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You do it fo r  L ove .

You give of your heart, your love, and your life,

To a grandparent, parent, husband or wife.

You dress and you feed them, you clean up the mess. 

For months, maybe years, you give of your best.

At times you can laugh, more often there's tears,

As you watch them decline year after year.

So often you feel like there's nobody there,

No one to talk to, there's no one who cares.

Then late at night, you'll sit and just cry,

"It all seems so hopeless, so why do I try?"

And then comes a voice, so soft and so clear,

You look all around you, but no one is near.

Again comes the voice, as soft as can be,

"You know why you try, just look and you'll see." 

"You do it for love, you know that is true."

"This love that you have, will help see you through." 

"You're not alone, there's someone who'll share." 

"The burden you carry, I'll help you bear."

Then in the darkness, a warmth you can feel,

A soft gentle presence, you know it is real.

As you drop off to sleep, the angels above,

Echo the words...."You do it for love."

© 1997, Jerrold L. Ham.

For all the carers.
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ABSTRACT

Family based linkage studies have confirmed that part of chromosome lq23.3 

contains a susceptibility gene for schizophrenia. This region was investigated by 

tests of allelic and haplotypic association in order to fine map a specific gene in the 

lq23.3 region. Previously published studies claimed that the genes RGS4 and 

CAPON on lq23.3 were associated with schizophrenia. For this research thesis 

multiple markers were genotyped at the RGS4 and CAPON loci in a London based 

case control sample, no evidence for association was found. Therefore further fine 

mapping was carried out in the region between the RGS4 and CAPON genes. Allelic 

and haplotypic associations with schizophrenia were found with three microsatellite 

and four SNP markers within the serine threonine kinase (UHMK1) gene. A 

replication study using an Aberdeen based case control sample also found 

statistically significant evidence of allelic and haplotypic association between 

UHMK1 and schizophrenia. Re-sequencing of the UHMK1 gene was carried out in 

those individuals who had inherited alleles and haplotypes associated with 

schizophrenia. Three genetic variants were found. Genotyping of the whole case 

control sample showed that these changes were not associated with schizophrenia. 

The previously reported associations between schizophrenia and RGS4 as well as 

CAPON could possibly be explained by linkage disequilibrium between UHMK1 

and both CAPON and RGS4. Alternatively there could be two or even three 

susceptibility genes within the 700 Kb region. At present no potential aetiological 

base pair changes have been detected in any of the three genes. UHMK1 is known to 

be highly expressed in regions of the brain implicated in schizophrenia and was 

found to be significantly down regulated in mice treated with the antipsychotic drug 

Clozapine. Further confirmation of the involvement of this gene in schizophrenia is 

needed followed by further efforts to detect genetic variation in or next to the gene 

which has an effect on expression and function of UHMK1.
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AIMS OF THESIS

• To screen a region of chromosome 1 that had previously been implicated by 

genetic linkage studies in families. The method employed would use the case 

control approach to detect evolutionarily determined linkage disequilibrium 

to fine map a novel schizophrenia susceptibility gene.

• To confirm or fail to replicate association with two genes previously 

implicated as involved in schizophrenia susceptibility. These genes were 

Regulator of G-protein Signalling 4 (RGS4) and Nitric Oxide (neuronal) 

Synthase 1 Adaptor protein (NOS1AP previously known as CAPON) present 

in the lq23.3 susceptibility region.

• To re-sequence the exons, the splice site junctions, promoter as well as the 5’ 

and 3 ’ untranslated regions (UTRs) in cases selected for showing association 

with UHMKI in order to find any potential aetiological base pair changes.

• To genotype any potential aetiological base pair changes in a large case- 

control sample in order to cofirm or reject involvement in genetic 

susceptibility to schizophrenia.

• To replicate the association in UHMKI in an independent Aberdeen case- 

control sample.
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1.0 INTRODUCTION
Schizophrenia is a common disorder with a lifetime prevalence of approximately 1% 

of the world population (SCZD [MEM 181500]), although it can be up to 5% if 

schizophrenia spectrum disorders are included (Robert Cancro 2005). Schizophrenia 

puts a huge burden on healthcare through out the world, for example in the United 

States it accounts for approximately 2.5% of health care cost (Bromet et al. 1999).

Schizophrenia is a collection of psychotic mental disorders consisting of variable 

clusters of symptoms. The variability of these symptoms is also associated with 

considerable prognostic variation. There is no characteristic neuropathology, such as 

neurofibrillary tangles that are found in Alzheimer disease, but abnormal brain 

morphology has been reported. Schizophrenia is mainly characterised by a 

disruption of processes of thought, perception, behaviour and reasoning as well as 

social and occupational deterioration. People affected with schizophrenia have 

difficulty differentiating what is generated by their illness and distinguishing it from 

reality.

In about a third of cases the disorder is chronic, perhaps with short periods with 

relative improvement but evidence of continuous deterioration. In a further one third 

there is moderate recovery between episodes with treatment, whilst in a third are 

treatment responsive and can also spontaneously remit without treatment. The onset 

can be sudden and insidious, and because of the relative early age of onset, 

schizophrenia is responsible for very high levels of morbidity. The mean age of 

onset of the disease is about 23 for males and a little later in females with a mean 

age of onset being 27.

A study ranking the severity of disabling health conditions in 14 countries, ranked 

Schizophrenia third overall, just behind quadriplegia and dementia (T Bedirhan 

Ustun et al. 1999). The detrimental effects of schizophrenia are experienced very

13



much by the families and carers of schizophrenics in terms of the emotional and 

financial support required and also the social stigma that it brings.

1.1 H ISTO R IC A L BAC K G RO UN D

The term “Schizophrenia” is less than 100 years old; however the disease itself has 

thought to have accompanied mankind through out its history. The disease has been 

known about since the ancient times, written documents have been found that 

identify schizophrenia as far back as ancient Egypt and India, in the second 

millennium before Christ (Okasha 1999). The evidence included many of the clinical 

symptoms commonly used to describe schizophrenia today, such as depression, 

hearing voices and thought disturbances, which were described in detail in the Book 

of Hearts of the Eber papyrus and also the Indian Ayurveda (Eve C. Johnstone et al. 

1998), as well as Shakespeare and the Greeks.

In the past many cultures have attributed psychosis to possession by evil sprits. This 

idea is still common in parts of Africa and all over the world. Treatments varied 

from the basic exorcisms to the dangerous and lethal practice of drilling holes in the 

skull to release the spirits.

The first clinically characterised cases of schizophrenia were described separately in 

1809 by two physicians, John haslam (1764-1844) In England and Phillipe Pinel 

(1745-1826) in France. In 1851, Falvet first described schizophrenia as a “Folie 

Circulaire” or cyclical madness. Twenty years later Hecker coined the term 

“Hebephrenia” or a silly undisciplined mind. In 1868 Kahlbaum documented both 

catatonic and paranoid disorders. Emil Kraepelin (1856-1926) combined these 

disorders into a single disease, which he called dementia praecox. There were four 

subtypes -

1. Simple, marked by slow social decline and withdrawal.

2. Paranoid, defined by persecutory delusions and fear.

14



3. Hebephrenic, marked by rambling and incoherent speech and incongruous affect.

4. Catatonic, characterized by a severely limited movement and expression.

The subtypes of schizophrenia in most diagnostic systems remain much the same 

today. Kraepelin believed that dementia praecox was primarily a disease of the 

brain, and particularly a form of dementia. Kraepelin named the disorder 'dementia 

praecox' (early dementia) to distinguish it from other forms of dementia (such as 

Alzheimer's disease) which typically occur relatively late in life. He used this term 

to emphasise the deterioration in mental abilities and the early age of onset of the 

disease. The Swiss psychiatrist, Eugen Bleuler, coined the term, "schizophrenia" 

(Split-mind) in 1911 to describe the fragmented thinking of people with the disorder. 

He was also the first to describe the symptoms as "positive" or "negative." Bleuler 

identified specific primary symptoms of schizophrenia to develop his theory about 

the internal mental schisms of patients. These symptoms included associational 

disturbances, especially looseness, affective disturbances, autism and ambivalence, 

summarised as the four A’s: associations, affect, autism and ambivalence.

More recently attempts have been made to classify the disease by subdividing the 

symptoms into groups of “positive” and “negative” effects. Positive symptoms are 

described as an exaggeration of normal functions and the presents of something that 

should be absent, where negative symptoms were the loss of normal function 

possibly due to neuronal loss (Andreasen 1995). A list of positive and negative 

symptoms can be seen in Table 1:1. However this categorisation is partially 

unsuccessful because many cases of schizophrenia have an onset characterised by 

positive symptoms which later change to negative symptoms.
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Table 1:1 Examples of Positive and Negative Symptoms.

Positive symptoms Negative symptoms

Hallucinations Alogia (inability to speak)
Delusions Affective blunting
Disorganised Speech/ formal thought 
disorder

Anhedonia (inability to experience 
pleasure)

Disorganised/bizarre/Catatontic behaviour Avolition (lack of desire, motivation or 
persistence)

Bleuler changed the name to schizophrenia as it was obvious that Kraepelin’s name 

was misleading as the illness was not a dementia (it did not always lead to mental 

deterioration) and could sometimes occur late as well as early in life.

Since then, both Kraepelin’s and Bleuler’s categories of schizophrenia based on 

prominent symptoms have been further refined and continually updated by modem 

psychiatrists who have used operational criteria to improve the diagnosis of the 

schizophrenias in a reliable and valid diagnostic method. Nowdays the diagnosis of 

schizophrenia is as valid and reliable as most medical diagnoses and the operational 

criteria are both sensitive and specific.

1.1.1 DIAGNOSIS OF SCHIZOPHRENIA.

Modem diagnostic schemes were developed out of the earlier nosological theories of 

Kraepelin and Bleuler. The third edition of Diagnostic and Statistical Manual of 

mental disorders of the American Psychiatric Association’s (DSM-III), diagnostic 

protocol is based on defining which category the patient fell into, disorganised, 

catatonic, paranoid, residual and undifferentiated. The first three categories were 

originally proposed by Kraepelin. These classifications are still employed in the 

DSM-IV (APA 1994) and also the International Classification of Disease, ICD-10 

(WHO 1992). Both diagnostic schemes are comparative or operationally defined, 

taking a phenomenological and natural history approach to the symptoms and 

defining schizophrenia based on a clustering of clinical signs, symptoms and 

prognosis. Particular emphasis is placed on inappropriate affect and mood 

incongruent psychotic symptoms as a defining feature. DSM-IV and ICD-10 criteria
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have been found to be as reliable and valid as diagnostic instruments as those used in 

other branches of medicine. Below are (section 1.1.1.1) examples of the 

classifications of schizophrenia that the diagnostic protocols help to determine.

1.1.1.1 SUBTYPES OF SCHIZOPHRENIA

Disorganized Type (formally known as hebephrenic).

A form of schizophrenia characterised by severe disintegration of personality 

including disorganised speech and childish mannerisms and bizarre 

behaviour; they tend to have an earlier age of onset, usually becomes evident 

during puberty; the most common diagnostic category in mental institutions, 

it has an unremittng course with poor prgnosis.

Catatonic Type

This subtype features gross psychomotor disturbances, i.e., stupor, 

negativism, mutism, rigidity, waxy flexibility, excitement, or posturing. They 

demostrate echolalia (repetition of words or phrases in a nonsensical manner) 

and echopraxia (mimicking the behaviours of others). Frequent fluctuation 

between these extreme physical states is common. During catatonic stupor or 

excitement, patients need careful supervision to prevent them from hurting 

themselves or others medical care is needed because of malnutrition, 

exhaustion, hyperpyrexia or self-inflected injury.

Paranoid Type

The paranoid type of schizophrenia is characterised by preoccupation with 

one or more delusions or more delusions of persecution or grandeur.

Common are delusions that there is a conspiracy against the patient. Patients 

with paranoid schizophrenia are typically tense, suspicious, guarded, 

reserved and sometimes hostile or aggressive, but some can conduct 

themselves adequately in social situations, in addition they tend to have they 

symptoms at an older age than do patients with catatonic or disorganised
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schizophrenia. One subtype of paranoid schizophrenia has a good prognosis 

enabling the patient to return to work with minamal drug treatment.

Undifferentiated Type

This type was originally designed as a catch-all category used when patients 

do not clearly fit into any one type, or fit into more than one type, this 

subtype is very common.

Residual Type

This type is commonly used when there is a history of an acute episode of 

schizophrenia, but at the time of presentation the patient does not manifest 

any of the associated psychotic or positive symptoms. However there is 

continued evidence for schizophrenia manifested in either negative 

symptoms or low grade symptoms. These may include odd behaviour, some 

abnormalities of thought processes, lack of volition and lack of self care.

Once the individual has been fully accessed and diagnosis has been made, a 

treatment program would need to be put into place, to try and resolve the symptoms. 

Once the symptoms are safely under control the subject may be reintegrated back 

into society with the correct support structure; this will be briefly discussed next.

1.1.2 TREATMENT

Although antipsychotic treatments are the mainstay of the treatment for 

schizophrenia, research has found that psychosocial interventions such as 

behavioural therapy and cognitive therapy and psychotherapy; can augment the 

clinical improvement. Most patients with schizophrenia benefit more from the 

combined use of antipsychotic drugs and psychosocial treatment than from either 

treatment alone. This is sanctioned in the UK national institute of clinical excellance 

guidelines which recomends ten cognitive therapy sessions for every in patient 

admission.
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1.1.2.1 HOSPITALISATION

Hospitalisation is induced during relapses. In-patient treatment can help in the 

stabilisation of the patient with medications, hospitalisation can ensure the patients’ 

safety because of their potential suicidal or homicidal tendencies. Also provide basic 

needs such as food, clothing and shelter which some patients are unable to maintain 

for themselves. This should be carried out for their own protection. The role of the 

hospital and community team is to plan specific treatment strategies for the 

individual and to aid in helping the individual to rehabilitate and adjust, also to 

educate the patients and the family about schizophrenia.

The severity of the patients’ illness should determine the length of admission rather 

then the availability of outpatient treatment or community care. After care for the 

patient should be organised whilst at hospital including day-care centres and home 

visits by nurses, occupational therapists, social workers and counsellors. Patients can 

often remain out of hospital and the quality of their daily lives can steadily improve 

(Benjamin J. Sadock et al. 2003).

1.1.2.2 PHARMACOTHERAPY

Antipsychotic medications were introduced in the early 1950s and have 

revolutionised the treatment of schizophrenia. Some medications only ameliorate the 

symptoms and do not seem to alter the out come. Other antipsychotics such as 

clozapine and risperidone seem to hold back or reverse the disease better than others. 

The antipsychotic drugs include two major classes: dopamine receptor antagonists 

and serotonin-dopamine antagonists (SDAs).

1.1.2.2.1 DOPAMINE RECEPTOR ANTAGONISTS

Dopamine receptor antagonists such as chlorpromazine and haloperidol, are 

effective forms of treatment of schizophrenia, particularly for the positive symptoms 

(e.g. delusions see Table 1:1) however, these drugs have two major short comings.
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Firstly not all respond to treatment enough to return to normality and many still 

deteriorate. Second the dopamine antagonists were associated with a number of 

adverse side effects, such as akathisia and parkinsonian like symptoms of rigidity 

and tremor. The potential serious side effects included tardive dyskinesia and 

neuroleptic malignant syndrome.

1.1.2.2.2 SEROTONIN-DOPAMINE ATYPICAL ANTIPSYCHOTICS

The atypical antipsychotics produce minimal or no extrapyramidal symptoms, 

interact with different subtypes of dopamine receptors than do the standard 

antipychotics and affect both the serotonin and glutamate receptors. They are more 

effective in treating negative symptoms of schizophrenia (e.g. withdrawal see Table 

1:1) and also getting rid of delusion. Atypical antipsychotics, include risperidone, 

clozapine, olanzapine, sertindole, quetiapine and ziprasidone. These drugs have 

replaced the “typical” dopamine receptor antagonists as the drugs of first choice for 

treatment of schizophrenia.

Finding the correct drug to use to treat an individual with schizophrenia, is not 

strictly straightforward and depends on a number of factors, such as the method of 

medication (tablet or injection), unwanted side effects, and the effectiveness of the 

drug (see Figure 1:1).
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At each point drug treatments are chosen on the basis of:

• Past response

• Side effects

• Patient preference

• Planned route of administration

Figure 1:1 Pharmacological treatment of schizophrenia.
GROUP 1: Conventional antipsychotic medications 
GROUP 2: Risperidone 
GROUP 3: Clozapine
GROUP 4: New antipsychotic medications—olanzapine, sertindole, quetiapine

Intolerable 
side effects

Adequate response; /  
no intolerable side effects

Inadequate response 
of positive symptoms

Continue

A dequate response; 
no intolerable side effects

Inadequate response 
of positive symptomsIntolerable 

side effects

Inadequate response 
of positive symptoms

Intolerable 
side effects

A dequate response; 
no intolerable side effects "

Continue

Continue Go to B

Go to AChoose a  different medication 
from group 2, 3, or 4

Go to A; consider ECT; 
consider recommendations for 

treatm ent-resistant patients

Choose a  medication from 
group 1, 2, or 4

Choose a  different 
medication from group 1 

(if a  medication from group 1 
was not chosen  first),

2, 3, or 4

C hoose a different medication from 
group 1, 2, or 4; if extrapyramidal 
side effects, tardive dyskinesia, or 
increased prolactin is a  problem, 

consider group 4

practice guideline for the treatment of patients with schizophrenia (Lehman et al. 

1997; Benjamin J. Sadock et al. 2003)
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1.2 A E T IO L O G Y

The causes of the schizophrenias are not fully understood but some factors including 

biological, psychological and sociological are known to be relevant in the aetiology. 

Genes have been consistently shown to be an important biological risk factor for the 

development of schizophrenia. Further, schizophrenia-like psychoses may develop 

as a result of demonstrable organic diseases (Johnstone et al. 1987). Head injuries 

may also result in a schizophrenia-like psychosis and some types of epilepsy are 

associated with schizophrenia.

Numerous attempts have been made to implicate different environmental risk factors 

as possible causes for the disease including winter-spring season of birth, perinatal 

or obstetrical complications, urban birth and rearing, and viral infection. However, 

none of these factors have showed consistent or large effects on disease’s risk (Done 

et al. 1991). The most consistent risk factor for schizophrenia is a genetic 

susceptibility.

1.2.1 BRAIN MORPHOLOGY OF SCHIZOPHRENIA

Schizophrenia is not only characterised by psychopathological features but also by 

physiological and anatomical changes. Brain changes, first convincingly 

demonstrated following the introduction of non-invasive imaging by Johnstone et al 

(1976) have been consistently found to include the finding of enlarged ventricular 

spaces and reduced cortical volumes particularly involving temporal lob structures 

(Shenton et al. 1992). A meta-analysis of regional brain volumes found differences 

between normal controls and schizophrenic patients. Patients had a smaller cerebral 

volume, a bilaterally reduced volume of medial temporal lobe structures and a 

greater ventricular volume (Wright et al. 2000).

More recently, positron emission tomography scans suggested an activation 

hypofrontality (Liddle et al. 1992). Thompson et al. (2001) have shown accelerated 

gray matter loss in very early-onset schizophrenia with MRI. Repeated MRI scans 

over 5 years found that the deficits progressed anteriorly into temporal lobes,
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engulfing sensorimotor and dorsolateral pre-frontal cortices and frontal eye fields in 

some schizophrenics. Kovelman and Scheihel (1984) also found abnormanlly 

arranged pyramidal cells in the hippocampus (Kovelman et al. 1984).

The histological findings in schizophrenia are less convincing but include aberrantly 

located or clustered neurons particularly in lamina II of the entorhinal cortex (Jakob 

et al. 1986) and in the neocortical white matter (Akbarian et al. 1996). These 

abnormalities perhaps are indicative of an early neurodevelopmental anomaly 

affecting neuronal migration, survival and connectivity. Although there have been 

several positive reports of the above findings they should not be accepted without 

question (Harrison et al. 2005). Other findings include the cell bodies of pyramidal 

neurons in the hippocampus and in the neocortex are smaller (Zaidel et al. 1997; 

Pierri et al. 2001).

In summary, the neuropathology of schizophrenia has been suggested to consists of 

alterations in various neural microcircuitry ranging from the dendritic tree to the cell 

body and axon to the synaptic terminal (Harrison et al. 2005). Some investigators 

have tried to bring together all the neuropathological findings by explaining 

schizophrenia as a disorder of the synapse (McGlashan et al. 2000; Frankie et al. 

2003).

The development of the MRI led to more definitive findings of brain abnormalities 

in schizophrenics. A review was carried out by Shenton et al (2001) on over 193 

MRI studies between 1988 and august 2000. This showed multiple brain regions 

displayed morphological abnormalities in schizophrenics. These include ventricular 

enlargement in 73% of studies, also a preferential involvement of the medial 

temporal lobe structures 74%, which include the amygdala, hippocampus, and the 

parahippocampal gyrus, and neocortical temporal lobe regions (superior temporal 

gyrus) which forms the limbic system, this is important because it controls emotions. 

There was additional evidence that the hippocampus contained disorganised neurons 

(Benjamin J. Sadock et al. 2003). When the gray and white matter of the superior
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temporal gyrus was combined 67% of studies reported abnormalities. There was also 

evidence for frontal lobe abnormalities in 59% of cases and parietal lobe 

abnormalities in 60%. In addition there was strong evidence for subcortical 

abnormalities but more equivocal evidence for cerebellar abnormalities in 31% of 

the studies reviewed (Shenton et al. 2001).

Figure 1:2 A comparison a normal brain (left) and a brain and that from a schizophrenic 
patient (right).

Figure 1:2 shows a “coronal 1.5mm slice of a normal control (left panel) and a 

schizophrenic patient (right panel). Note the increased Cerebrospinal fluid (CSF) 

(black) in the left Sylvian fissure in the patient image (right panel, viewers right), as 

well as the increased CSF in the left temporal horn which surrounds the amygdala 

(see white arrow) and tissue reduction in the left superior temporal gyrus. The lateral 

ventricles are also enlarged in the patient image as can be seen by the black CSF 

regions in the centre of the image. Contrast this with the slice at approximately the 

same neuroanatomical level for the normal control (left panel)” (Shenton et al.

2001).

The basal ganglia and cerebellum have also been of great theoretical interest for at 

least two reasons. First, many patients with schizophrenia display odd movements, 

even in the absence of medication induced movements such as tardive dyskinesia. 

The odd movements include an awkward gait, facial grimacing, and stereotypes.
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Since the basal ganglia and cerebellum are involved in the control of movement, 

dysfunction in these areas are implicated in the pathophysiology of schizophrenia.

Second, many neurological disorders can have psychosis as an associated symptom. 

Movement disorders involving the basal ganglia (like Huntington’s disease) are the 

ones most commonly associated with psychosis in affected patients. Furthermore the 

basal ganglia and cerebellum are reciprocally connected to the frontal lobes. There 

are inconclusive reports about abnormalities in the basal ganglia; many studies have 

shown an increase of D2 receptors in the caudate, the putamen and the nucleus 

accumbens. However, it is not known whether this is due to the disease or due to the 

effect of medication.

The timing of when these abnormalities occur is not known, but there is evidence 

that a subset of brain abnormalities may change over the course of the illness 

(Shenton et al. 2001). One explanation is that the abnormalities are 

neurodevelopmental in origin, but unfold later in development and it is theorised that 

excessive pruning of synapses occurs during development and is abnormal in 

schizophenia. Thus setting the stage for the development of the symptoms 

contributing to schizophrenia.

The most plausible synthesis of the genetic, neuropathological and epidemiological 

evidence outlined briefly above is that schizophrenia is a chronogeneic 

neurodevelopmental disorder (Weinberger 1995) in which genetically timed 

abnormalities are expressed during development.

1.3 G EN ER A L G ENETICS

The evidence for genetic transmission of schizophrenia is compelling. The 

proportion of variance due to genetic effects of the “heritability” of the disease has 

been calculated to be about 81% (Sullivan et al. 2003).
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1.3.1 FAMILY STUDIES
The seminal work of Gottesman (1991) calculated the lifetime morbid risk of 

schizophrenia corrected for age. Which show that the closer the relation is to the 

person with schizophrenia the more likely the individual is to develop schizophrenia.

Parents

Offspring of dual 
matings

Monozygotic twins

| Dizygotic twins

Siblings with 1 
'schizophrenic parent

Siblings

Half siblings

, nieces

Uncles, aunts
First cousins (third 

degree)
H S pouses of patients 

General population
 1------- 1-------h

10 15 20 25 30 35 40

Lifetime risk of developing schizophrenia: %
45 50

Figure 1:3 Lifetime risk of developing schizophrenia Gottesman (1991).

Family studies have provided an important validation of Kraepelin’s original 

formulation of dementia praecox and manic depressive psychosis as separate 

disorders. These studies have repeatedly shown that biological relatives of parents 

with schizophrenia have increased risk of schizophrenia and schizophrenia spectrum 

disorders, whereas biological relatives with parents with major affective disorders 

have an increased risk for the affective disorder. The separation is not complete but 

it is supportive of the two disorders as independent disease entities.



1.3.2 TWIN STUDIES

Early studies (conducted before world war II in germany) found concordance in 

monozygotic twins to be in excess of 65%; these investigations were criticised for 

having potential sources of bias. The figures for dizygotic twins range from about 

6% to 20%. Further studies performed more recently have reproduced the finding of 

greater concordance in monozygotic versus dizygotic twins. The Maudsley Twin 

Series of Gottesman and Shields have been reassessed using a variety of modem 

methods and produced an estimate of 67% concordance for monozygotic twins 

(Farmer et al. 1984; McGuffin et al. 1984).

Finally, five recent systematically ascertained studies using modem diagnostic 

criteria report monozygotic (MZ) concordances estimated at 41-65% compared with 

dizygotic (DZ) concordances of 0-28%, resulting in an estimated broad heritability 

of 85% (Cardno et al. 2000).

1.3.3 ADOPTION STUDIES

Classic studies looked at parents suffering from schizophrenia who had their 

offspring adopted. The rates of illness in the adoptees of these psychotic probands 

was compared to that in adoptees of non-psychiatric controls.

The increased rates of illness in the children of schizophrenic probands conclusively 

showed that transmission of the disease within families was under genetic control 

rather than the environment (Gottesman et al. 1967; Gottesman et al. 1976).

A study looking at the effect of being raised by a psychotic adoptive parent was 

undertaken by (Wender 1974). In this cohort study, adoptees with schizophrenic 

biological parents raised by normal adoptive parents were compared with a group of 

adoptees bom to normal parents and adopted by parents who subsequently became 

schizophrenic. The adoptees who had schizophrenic biological parents had high 

rates of spectrum disorders, whereas those who had normal biological parents had 

low rates.
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1.4 G EN ETIC  TRA N SM ISSIO N  M O DELS

Family, twin and adoption studies demonstrate a genetic contribution to the 

aetiology of schizophrenia. Once familial aggregation with a probable genetic 

aetiology has been established for a trait, one may consider using segregation 

analysis to evaluate whether major or minor genes contribute to the expression of the 

phenotype. Segregation analysis is one of the most established methods for this 

purpose. It aims to determine the transmission pattern of the trait within families 

and to test this pattern against predictions from specific genetic models. Maximum 

likelihood statistics are used to compare likelihoods for an observed pattern 

occurring by chance (null hypothesis) to a maximum likelihood under a particular 

hypothesis.

Segregation analysis for schizophrenia using the simple model of Mendelian 

inheritance with high penetrance has been shown to be incompatible with the 

observed familial recurrence rates (Winokur et al. 1982; McGue et al. 1989a;

McGue et al. 1989b) while the purely environmental models cannot adequately 

explain the results of adoption studies (Kety 1983).

More plausible models, which might fit the data, are the generalized single major 

locus model and the multifactorial polygenic model. The relative validity of the 

different models has been investigated in several studies. The findings of many of 

these have been reviewed extensively by Baron (1986a) and Baron (1986b).

1.4.1 SINGLE MAJOR LOCUS (SML) MODEL

This model is often based on the assumption that the inheritance of a disorder is a 

consequence of a single locus with two alleles (Elston et al. 1970). The concepts of 

reduced penetrance and phenocopies are introduced to account for the deviations 

from classical Mendelian inheritance. Several analyses demonstrated that the SML 

model was sufficient to correctly predict the data from twin and family studies 

(Slater 1971; Kidd 1973), while other analyses found it insufficient, (Baron et al. 

1982; Risch et al. 1984; McGue et al. 1985).
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1.4.2 POLYGENIC OR OLIGOGENIC MODELS

A polygenic (or oligogenic) model is one where two or more disease alleles at two 

or more distinct loci are needed before a disease is expressed. Such models can be 

used to explain the recurrence of many common diseases. However, methodology in 

the area is undeveloped. Further understanding of how two or more loci interact will 

depend on the accurate identification of each locus. The oligogenic model assumes 

that several genes may act additively, interactively or multiplicatively on the 

aetiology of the illness.

Risch (1990a) assessed the compatibility of multilocus models with the observed 

recurrence risks in schizophrenia and suggested that there should be multiplicative 

effects from at least three loci acting on the risk for this illness. However, Risch and 

others assume a single subtype of schizophrenia with an equal effect size from 

oligogenes in every individual. The evidence to date is incompatible with this 

assumption and therefore multiple models of transmission with heterogeneity in the 

oligogenes increasing susceptibility to schizophrenia are more likely.

1.4.3 MULTIFACTORIAL-POLYGENIC (MFP) MODEL

In this model, Falconer’s method of partitioning genetic liability has been widely 

adopted. In Falconer’s model, the trait is assumed to be the result of many genes 

that have additive effects and unspecified environmental factors the sum of which 

follows a normal distribution in the general population (Falconer 1965). The disease 

is manifested when the liability exceeds a certain threshold where all individuals 

above this point are affected and those below are normal. Relatives have a greater 

risk for a genetic disorder than that of the general population and their mean liability 

is higher. The closer the degree of relationship to the affected individual the greater 

the pre-existing liability the individual has. Since first degree relatives have 1/2 their 

genes in common with their affected relative, first degree relatives of affected will 

be 1/2 of the way between the mean for affected and the population mean. A new 

normal curve with the same variance is then plotted using the mean for first degree
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relatives. The threshold does not move, so the overlap of the threshold will give the 

probability of recurrence to first degree relatives of affected. As can be seen a 

greater proportion of the first degree relatives are affected compared with the general 

population, due to prior liability factors they have inherited.

Thres lold
First
Degree
Relatives

Normal
Population

Affected

Liability

This model has produced a good fit with the observed risk in several family studies 

of schizophrenia especially when environmental factors are taken into account 

(Gottesman et al. 1967; Kidd 1973; Rao et al. 1981; McGue et al. 1985) but it has 

also been rejected in several other studies (Matthysse et al. 1976; Baron et al. 1982; 

Tsuangetal. 1983).

1.4.4 MIXED MODEL

While early segregation analyses considered SML or polygenic models, more recent 

approaches have considered a mixed model in which the phenotype may be the 

result of a combination of these two (Lalouel et al. 1983).

1.4.5 OTHER MODELS

Other models include the two-locus theory in which the phenotype is the result of 

the interaction of two separate loci and a polygenic model with graduated gene
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effects to allow variable contributions to the liability from the different loci 

(Matthysse et al. 1979). Segregation analyses have produced controversial results 

among the different studies. This is mainly due to limitations of the genetic models 

examined as well as diagnostic uncertainties. Most of the models used did not take 

into account factors associated with schizophrenia such as genetic heterogeneity, 

assortative mating, reduced fertility, and social isolation. The limitations of the 

analytical methodologies are further compounded by reduced penetrance, 

phenocopies, diagnostic difficulties, sampling bias, ascertainment bias, mortality, 

variable age of onset and the lack of enough family data to estimate the large 

number of unknown parameters required to accurately model the complex trait. 

However, it is clear that schizophrenia is a complex disorder that does not show a 

clear pattern of Mendelian inheritance in all families. For example, both dominant 

and recessive transmission is plausible for different subtypes. Yet, further subtypes 

may be oligogenic. As for other common disorders, a mixture of different genetic 

and non-genetic subtypes is highly likely. Some of these subtypes may be 

influenced by the environment or by multiple genes. Classical segregation analysis 

does not have the power to identify a definitive mode of transmission for this 

disorder and will not do so in the future due to the drawbacks mentioned above.

In order to overcome the limitations of segregation analysis, geneticists turned to 

linkage and/or association (linkage disequilibrium) studies using several different 

types of genetic markers (see below for full description). Investigators believe these 

forms of study do have enough power to detect the susceptibility genes underlying a 

common disorder (Risch et al. 1996).

Finally, it may be that a disease -  particularly complex ones -  results from 

interactions between different genes. These interactions can be direct and additive or 

multiplicative or other interactions could be epistatic in which a major gene effect is 

modified by another locus, this may be one of the reasons for the difficulties in 

finding the genes involved in the disease. If the effect of one locus is altered or 

masked by effects at another locus, power to detect the first locus is likely to be 

reduced and elucidation of the joint effects at the two loci will be hindered by their 

interaction. If more than two loci are involved, the situation is likely to be further
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complicated by the possibility of complex multi-way interactions among some or all 

of the contributing loci (Cordell 2002).

1.5 M ETH O D S OF M APPING

1.5.1 GENETIC MARKERS

RFLPs (Restriction Fragment Length Polymorphisms) were first used in 1978 (Kan 

1978) and became the first genetic markers to be used in a successful study to find 

the cause of a disease (Huntington’s disease) (Gusella et al. 1983). They are based 

on single base pair change that create or obliterate a cleavage sites for specific 

restriction enzymes. The resulting variation between individuals can be detected by 

digestion of the DNA by the appropriate restriction enzyme. RFLPs are inherited as 

simple Mendelian codominant markers, which can be readily identified in families. 

A disadvantage of RFLPs is that because they are biallelic they are not very 

informative, having low heterozygosity (usually<0.40) in linkage studies.

The heterozygosity of the genotyping markers was greatly increased by the 

identification of VNTRs (Variable Number of Tandem Repeats) in 1987 (Nakamura 

et al. 1987) and also the minisatellite markers. This class of marker is made of a 

specific set of consensus sequences that vary between 14 and 100 base pairs in 

length for a VNTR and even more coplex repeates for minisatellites. They are 

remarkably polymorphic, with a high heterozygosity rates (usually > 0 .6) in the 

population. However, there are only a small number of VNTRs available and their 

distribution is rather limited in the genome, often tending to cluster toward human 

telomeres. Minisatellites tened to be too polymorphic with producing the same 

fragment sizes but having different sequences.

STRs (Short Tandem Repeats) or microsatellites were initially described by Weber 

and May (1989) and Litt and Luty (1989). STRs are distributed widely and evenly 

in the genome. They sometimes have high heterozygosities (usually > 0.7) and are 

relatively easy to score. The number of the repeated motifs varies, the most 

common consisting of two (dinucleotide), three (trinucleotide) or four 

(tetranucleotide) bases. The dinucleotide (CA)n-(GT)n is the most common repeat,
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with a highly polymorphic form of the repeat occurring approximately every 0.4 cM. 

Following the success of the dinucleotide repeat markers, other polymorphic 

markers namely microsatellites were isolated and characterized. They are usually tri- 

and tetra-nucleotide repeat markers.

Finally, in recent years, attention has been re-focused back on the use of single 

nucleotide polymorphisms (SNPs) as genetic markers. They are the most common 

type of human DNA variation and as the name suggests they represent a position at 

which two alternative bases occur at an appreciable frequency (>1%) in the human 

population (Wang et al. 1998). Previously SNPs were analysed with restriction 

enzymes to produce RFLPs. On average, they occur 1 per 300-1000 base pairs 

(Collins et al. 1997), of which restriction enzymes can not detect all of the SNPs. 

However now technology has advanced, it enables us to analyse and characterise the 

SNPs in a variety of different ways. Although individual SNPs are less informative 

than typical multi-allelic simple sequence length polymorphisms, they are more 

abundant and their genotyping can be automated with the use of DNA chip-based 

microarrays (Hacia et al. 1996), which allow the very rapid analysis of very large 

numbers of SNPs. Large collections of mapped SNPs have been developed to 

provide a powerful tool for human genetic studies. The International HapMap 

project is one of several such ventures (2003).
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1.5.2 POSITIONAL CLONING

Positional cloning -  involves identifying disease genes through their position in the 

genome rather than through their function (Collins 1992). The power of positional 

cloning lies in the fact that it is conducted in the absence of a priori knowledge as to 

the disease pathogenesis. It is seen by some as the “pure” geneticists approach. The 

methods adopted for positional cloning are linkage followed by association analyses.

1.5.3 LINKAGE ANALYSIS

Linkage analysis relies upon the ability to detect the co-segregation of marker alleles 

with those of the disease gene. For a marker to be “informative” for a particular 

meiosis, the individual concerned must be heterozygous at both the marker and 

disease locus. Therefore, the usefulness of a given genetic marker in linkage analysis 

or “informativeness” depends on the frequency with which it is heterozygous within 

a population. Microsatellites gave investigators polymorphic, regularly spaced 

markers across the whole genome. Linkage studies investigate the departure from 

independent assortment of a marker and the disorder by estimating the amount of 

recombination between the marker and the disease. This recombination results from 

cross-over between the homologous pair of chromosomes during meiosis. Offspring 

where cross-over has occurred are known as recombinants: offspring where non 

crossing-over has occurred are known as non-recombinants.

Linkage involves calculating how much the recombination fraction (the number of 

recombinants divided by the total number of offspring) is significantly different 

from 0.5, the value expected on the null hypothesis of no linkage.

If two loci are on different chromosomes or are very widely separated on the same 

chromosome, then independent assortment takes place and the recombination 

fraction would be 0.5 or V2. That is there would be a 50:50 chance of offspring being 

either recombinants or non-recombinants.

When two loci are close together (or linked), the assortment is no longer 

independent and recombination fractions of less than Vi would be seen.
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Morton (1955) showed that calculating the lod score represented the most efficient 

statistic for evaluating pedigrees for linkage.

A lod score (or log of the odds score) is the common log of the likelihood that the 

recombination fraction has a certain value, 0 ’ divided by the likelihood that 0 is 'A:

Lod (0’) = logio (likelihood (0 = 0’) / likelihood (0 = 0.5)}

Traditionally a lod of 3 or more is taken as "significant" evidence for linkage 

(although this is does equate with the meaning of statistical significance in other 

contexts).

Linkage analysis conventionally was undertaken using a two-point analysis, where 

the co-segregation of the disease and a single marker are studied. This method was 

extended to multi-point linkage analysis (Ott 1991) where multiple markers lying 

reasonably close together on the same chromosome are studied. This allows for 

greater precision in the positioning of the disease locus. It also allows the 

investigator to rule out a particular locus as being responsible for causing the 

disease.

1.5.4 PARAMETRIC

Standard lod score analysis is called parametric because it requires a precise genetic 

model, detailing the mode of inheritance, gene frequencies and penetrance of each 

genotype. For non-Mendelian conditions this method has be accused of causing 

problems but simulation of two locus transmission and uncertain penetrance have 

shown it to be a robust method (Vieland et al. 2003). The parametric method has a 

lot more power to detect linkage than the sib-pair non-parametric approach when all 

the parameters of the model are known and specified correctly. Power is decreased, 

often severely when the wrong assumptions about the genetic model are made. In 

most complex traits the true degree of each parameter is not known, this would make 

the results of the model unreliable.
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1.5.5 NON-PARAMETRIC

Model free or non-parametric methods of linkage analysis look for alleles or 

chromosomal segments that are shared by affected individuals (Risch 1990b; Risch 

1990c; Risch 1990d).

A common alternative approach is to examine allele-sharing between pairs of 

affected relatives; an example of this is the sib-pair method. Taking pairs of affected 

siblings, we would expect that by chance they would share two alleles of a DNA 

marker 25% of the time, one allele 50% and no alleles 25%. However if the marker 

is linked to the disease gene then alleles will be shared between affected sib pairs 

more often than expected. If parents are also genotyped then the inheritance of the 

marker alleles can be studied directly (identity-by-descent, IBD analysis), but even if 

the parents are unavailable one can use population allele frequencies to estimate 

whether increased allele-sharing is occurring (identity-by-state, IBS analysis). The 

strength of evidence in favour of linkage can be given by a chi-squared statistic or 

by a maximum likelihood score (MLS), the latter being similar to a lod score.

CM
AC

CM
AB AC

CM
BC AC

CB CB AC CC

BC AB BC

■ ■ ■ ■ ■ ■ ■ ■
AB AB BB BB

Figure 1:4 Sib pair analysis

(courtesy Dave Curtis’s website: http://www.smd.qmul.ac.uk/statgen/dcurtis.htmn. 

The second sib pair shares one allele IBD, while all the others share both alleles, 

suggesting a recessive gene may be quite closely linked to the marker.

The lod score method, which requires specification of values for transmission model 

parameters, is termed parametric, whereas tests which do not involve model 

specification are termed non-parametric. The latter consist mainly of tests for 

increased allele-sharing between affected relatives. They are sometimes regarded as
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being more appropriate for studying complex diseases (although there is controversy 

about this), but they are poor at providing a precise location of the disease gene 

compared to the lod score method.

Linkage studies rely on studying sets of related affected subjects and are capable of 

detecting a disease gene over a relatively large range. Approximately 300-400 

markers are sufficient to carry out a screen of the whole genome. Thus linkage 

studies provide initial localisations for disease genes without any prior knowledge of 

the function or chromosomal location.

1.5.6 ALLELIC AND HAPLOTYPIC ASSOCIATION STUDIES

Case control and family based genetic association studies represent the final 

common pathway for all genetic studies regardless of the initial design and are 

necessary for the ultimate identification of the alleles that confer vulnerability to 

specific phenotypes.

Association studies play a critical role in the analysis of genetically complex traits in 

fine mapping a region already implicated by linkage studies.

Association studies look for an allelic association between a marker and a disease 

allele. Linkage disequilibrium is the reason for observing allelic association between 

two adjacent markers or between a marker allele and disease allele (Jorde 1995). 

Linkage disequilibrium between alleles mainly reflects the recombination history in 

the evolution of that haplotype. Therefore, recently acquired mutations, or those in 

founder or isolated populations with limited chromosome diversity, are likely to 

show linkage disequilibrium that might extend over long distances. However, as a 

result of a number of different factors including regional variability in recombination 

patterns, recent population admixture and local chromosomal composition linkage 

disequilibrium can vary significantly within and between populations.

Comparison is made of the frequency of marker phenotypes in a sample of patients 

and a sample of healthy controls. The statistical analysis is a 2x2 contingency table 

as shown below. See Table 1:2.
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Table 1:2 Marker-disease association in a population.

Marker n affected n unaffected
Present a b
Absent c d

In case-control studies, the odds ratio can be calculated. The odds of an event 

happening are the ratio of the probability that it happens to the probability that it 

does not. The odds ratio is the ratio of the two odds and can be calculated from 

ad/bc. The 95% confidence interval for the log odds ratio is obtained as 1.96 

standard errors either side of the estimate. The standard error of the log odds ratio is 

estimated by the square root of the sum of the reciprocals of the four frequencies as 

shown in the formula in Figure 1:5.

Figure 1:5 Calculation of the 95% confidence interval of an odds ratio

SE(log OR)=
i i i ^

— i-----------1— — i—

<̂2 b c d j

With a 2x2 table it is also possible to calculate the x2 statistic using the formula 

shown in Figure 1:6 below where there is one degree of freedom.

Figure 1:6 Calculation of the yl statistic using a 2x2 table

(ad -  be)2 {a + b + c + d ) 
(ia + b \c  + d \ b  + d \ a  + c)

Association may be found because of:-

1) Direct causation - such that having an allele results in susceptibility to the disease. 

Possession alone may not necessarily lead to the development of the disease, but it 

increases the likelihood.

2) Population stratification -  the population contains several genetically distinct 

subsets, and both the disease and a particular allele happen to be more frequent in 

one subset. Lander & Schork (1994) gave an example of the association in the San 

Francisco Bay area between HLA-A1 and ability to eat with chopsticks. HLA-A1 is 

more frequent among Chinese than among Caucasians.

38



3) Type I error -  association studies test a large number of markers, even without 

true effects 5% will be significant at the p=0.05 level.

4) Linkage disequilibrium truly exists between the marker and a disease locus.

5) Natural selection -  possession of the marker allele of the disease may lead to 

increased survival against adverse conditions. Therefore their children are more 

likely to inherit the disease and the allele associated with it will be more likely to be 

seen in a population of cases.
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1.6 TH E PRO BLEM  OF H ETERO G ENEITY

In the search for genes involved in the causes of complex diseases, investigators 

have suffered from the problem of heterogeneity at all stages.

In linkage studies, the problem of locus heterogeneity has been the greatest cause of 

difficulties in identifying regions of importance within families. There may be two 

or more loci at which mutations result in similar phenotypes. The mutations at the 

different loci may have different modes of transmission. Charcot-Marie-Tooth, 

tuberous sclerosis and retinitis pigmentosa all result from a number of distinct 

mutations of different chromosomes. Charcot-Marie-Tooth exists in an X-linked 

form and two autosomal dominant forms the loci of which are on different 

chromosomes. If homogeneity had been assumed and linkage analysis carried out on 

a collection of families containing a mixture of the two autosomal forms the results 

could have been misleading and linkage might have been overlooked.

It may be that in a minority of cases schizophrenia are due to a major locus but the 

majority are polygenic. Indeed Murray (1985) divided the disease into genetic and 

non-genetic forms; the non-genetic forms being those with no family history, 

however this does not equate to lack of genetic susceptibility as low penetrance 

alleles may be present in unaffected family members. Bleuler (1978) found that 60% 

of patients have no history of schizophrenia in first or second degree relatives but 

these stuies were not age corrected. Those without a family history maybe due to 

environmental factors and would therefore be classified as phenocopies. However 

twin and adoptin studies show that most schizophrenics have a genetic effect.

The adoption of non-parametric linkage analysis was devised to overcome 

difficulties of being able to define:-1) the model of inheritance or 2) the degree of 

penetrance. The results of parametric and non-parametric linkage analysis have 

resulted in several regions being identified where association studies have been used 

in an effort to narrow the area even further. The linkage studies strongly supported 

heterogeneity for schizophrenic genes and chromosomes were duplicated.
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Locus heterogeneity is now the problem facing SNP association studies. For the 

power of association studies decreases dramatically as soon as there is more than 

one susceptibility locus influencing schizophrenia.

The question is, are most susceptibility-alleles ancient common polymorphisms (the 

so-called Common-Disease/Common-Variant model) or are they a heterogeneous 

collection of rare recent mutations, like most Mendelian diseases?

Wright et al. (2003) explain that in a review of the genetics of breast cancer, it can 

be seen that the two familial breast cancer genes, BRCA1 and BRCA2, there are at 

least 1200 and 1400 different mutations of large effect, each of which are rare -  

except in the founder populations. By contrast, out of the five or six common SNPs 

within BRCA1 and BRCA2 coding regions only one has been shown to exert a 

marginal (1.3-fold) increase in breast cancer risk. Wright et al. (2003) conclude that 

the common SNPs in the coding region are less interesting “precisely because they 

have little or no functional effect either on disease or on reproductive fitness.”

Reich (2001) looks at population genetics and various examples of common diseases 

including Alzheimer’s disease (APOEe4 ) to conclude that the common 

disease/common variant model is a good predictor of disease alleles in complex 

disorders. However studies of hypercholesterolemia favoured multiple rare variants 

as being aetiological in three genes This view is also supported by the findings of 

Lohmueller et al. (2003).

1.7 L IN K A G E RESULTS IN SC H IZO PH REN IA

Thus far there have been two meta-analyses of linkage studies undertaken in 

schizophrenia (Badner et al. 2002) and (Lewis et al. 2003). The methods used by 

Lewis et al. are set out by Levinson et al., (2003).

There are two areas where both studies agree, chromosome 8p and 22q.
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Table 1:3 The meta-analyses of linkage studies in schizophrenia Lewis et al. (2003) and Badner 
and Gershon (2002).

Lewis et al. Badner & Gershon
iq
2q
3p
5q
6q
6p
8p 8p
lOp
n q

13q
14p
15q
16q
18q

20q
22q 22q

Lewis et al. (2003) most strongly favoured 2q, but also found that the number of loci 

meeting the aggregate criteria for significance was much greater than the number of 

loci expected by chance (p<0.001). Support was also obtained for regions on 

chromosomes lq, 3p, 1 lq, 6p, 5q, 22q, 8p, 20q and 14p. It is worth mentioning that 

the region most strongly supported by the evidence of Lewis et al. (2003) on 

chromosome 2q, is not one that had received strong support previously.

1.8 ASSOCIATION RESULTS IN SCHIZOPHRENIA

1.8.1 CHROMOSOME 5

There is evidence of a schizophrenia susceptibility gene on chromosome 5 (Schwab 

et al. 1997; Straub et al. 1997; Devlin et al. 2002). Pimm et al. (2005) had found 

significant evidence of linkage disequlibrium of the 5’ end of the gene Epsin 4 

(5q23.1-33.3) and also two single nucleotide polymorphisms (SNPs) within Epsin 4 

(a clathrin-associated protein enthoprotin). This association was further supported in 

a replication by Tang et al. (2006) in a sample of 308 Han Chinese family trios,
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however Liou et al. (2006) failed to find independent evidence of association to 

Epsin 4.

Petryshen et al (2005) and Ikeda et al (2005) have also found some evidence of 

association between GABAA receptor gene cluster on 5q31-35 being involved in 

schizophrenia although the results are weak and are suggestive. Epsin 4 is so far the 

most promising candidate gene on chromosome 5.

1.8.2 CHROMOSOME 6

Dysbindin (DTNBP1)

The protein Dysbindin is encoded by a gene on chromosome 6p linkage between 6p 

and schizophrenia was originally found by Straub et al. (2002) and the region was 

fine mapped to implicate DTNBP.

The finding has been replicated by the several groups including Williams et al. 

(2004); Kirov et al. (2004); and Numakawa et al. (2004). Raybould et al. (2005) 

found no evidence for Dysbindin being involved in bipolar disorder.

Finally, Breen et al. (2006) found a positive association with dysbindin and bipolar 

affective disorder.

1.8.3 CHROMOSOME 8

NRG1 - More than 11 individual studies have reported a positive association of 

Neuregulin (NRG1) with schizophrenia, the original one being Stefansson et al. 

(2002); two have reported negative findings. Law et al. (2006) have recently 

reported an interesting variation in mRNA in post-mortem hippocampi associated 

with a single SNP within a risk haplotype.

Green et al. (2005), showed association (p=0.003) with a core haplotype in the 

NRG1 locus with bipolar disorder.

PCM1 - Other genes on chromosome 8p have been implicated. One of these (PCM1) 

has been fine mapped on chromosome 8p. This was found in both UK and USA 

samples (Gurling et al. 2006) but further confirmations are needed.
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Frizzled, a transmembrane receptor essential in neurodevelopment was shown to be 

associated by Yang et al. (2003); the finding has not been replicated by Wei et al. 

(2004) and Hashimoto et al. (2005).

PPP3CC (protein phosphatase 3 (formerly 2B), catalytic subunit, gamma isoform 

(calcineurin A gamma)) also on 8p22, was found to show allelic and haplotypic 

association with schizophrenia by Gerber et al (2003); a finding not replicated by 

Kinoshita et al. (2005).

1.8.4 CHROMOSOME 13

Chumakov et al. (2002) obtained a strong LD signal from haplotypes within a 5Mb 

candidate gene on 13q. The signal localised around two overlapping genes, G30 and 

G72. Analysis of G72 revealed an interaction with D-amino acid oxidase (DAO, 

DAAO also known as DAOA). Hattori et al. (2003) found both individual SNP 

markers and haplotypes to be associated with bipolar disorder. Chen et al. (2004) 

also found an association with bipolar disorder. A large case control study found 

evidence of association for select SNPs and a haplotype with both schizophrenia and 

bipolar disorder Schumacher et al. (2004).

1.8.5 CHROMOSOME 22

Velocardiofacial and DiGeorge syndromes are associated with learning disability 

and usually arise from small, relatively frequent deletions on the long arm of 

chromosome 22 (22ql 1 deletion syndromes).

The associated phenotype is highly variable with congenital heart defects occurring 

in approximately three-quarters of patients. Nearly 90% have a 3Mbp deletion 

encompassing 30 genes. The relative risk of schizophrenia in people with 22ql 1 

deletion syndromes is around 25-30.

Two genes in the region stand out through linkage and association studies as 

possible candidates for psychiatric outcomes. These are catechol-O- 

methyltransferase (COMT) and proline dehydrogenase (PRODH). Shifman et al 

(2002) found a highly significant association between schizophrenia and a COMT
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g
haplotype in a large case-control sample in Ashkenazi Jews (P=9.5xl0' ), and also a 

resulting lower expresson of the gene in the human brain . shifman now report errors 

in their genotyping and meta-analysis of COMT in schizophrenia (Munafo et al.

2005). Li et al (2004) analyzed the PRODH gene in patients with schizophrenia and 

their families from Sichuan Province in China, comprising 528 family trios and sib 

pairs. They found association of schizophrenia with 2 haplotypes consisting of the 

1945T-C and 1852G-A variants (global p = 0.006) and the 1852G-A and 1766A-G 

variants (global p = 0 .01 ).

1.8.6 CHROMOSOME 1

DISCI and DISC2.

The presence of a schizophrenia susceptibility locus on chromosome lq42.1 was 

first suggested by the observation of linkage between schizophrenia and other 

psychiatric disorders with a balanced translocation involving chromosomes 1 and 11 

[t( 1; 11)(q42.1;ql4.3)] (St Clair et al. 1990; Blackwood et al. 1998; Millar et al.

2000). Investigators in Edinburgh identified an individual with a reciprocal 

translocation between chromosomes 1 and 11 (+(1;11)). The segregation of this re­

arrangement was followed through an extended pedigree. Clinical studies found 

schizophrenia, major depression and bipolar disorder in translocation carriers but not 

in members of the family that were non-carriers (Blackwood et al. 2001).

Further analysis showed the chromosome 1 breakpoint directly disrupted two over­

lapping genes, termed disrupted in schizophrenia 1 and 2 (DISCI and DISC2). 

DISC2 coded on the opposite DNA strand to DISCI, DISC2 is transcribed but not 

translated and is possibly an RNA gene with some regulatory function (Millar et al.

2001).

Subsequently two linkage studies found significant evidence for linkage at lq23.3, 

which is centromeric to the locus implicated by the cytogenetic abnormality 

(Brzustowicz et al. 2000; Gurling et al. 2001). Another study combined allelic 

association, cytogenetic and family linkage data on chromosome 1 using 

heterochromatic C-band variants in the 1 q22.1 -23 region and found cosegregation of
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a lqH (C-band) variant and Duffy blood group alleles with schizophrenia in a single 

family (Kosower et al. 1995).

RGS4 maps to one of the two regions showing linkage of chromosome lq23.3, it 

was targeted for genetic analysis following a microarray based gene expression 

study in which decreased RGS4 expression was found in schizophrenic post-mortem 

brain (Chowdari et al. 2002). Several replications have been reported (Morris et al. 

2004) and (Williams et al. 2004). But a meta-analysis was inconclusive (Talkowski 

et al. 2006).

CAPON (also known NOS1AP) Brzustowicz et al. (2004) first reported an 

association of novel candidate gene CAPON (now known as NOS1 AP) on lq23.3. 

This gene was identified in 24 Canadian familial-schizophrenia pedigrees, and 

encodes a protein nitric oxide synthase 1 (neuronal) adaptor protein which is thought 

to be involved in neuronal signalling.

Other linkage studies from Finland found significant evidence for linkage to 

schizophrenia in a position that was telomeric to lq23.3 but proximal to lq42.1 

(Ekelund et al. 1997; Hovatta et al. 1999; Ekelund et al. 2000). However, the 

marker that was found to have the highest parametric lod in the earlier Finnish 

linkage study (Hovatta et al. 1999) was also the marker closest to the more 

centromeric linkage region at lq23.3. Two further analyses from Finland in 

independent family samples found a lod of 3.21 (Ekelund et al. 2000) and then 2.7 at 

the more distal position of lq42 near the DISCI locus (Ekelund et al. 2004). Three 

further linkage studies found less conclusive but supportive evidence for linkage to 

schizophrenia at lq23.3 with a lod of 1.7 at a position 20 cM proximal to DISCI 

(Cai et al. 2002). A Taiwanese linkage study reported weakly positive lods at both 

the RGS4 region at lq23.3 and at lq42.1 (Hwu et al. 2003). A linkage study based 

on a combined UK/USA sample supported linkage at lq23.3 with a lod of 1.80 with 

the marker D1S196, which is the same marker that showed a lod of 3.20 in the 

UK/Icelandic genome scan (Shaw et al. 1998; Gurling et al. 2001). At present the
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linkage studies lead one to suspect that there are two schizophrenia susceptibility 

loci in the lq region, sixty four megabases apart at lq23.3 and lq42.

Recently, Mah et al. (2006) have undertaken a genome-wide scan using over 25,000 

SNPs located within approximately 14,000 genes. They have found a marker on 

lq32 within a novel candidate gene (PLXNA2).

1.9 C H R O M O SO M E 1Q23.3 AS A SC H IZO PH REN IA

SU SC EPTIBILITY  LOCUS

The lq23.3 locus was chosen to be further investigated as it had been implicated in a 

meta-analysis linkage study with a rank of 7th through weighted analysis (Lewis et 

al. 2003). The region was also implicated in our own sample (Gurling et al. 2001). It 

was therefore clearly an interesting site upon which to focus further attention. Two 

promising genes RGS4 (Chowdari et al. 2002) and CAPON (Brzustowicz et al.

2004) have been implicated by association in the lq23.3 region in a small sample.

To confirm or reject these genes as candidates for schizophrenia susceptibility, a 

replication study in a British case control sample would be carried out alongside fine 

mapping a broader area to see if the surrounding regions are associated with 

schizophrenia or not.
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2.0 MATERIALS AND METHODS

2.1 SC R EEN IN G , ASSESSM ENT AND A SC ER TA IN M EN T OF  

SC H IZO PH R EN IC  CASES AND OF SU PER NO RM AL  

CO N TR O LS

DNA samples from 450 volunteers with schizophrenia (70% male, 30% female, 

mean age 44.8) and 450 controls (46% male, 54% female, mean age 36.5) had been 

collected and were used in our case control sample (figure correct from 2004 to

2006). All subjects were included only if both parents were of English, Irish, Welsh 

or Scottish descent and if three out of four grandparents were of the same descent. 

One grandparent was permitted to be of Caucasian European origin but not of 

Jewish or non-EU ancestry, based on the EU countries before the recent enlargement 

(2004). The ancestry information was recorded in an Ancestry Questionnaire and it 

was confirmed from the family histories recorded in medical records. The ancestry 

selection criteria is not meant to be discriminatory, but was carried out to ensure that 

the observed genetic differences are disease related and not ancestry related. UK 

National Health Service (NHS) multicentre and local research ethics committee 

approval was obtained and all subjects signed an approved consent form after 

reading an information sheet. All 450 schizophrenic research subjects had previously 

been diagnosed and assessed by NHS psychiatrists as part of routine clinical 

diagnosis and treatment. Subjects with short-term drug-induced psychoses, learning 

disabilities, head injuries schizoaffective bipolar disorder or schizo-mania and other 

symptomatic psychoses were excluded. Schizophrenic subjects were recruited for 

research interviewing on the basis of having an International Classification of 

Diseases version 10 (ICD10) diagnosis of schizophrenia recorded in the medical 

case notes. The Schizophrenia and Affective Disorders Schedule- Lifetime Schedule 

(SADS-L) interview (Spitzer et al. 1977) was completed by a research psychiatrist 

who interviewed all cases and controls. Cases were defined as having schizophrenia 

with the SADS-L interview according to the “probable” level of the Research
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Diagnostic Criteria (RDC). The “supernormal” control subjects were selected based 

for not having a personal history of any RDC defined mental disorder derived from 

the SADS-L interview and for not having a family history of schizophrenia, 

alcoholism or bipolar disorder at interview or recorded in case notes.

Volunteers’ blood was collected in 8ml EDTA or citrate plastic tubes and was stored 

at -80°C until DNA extraction. For patient confidentiality, all samples were 

anonymomised.

2.2 CH EM IC A LS AND REAGENTS USED TH R O U G H  OUT  

TH E EXPERIM EN TS

The following sections contain information on all of the regents used in the 

experiments for each particular technique.

2.2.1 MILLI-Q SYSTEM

The water used to make up all reagents (except PCR master mixes which used ultra 

pure water (Sigma, W4502) which is known to be DNase and RNase free) was pure 

water produced by the Milli-Q system, referred from now on as Milli-Q water.

The Milli-Q water system works by taking in mains tap water and filtering it. The 

first step of the filtration is through the reverse osmosis filter which removes the ions 

and main contaminants present in the water. This distilled (deionised) water is then 

passed to a main holding tank which houses an Ultra Violet (UV) light source. The 

UV light is there to destroy and prevent any micro-organisms from contaminating 

the water and also break down any organic compounds present by photo-oxidation. 

The water then moves to another resin filter to remove any remaining water 

contaminants present, the water finally moves to a small final filter to polish the 

water before the water is finally dispensed for use.
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The Main reagents used through out the experiment are listed below.

2.2.2 REAGENTS FOR DNA EXTRACTION:-

• 0.5M ethylene diamine tetraacetate acid (EDTA) (BDH, product number

100935v)

186.1 g was added to 800mL of Milli-Q water, and dissolved by adjusting to pH 8.0 

using sodium hydroxide pellets (Sigma S5881) the solution was then sterilised by 

autoclaving at 15 pounds per square inch (15 PSI) at 121°C for 15 minutes, using 

autoclave tape as an indicator that the process has taken place.

• 2M Tris-HCL

121.1 grams of Tris base (BDH, 103156X) was dissolved in 400ml of Milli-Q water, 

the pH was adjusted to pH 8.0 with concentrated hydrochloric acid (BDH 10125), 

and the final solution was brought up to 500ml before being sterilised by 

autoclaving.

• TE Buffer.

This solution is made up by combining lOmM of Tris-HCL with ImM of EDTA. 

Hence 5ml of 2M Tris-HCL and 2ml of 0.5M EDTA were mixed and the solution 

was brought up to 1000ml with Milli-Q water. The solution was then sterilised by 

autoclaving.

• Proteinase K Buffer

50mM of Tris-HCL, 50mM EDTA and lOOmM of NaCl (Sigma S7653) is required. 

Hence 25ml of 2M Tris-HCL, 100ml of 0.5M EDTA, and 25ml of 4M NaCl were 

mixed and the solution was brought up to 1000ml with Milli-Q water before 

sterilising by autoclaving.
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• 10X Lysis buffer

5.84g of NaCl was mixed with 37.22g of EDTA in 1000ml of Milli-Q water. 

Solution was then autoclaved. (EDTA is an important component as it removes 

magnesium ions that are essential for preserving the structure of cell envelope, and 

inhibits cellular enzymes that could degrade DNA.)

• 3M Sodium Acetate (pH 5.2)

246.09g of anhydrous sodium acetate (Sigma S2889) was dissolved in 800ml of 

Milli-Q water. The pH was adjusted to 5.2 with Glacial acetic acid (BDH, 

10001) the volume was brought up to 1000ml and then autoclaved.

• 10% Sodium dodecyl sulfate SDS

This was made by dissolving lOg of SDS (Sigma L4509) in 100ml of Milli-Q 

water.

• 20mg/ml Proteinase K enzyme solution (BDH 39509)

• Buffered Phenol (Sigma P4457) mixed with a few flakes of indicator dye 8- 

hydroxyquinoline (Sigma H6878) this dyes the phenol yellow and becomes 

brown once oxidised indicating that the phenol has been oxidised and 

therefore no longer useable.

• Chloroform (BDH, 100776B)

• Isoamyl alcohol (IAA) (Sigma, S5881) also known as 3-methyl-1-butanol

• PVPP (Polyvinylpolypyrrolidine [Sigma P-6755])

• Ethanol (BDH, 10107)
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• Virkon (VWR 148-0202), used to deactivate blood and cleanse work 

surfaces, (lOg dissolved in 1 litre of water). Once mixed with waste blood 

and left to stand for 5 minutes it was then safe to dispose of down the sink.

2.2.3 REAGENTS FOR DNA QUANTIFICATION

• Picogreen (molecular probes, Invitrogen P7581)

• Calf thymus DNA 50pg of dehydrated DNA (Sigma D3664)

2.2.4 REAGENTS FOR PCR AMPLIFICATION AND SEQUENCING 

REACTIONS

PCR amplification: reagents supplied by bioline in a BioTaq Red polymerase kit

(BIO-21041)

• 1 OX solution NH4 reaction Buffer

• 50mM magnesium chloride

• 25mM solution dNTPs

• Taq polymerase red lU/pl.

• 5M Betaine (Sigma B2629), 29.29g dissolved in 50ml of ultra pure water 

(for stock)

• Ultra Pure Water (Sigma, W4502)

• For Geneotyping (M l3 Forward LRD 800/700) also added (MWG, Ebersberg 

Germany).
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Template Clean-up

microCLEAN (Microzone 2MCL-50), removes mastermix reagents Enzymes and 

primer dimer to leave clean DNA template (for full method of use see section 2.8.4).

Sequencing reaction

Reagents used, SequiTherm EXCEL™ II (Microzone, SE9101LC)

Clean DNA Template.

3.5X SequiTherm Buffer.

SequiTherm Taq Polymerase.

Termination mix di-deoxyNTP.

M13F 700 and M13R 800 lOpmol/pl (MWG).

Ultra pure water.

2.2.5 REAGENTS FOR GEL ELECTROPHORESIS:-

• Low resolution electrophoresis: 1% agarose (Sigma, A9539) with lx TBE 

(National diagnostics EC-860)

• SequaGel XR (National Diagnostics EC-842) polyacrylamide gels for high 

resolution genotyping and sequencing were created as follows.

10% Ammonium Persulfate (APS) (Sigma, A9164) mixed with a set volume of the 

buffered acrylamide solution to allow polymerisation (800pL of 10% APS to every 

lOOmL of buffered Sequagel solution). The gel was then caste between the 2mm gap 

of two glass plates of 25cm length for genotyping or a 44cm length for sequencing. 

The gel was allowed to set for two hours

• TBE (Tris-Borate-EDTA) (National diagnostics EC-860) electrolyte buffer.
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• Fuchsin: (Sigma, S5881)

This loading buffer was used for sequencing and genotyping and was made with 

0.05g of Fuchsin and 50ml of Formamide (Sigma, F9037).

• Ethidium bromide (Sigma, E215) used in agarose gels to intercalate with 

double stranded DNA in order to visualise DNA bands under Ultraviolet 

light

• Hyperladder IV (Bioline, London, UK, BIO-33029) molecular weight for 

agarose gels sizes from 1 OObp to 1 OOObp increasing in 1 OObp increments

• MicroSTEP20a (Microzone, lN700/80020a) molecular weight for 

polyacrylamide gels, both IRD 700 and 800 molecular weights are used 

molecular weight markers were as follows:- 70, 90, 100, 120, 140, 160, 180, 

200, 220, 240, 260, 280, 300, 310, 330, 340, 350, 360, 380 and 400 base 

pairs.

2.3 D N A  EX TR A C TIO N  FROM  W H OLE BLO O D CELLS

Genomic DNA was extracted from whole blood samples using a standard cell lysis, 

proteinase K digestion, phenol/chloroform ethanol precipitation method. It is a two 

day method where in the first day the leukocytes are isolated and then lysed to 

release the genomic material, followed by overnight digestion of proteins with 

proteinase K. The second day involves the isolation and extraction of genomic DNA.

DNA was extracted from fresh blood if it was practical to do so. Otherwise the blood 

was stored at -80°C.
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Day 1.

If the blood was frozen, the required blood was removed from cold storage at -80°C, 

and was allowed to gently thaw out in a water bath at 30-35°C. This was done to 

prevent the cells from lysing from shock, and preventing the release of damaging 

enzymes such as DNAase from damaging the genomic DNA.

The fully thawed blood was then transferred to 50ml centrifuge tubes, which were 

then toped to 50ml with lysis buffer. The tube was inverted several times to ensure 

mixing. This allowed the lysis buffer to break up the whole red blood cells 

(erythrocytes) whilst leaving the DNA containing white blood cells (leukocytes) 

intact.

The lysate was then spun in a balanced centrifuge at 3000rpm (2000g) at 4°C for 15 

minutes to pellet and isolate the white blood cells. The supernatant was disposed of 

into Virkon disinfectant leaving the white blood cell pellet behind.

The pellet was re-suspended in 50ml of lysis buffer to remove any remaining red 

blood cells and again centrifuged at 3000rpm for 15 minutes. The supernatant was 

again disposed of in Virkon.

The cleaned white blood cell pellet was re-suspended in 500pl of 10% sodium 

dodecyl sulfate (SDS) which would break open the cells by disrupting the lipid 

membrane, hence releasing its contents including the genomic DNA into the 

solution. In addition 10ml proteinase K buffer was added to provide stable optimum 

conditions for the proteinase enzyme. To the lysate, 50pl of 20mg/ml proteinase K 

was mixed in. The presence of the enzyme would break down complex protein 

allowing for their efficient removal and also to deactivate any damaging enzymes 

such as DNAase which would harm the targeted DNA. This lysate was incubated in 

a water bath at 55°C (just below the optimum temperature of proteinase K at 65 °C) 

on a shaking platform overnight, to allow for the reaction to occur as far as possible.
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Day 2.

5ml of buffered phenol along with 5ml of chloroform (1:24 Isoamyl alcohol : 

chloroform) was mixed with the cell lysate. The phenol-chloroform mixture is used 

to dissolve the lipids and precipitate the proteins this would leave the nucleic acids 

in an aqueous layer, white coagulated protein would be left at the interphase after the 

mixture was centrifuged.

The mixture is centrifuged at room temperature for 15 min at 3000rpm which would 

allow the mixture to separate out into the organic solvent (phenol-chloroform) layer 

at the bottom of the centrifuge tube (containing lipids), the protein interphase, and 

on top the aqueous layer containing the nucleic acid. This aqueous layer is 

transferred into a fresh labelled 50ml centrifuge tube for DNA precipitation, and the 

organic solvents are disposed of safely according to UCLs’ health and safety 

disposal of hazardous solvents protocol.

As a note, it is notoriously difficult to extract the aqueous layer up to the interphase 

without disturbing the layer itself. So we used in addition to the phenol-chloroform 

mix, 1 gram of PVPP (Polyvinylpolypyrrolidine) mixed with 5ml of TE. Once 

centrifuged with the organic mix, it will hold down the protein interphase along with 

the organic solvents allowing one to remove the maximum amount of the aqueous 

layer without contamination.

From this aqueous layer DNA was precipitated by adding 1500pl of 3M Sodium 

Acetate then adding 30ml of absolute ethanol. The tube was then inverted gently 

until the DNA precipitates out of solution into a condensed white clump.

The DNA clump was removed with a sterile glass or plastic rod and then washed in 

70% ethanol to remove as much sodium acetate as possible (in order not to interfere 

with any Polmerase Chain Reactions (PCR)). The DNA clump is then transferred 

into a labelled 1.5ml micro screw tube in 500pl of TE. The DNA samples were
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stored away from light at room temperature for about a week. This was to allow the 

DNA to dissolve into solution before quantification.

2.4 DN A  Q U A N TIFIC A TIO N

All DNA samples were quantified with Picogreen (Molecular Probes), by 

fluorimetry. (FLA-3000 scanner (Fuji))

All the extracted DNA samples were quantified to allow for standardisation. This 

standardisation was done in order to have known amounts of DNA for use in 

genotyping and sequencing.

The DNA samples were quantified by transferring 2pl of each sample into a fresh 

labelled 2ml eppendorf tube containing 78pl of TE. This was thoroughly mixed by 

votexing, form which lOpl of each sample was transferred to a (known recorded 

location) flat bottomed well plate (96 well plate) containing 90pl of TE. Along side 

the samples to be quantified was a series of wells containing known concentrations 

of DNA derived from calf thymus. This was diluted to produce samples at 0, 1, 10, 

20, 50, 75 and lOOng/pl. This was done in order to produce standard curve from 

which the concentration of the samples could be derived from.

The DNA samples were mixed with lOOpl of Picogreen (150pl Picogreen dissolved 

in 30ml of TE) which is a fluorescent dye which specifically binds to double 

stranded DNA. Once the picogreen is mixed, the plate containing the sample is 

scanned by fluorimetry. The fluorescence is directly proportional to the quantity of 

DNA present. From the results, the DNA was then diluted to form two 1.5ml micro­

screw tubes with a concentration of 25ng/pl for direct use, the rest is labelled up as 

stock with its known concentration. All DNA is stored below 5°C in a dark place to 

maintain its quality.
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2.5 M IC R O SA TELLITE AND SINGLE NU CLEO TID E

PO LY M O R PH ISM  (SNP) SELECTION FO R  A SSO C IA TIO N  

STUDIES

Genetic markers such as polymorphic Microsatellites and Single nucleotide 

polymorphisms (SNPs) are used to detect association between alleles and the 

disease. Microsatellites are useful for detecting distant linkage disequilibrium; 

however they are not very common in the genome. Further fine mapping of a region 

was then carried out by SNPs which tend to be more common (approximately 1 SNP 

in 300 to 1000 bases). Selection of markers, genotyping and analysis of the data are 

described below.

2.5.1 MICROSATELLITE SCREENING AND SELECTION

Microsatellites are short tandem repeat polymorphisms (STRPs) which consist of a 

short repetitive sequence typically of one to four bases. The most common type is 

the (CA)n dinucteotide repeat, tetra nucleotide repeats are more rare. What is useful 

about microsatellites is that they are common and dispersed throughout the genome 

and found even within genes. The size (number of repeats) of these microsatellites 

has altered though evolutionary history increasing or decreasing their repeat size. 

These polymorphic microsatellites contain information which enables us to map and 

screen the genome, to carry out linkage and association studies which, enables one 

to fine map and identify a candidate gene. The theory is that during the same 

evolutionary time scale, the mutation event which produced a schizophrenia 

susceptibility/causative gene, also was the same time point that a nearby, linked 

microsatellite mutated. This would produce an associated allele linking the gene 

with that particular allele size, which would co-segregate with the 

susceptibility/causative gene. In addition other events could have occurred where the 

mutation occurred on the evolutionary background of a pre-existing polymorphism.
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Finding a polymorphic microsatellite marker is fairly hit and miss. The best way to 

find them is to use bioinformatic databases to find established microsatellites such as 

The Human Genome Database GDB, and University of California Santa Cruz 

(UCSC) Genome Browser. In order to find microsatellites in regions where there are 

not many established microsatellites, bioinformatic databases can be used in order to 

search for simple repeats to find non established microsatellites. Dinucleotide and 

tetranucleotide repeats are sort, and a minimum repeat copy size of approximately 

10 is used to select the putative microsatellite to increase ones chances for selecting 

a polymorphic microsatellite.

Once the desired sequences are selected, primers are designed to amplify the 

sequence. This was carried out using an internet program called Primer3 (developed 

by MIT Whitehead institute (Rozen et al. 2000)) this program uses algorithms to 

pick primer sequences with sequence specificity (avoiding repetitive sequence) 

forward and reverse primers with similar melting temperatures (Tm), and with a low 

probability of forming hairpin loops, which would inhibit amplification.

With the desired primers picked, Ml 3 tails were added to the 5 prime end of a single 

primer for genotyping, or a forward and reverse M l3 sequence to each primer for 

sequencing. M l3 tails are used to detect the PCR product through fluorescence, by 

also adding a second Ml 3 complementary primer with a particular wavelength dye 

to incorporate itself into the product.

The M l3 wave length used were M l3 forward 800 and M l3 forward 700 for 

genotyping to allow one to genotype more than one marker of similar size at the 

same time. For sequencing, M l3 forward 700 and M l3 Reverse 800 were used to 

capture the sequence of both strands.
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Table 2:1 Primer tail sequences for genotyping and sequencing.

P rim er Sequence of tail
Genotyping 
M13F 700/800

M13F CACGACGTTGTAAAACGAC

Sequencing 
M13F 700, 
M 13R 800.

M13F CACGACGTTGTAAAACGAC M13R GGATAACAATTTCACACAGG

With the Ml 3 tail sequences added to the 5 prime end of the primer. The entire 

primer sequence was checked to see if a secondary structure such as a hairpin loop 

would impede amplification. This was checked by using the NetPrimer (Premier 

Biosoft international) program. A score under 70 is undesirable, and hence the 

primer with the best score for the M l3 tail was chosen. Microsatellites where chosen 

to target specific loci as described below.

The primers were ordered from MWG biotech (Ebersberg, Germany) at a 

concentration of 100 picomoles/micolitre.

2.5.2 SNP SELECTION FOR ASSOCIATION STUDIES

The problem with microsatellites is that they are not very densely interspersed 

within the human genome. Therefore fine mapping requires other types of markers 

in the implicated region. In these instances one can turn to single nucleotide 

polymorphisms (SNPs) to further fine map the area. These are bi-allelic systems 

which are far more common than microsatellites and are approximately present in a 

ratio of one SNP per 300 bases to 1000 bases of sequence. This enable one to fine 

map a region with greater density and also enable one to select SNPs within a gene 

of interest. As a result this greatly enhances the resolution of the implicated region 

and hence helps to implicate a susceptibility gene.

The ability to genotype densely populated SNP regions, has led to a new era of 

whole genome association studies. Where the whole genome can be mapped using 

densely populated SNPs enabling one to refine and enhance the resolution of the
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association study. When this project was started whole genome association did not 

exist and typing multiple SNPs was very costly.

2.5.3 CHOOSING SNPS

For fine mapping a particular area one can chose SNPs form an online database such 

as HapMap (HapMap 2003). HapMap is an online consortium consisting of typed 

SNPs in subjects from different ethnic groups. The aim of this project was to 

identify and genotype as many common SNPs in the genome as possible. This 

would enable researchers involved in association studies to pick out the most 

appropriate SNPs in their specific chromosomal region and specific ethnic 

population. A number of programs enable the selection of “Tag SNPs”. These are 

SNPs that are likely to carry identical genetic information to that of nearby SNPs in 

complete linkage disequilibrium. This enables one to choose SNPs which represent 

other SNPs in the region without duplicating information thereby extracting as much 

information about the region as possible. The data generated by HapMap can be 

interpreted by using a piece of software known as HAPLOVIEW (Developed at the 

Whitehead Instiute) (Barrett et al. 2005). With this software, one is able to visualise 

the Linkage Disequilibrium (LD) makeup of a chosen region graphically, and judge 

which SNPs are useful to type, based on their haplotype structure, also by using the 

tagger function (set to its default setting) which helps to pick up the best tagged 

SNPs with different information. One is also able to use their D' and r2 values as 

seen graphically on HAPLOVIEW (D’ and r2 in section 3.2.1) in brief D ’ and r2 

values are both different measures of LD and are both measured in a scale between 

zero (for no LD) to one (for complete LD) if both the values are “one” then the SNP 

is said to be genetically identical and share the same information.

An alternative method of selecting SNPs is through sequencing of selected 

individuals in the sample which one thinks are significantly associated with a 

putative region or susceptibility gene (through statistical haplotypic analysis of 

previous implicated markers (section 3.2.4.3). One may come across undefined 

(non-database) polymorphisms within a targeted region, which in turn can then be
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genotyped in the entire case-control sample to see if this marker is also associated 

with the disease. This would help to add further evidence for the involvement of a 

putative susceptibility gene, help to identify the most likely individuals for targeted 

sequencing for causative mutations, or even may be implicated in directly 

influencing the expression of the gene, which may cause a non-synonymous 

mutation of an exon or disrupt intron splicing or binding of transcription factors.

Genotyping the SNPs in the selected sample can be carried out a number of ways 

and are further described in section 2.8.3. The methods used to type SNPs in brief 

are, Sending the higher frequency SNPs to Kbioscience Ltd (Hoddesdon, UK) to 

genotype on in our sample. This company have developed a cost effective optimised 

KASPar assay system to type SNPs. Another method used in this thesis is single 

base sequencing (mini sequencing), where the nucleotide which carries the SNP is 

solely used in chain termination sequencing (see Figure 2:4), this high throughput 

method was used to identify and genotype rare SNPs which Kbiosciences Ltd are 

less effective in formatting because they screen for SNPs and optermise initially in a 

small number of samples. Often we are aware of SNPs that do not observe because 

of their low frequency.

2.6 O PTIM ISA T IO N  OF PRIM ERS AND PCR

2.6.1 WHAT IS PCR?

PCR is a method to amplify a specific target DNA sequences present within a source 

of complex DNA. To permit specific amplification of the targeted sequence, 

information about the sequence is required to produce two specific primers that 

enclose the targeted sequence these primers are generally 15-25 nucleotides long for 

specific targeting and amplification, the design of primers is mentioned in section 

2.5.1.

Lyophilised primers are first rehydrated in TE to produce a concentration of 100 

pmoles/pl. Before each use they are votexed and briefly spun down. Newly designed 

primers need to be optimised to find the optimal master mix concentrations and PCR
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conditions to produce the best results and a successful amplification of the targeted 

region. Optimisation is carried out on a few DNA samples that have been excluded 

from the study and PCR products are visualised on agarose and polyacrylimide gels. 

The components of the mastermix and the PCR conditions used (both of which can 

be vaired) will be discussed next.

2.6.2 MASTERMIX FOR GENERAL OPTIMISATION AND 

AMPLIFICATION

For optimisation of primers, four common conditions were used to amplify the target 

region (Table 2:2). These conditions can be altered and manipulated to produce the 

optimal conditions to amplify the target region specifically in conjunction with 

choosing PCR conditions.

For amplifying and genotyping a microsatellite, the relevant M l3 Forward 700 or 

800 is added to the master mix, to produce a product at the relevant frequency. Once 

amplified Fuchsin loading buffer was added (equal volume). The amplified samples 

were then denatured at 95°C for 3 minuets and then loaded on the polyacrylamide 

gel and visualised by the LICOR DNA sequencers.

However for sequencing, M13F/R is not added at this stage. The first stage is to 

amplify the target for sequencing without integrating any of the IRD 700/800 dye. 

The template is then cleaned up and set up for the next PCR phase, the Sanger- 

Coulson chain termination sequencing method using the M13F/R primers for PCR 

amplification (Section 2.8.4.1).
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Figure 2:1 Intergation of the M13 sequence into the amplimer and subsequent amplification of the target 
sequence with the M13 primers containing the infra red dyes for visualisation by LICOR DNA

Genotyping Sequencing

Amplification of 
target with M13F 
sequence attached 
to one primer.

A third universal 
M13F primer 
attaches to the 
integrated M l3 
sequence to 
commence 
amplification.

The M13F primer 
integrates the IRD 
800/700 dye into 
the amplimer.

Figure 2.1 shows the difference between the genotyping step where M13F primer is 

solely used in a single step PCR reaction. The Sequencing first step is to integrate 

the M 13 forward and reverse sequence and amplify the target, before it is cleaned. 

The template is then amplified with the M13F/R primers in the sequencing reaction 

integrating the IRD dye and the dNTPs, the reactions are terminated upon 

integration of ddNTPs.

Amplification of target 
with M13F & R 
attached to the primers.

Amplimer is cleaned 
and used as template 
for sequencing 
reaction.

■ ■ ■ ■ I
■ ■ ■ ■

■ ■ ■ ■ l
■ ■ ■ ■ l

■ ■
■ ■

M13F 700 & M UR 800 
primers attach to 
integrated sequence and 
amplify inserting the 
corresponding dye during 
sequencing reaction.
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For PCR optimisation four Master Mix conditions were commonly used, the four 

Master Mix optimisation conditions used are shown in Table 2:2. The magnesium 

ion concentration is varied which influences the specificity of the PCR reaction and 

also acts as an co-enzyme to the Taq polymerase. In addition the presence or 

absence of 5M betaine is used. Betaine helps to reduce the melting point and is 

useful in regions of high GC content. Each of the four conditions is listed in Table 

2:2 along with variable PCR conditions in Table 2:3. The optimisation conditions 

that provided the best results were then used to amplify the entire sample. Where the 

samples are suboptimal, further “tweaking” of the PCR conditions were performed.

Table 2:2 Showing the volumes (pi) of reagents in a single 12pl reaction and the common 
conditions used for primer optimisation and amplification.

Condition A Condition B Condition C Condition D

2.0mM MgCl2 
+ Betaine

2.0mM MgCl2 
+ No Betaine

2.5mM MgCl2 
+ Betaine

2.5mM MgCl2 
+ No Betaine

10X Buffer 1.2 1.2 1.2 1.2
Betaine 5M 2.4 0 2.4 0
50mM MgCl2 0.48 0.48 0.6 0.6
25mM dNTP 0.1 0.1 0.1 0.1
F primer 
lOOpmol/pl

0.036 0.036 0.036 0.036

R primer 
lOOpmol/pl

0.036 0.036 0.036 0.036

M13 800 
100pmol/pl
M13 700 
100pmol/|il

0.036 0.036 0.036 0.036

Taq lU/pl 0.19 0.19 0.19 0.19
DNA 25ng/pl 2.0 2.0 2.0 2.0
Water 5.52 7.92 5.39 7.79

Total Volume 
(Pi)

12.0 12.0 12.0 12.0
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2.6.3 POLYMERASE CHAIN REACTION (PCR) CYCLING 

CONDITIONS

Once the primers are added to the master mix containing all the required reagents for 

DNA amplification (such as dNTPs, Taq, magnesium and buffer and also the 

genomic template) the PCR can begin.

First the DNA template is denatured for an extended period of time to separate the 

double stranded helix and allow for the template to become linear.

The PCR runs in a three step cycle of:-

1. Denaturation, which typically occurs at 93-95°C

2. Reannealing where the primers bind specifically to their complementary 

sequence, the annealing temperature usually depends on the melting 

temperature (Tm) of the expected duplex this tends to be approximately 5°C 

below the expected Tm.

3. DNA synthesis, extension of the complementary strand initiated by the 

annealed primer which occurs at 70-75°C.

This runs for approximately 25-35 cycles and is finished by a final extended hold at 

72°C to complete all synthesis and extensions of the targeted region. After about 25 

cycles approximately 226 copies of the targeted region would be made.

The PCR thermal cycler was an MWG-HT Primus 96.

Usually only three standard PCR programs are required to amplify a specific region 

successfully. They are Standard 55°C, Standard 60°C and Touch Down. These 

programs can be tweaked to adjust the annealing temperature and by adding or 

removing one or two cycles to obtain a clean specific amplification of the target 

region. The cycles are set out in Table 2:3. Also set out in Table 2:4 are the 

sequencing PCR conditions (sequitherm) with consist of a longer extension time to 

allow for full extension length variations before termination.
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Table 2:3 PCR cycling conditions.

Standard 55°C
Lid Heated to 105°C 
Products are denatured at 
94°C for 5 minutes

35 cycles of:- 
94°C -  30 seconds 
55°C -  30 seconds 
72°C -  30 seconds

Hold at 72°C -  10 minutes 
Store at 4°C

Standard 60°C
Lid Heated to 105°C 
Products are denatured at 
94°C for 5 minutes

35 cycles of:- 
94°C -  30 seconds 
60°C -  30 seconds 
72°C -  30 seconds

Hold at 72°C -  10 minutes 
Store at 4°C

Touch Down
Lid Heated to 105°C 
Products are denatured at 
94°C for 5 minutes

3 cycles of:- 
94°C -  30 seconds 
63°C -  30 seconds 
72°C -  30 seconds

3 cycles of 
94°C -  30 seconds 
60°C -  30 seconds 
72°C -  30 seconds

3 cycles of 
94°C -  30 seconds 
57°C -  30 seconds 
72°C -  30 seconds

3 cycles of 
94°C -  30 seconds 
54°C -  30 seconds 
72°C -  30 seconds

3 cycles of 
94°C -  30 seconds 
51°C -  30 seconds 
72°C -  30 seconds

20 cycles of 
94°C -  30 seconds 
48°C -  30 seconds 
72°C -  30 seconds

Hold at 72°C -  10 minutes 
Store at 4°C
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The Sequencing PCR Protocol which consists of a longer extension time than 

standard PCR conditions to enable random chain termination is shown below in 

Table 2:4.

Table 2:4 Sequencing cycling conditions for Sanger-Coulson chain termination method. 

Sequatherm PCR cycle:

Lid Heated to 105°C
Products are denatured at 94°C for 5 minutes

30 cycles of:- 
92°C -  30 seconds 
60°C -  30 seconds 
70°C -  1 minute 
End

Store at 4°C.

2.7 G EL ELEC TRO PH O RESIS: AG ARO SE AND THE USE OF 

LIC O R  DN A  SEQ UENCERS W ITH  POLYACRYLAM IDE

Once amplification has occurred through PCR, the size of the amplimer can be seen 

by gel electrophoresis. The size of the amplimer can be deduced by running a 

molecular weight alongside it.

Gel electrophoresis is used to separate DNA fragments according to size. The gel 

always runs in a negative to positive direction with the DNA loaded near the 

negative cathode. This is because DNA carries a negative charge due to the 

phosphodiester backbone and will hence migrate to the positive anode. As the DNA 

migrates through the gel matrix the fragments separate out according to size with the 

small fragments migrating fast and hence further due to less impediment of its 

migration through the gels matrix. The more concentrated the gel matrix, and the 

further the product has to migrate, the finer the resolution of fragment separation 

becomes.
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2.7.1 AGAROSE GEL ELECTROPHORESIS

For low resolution of the amplimer, to judge the size of the overall band(s), one 

would use agarose gel electrophoresis. A 1% agarose gel is created by dissolving 

agarose powder in lx TBE (the electrolyte used). A molten solution is created by 

heating the solution in a microwave until the agarose powder is fully dissolved. 

Ethidium bromide is then added and mixed with the cooling molten agarose to make 

a final concentration of 0.5jil/ml. The molten agarose is poured into a sealed casting 

plate and a comb is inserted to cast wells within the agarose. The gel is then allowed 

to cool to set.

Once set, the comb is removed to form the wells and the gel is immersed in an 

electrolyte (lx  TBE). The samples are loaded into the wells with a molecular ladder 

running along side (such as hyperladder IV, Bioline). The molecular ladder will 

enable one to judge the size of the amplimer along with acting as a positive control. 

The voltage is held at a set value (the higher the voltage the faster the migration) for 

a length of time where one deems the product has migrated far enough through the 

gel to be properly resolved by eye. As the product migrates through the gel the 

ethidium bromide intercalates with the DNA, will allows the bands to fluoresce 

when the gel is viewed (safely) under Ultra Violet light.

2.7.2 POLYACRYLAMIDE GELS

Polyacrylamide gels are used to resolve DNA fragments to less than one base 

difference. The gels are prepared as in section 2.2.5, using amonium persulfate 

(APS) to polymerise the acrylamide (800pl of 10% APS to every 100ml of buffered 

Sequa gel solution). The gel apparatus consists of two glass plates separated by 

using two 2mm thick spacers. The gel is then poured into the gap. A single well is 

prepared at the top of the gel. Once the gel has set (in approximately 2 hours), the 

surplus polyacrylamide is cleaned from the plates, a sharktooth comb is inserted to 

form the wells that allow sample loading.
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The gel is loaded vertically into the LI-COR DNA sequencer, that contains a trough 

at the top of the gel that holds 500ml of electrolyte (lx  TBE) and stands in a second 

trough containing another 500ml of the electrolyte. This allows a current to be 

applied through the gel for electrophoresis to occur. A scanning laser at the bottom 

of the gel continually scans for both 700nm and 800nm wavelengths. The signal is 

then converted into a graphical image to view. The electrophoresis condition varies 

depending on the size of the gel and whether it is for genotyping or sequencing as 

seen in Table 2:5.
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The LICOR set up is usually as follows:-
Table 2:5 LICOR setup for genotyping gels and sequencing gels.

Settings Genotyping Sequencing

Plate size (cm) 25 40
Volts (V) 1200 2000

Current (Ma) 25 35
Power (W) 30 45

Temperature (°C) 45 45
Signal filter 3 3
Signal speed 4 4

The LICOR used through out this project was the “LICOR DNA Sequencer Long 

Reader 4200”.

The samples are first mixed with an equal volume of Fuchsin loading buffer and 

denatured at 95°C for approximately three minutes to allow the DNA strands to 

become single stranded. The gel is preheated to 45°C (to help prevent the formation 

of secondary structure and hence allow the linear DNA run in proportion to their 

length) before loading the gel.
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2.8 M ETH O D O LO G Y  OF GENO TYPING  AND SE Q U EN C IN G

Once the polymorphic markers are amplified for genotyping or the implicated region 

is amplified for sequencing, the next stage is to analyse the gel. The methodology for 

the process of genotyping, sequencing and the analysis of the data will be discussed 

in this section.

2.8.1 METHOD OF GENOTYPING

As discussed in section 2.5 and 2.6 polymorphic markers were chosen and amplified 

in our schizophrenic sample and matched control sample (each marker in a 96 well 

plate format), along with an M l3 forward primer (700 or 800 wavelengths) to allow 

more than one marker to be loaded on a gel simultaneously. The products were then 

pooled and mixed with an equal volume of loading buffer (Fuchsin). The sample 

was loaded (on to a vertical polyacryamide gel) using a 64 well loading comb, in 

addition eight molecular weight (MW) markers were run along the sample. The MW 

were evenly spaced to enable differentiation between the polymorphic marker alleles 

and also to show what the gel is doing to enable one to call the alleles correctly and 

give the correct size. The gel was analysed by the LICOR by using a dual laser 

scanning laser.

In addition to analysing the entire case control sample, a minimum of 17% of all the 

samples are repeated in separate microtitre plates as a cross check, to ensure the 

alleles were called correctly and the common allele size was kept constant between 

gels to prevent any gel shifts. This helped to improve genotyping accuracy and 

reliability.
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2.8.2 GENOTYPING WITH SAGA-GT

SAGA-GT is a software program (developed by LICOR) which is used to allow one 

to efficiently genotype gel images produced by the LICOR. It has the ability to load 

up the sample identifications, detect the lanes which they are in, and the location of 

each marker with the aid of the molecular weights. The program detects the 

uniformity of the gel with aid of the spaced molecular weights and produces a 

“desmile line” to allow correct calling of allele sizes. To some extent SAGA-GT is 

able to automatically call the genotypes, however each individual genotype was 

checked by eye and corrected if deemed necessary. As a result the software helps to 

reduce human error.

Both the entire sample of cases and controls were genotyped with the aid of SAGA- 

GT. The genotypes were then read by a second individual blind to their diagnosis. 

Any discrepancies between callers resulted in the individual in being re-amplified 

for the marker and re-genotyped, until the discrepancy was resolved.

The genotyping data was then extracted for each marker from SAGA-GT and 

entered into a database in Microsoft Access. This database contains a list of all 

individual identification codes and has a program to enable one to check for 

conflicts between repeat genotyped individuals. Conflicts were rechecked on SAGA- 

GT to determine the reason for the conflict and amended.

The genotype data was then ready for statistical analysis to check for allelic 

association to schizophrenia using an optimised Chi2 method “CLUMP”. CLUMP 

employs an empirical Monte Carlo test for significance and which does not require 

further correction for multiple alleles (Sham et al. 1995). Further statistical analyses 

are described in section 3.0.
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Figure 2:2 Shows a tetranucleotide repeat marker that has been analysed using SAGA-GT 
software. Allele size calls for all the genotypes are shown using coloured “X” symbols.
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Figure 2:3 microsatellite polymorphisms visulised with infra red signal detectin on a Licor 
polyacrilamide gel. two genetic loci are shown multiplexed on a single gel.

2.8.3 GENOTYPING OF SNPs

SNPs were genotyped in several ways as shown before. Common established SNPs 

were sent off to Kbiosciences Ltd (Hoddesdon, UK) to be genotyped. They have 

developed and optimised a cost effective way of genotyping SNP using an adapted 

Fluoresence resonance energy transfer (FRET) reporter system, which they named
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KASPar. DNA had been sent to the company with 17% of the samples duplicated to 

test for reproducibility and accuracy of the genotypes, the results were sent back for 

analysis.

Occasionally, especially for markers that amplified poorly, we had to use a high 

throughput sequencing method. It is a method devised to type rare low frequency 

SNPs found through sequencing in our entire case control population that 

Kbiosciences were unable to produce an assay for. It was carried out by sequencing 

a single base in which the SNP would occur, alongside a known full sequence 

positive control. This allowed one to sequence 120 individuals on a single 

polyacryamide gel using both IRD 700 & 800 wavelengths.
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Reference sequence of Rare SNP insertion of “C” Sequencing using only the “C”
positive control, bases base.
G,A,T,C respectively

Figure 2:4 Showing single base sequencing for 60 individuals on a single infra red wavelength, 
example of high throughput dectection on a rare SNP in this case a “C”.

In all methods, 17% of the sample was duplicated to check for reproducibility and 

accuracy of the genotypes. The genotype data was collated in the required format 

and checked for Hardy-Weinberg equilibrium, and the chi square between cases and 

controls was assessed.

Further statistical analysis was carried out on the data for linkage disequilibrium 

between markers and and for haplotypic association with schizophrenia as described 

in section 3.2.4.
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2.8.3.1 KBIOSCIENCE

Kbioscience (KBiosciences, Hoddesdon, UK) were employed to undertake 

genotyping of SNPs in the case control sample. For each SNP fifty base pairs either 

side of the polymorphism were selected from dbSNP in The National Center for 

Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/). This 

information along with the SNP name was sent to KBiosciences for SNP assay 

development.

KBiosciences employ a modified version of the Amplifluor (Myakishev et al. 2001) 

genotyping method (Millipore, MA, US).

This method involves the allele specific amplification of SNP alleles using two 

tailed locus specific oligonucleotides and a standard locus specific reverse primer.

In addition two tailed oligonucleotides labelled with different fluorescent dyes are 

used in the reaction. In the early cycles of amplification the allele specific 

oligonucleotides compete with one another for template. The best fitting (matching) 

oligonucleotide binds the template with high affinity and thereby creates more of 

this allele’s template for subsequent amplification.

In the later cycles the appropriate tailed fluorescent oligonucleotide is incorporated. 

The end point fluorescence is then detected using a fluorescent plate reader. There 

are four different possible outcomes each with different fluorescent intensities: low 

intensity for both fluorescent dyes indicating that no amplification has occurred; 

high intensity for one fluorescent dye and low intensity for the other indicating a 

homozygote template for the appropriate SNP allele; the opposite scenario; and 

finally moderate intensities for both fluorescent dyes indicating a heterozygous 

template for the SNP. See Figure 2:5 and Figure 2:6.
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Figure 2:5 KASPar method for genotyping a two allele SNP using allele-specific primers 
coupled with two Universal Amplifluor primers (Bengra et al. 2002).
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specific primers coupled with two Universal Amplifluor primers (Bengra et al. 2002).
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2.8.3.2 EPOCH BIOSCIENCES IN HOUSE SNP GENOTYPING

This technology was used for this thesis to genotype rare non-data base SNPs (such 

as Figure 8:5 SNP A/C on page 153) in our entire case control sample these were 

SNPs that KBiosciences were not be able to produce a working assay for.

Epoch Biosciences (Epoch Biosciences merged into Nanogen, Inc., WA, US) were 

employed to develop an assay for the non database SNP (-15 A/C) in the case 

control sample. Fifty base pairs either side of the polymorphism were selected using 

the UCSC Genome Browser (http://genome.ucsc.edu/).

This sequence was sent to Epoch Biosciences along with genomic DNA from two 

known heterozygotes for the SNP and two known for the homozygotes common 

allele of the SNP. The probes contain a fluophore moiety at the 5 ’ end and a 

quencher at the 3’ end. Epoch Biosciences use a probe containing a minor groove 

binding (MGB) sequence attached to a quencher at the 5’ end and a fluorophore at 

the 3’ end. This method does not need the Taq DNA polymerase to cleave the probe. 

It simply emits fluorescence once hybridized to the sequence. Further, it is protected 

from 5’ digestion by Taq DNA polymerase during the the amplification stages.

Each MGB probe has a different fluorescent reporter dye. The DNA duplexes are 

denatured over a time course and the decrease in the fluorescent signal of each probe 

is measured. Comparison of the two-colour melting curves allows for differentiation 

of sequence variants of the SNP.
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emitted.
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2.8.4 SEQUENCING

Primers for sequencing are optimised as described in section 2.6. DNA samples for 

sequencing were selected on the basis that cases of schizophrenia had inherited 

alleles and haplotypes that had previously shown association to schizophrenia. Once 

the primers were amplified, a proportion of the PCR products were analysed on an 

agarose gel. This was to check that the individuals which had been amplified, are the 

correct size, and to check for non specific amplification as shown by the presence of 

multiple bands, and intensity of primer dimer.

The amplimer for each individual was then cleaned from the master mix reagents 

and purified from any primer dimer by the use of microCLEAN (Microzone Ltd, 

West Sussex, UK). This reagent was mixed in equal quantities to the PCR reaction 

and left at room temperature for approximately 5 minutes. Then the eppendorf 

containing the mix was centrifuged at 14000g for 7 minutes to pellet the template. 

The supernatant was disposed of and the tubes briefly spun to pull down any 

remaining “dregs” which were then removed. The pellet was then re-suspended in 3- 

lOpl of ultra pure water. This targeted region was then used as a template for the 

“Sanger-Coulson” chain termination sequencing method.

2.8.4.1 SANGER-COULSON (CHAIN TERMINATION SEQUENCING 

METHOD)

Once the targeted region was amplified and cleaned, sequencing could take place on 

the DNA template. As the amplimer contains an integrated M13Forward/Reverse 

sequence, integrated by the primers used in the initial amplification. An M13F/R 

primer can be used for specific sequencing and simultaneous incorporation of the 

dye for visualisation on the LICOR.

The M13F/R primer during the PCR reaction binds to the specific template and 

allows extension and synthesis of the complementary strand by the sequatherm DNA
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polymerase. The advantage of using M13F IRD700 and M13R IRD800 is that both 

strands can be sequenced at the same time and used as a crosscheck for one another 

to assess whether novel bands (DNA variants) were artefacts or real polymorphisms.

In sequencing the usual dNTPs are used along with a small amount of 

dideoxynucleotide (like ddATP) which is incorporated just as efficiently into a 

growing polynucleotide strand but prevents further synthesis. This is because the 

dideoxynucleotide lacks a hydroxyl group at the 3 prime position of the sugar 

component and this prevents further incorporation into the polynucleotide. Therefore 

chain termination occurs wherever a dideoxynucleotide is incorporated. As a result 

the reaction can run with each individual ddNTP and will result with terminations at 

every base of the sequence showing exactly where each base belongs in a sequence.

Table 2:6 Table showing the master mix reagents and volumes required to sequence 16 
individuals.

Sequencing reagent for MasterMix Volume

3.5x Buffer 75pl
M13F 700 (lOpmol/pl) 1.33pl
M13R 800 (lOpmol/pl) 1.33pl
Sequitherm Polymerase l lpl
Water 27pl

3 pi of the cleaned DNA template is mixed with 6.8pl of the sequencing master mix. 

2pl of this is then mixed with 2pl of each ddNTP as shown in the figure below. The 

sequencing reaction is then PCR amplified by the Sequatherm program as stated in 

Section 2.6.3. Table 2:4. This is carried out on a 96 well plate and enables one to 

sequence 16 individuals at a time on a single polyacrylamide gel.
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Figure 2:7 Layout of the sequencing reaction, showing how the Master Mix and DNA are mixed with 
each ddNTP separately.
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After PCR an equal volume of Fuchsin loading buffer is added to the product. The 

amplified product is aliquotted to a relevant plate format to enable loading with a 

multichannel pipette contiguously which will keep all the same nucleotides aligned.

The sequencing product is then loaded on a 44cm agarose gel, and analysed by the 

LICOR scanner on the preset sequencing parameters (Section 2.7.2 Table 2:5). The 

resultant sequencing image is read and checked against the database sequence to 

make sure the correct region is sequenced and also to check for any abnormalities. 

The sequence is examined for any polymorphisms and mutations both present in the 

database and not. These abnormalities are cross-checked with the reverse strand 

sequence to make sure they were not an artefact of the gel image. Any abnormalities 

were checked in random controls to see if they appear in the same frequency as the 

cases or more importantly not. In total 32 of the most significantly associated 

individuals were sequenced (these were chosen from haplotypes with the most 

significant markers section 3.2.4.3). The presence of these potential aetiological base 

pair changes were then investigated by sequencing with an equal number of random 

controls.
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Figure 2:8 An example of the result one would obtain by Sanger-Coulson chain termination 
sequencing method, with the image obtained from the LiCor DNA sequencer
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SNPs or any other abnormalities discovered in sequencing o f interest were further 

typed as described in section 2.8.3.
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Figure 2:9 Example of a four base insertion-deletion (INDEL), a mutation which is easily seen 
by eye.
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3.0 STATISTICAL ANALYSIS
A range of statistical analysis is used for these data to determine the reliability of our 

findings. It ranges from checking population stratification to calculating LD between 

markers and calculating the degree of genetic association between the markers and 

schizophrenia. Most of these analytical software were developed by Professor Dave 

Curtis et al (http://www.smd.qmul.ac.uk/statuen/dcurtis/software.htmO. Department 

of Adult Psychiatry Royal London Hospital.

3.1 C H ECK H ET

Case control association studies are prone to false positive findings due to 

population stratification. One way of preventing these false positive discoveries is to 

ensure that there is no overall heterogeneity in the samples. One method of testing 

for heterogeneity is a program called CHECKHET. This program helps to ensure 

that case control samples are drawn from a homogenous genetic background by 

detecting genetic outliers from the sample. This method is intended to be particularly 

sensitive in detecting a few subjects which are abnormal across a range of markers. 

CHECKHET does this by examining whether a subject tends to have normal 

genotypes across a range of markers using a log likelihood ratio test of heterogeneity 

as a measure of abnormality. The tests are summed over all markers and permutation 

tests are then used to identify subjects that have exceptionally large scores. These 

samples are then excluded from the analysis. The program depends on genotypes 

rather than allelic frequencies it does not make the assumption that all markers are in 

Hardy-Weinberg equilibrium (Curtis et al. 2002).

Data from fifteen genetic markers at chromosomal loci not thought to be involved in 

schizophrenia were genotyped in a subset of the sample (200 cases and 300 controls) 

and analyzed using CHECKHET. This test detected two schizophrenia cases with 

abnormal genotypes and these were excluded from further study before any of the 

study markers were genotyped (Curtis et al. 2002).
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3.2 H A P M A P

As described in section 2.5.3, HAPMAP was a project that aimed to identify all 

common SNPs in the human genome across four different populations. This project 

was designed to aid association studies by enabling one to fine map a region of 

interest by selecting tgging SNPs. The program Tagger was used to identify 

“tagging” SNPs. Tagger selects SNPs with varying genetic information, indicated by 

the different r2 LD vaules. This allows for the best statistical selection of single 

SNPs form ones in high LD. This method proves the most economical method to 

fully genotype a region with known SNPs.

3.2.1 WHAT IS LINKAGE DISEQUILIBRIUM (LD)?

Linkage disequilibrium is often termed "allelic association." When alleles at two 

distinctive loci occur in gametes more frequently than expected (rather from other 

causes such as population stratification or epistasis) given the known allele 

frequencies and recombination fraction between the two loci, the alleles are said to 

be in linkage disequilibrium. Evidence for linkage disequilibrium can be helpful in 

mapping disease genes since it suggests that the disease causing change and genetic 

marker may be very close to one another. LD is also commonly used to describe the 

relationship between genetic markers. LD reflects the genetic distance between 

markers, it also can be disrupted by the recombination rate and the presence of new 

mutations.

There are many measures of LD. The most common used through out this project
2

are D’ and r values which will be discussed next.

3.2.1.1 LEWONTIN’S D’ MEASUREMENT OF LD

Lewontin’s D’ (Lewontin 1964a; Lewontin 1964b) is derived from D, which is a LD 

coefficient derived from haplotypic frequencies as displayed below. Using a biallelic



system such as a SNP the haplotypic frequencies can be simply estimated between 

two markers.

D measures the deviation of haplotype frequencies from the equilibrium state. LD 

occurs when D is significantly greater than zero. Considering two linked SNPs with 

alleles (A,a) and (B,b) resulting in four possible haplotypes: AB, Ab, aB, ab. “D” 

can be calculated as in the equation below

SNPI
A A

<N B fAB faB fB
£C/3 b fAb Fab fb

fA Fa
f = frequency

As a result the LD coefficient D could be worked out as follows

D = f(AB) -  f(A) x f(B)

The problem with the D coefficient is that is was dependent of the marginal allele 

frequencies in the contingency table. This disqualifies D as a measure of LD because 

the data is dependent and cannot be compared for different SNPs and different 

populations (Devlin et al. 1995). However D can be normaised to D’ allowing the 

measurement to be comparable across SNPs and populations.

D' is defined as the absolute ratio of D compared with its maximum value, Dmax, 

when D>0, or compared with its minimal value, Dmin, when D<0 (modal result 

taken), D' = 1 denotes complete LD, and historical recombination results in the 

decay of D' towards zero.

This means that D' is equal to 1 if alleles at adjacent marker loci are in LD with each 

as much as is possible given that they have different population allele frequencies.

D' values less than 1 imply that the maximum extent of LD between two marker 

alleles has not been observed. For example, D' = 0.87 represents a strong LD 

between SNP alleles; similarly D' = 0.12 represents weak LD between SNP alleles.
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D' has the same range of values regardless of the frequencies of the SNPs compared 

(Lewontin 1988). Its sign (positive or negative) depends on the arbitrary choice of 

the alleles paired at the two loci.

The normalised measure of D (D’) is worked out as follows:

^ p { \ - p ) q { \ - q )

Where p  and q the major and minor allele frequencies as described in the Hardy- 

Weinberg equation (section 3.2.2)

Where |Z>'| =1 denotes complete LD,

Where D ’ = 0 it shows no LD (linkage equilibrium).

And where |/)'| < 1 it shows various degree of LD between the markers (higher the 

number the stronger the LD).

The limitations of using D’ include its insensitivity to distinguish between different 

degrees of LD, a |Z)'| = 1 can reflect 2 to 3 haplotypes present. There is also upward

bias for small to moderate sample sizes, and it can take extreme values when at least 

one allele frequency is small (Devlin et al. 1995).

Another measure of LD is r2 this will be discussed in the next section.

3.2.1.2 r2 MEASUREMENT OF LD

r2 is another measurement of LD (Pritchard et al. 2001). It is thought to over come 

the problems of D’, as r2 is able to detect LD in small sample sizes and also is far 

more reliable for detecting LD for low allele frequencies compared to D \
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The equation for r2 is as follows:

i-2_ ( f ( A B ) - f ( A ) f ( B ) ) 2 ^  D 2
fA.fa.JB.fi fA.fa.JB.fi>

Where f means frequency of the alleles.

When r2 = 1 the markers are said to be in perfect LD. Observations of one marker 

provides complete information about the other marker, making them both redundant. 

Therefore they are genetically identical and one can be used as a “Tag SNP” for the 

other in association studies.

r2 = 1 only when no recombination has occurred between the markers and the allele 

frequencies are identical. It also corresponds to a situation where two haplotypes are 

present out of a possible four.

In general r2 is more useful for dividing closely located SNPs into blocks, if the 

purpose is to identify "tagging SNPs". However r2 represents statistical association 

at the population level as well as incorporating LD and has no direct relationship 

with recombination like D \ r2 depends on marker allele frequencies and can be 

difficult to interpret when comparing multiple markers in a region (Hedrick 1987). 

D’ is directly related to recombination fraction and its generalization to more than 

two loci is the only measure of LD not sensitive to allele frequencies.

Hence when judging LD both D’ values and r values are used to describe the LD 

relationship between markers and are used in selecting the most appropriate SNPs 

with the use of HAPMAP and HaploView.
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3.2.2 HARDY-WEINBERG EQUILIBRIUM.

With the data from genotyping of microsatalites and SNPs, the information is 

checked to make sure that they follow Hardy-Weinberg equilibrium before any 

further statistical analysis is considered. This is to check if the alleles have been 

genotyped correctly.

The equation for Hardy-Weinberg equilibrium is as follows:

p2 + 2pq + q2 = 1 

Where p  is the major allele and q is the minor allele.

The concept of Hardy-Weinberg equilibrium is used to understand the genetic 

characteristics of populations (Hardy 1908; Weinberg 1908). They independently 

stated that if p is the frequency of one allele (A) for a biallelic locus, then the HWE- 

expected frequency will be p2 for the AA genotype, 2pq for the Aa genotype and q2 

for the aa genotype. The three genotypic proportions should sum to 1, as should the 

allele frequencies.

The derivation of the Hardy-Weinberg equation is appreciated by use of a Punnett’s 

square shown in Figure 3:1 below.

Figure 3:1 Using a Punnett’s square to derive the Hardy-Weinberg equation.

Females
A (p) a (q)

Males A (p) AA (p2) Aa (pq)
a (q) Aa (pq) aa (q2)

The final three possible genotypic frequencies in the offspring become:

f  (AA) -  p2, f(Aa) = 2pq and f(aa) -  q2.

Testing for HWE is used for quality control of large-scale genotyping and is an 

important method to identify systematic genotyping errors in unrelated individuals
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(Gomes et al. 1999). Genotyping errors are known specifically to affect certain 

genetic measurements such as LD, upon which association studies depend.

Tests for deviation of Hardy-Weinberg equilibrium is carried out by a simple chi 

squared test using the observed genotyped frequencies for the data and the expected 

genotype frequencies from the equation. Once the data is found to be in Hardy- 

Weinberg equilibrium it can be used to test for association using the statistical 

analysis as will be described in the following sections. However if the data is not in 

Hardy-Weinberg equilibrium, the data will have to be re-checked to verify if the 

calls are correct and the data is in the correct format.

3.2.3 STATISTICAL TESTS FOR ASSOCIATION BETWEEN 

MARKER ALLELES AND DISEASE

To test for association between the polymorphic marker and disease, a simple Chi 

square test is employed to test if alleles are more frequent in cases compared to 

controls.

3.2.3.1 TESTING FOR ASSOCIATION WITH SNPs USING CHI SQUARE

The data from SNP genotyping is first checked for accuracy by comparing the data 

with duplicates (17% of the sample is duplicated). The data is then checked to 

ensure that it follows Hardy-Weinberg equilibrium. Once the data has satisfied these 

criteria, the genotypic information is checked for association. Allelic association is 

tested for by forming a table with the allele frequencies for both cases and controls 

then performing a chi square test with one degree of freedom. Genotypic association 

is also tested for with a similar table representing each genotype frequency and 

performing a chi square test with two degrees of freedom.

In association studies allelic association is the most reliable test of association and 

genotypic association is not generally trusted in the absence of allelic association, 

because in the absence of allelic association there is a high probability that the result
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is due to discrepant genotyping results rather than a genuine result. The reason 

behind this, is if one genotype predominates then you would expect the allele 

frequency to also show allelic association

3.2.3.2 CLUMP TEST FOR ASSOCIATION OF MICROSATELLITES.

Allelic tests of association for microsatellites were tested using a program called 

“CLUMP” (Sham et al. 1995). The data is first also tested for accuracy by cross 

checking the genotypes with duplicates which make up a minimum of 17% of the 

sample. The data is then tabulated for allele frequencies for the microsatellite in both 

cases and controls. The data is then fed in to CLUMP to perform a number chi 

square tests for association.

As stated by the creators, CLUMP is a program developed to assess the significance 

of the departure of the observed values from the expected values conditional on the 

marginal totals within a 2 x N contingency table. The significance is assessed using 

a Monte Carlo approach, by performing repeated simulations on randomly generated 

tables with the same marginal values using simulated data, and counting the number 

of times the chi square value is associated with the table under consideration by 

chance. This means that the significance levels assigned is unbiased (accuracy 

dependent on the number of simulations) and also means that no special 

considerations need to be made for small expected values (Sham et al. 1995).

CLUMP is used to calculate maximal chi square values by clumping together 

columns into a new two by two table in a way which is designed to maximise the chi 

square value. The method produces an “inflated” chi square value but does not cause 

any problems in interpretation because its significance is assessed using a Monte 

Carlo method which takes into account the increased chance of a false positive 

result.
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The output of CLUMP generates four chi square results and their significance is 

evaluated by testing how many times the value produces is exceeded by chance with 

the Monte Carlo simulation method. The four results produced are as follows.

1. Pearson’s £  statistic of the ‘raw’ 2-by-N contingency table originally 

supplied. The statistic is referred to as “X I” the Chi Square value is worked 

out for the original supplied table. However if there are small expected 

values (less than 5) in some cells then these values might not follow the 

expected distribution of a chi-squared statistic with N-l degrees of freedom. 

However the significance can be reliably accessed using the Monte Carlo 

simulations.

2. The ^  statistic of a table with rare alleles grouped together to prevent small 

expected cell counts. If any cell has a value less than 5, then its column is 

clumped together with the column of the next smallest value. This process is 

repeated until all columns have values of 5 or more. The resulting statistic is 

referred to as “T2” the significance is assessed by Monte Carlo simulations 

and the degrees of freedom is N-l (where N is the number of resulting 

columns after they were clumped).

3. A 2-by-2 table obtained by comparing one column of the original table 

against the total of all other columns. (The largest of the £  statistics of 2x2 

tables each of which compares one allele against the rest grouped together). 

This tests the hypothesis that there is one particular column with a number of 

cells deviating form the expected values. For each column in turn, all the 

other columns are clumped together to assess the chi square value. The 

columns, which produces the maximal chi square value is used and the 

results are outputed. This statistic is “T3”. Columns containing values less 

than 5 are not considered and the columns are clumped together with the next
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column with the lowest value. In this case the T2 table would be used. The 

significance of the result is assessed with Monte Carlo simulations.

4. A 2-by2 table obtained by clumping the columns of the original table to 

maximise the chi squared value. This method compares any combination of 

columns (alleles) against the rest to produce the maximum chi square value 

possible and produces the largest of all 2-by-2 contingency tables. Its 

significance is assessed using Monte Carlo simulations. This produces the T4 

statistic.

From the output the most significant statistic is chosen to show the degree of 

allelic association of the marker.

In order to run the CLUMP program, one needs to give the number of columns 

(alleles) the table has and the number of permutations to perform, and also provide a 

random number to start calculations in order to produce the pseudo-random tables 

for Monte Carlo simulations. The number of permutation should be significantly 

large to produce a satisfactorily accurate estimate of the true significance that is 

achieved, about 10 000 (9999 in the programme as it starts at 0) or more 

permutations are generally used.

3.2.4 STATISTICAL ANALYSIS OF GENOTYPIC INFORMATION  

USING “GENECOUNTING”

Ascertaining allelic association between a single marker and the disease is one 

method of extracting information from genomic data. However one can analyse a 

combination of neighbouring markers to extract more information to find out the 

relationship between markers (to judge the strength of LD between them) and to try 

increase the power of information generated for association to the disease by 

analysing different haplotypes between markers which are in LD with one another. 

Having a large number o f markers which form a positive haplotype is useful, as the
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information can be used to help select the most significantly associated individuals, 

who contain those haplotypes. These individuals can be chosen for sequencing 

candidate regions to increase ones chance of finding an abnormality in the genomic 

sequence.

The program which was used to ascertain the LD relationship between markers and 

haplotype significance was as sub-program of “GENECOUNTING” (Zhao et al. 

2000; Zhao et al. 2002; Curtis et al. 2006) and the functions will be discussed next.

3.2.4.1 LDPAIRS

LDP AIRS reports pair-wise linkage disequilibrium statistics between all pairs of 

markers. This program allows one to calculate LD between any set of selected 

markers, it will calculate a p value for the statistical significance of the test for 

linkage disequilibrium between the markers and from the estimated haplotype 

frequencies it will calculate a mesure of LD called Cramer’s v, which is equivalent 

to the square root of the r measure of LD (Bishop et al. 1975) (section 3.2.1.2). The 

program in addition will also work out the absolute value of the D’ statistic (section 

3.2.1.1) between the commonest alleles at each locus.

3.2.4.2 SCANGROUP

SCANGROUP compares haplotype frequencies in cases and controls of haplotypes 

built from subsets of markers, consisting either of groups of contiguous markers or 

of all possible combinations of a specified number of markers. This program is 

useful to detect if any of genotyped plates have been swapped over which would 

produced aberrant results.

3.2.4.3 RUNGC

RUNGC estimates haplotype frequencies between unrelated subjects and has the 

ability to deal with multiallelic markers and markers with missing genotypes.
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RUNGC compares haplotype frequencies in cases and controls, tests for significant 

differences using a likelihood ratio test and permutation test.

The program out-puts the frequencies of haplotypes and groups them side by side for 

comparison. This allows one to pick out hapotypes with the largest discrepancies (i.e 

over representation in cases) in order to pick out the most implicated haplotype or a 

range of implicated haplotypes. Also by adding a second output parameter (.hap) the 

RUNGC program is able to output grouped individuals containing their haplotypes 

enabling one to select individuals with the most significant hapotypes for specific 

sequencing of those “most at risk individuals”.

3.2.5 POWER CALCULATIONS.

Power calculations are carried out to find out the power of a sample and its ability to 

detect low frequency alleles in the population. It is known that the larger the sample 

the greater the power it has to detect rare allelic variants and a better chance the 

sample has to perform a replication association study of an implicated region in a 

smaller sample. Power calculations can be calculated by using online resources such 

as the “Genetic Power Calculator” (http://pngu.mgh.harvard.edu/~purcell/gpc/), 

(Purcell et al. 2003).

We have calculated that the sample used in this thesis (about 450 cases and 450 

controls) is large enough to detect a marker allele frequency difference of 5% in 

controls and 10% in cases with a power of 0.99 at p<0.05 and of 0.91 at p<0.001 

assuming the minor marker allele frequency is less than 10%. With a high frequency 

biallelic marker present in 45% of controls and 55% of cases the power of the 

sample is 0.90. If a high frequency marker is employed with only a five percent 

allele frequency difference between cases and controls, for example 45% versus 

50%, our sample had a power of only 0.41
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3.2.6 ODDS RATIO.

The odds ratio is a way of comparing whether the probability of a certain event is the 

same for two groups. An odds ratio of 1 implies that the event is equally likely in 

both groups. An odds ratio greater than one implies that the event is more likely in 

the first group. An odds ratio less than one implies that the event is less likely in the 

first group.

Shown below is the typical 2 by 2 table.

Allele 
 T  G

Control
Case

Where a & c = the number of T alleles observed in the controls and cases, and where 
b & d = the number of G alleles observed.

By definition the odds ratio (OR) is;

(a/(a + b))/(b/(a + b))OR=
(c !{c + d)) / (d !{c + d))

This can be reduced to:

OR = —
be

Confidence Limits can be worked out for the odd ratio by first working out the 

standard error (SE)

SE(lnOR)= f l  + I  + I  + L
V V a b c d

Confidence intervals for odd ratio is tested at the for a two sided 95% confidence 

interval where Zl is hence 1.96
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The confidence limits for odds ratio is calculated as follows

exp(ln(OR)± Z l x  SE).



4.0 ATTEMPTED REPLICATION OF REGULATOR OF 

G-PROTEIN SIGNALLING 4 (RGS4) IN BRITISH 

CASE CONTROL SAMPLE

4.1 G E N E R A L  IN TR O D U C TIO N

Regulator of G-protein Signalling 4 (RGS4) has been implicated as a schizophrenia 

susceptibility gene in several studies. Mimics et al (2001) first implicated the gene, 

by finding RGS4 mRNA expression had significantly decreased in schizophrenic 

brain samples using microarray technology. This was then followed by a significant 

association finding by Chowdari et al (2002). The finding was interesting as the gene 

is situated in genetic locus lq23.3, a linkage hotspot for schizophrenia susceptibility. 

The association has been replicated in part by a number of independent groups; 

however their results were not completely conclusive. We attempted to replicate the 

original finding by Chowdari et al (2002) in our own case control sample.

4.2 R E G U L A T O R  O F G -PR O TEIN SIG N A LLIN G  4 (RG S4) 

R E P L IC A T IO N  STUDY.

4.2.1 INTRODUCTION

Regulator of G-protein signalling (RGS) belongs to a diverse family of proteins 

modulating the G-protein signalling pathways. The RGS domain accelerates GTP 

hydrolysis, deactivates the molecule to the inactive GDP-bound form, and as a result 

quenches signal transduction through the involved G-protein coupled receptors 

(Sobell et al. 2005). The function of RGS4 is to regulate the activity of GTPase, 

which is coupled with several receptors involved in the signal transduction of 

dopamine, glutamate and several other neurotransmitters (Saugstad et al. 1998;
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Taymans et al. 2003; Taymans et al. 2004). These receptors are thought to play some 

sort of role in schizophrenia.

Regulator of the G-protein signalling 4 (RGS4) is an attractive candidate gene for 

schizophrenia and is close to the lq23.3 region implicated by linkage studies, 

((Brzustowicz et al. 2000; Blackwood et al. 2001; Gurling et al. 2001; Ekelund et al. 

2004)). RGS4 had initially been implicated through decreased gene expression in 

post mortem schizophrenia brain samples using microarrays (Mimics et al. 2001). 

Tests of allelic and haplotypic association with schizophrenia at the RGS4 locus 

were first carried out using three methods. These were case control, family and trios 

sample designs with samples from Pittsburgh, the NIMH (USA), and New Delhi. 

(Chowdari et al. 2002). Thirteen RGS4 SNPs were genotyped. Family-based 

association analyses using the transmission disequilibrium test (TDT) found 

transmission disequilibrium for individual SNPs as well as for haplotypes composed 

of four SNPs in the 5' flanking sequence and first intron of RGS4 (SNPs 1 

(rsl0917670), 4 (rs951436), 7 (rs951439) and 18 (rs2661319)). The alleles and 

haplotypes which were associated with schizophrenia differed between the 

Pittsburgh and NIMH samples. Comparison of the Pittsburgh cases with two 

independent groups of unrelated controls did not reveal significant associations, 

raising the possibility that the TDT results might reflect methodological problems or 

producing false positive results. Two subsequent studies involving cases and 

unrelated controls of Caucasian ethnicity did however reveal associations with these 

four SNPs. Williams et al (2004) studied the association between the four SNPs and 

schizophrenia in a large case (n = 709) control (n = 710) sample from Wales, UK. 

Modest but significant associations were found between alleles of SNPs 4 

(rs951436) and 18 (rs2661319) and schizophrenia. An Irish study (Morris et al.

2004) genotyped the same four SNPs in a sample of 249 cases and 231 controls from 

the Republic of Ireland and found significant but not very strong allelic association 

with two different SNP markers (SNP 1 (rsl0917670) and SNP 7 (rs951439)). More 

recently a family-based study (Chen et al. 2004) also found evidence for association 

of RGS4 with schizophrenia in the Irish Study of High Density Schizophrenia
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Families (ISHDSF). Single marker TDT for the four SNPs showed modest 

association for SNP 18 (rs2661319) and a trend for SNP 4 (rs951436). The goal of 

the present study for this thesis was to attempt to replicate the original reported 

associations between RGS4 markers and schizophrenia.

Figure 4:1 Showing the location of SNPs and the GT microsatellite in the region of RGS4 
(UCSC BLAT diagram).

chi I 159765000 | 159770000 | 159775000 | 159780000 | 159785000 |
Your Sequence from Blat Search 

SNP 11 SNP181 GT |
SNP4 |

SNP71
UCSC Known Genes (June, 05) Based on UmProt, RefSeq and GenBank mRNA 

AK093959*- 
R G S4f"

BC051869►

4.2.2 METHOD FOR TESTS OF ALLELIC ASSOIATION BETWEEN 

RGS4 AND SCHIZOPHRENIA

Markers chosen for genotyping were the SNP markers 4 (rs951436), 7 (rs941439) 

and 18 (rs2661319) (Chowdari et al. 2002). SNP 1 is in strong LD with SNP 7. D/ 

and r2 values close to 1 between both SNPs have been reported in the earlier studies 

of RGS4 and schizophrenia from Caucasian origin. According to Morris et al (2004) 

D7 was more than 0.98 and r2 was more than 0.96 in both cases and controls. This 

was confirmed in Wales (D7 was 0.987 in Cases and 0.981 in controls, and r2 was 

0.96 in cases and 0.963 in controls) (Williams et al. 2004). Therefore SNP 7 should 

carry the same information as SNP 1. In addition we genotyped a polymorphic 

microsatellite (GT)m which is approximately 7Kb distal from RGS4 for an 

additional test of association. The SNPs were genotyped using sequence data 

available from the University of Pittsburgh website

(http://www.pitt.edu/~nimga/research/RGS4). The microsatellite (GT)i4 marker was 

obtained from the University of California at Santa Cruz

(http://www.genome.ucsc.edu/) and was at database position 159783591-159783618 

base pairs on chromosome lq23.3. The marker was genotyped using the following 
primer sequences:
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Forward: CTGTAATCCCAACAACACGG.

Reverse: CACTCAGCATAGGCAGGACA.

PCR amplification of the microsatellite marker was carried out using an Ml 3 tailed 

primer and a second non-tailed primer. A third universal M l3 sequence primer 

labelled with IRD 700 or IRD 800 was used to hybridise against the M l3 tailed 

locus specific primer. The microsatellite marker was genotyped by Licor and 

SAGA-GT as previously described in section 2.8. Single nucleotide polymorphisms 

were determined by the Amplifluor SNP genotyping method as modified by 

KBiosciences (KBiosciences: http://www.Kbioscience.co.uk/). 17% of samples on 

each microtitre plate were reduplicated in order to detect error and confirm the 

reproducibility of genotypes section 2.8.3.1. The data were then analysed to confirm 

Hardy Weinberg equilibrium (HWE). Next the data were analysed for allelic 

association with schizophrenia using CLUMP and Chi2 tests section 3.2.3.2.

4.2.3 RESULTS FOR REPLICATION STUDY OF RGS4

None of the markers (SNPs 4 (rs951436), 7 (rs951439) and 18 (rs2661319)) which 

were previously found to be associated with schizophrenia (Chowdari et al. 2002) 

could be implicated in the present sample. The (GT)]4 microsatellite approximately 

7Kb distal from RGS4 also failed to show allelic association with schizophrenia 

(Table 4:1). Tests of haplotypic association using GENECOUNTING and 

permutation testing also did not produce any evidence for association at this locus 

with any of the SNPs and the microsatellite marker as shown in Table 4:1.

Taking the example of SNP 4, the most consistently associated SNP, our sample 

only had the power of 0.53 to detect the effect size observed by (Williams et al. 

2004).

A comparison between the alleles frequencies of the SNPs markers in our sample 

and the previous case control studies was shown in Table 4:2.
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After these results were analyzed and published (Rizig et al. 2006) a number of new 

papers on the results of association of RGS4 with schizophrenia had been published. 

The results of known published papers are shown in Table 4:3 including the more 

recent meta-analysis (Talkowski et al. 2006) of RGS4. The meta-analysis consisted 

of results from all studies using trios, family samples and case controls samples.

From the overview of all results (Table 4:3), it is seen that the association results for 

RGS4 over all is very weak. Single SNP association from the majority of reports are 

weak or non-significant and haplotypic associations where reported positive are in 

different haplotypic combinations and marker numbers, or were negative. Even the 

published meta-analysis of 2160 families and 3486 cases with 3755 controls 

(Talkowski et al. 2006) shows that no individual markers were significantly 

associated in the family samples and haplotypic association were found not to be 

significant. In the case control samples, all SNPs were found to be non-significant 

apart from SNP 4 which had shown modest association, however there was no 

significantly associated haplotype.

4.2.4 RGS4 DISCUSSION

The sample employed here had greater power than the original sample of Chowdari 

et al (2002) and also greater power than the case control sample employed in the 

Irish study (Morris et al. 2004) as noted in Section 3.2.5. The Irish study only found 

associations with p values of about 0.04 with each of the two SNPs labelled 1 and 7 

(rs941439). In the case control association study from Wales (Williams et al. 2004) 

two different SNP markers (4 (rs951436) and 18 (rs2661319)) showed association 

with p values of 0.017 and 0.038.

It is possible that the original study (Chowdari et al. 2002) may have exaggerated the 

effect of association by confounding it with linkage which is known to be present in 

the region where association is claimed. The methods implemented in 

GENEHUNTER and TRANSMIT for detecting allelic association do not always
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eliminate the possibility of linkage being confounded with association especially 

when the commonest allele is found to be associated with the disease as in the case 

of the Pittsburgh and NIMH samples and where multiple cases within a sibship 

rather than just one case in a family are used to test for association. The authors do 

not specify whether they have used the option of using the most stringent test of 

association in family data where only one case per family is used in the TRANSMIT 

analyses. Such a procedure would have the effect of possibly removing some of the 

confounding of linkage with association. In any case the single marker evidence for 

transmission disequilibrium in the original Pittsburgh sample (p=0.05) was modest 

with SNP 4. In the analysis of the NIMH sample the authors also do not state what 

options for the global test of association were used for the TRANSMIT analyses. 

Different SNP markers were found to be associated, but the p values were stronger 

at 0.01, 0.003 and 0.005 for markers l(rs 10917670), 4 (rs951436) and 18 

(rs2661319) respectively.

However the Irish and Welsh studies do not suffer from the problems that tests of 

association using family data can suffer from, but the significance o f the associations 

between RGS4 SNPs and schizophrenia were not found to be strong. The 

discrepancy between our results and those of the Pittsburgh, Welsh and Irish studies 

could be due to locus heterogeneity with different proportions of disease alleles 

being present in different geographical regions.

However replication of the results through a more powerful meta-analysis has also 

failed to find clear positive independent marker or haplotypic association with 

family samples and no haplotypic association with case control samples (Talkowski 

et al. 2006). The meta-analysis collectively found modest association of over 

transmission of both common haplotypes consisting of SNPs 1-4-7-18 (haplotypes 

A-T-A-A & G-G-G-G). Talkowski et al (2006) had attributed the phenomenon to 

biological, statistical, molecular and population factors. This could happen as a 

result of recurrent mutations or transfer of liability alleles between haplotypes by 

recombination which accounts for the common haplotypes, also by allelic
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heterogeneity or contribution of multiple loci to susceptibility or by a single rare 

mutation on a background of two common haplotypes.

It was also claimed by Talkowski et al (2006) that lack of consistent results could be 

attributed to lack of quality control over samples and genotyping errors could mimic 

biased transmission of common alleles/haplotypes. Over all the weight of the data 

which is inconsistent, the lack of good positive association with a large meta­

analysis data and the failure to replicate the positive results in our own case/control 

sample greatly weakens RGS4 as a putative candidate susceptibility gene for 

schizophrenia.

A more recent study by Ishiguro et al (2006), in a large Japanese population (1918 

cases, 1909 controls) also failed to find association with the four SNPs previously 

implicated by Chowdari at al 2002 (Table 4:3) Guo et al (2006) had also found no 

association with the four SNPs and also in two additional SNPs (rs2842030 and 

rs2344671) in a Han Chinese population (Table 4:3). In addition to the replication 

study, Guo et al had also carried out their own meta-analysis study which consisted 

of 3062 cases and 3564 controls, in which they had found no evidence of association 

with RGS4 to the disease.

Both meta-analysis and new data, shows that RGS4 is still not a strong or likely 

susceitibility gene for schizophrenia. Its expression may be altered due to drug 

effects or interaction with genes directly involved with the disease, but it does not 

seem to be a likely susceptibility gene for schizophrenia.

4.2.5 RGS4 CONCLUSION

Consideration should be given to the possibility that the observed allelic association 

could implicate other genes which are close enough to show linkage disequilibrium 

with the RGS4 marker alleles. Our findings, in addition to the two meta-analyses 

carried out (Guo et al. 2006; Talkowski et al. 2006) diminish support for the notion
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that RGS4 gene polymorphisms influence susceptibility to schizophrenia. They also 

suggest that more research is needed to prove that the RGS4 gene is implicated in 

the genetic susceptibility to schizophrenia.
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Table 4:1 Tests of Allelic and Haplotypic Association with Schizophrenia at the RGS4 Gene 
Locus.

M arker 
SNP 4 

(rs951436)

M arker 
location in 
base pairs 

on C l

159765000

bases
from
previous
m arker

Allelic bases 
o r fragment 
sizes and 
observed 
allele
frequencies
below

G T

Chi2

0.06

pab

0.80*

Con 445 413

Scz 
SNP 7 

(rs951439) 159765349 349

426

G

386

A 0.021 0.88*
Con 512 346

Scz 
SNP 18 

(rs2661319) 159771435 6086

491

G

327

A 0.077 0.78*
Con 470 394

Scz 447 385

(GT)14 159783591 12156 274 276 278 280 282 284 286 2.126 0.60T3
Con 262 1 215 107 84 175 12
Scz 217 1 177 94 71 131 17

Breakdown of 
the estimated 

three SNPs 
m arkers- 

haplotypes 
with frequency 

>0.01 T-A-A T-A-G T-G-A G-G-G
Con 0.377 0.024 0.079 0.519
Scz 0.382 0.015 0.077 0.52
Global haplotypic

association combining all Empirical p
SNPs value 0.43b

Global haplotypic 
association combining all
SNPs with m icrosatellite Empirical p

m arkers G T m value 0.79b

a p value for 2x2 chi squared (1 df)
T Most significant p value from CLUMP
b global haplotypic association permutation test p value based on 9,999 permutations



Table 4:2 Allele frequencies of SNPs 4, 7 and 18 in the UCL case control sample in relation to the previous case control studies of RGS4 and 
schizophrenia.

Rizig et al 
(Caucasian)

Williams et al 
(Caucasian)

M orris et al 
(Caucasian)

Corderio et al 
(Brazilian)

Guo et al 
(Han Chinese)

Ishiguro et al 
(Japanese)

M arker Polymorphism Con
(n=450)

Scz
(n=450)

Con
(n=710)

Scz
(n=709)

Con
(n=231)

Scz
(n=196)

Con
(n=576)

Scz
(n=271)

Con
(n=288)

Scz
(n=288)

Con
(n=1909)

Scz
(n=1918)

SNP 4 
(rs951436) T/G 0.481 0.475 0.468 0.514 0.524 0.464 0.592 0.586 0.45 0.51 0.486 0.51

SNP 7 
(rs951439) G/A 0.597 0.6 0.606 0.587 0.539 0.609 0.567 0.574 0.51 0.51 0.508 0.51

SNP 18 
(rs2661319) A/G 0.456 0.463 0.395 0.407 0.496 0.446 0.576 0.556 0.47 0.48 0.453 0.485



Table 4:3 Results of RGS4 previously reported genetic association studies.
A uthor Year Sample type Sample size Statistics P-value
Chowdari, K.V 2002 Pittsburgh Cases = 59, TDT (transmit)
et al Case- control controls = 89

SN P 1 0 .055
SN P 4 0 .05
SN P 7 >0 05
SN P 18 > 0 .05
H ap lo typeA TD T (global) 0 .035

NIMH family sample 25 families TDT (transm it)
SN P 1 0.01
SN P 4  0.003
SN P 7 > 0 .05
SN P 18 0 .005
H ap lo ty p eA TD T (global) 0 .016

Indian trios 269 case parent TDT (transm it)
trio  + 72 sib pair 
families

SN P 1 > 0 .05
SN P 4 > 0 .05
SN P 7 > 0 .05
SN P 18 > 0 .05
H ap lo typeA TDT (global) 0 .078

M orris, D.W et 2004 Irish Case-Control 249 cases 231 Chi squared Values are
al controls excluding cases with

schizoaffective
disorders

SN P 1 0 .042
SN P 4 0 .082
SN P 7 0.041
SN P 18 0 .149
H ap lo typeA G -G -G -G  FASTEHPLUS 0 .044

W illiams, N.M 2004 UK born Caucasins 709 cases 710 Chi squared
et al controls

SN P 1 0.51
SN P 4  0 .017
SN P 7 0.32
SN P 18 0 .038
H ap lo typeA 1-4 EHPLUS 0 .016

1-4-7-18  0 .266

Chen X et al 2004 Irish families (ISHDF) 247 pedigrees FBAT
SN P 1 0.35
SN P 4  0.11
SN P 7 0.43
SN P 18 0 .04
H ap lo typeA 1-4-18  SIM W ALK2 (global) 0 .04

1 -4-7 -18  0 .20

Z hang et al 2005 Han Chinese 322 families PDTPHASE
SN P 1 0 .88
SN P 4 0 .72
SN P 7 0 .24
SN P 18 0 .27
H ap lo typeA 1-4 -7 -18  0 .72

Scottish Case -control 580 cases COCAPHASE
620 Controls

SN P 1 0 .04
SN P 4  0 .082
SN P 7 0.011
SN P 18 0 .033
H ap lo typeA 4-7  0.01
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1- 4 - 7-18  0.10

S o b e lle /a / 2005 W estern/N orthern 568 cases Chi square
European Caucasians 689 controls

SN P 1 0.11
SN P 4 0 .39
SN P 7 0.11
SN P 18 0.52
H ap lo typeA Modified EM >0.05

Rizig et al 2006 British Caucasians 450 Cases 450 Chi Square
Controls

SN P 4 0 .80
SN P 7 0.88
SN P 18 0 .078
H ap lo ty p eA GENECOUNTING 0.43

SN P 4 
SN P 7 
SN P 18 
H aplotype*

Liu et al 2006 Taiwaneese 218 nuclear 
Families

TRANSM IT

0 .237
0 .356
0 .397
0 .277

Ish ig u ro e la / 2006 Japanese 1918 Cases
1909 Controls

SN P 1 0 .92
SN P 4 0.91
SN P 7 0.27
SN P 18 0.43
H ap lo typeA n/s

Guo et al 2006 Han Chinese 288 Cases SHEsis
288 Controls

SN P 1 0.64
SN P 4 0.11
SN P 7 0 .35
SN P 18 0 .80
rs2 8 4 2 0 3 0  0.35
Rs2344671 0.35
H ap lo ty p eA SHEsis Global haplotype 0.97

Meta-analysis 3062 Cases n/s
3564 Controls

Talkowski et al 2006 2160 Families Combined results
global results

M eta-analysis
SN P 1 n/s
SN P 4  n /s
SN P 7 n/s
SN P 18 n/s
H ap lo ty p eA n/s

3486 Cases 3755 
C ontrols

SN P 1 n/s
SN P 4 0.01
SN P 7 n/s
SN P 18 n/s
H ap lo typeA n/s

A the most significant haplotype. 
n/s not significant
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5.0 ATTEMPTED REPLICATION STUDY OF 

ASSOCIATION BETWEEN THE CAPON (NOS1AP) 

NITRIC OXIDE SYNTHASE 1 (NEURONAL) 

ADAPTOR PROTEIN AND SCHIZOPHRENIA

5.1 GENERAL INTRODUCTION

Another gene in the lq23.3 region had been associated with schizophrenia by fine 

mapping. The gene originally known as CAPON was implicated by Brzustowicz et 

al (2004) who had also implicated the region by linkage analysis using one of the 

original markers that was used for the association study D1S1679 (Brzustowicz et al. 

2000). The same region was implicated in two linkage studies that found significant 

evidence for linkage with lod scores of 6.35 and 3.20 (Brzustowicz et al. 2000; 

Gurling et al. 2001). A third study also found evidence supportive of linkage to 

schizophrenia at lq23.3 (Shaw et al. 1998).

The region of strongest linkage was further examined in 24 Canadian familial 

schizophrenia pedigrees. 14 microsatellites and 15 SNPs were genotyped between 

D1S1653 and D1S1677 of which 2 microsatellites and 6 SNPs had shown 

significant evidence of association. All of the markers exhibiting significant 

association with schizophrenia fell within the genomic extent of the gene for 

carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) 

(Brzustowicz et al. 2004) now known as Nitric Oxide Synthase 1 (neuronal) Adaptor 

Protein (NOS1AP).

CAPON’s location and identification through association analysis first, rather than 

through expression analysis and its neuronal expression and function made the gene 

an attractive candidate for schizophrenia susceptibility.
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CAPON (NOS1AP) is involved in signal transduction in the N-methyl-D-aspartate 

(NMDA) receptor mediated glutamate neurotansmision system, abnormalities of 

which have long been proposed to be involved in schizophrenia. It functions by 

competitively binding with neuronal nitric oxide synthase (nNOS) which prevents 

nNOS from forming a complex with the NMDA receptor hence preventing calcium 

reflux and signal transduction. Over expression of CAPON is thought to lead to 

impaired NMDA receptor mediated neurotransmission, this highlights the potential 

importance of this pathway in the aetiology of schizophrenia.

5.2 REPLICATION OF ORIGINAL CAPON STUDY

We attempted to replicate the original association implicated by Brzustowicz et al, 

(Brzustowicz et al. 2004) in our UK case control sample using their associated 

markers. The experimental set up and results are shown in the following sections.

5.3 INTRODUCTION

The Canadian family sample which showed linkage to schizophrenia at lq23.3 

(Brzustowicz et al. 2004) was used to test for allelic association with schizophrenia 

using the methods implemented in PSEUDOMARKER (Goring et al. 2000; 

Brzustowicz et al. 2004). This approach claims to be able to detect allelic association 

in a family sample by correcting for the confounding effects of linkage (Goring et al.

2000). The authors stated that their sample size was equivalent to a collection of 

forty five independent trios. Evidence for significant allelic association with 

schizophrenia (p=0.015) was found using two microsatellite and six SNP markers at 

the CAPON locus. A Chinese case control study showed significant association 

between a single SNP at CAPON and schizophrenia but failed to find association 

with any of the six SNP markers which had been implicated in the Canadian sample 

(Zheng et al. 2005). A Spanish study found evidence for positive extended 

transmission disequilibrium (ETDT) with schizophrenia using the marker D1S1679 

(p=0.004) at lq23.3 which is 23 kilobases distal to the 3 prime end of the CAPON
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gene. ETDT analysis is not able to separate the effects of linkage from allelic 

association (Sham et al. 1995; Rosa et al. 2002). The marker D1S1679 was not 

associated with schizophrenia (p=0.9) in the Canadian study. Positive allelic 

association between markers at the RGS4 gene on lq23 and schizophrenia has been 

reported. The RGS4 gene is 700 kilobases distal to CAPON (Chowdari et al. 2002; 

Chen et al. 2004; Morris et al. 2004; Williams et al. 2004). Although, both CAPON, 

D1S1679 and RGS4 are in the same region it is unlikely that the positive results 

reported at the CAPON locus are due to linkage disequilibrium with RGS4 which is 

700 Kb away and vice versa, but linkage disequilibrium between alleles at D1S1679 

and CAPON is possible as is LD between RGS4 and a susceptibility locus in the 

middle of the 700kb region between CAPON and RGS4.

Figure 5:0 Showing the location of SNPs and the microsatellites in the region of 

CAPON/NOSA1P (UCSC May 2004 assembly, BLAT diagram).
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5.4 GENERAL METHODS AND MATERIALS

The positive Canadian study markers were genotyped in a British ancestrally 

matched sample of DNA from 450 cases of schizophrenia 450 controls. SNPs and 

microsatellite markers were genotyped using primer sequences available from the 

NCBI databases (http://www.ncbi.nlm.nih.gov/). Genotyping was checked by a 

second independent person blind to diagnosis. Any discrepant genotypes were 

repeated. SNPs were determined by a modified Amplifluor method (KBiosciences, 

Hoddesdon, UK). 17% of genotypings were reduplicated in a separate microtitre 

plate to detect error (section 2.8.3.1). Markers with lack of Hardy Weinberg 

Equilibrium were rejected and genotyping repeated. The data were analysed for 

allelic association with schizophrenia using CLUMP (Sham et al. 1995). Haplotypic
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association with schizophrenia were tested using GENECOUNTING and an 

empirical permutation test of significance (Zhao et al. 2000; Zhao et al. 2002). LD 

relationship between markers were also analysed using the same software. The full 

method is described in the method section 2.0.

5.5 RESULTS AND DISCUSSION

Reduplication of SNPs showed an accuracy rate of 99.4%. None of the markers 

implicated in the Canadian study were found to show allelic, genotypic or haplotypic 

association with schizophrenia (Table 5:1). Six SNPs in introns 1, 2 and 3 of 

CAPON were found to be in strong LD with D1S2675 (all at p<0.00007) (LDPAIRS 

p value from Cramer’s V) (Table 5:2). It should be noted here that the more familiar 

D prime and r2 statistics cannot be used for measure of LD with multiallelic 

microsatellite markers. Cramer’s V (Bishop et al. 1975) is calculated and is output 

along with the associated p-value in order to show LD with multiallelic markers 

(Curtis et al. 2006).

The marker D1S1679 which is 23 kilobases from the 3 prime end of the CAPON 

gene was not in LD with any of the SNP markers in introns 1, 2 and 3, therefore 

there is a high level of recombination between CAPON and D1S1679 (Table 5:2). 

Introns 4, 5, 6 and 7 and exons 4 to 8 of CAPON are contained within a distance of 

only 67 kilobases and allelic association over this part of the gene should be 

detectable with D1S1679. Both the Canadian and the UK samples were negative for 

this marker.

The Chinese case control study which also claims to have implicated CAPON in 

schizophrenia (Zheng et al. 2005) only found association with a single SNP marker 

(rs348624). Other markers in linkage disequilibrium with rs348624 such as 

rs905721 should also have shown some evidence for association but did not. In 

addition rs348624 was not significant in the original study conducted by 

Brzustowicz et al (2004). The Chinese study did not genotype the marker D1S2675
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that showed association (p=Q.036) in the Canadian sample but which was negative in 

the UK study. One explanation for the different outcomes may be that different 

proportions of CAPON susceptibility alleles were present each sample. Alternatively 

it may be that CAPON does not influence susceptibility to schizophrenia and it is a 

false positive result. The study by Zheng et al (2005) might also be false positive 

because of the lack of support for association from adjacent markers. Finally, our 

own results may represent a false negative finding.

We used two microsatellite markers flanking the five prime end of CAPON gene 

and in the second intron and this suggests that additional markers would also fail to 

show association. There were equal proportions of successful schizophrenia and 

control genotypes obtained for the SNP and microsatellite markers except for marker 

D1S2675 for which there was a 19% excess of controls over cases. Further 

genotypes were not obtained because the sample already had more power to exclude 

association between schizophrenia and CAPON than the original study. The lack of 

evidence of association between schizophrenia and CAPON is further supported by 

our finding that D1S2675 shows strong linkage disequilibrium with all the SNPs 

found to be associated with schizophrenia within CAPON and that the microsatellite 

marker D1S1679 also shows strong linkage disequilibrium with the SNP markers 

that are in the 3 prime region of CAPON up to 210.35 kilobases distal from 

D1S1679. Brzustowicz et al (2004) had sequenced all the exons of the CAPON 

gene, but had found no aetiological mutations, however an aetiological mutation 

may still be present elsewhere. There could be a mutation affecting gene-splicing, 

the 5’ UTR and the 3’ UTR affecting the promoter region, transcription factor 

binding, RNA stability and enhancer elements. There is a possibility that association 

with CAPON is more revelent in the Chinese population than the European 

population therefore association with the SNP marker, rs348624, should be 

replicated in a Chinese rather than a European sample. Our findings however, 

diminish support for the notion that the CAPON gene influences susceptibility to 

schizophrenia in European samples.
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5.6 FURTHER PUBLICATIONS ON CAPON

Recent research by Xu et al (2005) from Brzustowicz’s group, examined the 

expression of CAPON, to test if gene expression is altered in schizophrenic patients 

and bipolar patients compared to controls (Xu et al. 2005). Two alternative 

transcripts were found in a fetal brain cDNA library by using exon 10 as a probe. 

Exon 10 was used as a probe on the brains as it contains an nNOS-binding PDZ 

domain which should therefore hybridise to neuronal transcripts containing the 

domain. One transcript was the original full length transcript, the second was a 

shortened transcript containing just exons 9 and 10.

Expression of the transcripts were assessed in the dorsolateral prefrontal cortex 

(which is thought to be a pathological hotspot) that has been identified in studies of 

schizophrenia (Xu et al. 2005) in 35 schizophrenic, 35 bipolar and 35 “control” 

brains. They have found that there was increased expression of the short form of the 

transcript in both the schizophrenics and bipolar brains when compared to the 

controls. In addition they had also found the individuals associated with the 3 most 

associated SNPs (rsl415263, rs4145621 and rs2661818) implicated to the disease 

also led to increased expression of the short form of the transcript. As the short form 

lacked the phosphotyrosine binding domain which is needed to bind to the amino 

terminal targets Dextrasl and Synapsin, the role of the protein would be limited to 

the competitive inhibition of the binding of other ligands to the PDZ domain of 

nNOS and PSD93 or PSD95.
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Figure 5:1 The figure shows the Eastwood et al (2005) interpretation on how expression levels 
of CAPON can lead to impaired NMDA receptor meditated glutamate neurotransmission, 
potentially causing schizohrenia. Nitric oxide synthase (NOS)-CAPON complexes result in 
reduced NMDA-NOS complexes leading to decreased NMDA receptor gated calcium influx and 
inactive NOS.

However, this study had a small sample size, lacked statistical significance and was 

not replicated of the results in another brain series. In addition with lack of evidence 

of other brain regions and histo-chemical studies such as in-situ hybridisation to 

show altered expression as confirmatory evidence, the evidence seems weak. Also 

the resulting protein from the truncated transcript would also need to be assessed if it 

was functional, as this could cause structural alterations to the protein, leaving the 

protein inert.

In addition, Miranda et al (2006) had reported a putative association with CAPON. 

The association was not a replication using the same positive SNPs as implicated by 

Bruzustowicz et al (2004), but only with the use of a single microsatellite (D1S1679, 

p=0.019) in 110 Columbian family trios. The original study including our own 

(Brzustowicz et al. 2004; Puri et al. 2006) did not find association with D1S1679. It
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is possible that Miranda et al’s results may have confounded linkage with 

association, or detected LD with CAPON or another gene within the region. Miranda 

et al (2006) should have included the positive SNPs found by Brzustowicz et al’s 

group for a conclusive result to show if they were detecting association with the 

gene or not, hence the results of the work by Miranda et al (2006) are non- 

conclusive and premature in implicating or supporting evidence in the association of 

CAPON with schizophrenia.

The failure to fully replicate the original association with the same markers, of the 

published studies (including our own), currently weakens support that CAPON is a 

susceptibility gene of schizophrenia in the UCL sample given the informativity of 

the markers used. Allelic heterogeneity in our sample may be responsible for not 

detecting association with CAPON in our sample and there is a possibility that rare 

mutations within in CAPON were detected by the Canadian family sample that 

could have failed to be detected in the UCL case control sample. There is a 

speculative possibility by fully fine mapping CAPON with Tagged SNPs in a larger 

case control sample; one may be able to detect association with CAPON. However 

we have failed to detect association with the markers in which the original study 

had.

Taking the example of rs 1415263, the most associated SNP in the Brzustowicz et al 

(2004) study, our sample had the power of approximately 0.8 to detect association.

Our failure to replicate the CAPON and RGS4 associations could be due to genetic 

heterogeneity or might arise from the previous positive studies actually picking up 

evidence for allelic association due to a susceptibility locus placed in between 

CAPON and RGS4. In our data there was no detectable LD between any of the 

markers within CAPON and any of the markers within RGS4 (see Table 6:4). It 

should be noted that the study by Brzustowicz et al which found association between 

schizophrenia and CAPON gene marker alleles (Brzustowicz et al. 2004) had a 

sample size equivalent to only forty five cases and forty five controls and had a
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power of 11% to detect a 10% frequency difference, at p=0.05, for a marker allele 

frequency of 0.43 in controls and 0.53 in cases. By contrast our sample had a power 

of 83% to detect such a frequency difference. Thus there is a risk that the original 

CAPON result has arisen by chance or is due to the confounding of linkage with 

association because of the strong evidence of linkage to the CAPON region in this 

family sample. The study by Chowdari et al (2002) implicating RGS4 has been 

subjected to a meta-analysis in a very large sample (Talkowski et al. 2006). Despite 

the size of the sample, significant associations with individual SNPs and haplotypes 

were not observed in the combined meta-analysis. The global analysis revealed 

significant transmission distortion (p = 0.0009) for two very common haplotypes. 

Separate analyses of 3486 cases and 3755 control samples (eight samples) detected 

only a significant association with RGS4 SNP 4 (rs951436) (p = 0.01).

In the original study when the US patients were contrasted to two population-based 

control samples no significant differences were observed. Thus the evidence for 

involvement of RGS4 in schizophrenia derives more from transmission distortion in 

families than it does from allele frequency differences in case control samples.

With the lack of evidence for association with Regulator of G-Protein Signalling 4 

(RGS4), (section 4.0) and also Nitric Oxide Synthase 1 (neuronal) Adaptor Protein 

(NOS1AP/CAPON) with the British case control sample, this leaves the possibility 

that the linkage signal in the lq23-22 region may be due to another gene in the 

region. Hence the region should be further fine mapped to detect this signal with a 

better resolution using an even larger case control sample.
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Table 5:1 Tests of Allelic and Haplotypic Association with Schizophrenia at the CAPON Gene Locus.
M a rk e r _ 

location  in from
M a rk e r previous % geno typed  Allelic bases o r fra g m e n t s izes and  observed a lle le  freq u e n c ies below C h i2 P’b

03S6 pairs

rsl572495

Con

Scz

158830959

97.60%

86.70%

C

797

715

T

81

65

0.409 0.5223’

rsl538018 158862139 31180 G C 0.414 0.5199’

C on 93.10% 631 207

Scz 86.70% 598 182

rs945713 158867328 5189 C T 0.023 0.8782’

Con 95.60% 321 539

Scz 86.70% 294 486

rs 1415263 158897701 30373 C T 1.238 0.2659’

Con 97.80% 549 331

Scz 85.80% 502 270

D1S2675 158941619 43918 168 174 176 182 184 186 188 190 192 194 196 4.533 0.1703T3

Con 75.60% 16 2 1 6 94 343 88 107 18 4 1

Scz 56.40% 17 3 1 3 70 278 61 58 10 4 3

rs 4145621 158950346 8727 C T 0.762 0.3828’

Con 93.80% 360 484

Scz 78.00% 284 418

rs2661818 158996472 46126 G C 0.245 0.6208’

Con 94.40% 394 456

Scz 87.10% 346 438

D1S1679 159093422 96950 164 168 172 176 180 184 188 192 196 200 8.908 0.115T4

Con 97.80% 7 159 102 113 144 170 132 41 11 1

Scz 96.00% 12 119 92 139 133 165 154 41 9 0

8 M ark er H aplotypes E m pirical p value 0.441b

a significance p from 2x2 chi squared 1 df or most significant p value from CLUMP Monte Carlo T l, T2, T3 or T4 as shown, 
haplotype permutation test empirical p, based on 99,999 permutations



Table 5:2 showing structure of Linkage disequilibrium between markers within CAPON with D’, r2 and p-value measurements.
Distance between markers 

Marker Position (bp) Absolute value of D'__________

rs1572495 160365925
Rs1572495 rs1538018 rs945713 rs1415263 D1S2675 rs4145621 rs2661818 D1S1679

0.156 0.662 0.209 0.016 0.028 0.411 0.081
rs1538018 160397105 31180 0.00757 0.134 0.007 0.225 0.017 0.101 0.054
rs945713 160402294 5189 0.07129 0.00941 0.667 0.392 0.608 0.538 0.09
rs1415263 160432667 30373 0.00740 0.00004 0.42250 0.784 0.869 0.677 0.003
D1S2675 160476585 43918 r2 value 0.05570 0.09734 0.22753 0.44756 0.679 0.392 0.228
rs4145621 160485312 8727 0.00010 0.00012 0.31923 0.62568 0.42903 0.769 0.019
rs2661818 160531438 46126 0.02045 0.00260 0.21437 0.32490 0.19184 0.50980 0.024
D1S1679 160628388 96950 0.02103 0.01538 0.01904 0.01613 0.01638 0.02103 0.01850

p values

rs1572495 rs1538018 

rs1572495 0.01194
rs945713

<0.00001
rs1415263

0.01235
D1S2675
0.00007

rs4145621
0.75171

rs2661818

0.00002
D1S1679

0.0926
rs1538018 0.00552 0.80679 <0.00001 0.70815 0.12939 0.18255
rs945713 <0.00001 <0.00001 <0.00001 <0.00001 0.07619

rs1415263 <0.00001 <0.00001 <0.00001 0.11205
D1S2675 <0.00001 <0.00001 0.57474

rs4145621 <0.00001 0.08822
rs2661818 0.1334
D1S1679



6.0 FINE MAPPING OF THE UHMK1 GENE

ENCODING A SERINE/THREONINE PROTEIN 

KINASE, AS A NOVEL SCHIZOPHRENIA 

SUSCEPTIBILITY GENE

Linkage studies by us and others have confirmed that chromosome lq23.3 is a 

susceptibility locus for schizophrenia (Brzustowicz et al. 2000; Gurling et al. 2001). 

Based on this information several research groups published evidence that markers 

within both the RGS4 and CAPON genes, which are 700Kb apart, independently 

showed allelic association with schizophrenia (Chowdari et al. 2002; Brzustowicz et 

al. 2004). Tests of allelic association with both of these genes in our case control 

sample were negative (Puri et al. 2006; Rizig et al. 2006) section 4.0-5.0. Therefore 

we carried out further fine mapping in the lq23.3 locus in the 700Kb region between 

the RGS4 and CAPON genes.

Microsatellites were first designed across the region and genotyped in the case 

control sample, three of which detected positive allelic association, implicating three 

genes SH2D1B, UHMK1 and HSD17B7. The region between SH2D1B and 

UHMK1 was more positively associated and hence further fine mapped with SNPs 

to ascertain which was the most likely gene to be associated with schizophrenia. In 

the following sections a description of the fine mapping of the region along with the 

results will be presented, leading to an initial implication of a susceptibility gene. 

This is followed by sequencing results, further evidence of association using tagging 

SNPs and in addition, an attempt to replicate our findings in an independent case 

control sample from the university of Aberdeen donated by Professor St Clair.
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6.1 INTRODUCTION

Association studies of schizophrenia at lq23.3 have implicated both CAPON 

(Brzustowicz et al. 2004; Zheng et al. 2005)and RGS4 (Chowdari et al. 2002; Chen 

et al. 2004; Morris et al. 2004; Williams et al. 2004). In the British case-control 

sample employed in this study we failed to replicate either of these associations 

(Puri et al. 2006; Rizig et al. 2006). The distance between CAPON and RGS4 is 

approximately 700Kb. In order to investigate whether the positive results at CAPON 

and RGS4 might actually be due to linkage disequilibrium (LD) with a closely 

linked gene, we carried out fine mapping in the region with a further set of markers 

as reported below

6.2 METHOD

SNPs rsl64126, rsl64123, rs3121196, rs351453, rsl64128, rsl0494370, rs7513662, 

rs423227, rs6427680 were chosen from the International HapMap Project and 

previously unformatted microsatellite repeats were identified from the UCSC 

Genome Browser (May 2004 assembly). These new repeats were formatted by us for 

genotyping. The primers were designed with Primer3 (Rozen et al. 2000). The 

microsatellite markers are now listed in the GDB database with the D segment 

numbers D1Z12, D1Z13, D1Z14, D1Z15, D1Z16, D1Z17, D1Z18 and D1Z19. The 

positions and primer sequences of these markers are shown in Table 6:1. PCR 

amplification of the microsatellite markers was carried out using an Ml 3 tailed 

primer and a second non-tailed primer. A third universal M l3 sequence primer 

labelled with IRD 700 or IRD 800 was used to hybridise against the M l3 tailed 

locus specific primer. Microsatellite marker fragment sizes were separated and 

visualised with either of two infrared dyes IRD700 and LRD800 on dual argon laser 

LiCor 4200L sequencers. Genotyping was carried out with the SAGA-GT 

genotyping software (LiCor) and checked by eye. Allele calling by SAGA-GT was 

checked by a second independent rater blind to diagnosis. Any genotypes discrepant 

between the two raters were PCR-amplified and run again. SNPs were determined 

by the Amplifluor SNP genotyping method as modified by KBiosciences. 17% of
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samples on each microtitre plate were reduplicated in order to detect error and 

confirm the reproducibility of genotypes. The data were then analysed to confirm 

Hardy Weinberg equilibrium (HWE). Markers with lack of HWE in the control 

group were rejected and genotyping was repeated. Before association analysis the 

genotype data for each 96 well microtitre plate were analysed for linkage 

disequilibrium with closely linked markers to ensure that LD relationships were 

similar for each plate.

Next this data were analysed for allelic association with schizophrenia using 

CLUMP (section 3.2.3.2), which employs an empirical Monte Carlo test of 

significance and which does not require correction for multiple alleles (Sham et al. 

1995).

The genotypes were then analysed for haplotypic association with schizophrenia 

using GENECOUNTING, which computes maximum likelihood estimates of 

haplotype frequencies from phase unknown case control data, and the significance of 

any overall haplotype association with schizophrenia was computed with a 

permutation test (Zhao et al. 2000; Zhao et al. 2002; Curtis et al. 2006). 

GENECOUNTING was also used to calculate pair-wise linkage disequilibrium 

between all markers.
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6.3 R E S U L T S

Twenty nine markers in the lq23.3 region were genotyped as shown in Figure 6:1. 

These included markers at the CAPON and RGS4 loci which had previously failed 

to show any evidence for association with schizophrenia (Puri et al. 2006; Rizig et 

al. 2006) in section 4.0 and 5.0. The first markers to be genotyped were 

microsatellites within the 700 Kb region between CAPON and RGS4. As shown in 

Table 6:2, three of these produced evidence for association with schizophrenia: 

D1Z12, D1Z13 and D1Z18. D1Z12 (significant at p=0.011) is a (CA)2o dinucleotide 

repeat 35.3Kb distal of CAPON and situated directly within the genomic extent of 

the gene SH2D1B [MIM608510]. SH2D1B, also known as EAT2, regulates signal 

transduction through receptors expressed on the surface of antigen-presenting cells 

(Morra et al. 2001). D1Z13 (significant at p=0.014) is situated between two genes, 

47.6Kb distal of SH2D1B and 64.3Kb proximal to UHMK1 [MIM608849].

UHMK1 (U2AF homology motif (UHM) kinase 1) is a serine/threonine-protein 

kinase also known as KIS or Kist (Kinase interacting with stathmin). This gene is 

highly expressed in the brain and other parts of the central nervous system and less 

so in other tissues (Maucuer et al. 1995; Maucuer et al. 1997; Maucuer et al. 2000; 

Boehm et al. 2002; Bieche et al. 2003). A third microsatellite marker D1Z18 was 

also found to be associated with schizophrenia (p=0.049). D1Z18 is located 90.2 Kb 

proximal to the five prime end of RGS4 and is 166.3 Kb distal to the gene encoding 

the enzyme 17-beta-hydroxysteroid dehydrogenase (HSD17B7 [MIM606756]). 

D1Z18 is also proximal to two overlapping predicted genes MGC48998 and 

BC040018, both with unknown function. A BLAST search for conserved domains in 

the NCBI Conserved Domain Search database did not reveal known functional 

domains. We found no evidence for association between RGS4 and schizophrenia in 

our sample (Rizig et al. 2006) (section 4.0).

SNP markers were genotyped in the SH2D1B and UHMK1 genes because these 

genes are in close proximity to the microsatellite markers D1Z12 and D1Z13. The 

results from these SNPs are shown in Table 6:2 (single marker table) and Table 6:3
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(haplotypic association table). No evidence for association with schizophrenia was 

found from SNPs within SH2D1B (rsl64126, rsl64123, rs3121196, rs351453, 

rsl64128). Furthermore, there was no evidence for haplotypic association with 

schizophrenia when these SNPs were combined with the marker D1Z12 (empirical 

permutation p = 0.123) or when these SNPs were combined with both D1Z12 and 

D1Z13 (empirical permutation p = 0.233). Tests of haplotypic association by 

combining D1Z12 and D1Z13 into a two locus haplotype were not formally 

significant (empirical permutation p=0.065).

By contrast, SNPs genotyped within UHMK1 demonstrated significant association 

(rs 10494370, p = 0.004, odd ratio 1.64 (95% Cl 1.16 - 2.32) and rs7513662, p = 

0.043, odds ratio 0.81 (95% Cl 0.66 - 0.99)) and two additional SNPs showed trends 

towards association (rs423227 p = 0.079 and rs6427680 p = 0.069). Evidence for 

haplotypic association at UHMK1 was found when data from these four SNPs were 

analysed as a single haplotype using GENECOUNTING (empirical permutation p = 

0.0086), the most significant individual haplotype (consisting of rsl 0494370- 

rs7513662-rs423227-rs6427680) over expressed in cases was haplotype 1 (GATT) 

present in 6.5% of controls and 10.2% of cases and haplotype 2 (AACT) present in 

10.8% controls and 14.1% in cases.

We found positive allelic association after the eighth marker was genotyped. Tests 

of experiment wide significance for marker rsl 0494370 remained significant 

following bonferroni correction (alpha=0.006) for multiple tests. Tests of haplotypic 

association were also significant for UHMK1 (p=0.009) using empirical permutation 

tests, which make it unnecessary to further correct for both multiple alleles and 

multiple markers

There was no evidence for haplotypic association when D1Z13 was included with 

the SNP data (empirical p = 0.337). D1Z13 did not show evidence for LD with SNP 

markers at UHMK1. However, D1Z13 showed good evidence for LD with markers 

within SH2D1B (see Table 6:4). Tests of haplotypic association in all neighbouring 

regions including at the CAPON and RGS4 loci were negative as shown in Table
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6:3. Thus the evidence from these results points to UHMK1 as the most likely 

susceptibility gene for schizophrenia.
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6.4 DISCUSSION

The positive results at CAPON and RGS4 could be that both are due to allelic 

association with aetiological base pair changes in or near the UHMK1 locus that has 

been implicated by us. This idea gains support from the fact that we detected significant 

linkage disequilibrium between markers at UHMK1 with markers at both RGS4 and
'y

CAPON with significant P values but unfortunately not with D ’ or r (p= 0.02 and 

0.00084 respectively Appendix Section 13.0 ). There is thus at least a possibility that 

the family-based methods used previously were unable to distinguish the effects of 

these three loci, implicating too broad a region.

The UHMK1 gene is a novel kinase with an RNA recognition site which has been 

shown to be highly expressed in the brain (Bieche et al. 2003). Five SNPs within the 

neighbouring gene SH2D1B (also known as EAT2, which regulates signal transduction 

through receptors expressed on the surface of antigen-presenting cells (Morra et al.

2001)) showed no allelic association with schizophrenia. The gene HSD17B7, which is 

proximal to the schizophrenia-associated marker D1Z18, is near to RGS4 on the distal 

side of UHMK1. HSD17B7 encodes the enzyme 17-beta-hydroxysteroid dehydrogenase 

(oxidizes or reduces estrogens and androgens in mammals and regulates the biologic 

potency of these steroids) (Krazeisen et al. 1999). SH2D1B, UHMK1 and HSD17B7 

are all plausible candidates for influencing susceptibility to schizophrenia. However, 

our haplotype analyses for SNPs in the SH2D1B do not implicate this gene (Table 6:3). 

The allelic and haplotypic analyses of SNPs within UHMK1 suggest that this gene itself 

is likely to be increasing susceptibility to schizophrenia (Table 6:3).
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The schizophrenic subjects we studied were routine clinical cases from United Kingdom 

NHS services in London and Southern England. They were not selected for having a 

positive family history of schizophrenia, although many of them did. The finding of 

association between schizophrenia and markers on chromosome lq23.3 suggests that 

genetic effects detected by linkage studies of large multiply affected pedigrees may also 

be operative in a significant proportion of patients not necessarily having a family 

history of schizophrenia. The sample in which we have found positive association with 

UHMK1 has also shown allelic association with markers at the EPSIN 4 gene on 

chromosome 5q (Pimm et al. 2005). This locus had also been implicated by prior 

linkage studies (Schwab et al. 1997; Straub et al. 1997; Gurling et al. 2001; Devlin et al.

2002) and further supports the conclusion that genetic effects found in families by 

linkage analysis may also operate in unrelated cases of schizophrenia drawn from 

general hospital patients.
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Table 6:1 M icrosatellite and SNP m arker positions (UCSC M arch 2006 assembly) on lq23.3 used for fine m apping of schizophrenia.

Marker
name

Polymorphism Position of 
polymorphism (bp)

Left primer Right primer

rsl 64126 C/T 159097317
rsl 64123 C/T 159099312
rs3121196 A/G 159104376
D1Z12 (CA)2o 159105192 GCCAAGACATGGAATCAACC ATGCCACGTATGAGTGAGACC
rs351453 A/G 159107574
rsl 64128 G/T 159117169
D1Z13 (CA)21 159161203 TCCAAGAAGCCCAATGAAAC ACTCCTGGGCTCAAACAATC
D1Z14 (TTTA)10 159164066 TCCATTCCTTCTCACCCATC GCT GAGGCAGG AG AAT C ACT
rsl 0494370 A/G 159200571
rs7513662 A/G 159211803
rs423227 C/T 159217015
rs6427680 C/T 159221876
D1Z15 (TG)22 159332631 CCTCTGAACCATTCCCATGT GCAAACAGGAAAGGGAGGAT
D1Z16 (GT)13 159469256 GCTTCTGATGCACATTCGAG TGAAGAGGGACTCAGAGGGATA
D1Z17 (TC)12 159525259 TGAGCGATAGAGT CAGGATTCA AGCACAGAGCCAAACACCTT
D1Z18 (CA)23 159680585 CCCAGCCTT CCCT ATT GT CT GTTTTCCAACCCCTGTCAGA
D1Z19 (CA)i9 159705995 TTGCTGTCTTGCCCTACAGA CCTCATCATGGGCAGAGAAT



Table 6:2 Tests of allelic association w ith schizophrenia a t the lq23.3 region.

M arker 

rsl 6 4 126

M arker 
location  

(bp on C 1) 
159097317

bp from  
prio r 

m arker
C T

A llelic  bases o r fragm ent sizes w ith  observed  allele frequencies below C h i2

0.30

a
P

0.58

Con 561 321

Scz 516 312

rsl 64123 159099312 1995 C T 0.00 0.98

Con 180 698

Scz 175 677

r s 3 121196 159104376 5064 A G 0.67 0.41

C on 631 217

Scz 619 233

D 1Z 12 159105192 816 230 232 234 236 238 2 40 242 244 246 248 250 252 9.82
I

0.01
C on 288 0 1 1 2 106 237 21 37 141 39 5

Scz 217 1 1 1 1 95 211 16 61 128 43 1

r s 3 5 1453 159107574 2382 A G 0.67 0.41

C on 652 222

Scz 612 228

r s l  64128 159117169 9595 G T 0.27 0.60

C on 394 462

Scz 348 430

D 1Z 13 159161203 44034 212 214 216 218 220 222 224 226 228 230 232 2 34  236  238 240 242  26.2 O.Ol72

C on 35 3 1 39 186 2 21 20 84 118 67 138 32 21 11 0

Scz 37 5 2 19 172 10 27 24 59 117 48 127 40  19 18 4

D 1Z 14 159164066 2863 200 204 208 212 216 220 221 224 1.15 T3
0.89

Con 18 164 9 123 170 319 1 32
Scz 15 136 7 115 145 245 1 24

rs l  0494370 159200571 36505 A G 8.04 b0.004
Con 810 58

Scz 748 88



Table 6:2 Continued.

r s 7 5 13662 159211803 11232 A G 4.12 0 .043°
C on 537 317

Scz 561 269

rs423227 159217015 5212 C T 3.08 0.08

Con 95 757

Scz 119 733

rs6427680 159221876 4861 C T 3.30 0.07

Con 436 436

Scz 385 459

D 1Z 15 159332631 110755 312 314 316 318 320 322 324 326 328 2.74 0 .4913

Con 2 44 36 444 45 9 207 22 1

Scz 0 30 20 367 32 3 ■ 150 16 2

D 1Z 16 159469256 136625 276 278 280 282 284 286

Con 2 1 42 612 93 2 1.824
13

0.38
Scz 1 1 53 618 110 3

D 1Z 17 159525259 56003 212 214 216 218 1.23 T4
0.69

Con 0 418 415 5

Scz 1 336 342 3

D 1Z 18 159680585 155326 235 241 249 251 253 255 257 259 261 263 265 267 269  273 21.7 0 .049TI

C on 35 0 22 31 61 93 148 104 181 66 41 14 0 0

Scz 27 2 17 28 41 120 136 131 187 50 30 9 1 1

D 1Z 19 159705995 25410 372 374 376 378 3 8 0 - 382 384 386 388 3.29 0 .67T4

C on 0 26 138 42 370 150 86 35 15

Scz 1 23 106 40 276 108 8 ! 30 11

a significance p from 2x2 chi squared 1 df or most significant p value from CLUMP Monte Carlo T l, T2, T3 or T4 as shown. bOdds ratio 1.64 

upper limit 2.32, lower limit 1.16 cOdds ratio 0.81 upper limit 0.99. lower limit 0.66

Positions from UCSC March 2006 assembly



Table 6:3 Haplotypic association with schizophrenia at the lq23.3 region with markers within
CAPON, SH2D1B, UHMK1 (KIST) and RGS4.

Location Haplotype Empirical p Value3
Markers within CAPONb r s l 572495- r s l 538018 - rs945713- 

rs 1415263- D 1S 2675- rs4145621 - 
rs2 6 6 1 818- D 1S 1679

p = 0.441

Markers within SH2D1B rs 164126- rs 164123- r s 3 121196- 
D 1Z 12- rs351453 - rs l6 4 1 2 8

p = 0.123
Markers within SH2D1B 
with D1Z13

r s l 64126 - rs l6 4 1 2 3 -  r s3 1 2 1 196- 
D 1Z 12- rs351453 - r s l6 4 1 2 8 -  D 1Z 13

p = 0.233

Marker D1Z12 with 
D1Z13

D 1Z 12- D 1Z 13 P = 0.065

Markers within UHMK1 r s l 049 4 3 7 0 - r s 7 5 13662- rs423227 - 
rs6 4 2 7 6 8 0

p = 0.0086
Markers within UHMK1 
with D1Z13

D 1Z 13 -rs 10494370- r s 7 5 13662- 
rs4 2 3 2 2 7 -rs6 4 2 7 6 8 0 p = 0.337

Markers within UHMK1 rs423227 - rs6427680 p = 0.081
Markers within RGS4b rs951436 - rs9 41439 -rs2661319 p = 0.431
a haplotype permutation test empirical p, based on 99,999 permutations 
b (Puri et al. 2006; Rizig et al. 2006)
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Table 6:4 LD between all m arkers including RGS4 and CAPON (based on combined sample).

Marker

Distance
from
previous
marker
(bp)

rsl 572495 1
rs1538018 31180 2
rs945713 5189 3
rs1415263 30373 4
D1S2675 43918 5
rs4145621 8727 6
rs2661818 46126 7
D1S1679 96950 8
rs164126 3895 9
rs164123 1995 10
rs3121196 5064 . 11
D1Z12 816 12
rs351453 2382 13
rs164128 9595 14
D1Z13 44034 15
D1Z14 2863 16
rsl 0494370 36505 17
rs7513662 11232 18
rs423227 5212 19
rs6427680 4861 20
D1Z15 110755 21
D1Z16 136625 22
D1Z17 56003 23
D1Z18 155326 24
D1Z19 25410 25
rs951436 59005 26
rs941439 349 27
rs2661319 12156 28
GT 6086 29

D' above the diagonal and r2 below the diagonal
D' < H |  r

D’ < 0.8 

D‘ < 0.6
B r< 0.8

r < 0.6

CAPON SH2D1B RGS4

20 21 22 23 24 25 26 27 28 29



Figure 6:1 M arkers and gene positions in the lq23.3 region between CAPON and RGS4.
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7.0 CONFIRMATION OF THE GENETIC ASSOCIATION 

BETWEEN THE U2AF HOMOLOGY MOTIF (UHM) 

KINASE 1 (UHMK1) GENE AND SCHIZOPHRENIA ON 

CHROMOSOME 1Q23.3

7.1 INTRODUCTION

Our original genetic association studies did not find evidence for both the CAPON and 

RGS4 loci in the UCL case control sample (Puri et al. 2006; Rizig et al. 2006) section 4.0- 

5.0. Our original study of UHMK1 (Puri et al. 2007) section 6.0, found positive allelic 

association with two neighbouring microsatellites (D1Z12 and D1Z13) and two SNPs 

within UHMK1 (rsl0494370 and rs7513662), in addition two SNPs showed a trend 

towards association (rs423227 and rs6427680). A third microsatellite (D1Z18) located 

between the steroid dehydrogenase gene HSD17B7 and RGS4 was also associated.

The weakly associated microsatellite marker D1Z18 is close to the hydroxysteroid (17- 

beta) dehydrogenase 7 gene (HSD17B7). We have now genotyped tagging SNPs derived 

from HapMap to test whether HSD17B7 may be involved in the susceptibility to 

schizophrenia and have also genotyped HapMap SNPs in the UHMK1 gene selected to 

cover the 5’ and 3’ untranslated regions (UTRs). We have also carried out linkage 

disequilibrium (LD) analyses of the whole 700Kb region including markers in CAPON, 

UHMK1, RGS4 and HSD17B7.

Markers localised within UHMK1 and known to show association in the UCL sample have 

also been genotyped in a replication case control sample from Aberdeen.
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7.2 BRIEF METHODS AND MATERIALS

The methods and DNA samples employed were described previously in sections 2.0-3.0. 

The UCL case control sample consisted of DNA from 450 volunteers with schizophrenia 

and 450 controls. Selection and screening were carried out as stated in section 2.1. For the 

replication study using the Aberdeen sample, DNA from 858 cases of schizophrenia and 

591 controls was available. The cases were diagnosed using a combination of case note 

inspection and in the majority of cases (n=717) SCID interview. All met the DSM 111R 

diagnosis of schizophrenia by OPCRIT. The controls were drawn from the same Scottish 

population. They were recruited as volunteers via general practices and screened for 

absence of psychiatric illness. They were sex matched.

Tagging SNPs where ascertained from the international HapMap Project (in the CEU 

population) with the use of the Haploview (3.32) Tagger function (Barrett et al. 2005; de 

Bakker et al. 2005), on its default setting (aggressive tagging use of 2 and 3 marker 

haplotypes, with r threshold of 0.8 and a LOD threshold for multi marker tests of 3.0). All 

SNP markers were genotyped by the KASPar method which is a modification of the 

Amplifluor method (KBiosciences, Hoddesdon, UK). 17% of samples on each microtitre 

plate were reduplicated in order to detect error and confirm the reproducibility of 

genotypes. The data was then analysed to confirm Hardy Weinberg equilibrium (HWE). 

Markers with lack of HWE in the control group were rejected and repeated. The genotype 

data was analysed separately by 96-well DNA plate using SCANGROUP to test for plate 

by plate differences in haplotype frequencies (Curtis et al. 2006). Some genotyping errors 

can show up as rare haplotypes occurring on just a single plate whereas true haplotypic 

associations with will be manifest as certain haplotypes being preponderant among cases or 

controls spread across a number of plates.

Genotypic and allelic associations of individual markers were tested for using chi square 

tests. Tests for haplotypic association were carried out using GENECOUNTING, which 

computes maximum likelihood estimates of haplotype frequencies from phase-unknown 

data, and the empirical significance was obtained using permutation tests (Zhao et al. 2000; 

Zhao et al. 2002; Curtis et al. 2006). GENECOUNTING was also used to calculate pair­

wise linkage disequilibrium between all markers, and their relationship was visualised on 

LocusView 2.0 (Broad Institute) (Petryshen et al. 2003).
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7.3 R E S U L T S

The SNPs at HSD17B7 (Figure 7:1) did not demonstrate allelic or haplotypic association 

with schizophrenia (Table 7:1). Results from typing additional markers around UHMK1, 

covering the 5’ and 3’ UTRs along with results from the five SNPs previously found to be 

associated with schizophrenia (section 6.0) (Puri et al. 2007) are shown in Table 7:2. Two 

of the new SNPs, rs6604863 and rsl 0753578, were found to be associated with 

schizophrenia (p=0.02 and p=0.017 respectively). A third marker, rs6704428, showed a 

trend towards allelic association (p=0.089). A seven marker haplotype including the 

original SNPs described in Puri et al (2007) and the new SNPs described here produced an 

empirical significance of p=0.0033 (Table 7:3). These findings from the UCL sample 

provide additional evidence for UHMK1 as a schizophrenia susceptibility gene.

The following markers were genotyped in the Aberdeen sample: r s l0494370, rs7513662, 

rs423227, rs6427680, rs6604863, rsl 0753578 and rs6704428. Two of these SNPs yielded 

evidence for association, rs7513662 (p=0.0087) and rsl0753578 (p=0.022) (Table 7:2). 

Allele A of rs7513662 was associated with schizophrenia in both the UCL and Aberdeen 

samples. However the distribution of allele frequencies for rsl 0753578 is in the opposite 

direction to that found in the UCL sample. This may indicate that the aetiological 

nucleotide change is present on different haplotype background in the two samples or that 

the disease haplotype frequencies are different in the north and south of the UK. The four 

SNPs originally implicated in the UCL sample produced evidence for haplotypic 

association in the Aberdeen sample (empirical permutation p=0.0135) and the presence of 

two associated SNPs in the Aberdeen sample confirms UHMK1 as a gene increasing 

susceptibility to schizophrenia. Of relevance is also the fact that haplotypic association with 

the original four marker haplotype (rsl0494370, rs7513662, rs423227 and rs6427680) (Puri 

et al. 2007) has been confirmed and replicated (permutation p=0.0135), in addition a 

haplotype analysis of all seven markers in the Aberdeen sample was replicated producing 

an empirical p value of 0.0004. Amongst the other haplotypes tested with less than seven 

markers, the most significant in the Aberdeen sample comprised markers rs7513662 and 

r s l0753578 (permutation p=0.0002; see Table 3).

Data from the UCL and Aberdeen samples were combined and analysed together. Evidence 

for association was stronger in the combined sample for three SNPs, rs7513662, rs6427680 

and rs6694863 (p=0.0007, 0.0252 and 0.015 respectively). Haplotype association for the
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original four markers was also significant (empirical p=0.011). However the strongest 

evidence for association came from haplotype analysis of all seven markers (empirical 

p^O.00005) (Table 7:3).

Global haplotypic analyses of the UCL and Aberdeen samples data showed that the same 

marker loci were associated in both samples. However inspection of the specific subgroups 

of alleles at these loci showed some differences between the sample. In the UCL sample, 

the four locus SNP haplotypes consisting of rsl 0494370-rs7513662-rs423227-rs6427680 

(haplotypes UHMK1F and UHMK1G) were elevated in cases relative to controls 

(UHMK1F 16.2% cases vs. 13% controls; UHMK1G 10.2% cases vs. 6.5% controls). In 

the Aberdeen sample, haplotypes UHMK1D and UHMK1E were elevated in cases relative 

to controls (32.7% cases and 29.1% controls; 13.8% cases and 11.4% controls 

respectively). However, in the analysis of the combined samples all four haplotypes were 

elevated in cases relative to controls (see table 3). For the 7 SNP haplotype analysis 

(rsl0494370-rs7513662-rs423227-rs6427680-rs6694863-rsl0753578-rs6704428) the 

elevated haplotypes in the UCL sample were UHMK1B (12.2% cases 11.7% controls,) and 

UHMK1C (12.8% cases and 10.9% controls). In the Aberdeen sample elevated haplotypes 

were UHMK1A (30.2% cases and 24.8% controls) and UHMK1B (13.8% cases and 11.4% 

controls). Haplotype UHMK1B is elevated in both individual samples. However, in the 

combined analysis all three haplotypes (UHMK1 A, UHMK1B and UHMK1C) are more 

common in cases (Puri et al. Submitted).

7.4 DISCUSSION

The failure to detect association between markers in HSD17B7 with schizophrenia suggests 

that this gene is unlikely to be involved in schizophrenia susceptibility in the British 

population. The weakly positive result from D1Z18 could be attributed to detecting long 

distance LD with aetiological base pair changes in UHMK1 or another gene in the region. 

Superficially we have managed to replicate association between UHMK1 markers and 

schizophrenia in second case control sample. However careful attention to the detail of 

which marker alleles and haplotypes were associated with schizophrenia in the original 

UCL and then in the Aberdeen sample show some differences which need explaining. The 

differences could be explained by the fact that the disease haplotype frequencies are
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different in the north and south of the UK. Indeed when allele frequencies of the seven 

SNPs typed at the UHMK1 locus in the UCL and Aberdeen samples were compared, the 

differences were greater between the two control samples as opposed to the schizophrenia 

samples.

As noted above two previous studies have implicated the microsatellite D1S1679 by 

showing association or linkage with schizophrenia. D1S1679 is 105.9Kb from the 5’ end of 

UHMK1 and displays significant LD with markers rs7532188, D1Z14, rsl64160, 

rsl64167, rsl64168 and rsl64171 with p values < lx l0 '5 (13.0 Appendix Figure 13:1) in the 

likely promoter region of UHMK1. The evidence for association between schizophrenia 

and D1S1679 might therefore be due to LD with aetiological base pair changes in UHMK1.

UHMK1 (U2AF homology motif kinase 1) is a serine/threonine-protein kinase with an 

RNA recognition site and it has been shown to be highly expressed in the brain (Bieche et 

al. 2003). Both the gene and its protein are highly conserved between mouse, rat and 

human. UHMK1 is also known to be highly expressed in most parts of the mouse brain, 

particularly in the amygdala and hippocampus, according to the Allen Brain Atlas. The 

protein has the ability to phosphorylate classical in vitro substrates such as myelin basic 

protein and synapsin 1 (Maucuer et al. 1997), as well as stathmin, a complex signal relay 

protein. Stathmin is phosphorylated in response to many signals such as hormone growth 

and differentiation factors, neurotransmitters or upon activation of T lymphocytes. It has 

also been proposed as a key regulator of microtubule dynamics (Maucuer et al. 1997). 

UHMK1 was formerly named as KIS (kinase interacting with stathmin) and had originally 

been discovered by a yeast two hybrid screen using stathmin as bait (Maucuer et al. 1995). 

The stathmin gene locus has been knocked out in the mouse, and it was found that mice 

homozygous for stathmin gene deletion lacked instinctive fear and had other behavioural 

abnormalities. The stathmin knockout also had weak memories for past aversive 

experiences such as those in fear conditioning tests (Shumyatsky et al. 2005). The gene is 

highly enriched in the lateral nucleus of the amygdala. Because of the close association of 

UHMK1 protein with stathmin protein a knockout of UHMK1 may also produce similar 

behavioural abnormalities. A study comparing anterior cingulate cortex gray matter 

proteomes between schizophrenia and controls found that stathmin was increased by 1.8 

fold change in a schizophrenia cohort (Clark et al. 2006). It has also been found that the



expression of UHMK1 is significantly down-regulated in mice treated with the 

antipsychotic drugs clozapine and haloperidol Rizig et al (2009)

7.5 CONCLUSION

Association between UHMK1 and schizophrenia has been successfully confirmed in a case 

control sample from Aberdeen. There was increased statistical significance when the 

sample was combined with the UCL sample. Further independent replications of 

association are now needed in as many populations as possible. Resequencing, expression 

analysis and several types of conditional and knockout transgenic mice are now needed to 

further explore the normal and abnormal biological functions of the UHMK1 gene.
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Table 7:1 Tests of association between HAPMAP SNPs in HSD17B7 and schizophrenia in the UCL 
sample.

M arker
M arker loca tion  (U C S C  
M arch  2006  assem b ly ) b p  from  prio r 

m arker

A llelic  bases  o r  fragm en t 
sizes w ith  observed  a lle le  

frequenc ies be lo w
C h i2 pa

rsl892125 161031373 A C
UCL Controls 142 764 2.11 0.14

UCL Schizophrenia 118 772

rsl 780019 161033100 1727 G A
UCL Controls 193 679 1.22 0.27

UCL Schizophrenia 173 693

rs2684881 161033792 692 A T

UCL Controls 22 912 0.66 0.42
UCL Schizophrenia 16 868

rsl 1589262 161037271 3479 G A 0.41 0.52
UCL Controls 336 594

UCL Schizophrenia 333 553

rsl 0917598 161040138 2867 C G 0.81 0.37
UCL Controls 304 610

UCL Schizophrenia 309 567
rsl 039874 161043150 3012 C T 0.51 0.47

UCL Controls 47 893
UCL Schizophrenia 40 890

rsl 2402864 161048148 4998 A G
UCL Controls 277 593 1.29 0.26

UCL Schizophrenia 302 576
rs2805053 161048411 263 G A

UCL Controls 458 452 0.06 0.81
UCL Schizophrenia 450 434

8 SN P h ap lo type
G lobal 

em pirical 
p  value

0 .87

a two tailed significance p from 2x2 chi squared 1 df
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Table 7:2 Tests for association of SNPs within UHMK1 in the UCL, Aberdeen and combined samples .

Marker

Marker
location

(UCSC M arch  
2006 

assem b ly )

bp from 
prior marker

Bases with observed allele 
frequencies Chi2 pa

rs 10494370* 160735537 G A
UCL Controls 58 (0.07) 810 (0.93) 8.04 0.004
UCL Schizophrenia 88 (0.11) 748 (0.89)
Aberdeen Controls 110 (0.10) 1030 (0.90) 0.85 0.36
Aberdeen Schizophrenia 141 (0.09) 1493 (0.91)
Combined Controls 168 (0.08) 1840 (0.92) 1.12 0.29
Combined Schizophrenia 229 (0.09) 2241 (0.91)
Mantel Haenszel meta analysis calculated odds ratio 1.11 (Cl 0.87-1.43)
rs7513662* 160746769 11232 G A
UCL Controls 317 (0.37) 537 (0.63) 4.12 0.043
UCL Schizophrenia 269 (0.31) 561 (0.69)
Aberdeen Controls 419 (0.37) 727 (0.63) 6.88 0.0087
Aberdeen Schizophrenia 518 (0.32) 1112 (0.68)
Combined Controls 736 (0.37) 1264 (0.63) 11.34 0.00075
Combined Schizophrenia 787 (0.32) 1673 (0.68)
Mantel Haenszel meta analysis calculated odds ratio 1.23 (Cl 1.06-1.44)
rs423227* 160751981 5212 C T
UCL Controls 95 (0.11) 757 (0.89) 3.08 0.08
UCL Schizophrenia 119 (0.14) 733 (0.86)
Aberdeen Controls 151 (0.13) 969 (0.87) 0.031 0.86
Aberdeen Schizophrenia 216 (0.13) 1414 (0.87)
Combined Controls 246 (0.12) 1726 (0.88) 1.01 0.314
Combined Schizophrenia 335 (0.13) 2147 (0.87)
Mantel Haenszel meta analysis calculated odds ratio 1.09 (Cl 0.88-1.35)
rs6427680* 160756842 4861 C T
UCL Controls 436 (0.5) 436 (0.5) 3.30 0.07
UCL Schizophrenia 385 (0.46) 459 (0.54)
Aberdeen Controls 554 (0.48) 600 (0.52) 1.76 0.18
Aberdeen Schizophrenia 730 (0.45) 876 (0.55)
Combined Controls 990 (0.49) 1036 (0.51) 5.01 0.025
Combined Schizophrenia 1115 (0.46) 1335 (0.54)
Mantel Haenszel meta analysis calculated odds ratio 1.14 (Cl 0.99-1.32)
rs6694863 160771556 14714 A C
UCL Controls 72 (0.08) 868 (0.92) 5.37 0.02
UCL Schizophrenia 46 (0.05) 868 (0.95)
Aberdeen Controls 74 (0.06) 1074 (0.94) 1.26 0.26
Aberdeen Schizophrenia 91 (0.05) 1583 (0.95)
Combined Controls 146 (0.07) 1942 (0.93) 5.86 0.015
Combined Schizophrenia 137 (0.05) 2451 (0.95)
Mantel Haenszel meta analysis calculated odds ratio 1.34 (Cl 1.0-1.8)
rsl 0753578 160788440 16884 A G
UCL Controls 157 (0.18) 729 (0.82) 5.7 0.017
UCL Schizophrenia 201 (0.22) 703 (0.78)
Aberdeen Controls 272 (0.23) 886 (0.77) 5.23 0.022
Aberdeen Schizophrenia 332 (0.20) 1336 (0.80)
Combined Controls 429 (0.21) 1615 (0.79) 0.049 0.83
Combined Schizophrenia 533 (0.21) 2039 (0.79)
Mantel Haenszel meta analysis calculated odds ratio 0.98 (Cl 0.82-1.16)
rs6704428 160795129 6689 G A
UCL Controls 51 (0.06) 853 (0.94) 2.89 0.089
UCL Schizophrenia 69 (0.08) 835 (0.92)
Aberdeen Controls 93 (0.08) 1051 (0.92) 2.56 0.11
Aberdeen Schizophrenia 109 (0.07) 1557 (0.93)
Combined Controls 144 (0.07) 1904 (0.93) 0.019 0.89
Combined Schizophrenia 178 (0.07) 2392 (0.93)
Mantel Haenszel meta analysis calculated odds ratio 0.98 (Cl 0.74-1.28)

a two tailed significance p from 2x2 chi squared 1 df
* Original results in section 6.0 Table 6:2 (Puri et al. 2007).
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Table 7:3 Haplotypic association with schizophrenia with UHMK1 markers in UCL and Aberdeen samples.

Haplotype Composition Alleles
Haplotype

name
Cases

UCL

Controls

Global
empirical

significance Cases

Aberdeen
Global

empirical 
Controls - rsignificance Cases

Combined
Global 

empirical 
Controls s jgnincance

rs 10494370-rs 7513662- 
rs423227-rs 6427680- 

rs6694863-rs 10753578- 
rs 6704428

A-A-T-T-C-G-A

A-A-T-C-C-G-A

A-A-C-T-C-A-A

UHMK1A 

UHMK1B 

UHMK1C

26.9%

12.2%

12.8%

30.2%

11.7%

10.9%

0.0033

30.2%

13.8%

12.4%

24.8%

11.4%

12.8%

0.0004

29.1%

13.2%

12.7%

27.1%

11.7%

11.9%

0.00005

A-A-T-T UHMK1D 30.1% 33.0% 32.7% 29.1% 31.9% 30.8%

rs 10494370-rs 7513662- 
rs423227-rs 6427680

A-A-T-C

A-A-C-T

UHMK1E

UHMK1F

12.3%

16.2%

12.3%

13.0%
0.0086

13.7%

13.1%

11.6%

13.2%
0.0135

13.2%

13.4%

12.0%

12.2%
0.011

G-A-T-T UHMK1G 10.2% 6.5% 8.3% 9.6% 8.9% 8.2%

rs 7513662-rs 10753578 A-G
A-A

UHMK1H
UHMK1I

45.1%
22.3%

45.4%
17.5%

0.024
48.3%
19.9%

40.9%
22.6%

0.0002
47.1 % 
20.9%

42.6% 
, 20.6%

0.0004

rs423227-rs 6427680- 
rs 6704428

C-T-A UHMK1J 14.1% 10.6% 0.067

rs 10494370-rs 7513662- 
rs 6694863-rs 10753578

A-A-C-A UHMK1K 16.2% 13.0% 0.004

rs 7513662-rs 6427680 A-T

A-C

UHMK1M

UHMK1N

54.3%

13.6%

51.3%

12.0%
0.0006

rs 7513662-rs 6427680- 
rs 6694863

A-T-C

A-C-C

UHMK10

UHMK1P

54.3%

13.6%

51.1%

11.8%
0.00005



Figure 7:1 Linkage disequilibrium between all markers genotyped at CAPON, SH2D1B, UHMK1, HSD17B7 and RGS4 on chromosome 
lq23 J , genotyped in the UCL dataset, produced by Locus View.
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8.0 FUNCTIONAL SCREENING FOR AETIOLOGICAL 

CHANGES INCREASING SUSCEPTIBILITY TO 

SCHIZOPHRENIA

8.1 R E-SEQ U EN C IN G  OF UHM K1 -  IN  SEARCH  OF 

M UTATIO N S

UHMK1 had been associated to schizophrenia on chromosome lq23.3 which is 

situated between CAPON and RGS4. The association of UHMK1 had been 

replicated in the Scottish population using a larger independent case control sample 

from the University of Aberdeen. The replication confirmed markers within 

UHMK1 were associated with schizophrenia, and UHMK1 as putative susceptibility 

gene in the cause of schizophrenia (see section 7.0).

The next step to validate UHMK1 as a schizophrenia susceptibility gene, is to find 

DNA changes that would cause UHMK1 to have an abnormal structure or abnormal 

expression. To discover such aetiological base pair changes within UHMK1 

resequencing of affected cases and in controls needs to be carried out. It was noticed 

that schizophrenic cases had a higher frequency of haplotype 1 (GATT) and 

haplotype 2 (AACT), than in controls.

Thirty two schizophrenic patients with the most significantly associated at risk 

haplotypes 1 & 2 (rsl0494370, rs7513662, rs423227, rs6427680) were sequenced 

(section 2.8.4), and when mutations (DNA variants) were found, they were screened 

in thirty two control individuals selected at random, to ascertain if the variant was 

more frequent in the schizophrenic cases compared to the controls.
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8.1.1 RE-SEQUENCING OF THE UHMK1 GENE

8.1.1.1 MUTATION MECHANISMS

Before re-sequencing the UHMK1 gene was commenced, it was necessary to 

consider where any aetiological base-pair change was most likely to be located. 

Botstein & Risch (2003), have reviewed the past successes of linkage studies to 

delineate the different types of mutation which result in human disease and their 

relative frequencies:-

Table 8:1 the types and frequencies of different mutations leading to human disease (Botstein et 
al. 2003).

Change Number % of total

deletion 6,085 21.8
Insertion/duplication 1,911 6.8
Complex rearrangement 512 1.8
repeat variations 38 0.1
Missense/nonsense 16,441 58.9
Splicing 2,727 9.8
Regulatory 213 0.8
Total 27,027 100

The data indicate that most Mendelian clinical phenotypes are associated with 

alterations in normal coding sequence proteins: so far, very few (0.8%) are 

associated with regulatory changes. Linkage studies have proved very successful in 

the identification of both complex disease genes, as well as rare disease-associated 

mutations. They have clear inheritance patterns.

Clearly, it is important to consider where the mutations causing schizophrenia or the 

other complex disorders are likely to be found?

Botstein & Risch (2003) favour the coding regions on the basis that the moderate to 

low risk polymorphisms found so far mainly appear in the coding regions of genes. 

Outside of the coding regions the mechanisms by which diseases arise are complex 

and varied. Most genes encoding for proteins are organised into multiple exons, 

which must be spliced to produce the mRNA that is translated into protein. A 5’ 

promoter element, contiguous with the transcription start site, is required to
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assemble the protein complex necessary for RNA synthesis (Levine et al. 2003). For 

many genes, the region immediately upstream of the minimal promoter contains 

sufficient transcription factor binding sites to direct correct expression of the gene -  

called regulatory promoters. Many genes also require multiple cfs-acting distant 

genomic elements for correct expression to occur. These “enhancers” can be located 

upstream, within introns, or downstream of the transcription unit (which is made up 

of the transcribed exons and introns from the promoter to the polyadenylation site 

(Kleinjan et al. 2001)). The genomic regions harbouring regulatory elements can 

stretch as much as 1Mb in either direction from the transcription unit (Pfeifer et al. 

1999) and (Kimura-Yoshida et al. 2004). Some or all of these elements may reside 

within the introns of neighbouring genes, often with function unrelated to the 

regulated gene ((Kleinjan et al. 2001; Lettice et al. 2002)). From a regulatory 

viewpoint, genes can be grouped into three classes:-

Housekeeping genes required for the functioning of most or all cells; these are 

generally ubiquitously expressed and have promoters that are active in all cells 

without needing enhancers.

Tissue-specific genes, which play a specific role in the particular function of the 

differentiated cell-type; these genes are regulated through one or a few specific 

enhancers.

Developmental regulator genes, which function in specific tissues at defined time- 

points in development -  sometimes at critically defined levels -  and have to be 

strictly inactive in all other tissues and time points. These genes require multiple 

enhancer elements that all need to be fitted into the cis region surrounding the gene. 

Thus far most genes, in which disturbance of long-range control have been observed, 

are key developmental regulators (Kleinjan et al. 2005).

The effects of regulatory elements reaching a long distance are clearly illustrated by 

callipyge mutation in sheep. The callipyge (CLPG) phenotype is characterised by 

hindquarter muscle overgrowth that only affects heterozygotes with paternal 

inheritancy of the CLPG mutation. By use of DNA from the mutants and from the 

mosaic founder individual, the CLPG mutation was identified as a single-base
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substitution in a region of strong sequence conservation 33 Kb upstream of one of 

the genes involved (Freking et al. 2002).

Clearly, finding such mutations and the effects of such mutations is difficult. A 

striking example of a small deletion or mutation in a cis element is provided by the 

case of preaxial polydactyl (PPD) and sonic hedgehog in which a single nucleotide 

substitution located 1Mb from the causative gene produces a severe genetic defect 

(Lettice et al. 2003). With regard to UHMK1 the decision was made to focus 

attention upon the exons and their surrounding splice sites and the 5' region.

8.1.2 METHOD OF SEQUENCING UHMK1

8.1.2.1 SAMPLE SELECTION FOR SEQUENCING

Samples were selected for sequencing following analysis of the results of the 

haplotypic association (see section 6.3). It can be seen that certain haplotypes 

generated from this analysis had a marked increase in frequency in cases compared 

to controls, and these were selected for use in identifying samples likely to contain 

aetiological base pair changes, in this case haplotype 1 and haplotype 2 were most 

significant. Samples from the schizophrenic cases were chosen if they contained one 

or both of the haplotypes in either the heterozygous or homozygous state. This 

resulted in the selection of 44 samples. Forty of these were selected for PCR 

amplification and 32 of the amplified PCR products were bi-directionally sequenced 

to screen for aetiological base pair changes.

Sequencing of the exons included approximately 100 bases of the intronic region to 

take into account any abnormal intron/exon splice site variations. Primers were 

designed (Section 2.8.4) to amplify between 100 to 600 bases, and large regions 

were covered by sequencing overlapping regions. Primers which failed to amplify 

were redesigned with different annealing positions (list of primer sequences used is 

seen in appendix 1 section 13.2). It was found that the CpG island was very difficult 

to amplify, this was eventually overcome by reducing the size of the amplimer.
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Sequencing commenced using the Sanger-Coulson Chain termination method as 

described in the Methods Section 2.8.4.1.

Figure 8:1 Schematic diagram of UHMK1 and the regions sequenced.

UHMK 1

Exonl Exon 2 Exon 3 Exon 4 Exon 5 Exon 6 Exon 7 Exon 8

5-U T R  ■ ------- ■ ------- ■ ------- 1 ------------------------------------

CpG Island

Sequenced regions covered the Exons, the Exon-Intron 
boundaries and the 5’ and 3’ UTR’s.

Figure 8:2 Diagram from UCSC genome browser database showing the simple repeats covering 
the promoter region indicated by the thick black lines (March 2006 assembly).
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8.1.3 RESULTS OF RE-SEQUENCING UHMK1 EXONS, 5’UTR AND 

3’UTR

Certain promoter regions could not be amplified (even with alterations to PCR 

cycling conditions, maser mix alterations and primer re-design) due to the region 

consisting of repeats such as LTRs (long terminal repeats), LINES (long interspersed 

nuclear elements) and SINES (short interspersed nuclear elements). This resulted in 

no amplification or amplification of many different regions due to the lack of 

binding specificity (see Figure 8:2). However, over 1Kb of the promoter region and
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all of the exons were successfully sequenced and screened for mutations (see Figure 

8 :1).

None of the exons were found to contain DNA variants in the 32 schizophrenics that 

were sequenced. However, a number of DNA Variants were found in the promoter 

region which will be discussed next.

Table 8:2 Table of DNA variants, position and location.

DNA Variant Location

Position UCSC 
march 2004 

assembly

Distance from 
previous 

mutation (bp)

Figure

4 Base INDEL Promoter P6 160731824 0 8.3
1 Base INDEL ( ±  /G) Promoter Exla3 160734180 2356 8.4
Rare SNP (A/C) CpG Exla3 160734272 92 8.5
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Figure 8:3 sequence of a four base insertion in schizophrenia in amplimer P6 in the promoter 
region of UHMK1.
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As seen in Figure 8:3 a four base insertion has shifted the bases up by four positions 

after the AACC repeat. This insertion deletion was later found to be approximately 

equal in cases and controls (position 160731824).
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Figure 8:4 sequencing of an insertion/deletion in the promoter region near exon 1 of UHMK1 in 
controls.
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Figure 8:4 shows a single base insertion after the poly G tract, moving all subsequent bases up one 

position. This insertion deletion was later found to be in approximately equal frequencies in cases and 

controls ( ±  /G position 160734180).
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Figure 8:5 shows an SNP change from an adenine to a cytosine in 3 individuals this can be seen 

parallel to the adenine calls and shows that all individuals are heterozygous for the SNP (A/C position 

160734272).
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Figure 8:5 Sequence of a single nucleotide polymorphism SNP of A to C in schizophrenia caes.
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As seen in Table 8:2 DNA variants were found in the promoter and CpG island 

located close to exon 1. The variants consisted of a 4 base pair insertion deletion in 

the promoter region (Figure 8:3), and 2.4Kb down stream a single base pair insertion 

deletion (± /G  IN/DEL) Figure 8:4. In addition there was a low frequency adenine to 

cytosine change in the CpG island only 92 bases away from the single base IN/DEL 

(Figure 8:5).

Of interest was the fact that the rare SNP (A/C position: 160734272, Figure 8:5) was 

found in only 3 of the chosen 32 schizophrenic patients and in none of the 32 

randomly chosen controls. However when the controls were screened a high 

frequency single base IN/DEL (± G  160734180, Figure 8:4) was seen only 92 bases 

from the SNP location that was not present in the Schizophrenic samples. The 4 base 

IN/DEL further up the promoter (location 160731824, Figure 8:3) was observed in 

only half of the schizophrenics and in most of the controls as well.

156



Re-sequencing of the exons and the promoter region of the UHMK1 gene, led to the 

discovery of three non-database variants. Because of its location in the 5' region of 

the UHMK1 gene and because of time constraints upon this investigator, both the 

effects of the non-dbSNP and INDELS on binding of transcription factors (carried 

out by a bioinformatic prediction program TESS (Section 8.1.4)) and the genotyping 

of allele frequencies in the whole case control sample were undertaken 

simultaneously.

With these intriguing results, to find if these DNA variants were more prevalent in 

schizophrenic population than the control population the variants had to be typed in 

the full case control population. The single base INDEL from Exla3 (Figure 8:4) 

and the 4 base INDEL found in P6 (Figure 8:3) was genotyped on LiCOR DNA 

sequencers using a 40cm polyacrylamide sequencing gels to increase the resolution 

and hence enable better separation of the product sizes. The individuals were 

genotyped using SAGA-GT. The rare SNP found in Exla3 (Figure 8:5) in the CpG 

island was genotyped using EPOCH probes in a qPCR machine (method described 

in section 2.8.3.2). The results are shown below.

Table 8:3 The results of typing detected DNA variants in the entire case control UCL sample.

Variants chi2 P-Value

4 Base INDEL P6
(Figure 8.3)

Deletion Insertion 
Controls 346 428 
Cases 363 453

0.008 0.930

1 Base INDEL Exla3
(Figure 8.4)
±/G

Deletion Insertion 
Controls 577 233 
Cases 618 214

1.920 0.166

SNP Exla3
(Figure 8.5) 
A/C

A C 
Controls 928 8 
Cases 925 13

1.193 0.275

Table 8:3 shows that none of the observed DNA variants were significantly 

associated with schizophrenia in the entire sample. Although the results look 

disappointing, there is a possibility that the SNP in the CpG island (Exla3 A/C
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Figure 8:5) could be present in a particular sub-type of schizophrenia, or become 

positive if the sample size is increased. This could be possible due to the complexity 

of the disease, which is why it was easily picked up in the most significantly 

associated individuals chosen with the significant haplotypes. There is a possibility 

that the sample does not have the power to detect a low frequency SNP.

Once the DNA variants were found, the variants in the promoter region were 

screened bioinformatically with a program called transcription element search 

system (TESS) before the variants were fully genotyped in the whole sample. TESS 

compares variant with the wild type sequence, to see in any transcription factor 

binding sites were significantly disrupted.

8.1.4 TRANSCRIPTION ELEMENT SEARCH SYSTEM (TESS)

The novel DNA variants identified by re-sequencing the promoter region of the 

UHMK1 gene were examined by TESS in an attempt to identify altered transcription 

factor binding.

Twenty five base pairs either side of the non database SNPs were selected and 

analysed in the transcription factor binding site search engine, TESS (transcription 

element search system), (http://www.cbil.upenn.edu/cgi- 

bin/tess/tess?RQ=WELCOME).

Both the normal and variant sequences were submitted to TESS and the analysis 

recorded. The numerical values shown in the output from TESS predict in a 

logarithmic scale the strength of the binding for various transcription binding 

factors.
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T a b le  8 :4  W ild  ty p e  seq u en ce  a n d  v a r ia n t  seq u en ce  th a t  w e re  a n a ly s e d  b y  T E S S  to  d e te rm in e  i f  
th e  b in d in g  e ffic ien cy  o f  tr a n s c r ip tio n  fa c to rs  w e re  s ig n if ic a n tly  a lte re d .

Mutation type Sequence

4 Base INDEL W T
P6 (Figure 8:3) G AGT G AG ACTTT GTCT C AAAC AAAC AAACC AACC AAC CAACCT AT CTT GT

G AGTG AG ACTTTGTCTCAAAC AAACca a a AAACCAACC AACC AACCT ATCTTGT INS

1 Base INDEL 
Ex1a3 (Figure

W T

8:4) T CT CTT CTAGCCCCGCCCCTT CT G AGCCCCCCCT CTT CGGCCT GTAT GATA
T CT CTT CTAG CCCCGCCCCTTCT G AGcCCCCCCCT CTTCGGCCTGTAT GATA INS

SNP Ex1a3 W T
(Figure 8:5) CACGGCTT CCGGT GT C ATGGCT GCTt GAAGT CCCG GG AGTCGGT G AGGCGG  

CACGGCTT CCGGT GT C ATGGCT GCTg G AAGTCCCGGG AGT CGGT G AGGCGG
WT = Wild type sequence 

INS = insertion

The results showed that neither the rare SNP in Exla3 (Figure 8:5) nor the 1 base 

IN/DEL in Exla3 (Figure 8:4), significantly altered the predicted binding 

efficiencies of any transcription factors. However, the wild type sequence which 

contains the 4 base IN/DEL P6 (Figure 8:3), demonstrates significant binding 

capabilities to transcription factors Freac-6 and Stel 1 both with a LOD value of 

17.00. When the 4-base insertion is added to the sequence as seen in Table 8:4, the 

two transcription factors disappear. Freac-6 (Forkhead-related transcription factor 6) 

is involved in the regulation of embryonic development in humans, and Stel 1 is a 

Serine/threonine protein kinase required for cell-type-specific transcription and 

signal transduction involved in pheromone response and pseudohyphal/invasive 

growth pathways in yeast, it has no known function in humans.

After genotyping in the entire UCL case control sample, none of the variants found 

by sequencing were associated with schizophrenia. However because some of the 

variants may have low penetrance it is still just possible that they have aetiological 

significance. Only a much larger sample could show this. It might be worth while to 

test the effects of the mutated sequences on transcription factor binding using an 

Electrophoretic Mobility Shift Assay (EMSA), which is a technique described by 

Fried et al (1981). This is a method where a sequence of interest is compared to its
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wild type, if a sequence binds to a protein from a nuclear extract such as a 

transcription factor it would migrate more slowly through a gel compared to a DNA 

fragment where no linking has occurred. This would be the first sign in finding out if 

a mutated nucleotide sequence prevents protein-nucleotide interaction compared to 

the wild type. However based on the low significance of these results and time 

constraints, this was not carried out.

There are many other complexities that affect gene expression that could to be 

explored. For example the methylation state of the promoter region (particularly the 

CpG island) would be interesting to look at because all of the sequence variants were 

found in the promoter region. A larger region of the 5’ and 3’ UTR should be 

sequenced because distant mutations can effect gene expression as previously 

discussed. The introns should also be fully sequenced because they are known to be 

important in gene regulation, for example mutations in introns can cause incorrect 

splicing resulting in “exon skipping” or premature termination of the protein.
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9.0U2AF HOMOLOGY MOTIF (UHM) KINASE 1
(UHMK1), GENE, FUNCTION AND INTERACTIONS

9.1 UHMK1 BASIC CHARACTERISTICS

The U2AF Homology Motif (UHM) Kinase 1 gene is located on chromosome 

lq23.3, genomic position 160734279-160760468 and is transcribed on the positive 

strand. The gene consists of 8 exons and has a CpG island in the 5’ end that overlaps 

exon 1.

CpG Islands (Islands < 300 Bases are Light Green)
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Figure 9:1 The location and features of UHMK1
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The transcript contains 2901 bases (UCSC March 2006 assembly) and has an ATG 

start codon within the sequence ccaacaccgATGg that has weak homology to the 

Kozak sequence (Maucuer et al. 1997). The transcript is translated into the UHMK1 

protein which contains 419 amino acids with a molecular weight of 46.4 

KiloDaltons.

9.2 BRIEF GENE FUNCTION

UHMK1 is a serine/threonine-protein kinase, which phosphorylates 

CDKNlB/p27Icipl when serum is present, thus controlling CDKN1B subcellular 

location and cell cycle progression in G1 phase. The gene may be involved in 

trafficking and/or processing of RNA as it contains an RNA recognition motif (by 

similarity) (provided by UCSC March 2006 assembly). UHMK1 does not fit into
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any known kinase subfamily because it has a catalytic core that does not share 

homology with any known kinase. It is also the only know kinase that contains an 

RNA recognition motif. Therefore UHMK1 belongs to a new subfamily of kinases.

UHMK1 is ubiquitously expressed, but expression is much more abundant in the 

nervous system during development and in the brain during adulthood. The protein 

has the ability to phosphorylate in vitro classical substrates such as myelin basic 

protein and synapsin 1 (Maucuer et al. 1997). UHMK1 is expressed in neurons 

during development and also in mature neurons (Maucuer et al. 1995; Maucuer et al. 

1997; Maucuer et al. 2000; Boehm et al. 2002; Bieche et al. 2003).

9.3 D ETER M IN IN G  THE FU NC TIO NAL R O LE OF UHMK1

UHMK1 is a complex multifunctional protein that interacts with a wide rage of 

substrates, however the action and true role of this protein still remains unknown. 

The literature provides evidence that UHMK1 interacts closely with a number of 

proteins, which were established by yeast two hybrid screening techniques. These 

interactions may provide further clues to the function of UHMK1 in the cells and 

how it may be involved in the aetiology of schizophrenia. These proteins are:-

• Stathmin

• Splicing Factor 1 (SF1)

• p27Kipl

• Peptidyl-glycine a-amidating monooxygenase (PAM).

Each protein will be discussed below along side an interpretation of the complex 

function of the UHMK1 gene product.

9.3.1 EXPRESSION OF UHMK1

In a study which quantified normalised UHMK1 mRNA levels by real time RT-PCR 

in a panel of tissues from adult and developing rat, and a collection of human 

tissues. It was found that UHMK1 expression is greater in nervous tissues in both rat
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and human, and expression outside the nervous system seem to be evenly distributed 

with a ratio of 10 between the kidney and pancreas (Bieche et al. 2003) Figure 9:2. 

This shows that UHMK1 may have a particular function in the nervous system 

during development of the human nervous system and in the maintenance of the 

adult brain.

Figure 9:2 (Figure taken from (Bieche et al. 2003)), showing the expression of UHMK1 across 
human tissue samples.
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Figure 9:2 shows UHMK1 mRNA is ubiquitously expressed in human tissues. The 

higher levels are detected in the brain and spinal cord. UHMK1 mRNA was 

quantified using real-time RT-PCR in a series of RNA samples from human tissues. 

Results were normalised to RPLPO signal and then to the lowest signal measured 

(pancreas).

In situ hybridisation experiments in developing rat embryos showed that UHMK1 

mRNA was strongly expressed in the developing nervous system, Figure 9:3. The 

role for UHMK1 expression in the developing nervous system was further supported
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by the finding that UHMK1 expression in human also increases during nervous 

tissue ontogenesis (Bieche et al. 2003).

Figure 9:3 Expression of UHMK1 mRNA in the rat embryo.

Figure 9:3 Shows UHMK1 mRNA expression in rat embryo. In situ hybridisation 

was preformed on embryos at 14 days of gestation using a digoxygenin labeled 

riboprobe. UHMK1 mRNA was mainly detected in the central nervous system and 

dorsal root ganglia. No labeling was observed when hybridising with the sense probe 

as control. (Figure taken from (Maucuer et al. 1997)

Research by Maucuer et al (1997) has also shown that during nervous system 

maturation, the levels of UHMK1 mRNA decreased, and then increased again in the 

adult brain (Maucuer et al. 1997).

In-situ hybridisation of rat brain tissue were carried out to observe the distribution of 

UHMK1 expression by Bieche et al (2003). The results showed differential 

expression in the cortical layers, as well as variable expression in regions of the 

hippocampus. Particularly strong expression was observed in the substantia nigra 

compacta, and nuclei of the brain stem, MA3 (medullar accessory occulomotor
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nucleus) and red nucleus, motor trigeminal nucleus (Mo5), mesencephalic trigeminal 

nucleus (Me5), pontine reticular nucleus caudal (PnC), trapezoid body (Tz),

Superior olive (SO), Vestibular nucleus, gigantocellular reticular nucleus (Gi) and 

facial nucleus (Bieche et al. 2003)(results not shown).

In addition, by observation of in situ hybridisation (ISH) of the sagittal section of the 

mouse brain (Paul Allen Brain Atlas) shown in Figure 9:4. High expression of 

UHMK1 in the hippocampal formation was shown. Also ISH showed that UHMK1 

is expressed at lower levels through out the brain, and confirms expression patterns 

described by Maucuer et al (1997) and Bieche et al (2003).

Figure 9:4 In situ hybridisation with UHMK1 carried out in the mouse brain and highlighted 
by software, section extracted from the Allen Brain Atlas website.

g p r
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Extensive analysis firmly establishes a ubiquitous but preferentially neural 

expression of UHMK1 gene in the rat and human. It has been shown to be highly 

expressed in the mature brain. Both the gene and its protein are highly conserved in 

the mouse, rat and human (Bieche et al. 2003).

Although UHMK1 is highly expressed in the brain its precise role is still unknown. 

The functional domains of the protein and the recently discovered interacting
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proteins, provide only hints to its function, as described next, previous experiments 

with Stathmin which interacts with UHMK1 have been carried out.

9.3.2 UHMK1 WITH STATHMIN

UHMK1 has also been designated with the gene names KIS and KIST. KIST stands 

for “Kinase interacting with Stathmin.” This interaction had originally been found 

by yeast two hybrid screening system using stathmin as bait (Maucuer et al. 1995). 

Stathmin is a small ubiquitously expressed cytoplasmic phosphoprotein that is 

enriched in neurons. It is hypothesised to play a role in the relay and integration of 

diverse intracellular signalling pathways and networks. Stathmin is phosphorylated 

in response to many signals such as hormone growth and neuronal differentiation 

factors, neurotransmitters or upon activation of T lymphocytes. It has also been 

proposed as a key regulator of microtubule dynamics in particular during the cell 

cycle and hence involved in cell proliferation and differentiation (Maucuer et al. 

1997; Maucuer et al. 2000; Boehm et al. 2002).

UHMK1 phosphorylates stathmin on serine residues in different positions from 

those sites already known to be phosphorylated by other proteins in vivo (Maucuer 

et al. 1997). This may indicate another regulatory role of stathmin in a cell type or a 

situation that has not currently been explored. It is now known that UHMK1 has 

preferential expression in the developing nervous system and in the mature brain, 

and this expression is correlated with stathmin expression and related neuronal 

proteins which interact with UHMK1 (Maucuer et al. 1997). Studies have shown 

that stathmin is important in neuronal migration and also interacts through 

phosphorylation with brain derived neurotrophic factor (BDNF), with the possibility 

that it may be important in the development of cortical neurons (Cardinaux et al. 

1997; Giampietro et al. 2005).

The stathmin gene locus has been subjected to “knock out” transgenic experiments 

in the mouse. It was found that mice homozygous for the stathmin gene deletion

166



lacked instinctive fear and had other behavioural abnormalities. The stathmin 

knockout also had poor memory for past aversive experiences such as those in fear 

conditioning tests (Shumyatsky et al. 2005). The gene is highly enriched in the 

lateral nucleus of the amygdala. Because of the interaction of UHMK1 protein with 

stathmin protein, UHMK1 might also be expected to produce similar behavioural 

abnormalities. Some of these abnormalities might be symptoms of schizophrenia.

A separate investigation by Liedtke et al (2002) showed that aging stathmin deficient 

mice developed an axonopathy of the central and peripheral nervous systems. The 

pathological hallmark of the early axonal lesions was a highly irregular axoplasm 

predominantly affecting large, heavily myelinated axons in the motor tracts. As the 

lesions progressed, degeneration of axons, dysmyelination, and an unusual glial 

reaction were observed. These findings further support the essential role that 

stathmin plays in the maintenance of axonal integrity (Liedtke et al. 2002).

A study comparing anterior cingulate cortex gray matter proteomes between patients 

with schizophrenia and controls found that stathmin was increased significantly by 

1.8 fold in the schizophrenia cohort (Clark et al. 2006). This is possibly relevant 

because UHMK1 is directly associated with stathmin and we know that the stathmin 

knock out mouse exhibits behavioural abnormalities that are compatible with 

schizophrenia.

9.3.3 UHMK1 AND RNA METABOLISM

As stated earlier UHMK1 (U2AF homology motif kinase 1) is a serine/threonine- 

protein kinase with an RNP-type RNA recognition motif with an intriguing 

homology to the C-terminal motif of the splicing factor U2AF. U2AF is known to 

specifically bind to polypyrimidine (T,C) tracts associated with 3’ splice sites 

(Maucuer et al. 1997).

167



UHMK1 is thought to be involved in RNA processing. Over-expression of UHMK1 

in HEK293 fibroblastic cells demonstrated that the protein is present in the 

cytoplasm and enriched in the nucleus. This may reflect the shuttling of the kinase in 

relation to its function in regulating RNA associated factors. Thus UHMK1 may be 

implicated in the trafficking and/or splicing of RNAs and phosphorylating RNA 

associated proteins, and may ultimately have a role in the control of gene expression, 

given its RNA recognition motif and phosphorylation potential (Maucuer et al. 1997; 

Maucuer et al. 2000). UHMK1 also been shown to have a narrow substrate 

specificity because it preferentially phosphorylates serine or threonine residues 

flanked by a carboxy-terminal proline.

9.3.3.1 UHMK1 INTERACTION WITH SPLICING FACTOR 1

The yeast two hybridisation system has shown that splicing factor 1 (SF1), interacts 

with UHMK1. UHMK1 phosphorylates the two serine residues adjacent to proline 

residues at positions 80 and 82. The phosphorylated SF1 protein increases its affinity 

to the U2AF65 motif of UHMK1 and forms a complex to the pre-mRNA (Manceau 

et al. 2006). SF1 binds to the branch point pre-mRNA consensus sequence (BPS) 

near the 3’ splice site and facilitates binding of the U2AF65 motif to the adjacent 

polypyrimidine tract forming the initial spliceosome. SF1 is displaced from the 

spliceosome by the ATP-dependent entry of the U2 small nuclear ribonucleoprotein 

particle (snRNP), whose SF3b 155/SAP 155 protein subunit interacts with U2AF65 

and whose RNA component (U2 snRNA) anneals with the BPS. This first ATP- 

dependent step of 3’ splice site recognition represents a critical step in the regulation 

of pre-mRNA splicing (Manceau et al. 2006). Protein kinase (PKG) is a potential 

regulator of this step, by inhibiting the initial SF1-U2AF65 interaction by 

phosphorylation of SF1 serine(20) in the U2AF65 interacting domain.

9.3.4 UHMK1 and

UHMK1 was found to regulate the cell cycle by responding to mitogens and 

negatively regulating cdk inhibitor p27kipl, phosphorylating it on serine 10 and 

promoting its nuclear export into the cytoplasm. This resulted in the promotion of
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cell cycle progression from growth arrest (quiescence Go through to Gi) (Boehm et 

al. 2002).

Relatively low levels of UHMK1 mRNA were detected in the rat embryo, but an 

increase was observed in the brain around birth and postnatal development.

Similarly Bieche et al (2003) has found a higher mRNA level in adult human brain 

as compared to foetus. Thus its been proposed that UHMK1 may inhibit p27Kipl 

activity in most tissues and during development but it plays additional functions and 

phosphorylates different substrates in the mature adult nervous system (Bieche et al. 

2003). This potentially links UHMK1 in neural differentiation and function on one 

side and the control of cell cycle on the other.

9.3.5 THE ROLE OF INTERACTION BETWEEN UHMK1, P27KII’, 

AND STATHMIN

New research has identified the conection between the two proteins that closely 

interact with UHMK1, stathmin and cytoplasmic p27Klpl. Iancu-Rubin et al (2005) 

has implicated them in relation to cell migration and proliferation.

Cytoplasmic p27Kipl was shown to play a role in the regulation of cell migration 

(Denicourt et al. 2004). It has been shown in two studies that stathmin is necessary 

for the migration of neurons in vivo and in vitro. Jin et al (2004) demonstrated that 

inhibition of stathmin mRNA caused inhibited migration of newly formed neurons 

of the olfactory system in adult rat brain. In addition Giampietro et al (2005) showed 

that migration of immortalised neurons is decreased when stathmin expression is 

down regulated and is increased when stathmin is over expressed.

Baldassarre et al (2005) showed that p27Kipl inhibits cell migration and p27Kipl 

interferes with the ability of stathmin to sequester tubulin, leading to increased 

microtubule polymerisation. Over expression of stathmin has the effect of increasing 

cell migration, and hence when p27Kipl has phosphorylated stathmin it leads to a
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reduction of cell migration. Although p27Kipl and stathmin were originally 

discovered as important regulators of the eukaryotic cell cycle, both are now thought 

to be involved in the process of cell migration. A dual role for these proteins in cell 

migration and proliferation should not be surprising as microtubules are known to be 

important in both processes (Iancu-Rubin et al. 2005).

9.3.6 UHMK1 INTERACTION WITH PAM

UHMK1 has also been found to interact with the cytoplasmic domain of the 

peptidyl-glycine a-amidating mono-oxygenase (PAM) suggesting an additional 

function for the protein (Alam et al. 1996; Maucuer et al. 1997; Maucuer et al.

2000). PAM also known as P-CIP2 (PAM COOH-terminal interactor protein) and a 

second interacting protein P-CIP10 which is similar to Huntingtin-associated 

protein-interacting protein (Caldwell et al. 1999), was found to directly interact with 

PAM by means of the yeast two hybrid system in a rat hippocampal cDNA library, 

all three proteins are highly expressed in the brain in neurons (Alam et al. 1996).

PAM has two enzymatically active domains with catalytic activities - 

peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha- 

hydroxyglycine alpha-amidating lyase (PAL). These catalytic domains work 

sequentially to catalyze neuroendocrine peptides to active alpha-amidated products.

PAM is also involved in the regulated secretory pathway in neurons and endocrine 

cells in which biologically active peptides are stored in large dense core vesicles 

(LDCVs) and undergo regulated release (Alam et al. 1996). PAM is thought to be 

involved in activating peptides and routing them to LDCVs. PAM itself can be 

tethered to the vesicles and does so almost exclusively in the nervous system (Alam 

et al. 1996) PAM is also likely to be involved in vesicle routing and trafficking. 

UHMK1 and PAM are both found to be expressed in neurons (Caldwell et al. 1999), 

and UHMK1 was found to bind to the C-terminal domain of integral membrane 

PAM. UHMK1 is thought to be an important part in the routing and distribution of
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the PAM protein by the process of phosphorylation of serine (949) residues. The 

expression of PAM may signal UHMK1 to become more diffuse in the cytoplasm.
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Figure 9:5 Diagram showing protein interactions with UHMK1 deduced from a number of sources.
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9.4 D ESC R IPTIO N  OF PA TH W A Y S O CCU RRING  IN Figure 

9:5

A. Mitogens are released which stimulate UHMK1 to autophosphorylate and 

become active.

B p27K,P] inhibits cell cycle progression GO to G l, UHMK1 phosphorylates the 

serine 10 (S10) amino acid of P27Kipl in the nucleus which causes it to be 

exported into the cytoplasm, decreasing the concentration of P27Kipl in the 

nucleus and allowing cell cycle progression

C. UHMK1 interacts with Splicing Factor 1 (SF1). UHMK1 Phosphorylates the 

serine (80) proline -  serine (82) proline (SPSP) motif of SF1. This increases 

the binding affinity of SF1 for the U2AF65 motif of UHMK1, and enhances 

formation of the ternary SF1-U2AF65-RNA complex.

D. This complex (SF1-U2AF65-RNA complex ) is thought to contribute to pre- 

mRNA splicing (at the 3 ’ intronic end) and export form the nucleus (Gama- 

Carvalho et al. 2001; Manceau et al. 2006).

E. Protein Kinase (PKG) regulates UHMK1 and SF1 interaction by 

phosphorylating serine 20 of the SF1 U2AF65 interacting domain preventing 

attachment on to pre-mRNA and formation of the splicosome.

F. Export of P27K,pl out of the nucleus permits cell cycle progression.

G. Export of UHMK1 from the nucleus possibly with mRNA and/or P27K,pl out 

of the nucleus into the cytoplasm.

H. Stathmin is phosphorylated by UHMK1 and inactivates stathmin. This in 

turn leads to microtubule stability, as stathmin disrupts microtubule 

dynamics.

I. Stathmin is phosphorylated by P27Kipl which inhibits stathmin, as a result 

stabilises microtubule formation, which decreases cell migration.

J. P27Kipl is degraded by a number of pathways, one being the ubiquitin 

proteosome pathway.
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K. Dependent on the Stathmin phosphorylation state (whether phosphorylated or 

not, in addition to the location of phosphorylation) Stathmin will effect 

tubulin stability and in turn microtubule formation.

L. Inactivation of stathmin will lead to Cell proliferation.

M. Inactivation of stathmin will lead to reduced cell migration.

N. PAM interacts with UHMK1 by yeast 2 hybrid system, PAM is

phosphorylated by UHMK1 at serine 949, it is suggested that this is required 

to localise PAM to large dense core vesicles which aid in activating bioactive 

peptides in neurons. PAM is seen to be involved in the regulated secretory 

pathway in neurons and endocrine cells.

Because it is known that the stathmin mouse knockout exhibits behavioural 

abnormalities, it is of interest to know if pharmacological interventions might effect 

UHMK1 gene expression.

This was investigated with the antipsychotic drug clozapine in an independent 

microarray study comparing the effect of clozapine and haloperidol antipsychotic 

therapy in mice Rizig et al (2009). It was found that UHMK1 was significantly 

down regulated by clozapine but not haloperidol. This does not prove involvement 

of UHMK1 in schizophrenia but does hint at a possible reason why clozapine is a 

more effective drug than haloperidol.

With the known effect of UHMK1 on neuronal growth and differentiation and its 

high level of expression in the hippocampus, it is posible to envisage the effect of an 

abnormally expressed UHMK1 would have on an individual. Currently there are no 

animal models for altered UHMK1 expression, and whether neuronal loss would be 

a result of such an abnormality. However, studies have shown the effect and possible 

causes of neuronal loss around the hippocampal formation, and the importance of 

growing neurons in this area. One such study showed that neural stem cells, located 

in the subventricular zone (svz) and the subgranular zone (SGZ) of the dentate gyrus
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(DG), produce new neuronal and glial cells in the hippocampus of adult mammals 

(neural stem cell proliferation; NSP). Some of these neuronal cells differentiate into 

neurons that intergate functionally and structurally into existing neural networks a 

process known as adult neurogenesis. Thereby maintaining neuronal plasticity and is 

probably involved in memory formation or stress responses. The hippocampus is 

thought to be involved in the etiopathology of depression and adult neurogenesis has 

been suggested to be involved in the pathophysiology and treatment of mood 

disorders with both tricyclic and serotonin reuptake inhibitor antidepressants (Reif et 

al. 2006).

Findings by Reif et al (2006) suggest that reduced neural stem cell proliferation is 

present in the hippocampus of schizophrenia patients and may contribute to the 

pathogenesis of schizophrenia, due to a reduction in the amount of newly formed 

cells (Reif et al. 2006). These findings fit with the known functions of UHMK1 such 

as being involved in cell cycle progression, neuronal migration and outgrowth in 

addition to its high expression in the hippocampal formation.

9.5 CO NC LUSIO N

With the evidence shown, it can be seen that the actions of UHMK1 protein are 

complex and multifunctional. Functions of UHMK1 involve activation of the cell 

cycle, pre-mRNA processing involving intronic splicing and export into the nucleus. 

As discussed earlier UHMK1 is also involved in interacting with PAM, which is 

involved in the neuronal secretory pathway of bioactive peptides. UHMK1 also 

interacts with stathmin which is involved in microtubule destabilisation and neuronal 

integrity. It seems that UHMK1 is part of a delicate and complex network of 

neuronal control, regulating neuronal growth and possibly neuronal signalling. 

UHMK1 gene is highly expressed in the hippocampus, which is known to be part of 

the brain where neurons still divide and regenerate. UHMK1 is an attractive 

candidate gene for schizophrenia susceptibility as shown through the genetic linkage 

and association studies as well as from neurobiological pespective.
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10.0 THESIS DISCUSSION
In this thesis I have tested for association of previously implicated genes RGS4 and 

CAPON to schizophrenia (section 4.0 & 5.0). We found no allelic association with 

schizophrenia with either of these genes using the UCL case control sample. As a 

result further fine mapping had been carried in the chromosomal region between the 

two genes as described in section 6.0

Section 6.0 and 7.0 had shown significant allelic and haplotypic association had 

been detected implicating the U2AF homology motif kinase 1 (UHMK1) as a 

schizophrenia susceptibility gene.

Sequencing of UHMK1 exons, 3’ and 5’ UTR, had produced three mutations in the 

promoter region. Genotyping of these genetic variants in the case control samples 

showed no evidence of association with schizophrenia (section 8.1.3). Sequencing of 

the greater promoter region and the introns are suggested, which may hold further 

interesting and potential aetiological mutations.

It was also seen in this thesis that UHMK1 is highly expressed in the nervous system 

and brain, and has a role in its development, the interactions of UHMK1 with other 

proteins such as stathmin and PAM added further weight to the possibility of 

UHMKls role in behavioural characteristics and neuronal development and 

signalling as discussed in section 9.0.

UHMK1 is known to be highly expressed in regions of the brain implicated in 

schizophrenia, it has been found to be significantly down regulated in mice treated 

with antipsychotic drug clozapine (Rizig et al (2009)). Further confirmation of the 

involvement of this gene in schizophrenia is needed followed by further efforts to 

detect genetic variation in or next to the gene (which may even effect neighbouring 

genes).
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10.1 FUTURE WORK

10.1.1 FURTHER REPLICATIONS

Further fine mapping around the gene should be carried out to exclude neighbouring 

genes more convincingly and to show that the association was not attributed to 

linkage to a close neighbouring gene. This, as a result would give further support to 

UHMK1 as the candidate susceptibility gene. Clearly, for the UHMK1 gene to 

become a credible contender as an important component in the susceptibility of 

schizophrenia the association findings need to be repeated in several more 

populations. However, before any replications are attempted, attention should be 

paid to the methodology. Replication of association studies have become a universal 

cause for concern, in the field of genetics as a whole. Several journals have proposed 

guidelines or state in their editorial “Policies and Practices” that genetic association 

studies related to complex disorders are unlikely to be accepted (Saito et al. 2006).

A recent meta-analysis concluded that popultaion heterogeneity was in evidene for 

association studies (Ioannidis et al. 2001).

False-negative results may come from studying genes of modest effect that may only 

have odds ratios of between 1.1-1.5, explaining 1-8% of the overall disease risk in a 

population. Locus heterogeneity may further weaken the genetic signal. In reality 

locus heterogeneity has been proven for all common complex disease.

False-positive results may also be due to population stratification; this can result 

from hidden allele frequency differences detected due to ethnic and ancestral 

differences between cases and controls. This is observed when cases and controls are 

drawn from two or more racial groups where the disease prevalence varies by race 

along with the genetic variant frequency.

However, despite the above, over 50% of allelic associations in case control samples 

are replicated and confirmed Lohmueller (2003).

Therefore, any future investigations of UHMK1 and schizophrenia must involve 

attempts at replicating the positive associations reported here. Such replications 

should aim to use the same markers of the initial study and sufficient numbers of 

cases and controls so as to obtain sufficient power.
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10.1.2 RE-SEQUENCING

In the re-sequencing of the UHMK1 gene or any gene thought to be involved in the 

susceptibility to schizophrenia it is of utmost importance either to discover any 

aetiological base-pair changes or to confirm that no such abnormalities are present. 

The bi-directional method of re-sequencing is employed in this thesis is not without 

faults. It would be appropriate to suggest that any areas which have been re­

sequenced be repeated with an alternative method e.g. capillary sequencing. In 

addition a larger region of the 5’ and 3’ UTR should be sequenced to detect long 

range control regions or enhancer elements which could affect the expression 

efficiency of the gene. These locus control regions could be further than 14 kilobases 

away and situated within another gene (Ho et al. 2006). Indeed UHMK1 could be 

containing a long distance control region that could effect another gene, hence 

complete sequencing of the entire genomic extent of the gene is important.

Furthermore, as stated above, although UHMK1 is a highly plausible candidate for 

the susceptibility to schizophrenia, it may simply be that there is an alternative gene 

or control region within the region of UHMK1 responsible for the association.

It is not therefore unreasonable to suggest that any future work may involve the re­

sequencing of introns of the UHMK1 gene. Indeed several diseases have been found 

to have a mutation within the introns as noted above. Myotonic dystrophy (type 2) 

has been found to be caused by a CCTG expansion (mean-5000 repeats) located in 

intron 1 of the zinc finger protein 9 (ZNF9) gene (Liquori et al. 2001). Also closely 

linked or even causative abnormalities can be found in the introns, such as the three 

SNP haplotype in intron 1 of OCA2 (Oculocutaneous Albinism, type 2) which is 

now thought to influence eye colour variation (Duffy et al. 2007).

10.1.3 GENOTYPING

In any future work, the non-dbSNPs discovered during re-sequencing of the introns 

and UTRs should be genotyped in the whole case-control sample. In addition, more
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data-base SNPs including those found by re-sequencing and further SNPs chosen 

from the HapMap should be genotyped across the region so that the importance of 

UHMK1 as a susceptibility gene in schizophrenia can be investigated further and 

also, further fine mapping around the gene to help exclude neighbouring genes that 

may be the true susceptibility gene linked to the positive UHMK1 markers. It should 

also be pointed out that HapMap does not contain all the known SNPs covering all 

regions, and that typing of tagged SNPs within UHMK1 has been carried out to the 

best of our knowledge. The gene should be fully sequenced in order to find 

additional SNPs.

This study has failed to replicate association with previously implicated genes 

CAPON (NOS1AP) and RGS4, although this reduces evidence for association to 

schizophrenia with these genes we can not exclude it. NOS1AP is a large gene that 

according to the data in HapMap would require over 18 tagged SNPs to thoroughly 

evaluate the association with schizophrenia. Therefore both of the implicated genes 

could be more vigorously genotyped with tagged SNPs to increase confidance to 

exclude the genes as candidates to schizophrenia susceptibility. In addition the 

neighbouring genes to UHMK1 (UAP1 and DDR2) should also be typed with 

tagged SNPs to prove that they are not implicated in schizophrenia susceptibility and 

UHMK1 is not picking up LD with these genes.

10.1.4 GENOME SCANS

Whole genome scan association studies using large numbers of SNPs have been 

carried out looking at several other diseases including myocardial infarction, 

osteoarthritis (Abel et al. 2006) and breast cancer. Recently, Mah et al (2006) carried 

out a genome-wide scan using over 25,000 SNPs located within approximately 

14,000 genes. They repeated the scan within several populations. They found a 

marker on lq32 within a novel candidate gene for schizophrenia (PLXNA2).

Work in the future will include high density genome wide association studies aiming 

to reinforce current findings and/or identify further candidate genes. The

179



identification of genes by markers associated with specific loci may not be the final 

route by which complex disorders are completely understood. The loci may simply 

be regions for interaction or control. It is the understanding of these interactions and 

control mechanisms that will possibly be the focus of the attention of scientists over 

the next decade.

10.1.5 EXPRESSION VECTORS AND KNOCK-OUT/KNOCK-DOWN 

MOUSE MODELS

Once association with UHMK1 is beyond doubt and aetiological base pair changes 

have been identified then expression vectors and “knock down” experiments can be 

conducted. Transgenic knock out experiments are also highly desirable and would be 

of further interest to investigate what the effect it would have on UHMK1 

expression and the organisms brain pathology and also behaviour.

10.1.6 METHYLATION STATUS AT CpG

DNA methylation involves the addition of a methyl group to the number 5 carbon of 

the cytosine pyrimidine ring. Methylation of the CpG island suppresses gene 

expression of the upstream gene. This activity is important for developmental roles 

and specific tissue expression. We have found a rare non-database SNP in the CpG 

island as described in section 8.1.3, and also two other mutations further upstream. It 

would be interesting to investigate how these mutations could affect the methylation 

status in the promoter region, especially in the case where we have the rare SNP.

Measuring DNA methylation can be carried out by sodium bisulfite treatment, which 

creates sequence differences by converting unmethylated cytosines to uracils, but 

leaving methylated cytosine unchanged. The differences can then be detected 

quantitatively by several techniques, such as sequencing of subclones or PCR 

products, restriction-digestion or pyrosequencing (Clark et al. 1994; Xiong et al. 

1997; Colella et al. 2003).
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10.1.7 MRI SCANS OF UHMK1 ASSOCIATED CASES.

Magnetic Resonance Imaging (MRI) is a powerful scanning devise which is able to 

build up detailed pictures of internal tissue organs, using safer form of radio waves, 

unlike the ionising waves of x-rays.

Upon further implication and conformation that UHMK1 is a schizophrenia 

susceptibility gene. One may want to investigate how the abnormally expressed gene 

would affect the brain morphology of schizophrenic patients which have the 

abnormal UHMK1 gene. This can be carried out by scanning the patients using an 

MRI machine; it would be interesting to see which areas of the brain (if any) are 

affected, compared to other schizophrenics and to normal controls. The results could 

be compared to what we have already discovered by MRI scanning of schizophrenic 

patients to see if they overlap, and potentially be implicated as a main cause factor to 

abnormal brain morphology.

10.1.8 INVESTIGATING EXPRESSION IN SCHIZOPHRENIC 

PATIENTS.

An important implication of a gene causing schizophrenia is whether it is 

abnormally expressed in schizophrenic patients compared to controls. That can be 

carried out by using quantitative RT-PCR, unfortunately obtaining suitable brain 

tissue not easy. One would need to use human brain tissue to extract mRNA, and 

this could only be obtained from external organisations. As a result it would not be 

possible to screen before hand which patients will be the most likely to have an 

abnormal UHMK1 gene. However, it would be of great interest if mRNA can be 

extract from the hippocampal formation where UHMK1 was found to be highly 

expressed, from a number of patients and compare it to the same number of matched 

controls. In addition the tissue samples could be used to extract the UHMK1 protein 

and investigate if there are different isoforms present in higher concentrations in the

181



schizophrenics or the controls when compared to one another. Caution is needed in 

evaluating post motem mRNA levels because drug effects can influence UHMK1 

mRNA levels as has been shown with clozapine.

10.1.9 BETTER UNDERSTANDING OF PROTEIN-PROTEIN 

INTERACTIONS

In order to fully understand UHMK1 ’s role in the pathology of schizophrenia and to 

look to find potential therapeutic targets to control the disease, one needs to fully 

understand the protein interactions associated with UHMK1. For future work, it 

would be worth investigating the protein interactions further. Biochemical 

techniques such as the yeast two hybrid screening should be employed to help build 

up the proein network picture. Coprecipitation and 2D gel studies also looking at 

glycosylation and phosphorylation changes may also aid in the study of the protein 

function and control.

10.1.10 GENE-GENE INTERACTIONS

It is important to consider gene-gene interactions, as well as recessive and dominant 

gene effects. The associated gene may not be directly responsible for schizophrenia 

susceptibility but its product may interact with other abnormal genes effecting their 

expression which may have an even greater effect on the pathology of 

schizophrenia. Specific gene interactions may occur in specific sub-types of 

schizophrenia. The gene interactions will not only help to confirm known candidate 

genes, but help to implicate other genes in schizophrenia susceptibility.

10.1.11 GENE SUSCEPTIBILITY AND SUB-TYPES OF 

SCHIZOPHRENIA

Sequencing and screening of the gene was carried out as previously stated (section 

2.8.4 & 8.1) by using the individuals with the most significantly associated 

haplotypes. Screening of these individuals lead to the detection of the rare SNP in
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the CpG island and also the two INDELs. Further genotyping of these changes in the 

entire population showed them not to be associated with schizophrenia. However, 

they could nevertheless be responsible for very rare subtypes of schizophrenia. 

Further work should be done to investigate whether these mutations are in fact a rare 

cause of schizophrenia. In the future even larger sample size would be justified by 

increasing the power to detect polymorphisms with high frequency SNPs as well to 

screen for additional rare susceptibility mutations.

10.2 CO NC LUSIO N

UHMK1 is attractive as a schizophrenia susceptibility gene because it contains both 

a kinase and a RNA recognition motif which is widely expressed in the brain. The 

gene has been implicated in the British UCL case control sample and also replicated 

in a larger independent Scottish Aberdeen case control sample. UHMK1 is an 

attractive gene highly expressed in the developing nervous system and in the mature 

brain. UHMK1 expression is greatest in the hippocampal formation which links it to 

behaviour and memory. The protein is involved in cell cycle progression, neuronal 

out growth and possibly neuronal signalling. Further association studies in 

independent populations are still required, to fully confirm UHMK1 as a 

susceptibility gene for schizophrenia.
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13.0 APPENDIX

13.1 RAW RESULTS OF LD BETWEEN ALL 55 MARKERS USED.

Figure 13:1 LD plot of all 55 markers used in the UCL sample. Above is Cram er’s V. Below are P-values.
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13.2 P R IM E R  SEQ U ENCES OF UHM K1 SEQUENCING

Table 13:1 Primer sequences used to sequence UHMK1 as described in section 8.1.2

Primer Name Location Sequence

KIS_P9_L_ml3r 5' UTR GGATAACAATTTCACACAGGcaacaaagcaggggtgatg
KIS_P9_R_ml3F 5' UTR CACGACGTTGTAAAACGACgggggaaatttgcatctgta
KIS_P8_L_ml3r 5' UTR GGATAACAATTTCACACAGGtctcatttaatatcttcagggttgg
KIS P8_R_ml3F 5' UTR C ACG ACGTT GT AAAACG ACtacaggcatccaccaccac
KIS_P7_L_m 13F 5' UTR CACGACGTTGTAAAACGACtgggtgaaattccatctcaaa
KIS_P7_R_ml3r 5’ UTR GG AT AACAATTT C AC AC AGGcaccatgcccggttaaat
KIS_P6_L_m 13F 5' UTR CACGACGTTGTAAAACGACtggggttaaacaaaacccatc
KI S_P6_R_m 13 r 5' UTR GG AT AACAATTT C ACAC AGGagcctaagctgttgctctgc
P5L_r_M13R 5’ UTR GG AT AACAATTT CAC AC AGGggacctcacgcaagaaag aa
P 5 R r M 1 3 F 5' UTR CACGACGTT GT AAAACGACttcaaaccagagcaactcca
P4aL_r_M13F 5' UTR CACGACGTTGTAAAACGACcatggtggcaaattcctgta
P4aR_r_M13R 5' UTR GGATAACAATTTCACACAGGggaaagtttgaggagaggttga
P4bL_r_M13F 5’ UTR CACGACGTT GT AAAACG ACctggaaatgcagcccagt
P4bR r_M13R 5' UTR GGATAACAAI I I CACACAGGggcatgatctcggcatct
P3L_r_M13R 5' UTR GGATAACAATTTCACACAGGgcaagagagaagacaggtcaga
P3R_r_M13F 5' UTR CACGACGTTGTAAAACGACtttctgggccaaatcaatgt
K I S P 2 L m l 3 R 5' UTR GGATAACAATTTCACACAGGtgagccaactatgagtgacca
KI S_P2_R_m 13 F 5' UTR CACGACGTTGTAAAACGAC cccatgattctggaagccta

ExlaO_L_M13R CpG GGATAACAATTTCACACAGGgctgtggcaggtacagagc

ExlaO_R_M13F CpG CACGACGTTGTAAAACGACactgtgacctgggcaagaag
KIS_EXla3_Lml3R CpG GGAT AACAATTT CACACAGGaaggaccagttttggcttca
K I S E X 1 a3_Rm 13 F CpG CACGACGTT GT AAAACGACgttaagggcacggacacg
K I S E X 1 a2_Rm 13F CpG CACGACGTTGTAAAACGACcagcgaacccgatacacc
K I S E X  1 a2_Lm 13R CpG GGAT AACAATTT CACACAGGtgtcatggctgcttgaagtc
KIS_EXlal_Lm l3R Exon 1 G GAT AACAATTT C AC AC AG Gcgtgcccttaacccacac
KIS_EXlal_Rm l3F Exon 1 CACGACGTT GT AAAACG ACctttgcggaaaccatactcg
U H M K E X 2 L M  13R Exon 2 GGATAACAATTTCACACAGGcagtggaagcttgctcatca
UHMK EX2 R M 13 F Exon 2 CACGACGTTGTAAAACG ACcggtggcactgaaattcttt
U H M K E X 3 L M 13 R Exon 3 GGATAACAATTTCACACAGGtgcccagttaatgaaccaaa
U H M K E X 3 R M 13 F Exon 3 CACGACGTTGTAAAACGACtgaaagtaaggaccccaaagc
KI ST_EX4r_L_M 13 R Exon 4 GGAT AACAATTT CACACAGGtgttttctgttgcattttactctca
KIST_EX4r_R_M 13 R Exon 4 CACGACGTT GT AAAACG ACgcaaaagagcattcctttgaa
K I S E X 5 M 13R Exon 5 GGAT AACAATTT CAC AC AGGcaacaatcatcccaccgata
KI S E X5  _M 13F Exon 5 CACGACGTTGTAAAACGACagtgggaagcatgaccagat
KI S_EX6_M 13 R Exon 6 GGAT AACAATTT CACACAGGgcttcatgatgatccaagca
KIS EX6 M13F Exon 6 CACGACGTTGTAAAACGACtgaggcttgaacccagga
UHMK EX7 L M13R Exon 7 GGATAACAATTTCACACAGGttcaaggagagtagaaggtggaa
U H M K E X 7 R  M 13F Exon 7 CACGACGTT GT AAAACGACtgcaaaactcataatccttagca
U H M K E X 8 A L M 13F Exon 8 CACGACGTTGTAAAACGACttggcatcacctggaagttt
UHMK EX8A R M13R Exon 8 GGAT AACAATTT C ACAC AGGccaaatgtatgcaacgcagt
U H M K E X 8 B L M 13F Exon 8 CACGACGTTGTAAAACGACgcaggactacccccttacca

Continued.
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UHMK
UHMK
UHMK
UHMK
UHMK
UHMK
UHMK

EX8B
EX8C
EX8C
EX8D

EX8D
EX8E
EX8E

R M 1 3 R
L M 1 3 R
R M 1 3 F
L M 1 3 F

R M 1 3 R
L M 1 3 R
R M13F

Exon 8 
Exon 8 
Exon 8 

Exon 8 3'UTR 
Exon 8 3'UTR 
Exon 8 3'UTR 
Exon 8 3'UTR

GGATAACAATTTCACACAGGgtgcaagatcaagcatcagc 
GGATAACAATTTCACACAGGataagctggcactggatgct 
CACGACGTT GT AAAACG ACggcacaacttagtctttgttcca 
CACGACGTT GT AAAACG ACgagaggcccagaacaaact
GG ATAAC AATTTCACAC AGGtgggatgctgctcctctagt 
GGAT AACAATTT CACACAGGtatccctgctccctttttcc
CACGACGTT GT AAAACG ACaaaggagagtcctgaatttgaca 

M13F/R tails are indicated in uppercase of the primers.
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