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Abstract

Not all DNA has the familiar Watson-Crick, right-handed double helical structure; 

Left-handed helixes, triplexes, quadruplexes, bent DNA and regions of increased 

stiffness have all been encountered in nature. Some of these DNA structures are 

formed as a result of protein binding, while others are intrinsic. Such intrinsic 

structures may be incorporated into future plasmid constructs for gene therapy 

and DNA vaccine products.

Intrinsic DNA structures were included at a defined point in a 2.9 kb plasmid, and 

their effects on cell growth rate, total plasmid yield, and topology (i.e. the relative 

proportions of supercoiled plasmid, open circular and linear forms), were 

determined. The stability of the inserted sequences was assessed using gel 

electrophoresis.

Results suggest that Z-DNA is unstable in a batch Escherichia coli DH1 

production system grown in complex medium. Encouragingly other sequences 

studied (triplex, bend and quadruplex) did not cause spontaneous deletions, and 

no detrimental effect was found on growth rate or on total plasmid yield; 

indicating that such sequences could be included in future DNA products without 

any detrimental effect on plasmid yields. Although the intramolecular triplex 

studied significantly decreased the proportion of supercoiled species.

The effect of different topological forms on transcription of a DNA vaccine in a 

cell free system was investigated, in order to determine the implications of this on 

specifications of plasmid products. Open circular plasmid was found to be 

expressed around 3.5 fold more than the supercoiled form. Current guidelines 

suggest that plasmid products should contain a minimum of 90% supercoiled 

species. The supercoiled form is not a single isoform, but contains plasmids with 

different numbers of supercoils (linking number). Measurement of the levels of 

supercoiled species in comparison to the other plasmid forms allows monitoring 

of the production process, however it is recommended that the guidelines be set 

on individual product basis i.e. drug efficacy will depend on delivery method, 

longevity and transcription levels.
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1 DNA structure and plasmids

This chapter includes a description of both basic DNA structure and some of the 

intrinsic abnormalities that occur in nature. It also discusses plasmid properties, the 

importance of plasmids as biotherapeutics, industrial plasmid manufacture and 

processing.

1.1 Basic DNA structure

In the fifty years since basic DNA structure was first discovered and its implications 

understood, great advances in biotechnology have been made. The nature of DNA 

now lies at the heart of molecular biology.

1.1.1 Discovery of DNA structure

The discovery and understanding of basic DNA structure can be regarded as one of 

mankind’s greatest achievements. Full historical accounts are available from several 

sources and for interest a brief summary of certain individual’s contributions is given 

below.

Examination of isolated DNA using X-ray diffraction began in 1943 by Astbury and 

while inconclusive it was soon postulated that DNA molecules had a ‘preferred 

orientation’. In 1950 Wilkins proved this to be true by obtaining diffraction patterns 

that showed a crystalline structure. For this to occur DNA molecules must have very 

similar structures that allow tessellation (fitting together very closely with few gaps). 

Three years later Franklin obtained diffraction patterns of single DNA fibres and 

these contained dominant cross-like patterns - characteristic of a double helix. 

Analysis of Franklin’s photographs made available to Watson and Crick by Franklin’s 

colleague Wilkins, and use of Chargaffs work enabled them to elucidate an 

energetically favourable DNA structure. The model of DNA structure that Watson 

and Crick proposed in 1953 was hence shown to be “essentially correct”.

1.1.2 Classic Watson Crick Model

"Although some refinement might be made, I feel that it is very likely that the 

Watson-Crick structure is essentially correct." Pauling 1953.

DNA is composed of subunits denoted nucleotides. The nucleotides consist of a 

deoxyribose sugar, phosphate groups and a base. There are four different bases, 

adenine (A), cytosine (C), guanine (G) and thymine (T). A and G are purines and C 

and T are pyrimidines.

14



Adenine Cytosine Guanine Thymine
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Hs /H  
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/  I 
H

0

h , c ' A

Figure 1.1 The four bases of DNA

The “structure has two helical chains each coiled round the same axis...Both chains 

follow right handed helices...the two chains run in opposite directions. ..The bases 

are on the inside of the helix and the phosphates on the outside... the two chains are 

held together by the purine and pyrimidine bases, a single base from one chain 

being hydrogen-bonded to a single base from the other chain, so that the two lie side 

by side...One of the pair must be a purine and the other a pyrimidine for bonding to 

occur. ...Only specific pairs of bases can bond together. These pairs are: adenine 

(purine) with thymine (pyrimidine), and guanine (purine) with cytosine (pyrimidine)" 

(Watson and Crick 1953).

As can be seen below the Watson Crick base pairs produce near indistinguishable 

base geometeries, and it is these that allow such a regular structure to be formed.

A-T G-C

HO CH.

1 / M
OHH OH H

Figure 1.2 The Watson-Crick base pairs

This specificity is due to steric and hydrogen binding factors. There are two and 

three hydrogen bonds in between base pairs A-T and G-C respectively. This

15



together with stacking energy considerations accounts for the lower ‘melting’ 

temperatures of A-T rich sequences. ‘Melting’ of DNA is a term used to describe 

double stranded DNA becoming single stranded.

The major features of the Watson-Crick double helix are:

• The diameter of the helix is 20A,

• adjacent bases are separated by 3.4 A along the helix and are related by a 

rotation of 36 °. Hence the helical structure repeats after ten residues of the 

chain, i.e. at intervals of 34 A.

1.1.3 The three main forms of DNA

There are three main conformations of DNA. These are summarised in table 1.1. 

Fibre and solution methods and more recently single-crystal x-ray analyses have 

confirmed the properties (Dickerson et al 1982).

Figure 1.3 Space filling models for comparison of the three main types of DNA - 12 bp 

each. Most DNA lies in the range between the A- and B- forms. A-DNA (left) has around 

11 bp per helical turn and is common in high salt concentrations, B-DNA (middle) is the 

most common form in vivo and has 10.5 bp per helical turn, and Z-DNA (right) which 

has 12 bp per helical turn and has a left-handed sense in contrast the other main (right- 

handed) forms, formation of Z-DNA is favoured by alternating purine pyrimidine 

sequences. Reprinted with permission from Dickerson et al., SCIENCE 216:475-85 

(1982). Copyright AAAS.
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1.1.3.1 A -  and B -  DNA and transitions between the two

B -  DNA is the most common form of DNA found in vivo. B -  DNA has a right- 

handed sense and has a wide and a narrow grove. Bases are found to be 

perpendicular to the helical axis. The helical structure repeats after ten and a half 

residues of the chain.

A -  DNA also has a right-handed sense, the major groove is found to be deep and 

the minor grove is shallow.

Shifts between the A -  and B -  forms of DNA are possible because of changes of 

conformation of the ribose ring according to the solution conditions:

B-DNA

In low salt conditions DNA can be considered hydrated, and the most stable form of 

the ribose ring is in the C2’ endo pucker. This means that the distance between 

phosphate groups is around 7A.

A-DNA

In high salt conditions, the reduced number of water molecules means that the 

ribose ring has a C3’ endo conformation, hence a more compact DNA structure is 

produced when the phosphate groups are closer together than in B-DNA, being 5.9A 

apart.

The A -  conformation is the most common form of double stranded RNA due to the 

oxygen atom on the 2' position of the ribose ring stabilizing the C3' endo 

conformation.

1.1.3.2 Z - D N A

As can be seen from figure 1.3, the main difference between Z and the other two 

major forms of DNA (A and B) are that Z -  DNA has a left-handed sense. In addition 

it is more elongated than the other two types. Formation of Z -  DNA is favoured by 

conditions of high salt and in sequences containing alternating purine-pyrimidine 

tracts of 12 to 15 base pairs (Hoheisel and Pohl 1987). Cytosine methylation has 

also been found to enhance formation of Z -  DNA in plasmids in Escherichia coli (E. 

coli) (Zacharias et al 1990).

Repeated sequences of CG have been shown to form Z-DNA without supercoiling, 

while other repeats, such as TG, do require a threshold level of super helical density 

(Albert at al 1994). There has been some investigation into the minimum number of 

purine.pyrimidine repeats that are required in linear DNA for Z-DNA to be formed in 

the middle a long B-DNA form. It has been shown that the minimum number of
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repeats of CG is 12, of which the four central base pairs form Z-DNA and the two 

flanking four base pair repeats exist in the B-form (Dai et al 1992). The transitions 

between the Z- and B- are interesting as the DNA must convert from the right 

handed form to the left handed form and back again. It is thought that the swap in 

handedness between the two forms is very rapid, such that the double helix flips 

from one form to the other without any base pairs at the junction (Dai et al 1992). 

Purine pyrimidine tracts are over represented, occurring up to 40 fold times more 

frequently than they would be expected in some organisms (Ussery et al 2002). Z- 

forming sequences are commonly found near the 5’ end of genes and in promoter 

regions (Schroth et al 1992). As described in section 1.2.3.1, these regions are 

subject to changes in super helical density that can provide the energy used to 

convert B-DNA to Z-DNA.

The form that DNA takes is highly sequence dependent and several papers have 

presented their findings of the most stable forms produced with different sequences, 

for example three base pair sequences (Packer et al 2000) and more recently eight 

base pair sequences (Gardiner et al 2003).

1.1.4 C - ,  D - ,  ‘E - \ H - ,  P - a n d T - D N A

A, B and Z are far from the only prefixes that can be found in scientific literature 

describing different DNA forms. For completeness several of the other forms are 

described in Appendix 2. Only the H form is of interest to the specific nature of this 

project and is further described in a later section.
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A - D N A B -D N A Z -  DNA

• Right-handed 
sense.

• 11 bp/helical turn

• 26 A diameter

• 2.6 A rise/residue

• 33° helical twist

• Sugar pucker C3’ 
endo

• Shorter, wider helix 
than B.

• Deep, narrow 
major groove not 
easily accessible to 
proteins.

• Wide, shallow 
minor groove 
accessible to 
proteins.

• Favoured 
conformation at 
low water 
concentrations.

• Base pairs tilted to 
helix axis and 
displaced from 
axis.

• Generally tilt is 20°

• Right-handed 
sense.

• 10.5 bp/helical turn

• 20 A diameter

• 3.4 A rise/residue

• 36° helical twist

• Sugar pucker C2’ 
endo

• Most common 
DNA conformation 
in vivo.

• Narrower, more 
elongated helix 
than A.

• Wide major groove 
easily accessible to 
proteins.

• Narrow minor 
groove.

• Favoured 
conformation at 
high water 
concentrations 
(hydration of minor 
groove seems to 
favour B-form).

• Base pairs nearly 
perpendicular to 
helix axis.

.  Tilt is -6°

• Left-handed sense.

• 12bp/helical turn

• 18 A diameter

• 3.7 A rise/residue

• Sugar pucker 
alternates C3’ 
endo (G), C2’ endo 
(C)

• Can be formed in 
vivo, given proper 
sequence and 
superhelical 
tension, but 
function remains 
obscure.

• Narrower, more 
elongated helix 
than both A and B.

• Major "groove” is 
not really groove.

• Narrow minor 
groove.

• Conformation 
favoured by high 
salt concentrations.

• Conformation 
favoured by 
alternating purine- 
pyrimidine 
sequence.

• Base pairs nearly 
perpendicular to 
helix axis.

• Zigzag backbone 
due to C sugar 
conformation 
compensating for 
G glycosidic bond 
conformation

Table 1.1 Properties of the three main DNA forms.

19



1.2 Deviations from traditional DNA model

1.2.1 Sequences inducing change when bound to proteins

1.2.1.1 Eukaryotic

For the purposes of this project, sequences that induce change via eukaryotic 

protein interactions are of little interest. Since the plasmid DNA is grown in 

prokaryotic organisms, proteins producing such changes (e.g. histone proteins) will 

not be present.

DNA wraps around histone octamers forming nucleosomes. DNA in nucleosome 

form takes up around six times less space, allowing the genome of a cell to fit inside 

the compartment in which it is contained

In future it is envisaged that eukaryotic cells may be used to produce plasmid DNA 

for use in gene therapy. This is because methylation of DNA differs between 

eukaryotes and prokaryotes. If plasmid products are ever produced using eukaryotic 

production systems then investigation into possible effects of eukaryotic proteins 

may be required.

1.2.1.2 Prokaryotic

A variety of prokaryotic proteins also bind to DNA with several different effects. One 

of the most dramatic examples is the Catabolite Activator Protein (CAP) that bends 

DNA by 90° (Schultz et al 1991).

The HU protein in prokaryotes seems to have similar function to histone proteins 

(Rouviere-Yaniv and Gros 1975). The HU protein has been shown to bend DNA 

quite dramatically. In the presence of the HU protein 80 bp sequences can be 

circularised, whereas without the HU protein no ligation occurs (Hodges-Garcia et al 

1989).

Another interesting example are sites recognised by DNA gyrase (Topoisomerase I). 

DNA gyrase is an enzyme that adds supercoils to DNA in an ATP dependent manner 

by passing one DNA segment through another by means of a reversible break at 

specific sites (Morrison and Cozzarelli 1981).

If it was seen as desirable, by altering the number of these sites in a plasmid, it 

might be possible to increase the level of supercoiling. An alternative strategy to 

increase supercoiling levels, might be to over-express the gyrase gene. Such a 

strain is described by the Westerhoff group (Jensen et al 1999). A strain over- 

expressing DNA gyrase was requested from the Westerhoff group both from the 

academic department and by GSK Process Development group, but was not
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forthcoming. It would have been very interesting to see the effects of increase 

gyrase expression on plasmid topology and processing. Since strain development 

takes considerable time and the strain developed by the Westerhoff group did not 

arrive this work was not attempted. It seems a logical step to see the effect of such a 

strain on the plasmid production process. Induced expression would probably be 

required so as to prevent alterations of the host DNA expression.

1.2.2 Non -  Watson Crick base pairing

Watson Crick base pairs are not the only stable way that bases can be held together 

by hydrogen bonds. Reverse Watson Crick, Hoogsteen and Reverse Hoogsteen 

bonding, shown in figures 1.4 and 1.5, can all form and their stability accounts for 

some of the unusual structural features discussed hereafter (Hoogsteen 1963).

Reversed Watson Crick A-T
OH

h2c.

OH

HC
;CH

HO— CH2

OH H

Figure 1.4 A Reverse Watson-Crick base pair. Compared to the Watson-Crick bond, one 

of the nucleotides is rotated 180°. The glycosidic bonds are in the trans orientation, 

rather than cis in the Watson-Crick bond.
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Hoogsteen A-T

CH

OH H

H3C h CHj-OH

^  H O H OH

Figure 1.5 A Hoogsteen base pair

Many of the possible hydrogen binding conformations that can be formed between 

the DNA bases were considered before the Watson-Crick structure was established. 

The Watson-Crick structure was by no means obvious because the stability of many 

of the different base pairing arrangements are similar. Indeed it is because of the 

comparative stability of this array of possible base pair conformations that structures 

other than the Watson-Crick exist in vivo.

1.2.3 Sequences with intrinsic differences from the Watson Crick double 

helix.

1.2.3.1 The effect of supercoiling

Briefly, supercoiling is torsional stress on double stranded DNA that is maintained 

either by protein interaction or by virtue of the DNA being circular, for example in a 

plasmid. Supercoiling in plasmids is described in more detail in a later section 

1.3.1.7. The energy from unwinding supercoils is often converted into producing non- 

Watson Crick type structures. In vivo it has been shown that, in both eukaryotes and 

prokaryotes, during transcription the movement of RNA polymerase along DNA, 

generates negative supercoils upstream and positive supercoils downstream of the 

transcription complex (Rahmouni and Wells 1989, Giaever and Wang 1988).

1.2.3.2 Effects in nature.

It has been reasoned that DNA exhibiting a higher order of structure than predicted 

by the Watson Crick model has biological function (Wells et al 1988). One of the 

main indications for this hypothesis is that specific sequences are required for
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unusual DNA structures to form, and these occur more frequently than would be 

expected if the sequence of nucleotides were random. For example, 

homopurine homopyrimidine sequences with the potential to form intramolecular 

triplexes, appear in eukaryotes three to four times more frequently than they would 

be expected (Behe 1995, Schroth and Ho, 1995). Purine-pyrimidine tracts, which are 

able to form Z-DNA, are also over represented up to 40 times more often than would 

be expected in some organisms (Ussery et al 2002). DNA with non-Watson Crick 

structure may provide recognition sites for protein binding and several roles have 

been suggested (Ciotti et al 2001, Kiyama and Camerini-Otero 1991, Gagana et al 

1999, Lee et al 1984, Simonsson et al 1998). DNA hence can be said to convey 

more information than might be predicted by the translation of the sequence of 

bases alone. Additionally there are instances of unusual DNA structures that have 

detrimental effects.

Examples of all of these are given below.

1.2.3.3 Bending

DNA is not, as was once supposed, a naturally straight rod, and in fact it can bend 

anisotropically. Intrinsic bends and curves appear when special base sequences are 

repeated in phase with the DNA helical repeat. “A tracts” are responsible for the vast 

majority of DNA bends encountered. A tracts are a run of A-Ts around half a helical 

turn long (5 to 6 bp) repeated in phase, that is at 10 to 11 bp intervals. The degree of 

bending produced by other sequences has been found to be small in comparison 

(Crothers et al 1990).

Marini and co workers first encountered bent DNA in 1982, when certain DNA 

fragments were found to exhibit anomalously slow gel electrophoretic mobilities 

(Marini et al 1982). Anomalous gel mobility is caused by DNA molecules of a bent 

conformation have increased difficulty in passing through gel pores that are not 

much larger than the DNA helix diameter (Cooper 1977).

An important technique known as “Cyclically permuted gel electrophoresis” was 

developed using the kinetoplast DNA studied by Marini and co workers. Cyclically 

permuted fragments of the kinetoplast DNA were produced. It was found that a 

section of DNA with the bend in the middle ran much more slowly than a cyclically 

permuted variant containing the bend at one end. Gel electrophoresis of these 

fragments allowed the site of the bend to be found (Wu and Crothers 1984). This 

has since become a powerful tool in locating regions of bent DNA.
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1.2.3.3.1 Modelling of DNA bending

A number of models have been proposed that attempt to model and predict DNA 

bending given the sequence information. For the purposes of this project, existing 

methods to predict deviation from ‘normal’ DNA structure are important. Should any 

of the sequences studied produced difficulties in production and processing it would 

be important to know if sequences planned for inclusion in plasmid products may 

contain such sequences.

1.2.3.3.2 Examples of bends and purpose in nature.

Intrinsic DNA bends have been found, by using circular permutation polyacrylamide 

gel electrophoresis and computer modelling, to flank transcription start sites (Schroth 

et al 1992).

Predictions of DNA bending in the E. coli genome has shown that promoter regions 

are more likely to be bent than coding or random sequences (Gabrielian et al 1999- 

2000, Bolshoy and Nevo 2000).

It has also been hypothesized that intrinsic DNA curvature is a common feature in 

eukaryotic promoters (Marilley and Pasero 1996, Schatz and Langowski 1997) and 

recent experimental work supports this finding with the study of bends in the human 

cdc2 promoter (Nair 1998), yeast GAAL1-10 and GAL80 genes (Bash et al 2001) 

and the TATA box (Davis et al 1999).

These predictions indicate some role for the bent sequences in promoter function. 

What precisely this role, however, is unclear, and was the subject of considerable 

research in the 1990s, with several review papers published on the topic (Hagerman 

1990, Harrington 1992, Perez-Martin et al 1994). Current opinion remains divided 

about the role of DNA bends in promoter sequences, and the different theories are 

summarized below:

1) The curved DNA forms large loops around RNA polymerase enhancing affinity to 

the complex (Matthews 1992, Perez-Martin et al 1994).

2) Small intrinsic curvature can enhance protein-DNA contact, hence intrinsically 

curved DNA may fine-tune the interaction of promoters and regulatory factors 

(Suzuki and Yagi 1995, Starr et al 1995).

3) DNA curvature may bring together components of the transcriptional complex that 

are distant (Matthews 1992).
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4) Curvature results in helical stress, affecting the energy required to melt DNA and 

unwind the double helix, therefore assisting (or perhaps functioning in place of) 

initiation proteins (Natale et al 1993).

1.2.3.4 Symmetry elements

DNA often contains repeated elements, generally these are confined to non-coding 

regions, but this is not always the case. Symmetry elements are direct repeats, 

mirror repeats and inverted (palindrome) repeats:

Direct repeat

 ►  ►

5’ AATGTGTCAACG AATGTGTCAACG 3’

3’ TTACACAGTTGC TTACACAGTTGC 5’

Mirror repeat

 ►

5’ AATGTGTCAACG GCAACTGTGTAA 3’

3’ TTACACAGTTGC CGTTGACACATT 5’
<-----------------------

Inverted (palindrome) repeat

------------------------- M -------------------------

5’ AATGTGTCAACG CGTTGACACATT 3’

3’ TT ACACAGTT G C GCAACTGTGTAA 5’

The repeated regions may or may not be perfectly symmetrical and may be or may 

not be adjacent.

Non-adiacent inverted (palindrome) repeat

 ► <-----------------------

5’ AATGTGTCAACG TTGAG CGTTGACACATT 3’
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3’ TTACACAGTTGC AACTC GCAACTGTGTAA 5’

Triplet repeat sequences are also common and have been found to be responsible 

for several inherited genetic disorders in humans. It is thought that they are 

produced by slippage at the replication fork.

These symmetry elements are responsible for many of the intrinsic structures 

discussed below.

1.2.3.5 Triplex formation (The H form of DNA)

The formation of triplexes in nucleic acids was first discovered in 1957 with the 

binding of Polyll to PolyA Poly U. (Felsenfeld et al 1957). Early studies involved 

interactions between single stranded and duplex DNA. In particular PolyT with 

PolyA PolyT. In vivo, a triplex structure in DNA is formed when a region becomes 

single stranded, and its complimentary strand hydrogen bonds with double stranded 

DNA nearby. This produces a portion of DNA in which three strands are intertwined 

and one strand is without its complimentary sequence. This ‘H form’ of DNA was 

described by Mirkin and co-workers, and they deduced from a series of designed 

plasmids that a homopurinehomopyrimidine mirror repeat is required (Mirkin et al 

1987). A helical representation of H-DNA is shown in figure 1.6 a.

Supercoiling is a requirement for triplexes and several studies have been concerned 

with correlating the number of base pairs in a triplex to the number of supercoils 

relaxed (Glover et al 1990). On average one supercoil is unwound per 10.5 base 

pairs, i.e. one per helical turn in B -  DNA.

In a homopurine homopyrimidine mirror repeat, it is most common for the half of the 

pyrimidine strand to Hoogsteen bond with a neighbouring duplex, while the other half 

of the pyrimidine strand is left unpaired. As shown in figure 1.6 b, depending on 

whether the 5’ or 3’ half of the pyrimidine strand is incorporated in the triplex the 

structure is termed Hy5 or Hy3. (Htun et al 1984).

Triplexes have been observed using both NMR (Radhakrishnan and Patel 1994) and 

more recently by X-ray crystallography (Rhee et al 1999) and the research findings 

indicate that the predicted and actual structures are closely matched.
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Figure 1.6 Intramolecular DNA triplexes.

a) A helical representation of intramolecular triplex DNA. The third strand lays in the 

major groove, whereas its complementary strand exists as a single stranded region. 

Analysis of intramolecular triplex structures on ployacrylamide gels suggests that DNA 

containing the intramolecular triplex is significantly bent.

Reprinted from DNA STRUCTURE AND FUNCTION, R R Sinden, Copyright (1994), with 

kind permission from Elsevier.

Vector Purine-Rich Strand (Pu) Vector

5'i
3*iH m TTTTTTTTTTTTTTmrrTTTTTT 3*

5*
Pyrimidine-Rich Strand (Py)

Hy3

5

5
3

Hy5

Hu5

3*.
5*. E H

Pu Pu * Py

Hu3

b) Four possibilities for intramolecular triplex formation. Intramolecular triplex 

structures can form within regions of DNA with predominately purines (shown as 

unfilled circles) in one strand in which the Pu.Py region has mirror repeat symmetry.
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Base ‘pairing’ in triple stranded DNA:

All Watson-Crick base pairs are conserved in triplex structures. In 

Pyr/m/d/'nePurinePyrimidine base triplets, the third base (Pyrimidine) forms a 

Hoogsteen pair with the central Purine base:

Figure 1.7 Base 'pairing* in Pyrimidine-Purine-Pyrimidine base triplets.

By contrast in Purine Purine Pyrimidine base triplets, the third base (Purine) forms a 

Reverse Hoogsteen pair with the central Purine base:

Figure 1.8 Base 'pairing' in Purine-Pufme Pyrimidine base triplets

The homopurine homopyrimidine sequences required for triplex formation appear 

three to four times more often than would be expected and are often found upstream 

or within genes (Behe 1995, Schroth and Ho 1995). As yet there is no clear 

understanding of their function or biological importance. Given their prevalence and

TA T C+ G.C

R

A A T G G C

R R/

R
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proximity to genes, triplexes may be involved with transcriptional regulation (Miller 

and Sobell 1966).

A number of proteins that bind triplex DNA in preference to duplex DNA, have been 

shown to exist. (Kiyama and Camerini-Otero 1991, Ciotti et al 2001). If H-DNA 

occurs in nature and has biological function, there would almost certainly also exist 

proteins that specifically recognise triplex DNA. Hence this is taken as good proof for 

the formation of triplexes in vivo.

There is much potential for triplex DNA to be used in gene therapy applications. This 

generally involves oligonucleotides designed to form triplexes with duplex DNA. Such 

a triplex upstream of a gene has the potential to block transcription and prevent a 

particular protein from being synthesised. This is called ‘the antigene strategy’ 

(Cooney et al 1988) and a recent review discusses the progress made in this field 

(Chan and Glazer 1997).

1.2.3.6 Cruciform-like structures (Holliday junctions, Four-Way

Junctions)

Cruciform structures are formed from palindromic sequences. Formation requires the 

central region of the sequence of DNA to unwind. This has an energy requirement, 

which has been shown to come from negative supercoiling. Cruciform structures only 

exist in supercoiled DNA and not in either linear or open circular forms (Lilley 1980).

Since the central region of the DNA must unwind, the base composition of this region 

affects the formation of cruciforms. Palindromes with central regions containing high 

amounts of A-T require less energy to form cruciform structures than those with high 

amounts of C-G. This is because there is one less hydrogen bond within A-T than 

C-G base pairs, and additionally a lower stacking energy between adjacent bases. 

This was proven to be the case by Zheng and Sinden (Zheng and Sinden 1988).
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           1111 11111

Central 10 bp unwinds becoming single stranded

i i i i i i i i i i i i  i i i 11

Corresponding base pairs form hydrogen bonds

UJL JUL11 m i l n n

Cruciform is extruded

Figure 1.9 Cruciform formation

Inverted repeats occur non-randomly in the DNA of most organisms and several 

roles have been suggested for them in vivo (Pearson et al 1996). Among these is 

control of the initiation in plasmid replication (Noirot et al 1990). A sequence with 

potential to form a cruciform has also been found close to the origin of replication of 

human mitochondrial DNA (Crews et al 1979).

More recently a sequence likely to form a cruciform structure was found in the
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promoter region of several human genes. This implies some role in initiating 

transcription, particularly as these promoters do not have the normal TATA box 

(Gadhavi et al 2001).

1.2.3.7 DNA quadruplexes I tetraplexes and telomeres

DNA quadruplexes were first discovered at the end of chromosomes, in telomeres. 

Several different sequences have been shown to be responsible for quadruplexes, 

falling broadly into two groups: G quadruplexes (Williamson 1994) and i-motif 

quadruplexes (Gehring et al 1993). The quadruplex structures of telomeres have 

been well studied and some of these are given below.

Until recently it was not thought that DNA quadruplexes existed outside of telomere 

regions, however, several other sequences have now been shown capable of 

forming G-quadruplexes. These include immunoglobin switch regions (Sen and 

Guilbert 1988), insulin polymorphic region (Catasti et al 1996), Retinoblastoma 

susceptibility genes (Murchie and Lilley 1992), and in the c-myc control region 

(Simonsson et al 1998).

Their function in the immunoglobin switch region are probably to serve as 

recombination sites in order to produce extensive antibody diversity.

The HIV virus has also been shown to produce quadruplex structures, but further 

research is required in this area (Skripkin et al 1994).

Indirect evidence for quadruplex function in nature has been obtained in the form of 

proteins shown to bind them. The yeast Rap1 protein has been shown to accelerate 

G quadruplex formation (Giraldo and Rhodes 1994).

1.2.3.7.1 G-quadruplexes

Telomeres consist of simple tandem repeat sequences, which are generally 

extremely G rich, for example d(NG4N).

The basic unit of G quadruplexes is the G tetrad (Arnott et al 1974, Zimmerman et al 

1975). The G tetrad is four G bases bonded by both Watson-Crick and Hoogsteen 

bonds in a square planar arrangement as shown below.
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N - HH - N

Figure 1.10 The G tetrad

There are several possible arrangements for G quadruplexes, depending on relative 

strand directions and the syn/anti distribution around each G tetrad. The figure 

above shows all glycosidic bonds in the anti conformation.

NMR studies of many repeated sequences have taken place, and combining 

information from molecular dynamics the structures of a number of quadruplexes 

has been resolved (Smith and Feigon 1992, Wang and Patel 1993, Wang and Patel 

1994, Wang and Patel 1995, Smith et al 1995)

1.2.3.8 Triplet repeats

Triplet repeats have been shown to be responsible for more than twelve human 

genetic diseases, including fragile X syndrome, myotonic dystrophy and Friedreich’s 

ataxia (Chastain and Sinden 1998). Hairpin structures, specifically those associated 

with fragile X syndrome (GCC)n and (GGC)n, have been shown to produce slippage 

at replication forks while DNA is duplicating (Chen et al 1998). These slippage 

events, due to the unusual DNA structures, help to explain both the occurrence of 

triplet repeats and also the varying length polymorphisms associated with some 

triplet repeat inherited diseases (Chen et al 1998, Catasti et al 1999). Different 

triplet repeats have been shown to produce a wide variety of stable DNA structures. 

Using NMR it has been shown that the repeat responsible for Friedreich’s ataxia, 

(GAA / TTC) forms triplex structures (Mariappan et al 1998), that responsible for 

myotonic dystrophy (CTG) forms hairpin structures (Mariappan et al 1996), and that
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a repeat responsible for fragile X syndrome (GCC) forms quadruplex structures (Fry 

and Loeb 1994).

Triplet repeated sequences either interrupt gene-coding sequences or form unusual 

structures that effect gene expression.

For the purposes of this project triplet repeats will not be considered. Previous 

studies have shown highly repetitive sequences to be unstable in E. coli (Hashem et 

al 2002) and additionally it is unlikely that triplet repeats would be included in future 

plasmid products.

1.2.3.9 Centromeric DNA

The human centromeric repeat is (AATGG)n and forms a doubly folded hairpin 

structure (Catasti at al 1999). Such a sequence is unlikely to be included in future 

plasmid products and so was not considered for the purposes of this project.

1.2.3.10 “Slipped” Mispaired DNA (SMP-DNA)

Regions of DNA containing direct repeats can form slipped, mispaired structures. In 

order to form, the entire region must untwine and one strand of one copy of the 

direct repeat must pair with the other strand of the other copy. In supercoiled DNA 

this formation might be energetically favourable as supercoils would be lost, however 

there would also be a loss in stability due to a reduction in both base stacking and 

hydrogen bonding (Sinden 1994).

The first suggestion of SMP-DNA came from a group who found sequences 

sensitive to S1 nuclease (Hentschel 1982). Conclusive proof of their existence took 

some time longer however as the sequences examined by Hentschel may have been 

able to form triplex structures, themselves sensitive to S1 nuclease.

Long direct repeats have already been shown to be genetically unstable in E. coli 

(Williams and Muller 1987), and so have not been further considered.

1.2.4 ‘Levels’ of structure, modelling and prediction

References to primary, secondary, tertiary and quaternary levels of structure have, 

as far as possible, been avoided in this thesis, the exception being when referring to 

problematic PCR reactions, where secondary structure refers to any non B-DNA 

form. The reason for avoiding other references to levels of structure is because 

different definitions for each have been widely used in the literature. The author’s 

personal view is that there are 5 levels of structure that can be defined as follows.

1) Primary -  The sequence of bases (e.g. CAGGTAC)

2) Secondary -  The basic conformation (e.g. B-DNA, A-DNA, Z-DNA)

33



3) Tertiary -  Intrinsic bending (e.g. straight, strong bend)

4) Quaternary -  Non Watson-Crick structures present with no supercoiling

5) Quinary -  The effect of supercoiling and its associated structures.

Prediction of unusual DNA structures from sequences alone would be advantageous 

as difficulties with plasmid processing might be avoided or foreseen.

A large number of models exist to model both single stranded RNA and single 

stranded DNA. As discussed in the earlier section on DNA bending, limited models 

of double stranded DNA are available to establish the tertiary structures of B-DNA; 

however, few modelling tools exist for the prediction of double stranded DNA 

structure. Possible reasons for this are the difficulty of modelling such large 

molecules, lack of computing power and the lack of perceived need. Some 

modelling work has been performed on the structure of supercoiled DNA, including 

tertiary and quaternary structure. Modelling of tertiary structure (DNA bends) is 

described in section 1.2.3.3.1. These models assume DNA exists only in the B- form 

however, and they do not take account of any of the other structures formed by DNA 

such as triplexes, nor of any interactions that may occur between sequences in 

different regions of a plasmid.

The current position is that there are no modelling tools available to accurately 

predict DNA structure. As such intrinsic abnormalities described are generally 

considered curiosities, especially as their biological functions are, as yet, relatively 

unknown.

Using simple software it is possible to detect DNA repeats. As mentioned in section

1.2.3 repetitive sequences are responsible for many of the unusual DNA structures 

that have been observed in nature. It ought to be relatively simple to detect homo 

purine / pyrimidine regions that might produce triplex structures, purine-pyrimidine 

tracts that encourage Z-DNA formation, and direct repeats that can cause SMP- 

DNA.

34



1.3 Plasmid Properties

1.3.1 Plasmid properties in nature

The term ‘plasmid’ was first coined in 1952 to describe all extrachromosomal 

hereditary elements (Lederberg 1952). Plasmids were shown to consist of DNA in 

1961 when it was shown that bacterial mating is accompanied by a transfer of DNA 

(Marmur et al 1961) and this was confirmed using radiolabelled DNA in 1962 (Silver 

and Ozeki 1962).

1.3.1.1 General properties

Bacterial plasmids are extrachromosomal and consist ot double stranded DNA. 

Plasmids may be covalently closed circles, open circles or linear in shape. They 

range in size from between a few kilo bases up to 1.7 mega bases.

1.3.1.2 Plasmids confer host cell advantages

Plasmids may carry genes essential for host cell growth and division, or genes that 

give the host a particular advantage within the bacterial population. Such advantages 

include antibiotic resistance, heavy metal ion resistance, virulence, nitrogen fixation, 

ability to degrade unusual compounds (metabolism functions) and ‘fertility’. ‘Fertility’ 

will be discussed later, but is involved in one method of plasmid transfer.

1.3.1.3 Host range

Plasmids tend to have a narrow host range and this is probably due to their reliance 

upon particular host genes for their replication. Some plasmids belong to 

‘incompatibility groups’, these are groups of similar plasmids that cannot coexist 

within the same cell. Many plasmids exist with a lot of copies of the plasmid per cell. 

The number of plasmids per chromosome is termed the ‘copy number’ and is 

regulated. Copy numbers vary between different plasmids; generally, large plasmids 

have low copy numbers, and small plasmids have high copy numbers.

1.3.1.4 Copy number control

Plasmid genes altering the rate of initiation of replication control the copy number. 

There are two major methods of initiation control:
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• RNA primers are one method of initiating DNA replication and this RNA 

production can be regulated using antisense RNA. A typical and well-understood 

example of this kind of control is the ColE1 plasmid. The rate of production of the 

replication primer called RNA II is manipulated:

ColE1

PRHAj _

Rom stabilises 
the kissing 
reaction

-♦S T :— “fl----------------------
RNA pol

o n

D i

( RNA ft

O rig in PROf-

RN A I
_RNA II

1 elongated |
RNase H o n

RNA IInmnnni Formation o f the hybrid, 
termination and RNase H  
cleavage

RNA II

^ L _ _

f

I
- (ffifW/f*******—

REPLICATION NO REPLICATION

Figure 1.11 ColE1 plasmid number control mechanism. Figure adapted from Actis et al 

1998.
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The left-hand side of the diagram depicts the mechanism of initiation of 

replication. The arrows inside black or white circles indicate initiation of 

transcription locations for RNA II and RNA I. The origin of replication (ori) and the 

site of action of RNase H are indicated. The steps involved in the initiation of 

replication are denoted by diagrams A to D. The interaction between RNA I and 

RNA II that leads to the inhibition of DNA synthesis is shown on the right hand 

side of the figure. The first interaction between RNA I and RNA II (kissing) is 

reversible and stabilised by the Rom protein. The concentrations of all RNAs and 

Rom protein depend upon the number of plasmids within the cell and hence copy
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number is controlled.

• Alternatively the function of essential replication proteins may be regulated by 

binding to repeated 18-22 base pair sites called iterons.

Examples of both types of regulation are encountered in both large and small 

plasmids.

1.3.1.5 Horizontal plasmid transfer

Horizontal plasmid transfer can occur in three ways, conjugation, transformation and 

transduction. In nature the most important method is conjugation.

Conjugation is the transfer of genetic material from one bacterial cell to another via 

cell-to-cell contact. Plasmids can be classified into four groups: Those that code for 

their own transfer are called Conjugative and are either Repressed or Derepressed; 

plasmids not coding for their own transfer are deemed Non-conjugative and are 

either Mobilisable or Non-mobilisable.

Gram positive and Gram negative (double membrane) bacteria have different 

conjugating methods. Gram negative conjugative bacterial plasmids produce sex pili. 

The ‘fertility’ function referred to earlier, encoded by the F-plasmid, is such an 

example. There are three types of pili, thin flexible, thick flexible and rigid. Each type 

of pilus may be more advantageous than another under different conditions. The 

pilius is used to bring the bacteria close together. Genetic transfer then occurs 

through the ‘conjugation bridge’ which may or may not be the sex pilus:
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Donor (F+) Recipient (F-)
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Such conjugative plasmids tend to be large, low copy number ones.

Derepressed plasmids are always ready to be transferred, whereas the transfer 

functions in repressed plasmids are almost always switched off. Transfer of 

repressed plasmids occurs either because the repression does not always work or 

when the repression is stopped due to susceptible cell detection. In Streptococcus 

for example the recipient produces a sex pheromone that induces formation of a 

special surface protein making the cell sticky and so the donor and recipient adhere 

together.

Mobilisable plasmids are not self transmissible, but use the transfer apparatus of 

other plasmids to mediate their transfer. This is possible as they contain an ‘origin of 

transfer’ sequence and mobilising genes.

In nature plasmids are either conjugative or mobilisable.

Transformation involves uptake of naked DNA from the environment. It is possible
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that plasmids could be released into the environment (for example from dead cells) 

and these could be taken up by other bacterial cells.

Plasmids could also be transferred by Transduction. Faulty packaging of 

bacteriophage DNA occurs infrequently and in its place a plasmid could be wrapped. 

Since the attachment and injection functions of bacteriophages are contained in the 

protein coat and not the genetic material that they contain, such incorrectly packed 

virion particles containing plasmid DNA would be active. Whilst this is possible it is 

unlikely to occur in nature.

1.3.1.6 Plasmid stability

Plasmids may be lost from cells either via structural or segregational instability:

1.3.1.6.1 Structural instability

Recombination, transposition and slippage during replication can all result in large- 

scale DNA rearrangements. Homologous and illegitimate recombination generate 

deletions, inversions, duplications and fusions.

In order to prevent new variants of cloning vectors from proliferating, the processes 

by which they arise are blocked. Cloning vectors are "stress-tested" and 

bioinfomatics is used to find repeat sequences, which ought to be removed. Regions 

of homology have been found to result in loss of parts of the plasmid. This can be a 

result of homologous recombination in recombinant proficient cells -  so called 

‘crossing over’ occurring between sections of DNA containing similar sequences. 

Deletions may also occur in cells that are not recombinant proficient due to slippage 

during DNA replication. It is also important that vectors place modest metabolic 

demands on their hosts in order to minimise the potential changes in fitness 

associated with changes in plasmid structure (Summers 1994).

1.3.1.6.2 Segregational instability

When plasmid-containing cells divide there are three possible ways in which the 

plasmids may be distributed:

a) Random

b) Some plasmids may be actively partitioned

c) All plasmids are actively partitioned.
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Naturally occurring low copy number plasmids have previously been show to exhibit 

active partitioning. If the distribution was random then after several generations a 

low copy number plasmid would be contained in only a small percentage of the 

population.

High copy number plasmids inheritance is likely to be described by random 

distribution.

Assuming a random distribution the probability of a cell division producing a plasmid 

free cell is 2 x (0.5)n, where n is the plasmid copy number, assumed to be constant 

over the cell life.

For copy numbers over 20 this theory predicts very stable populations of plasmid 

containing cells. In fact experimental results show that the populations are not quite 

as stable as predicted.

1.3.1.6.3 Effect of plasmid load

Plasmids in cells can produce significant metabolic burden. Cells containing fewer 

plasmids than the general population will have a lower metabolic burden than those 

having more plasmids. These cells thus have a selective advantage. This can lead 

to a “selective drift” resulting in lower copy numbers in the general population. This 

does not alter the rate at which plasmid free cells arise; however, plasmid free cells 

will not have such a burden and will therefore outgrow the plasmid containing cells. 

This leads to plasmid free cells accumulating quickly.

Vectors with low copy number that can be induced to be of high copy number have 

been suggested as a method to prevent plasmid free cells having a notable 

advantage.

1.3.1.6.4 Effect of copy number variance:

Measurement of copy number gives only mean copy number values and it is difficult 

to determine the standard deviations of these. A few cells with low copy number 

would inevitably produce many more plasmid free cells than predicted by random 

distribution. This is the most likely cause of the disparity between predicted and 

observed stability in high copy number plasmids mentioned above.

1.3.1.7 Supercoiling of plasmids

Supercoiling affects plasmid structure and as mentioned previously herein, many 

unusual DNA structures will only form when DNA is supercoiled.
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In vivo closed loops of double stranded DNA are ubiquitous. Plasmids, bacterial 

chromosomes (Bauer 1978) and viral genomes (Vinograd et al 1965) form single 

closed loops, while eukaryotic DNA is organised into domains by DNA binding 

proteins (Section 1.2.1.1).

Plasmids exist in three main forms, linear, open circular and supercoiled. These 

forms are sometimes referred to as Type III, Type II and Type I respectively.

1.3.1.7.1 Linking number

Linking number, described by White, has been used to describe the degree of 

supercoiling for closed loops of DNA (White 1969):

Supercoils added to a loop of DNA are manifested in two different ways:

• Decreasing the number of base pairs per helical turn and hence the number of 

helical turns in the loop.

• Causing the DNA helix to form a helix of higher order.

These two properties of circular DNA are described by the terms Twist number (Tw) 

and Writhing number (Wr). Tw gives the number of helical turns in the DNA, while 

Wr describes the supercoiling of the DNA in space. The Writhing number and the 

number of helical turns can vary continuously as the shape of the DNA duplex is not 

fixed; however, their sum will stay constant. This quantity is the Linking number and 

will be unchanged so long as the DNA strands are not broken.

Linking number is defined as the number of times one strand crosses the other when 

the DNA is made to lie flat on a plane. The only ways in which linking number can 

change are by chemical / enzymatic action, or by formation of unusual DNA 

structures (Sections 1.2.3.5 and 1.2.3.6).
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1.3.2 Plasmid properties in biotechnology

1.3.2.1 Horizontal transfer

To allow control over the plasmid containing cells, any natural mobilisable and 

conjugative features are either removed or disabled. This also helps prevent 

uncontrolled spread of genetically engineered DNA that is unacceptable to the 

general public.

1.3.2.2 Antibiotic resistance.

Antibiotic resistance is used as a selective marker to select for plasmid containing 

cells. Selection for several plasmids in the same cell can be achieved if each 

confers resistance to a different antibiotic. As discussed in the next chapter, there is 

a choice of antibiotic resistance marker in plasmid products, and there may be no 

need for them at all given recent technological developments.

1.3.2.3 Inheritance stability.

Oligomer formation

Plasmid multimers are formed by homologous recombination. Oligomers are 

maintained at low copy number. This has been shown to be due to the copy number 

control mechanism depending on the number of origins of replication:

A series of pUC8 derivatives containing tandem repeats of the origin region 

produced a progressive drop in copy number (Summers and Sherratt 1984).

The naturally occurring plasmid ColE1 is very stable, particularly when compared to 

similarly sized cloning vectors. Cloning vectors are commonly lost at frequencies of 

between 10'2 and 10'5 per cell per generation under non-selective conditions 

(Summers and Sherratt 1984).

By using deletion derivatives of the plasmid it was found that ColE1 stability is due to 

a 240 bp cis-acting site called cer. Oligomers of cer+ plasmids are converted to 

monomers by intramolecular recombination between the cer sites (Summers 1991). 

The inclusion of cer into cloning vectors is therefore advantageous because the 

number of plasmids available at partitioning is increased. The use of cer in industry 

is widespread as it provides the additional benefit of reducing levels of multimers.

More recent work has shown that the cer sequence produces a short mRNA that 

somehow inhibits cell division, ensuring that plasmid multimers are resolved before
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the cell divides (Chatwin and Summers 2001). This discovery has great possibilities 

in terms of applications such as whole cell biotransformations. In the context of 

genetic vaccines and gene therapy, it gives cause for concern however as the 

sequence might be expressed and effect mammalian cells. The safety implications 

of the use of the cer sequence in plasmid products therefore need further 

consideration.

1.3.2.4 Multiple cloning sites

All commonly used vectors contain closely arranged synthetic cloning sites. These 

are made up of sequences that are recognised by restriction enzymes. These sites 

ought to occur only once on the plasmid. The sites can be used by themselves or in 

tandem to allow a great variety of DNA fragments to be cloned.

1.3.2.5 Size

For the requirements of cloning, it has been desirable to use plasmids that are small 

in order that as large as possible fragments of DNA of interest can be inserted. This 

is because cloning using small plasmids is easier than with larger ones. In particular 

transformation efficiency is inversely related to plasmid size. Size becomes the 

biggest factor after 15Kb. Large plasmids are also more difficult to characterise by 

restriction mapping.

1.4 Plasmids as Biotherapeutics

1.4.1 Gene Therapy

Since it was first coined, the meaning of the term Gene Therapy has evolved 

significantly as the technology has advanced and been applied to different problems. 

Simplistically gene therapy is replacing or fixing a defective gene. The most modern 

and widely accepted definition is ‘the treatment or prevention of disease by gene 

transfer’ (Mountain 2000).

Over 4,000 human diseases are caused by single gene defects (Gottschalk and 

Chan 1998). These include sickle cell anaemia, cystic fibrosis, 

Hypercholesterolaemia, Duchenne muscular dystrophy and some forms of dwarfism. 

The rationale behind corrective gene therapy is straightforward: A functional wild 

type gene is introduced to cells that are unable to produce the given protein due to a 

mutation in the gene. The introduced gene is expressed by the cell, producing the
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desired protein. A large amount of excitement was induced when researchers 

revealed that skeletal muscle cells injected with plasmid DNA were able to express 

plasmid-encoded genes (Wolf et al 1990).

A better understanding of gene therapy and its implications is obtained by illustration 

with an example:

Cystic Fibrosis is the most common life shortening hereditary monogenic autosomal 

recessive disease in Europeans, effecting 1 in every 3,200 births and resulting in 

around 400 deaths per year. Its study has received much attention in the Gene 

Therapy field: A single defective gene, normally producing a Cl' channel protein 

(Cystic Fibrosis Transmembrane Regulator -  CFTR), causes the recessively 

inherited disease (Bradley 1999, Crytsal et al 1994, Davies et al 1998, Koehler et al 

2001, Matsue and Teramoto 2000, Rosenstein and Zeitlin 1998). 

Life expectancy with conventional treatments of physiotherapy, antibiotics and 

pancreatic supplements of cystic fibrosis sufferers is 30 years (Bradley 1999, 

Geddes and Alton 1998). Soon after the discovery of the CFTR gene, it was shown 

that by providing a normal copy of the CFTR cDNA sequence, the genetic defect 

could be corrected, hence increasing life expectancy (Crystal et al 1994, Davies et al

1998).

cr

Non-functional Cl' ion channel

Epithelial cell membrane

Genome encoding defective CFTR

gene
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The non-functional CFTR protein results in osmotic imbalance.
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Transmembrane Regulator.
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gene

Figure 1.13 Somatic Gene Therapy concept. Schematic showing how a plasmid 

encoding a functional CFTR gene could result in defective cells having working 

Chloride ion channels and, hence alleviating the symptoms of Cystic Fibrosis.

The concept behind gene therapy is that a gene encoding the CFTR protein could be 

introduced to the cell. The gene would then be transcribed and translated by the host 

machinery producing active CFTR protein. This would allow the balance of Cl' to be 

maintained and so alleviate the symptoms of cystic fibrosis.

Unfortunately, as yet, the promise of gene therapy has not been realised. Over the 

last decade around 12 independent cystic fibrosis clinical trials have been reported, 

trying different gene delivery methods and targeted sites. None of these can be 

counted as a success, and correction of cystic fibrosis has not been achieved and 

successful gene delivery is estimated to be another decade away (Caplen 2001, 

Geddes and Alton 1998, Koehler et al 2001).

1.4.2 DNA Vaccines

Following the finding that plasmid-encoded genes could be expressed in mammalian 

cells, it was found that mice produced antigen-specific antibody responses to 

proteins expressed by plasmids (Tang et al 1992). Mice have been successfully 

vaccinated against the influenza virus by means of plasmids containing influenza 

genes; the mice were shown to both express antibodies and cytotoxic T-lymphocyte 

responses were produced (Ulmer et al 1993).
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There is significant interest in DNA vaccines as they have several advantages, in 

terms of economic, environmental effects and safety (Donnelly et al 1996, Hassett 

and Whitton 1996, Davis 1997) over more conventional treatments: Their production 

does not require cultivation of dangerous or infectious agents, and unlike some viral 

vectors that have been used for gene delivery there is no risk of an attenuated virus 

back mutating and recreating the virulent form. DNA vaccines may also provide 

treatment against diseases for which the production of attenuated virus has so far 

proven unsuccessful e.g. HIV. There is also the potential to co-administer treatments 

against a number of diseases, on a single or multiple plasmid vectors.
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1.5 Plasmid DNA manufacture and processing

1.5.1 Shear damage to plasmids during processing

One of the major difficulties associated with production of plasmid DNA is damage to 

plasmids due to shear. Shear forces encountered during plasmid processing affect 

the structure of the plasmid, which is important for its proper functioning (Levy et al

1999). The sensitivity to shear has been shown to increase with the size of the 

plasmids studied.

1.5.2 Cell recovery

Due to the dramatic effects that shear has on plasmid DNA, mechanical methods are 

generally not used to recover plasmids from bacterial cells. In preference, chemical 

lysis is used. The most common method used is alkaline lysis, essentially as 

originally described by Birnboim and Doly (Birnboim and Doly 1979).

1.5.3 Alkaline lysis

This involves the addition of an alkaline -  SDS mixture. The SDS solubilizes the 

phospholipid and protein components of the cell membrane, causing lysis of the 

bacterial cells. This is generally performed in the presence of RNAse in order to 

degrade the host RNA, although alternatives to this exist. The chromosomal DNA 

and host proteins are irreversibly denatured by the sodium hydroxide. Long 

incubations with sodium hydroxide have also been show to irreversibly denature the 

plasmid DNA and so are avoided.

Plasmid DNA is able to renature upon neutralisation: The alkaline mixture of cell 

contents is neutralised by addition of acidic potassium acetate. This has a very high 

salt and K+ ion content and causes the SDS to precipitate. These salt-detergent 

complexes trap the denatured proteins, chromosomal DNA and other cellular debris 

and forming a delicate gel matrix of SDS-protein, called a flocculating suspension, or 

‘floe’.

The low molecular weight plasmid DNA renatures correctly and remains in solution, 

the floe is hence removed.

1.5.4 Clarification

The choice of unit operation to remove the floe is made between centrifugation, 

filtration or this step may be totally bypassed and the alkaline lysate may be purified 

directly by chromatography.
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As the floe and plasmids are delicate, high shear forces must be avoided. Small- 

scale plasmid preparations generally use fixed-angle centrifuges (Lahijani et al 

1996). However, for large-scale preparations, centrifuges are avoided. This is due to 

the semi-continuous mode of operation of industrial type centrifuges: the centrifugal 

acceleration acting on the liquid entering the centrifuge causes high shear forces, 

which can break up the floe (Theodossiou et al 1998).

On a large scale, filtration is considered to be the better option than centrifugation, 

since large shear forces are not present and so the floe is not broken up. (Horn et al 

1995, Theodossiou et al 1998). Scale up of filtration operations is also widely 

considered easier than scale up of centrifugation. Filtration allows the solution state 

of the retentate to be easily adapted by using buffers in order to modify solution 

conditions, such as pH and salt concentration, in order to make the required 

changes before later chromatographic steps.

Some research indicates that the floe may be applied directly from cell lysis to 

chromatographic steps, without any loss in purity or quality and increasing yield 

(Ferreira et al 1999).

1.5.5 Purification and regulatory aspects

Plasmid DNA prepared as described above will be contaminated with bacterial 

chromosomal DNA, RNA, proteins and endotoxins. In addition impurities may be 

introduced to the system from the fermentation process itself. Plasmid required for 

pharmaceutical purposes must be of substantially higher purity than that required for 

traditional molecular biology. Plasmid DNA can hence be separated using a number 

of further filtration and/or chromatographic steps.

General requirements both for current Good Manufacturing Practise (cGMP) for 

producing finished pharmaceuticals, and of general biological product standards; are 

in place. (Code of Federal Regulations 2000 Title 21 Parts 211 and 610 

respectively). The cGMP requirements cover the methods, processes and facilities 

and are designed to ensure products are consistently safe, pure and potent. The 

general standards cover tests required to ensure that all lots of vaccines for human 

use meet defined specifications over purity, identity, potency and general safety.

Further to these general guidelines, the American Food and Drug Administration 

(FDA) gives stringent guidelines over the amounts of permitted contaminants in 

plasmid DNA products. These guidelines are outlined in an FDA points to consider
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document published in 1996.

Interpretation of the criteria has been made by a number of research groups. Curling 

and Smith produced an easy to follow summary of the criteria.

Property Criteria

Biological activity Coherent fragments with plasmid 

restriction digests

Expected migration in gel electrophoresis 

(for size & supercoiling)

Transformation efficiency comparable 

with plasmid standard

Purity
Supercoiled isoform >95%

Absorbance A26o / A28o
>1.8 <2.0

Impurities
Protein <0.1 %

RNA <2 %

Genomic DNA Undetectable by gel electrophresis 

<0.01 pg/pg plasmid by Southern Blot

Endotoxins <0.01 EU/pg plasmid

Table 1.2 Summary of FDA points to consider. Taken from Curling and Smith 2003, 

claiming to quote the FDA Points to consider 1996 (Curling and Smith 2003)

A further requirement has been laid out for pharmaceutical grade plasmid DNA 

(Smith and Klinman 2001); while it was common practice to verify the sequence of 

the protein-encoding gene, some research suggests the plasmid backbone itself is of 

importance (Sato et al 1996, Klinman et al 1997). Hence the FDA now require a 

submission of the full plasmid sequence before permission is given to begin phase I 

clinical trials.

Routinely all steps in the purification process are tested in order to ensure that phage 

would be removed if it ever entered the system.

The advent of novel stains for gel electrophoresis and qPCR technology means that 

assays for contaminants may now be considerably more sensitive. It therefore 

seems likely that some of the criteria given by the FDA will be updated in the near 

future.
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Interestingly, in contrast to the table above (claiming the FDA 1996 guidelines as 

their source), the FDA points to consider document actually does not specify a 

minimum percentage of the supercoiled plasmid isoform, rather stating: 

‘Plasmid-derived DNA species such as linear and relaxed circular DNA may be less 

effective in expressing the inserted antigen gene. There should be a specification for 

the minimum amount of supercoiled DNA present.’ (FDA Points to consider, 

December 1996).

Following these guidelines, plasmid DNA manufacturing based research has aimed 

to produce pure plasmid DNA in the supercoiled form. Whilst plasmid based 

products have yet to reach market, minimum levels for the amount of supercoiled 

DNA have been suggested as 90% or 95% (Shamlou 2003, Curling and Smith 2003 

respectively) based on levels published elsewhere. Supercoiled plasmid DNA can be 

converted to open circular form and then linear forms by the action of shear, 

potentially at any stage of the purification process (Shamlou 2003). By setting criteria 

for the proportion of supercoiled plasmid in the final product the reproducibility of the 

purification procedure can be monitored.

This criterion is discussed further in Chapter 6.

1.6 Project aims

Future plasmid products may contain structures such as those described in section

1.2 for two major reasons:

• In addition to containing a correct copy of the coding sequence, future gene 

therapy products may also include promoter regions, introns, untranslated 

regions and enhancers.

• Sequences taken from viral genomes for the purposes of genetic vaccination 

may form non-Watson Crick structures.

This study was to see what effects, if any, inclusion of these structures would have 

on the properties of plasmid particularly with respect to their production.

A summary of objectives:

• To produce and characterise a plasmid backbone closely resembling those 

used in the pharmaceutical / biotech industry.

• To clone sequences of DNA known to produce unusual intrinsic structures
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into the parental plasmid. The sequences were to be included at a defined 

point in order to produce a family of plasmids.

• To characterise the family of plasmids.

Characterisation of the plasmids was to include any effects on fermentation yield, 

host cell growth rate and plasmid stability (defined section 1.7). Dependent on 

findings further analysis of the effect of particular unit operations upon plasmid 

production was envisaged.

1.6.1 Previous studies including structural abnormalities in plasmids

1.6.1.1 A large artificial cruciform

A large, 5.5Kb artificial palindrome was reportedly cloned into pUC19 a high copy 

number plasmid (Ravin and Ravin 1998). This is particularly interesting since it had 

previously been shown by many research groups that cloning and maintenance of 

perfect inverted repeats of longer than 150 bp was probably not possible (Lilley 

1981, Mizuuchi et al 1982). Long inverted repeats are often deleted via 

intramolecular recombination (Warren and Green 1985) and by slippage at 

replication forks (Sinden et al 1991).

The large palindrome reported by Ravin and Ravin, was shown to reduce copy 

numbers in supercoiled plasmids. Palindromes of this size have not been found in 

nature however, and in addition, because inverted repeated sequences are unstable 

in E. coli (see above) it is unlikely that structures of this kind would ever be 

incorporated into plasmids for gene therapy or genetic vaccine use.

Ravin and Ravin also reported an increase in multimer formation. Unfortunately the 

paper is in Russian and due to difficulties in translation, it has been difficult to 

establish if these ‘multimers’ are true multimers, or simply smaller plasmids 

generated because the large amount of repetitive sequence increases the chances 

of homologous recombination.

1.6.1.2 Random BamHI DNA fragments from human lymphocytes

Of more interest are the random clones that Ravin and Ravin produced later (Ravin 

and Ravin 1999). They produced 70 clones containing random BamHI DNA
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fragments from human lymphocytes. Of these, three had very low copy numbers. It 

was reasoned that these three clones probably contained DNA exhibiting unusual 

secondary structure. By using a novel linear vector the same sequences were not 

found to be problematic. As described in section 1.2 many of the unusual intrinsic 

structural features are only produced when DNA is supercoiled. Hence by using a 

linear vector system, potential problems can be avoided. Interestingly Ravin and 

Ravin state that they are not sure which of the properties of their novel plasmid is 

responsible for cloning ‘abnormal’ sequences. It seems likely that the lack of 

supercoiling in the linear vector, allows stable retention of ‘abnormal’ sequences, as 

without supercoiling the DNA is likely to remain in a simple form without higher levels 

of structure.

1.6.1.3 Intrinsic DNA bends

The theoretical effects of localized bending on plasmid structure when supercoiled 

has previously been examined. Results from computerized modelling of short 

intrinsic bends in supercoiled plasmids, predict major differences in the most stable 

structures that can be formed (Yang et al 1995).

1.6.1.4 Direct repeats

A direct repeat has been shown to be genetically unstable in E. coli (Williams and 

Muller 1987), possibly due to SMP-DNA formation and subsequent deletion.

1.6.1.5 Z-Triplex in Eukaryotic cells

A sequence associated with the Chinese hamster dhfr gene can produce Z-DNA or 

triplex DNA structures under different experimental conditions (Wells et al 1990). 

This sequence was found to reduce plasmid replication after 48 hours in COS-7 cells 

by 20-50% when a single copy was cloned in either orientation on either side of the 

SV40 origin of replication. When copies of the motif were placed on both sides of the 

SV40 origin, replication was reduced by 85-90%. Two-dimensional gel 

electrophoresis indicated that the Z-triplex region causes replication intermediates to 

accumulate during the late phases of replication. Yield of plasmids containing the Z- 

triplex produced in E. coli were also reported to be reduced although this was not 

measured in a rigorous way (Brinton et al 1991).
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1.6.1.6 Genetic instability due to transformation into E. coli

A recent paper has indicated that the genetic stability of plasmid DNA is highly 

dependent upon transformation into the cell. Certain sequences have been shown 

to be lost significantly more frequently than others (Hashem et al 2002).

1.7 Project outline

A suitable plasmid backbone was to be developed, to which intrinsic structural 

abnormalities could be added at a defined point. Any effect upon host growth could 

then be determined in fermentation, along with any changes in yield. Plasmid stability 

was also examined. There are three forms of plasmid stability: Segregational 

stability, Genetic stability and Structural stability.

The family of plasmids to be studied contains plasmids with the following features: 

an intrinsic bend, a purine-pyrimidine tract capable of forming Z-DNA, an 

intramolecular triplex and a four-stranded (quadruplex) structure.

Passing references in literature are made as to effects that unusual structures might 

have on plasmid DNA production (Brinton et al 1991, Levy et al 1998).

Due to different definitions of the word ‘stability’ when used in both fields of 

engineering and biochemistry, working descriptions used for the purposes of this 

project are given below.

1.7.1 Cell growth

Cells must harbour plasmid in order to produce sufficient antibiotic resistance. With a 

truly selective medium system plasmid free cells would not survive. Additionally in 

truly selective media there may be some form of titration system in that cells 

containing many plasmids might grow more quickly than cells with fewer plasmids 

that do not produce sufficient antibiotic resistance.

Plasmids containing unusual structural features might be more difficult for bacterial 

cells to replicate. Possible reasons for this include stalling of replication forks when 

the unusual structure is encountered as has been shown to occur with one sequence 

in eukaryotic cells (Brinton et al 1991). This would result in reduced copy number, 

which might adversely affect cell growth due to a reduced resistance to the antibiotic 

used.
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1.7.2 Segregational stability

This is most likely to be the biologist’s view of the term ‘stability’. When bacterial 

cells containing plasmids divide, the amount of plasmid entering each of the 

daughter cells may not be equal. Since plasmids are associated with metabolic 

burden, cells containing fewer plasmids have a competitive advantage. This is what 

can lead to selective drift -  a reduction in average copy number with fermentation 

time. The competitive advantage due to harbouring fewer plasmids is balanced 

against the need for cells to harbour plasmid in order to produce sufficient antibiotic 

resistance. By examining plasmid yields from fermentations, containing the family of 

plasmids, any differences in segregational stability could be inferred.

1.7.3 Genetic stability

This is most likely to be the biochemist’s view of the term ‘stability’. The sequences 

included in the plasmid family have unusual structures. Structures such as these 

have not been found in the E. coli genome to date. It was therefore unknown if the 

host DNA replication machinery would faithfully replicate the sequences added.

A previous study has indicated that Z-DNA is genetically unstable in E. coli. 

Deletions were shown to remove the Z forming sequence to a size no longer able to 

adopt the Z conformation at normal levels of superhelical density (Freund et al 

1989). Simple dinucleotide repeats were used however, and these can produce 

several other secondary structures pertaining to deletion as discussed in a later 

publication by the same research group (Bichara et al 2000) and shown by another 

research group (Hashem et al 2002). It is hence difficult to conclude that problems 

encountered previously were due to the Z-form or structures formed because of the 

highly repetitive sequences used.

1.7.4 Structural stability

This is most likely to be the engineer’s view of the term ‘stability’. Structural stability 

refers to the tendency of a plasmid to be damaged. As is suggested in a recent 

paper concerning the effects of shear on plasmid production (Levy et al 1998) 

unusual structural features may greatly alter the level of shear at which the 

supercoiled plasmid form may be converted to open circular or linear form.

The theoretical effects of localized bending on to the most stable supercoiled 

plasmid structure are dramatic (Yang et al 1995). Despite the included sequences 

being so small in length, in comparison to the plasmid as a whole, the most stable 

three-dimensional forms of plasmids containing the sequences will be substantially
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different from those of supercoiled plasmids that do not contain unusual structures. 

It would hence seem intuitive that they will have different sensitivities to shear 

stresses.

Implications of plasmids containing intrinsic unusual DNA structures 

Possible consequences of their inclusion include:

• Structural instability.

• Higher amounts of recombination.

• Altered shear sensitivity.

• Greater amount of open circular DNA.

• Reduction in copy number and hence yield.

• Reduction in the growth rate of plasmid containing cells.

1.7.5 A description of the sequences chosen for inclusion in this study

Incorporating sequences exhibiting unusual properties found around human genes 

gives a more realistic representation of what may occur in future gene therapy 

plasmid products. Much literature has indicated that sequence context has major 

influence over the formation of DNA structures. Hence the use of PCR was thought 

to be the best way to generate sufficient quantities of target sequences to allow them 

to be cloned. Viral sequences would have been more difficult to obtain in the time 

available for the study, and at the time the study started, few intrinsic structures had 

been found in double stranded DNA generated from viral sequences.

1.7.5.1 DNA quadruplexes

1.7.5.1.1 The Insulin -linked polymorphic region.

Discovery of a quadruplex structure in the insulin-linked polymorphic region was 

made in 1984 (Owerbach and Aagaard 1984). The nucleotide sequence of a long 

polymorphic region (positions 134-2096) located 365 bp upstream of the human 

insulin gene is composed of 139 repeating sequences whose consensus structure is 

related to 'acaqqqqtataaqq1. These large numbers of G bases are responsible for the 

quadruplex structure (Castasti et al 1997, Lew et al 2000). The formation of inter- 

and intramolecular G-quartets is thought to modulate insulin transcription (Lew et al 

2000).
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As the repeated sequences were spread over a 2 kB region, it was planned to clone 

the entire 2 kB region into one of the larger parental plasmids. In the event of 

unusual plasmid properties being found, a 2 kb piece of ‘control DNA’ would have 

been added to the same parental plasmid to allow direct comparison without the 

influence of size related effects.

PCR of this region was attempted several times, but was unsuccessful. Due to time 

constraints and progress in cloning other unusual structures cloning of the region 

was abandoned.

1.7.5.1.2 G-Quartet -  Nuclease Hypersensitivity Element

The c-myc control region has been shown to contain a DNA quadruplex (Simonsson 

et al 1998), and direct evidence that the structure involved is a G-quadruplex has 

been obtained (Siddiqui-Jain et al 2002). A nuclease hypersensitivity element (NHE) 

has been shown to control 85-90% of c-myc transcription and it’s structure and its 

effect on c-myc transcription has been extensively studied. The G-quadruplex 

formed acts as a negative regulator of the c-myc gene, and conversion to 

unstructured single stranded forms is required before transcription can occur (Postel 

et al 2000).
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of the u n im o le c u la r  G -q u a d ru p le x e s  fo rm e d  a fte r in c u b a tio n  o f the Pu 27 s tran d  (P u 27 )  

in 100 m M  KCI fo r  48  h a t 37 °C . (A ) P ro m o te r s tru c tu re  o f th e  c -M Y C  g en e; sh o w n  in 

Inset is th e  2 7 -m e r s e q u e n c e  o f th e  p u rin e -r ic h  s tran d  u p s tre a m  o f th e  P1 p ro m o te r (3). 
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c o n c e n tra tio n  o f 25  pM . (C ) D M S  fo o tp r in tin g  o f b an d  1 in B. (L e ft) D M S  tre a tm e n t o f 
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b ase  s e q u e n c e  is s h o w n  to  th e  left. (R ig h t) P ro p o s ed  s tru c tu re  b ased  upo n  the  

fo o tp rin tin g  p a tte rn . B a se  c o lo rs : red, g u a n in e ; g ree n , th ym in e ; and  o ran g e , ad en in e . 

(D) A s  in C, b u t fo r  b an d  2 in B. (F ig u re  u sed  w ith  p e rm is s io n  fro m  S id d iq u i-J a in  et al 

2002 ).
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F ig u re  1 .15  M o d e l fo r  th e  a c tiv a tio n  an d  re p re s s io n  o f g en e  tra n s c rip tio n  in v o lv in g  the  

a c c e s s o ry  ro le  o f N M 2 3 -H 2  in in te rc o n v e rs io n  o f th e  u n s tru c tu re d  p u rin e  and  

p yrim id in e  s in g le -s tra n d e d  D N A  fo rm s  to  th e  p a ra n e m ic  s e c o n d a ry  D N A  s tru c tu res . 

In te rac tio n  o f th e  G -q u a d ru p le x  s tru c tu re  w ith  T M P y P 4  s ta b ilize s  the g e n e -o ff fo rm  by 

in h ib itio n  o f c o n v e rs io n  to  th e  s in g le -s tra n d e d  g e n e -o n  fo rm s  F ig u re  re p rin te d  fro m  

S id d iq u i-J a in  et al 'D ire c t e v id e n c e  fo r  a G -q u a d ru p le x  in a p ro m o te r reg io n  and  its  

ta rg e tin g  w ith  a s m a ll m o le c u le  to  re p re s s  c-MYC  t ra n s c r ip tio n ’ P N A S  2002 , w ith  

p erm is s io n  fro m  th e  N a tio n a l A c a d e m y  o f S c ie n c e s  C o p y rig h t 2002 .

Formation of the quadruplex in plasmids in E. coli might effect plasmid replication, 
and during processing may make the plasmid more susceptible to damage.

1.7.5.2 Triplexes

Eukaryotic sequences have been found to be St sensitive and so probably form 
triplex structures (Mirkin et al 1987). As the presence of triplex structures was 
thought to be context sensitive, cloning was designed to include the surrounding 
sequences. The promoter region of the human platelet-derived growth factor (PDGF) 
A-chain gene contains three Si sensitive regions (Lin et al 1992).

The PDGF has potential gene therapy applications for a novel approach to 
periodontal tissue engineering (Giannobile et al 2001). Hence if difficulties were 
found to arise in production of a plasmid containing the promoter region of this gene, 
then this would directly relevant as the sequence may occur in future gene products.
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1.7.5.3 Z-DNA

For this study, a region with the potential to form Z-DNA was taken from an intron of 

the Human coagulation factor IX gene (Yoshitake et al 1985). This contains a long 

alternating purine-pyrimidine sequence. This was seen as a better model than 

insertion of a long repeated CG sequence since it not only exists in nature, but also 

would be less likely to form other unusual structures, such as cruciforms.

Simple dinucleotide repeats have been shown to be unstable (Bichara et al 2000), 

however if a clone was made with a long (CG)n repeat, it could have been tested in a 

range of host cells to see if the insert would be maintained with higher fidelity.

1.7.5.4 Intrinsic bends

Bends have been shown to have a great effect on structure by theoretical models of 

supercoiled plasmids. (Yang et al 1995)

1.7.5.4.1 - cdc2 promoter

This is a human promoter sequence that is intrinsically bent and does not contain a 

TATA box (Nair 1988).

1.7.5.4.2 A Highly Curved Sequence

Using freely available DNA bending modelling software (bent.it ® ) an extremely bent 

sequence of DNA was designed. This featured phased A-tracts interspersed with 

sequences bending the DNA even further.

AAAAATGGCCCAAAAAGGGCCCAAAAATCTCCAAAAATATATAAAAAGGCCTAAA

AACCCGGTAAAAATATATAAAAAGGGCCC

This is a highly curved sequence (18.0 degrees per helical turn). This sequence will 

hence bend the DNA by around 140 degrees. It was decided to use a relatively long 

sequence rather than a shorter repeated one. A shorter repetitive sequence (such 

as (TCTCT AAAAAAT AT AT AAAAA) n ) would be more likely to produce other DNA 

secondary structure, rather than simply induce curvature, and additionally it would 

have been difficult to obtain a clone in which the two oligonucleotides correctly 

annealed due to the highly repetitive sequence.

1.8 The next steps

With several unusual sequences identified, a suitable parent plasmid was to be 

constructed and characterised, into which the unusual sequences could be cloned.
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Chapter 2: 

Materials and Methods



2 Materials and methods

2.1 Cultures

2.1.1 Escherichia coli bacterial strain genotypes 

The E.coli K-12 strains used as plasmid hosts were:

DH5a [F’/endA1 hsdR17 (rK'mK+)supE44 thi-1 recA1 gyrA (Nalr) relA1 A(lacZYA-argF) 

U169 ((|)80dlacA(lacZ)M15] (Woodcock et al 1989).

DH1 [F'recAl endA1 gyrA96(Nalr) thi-1 hsdR17 supE44 relA1] (Woodcock et al 

1989).

2.1.2 Growth and maintenance of bacterial strains

E. coli strains were maintained in 20 % glycerol stocks and stored at -70 °C. Glycerol 

stocks were prepared from selective agar plates using 5 mL sterile 20 % (v/v) 

glycerol. Multiple colonies were resuspended from the surface of the agar with the 

sterile pipette tip used to measure the 5 mL 20% glycerol solution. The cell 

suspension was aliquoted in 1.8 mL volumes, and stored in 2 mL Nunc tubes at -70 

°C. A single wire-loopful of such a stock was sufficient to inoculate a selective agar 

plate.

Bacteria were grown at 37 °C on nutrient agar, or in LB medium using a rotary shaker 

(New Brunswick Scientific). Plasmid harbouring strains were maintained by 

supplementing liquid/solid media with selective antibiotics as appropriate, according 

to plasmid phenotype: ampicillin sodium salt (500 pg mL"1) for ampicillin resistance, 

kanamycin sulphate (50 pg mL"1) for kanamycin resistance.

In order to produce plasmid, small-scale cultures were grown overnight in 5 mL 

selective nutrient broth, using 20 mL universal bottles. 1.5 mL aliquots were spun 

down in sterile eppendorf tubes using a bench top benchtop centrifuge (13,000 rpm, 

10 minutes).

To produce larger amounts of plasmid, cultures were grown in 50 mL selective 

nutrient broth, in 1 L shake flasks overnight and cell paste harvested by 

centrifugation.

2.2 Media buffers and solutions

Unless otherwise stated chemicals and media components were supplied by BDH 

Laboratory Suppliers, Dorset, UK. In general water from a Milli-Q system (Millipore,
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Billerica, Massachusetts, USA), was used for electrophoresis and cell cultivation. 

Sterile-filtered cell culture tested water (Sigma, Gillingham Dorset, UK), was used for 

manipulations using enzymes.

2.2.1 Growth Media

Nutrient agar (Oxiod, Hampshire, UK) was produced as recommended using 28 g L'1. 

LB medium (Sigma, Dorset, UK) was produced as recommended using 32 g L'1. 

Fermentation media consisted of 48 g L'1 yeast extract, 25 g L 1 HY SOYA, 10 mL L'1 

glycerol, 6 g L'1 Na2HP04, 3 g L'1 KH2P04, 1 g L'1 ammonium chloride and 100 pL L'1 

poly(propylene glycol). Media was autoclaved for 20 minutes at 121 °C, 15 psi.

2.2.2 Antibiotic stock solutions

Both Ampicillin and Kanamycin were produced at stock concentrations of 50 mg mL'1 

in sterile-filtered cell culture tested water, and were filter sterilised (0.22 pm filters, 

Acrodisc, Gelman Sciences, Ann Arbor, USA), and stored at -20 °C.

2.2.3 Buffers and other solutions

(i) TE buffer

10 mM Tris-HCI (pH 7.5); 1 mM Na2EDTA

(ii) EB buffer (Qiagen)

10 mM Tris-HCI (pH 8.5)

(iii) Loading buffer (normal)

0.25 % (v/v) bromophenol blue; 0.25 % (v/v) xylene cyanol; 30 % (v/v) glycerol; 0.1 M 

Na2EDTA

(iv) Loading buffer (for linking number gels)

0.25 % (v/v) bromophenol blue; 2.5 % (v/v) xylene cyanol; 30 % (v/v) glycerol; 0.1 M 

Na2EDTA

(v) Restriction enzyme buffers

All restriction enzymes used were purchased from NEB and the commercially 

supplied buffers were used.
BSA was added to restriction digests from a stock solution of 10 mg mL'1, to a final 

concentration of 100 pg mL'1 as required.
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(vi) 1 x DNA gyrase buffer (John Innes, Norfolk, UK)

35mM Tris-HCI (pH 7.5), 24 mM KCI, 4mM MgCI2, 2mM dithiothreitol, 1.8mM 

spermidine, 1mM ATP, 6.5% (w/v) glycerol, 0.1 mg mL'1 albumin

(vii) 1X T4 DNA ligase buffer

50 mM Tris-HCI (pH 7.5); 10 mM MgCI2; 10 mM dithiothreitol; 1mM ATP; 25 |ig mL'1 

BSA

(viii) 1X Taq PCR buffer (Roche)

200 mM Tris-HCI (pH 8.4); 500 mM KCI; 1.5 mM MgCI2

(ix) Tris-Borate electrophoresis buffer (TBE)

A 10X stock of TBE (0.45 M Tris-Borate; 0.01 M EDTA) was produced by dissolving 

54 g Trizma base, and 27.5 g Orthoboric acid in distilled water, adding 20 mL of 0.5 

M Na2EDTA (pH 8.0), and adding further distilled water to a final volume of 1 L. The 

stock solution was then autoclaved, and subsequently diluted 1:10 with distilled water 

prior to use.

(x) TBE/Ethidium Bromide staining buffer

10 mg mL'1 EtBr (Sigma) was added to 1X TBE (final concentration of 0.2 |̂ g mL'1)

(xi) SYBR Gold Staining buffer

10,000 X concentrate SYBR Gold (Molecular Probes, Leiden, The Netherlands) was 

diluted 10,000 fold in 1 X TBE

(xii) Phenol/Chloroform

Phenol:Chloroform:Isoamyl alcohol (25:24:1), saturated with 10 mM Tris-HCI (pH 

8.0); 1 mM Na2EDTA, was obtained from Sigma. The phenolic phase was pH 6.7 ±

0.2.

(xiii) Alkaline lysis buffers for plasmid DNA extraction (Qiagen)

P1 (Resuspension buffer) 50 mM Tris-HCI (pH 8.0); 10 mM Na2EDTA; 100 |ig mL'1 

RNase A
P2 (Lysis buffer) 200 mM NaOH; 1 % (w/v) SDS

P3 (Neutralisation buffer) 3.0 M potassium acetate (pH 5.5)

(xiv) TSB Buffer
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100 mL LB broth, 1 mL 1M MgCI2, 1 mL 1 M MgS04, 10 g PEG 3500, 5 mL DMSO

(xv) HeLa Nuclear Extract Transcription buffer (Promega)

20mM HEPES (pH 7.9 at 25°C); 100mM KCI; 0.2mM EDTA; 0.5mM DTT; 20% 

glycerol

(xvi) Acrylamide monomer

A 30 % (w/v) Acrylamide; 0.8 % (w/v) Bis-Acrylamide stock solution (EC-890) was 

obtained from Protogel.

(xvii) Tris-HCI resolving gel buffer

A 1.5 M Tris-HCI (pH 8.8); 0.384 % (w/v) SDS stock solution (EC-892), was obtained 

from Protogel.

(xviii) Tris-HCI stacking gel buffer

A 0.5 M Tris-HCI (pH6.8); 0.4 % (w/v) SDS stock solution (EC-893), was obtained 

from Protogel.

(xix) Coomassie Brilliant Blue stain solution

2 g Coomassie Brilliant Blue R 250 (Sigma) was dissolved in 400 mL distilled water, 

before the addition of 500 mL methanol and 100 mL glacial acetic acid.

(xx) Destain solution

40 % (v/v) methanol; 10 % (v/v) glacial acetic acid

2.3 Molecular biology

2.3.1 DNA preparation

2.3.1.1 Preparation of alkaline lysate for yield determination by PicoGreen 
assay

Bacterial pellets containing approximately 2.5 x 109 cells were resuspended in 250 

pL of buffer P1 (as above). 250 jiL of buffer P2 (see above) was then added, and the 

cell solution was mixed gently yet thoroughly by inverting 4 - 6  times. 350 pL chilled 

buffer P3 (see above) was then added, and mixed as before. The lysate was cleared 

by centrifugation in a bench top centrifuge (13,000 rpm, 10 min). Clarified lysate was 

placed into fresh tubes for the PicoGreen assay.

65



2.3.1.2 Preparation of samples for topology assay

Bacterial pellets containing approximately 2.5 x 109 cells were resuspended in 125 

pL of buffer P1 (as above). 125 pL of buffer P2 (see above) was added, and the cell 

solution was mixed gently yet thoroughly by inverting 4 - 6  times. 175 pL chilled 

buffer P3 (see above) was then added, and mixed as before. The lysate was cleared 

by centrifugation in a bench top centrifuge (13,000 rpm, 10 min). The clarified lysate 

was added to 42.5 pL chilled 3M Sodium Acetate and 850pL -20°C 100% Ethanol. 

After incubation for 1 hour at -20°C the DNA was recovered by centrifugation in a 

bench top bench top centrifuge (13,000rpm, 10min, 4°C) and subsequently 

resuspended in 50 pL elution buffer.

2.3.1.3 Small scale preparation for cloning, yield determination by OD26o and 
linking number experiments

Bacterial pellets containing approximately 2.5 x 109 cells were resuspended in 250 

pL of buffer P1 (as above). 250 pL of buffer P2 (see above) was then added, and the 

cell solution was mixed gently yet thoroughly by inverting 4 - 6  times. 350 pL chilled 

buffer P3 (see above) was then added, and mixed as before. The lysate was cleared 

by centrifugation in a bench top centrifuge (13,000 rpm, 10 min), and the clarified 

supernatant instantly applied to the anion-exchange resin of a QIAprep spin column, 

and bench top centrifuged for 1 min. The column was washed with 0.75 mL buffer 

PE, before being centrifuged for a further minute to remove any remaining traces of 

the ethanolic wash buffer. Finally the plasmid DNA was eluted into a fresh eppendorf 

tube by the addition of 50 pL of EB buffer, and centrifuging.

2.3.2 Enzymatic manipulation

Restriction digests and other DNA modifications were carried out using the conditions 

recommended by the enzyme suppliers (Promega, New England Biolabs, John 

Innes). Typically plasmid restriction digests were performed using 1 pg of DNA using 

10 Units of restriction enzyme, in a total volume of 20 pL with 2 pL of 10 x buffer, as 

supplied with each enzyme.

Ligations were incubated at 16°C overnight.

2.3.3 PCR

PCR was used in order to amplify sequences for cloning, both from chromosomal 

and plasmid templates.
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PCR was performed in 200 pL tubes, generally with a total reaction volume of 25 pL, 

this comprising of suitably dilute template (5 ng -  200 ng per reaction), 2.5 mL 10 x 

Taq buffer, 0.5 mL 10 U mL'1 Taq Polymerase, 0.5 mL 10 mM each dNTPs, 1.5 mL 

25mM MgCI2 and 1mL of each 10 pM Primer. Reactions were prepared on ice. A 

Perkin-Elmer GeneAmp Thermal Cycler was used, typically for 25 cycles: 95 °C, 5 

minutes (1st cycle only) 95 °C, 45 s; 60 °C, 1 minute; 72 °C, 1.5 minutes; 72 °C 15 

minutes (last cycle only).

2.3.4 In vitro transcription

A commercial HeLa nuclear extract in vitro transcription system was used (Promega, 

Madison, USA). Essentially the same reaction conditions were used as 

recommended by the manufacturers, however the mRNA was purified differently.

Each reaction used 7.4 pL of HeLa Nuclear Extract, corresponding to eight units of 

activity, as determined by Promega. Each unit of activity being defined as the amount 

of extract required for the incorporation of 50 fmol of nucleotides into a 363- 

nucleotide runoff transcript generated from the CMV immediate early promoter per 

hour at 30 °C, under standard conditions.

Each reaction contained 7.4 pL HeLa cell nuclear extract, 2.6 pL HeLa Nuclear 

Extract transcription buffer, 1.5 pL 50 mM MgCI2, 1 pL 100 mM (each) rNTPs, 2 pL 

50ng pL'1 treated plasmid made up to a volume of 25pL with Nuclease-free water 

giving a concentration of MgCI2 of 3 mM and rNTPs of 0.4 mM.

Reactions were incubated at 30 °C for 60 minutes.

After 60 minutes incubation the plasmids were spiked with 175 pL of 1.34 ng pL'1 

(172 pL 50 ng pL'1 mixed with 6228 pL water) human RNA (Applied Biosystems). 

This allowed any discrepancies in the RNA recovery procedure to be normalized.

2.3.5 RNA purification

RNA was recovered using an automated MagNApure isolation kit for total RNA 

(Roche). Briefly, under chaotrophic salt conditions RNA is bound to the silica surface 

of Magnetic Glass Particles. DNase digests any DNA present. Unbound substances 

such as proteins (including nucleases), cell membranes, and PCR inhibitors are 

removed by washing with buffer. Remaining cell debris is removed and chaotrophic 

salt concentration is lowered by a second washing buffer. Purified RNA is eluted at 

elevated temperature.

67



2.3.6 Reverse Transcriptase

The reverse transcriptase reaction was carried out in duplicate to check for 

experimental error. RNA was converted to DNA using reverse transciptase and 

random hexamers. The priming process was triggered by random hexamers binding 

to the RNA. DNA extension was then produced by reverse transcriptase producing a 

complementary DNA strand to the RNA. An ABI prism 7700 q-PCR machine was 

used 20 °C, 10 minutes, 37 °C, 1 hour; 90 °C, 5 minutes.

2.3.7 qPCR

Semi-quantitative PCR was performed on an ABI prism 7700 q-PCR machine 

(Applied Biosystems, CA, USA).

A high magnesium concentration was used in order to generate large quantities of 

product, and a sequence specific probe was used. dUTP was used instead of dTTP. 

Uracil -  n -  gycosylase was added before commencing qPCR. This nicks at Uracil 

bases present, destroying any previous contamination. q-PCR was performed for 50 

cycles: 55 °C, 10 minutes (first cycle only when Uracil -  n -  glycoslalase nicks any 

contaminating products), 95 °C, 5 minutes (1st cycle only, denaturing Uracil -  n -  

glycoslalase), 60 °C, 1 minute; 95 °C, 1 minutes.

Analysis was performed using the delta delta Ct method as described elsewhere 

(Livak and Schmittgen 2001).

2.4 Preparation of competent cells and transformation

Competent cells were prepared in one of two ways.

2.4.1 Method 1:

A single colony from a freshly streaked LB agar plate of the E. coli strain to be made 

competent was used to inoculate 5 mL of sterile LB broth supplemented with 20 mM 

MgS04 in a 20 mL universal bottle, and grown overnight. An approximate 1 in 100 

dilution of this was made by adding 1 mL of this culture to inoculate 100 mL of LB 

broth in a 0.5 L conical flask, which had been pre-warmed to 37 °C. The culture was 

grown at 37 °C, in a rotary shaker, for approximately 2 hours monitoring the broth 

optical density until A600 of between 0.35 and 0.45 was reached, indicating that the 

cells were at the early log phase of their growth curve. The culture was incubated on 

ice for 10 min, before being transferred into chilled, sterile 50 mL Falcon centrifuge
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tubes. The cells were subsequently harvested using a bench top centrifuge (2800 g, 

10 min, 4°C ), and resuspended in 10 mL ice cold 0.1 M CaCI2; 15 % (v/v) glycerol. 

After incubating for 30 min on ice, the cells were harvested by centrifugation as 

before, and resuspended in 1 mL of the same solution. Bacteria were assumed to be 

competent after incubating on ice for a further 30 min. At this point the cells were 

stored in aliquots of 100 mL at -70 °C for future use.

Transformations were performed by adding 100 pL of the competent cell mixture to 

appropriate amount of plasmid (~1 pg for moving plasmids between strains, and 100 

ng for sub cloning) and incubating on ice for 45 min. Cells were then heat shocked 

for 90 seconds at 42 °C, and added to 5 mL sterile LB broth in a 20 mL universal, 

and grown for 1 hour at 37 °C. Transformants were selected by plating 100 pL of the 

recovered transformation culture onto appropriately selective nutrient agar plates. For 

more difficult cloning reactions, the remaining transformation culture was spun down, 

re-suspended in a volume of 100 pL and plated out as before.

2.4.2 Method 2:

This method produced extremely competent cells, however was much more labour 

intensive as it required the preparation of fresh cells each time. The method of 

producing competent cells was similar to method 1, but with three differences.. Firstly 

the starter culture was inoculated with 5 pL glycerol stock rather than using a colony 

from a fresh plate. Secondly TSB was used instead of 0.1 M CaCI2; 15 % (v/v) 

glycerol. Thirdly heat shock was not required for transformation.

2.5 Fermentation

2.5.1 Fermentation glycerol stocks

Glycerol stocks for fermentation were prepared as follows:

A colony was picked off a freshly streaked plate and grown in 5 mL of medium 

overnight at 37°C on a shaker-incubator set at 230 rpm. The optical density at 600 

nm of overnight culture was determined using a DU70 spectrophotometer (Beckman, 

High Wycombe, Bucks., UK). The volume required to produce an optical density at 

600 nm of 0.02 OD units was then calculated and used to inoculate 50 mL of medium 

in a 500 mL shake flask. This 500 mL shake flask was incubated at 37 °C on a 

shaker incubator as before and the optical density at 600 nm (ODeoo) was monitored,
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using a DU70 spectrophotometer, until it reached 2.0 OD units. 50 mL of sterile 

glycerol was then added and the stock frozen at -70 °C in 1.8 mL aliquots.

2.5.2 Inoculum preparation

A 1.8 mL aliquot of fermentation glycerol stock was added to 50 mL of medium in 100 

mL shake flasks. The inoculum culture was grown overnight at 37 °C on a shaker 

incubator set at 230 rpm for around 11 hours, generally reaching an OD60o of around 
6.

2.5.3 Fermentation

Batch fermentations were performed at 37 °C in 1-litre-working-volume SGI 

bioreactors (Inceltech, Toulouse, France). The OD600 of inoculum was determined, 

and the volume required to produce an OD600 of 0.02 OD units was used to inoculate 

the fermentation vessels. Oxygen levels were monitored using an Ingold 

polarographic probe (Mettler-Toledo Ltd, Beaumont Leys, Leicester, U.K.) and 

maintained at 30% 0 2 saturation, initially using cascade control by adjustment of 

stirrer speed and, after this reached 1000 rpm, by adjustment of the sparging rate. 

pH was maintained at 7.00 ±0.1 by the automatic additions of 1M sodium hydroxide 

and 1M phosphoric acid.

Both optical density and Wet Cell Weight (WCW) were used to monitor growth. 

Optical densities of cultures were taken at 600nm using a DU70 spectrophotometer 

as before. For WCW determination, duplicate 1mL samples of culture were spun at

13,000 rpm for 10 min in a bench-top centrifuge in pre-weighed tubes. The 

supernatants were carefully removed by first pouring, and then using stretched cotton 

wool swabs to wick away any remaining liquid. The tubes were then re-weighed and 

the WCW of the cell pellet determined.

2.5.4 Samples for plasmid analysis

Using a correlation of 5 OD units at 600nm equating to 2.5 x 109 cells, the volume of 

culture required to produce samples containing this number of cells was estimated 

and five samples were taken at regular (-hourly) intervals. Cell pellets were obtained 

and frozen at -20 °C.
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2.6 Electrophoresis

2.6.1 General electrophoresis to establish size of linear DNA species

Depending on the size of DNA fragment to be examined agarose concentration 

between 0.4 and 4 % (w/v) were used. For cloning purposes 1 x TAE buffer was 

used, otherwise 1 x TBE buffer. Between 0.4 and 4 g of agarose was added to 100 

mL of the relevant buffer and dissolved by boiling. After cooling to around 60 °C 

agarose was poured into casting trays and wells formed using combs containing the 

appropriate number of teeth. Once set, the casting blocks were removed and the gel 

submerged in the appropriate buffer (1 x TAE or 1 x TBE). Electrophoresis was 

performed at suitable voltages and times (100V for 1-2 hours to 15V overnight). Gels 

were subsequently stained using Ethidium Bromide and irradiated using a short wave 

UV light transilluminator.

2.6.2 Gel electrophoresis for small (<150 bp) DNA species

Polyacrlyamide gel electrophoresis was used in order to visualise small DNA 

species. Pre cast 2 - 2 0  % gels (catalogue number 161-1237) were used (BioRad, 

Hercules, USA) with a BioRad Ready Gel Mini-PROTEAN 3 electrophoresis cell.

Gels were run at 120 V (-12 V cm'1) for around 100 minutes. Gels were 

subsequently stained using Ethidium Bromide and irradiated using a short wave UV 

light transilluminator.

2.6.3 Plasmid topology assay to determine proportion of supercoiled, open circular 

and linear plasmids.

2.6.3.1 Staining with SYBR Gold

This method in essence is similar to densitometry methods using Ethidium Bromide 

as a dye (O’Kennedy et al 2003). A much more sensitive densitometry technique was 

used, pictures were generated containing several hundred thousand shades of grey, 

rather than the 256 shades of grey associated with methods published previously 

which require several scans for accurate analysis of each band. There are also a 

number of advantages in the use of the SYBR Gold stain over ethidium bromide: 

Unlike ethdium bromide it does not bind different plasmid isoforms differently (Even- 

Chen and Barenholz, 2000)
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It is considerably more sensitive exhibiting greater than 10,000 fold increase in 

fluorescence when binding nucleic acids rather than a corresponding 30 fold increase 

associated with ethidium bromide (Tuma et al 1999, Le Pecq 1966).

Safety data is not currently available about the SYBR gold stain and as an 

intercalating dye (Personal communication Dr Joanne Thorndike, Biowhittaker, 

Berkshire, UK) it must be treated with the same care as Ethidium bromide.

Clarified lysates (prepared as above) were purified by ethanol precipitation by adding 

1/10 volume of chilled 3 M sodium acetate and 2 volumes of -20 °C 100 % ethanol 

(Sambrook et al., 1989).

Electrophoresis of approximately 500 ng and 50 ng (1 in 10 dilution) of plasmids was 

performed in 0.6 % (w/v) agarose, alongside 2, 5 and 10 fold dilutions of MassRuler 

DNA ladder, High Range (Fermentas, Maryland, US). This mass ladder consists of 9 

different sized DNA fragments, from 1500 to 10,000bp, of concentration 1.6 to 10 ng 

ml_-1. The gel was stained using SYBR Gold (Molecular Probes, Leiden, The 

Netherlands), for 20 minutes in the dark, and destained for 60 minutes in distilled 

water before image capture. The effect of staining time on the dynamic range of the 

assay was studied and this is outlined in Chapter 5.

Gels were scanned using the ProXpress Proteomic Imaging System (Perkin-Elmer, 

Wellesley, MA, USA). Excitation of 480 nm and Emission of 530 nm were used with 

an exposure time of 30 ms. Band quantification was performed using ImageQuant 

software (Amersham Biosciences, Amersham, UK). Band quantification was 

performed in a similar manner to that previously described (O’Kennedy et al 2003). 

The mass ladders used (10 pL Fermentas High Range Mass ladder diluted 2,5 and 

10 fold respectively) produced known bands of DNA between 1.6 and 50 ng, which 

were used in order to calibrate the dynamic range of the assay.

2.6.3.2 Non-radioactive labelling using DIG labelling and detection

Before the SYBR Gold staining method and densitometry method was established 

(above) an accurate non-radioactive method of determining the percentage of 

different species was to use Digoxigenin (DIG) labelling. DNA probes are labelled 

with DIG-11-dUTP. These probes bind to target DNA on Southern blots. An anti- 

digoxigenin antibody • alkaline phosphatase conjugate is allowed to bind to the 

hybridised probe. A signal is then detected by adding chemiluminescent alkaline 

phosphatase substrates that can be detected using X-ray film.
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Gel electrophoresis and transfer of DNA to membrane

DIG reagents were obtained from Boehringer Mannheim (now Roche Diagnostics). 

Plasmids were purified as described in section 2.3.1.3, and samples were run in 

0.6% agarose gel for 20 to 24 hours at around 15 V cm'1. Gels were then stained 

using ethidium bromide and the length and width of gel to be blotted was measured 

and marked. The gel was then soaked in 0.25 M HCI for 20 minutes at room 

temperature and then rinsed with distilled water. The gel was then denatured in 0.4M 

NaOH for 30 minutes at room temperature. A blotting platform was set up in a 

shallow plastic box and covered with one sheet of Whatmann 3MM paper of size 20 x 

20 cm and covered with 0.4M NaOH until liquid was just below the level of the 

blotting plate. A piece of DIG membrane and 3 pieces of Whatmann 3MM paper the 

same size as the gel to be blotted were prepared. The membrane was soaked in 

distilled water until wet, soaked in 0.4 M NaOH and laid over the gel in the 

appropriate position. Three sheets of Whatmann 3MM paper wetted in 0.4M NaOH 

were laid over the membrane, and on top of these 5 sheets of blotting paper. A 1 Kg 

weight was then applied to the lid of the blotting platform and left overnight. The next 

day the membrane was crosslinked using a UV crosslinker. The membrane was 

rinsed in 2X SSC and dried on 3MM Whatmann paper and then hybridised with the 

DIG non-radioactive system.

DIG probe preparation

1 pL of pSV|3 (approximately 20 ng ) was added to 16 pL distilled water and 

denatured by heating to 100 °C for 10 minutes and crash cooled in an ice / ethanol 

bath. 4 pL DIG-High Prime was added, mixed briefly and incubated for 20 hours at 

37 °C. The reaction was stopped by adding 2 pL 0.2M EDTA (pH 8.0) and heating to 

65 °C for 10 minutes. 2.5 pL LiCI and 75 pL chilled (-20 °C) ethanol was added and 

left for 30 minutes before centrifuging for 15 minutes are 13,000 rpm. The 

supernatent was carefully removed and the pellet washed with 50 pL cold 70 % 

ethanol (v/v). The supernatant was removed. The pellet was dried under vacuum and 

dissolved in 50 pL TE buffer.

Hybridisation
The membrane was pre-wetted in 2 x SSC and placed in a glass roller bottle with an 

appropriate volume (5 mL) of pre warmed (37 °C) DIG Easy Hybridisation Buffer and 

incubated at 37 °C for 30 minutes. 5 pL of the probe prepared above was denatured 

by boiling for 5 minutes and then placed on ice for 5 minutes. 5 mL of fresh pre
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warmed (37 °C) DIG Easy Hybridisation Buffer and filtered through a 0.22 mm filter. 

The pre-hybridisation buffer was removed from the roller bottle and replaced with 

fresh filtered hybridisation buffer containing the labelled probe and incubated at 37 °C 
overnight.

Washing and detection

Blots were washed for two lots of 20 minutes in 2 x SSC + 0.1 % SDS at room 

temperature with agitation, and again for two lots of 20 minutes in 2 x SSC + 0.1 % 

SDS at 65 °C. After equilibrating the blot in washing buffer for one minute the 

membrane was transferred to 1 x freshly prepared Blocking Buffer for 30 minutes 

with gentle agitation. The membrane was then put into a solution containing a 

1:10,000 dilution of Anti-digoxigenin AP conjugate in Blocking Buffer and agitated 

very gently for at least 30 minutes. The blot was washed with two lots of Washing 

Buffer for 15 -  60 minutes, before equilibrating for at least 5 minutes in a small 

volume of 1 x Detection Buffer with agitation. The membrane was placed in a 

hybridization bag sealed on three sides and a 1:100 dilution of CDP STAR in 1 x 

Detection buffer was added to the membrane before sealing the fourth side of the 

bag and incubating for 5 minutes. The membrane was removed from the bag, placed 

in a fresh bag and sealed. The blot was then exposed to X-ray film for sufficient time 

to obtain good exposures, and the X-rays were further analysed by densitometry.

2.6.4 Protein separation in SDS-polyacrylamide gel

Vertical gel electrophoresis was performed using a Sigma-Aldrich unit (catalogue 

number Z33,957-1). Gel plates cleaned with warm water and polished with ethanol 

were assembled with 1.0 mm spacers into the gel-casting base supplied with the unit. 

A 15 % (w/v) resolving gel was made by mixing a 30 % (w/v) acrylamide stock with 

resolving gel buffer. Gel polymerisation was induced by the addition of 200 mL 

freshly prepared 10 % (w/v) ammonium persulphate, and 20 ml_ TEMED, per 10 mL 

gel solution, approximately 6 mL of the gel solution was carefully pipetted into the 

casting apparatus. A thin layer of water was carefully overlaid to avoid the formation 

of a meniscus, and to aid polymerisation by sealing the gel from the atmosphere, and 

the gel was left to polymerise for 1 hour.

A 5 % (w/v) stacking gel solution was prepared by mixing 1 mL 30 % (w/v) 

acrylamide stock with 0.5 mL stacking gel buffer and 4.5 mL sterile distilled water. 

After the addition of 100 mL 10 % (w/v) ammonium persulphate, and 20 mL TEMED, 

2 mL of stacking gel solution was pipetted onto the resolving gel (after decanting the
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water layer). Wells were formed by the insertion of a 1.0 mm comb, and the gel left 

to polymerise for no more than 1.5 hours, to avoid diffusion across the pH gradient of 

the stacking and resolving gels. After assembling the gel in the running tank, the 

comb was carefully removed, before submerging the exposed ends of the gel in 1X 

Tris-glycine running buffer. Traces of acrylamide were removed from the wells, and it 

was ensured that no air bubbles would obscure the flow of electrical current through 

the system.

Electrophoresis was performed at 150 V; 50 mA, until the tracking dye had eluted 

from the end of the gel.

Following electrophoresis, protein bands were visualised by staining with Coomassie 

Brilliant Blue stain solution for 2 hours, and subsequently destained with destain 

solution, until the background intensity was suitably reduced relative to the protein 

species.

2.7 Yield determination

2.7.1 Spectrophotometric measurement

Plasmids prepared using Qiagen columns as described above and their absorbance 

at 260 nm (A26o) measured using a Helios Spec (Thermo Spectronic, Madison, 

USA). A concentration of 50pg mL'1 ds DNA gives an A26o of 1. Purity of samples was 

checked by the ratio of absorbance at 260 and 280 nm.

2.7.2 Fluorescence-based method

PicoGreen (Molecular Probes, Leiden, The Netherlands) has been shown to be a 

sensitive dye that can be used to detect double stranded DNA in the presence of 

single stranded DNA, RNA and other compounds commonly found to contaminate 

nucleic acid preparations (Noites et al 1999).

2.7.2.1 Manual method

Samples were manually prepared to the clarified lysate step, as described above and 

were transferred to fresh benchtop centrifuge tubes. Standards were produced using 

Lamdba DNA as shown in the table below:
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Cuvette Total DNA (ng) Volume (pL) of 
Lambda DNA

Volume (jiL) of 
1xTE

Volume (mL) of
working
concentration
PicoGreen
Reagent

1 2000 1000 0 1

2 200 100 900 1

3 10 10 990 1

4 1 1 999 1

5 Blank 0 1000 1

Table 2.1 Standard preparation for manual PicoGreen assay

The contents of each cuvette were mixed using a disposable Pasteur pipette before 

being incubated for 5 minutes in the dark before reading. Readings were taken using 

a VersaFlour fluorometer (BioRad) using Excitation filter EX 480/20 (470-490 nm) 

(BioRad) and Emission filter EM 520/10 (505-515 nm)

5 pL of each clarified lysate sample was added to 995 pL 1 X TE with 1 mL of diluted 

PicoGreen reagent and fluorescence measured as before. Two reference standards 

were also used to check the assay validity.

2.1.2.2 Automated method

Samples were manually prepared to the clarified lysate step, as described above, 

while the necessary dilutions, standard curve and addition of PicoGreen reagent 

were all performed by a Tecan RSP150 Robotic Sample Processor (Tecan UK Ltd, 

Reading, UK).

Standard curves were produced in duplicate from a reference plasmid of known 

concentration, 4 -  800 ng mL'1, and also duplicate Lambda DNA samples at 250 ng 

mL'1, were included as a control. Clarified lysate samples were diluted 200 fold. 

Duplicate 100pL aliquots of the standards and samples were mixed with 100 pL 

working concentration PicoGreen (Molecular Probes). After 5 minutes incubation in 

the dark, plates were read using a SpectraMax Fluorescent plate reader (Molecular 

Devices, Wokingham, UK) with excitation and emission filters of 485nm and 539nm 

respectively.
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Chapter 3:

Construction and characterisation of a suitable plasmid
backbone
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3 Construction and characterisation of a suitable plasmid 
backbone

In order to determine the effects of sequences exhibiting intrinsic structural 

abnormalities, it was decided to produce a family of plasmids, differing only at a 

defined point, where the sequence of interest would be inserted. In order to do this a 

well characterized parental plasmid was produced. The aim at the outset was to 

produce a plasmid as similar as possible to those used by GSK in their production 

process.

3.1 Perceived industrial requirements

3.1.1 Antibiotic resistance / selectable marker

Without positive selection for cells containing plasmids, it is likely that a culture 

containing a high copy number plasmid (with no special partitioning system) will 

generate plasmid free cells (Summers 1991). Since plasmids produce a metabolic 

burden on the cell, cells containing fewer plasmids proliferate more quickly than 

those containing more plasmids. This leads to selective drift as the fast growing 

fermentation environment favours cells containing fewer (or no) plasmids.

As a result of this, some form of selection pressure must be applied throughout the 

fermentation in order to ensure plasmids are harboured in all cells and hence ensure 

high yield. A commonly used antibiotic in biochemistry is ampicillin. However this is 

an unsuitable choice for use to generate plasmids for biotherapeutics for two 

reasons.

The mechanism of antibiotic resistance to ampicillin can lead to plasmid free cells, 

particularly in high-density cultures. The ampicillin resistance gene produces an 

enzyme that is secreted into the periplasmic space. It hydrolyses the p-lactam ring of 

the ampicillin destroying its activity (Sykes and Mathew 1976). This means that 

during a fermentation ampicillin levels in the broth will become depleted. Cells with 

fewer plasmids may therefore be able to survive and have an advantage over cells 

with high copy numbers of the plasmid. This can lead to the selective drift, lowering 

copy numbers and possibly leading to plasmid free cells.
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Ampicillin is widely used in medicine. Use of antibiotics in non-medical applications 

has lead to "new" resistance genes and multi-resistant pathogens with increased 

pathogenicity in food animals (Young 1994). In addition some patients have been 

shown to exhibit hypersensitivity to fl-lactams and residuals that may be found in 

products. For these reasons and in order to try and reduce this spread of antibiotic 

resistance, the view of the World Health Organisation is that the non-essential use of 

antibiotics is to be avoided outside of the medical industry.

Kanamycin is the most favoured antibiotic used in the production of 

biopharmaceuticals. Kanamycin is not widely used in medicine as it has been found 

to produce unwanted side effects including ototoxicity (Humes 1984) and foetal 

damage. Unlike ampicillin, the kanamycin antibiotic resistance mechanism does not 

reduce the levels of antibiotic (Davies and Smith 1978).

Some novel alternative methods of maintaining plasmids in cells are available, but 

these are subject to licence fees for commercial explotation. The operator/repression 

titration system removes all need for antibiotics, without harbouring plasmid the host 

cells are unable to proliferate (Cranenburgh et al 2001). The FDA stipulates that 

antibiotic remaining in plasmid product must be at a very low level, and consideration 

should be made to the lowest level that would generate an unintentional clinical 

effect. This means that substantial care and monitoring of processing steps is 

required when antibiotic selection markers are used. The novel system described by 

Cranenburgh has obvious advantage over more conventional production systems.

3.1.2 cer sequence

The cer sequence is included in several of GSK’s vectors, cer increases plasmid 

segregational stability and hence reduces the likelihood of generation of plasmid free 

cells in production.

3.1.3 Size

It was decided that a realistic size for future plasmid products would be up to 15 Kb. 

Though plasmid products undergoing clinical trials in 2000 were smaller than this, it 

was expected that, in the future, the size of plasmids would increase (Levy et al 

2000). Plasmid products may encode more than one gene sequence. For example, 

in addition to the therapeutic or prophylactic molecule, genes may be included in 

plasmids coding for signalling molecules, like cytokines, in order to increase DNA 

vaccine effectiveness (Cohen et al 1998).
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3.2 Starting point [pSV/3].

Biochemical Engineering studies at UCL concerned with plasmid DNA manufacture 

have mainly been concerned with the high copy number (pUC based) plasmid 

[pSV(3], which is 6.894 Kb (Fig 3.1). This plasmid is carries an ampicillin resistance 
gene.

Audi

psvbeta
(6894 bp)

-EcoRV

PstI

Figure 3.1 Plasmid [pSV|3] (Promega Corp., Madison, Wl) comprises an ampicillin 

resistance gene, a (3-gal gene and a pUC origin of replication.

3.3 Kanamycin resistant plasmid

A kanamycin resistance gene, originally from transposon TN903 (Oka A et al 1981), 

was taken from plasmid pUC4K (Viera J and Messing J 1982) via restriction with 

PstI, and was ligated into the PstI site of pSVp. This produced plasmids containing 

the kanamycin resistance gene in two different orientations, [pQR235] and [pQR236]. 

Shake flask growth studies showed that there were no differences between these 

plasmids in terms of yield and host cell growth rates (Fig 3.2). It was decided to 

pursue using only one, [pQR235].
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Figure 3.2 Graph comparing growth, in shake flasks, of DH5a cells containing plasmid 

with the Kanamycin gene in one of two orientations.

3.4 Cer sequence insertion

The cer fragment, originally a 279 bp Hpall-Tagl fragment from ColE1, was amplified 

from [pKS492], a derivative of pUC9. Amplification was performed by polymerase 

chain reaction (PCR) using primers designed to incorporate the SalG\ restriction site 

and to amplify the 278 bp of the ColE1 fragment known to be required for cer action. 

[pQR235] was cut using SalGI, dephosphorylated, and ligated with the PCR product, 

also cut with SalG\. The presence of the fragment was confirmed by restriction 

analysis. Growth curves of [pQR235] and [pQR332] were obtained and numbers of 

plasmid free cells determined after a number of non-selective growth cycles (Fig 3.3).
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3.5 Plasmid retention

Well-defined colonies of DH5a were picked from freshly streaked nutrient agar plates 

containing kanamycin and used to inoculate 5 mL of nutrient broth containing 

kanamycin, in sterile 20 ml glass universal bottles. These cultures were grown overnight 

at 37 °C on a lateral shaker. These flasks were used to inoculate 50 mL of nutrient broth 

in a 0.5 L conical flask, which was then incubated at 37 °C in an orbital shaker (200 rpm) 

for several hours, the optical density (OD) being recorded at intervals.

For the comparison between [pQR235] and [pQR236] kanamycin was added to the 

broth. In the case of comparisons between [pQR235] and [pQR332] no kanamycin was 

added. Once the cultures reached stationary phase (OD -  7.0 A600nm) 5 mL was taken 

and added to another 50 mL of nutrient broth in a 0.5 L conical flask, which was treated 

as before. This was repeated so as three non-selective growth cycles occurred.

Samples at the end of each non-selective growth cycle were examined to determine 

percentages of plasmid free cells. Serial dilutions were made and plated out on non- 

selective and selective nutrient agar plates.

[pQR235] (without cer) 85 81 72

[pQR332] 100 100 100

(with cer)

T ab le  3.1 P e rc e n ta g e  o f p la s m id  c o n ta in in g  c e lls  a fte r  u n s e le c tiv e  g ro w th

The cer sequence can be seen to have increased the inheritance stability of the plasmid 

(Fig 3.4). Summers, credited with the discovery of the cer sequence, in 1996, 

demonstrated how the sequence increased Segregational stability of plasmids by using 

a strain that produces a large number of oligomers.

83



CL

o
4sr̂ L<2
=cu
a
Q.

20

20 40 SC 100

N u m b er of $erw»r«i*om

F ig u re  3 .4  In h e r ita n c e  s ta b ility  o f C o lE 1 d e r iv a tiv e s  w ith  an d  w ith o u t a cer s ite , in an sb cA  

stra in  th a t p ro d u c e s  p la s m id  o lig o m e rs . T h e  cer- d e riv a tiv e  is so  u n s ta b le  th a t n early  40 %  

of ce lls  lost th e  p la s m id  d u rin g  g ro w th  o f th e  c u ltu re , w h ich  w a s  used  to  s ta rt th e  

e x p e rim e n t (F ig u re  a d a p te d  fro m  ‘T h e  B io lo g y  o f P la s m id s ’ S u m m e rs  D K  1996). T he  

d iam o n d  ( ♦ )  m a rk s  th e  p o s itio n  o f c e r  " p la s m id  a fte r  a p p ro x im a te ly  14 g e n e ra tio n s  in 

DH1.

In order to compare the loss of cer ' plasmid from DH1 and the sbcA strain used by 

Summers, the total number of generations produced in the three successive growth flask 

experiments was determined.

Estimation of cell generation is not accurate as neither the work of Summers nor that 

work presented here was from cultures in steady state.

Since x = Xo e ^  (Where x = cell number)

When the number of cells doubles at td (doubling time), the cell concentration will be 2x0.

Hence 2x0 = e^d 

Xo = eMtd 

^  = In 2 /

By assuming a linear relationship between biomass and the optical density readings at 

600nm a pmax for DH1 [pQR332] was found at approximately 0.44, hence Td = 1.45 

hours. Hence after 20 hours, there would have been 14 generations. After approximately

84



14 generations 72 % of cells were found to contain the c e r ' plasmid. For interest, this

point has been marked on the figure 3.6 with a diamond (♦).

3.6 Increasing plasmid size

In order to increase the size of the plasmid it was decided to add a piece of DNA of 

around 10kB. The selection criteria for this piece of DNA were that it should not be 

expressed in E.coli and that the DNA should be sequenced. In addition it is desirable 

that the inserted DNA should not contain regions of DNA with inherent structural 

abnormalities, such as those described in Chapter 1.

Obtaining such a piece of DNA ought to have presented little problem as artificial

chromosome libraries that are fully sequenced are easily available. However <{>031 was 

chosen as the source as it is has been fully sequenced and it was thought that 

Streptomyces promoters are not recognised by E.coli RNA polymerase (Smith et al 

1999).

Even if the sequence from (J>C31 contained any unusual structural features not picked up 

in the screening of the sequence, comparisons between a family of plasmids known to 

include DNA abnormalities at a defined point would still have been possible.

Producing large plasmids can be difficult due to a much lower rate of transformation 

(Suzuki et al 1997).

Analysis of (J>C31 revealed several suitable Avr\\ fragments. The choice of Avr\\ was 

made in an attempt to optimise the usefulness of restriction sites. By insertion of one of 

the screened AvtM fragments into [pQR332] itself cut with Xbal, a further Avr\\ fragment 

could have been added later using the AvrII site present in [pQR332],

The 7836 bp Avr] I fragment of <j)C31 (Smith et al 1999) was isolated by gel

electrophoresis, and ligated with [pQR332], cut using Xbal. Several strains harbouring 

the plasmid grew well, in shake flasks (data not shown).

The Avr\\ fragments of (})C31 did not resolve well by conventional agarose gel

electrophoresis. Since there was a limited supply of the (j)C31 DNA the fragments were 

inserted into [pQR332] without knowledge of precisely which fragments had been 

inserted. Only one transformant was produced. Using a variety of restriction enzymes a 

restriction map was produced without aid of plasmid manipulation software, showing that
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the 7836bp Avr\\ fragment of <>C31 had been incorporated and its orientation was 
elucidated.

Many attempts were made to add another <|)C31 Avr\\ fragment to [pQR333] and also to 

add larger <t>C31 fragments cut with a range of enzymes to [pQR332], however all were 

unsuccessful.

[pQR333] was the subject of experiment at a UCL pilot plant experiment using both a 

novel host (Cooke et al 2001) and novel media (A Kay PhD Thesis, Department of 

Biochemical Engineering, UCL, 2004). Very low yields were obtained in a 70L 

fermentation (data not shown). At this early stage it was not possible to determine if this 

was due to the plasmid itself, novel strain, novel media or fermentation conditions. It 

was hence decided to carry on using the plasmid, check that no significant expression of 

<J)C31 proteins was occurring and then to determine its fermentation characteristics.

EcoRI Avrll

Amp
-EcoRV

PstI beta-gal

PstI

pQR333
(1 6000 bp)

-EcoRI

-EcoRI

Figure 3.5 [pQR333]
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3.7 Multiple cloning site

A multiple cloning site (Fig 3.6) was designed and added to [pQR333]. The design of the 

multiple cloning site allowed a check to be made that only one copy of the site was 
incorporated.

Figure 3.6 Multiple cloning site

Two oligonucleotides were produced and diluted to 20 pM solutions. The two solutions 

were mixed and heated to 75 °C and allowed to cool slowly. This produced a double 

stranded section of DNA containing several restriction sites and sticky CTAG ends, this 

comprised the multiple cloning site.

[pQR333] was cut with Avr\\ and dephosphorylated. This was ligated with the multiple 

cloning site in the presence of Spel. The Spel was added in order to prevent multiple 

cloning sites from annealing.

Presence of the multiple cloning site was confirmed by comparing electrophoresis gels 

of [pQR333] and [pQR334] cut with enzymes contained in the multiple cloning site. 

Additionally it was checked that [pQR334] could not be cut by Spel.
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3.8 Results from fermentations.

A summary of the fermentation data obtained with DH1 housing different plasmids is 
given below.
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3.8.1 Growth rates

Construct Antibiotic

present

Initial growth

rate

(hr1)

Late phase 

growth rate 

(hr1)

OD 600nm 

at 9 hours

Wet cell 

weight at 9 

hours

(g L-1)
[pSV(3] - 0.661, 0.686 0.249, 0.332 11.6, 16 43, 80 *1

[pSV(3] *2 Ampicillin -0.028, 0.249 0.531, 0.422 7, 12 6, 12

[pQR235] - 0.780, 0.784 0.355, 0.420 17.2, 18.2 74.9, 67.2

[pQR235] Kanamycin 0.417, 0.392 0.240, 0.249 8.6, 10.0 26.9, 29.1

[pQR332] Kanamycin 0.728, 0.725 

0.462, 0.391
0.149, 0.227 

0.283, 0.283
8.0, 6.0 
10.3, 11.6

49.4, 32.6 

34.2, 37.8

[pQR334] Kanamycin 0.536, 0.399 

0.462, 0.438

0.158, 0.153 

0.243, 0.248

4.5, 3.5 

5.9, 6.7

24.0, 21.8 

19.9, 19.9

Table 3.2 Summary of growth rate data from batch fermentations in DH1.

*1 contained almost exclusively plasmid free cells.

*2 Strange lag for [pSVp] with ampicillin fermentations. They went on to much higher 

optical densities and wet cell weights.

*3 The two sets of [pQR332] + Kanamycin give different initial growth rates. There were 

some problems with the dissolved oxygen tension probes at the beginning of this 

fermentation.

It was found that the inserted (J>C31 DNA caused a 35% reduction in growth rate based 

on absorbance at 600nm.

3.8.2 Copy numbers

The pico-green assay and phenol-chloroform extraction followed by absorbance at 

260nm has been performed on some of the fermentation samples. There was a great 

deal of fluctuations in the results of these, but copy numbers were in the order of 1000 

from the pico-green assay and higher from the absorbance assay.

No significant differences in the average copy numbers of plasmids was found.
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3.8.3 Protein Expression

It was thought that the reason for the slower growth of the plasmid containing DNA from 

<|)C31 might be that genes from the Streptomyces phage were expressed during bacterial 

fermentations. As mentioned earlier, one of the reasons for the selection of (j)C31 as a 

source of DNA to increase the size of the plasmid was that the promoters from 

Streptomyces ought not be expressed in E.coli. However low levels of expression of a 

few Streptomyces promoters in E.coli has been observed previously. (Deng et al 1986).

1 2 3 4 5 6 7

Figure 3.8 Protein expression gel. Lane 1 contained protein standard, lane 2 pQR334, lane 

3 pQR332, lane 4 pQR235, lane 5 pSVp, lane 6 DH1 and lane 7 protein standard. Arrow 

indicates position of Kanamycin reistance protein. No significant differences other than 

the Kanamycin resistance gene protein in lanes 2, 3 and 4 can be seen.

No large amounts of (|>C31 genes were seen to be expressed from the above gel. While 

it is possible that low levels of expression occur it is unlikely that these would add 

significant metabolic burden.

3.8.4 Plasmid topology

Plasmids were isolated using small-scale commercially available chromatographic spin 

prep columns (Qiagen) from samples taken at the beginning and end of fermentations. 

The topology of these plasmids was examined using Southern blotting and labelling with 

a DIG probe.
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F igure 3 .9  P ic tu re  o f to p o lo g y  a s s a y , la b e lle d  w ith  [p S V p ] D IG  p ro be , lanes 1 and 2 

co n ta ined  [p S V p] fro m  in o c u lu m s , la n e s  3 an d  4  c o n ta in e d  [p S V p] o b ta in ed  at th e  end  o f 

fe rm e n ta tio n , lan e  5 c o n ta in e d  [p Q R 2 3 5 ] fro m  in n o c u lu m , lan e  6 co n ta in e d  [pQ R 235] 

ob ta in ed  at th e  en d  o f fe rm e n ta tio n , la n e s  7 and  8 c o n ta in e d  [p Q R 332 ] fro m  ino cu lum s, 

lanes 9 and  10 c o n ta in e d  [p Q R 3 3 2 ] o b ta in e d  at th e  en d  o f fe rm e n ta tio n , lan es  11 and  12 

co n ta ined  [p Q R 3 3 4 ] fro m  in o c u lu m s , lan es  13 an d  14 c o n ta in e d  [p Q R 334 ] o b ta in ed  a t the  

end o f fe rm e n ta tio n .



Construct % Supercoiled and band 

above supercoiled at 
beginning of fermentation 

excluding concatemers

% Supercoiled and band 
above supercoiled after 8 

hrs of fermentation 

excluding concatemers

pSVp 88.5 84.7

pQR235 60.5 77.7
pQR332 78.0 74.1
pQR334 37.9 7.4

Table 3.3 DIG based topology assay results

3.8.5 Choice of parent plasmid

The difficulties experienced in cloning the 16 Kb plasmids, the low transformation 

efficiencies encountered in comparison to the smaller plasmids and problems associated 

with larger plasmids reported in literature (Levy et al 2000, Griffiths et al 2000, Siguret et 

al 1994) indicated that directly cloning into [pQR334] might be problematic.

It was therefore decided to capture the unusual structures in more suitable smaller 

cloning vectors before subcloning into [pQR334]. It was thought that cloning of unusual 

structures would be easier performed using a small plasmid parent. The fermentation 

characteristics of cells containing these plasmids and characterisation of the plasmids 

themselves could be compared to the parent plasmid. After cloning the sequences into 

[pQR334] further characterisation could take place in order to determine if effects 

observed in the smaller plasmids would occur in larger plasmids, to a greater or lesser 

extent.

All plasmids studied generated reasonably high yields, but cells containing plasmids with 

the Kanamycin resistance gene grew slowly. It seemed therefore that either [pSVp] or 

[pQR332] would be reasonable choices to use as the small parental plasmid. However 

neither of these plasmids are designed for cloning and in particular [pQR332] contained 

limited cloning sites.

[pBS840], known to contain an unusual DNA structure and described in more detail in 

the next chapter, was obtained from another research group. [pBS840] was based on
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[pBluescript KS+] a cloning vector with considerable advantages, in terms of multiple 

cloning sites and blue white selection, over both [pSVp] and [pQR332], It was already 

known that cells containing [pBluescript II KS +] (differing from [pBluescript KS +] only by 

the addition of two BssHII restriction sites), grow rapidly producing good plasmid yields. 

It was therefore decided to pursue cloning unusual sequences into [pBluescript II KS +]. 

Given sufficient time sequences would then be cloned into the 16 Kb [pQR334] to see if 

they had any effect in the production and characteristics of a larger plasmid.
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Chapter 4:

Construction of plasmids with intrinsic structural features
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4 Construction of plasmids with intrinsic structural features

4.1 Introduction

It was intended to find sequences already shown to exhibit unusual DNA structure and to 
clone them at a defined point into a well-characterised vector. A number of suitable 
target sequences were found.

It was decided that these should be amplified by PCR together with their surrounding 

sequences, since sequence context may influence the formation of secondary structures 

(Dlakic and Harrington 1995, Canella and Seidman 2000, Vallone and Benight 2000, 

Movileanu et al 2002). However; a flaw in this philosophy was highlighted when PCR 

failed. When performing PCR it is generally recommended to avoid regions containing 

unusual structures (Dieffenbach et al 1995). Consequently, there was limited success in 

the cloning of unusual structures in this way.

An alternative strategy, which was used in order to clone a quadruplex structure, was to 

use two long complementary oligonucleotides with overlapping sticky ends. This method 

could have been enhanced for longer sequences by using a number of oligonucleotides 

that overlapped with one another.

The generous gift of a triplex containing plasmid [pBS840] from Dr Z-Y Wang 

(Washington University Medical Center and the Jewish Hospital, St Louis, Missouri) was 

gratefully received, as attempts to PCR this sequence resulted only in the amplification 

of surrounding sequences.

4.1.1.1 A sequence without any unusual structural features

Any differences exhibited by the family of plasmids containing unusual structural 

features compared to the parent plasmid may be accounted for by two different 

explanations:
the unusual intrinsic structures themselves 

- the additional size of inserts

In order to demonstrate that the effects are caused by plasmid structure, a sequence of 
DNA was selected to add to the parent plasmid [pBluescript II KS+] in order to produce a 

plasmid of more similar size to those with interesting inserts.
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There were a number of criteria for the selection of this piece of DNA: 
known sequence

size (between 550 and 900 bp) and suitability for cloning

- no known promoter regions included

- no repeats

- no propensity to form A or Z DNA 

small amount of intrinsic bending

Lambda DNA is a good source of many different sized fragments as it is large (49 kb), 

cut by many enzymes and so a fragment of the desired size with restriction sites 

appropriate to the parent vector can be obtained. As expected a BLAST search 

comparing Lambda and [pBluescript II KS+] showed no significant similarities between 

the two sequences.

Using the plasmid manipulation package Clone Manager, suitable sized fragments 

without start codons nor untranslated 5’ regions were identified (Table 4.1).
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Single digests

Bss Hll 604

Eco RV 618,588

Hinc II 728, 570

Hind III 564

Double digests

Bam HI Cla I Eco Rl EcoRV Hind III

Bam HI * * * ★ *

Cla I N/A * * * *

Eco Rl N/A N/A * ★ ★

Eco RV 604 N/A 719 ★ *

Hind III 784 N/A N/A 721 *

Pst I N/A N/A 828 N/A 705

Sac I N/A 736 N/A 942 N/A

Table 4.1 Fragments of Lambda DNA obtained by digestion with the indicated enzymes.

The 721 bp fragment Eco RV - Hind III, the 705bp fragment Hind III -  Pst I, and the 604 

Bam HI -  EcoRV, all contain the end of coding sequences and hence may contain 

unusual 5’ sequences.

The two BssHII sites in [pBluescript II KS+] mean that addition of the 604bp BssHII 

fragment, would only increase plasmid size by 431 bp.

942 Eco RV -  Sac I contains intrinsic bends

828 Eco Rl -  Pst I contains intrinsic bends

784 Bam HI -  Hind III 1 direct repeat (15 bp one mismatch)
+ GTATTGGTTTATTtG (+) 285-299 
+ GTATTGGTTTATTgG (+) 555-570 

736 C/a I -  Sac I contains intrinsic bends

728 Hindi contains intrinsic bends
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721 EcoRV -  HindiII contains end of a coding sequence
719 EcoRI -  EcoRV contains intrinsic bends
705 Hindlll -  PstI contains end of a coding sequence
618 EcoRV no obvious bends or repeats
604 BssHII sites in bluescript mean plasmid would only increase by 431 bp

After a number of unsuccessful attempts touchdown PCR, use of betaine, careful primer 

design, altering the concentrations of reagents and using different templates achieved 
some success.

Primers redesign involved locating non-repetitive regions on either side of the region of 

interest and also ensuring that pyrimidines rather than purines were included at the 3’ 

ends of the primers. Primer design was performed at GSK Beckenham using the Primer 

Express package (Applied Biosystems, CA, USA) under the guidance of Mr Chaminda 

Salgado. Primer design heuristics, as outlined in literature (e.g. Dieffenbach et al 1995) 

were followed, with the obvious exclusion that the amplification targets contained 

secondary structure. Primers were designed to achieve optimum amplicon melting 

temperature, not to form strong secondary structures or primer-dimers themselves.

Suitable primers could not be designed for the PDGF intramolecular triplex as the 

amplicon melting point for specific primers was around 88°C. Z-Y Wang’s research 

group, who had previously cloned the triplex, generously donated the plasmid they 

created containing a DNA triplex. The sequence was originally obtained from the human 

promoter of the platelet-derived growth factor A-chain gene and cloning described by the 

group (Wang et al 1992).
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The very high percentage of GC bases, linked by three rather than two hydrogen bonds, 

of the pBS840 insert is probably responsible for such a high amplicon melting 
temperature.

DNA sequence Base Pairs % GC

618 EcoRV (618) 52.75
PBIuescript II KS+ (2961) 50.42

CG(6) Insert (395) 41.85
Cdc2 Insert (745) 40.76

pBS840 Insert (818) 80.82

Table 4.2 Comparison of GC content of inserted sequences

4.2 Primer design

The primers designed for the insulin-linked polymorphic region were: 

GATCTAGATCTTGGGCCATCCGGGACT and 

GAT CTAGACTT CT GAT GCAGCCT GT CCT GGA

For the cdc2 promoter:
GAT CT AG AGCGCAAC AT AAT G AG ACCC A and 

GAT CT AG AAGTTT CAAACT C ACCGCGCT

For the intron from the human coagulation factor IX gene:

GAT CTAGACACT GTCGT AT AAT GT GGT CCAT CA and 

GAT CT AG AT CAG AT CAAC AGC ACCTTT GGTT
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4.2.1 Cloning the human coagulation factor IX gene

1 2  3 4  5 6 7 8  910 11 1213141516

F ig u re  4.1 P C R  o f u n u s u a l D N A  s e q u e n c e s . L a n e s  1, 2, 17 an d  18 p -actin  co n tro ls  (300bp) 

using  b ucca l te m p la te  ( la n e s  2, 17  a n d  18) an d  c o m m e rc ia lly  p re p a re d  hum an  g en o m ic  

D N A  (lan e  1). L a n e s  7, 12, 2 3  a n d  28  c o n ta in e d  1K B  p lu s  la d d e r. G el s h o w s  th e  re su lts  of 

P C R s u n d e r s ix  d if fe re n t s e ts  o f c o n d it io n s  o f th e  fo u r  ta rg e ts . Lan e 14 s h o w s  th e  only  

su cc es s fu l P C R  re a c tio n  a n d  a n o th e r  23  fa ile d  P C R  re a c tio n s  can  be seen . L an e 14 

co n ta in e d  th e  P C R  p ro d u c t o f th e  h u m a n  c o a g u la tio n  fa c to r . W ith o u t th e  su cc es s fu l CG  

P C R  re ac tio n , th is  g e l is ty p ic a l o f m a n y  o b ta in e d .
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CG
p ro d u c t

12 13 14 13 16

Figure 4.2 The same gel run further showing the size of the CG PCR product running as 
expected at around 400bp. Lane 12 contained 1KB plus ladder, lane 14 contained product 
from the CG PCR reaction.

The CG PCR product was captured in pCR4, a TOPO-TA vector, following the 
manufacturers instructions (Invitrogen). Clones were tested by cutting with Pme I and 
Not I, restriction sites located on either side of the insert (Fig 4.5).
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400 bp-------

300 bp

500 bp-------

1 2  3 4
Figure 4.3 Gel to show TOPO TA clone containing CG insert. Lane 1 1KB plus ladder, lanes 

2 and 3 clones with no insert, Lane 4 Coagulation factor insert cut out from TOPO TA 
vector.

Sequencing of the clone by Lark Technologies showed that the correct sequence had 

been amplified by the PCR and captured in the TOPO vector.

This was shown to contain the correct DNA sequence. During the restriction 

endonuclease analysis, several other clones were identifies, which contained 100 -  200 

bp inserts. These were also sequenced and found to have a deletion in the purine- 

pyrimidine tract. A hypothesis as to why this occurred is presented in Chapter 5.

The 430 bp Not I -  Pst I fragment of the TOPO vector containing the full-length 

sequence was ligated with [pBluescript II KS+], (Stratagene) itself cut using Not I and 

Pst\ (Fig 4.6).
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3, 000 bp  ^

700 bp ----- ►

400 bp ----- ^

3, 000 bp 
(Supercoiled)

1 2 3 4 5 6 7 8

Figure 4.4 Gel to show CG and cdc2 inserts. Lanes 1 and 2 contained the cdc2 insert 
(~700bp) cut from TOPO vectors, lane 3 contained the coagulation factor insert (~400bp), 
lane 4 contained a low range mass ruler (Fermentas), lane 5 contained [pBluescript II KS +] 
cut with Pst I and Not I, lane 6 contained a 1KB plus ladder, lane 7 contained a supercoiled 

mass ladder and lane 8 contained uncut [pBluescript II KS +].
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1 2  3 4

Figure 4.5 Gel showing full length CG insert cloned into [pBluescript II KS +]. Lane 1 
Fermentas low range ladder, Lane 2, clone cut with Not I and Pst I, Lane 3 1 KB ladder 
plus, Lane 4 Linear [pBluescript II KS+]

Sequencing confirmed the presence of the full length CG sequence in the plasmid.

4.2.2 Cloning the cdc2 promoter region

After several more unsuccessful attempts at PCR of the cdc2 region, using the new 

primer set, some imaginative methods were used. One of these was to use ‘Q-solution’ 
as part of an old GC cloning kit (Roche). Q solution has been shown to consist of the 

amino acid analogue betaine, by use of NMR (Frackman et al 1998). Betaine improves 

amplification of DNA by PCR by helping reduce the formation of secondary structures 

(Weissensteiner and Lanchbury 1996, Henke et al 1997). There are two theories as to 

how betaine does this: The contact of A T base pairs in the major grove (Rees et al 

1993). The second theory is that betaine changes the hydration of the minor groove 

(Mytelka and Chamberlin 1996) altering DNA flexibility.

The addition of betaine to the cdc2 PCR reaction worked and generated large quantities 

of product (Fig 4.8).
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*4-------  1,000 bp

^ ____  650 bp

  500 bp

M  300bp

1 2 3 4 5

Figure 4.6 PCR of unusual sequences using betaine. Lane 1 contains the cdc2 amplicon of 
702bp, Lane 2 (typical of the rest of the gel which is not shown) contained a failed PCR 

reaction product, Lanes 3 and 4 show the Beta-actin control without (3) and with (4) 
addition of betaine. Lane 5 contained a 1KB ladder.

Attempts to clone the cdc2 PCR product directly into [pQR338] failed. This might have 

been due to the size of the plasmid and hence associated low transformation efficiency 

and shear sensitivity.

More cdc2 product was generated as before, and also by using the last of the previous 

successful PCR as a template. This was extracted from a gel, and single 5’ adenine 

overhangs were added to the PCR product by incubation at 74°C for 10 minutes with 

Taq polymerase in 1xTaq buffer and dATPs. The sequence was then captured in the 

TOPO TA vector as before. The presence of the correct sequence was confirmed by 

restriction digest and sequencing (Lark Technologies).
The 772 bp Not I -  Pst I fragment of this TOPO vector was isolated by gel 

electrophoresis, and ligated with [pBluescript II KS+], (Stratagene) itself cut using Not I 

and Pst I. The presence of the fragment was confirmed by restriction analysis.
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4.3 Cloning using oligonucleotides

4.3.1 G-quartet - NHE

The sequence of the NHE in the c-myc control region had previously been shown to 

form from only a short oligonucleotide sequence. Following the difficulties encountered 

using PCR with the other unusual structures, a different strategy was attempted using 
complementary oligonucleotides.

A 100-mer and a 109-mer oligonucleotides were designed and manufactured to be 

complimentary with overhanging sticky ends suitable for cloning into Bam HI -  Hind III 
sites.

NHEforward:

GAT CCGGCT CT CTT ACT CT GTTT ACAT CCT AGAGGT AGAGT GCT CGGCT GCCCGGC 

T GAGT CT CCT CCCCACCTT CCCC ACCCT CCCCACCCT CCCCAT AAGCGCCCT CA 

and NHEreverse:

AGCTTGAGGGCGCTT ATGGGGAGGGT GGGGAGGGTGGGGAAGGT GGGGAGGAG 

ACT CAGCCGGGCAGCCGAGCACT CT ACCT CT AGGAT GTAAAC AGAGTAAGAGAGC 

CG.

5pg of each oligo was dissolved in 50pL 1xNE buffer 2 (10mM Tris-HCI, 10mM MgCI2, 

50mM NaCI, 1mM dithiothreitol) (New England Biolabs, Hitchin, UK). This solution was 

heated to 100°C for 5 minutes and allowed to cool slowly.

The fragment was cloned into [pBluescript II KS+] cut with Bam HI and Hind III using a 

ratio of insert to vector molar ends of 10:1.
The presence of the fragment was confirmed by restriction analysis. Sequencing proved 

to be more of a problem however, and electropherograms from the [pBluescript + NHE] 

sequencing reaction flat line at the point where the DNA quadruplex was expected to 

form. This is characteristic of strong secondary structure. Adequate sequencing data 

was only obtained after using a number of different additives known to remove DNA 

secondary structure. DMSO and betaine were tried before Lark Technologies managed 

to read through the sequence using proprietary additives.

4.3.2 Highly bent sequence

Two oligonucleotides 89mers were designed and manufactured to be complimentary 

with overhanging sticky ends. A similar method to that followed for the NHE was 

followed, but cloning of the highly curved sequence was unsuccessful.
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The core sequence was:

AAAAATGGCCCAAAAAGGGCCCAAAAAT CT CCAAAAAT AT ATAAAAAGGCCT AAAAA 

CCCGGTAAAAATATATAAAAAGGGCCC

Using the bend.it ® server, this sequence was predicted to bend DNA by around 18° per 

helical turn, generating a bend of around 140°.

4.3.3 (CG)n

It has previously been shown that (CG)n inserts form a variety of unusual DNA 
structures, and are unstable. Deletions were shown to remove an even number of base 

pairs and “remove the Z forming sequence to a size no longer able to adopt the Z 
conformation at normal levels of superhelical density” (Freund et al 1989). Despite this, 

attempts were made to clone 400-500bp (CG)n purchased from Sigma into [pBluescript II 

KS+]. It was envisaged that following successful cloning, studies could be undertaken to 

see if the sequence was more stable in different host cells lines.

The vector was prepared in a variety of ways with overhanging C and G bases and also 

blunt ended as Sigma were unable to confirm the state of their product.

Failure may have been due to toxic effects of such a long sequence, or the unknown 

quality of the product and hence poor ligation conditions.

4.4 The next steps

With a small family of plasmids constructed containing unusual features at a defined 

point, the next step was to characterise them, and see what, if any, their impact upon a 

plasmid production system would be.
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Chapter 5:

Fermentation and characterization of plasmids with intrinsic
structural features
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5 Fermentation and characterization of plasmids with intrinsic 
structural features.

5.1 Introduction

The insertion of unusual features may occur in future gene therapy and in DNA vaccine 

plasmids. In the case of gene therapy products, this may be as a result of inclusion of 

sequences surrounding the coding sequence of interest, such as promoter regions and 

enhancers. In earlier chapters the possible biological relevance that intrinsic structures 

may have, particularly with regard to gene regulation has been covered. Viral sequences 

converted to double stranded DNA sequences for DNA vaccines might also produce 
non-Watson Crick structures.

In order to determine the implications that the inclusion of such sequences might have 

on the production of plasmid DNA, a family of plasmids was produced containing 

unusual structural features at a defined point. As mentioned in Chapter 1, several 

plasmid properties were studied, effect on host cell growth, yield, segregational stability, 

genetic stability and structural stability.

5.2 Fermentation results: Effect on cell growth and yield

5.2.1 Experiment to examine effect of initial clone choice on maximum cell growth rate

It is desirable to determine if the unusual structural features incorporated into plasmids 

affect host cell growth. In order to do this several fermentations were to be carried out, 

allowing measurement of cell growth in two different ways. Concerns with this 

methodology however are potential differences between the host cell state at the start of 

the fermentations. In addition a distribution of copy numbers will be present in a given 

population of cells. This might result in different maximum cell growth rates. If the initial 

average copy number of cells in inoculum was high, then the metabolic burden on the 
cells might slow down cell division (Bailey et al 1986). Host cells with less plasmid would 

have a lower metabolic burden and hence replicate more rapidly.

In order to minimise possible disparities inocula for fermentations were all prepared in 

the same way. In order to test to see if inocula prepared using different transformants
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exhibited similar maximum growth rates an experiment was carried out. If initial cell state 

from inocula of cells containing the parental plasmid, all prepared in the same way 

significantly affected cell growth, then studies on the effect of non-Watson Crick 

structures in plasmids on growth rate would have to ensure that initial copy number 
distributions were similar.

DHI cells were transformed with [pBluescript II KS+] and plated on selective media. 6 

colonies were picked off and shaken overnight at 37°C in 20mL universal containing 5mL 

LB broth with the appropriate ampicillin concentration. These were then used to seed 6 x 

500mL shake flasks containing 50mL LB broth with the appropriate ampicillin 

concentration to a density of around 0.1 OD units at 600nm. These 500mL flasks were 

shaken at 37°C. Growth was monitored by OD measurement at 600nm at regular 

intervals.

3.5

2.5

Ecoo
CDao

0.5

K

2.0 3.0 4 .0  5.0

Time (hr)

•  Clone 1

•  Clone 2 

Clone 3 

Clone 4

x  Clone 5

•  Clone 6

Figure 5.1 Comparison of growth between different inocula of DHI [pBluescript II KS+] 

in shake flasks
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Maximum growth rates were hence determined for each starting culture:

I ♦C lone  1 =o .050e074x
I *  cione 2 | = o.063e° 71x 

cione 3 j = 0.059e° 68x 
Clone 4  | = 0.055e° 69x 

| *  Clone 5  = Q.051 e°  68*
j ♦ c lo n e s  !=Q.052e071X

0 .5 1.0 2.0 2 . 5 3 .0 4 .5 5 .0

Ecoo
<0OO

0.1

0.01

Time (hours)

Figure 5.2 Maximum growth rate (Umax) «n shake flasks of different clones of DH1 

[pBluescript II KS +]

Colony used Maximum growth rate (hr'1) in shake flask 

using LB, determined via OD600nm (±10 

%)
1 0.74

2 0.71

3 0.68

4 0.69

5 0.68

6 0.71

Table 5.1 Maximum growth rates in shake flasks of different clones of DH1 [pBluescript II 

KS +]
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The highest and lowest observed maximum growth rates were found to be within 8% of 

one another (Fig 5.2 and Table 5.1), which is within the bounds of expected 

experimental error of the growth rate measurement (±10%). These results imply that the 

distribution of copy numbers in cells produced using the proptocl described in section 
2.5.1, do not significantly effect cell growth rate. Additionally, internal research at GSK 

Beckenham suggests that growth rate is dependent upon the choice of plasmid 
backbone (data not shown).

5.2.2 Fermentation and cell growth rate

Stocks were prepared of DH1 containing one of the family of pBluescript plasmids 

described in chapter 4. Fermentations were carried out as described in chapter 2. 
Growth of DHI cells harbouring the plasmids was monitored both by using optical density 

at 600nm (Aeoo) (Fig 5.4) and Wet Cell Weight (WCW) (Fig 5.3).
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Figure 5.3 Average wet cell weight of DHI cells harbouring the plasmids shown (Blue 

denotes [pBluescript II KS+]) measured over the course of fermentations. Error bars 

indicate the standard deviation in data between triplicate fermentations.
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Figure 5.4 Optical density at 600nm measured over the course of fermentation. Error bars 

indicate the standard deviation in data between triplicate fermentations.

In order to compare the results obtained from both methods, the WCW and optical
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densities at 600nm results can be plotted against each other (Fig 5.5). 

Figure 5.5 Comparison of OD600 and Wet Cell Weight measurements
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pBS840

*  NHE
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Maximum growth rates (p™ax) for each fermentation were determined by using both the 

optical density and wet cell weight data.

The mean value of these maximum growth rates was then determined for each 

construct. The figure comparing OD600 and WCW measurements shows good 

correlation between readings. The error involved in the WCW measurement was 

constant over the course of fermentation, whereas the error associated with measuring 

optical density increases with fermentation time due to experimental error incurred in the 

necessary dilution steps.

All the fermentations reached comparable maximum cell densities within 11 hours. As is 
readily seen from the growth curves, cells containing [pBluescript + CG] and cells 

containing [pBluescript + NHE] grew significantly faster than cells harbouring the other 

plasmids. Maximum cell growth rates were determined for each construct as before and 

are shown in Figs 5.6 and 5.7.

114



100

Eco©
CO

oO

0.50 1.00 1.50 2.00 2.50 3.00 3.50

NHE = 0.63e° 75x = 0.99
CG6 = 0.93e°'^ jX R2 = 0.97 

pBS840 = 1.08e X R2 = 0.95 
cdc2 = 0.96e n rqX R2 = 0.98 
Blue = 0.67e ' R2 = 0.97

4.00 4.50

0.1

Time (hours)

Average CG(6)

Average Blue+cdc2 

Average pBS840 

Average Bluescript 
Average NHE 

“ Expon. (Average CG(6))
’  Expon. (Average Blue+cdc2) 
“ Expon. (Average pBS840) 

“ Expon. (Average Bluescript) 
“ Expon. (Average NHE)_____

Figure 5.6 Average maximum growth rates (^ w ) of pBluescript based constructs in DHI 
determined by Optical Density measured at 600nm. Points plotted are average ODs from 

duplicate (or in the case of pBluescript + NHE, triplicate) fermentations.
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Figure 5.7 Average maximum growth rates (v w ) of pBluescript based constructs in DHI 
determined by Wet Cell Weight. Points plotted are average WCWs from duplicate (or in the 

case of pBluescript + NHE, triplicate) fermentations.
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Construct in DH1 Average Growth Rate (hr'1), determined via

Optical Density at 600nm 

(±10%)

Wet Cell Weight 

(± 5%)

pBluescript + NHE 0.75 0.74

pBluescript II KS+ 0.59 0.51

pBluescript + cdc2 0.51 0.45

pBS840 0.51 0.50

pBluescript + CG(6) 0.63 0.56

Table 5.2 Average growth rates of DH1 with different [pBluescript] based plasmids, in 

complex medium batch culture.

Within the bounds of experimental error, cells containing [pBluescript II KS +], 

[pBluescript + cdc2] and [pBS840] are seen to exhibit comparative maximum growth 
rates, while cells containing either [pBluescript + CG] or [pBluescript + NHE] exhibited 

faster growth.
Analysis of plasmid yield provides some explanation for this.

5.2.3 Yield throughout fermentation

Plasmid yield was determined throughout fermentation by both a spectrophotometric 

method (A26o) (Fig 5.8) and a fluorescence-based method (Fig 5.9) (PicoGreen).
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Figure 5.8 Plasmid yield determined by A26o throughout batch fermentation in DHI. Data 

shown averaged over two (or in the case of pBluescript + NHE three) fermentations
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Figure 5.9 Plasmid yield determined by PicoGreen throughout batch fermentation in DHI. 
Data shown averaged over two (or in the case of pBluescript + NHE three) fermentations

From both sets of plasmid yield data it is shown that the yield of [pBluescript + CG ] and 

hence average plasmid copy number is significantly lower than that obtained with the 

other plasmids. This may either have been as a result of the generation and proliferation
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of plasmid free cells in the cell culture, or a general reduction in copy number throughout 

the bacterial population. Replica plating, which would have determined which, did not 
produce statistically significant results; however all 20 of the colonies tested contained 
plasmid.

The contrast between the results obtained using the spectrophotometric method (A26o) 

and a fluorescence-based method (PicoGreen) are evident from the above graphs. In 

order to compare the assays the values obtained for yield by both methods can be 
plotted against one another (Fig 5.10).
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Figure 5.10 Comparison of results obtained for total plasmid yield using A260 and 

PicoGreen methods

The results presented are averages over several fermentations and this accounts for the 

apparent differences in yields measured by the two different methods for [pBluescript + 

CG], as for individual samples the results were similar. The disparity between results 

obtained for both [pBS840] and [pBluescript + NHE] between the two methods are more 

difficult to explain. The samples were measured in the same batch of picogreen 

samples, at a later time than the other samples. One possible explanation for the 

difference in results is that the standard plasmid used to calibrate the picogreen assay
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may have had different proportion of linear species in it at different times. This would 
result in a shift in the calibration curve.

Overall, the observed differences in growth rates of cells harbouring the plasmids, yields 

and yield measurement were not considered to be major. Relatively large amounts of 

plasmid were being produced in all cases apart from [pBluescript + CG]. Small 
differences in yields have a large cost of goods impact at scale.

5.3 Effect of unusual structures on plasmid structural stability.

As mentioned in Chapter 1, the FDA guidelines state that “There should be a 

specification for the minimum amount of supercoiled DNA present.’ (FDA Points to 

consider, December 1996), and published guidelines suggest a minimum figure of 90% 
supercoiled species (Shamlou 2003).

The plasmid topology assay was carried out as described in Chapter 2, section 2.6.3.1. 

Briefly samples of approximately the same number of cells were taken over time during 

cell culture. Plasmid was then extracted from these cells by alkaline lysis and ethanol 

precipitated. Spin prep columns were not used as anecdotal evidence suggested that 

they may damage plasmids, this was verified later in this section. Samples were then 

diluted 1/10 and loaded both neat and in their diluted form onto agarose gels containing 

suitable DNA mass ladders (Fig 5.11). Later experiments confirmed that by staining for 

24 hours, and not 20 minutes, the dynamic range of the assay was increased such that 

dilution of samples was unnecessary. For consistency however, topology assays of the 

fermentation samples were performed in the same way.
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Figure 5.11 Analysis of plasmid topology from samples harvested over cell culture

a) 0.6 % 1 x TBE agarose gel of pBluescript II KS+ over the course of cultivation in 

bioreactor. Samples were obtained of approximately 2.5 x 109 cells, as described in the 

text. Plasmid was purified via ethanol precipitation following alkaline lysis and 

resuspended in a volume of 50|iL. Lanes 1 to 9 contained 10pL neat plasmid, harvested at 

time 0, 3.75, 4.83, 5.92, 7.00, 7.92, 8.75, 9.83 and 10.59 hours respectively, lanes 10-18 

contained 10jiL of plasmid diluted 1 in 10. Lanes 19, 20 and 21 contained 10pL Fermentas 

High Range Mass ladder diluted 2,5 and 10 fold respectively.
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b) Results from the same gel, showing no significant change in the relative proportions of 
supercoiled, open circular and linear plasmid over the course of fermentation.
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Construct Plasmid form (Average %)

Open circular Linear Supercoiled

85.5±3.1

92.2±2.2

pBS840 (triplex) 

pBluescript II KS+ 

(parent)

pBluescript + NHE 

(quadruplex) 

pBluescript + cdc2 

(bend)

6.4±1.3

2.4±0.5

2.6±0.9

2.2±0.7

8 .1±2.6

5.4±1.6

5.411.8

5.812.0

92.012.5

92.012.4

Table 5.3 Relative proportions of open circular, linear and supercoiled forms of plasmids.: 
Plasmids were purified by ethanol precipitation following alkaline lysis from samples 

obtained throughout cell culture. Data are the mean + S.D. from two sets of cell culture 

samples. The differences in the amount of open circular and supercoiled plasmid between 

[pBS840] and the other plasmids are statistically significant (P < 0.01) as determined by 

the Tukey test.

As can be seen from table 5.3, there is a >5 % reduction in the proportion of supercoiled 

species obtained with the triplex containing plasmid compared to the other plasmids in 

the bluescript family. This difference in topology is not a size effect since [pBluescript 

cdc2] is of comparable size differing by only 73 bp.

This implies that the triplex sequence is responsible for decreasing the relative 

proportion of supercoiled species. This may be due to either the supercoiled plasmid 

containing the triplex sequence being more sensitive to shear effects, or there being 

more plasmid present in the E. coli cells in non-supercoiled form possibly due to stalling 

at replication forks. Due to the increase in the proportion of linear plasmid an increase in 

shear sensitivity seems the most likely explanation.

121



Samples of different plasmids for the topology assay were obtained and analysed at 

different times. There was therefore some concern that systematic error could account 

for the difference in the relative proportion of different species obtained with the triplex 

containing plasmid [pBS840]. Systematic errors include the times that plasmids were 

left in alkaline lysis buffers, and also any possible calibration errors in the densitometry 

quantification process. These are difficult to account for, and in particular with gel based 

assays relying on internal calibrations. Hence, in order to verify that the reduced 

proportion of supercoiled plasmid of [pBS840] in comparison with the other plasmids, a 

direct comparison was planned. Having the plasmids all on the same gel was desirable 

not only aesthetically, but also since quantification by agarose gel electrophoresis relies 

on comparison with the Mass Ladder data, which if loaded differently would yield 

different results.

Additionally experiments by others at GSK Beckenham (data not shown) had indicated 

that by increasing the staining time with SYBR Gold, from that recommended by 

Molecular Probes (between 20 and 40 minutes), to 24 hours, increased the assay linear 

range. A simple experiment confirmed this, (Fig 5.12) showing that dilution of samples 

and hence some errors incurred in this were avoidable.

Mass ladder with different staining times

35000 y = 318.44x  

R 2 = 0 .9914
30000

25000

© 20000

©  15000

10000

5000

0
120100806040200

Mass DNA (ng)

Figure 5.12 Comparison of assay dynamic range with 40 minute and 24 hour staining 

times.
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Plasmid samples were available from fermentations, however they differed in age 

considerably and plasmids have previously been shown to alter topology with time 

(Middaugh et al 1998, Walther et al 2003).

Plasmid containing cells were therefore grown up over night and plasmid extracted as 

before by alkaline-lysis and ethanol precipitation. Since plasmid solutions prepared in 

this way are not of high purity, quantification by A26o was infeasible and a fixed volume of 

sample was used (10 pL). This corresponded to approximately 100 ng as the yield of 

plasmid was considerably lower using the ethanol precipitation rather than commercially 

available chromatographic methods.

The results obtained from this experiment (Fig 5.13) closely agreed with those generated 

from the fermentation samples. However three samples (lanes 7, 12 and 13) were 

loaded outside of the acceptable linear range of the assay.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 5.13 Gel comparing the relative proportions of open circular, linear and supercoiled 

plasmid species between plasmids. Lanes 1 and 2 are Mass Ladders, Lanes 3-5 contained 

[pBluescript II KS+], Lanes 6-8 contained [pBluescript + 618 X], Lanes 9-11 contained 

[pBluescript II KS + cdc2], Lanes 12-14 contained [pBS840] and Lanes 15-17 contained 

[pBluescript II KS + NHE]

Following quantification of the samples using densitometry, the volume of samples 

required to give readings within the assay linear range were established.

Samples were stored at -20°C overnight and thawed the following day. An equal mass 

of each plasmid was loaded and the gel was run as before. This produced interesting 

results as a much larger proportion of non-supercoiled species was observed with
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[pBS840] the triplex containing plasmid, than had been observed in the original gel 
(Figure 5.13).

10,000 bp-
8.000 bp-
1000 bp-
5.000 bp-
+ ,0 00  bp

3.000 bp-
2.500 bp-
2.0 0 0  bp -

1.500 bp-

-►

Mass ladders Blue + cdc2 pBS840 Blue + NHE pBluescript IIKS+

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5.14 Second gel comparing the relative proportions of open circular, linear and 

supercoiled plasmid species between plasmids, after freeze-thaw. After quantification of 
the first gel the required amounts of samples were calculated so as to ensure even loading 

and that bands would be generated in the assay linear range. Lanes 1- 4 contained Mass 

Ladders, lanes 5-7 contained [pBluescript + cdc2], lanes 8-10 contained [pBS840], lanes 

11-13 contained [pBluescript + NHE] and lanes 14-16 contained [pBluescript].
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Construct Average percentage in form

Open circular and Linear Supercoiled

pBS840 (triplex) 50.4 ±9.7 (14.5) 49.6 ±9.7 (85.5)

pBluescript II KS+ 10.5 ±2.0 (7.8) 89.5 ±2.0 (92.2)
(parent)

pBluescript + NHE 7.5 ±1.4 (8.0) 92.5 ±1.4 (92.0)
(quadruplex)

pBluescript + cdc2 8.1 ±1.6 (8.0) 91.9 ±1.6 (92.0)
(bend)

Table 5.4 Plasmid topology following freeze thaw. Data are means of triplicate samples ± 

S.D. Figures in parenthesis average figures obtained before freeze-thaw.

It is well documented that freeze-thaw cycles can cause substantial damage to bio 

molecules. This is due to the open lattice structure of water molecules in ice generating 

a substantial increase in volume upon freezing.

In order to see if the effect of the triplex sequence present in [pBS840] would produce 

the same effect in lowering the proportion of supercoiled species in preparations of a 

larger plasmid, the sequence was cloned into the 16 Kb [pQR334] generating plasmid 

[pQR338].

Once again no significant effect on plasmid yield or growth rate (Table 5.5) of plasmid 

containing cells was observed between parental [pQR334] and daughter plasmid 

[pQR338].

Construct Average Maximum Growth Rate (hr )

±5%

[pQR334] 0.28

[pQR338] 0.30

Table 5.5 Maximum growth rate of DH1 harbouring plasmid in a complex medium batch 

system
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Plasmids were prepared on a small scale as before, both by ethanol precipitation and 

using commercially available chromatographic columns (Qiagen). Despite loading 

samples in higher concentrations than could be accurately quantified, no supercoiled 

species were observed for [pQR334] nor [pQR338] from samples prepared using 

chromatographic methods. The effects of shear on large plasmids were described in 

Chapter 1, section 1.5.1. The results for the ethanol prepared samples showed 

significantly less supercoiled species than obtained with the smaller plasmids, but with a 

high degree of variation between samples.

Construct Plasmid form (Average %)

Open circular Linear Supercoiled

[pQR334] 

(16Kb parent)
20.8 ±5.8 65.0 ±8.5 18.2 ±4.8

[pQR338]

(triplex)

23.4 ±4.1 61.6 ± 8.1 19.7 ±8.1

Table 5.6 Topology of [pQR334] and [pQR338] extracted by ethanol precipitation following 

alkaline lysis

Note that considerable variation in the proportion of supercoiled species was observed in 

[pQR334] by the DIG assay reported in Chapter 3, section 3.8.4, with results varying 

between 7.4 and 37.9 %.

It seems clear that none of the methods (alkaline lysis followed by ethanol precipitation, 

spin prep or gravity driven chromatographic purification) were adequate to prepare the 

16 KB plasmids intact. In order to properly examine the effects of the triplex sequence 

on large plasmids, a more suitable plasmid purification process would need to be 

developed.

5.3.1 Attempt to determine site of shear sensitivity

As can be seen in figure 5.14 [pBS840] is shown to have higher proportions of both open 

circular and linear species than the other plasmids, following freeze thaw. In order to 

investigate the site of physical damage to the plasmid a number of experiments were 

planned and executed.
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Figure 5.15 [pBS840] showing the position of restriction sites for Bam HI (683bp) and 

Hf'nc/lll (1543bp) either side of the triplex containing region

By linearising an aliquot of the freeze-thawed plasmid sample with Hind III and 

separately linearising an aliquot with Bam HI, it was hoped that distinct bands smaller 

than the linearised plasmid would be visible. This in itself would show that the plasmid 

had become shear damaged to the linear form more frequently at given sites. If a simple 

smear had been produced then this would have shown that the site of shear damage 

was random.
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Figure 5.16 Experiment to determine whether shear was more likely to occur at the site of 
the triplex in [pBS840]. Lane 1 contained [pBluescript II KS +] cut with Bam HI, lane 2 

contained [pBluescript II KS +] cut with Hind III, lane 3 contained freeze-thawed [pBS840] 
cut with BamHI, lane 4 contained [pBS840] cut with Hind III, lane 5 contained a 100bp 

lader, lane 6 contained a 1KB plus ladder. Gel over-exposed in order to see pattern of 
smaller gel fragments

Due to the large amount of previously uncut and open circular plasmid the full-length 

linearised band was very intense in comparison to the bands on the rest of the gel. It 

was therefore difficult to ascertain if smaller bands, ~500bp with Hind III and -338 with 

Bam HI were truly present.

In order to try and overcome this problem several aliquots of freeze-thawed [pBS840] 

were run on a TAE gel alongside linear and open circular markers, the linear bans from 

the samples were gel extracted. The sheared linear [pBS840] was split into two aliquots 

and digested with either BamHI or Hindlll as before. Insufficient DNA was recovered 

however and it was not possible to see any DNA on the resulting gel.
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5.4 Chromatographic effects on plasmid topology

As mentioned at the beginning of this section, plasmids were purified by ethanol 

precipitation rather than using chromatographic methods in order to avoid mechanical 

shear damage to plasmids.

In order to examine the effects of miniprep columns, plasmid samples were purified both 

by use of the columns and by ethanol precipitation. These were then run on a single gel 

(Fig 5.17). Figure 5.14 above is actually a small portion of this gel.

The chromatographic effect of the spin prep columns on plasmids is dramatically 

demonstrated in the gel. With all constructs examined there was a substantially lower 

percentage of supercoiled plasmid when prepared by the spin prep method in 

comparison to more traditional ethanol precipitation. Hence while commercially 

available columns are suitable for rapidly producing clean plasmid suitable for cloning, 

they should not be relied upon to give a true representation of the topological state of 

plasmid in cells.
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Figure 5.17 Gel showing comparative topologies of plasmids isolated by spin prep 

columns (top) and ethanol precipitation (bottom). Lanes 1 to 4 contained Fermantas High 

Range Mass Ladder, diluted and loaded as described in the text, lanes 5-7 contained 

[pBluescript + cdc2], lanes 8-10 contained [pBS840], lanes 11-13 contained [pBluescript + 

NHE], lanes 14-16 contained [pBluescript II KS+], lane 17 contained linear [pBluescript II 
KS +] and lane 18 contained nicked open circular [pBluescript II KS+].

While more plasmid can be seen to be loaded in the samples prepared by spin prep 

columns, differences between the two preparations in the proportion of each species are 

clear to see.
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5.5 Effect of unusual structures on plasmid genetic stability.

As mentioned in chapter one, plasmids containing mirror repeats capable of forming 

cruciform structures, and plasmids containing direct repeats capable of forming slipped 

structures (SMP-DNA) have previously been shown to be genetically unstable (Lilley 

1981, Mizuuchi et al 1982, Williams and Muller 1987). It has also previously been 

claimed that Z-DNA is genetically unstable (Freund et al 1989).

It is not unreasonable therefore to have expected some of the plasmids containing 

unusual structural features to exhibit genetic instability. In particular the coagulation 

factor insert containing over 100bp of alternating purine pyrimidines, capable of forming 

Z-DNA was a prime candidate to exhibit such instability.

Having obtained a single clear band from successful PCR of the coagulation factor (see 

figure 4.5 in Chapter 4) several different sized TOPO plasmids containing the PCR 

product were obtained. As described in the previous chapter it was thought that this 

may have been due to anomalous gel electrophoretic mobility of Z-DNA, however 

subsequent sequencing showed that the insert sequence was substantially smaller than 

the PCR product. It was thought that this may have been due to small quantities of 

shorter PCR amplicons in the PCR product. A full-length coagulation factor sequence 

was found in a TOPO clone, and this was used to produce [pBluescript CG] as 

previously described. Subsequently cells containing this plasmid were fermented and 

samples taken throughout fermentation.

Analysis of topology gels to determine the relative proportion of open circular, 

supercoiled and linear plasmid forms produced some unusual results for the [pBluescript 

CG]. It appeared that more than one form of the plasmid was present. In order to find if 

this was due to the presence of Z-DNA in a proportion of the plasmid population, or due 

to spontaneous deletions a number of experiments were carried out.
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1 2 3 4 5 6 7 8 9 10 11 12

F ig u re  5 .18  T o p o lo g y  g e l o f [p B lu e s c rip t C G ] fe rm e n ta tio n  s a m p le s  ta k e n  th ro u g h o u t  

fe rm e n ta tio n . S a m p le s  d ilu te d  1 in 10 h ave been  re m o ve d  fro m  th e  gel fo r c la rity . Im ag e  

c a p tu re  tim e  in c re a s e d  to  2 s e c o n d s  in o rd er to  s h o w  th e  d iffe re n t s p e c ie s  o f [p B lu e s c rip t  

C G ] m o re  c le a rly . L a n e s  1 to  3 c o n ta in e d  m ass  la d d e r as b e fo re , lan es  4 to  12 co n ta in e d  

fe rm e n ta tio n  s a m p le s .

In order to study the cause of the unusual topology, the original plasmid preparation and 

a plasmid sample from the end of fermentation were retransformed at low concentration, 

cells were grown up, miniprepped, and the plasmid cut on either side of the insert.

132



Figure 5.19 3% Agarose gel containing restriction enzyme digests from miniprepped DNA 

produced from retransformed [pBluescript CG] from original miniprep (lanes 1 - 6 )  and 

from the end of a fermentation (lanes 8 - 19). Plasmids were cut with Xhol and Sacll to 

release the insert. Lane 7 contained a 1KB plus ladder. Gel stained with ethidium bromide, 
and over exposed to show additional inserts, otherwise not clearly visible.

As shown in figure 5.19, several different sized inserts are clearly visible in most 

samples. The smaller plasmid insert seems to be less prevalent in the retransformed 

original plasmid preparation, than in the fermentation samples. Given the transformation 

conditions, which should have introduced only one plasmid per cell, this suggests that 

the plasmid is genetically unstable.

The gel was not particularly clear and so a polyacrlamide gel (figure 5.20) was used in 

order to separate and size inserts in a more effective and accurate way.



1 2 3 4 5 6 7 8 9

Figure 5.20 [pBluescript CG] insert instability shown in gel. Inserts from Z-DNA containing 

plasmid cut out using Xhol and Sacll run on 5 % polyacrylamide gel for 100 minutes at 120 

V, stained with SYBR gold. Lane 9 contained a 100bp ladder. Lanes 8 contained the insert 
from the original plasmid preparation (543 bp). Lane 7 contained the original plasmid 

retransformed and grown for a short time in an attempt to produce more of the full length 

insert, only small quantities of plasmid were produced. Lane 6 shows the different sized 

inserts obtained from a sample at the end of cell cultivation in bioreactor. Lanes 1-5 show 

different sized inserts obtained from retransforming plasmid obtained at the end of cell 

cultivation.

Lane 6 in figure 5.20 clearly shows that after cell culture several different sized inserts 

were present. Once again some of the retransformed preparations contained two 

different sized plasmids e.g. lane 1.
Subsequent sequencing of the smallest clones and comparison with the sequence 

obtained from the original preparation showed a reduction in length of the alternating 

purine*pyrimidine sequence and removal of the shorter flanking poly purine region.

There are two possible explanations:

1) The transformation process produces deletions.
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2) The coagulation factor gene is genetically unstable in E. coli.

Certain sequences have been shown to be lost significantly more frequently than others 

during the transformation process (Hashem et al 2002). This could account for the 

differences in plasmid size when plasmids have been retransformed. It does not 

however appear to account for the difference between the plasmid at the start and end 

of fermentation. Only a single sized insert of plasmid is visible in lane 8 of figure 5.19, 

while several different sized inserts are clear in the sample taken at the end of 

fermentation shown in lane 6. Clearly less plasmid has been loaded in lane 8, (all the 

remaining plasmid available - retransforming and growing up plasmid overnight led to 

deletions shown in figure 5.18) however the SYBR gold stain is very sensitive and so 

ought to have picked up other species. It might however be the case that the population 

of plasmids with deleted Coagulation factor sequences was so small as to be 

undetectable at the start of fermentation, and only after several growth cycles became 

detectable.

It has already been published that Z-DNA is unstable in E. coli, however the sequences 

chosen for the study were simple dinucleotides, which have been shown to be 

genetically unstable themselves (Bichara et al 2000, Freund et al 1989). Hence the 

Coagulation factor was chosen for the project since it contains a long alternating 

purine-pyrimidine sequence, which seemed likely to form Z-DNA under appropriate 

conditions, but was not so highly repetitive as to form other structures prone to 

spontaneous deletion (Bichara et al 2000). Given the problems encountered during 

cloning, the presence of one species at the start of fermentation and several species at 

the end, and the presence of more than one species of plasmid in retransformed cells, 

this seems a good explanation.

The mechanism of deletion of the Z-DNA sequence is not really of great importance in 

the context of biopharmaceutical production. Any unstable plasmid constructs would be 

picked up at an early stage in product development by existing methods of screening 

that generally involve several repetitive growth cycles and topology monitoring by gel 

electrophoresis. At present there seems no need to include Z-DNA in plasmid products, 

however should this change, the drug efficacy would have to be tested with different 

length inserts, and/or alternative strategies for production found.
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5.6 Linking number analysis

Some linking number theory was outlined in chapter one. With appropriate intercalater 

concentrations, supercoiled plasmids can be separated by gel electrophoresis.

Supercoiled plasmids isolated from E. coli generally have a large number of supercoils 

and so are not easily resolved from each other. The addition of a low amount of 

intercalater increases the writhe, this increases the effective size of the plasmid and 

hence decreases the electrophoretic mobility.
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Range of linking number differences normally encountered with supercoiled 

plasmids isolated from Escherichia coli.

(ii) Range of linking numbers required for separation in one dimension.

Figure 5.21 Probable relationship between plasmid size and linking number difference

The concentration of the intercalating agent, chloroquine, and required electrophoresis 

conditions were empirically found at GSK in order to separate plasmids produced in E. 

coli, on the basis of linking number.

It was anticipated that the nicked open circular species would run at approximately the 

same position as the covalently closed open circular species, as it does in gels
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containing no intercalating agents (Uden et al 2002). This would have allowed bands to 

be easily assigned linking number difference values by counting down from the top band 

on the gel. In a similar way to how this is possible for plasmids with low linking number 

differences that can be separated in the absence of intercalaters:

D C

Figure 5.22 Gel electrophoretic separation of topoisomers of pUC19 DNA, in the absence 

of intercalaters. The mixture of topoisomers covering the range of ALk from 0 to -8 were 

electrophoresed from a single well in 1% agarose from top to bottom. The topoisomer with 

ALk = 0 has the lowest mobility it moves slightly slower than the open (nicked) circular 

DNA (OC). The value of (- ALK) for each topoisomer is shown. Figure reprinted from 

Vologodskii 2000 with kind permission from the Society of Biophysics Copyright.

However in fact, the relaxed open circular plasmid becomes strongly positively 

supercoiled in the presence of intercalator molecules and consequently runs faster than 

the other species. Nicked plasmid is unaffected by agents intercalating since 

superhelical stress can be removed simply by the rotation of one DNA strand around the 

other.
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Figure 5.23 Probable effect on plasmid size and writhe upon addition of intercalator.

As the intercalater molecules bind to the DNA, they reduce the helical rotation angle 

between the base pairs. As more and more molecules bind, the superhelical turns within 

the DNA molecule are gradually removed and the conformation of the double helix 

becomes less compact. However once a certain number of ligands bind per base pair 

(v) further ingtegration results in an increase in tension and so superhelical turns are 

added to the molecule.

v = 360 ALk / (cpN) (Vologodskii 2000)

cp denotes the change in angle, in degrees, between adjacent pairs upon integration of a 

ligand molecule between them.
N denotes the number of bound ligands, which can be determined by spectral methods.

As discussed in Chapter 1, relaxed plasmids have a linking number difference of zero, 

hence have the maximum size and hence lowest mobility. If the plasmid is nicked, 

addition of intercalator molecules will not alter the linking number since one end of the 

DNA is free to rotate, allowing the removal of any superhelical stresses generated. If the

138



plasmid is covalently closed however, addition of ligands makes a relaxed plasmid 
become positively supercoiled. It must be emphasised that the binding power of the 
ligands is insufficient to unwind the DNA double helix however, and the DNA will remain 
in the B-form in the positively supercoiled plasmid.

Figure 5 .24  N e g a tiv e ly  s u p e rc o ile d , re la xe d  and  p o s itive ly  su p erc o iled  p lasm id s. Note that 

the DN A  re m a in s  in th e  B -fo rm . (F ig u re  ad ap ted  fro m  S tan fo rd  U n ivers ity , USA  

w w w .s ta n fo rd .e d u ).

With addition of a small amount of intercalater, the tightly negatively supercoiled 
plasmids become sufficiently unwound to allow separation. Relaxed open circular 
plasmid would become strongly positively supercoiled, and nicked open circular plasmid 
would be unaffected.

In order to establish the mean average linking number difference, it is therefore 
necessary to know how many topoisomers are present between the (originally) relaxed 
open circular plasmid, and each plasmid species.

In order to do this, plasmid with an overlapping range of topoisomers could be run on a 
gel containing the intercalating agent, alongside plasmid samples. The linking number 
difference of each topoisomer band could then be established simply by counting back 
from the open circular plasmid. Bands could further be quantified allowing the mean 
linking number difference of plasmid samples to be calculated, making some account for 
changes in ambient conditions as Lk is temperature sensitive (Bauer et al 1980).

Right-handed (negative) 
superhelix:
N egative ly  su p erco iled

N orm al c ircu la r h e lix Left-handed (positive) 
superhelix :- 
Positively supercoiled
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The figure below shows an envisaged system of working out the linking number 

difference of each topoisomer present in a plasmid sample:

140



26
'27
'28
'29

30

 34
 35

36+

Figure 5.25 Envisaged method of topoisomer separation

Gel following staining. Both the gel and running buffer would contain chloroquine at 
suitable concentration. Lane 1 would contain a plasmid sample to be analysed (several 
plasmid samples would probably be run side by side for direct comparison), lane 2 would 
contain plasmid completely relaxed by topoisomerase, lanes 3 to 11 would contain 
distributions of plasmid topoisomers prepared by incubation with topoisomerase enzyme 
in the presence of an intercalater, such as ethidium bromide, after preparation the aliquot 
for lane 3 would have the smallest linking number difference (least supercoiled) and the 
aliquot for lane 11 would have the largest linking number difference (most supercoiled). 
Lane 12 shown to contain nicked relaxed plasmid for interest. If quantification of each 
topoisomer present in samples was desired then mass ruler dilutions could also be added 
as for the gels to determine the percentage of plasmid in the supercoiled, open circular 
and linear forms as described earlier. A linear plasmid sample would also be applied, and 
the corresponding bands present in each lane would then be ignored. While the band 
separation will not be the same between sucessive topoisomers, for the sake of 
illustration ease it has been shown so.
Linking number differences of each topoisomer have been marked. It would hence be a 
simple task to assign values for the linking number difference to each band present in the 
supercoiled sample. If mass ladders were also applied to the gel then each topoisomer 
band in the sample could be quantified. Hence the percentage of each topoisomer could 
be calculated and the mean linking number difference calculated for each plasmid sample. 
In this example the sample analysed clearly contains topoisomers with linking number 
differences between 29 and 22. Assuming B-DNA and using a correlation of 10.5bp per 
helical turn, an estimate of linking number could additionally be obtained, although this 
would be purely academic and would serve no useful purpose.
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Unfortunately attempts to produce the range of topoisomers failed, and so it was not 
possible to obtain results such as those envisaged above. A proper set of topoisomers 

could have been used to calibrate the linking number gels previously obtained.

Using the linking number gels obtained, neither the linking number difference of 

particular topoisomers, nor the mean linking number, nor actual linking number can be 
established or estimated.

What was clear from the linking number gels was the linking number distribution was 

greatly effected by harvesting time. See the figure 5.26 below for an example of one of 

these gels. For all plasmids examined the average linking number was found to be 

significantly lower during log phase than in stationary phase. These findings can be 

explained by the energy state hypothesis described by Jensen and co workers (Jensen 

et al 1995). This may have implications for harvest times in batch cell culture in order to 

ensure a homogenous, reproducible drug product.

4 --------  3,000 bp

■4-------- 2,500 bp

< --------  2,000 bp

4 --------  1,500 bp

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192021 2223 

Figure 5.26 Linking number variation with cultivation time. Lanes 1 - 9  contained 500ng 

(quantified by A26o nm) [pBluescript II KS +] purified using commercially available kits 
(Qiagen) from samples taken during batch cell culture (Inoculum, 3.75, 4.83, 5.92, 7.00, 
7.92, 8.75, 9.83, 10.58 hours). Lanes 10 - 18 contained 200ng as before. Lane 19 1 kb 

ladder. Lane 20 nicked open circular plasmid. Lanes 21 -  23 contained 10pL Fermentas 

High Range Mass ladder diluted 2,5 and 10 fold respectively.

Comparison of linking number differences between plasmids is possible with the gels 

produced; however, since the linking number distribution was shown to shift with cell
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state, only samples at the same sate can be compared. This was performed on the 

inoculum samples, using the nicked open circular plasmid as a reference point. Since a 

comparison was made between different plasmids, it is not required to determine the 

actual value of the linking number difference, as the relative position of the nicked open 
circular plasmid would have been the same.

The inoculum culture of plasmid [pBS840] was found to have an average relative linking 

number difference 1.5 less than that of the parent plasmid [pBluescript II KS+], This 

suggests the formation of an intramolecular triplex of around 16bp since the energy of 

removing supercoils is transferred to formation of the intra molecular triplex (Glover et al 

1990).

In order to verify the effects (shown in figure 5.27) on linking number of batch cell 

culture, and also of the presence a DNA triplex, several experiments were carried out to 

try and separate the larger 16KB plasmid [pQR334] on the basis of linking number. The 
largest plasmid previously shown to have been separated on the basis of linking number 

is less than 10KB. A method to separate plasmids of large size on the basis of linking 

number was seen as a desirable goal since in time biopharmaceutical plasmids may 

increase in size and the effects of linking number upon drug efficacy are not yet known 

(O’Kennedy et al 2003). Despite many alterations of electrophoresis conditions, 

including use of Field Inversion Gel Electrophoresis, no separation of supercoiled 

samples was achieved. However, relaxed [pQR334] was separated suggesting that a 

higher order of structure than DNA supercoiling may have been present which prevented 

plasmids from being separated previously.
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Figure 5.27 Chloroquine field inversion gel of [pQR334] in an attempt to separate plasmid 

on the basis of linking number. Lanes 1 to 4 contained dilutions of Fermantas mass ladder 

as before, lane 5 contained a X mono cut ladder, lanes 6 to 11 contained fermentation 

samples of [pQR334]. Lanes 12 and 15 contained nicked open circular [pQR334], lanes 13 

and 16 contained linear [pQR334] and lanes 14 and 17 contained [pQR334] relaxed with 

topoisomerase.
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It was suggested that the reason for the lack of separation of the [pQR334] supercoiled 

plasmid on the basis of linking number, was the purity of samples. In particular the use 

of spin prep columns may have substantially sheared the plasmid. A further fermentation 

was carried out taking large samples at four time intervals, which were maxi prepped 

using gravity fed columns in order to reduce potential shear. However the problems with 

assay remained, clear bands not obtained and no differences between the samples 
could be observed.

5.7 Further topological analysis

Whilst the sequences added to [pBluescript II KS +] had previously been shown to 

produce unusual DNA structure, for completeness it was seen as desirable to 

demonstrate these. The most comprehensive method of doing this described in the 

literature is 2D gel electrophoresis (Bowater et a! 1992, Martin-Parras et al 1998, 

Trigueros et al 2001, Vologodskii 2000, Wang et al 1983).

Successful 2D gel electrophoresis would have also allowed calibration of the linking 

number gels produced from plasmid samples isolated throughout fermentations.

An easy to follow and satisfactory explanation of the theory behind 2D gel 

electrophoresis of plasmids is sadly lacking from the literature, and regrettably as found, 

so too are reliable methodologies.

The principles behind 2D gel electrophoresis are:

A range of plasmid topoisomers is produced from supercoiled plasmid by incubation with 

different concentrations of ethidium bromide together with DNA topoisomerase. 

Following heat deactivation of the enzyme a number of phenol-chloroform extractions 

are carried out to remove all traces of ethidium bromide.
The ethidium bromide intercalates in the DNA and the topoisomerase enzyme is able to 

break and rejoin the DNA backbone. After the enzyme is denatured and the intercalating 

agent removed, the resulting super helical tension produces plasmids with given linking 

numbers. This means that under the correct conditions it should be possible to produce 

plasmids with a given linking number distribution.
Once such a distribution is established, electrophoresis of the plasmid is carried out in 

the first dimension with either no or little intercalater present, and then in the second 

dimension, perpendicular to the first, with a high concentration of intercalater.

In the first dimension the most supercoiled plasmid runs faster than the less supercoiled 

plasmid. There is no resolution of plasmids with more than a certain number of

145



supercoils however since they are of comparative size. See figure 5.28 below for a 

schematic demonstrating how plasmid size may change with linking number. As is 

intuitive, smaller species will move more rapidly through the gel. Electrophoresis in the 

first dimension hence separates only species with few supercoils (and any linear or open 

circular DNA present).

The absolute linking number of plasmids is unknown, an estimate of LK0 is the size of 

the plasmid in base pairs divided by 10.5bp.
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Figure 5.28 Writhe and plasmid size

a) Theoretical resolution of plasmid in first dimension by electrophoresis in the presence 

of no or little intercalater. Different supercoiled species differ by one linking number. At 
natural levels of supercoiling plasmid isolated from E. coli will not be resolved into 

species on the basis of writhe under these conditions.

b) Suggested relationship between plasmid size and writhe, showing the range of writhe 

required for separation in the second dimension.
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The addition an intercalating agent for the electrophoresis in the second dimension 

alters the amount of supercoiling of plasmids by increasing the linking number. The 

amount of intercalater added should be such that the most supercoiled plasmid isolated 

from the fermentation ends up being of the largest size. Referring to figure 5.8 above, 

this means that if the most supercoiled plasmid isolated was at position A it would end 

up at position B.

Plasmids originally possessing fewer supercoils than the plasmid as position A, would 

hence become positively supercoiled.

Nicked open circular plasmids will remain at position B, whereas relaxed open circular 

plasmids would become highly positively supercoiled and move to position C.

After addition of the correct amount of intercalator, the mobility of topoisomers is no 

longer dependent upon ALk but becomes dependent on (ALk - Nv(p / 360), the effective 

linking number difference.
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Figure 5.29 Diagram of two dimensional electrophoresis, separating plasmids on the basis 

of linking number. Intercalator used in the second dimension. Figure 5.24b shows what the 

gel would look like if stained after running the mixture of topoisomers in the first 
dimension. The presence of unusual DNA structures can be detected using this method, 
as at a given superhelical density, the unusual structure will be formed. This would result 
in a jump in linking number and hence obvious differences in the pattern produced 

between plasmid containing unusual structures and the parent plasmid.
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5.8 The next steps

Further discussion of the results presented in this chapter can be found in Chapter 7. 

Some of the findings were that the triplex sequence significantly reduced the percentage 

of supercoiled plasmid, and that the degree of supercoiling of plasmids altered with 

fermentation time.

The topology of plasmids had been of interest to the pharmaceutical industry for some 

time, and as mentioned in Chapter 1, substantial research has investigated ways in 

which the proportion of supercoiled plasmid can be maximised. There is however little 

evidence to support the claim that supercoiled plasmids are better than other forms. 

There are several methods that could be employed in order to test the efficacy of 

different plasmid topological forms. Methods delivering plasmids into cells would require 

some kind of normalisation of the amount of plasmid delivered, in order to measure 

transcription levels. Different plasmid forms may be delivered differently.

In order to investigate the effect of different plasmid forms on transcription it was decided 

to attempt a number of experiments in a cell free system. Some of these results are 

presented in the next chapter.
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Chapter 6:

Effect of plasmid topology on transcription in a cell free system
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6. Effect of plasmid topology on transcription in a cell free 
system

6.1 Guidelines on plasmid topology
Guidelines from the FDA state that: ‘Plasmid-derived DNA species such as linear and 

relaxed circular DNA may be less effective in expressing the inserted antigen gene. 

There should be a specification for the minimum amount of supercoiled DNA present.’ 

(FDA Points to Consider, December 1996). Following these guidelines, plasmid DNA 

manufacturing based research has aimed to produce pure plasmid DNA in the 

supercoiled form. Whilst plasmid based products have yet to reach market, a minimum 

for the amount of supercoiled DNA has been suggested as 90% (Levy et al 2000, 

Shamlou 2003) based on levels published elsewhere. Supercoiled plasmid DNA can be 

converted to open circular form and then linear forms by the action of shear, potentially 

at any stage of the purification process (Shamlou 2003).

Whilst there is some evidence that the risk of integration into the host genome is higher 
with the linear form (Nichols et al 1995) the chances of this occurring are still very low.

Perhaps following the lead of the FDA, the World Heath Organization recommends that 

in order to avoid chromosomal integration, plasmid products should contain 

‘supercoiled, monomeric ccc DNA.’ The idea of single forms of drug species is not new 

and is generally regarded as a good idea by both the pharmaceutical and biotech 

industries. The supercoiled form of plasmid is not a single isoform however, and consists 

of plasmids with different numbers of super helical turns. These can be separated using 

intercalating agents such as chloroquine. At any particular instant during cell culture 

there will be a range of linking numbers of the plasmids within the bacterial cells. Linking 

number distribution changes throughout batch fermentation as demonstrated in Chapter 

5 and associated publication (Cooke et al 2004).

The degree of supercoiling of plasmids in bacterial cells is suspected to alter 

transcription levels in bacteria (Dorman et al 1996), it is hence a logical step to expect 

there to be differences in transcription of more or less supercoiled plasmids in eukaryotic 

cells.
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6.2 Plasmid product efficacy
The efficacy of a plasmid product depends on the delivery method used, the longevity of 

the plasmid and on the expression of the given form by the host transcription machinery.

6.2.1 Plasmid delivery methods

Several different methods to deliver plasmids for therapeutic and vaccination purposes 
have been developed.

Early DNA vaccine and gene therapy studies using plasmid DNA, generally involved 

injection of plasmid in saline solution directly into muscle tissue or skin using a syringe 

and needle (Wolf et al 1990, Raz et al 1994). The transfection efficiency of naked 

supercoiled plasmid compared to other forms is significantly higher. Hence early criteria 

for plasmid products included a specification that plasmids ought to be >90% 

supercoiled.

The transfection efficiency of naked DNA is however very low in comparison to other 

delivery methods that are currently in trial. Several delivery methods of plasmids are 

available:

• Electroporation

• Liposomes

• Polyethylenimine complexes (Oh et al 2001)

• Gene gun
One such method involves precipitating plasmid DNA onto gold particles and propelling 

them into the skin. Plasmid treated in such a way often becomes nicked producing an 

increase in the relative amount of open circular plasmid in the preparation (GSK internal 

data).

6.2.2 Plasmid longevity

The topological form of the plasmid may have influence on the length of time that DNA 

vaccine or gene therapy products remain in human cells. To date no studies have been 
published investigating this. It is likely, however, that the linear form of plasmid will be 

degraded faster than circular forms of plasmid due to the action of endonucleases. 

Studies show that the half-life of plasmids in the blood is less than 5 minutes and that
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plasmids are undetectable 1 hour post injection, supercoiled species having a half life of 
1.2 minutes, before being converted to the open circular form, having a half life of 21 

minutes, before being converted to the linear form with a half life of 11 minutes; retention 

by cells has been shown to be tissue-dependent, with plasmid detectable by Southern 

Blot up to 24 hours post-injection (Lew et al 1995, Houk et al 1999, Kim et al 2003). 

Difference between these experiments may be due to the extraction procedures used 
and sensitivity of the different analytical techniques.

6.2.3 The effect of topological form on expression

Despite the recommendations of the FDA and WHO, there is a surprisingly small amount 

of evidence to support the idea that supercoiled DNA is more effective at expressing 

than the linear forms (Weintraub et al 1986). In fact more recent research has shown the 

open circular form actually exhibits comparable expression levels (Xie and Tsong 1993).

A recent review describes the effects that different contexts have on transcription 

(Alvarez et al 2003).

In order to investigate the effects of different plasmid topological forms on transcription 

and hence expression efficacy in a DNA vaccine or gene therapy context an HIV vaccine 

candidate was used. This plasmid was treated in a variety of ways in order to generate a 

range of plasmid topologies, supercoiled, very supercoiled, relaxed open circular, nicked 

open circular, and linearised in a number of different places, in the plasmid backbone, in 

the promoter sequence and in the open reading frame of the HIV gene.

As for the plasmids described in the previous chapter, several attempts to produce the 

plasmid with different linking numbers was also attempted by incubation with different 

concentrations of ethidium bromide and DNA topoisomerase. If this had been 

successful, it would have been possible to see if there were any significant influences of 

linking number distribution (and hence harvest times of batch culture) on transcription.
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6.2.4 Plasmid used

p[ABC] a DNA vaccine in clinical trials, and prime boost candidate, consists of a pUC19 

origin of replication, the Kanamycin resistance gene transposon TN903 (Oka A et al 

1981), the cer sequence (Summers and Sherrat 1984) and a CMV promoter expressing 
a fusion of three viral genes.

pUC19
On

pABC
6575 bps

Figure 6.1 Plasmid map of [pABC] showing the pUC19 origin, Kanamycin resistance gene, 
CMV promoter, viral fusion gene and cer sequence. The Hind III site can be seen to be in 

the plasmid backbone, the Ncol site in the CMV promoter and the Apa I site in the open 

reading frame.

6.2.5 Plasmid treatment

Aliquots of p[ABC] was treated with a number of different enzymes in order to produce a 

series of plasmids with different topological forms.
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Treatment Plasmid form

NBstNBI Nicked relaxed

Hindlll Linearised in backbone

Hindlll SAP Linearised and dephosphorylated in backbone

Gyrase Supercoiled

Topoisomerase Unwound relaxed

Ncol Linearised in CMVpromoter

Ncol SAP Linearised and dephosphorylated in CMV promoter

Apal Linearised in open reading frame

Apal SAP Linearised and dephosphorylated in open reading

frame

Heat denatured Supercoiled

SAP

Table 6.1 Plasmid treatments

Figure 6.2 Gel of treated plasmids. 3 Mass ladders are on the left hand side of the gel. Lane
I contained nicked open circular standard, lane 2 contained linear standard, lane 3 
contained supercoiled standard, lane 4 contained NBstNBI treated nicked open circular 
plasmid, lane 5 contained plasmid cut by Hind III, lane 6 contained plasmid cut by Hind III 
and subsequently dephosphorylated by SAP, lane 7 contained plasmid incubated with 
BSA, lane 8 contained plasmid treated with DNA Gyrase, lane 9 contained relaxed plasmid 
produced by incubating with Topoisomerase, lane 10 contained plasmid cut by Ncol, lane
I I  contained plasmid cut by Ncol and subsequently dephosphorylated by SAP, lane 12 
contained plasmid cut by Apal, lane 13 contained plasmid cut by Apal and subsequently 
dephosphorylated by SAP, lane 14 contained plasmid incubated with heat denatured SAP.

Following treatment with modifying enzymes, these enzymes were heat denatured. The 

plasmids were not further purified. This ensured that each plasmid preparation was of
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the same concentration. Any purification would have inevitably resulted in different yields 

between samples and hence each sample would have required quantification. It has 

previously been shown that plasmids of different morphologies exhibit different 

absorbancies at 260nm and bind intercalating dyes to different degrees (Sambrook et al 

1989, Rock 2003). Dealing with such small quantities of plasmid any differences in 

concentration of differently treated samples may have made the experiment void.

In order to account for protein present in the reactions, deactivated enzyme was also 

added to the supercoiled reference plasmid, which was also heated at 80°C for 20 

minutes.

Shrimp Alkaline Phosphatase was used in preference to Calf Intestinal Phosphatase 

since it can be heat deactivated and also does not remove additional bases, which might 

prevent religation.

6.2.6 Transcription
The HeLaScibe® Nuclear Extract in vitro Transcription System was used (Promega 

Corporation, Madison, Wl, USA).

Essentially the recommended conditions and reagent concentrations were used for 

transcription as Promega has optimized these for the CMV promoter. Briefly, 100ng of 

each plasmid were incubated in triplicate for 60 minutes at 30°C, with 8 Units of HeLa 

cell nuclear extract in Transcription buffer (8.8mM HEPES, 44mM KCI, 0.088mM EDTA, 

0.22 mM DTT, 8.8% glycerol) with 3mM MgCI2 and 0.4 mM rNTPs.

After 60 minutes incubation the plasmids were spiked with 175pL of 1.34 ng/pL (172pL 

50ng pL'1 mixed with 6228pL water) human RNA (Applied Biosystems). This allowed 

any discrepancies in the RNA recovery procedure to be normalized.

RNA extraction was performed with an automatic preparation device (MagnaPure; 

Roche) according to the manufacturer's preparation protocol. RNA was converted to 

DNA using reverse transciptase. This was performed in duplicate for each of the 

samples. Semi-quantitative PCR was performed on an ABI prism 7700 q-PCR machine 

(Applied Biosystems,

The RT-PCR reaction exploits the 5' nuclease activity of the AmpliTaq Gold® DNA 

Polymerase in cleaving the TaqMan probe during PCR. The TaqMan probe contains a 

reporter dye at the 5' end of the probe. There is also a quencher dye at the 3'end of the
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probe. The proximity of the reporter and quencher in the intact probe results in 

suppression of the reporter fluorescence as described elsewhere (Forster 1948, 

Lakowicz 1983). During the reaction, the reporter dye and quencher dye become 

separated, resulting in increased fluorescence of the reporter. The accumulation of PCR 

products is detected by examining a rise in fluorescence produced by the reporter.
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Figure 6.3 qPCR reaction. As the PCR reaction progresses more reporter probes become 

disassociated from quenchers and so an increase in fluorescence is observed. Figure 

adapted from Applied Biosystems (www.appliedbiosystems.com).

Analysis of 18S results allowed difference in yields from the RNA purification to be 

normalized. This assumes that the yield from purification of mRNA and rRNA is the 

same.

The delta delta Ct method was used to find the levels of transcription to be calculated. 

This method is comprehensively described elsewhere (Livak and Schmittgen 2001).

6.3 Transcription results
All negative controls produced the expected results:

Samples of RNA extracted, and not converted to DNA by reverse transcriptase, were 

included in the qPCR reaction and gave no signal. This showed that the extraction of the 

mRNA was not contaminated by plasmid DNA, which would have given a false indication 

of the transcription level.

The three negative controls in which no plasmid was included with HeLa cell nuclear 

extract also produced no signal demonstrating that no contamination occurred.
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Figure 6.6 VIC signals from three samples obtained from incubating nuclear extract with 

plasmid cut by Ncol and treated with SAP (in duplicate). The different Ct values indicate 

differences in total RNA extraction efficiencies.

1 -

a:<

0.1

Threshold 0.272 
Sample name FAM Ct
5 35.71
6 36.24
17 34.76
18 35.26
29 34.29
30 34.76

~r~
10

- r~
20

Well 5 
Well 6 
Well 17 
Well 18 
Well29 
Well 30

30
~T~
40 50

Cycle

Figure 6.7 FAM signals obtained from three samples obtained from incubating nuclear 
extract with plasmid cut by Ncol and dephosphorylated by SAP (in duplicate).
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Figure 6.8 Expression level of different plasmid isoforms relative to supercoiled 
plasmid in the in vitro transcription system (%). Three replicates. Error bars denote 
standard error.

The results indicate that all plasmid isoforms give rise to mRNA of the gene of interest. 

Both relaxed forms of the plasmid, nicked and unwound, were found to exhibit the same 

expression level. This was to be expected since physiologically these forms are almost 

identical. Around 350% (±95% Nicked NBstNI and ±71% Unwound topoisomerase) of 

the amount of mRNA of the gene of interest was produced compared to that made using 

the supercoiled plasmid. The plasmid linearised in the vector backbone was also found 

to express at around this value although there was much greater variation in these 

results.
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Chapter 7: 

Discussion and further work
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7 Discussion, conclusions and further work

7.1 Project aim
The overall aim of the project was to see if the presence of non Watson-Crick structures 

would significantly effect plasmid production for the purposes of producing plasmid gene 

therapy or DNA vaccine products.

7.2 Addressing project aims
In order to determine if unusual structures would effect plasmid production, a vector, 

[pQR334], was designed and produced that was 16 Kb, close to the size of the 

envisaged future products.

Cloning with the 16 Kb plasmid proved troublesome due to a lack of cloning sites, lower 

transformation efficiencies and the lack of a screening mechanism. In the interim 

unusual sequences were cloned into a smaller vector [pBluescript II KS +]. Cloning of 

non Watson-Crick type structures was problematic; however a family of plasmids was 

produced including an intrinsic bend, a quadruplex, a triplex and Z-DNA.

The growth rate of plasmid containing cells, total plasmid yield, and topology (i.e. the 

relative proportions of supercoiled plasmid, open circular and linear forms), were 

determined for each construct, and the stability of the inserted sequences were 

assessed using gel electrophoresis.

After analysis of the Bluescript based family, the triplex sequence was cloned into the 16 

Kb parental plasmid [pQR334] creating [pQR338]. This was to see if the effect upon 

topology that was observed in [pBS840], could be observed in a larger plasmid. 

Inadequate purification techniques were used for these larger plasmids however and so 

meaningful comparisons between [pQR334] and [pQR338] were not achieved.

Analysis of the effect of fermentation time on plasmid linking number was also 

undertaken.

The effect of different plasmid topological forms on transcription in a cell free system 

was studied using a prospective plasmid product.
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7.3 Effect of non- Watson Crick structures on plasmid production
DNA structure and abnormalities are reviewed in Chapter 1. Many non Watson Crick 

structures are extremely unlikely to occur in plasmid products. Indeed the view could be 

taken that non Watson Crick structures are encountered so infrequently in coding 

sequences, that it is unlikely that any unusual structures will be included in plasmid 

products. While the functions of different non Watson Crick structures remain obscure 

their deliberate incorporation into plasmid products also seems improbable.

Some non Watson Crick structures have previously been shown to be unstable in 

Escherichia coli production systems. Several non Watson Crick structures were included 

in a 2.9 kb plasmid at a defined point and their effect upon cell growth rate, total plasmid 

yield, and topology, were determined. The stability of the inserted sequences were 

assessed using gel electrophoresis.

Overall, yields, the differences in yield measurement and differences in growth rates of 

cells harbouring the plasmids, were not considered to be of major importance as 

relatively large amounts of plasmid were being produced in all cases apart from 

[pBluescript + CG].

Yields of the Bluescript based plasmids were found to be comparative, the exception 

being [pBluescript CG] which was significantly lower than that obtained with the other 

plasmids. This may either have been as a result of the generation and proliferation of 

plasmid free cells in the cell culture, or a general reduction in copy number throughout 

the bacterial population. This may account for the increased growth rate of DH1 when 

attempting to grow these plasmids; as cells containing few or no plasmids have a lower 

metabolic burden and hence may proliferate more rapidly.

Analysis of plasmid DNA topology over the course of cell cultivation indicated that the 

time of sampling had no significant effect on the relative proportion of supercoiled to 

other plasmid forms in the systems studied. If the percentage of the supercoiled form 

had been shown to be higher at a particular point of cell cultivation, this would have been 

a factor to consider in deciding harvest times. A previous study (O’Kennedy et al 2003) 

showed that the percentage of supercoiled species varied with the stage of cell growth 

and therefore had implications for the time of harvest. In that study the stain (DH5 a), the

165



plasmid [pSV (3] and the medium (semi-defined) were different. Different growth media 

have been shown to produce major differences in the percentage of supercoiled 

plasmids obtained at the end of cell cultivation (O’Kennedy et al 2000). However, 

reasons for changes in the relative proportion of supercoiled to open circular and linear 

plasmids, with cell growth state in some media and not others, invites further research.

The triplex containing plasmid [pBS840] exhibited a >5% reduction in the proportion of 

supercoiled species compared to the other plasmids in the bluescript family. The most 

likely cause of this reduction is increased shear sensitivity due to non Watson-Crick 

structure.

A common misconception is that plasmid DNA products are sufficiently stable so as not 

to require cold storage (Tuteja 1999) and predictions of the stability of the supercoiled 

form supported this view (Middaugh et al 1998). DNA generally requires considerable 

chemical modifications in order to generate a loss in biological activity (Middaugh et al 

1998). However, the requirement for cold storage has since been clearly demonstrated 

by a number of research groups (Evans et al 2000, Uden et al unpublished data).

The results for [pBS840], which demonstrated a significant decrease in supercoiled 

species following freeze thaw, indicate that care must be taken in the supply chain of 

plasmid products if the form of plasmids is shown to effect drug efficacy. The damage 

incurred to the triplex plasmid seems to indicate a higher propensity to physical damage 

than with the other plasmids. This may be because some of the DNA is single stranded. 

If a triplex had some function in a plasmid product then the effect of physical damage 

due to freeze thaw on the drug efficacy would have to be investigated.

Results suggest that Z-DNA is unstable in a batch DH1 E.coli production system grown 

in complex medium. Encouragingly other sequences studied (triplex, bend and 

quadruplex) did not cause spontaneous deletions, and no detrimental effect was found 

on growth rate or on total plasmid yield; indicating that such sequences could be 

included in future DNA products without any detrimental effect on plasmid yields; 

although the intra molecular triplex studied significantly decreased the proportion of 

supercoiled species.
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The degree of supercoiling, (linking number) was demonstrated to alter depending on 

the harvest time in batch cell culture. The effect of different linking number distributions 

of drug efficacy has not been investigated, but if it does have an effect then the harvest 

time becomes important for industrial process. In general government agencies require 

homogeneous drug products, or at least repeatable batches, hence the harvest time in 

batch cell culture producing plasmids may be of importance.

7.4 Effect of topology on transcription in a cell free system
The transcriptional activity of a plasmid DNA vaccine in several topological forms was 

investigated in vitro using semi quantitative reverse transcriptase PCR.

Given the different distribution of linking numbers encountered from samples taken at 

different time during batch fermentation, it was desirable to determine if the linking 

number distribution affected transcription levels. In addition, literature searches showed 

few studies that compared linear, open circular and supercoiled plasmids.

After some experiments involving attempting to quantify the levels of RNA transcripts 

produced by sensitive dyes and using DIG labeling (data not shown), semi quantitative 

reverse transcriptase PCR was used on a plasmid for which the technique had already 

been optimized.

Relaxed plasmid (both nicked by NBstNI and unwound by topoisomerase) produced 

350% (±95% and ±71% respectively) mRNA of the gene of interest compared to that 

produced by the supercoiled form. Plasmid linearised in the vector backbone produced 

similar mRNA levels to the relaxed plasmid.

All plasmid isoforms studied exhibited transcriptional activity, even those linearised and 

dephosphorylated within the promoter sequence (206% and 170% of supercoiled 

plasmid respectively) and those linearised and dephosphorylated in the open reading 

frame (64% and 43% of supercoiled plasmid respectively).

During processing, plasmids can become linearised in the plasmid backbone, in the 

promoter sequence or in the open reading frame of the gene of interest. By cutting 

plasmid with restriction enzymes in each of these three positions the effect of the site of 

linearisation was investigated. This is of particular interest if unusual DNA structures are
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included in promoter or open reading frame regions, which may result in site directed 

shear events. The potential of site directed shear events to arise is discussed in Chapter 

5. Somewhat surprising are the results from the plasmids cut with Ncol and Apal. The 

Ncol restriction site is in the middle of the CMV promoter, and Apal site is at the 

beginning of the open reading frame. A possible explanation for this is a DNA ligase 

acting in the nuclear extract and also perhaps a phosphorylating enzyme. This would 

result in the plasmids religating and so would allow transcription to occur at the observed 

low level. With respect to the plasmids cut with Ncol, the CMV promoter may exhibit 

some basal promoter activity after being cut. Alternatively the assay used may have 

been insufficiently quantitative.

The supercoiled plasmid was expressed at a lower value than might have been 

expected in comparison to the other plasmid forms. This is especially interesting given 

the wide spread belief that supercoiled form is ’better’ than the other forms. One 

explanation for this is the need to unwind the DNA in order for the host transcription 

machinery to gain access to the genes (Hames and Higgins 1984). While supercoiled 

plasmid may be more easily inserted into cells, by the time the plasmid arrives at the cell 

nucleus it may be converted to the open circular form before being transcribed.

Integration of any DNA sequence from plasmid treatments into host chromosomal DNA 

is undesirable. Such insertions have the potential to form cancers by disrupting the 

structure or expressions of genes controlling cell growth and division (Robinson et al 

1997). Investigations into integration of vaccine DNA into mouse chromosomal DNA 

failed to detect any integration events. One such study could have detected one 

integration event in 150,000 nuclei, a mutation rate estimated at 1,000 times less than 

the spontaneous mutation rate of DNA (Nichols et al 1995). Hence the risk of integration 

is minimal.

It has been shown that there is a greater chance (although still very small) of the linear 

form integrating into the host genome (Nichols et al 1995) than other plasmid forms. This 

is undesirable as it could potentially lead to detrimental gene mutations. Since studies 

have shown that the half-life of plasmid DNA is short (Lew et al 1995, Kim et al 2003). It 

seems likely that plasmid DNA is degraded within the transfected cell, and would 

become linear, no matter which form it started as. It could therefore be argued that the
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greater risk of detrimental gene mutations from linear DNA should not be a reason for 
deciding on the best form for plasmid DNA.

Plasmid multimers are seen as undesirable since they may potentially produce plasmid 

inheritance instability. The inclusion of the cer sequence in plasmids has been shown to 

reduce the amount of multimeric plasmids produced (Summers and Sherrat 1984) and 

so is recommended for inclusion in plasmid products produced in E. coli.

The supercoiled plasmid form is also not one distinct species. Within the band 

corresponding to supercoiled plasmid is a distribution of plasmids some with more and 

with some fewer supercoils. These plasmids can be separated on the basis of linking 

number by using intercalator substances.

The reason given in the FDA guidelines at the start of this chapter concerning the 

specification for a minimum amount of supercoiled plasmid present in the product have 

been shown to be inaccurate. Both open circular forms and plasmid linearised in the 

plasmid backbone are transcribed more than supercoiled plasmid. However, it is clear 

that there is a need for DNA vaccines to fulfill specific requirements in order to ensure 

batch-to-batch reproducibility. One of these criteria is ‘plasmid quality’ the percentage of 

each form of plasmid. By setting criteria for the proportion of supercoiled plasmid in the 

final product the reproducibility of the purification procedure can be monitored. Since all 

plasmid isoforms are transcriptionally active, the criteria for ‘plasmid quality’ should be 

set on a case-by-case basis.

7.5 Further work

7.5.1 Evidence of the presence of unusual DNA structures

The major criticism of the paper submitted on the basis of results in Chapter 5 (Cooke et 

al 2004), was that no proof of the unusual structures was provided in the paper. To an 

extent it can be argued that such evidence was unnecessary since the sequences 

chosen had all already been shown to exhibit unusual structures; however, several other 

items of verification were available as discussed below.

As discussed at the end of Chapter 5, two dimensional gel electrophoresis of the full 

range of topoisomers would have provided comprehensive evidence of the presence of 

the unusual structures in the system studied. Unfortunately due to time limitations and
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several failed experiments this was not possible, but would have provided some sense 
of scientific completeness.

7.5.1.1 c-MYC

There is direct evidence to showing that the nuclease hypersensitivity element III 

upstream of the c-MYC P1 promoter forms intramolecular quadruplexes (Siddiqui-Jain et 

al 2002, Simonsson et al 1998) and the motifs are published therein. Simonsson et al 

provide evidence of the quadruplex in a 2776 bp pUC based plasmid in E.coli DH5a. 

Great difficulty was encountered in sequencing [pBluescript + NHE]. The 

electropherograms of the sequencing reaction flat line at the point where the DNA 

quadruplex is expected to form. This is characteristic of strong secondary structure. 

Adequate sequencing data was only obtained after using a number of different additives 

known to remove DNA secondary structure. DMSO and betaine were tried before Lark 

managed to read through the sequence using proprietary additives.

7.5.1.2 rpBS8401

As described in Chapter 5, [pBS840] was found to have an average relative linking 

number difference 1.5 less than the parent plasmid [pBluescript II KS+] suggesting the 

formation of 16bp of triplex DNA (Glover et al 1990). [pBS840] has previously been 

shown to exhibit non-Watson Crick structure (Wang et al 1992) suggested to be “ a 

structure similar to an intermolecular triplex ”.

7.5.1.3 Coagulation factor

As described in Chapter 1, it has been well documented that alternating purine 

pyrimidine sequences form Z-DNA at levels of supercoiling encountered in E.coli. The 

choice of sequence was made so as to avoid simple repetitive sequences that have 

been shown to produce other structures as discussed in Chapter 2.

7.5.1.4 cdc2 promoter

The presence of an intrinsic bend in the cdc2 promoter was discovered using the circular 

permutation assay (Nair 1998). Nair also provides bioinformatic software predictions of 

the presence of a bend, but the accuracy of such predictions have yet to be fully tested.
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No unusual gel electrophoretic mobility generally shown to accompany bent DNA 

sequences was observed in the experiments conducted for this project. Nair claims that 

the bending locus of the cdc2 sequence is at the Taql site. Examining the sequence of 

[pBluescript cdc2] there are two Taql sites in the cdc2 insert prepared by PCR. It is 

possible that there is slight variation in the sequence of the cdc2 promoter in the 

population, or that there was an error in sequencing, or spontaneous mutation in either 

the sequence cloned by Nair or the author.

Apal Smal Taql Styl Nsil

Genbank cdc2 sequence
(656 bp)

Apal Taql Smal Taql Styl Nsil

cdc2 sequenced
(675 bp)

Figure 7.1 Comparison of restriction map between the cdc2 promoter given in Genbank 

(top) and sequenced from the clone produced in this project (bottom). The presence of two 

Taql sites in the promoter used in this project may indicate that the promoter is not bent 
as has been previously reported.

Scrutinizing the circular permutation assay data obtained by Nair, the pattern obtained 

by cutting with Taql may be a result of the presence of two Taql sites being present in 

the sequence, rather than a single site in an intrinsically bent sequence.

In order to examine this possibility further PCR of the cdc2 promoter ought to be carried 

out from different sources and the products sequenced to see if two Taql sites are 

present between the Nsil and Apal sites. If the sequencing data shows the presence of 

two Taql sites within the region then it would cast doubt over the existence of the bend 

reported by Nair. Significant differences between cdc2 promoters cloned from different 

sources would be of interest to biological anthropologists and palaeo geneticists.

In order to verify this finding, the circular permutation assay could also be carried out, 

perhaps using Styl, Hinfl, Narl and Stul, with Taql used for interest. The Hinfl site is 

adjacent to the Taql site, however it should also be ensured that this enzyme cuts the 

cdc2 promoter sequence only once. The published sequence shows two Hinfl sites, 

while the cdc2 insert cloned for this project had only one site.
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7.5.2 Shear damage to the triplex plasmid

As described in Chapter 5, attempts were made to determine the site of shear damage 

in the triplex containing plasmid [pBS840]. Further experiments would be required to see 

if the damage occurred at the triplex itself.

The effects on efficacy of the reduced percentage of supercoiled plasmid compared to 

other constructs would have to be investigated with a plasmid product that included a 

triplex sequence.

7.5.3 Effect of freeze-thaw on plasmid topology

Effects of freeze-thaw on plasmid topology have been known for some time by molecular 

biologists but has not been the subject of in depth study. In order to examine the effects 

in more detail plasmid could be repeatedly freeze-thawed with samples removed after 

each cycle for testing.

7.5.4 Effect of supercoiling level on plasmid production

As described in Chapter 1, it is possible to manipulate the levels of plasmid supercoiling, 

by heat shock, cold shock or by altering host DNA gyrase expression levels, perhaps in 

an inducible manner. Plasmids with different levels of supercoiling might be more or less 

susceptible to mechanical shear damage.

7.5.5 Effect of cell state on plasmid linking number distribution

In order to see the effects of cell state on linking number, chemostat culture could be 

used. This would generate plasmid with tight distributions of linking numbers as cells 

should be in the same physiological state. It has been suggested that linking number 

could be used as a sensitive assay to any changes in cell culture conditions (Uden and 

O’Kennedy personal communications).

7.5.6 Effect of plasmid topology on product efficacy

While limited in focus, the investigation into the effect of plasmid topology on 

transcription levels in a cell free system provided insight into the effects that different 

plasmid topologies will have on drug efficacy once delivered into the correct cellular 

compartment.
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A series of experiments is being undertaken at GSK Beckenham, in order to determine 

the influence that plasmid form has on total drug efficacy. Initially experiments are being 

conducted using mammalian cells with each plasmid isoform, in order to establish 

transcription and translation levels over time, as well as how long each form remains in 

the cell. The effect of plasmid topology on the efficacy of different delivery methods 

could also be investigated in vivo.
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Appendix 1: C D - ,  ‘E - H P -  and T -  DNA

C -  DNA should not be confused with cDNA (below). At high levels of humidity of 57- 

66% C -  DNA is formed in fibres and with a helical repeat of 9.3 bp per turn with a 

diameter of 1.9nm (Marvin et al 1961). It seems likely that this form does not occur in 
vivo.

cDNA, meaning complementary DNA, is the term applied to DNA produced from RNA by 

reverse transcriptase (and hence contains no introns). Initially single stranded, the cDNA 

is converted to double stranded DNA by DNA polymerase. Depending on sequence and 

environmental conditions cDNA could adopt any of the forms described herein.

D -  DNA may be formed by alternating purine and pyrimidine sequences. D -  DNA has 

a helical repeat of 8.5 bp (Arnott et al 1974).

There have been two different reports of ‘E -  DNA’. The first of these was by Arnott in 

1980 and is in fact B -  DNA with a 48° twist angle (Leslie et al 1980). The second by 

Vargason et al in 2000 was described as a new form of DNA (Vargason et al 2000). The 

analysis program used in determining the crystalline helical parameters for the ‘E -  DNA’ 

however, uses unconventional reference frames and different definitions than decided 

upon in the Cambridge meeting of 1988 (Dickerson et al 1989). As explained by Ng and 

Dickerson, the structures described by Vargason et al are in the range between A -  and 

B -  DNA. DNA often lies within this range due to the ribose ring conformation in different 

solution conditions, as previously described (Ng and Dickerson 2001).

H -  DNA is the term originally used to describe triple stranded DNA (Mirikin et al 1987) 

which is discussed in detail in chapter one.

P -  DNA is a very unusual structure in which the phosphate backbone lies within the 

DNA with the bases on the outside of the structure. This conformation of DNA was first 

suggested before the Watson and Crick model was published, although involved three 

and not two strands (Pauling and Corey 1953). Attaching one end of a DNA strand to a 

flat surface, and the other to a magnetic bead Allemand et al (Allemand et al 1988) were 

able to produce some DNA adopting the Pauling structure. This was achieved by using 

magnets to control the position of the bead, hence stretching and twisting the DNA. A 

force of 3pN was found to be required for an 18bp sequence. Whether or not DNA will 

be exerted to forces of this magnitude in nature is open to debate. However, P -  DNA
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has been found in vivo in the bacteriophage Pf1 (Liu and Day 1994). The P -  DNA form 
is believed to be the most elongated in existence.

B-DNA P-DNA

Figure A1.1 S tru c tu re  o f P -D N A  d ed u ced  fro m  m o lec u lar m o d e llin g . S p ace-fillin g  m o d els  

o f a (dG )18 (d C )18  fra g m en t in B -D N A  (Left) and P -D N A  (R ig h t) co n fo rm atio n s . The  

backb on es are co lou red  purple, and the bases are co lou red  b lue (g u an in e ) and ye llo w  

(cy tos ine ). F igure ad ap ted  fro m  A llem an d  e fa /1 9 9 8

T -  DNA is found from some bacteriophages (T2, T4 and T6) and has a most unusual 
structure. Instead of the usual cytosine base, T -  DNA contains an a-Glucosylated 
derivative of 5 -  Hydroxymethylcytosine that is often glycoslyated (Carlson et al 1994). 
This protects the phage DNA from nucleases that break down host nucleic acids during 
infection. The modified cytosine base produces a drastic change to the normal B-DNA 
structure, producing DNA with 8 bp per turn called T-DNA (Paddock and Abelson 1975).
Cytosine 5 -  Hydroxymethylcytosine

l"k  /H  
N

[ l ^ N

N O

hk hk  
0  N

N O

F igure A 1 .2  C o m p aris o n  o f cy to s in e  and  5 -h yd ro xy m e th y lc y to s in e
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G-C G-hydroxymethylcytosine
H OH

H OH

H2C — O H
H2C — OH

HC'
HC'

H O — C H2
HO — CH 2

OH HO H  H

Figure A1.3 Comparison of the base pairing of Guanine -  Cytosine and of Guanine - 5 

hydroxymethylcytosine. Due to the presence of the hydroxymethyl group on the cytosine 

base, DNA containing 5 hydroxymethylcytosine adopts a structure with 8 bp per helical 
turn rather than the usual 10.5 bp.

Another use of the term T -  DNA is applied to the transfer of DNA for the purposes of 

generating transgenic plants. As for cDNA, the structure of this would be dependent 

upon sequence and environment.
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Appendix 2: Commercialisation of technology

A2.1 Introduction

During the course of my PhD I was given the opportunity to take the ‘New Technology 

Ventures’ second year module from the Master Of Business Administration course at 

London Business School. The Centre for Scientific Enterprise funded this period of 

study and this section is a requirement of my attendance on the course. The need to 

maximise product patent life is discussed with particular emphasis to research into 

plasmid-based products.

A2.2 The patent system

In order to encourage technological discoveries, world governments generally recognise 

the patent system. A granted patent provides the holder with a 20 year monopoly on the 

new invention for commercial application.

Within two months of coming off patent, generics typically reduce sales of the original 

product by 70 to 80% (IMS data).
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Figure A2.2: Sales of Zantac, anti ulserant drug from 1982 - 2003. Zantac patent expired 

April 1997. Source Glaxo Holdings, Glaxo Wellcome and GlaxoSmithKline company 

reports.

With patent life set at 20 years, there is a need to minimise the time between the patent 

application and drug launch, in order to maximise the monopoly.
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In an attempt to compensate for the future patent expiry on key products looming, there 

has been a significant increase in R&D spending by the industry.

A2.3 R&D investment

Investment in research and development in the pharmaceutical industry as a whole has 

been rising at considerable rate since the 1980s, with no significant increase in the 

numbers of new products released annually.

While pharmaceuticals are relatively inexpensive to produce, the costs involved in 

getting a drug to market are very high. It is estimated that, including the costs of failures, 

a successful product currently costs over $ 1000m to develop (Deutsche Bank), although 

this is set to fall with tax exemptions on some research costs.

C/>

00***
CD

0
1

*“* -  Total number of new drugs approved 

Research and Development Spend

Figure A2.3 R&D expenditures on ethical pharmaceuticals, 1980 - 2002. Deutsche Bank 

Estimates

Some of the reasons for the rise in spending include:
large cash flows from previous products and the threat of patent expiry 

- an increase in the amount of clinical trial data required before drug approval 

an increase in the costs of producing new entities to test 

investment in new technology platforms

Pharmaceutical companies are no longer solely relying on methods, nor methods of 

action that produced many of the blockbuster drugs in the past. New drug discovery
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methodologies and new drug classes require more upfront investment than with 

established methods. The view across the investment industry is that as the human 

genome becomes more fully understood, new drug targets will be discovered.

A2A DNA vaccines

One technology platform that has received significant investment is DNA vaccines. 

These represent a step change in vaccination against viruses. They have several 

advantages over more conventional treatments. Production of DNA vaccines does not 

require cultivation of dangerous or infectious agents, and unlike some viral vectors that 

have been used for gene delivery there is no risk of an attenuated virus back mutating 

and recreating the virulent form. DNA vaccines may also provide treatment against 

diseases for which the production of attenuated virus has so far proven unsuccessful 

e.g. HIV. There is also the potential to co-administer treatments against a number of 

diseases, on a single or multiple plasmid vectors.

Manufacture of pharmaceutical grade plasmid is envisaged to be a generic process that 

would be substantially less expensive than for other therapies:

Proteins consist of 22 amino acids with a range of characteristics. Hence proteins are 

molecules with substantially different physico-chemical properties such as 

hydrophobicity, temperature stability, pH stability, ionic strength, sensitivity to metal ions 

and sensitivity to protease. The extensive differences in the physical properties of 

proteins have lead to the requirement for a wide range of different methodologies to be 

applied to the purification of individual proteins.
Plasmids on the other hand are made of only 4 nucleotides with very similar properties. 

It has therefore been assumed that all high copy number plasmids below around 15 kb 

will be produced using the same method each time. Lower copy number and larger 

plasmids may require different purification protocols (Shamlou, 2003).

A2.5 Commercial application of this research

A strong incentive for investment into DNA vaccines are that, if they are shown to work, 

then the same production methods will be able to be employed to produce products 

vaccinating against a variety of diseases. They also have the potential to work 
alongside more conventional therapies increasing their effectiveness (Shiver et al 2002, 

Amara et al 2001). The results from Chapter 5 show that certain sequences of DNA
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should be avoided in plasmids produced in an E.coli production system. Sequences put 

into plasmids could be easily screened using bioinformatics software for regions with the 

potential to form Z-DNA and cruciform structures. Identifying and avoiding such 

sequences at an early stage of research ought to allow the resources of pharmaceutical 

companies to be used more effectively. Following publication of the bulk of the results 

given in Chapter 5, this information is now freely available across the industry (Cooke et 

al 2004).

It is likely that progress with gene therapy and/or DNA vaccine research will depend 

upon collaboration between a number of companies. This is because different firms own 

the rights to many of the core technologies, including delivery mechanisms, production 

systems, formulation methods, delivery vectors and gene sequences (Bossart and 

Pearson 1995). By publishing results demonstrating research interests, GSK maintain 

their reputation as an attractive business partner to prospective collaborators.

Continued research with the sequences used during the project might allow alternative 

production and purification techniques to be developed, which might be required if future 

products are to include unusual structural features. Any such developments could be 

the subject of patents.

As plasmid products are a new class of drug, the FDA will require a large amount of 

product information before approving products. With particular respect to DNA vaccines 

and gene therapy products, considerable research has been carried out into producing 

plasmids in the supercoiled form. The results presented in Chapter 6 however, suggest 

that this might not be the most effective form. Pre-clinical studies are required to 

determine the most effective forms with given plasmid delivery methods, in order to give 

products the best chances of success in later trials.
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Appendix 3: Nomenclature

ds - double stranded

- cell growth rate

ALk - Linking number difference

Pmax - maximum cell growth rate

CAP - Calf Alkaline Phosphatase

DIG - Digoxigenin

GSK - GlaxoSmithKline

KanR - Kanamycin resistance gene

LBS - London Business School

MCS - Multiple cloning site

NHE - Nuclease hypersensitivity element

OC - Open circular plasmid

OD - Optical density

PDGF - Platelet-derived growth factor

SAP - Shrimp Alkaline Phosphatase

SC - Supercoiled plasmid

t - time

td - doubling time

Tw - Twist number

UCL - University College London

WCW - Wet cell weight

Wr - Writhing number

X - cell number

Xo - cell number at time 0
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