouette et al., 1999) and therefore 

slowing the migration of RPE into the retina but semi-thin sections (figure 3.2.14) did not 

show significant differences even though Cayouette reported photoreceptor protection 

after nine days in the rd/rds mouse models (Cayouette et al., 1999). It is quite possible 

that the slower degeneration of the RCS (Davidorf et al., 1991) coupled with time-points 

chosen to focus on vascular damage rather than photoreceptor loss have masked this 

effect in this study.

4.2.2 RPE Phagocytosis

The debate about exactly how RPE phagocytose shed rod outer segments continues as 

different groups refine their arguments and experiments to determine whether integrins 

are essential or not (Finnemann, 2003; Finnemann and Rodriguez-Boulan, 1999; 

Finnemann and Silverstein, 2001; Hall and Abrams, 1987; Hall et al., 2003; Hall et al., 

2001). The RCS rat is involved in this debate by virtue of its mutation being a tyrosine 

kinase involved in phagocytosing the rod outer segments (D'Cruz et al., 2000). This assay 

may have some relevance to this argument as the vascular complexes are intimately 

linked to the RPE, which detach from Bruch’s membrane and migrate onto the retinal 

vasculature (Wang et al., 2003). The trigger for this appears to be localised ischemia
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destabilising or activating the RPE cells (Bailey et al., 2004; Kijlstra et al., 2005) possibly 

encouraging neovascularisation. The migration is presumably in search of favourable 

basement laminae to attach to. It could be argued that the development of the vascular 

complexes is not a secondary anatomical event following photoreceptor loss but due to 

disruptions in RPE interactions with each other or Bruch’s membrane. The exact trigger 

will require the underlying mechanism of RPE phagocytosis to have been elucidated.

4.2.3 Relevance To Human Diseases

This study has shown several key points that are of interest to research into human retinal 

diseases: 1) The RCS rat can be used as a novel tool for assessing anti-angiogenic drugs 

in vivo. 2) The cell-based therapy strategy has been shown to temporarily reduce VC 

formation without the addition of anti-angiogenic drugs. Previous studies have used less 

accurate HRP staining with albino retinas which are not as accurate (Seaton et al., 1994) 

and similar techniques have been used to map neurons (Palanza et al., 2005). The fact that 

the treatment regime may alter the underlying vascular pathology is interesting and 

suggests that further modifying the cells may produce even greater results (Kanuga et al., 

2002; Lawrence et al., 2004; Semkova et al., 2002). The effects of PEDF treatment 

described here are broadly in line with other published work suggesting effective anti- 

angiogenic activity even at very low concentrations (Cao et al., 2001).

4.3 Initial Baseline And Quantification Of Vascular Complexes

4.3.1 Development Of The Assay

The initial baseline experiments in which the flat-mount technology was developed to 

quantify the vascular complexes has proven to be a very effective guide for assessing how 

badly damaged the retinal vasculature was to the retinal changes. The use of NADPH-d 

staining on flat-mounted retinae produced a stable, clear representation of the entire 

vascular network that could be viewed by transmitted light microscopy (Diaz-Araya et 

al., 1993; Palanza et al., 2005; Vincent and Kimura, 1992; Wang et al., 2003; Wang et al., 

2000; Zambarakji et al., 2005). Quantification of the vascular complexes was made 

possible by adapting image analysis techniques developed in our own laboratory 

(Villegas-Perez et al., 1998) and elsewhere (Danias et al., 2003; Danias et al., 2002) to 

count retinal ganglion cells back-labelled with Fluoro-gold. The original software 

consisted of three programs used serially to capture, assemble and then count the cells,
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that was upgraded to a single program (Image Pro Plus 4.0, Media Cybernetics) capable 

of driving and calibrating the motorised stage and to capture/assemble the retinal maps. 

These first retinal maps, captured in greyscale images, very clearly displayed the changes 

in the RCS retina as the dystrophic pathology advanced but were only useful to provide 

pigment foci counts (Wang et al., 2003). It is interesting that the VCs develop in a fairly 

linear progression radiating out from a specific geographic area; the mid-ventral retina. 

This phenomenon has parallels in human RP (Milam et al., 1998).

4.3.2 Progression Of VCs Over Time

A decision was made very early on that five months would be the end point for initial 

study as previous work (Caldwell et al., 1989; Villegas-Perez et al., 1998) had shown that 

by 5 months vascular damage was relatively wide-spread in the dystrophic RCS retina 

and this study was targeting the development of VCs. The initial baseline studies 

confirmed that the first VCs appeared between two and three months of age with very 

small vascular complexes found in the mid-ventral retina (Wang et al., 2003). The 

pigment foci quantification was in accord with previous descriptive works and allowed 

the progression to experiments changing the profile of VC development (Caldwell et al., 

1989; Essner et al., 1980; Villegas-Perez et al., 1998; Wang et al., 2003).

Correlation with vascular leakage using FA with cSLO technology was performed in a 

complementary study that showed leakage preceding and correlating with sites of VC 

formation (Zambarakji et al., 2005) For this study to be of value to designing treatment 

strategies for retinal degenerative diseases it had to show that the retinal vascular changes 

could at least be delayed or slowed. One unexpected result for which there was no 

obvious explanation was that the left eyes gave slightly lower readings than right. The 

differences between right and left affected the future work in that treatments were given 

to the left eye and the right was used as a control. This reduced the chance of VCs 

merging and to reduced variance in the VC assay data.

The initial pigment foci counts showed a clear progression of VC development but did 

not yet allow a very accurate means of quantification. Later improvements with the 

capture technology allowed the VC assay to reassess the flat-mounts producing a more 

meaningful data set. This method of using a histological stain to map the entire retina had 

the advantage of giving a global view of the retina whereas other techniques such as 

investigating vascular leakage with FA images could not cover the entire retina 

(Bellmann et al., 2003; Rosolen et al., 2002; Zambarakji et al., 2005).
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4.3.3 Distribution of VCs

The quantification approach used here provided data on the overall development of VCs 

across the retina but it did not address their distribution although the digital retinal map 

could be manipulated to record positional data of each VC if required A peculiarity of the 

RCS pathology is that VC formation occurs first in the mid-ventral retina at branch points 

along one of the deep veins. The exact mechanism of this is not fully understood but it is 

possible that these vessels being closest to the photoreceptors are the first to come into 

contact with the aberrant RPE. Current data suggests that RPE are destabilised or 

activated by localised ischemia (Bailey et al., 2004; Kijlstra et al., 2005) and data from 

our lab has shown correlation with vessel wall fenestrations (Stewart and Tuor, 1994; 

Villegas-Perez et al., 1998) resulting in leakage preceding VC formation (Zambarakji et 

al., 2005). These may be related to the loss of photoreceptors and formation of the debris 

zone, destabilising the RPE. The aberrant RPE then migrate off Bruch’s onto blood 

vessels causing further damage by interacting with the cells of the vessel wall causing 

fenestrations and breakdown of the BRB (Caldwell, 1989; Essner et al., 1980). Further 

studies investigating the microenvironment of the debris zone using laser microdisection 

combined with early detection of sites vascular leakage using FA and cSLO (Zambarakji 

et al., 2005) could confirm this hypothesis.

VCs spread outwards along smaller vessels throughout the ventral retina into nasal and 

temporal quadrants and in very advanced cases finally into the dorsal retina (Villegas- 

Perez et al., 1998; Wang et al., 2003; Wang et al., 2000). The distribution of VCs in the 

peripheral retina tends to be slightly different as where the retina thins towards the far 

periphery the three vascular plexus gradually merge into a single more sparse network 

without capillaries (Zhang, 1994). Individual pigmented cells could be found attached to 

the venous vasculature of the outer periphery suggesting less developed VCs. It is 

possible that they could be partially protected by growth factors such as basic fibroblast 

growth factor from the ciliary body (Li et al., 1997)

4.4 Changing The Pattern Of VC Progression
Both of the candidate molecules picked for this study significantly altered the progression 

of the VCs in the VC assay system, although it has to be said that echistatin did not show 

the effects that were predicted by previous literature (Yang et al., 1996).
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The application of pharmaceuticals into the eye by trans-scleral injection caused a slight 

sham effect, perhaps due to growth factor release from the micro-wound through the 

retina (Silverman and Hughes, 1990) but this could be controlled for.

4.4.1 Effects of PEDF Treatment

PEDF was particularly effective in reducing the size of the VCs and generally seemed to 

slow down the development of VCs. It did not stop the development of VCs altogether 

but considering only two doses of 1 pg/2pl were administered this was encouraging. With 

more time, combinations of differing doses and longer treatment regimens, it may have 

been possible to provide longer lasting and more complete protection.

Treatment with PEDF also modified the distribution of VCs with fewer VCs forming near 

the optic disk. That PEDF was able to have such an effect was interesting considering 

other studies had shown that PEDF could be cleared within 24 hours (Wu and Becerra, 

1996) of introduction to the vitreous suggesting that PEDF may have a trigger effect.

Also of note is the finding that PEDF levels decrease with oxidative stress (Ohno-Matsui 

et al., 2001) therefore PEDF levels may be decreased around VCs. The recent finding that 

PEDF only inhibits new vessel formation (Tombran-Tink, 2005) is interesting as it may 

explain how PEDF slowed the formation of VCs. That it did not totally stop VC 

formation could also be due to vascular remodelling (Villegas-Perez et al., 1998).

Unlike other studies (Cayouette et al., 1999) PEDF did not show significant differences in 

photoreceptor survival with semi-thin histology. Although it is possible that there was 

transient protection to the photoreceptors that would not show up due to the longer time- 

points used in this study. As the highest concentration of PEDF is normally found in the 

IPM (Karakousis et al., 2001), the formation of the debris zone may well change this in 

the RCS rat affecting the survival of photoreceptors. PEDF is one of several factors 

regulating angiogenic events factors within the eye with vascular endothelial growth 

factors and fibroblast growth factor-2 stimulating angiogenesis and PEDF and 

thrombospondin-1 inhibiting angiogenesis (Aparicio et al., 2005), these factors tend to 

interact by altering the oxygen levels within tissues. Recent advances have greatly 

expanded the available knowledge of PEDF interactions within the retina (Barnstable and 

Tombran-Tink, 2004) as well as its structure and genetics (Tombran-Tink et al., 2005).
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4.4.2 Effects Of Echistatin Treatment

Echistatin was a candidate molecule for this study as it had been proven to be an effective 

blocker of RGD integrins and it was hoped might block RPE migration as it had in vitro 

(Yang et al., 1996). This is not what happened while using the in vivo VC assay system. 

Instead echistatin actually advanced the development of VCs, producing very large 

complexes especially in the mid-ventral retina. Further experiments with Long Evans rats 

and later with congenic RCS (unpublished work) rats showed that echistatin is unlikely to 

induce VCs on animals that do not have an underlying retinal pathology such as the 

dystrophic RCS. It has been shown that echistatin can block a range of integrins; otnbp3, 

avp 3, (Marcinkiewicz et al., 1996; Marcinkiewicz et al., 1997) and aspi (Wierzbicka- 

Patynowski et al., 1999). Blocking of the integrin avp3 has been shown to affect RPE 

migration but in this study echistatin did not block migration, in fact it made it worse.

The electron microscopy data showed that there were differences in the RPE between 

PEDF and echistatin treatments with what appeared to be breaches in Bruch’s membrane 

after echistatin treatment. These results opened up the possibility of inducing a more 

AMD like model in the RCS rat but closer examination of Bruch’s membrane at the 

electron microscopic level did not show more breaches. The reason for these results may 

be peculiar to the RCS rat as attempts to induce VCs or retinal dysfunction with echistatin 

in both Long Evans and congenic RCS rats failed, even at higher doses, this was in 

accord with previous studies in rabbits with histology and ERG (Yang et al., 1996).

The difference may lie in echistatin blocking aspi which has been implicated in RPE 

phagocytosis of ECM fragments (Clegg et al., 2000). It is possible that by further 

interfering in the already compromised phagocytic capabilities of the dystrophic RCS 

RPE, echistatin may have destabilise the RPE in excess of the RCS pathology alone. This 

would explain why echistatin had no effect on non-dystrophic rats in this study.

4.4.3 Relevance Of Results To Human Diseases

The PEDF results are broadly in line with other studies in suggesting that PEDF may well 

be a possible treatment for human retinal diseases as this study has shown that it can be 

used to help control the vascular complexes found in the RCS pathology. PEDF is 

currently under FDA licence to GENVEC (Imai et al., 2005; Takita et al., 2003) to assess 

adenoviral vector expressing PEDF for human use. The echistatin result is more difficult
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to assess even with the possibility of damage to Bruch’s as there is a chance that it may 

be peculiar to the RCS model. Truncated echistatin analogues with greater specificity to 

specific integrins (Wierzbicka-Patynowski et al., 1999) may yet show promise with in 

vivo assay systems. Previous growth factor delivery studies have postulated that multiple 

factors would be required to protect retinas from retinal degeneration (LaVail et al.,

1998).

4.5 Cell Based Therapies
The injection of cell aggregates into the sub-retinal space within the retina offers a 

promising stratagem to treat retinal degenerative diseases. In this study the VC assay was 

applied to current cell based therapy technology in our laboratory (Coffey et al., 2002; 

Girman et al., 2003; Lund et al., 2001a; Sauve et al., 2002). It had been noted previously 

that sub-retinal application of cells could change the vascular network in the RCS rat 

(Seaton et al., 1994; Seaton and Turner, 1992) but advances in technology and a better 

knowledge of the underlying problems (Lund et al., 2003; Wang et al., 2003) made this 

study necessary to quantify the vascular-changes inherent in cell based therapy.

4.5.1 The ARPE19 Cell Line

One of the most important aspects of cell-based therapies would be to use a cell source 

that is safe, easily obtainable and well defined in how it works. For these studies the 

human ARPE19 cell line was used (Kanuga et al., 2002) as they had been extensively 

characterised and had the advantages of being safe and easily available. ARPE19 cells 

had formed the basis of several previous studies with known efficacy (Coffey et al., 2002; 

Lund et al., 2001a; Wang et al., 2005b). As these cells constituted xenografts, 

immunosuppressant cyclosporine A (Novartis, Basel) was required to ensure that the cells 

were not rejected. The initial results of this part of the study were very startling in that 

there were no vascular complexes present at all at four months, at first this was thought to 

be an error but repetition of the experiment gave the same result. The presence of the 

ARPE19 cells had totally stopped the development of vascular complexes, throughout the 

entire retina while untreated controls and sham retinae were identical to the baseline 

studies (with identical immunosupression). This protection may be due to preservation of 

photoreceptors, which are known to be preserved by ARPE19 transplantation (Lund et 

al., 2001a) or production of growth factors (Kanuga et al., 2002; Wang et al., 2005b).
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4.5.2 Timing Of Transplantation

The three other experiments explored the issue of timing of application and the duration 

of the ARPE19 efficacy. These comprised short duration (5 weeks) post application, long 

duration (6 months post application) and a short duration but late application (applied at 3 

months with 4 week duration).

These experiments showed that the cell based therapy with ARPE19 cells had a transient 

beneficial effect, which very much depended on early application, probably before 

significant photoreceptor loss had occurred. These findings were very much in accord 

with previous findings from our laboratory (Coffey et al., 2002; Lawrence et al., 2000; 

Lund et al., 2001a; Lund et al., 1997) and others (Bressler, 2002). One month after 

application, pigmented cells were visible on the vasculature without apparently causing 

lasting damage These cells were clearly caused by the tranasplant as both untreated and 

shams at this time-point did not exhibit pigmented cells. This was unexpected as we had 

assumed that pigmented cells attached to vessels formed VCs but that may be specific to 

the extracellular environment. As cell-specific antibodies were not available in this study 

we could not distinguish between donor or recipient cells. This did show that introducing 

cells into the subretinal space will result in abnormal cellular migration of pigmented 

cells, which are not necessarily detrimental to the retinal anatomy as two months later 

they were not present. The late treatment-short timescale experiment showed that by 

providing the cell-based therapy too late, it is possible to make the situation even worse 

than if no treatment was given. This result is important for consideration with human 

patients as it shows that even if cell-based therapies provide an effective treatment, 

incorrect application could be detrimental to patient vision.

4.5.3 Integration Of The Cells?

The short duration experiment was particularly interesting in that it appeared to show 

pigmented cells migrating along blood vessels without causing permanent damage as that 

would have shown up in the standard VC assay of three month survival retinae. There 

were no signs of inflammatory cells in the ventral retina so it is unlikely that there was 

significant clearance by inflammatory cells. While the subretinal space is known to be an 

immune privileged site (Streilein et al., 2002) this depends on the maintenance of the 

BRB (Essner et al., 1980; Saishin et al., 2003), which cannot be guaranteed in cases of 

retinal degeneration (Bok, 2005) where vascular leakage is an early occurrence (Villegas- 

Perez et al., 1998; Zambarakji et al., 2005). The long term experiments showed that the
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RCS pathology eventually overcame the treatment (probably due to rejection of the 

xenograft (Del Priore et al., 2003)) but the progress of VC development had been slowed. 

This treatment also gave an indication of the area of the transplant as is clearly seen in 

figure 3.3.3.

4.5.4 Implications For Treatments

These experiments have several implications for treatment of human retinal diseases, 

firstly that cell-based therapy is promising strategy for these diseases but it is key that 

treatment take place as early as possible. Introducing cells into cases of advanced retinal 

degenerations would appear to have the effect of placing cells into an environment that is 

too hostile to support their survival let alone integration. The cells would be confronted 

with too many extracellular signals directing cells towards apoptotic cell death and be at 

best ineffective (Travis, 1998). Another consideration should be the age of donor cells as 

aged RPE cells may not be healthy (Boulton et al., 2004), secondly consideration should 

be given to the health of aged recipient retinas.

The effects of a transplant can be expected to extend out beyond its area of distribution, 

but much work remains to be done to extend the therapeutic time-scale of the effects. The 

ARPE19 cell line in its present form is unlikely to be used for human trials but 

modification of the cell line (Kanuga et al., 2002; Lund et al., 2001a; Turowski et al., 

2004; Wang et al., 2005b) or the use of different cell types may well take this strategy 

further (Lawrence et al., 2004; Lawrence et al., 2000; Lund et al., 2003).

4.6 Future Directions
There are several areas covered in this study that could be taken further with the aim of 

improving the retinal vasculature in a photoreceptor degeneration model. The RCS rat is a 

good model for testing proof of principle in treating retinal diseases but it should be 

supplemented with additional models before moving forward to human trials.

4.6.1 Pharmaceutical Intervention

The VC assay was designed to test candidate anti-angiogenic molecules in vivo and to 

quantify the results. This system could be used for dosage and long-term survival studies 

allowing assessment of a large range of data on candidate molecules. Testing of candidate 

molecules for pharmaceutical intervention requires a model that has as few extraneous 

complications or contaminations as possible. A problem that occurs in models involving
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tissue damage is that the treatment may be modulating wound healing and not be working 

on vascular changes alone (Semkova et al., 2003; Stitt et al., 2004).

4.6.2 Cell-Based Therapies

This system has shown that it is flexible enough to show the effects of cell-based 

therapies. Different cell types such as stem cells and Schwann cells (Lawrence et al., 

2004; Lawrence et al., 2000) could be tested. Dosage studies could be conducted to 

determine fully the effects of this strategy on controlling the retinal vasculature. This 

should also include methods of differentiating the host cells from the donor cells so that 

the extent of the donor cell coverage could be determined. Immunocytological analysis of 

sectioned retinae could be used in conjunction with the VC assay to identify changes in 

the inner retina for comparison with the flat-mounted retinal maps. This could be done in 

addition to FA to determine vascular leakage (Zambarakji et al., 2005). Recent advances 

in this technology include moves to assess visual function (Del Priore et al., 2004; Lund 

et al., 2003; McGill et al., 2004; Sauve et al., 2004) and dissection of relative cone and 

rod contributions to functional vision (Girman et al., 2005) after application as well as a 

greater understanding of immunological factors affecting retinal diseases (Kijlstra et al., 

2005; Streilein et al., 2002). Cell based therapies are more suited to growth factor 

delivery as gene therapy is limited by the payload of the constructs currently used making 

cell based therapy the only strategy capable of delivering multiple growth factors from a 

single application.

4.6.3 Gene Therapy

Gene therapy has the potential to correct retinal degenerative disorders with a defined 

genetic component, making it one of the most exciting future strategies available to 

combat human retinal diseases (Imai et al., 2005). Animal models have already provided 

proof of principle for correction of models with known human orthologues (Acland et al., 

2001; Vollrath et al., 2001). Retinal vascular disorders are also being targeted (Akiyama 

et al., 2004; Bainbridge et al., 2002; Bainbridge et al., 2003) with the aim of reducing the 

vascular components of retinal diseases. As the number of genes identified in retinal 

degenerations grows the possibilities for gene therapy improve, online databases such as 

RetNet (Daiger et al.) keep track of the latest advances. Gene therapy is not without its 

disadvantages as concerns about safety and controlling dosage delivered still need to be 

worked out. Recent advances in AMD research may offer hope to the widest range of
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patients with complement H polymorphism identified in nearly half of all AMD patients 

(Edwards et al., 2005; Haines et al., 2005; Klein et al., 2005), by far the most significant 

grouping of genes yet discovered.

4.7 Conclusions
Vascular pathology accompanies photoreceptor degeneration in the RCS rat. It progresses 

in a manner that is amenable to quantification and can be modified by pharmaceutical 

intervention and other strategies such as cell-based therapies. In any treatment designed 

to modify the course of retinal degeneration the changes occurring in the vascular 

complexes need to be addressed.
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Appendix I Abbreviations

AAV adeno-associated virus
ABCR ATP-binding cassette transporter
ADAMs a disintegrin and metalloproteinase domain
AMD age-related macular degeneration
AOI area of interest
AREDS age-related eye disease study
ATP adenosine triphosphate
BRB blood-retinal barrier
BSA bovine serum albumen
BSE bovine spongiform encephalopathy
CAM chicken chorioallantoic membrane
CCD charged coupled device
cGMP cyclic guanosine monophosphate
CNTF ciliary neurotrophic factor
CNV choroidal neovascularisation
COOH carbon, oxygen, oxygen, hydrogen
cSLO confocal scanning laser ophthalmoscopy
DAB diaminobenzidine
DHA docosahexaenoic acid
DMEM Dulbecco’s modified Eagle medium
DVCs development of vascular complexes
ECM extracellular matrix
EM electron microscopy
EPC-1 early population doubling level cDNA-1 (PEDF)
ERG electroretinogram
FA fluorescein angiography
FAK focal adhesion kinase
FCS foetal calf serum
FDA Federal Drug Administration
FFB Foundation Fighting Blindness
FGF fibroblast growth factor
FITC fluorescein-isothiocyanate
GAS6 growth arrest specific gene6
Gb gigabyte
GCL ganglion cell layer
GDNF glial cell line-derived neurotrophic factor
GFP green fluorescent protein
HIV human immunodeficiency virus
HRP horseradish peroxidase
IgG mouse immunoglobulin
INL inner nuclear layer
iNOS inducible nitric oxide synthase
IPL inner plexiform layer
IPM inter photoreceptor matrix
IRBP retinoid binding protein
LCA Leber Congenital Amaurosis
NADPH-d nicotinamide adenine dinucleotide phosphate-diaphorase



nNOS neuronal nitric oxide synthase
NO nitric oxide
OFL optic fibre layer
ONL outer nuclear layer
OPL outer plexiform layer
OS outer segments
P23H Pro23His rat
P25 postnatal day 25
PBS phosphate buffered saline
PC personal computer
PDE phosphodiesterase
PDT photodynamic therapy
PEDF pigment epithelial derived factor
RCS Royal College of Surgeons
rd retinal degeneration mouse (C57Bl/6J-rd le)
rds retinal degeneration slow mouse
RGD Arg-Gly-Asp attachment site
RGS regulators of G protein signalling
RP retinitis pigmentosa
RPE retinal pigmented epithelium
SDS sodium dodecyl sulfate
SEM standard error of the mean
SLO scanning laser ophthalmoscopy
T1H2 transplantation at 1 month, harvested at 2 months
T1H3 transplantation at 1 month, harvested at 3 months
T1H7 transplantation at 1 month, harvested at 7 months
T3H4 transplantation at 3 month, harvested at 4 months
VC vascular complex
VEGF vascular endothelial growth factor


