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Abstract

KSHV infection is associated with both endothelial and B cell tumours. In 

KSHV the genes expressed in latency have been implicated in cell 

transformation. vFLIP is one of a small number of viral proteins expressed in 

latently infected tumour cells. In KSHV-infected primary effusion lymphoma 

(PEL) cells, vFLIP binds to, and persistently activates the IkB kinase complex, 

leading to constitutive activation of the canonical NF-kB pathway. We have 

previously shown in our lab that vFLIP directly interacts with the IKKy subunit 

of the IKK complex (Field, et a/., 2003) to activate IKK. In this report, we 

demonstrate that vFLIP also activates the alternative NF-kB pathway, which 

involves processing of the p100 protein precursor and generation of the p52 

subunit. Stable vFLIP expression in Jurkat cells stimulates expression of 

endogenous p100 and nuclear accumulation of p52 and RelB. Metabolic 

radiolabelling of transiently transfected 293T cells indicates that vFLIP 

promotes proteolysis of p100 and active generation of p52. Moreover, we 

show that vFLIP associates with p100 when over-expressed in Jurkat cells, or 

when endogenously expressed in PEL cells, and a region in the C-terminus of 

p100, which includes the p100 DD, is identified as the vFLIP binding region. 

Finally, inhibition of p100 and p52 production mediated by siRNA knockdown 

leads to the induction of apoptosis in PEL cells, inferring that vFLIP activation 

of the alternative NF-kB pathway contributes to PEL survival. These data 

demonstrate that vFLIP activates both canonical and alternative NF-kB 

pathways, a property shared with the Tax oncoprotein of HTLV-1 and LMP1 of 

EBV. In addition, we have examined the effect of vFLIP on primary human 

dermal microvascular endothelial cell (MVEC) survival, as vFLIP is expressed 

in the KSHV-infected cells within KS lesions. Stable vFLIP expression in 

MVECs induces the activation of the classical NF-kB pathway and the nuclear 

translocation of RelA/p65. vFLIP-mediated NF-kB activation prevents 

detachment-induced apoptosis (anoikis) of MVECs, but does not inhibit 

growth factor removal-induced apoptosis, by inducing the secretion of an 

additional paracrine survival factor(s). These data strongly support an 

important role for vFLIP in NF-kB activation, which may be crucial for cell 

transformation by KSHV, for the survival of infected cells, and for metastasis.
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Chapter 1

Introduction

This study is an effort to further characterize the functions of the viral FLIP 

protein encoded by Kaposi’s sarcoma-associated herpesvirus (KSHV). vFLIP 

is a multifunctional protein and one of the few proteins expressed during the 

latent phase of the viral life cycle. This protein was originally believed to 

protect virally-infected cells from death receptor-induced apoptosis, but has 

since been described as a unique protein among the viral FLIPs in its ability to 

activate the NF-kB signalling pathway. The first section of the introduction 

presents a review of the current literature on the biology of KSHV, with special 

attention paid to other KSHV genes that have important roles in viral 

pathogenesis and oncogenesis. The second section describes the NF-kB 

pathway, its mechanisms of activation, and its regulation. These sections 

provide the context for an account of the vFLIP protein of KSHV, its structure, 

and known functions, which comprises the third section.

17



1.2 Kaposi’s sarcoma-associated herpesvirus (KSHV)

1.2.1 Discovery of KSHV

In 1981, amidst reports of an increased incidence of Pneumocystis carinii, a 

highly aggressive form of Kaposi’s sarcoma (KS) was identified and termed 

“epidemic KS” (Borkovic and Schwartz, 1981; Gottlieb etal., 1981). These two 

events heralded the onset of the AIDS epidemic (Service, 1981), which has 

killed more than 25 million people since it was first recognized on June 5, 

1981, making it one of the most destructive epidemics in recorded history 

(UNAIDS/WHO 2006 AIDS epidemic update). Kaposi’s sarcoma is an unusual 

neoplasm first described by the Hungarian dermatologist Moritz Kaposi in 

1872, who published the case histories of five elderly male patients with 

“idiopathic multiple pigmented sarcomas of the skin” (Kaposi, 1872). This form 

of the disease, which later became known as “classical KS”, affects elderly 

men of Mediterranean, Arabic or Jewish ancestry and is typically an indolent 

disease that affects the extremities and is rarely life threatening (Franceschi 

and Serraino, 1995). However, two other, more aggressive clinical forms of 

KS are now recognized. In some equatorial countries of Africa, KS has existed 

for many decades and has long preceded the emergence of HIV. This variant, 

known as “endemic KS”, occurs in young children in the endemic zones in 

equatorial Africa and results in aggressive lymphadenopathy, rather than skin 

lesions (Bayley, 1984; D'Oliveira and Torres, 1972). Moreover, KS has been 

observed in renal transplant recipients and other patients receiving 

immunosuppressive therapy (similar to epidemic or AIDS-related KS), and is 

now known as iatrogenic or “post-transplant KS”(Harwood et al., 1979).

Not until the advent of the AIDS epidemic, which drew attention to KS, did 

large-scale epidemiological studies of human immunodeficiency virus (HIV)- 

infected populations, produce strong evidence of a transmissible agent as the 

most likely etiological cause of KS (Beral et al., 1990). Although first 

suspicions fell on HIV, it soon became clear that HIV infection alone could not 

account for KS development, as most cells, and all spindle cells, in an AIDS-

18



KS biopsy do not harbour the HIV genome (Staskus et al., 1997). As KS most 

commonly develops in homosexual men with AIDS, rather than hemophiliacs 

with AIDS, or those who acquired the HIV virus through heterosexual contact 

(Beral et al., 1990), it was likely that a sexually transmitted cofactor was 

involved in KS pathogenesis. The breakthrough in confirming the infectious 

nature of KS was reported in a seminal paper by Chang and colleagues in 

1994. After examination of KS and normal tissue by representational 

difference analysis, trying to identify DNA sequences present in KS but absent 

in normal tissue, they discovered two DNA fragments that were uniquely 

present in the diseased tissue of an AIDS-KS patient, the first sighting of the 

KS-associated herpesvirus (KSHV) genome (Chang et al., 1994). The 330 

and 631 bp fragments were found to have significant amino acid identity to the 

capsid and tegument proteins of two primate gammaherpesviruses, Epstein- 

Barr virus (EBV) and herpesvirus saimiri (HVS), both capable of cellular 

transformation. From this point, molecular clones of the entire viral genome 

were developed (Moore et al., 1996; Zhong et al., 1996), and researchers 

could determine its complete DNA sequence (Russo etal., 1996). Soon after, 

DNA belonging to KSHV was detected in cells derived from patients with 

primary effusion lymphoma (PEL), a rare lymphoma of B cells normally 

associated with AIDS (Cesarman et al., 1995a; Cesarman et al., 1995b). 

KSHV was also sequenced from a KS biopsy (Neipel et al., 1998) and 

herpesvirus-like KSHV virions were visualized by electron microscopy 

(Orenstein et al., 1997). Together, these data confirmed the classification of 

KSHV as the eighth human herpesvirus (HHV-8).

1.2.2 Viral Taxonomy

As determined by its genomic structure and sequence (Davison, 2002), KSHV 

has been assigned membership of the y-herpesvirus sub-family of mammalian 

herpesviruses, which is characterized by the ability of the herpesviruses to 

replicate in lymphoblastoid cells. This can be further divided into two genera, 

namely the y-1 or Lymphocryptovirus group, of which Epstein Barr virus (EBV) 

is the prototype member, and the y-2 or Rhadinovirus group, of which 

herpesvirus saimiri (HVS) is the classic prototype (Fickenscher and 

Fleckenstein, 2001; Moore and Chang, 2001). KSHV is currently the single
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known human member of the Rhadinovirus genus, its closest human relative 

being EBV (Alba et al., 2001; McGeoch and Davison, 1999; Montague and 

Hutchison, 2000). The human herpesviruses are listed in Table 1.1. Although 

KSHV was thought to be more closely related to herpesvirus saimiri (HVS) of 

squirrel monkeys within the y-2 herpesviruses, it has recently become 

apparent that rhadinoviruses more closely related to KSHV exist among Old 

World monkeys, including several macaque species and African green 

monkeys (Desrosiers etal., 1997; Greensill etal., 2000; Rose etal., 1997).

Old World primate y-2 viruses can be divided into two further groups, based 

on phylogenetic analysis of their available sequences. The first group is the 

retroperitoneal fibromatosis herpesvirus (RFHV) group, and KSHV is its only 

human member. The RFHV group also comprises two viruses detected by 

concensus PCR in retroperitoneal fibromatosis lesions of different macaque 

species. One of them was detected in lesions from pigtail macaques 

(Macacca nemestrina) and is termed RFHVMn, and the other in rhesus 

macaques (Macacca mulatta) and is called RFHVMm (Rose etal., 1997). This 

group also has a member derived from African green monkeys (Chlorocebus 

aethiops), the virus ChRV1 (Greensill et al., 2000). The second group is 

composed of another virus from rhesus macaques, called rhesus rhadinovirus 

(RRV) (Desrosiers et al., 1997), and a virus from African green monkeys, 

called ChRV2 (Greensill et al., 2000). KSHV seems to be more closely related 

to RFHVMn and RFHVMm, within the RFHV-like lineage (McGeoch, 2001), 

although some studies have suggested that RRV is the equivalent of KSHV in 

rhesus macaques (Searles et al., 1999), as they have a similar genome 

organization and share most of the genes first identified in KSHV. An 

evolutionary tree for herpesviruses of the y sub-family is shown in Figure 1.1. 

Moreover, KSHV-related sequences have also been detected in gorillas and 

chimpanzees (Lacoste et al., 2000). With KSHV being the only human 

member of the RFHV group, the possibility remains that there is an as yet 

undetected human herpesvirus in the RRV group.
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Figure 1.1 Composite phylogenetic tree for the y-Herpesvirinae

The top-scoring tree for y-Herpesvirinae obtained by a maximum-likelihood method (Codeml) based on 
eight-gene alignment (the inference of the phylogenetic tree is described in Materials and Methods of 
McGeoch et al. 2000). The region of uncertain branching around MHV4 is drawn as a multifurcation (heavy 
line). For purposes of presentation and for combining data from different trees, top-scoring trees were 
converted to a form that imposed a constant molecular clock to facilitate the interpolation of the different 
species. The time scale is based on a value of 47.6 Myr before present for the divergence of Old World and 
New World primate viruses (Kumar and Hedges, 1998). Sub-lineage designations are at the right Figure 1.1 
and the above figure legend have been generated by reproducing data from Figures 1 and 2 of McGeoch 
2001, and Figure 4 of McGeoch et al. 2000, with the kind permission of Prof. Duncan J. McGeoch (Medical 
Research Council Virology Unit, Institute of Virology, University of Glasgow,  

). EBV, Epstein-Barr virus; HVP, Herpesvirus papio; HHV8, human herpesvirus 8 (or 
KSHV); RFHV, retroperitoneal fibromatosis herpesvirus of macaques; RRV, rhesus rhadinovirus; MHV4, murine 
herpesvirus 4; BHV4, bovine herpesvirus 4; HVA, Herpesvirus ateles; HVS, Herpesvirus saimiri; EHV2/5, equine 
herpesvirus 2/5; AHV1, alcelaphine (wildebeest) herpesvirus 1; PLH1/2, porcine lymphotropk herpesvirus 
1/2.

Human Herpesviruses

Type Synonym Subfamily Pathophysiology

HHV-1 Herpes simplex virus-1 
(HSV -1)

a
(alpha) Oral and/or genital herpes (predominantly orofacial)

HHV-2 Herpes simplex virus-2 
(HSV -1)

a Oral and/or genital herpes (predominantly genital)

HHV-3 Varicella zoster virus 
(VZV)

a
Chickenpox and shingles

HHV-4 Epstein-Barr virus 
(EBV)

Y
(gamma)

Infectious mononucleosis, Burkitts lymphoma, CNS lymphoma in AIDS 
patients, posttransplant lymphoproliferative syndrome (PTLD), 

nasopharyngeal carcinoma

HHV-5 Cytomegalovirus
(CMV)

P
(beta)

infectious mononucleosis-like syndrome, retinitis

HHV -6. -7 Roseoiovirus P Sixth disease(roseo!a infantum or exanthem subitum)

HHV-8
Kaposi's sarcoma 

associated herpesvirus
(KSHV)

Y Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), a variant of 
multicentirk: Castlemaiis disease (MCD)

Table 1.1 Human Herpesviruses and their common infections
(Abbreviation: HV, herpesvirus)
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1.2.3 Virion Structure

Herpesvirus virions are large, 200-500 nm in diameter, and share a 

characteristic architecture in which the double-stranded DNA genome is 

surrounded by a thick-walled nucleocapsid, a proteinaceous tegument layer 

(Steven, 1997), and a lipid bilayer envelope, which is derived from the host 

cell membrane but is studded with viral glycoproteins (Gibson, 1996; Homa 

and Brown, 1997). The genome of the virus is packaged as linearised double- 

stranded DNA at the core of this structure in liquid-crystalline form (Booy et 

al., 1991). The 3D structure of the HHV-8 capsids revealed a capsid shell 

composed of 12 pentons, 150 hexons, and 320 triplexes arranged on an 

icosahedral lattice (Wu et al., 2000) (Figure 1.2). This structure is similar to 

those of herpes simplex virus type 1 (HSV-1) and human cytomegalovirus 

(HCMV), which are prototypical members of a- and p-herpesviruses, 

respectively.

1.2.4 Genomic Organisation

The KSHV genome consists of a single long unique region (LUR) with low GC 

content (53.5%), which contains all of the coding sequences, flanked at each 

end by terminal repeats (TRs) with high GC content in excess of 84% (Russo 

et al, 1996; Schulz 1998). Similar to other rhadinoviruses, the LUR of KSHV 

comprises of 140.5 kb of “unique” DNA containing at least 85 open reading 

frames (ORFs), nearly 70 of which share sequence similarity to related 

gammaherpesviruses (Russo et al, 1996; Moore et al, 1996b; Neipel et al, 

1997). The coding DNA is flanked by multiple 801 bp terminal repeats (Russo 

et al, 1996), to give a total size, estimated by native agarose gel, of 170 kb 

(Renne et al., 1996a). The genome bears remarkable similarity to that of HVS, 

and the nomenclature of KSHV genes is derived from HVS, as the prototype 

of rhadinoviruses. The two viruses share 66 homologous genes upon which 

this nomenclature is based (Russo et al., 1996). Within KSHV, these genes 

are numbered consecutively from left to right across the genome and given 

the prefix “ORF” (open reading frame). Novel ORFs, originally thought to be 

unique to KSHV, are interspaced within this structure and are designated K1 

to K15. However, K3 (MIR1), K5 (MIR2), K7 (vlAP) and K13 (vFLIP) have
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subsequently been found to have homologues and some additional unique 

genes have been added (including K4.1, K4.2, K8.1, K10.1, K10.5, K11.1, 

K14.1). Approximately half of the genes encoded by KSHV have now been 

ascribed a function, largely on the basis of sequence similarity to genes of 

known function (Holzerlandt etal., 2002; Jenner and Boshoff, 2002). Amongst 

these genes are a striking number that have been pirated from the host during 

viral evolution, including viral homologues of interleukin-6 (vlL-6), IL-8R, Bcl-2, 

cyclin D, a G protein-coupled receptor and cFLIP. It has been proposed that 

many of these “pirated” genes were acquired because they allow the virus to 

directly manipulate the host cellular machinery (Choi et a/., 2001; Moore and 

Chang, 1998; Neipel et a/., 1997). The structure of the KSHV episome is 

depicted in Figure 1.3.

Although most of the LUR is highly conserved, there is marked sequence 

variability in the regions adjoining the terminal repeats, which manifest the 

contemporary evolution of KSHV. At the left end, the K1 gene, encoding a 

type 1 membrane glycoprotein, has evolved into four groups, whose protein 

sequences may vary by up to 40%. The K1 gene is therefore used to type 

KSHV into various subtypes (A, B, C, and D), which appear to correlate with 

the geographical origins of the viral isolates (Zong etal., 1999). This pattern of 

variability is consistent with the idea that the four major KSHV clades evolved 

with individual populations (Cook et al., 1999). At the right end of the viral 

genome, there is the K15 gene, expressed as a multiply spliced mRNA, which 

encodes a latent membrane protein, and has been substituted in some 

lineages by a distant homolog from an unknown herpesvirus (Glenn et a/., 

1999; Poole etal., 1999).
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Figure 1.2 Three dimensional structure of the HHV-8 capsid

3D structure of the HHV-8 capsid at 24-A resolution as viewed along the icosahedral twofold axis 
from the outside. The map is colour coded according to the particle radius (see colour bar at the 
bottom right), such that the upper domains of the pentons and hexons are in blue (between radii 
of 570 and 650 A), the connecting triplexes are in green (between radii of 510 and 560 A), the shell 
is in yellow (between radii of 460 and 510 A), and the densities inside the capsid shell are in red 
(<460-A radius).The capsid has a T=16 icosahedral symmetry (3 of the 12 fivefold axes are labelled 
5, and 1 of the 20 triangular faces is outlined by a red dashed line), with the unique structural 
components in one asymmetric unit labelled, following the nomenclature established for HSV-1 
(Steven etal., 1986; Zhou etal., 1994).These components include one-fifth of a penton (labelled 5), 
two and one-half hexons (one P, one C, and one-half of an E), and five and one-third triplexes (one 
each of theTa,Tb,Tc,Td,andTe triplexes and one-third of the Tf triplex). Figure 1.2 and the above 
legend were generated by reproducing Figure 2 from Wu etal. 2000, with the kind permission of 
Dr. Z. Hong Zhou (Electron Imaging Center for Nanomachines, and Department of Microbiology, 
Immunology, and Molecular Genetics, UCLA, Los Angeles, ).
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Figure 1.3 Structure of the KSHV episome

Numbers outside of the episome represent nucleotide base pairs in kilobases. Numbers within the 
episome indicate KSHV-encoded ORFs. Novel ORFs not present in other herpesviruses are designated 
K1 to K15. Blue arrows indicate ORFs encoded in a 5 'to 3' positive polarity. Red arrows indicate ORFs 
encoded in a 3'to 5 'negative polarity. Green arrows indicate ORFs encoding proteins expressed during 
latent infection. Annotations outside the episome indicate the putative function of each ORF. ORFs 71 
to 73 are transcribed from the same promoter on a polycistronic transcript and the splice site for the 
intron is indicated.TR, terminal repeat DNA domains (pink stripes); CBP, complement-binding protein; 
ssDBP, single-stranded DNA binding protein; gB, glycoprotein B; DNA Pol, DNA polymerase; vlL-6, viral 
interleukin-6 homolog; DHFR, dihydrofolate reductase; vMIP, macrophage inflammatory protein; nut-1, 
nuclear tRNA-like transcript’ vBcl-2, B-cell leukaemia/lymphoma-2;TK, thymidine kinase;TS, thymidylate 
synthase; gH, glycoprotein H; gM, glycoprotein M; UDG, uracil DNA glucosidase; gL, glycoprotein L; 
vFLIP, viral FLIP; vcyc, viral cyclin; vGPCR, viral G-protein-coupled receptor; (P), predominant form of 
K15; aa, amino acids; IRES, internal ribosomal entry site. Figure 1.3 and the above figure legend were 
generated by reproducing Figure 1 from Sharp and Boshoff, 2000, with the kind permission of Prof. 
Chris Boshoff (Cancer Research UK Viral Oncology Group, Wolfson Institute for Biomedical Research, 

).
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1.2.5 KSHV Associated Neoplasms

1.2.5.1 Kaposi’s sarcoma

KS is an unusual multi-focal lesion, characterized by early (patch), 

intermediate (plaque), and advanced (nodular) stages. Early KS lesions 

(patch stage) consist of blood vessels, scattered spindle cells, and a 

prominent inflammatory component of T cells, monocyte-macrophages, and 

dendritic cells (Fiorelli etal., 1998; MacPhail etal., 1996). These cells produce 

Th-1 type cytokines. As explained below, these cytokines are thought to 

activate endothelial cells to acquire the characteristic KS ‘spindle cell’ 

phenotype (Fiorelli et al., 1998; Miles etal., 1990; Sirianni etal., 1998; Sturzl 

et al., 1995). As the lesion progresses to the plaque stage, the initially sparse 

spindle cells proliferate and expand through the dermis, forming irregular 

vascular channels containing red blood cells. The later nodular stage lesions 

are composed of masses of spindle cells arranged in sheets to form 

macroscopically visible nodules (Boshoff and Weiss, 2001). In individual 

nodules, the KS spindle cells are usually clonal and are therefore considered 

the predominant cell type in these advanced lesions (Cockerell, 1991).

The precise origin of spindle cells is not known. Although the majority express 

endothelial markers, such as CD31 and CD34 (Sturzl et al., 1992; Weich et 

al., 1991), KS spindle cells display significant heterogeneity in marker 

expression. Many also express molecular markers suggesting lymphatic 

origin, including vascular endothelial growth factor receptor-3 (VEGF-R3), 

podoplanin, and lymphatic vessel endothelial receptor 1 (LYVE-1) (Dupin et 

al., 1999; Jussila etal., 1998; Weninger etal., 1999). However, some cells are 

more characteristic of smooth muscle, macrophages and dendritic cells 

(Nickoloff and Griffiths, 1989; Sturzl et al., 1992; Uccini etal., 1994), leading 

researches to speculate that spindle cells may arise from pluripotent 

mesenchymal precursors. Another view, which is more favoured, suggests 

that KS spindle cells probably belong to an endothelial precursor that can 

differentiate into lymphatic cells, given the data on the ubiquitous expression 

of VEGFR-3 by spindle cells (Jussila et al, 1998; Dupin et al, 1999), and the
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observation that clinical KS virtually never arises in tissues that lack 

lymphatics (e.g. the central nervous system) (Herndier and Ganem, 2001).

In early KS lesions, only a small proportion (<10%) of spindle and endothelial 

cells are positive for KSHV (Dupin et al., 1999), and although KSHV can 

transform primary human endothelial cells in vitro (Flore et al., 1998), KSHV 

genomes are not found in every transformed cell. This indicates that a 

paracrine contribution, such as the exchange of cytokines between cancer 

and host cells, is important spindle cell formation and the progression of KS 

lesions(Dupin et al, 1999). Both spindle cells, and the infiltrating inflammatory 

cells, express high levels of cellular IL-6 (clL-6), basic fibroblast growth factor 

(bFGF), VEGF, IL-1p, TNFa and IFNy (Fiorelli etal., 1998; Miles etal., 1990; 

Salahuddin et al., 1988). clL-6 promotes growth of KS cells in vitro (Miles et 

al, 1990), and IFNy induces a spindle cell-like phenotype in endothelial cells 

(Fiorelli et al, 1998) and also reactivates latent virus (Chang et al., 2000b). 

VEGF functions in synergy with bFGF as a KS cell growth factor, enhancing 

the development of KS-like lesions when human AIDS-KS cells were injected 

into mice (Ensoli et al., 1989). Therefore it appears that unlike classical 

tumour cells, KS spindle cells are highly dependent upon paracrine growth 

signals, and KS lesions are “cytokine driven” tumours.

In nodular lesions, >90% of the spindle cells contain latent KSHV (Boshoff et 

al., 1995; Dupin et al., 1999; Staskus et al., 1997). The KSHV latent proteins 

have the ability to induce cell growth, to block apoptosis and host immune 

responses, and to induce neoangiogenesis. These data infer that, unlike 

many of the classical tumours such as breast or colon cancer, KS begins as a 

polyclonal hyperplasia in which infected cells have a growth advantage (An et 

al., 2002; Dupin et al., 1999; Radkov et al., 2000). This conclusion is 

supported by analyses of tumour clonality. Studies of X chromosome 

inactivation patterns suggest that both monoclonal and polyclonal patterns of 

inactivation exist (Delabesse et al., 1997; Rabkin et al., 1995; Rabkin et al., 

1997). A study of size heterogeneity in KSHV terminal repeats in nodular 

lesions demonstrated monoclonal, oligoclonal and polyclonal patterns of



infection, implying that KSHV infection preceded tumour expansion (Judde et 

a/., 2000).

1.2.5.2 Primary Effusion Lymphoma

Primary Effusion Lymphoma (PEL) is a rare malignant effusion of the 

peritoneal, pleural or pericardial cavities (hence originally called body cavity- 

based lymphoma, BCBL), usually without significant tumour mass or 

lymphadenopathy (Arvanitakis, 1996). These lymphomas occur predominantly 

in HIV-infected individuals with advanced stages of immunosuppression, but 

are also seen occasionally in HIV seronegative patients (Boshoff and Weiss, 

1998; Schulz, 1998). The lymphoma cells combine features of immunoblastic 

and anaplastic large cell lymphomas (Gaidano et at., 1996). They display a 

large cytoplasm, irregular and pleomorphic nuclei with prominent nucleoli, and 

significant size heterogeneity (Schulz, 2001).

Studies of rearrangements of immunoglobulin genes have indicated a B cell 

origin for these lymphoma cells (Knowles et at., 1989; Walts et al.t 1990), 

although rare cases of KSHV-positive PEL expressing T cell markers have 

been described (Said et at., 1999). The presence of clonal immunoglobulin 

gene rearrangement and monoclonal terminal repeats, demonstrate a 

monoclonal origin in most cases (Cesarman et at., 1995b; Knowles et at., 

1989). A recent study, using microarrays to group B cell tumours by 

comparing their expression profiles, found that PEL gene expression was 

most similar to that of plasma cell tumours (Jenner et at., 2003). These data 

support previous observations that PEL cells frequently express CD138 

(Gaidano et at., 1999), an adhesion molecule selectively associated with late 

stages of B-cell differentiation. Southern blot analysis of PEL cells has shown 

that the KSHV genome is present at a high copy number, 50-150 copies per 

cell, which is substantially higher than that observed in KS-infected spindle 

cells (Arvanitakis et at., 1996; Cesarman et al., 1995b; Gessain et a/., 1997; 

Renne et at., 1996a). PEL is a distinct neoplasm that is strongly associated 

with KSHV infection (Carbone etal., 1996; Karcher and Alkan, 1997; Pastore 

et at., 1995). Nonethesless, co-infection with EBV is found in most PEL cases 

(Cesarman et al, 1995a; Cesarman et al, 1995b) and PEL is rarely found in
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the absence of AIDS. Thus EBV infection and immunosuppression probably 

contribute to the pathogenesis of PEL. However, the expression of EBV latent 

genes such as EBNA 2, EBNA 3 and LMP1 is restricted in these cells 

(Callahan etal., 1999; Horenstein etal., 1997; Szekely etal., 1998), making it 

less likely that EBV is driving their proliferation. Furthermore, examples of PEL 

containing only KSHV have been reported, from which cell lines have been 

derived (Arvanitakis et al., 1996; Boshoff et al., 1998; Carbone et al., 2000; 

Carbone et al., 1998; Said et al., 1996). When injected into nude mice, such 

cells can induce PEL-like lymphomas (Boshoff et al., 1998; Said et al., 1996). 

PEL is unusual amongst B cell malignancies in the absence of an association 

with any consistent genetic lesion such as mutations of genes encoding c- 

myc, ras or p53 (Cesarman et al., 1995a; Gaidano et al., 1999; Karcher and 

Alkan, 1997). The absence of a common mutation and the discovery of PEL in 

the absence of EBV support the concept that KSHV is directly responsible for 

transformation in these lymphomas.

1.2.5.3 Multicentric Castleman’s Disease

Multicentric Castleman’s Disease (MCD) is a systemic variant of Castleman’s 

disease (CD), a rare lymphoproliferation often diagnosed in HIV patients 

(Castelman, 1956), and is associated with the development of secondary B- 

cell lymphoma, multiple organ involvement, and systemic symptoms such as 

weight loss and fever (Frizzera et al., 1983). KSHV is linked with a subgroup 

of MCD. KSHV infection is found in more than 90% of AIDS patients with 

MCD, but only 40% of HIV-seronegative MCD patients (Chadburn etal., 1997; 

Grandadam etal., 1997; Soulier etal., 1995). In affected lymph nodes, KSHV 

is present in plasmablasts belonging to the B-cell lineage that localise to the 

mantle zone of B cell follicles (Dupin et al, 1999; Katano et al, 2000). These 

plasmablasts are not present in KSHV-negative MCD (Dupin et al., 1999). 

Since the presence of plasmablasts in MCD is specifically associated with 

KSHV infection, a distinct plasmablastic variant of MCD is now recognised 

(Dupin et al, 2000). Unlike PEL cells, co-infection with EBV has not been 

detected in plasmablasts (Du etal., 2001; Dupin etal., 2000).

The KSHV-positive plasmablasts in MCD invariably express high levels of 

cytoplasmic IgM A (Dupin et al., 2000), whether occurring as isolated cells, in

29



microscopic aggregates, or in the plasmablastic lymphomas, suggesting that 

these cells are a monotypic. However, Ig gene rearrangement analysis has 

since shown that these monotypic cells are polyclonal (Du et al., 2001). 

KSHV-infected plasmablasts do not harbour somatic mutations in the 

rearranged Ig gene, indicating that they originate from naive B cells, despite 

they mature phenotype. KSHV-positive plasmablasts express high levels of 

viral IL-6 (Moore et al., 1996), and it is possible that vlL-6 plays a role in the 

proliferation of these KSHV-infected B cells by autocrine and paracrine 

mechanisms.

1.2.6 Patterns of Gene Expression in KSHV

Like all herpesviruses, KSHV can adopt either of two replicative programs, 

which are known as latency and lytic replication. In latency, viral gene 

expression is heavily restricted, with only a small subset of viral genes being 

expressed (Cohrs and Gilden, 2001). During latent infection the virus exists as 

a multicopy circular episomal DNA in the nucleus, and no progeny virions are 

produced (Boshoff et al., 1995). Most KS spindle cells can be shown to be 

latently infected, with only a small subpopulation of spindle cells (1%-3%) 

displaying lytic replication (Dupin et al., 1999; Staskus et al., 1997). 

Examination of late KS (nodular KS) lesions, shows that virtually all spindle­

like cells are latently infected (Dupin et al., 1999), which implies that latently 

infected cells have a growth or survival advantage in vivo by establishing 

persistent infection and avoiding immune surveillance. In contrast, lytic 

replication involves the temporally regulated expression of virtually the entire 

viral genome, with viral DNA replication and production of infectious progeny, 

in the course of which the host cell dies (Jenner et al., 2001). Hence the lytic 

cycle has traditionally been thought not to contribute directly to oncogenesis 

because cells that enter this program invariably die. The genes expressed in 

latency are therefore predicted to play a major role in the tumourigenesis 

associated with KSHV infection (Chang and Moore, 1996). However, 

accumulating evidence suggests that the expression of latent proteins may 

not be sufficient to initiate Kaposi’s sarcoma. Conversely, expression of the 

KSHV-encoded lytic gene viral G-protein-coupled receptor (vGPCR) by 

endothelial-specific retroviral infection is sufficient to induce Kaposi’s
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sarcoma-like tumours in mice (Montaner et al., 2003). Therefore, lytic 

replication is now believed to play a critical role in tumorigenesis, since it is 

possible that continuous low-level reactivation leads to efficient viral 

transmission and disease development in infected cells. Moreover, it is likely 

that cellular and viral cytokines produced during the lytic cycle, provide a 

favourable environment for the proliferation of infected cells (Chang et al., 

2000b; Deng et al., 2002; McCormick and Ganem, 2005; Nicholas et al., 

1997). Lytic replication can be induced from the latent state by the expression 

of a single viral gene from ORF50, which encodes the “replication and

transcription activator” (RTA) (Lukac et al., 1998; Sun et al., 1998). RTA

functions as a transcription factor, activating the expression of multiple 

downstream target genes, as well as that of its own gene (Deng et al., 2000a; 

Ragoczy and Miller, 2001). In vitro, this can be achieved by the treatment of 

cells with tetradecanoyl phorbal acetate (TPA) or sodium butyrate (Arvanitakis 

et al., 1996; Renne et al., 1996b), or transfection with constitutively active

RTA alleles, and these methods have been used to assign KSHV genes to

lytic and latent phases. More recently, a genome-wide cell-based screen on 

latently infected PEL cells, utilizing an arrayed cDNA expression library, was 

used to investigate the cellular pathways involved in regulating transcription 

and expression of RTA, and therefore KSHV reactivation. The screen 

revealed that the Raf/MEK/ERK/Ets-1 pathway mediates Ras-induced 

reactivation by activating the RTA promoter, and the same pathway seems to 

be responsible for mediating the spontaneous KSHV reactivation (Yu et al., 

2007). Moreover, the KSHV-RTA binding protein (K-RBP), a cellular protein 

that acts as a transcriptional repressor due to its Kruppel-associated box 

(KRAB) and adjacent zinc-finger motifs, was recently shown to be responsible 

for suppressing RTA-mediated transactivation and KSHV lytic replication 

(Yang and Wood, 2007). It seems that KSHV utilizes this cellular protein as a 

regulator to maintain a balance between latency and lytic replication.
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The first genome-wide analysis of KSHV gene expression was made using 

the BC-1 PEL cell line (EBV and KSHV infected) (Sarid et al., 1998). Using 

DNA probes across the viral genome, Northern analysis was made of cells 

during normal culture (i.e. latent infection) and following TPA treatment (Sarid 

etal., 1998). On this basis, the genes were divided into three classes:

Class I Expressed in normal culture (latency) and unaffected by TPA 

treatment

Class II Expressed in normal culture but upregulated by TPA treatment 

Class III Expressed only upon TPA treatment

This study was the first to recognise the Class I “latency associated cluster” of 

LANA, v-cyclin and vFLIP (Sarid etal., 1998). The latent classification of this 

cluster has been confirmed by their expression in a range of KSHV-infected 

tissues (Dittmer et al., 1998; Low et al., 2001). The Class II genes included 

small polyadenylated RNAs and most of the pirated viral genes (viral 

cytokines and signal transduction genes) (Sarid et al., 1998). The Class III 

genes largely consisted of viral structural and replication-associated genes. 

The kaposin (K12) gene was initially identified as Class III (Sarid etal., 1998), 

however, in-situ hybridisation of spindle cell populations demonstrated 

expression of kaposin in >85% of spindle cells, and confirmed its classification 

as a latent gene (Staskus et al., 1997). More recently, microarrays have been 

used to study the kinetics of gene expression during induction of lytic 

replication, and these studies have largely confirmed the original 

classifications (Jenner etal., 2001; Paulose-Murphy etal., 2001).
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1.2.7 KSHV latent genes implicated in viral pathogenesis

Altogether, six proteins are known to be expressed in latently infected KS 

cells. All have the ability to modulate growth of infected cells, and may 

therefore have a role in viral pathogenesis (Table 1.2). Their functions are 

discussed in detail below.

1.2.7.1 The latency associated cluster

The adjacent ORFs 71, 72 and 73 encode vFLIP, v-cyclin and the latent 

nuclear antigen (LANA) respectively. They are transcribed as two differentially 

spliced and polycistronic mRNAs from the same locus and their expression is 

controlled by a single constitutively active promoter (Cesarman et al., 1996; 

Dittmer et al., 1998; Grundhoff and Ganem, 2001). Latent transcript 1 (LT1) 

encodes LANA, v-cyclin and vFLIP, and LT2 encodes v-cyclin and vFLIP 

(Grundhoff and Ganem, 2001; Low et al., 2001; Renne et al., 2001; Talbot et 

al., 1999). LANA is translated from LT1, while both vFLIP and v-cyclin are 

translated from LT2 by means of an internal ribosome entry site (IRES) within 

ORF72 (Bieleski and Talbot, 2001; Grundhoff and Ganem, 2001; Low et al., 

2001). The promoter region is bi-directional, regulating constitutive expression 

of LT1 and LT2 to the left and expression of the lytic genes, K14 and vGPCR, 

to the right (Dittmer et al, 1998; Sarid et al, 1999; Talbot et al, 1999; Jeong et 

al, 2001). The K12 locus, which codes for kaposin, is separated from the 

latency transcript (LT) cluster by a ~4Kb intergenic region that includes one or 

two origins of lytic replication (AuCoin et al., 2004; Lin et al., 2003). Within this 

region, recent studies have identified a cluster of 12 microRNA (miRNA) 

genes, which code for a total of 17 miRNAs in PEL cells (Cai and Cullen, 

2006; Cai et al., 2005; Pfeffer et al., 2005; Samols et al., 2005). Since KSHV 

miRNAs are co-ordinately expressed with the genes for LANA, v-cyclin, 

vFLIP, and kaposin, which all modulate the host cellular environment as 

described below, it is thought that they target host gene expression and, as a 

result, play a role in viral pathogenesis (Gottwein etal., 2006; Sullivan, 2007). 

Figure 1.4 shows a schematic representation of the latency gene cluster of 

KSHV with its array of overlapping transcripts.
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Figure 1.4The latency gene cluster of KSHV

Organisation of known ORFs, miRNAs, and mRNA transcripts within the major latency cluster of 
KSHV, which is expressed via a network of overlapping transcripts. Coordinates are based on the 
prototype BC-1 sequence (Russo etal., 1996) and correspond to initiation/termination codons 
(upper set) and exon sequences (lower set). A cluster of 11 miRNA genes, orientated in the direction 
indicated by an arrow, are located between the body of the K12 ORF (nucleotide 117,970) and the 3' 
end of ORF 71 (nucleotide 121,911) (Cai et al., 2005; Pfeffer et al., 2005; Samols et al., 2005). RNAP, 
RNase protection assay probe. A constitutively active promoter (LTc) gives rise to a precursor RNA 
(dotted line) that undergoes polyadenylation/cleavage and alternative splicing to produce ~5.7-kb 
and ~5.4-kb tricistronic (ORFs 71, 72, and 73) and ~1.7-kb dicistronic (ORFs 71 and 72) mRNAs 
(Dittmer etal., 1998; Sarid etal., 1999;Talbot etal., 1999). Expression of the lytic activator RTA induces 
a second promoter (LTi) located between ORF 73 and LTc, giving rise to a 5.5-kb mRNA spanning all 
three ORFs (Matsumura et al., 2005). A 2.3- to Z5-kb spliced mRNA corresponding to ORF K12, 
encoding multiple isoforms of kaposin, is transcribed during latency from a promoter at the 3’ end of 
ORF 73 (LTd) and is induced further during lytic replication (Li etal., 2002; Sadler etal., 1999). Shorter 
K12 transcripts initiating at 118,758 have also been reported (Sadler etal., 1999). Figure 1.4 and the 
above legend were generated by reproducing Figure 1 from Pearce et al. 2005, with the kind 
permission of Dr. Angus Wilson (Department of Microbiology and NYU Cancer Institute, NYU School 
of Medicine, ).
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1.2.7.2 Latency Associated Nuclear Antigen (LANA)

LANA is a 222-232 kDa multifunctional protein expressed from ORF 73, and it 

is localised in the nucleus, where it accumulates in characteristic punctate foci 

(Sarid et al., 1999; Schwam et al., 2000). It comprises an acidic internal 

repeat domain, flanked by a more basic C-terminal domain, involved in DNA 

binding and oligomerization, and an N-terminal region implicated in chromatin 

attachment and corepressor recruitment (Krithivas et al., 2002; Krithivas et al., 

2000; Piolot et al., 2001). It is detected in the majority of KS lesions as well as 

in latently infected KSHV-positive cell lines, and is hence the most widely 

used marker of KSHV latency (Gao et al., 1996). The best-characterised 

function of LANA is its involvement in the establishment and maintenance of 

the latent viral episome in the nucleus. LANA interacts directly with host DNA 

and chromatin proteins to tether the viral episome to the host genome 

(Ballestas et al., 1999; Cotter and Robertson, 1999). During long-term 

persistence, viral DNA replicates in a synchronized fashion which ensures 

efficient, and non-random segregation of viral episomes to the daughter cells 

(Ballestas et al., 1999). LANA tethers the viral genome through binding with 

high affinity to the 13-bp LANA binding sequence (LBS), which has been 

mapped within the terminal repeats (TRs). LANA binds to the LBS through its 

carboxy-terminal DNA binding domain (996-1139 amino acids), and C- 

terminal LANA oligomerises to bind the TR DNA, a process which is critical for 

DNA binding (Ballestas and Kaye, 2001; Cotter et al., 2001; Garber et al., 

2002; Garber etal., 2001; Komatsu etal., 2004; Lim etal., 2002; Renne etal., 

2001; Schwam et al., 2000). Additionally, the amino terminus of LANA is 

responsible for nuclear targeting and binding to human chromosomes (Piolot 

et al., 2001), and has been shown to bind histone H1, tethering the viral 

episomes to the host chromatin (Cotter and Robertson, 1999). LANA contains 

two independent chromosome association regions, one within its N-terminus, 

and another in the C-terminus. The 1-22 N-terminal residues of LANA bind 

directly to an acidic patch on the core histone dimers H2A-H2B (Barbera et 

al., 2006), whereas a short 15aa region in the C-terminal part is responsible 

for the association with heterochromatin (Viejo-Borbolla et al., 2003).
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LANA also associates directly with DNA replication origin recognition 

complexes (ORC) 1 and 2, which are primarily associated with the terminal 

repeat of the KSHV genome (Verma et al., 2006b). Binding of LANA to the TR 

confers transcriptional silencing on the promoter of the neighbouring lytic gene 

K1 (Verma et al., 2006a), and LANA can also suppress the activity of the key 

lytic regulator RTA, by directly binding to the recombination signal sequence- 

binding protein Jkappa (RBP-Jkappa), whose interaction with RTA activates 

the expression of lytic viral genes (Lan et al., 2005). Therefore, LANA is 

believed to play an important role in the suppression of lytic viral genes and 

maintenance of viral latency.

The secondary structure of LANA suggests that there are potential sites for 

interactions with various cellular factors involved in transcription, and hence 

LANA is capable of both activating and repressing transcription (An et al., 

2002; Lim et al., 2002; Renne et al., 2001; Verma et al., 2007). LANA 

specifically activates the AP-1 response element to induce expression of 

cellular interleukin-6 (IL-6) (An et al., 2002; An et al., 2003). It also activates 

the human telomerase reverse transcriptase promoter, as well as the HIV LTR 

cooperating with the Tat protein expressed by HIV-1 (Hyun etal., 2001; Knight 

et al., 2001); these data imply a role for LANA in maintaining the proliferative 

potential of KSHV-infected cells. In transfected cells, LANA binds p53, 

blocking its ability to act as a transcriptional activator and conferring increased 

resistance to p53-dependent apoptosis (Friborg et al., 1999). LANA has also 

been reported to bind the tumour suppressor Rb (Radkov et al., 2000), and in 

transfected cells this leads to enhanced expression of E2F-dependent 

reporter genes. This indicates that Rb binding by LANA is associated with loss 

of Rb function and progression through the G1 cell cycle check-point. LANA 

also binds a number of cellular proteins involved in transcriptional regulation 

such as CBP (Lim et al., 2001), RING3 and DEK1 (Platt et al., 1999), 

ATF4/CREB2 (Lim et al., 2000), EC5S Ubiquitin Complex (Cai et al., 2006), 

and members of the mSin3 corepressor complex (Krithivas et al., 2000). The 

interactions between LANA and chromatin remodelling proteins indicate a role 

for LANA in regulating global transcriptional activity of the infected cell as an
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epigenetic modifier, which results in altered host gene expression, and may 

contribute to viral oncogenesis.

Another potential role for LANA in tumourigenesis derives from its interaction 

with GSK-3p, a kinase that inactivates p-catenin (Fujimuro etal., 2003). When 

LANA binds GSK-3p, it relocates the kinase from the cytosol to the nucleus, 

which allows stabilization and cellular accumulation of p-catenin. 

Oligomerisation of p-catenin with the transcription factor LEF activates a 

proliferative program that includes expression of cyclin D, c-Myc, and c-jun. 

Apart from P-catenin, GSK-3p phosphorylates numerous substrates, including 

c-Myc (Jope and Johnson, 2004), and therefore regulates their turnover. It 

was recently shown that PEL cells have abnormally stable c-Myc protein, due 

to LANA-mediated inhibition of GSK-3p phosphorylation of the T58 residue of 

c-Myc (Bubman et al., 2007). Inability to phosphorylate c-Myc on T58 leads to 

increased oncogenisity (Henriksson et al., 1993; Pulverer et al., 1994), and 

defects in apoptotic death (Chang et al., 2000a; Conzen et al., 2000). 

Therefore LANA’s inhibition of c-Myc T58 phosphorylation seems to contribute 

to transformation by prolonging the c-Myc half-life and inhibiting its pro- 

apoptotic functions in PEL cells.

These findings indicate that LANA is a multifunctional protein, involved in 

modulating activation and repression of transcription, and these activities are 

important for the regulation of cell proliferation and apoptosis in KSHV- 

infected cells.

1.2.7.3 Viral Cyclin (v-cyclin)

KSHV-encoded v-cyclin, ORF72, is the viral homologue to cellular cyclin, most 

closely related to cyclin D2 (32% identity and 54% similarity) (Li et al., 1997). 

The v-cyclin gene is located immediately downstream of that for LANA, and, 

like LANA, is expressed during latency in PEL cell lines (Dittmer et al., 1998; 

Talbot et al., 1999). It shares a number of functional properties with its cellular 

counterpart; it binds to, and activates cdk6 (Chang et al., 1996), which then 

phosphorylates pRb, releasing the transcription factor E2F. E2F in turn, 

activates the transcription of S-phase genes and promotes G1-S phase cell
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cycle progression (Godden-Kent et al., 1997). However, unlike its cellular 

counterpart, the activity of v-cyclin/cdk6 complexes cannot be limited by the 

CDK inhibitors p16INKa, p21CIP1 and p27KIP1 (Ellis et al., 1999; Mann et al., 

1999; Swanton et al., 1997). In fact, the v-cyclin/cdk6 complex appears to 

inactivate p27KIP1, by phosphorylation-mediated degradation and 

mislocalisation in the cytoplasm (Ellis etal., 1999; Mann etal., 1999; Sarek et 

al., 2006), and p21CIP1, by phosphorylation on serine 130, which is then 

unable to bind cdk2 (Jarviluoma etal., 2006). Thus, exogenous expression of 

v-cyclin from the infecting viral genome prevents CDK inhibitors-imposed G1 

arrest, and stimulates entry into S-phase. Moreover, the v-cyclin/cdk6 

complex shows broader substrate specificity than cellular cyclin/cdk6. v- 

cyclin/cdk6 can phosphorylate cdk2 substrates, including ORC1, CD26, 

p27KIP1, and histone H1 (Verschuren etal., 2004).

However, in the presence of v-cyclin, cells that express elevated levels of 

cdk6 undergo apoptosis (Ojala et al., 1999) due to the phosphorylation and 

inactivation of the cellular antiapoptotic factor Bcl-2 (Ojala et al., 2000). It is 

unclear how this problem of apoptosis is mitigated in vivo, but the low levels of 

v-cyclin expressed in latency may provide one explanation, and the 

antiapoptotic effects of other latency proteins (LANA, vFLIP) may represent 

another. Relevant to this hypothesis is the observation that v-cyclin induces 

p53-dependent growth arrest in primary cells, but causes lymphomas in p53- 

null mice (Verschuren et al., 2002). Since LANA can disrupt p53 function and 

is expressed in conjunction with v-cyclin, this may explain how the virus can 

benefit from a protein that is apparently pro-apoptotic. Moreover, the KSHV- 

encoded vBcl-2, a homologue to the cellular gene, interacts with and inhibits 

the proapoptotic function of the cellular Bcl-2 family member (discussed 

below) (Ojala etal., 2000).

Viral FLIP (vFLIP)

VFLIP is discussed in great detail elsewhere
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1.2.7.4 Kaposin

The kaposin transcript is the most abundantly expressed transcript in KSHV 

latent infection, and in situ hybridisation analysis detected this transcript in the 

majority of KS spindle cells (Staskus et al., 1997), and in PEL cells (Sturzl et 

al., 1999). In addition, the promoter of the kaposin locus, which is separate 

from the LANA promoter, is strongly induced during lytic replication owing to 

the presence of at least one high-affinity binding site for the lytic switch protein 

RTA (Chang et al., 2002b; Song et al., 2003). The single 2.5 kb kaposin 

mRNA, located at the K12 locus, encodes at least three proteins, expressed 

via translation of alternative reading frames, and utilization of non-AUG 

codons upstream of K12 in addition to the AUG codon that defines the start of 

the K12 ORF (Li et al., 2002; Sadler et al., 1999) (Figure 1.4). The 3’ end of 

the transcript has a small ORF that codes for kaposin A, a 60 amino acid 

hydrophobic membrane polypeptide (Tomkowicz etal., 2002), which has been 

shown to mediate cell transformation in Rat-3 cell/nude mouse models 

(Muralidhar et al., 1998). Kaposin A can bind cytohesin-1, a guanine 

nucleotide exchange factor for ARF GTPases, and a regulator of integrin- 

mediated cell adhesion. This binding triggers anchorage independent growth 

and loss of contact inhibition (Kliche et al., 2001). Kaposin B is translated from 

the most 5’ CUG codon (in frame 2) in the major kaposin transcript and 

comprises 23 amino acid repetitive sequences derived from direct repeat 

(DR1 and DR2) elements but contains no K12-derived amino acids; kaposin C 

is translated from a downstream CUG codon (in frame 1) and comprises a 

fusion of DR1/DR2 and K12-encoded sequences (Sadler et al., 1999). 

Kaposin B functions as an adapter protein in signal transduction, by binding to 

and activating a kinase, MK2, that is normally a target of p38 phosphorylation 

(McCormick and Ganem, 2005). MK2 appears to be a central regulator of 

mRNA stabilisation for cytokines (IL-1/3/4/6, TNF, GM-CSF), growth factors 

(VEGF), and oncoproteins (myc and fos) that harbour AU-rich elements 

(AREs) in their 3’ UTRs, rendering the transcripts unstable (Shaw and Kamen, 

1986). Activated MK2 stabilises these mRNAs, and hence kaposin B 

expression blocks the degradation of ARE-containing mRNAs and 

substantially enhances cytokine release (McCormick and Ganem, 2005). It
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was recently shown that this mRNA stabilization function of kaposin B 

requires both the DR1 and DR2 elements, and that kaposin B itself, is a target 

for direct phosphorylation by p38 MAPK on a putative serine residue in DR1 

(McCormick and Ganem, 2005).

1.2.7.5 K15

K15 is situated at the right end of the unique coding region of the KSHV 

genome, between ORF75 and the TRs. The alternatively spliced K15 gene 

encodes multiple transcripts. The most prominent one encompasses eight 

exons and is predicted to encode a membrane protein with 12 transmembrane 

domains and a C-terminal cytoplasmic segment (Choi et a/., 2000; Glenn et 

al., 1999; Poole et al., 1999). The cytoplasmic domain of K15 contains a 

number of putative domains associated with signal transduction including: an 

SH2 domain, an SH3 domain and a TRAF-binding site (Choi et al., 2000; 

Glenn et al., 1999; Poole et al., 1999). The location of the K15 gene, its 

predicted structure, and the presence of putative SH2 and SH3 domains, are 

all features found in latent membrane protein 2A (LMP2A) of Epstein-Barr 

virus, and therefore K15 is thought to be the positional homologue of LMP2A, 

which provides a survival signal for latently infected B cells and controls viral 

latency (Brinkmann and Schulz, 2006). Latent K15 protein expression has 

been detected in PEL cells and MCD B cells (Sharp et al., 2002). However, 

northern blot analysis, RT-PCR, and gene array studies have shown weak 

K15 expression in PEL cells, which was upregulated upon TPA treatment 

(Choi etal., 2000; Glenn etal., 1999).

Yeast-two-hybrid analysis identified Hax-1, a Bcl-2-related anti-apoptotic 

protein, as an interacting partner of K15. This interaction was confirmed in 

vivo, and may play a role in inhibition of apoptosis (Sharp et al., 2002). In 

reporter assays, K15 strongly activated the mitogen-activated protein kinase 

(MAPK) pathway Ras/MEK/Erk2 and the c-Jun N-terminal kinase (JNK), and 

weakly activated the NF-kB pathway (Brinkmann et al., 2003). This activation 

involved the phosphorylation of the SH2-binding motif Y481EEV by members of 

the Src family of protein tyrosine kinases (PTKs) (Brinkmann et al., 2003). 

More recently, DNA microarray analysis revealed the downstream target
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genes of K15 signalling. It appears that K15 signalling can induce the 

expression of multiple cytokines and chemokines, including IL-8, IL-6, CCL20, 

CCL2, CXCL3, and IL-1a/(3, which have been show to play a major role in 

KSHV pathogenesis (Brinkmann et al., 2007).

1.2.7.6 VIRF3

KSHV encodes four homologues of cellular interferon (IFN) regulatory factor 

(IRF), namely vlRF1-4 expressed from ORF K9 and ORFs K10, K10.5 and 

K11 spliced to upstream sequences (Cunningham et al., 2003; Jenner et al., 

2001; Jenner and Boshoff, 2002; Lubyova and Pitha, 2000). ORF K10.5 

encodes vlRF3, a protein that is expressed during latency in PEL cell lines, 

whereas the remaining vIRFs appear to be expressed exclusively or 

predominantly as lytic genes (Cunningham et al., 2003; Fakhari and Dittmer, 

2002; Jenner et al., 2001; Paulose-Murphy et al., 2001; Rivas et al., 2001). 

vlRF3 is expressed in the nucleus of PEL cell lines, and this has lead to its 

naming by some investigators as latency-associated nuclear antigen 2 

(LANA2). Interestingly, while vlRF3 is a latent protein in PEL cell lines and has 

also been detected in lymphocytes from MCD tissue, it is not expressed in KS 

cells and tissue (Rivas et al., 2001). Therefore, it seems that while vlRF3 may 

play a role in KSHV pathogenesis, this is restricted to infected B cell 

populations and is not of significance with respect to KS.

The main function of vlRF3 in KSHV pathogenesis appears to be the blocking 

of cellular IRF functions and IR-stimulated pathways that lead to apoptosis. 

vlRF3 can inhibit the activities of IRF3 and IRF7 and, as a consequence, 

suppress the interferon induction in response to virus infection (Lubyova and 

Pitha, 2000). In fact, vlRF3 can interact either with the DNA-binding domain, 

or the central IRF-association domain of IRF7, which results in the inhibition of 

IRF7 DNA binding activity, and subsequently the suppression of IFN-a 

production and IFN-mediated immunity (Joo et al., 2007). vlRF3 can also 

mediate protection against apoptosis, by inhibiting p53-dependent 

transactivation, possibly through direct interactions with the tumour 

suppressor (Rivas et al., 2001), and it also prevents apoptosis triggered by 

double-stranded RNA (dsRNA)-activated serine-threonine protein kinase
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(PKR) (Esteban et al., 2003). vlRF3 can interfere with immune responses via 

inhibition of the NF-xB-activating IkB kinase p (IKKP) (Seo etal., 2004). These 

findings suggest a role for vlRF3 in protection of infected haematopoietic cells 

from immune surveillance and apoptosis in latency. The function of vlRF3 is 

probably related to deregulation of the immune system to promote survival of 

infected cells, which could contribute to KSHV malignancies involving B cells, 

such as PEL and MCD, where vlRF3 is expressed.

1.2.8 The Lytic Cycle in KS Pathogenesis

The latent genes of KSHV have profound effects on growth-regulation and 

survival, suggesting a significant contribution to viral pathogenesis. However, 

several lines of evidence suggest that lytic replication also plays a pivotal role 

in KS development. Treatment of AIDS-KS patients with gancyclovir, a drug 

that blocks lytic but not latent KSHV infection, results in a dramatic decline in 

the incidence of new KS tumours (Martin et al., 1999). Furthermore, 

regression of AIDS-KS due to highly active anti-retroviral therapy (HAART) is 

associated with reduced KSHV viral load (Sirianni et al., 1998; Wilkinson et 

al., 2002). Moreover, post-transplant KS usually results from reactivation from 

reservoirs of latent virus (Frances et al., 2000; Jenkins et al., 2002). Finally, 

most KS spindle cells, and MCD plasmablasts, sustain latent KSHV infection, 

but in up to 20% of cells the virus undergoes spontaneous reactivation 

(Staskus et al., 1999; Staskus et al., 1997; Zhong et al., 1996). These data 

suggest that lytic reactivation is required to enhance the dissemination of the 

virus and may also modulate growth through paracrine mechanisms as a 

result of lytic gene expression. Examination of the KSHV genome reveals 

numerous viral genes whose products are secreted signalling molecules, 

many of which are cellular cytokines or chemokines (Nicholas, 2003). The 

majority of these are lytic cycle genes, including the three viral CC 

chemokines (vMIP-l, vMIP-ll, and vMIP-IH) and v-IL6. Several of the viral 

chemokines are chemotactic for Th2 cells, raising the possibility that they can 

dampen antiviral Th1 responses by favouring Th2 polarization of the immune 

response (Sozzani et al., 1998; Stine et al., 2000). Some of the key viral 

genes expressed during lytic replication, and their potential roles in KSHV 

pathogenesis (Table 1.2) are described in more detail below.
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1.2.8.1 K1-Variable ITAM-containing Protein (VIP)

KSHV VIP is encoded by ORF K1, at the far left end of the unique coding 

region. Transforming y-herpesviruses HVS and EBV have genes at analogous 

positions, which encode signalling membrane proteins STP (saimiri 

transformation-associated protein) (Jung et al., 1999), and LMP-1 (latency 

membrane protein-1) (Eliopoulos et al., 2001) respectively, and these function 

as transforming proteins. Although neither of these proteins is homologous to 

KSHV VIP, all three are constitutively active signal transducers (Jung and 

Desrosiers, 1995; Lagunoff et al., 1999; Lee et al., 1999; Lee et al., 1998a; Li 

and Chang, 2003; Moorthy and Thorley-Lawson, 1993). Like STP and LMP-1, 

KSHV VIP can induce plasmablastic lymphomas and sarcomatoid tumours in 

transgenic mice expressing K1 (Lee et al., 1998b; Prakash et al., 2002). 

Interestingly, although K1 and STP do not share sequence homology, K1 can 

substitute for STP in in vitro and in vivo transformation assays in the context 

of the HVS genome and virus infection (Douglas et al., 2004; Lee et al., 

1998b). However, it should be noted that Tip, a related transforming gene 

belonging to HVS, was not removed from the recombinant virus. Nonetheless, 

when K1 was introduced into the murine y-2-herpesvirus MHV-68, it 

independently induced salivary gland adenocarcinomas in 25% of infected 

animal (Douglas et al., 2004; Lee et al., 1998b). These findings suggest that 

VIP may play a role in KSHV-induced malignancies via direct cellular 

transformation.

Evidence from Northern analyses have revealed that K1 transcripts expressed 

in PEL cell lines are upregulated following TPA treatment (Lagunoff et al., 

1999; Samaniego et al., 2001), and in KS tumour cells (Samaniego et al.,

2001). A recent study using monoclonal antibodies raised against K1 

confirmed early lytic expression in PEL cells and in MCD tissue, but K1 was 

not detected in KS samples (Lee et al., 2003a). These data suggest there is 

an essential difference between K1 and STP/LMP1, because both are 

expressed in latency.
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K1 is a 46 kDa type 1 transmembrane glycoprotein (289aa) that resembles a 

single-domain Ig superfamily receptor (Lagunoff and Ganem, 1997; Lee etal., 

1998a; Russo et al., 1996). Its extracellular N-terminal domain contains 

several A/-glycosylation sites and displays a high degree of genetic variability 

between different KSHV isolates. These have been used to classify the virus 

into four clades (A, B, C and D) (Hayward, 1999; McGeoch, 2001; Zong etal., 

1999). Apparently, these regions were found to be targeted by CTLs, and 

therefore their hypervariability may be attributed to positive selection rather 

than drift (Stebbing et al., 2003). These data suggest that K1 might act as an 

immune decoy, providing some evolutionary advantage to the virus. The 

cytoplasmic domain of K1 contains an immunoreceptor tyrosine-based motif 

(ITAM), which is highly conserved between different K1 subtypes and is 

similar to the one found in LMP2A (Lee et al., 1998a).

Similar to LMP2A, K1 downregulates the expression of the B cell receptor at 

the cell surface of BJAB cells, by binding to the heavy chains of the BCR 

complex through its extracellular domain, thereby preventing their expression 

on the plasma membrane (Lee et al., 2000). This function may indirectly 

prevent the display of KSHV viral antigens on B cell MHC class II, and may 

therefore represent an immune escape strategy of the virus. K1 expression 

has been reported to both switch on (Lagunoff et al., 2001), and switch off 

(Lee et al., 2002) lytic replication, thereby acting as a lytic/latent switch, and/or 

a latency maintenance protein.

K1 constitutively activates B cell signalling pathways via its C-terminal ITAM. 

VIP is known to activate SH2 domain-containing Src-family kinases, the p85 

subunit of PI3K, and PLCy, in order to initiate a range of downstream 

signalling cascades (Lagunoff et al., 2001; Lee et al., 2005; Lee et al., 1998a; 

Samaniego et al., 2001; Tomlinson and Damania, 2004). It can stimulate the 

nuclear factor of T cells (NFAT) (Lagunoff et al, 1999), the Akt signalling 

pathway (Tomlinson and Damania, 2004) and NF-kB (Prakash et al., 2002; 

Samaniego et al., 2001). Transfected K1 activates NF-kB in reporter based 

assays (Samaniego et al., 2001), while B lymphocytes from transgenic mice 

expressing K1 show increased NF-kB activity and the mice develop tumours
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that resemble spindle cell sarcomas (Prakash et a/., 2002). VIP can also 

induce cytokine expression via Akt-mediated NF-kB activation (Samaniego et 

al., 2001), and these include IL-6, IL-12, and GM-CSF. The angiogenic factors 

VEGF and matrix metalloproteinase 9 (MMP-9) are also induced by VIP 

(Wang et al., 2004b). These pro-inflammatory and angiogenic factors are 

likely to contribute to KSHV pathogenesis by establishing the conditions for 

endothelial and B cell growth, as well as promoting the infiltration of 

inflammatory cells into sites of infection (Aoki et al., 2000; Ensoli et al., 2000).

1.2.8.2 vGPCR

ORF74 encodes the viral G-protein coupled receptor (vGPCR), which is most 

closely related to the IL-8 receptors CXCR1 and CXCR2 (Kirshner et al., 

1999). Unlike its cellular counterparts, vGPCR is constitutively active 

(Arvanitakis et al., 1997), but can be modulated by chemokine binding (Geras- 

Raaka etal., 1998; Gershengorn etal., 1998; Rosenkilde etal., 1999).

vGPCR is known to activate a range of pro-inflammatory, growth, and 

angiogenic factors. It stimulates the MAPK, PI-3-kinase, and p38 pathways 

(Smit et al., 2002; Sodhi et al., 2000), as well as the NF-kB pathway (Pati et 

al., 2001). NF-kB activation leads to the expression of NF-xB-dependent 

genes, including pro-angiogenic factors (VEGF, bFGF), chemokines (IL-ip, 

IL-6, IL-8, TNFa), and adhesion molecules (VCAM, ICAM-1, E-selectin) 

(Couty et al., 2001; Montaner et al., 2004; Pati et al., 2001; Schwarz and 

Murphy, 2001), which potentially contribute to KS, PEL, and MCD. vGPCR 

also activates NFAT (Pati et al., 2003), related adhesion focal tyrosine kinase 

(RAFTK), and lyn (Munshi et al., 1999). More recently, vGPCR was shown to 

cause upregulation of Ang-2, a proangiogenic and lymphangiogenic secreted 

molecule, in lymphatic endothelial cells infected with KSHV. This upregulation 

occurred in a paracrine manner through the vGPCR-mediated activation of the 

MAPK pathway (Vart et al., 2007).

In addition to its broad signalling effects, vGPCR expression has been shown 

to slow the growth of PEL cells in culture, which reflects a role for a vGPCR- 

mediated cell cycle arrest during the lytic phase (Cannon et al., 2003). This

45



subversion of the cell cycle is mediated by a p53-independent transcriptional 

upregulation of the CDK inhibitor p21CIP1, and results in a delay of KSHV 

replication (Cannon et al., 2006). Therefore, expression of vGPCR may 

ensure a delay or even a block of full lytic transcription and cell death, which 

would allow sufficient time for the proliferative and angiogenic potential of 

vGPCR to be biologically significant in the tumour microenvironment (Cannon 

etal., 2006).

Functional studies have provided the evidence that vGPCR contributes to KS, 

and possibly also to PEL and MCD, through its angiogenic and cytokine- 

induced activities. vGPCR transforms NIH3T3 cells (Bais et al., 1998), 

enhances survival of primary endothelial cells (Couty et al., 2001; Montaner et 

al., 2001) and can immortalise human umbilical vein endothelial cells 

(HUVECs) (Bais et al., 2003). The strongest evidence for a pathogenic role of 

vGPCR comes from the finding that transgenic mice expressing vGPCR 

develop multiple tumours that resemble KS lesions (Guo et al., 2003; Yang et 

al., 2000). Interestingly, vGPCR is expressed in only a minority of cells within 

these lesions, but elevated levels of VEGF in these lesions have been noted. 

Therefore, the KS phenotype appears to be supported by vGPCR-induced 

paracrine signalling, presumably via VEGF and other cytokines induced in the 

vGPCR-expressing cells. These data support the concept that a paracrine 

component is important in the pathogenesis of KS tumours. It seems likely 

that vGPCR is an important component in KSHV pathogenesis, which can act 

in a paracrine manner in concert with latent KSHV genes expressed in 

neighbouring cells (Montaner et al., 2003).

1.2.8.3 vlL-6

Cellular IL-6 has been known to act as a growth factor, and to be implicated in 

KS and MCD, even before the discovery of KSHV (Miles et al., 1990; 

Yoshizaki et al., 1989). High levels of clL-6 have been observed in the tissues 

of patients with each of the KSHV-associated neoplasms (Ensoli et al., 1989; 

Foussat et al., 1999; Leger-Ravet et al., 1991), which suggests that clL-6 

plays an important role in KSHV pathogenesis. Therefore, it was interesting to
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discover that KSHV encoded its own version of this cytokine, in the form of a 

viral IL-6 homologue. The viral IL-6 (vlL-6) is encoded by ORF K2 and its 

amino acid sequence is 25% identical to human IL-6 (Neipel etal., 1997). The 

clL-6 receptor consists of two subunits, gp130 and IL-6Ra, and clL-6 has an 

absolute requirement for both subunits (Taga and Kishimoto, 1997). Common 

with its cellular counterparts, vlL-6 supports the growth of IL-6-dependent 

murine B9 cells (Moore et al., 1996), and mediates signalling through the 

gp130 signalling-transducer subunit to activate Jak/STAT (primarily 1 and 3), 

and the Ras/MAPK pathways (Molden et al., 1997; Osborne et al., 1999). 

However, in contrast to clL-6 proteins, vlL-6 does not require the IL-6Ra 

subunit for the formation of stable signalling complexes (Molden et al., 1997; 

Wan et al., 1999). This may allow for a broader spectrum of target cells since 

IL-6Ra has a restricted expression profile and is downregulated by the IFN 

response, while gp130 is ubiquitously expressed (Taga and Kishimoto, 1997).

While vlL-6 is abundantly expressed during lytic replication, it is also 

expressed at low levels in uninduced latently infected PEL cell cultures, in the 

absence of other lytic gene expression. It has been demonstrated that vlL-6 

was specifically induced when PEL cells were treated with IFNa, and it 

blocked the cell cycle arrest and apoptotic activities of IFNa in these cells 

(Chatterjee et al., 2002). This suggests that vlL-6 also plays a role during 

latency, as well as during lytic replication, in protecting latently infected cells 

against anti-viral host defences mediated by IFN. vlL-6 can also stimulate the 

production of VEGF (Aoki et al., 1999; Liu et al., 2001), and along with 

vGPCR, is responsible for upregulating the expression of Ang-2, thereby 

contributing to the initial stages of KSHV infection through paracrine effects 

that promote angiogenesis (Vart et al., 2007). Moreover, vlL-6 is able to 

induce endothelial expression of PTX3, an acute-phase protein, which would 

be expected to promote the infiltration of inflammatory cells into sites of 

infection and contribute to the cytokine milieu supporting KS cell growth 

(Klouche et al., 2002). When injected into nude mice, NIH3T3 cells stably 

expressing vlL-6 and secreting high levels of VEGF are tumourigenic, and 

PEL cells introduced into nude mice develop lymphomatous effusions in a 

VEGF-dependent manner (Aoki et al., 1999; Chatterjee et al., 2002).
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Furthermore, vlL-6 is a mitogenic factor for PEL cells and could directly be 

contributing to PEL development (Jones et a/., 1999). Therefore, vlL-6 

expression during reactivation, could mediate mitogenic and angiogenic 

activities of relevance to KSHV-associated malignancies.

1.2.8.4 vBcl-2

KSHV ORF16 encodes a viral homologue of human Bcl-2 , vBcl-2 (Sarid et 

al., 1997), which is expressed early in the lytic replication cycle. The Bcl-2 

family regulates apoptosis through association with other pro-apoptotic family 

members such as Bad, Bak and Bax, and plays an important role in tissue 

homeostasis, embryogenesis, and the immune response (Chao and 

Korsmeyer, 1998). The KSHV-encoded vBcl-2 is highly homologous to Bcl-2, 

especially at the BH1 and BH2 domains (Sarid et al., 1997), which are 

required for inhibition of apoptosis and heterodimerization with Bax (Yin et al., 

1994). vBcl-2 is also anti-apoptotic, and can inhibit apoptosis induced by 

several stimuli, including Bax overexpression, and vcyclin overexpression 

(Ojala et al., 1999), ensuring that the cell survives to allow for production of 

viral progeny. Therefore, it appears that vBcl-2 contributes to the evasion of 

host cell apoptosis induced by viral infection, which is caused when the virus 

activates endogenous machinery during the lytic cycle. This is advantageous 

to the virus, as it prevents premature lysis, and promotes viral expansion and 

survival.

1.2.8.5 Viral inhibitor of apoptosis protein (vlAP)

Apoptotic pathway deregulation is also achieved by the expression of viral 

products related to the inhibitor-of-apoptosis proteins (lAPs). ORF K7 encodes 

a viral inhibitor of apoptosis protein (vlAP) that is structurally related to 

survivin-AEx3, a splice variant of human survivin that inhibits apoptosis (Wang 

et al., 2002). vlAP localises to the mitochondria via a putative mitochondrial- 

targeting domain in its N-terminus (Wang et al., 2002), where it can inhibit 

apoptosis induced by multiple stimuli including Fas, TRAIL, Bax, TNFa plus 

cyclohexamide, staurosporine and ceramide (Feng et al., 2002; Wang et al.,

2002). Mechanistically, the vlAP N-terminal BIR (baculovirus IAP repeat)
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domain interacts with caspase-3 and inhibits its activity, and the vlAP BH2 

(Bcl-2 homology) domain binds to Bcl-2. Therefore, vlAP acts as an adaptor 

protein and bridges an interaction between cellular Bcl-2 and caspase-3, 

thereby promoting the anti-apoptotic activity of Bcl-2 against active caspase-3 

(Wang et al., 2002). vlAP also directly interacts with the cellular calcium- 

modulating cyclophilin ligand (CAML) and mediates the increase of cytosolic 

Ca2+ concentration during an apoptotic stimulus. This increase in cytosolic 

Ca2+ by vlAP was found to protect cells from mitochondrial damage and 

apoptosis (Feng et al., 2002).

1.2.8.6 vlRF1, vlRF2 and vlRF4

During lytic replication, KSHV encodes three proteins that show homology 

with the cellular interferon-regulatory factors (IRFs), vIRFs 1, 2, and 4 

(Cunningham et a/., 2003; Neipel et al., 1997). The IRFs are a large family of 

transcription factors, which together with the transcriptional activator p300, 

regulate IFN signal transduction through binding to interferon-stimulated 

response elements in the promoter of interferon-responsive genes. The IFNs 

stimulate the anti-viral defence in cells by activating various signal 

transduction pathways, and modifying the expression of a number of antiviral 

genes. Among these genes is double-stranded RNA-activated protein kinase 

R (PKR), a key mediator of antiviral and antiproliferative effects (Clemens and 

Elia, 1997). ORF K11.1 represents the first exon of viral-IRF2 and encodes a 

20kDa protein (Burysek et al., 1999b), which exerts its anti-IFN effects by 

physically interacting with, and suppressing the activity of PKR (Burysek and 

Pitha, 2001). vlRF2 also binds to a consensus NF-kB binding site and 

suppresses the cellular IRF-1- and IRF-3-driven activation of IFN-a. Moreover, 

vlRF2 has been shown to interact with cellular IRF-1, p300/CBP, p65, IRF-2, 

and IFN consensus sequence binding protein/IRF-8 (Burysek et al., 1999b). 

More recently, it was found that the vlRF2 gene encodes a 2.2kb spliced 

transcript representing the two exons of ORFs K11.1 and K11, from which the 

full-length vlRF2 protein is translated (Cunningham et al., 2003; Jenner et al., 

2001). This full length vlRF2, could inhibit IFN-a- and IFN-A-driven 

transactivation of a reporter promoter containing the interferon stimulated
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response element (ISRE), and suppressed transactivation of the ISRE 

promoter by IRF-1. Moreover, full length vlRF2 inhibited transactivation of a 

full-length IFN-p reporter promoter by either IRF-3 or IRF-1 (Fuld et al., 2006).

ORF K9 encodes vlRF1, which directly interacts with cellular IRF1 and IRF3 

(Burysek et al., 1999a), p300 (Burysek et al., 1999a; Li et al., 2000), CRB 

(Seo et al., 2000), and p53 (Nakamura et al., 2001). Therefore, through 

effects on transcription mediated via these interactions, vlRF1 negatively 

regulates the IFN-mediated gene expression and anti-viral effects. A recent 

study demonstrated that vlRF1, along with vFLIP, can also regulate the 

transcription and expression of antigen presenting genes in lymphatic 

endothelial cells (LECs) (Lagos et al., 2007). vlRF1 expression in LECs 

resulted in the downregulation of MHC-I expression, and this was dependent 

on a domain in the N-terminus of vlRF1 (amino acids 1-82) (Lagos et al., 

2007), which has been shown to be responsible for binding to the coactivator 

p300 (Li et al., 2000). Furthermore, LECs expressing vlRF1 were found to be 

less responsive to IFN-a-mediated induction of MHC-I expression. Thus, 

vlRF1, through its downregulation of MHC-I transcription, might contribute to 

KSHV-infected cells’ immune evasion. Moreover, vlRF1 has been shown to 

transform NIH3T3 and Rat-1 cells, by reducing intracellular levels of the CDK 

inhibitor p 2 iWAF1/CIP1 (Gao et al., 1997; Li et al., 1998). Finally, vlRF4 is 

encoded within K10.1 and also blocks IFN- and IRF-mediated transcriptional 

activation (Jenner and Boshoff, 2002).
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KSHV genes involved in viral pathogenesis

ORF Protein Product Function Expression

K1 VIP Cellular transformation. Constitutively activates B-cell signalling pathways (NFAT, NF-kB, Akt). Downregulates the 
B-cell receptor (immune decoy). Induces cytokine and angiogenic factor secretion.

Lytic replication

K2 vlL-6 Activates Jak/STAT and Ras/MAPK pathways. Acts as autocrine growth factor in PEL cells. Angiogenic by 
inducing VEGF and Ang-2 production.

Lytic replication

K4, K4.1, 
K6

vMIP-ll, vMIP-lll. vMIP-l 
(respectively) Dampen antiviral Th1 responses. Angiogenic. Lytic replication

K7 vlAP Inhibits apoptosis induced by Fas, TRAIL, Bax, TNFa. Increases cytosolic Ca2* and protects from mitochondrial 
damage and apoptosis.

Lytic replication

ORF16 vBd-2 Inhibits Bax-mediated and virally-induced apoptosis Lytic replication

K9 VIRF1 Blocks IFN- and IRF-mediated transcriptional activation. Downregulates MHC-I transcription (immune decoy). 
Cellular transformation.

Lytic replication

K10 vlRF4 (when spliced to 
K10.1) Blocks IFN- and IRF-mediated transcriptional activation. Lytic replication (Latent ?)

K10.5 vlRF3 Blocks IFN- and IRF-mediated transcriptional activation. Blocks apoptosis by inhibiting p53-dependent 
transactivation.

Latent. Also induced in 
lytic replication

K11 vlRF2 (when spliced to 
K11.1) Blocks IFN- and IRF-mediated transcriptional activation. Suppresses PKR. Lytic replication (Latent ?)

K12 Kaposin A, B, C Cell transformation. Kaposin A promotes anchorage independent growth. Kaposin B mediates mRNA stabilisation 
for cytokines, growth factors, and oncoproteins through the activation of MK2 kinase.

Latent and induced in lytic 
replication

ORF71 vFLIP Cell transformation. Blocks DR-mediated apoptosis. Activation of classical and alternative NF-kB pathways. 
Induction of cytokine secretion. Latent

ORF72 v-cyclin Promotes cell cycle progression by constitutively activating cdk6. Latent

ORF73 LANA (latent nuclear 
antigen) Tethers the viral episome to the host genome. Binds p53 and pRb. Acts as a transcriptional regulator. Latent

ORF74 vGPCR Cell transformation. Activates MAPK, p38, PI3K, NF-kB. Induces the secretion of pro-angiogenic factors, 
chemokines, and adhesion molecules.

Lytic replication

K15 - Blocks apoptosis by interacting with Hax-1. Activates MAPK, Ras/MEK/Erk2, JNK, NF-kB via TRAF binding. 
Induces the secretion of cytokines.

Latent and induced in lytic 
replication

Table 1.2 KSHV genes involved in viral pathogenesis

List of KSHV genes involved in viral pathogenesis, their protein products, and their expression pattern. Highlighted (bold) genes are those capable of NF-kB activation. Each 
KSHV ORF is named according to the system of Russo etal. 1996. Gene function is based on experimental evidence and is referenced and described in more detail in the text 
of Chapter 1, sections 1.2.7 and 1.2.8.



1.3 Regulation of NF-kB transcription factors

1.3.1 Rel and IkB protein families

Rel or nuclear factor of kB (NF-kB) proteins comprise a family of dimeric 

transcription factors, which exist in virtually all cell types and regulate the 

expression of a wide range of genes involved in immune and inflammatory 

responses, developmental processes, cellular growth, apoptosis, and survival 

(Pahl, 1999). Active NF-kB promotes the expression of over 150 target genes. 

The majority of the NF-kB target genes participate in the host immune 

response. These include, for example, an array of cytokines, chemokines, and 

adhesion molecules, as well as receptors required for immune recognition, 

such as MHC molecules, and proteins involved in antigen presentation 

(Ghosh and Karin, 2002). It also includes molecules involved in migration, 

differentiation and maturation of lymphocytes. Finally, it contains genes that 

regulate cell growth and apoptosis (Zhong et al., 2002).

NF-kB was first described in 1986 as a protein that bound to a specific 

decameric DNA sequence within the intronic enhancer of the immunoglobulin 

kappa light chain in mature B- and plasma cells, but not pre B-cells (Sen and 

Baltimore, 1986b). Later, NF-kB was demonstrated by the same authors as 

an inducible transcription factor in a range of other cells (Sen and Baltimore, 

1986a). NF-kB dimers are composed of different combinations of the five 

mammalian reticuloendotheliosis (Rel) family proteins. The Rel family share a 

conserved N-terminal Rel homology domain (RHD) of 300 amino acids 

(Figure 1.5), which resembles two Ig domains (May and Ghosh, 1997). The 

RHD mediates the DNA binding and dimerisation of NF-kB subunits, and is 

also the binding domain for a family of inhibitory proteins, termed inhibitors of 

kB (IkB) (Ghosh et al., 1998). The IkB family share a domain containing six or 

seven ankyrin repeats (Figure 1.5), through which they bind the RHDs 

(Whiteside and Israel, 1997). The c-Rel, RelB, and RelA proteins also have a 

C-terminal non-homologous transactivation domain, which strongly activates 

transcription from NF-kB binding sites in target genes (Blair et al., 1994; Bull 

eta!., 1990; Ryseck et al., 1992; Schmitz and Baeuerle, 1991; Schmitz et al., 

1994; Schmitz et al., 1995) (Figure 1.5). Two classes of Rel proteins are
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recognised. Class I members (RelA/p65, RelB and c-Rel) are synthesised as 

mature molecules, and class II members (p105/NF-KB1 and p100/NF-KB2) are 

synthesised as large precursor proteins containing an N-terminal RHD and a 

C-terminal ankyrin repeat domain (Figure 1.5). Prior to processing, p105 and 

p100 function as IxB-like molecules (Dobrzanski et al., 1995; Mercurio et al., 

1993; Rice et al., 1992; Solan et al., 2002). Proteolytic processing cleaves 

their inhibitory C-terminus to produce the mature NF-kB subunits p50, and 

p52 respectively (Whiteside and Israel, 1997).

1.3.2 NF-kB Dimers

NF-kB is now known to exist in most cell types, binding to the common 

consensus sequence 5’-GGGRNNYYCC-3’ (where R is purine and Y is 

pyrimidine) (Kunsch et al., 1992; Parry and Mackman, 1994), which may 

regulate more than 150 genes (Pahl, 1999). The RelA/p50 heterodimer is the 

most abundant NF-kB complex, but almost all combinations of Rel/NF-xB 

homo- and heterodimers have been identified in vivo (Ganchi et al., 1993; 

Hansen et al., 1994a; Kang et al., 1992; Molitor et al., 1990; Parry and 

Mackman, 1994). One exception is RelB, which only forms heterodimers with 

p50 and p52 (Ryseck et al., 1992; Ryseck et al., 1995). Almost all dimers are 

transcriptionally active, with the exception of p50 and p52, neither of which 

contain the C-terminal transactivating regions present in RelA, RelB and c-Rel 

(Ghosh et al., 1998). However, p50 and p52 still bind to NF-kB consensus 

sites in DNA, and are therefore thought by some to act as transcriptional 

repressors (Brown et al., 1994; Hansen et al., 1994a; Hansen et al., 1994b; 

Kang etal., 1992; Plaksin et al., 1993). The mechanism by which p50 and p52 

mediate transcriptional repression is not yet clear, but it may be through 

passive occupancy of kB sites that might otherwise be bound by 

transactivating NF-kB molecules (Kang et al., 1992), competition with other 

transcriptionally active NF-kB dimers (May and Ghosh, 1997), or through the 

recruitment of specific corepressor complexes (Zhong et al., 2002). 

Interestingly, p50 and p52 homodimers also specifically associate with the 

kB-like proto-oncogene, Bcl-3, to form transcriptionally active complexes
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Figure 1.5 Members of the NF-KB/Rel protein family and their IkB regulators

Members of the NF-KB/Rel and IkB families of proteins are shown. NF-kB proteins contain an N-terminal 
Rel-homology domain (RHD), and a C-terminal transactivation domain (TD). p105 and plOO are the 
precursors for p50 and p52, respectively. Both p105 and plOO contain a glycine-rich region (GRR) 
followed by C-terminal ankyrin repeats, which are also present in the IkB family of proteins, and a death 
domain (DD).The grey triangular arrows point to the endoproteolytic cleavage sites of p100/p52 and 
p105/p50.The number of amino acids in each protein is shown on the right LZ, leucine zipper domain 
of RelB; P, phosphorylation site of p100/p52 and p105/p50.
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(Bours et al., 1993; Fujita et al., 1993). In human breast epithelial cells, Bcl-3 

was shown to act as a coactivator with p52 homodimers, by activating the 

cyclin D1 promoter and stimulating cyclin D1 expression, to potentiate G1 

transition of the cell cycle (Westerheide et al., 2001).

In vivo, there are cases in which the different kB sites are bound preferentially 

by specific NF-kB dimers with higher affinity than others, as a mechanism to 

generate specificity of transcriptional regulation (May and Ghosh, 1997). 

Determination of the X-ray crystal structure of the NF-kB RHD of the p50 

homodimer bound to DNA, demonstrated that the RHD is composed of two 

domains of anti-parallel (3-sheets linked by a short polypeptide, which are 

folded in a pattern similar to immunoglobulin domains (Ghosh et al., 1995; 

Muller and Harrison, 1995). The DNA is trapped between the folds of the RHD 

domains, and the overall structure of the p50 dimer forms a molecule likened 

to butterfly wings, with the DNA trapped within the wings. The interaction of 

the p50 homodimer with DNA involves 10 loops at the ends of p-strands, 

mediating a strong but flexible interaction (May and Ghosh, 1997). Once 

bound to the promoter, NF-kB initiates transcription through the assembly of 

larger nucleoprotein complexes, termed enhanceosomes (Thanos and 

Maniatis, 1995). Studies on the IFN-p promoters have demonstrated 

transcriptional synergy imparted by the interaction between Rel proteins with 

other factors. These protein-protein interactions have been proposed to bend 

the promoter DNA to form a higher order transcriptional complex (Thanos and 

Maniatis, 1995). In the case of the IFN-p gene, its enhancer element contains 

DNA-binding sites for three transcription factors, NF-kB, a heterodimer of 

ATF-2/c-jun, and IRF proteins, which bind on three positive regulatory 

domains (PRDs), PRDII, PRDIV and PRDIII-1, respectively (Thanos et al., 

1993). The IFN-p enhancer element also contains a sequence that allows the 

binding of the DNA-remodelling protein HMG l(Y) to the minor groove. Binding 

of HMG l(Y) to the central region of PRDII (Thanos and Maniatis, 1992), 

bends the DNA and facilitates the cooperative DNA binding of NF-kB and 

ATF-2/c-Jun (Yie et al., 1999). Once bound to a kB motif, the Rel proteins can 

interact with various other DNA-associated transcription factors, and can
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recruit IRF, and the co-activator p300/CBP into the complex (Munshi et al.,

1998). Co-activators are non-DNA binding proteins that couple transcription 

factors to the basal transcription machinery and induce chromatin remodelling 

(Blobel, 2000). The process of chromatin remodelling is the first step in 

promoter activation. It is therefore significant that RelA directly recruits 

p300/CBP through an interaction with its C-terminal transactivation domain 

(Perkins etal., 1997; Wadgaonkar et al., 1999).

In most cells, NF-kB is present as a latent, inactive complex with the IkB 

inhibitors, which bind NF-kB and mask its nuclear localisation signal, thus 

sequestering it in the cytoplasm. There are several pathways that regulate the 

activation of NF-kB. The most common one is termed the classical or 

canonical pathway, and regulates the degradation of IkB to release dimers 

composed of RelA, c-Rel and p50 (Bonizzi and Karin, 2004). In brief, the 

canonical NF-kB pathway is activated when inflammatory signals induce 

proteolytic degradation of the IkB inhibitory proteins, which then release NF- 

kB (Henkel et al., 1993). NF-kB dimers then migrate to the nucleus and 

activate transcription. A second pathway, which is activated by distinct stimuli 

and termed the alternative pathway, controls the processing of p100. Full- 

length p100 preferentially sequesters RelB in the cytoplasm of cells 

(Dobrzanski et al., 1995; Solan et al., 2002), and specific stimuli can activate 

processing of p100, which generates the active subunit p52, and releases 

RelB heterodimers to translocate to the nucleus. The regulation of the 

canonical and alternative NF-kB pathways will be the subject of discussion in 

this section.
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1.3.3 Classical NF-kB Pathway

The canonical or classical NF-kB pathway (Figure 1.6), is induced by a variety 

of proinflammatory stimuli including bacterial LPS, negative strand viruses, ds- 

RNA, immunostimulatory sequences (ISS) of DNA, TNFa, IL-1, and antigens 

(Ghosh and Karin, 2002). Stimulation of the classical pathway leads to the 

activation of the p subunit of the IkB kinase (IKK) complex, which then 

phosphorylates IkB proteins on two N-terminal serine residues (Ser32 and 36 

for IkBo, and Ser19 and 23 for IkBP) (DiDonato et a/., 1997; Mercurio et al., 

1997; Regnier et al., 1997; Woronicz et al., 1997; Zandi et al., 1997). In the 

classical NF-kB signalling pathway, IKKp is necessary and sufficient for 

phosphorylation of IkBo and kBp. Phosphorylated IkB proteins are 

recognised and ubiquitinated by members of the Skp1-Culin-Roc1/Rbx1/Hrt-1- 

F-box (SCF/SCRF) family of ubiquitin ligases (Ben-Neriah, 2002). The p-TrCP 

receptor protein of the SCF family ubiquitin ligase complex, recognizes and 

binds directly to the phosphorylated E3 recognition sequence (DS*GXXS*) 

founds on IkB molecules (Fuchs etal., 1999; Hatakeyama etal., 1999; Kroll et 

al., 1999; Spencer et al., 1999; Suzuki et al., 1999; Winston et al., 1999; Wu 

and Ghosh, 1999; Yaron et al., 1997; Yaron et al., 1998). IkBs are in turn 

targeted for poly-ubiquitination at two conserved N-terminal arginine acceptor 

sites on IkB, Lys 21 and Lys 22, by an E3 ubiquitin ligase enzyme (Alkalay et 

al., 1995b; Yaron et al., 1997). Phosphorylated and ubiquitinated IkB is thus 

targeted for degradation by the 26S proteosome (Brown et al., 1995; Chen et 

al., 1995). This process is rapid, such that all kBa can be degraded within a 

few minutes (Alkalay et al., 1995a; DiDonato et al., 1995). The classical 

pathway therefore ensures a rapid response that is crucial for effective 

inflammatory and immunoregulatory processes. Following degradation of IkB, 

the released NF-kB translocates to the nucleus, where it is able to bind 

promoter and enhancer regions containing the kB consensus binding motif 

and regulate gene transcription.
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Figure 1.6 The classical pathway of NF-kB activation

The classical pathway is triggered by pro-inflammatory stimuli and genotoxic stress, including 
the following: cytokines, such as tumour-necrosis factor (TNF) and interleukin-1 (IL-1); bacterial 
cell-wall components, such as lipopolysaccharide (LPS); viruses; and DNA-damaging agents. 
Activation of this pathway leads to the IKK-(inhibitor of NF-kB (IkB) kinase) dependent 
phosphorylation of IkBs, which induces their rapid proteasomal degradation. This results in the 
liberation of NF-kB dimers (which are mostly p50:p65 dimers) and their subsequent 
translocation into the nucleus, where they transactivate genes involved in immune responses, 
inflammation, and promoting cell survival. Ub, ubiquitin; P, phosphorylation.



1.3.3.1 The IkB Kinase (IKK) Complex

Most of the known inducers of NF-kB convey their signals through distinct 

pathways, and the point where all these pathways intersect, is the IkB Kinase 

(IKK) complex (Ghosh and Karin, 2002). IKK is highly regulated, and in many 

respects holds the key to regulation of the entire NF-kB pathway. The first 

studies to identify a putative IkB kinase, resulted in the purification and 

characterization of a 900kDa protein kinase complex that was capable of 

specifically phosphorylating IkBo on serine residues 32 and 36 (Chen et al.,

1996). Subsequently, many groups identified a stimulus-dependent kinase 

activity that was termed the IkB kinase (DiDonato et al., 1997; Mercurio et al., 

1997; Woronicz et al., 1997; Zandi et al., 1997). Two polypeptides that 

coeluted with this IKK activity were identified by microsequencing, and cDNA 

cloning, as two closely related protein kinases, IKKa (IKK1) and IKKp (IKK2) 

(DiDonato etal., 1997; Zandi etal., 1997). IKKa had previously been identified 

as a putative serine threonine kinase, termed conserved helix-loop-helix 

ubiquitous kinase (CHUK) (Connelly and Marcu, 1995). Using a different 

approach, Regnier et al. also identified CHUK/IKKa as an IxB-kinase, and 

found that it associated with the NF-xB-inducing kinase (NIK), with specific 

kinase activity towards IkB (Regnier et al., 1997). Another subunit of the IKK 

complex, termed IKKy, was discovered soon afterwards by affinity purification 

and as a factor interacting with an adenoviral inhibitor of NF-kB (Rothwarf et 

al., 1998). The mouse homologue of IKKy was isolated through genetic 

complementation cloning, as a factor that could restore NF-kB activation in 

two cell lines defective in this activity, and was subsequently termed NF-kB 

essential factor (NEMO) (Yamaoka et al, 1998).

IKKa and IKKp are 85 and 87 kDa proteins, which constitute the catalytic 

component of the IKK complex. They share 52% overall sequence identity 

and 65% identity within the catalytic domain. Both can be inactivated by the 

mutation of Lysine 44 within the predicted ATP-binding site (Mercurio et al., 

1997; Woronicz et al., 1997; Zandi et al., 1997). They are serine/threonine 

kinases that are characterised by the presence of an N-terminal kinase 

domain, a C-terminal helix-loop-helix (HLH) domain, and a leucine zipper (LZ)
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domain (DiDonato et al., 1997; Zandi et al., 1997). Immunoprecipitation 

studies have shown that IKKa and IKKp can form homo- or heterodimers, and 

these interactions are mediated by binding between the LZ domains, which 

are therefore required for kinase activity (Hansen et al., 1994a; Mercurio et al., 

1997; Ryseck etal., 1995). IKKy, the regulatory subunit of the IKK complex, is 

a 48kDa protein that is not related to IKKa and IKKp, and contains a C- 

terminal zinc finger-like domain, a leucine zipper, and N-terminal and C- 

terminal coiled-coil domains. NEMO is non-catalytic, but essential for the 

assembly and activation of the high molecular weight complex (Li etal., 2001; 

Rothwarf et al., 1998; Rudolph et al., 2000; Yamaoka et al., 1998). The HLH 

domain is required for full IKKp activity, and this is mediated through direct 

interaction between the C-terminal HLH domain and the N-terminal kinase 

domain (Delhase et al., 1999). More recently, it has been shown that 

removing the HLH domain of IKKa and IKKp, abolishes the binding of IKK to 

NEMO, and therefore the HLH domain may be necessary for the assembly of 

functional IKK-NEMO complexes (May etal., 2002). IKKa and IKKp associate 

with IKKy through a C-terminal hexapeptide sequence (Leu-Asp-Trp-Ser-Trp- 

Leu), termed the NEMO binding domain (NBD) (May et al., 2002). NEMO 

binding to IKK requires residues 135-231, located at the N-terminus within the 

first coiled-coil motif, and can interact with the NBD of both IKKa and IKKp 

(May et al., 2002; Mercurio et al., 1999; Poyet et al., 2000; Rothwarf et al., 

1998; Ye et al., 2000). In addition, the C-terminus of NEMO is required for 

binding to ubiquitin or the deubiquitinase CYLD, or for the oligomerization of 

NEMO (Agou et al., 2002; Ea et al., 2006; Rothwarf et al., 1998; Saito et al., 

2004; Schomer-Miller et al., 2006; Tegethoff et al., 2003; Wu et al., 2006a; Ye 

et al., 2000). More recently, a group identified and characterized the 

counterpart of the NEMO-binding domain, the IKK-binding domain (IBD) in 

NEMO. Various reports have demonstrated that the domain of NEMO 

necessary and sufficient for the interaction with IKKs is located in the amino- 

terminal portion of NEMO (Harhaj and Sun, 1999; lha et al., 2003; May et al., 

2000; Tegethoff et al., 2003; Ye et al., 2000). Marienfeld et al. demonstrated 

that IKKa and IKKp bound on the region from amino acid 40 to 120 of NEMO. 

Moreover, they found that a coiled-coil domain spanning amino acids 47 to 80 

within the IBD of NEMO, and consisting of three a-helical subdomains, is
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crucial for both dimerisation as well as binding to IKKs. The study further 

demonstrated that this amino-terminal dimerisation domain in NEMO is 

required for robust, inducible NF-kB activation (Marienfeld etal., 2006).

The composition of the IKK complex is still debated, and this is driven by the 

discrepancy between the apparent molecular weight observed during gel 

filtration, which is 700-900 kDa, and its predicted size, which is 200-350 kDa, 

based on the actual molecular weights of its individual components. So far, 

the only definitive members of the complex are IKKa, IKKp, and NEMO, with 

many groups supporting the idea of a heterodimer of IKKa and IKKP, which 

associates with NEMO (Miller and Zandi, 2001; Rothwarf and Karin, 1999). 

More recently, several proteins have been shown to interact with the IKK 

complex. The chaperone protein Hsp90 and a cochaperone called Cdc37 

have been shown to be constitutively associated with the IKK complex (Chen 

et al., 2002), and they may function in maintaining the complex during 

assembly or regeneration following signalling. Moreover, ELKS, a 105 kDa 

regulatory protein has also been recently demonstrated as an IKK-interacting 

protein (Ducut Sigala et al., 2004). siRNA-mediated knockdown of ELKS 

blocked the early activation of NF-kB mediated by TNF-a and IL-1, and in the 

absence of ELKS, the IKK complex failed to associate with IkBo, suggesting a 

potential role for ELKS in mediating the interaction between the IKK complex 

and IkBo (Ducut Sigala etal., 2004).

1.3.3.2 The Functions of the IKK Subunits

In order to study the roles of the three IKK subunits, knockouts of each one 

have been generated. IKKp'7' mice exhibited embryonic lethality caused by 

liver degeneration, a phenotype highly analogous to p65'7' mice, supporting an 

argument for a central role for IKKP in mediating NF-kB signalling via TNFa (Li 

et al., 1999a; Li et al., 1999b; Tanaka et al., 1999). Therefore, it appears that 

there is no partial compensation for IKKp by IKKa or any other kinase. In 

contrast, IKKa'7' mice were born live, but died perinatally from severe 

morphogenetic defects in keratinocyte proliferation and differentiation (Hu et 

al., 1999). Interestingly, IkB degradation by proinflammatory stimuli was
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virtually unaffected, but despite normal IkB degradation and nuclear 

translocation of NF-kB, IKKa'7' mice were deficient in inducing several NF-kB- 

dependent mRNAs in response to IL-1 and TNFa (Li et al., 1999a; Li et al.,

2002). These findings indicate that IKKa plays a minor role in NF-kB 

signalling, but is perhaps required for development, as knockout mice exhibit 

altered limb bud morphology (Hu et al., 1999; Li et al., 1999a; Takeda et al.,

1999). Moreover, it was recently shown that in response to TNFa, IKKa in 

conjunction with RelA, is recruited to the promoter regions of NF-kB 

responsive genes including IkBa, IL-8, and IL-6, and mediates the inducible 

phosphorylation of Histone H3 at Ser10 (Anest et al., 2003; Yamamoto et al.,

2003). IKKa was also found to interact with the transactivation domain of the 

transcriptional coactivator cAMP-response-element-binding protein (CREB)- 

binding protein (CBP), and enhance CBP-dependent transcription and histone 

H3 acetylation (Yamamoto et al., 2003). This function was antagonised by 

IKKy, which was also found to shuttle between cytoplasm and nucleus and 

compete with RelA and IKKa for binding to CBP (Verma et al., 2004). These 

studies indicate that IKKa has an important downstream role in augmenting 

NF-KB-dependent gene expression by forming a complex with p65 or CBP on 

these promoter regions and, thus, regulating initial histone H3 phosphorylation 

and subsequent acetylation by CBP. IKKy'7' mice exhibited embryonic lethality 

from severe liver apoptosis, and cells from NEMO'7' mice were refractory to 

NF-kB activation by proinflammatory stimuli (Makris et al., 2000; Rudolph et 

al., 2000; Schmidt-Supprian et al., 2000). Studies using deletion mutants of 

NEMO demonstrate that the C-terminal portion is required for stimulus- 

induced activation of IKK through interaction with upstream adapters, whereas 

binding to IKKa and IKKp occurs using sequences from the N-terminus 

(Makris et al., 2002; Rothwarf et al., 1998). Therefore, it appears that only 

IKKp and NEMO are required for signalling through the classical NF-kB 

pathway.

62



1.3.3.3 Activation and Regulation of IKK

Numerous signalling pathways lead to the induction of the canonical NF-kB 

pathway, and almost all of these pathways proceed via the activation of IKK. 

Activation of the IKK complex is dependent on phosphorylation of the IKKp 

catalytic subunit, which is phosphorylated on Ser177 and Ser181 within the 

activation loop of the kinase domain (Delhase et al., 1999). The activation of 

the canonical NF-kB pathway is best characterised for TNFa, which recruits 

the IKK complex to the TNFR1 upon receptor binding (Chen et al., 2002; 

Devin et al., 2000; Zhang et al., 2000). Genetic experiments have identified 

critical molecules in this process, including TRAF2 (Kelliher etal., 1998; Tada 

et al., 2001), TRAF5 (Tada et al., 2001) and the protein kinase RIP1 (Devin et 

al., 2000). Ligation of TNFR1 by trimeric TNFa causes aggregation of the 

receptor and binding of the TNFR-associated death domain protein (TRADD) 

(Jiang et al., 1999). TRADD subsequently recruits the downstream adapter 

TRAF2, which in turn recruits the IKK complex through a direct interaction with 

the leucine zipper of IKKa or IKKp (Devin et al., 2000). TRAF2 also interacts 

with the serine/threonine kinase RIP1, which can bind also directly to NEMO 

and thereby recruit IKK to the TNFR1 signalling complex independent of 

TRAF2 (Zhang et al., 2000). RIP has a role in addition to or independent of 

simple recruitment of the IKK complex. It may nucleate the assembly of a 

signalling complex that induces IKK activation through oligomerisation of 

NEMO and subsequent autophosphorylation of IKK (Delhase et al., 1999). 

Although these findings fail to explain exactly how the IKK complex is 

activated, it seems most likely that IKKp is either phosphorylated by upstream 

kinases that may be recruited by the C-terminus of IKKy, or that a 

transautophosphorylation mechanism is responsible for its activation.

Key elements of another important pathway that is required for B cell and T 

cell receptor-mediated activation of IKK have recently been elucidated. TCR 

ligation induces phosphorylation of key residues on ITAMs present on the 

TCR£ and CD3. Phosphorylated ITAMs recruit SH2-domain-containing 

adapters, such as the Syk family tyrosine kinases Lck and ZAP70. Recent 

studies have implicated several potential signalling intermediates that appear 

to comprise a novel signalling pathway including PKC6, CARMA1/CARD11,
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Bcl-10, and MALT1 (Lucas et al., 2004; Simeoni et al., 2004; Thome, 2004). 

PKC0 is essential for activation of NF-kB by TCR (Sun et al., 2000). PKC0 is 

capable of directly interacting with the IKK complex in primary T cells 

(Khoshnan et al., 2000), and it is possible that PKC0 might act as a 

scaffold/adapter to link events in the synapse with the other essential 

components in this pathway, namely, CARMA1/CARD11, Bcl-10, and MALT1. 

CARMA1/CARD11 is required for PKC0-mediated activation of NF-kB 

following TCR ligation (Gaide et al., 2002; Hara et al., 2003). Bcl-10, which 

interacts with MALT1 and clAPs, is also critical for NF-kB activation via the 

BCR (Ruland et al., 2001). Bcl-10 interacts with CARMA-1 and undergoes 

CARMA-1-dependent phosphorylation, although CARMA-1 lacks kinase 

activity (Bertin et al., 2001; Gaide et al., 2001). It has been shown that Bcl-10 

and CARMA-1 can induce E3 activity of TRAF6, which is necessary for IKK 

activation in Jurkat T cells after TCR ligation, as demonstrated by RNAi 

against TRAF6 and TRAF2 (Sun et al., 2004). Moreover, MALT1 triggers the 

K63 ubiquitination of Lys399 in the C-terminal zinc-finger domain of NEMO, 

and mutation of this residue inhibits NF-kB activation mediated by BCL10 

(Zhou et al., 2004). BCL10 in turn, can induce the oligomerization of MALT1 

(Lucas et al., 2001), which might enhance its ubiquitin ligase activity.

Recent studies seem to suggest a crucial role for the K63-linked 

polyubiqitination of NEMO in the activation of the IKK complex, and a 

deubiquitinating (DUB) enzyme, termed CYLD, has been shown to negatively 

regulate IKK (Brummelkamp etal., 2003; Kovalenko etal., 2003; Trompouki et 

al., 2003). In contrast to K48-linked ubiquitination, which results in 

proteasomal degradation, K63-linked ubiquitination of NEMO facilitates the 

binding of other proteins with ubiquitin-binding domains that are required for 

activation of the IKKp catalytic subunit (Burns and Martinon, 2004; Chen, 

2005; Krappmann and Scheidereit, 2005). The adapter protein, transforming 

growth factor [TGF]-p-activated kinase (TAK)-1, which has been proposed to 

link TRAF6 with IKK (Takaesu et al., 2000; Takaesu et al., 2003), has been 

shown to have a critical role in TNF-, IL-1-, Toll-like receptor (TLR)-, and TCR- 

mediated activation of NF-kB (Chen, 2005; Chen etal., 2006; Krappmann and 

Scheidereit, 2005). These findings support in vitro observations that TAK1
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could activate IKK via a ubiquitination mechanism (Deng et al., 2000b; Wang 

et al., 2001). A ubiquitin-conjugating complex containing the E2 enzyme 

Ubc13/Uev1, termed TRAF6-regulated IKK activator (TRIKA) 1, was 

biochemically purified and found to ubiquitinate TRAF6 on lysine 63, leading 

to its activation. Polyubiquitinated and activated TRAF6 can then recruit a 

second complex, TRIKA2, containing TAK1, and the TAK1-binding proteins 

TAB2 and TAB3, which are themselves K63-linked polyubiquitin-binding 

proteins, and recruitment of this complex activates TAK1(Wang et al., 2001). 

This allows TAK1-mediated phosphorylation of IKKp at Ser177 and Ser181 

within its activation loop (Wang etal., 2001), which results in activation of the 

IKK complex. It has therefore become progressively clearer that 

posttranslational modifications of NEMO play a critical role in the activation of 

the IKK complex.

Another pathway of NEMO-dependent IKKp activation occurs during NF-kB 

activation in response to genotoxic stress. DNA damage elicits a complex 

cellular response, and the product of the gene mutated in ataxia- 

telangiectasia (ATM), a PI 3-kinase-related kinase, plays a central role in 

sensing DNA damage and activating the DNA repair machinery (Yang et al.,

2004). Recently, cellular exposure to DNA damaging agents has been shown 

to result in the modification of NEMO with the small ubiquitin-like modifier 

(SUMO-1) (Huang et al., 2003). NEMO translocates to the nucleus, where it is 

sumoylated on Lys227 and Lys309 (Huang et al., 2003; Wu et al., 2006b), 

and this results in NEMO phosphorylation by ATM on Ser85. ATM-mediated 

NEMO phosphorylation leads to the replacement of NEMO sumoylation by 

mono-ubiquitination, which promotes the nuclear export of NEMO in a 

complex with ATM. Finally, the cytoplasmic NEMO-ATM complex associates 

with an IKK regulator rich in glutamate, leucine, lysine, and serine (ELKS), 

which causes the activation of the IKK complex (Wu etal., 2006b).

On the basis of overexpression studies, many candidate IKKp kinases have 

been suggested (Ghosh and Karin, 2002), but only a few have stood the test 

of genetic ablation or RNA interference. MAP/ERK kinase kinase (MEKK) 3"/_ 

MEFs were unable to degrade IkBq following TNF-a stimulation, and MEKK3
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can induce IKK activation in RIP-deficient cells (Yang etal., 2001). However, it 

is not yet clear whether MEKK3 can directly phosphorylate IKK following TNF 

stimulation. Moreover, the protein kinase C PKC£, has been implicated as a 

potential IKK kinase (Lallena et al., 1999; Sanz et al., 2000), since it was 

found to be required in TNFa-mediated IKK activation in mouse lung cells, but 

not in MEFs (Leitges etal., 2001).

A different mechanism by which IKKp may be activated is via induced 

proximity and trans-autophosphorylation. Indeed, many of the proposed IKK 

kinases have been found to play the role of adaptors instead of kinases. It has 

been shown that enforced oligomerisation of the N-terminus of NEMO, or 

truncated IKKa and IKKp mutants lacking their C-terminus, can activate IKK, 

and it is proposed that RIP1 may mediate the oligomerisation of IKK in vivo 

(Inohara etal., 2000; Poyet etal., 2000). Overexpression of active IKKp leads 

to activation via autophosphorylation (Woronicz et al., 1997; Zandi et al., 

1998), and it is suggested that the ability of IKKp to oligomerise and trans- 

autophosphorylate is essential for IKK activation (Tang et al., 2003). It is also 

possible that the two mechanisms are not mutually exclusive. Recent data 

suggest that NEMO interacts with IKKa and IKKp as a tetramer (Tegethoff et 

al., 2003), which holds the kinase subunits in a position that facilitates 

transautophosphorylation. Most studies agree that in the assembly of the IKK 

signalsome, NEMO binds to both IKKa and IKKp, and this tripartite complex 

can optimise the positioning of the IKKp reactive loop for activation. However, 

a more recent report has indicated that in unstimulated cells, NEMO can be 

found as a monomer, or a heterodimer with either IKKa or IKKp (Fontan et al., 

2007). In this model, in response to stimulation by IL-1P, or the oncoprotein 

Tax from HTLV-1, NEMO dimerises thereby recruiting IKKa or IKKp in a high 

molecular weight complex with increased IKK activity (Fontan et al., 2007). It 

is also possible that the post-translational modification of IKK subunits might 

trigger a conformational change within the complex that facilitates IKKp 

autophosphorylation. Indeed, IKKp activation-loop phosphorylation at Ser177 

and Ser181 has been shown to lead to mono-ubiquitination of IKKp at Lys163, 

and mutation of Lys163 abolishes IKKP trans-autophosphorylation of further 

C-terminal serine residues (Delhase etal., 1999; Schomer-Miller etal., 2006).
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1.3.4 Alternative NF-kB Pathway

Research over the last few years has characterised a novel signalling 

pathway, which regulates the processing of p100/NF-KB2 to p52. This is 

distinct from the classical NF-kB pathway and is now known as the 

“alternative” or “non-canonical” NF-kB pathway (Pomerantz and Baltimore,

2002) (Figure 1.7). The first indication that p100 processing may be regulated 

came from the observation that overexpression of NIK in 293 cells was 

sufficient to induce p100 processing, independently of IKKa and IKKP 

(Senftleben et al., 2001). Splenocytes derived from the alymphoplasia 

(aly/aly) mice, which contain a point mutation in NIK that blocks its ability to 

induce p100 processing, displayed a dramatic reduction in p52 levels, 

although p100 levels were normal, as compared to the control a/y/+ 

heterozygous cells (Xiao et al., 2001b; Yamada et al., 2000). Consistent with 

the hypothesis that p100 and NIK might be part of the same pathway, aly/aly 

and n//cv' mice (Koike et al., 1996; Yin et al., 2001) display a phenotype that 

bears remarkable similarity to that of nfkb2?' mice (Caamano et al., 1998; 

Franzoso et al., 1998). These mice are characterised by the systemic 

absence of lymph nodes and Beyer’s patches, disorganised splenic and 

thymic architectures, lack of germinal centres, and defective B-cell mediated 

responses, resulting in immunodeficiency. Soon afterwards, Senftleben et al, 

demonstrated a role for IKKa in this pathway, using IKKa'7' haematopoietic 

stem cells to reconstitute lethally irradiated mice (Kaisho et al., 2001; 

Senftleben et al., 2001). These chimeras displayed similar defects in B cell 

maturation and lymphoid architecture to those of aly/aly, NIK7' and nfkbZ1' 

mice. Moreover, B cells derived from IKKa'7' mice exhibited a specific 

deficiency in p100 processing that could not be rescued by the ectopic 

expression of NIK (Senftleben et al, 2001). In vitro kinase assays suggested 

that IKKa can phosphorylate p100 directly, leading to ubiquitin-dependent 

generation of p52 (Senftleben et al, 2001). IKKp and NEMO are not required 

for NIK-induced p100 processing (Senftleben et al., 2001; Xiao et al., 2001a), 

raising the possibility that the pool of IKKa regulating p100 processing may
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Figure 1.7 The alternative pathway of NF-kB activation

The alternative pathway involves activation of the NIK (NF-kB inducing kinase) protein kinase and the 
IKKa catalytic subunit of the IKK complex via membrane-bound receptors of the TNF-R superfamily. 
Phosphorylation by IKKa results in pi 00 ubiquitination by the SCF ubiquitin ligase complex, and its 
partial processing from pi 00 to p52 by the 26S proteasome. NF-kB dimers containing RelB are then 
released and are free to translocate into the nucleus.The alternative NF-kB pathway is important for 
secondary lymphoid organ development, maturation of B-cells, and adaptive humoral immunity. 
Three viral oncoproteins have also been shown to activate the alternative NF-kB pathway. The Tax 
oncoprotein from HTLV-1, and vFLIP from KSHV, act via IKKa and IKKy, while LMP1 from EBV mimics 
CD40 signalling and therefore requires NIK and IKKa. Ub, ubiquitin; P, phosphorylation.
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not be a component of the IKKa-IKKp-NEMO complex that controls the 

degradation of IkBo. These data implied the existence of a specific pathway, 

with IKKa lying downstream of NIK in a signalling pathway that regulates p100 

processing.

1.3.4.1 p100 inducible and constitutive processing

The processing of the precursor NF-kB proteins, p105 and p100, represents 

another important mechanism of NF-kB activation. p105 and p100 function as 

kB-like inhibitors due the ankyrin repeats in their C-terminal regions, while 

their processing products, p50 and p52, are partners of the Rel proteins. 

Therefore, the processing of p105 and p100 acts by releasing NF-kB dimers 

into the nucleus, but also by generating functional NF-kB complexes. The 

processing of p105 and p100 involves proteasome-mediated degradation of 

their C-terminal regions containing the ankyrin repeat domain (ARD) (Fan and 

Maniatis, 1991; Siebenlist et al., 1994). Although p105 is constitutively 

processed, the processing of p100 is tightly regulated (Betts and Nabel, 1996; 

Heusch et al., 1999). The lack of constitutive p100 processing has been 

attributed to a processing inhibitory domain (PID) located within a death 

domain (DD) at the C-terminus, since deletion of the DD is sufficient to trigger 

constitutive processing of p100 (Xiao et al., 2001b). Processing of p100 is 

also regulated by a glycine-rich region (GRR) at amino acid 346-377 (Heusch 

et al, 1999). Translocation of this GRR alters the site of proteasomal 

processing (Heusch et al., 1999). Inducible activation of NIK, leads to 

activation of downstream IKKa by NIK (Senftleben et al., 2001), which also 

recruits IKKa into a complex with p100 via two C-terminal serines, S866 and 

S870, of p100 (Xiao et al., 2004). Formation of this complex is followed by the 

phosphorylation of N- and C-terminal serines of p100, namely Ser99, 108, 

115, 123, 872, which results in p100 ubiquitination (Fong and Sun, 2002; 

Fong et al., 2002; Xiao et al., 2004). The DD of p100 is required for the 

phosphorylation-induced recruitment of p-transducing repeat-containing 

protein (P-TrCP), a component of the SKP1-cullin-F box (SCF) ubiquitin ligase 

complex which catalyses p100 polyubiquitination (Fong etal., 2002a). p -TrCP 

has been demonstrated to bind to a phosphorylated sequence in the p100, 

which represents a polypeptide sequence enriched in proline (P), glutamic

69



acid (E), serine (S), and threonine (T), and is termed the PEST region. This 

region has been shown to be related to the p -TrCP binding site on IkBo, and 

is thought to be directly phosphorylated by IKKa (Senftleben et a/., 2001). 

More recently, it was shown that NIK/IKKa-dependent phosphorylation of 

p100 at serines 866, 870, and possibly 872, creates a binding site for p -TrCP, 

thereby regulating p100 ubiquitination (Liang et a/., 2006). The amino acid 

residue Lys855, which is located on an N-terminal region to the p-TrCP 

binding site, serves as the major ubiquitin-anchoring residue in p100 (Amir et 

al., 2004). Yeast two-hybrid analysis identified S9, a non-ATPase subunit in 

the 19S subcomplex of the 26S proteasome, as an interacting partner of the 

C-terminus of p100 (Fong et al., 2002b). In mammalian cells, this interaction 

was NIK-inducible and led to the partial processing of p100 to generate p52. 

The most recent data suggest that besides that C-terminal sequences, 

multiple functional regions, including the dimerisation domain, the nuclear 

localization signal, and the glycine-rich region, which are located in the N 

terminus of p100, may also play important roles in the constitutive and 

inducible processing of p100 (Qing et al., 2005).

Constitutive processing of p100, which occurs due to the loss of its C-terminal 

PID domain and part of the ARD domain, has been detected in various 

lymphomas associated with nfkb2 gene rearrangements (Xiao et al., 2001b). 

Both common and different mechanisms have been implicated in the 

regulation of physiological, and the constitutive pathogenic processing of 

p100. Inducible and constitutive processing of p100 require IKKa, and involve 

the same regions of the N-terminus of p100, suggesting a common 

mechanism (Qing et al., 2005; Qing and Xiao, 2005). Nevertheless, the 

mechanisms for signal-induced and constitutive p100 processing appear to be 

different. In contrast to inducible p100 processing, which relies on P-TrCP for 

p100 poly-ubiquitination, P-TrCP is dispensable for the constitutive processing 

of p100, which is not associated with ubiquitination either, but rather is 

regulated by the nuclear translocation of p100 (Fong and Sun, 2002; Liao and 

Sun, 2003; Qing et al., 2005; Xiao et al., 2001b). Moreover, the subcellular 

localization of induced and constitutive p100 processing is distinct. NIK- 

induced processing of p100 occurs in the cytoplasm, while the constitutive
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processing of p100 occurs in the nucleus in association with xB-containing 

promoter elements (Qing et al., 2005; Qing and Xiao, 2005). In the nucleus, 

the C-terminal truncated p100 mutants (plOOACs) bind to the kB motifs of the 

promoters and subsequently recruit the proteasome, to form a stable 

proteasome/p100AC/DNA complex, which mediates the processing of 

plOOACs. The constitutive processing of the plOOACs is initiated by a 

proteasome-mediated endoproteolytic cleavage at amino acid D415 (Qing et 

al., 2007), whereas inducible processing of p100 seems to be mediated by 

proteasomal exoproteolytic degradation from the C-terminal end.

1.3.4.2 Activation and Regulation of the Alternative Pathway

It is now known that the alternative NF-kB pathway is not activated by most of 

the stimuli that induce the classical NF-kB pathway (Xiao et al., 2001a; Xiao et 

al., 2001b). The full picture of inducible p100 processing was obtained through 

studies of signalling that occurs downstream of four independent receptors 

belonging to the TNF receptor superfamily, which have been shown to induce 

p100 processing. Treatment of lymphotoxin-P receptor (LTpR)-expressing 

MEFs with an anti-LTpR antibody has demonstrated that LTPR signalling 

induces processing of p100 to p52 in MEFs. Moreover, studies on knockout 

MEFs have shown that NIK and IKKa are required for LTpR-induced p100 

processing, but IKKp and NEMO seem to be dispensable in this process 

(Dejardin et al., 2002; Mordmuller et al., 2003; Muller and Siebenlist, 2003; 

Saitoh et al., 2002). LTpR is expressed on stromal cells, and analysis of LTpR 

knockout mice has suggested a crucial role for this receptor in peripheral 

lymphoid tissue organogenesis, since mice lacking LTpR fail to form lymph 

nodes and Payer’s patches (Gommerman and Browning, 2003; Shakhov and 

Nedospasov, 2001). Two distinct receptors have been shown to regulate p100 

processing in B-cells, namely B-cell activating factor receptor (BAFF-R) 

(Claudio et al., 2002; Kayagaki et al., 2002), and CD40 (Coope et al., 2002). 

B-cell activating factor (BAFF) is critical for the development and survival of 

peripheral B cells (Gross etal., 2001; Schiemann etal., 2001). BAFF receptor 

3 (BR3) is the only specific receptor for BAFF and it has been demonstrated 

to trigger p100 processing via a NIK-dependent pathway (Claudio etal., 2002; 

Kayagaki et al., 2002). BAFF-induced p100 processing has been shown to

71



play an important role in promoting the survival and maturation of transition-1 - 

stage splenic B-cells (Claudio et al., 2002; Mackay etal., 2003). Interestingly, 

transgene mediated overexpression of BAFF leads to B cell hyperplasia and a 

systemic lupus erythematous-like condition in mice (Gross etal., 2000; Khare 

et al., 2000; Mackay et al., 1999). CD40 is expressed on B cells and triggers 

their clonal expansion and differentiation (Calderhead et al., 2000). Treatment 

of CD40-expressing B cells with CD40 ligand also induces p100 processing 

(Coope et al., 2002). Comparison between nfkbZ/_ and wild-type splenic B 

cells has suggested that CD40 activation of the alternative pathway is 

important for optimal promotion of cell survival and homotypic aggregation 

(Zarnegar et al., 2004). TWEAK (TNF-like weak inducer of apoptosis), which 

is expressed on human monocytes, can also induce p100 processing (Saitoh 

et al., 2002). Therefore, it appears that the alternative pathway activates a 

transcriptional programme that is essential to B cell function. Finally, RANKL 

(receptor activator of NF-kB ligand), which is involved in osteoclast 

differentiation (Teitelbaum, 2000), has also been shown to induce p100 

processing to p52 in osteoclast precursors in a NIK-dependent manner 

(Novack et al., 2003). Moreover, NIK knockout, or expression of a non- 

processable p100, blocks induction of osteoclastogenesis by RANKL, and it 

therefore seems that alternative pathway activation also plays a role in bone 

formation (Novack et al., 2003). These biochemical studies have highlighted 

several similarities in the mechanisms employed by stimuli for the activation of 

the alternative NF-kB pathway. Induction of p100 processing by all of these 

inducers is dependent on NIK and IKKa, but IKKp and IKKy were not required 

for p100 processing, suggesting that an alternative IKKa-containing complex 

might transmit the signal for p100 processing (Claudio et al., 2002; Coope et 

al., 2002; Dejardin et al., 2002; Kayagaki et al., 2002; Novack et al., 2003; 

Saitoh et al., 2003). Moreover, activation of p100 processing by LTpR, BAFF- 

R, and CD40 is blocked by pre-treatment of cells with cycloheximide, an 

inhibitor of protein synthesis, indicating a requirement for de novo protein 

synthesis prior to the induction of the alternative pathway (Claudio et al., 

2002; Muller and Siebenlist, 2003; Regnier et al., 1997). NIK and p100 are 

likely candidates altered by the use of cycloheximide sine it has been shown 

that induction of the alternative pathway by BAFF-R and CD40 upregulates
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the expression of NIK protein (Liao et al., 2004), and it has been proposed 

that LTpR induces p52 generation by a co-translational mechanism 

(Mordmuller et al., 2003). It appears that the non-canonical stimuli employ a 

novel mechanism that accounts for the increase in NIK levels. They stabilize 

NIK by specifically preventing basally translated NIK protein from undergoing 

degradation (Qing et al., 2005), which appears to be based on an inhibition of 

TRAF3-mediated NIK degradation (Liao et al., 2004). Indeed, TRAF3 seems 

to be a negative regulator of CD40- and BAFF-induced p100 processing, 

through its association with a novel-sequence motif at the N-terminus of NIK 

(Liao et al., 2004). TRAF3 binding targets NIK for ubiquitination and 

subsequent proteasomal degradation, whereas stimulation of M12 B-cells with 

either an agonist anti-CD40 antibody, or with recombinant BAFF, which both 

activate the alternative NF-kB pathway, induces stabilization of NIK and 

enhancement of NIK protein levels through endogenous degradation of 

TRAF3 (Liao et al., 2004). On the other hand, TRAF2 and TRAF5 seem to be 

positive regulators for CD-40- and TWEAK-induced p100 processing (Hauer 

et al., 2005; Saitoh et al., 2003). The cytoplasmic tail of CD40 has been 

shown to carry a binding site for TRAF2, which is essential for CD40-induced 

p100 processing (Coope et al., 2002; Grammer and Lipsky, 2000), while 

mutation of the TRAF-binding site in the cytoplasmic tail of the TWEAK 

receptor Fn14 (fibroblast-growth-factor-inducible 14) is capable of blocking 

TWEAK-induced p100 processing (Saito etal., 2003). Moreover, TWEAK fails 

to induce p100 processing in cells deficient in TRAF2 and TRAF5 (Hauer et 

al., 2005; Saito et al., 2003).

Another common feature of the inducers of the alternative NF-kB pathway is 

that both classical and alternative pathways were activated by these stimuli. 

Time course studies have indicated that receptor induction of p100 processing 

is very slow, whereas the activation of IkBo degradation by the same stimuli 

occurs within minutes (Muller and Siebenlist, 2003; Saccani, 2003). Analysis 

of knockout MEFs has also demonstrated distinct patterns of gene expression 

in IKKa'/_ and IKKp_/' mice (Dejardin et al., 2002; Senftleben et al., 2001). 

LTpR activation of the canonical NF-kB pathway induced the expression of 

proinflammatory molecules, including macrophage inflammatory factor (MIP)-
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1p, MIP2, and VCAM-1, which was dependent on IKKp, whereas LTpR- 

mediated activation of the alternative pathway induced the expression of a set 

of distinct factors, such as secondary lymphoid tissue chemokine (SLC), B 

lymphocyte chemoattractant (BLC), EBV-induced gene (EBI)-1-ligand 

chemokine (ELC), and BAFF, which were dependent on IKKa (Dejardin et all,

2002). These findings suggest that the alternative and classical pathways can 

operate independently, and are distinct in time course and the genes that they 

regulate, which may depend on cell type, stimulus, and the target gene 

involved. However, there is also a certain level of cross-talk between both 

pathways. LTpR stimulation of wild-type MEFs initially leads to the nuclear 

translocation of dimers like p50/p65, released from IkBo degradation, which 

results in transcription of its target genes, one of them being nfkb2 (Dejardin 

et al., 2002; Liptay et al., 1994). In contrast, LTpR-activated MEFs deficient in 

p65 or IKKp, display reduced levels of p100 and subsequently p52 proteins. 

Thus the canonical NF-kB pathway seems to be indirectly linked to the 

alternative NF-kB pathway, so that classical activation may be necessary to 

feed the alternative pathway, in order to ensure sufficient production of p100 

for the efficient generation of its p52 processing product.

1.3.4.3 Viral Activation of the Alternative Pathway

Aberrant processing of p100 and overproduction of p52 has been associated 

with three viral oncoproteins, which can activate both classical and alternative 

NF-kB pathways. These are the Tax transforming protein of Human T cell 

leukaemia virus (HTLV)-1, the latent membrane protein 1 (LMP1) encoded by 

EBV, and the viral FLIP (vFLIP) protein of KSHV (Figure 1.7). HTLV-1 is 

associated with an acute and fatal T-cell malignancy termed, adult T-cell 

leukaemia (ATL) (Poiesz et al., 1980; Yoshida et al., 1982), EBV is the 

etiological agent for several malignancies including Burkitt’s lymphoma, 

classical Hodgkin’s lymphoma and nasopharyngeal carcinoma, and KSHV 

has been associated with neoplasms such as Kaposi’s sarcoma, primary 

effusion lymphoma (PEL), and multicentric castelman’s disease (MCD) 

(discussed in section 1.2.5). LMP1 is one of five latent genes of EBV essential 

and sufficient for inducing transformation of B cells, and its oncogenic ability 

requires NF-kB activation (Kaye et al., 1995). LMP1 has six membrane-
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spanning domains with a long C-terminal cytoplasmic tail that oligomerises in 

the plasma membrane (Saito et al., 2003). It is a functional homologue of 

CD40 (Kilger et al., 1998; Zimber-Strobl et al., 1996), but has ligand- 

independent constitutive activity (Gires et al., 1997). Via its C-terminus, LMP1 

activates both NF-kB and AP-1 transcription factors, and this domain is 

required for transformation by LMP1 (Eliopoulos and Young, 2001). Along the 

cytoplasmic tail of LMP1 there are subdomains, termed carboxy-terminal 

activating regions (CTARs), which are responsible for recruiting adapter 

molecules and activating NF-kB (Devergne et al., 1996; Huen et al., 1995; 

Mitchell and Sugden, 1995). CTAR1 is responsible for triggering kBa 

degradation and therefore classical pathway activation, and CTAR2 is 

required for the induction of p100 processing and the translocation of RelB 

and p52 in the nucleus (Atkinson et al., 2003; Eliopoulos et al., 2003; Saito et 

al., 2003). LMP1 mimics CD40 and other TNFR members in their mechanism 

of activation of the alternative NF-kB pathway, and genetic models have 

demonstrated the requirement of a TRAF-binding site in its C-terminal 

cytoplasmic tail, NIK and IKKa (Coope et al., 2002), but not IKKp and IKKy 

(Saito etal., 2003).

HTLV-1 can transform T-cells through its regulatory protein Tax, which 

potently induces the aberrant expression of a large number of cellular genes 

involved in T-cell growth and survival (Ressler et al., 1996), many of which are 

also regulated via NF-kB (Sun and Ballard, 1999). Tax is a potent intracellular 

stimulator of NF-kB, and this activity is essential for its oncogenic action 

(Jeang, 2001). Furthermore, Tax can activate NF-kB through a direct 

interaction with IKKy that requires two homologous leucine zipper domains 

located within IKKy (Chu etal., 1999; Harhaj and Sun, 1999; Jin et al., 1999; 

Xiao et al., 2000). The function of this interaction is to recruit Tax to the IKK 

catalytic subunits, IKKa and IKKp, which can induce persistent IKK activation 

and subsequent degradation of IkBs (Chu et al., 1998; Geleziunas et al., 

1998; Uhlik etal., 1998; Xiao and Sun, 2000; Yin etal., 1998). Subsequently, 

Tax has been demonstrated to induce p100 processing (Xiao etal., 2001a). In 

contrast to other known activators of p100 processing, Tax functions 

independently of NIK and requires IKKa but not IKKp, although IKKy and its
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adaptor function are also required (Xiao et al., 2001a). By directly binding to 

both p100 and IKKy, Tax specifically recruits IKKa to p100, and triggers p100 

processing (Xiao et a/., 2001a).

vFLIP of KSHV is one of three proteins encoded by the latency associated 

cluster. It has unique functional properties, amongst which the ability to block 

death receptor-mediated apoptosis (Thome et al., 1997). vFLIP can also 

activate the classical NF-kB pathway by virtue of its ability to physically 

associate with IKKy (Field et al., 2003) and activate the IKK complex 

(Chaudhary et al., 1999; Field et al., 2003). More recently, expression of 

vFLIP was shown to constitutively upregulate p100 expression and processing 

to p52 (Matta and Chaudhary, 2004). Similar to Tax of HTLV-1, activation of 

the alternative pathway depends on IKKa, whereas IKKp and NIK are 

dispensable for this process (Matta and Chaudhary, 2004).

The most recent data indicate that the Saimiri transforming protein (STP)-A11, 

an oncoprotein of Herpesvirus saimiri (HVS), is the fourth viral protein that can 

activate the alternative NF-kB pathway leading to processing of p100 to p52 

(Cho et al., 2007). HVS, a member of the y-2 herpesvirus family and one of 

the most closely related viruses to KSHV, naturally infects squirrel monkeys 

without any disease, but has been associated with the incidence of rapidly 

progressive fulminant lymphomas in marmoset, owl monkeys, and other 

species of New World primates (Damania et al., 2000; Jung et al., 1999). 

Previous reports have demonstrated that STP-A11 can interact with TRAF2, 

TRAF3, and TRAF5, leading to activation of NF-kB and cell survival (Lee et 

al., 1999). More recently, STP-A11 was shown to induce the proteasome- 

mediated processing of p100 to p52, and the translocation of p52 to the 

nucleus. A dominant negative mutant of NIK resulted in a decrease in the p52 

levels generated in the presence of STP-A11, but this was not drastic, 

indicating that STP-A11can induce p100 processing through a NIK- 

dependent, as well as a NIK-independent mechanism. Moreover, analysis of 

STP-A11 mutants, carrying mutations on the TRAF6-binding site and Src- 

binding site of the protein, revealed a requirement for only the TRAF6-binding 

site for STP-A11-mediated p100 processing (Cho etal., 2007).
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1.4 KSHV-Encoded vFLIP

1.4.1 Apoptosis

ORF71/K13 in the KSHV genome encodes the vFLIP protein. In order to 

explain the discovery and function of vFLIP it is helpful to understand the 

pathways involved in apoptosis.

Apoptosis is a cellular response that regulates important processes such as 

tissue homoeostasis, defense against certain pathogens and elimination of 

unwanted cells. Apoptosis is a highly regulated process characterised by 

cytoskeleton disruption, shrinking of cells, condensation of nuclei and 

internucleosomal degradation of DNA (Kerr et al., 1972). The ordered series 

of biochemical events that culminate in apoptosis can be triggered either at 

the cell membrane (extrinsic pathway) or through various forms of intracellular 

stress (intrinsic pathway). In each case, large multi-protein complexes are 

formed and a family of proteins called caspases are activated (Bratton et al.,

2000). The extracellular death stimuli (Fas/CD95 ligand) directly activate the 

death receptors (DRs) through ligand-induced assembly of a death-inducing 

signalling complex (DISC) at the plasma membrane (Peter and Krammer,

2003). The assembly of DISC results in the activation of caspase-8, which 

subsequently activates the effector caspases, caspase-3 and -7  (Riedl and 

Shi, 2004). Death receptors (DRs) are a family of transmembrane proteins 

that belong to the TNF family of receptors (Strasser et al., 2000). The 

activated death ligands are homo-trimeric and thus induce oligomerisation of 

the death receptors upon binding. The death receptors then recruit the 

adaptor protein FADD through homophilic interaction between the death 

domains (DD) present on both proteins (Chinnaiyan et al., 1995). FADD, in 

turn, uses its death effector domain (DED) to interact with the N-terminal 

tandem DEDs of procaspase-8 or -10, thereby linking them to the activated 

death receptors within the DISC (Kischkel et al., 2001). Apoptosis is tightly 

regulated and can be inhibited at the receptor level by receptor endocytosis, 

soluble ligands, and decoy receptors. Apoptosis is also regulated at effector 

stage by three groups of inhibitors, the inhibitor of apoptosis family (IAP), the 

Bcl-2 family, and the FLIP (FADD-like interleukin-1-P-converting enzyme
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[FLICE/caspase 8]-inhibitory protein) family. The lAPs bind directly to 

caspases-3, -6, -7, and -9 to inhibit their function. The anti-apoptotic Bcl-2 

family members regulate the intrinsic pathway of apoptosis, which is activated 

to eliminate cells in response to ionising radiation, cytotoxic drugs, growth 

factor withdrawal and other forms of intracellular damage (Boatright and 

Salvesen, 2003). A different, more direct mechanism of apoptosis inhibition is 

mediated by the FLIP family (Thome et al., 1997), which along with KSHV- 

encoded vFLIP, is the main focus of this section. It is interesting to note that 

KSHV encodes a viral homologue of each member of the three groups of 

inhibitors of apoptosis. ORF K7 encodes a viral IAP (vlAP) (section 1.2.8.5) 

protein, ORF16 encodes a viral homologue of human Bcl-2 (vBcl-2) (section 

1.2.8.4), and ORF71 encodes a viral FLIP protein. NF-kB can also inhibit 

apoptosis by controlling the expression of some of these antiapoptotic 

inhibitory proteins.

1.4.2 The FLIP Family-lnhibitors of Apoptosis

To evade the host immune response, a number of viruses express distinct 

families of inhibitory proteins to suppress apoptosis and to promote their 

replication and survival in host cells (Thome and Tschopp, 2001). One 

important family of such proteins are the viral FLICE-inhibitory proteins (v- 

FLIPs). The FLIP family was discovered in 1997 through data-base mining to 

identify viral genes containing DEDs and therefore related to apoptosis (Bertin 

et al., 1997; Thome et al., 1997). The first FLIP genes were discovered within 

two oncogenic y-herpesviruses and a human poxvirus associated with benign 

neoplasms of the skin: ORF71 of HVS (HVS-FLIP), ORF E8 of equine 

herpesvirus 2 (EHV-2) and ORF MC159L of molluscum contagiosum virus 

(MCV) respectively (Thome et al., 1997). Other members include bovine 

herpervirus-4 (BHV-4) and ORF71/K13 from KSHV (Hu et al., 1997a). The 

hallmark of all vFLIP proteins is two DED domains in tandem, linked by an 

intervening short linker, which are also present in the prodomains of caspase- 

8 and -10. The presence of DEDs in vFLIP immediately suggests potential 

interaction with FADD and caspase-8. Initial experiments transfected these 

viral FLIP proteins into cells to demonstrate protection against CD95- and 

TNFR1-induced apoptosis. Indeed, the DEDs of MC159 and E8 have been
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shown to interact with the DED of FADD and the prodomain of caspase-8 

(Bertin et al., 1997; Hu et al., 1997a; Shisler and Moss, 2001; Thome et al., 

1997). Therefore, through homotypic DED interactions, some vFLIPs are 

thought to hinder efficient recruitment and subsequent activation of caspase-8 

at the death receptors, enhancing lytic production of the virus.

1.4.3 Cellular FLIP

The cellular homologue, cFLIP, was subsequently identified (Irmler et al.,

1997). Several differentially spliced forms of cFLIP exist, but only two forms 

have been identified as proteins in vivo: short cFLIP (cFLIPs) of 26 kDa and 

long cFLIP (cFLIPl) of 55 kDa. cFLIPs is similar in structure to the herpesvirus 

FLIP proteins with an extended C-terminus of 20 amino acids. The N-terminus 

of cFLIPl is identical to that of cFLIPs, but the C-terminus consists of a 

caspase-homologous domain that is catalytically inactive and contains 

cysteine and histidine residue substitutions within the enzymatic active site 

(Irmler et al., 1997; Rasper et al., 1998). In overall structure, cFLIPl is 

therefore similar to caspase-8 and -10. Both forms of cFLIP are recruited to 

the DISC and interfere with the function of caspase-8, although their 

mechanism of action is different. Like the viral FLIPs, cFLIPs is recruited by 

FADD and prevents the processing and release of active caspase-8 (Bin et 

al., 2002; Krueger et al., 2001). The role of cFLIPl is more controversial.

cFLIPl has been shown to have both pro- and anti-apoptotic activities. cFLIPl 

binds directly to caspase-8 via DED and caspase domains (Han et al., 1997; 

Irmler et al., 1997; Rasper et al., 1998; Srinivasula et al., 1997), and both 

proteins are partially processed at the DISC (Krueger et al., 2001; Scaffidi et 

al., 1999). Furthermore, cFLIP-'- mice showed deficient heart development 

that is similar to those of FADDV" and caspase-8'/_ mice (Yeh et al., 2000), 

suggesting that cFLIP shares function with caspase-8 and FADD, rather than 

antagonising their activity. On the other hand, overexpression of both forms of 

cFLIP has been shown to have a protective effect against apoptosis induced 

by DRs including Fas, TNFR1, TRAIL-R1, TRAIL-R2 and TRAMP (Goltsev et 

al., 1997; Hu etal., 1997b; Irmler etal., 1997; Rasper etal., 1998; Schneider 

et al., 1997; Srinivasula et al., 1997). Moreover, gene knockout studies
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suggest that MEFs from cFLIP'/_ mice (deficient in cFLIPl and cFLIPs) are 

more sensitive CD95-induced apoptosis than their wild type counterparts (Yeh 

et al., 2000). Because cFLIP'7' causes deficiency of both cFLIPl and cFLIPs, 

these studies cannot rule out the possibility that cFLIPl has proapoptotic 

function. Although the majority of reports seem to support the notion that 

cFLIPs is antiapoptotic, the function of cFLIPl remains controversial. Although 

overexpression of transfected cFLIPl inhibits apoptosis, recent studies have 

demonstrated that cFLIPl can form catalytically active heterodimeric 

complexes with caspase-8 (Micheau et al., 2002), and that ectopic expression 

of cFLIPl at physiological levels enhances procaspase-8 processing in the 

CD95 DISC and promotes apoptosis (Chang etal., 2002a). In this complex, c- 

FLIPl contains a C-terminal loop that actually activates the enzymatic pocket 

of caspase-8 (Chang et al., 2002a; Micheau et al., 2002). However, the most 

recent data suggest that endogenous cFLIPl functions primarily as an inhibitor 

of DR-mediated apoptosis, since selective knockdown of cFLIPl using siRNA, 

enhanced DISC recruitment and activation of caspase-8, leading to apoptosis 

(Sharp et al., 2005). Therefore, it appears that cFLIPl can act as a molecular 

switch, which can either promote cell death or growth signals transmitted by 

Fas.

cFLIP is not only involved in DR-mediated apoptosis, but also activates NF- 

kB. Activation of NF-kB by cFLIP requires its DEDs for function (Chaudhary et 

al., 2000; Hu et al., 2000; Kataoka et al., 2000). In the case of Fas stimulation, 

which results in increased proliferation of CD3-activated human T 

lymphocytes, there is recruitment of cFLIPl to the receptor. Fas-recruited 

cFLIP can then interact with TRAF1 and TRAF2, and with the kinases RIP 

and Raf-1, leading to the activation of N F-kB and Erk, which results in 

increased production of IL-2 (Kataoka et al., 2000). More recently, a yeast 

two-hybrid screen identified p105 as a cFLIPL-interacting protein. cFLIPl 

interacts with p105 in 293T cells and inhibit its processing to p50 (Li et al.,

2003). Domain mapping experiments indicated that either the DEDs or the 

caspase-like domain of cFLIPl can independently interact with p105, although 

only the caspase domain can inhibit p105 processing. Moreover, 

overexpression of p105 potentiated cFLIPL-induced apoptosis, probably due
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to the p105-mediated inhibition of cFLIPL-induced NF-kB activation (Li et al.,

2003). In addition, a novel cFLIP isoform, p22-cFLIP, which is an N-terminal 

cleavage product of cFLIP, was recently shown to be able to strongly induce 

the canonical NF-kB pathway, by interacting with the IKKy subunit of the IKK 

complex (Golks et al., 2006). These findings add a new mechanism to the 

complex FLIP-mediated regulation of apoptosis and the NF-kB pathway.

1.4.4 vFLIP Structures

KSHV vFLIP is 188 amino acids in length, with an apparent molecular weight 

of 23 kDa. It is a bipartite molecule composed of two DEDs of approximately 

90 amino acids each with an intervening linker domain. DEDs belong to the 

DD superfamily (Weber and Vincenz, 2001) that includes the DD, caspase 

recruitment domain (CARD), involved in the intrinsic cell death pathway, and 

Pyrin domain, involved in inflammatory signalling (Kohl and Grutter, 2004; 

Reed et al., 2004). These domains form strong homophilic interactions and 

facilitate the formation of the DISC, as well as of the apoptosome, by 

recruiting adaptor and effector molecules (Acehan et al., 2002). Structural 

studies of the first DD (Huang et al., 1996), DED (Eberstadt et al., 1998), 

CARD (Chou et al., 1998), and PYD (Hiller et al., 2003) have all revealed a 

common fold, which is composed of an antiparallel six-a-helical bundle 

structure. A number of DEDs shares a conserved RXDL motif in a-helix 6, 

which has been implicated in apoptosis regulation mediated by the viral FLIP 

MC159 (Garvey et al., 2002). Structure-based alignment of the DED 

sequences revealed a region of high diversity in a-helix 3, and this was used 

to classify the DEDs into two separate classes (Kaufmann et al., 2002). Class 

I DEDs contain a stretch of basic residues in a-helix 3, which influences the 

binding and recruitment of caspase-8 and cFLIP to the DISC, and include the 

DED of FADD, both DEDs of caspase-8, and the C-terminal DED of cFLIP. 

Class II DEDs have a shortened or absent a-helix 3, and include most of the 

viral FLIP DEDs and the N-terminal DED of cFLIP (Kaufmann et al., 2002). 

Consequently, both DEDs of vFLIP of KSHV fall into class II. Despite their 

biological importance, there have been no reported structures of tandem 

DEDs up to now, and therefore the molecular basis for the recruitment of 

caspase-8, caspase-10, and FLIPs remained to be revealed.
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Recently, two groups reported a high-resolution crystal structure of MC159, a 

vFLIP derived from the molluscum contagiosum virus, and revealed significant 

insights into the function of vFLIPs (Li et al., 2006; Yang et al., 2005). They 

found that the full length MC159 protein consists of two tandem DEDs and a 

C-terminal extension. The DEDs of MC159 adopt a dumbbell-shaped 

structure, with the two DEDs at opposing ends (Figure 1.8). The first DED 

domain (DED1) of MC159 is highly divergent from DED2 and only contains 

five a helices, representing a departure from the canonical death motif. In 

contrast, DED2 is a bona fide DED and shows extensive structural homology 

with the known DED structure of FADD. They are connected by a stretch of 14 

amino acids and, surprisingly, the DEDs of MC159 rigidly associate with one 

another through a hydrophobic interface. The close stacking of the two DEDs 

creates a deep surface that encircles the molecule and is lined with a number 

of acidic amino acids, which give rise to a highly negatively charged surface 

(Li et al., 2006; Yang et al., 2005). Structural and sequence analysis indicates 

that the interactions at the DED1-DED2 interface are highly conserved among 

all proteins that contain tandem DED domains, strongly suggesting that the 

rigid structure of MC159 and its interface determinants are representative of 

vFLIPs, c-FLIP, caspase-8 and -10. Unexpectedly, the packing interactions 

between the two DEDs were found to be significantly homologous to those 

between the CARD domains of Apaf-1 and caspase-9 (Qin et al., 1999). 

Mutations of MC159 that render it incapable of protecting cells from apoptosis, 

mostly mapped to four distinct surface patches in the interface of DED1 and 

DED2, most likely involved in binding to FADD, caspase-8, and other proteins, 

which are well conserved among all tandem DED containing proteins. These 

findings allowed the two groups to generate hypothetical models describing 

how the DEDs of MC159, caspase-8, and FADD would assemble onto each 

other. In these models, MC159 uses the conserved surface binding elements 

to interact with the DEDs of caspase-8 and FADD. This arrangement allows 

the DEDs of FADD and caspase-8 to interact with each other in a way similar 

to that of DED1 and DED2 of MC159. Thus, by forming a ternary complex with 

FADD and caspase-8, MC159 disrupts the interactions between FADD and 

caspase-8 that are required for the appropriate activation of caspase-8.
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■  Basic surface ■  Acidic surface

DED1
DED2

Figure 1.8 Crystal structure of vFLIP MCI 59 (residues 7-183)

(A) Schematic representation of the structure of the MC159 protein (residues 7-183). The first and 
second DED domains are coloured blue and green, respectively. The linker region is coloured magenta.
(B) Surface representation of the MC159 structure. The acidic and basic surfaces are identified by red 
and blue colours, respectively. MC159 in the right panel is shown in the same orientation as that in the 
right panel of panel A. (C) Structure overlay of the two DED domains of MC159.The third helix in DED1 
is reduced to a surface loop. (D) Structure overlay of the FADD DED with DED2 of MC159. FADD DED is 
shown in purple. DED, death effector domain; FADD, Fas-associated death domain. Figure 1.8 and the 
above figure legend have been reproduced exactly from Figure 1 from Li etal. 2006, with the kind 
permission of Prof. Z. Yigong Shi (Department of Molecular Biology, Princeton University, Lewis Thomas 
Laboratory, ).
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Sequence conservation strongly suggests that this mechanism is likely to be 

conserved among other members of the vFLIP family, as well as cFLIP (Li et 

al., 2006; Yang et al., 2005).

More recently, it was shown that the unique C-terminus of MC159 vFLIP 

contains a TNF receptor associated factor (TRAF) 3-binding site (Thurau et 

al., 2006). All TRAFs, with the exception of TRAF4, have been shown to be 

implicated in signalling in B cells (Bishop, 2004). As the antiapoptotic function 

of MC159 appears to be partially independent of its intact DEDs (Garvey et 

al., 2002), Thurau et al. demonstrated that the intact TRAF3-binding site on 

the C-terminus of MC159 is required for its full antiapoptotic activity (Thurau et 

al., 2006). Moreover, Guasparri et al. demonstrated that vFLIP of KSHV also 

contains a TRAF-interacting motif (PYQLT), located in the N-terminal end of 

the first helix of DED2, which directly binds to TRAF2 (Guasparri et al., 2006). 

siRNA-mediated suppression of TRAF2 and TRAF3, but not TRAF 1, 5, or 6, 

inhibited endogenous NF-kB activity and JNK phosphorylation, and resulted in 

the induction of apoptosis in PEL cells, indicating that TRAF2 and TRAF3 are 

required for induction of NF-kB and associated cell survival (Guasparri et al.,

2006). Moreover, mutations in the P93 and Q95 amino acids within the 

putative TRAF-interacting motif of vFLIP abolished its ability to bind TRAF2, 

as well as the ability to activate the NF-kB pathway. Guasparri et al. also 

suggested that TRAF2 mediates the association of vFLIP with the IKK 

complex for signalling to NF-kB, since immunoprecipitation of IKKy in PEL 

cells, where TRAF2 had been suppressed by siRNA, failed to identify vFLIP in 

the precipitate. However, a more recent study re-examining the role of TRAFs 

in vFLIP signalling, has contradicted these findings. Matta et al. found that the 

P93 and Q95 mutations in the TRAF-interacting motif of vFLIP have 

absolutely no impact on the ability of vFLIP to interact with IKK, or activate the 

NF-kB pathway (Matta et al., 2007). Moreover, they showed that 

endogenously expressed TRAF2 and TRAF3 do not interact with vFLIP, and 

do not play any role in vFLIP-mediated NF-kB activation. There are a number 

of differences in the way the two studies were conducted, which might explain 

some, but not all, of the discrepancies between the two studies. For example, 

the two groups used different computer models to identify the putative TRAF-
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interacting motif of vFLIP. While Guasparri et al.’s model was based only on 

DED2 of vFLIP, and showed that the TRAF-interacting motif was exposed on 

the surface of the molecule available for interaction with TRAFs (Guasparri et 

al., 2006), Matta et al.’s model was generated using comparative modelling to 

generate a 3D model of the complete vFLIP molecule based on the recently 

resolved structure of vFLIP MC159 (Matta et al., 2007). Their model mapped 

the TRAF-interacting motif buried in the interface between DED1 and DED2, 

suggesting the motif is not available for surface interactions (Matta et al., 

2007). Several TRAFs have been shown to interact with the Epstein-Barr virus 

(EBV) latent membrane protein 1 (LMP1), with TRAF6 (Luftig etal., 2003) and 

TRAF3 (Xie et al., 2004) being essential for NF-kB activation by LMP1. In 

contrast, the Tax oncoprotein from HTLV-1 can activate NF-kB by bypassing 

the upstream components of the NF-kB pathway, and directly interacting with 

the IKK complex via NEMO (Sun and Xiao, 2003). Therefore, It appears that 

vFLIP of KSHV is similar to Tax in this respect, and can directly interact with 

the IKK complex through NEMO (Field et al., 2003), to specifically activate 

NF-kB (Matta et al., 2007).

1.4.5 KSHV vFLIP Functions

vFLIP of KSHV is a viral homologue of the FLICE inhibitory protein and is the 

third coding region expressed from the LANA promoter. vFLIP is the 

downstream gene in a spliced, bicistronic mRNA in which v-cyclin is the 

upstream gene. vFLIP translation is made possible by the presence of an 

internal ribosomal entry site (IRES) embedded within the v-cyclin coding 

region (Bieleski and Talbot, 2001; Grundhoff and Ganem, 2001; Low et al., 

2001). The IRES elements seem to ensure efficient translation of mRNA 

throughout the cell cycle, and particularly during G2/M phase when there is a 

general loss of cap-dependent translation (Bonneau and Sonenberg, 1987; 

Huang and Schneider, 1991). It is suggested that IRES-mediated expression 

of vFLIP guarantees protein expression at times during the cell cycle when 

translation is limited (Bieleski and Talbot, 2001). The fact that KSHV has 

acquired such a mechanism to regulate the expression of vFLIP points to an 

important role for this protein in KSHV infection.
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By analogy with other viral FLIPs, vFLIP of KSHV was originally believed to 

protect virally infected cells from DR-induced apoptosis by blocking the 

recruitment and activation of caspase-8 (Thome et al., 1997). Some groups 

reported findings showing that KSHV vFLIP could also function in this fashion. 

Overexpression of vFLIP in HeLa cells blocked procaspase-8 cleavage and 

reduced caspase-3 and caspase-8 activity (Belanger et al., 2001). Consistent 

with these findings, vFLIP of KSHV was shown to act as a tumour progression 

factor, by promoting tumour growth in vivo (Djerbi et al., 1999). After injection 

of immunocompetent mice with murine B lymphoma cells expressing vFLIP, 

the transduced B lymphoma cells developed into aggressive tumours showing 

a high rate of survival and growth (Djerbi et al., 1999). However, when the 

same vFLIP-expressing cells were injected into immunodeficient mice, the 

tumour promoting property of vFLIP was not sufficient to allow tumour 

establishment, suggesting that vFLIP can protect KSHV-infected cells against 

T cell immunity (Djerbi et al., 1999). These experiments defined inhibitors of 

DR-mediated apoptosis as a new class of tumour progression factor (Djerbi et 

al., 1999), suggesting an important role for vFLIP in KSHV-mediated 

oncogenesis. However, these findings have not been consistently replicated 

by all groups, and there is growing evidence that KSHV vFLIP may have 

additional or alternative functions.

In addition to its DR-inhibitory activity, vFLIP has been implicated in the 

modulation of transcriptional pathways. Expression of KSHV vFLIP in 293T 

and NIH3T3 cells led to the activation of NF-kB driven reporter constructs, 

whereas E8 and MC159 failed to do so (Chaudhary et al., 1999). Consistent 

with this, vFLIP was shown to interact with and activate a 700kDa signalsome 

complex consisting of IKKa, IKKp, and NEMO, when expressed in a non- 

small-cell lung carcinoma cell line (Liu etal., 2002). Indeed, a yeast two-hybrid 

screen identified the regulatory component of the IKK complex, IKKy, as an 

interacting partner of vFLIP (Field et al., 2003). The domain in IKKy required 

for contact with vFLIP is between amino acids 150-272, in the third coiled-coil 

region (CCR3) and first section of CCR4. Therefore, vFLIP interacts directly 

with IKKy to activate IKK, and the majority of endogenous vFLIP in a KSHV- 

infected PEL cell line can be found associated with IKK KSHV-infected-
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(Field et al., 2003). This interaction subsequently led to phosphorylation of 

IkBo and activation of the NF-kB pathway (Liu et al., 2002). Moreover, An et 

al, showed that vFLIP of KSHV activates the JNK/AP1 pathway in a TRAF- 

dependent fashion (An et al., 2003), contradicting findings by Chaudhary et al. 

that suggest it doesn’t (Chaudhary etal., 1999). The dual activation of the NF- 

kB and JNK/AP-1 pathways by vFLIP was shown to drive clL-6 expression in 

synergy with LANA (An et al., 2003). As discussed previously (section 

1.2.8.3), IL-6 is an angiogenic and mitogenic factor that is likely to play a 

significant role in KSHV-associated neoplasms, and therefore this suggests 

an important role for vFLIP in KSHV pathogenesis.

Subsequently, it was shown by Matta et al. that stable expression of vFLIP 

from KSHV in a variety of cell lines, but not other FLIPs, constitutively up- 

regulates p100/NF-xB2 expression, and leads to its processing into the p52 

subunit (Matta and Chaudhary, 2004), which implied that vFLIP of KSHV is 

also capable of activating the alternative NF-kB pathway. This process was 

dependent on the interaction of vFLIP with endogenous p100 and IKKa, but 

did not require the activity of NIK or IKKp (Matta and Chaudhary, 2004) 

(Figure 1.7). In the same report, siRNA-mediated suppression of vFLIP in PEL 

cells inhibited p100 processing and cellular proliferation. Since the alternative 

NF-kB pathway was shown to be constitutively active in KSHV-infected PEL 

cell lines and vFLIP is responsible for this activation, it seems that vFLIP- 

induced p100 processing plays a key role in the growth and proliferation of 

KSHV-infected cells (Matta and Chaudhary, 2004).

NF-kB activation by vFLIP has been linked to a range of biological activities in 

KSHV-mediated pathogenesis. Expression vFLIP in a growth factor- 

dependent TF-1 leukaemia cell line protected cells against growth factor 

withdrawal-induced apoptosis (Sun et al., 2003a). This protective effect of 

VFLIP was associated with its ability to induce NF-kB activation, and was 

accompanied by increased expression of the pro-survival Bcl-2 family member 

BcI-xl (Sun et al., 2003a). NF-kB regulates a number of anti-apoptotic genes, 

which include members of the anti-apoptotic Bcl-2 family (Bcl-2, BcI-Xl, Bfl-1), 

the IAP family (XIAP, clAP1, clAP2), and cFLIP (Burstein and Duckett, 2003).
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These observations suggest that activation of NF-kB may account for the anti­

apoptotic properties of vFLIP (Belanger et al., 2001; Djerbi et al., 1999). 

Interestingly, vFLIP expression failed to protect cells against TNFa-mediated 

apoptosis, suggesting that the protective ability of vFLIP does not extend to all 

forms of cell death (Matta etal., 2002; Sun etal., 2003a). Therefore, although 

it has previously been suggested that the main function of vFLIP from KSHV 

might be to protect cells against DR-mediated apoptosis, as is the case with 

HVS-FLIP, E8 and MC159L (Thome et al., 1997), it now seems that vFLIP 

from KSHV may have a different biological function to other FLIP proteins, 

and that is to activate NF-kB. Moreover, it has been shown that KSHV vFLIP, 

but not E8 or MC159L, has the ability to transform Rat-1 and Balb/3T3 

fibroblast cells (Sun et al., 2003b). Expression of vFLIP in these cells led to 

loss of contact inhibition, growth in soft agar, and formation of tumours in nude 

mice. The transforming ability of vFLIP was found to be associated with the 

activation of NF-kB, and was effectively blocked by molecular and chemical 

inhibitors of this pathway (Sun et al., 2003b). More recently, it was reported 

that although transgenic expression of vFLIP failed to protect thymocytes from 

Fas-induced apoptosis, vFLIP-expressing transgenic mice displayed 

constitutive activation of classical and alternative NF-kB pathways, enhanced 

proliferation of thymocytes in response to mitogen stimuli, and increased 

incidence of lymphoma (Chugh et al., 2005). This study further supports the 

transforming ability of KSHV vFLIP and the hypothesis that, rather than 

function as an inhibitor of DR-mediated apoptosis, vFLIP acts through 

constitutive NF-kB activation to enhance cellular proliferation.

It is important to note that the activation of NF-kB signalling by vFLIP is not 

only important for transformation and cell survival, but can also have other 

significant consequences. Recently, vFLIP was shown to constitutively 

upregulate IL-8 secretion in 293T, He La, and primary human umbilical vein 

endothelial (HUVEC) cells, by transcriptional upregulation of its promoter (Sun 

et al., 2006). vFLIP-induced IL-8 promoter activation was dependent on an 

intact NF-kB binding site and was associated with increased binding of 

classical NF-kB pathway subunits p65, c-Rel, and p50, respectively (Sun et 

al., 2006). IL-8 plays a pivotal role in the pathogenesis of KS (Wang et al.,
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2004a) and has been shown to stimulate angiogenesis and tumour growth 

(Koch et al., 1992; Sparmann and Bar-Sagi, 2004). As previously mentioned,

vFLIP can also induce the expression of clL-6 in PEL cells through the
- 1

activation of both NF-kB and JNK/AP (An et al., 2003), and this might play a 

significant role in KS, PEL, and MCD. Moreover, latent KSHV infection of 

HUVECs led to significant upregulation of a number of chemokines that are 

normally produced in the ground state, including MCP-1 (monocyte 

chemoattractant protein-1), NAP-2 (neutrophil activating peptide-2), RANTES, 

and especially CXCL16, which was nearly undetectable in the basal medium 

(Xu and Ganem, 2007). This induction was mainly associated with the 

expression of vFLIP and was mediated by its ability to activate NF-kB, since 

expression of the IkB super-repressor reduced the induction of CXCL16 

substantially. CXCL16 is associated with the chemotaxis of activated T cells 

(Matloubian et al., 2000), whose products have been shown to promote the 

survival and proliferation of KS cells in cell culture systems. Therefore, vFLIP- 

mediated induction of CXCL16 may play a paracrine role in promoting the 

inflammatory phenotype of KS, and enhancing the survival and expansion of 

the tumour (Xu and Ganem, 2007). Finally, latent KSHV infection of primary 

cultures of HUVECs, lymphatic endothelial cells (LECs), and blood endothelial 

cells (BECs), led to a dramatic elongation of cells, to the spindle cell shape 

characteristic of KS tumour cells (Grossmann et al., 2006). This spindling 

phenotype was attributed to vFLIP expression and the subsequent activation 

of NF-kB, since the use of Bay 11-7082, a selective pharmacologic NF-kB 

inhibitor, inhibited the development of the spindle cell phenotype. Moreover, 

supernatants from HUVECs expressing only vFLIP were found to have 

increased amounts of interleukin-6 (IL-6) (consistent with previous findings by 

An et al., 2003), IL-8 (consistent with previous findings by Sun et al., 2006), 

GRO, RANTES, GCP2 (granulocyte chemotactic protein 2), and MIP3a 

(macrophage inflammatory protein 3), which are likely to contribute to the

inflammatory component of KS lesions (Grossmann et al., 2006).
\

In PEL, vFLIP is the major factor promoting tumour cell survival. siRNA- 

mediated elimination of vFLIP expression results in significantly decreased 

NF-kB activity, downregulation of essential NF-KB-regulated cellular 

prosurvival factors, such as cFLIP, clAP-1, clAP-2, and IL-6, induction of
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apoptosis, and enhanced sensitivity to external apoptotic stimuli (Godfrey et 

al., 2005; Guasparri etal., 2004; Keller etal., 2000). Furthermore, inhibition of 

NF-kB by Bay 11-7082 has been shown to induce apoptosis in PEL cells 

(Keller et al., 2000), and in a murine system of EBV- and KSHV-associated 

lymphomas, it prevented or delayed tumour growth, and prolonged disease- 

free survival (Keller et al., 2006).

Apart from its role in extending cell survival, NF-kB activation may also play a 

role in the maintenance of KSHV latency. Brown and colleagues recently 

reported that activation of NF-kB inhibits lytic-cycle gene expression and that 

inhibition of NF-kB activation, leads to lytic reactivation. If so, vFLIP 

expression could help maintain the latent state by preventing inappropriate 

lytic induction owing to transient exposure to inducing stimuli (Brown et al.,

2003). Finally, vFLIP has recently been implicated in regulating the 

transcription and expression of genes involved in immunity, which is thought 

to play a major role in establishing host-pathogen equilibrium (Lagos et al.,

2007). Array analysis of LECs expressing a number of KSHV genes by way of 

lentiviral transduction, revealed that two viral genes, namely vFLIP and vlRF1, 

are responsible for regulating MHC-I transcription. vFLIP was shown to 

significantly upregulate MHC-I at the transcriptional level, while vlRF1 

inhibited the vFLIP-induced MHC-I transcription and surface expression. 

MHC-I upregulation by vFLIP was attributed to its ability to activate NF-kB, 

since the effect was significantly reduced in the presence of the NF-kB 

inhibitor Bay 11-7082 (Lagos et al., 2007). Moreover, vFLIP expression led to 

significant upregulation of ICAM-1, also involved in class I antigen 

presentation, and induced allogeneic cytotoxic-T lymphocyte (CTL) 

proliferation. It is likely, that transcriptional modulation of antigen presentation 

by vFLIP has important functional implications, since the oncoprotein LMP-1 

from EBV has also been shown to enhance antiviral immune responses 

(Cahir-McFarland et al., 2004; Rowe et al., 1995). It is thought that LMP-1 - 

mediated upregulation of MHC-I promotes the transition to latency l-infected B 

cells, which establishes latency and therefore, host-pathogen equilibrium. 

Thus, vFLIP may also employ the regulation of MHC-I expression, as a
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mechanism to control the levels of viral dissemination during persistent 

infection.

Combined, these data indicate that vFLIP is necessary for the growth and 

survival of KSHV-transformed cells and it may contribute significantly to KSHV 

neoplasia through its multitude of functions, most of which can be attributed to 

its ability to persistently activate the NF-kB pathway.

1.5 Aims of this study

/

vFLIP is one of seven known latent genes expressed by KSHV that regulate 

viral latent infection and may be essential for KSHV-mediated cell 

transformation. At the time this study was initiated published data relating 

directly to the function of vFLIP pointed to an important role for this protein in 

KSHV pathogenesis, due to its capacity as a direct inhibitor of DISC activity 

(Djerbi et al., 1999), and its ability to activate the classical NF-kB pathway 

(Chaudhary et al., 1999).

The initial aim of this project was to pursue the pathways of cellular signal 

transduction modulated by vFLIP, and more specifically, to investigate 

whether vFLIP could also activate the so-called alternative NF-kB pathway. 

Following this, we set out to determine the mechanism by which vFLIP of 

KSHV activates the alternative NF-kB pathway, and whether activation of this 

pathway by vFLIP plays a significant role in PEL cell survival. Finally, we 

wanted to examine the effect of vFLIP expression on the survival of primary 

endothelial cells, as they are very close to the cell type targeted naturally for 

infection by KSHV. Chapter 3 describes the discovery that vFLIP stimulates 

the alternative pathway of NF-kB activation and provides some insight into the 

mechanism by which it does so. Chapter 4 focuses on the effects of vFLIP on 

the survival of microvascular endothelial cells and demonstrates how vFLIP 

can rescue these cells from detachment-induced apoptosis. Finally, in 

Chapter 5 these results are brought together to update the current 

understanding of vFLIP function and to suggest how vFLIP may contribute to 

the pathogenesis associated with KSHV infection.
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Chapter 2 

Materials and Methods

2.1 Buffers and solutions

Deoxynucleotide 
triphosphate mix (dNTPs)

100 mM deoxyadenosine triphosphate (dATP), 
deoxythymidine triphosphate (dTTP), deoxyguanosine 
triphosphate (dGTP) and deoxycytidine triphosphate 
(dCTP)

6x DNA loading buffer 60 mM Tris pH 7.4, 6 mM ethylenediaminetetraacetic 
acid (EDTA) (pH 8.0), 30% (v:v) glycerol, 0.25% (w:v) 
Orange G

Luria-Bertani (LB) agar 1% (w:v) bacto tryptone, 0.5% (w:v) bacto yeast, 0.5% 
(w:v) sodium chloride (NaCI), pH 7.0 with 15g/L bacto- 
agar

Luria-Bertani (LB) broth 1% (w:v) bacto tryptone, 0.5% (w:v) bacto yeast, 0.5% 
(w:v) NaCI, pH 7.0

TFB-I Buffer
(For competent bacteria 
preparation)

30mM potassium acetate, 100mM RbCI, 10mM CaCI2, 
50mM MgCI2, 15% glycerol, pH 5.5 with acetic acid

TFB-I I Buffer
(For competent bacteria 
preparation)

10mM MOPS, 75mM CaCI2, 10mM RbCI, 15% glycerol, 
pH 6.5 with KOH

Nonidet P-40 (NP40) lysis 
buffer

20 mM Tris pH 7.5, 150 mM NaCI, 0.2% (v:v) NP40, 1 
mM EDTA, 1 mM ethylenedioxy nitrilotetraacetate 
(EGTA), 1 mM DTT, 20 mM sodium fluoride (NaF),
1 mM sodium pyrophosphate (Na4P207), 1 mM Na3V04, 
5% (v:v) glycerol, 1 mM PMSF and PIM

Nuclear lysis buffer 20 mM HEPES pH 7.6, 0.2 mM EDTA, 0.1 mM EGTA, 
25% (v:v) glycerol, 0.42 mM NaCI, 1 mM DTT, 20 mM 
NaF, 1 mM N a ^O * 1 mM Na3V04, 1 mM PMSF and 
PIM

Phosphate-buffered saline 
(PBS)

137 mM NaCL, 2 mM potassium chloride (KCI), 10 mM 
sodium hydrogen phosphate (dibasic), 2 mM potassium 
hydrogen (dibasic), pH 7.4

Polyacrylamide resolving 
gel

12% (v:v) acrylamide (37.5 acrylamide: 1 bis), 125 mM 
Tris pH 8.8, 0.1% (w:v) sodium dodecyl sulphate (SDS), 
polymerised with 0.05% (w:v) APS and 0.1% (v:v) 
TEMED

Polyacrylamide stacking 
gel

5% (v:v) acrylamide (37.5 acrylamide: 1 bis), 125 mM 
Tris pH 6.8, 0.1% (w:v) SDS, polymerised with 0.05% 
(w:v) APS and 0.1% (v:v) TEMED

6x Protein sample buffer 6% (w:v) SDS, 125 mM Tris pH 6.8, 36% (v:v) glycerol, 
15% (v:v) 3-mercaptoethanol with bromophenol blue

Radioimmuno- 
precipitation (RIPA) lysis 
buffer

150 mM NaCI, 50 mM Tris pH 7.5, 1% (v:v) Triton, 0.5% 
(w:v) sodium deoxycholate (DOC), 0.1% (w:v) SDS,
1 mM EDTA, 1 mM EGTA, 1 mM DTT, 20 mM NaF,
1 mM Na4P207, 1 mM N3V04, 1 mM PMSF and PIM
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SDS-polyacrylamide gel 
electrophoresis (PAGE) 
running buffer

25 mM Tris pH 8.5, 200 mM glycine, 0.1% (w:v) SDS

Transformation buffer 250mM PIPES, 2.5mM calcium chlorohydrate 
(CaCI2.2H20), 60 mM KCI, adjusted to pH 6.7 using 
potassium hydroxide (KOH) before addition of 55 mM 
manganese chloride (MnCI2)

1 xT ris-acetate-EDTA 
(TAE)

40 mM Tris pH 7.8, 20 mM sodium acetate, 1 mM EDTA

5x Tris-borate-EDTA 
(TBE)

450 mM Tris pH 8.0, 450 mM boric acid, 10 mM EDTA

Table 2.1 Constituents of buffers and solutions

2.2 Subcloning and Plasmid Preparation

2.2.1 Preparation of heat-shock competent XL/1 Blue E. coli.

E.coli bacteria (HB101 strain, from GibCoBRL) were grown in unselective LB 

(Luria-Bertani) medium for the preparation of competent cells. 1 ml of an 

overnight culture was diluted 1:100 in fresh LB medium and shaken at 37°C to 

an O D6oo=0.3-0.6. Cells were then cooled on ice for 5 minutes, and pelleted at 

4°C in a pre-cooled centrifuge. The cell pellet was gently suspended in ice- 

cold TFB-I buffer (50ml per 100ml culture) and left on ice for 5 minutes. Cells 

were then centrifuged at 1500 x g for 10 minutes at 4°C, and resuspended in 

ice-cold TFB-II buffer (4ml per 100ml culture), before being left on ice for at 

least 15 minutes. 50pl aliquots of competent cells were dispensed into sterile 

eppendorf tubes, keeping them on ice at all times, before being stored at -  

70°C.

2.2.2 Transformation of heat-shock competent E. coli.

Cells were defrosted on ice for 20 minutes. 10-50ng of plasmid were mixed 

with 50pl of heat shock competent E. coli XL/1 Blue and incubated on ice for 

20 minutes. The bacteria were then shocked for 90 seconds at 42°C, or for 2 

minutes at 37°C, and immediately placed on ice for 1 or 1.5 minutes 

respectively. The transformed bacteria were then plated onto LB-agar 

containing the appropriate antibiotic and incubated overnight at 37°C.
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2.2.3 Plasmid DNA mini-preps

To obtain small quantities (5-25|jg) of plasmid DNA, mini-preps were 

produced from 1-5ml overnight cultures of transformed bacteria using a 

QIAprep Spin Miniprep Kit (Qiagen) as per the manufacturer’s instructions.

2.2.4 Plasmid DNA midi-preps

Larger quantities (200pg) of pure plasmid DNA were extracted from a 100ml 

bacterial culture. Midi-preps were produced from this culture using the 

Plasmid Midi Kit (Qiagen) as per the manufacturer’s instructions. The 

concentration of purified DNA was calculated from the UV absorbance at 260 

nm using a UV spectrophotometer (Camlab). An absorbance of 1cm'1 was 

taken to be equivalent to 50 pg.ml'1 DNA.

2.2.5 Polymerase Chain Reaction (PCR) Amplification

PCR is used to amplify a segment of DNA by using primers specific for 

sequences flanking the segment. The template DNA is first heated to 

denature it and then the reaction is cooled to allow the primers to anneal. 

Finally, the primers are extended by DNA polymerase. The product is 

amplified by repeat cycles of these three steps. PCR depends on the activity 

of Taq polymerase, a heat stable DNA polymerase extracted from Thermus 

aquaticus. In our reactions we used HotStarTaq DNA polymerase from 

Qiagen, which is provided in an inactive state with no polymerase activity at 

ambient temperatures. This prevents the formation of misprimed products and 

primer-dimers at low temperatures. HotStarTaq DNA Polymerase is activated 

by a 15-minute, 95°C incubation step. PCR was carried out using a Hybaid 

thermal cycler.

PCR was used to generate the full length p100, as well as the AN and AC 

deletion mutants of p100, from the expression vector pcDNA3.1-myc-p100. 

Moreover, PCR was used to amplify vFLIP (567bp) from the pcDNA3.1-vFLIP 

vector plasmid, using primers designed to introduce a BamHI and a NotI site 

at the 5’ and 3’ ends respectively. The reactions were prepared using the 

reagents listed below. Primers are listed in Table 2.2.
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The constituents o f each reaction were:

10 x PCR buffer 5pl
DMSO 5pl (10%)
Magnesium Chloride 4pl (2.5mM)
(25mM stock)
dNTPs 2pl (2.5mM of each)
DNA template 1pl (~200ng)
Forward primer 1pl (100pmoles)
Reverse primer 1pl (100pmoles)
HotStarTaq polymerase 0.3pl (1.5 unit/reaction)
dH20 30.7pl
Total 50pl

dNTPs, deoxyribonucleoside triphosphates; 10x PCR buffer, MgCI2l HotStarTaq from Qiagen 
PCR kit; 10x PCR buffer contains 15mM MgCI2; DMSO was added to reduce non-specific 
primer binding and to enhance yield.

The program used to amplify the DNA fragments in the Hybaid thermal cycler 

was as follows: 1 cycle at 95°C for 15 minutes to activate the polymerase, 

followed by 35 cycles of denaturing at 94°C for 45 seconds, annealing at 55°C 

for 45 seconds and extension at 72°C for 30 seconds, and up to 2 minutes, 

depending on the size of the fragment to be extended (30 seconds is enough 

to extend fragments of ~500bp. These cycles were followed by 1 final 

extension cycle at 72°C for 7 minutes and the reactions were held at 4°C until 

the analysis of DNA products by gel electrophoresis.

Amplified
fragment

Forward (F) and reverse (R) primer sequence

p100FL F: 5’-GGATCCGCCACCATGGCCGAGAGTTGCTAC 
R: 5’-GGGTCGGAGTCCACGTGATCCGCCGGCG

p100AN F: 5'-GGATCCGCCACCATGCTGAAGAAGGTGATGGATCT 
R: 5'-GGGT CGGAGT CCACGT GAT CCGCCGGCG

p100AC F: 5'-GGAT CCGCCACCAT GGCCGAGAGTT GCTAC 
R: 5'-GCGGCCGCCTAGCTGGGCGGGGTCAGGGG

vFLIP F: 5’-GAGGGAT CCAT GGCCACTTACGAGGTT CT CT GT 
R:5’-GAGGCGGCCGCCTATGGTGTATGGCGATAGTGTTG

Table 2.2. PCR primers
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2.2.6 Restriction enzyme digests

Restriction enzyme digests were used for excising and subcloning DNA 

fragments into a desired vector and to subsequently screen for correct 

insertion and orientation. All restriction enzymes were purchased from 

Promega and used as per manufacturer’s instructions, depending on the 

combination of enzymes used. The reaction was stopped by the addition of 

the appropriate volume of 6x DNA loading buffer.

2.2.7 Agarose gel electrophoresis and gel extraction

The products of PCR amplification and restriction enzyme digests were 

separated on the basis of size by electrophoresis on a 1% agarose (Sigma) 

gel, made by dissolving agarose in TAE buffer containing 0.5pg/ml ethidium 

bromide (Sigma). A 1kb DNA ladder (GibCo) was run in parallel to identify the 

sizes of the bands, which were visualized using a UV lamp. When necessary, 

specific bands were excised with a scalpel and DNA subsequently purified 

from the agarose using a QIAquick gel extraction kit (Qiagen) as per the 

manufacturer’s instructions.

2.2.8 Ligations

Ligation reactions were used to anneal new DNA fragments (isolated by 

restriction digest) into linearized plasmids bearing the corresponding ends. 

This processes whereby new phosphodiester bonds are formed to seal the 

plasmid, is catalysed by the enzyme DNA ligase. Using a weight ratio of 1 

vector: 4 insert, 8pl of vector plus insert were mixed with 1 pi of pGEM-T Easy 

DNA ligase solution (Promega), and 1pl of Rapid Ligation Buffer for a final 

volume of 10pl, and incubated at room temperature for 1h. Ligation solutions 

were transformed by heat shock into E. coli and plated onto LB-agar. Eight 

single colonies were picked and screened by PCR amplification with the 

relevant primers, restriction enzyme digest, and sequencing at the Windeyer 

Institute sequencing service.
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2.2.9 Precipitation and purification of DNA

PCR products were routinely purified by phenol extraction, followed by DNA 

precipitation, which was also used to precipitate plasmid DNA from midi- 

preps. First, the reaction volume was made up to 200pl with TE buffer and 

then an equal volume of phenol was added. The mixture was vortexed and 

centrifuged at high speed (14,000 x g) for 10 minutes and the upper phase 

was transferred to a new tube. Following this, 1/10 of the volume of sodium 

acetate was added (3M) and the mixture was vortexed and spun at high 

speed for 10 minutes. Next, 2.5 volumes of 100% ethanol was added and the 

mixture was vortexed and left at -20°C for >10 minutes. The DNA was 

pelleted and washed three times with 70% ethanol, before resuspending it in 

water and storing it at -20°C.

2.3 Plasmids

2.3.1 Mammalian expression vectors

The expression vector pcDNA3.1-Myc-p100, encoding a myc-tagged full- 

length p100, was a kind gift from Dr. S. Ley (Mill Hill, UK). The pCMV4- 

p100AaA/B (Figure 3.2A), which harbours deletions at amino acids 151-160 

and 170-181 (Xiao et al., 2001a), was a kind gift from Dr. Gutian Xiao 

(Pennsylvania State University College of Medicine), and was generated by 

site-directed mutagenesis using pCMV4-p100 (Sun et al., 1994). The plasmid 

RSV IkBo-MSS super-repressor (Chapter 3, Figure 3.5) was a kind gift from 

Dr. N. Perkins (Dundee, UK). To obtain the p100 deletion mutants AN and 

AC, PCR primers were used to amplify and subclone p100 fragments from 

pcDNA3.1-Myc-p100 into the pcDNA3.1 (Promega) expression vector.

2.3.2 HIV-1 based plasmids

HIV-1 based plasmids were kindly provided by D. Trono (Geneva, 

Switzerland) and are described elsewhere (Naldini et al., 1996; Zufferey et al., 

1997). The packaging plasmid phCMVAR8.9 supplies the viral proteins in 

trans and expresses gag, pol, tat, and rev, but and does not express the 

accessory genes env, vif, vpr, vpu or nef (Zufferey et al., 1997) (Figure 2.1).
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The transfer vector plasmid pHR’-hCMV-eGFP contains the reporter gene, 

enhanced green fluorescent protein (eGFP), under the control of the human 

cytomegalovirus (hCMV) immediate early promoter. It also provides the cis- 

acting sequences necessary for packaging, reverse transcription, and 

integration. This plasmid was modified within our laboratory to express both 

vFLIP and eGFP from the internal ribosome entry site (IRES) of 

encephalomyocarditis virus (EMCV) (Figure 2.1). The envelope plasmid pMD- 

G encodes the vesicular stomatitis virus G (VSV-G) envelope glycoprotein 

(Zufferey et a/., 1997), which allows vector concentration by ultra­

centrifugation, as it is very stable, and which has broad tropism, making it 

suitable for use with a variety of target cell types (Figure 2.1). The vector 

plasmid pHR’-CSIW-pUb-Em (double promoter vector), is based on the 

plasmid pHSIN-CSGW (Demaison et a/., 2002), and contains the reporter 

gene eGFP under the control of the spleen focus forming virus promoter 

(SFFV). This plasmid has been engineered to be self-inactivating (SIN) upon 

reverse transcription due to a deletion of the 3’ LTR U3 region (AU3). The SIN 

vector also contains a central polypurine tract (cPPT) from the HIV pol gene, 

which enhances second strand synthesis, and the Woodchuck hepatitis virus 

post-transcriptional regulatory element (WPRE), which enhances viral titre. 

This plasmid was modified by our lab to express vFLIP by placing it in the 

position of the original eGFP, under the control of SFFV, and also to express 

emerald GFP (EmGFP), by cloning the EmGFP gene under the control of the 

ubiquitin promoter after the WPRE in the original backbone (Figure 2.1 and 

4.1).
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pHCMVAR8.91 Packaging plasmid

hCMV gag-pol RRE - — PolyA
tat + revl tat + rev!

pHR-hCMV-vFLIP-IRES-eGFP Vector plasmid

fP,
LTR RRE hCMV vFLIP IRES eGFP LTR

pHR'-CSIW-pUb-Em Vector plasmid

LTR RRE cPPT SFFV vFLIP WPRE | Ub EmGFP -  LTR

AU3

pMD-G Envelope plasmid

hCMV VSV-G — PolyA

Figure 2.1 HIV packing, vector and envelope plasmids

Transcription of gag-pol in pHCMVDR8.91 is controlled by hCMV. pHCMVDR8.91 also encodes tat and 
rev. Transcription of the pHR'hCMV-vFLIP-IRES-eGFP and the pHR'-CSIW-pUb-Em vector transcripts is 
controlled by the LTR at the 5' end and terminates in the 3' LTR. The transgene cassette for 
pHR'hCMV-vFLIP-IRES-eGFP, encoding vFLIP and eGFP, is controlled by the internal hCMV promoter, 
while the transgene casette for pHR'-CSIW-pUb-Em, encoding vFLIP and EmGFP, is controlled by the 
SFFV and ubiquitin promoters, respectively . The positions of the packaging signal (v|/) and rev 
responsive elements (RRE) are shown.Transcription of the VSV-G envelope is also controlled by hCMV. 
Regions encoding protein products within the mRNA are shown in grey and regions encoding 
cis-acting elements in white.
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2.4 Lentiviral vector production

2.4.1 Transfection

293T cells were grown to 80% confluence on the day of transfection in 20cm2 

circular plates (Nunc). Lentivirus was produced using a three plasmid 

transient transfection system as described previously (Besnier et al., 2002; 

Naldini et al., 1996; Zufferey et al., 1997) (Fig. 2.1). For each plate, DNA 

plasmids were mixed as follows: 2.5pg of the packaging plasmid 

(phCMVAR8.9), were mixed with 2.5pg of the envelope plasmid (pMD-G), and 

3.75pg of the transfer vector plasmid, and the volume was up to 37.5pl with 

TE buffer. 45pl of the transfection reagent Fugene-6 (Roche) were diluted in 

500pl OptiMEM (serum free medium, GibCo) and this mixture was added to 

the DNA mix and incubated at room temperature for 15 minutes. Meanwhile, 

the medium on the cells (complete DMEM, see section 2.5.1) was changed, 

and then the transfection mixture was added drop-wise, at the same time 

swirling the plates to ensure even distribution. 24 hours later, the medium on 

the cells was changed again (to remove Fugene-6).

2.4.2 Virus harvesting

The virus-containing supernatant was harvested 48-72 hours post transfection 

and passed through a 0.45pm filter, to remove any cells. The virus was 

concentrated by ultra-centrifugation at 20,000 x g for 1.5 hours, and 

resuspended in 1ml Optimem, aliquoted, and stored at -80°C. A small aliquot 

of virus was used to determine the titre.

2.4.3 Determination of the titre

Serial dilutions of the virus were made in OptiMEM (to contain 5, 1, 0.2, and 

0.04pl of virus) and used to infect 293T cells that were plated at 2x105 

cells/well in 24 well plates. The cells were assayed 2 days post infection for 

the expression of the reporter gene GFP by flow cytometry, in order to 

determine the titre (i.e. the approximate number of “infectious units” per ml). 

Uninfected cells were passed through a FACSCaliber and analysed using 

CELL QUEST software (Becton Dickinson, Franklin Lakes, USA) to determine
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side vs. forward scatter characteristics and select the region in which live cells 

could be found. For each infection, 1x104 cells in this region were recorded 

and analysed for eGFP expression. The side scatter vs. green fluorescence 

(FL-1) plot of uninfected cells determines the region in which cells not 

expressing eGFP fall. A gate was placed in FL-1 to record the percentage of 

cells with higher fluorescence than the uninfected controls. Virus titre 

(infectious units/ml) was calculated from the percentage of cells infected and 

the number of cells per well on the day of infection using the equation: (%- 

infected cells x number of cells at infection /100) x dilution factor.

2.4.4 Confocal microscopy

Cells in culture were directly viewed under a Zeiss confocal microscope with a 

U.V. lamp to visualize GFP expression after transfection or viral transduction. 

A laser along with Lasersharp software (Bio-Rad) was used for more sensitive 

fluorescence analysis and to record and save images of the cells.

2.5 Cell culture techniques

2.5.1 Cells and culture conditions

Cell culture medium and foetal calf serum were obtained from GibCoBRL. 

Human embryonic kidney (HEK) 293T cells were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) with 10% foetal calf serum (FCS), penicillin 

and streptomycin in a 10% CO2 humidified incubator at 37°C. Cells were 

passaged 1:10 every 2-3 days to ensure optimal cycling. Human B cell lines 

included the KSHV-transformed and EBV negative PEL cell line, BC3 

(Arvanitakis et a i, 1996). Human CD3+ve Jurkat 3T8 T cells were obtained 

from S. Ley (Mill Hill, UK) by kind permission from A. Ting (New York, USA). 

All non-adherent cell lines, including BCE and Jurkat, were cultured in Roswell 

Park Memorial Institute (RPMI) 1640 medium with 10% FCS, penicillin and 

streptomycin in a 5% CO2 humidified incubator at 37°C, and cell density was 

kept within the range 1x105-1x106 cells/ml. Human adult dermal microvascular 

endothelial cells (HMVEC-d) were purchased from Lonza (Clonetics-Primary 

Cell and Media Systems) and cultured in EGM-2MV Bulletkit medium 

(Clonetics), in a 5% CO2 humidified incubator at 37°C.
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2.5.2 Transduction of tissue culture cells with concentrated lentivirus

For infection of Jurkat cell lines, 5x104 cells were pelleted and resuspended in 

1ml OptiMEM containing virus at a multiplicity of infection (MOI) of 10 

infectious units per cell. 293T cells were infected for experimental purposes 

exactly as described above (section 2.4.3). For infection of MVECs, 1x105 

cells were plated in a 24-well plate and virus supernatant was diluted and 

added to the wells at an MOI of 30. After 6h, the medium on the cells was 

toped-up to dilute the concentrated virus, and cells were cultured as 

described. For all cells, transduction efficiency was measured by flow 

cytometry exactly as described above for 293T cells (section 2.4.3).

2.5.3 Anoikis assay

Anoikis is a form of apoptosis induced by the disruption of cell-matrix 

interactions. In this study, the protocol used was based on the one described 

by Frisch and Francis (Frisch and Francis, 1994). MVECs were grown to 

~70% confuency in 24 well plates and were either not transduced, or 

transduced with a lentivirus encoding GFP alone, or a lentivirus encoding GFP 

and vFLIP. 48 hours post transduction, cells were trypsinized and equal 

numbers either re-plated immediately and allowed to adhere, or maintained in 

suspension for 16 hours by plating them in wells which had been coated with 

the anti-adhesive polymer polyHEMA (Fukazawa et a/., 1995; Fukazawa et 

al.t 1996). Briefly, polyHEMA plates were made by applying 200pl of a 

12mg/ml solution of polyHEMA (diluted 1:10 in 95% ethanol from a 120mg/ml 

stock), and leaving the plates to dry in the tissue culture hood. This process 

was repeated 3 times for sufficient coating of the wells. Following coating, the 

wells were washed twice with PBS and once with Hank’s Buffered Salt 

Solution (HBSS) and left to air dry. After 16 hours, cells in suspension were 

collected by pipetting, and adherent cells were trypsinized. All cells were then 

replated in 96-well plates for 4 hours and cell survival was measured by an 

MTT assay (section 2.5.3), while apoptosis was measured using a Death 

Detection ELISA (Roche) (section 2.5.3).
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2.5.4 Cell viability and apoptosis assays

The viability of MVEC populations was measured using a colorimetric method 

based on the conversion of 3-[4,5-d imethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (MTT) to a formazan product (Hansen et al., 

1989). Non-viable cells are unable to reduce the MTT reagent and hence the 

degree of optical absorbance at 570nm gives a measure of the proportion of 

live cells in the mixture. Briefly, 100pl of EGM-2MV medium containing 5 x 104 

cells was placed into each well of a flat-bottomed 96 well plate in triplicate. 

The MTT reagent (Sigma-Aldrich) (diluted from a 5mg/ml solution in PBS) was 

then added to all the wells at a final concentration of 0.5mg/ml and the cells 

were incubated with the MTT reagent for 4 hours at 37°C. The reaction was 

terminated by adding 100pl/well of 10% SDS. The plates were left overnight in 

the dark at room temperature, following which the absorbance was read at 

570nm using an ELISA plate reader.

Cell viability was also determined using a Trypan Blue exclusion assay. 

Trypan Blue is a dye that is used to determine the number of viable cells in a 

cell suspension. Living cells possess intact cell membranes and therefore 

exclude the dye, whereas dead cells do not and take up the blue dye. The 

blue stain is easily visible, and cells can be counted using a light microscope. 

Cells were collected by centrifugation and resuspended in 1ml of HBSS 

(~5x105 cells/ml). 1 part of 0.4% trypan blue was mixed with 1 part of cell 

suspension, and the mixture was allowed to incubate for 3 minutes at room 

temperature. A drop of the solution was placed on a haemocytometer and 

examined under the light microscope. Unstained (viable) and stained (non- 

viable) cells were counted separately. To obtain the total number of viable 

cells per ml of aliquot, the number of viable cells was multiplied by 2 (the 

dilution factor for trypan blue). To obtain the total number of cells per ml of 

aliquot, the total number of viable and nonviable cells was added up and 

multiplied by 2. The percentage of viable cells was calculated as follows: 

Viable cells (%) = (Total number of viable cells/ml of aliquot / Total number of 

cells/ml of aliquot) x 100.
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For the detection of apoptosis, cells were stained with the Annexin V reagent. 

Annexin V allows the identification of cell surface changes that occur early 

during the induction of apoptosis using flow cytometry (explained in more 

detail in section 4.2.4). For the Annexin V binding assay, 1x106 cells were 

collected by centrifugation and washed once in cold (4°C) phosphate buffered 

saline (PBS) before staining with TACS™ Annexin V-FITC Apoptosis detection 

kit (Trevigen) (in the case of BC3 cells transfected with siRNA, section 3.2.7), 

or TACS™ Annexin V-Biotin Apoptosis detection kit (Trevigen) (in the case of 

MVECs during anoikis, section 4.2.4), as per the manufacturer’s instructions. 

Analysis was performed by FACScan using CELL QUEST software. Side 

scatter vs. forward scatter was used to exclude cell debris, and 1x104 cells 

within this region were recorded to determine the percentage of Annexin V 

staining.

Moreover, apoptosis was also measured using a Cell Death Detection 

ELISAplus kit (Roche), which is based on a quantitative sandwich-enzyme- 

immunoassay principle, using monoclonal antibodies directed against 

cytoplasmic histone-associated DNA fragments, and is a measure of DNA 

fragmentation after induced cell death (section 4.2.5). Briefly, 100pl of 

medium containing 1x104 cells were plated into each well of a round-bottomed 

96 well plate in triplicate. Cells were then lysed and the supernatants analysed 

for the presence of fragmented DNA by the addition of the immunoreagent 

responsible for capturing cytoplasmic histone-associated-DNA fragments as 

per the manufacturer’s instructions. After 2 hours of incubation, the reactions 

were developed by the addition of the ABTS substrate and optical density was 

measured at 405nm against ABTS solution as a blank using an ELISA plate 

reader.
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2.5.5 RNA interference

The protocol used to inhibit the expression of p100/p52 via RNA interference 

was kindly provided by Prof. Ethel Cesarman (Weill Cornell Medical College) 

and has previously been described by Guasparri et al. (Guasparri et al.,

2004). The RNA duplexes used in this study were purchased from 

Dharmacon’s ON-TARGETPIus pre-designed siRNA reagents, and consisted 

of four highly functional duplexes that target different regions of the target 

gene. A scramble siRNA duplex (siCONTROL Non-Targeting siRNA #2) was 

also purchased from Dharmacon, and was used as a negative control as a 

control for non-sequence-specific effects since it doesn’t target any known 

genes. The siRNA duplexes were delivered to BC3 cells by transient 

transfection using the Oligofectamine transfection reagent (Invitrogen). For the 

transfection, we used the guidelines for 24 well plate formats provided by the 

manufacturer of Oligofectamine (see Invitrogen website). In brief, cells were 

plated in 24 well plates in triplicate (to allow for enough cells for the apoptosis 

and survival assays, as well as for assaying for silencing by Western Blot) at a 

density of 3x105 cells/well. For each well of the 24 well plate we used 0.84pg 

of siRNAs. We mixed 3pl of 20pM siRNA pool with 50pl of OptiMEM. In 

another tube, we diluted 3pl of Oligofectamine Reagent with 12pl of OptiMEM, 

and this mix was incubated for 15 minutes at room temperature. The solutions 

were then combined, mixed gently by inversion, and incubated for a further 25 

minutes at room temperature. We then added 38pl of fresh OptiMEM to the 

solution to obtain a final volume of 106pl, which was then added to the 

cultured cells. We assayed for silencing 3 days post transfection by Western 

Blot to confirm the knockdown of the target gene at the protein level. For the 

extended study described in section 3.2.7, BC3 cells were transfected every 3 

days, for a total of four transfections and a 12 day time course. Knockdown of 

the target gene, apoptosis, and survival, were evaluated by western blot, 

Death Detection ELISA and Annexin V staining, and Trypan Blue exclusion 

respectively, at 3 day intervals (days 3, 6, 9, and 12).
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2.5.6 Immunofluorescence assay

The majority of the immunofluorescence assay and the data analysis were 

performed by Dr. Mahdad Noursadeghi, who also provided the protocol that 

follows. Our contribution involved growing the cells on cover slides, 

transducing them with the relevant lentivectors (section 4.2.3), and fixing them 

with paraformaldehyde.

2.5.6.1 Antibodies and blocking sera

Rabbit polyclonal affinity purified antibodies to RelA (C-20), RelB (C-19) and 

p52 (K-27) were purchased from Santa Cruz Biotechnology and used at a 

concentration of 2pg/ml for immunostaining. Alexa Fluor® (AF)633- 

conjugated F(ab’)2 goat anti-rabbit IgG (Invitrogen) was used at 4pg/ml for 

immunofluorescent detection of primary antibody staining. 10% normal goat 

serum (Sigma Aldrich) was used to block non-specific binding of the 

secondary antibody.

2.5.6.2 Immunostaining

MVECs were grown on 24 well chamber cover slips (VWR) to -60% 

confluency, and were either not transduced or transduced with a lentivector 

encoding GFP alone, or vFLIP and GFP. 48 hours post transduction, the cells 

were fixed with 3.7% paraformaldehyde for 15 minutes at room temperature 

and washed with Tris-buffered saline (TBS) before immunostaining. This was 

performed by inverting each coverslip onto 50pl of solution placed on 

impermeable Nesco film (VWR). All reagents were diluted in TBS. Coverslips 

were incubated sequentially with 0.2% Triton-X100 (Sigma) for 10 minutes at 

room temperature to permeabilize cells, blocking buffer for 30 minutes at room 

temperature, 1° antibody (diluted in blocking buffer) overnight at 4°C, and 2° 

antibody (diluted in blocking buffer) for 1 hour at room temperature. Nuclei 

were then counterstained with 2pg/ml of the nuclear stain DAPI (Sigma 

Aldrich) for 5 minutes and coverslips were mounted onto glass slides (VWR) 

using Vectashield hard-set mounting media (Vector). Coverslips were washed 

by immersion into TBS between each staining step. Fluorescence images 

were captured on a Leica SP2 confocal microscope. DAPI, GFP and Alexa
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Fluor AF633 fluorescence was captured using sequential acquisition to give 

separate image files for each. The excitation and emission spectra for each 

fluorochrome is given in Table 2.3. A pin hole of 1 Airy (114.5pm), scan speed 

of 400Hz, and 4-frame averaging was used. Photomultiplier tube gain and 

offset were adjusted to give sub-saturating fluorescence intensity with optimal 

signal to noise ratio.

Fluorochrome Laser Excitation wavelength 
(nm)

Emission wavelengths 
(nm)

DAPI 405 400-450
GFP Argon 488 500-540
AF633 HeNe 633 650-700

Table 2.3 Excitation and emission spectra of fluorochromes 

2.5.6.3 Image analysis

Image analysis was performed using Image J software

(http://rsb.info.nih.gov/ii). For each high power field image masks were 

created of GFP, AF633 and DAPI positive staining. This was done by applying 

a median filter (3x3 pixel radius) to remove noise, automatic thresholding 

(using the IsoData algorithm)1 to remove background fluorescence and 

conversion to binary image. The DAPI staining mask was used to define 

nuclear localisation. Subtraction of the DAPI mask from the AF633 was 

performed to create a staining mask defining cytoplasmic localisation and the 

GFP staining mask was used to identify cells with and without lentiviral 

encoded gene expression. Each of these staining masks (Figure 2.2 A-D) 

were then applied to the original AF633 images (Figure 2.2 E) to separate NF- 

kB subunit staining in the nuclei and cytoplasms of lentiviral vector-transduced 

and untransduced cells within each high power field. Quantitative 

fluorescence data were then exported from ImageJ-generated histograms into 

Graphpad Prism 5 software for further analysis and presentation. 

Nuclear:cytoplasmic ratios NF-kB subunit staining were then calculated by 

comparison of median values from histogram data of GFP negative (Figure 

2.3A) and GFP positive cells (Figure 2.3).
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Cytoplasm I Nuclear I NFkB RelA staining

Figure 2.2 Generation of staining masks for nuclear and cytoplasmic 
localization (A and B), and lentiviral gene expression (C and D).
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Figure 2.3 Histograms of relative nuclear and cytoplasmic NF-kB staining 
from GFP negative (A) and GFP positive (B) cells. Median values from these 
histograms were used to generate nuclear:cytoplasmic ratios
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2.6 Analysis of mammalian cell extracts

2.6.1 Preparation of cell extracts

Cells were washed in PBS, pelleted by centrifugation and resuspended in 

either RIPA lysis buffer, or NP40 lysis buffer. The suspension was incubated 

at 4°C for 30 minutes on a rotating wheel before insoluble material was 

removed by centrifugation at 14,000 x g at 4°C for 5 minutes. At this point 

aliquots were removed for protein assay (section 2.6.2). The supernatants 

were either used as described below, or the appropriate quantity of 6x protein 

sample buffer was added. These samples were then heated to 95°C for 4 

minutes and stored at -80°C until required.

2.6.2 Protein assay

Total protein per sample was estimated by using the Bio-Rad Protein Assay 

based on the method of Bradford (Bradford, 1976). The Bradford assay is a 

colorimetric protein assay, based on the absorbance shift in the dye 

Coomassie when bound to arginine and hydrophobic amino acid residues 

present in proteins. The (bound) form of the dye is blue and has an absorption 

spectrum maximum historically held to be at 595nm. The anionic (unbound) 

forms are green and red. The increase of absorbance at 595nm is 

proportional to the amount of bound dye, and thus to the amount 

(concentration) of protein present in the sample. This method is compatible 

with buffers containing 0.1% SDS. Sufficient Bio-Rad dye reagent was diluted 

1:5 in H20. 5pl and 10pl of each sample were resuspended in 1ml of the 

diluted dye, vortexed and incubated at room temperature for 5 minutes. Total 

protein content was then determined by measuring the optical density at 

595nm and comparison with BSA protein standards (Promega).

2.6.3 Preparation of nuclear and cytoplasmic fractions

Cells were washed in cold PBS, pelleted and resuspended in cold NP40 lysis 

buffer lacking NP40. Following 15 minutes incubation at 4°C, NP40 was 

added to a final concentration of 0.6%. The tubes were then mixed by 

vortexing and incubated for a further 4 minutes. The lysate was then
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underlayered with lysis buffer containing 30% sucrose and centrifuged for 5 

minutes at 14,000 x g at 4°C. The supernatant was removed as ‘cytoplasmic 

extract’, assayed for protein concentration and stored at -80°C. The nuclei 

were washed twice by overlayering and removing lysis buffer and then 

resuspended in nuclear lysis buffer. Nuclear proteins were released using 3 

freeze-thaw cycles by transferring the tubes from liquid nitrogen to a 37°C 

water bath. The supernatant, following centrifugation for 10 minutes at 14,000 

x g at 4°C, was diluted 1:2 in lysis buffer, assayed for protein concentration, 

and stored at -80°C as ‘nuclear extract’.

2.6.4 Pulse Chase Assay

Plasmid DNA was introduced into 293T cells by transient transfection using 

the Fugene-6 transfection reagent (Roche), using a Fugene-6 reagent: DNA 

ratio of 6:1. Cells were plated at a density of 2x106 cells per 10cm plate 24 

hours before transfection. On the day of transfection, 1pg of vFLIP plasmid 

was mixed with 0.1 pg of p100 plasmid, and made up to a total volume of 15pl 

with TE buffer. 9pl of Fugene-6 were diluted in 100pl OptiMEM and this 

mixture was added to the DNA mix and incubated at room temperature for 15 

minutes. Meanwhile, the medium on the cells was changed, and then the 

transfection mixture was added drop-wise, at the same time swirling the plates 

to ensure even distribution. Cells were incubated for 24 hours before 

performing the pulse chase assay.

Cells were washed once with HBSS and starved for 1 hour by the addition of 

2ml of Eagle Minimum Essential Medium (without Cystein and Methionine) 

containing 0.5% dialysed FCS. Cells were then pulsed for 2 hours with 

1mCi/well of 35S-Cysteine/35S-Methionine Promix (Amersham). The reaction 

was then stopped immediately by the addition of complete DMEM, the hot 

medium collected, and the cells washed once with HBSS. Cells were then 

chased with 4ml of complete DMEM with 10% FCS supplemented with cold 

methionine and cysteine. After each time point, (0 and 6 hours of chase), cells 

were washed once with HBSS and lysed in 1ml of complete RIPA buffer 

supplemented with protease inhibitors. The radiolabelled p100 and p52 were 

isolated by immunoprecipitation using a rabbit polyclonal anti-p100 antibody
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(Upstate Biotech), separated by SDS-PAGE and visualized by 

autoradiography. The radiolabelled protein bands were also quantitated using 

a Phosphorimager STORM 860 instrument (Molecular Dynamics).

2.6.5 Immunoprecipitation I Co-immunoprecipitation

Cell extracts were obtained by lysing cells in RIPA buffer supplemented with 

protease inhibitors. Protein G sepharose (Sigma) was prepared by washing 

the beads twice with ice-cold PBS and resuspending them in 100pl of ice-cold 

RIPA buffer/sample for equilibration. Following this, the cell lysate was pre­

cleared by adding Protein G Sepharose (20pl of packed beads per sample) 

and incubating at 4°C for 30 minutes on a rotating wheel. Protein G 

Sepharose bound to non-specific proteins was removed by centrifugation at 

14,000 x g at 4°C for 10 minutes, and the pre-cleared supernatant was 

transferred to a new tube. Rabbit polyclonal anti-p100 antibody (5pg 

antibody/500pg of cell lysate) was then added to the pre-cleared lysate and 

rotated at 4°C overnight. The immunocomplex was captured by adding 20pl of 

packed G sepharose and gently rotating the mixture at 4°C for 1 hour. The 

sepharose beads were then collected by pulse centrifugation (14,000 x g for 5 

seconds) and the supernatant, containing unbound proteins, was either 

discarded or kept for further analysis (Figure 3.1). The complexes were 

washed three times in 800pl of RIPA buffer and all liquid was removed. 

Precipitated proteins were eluted from the matrix by addition of 60pl of 2x 

protein sample buffer, and heated to 95°C for 4 minutes to dissociate the 

immunocomplexes from the beads. The beads were then collected by 

centrifugation and the supernatant containing the immunocomplexes was 

analysed by SDS-PAGE.
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2.6.6 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 

immunoblot analysis

Proteins were separated by SDS-PAGE and transferred to hybond ECL 

nitrocellulose membranes (Amersham) for immunoblot analysis. All blots were 

incubated for 1 hour at room temperature in blocking solution (PBS containing 

2.5% low-fat milk and 0.1% Tween 20), followed by overnight incubation with 

primary antibody in blocking solution at 4°C. Primary antibodies are listed in 

Table 2.4. Bound antibodies were detected with appropriate peroxidase- 

conjugated secondary antibodies (1:2000 dilution) and visualised by ECL 

chemiluminescence reagents (Amersham).

Antigen/Reference Source Dilution Supplier

p100/p52 Rabbit pAb 1:200 Upstate Biotech (06-413)

p100/p52 Mouse mAb 1:1000 Upstate Biotech (05-361)

RelB Rabbit pAb 1:200 Santa Cruz (SC-226)

RelA/p65 Rabbit pAb 1:200 Santa Cruz (SC-372)

Sp1 Rabbit pAb 1:200 Santa Cruz (SC-59)

TAT-1 tubulin 
(Woods etal., 1989)

Mouse mAb 1:1000 Gift: S. Ley (Mill Hill, UK)

kBa Rabbit pAb 1:200 Santa Cruz (SC-371)

p-actin Mouse mAb 1:5000 AbCam (ab6276-100)

vFLIP 6/14 
(Low et al., 2001)

Rat mAb 1:100 Gift: W.Low (UCL, UK)

Table 2.4 Primary antibodies
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CHAPTER 3

vFLIP induces p100 processing

3.1 Introduction

The alternative pathway of NF-kB activation induces the processing of the 

p100 precursor to generate p52. This pathway involves the phosphorylation of 

p100 via NIK and IKKa, leading to its ubiquitination through the SCF ubiquitin 

ligase complex and subsequent processing to p52 (section 1.3.4). This 

process is tightly regulated (Xiao et al., 2001b) for good reason; chromosomal 

translocations at the 10q24 locus that truncate the C-terminus of p100 leading 

to aberrant processing, are associated with lymphomas (Chang et al., 1995; 

Fracchiolla et al., 1993), and genetically manipulated mice expressing p52, 

but not p100, develop gastric and lymphoid hyperplasia (Ishikawa et al., 

1997). Physiological stimuli that regulate the processing of p100 to p52 

include BAFF ligand, CD40 activation, lymphotoxin p, LPS and TWEAK 

(Chapter 1). Without exception, all have important roles in the development 

and regulation of the immune system, and in particular, B cell function. It is 

therefore of great interest that deregulated p100 processing has been found in 

leukaemic T cells transformed by HTLV-1, in which the Tax protein induces 

this processing (Xiao et al., 2001a), and that the EBV transforming protein 

LMP-1is also able to induce p100 processing (Eliopoulos et al., 2003). 

Constitutive NF-kB activation within lymphoid cells is central to the 

transforming activity of both viral oncoproteins (section 1.3.4.3). As a 

constitutive activator of NF-kB, expressed by a lymphotropic and oncogenic 

virus, we speculated that vFLIP might also activate this alternative NF-kB 

pathway, and that activation of this pathway might play a key role in the 

survival of KSHV-infected cells.
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3.2 Results

3.2.1 vFLIP induces p100 expression and p52 generation in Jurkat cells. 
In these cells and BC3 PEL cells, vFLIP also physically associates with 
endogenous p100

To avoid the constitutive p100/p52 expression found in many B cell lines, 

Jurkat 3T8 T cells were used to investigate vFLIP induction of p100 

processing in a lymphoid cell line. Xiao et al., demonstrated that both the Tax 

protein from HTLV-1, and mitogen stimulation increased p100 expression in 

Jurkat cells, however only Tax led to increased p52 generation (Xiao et al., 

2001a). Jurkat 3T8 cells were therefore transduced with a lentivirus encoding 

vFLIP and GFP (vFLIP_IRES_GFP), or not transduced, followed by analysis 

of endogenous p100 expression and p52 generation by western blot. A 

KSHV-infected primary effusion lymphoma (PEL) cell line, BC3, was used as 

a positive control for vFLIP expression and constitutive activation of NF-kB. As 

shown in Figure 3.1, analysis of the total cell lysate of Jurkat cells transduced 

with the vFLIP_IRES_GFP lentivector revealed that expression of vFLIP led to 

a significant increase in p100 expression and generation of the p52 subunit 

(Figure 3.1.Total lysate lanes). The upregulation of p100 expression indicates 

activation of the classical NF-kB pathway by vFLIP, and is consistent with 

previous studies demonstrating p100 as an NF-kB target gene (Liptay et al., 

1994; Sun et al., 1994). In these earlier studies, activation of NF-kB was 

associated with increased p100, but not p52 expression. More importantly, the 

generation of the p52 subunit indicates that the p100 precursor is being 

processed into p52 by the activity of the alternative NF-kB pathway. Low 

levels of p100 and undetectable p52 expression were observed in 

untransduced Jurkat cells. These data are therefore consistent with the 

activation of both classical and alternative pathways of NF-kB by vFLIP.

It is known that the canonical NF-kB pathway is constitutively active in PEL 

cell lines (Keller et al., 2000; Liu et al., 2002). Through using KSHV-infected 

BC3 cells as a positive control in the above experiment, we were able to 

investigate the status of the alternative NF-kB pathway in a PEL cell line, by
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examining their cell lysates for the expression of p100 and the generation of 

its p52 subunit. As shown in figure 3.1 (top panel, BC3/PEL lanes), in the case 

BC3 cells, we observed high expression levels of both p100 and p52, which 

suggests constitutive activation of the alternative NF-kB pathway in a PEL cell 

line.

The mechanism of Tax-induced p100 processing has been partially explained 

by the ability of Tax to bind p100 (Beraud et al., 1994) and recruit it to the IKK 

complex (Xiao et al., 2001a). Since vFLIP, like Tax, is present in a complex 

with NEMO (Field etal., 2003), it was an intriguing possibility that vFLIP might 

also be in a complex with p100. Lysates were made from untransduced 3T8 

Jurkat T cells, or transduced with a lentivirus encoding vFLIP and GFP, (as 

described above), and these were used in a co-immunoprecipitation 

experiment to examine whether vFLIP forms a complex with endogenous 

p100 in Jurkat cells. p100 and its p52 subunit were immunoprecipitated from 

the cellular lysates by using a rabbit polyclonal p100/p52 antibody, and co- 

immunoprecipitated vFLIP was detected by immunoblotting with a rat 

monoclonal vFLIP antibody. As shown in figure 3.1 (middle panel, IP lane at 

the far right), we detected an interaction between vFLIP and full-length p100 

which indicates that vFLIP associates with endogenous p100 in Jurkat cells. 

We also observed that there is a significant amount of vFLIP in the unbound 

fraction, in contrast to results obtained from NEMO (IKKy)/vFLIP co- 

immunoprecipitations in PEL cells, where the whole population of vFLIP was 

shown to associate with NEMO (Field et al., 2003).

We also sought to determine whether endogenous vFLIP, expressed in 

KSHV-infected BC3 PEL cells, as opposed to ectopically expressed vFLIP in 

Jurkat cells, can interact with endogenous p100 in PEL cells. We analysed the 

cell lysates derived from BC3 cells by co-immunoprecipitation as described 

above. As shown in Figure 3.1 (middle panel, IP lane in the middle), vFLIP 

expressed by KSHV in PEL cells interacted specifically with endogenous 

p100, confirming our previous findings. Moreover, Figure 3.1 demonstrates 

that only a fraction of endogenous vFLIP is pulled down with endogenous 

p100/p52 by the anti-p100 antibody, while the rest remains in the unbound
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Figure 3.1 vFLIP associates with endogenous p i 00 in BC3 PEL cells and 3T8 Jurkat cells

Whole cell lysate (RIPA) from 5x106 BC3 cells, or Jurkat 3T8 cells not infected, or infected with a 
lentivirus encoding vFLIP and GFP, was immunoprecipitated 48 hours post-transduction using a 
polyclonal anti-p100/p52 antibody (Upstate). The immunoprecipitate (IP) and 5% of both the 
original whole cell extract (Total Lysate) and the supernatant from the immunoprecipitation 
(Unbound) were then separated on a 12% SDS-polyacrylamide gel and analysed by immunoblot 
using an anti-vFLIP and a mouse monoclonal p100/p52 antibody (Upstate). Transduction 
efficiency of the lentivectors was measured by FACScan analysis of cells expressing GFP. 94% of 
cells expressed GFP after infection with the vFLIP lentivirus, and 87% of cells were GFP positive 
when infected with the GFP lentivirus.
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fraction as with the Jurkat cells. This may suggest that only a subset of p100 

is recruited by vFLIP to the IKK complex, as demonstrated for Tax (Xiao et al., 

2001a). These data demonstrate the expression of both vFLIP and p100 in 

the context of KSHV infection, and show the interaction between these two 

proteins under physiological conditions.

3.2.2 The region of interaction between vFLIP and p100 maps within the 
Carboxy-terminus of p100

From our previous findings (section 3.2.1), and those of others (Matta and 

Chaudhary, 2004), it is known that vFLIP associates with p100. We decided to 

further investigate this association by mapping the domain within p100 

involved in vFLIP interaction. Tax from HTLV-1 is known to interact physically 

with p100 (Beraud et al., 1994), via a region of p 100 containing two short a- 

helices (aA and aB, Figure 3.2A) (Xiao et al., 2001a), which are exposed on 

the surface of the protein but are not involved in DNA binding, dimerization, or 

folding of p52 (Cramer et al., 1997). Xiao et al. demonstrated that deletion of 

both a-helices abolishes the interaction of Tax with p100 and blocks 

processing of p100 to p52 (Xiao et al., 2001a). We speculated that the same 

region of p100 might be involved in the association with vFLIP, since Tax and 

vFLIP exhibit striking similarities in their ability and mechanism to activate the 

alternative NF-kB pathway. We also hypothesized that vFLIP might be binding 

through its death effector domain (DED) to an alternative region within the C- 

terminus of p100, and more specifically its death domain (DD). Both DDs and 

DEDs are members of the DD superfamily, which contains homotypic protein- 

protein interaction modules, and it is possible that either of the two DEDs of 

vFLIP might be recruiting p100 to a complex via a homotypic interaction with 

its C’-terminal DD. To this effect, we attempted to engineer two truncation 

mutants of p100, one lacking a portion of the N’-terminus containing the two 

a-helices, and another lacking a portion of the C’-terminus containing the DD, 

in order to assess their role in the interaction with vFLIP. We were successful 

in creating and expressing a p100 construct with a truncated C’-terminus 

(p100AC, 1-753aa) by designing primers that introduced a stop codon just 

before the region that codes for the death domain of p100. However, although
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we engineered a p100 construct with a truncated N’-terminus (plOOAN, 181- 

900aa), we were never able to express it in mammalian cells. It is possible 

that by excluding the first 181 amino acids from the N’-terminus of our 

construct, we interfered with the DNA binding, dimerization, and folding of the 

p100 protein, since the region we deleted includes the Rel Homology Domain 

(RHD), which is necessary for these to occur (Ghosh et al., 1998). We 

therefore obtained the p100 AaA/B deletion mutant, which was kindly 

provided by Prof. Gutian Xiao (Xiao et al., 2001a). This was generated by site- 

directed mutagenesis using pCMV4-p100 (Sun et al., 1994) as template, and 

carries combined deletions of amino acids 151-160 (AaA) and 170-181 (AaB). 

Figure 3.2A shows a schematic representation of the three p100 constructs 

used to map the area of interaction between vFLIP and p100.

293T cells were co-transfected with expression vectors encoding vFLIP 

together with a full length p100, or p100AaA/B, or p 100AC. The p100 proteins 

were isolated from the cell lysates by immunoprecipitation using a polyclonal 

p100/p52 antibody, and co-immunoprecipitated vFLIP was detected by 

immunoblotting using a monoclonal vFLIP antibody. The cell lysates were also 

analysed by immunoblotting to check p100 expression and processing, and 

vFLIP expression. As seen in Figure 3.2B (middle panel), we successfully 

expressed the three p100 constructs in 293T cells. p100AaA/B yielded a 

lower molecular weight p52 processing product as a result of the deletion of 

20 amino acids from its N’-terminus, which are part of the p52 subunit after 

processing. p100AC in turn, yielded a lower molecular weight p100 precursor 

due to the deletion of 147 amino acids from its C’-terminus, but its p52 subunit 

was the same molecular weight as that of the full length p100, since the 

deletions lie outside the region of p100 that gets processed into active p52.

As seen in Figure 3.2B (top panel, lane 4), the two a-helices do not seem to 

be necessary for the interaction between p100 and vFLIP, since their deletion 

had no effect on the ability of the mutant p100 to pull down vFLIP in the co- 

immunoprecipitation. However, deletion of the C’-terminal region of p100 

almost entirely abolished the p100-vFLIP interaction (Figure 3.2B, top panel, 

lane 5), since p100AC co-immunoprecipitated with a barely detectable amount
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Figure 3 .2  (A, B) Interaction of vFLIP with p i 00 occurs via a C'-terminal region of p100, which includes 
the Death Domain

(A) Schematic picture of p100 full length (p100 FL) and its deletion mutants p100 AaA/B, with the two 
a-helices indicated in the diagram within the Rel Homology Domain (RHD) deleted, and p100 AC, with the 
C-terminus of p100, including the Death Domain (DD), deleted. GRR, glycine-rich region; P, phosphorylation 
site. (B) 293T cells were transfected with vFLIP (1.5|ig) together with the full length p100 or the indicated 
mutant forms of p100. The p100 proteins were isolated from cell lysates by IP using a p100/p52 rabbit 
polyclonal antibody (Upstate), followed by detection of the co-precipitated vFLIP by IB (upper panel).The cell 
lysates were also subjected to IB to monitor p100 processing and expression using a p100/p52 mouse 
monoclonal antibody (Upstate) (middle panel), and vFLIP expression (lower panel).
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of vFLIP. Interestingly, we observed that when the p100 AaA/B deletion 

mutant was processed into its lower molecular weight p52 subunit, the levels 

of p52 generated were lower (lane 4) than those obtained when the p100 full 

length protein (lane 3), or the plOOAC (lane 5) were processed. This might 

suggest that although the two a-helices do not lie within the region of p100 

required for binding to vFLIP, they might still play an important role in vFLIP- 

mediated p100 processing, since their deletion results in less p52 being 

generated. These results demonstrate that vFLIP physically associates with 

p100 via a region in its C’-terminus that contains the p100 Death Domain.

3.2.3 vFLIP expression promotes nuclear translocation of p52 and RelB

Previous studies have demonstrated that NF-kB dimers containing RelB are 

preferentially sequestered in the cytoplasm by p100 (Solan et al., 2002). The 

transcriptional activity of RelB is specifically inhibited by p100 (Dobrzanski et 

al., 1995), and RelB is retained in the cytosol of breast cancer cell lines by 

p100 (Dejardin etal., 1995). It has been demonstrated that RelB is associated 

in the cytoplasm with p100 and not other IkB molecules (Solan et al., 2002), 

and that p100 processing induced by the oncoprotein LMP1 of EBV (Atkinson 

et al., 2003), and CD40 on B cells (Coope et al., 2002), results in nuclear 

translocation of both p52 and RelB. It follows then, that the nuclear 

translocation of RelB and p52 is a surrogate marker for p100 processing. To 

determine whether vFLIP-induced p52 translocates into the nucleus with 

RelB, cytoplasmic and nuclear fractions were prepared from 3T8 Jurkat T 

cells not transduced, or transduced with a lentivirus encoding GFP alone, or 

vFLIP and GFP (Figure 3.3, Infection). The fractions were western blotted for 

endogenous p100, p52 and RelB. Immunoblotting for tubulin (cytoplasmic 

marker) and SP1 (nuclear marker) confirmed cell fractionation. In 

untransduced and GFP-transduced cells, no p52 and very little RelB was 

detected in the nuclear fraction (Figure 3.3, nuclear panel, lanes 3 and 5). 

However, vFLIP expression in Jurkat cells, led to a dramatic increase in 

nuclear p52 and accumulation of nuclear RelB (Figure 3.3, nuclear panel, lane 

6), a good indication that vFLIP stimulates p100 processing resulting in the
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Figure 3.3 vFLIP expression induces nuclear translocation of p100, p52 and RelB

Nuclear and cytoplasmic extracts were prepared from 5x10** Jurkat 3T8 cells not transduced, or 
transduced with lentivirus encoding either GFP, or vFLIP plus GFP, 48 hours post-transduction. 
20ng of cytoplasmic extract (2%) and 30pg of nuclear extract (10%) were separated on a 12% 
SDS-polyacrylamide gel and analysed by immunoblotting using the monoclonal anti-p100/p52, 
anti-RelB, anti-Sp1, anti-tubulin, and anti-vFLIP antibodies. Transduction efficiency of the 
lentivectors was measured by FACScan analysis of cells expressing GFP. 98% of cells expressed 
GFP after infection with the vFLIP lentivirus, and 83% of cells were GFP positive when infected 
with the GFP lentivirus.
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release of RelB, which translocates to the nucleus with p52. A portion of 

vFLIP-induced p52 and RelB remained in the cytoplasm (Figure 3.3, 

cytoplasmic panel, lane 3), presumably retained there by complexing with 

IkBs and cytoplasmic p100, respectively.

vFLIP expression also resulted in increased steady state levels of p100 and 

RelB (lane 3). Since transcription of p100 is an NF-kB regulated event (Sun et 

al., 1994), the increase in p100 can be attributed to vFLIP-induced NF-kB 

activation. Wild-type EBV LMP1 expression in 293 cells has also been shown 

to cause increase in the levels of cytoplasmic RelB, however p100 depletion 

experiments in that case demonstrated that all the cytoplasmic RelB was 

associated with p100 in LMP1-transfected 293 cells (Atkinson et al., 2003). 

This suggests that LMP1, and most probably vFLIP as well, promotes RelB 

nuclear translocation as a result of p100 processing rather than through the 

increase in the levels of RelB protein.

Moreover, we detected some p100 in the nuclear fractions of both 

untransduced and GFP-transduced cells, and a considerable amount was 

found in the nuclei of vFLIP-transduced cells. It is known that NF-kB 

regulation of the transcription of the kBa protein represents a delayed 

negative feedback loop, which drives the oscillations observed in NF-kB 

translocation in and out of the nucleus (Nelson et al., 2004). Newly 

synthesized kBa (not phosphorylated) will shuttle into the nucleus as a 

negative feedback signal to stop NF-kB activation by binding to active Rel 

molecules and restoring them to the cytoplasm. It is possible, that in the same 

way as for kBa, there is a p100 negative feedback loop, which causes p100 

to oscillate in and out of the nucleus in order to restore the alternative NF-kB 

pathway by binding to nuclear RelB and sequestering it back to the cytoplasm. 

Indeed, the carboxyl-portion of p100 contains a nuclear export signal, which is 

required for effective retrieval of RelB from the nucleus (Solan et al., 2002).

It has also been suggested that the nuclear shuttling of p100 is the 

mechanism which is required for regulating its constitutive processing (Fong 

and Sun, 2002; Liao and Sun, 2003; Qu et al., 2004). More importantly, the
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Tax protein from HTLV-1 induces a significant nuclear localisation of p100 

(Qing et al., 2005), which suggests that nuclear shuttling might be the p-TrCP- 

independent mechanism for Tax-induced p100 processing. Therefore, it is 

possible that vFLIP might be adopting a similar mechanism for p100 

processing, as observed by the presence of significant amounts of p100 in the 

nuclear fraction (lane 6).

3.2.4 The induction of p100 processing and the subsequent nuclear 
translocation of p52 and RelB are mediated specifically by vFLIP

As previously discussed, Xiao et al. demonstrated that both Tax from HTLV-1, 

and mitogen stimulation can lead to increased p100 expression in Jurkat cells, 

by activating the classical NF-kB pathway (Xiao et al., 2001a). However p52 

was only detected in cells expressing Tax due to its ability to also activate the 

alternative NF-kB pathway (Xiao et al., 2001a). We set out to examine 

whether the nuclear accumulation of p52 and RelB, observed in Jurkat cells 

transduced with the vFLIP lentivector, was a direct result of vFLIP-induced 

p100 processing and therefore alternative pathway activation, or it simply 

occurs through the increase in the levels of p100. Jurkat 3T8 T cells were 

transduced with a control lentivector expressing only GFP, or with a 

lentivector expressing both vFLIP and GFP. A fraction of the transduced cells 

was activated by mitogen stimulation for 16 hours by the addition of 10ng/ml 

PMA and 500ng/ml ionomycin (PMA/I), which results in the activation of the 

classical NF-kB pathway. Nuclear and cytoplasmic extracts were prepared 

from KSHV-infected BC3 cells (used as a positive control for alternative NF- 

k B pathway activation), and the transduced Jurkat T cells that had either been 

stimulated with PMA/I (Figure 3.4, lanes 4, 5, 9, 10), or not (lanes 1, 2, 7, 8). 

As expected, BC3 cells accumulated significant levels of nuclear p52 and 

RelB, indicating alternative pathway activation in the context of KSHV 

infection (Figure 3.4, nuclear panel, lane 6). Immunoblot analysis of 

cytoplasmic and nuclear fractions from the transduced Jurkat cells without 

mitogen stimulation, confirmed that vFLIP expression leads to higher levels of 

p100 expression and generation of p52 (Figure 3.4, cytoplasmic panel, lane 

3), and to a significant increase in nuclear p52 and RelB (nuclear panel, lane
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8). In Jurkat cells transduced with the control GFP-only lentivector, no p52 or 

RelB could be detected in the nucleus (Figure 3.4, nuclear panel, lane 7).

Mitogen stimulation led to heightened expression of p100 and RelB in the 

GFP-transduced cells (Figure 3.4, cytoplasmic panel, lane 4). This 

upregulation was likely due to p100 and RelB being transcriptional targets of 

the canonical NF-kB pathway (Liptay etal., 1994; Sun etal., 1994), which was 

activated by the mitogen stimulation in this case. Mitogen treatment had little 

effect on the levels of p100 and p52 in Jurkat cells transduced with the vFLIP 

lentivector (Figure 3.4, cytoplasmic panel, lane 5). However, consistent with 

the inability of p100 to respond to cellular activation signals (Sun et al., 1994), 

mitogen stimulation in GFP-transduced cells failed to induce generation of 

p52, and levels of p52 in these cells were extremely low and only detectable 

after prolonged exposure of the western blot films (Figure 3.4, cytoplasmic 

panel, lane 4). Only vFLIP expression was capable of inducing increased p52 

generation in Jurkat cells (Figure 3.4, cytoplasmic fraction, lanes 3 and 5), as 

was the case for the Tax oncoprotein of HTLV-1 (Xiao et al., 2001a).

Mitogen stimulation in GFP-transduced cells did not result in p52 translocation 

to the nucleus, and the p52 nuclear levels in these cells were almost 

undetectable (Figure 3.4, nuclear panel, lane 9). Interestingly, some RelB was 

detected in the nuclear fraction of GFP-transduced / stimulated cells (Figure 

3.4, nuclear panel, lane 9). It has been demonstrated that in the cytoplasm, 

RelB is mostly associated with p100 (Solan etal., 2002). However, secondary 

to this interaction, which regulates the constitutive nuclear pool of NF-kB 

transcriptional activity in myeloid and lymphoid cells, it is also believed that 

RelB can have weak interactions with the classical N F-kB inhibitor proteins, 

the IkBs (Solan et al., 2002). Presumably then, there is a subset of RelB 

which is associated with other IkBs in the cytoplasm, and when these are 

degraded upon mitogen stimulation, this subset of RelB is free to translocate 

to the nucleus, as seen in this experiment (Figure 3.4, nuclear panel, lane 9). 

In contrast to GFP transduced cells, expression of vFLIP in activated Jurkat 

cells led to a potent accumulation of p52 and RelB in the nucleus. However, 

the levels of p52 and RelB translocating to the nucleus in vFLIP-transduced

124



Cytoplasm Nucleus

p100/p52

BC3 Jurkat
I---------------- 1
No
Stimulation +PMA/I 

I 1 I 1
1 2 3 4 5

BC3 Jurkat
I---------------- 1
No
Stimulation +PMA/I

r
6 7

“ I I 1
8 9 10

-p 1 0 0

- p 5 2

RelB d 4"Kti

Tubulin

Sp1

S ' .A .4  .4  &  A  A  A  A
infection .o  <9. &  <$. &  <$

&  S ' &  &  j j *  &  g *

Figure 3.4 pi 00 processing, and the nuclear translocation of p52 and RelB, is specifically 
mediated by vFLIP

Nuclear and cytoplasmic extracts were prepared from 5x106 BC3 cells, or Jurkat 3T8 cells, not 
infected or infected with a lentivirus encoding vFLIP plus GFP, on day 3 post-infection. A fraction 
of the Jurkat 3T8 cells were activated for 16h by addition of 10ng/ml PMA and 500ng/ml 
ionomycin (Lanes labelled PMA/I). 20pg of cytoplasmic extract (2%) and 30pg of nuclear extract 
(10%) were separated on a 12% SDS-polyacrylamide gel and analysed by immunoblotting using 
the monoclonal anti-pi00/p52, anti-RelB, anti-SpI, anti-tubulin, and anti-vFLIP antibodies. 
Transduction efficiency of the lentivector was measured by FACScan analysis of cells expressing GFP. 87% 
of cells expressed GFP after transduction with the vFLIP lentivirus, and 93% of cells were GFP positive 
when transduced with the GFP lentivirus.
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cells were comparable between the stimulated and unstimulated cells. These 

results seem to indicate that the induction of p100 processing and the 

subsequent translocation of p52 and RelB to the nucleus in Jurkat cells are 

specifically mediated by vFLIP expression in these cells.

3.2.5 Alternative NF-kB pathway activation occurs downstream of 
classical pathway activation by vFLIP

The alternative pathway of NF-kB activation is considered to be distinct in a 

number of ways from the classical NF-kB pathway, and RelB:p52 complexes 

appear in the nucleus at later time points following NF-kB activation (Muller et 

al., 2003; Saccani et al., 2003). We set out to study the activation of the 

alternative NF-kB pathway induced by vFLIP independently, by specifically 

blocking the classical NF-kB pathway. To do this, we decided to use the IkB 

super-repressor (kindly provided by Dr. Neil Perkins), a dominant negative 

mutant of kBa bearing serine to alanine substitutions in the amino-terminal 

amino acids Ser32 and Ser36, which prevent its phosphorylation and 

dissociation from NF-kB (Baldwin, 2001). By preventing dissociation, NF-kB is 

unable to translocate to the nucleus and induce gene expression (Roff et al., 

1996).

293T cells were co-transfected with expression vectors encoding the IkB 

super-repressor (Sr) (1pg) and vFLIP (1pg), vFLIP (1pg) and empty vector, or 

empty vector alone. Cytoplasmic and nuclear fractions were prepared from 

these cells and were analysed by western blotting for endogenous p100 and 

p52, RelB, and RelA/p65. Immunoblotting for tubulin (cytoplasmic marker) and 

SP1 (nuclear marker) confirmed cell fractionation, while blotting for vFLIP and 

IkBa confirmed expression of the proteins of interest from the transfected 

expression vectors. Figure 3.5 shows that expression of vFLIP in 293T cells 

led to a significant increase in endogenous p100 expression levels and to the 

generation of the p52 processing product (Figure 3.5, cytoplasmic panel, lane 

2). Moreover, vFLIP expression resulted in the translocation of p52, RelB, and 

RelA/p65 into the nucleus (Figure 3.5, nuclear panel, lane 5), consistent with 

our previous findings that indicate that vFLIP activates both classical and
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alternative pathways of NF-kB. There was no detectable p52, very little RelB 

and RelA/p65 in the nuclear fraction of 293T cells transfected with the empty 

vector, but there were low levels of p100 present in the nucleus (Figure 3.5, 

nuclear panel, lane 4), possibly shuttling in and out of the nucleus for the 

constitutive processing of p100 (as explained previously). Co-expression of 

vFLIP and the super-repressor led to a significant reduction in the levels of 

p100 expression, as well as RelB, in the cytoplasm (Figure 3.5, cytoplasmic 

panel, lane 3), which were even lower than those detected in cells transfected 

with an empty vector. This result confirmed successful inhibition of the 

classical pathway through the action of the IkB super-repressor, and 

suggested that there is a basal level of constitutive NF-kB activation in control 

cells which is responsible for the increased levels of p100 observed (lane 1). 

However, p52 was successfully generated in cells expressing vFLIP and the 

IkB super-repressor, and its levels were comparable to those observed in cells 

transfected only with vFLIP (Figure 3.5, cytoplasmic panel, lane 3). This 

suggests that vFLIP-induced p100 processing is independent of classical 

pathway activation and does not require the degradation of IkBo. 

Nevertheless, nuclear accumulation of p52 and RelB was significantly 

reduced in the presence of the IkB super-repressor (Figure 3.5, nuclear panel, 

lane 6), while RelA/p65 levels in the nucleus were undetectable, as expected.

These results demonstrate that although the vFLIP-induced activation of the 

alternative NF-kB pathway is distinct from that of the classical NF-kB pathway, 

since it does not require kBa degradation, but employs a separate 

mechanism to release active p52, the two pathways are still somehow 

interconnected. It appears that classical pathway activation by vFLIP occurs 

upstream of the alternative pathway, and it enhances the transcription of p100 

(and possibly of RelB too), which is then more abundant and readily available 

to be processed during alternative pathway activation. This in turn results in 

more active p52: NF-kB dimers entering the nucleus during alternative 

pathway activation and delivering a stronger activation signal. Complete 

inhibition of the classical NF-kB pathway by the IkB super-repressor seems to 

dampen the activation of the alternative pathway mediated by vFLIP.
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Figure 3.5 Inhibition of classical NF-kB pathway activation also results in the 
downregulation of the alternative pathway activation mediated by vFLIP

293T cells were co-transfected with expression vectors encoding vFLIP (1pg) and empty vector, 
vFLIP and IkBa super-repressor (Sr) (1pg), or empty vector alone (labelled control). 24 hours post 
transfection, nuclear and cytoplasmic extracts were prepared from these cells. 20pg of 
cytoplasmic extract (2%) and 30pg of nuclear extract (10%) were separated on a 12% 
SDS-polyacrylamide gel and analysed by immunoblotting using the monoclonal anti-p100/p52, 
anti-RelB,anti-RelA/p65,anti-Sp1, anti-tubulin, anti IkBa, and anti-vFLIP antibodies.
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Therefore, the classical NF-kB pathway seems to play a very significant role in 

the overall activation of NF-kB by vFLIP of KSHV.

3.2.6 vFLIP induces active processing of p100

In order to determine whether p100 is actively processed in cells that express 

vFLIP, we performed a pulse-chase labelling study on 293T cells co­

transfected with vFLIP and p100. We initially planned to perform the 

experiment on Jurkat cells stably expressing vFLIP through lentiviral 

transduction, and on KSHV-infected BC3 cells, in order to investigate the 

mechanism underlying the aberrant expression of p52 endogenously and in 

the context of KSHV infection. However, we were unable to successfully label 

sufficient levels of endogenous p100 in order to observe active generation of 

labelled p52 in these cells. We therefore resorted to overexpression of both 

p100 and vFLIP in 293T cells in order to obtain satisfactory levels of both 

proteins for metabolic labelling. 293T cells were co-transfected with 

expression vectors encoding p100 (0.1 pg) and either vFLIP or empty vector 

(1 pg). Cells were then starved for 1 hour in medium lacking methionine and 

cysteine, pulse-labelled for 2 hours with 1mCi/ml ^m e th ion ine /^cys te ine , 

followed by a chase in fresh medium supplemented with cold methionine and 

cysteine for up to 6 hours. The radiolabelled p100 and p52 were isolated by 

immunoprecipitation using a polyclonal p100/p52 antibody and visualised by 

autoradiography. As shown in figure 3.6A, in the presence of vFLIP, p52 was 

actively generated from the pulse-labelled precursor protein p100 (Figure 

3.6A, protein band with asterisk) after 6 hours of chase. In contrast, in the 

absence of vFLIP, there was no detectable radiolabelled p52 generated from 

labelled p100 after 6 hours of chase. When the bands on the gel were 

quantified for the intensity of the radioactive signal in each one, there was an 

evident precursor-product relationship between p100 and p52 in the presence 

of vFLIP (Figure 3.6B, left graph), with p100 levels decreasing with time as 

p52 levels were increasing due to the active processing of p100 and 

subsequent accumulation of the p52 product. In contrast, in the absence of 

vFLIP, p100 levels slightly increased with time, but this was not associated 

with any significant generation of p52, as its levels remained constant and
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Figure 3.6 Active processing of p i 00 associated with vFLIP expression

Pulse chase labelling. (A) 293T cells were co-transfected with expression vectors encoding p100 (0.1 pig) and 
either vFLIP or empty vector (1 |jg each). 24 hours post transfection, cells were pulse-labelled for 2h with 
ImCi/ml [35S]methionine/[35S]cysteine in Eagle's Minimal Essential medium (-cysteine,-methionine), and 
chased in complete fresh DMEM, supplemented with 10mM cold methionine and cysteine, for Oh and 6h. 
Radiolabelled p100 and p52 were isolated by IP of whole cell lysates (RIPA) using a rabbit polyclonal 
p100/p52 antibody (Upstate), separated on a 12% SDS-polyacrylamide gel, and analysed by autoradiography, 
p i 00 and its processing product p52 are indicated. A non-specific band is indicated as NS. (B) Densitometry 
quantitation of the radiolabelled p100 and p52 bands presented in (A).
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nearly undetectable throughout the 6 hours of chase (Figure 3.6B, right 

graph). These results clearly suggest that generation of p52 is a specific event 

for vFLIP-expressing cells, and is a result of the active processing of the p100 

precursor to its processing product p52, and not due to the increased p100 

expression levels resulting from vFLIP-induced activation of the classical NF- 

kB pathway. Our findings also indicate the involvement of a post-translational 

mechanism in vFLIP-induced processing of p100.

3.2.7 The alternative NF-kB pathway is necessary for the survival of 
KSHV-infected lymphoma cells

KSHV is known to infect human lymphocytes and is associated with three 

proliferative disorders, Kaposi’s sarcoma, primary effusion lymphoma (PEL), 

and multicentric Castleman’s Disease (MCD) (Boshoff and Weiss, 2002). PEL 

is the malignancy with the poorest survival and very few therapeutic options 

(Nador et al., 1996). It is known that NF-kB is constitutively activated in all 

KSHV-infected lymphomas and inhibition of NF-kB by using Bay 11-7082 

induces apoptosis in PEL cells (Keller et al., 2000). vFLIP of KSHV, 

expressed during latency, has been shown to activate NF-kB when expressed 

ectopically in a variety of cells, but it is also responsible for NF-kB activation in 

latently infected PEL cells (Chaudhary et al., 1999; Field et al., 2003; Liu et 

al., 2002). Inhibition of vFLIP production by siRNA knockdown leads to 

significantly decreased NF-kB activity and the induction of apoptosis in PEL 

cells (Godfrey etal., 2005; Guasparri etal., 2004). Therefore, activation of the 

classical NF-kB pathway by vFLIP of KSHV is essential for the survival of 

infected lymphoma cells.

We sought to determine the role of the vFLIP-induced alternative NF-kB 

pathway activation in the survival of PEL cells. To address this question, we 

decided to test whether elimination of endogenous p100 and p52 in by siRNA 

would lead to apoptosis in PEL cells. We therefore obtained a pool of four 

siRNA duplexes (Dharmacon Research) that target different regions of the 

nfkb2 gene, which codes for p100/52 in cells, along with a control scramble 

siRNA duplex, which doesn’t knock down any known genes, as a control for
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non-sequence-specific effects. The BC3 PEL cell line was transfected with 

p100/p52 siRNA, scramble siRNA, or mock-transfected using Oligofectamine 

reagent (Invitrogen), and assayed for gene silencing by immunoblotting 72 

hours post transfection. The induction of apoptosis following gene knockdown 

was measured by flow cytometry for Annexin V, and by Death Detection 

ELISA. Viability was assayed by trypan blue exclusion 72 hours after 

transfection. We decided to perform an extended time course study on these 

cells, as no significant ceil death was seen within the initial 72 hours, and we 

assumed that a single transfection of siRNA would provide transient delivery 

and incomplete inhibition of the gene of interest. We therefore transfected 

BC3 cells with siRNA every 3 days (days 0, 3, 6, and 9), and apoptosis, and 

viability, were measured at 3-day intervals (days 3, 6, 9, and 12) before the 

next transfection, for a total of four transfections and a 12 day time course. 

Western blot analysis on cellular lysates prepared 72 hours after each 

transfection (days 3, 6, 9, and 12) demonstrated significant downregualtion of 

endogenous p52 levels, and a considerable decrease in p100 expression 

(Figure 3.7A). Immunoblotting for p-actin confirmed equal loading of proteins.

Figure 3.7B shows that over the course of 12 days, the number of PEL cells 

undergoing apoptosis increases when transfected with siRNA against 

p100/p52, and by day 12, over half of the cell population (58.6%) is 

expressing Annexin V on the cell surface. In contrast, PEL cells transfected 

with scramble non-specific siRNA, and mock-transfected cells, exhibit very 

low levels of apoptosis throughout the 12-day time course (<8%), and 

therefore seem to remain quite viable. In order to exclude the possibility that 

multiple transfections every 3 days might be inducing stress and leading to 

apoptosis, we decided to test whether the same level of apoptosis would 

occur in PEL cells that had only been transfected once at day 0 (Figure 3.7B, 

bars labelled 12 Days*), or twice at days 0 and 6 (Figure 3.7B, bars labelled 

12 Days**). As seen in figure 3.7B, a similar proportion of cells underwent 

apoptosis when transfected once (55.4 %,), or twice (53.2 %), as in cells that 

had been transfected four times. In all separate experiments performed, it 

usually took over 6 days for any significant increase in apoptosis, due to 

p100/p52 knockdown, to become obvious.
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Figure 3.7 (A) Effects of siRNA-mediated pi 00 knockdown in a BC3 PEL cell line

(A) BC3 cells were transfected with a p100/p52 siRNA (p), scramble siRNA (s), or mock-transfected (-) at 
days 0, 3, 6, and 9. Approximately 72h after each transfection (indicated time points on the upper 
panel), cell lysates were prepared and used (40 pg) in Western blot analysis with a mouse monoclonal 
p100/p52 antibody (Upstate) to assess protein down-regulation. To confirm equal protein loading, 
p-actin reprobing was performed. Similar results were obtained in three independent experiments.
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Figure 3.7 (B, C, D) Inhibition of endogenous pi 00/p52 by siRNA results in apoptosis of BC3 PEL cells

BC3 cells were were transfected with a p100/p52 siRNA (p), scramble siRNA (s), or mock-transfected (-) 
at days 0, 3, 6, and 9 and assessed for apoptosis and viability at the indicated time points. BC3 cells 
were also evaluated for apoptosis and viability at day 12 after being transfected only once at day 0 (*), 
and twice at days 0 and 6 (**). (B) Assessment of apoptosis was performed at the indicated time points 
by Annexin V staining (Trevigen) and measured by FACScan analysis. Inset shows a representative flow 
cytometric histogram plot at day 12 for Annexin analysis of mock-transfected BC3 cells (light grey line), 
cells transfected with scramble siRNA as a negative control (black line), and cells transfected with 
siRNA to p100/p52 (dark grey line with the shift). (C) Apoptosis was also measured by using a cell 
death detection ELISA kit (Roche), which measures DNA fragmentation. (D) Cell Viability was measured 
by Trypan Blue exclusion, as described in Materials and Methods. Bars represent the mean values from 
three independent experiments with error bars indicating the standard deviation between the three 
experiments. For each individual experiment, each transfection and analysis was performed in triplicate.
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A similar pattern was observed when apoptosis of PEL cells was assayed 

using a Death Detection ELISA, which measures histone-associated DNA 

fragments in the cytoplasm of apoptotic cells. Figure 3.7C shows that PEL 

cells transfected with an siRNA against p100/p52 became increasingly 

susceptible to apoptosis with time, and by day 12 of the assay, they exhibited 

a 5-fold increase in DNA fragmentation levels, compared to the same cells on 

day 3. In contrast, cells transfected with a non-specific scramble siRNA, and 

mock-transfected cells, maintained relatively low sensitivity to apoptosis, and 

exhibited only a 1.5-fold and 1.6-fold increase in DNA fragmentation, 

respectively, when compared to their levels on day 3. When measuring 

apoptosis using the Death Detection ELISA the effect of siRNA against 

p100/p52 on PEL cell apoptosis was more obvious after approximately 9 

days.

We also determined the effects of p100/p52 silencing on the viability of PEL 

cells by trypan blue exclusion. Figure 3.7D shows that knockdown of 

endogenous p100 and p52 by siRNA led to a considerable reduction in the 

viability of PEL cells, with only 53% of cells transfected with the p100/p52 

siRNA remaining viable on day 12 of the assay. In contrast, cells transfected 

with a non-specific scramble siRNA, and mock-transfected cells, remained 

largely viable, with as much as 85% and 90% of cells respectively, excluding 

the trypan blue dye on day 12 of the assay. In this study we have 

demonstrated that the inhibition of endogenous p100 and p52 results in 

reduced viability, and the induction of apoptosis in PEL cells. Our findings 

suggest that the alternative pathway plays an important role in the survival 

and proliferation of KSHV-infected lymphoma cells.
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3.3 Discussion

The processing of p100 and generation of p52 are essential to the 

development of the immune system. B cell maturation and the formation of 

secondary lymphoid structures do not occur in the absence of this pathway 

(Franzoso et a/., 1998; Caamano et al., 1998), and a number of cellular 

receptors that stimulate this process have now been identified (Hacker and 

Karin, 2002). Two viruses, EBV and HTLV-1, encode proteins that modulate 

this pathway (Xiao et al., 2001a; Saito et al., 2003), and it is tempting to 

speculate that this has a specific role in allowing the viruses to regulate 

differentiation of infected cells to their own advantage.

In this chapter data have been presented suggesting that the vFLIP protein of 

KSHV also activates the alternative pathway of NF-kB. High-level expression 

of the precursor p100, as well as significant expression of the p52 subunit 

observed in KSHV-infected BC3 cells (Figure 3.1), indicated that the 

alternative NF-kB pathway is constitutively active in PEL cells. Expression of 

vFLIP by lentiviral-mediated gene transfer in Jurkat 3T8 cells, led to increased 

p100 levels and the accumulation of p52. This observation suggested that 

vFLIP not only activates the canonical NF-kB pathway, which leads to the 

upregulation of its transcriptional target p100 (Derudder et al., 2003; Yilmaz et 

al., 2003), but it also induces the processing of the p100 precursor to active 

p52, and hence activates the alternative NF-kB pathway in a haematopoietic 

cell line (Figure 3.1). To rule out the possibility that p52 accumulates 

constitutively as a direct result of the vFLIP-mediated increase in p100 

expression levels, rather than through induced processing of p100, we 

performed a pulse-chase metabolic labelling study in 293T cells co­

transfected with p100 and vFLIP. In the presence of vFLIP we observed active 

p100 processing and accumulation of radiolabelled p52 after 6 hours, which 

was not the case in the absence of vFLIP, indicating that this was a specific 

and direct result of vFLIP-induced activation of the alternative NF-kB pathway 

and the subsequent proteolytic processing of p100 (Figure 3.6). Analysis of 

nuclear and cytoplasmic cellular fractions revealed that in cells expressing 

vFLIP, there was significant translocation of p52 and RelB to the nucleus, in
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contrast to the absence of any nuclear p52 and RelB from the nuclear 

fractions of untransduced cells, or cells transduced with a lentivector encoding 

only GFP (Figure 3.3). Mitogen stimulation of Jurkat cells transduced with the 

control GFP lentivector led to the activation of the canonical NF-kB pathway, 

as expected, and therefore upregulated the expression of p100. However, 

consistent with the inability of p100 to respond to cellular activation signals 

(Sun etal., 1994), mitogen stimulation alone, failed to induce p100 processing 

to p52 and nuclear translocation of p52, which are indicative of alternative NF- 

kB activation (Figure, 3.4). This confirmed our hypothesis that the nuclear 

translocation of p52 and RelB observed in Jurkat cells expressing vFLIP is a 

specific event which is mediated by the activation of the alternative NF-kB 

pathway by vFLIP (Figure 3.4). These data are therefore consistent with the 

theory that vFLIP of KSHV can also activate the alternative NF-kB pathway, 

leading to p100 processing and generation of p52.

During the course of this study, Chaudhary and colleagues, published a report 

confirming the hypothesis we had been working on, which showed that vFLIP 

of KSHV activates the alternative NF-kB pathway (Matta and Chaudhary, 

2004). Our respective studies have employed different approaches to arrive at 

the same conclusion, and therefore in Chapter 3 we have presented several 

findings which have not been published and are not included in the above 

mentioned report. These include the observation that vFLIP induces the 

nuclear translocation of p52 and RelB, and that vFLIP expression mediates 

the active processing of p100 and generation of p52. Together, our findings 

demonstrate that vFLIP of KSHV is the third viral protein capable of 

stimulating the processing of p100, along with Tax of HTLV-1 (Xiao et al., 

2001a) and LMP1 of EBV (Atkinson et al., 2003). These observations not only 

demonstrate a novel function of the latently expressed vFLIP protein of KSHV, 

but also provide some insights into the general mechanism of p100 

processing. Similar to the HTLV-1 oncoprotein Tax (Xiao et al., 2001a), the 

alternative NF-kB activation through vFLIP depends on the catalytic activity of 

the IKKa subunit of the IKK complex, but is independent of the activity of 

IKKp, and also seems to be able to bypass NIK when inducing the processing 

of 100 to p52 (Matta and Chaudhary, 2004). Moreover, vFLIP associates with
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both p100 (Matta and Chaudhary, 2004) and the IKK complex, through its 

direct interaction with IKKy (Chaudhary etal., 1999; Field etal., 2003). These 

interactions raised the intriguing possibility that vFLIP specifically recruits 

p100 to the IKK complex, triggering phosphorylation-dependent p100 

processing. Indeed, vFLIP was shown to interact with endogenous p100 and 

IKKa, and this interaction enhanced the formation of a stable complex 

between p100 and IKKa (Matta and Chaudhary, 2004). Therefore, the 

association of vFLIP with p100, IKKa, and IKKy may bridge an interaction 

between these proteins necessary for p100 phosphorylation and subsequent 

processing.

To further investigate the vFLIP-p100 complex we decided to define the 

domain of p100 required for its interaction with vFLIP. To this end we 

constructed deletion mutants of p100 lacking regions of the molecule that we 

speculated might be involved in this interaction (Figure 3.2). Specifically, we 

deleted a portion of the N terminus of p100, containing two a helices that have 

been shown to be important for Tax binding to p100 (Xiao et al., 2001a), and 

a portion of the C terminus that contains the p100 death domain, which we 

believed might be instigating the association of p100 with vFLIP through 

homotypic interactions between itself and the Death Effector Domains (DEDs) 

of vFLIP. In section 3.2.2 of this chapter we showed that, unlike Tax of HTLV- 

1, vFLIP interacts with p100 via a region in its C-terminus that includes the 

Death Domain (DD), and truncation of p100 by removing the DD (amino acids 

1-753) almost entirely abolishes the vFLIP-p100 interaction. In contrast to 

p100 mutants defective in Tax binding, which failed to respond to Tax-induced 

p100 processing (Xiao et al., 2001a), the p100 AC mutant defective in vFLIP 

binding, was efficiently processed to p52 following induction by vFLIP 

expression. This might seem bizarre in light or recent findings that increased 

p100 processing is associated with the interaction of vFLIP with p100. 

However, we must take into account the fact that the region of p100 deleted in 

order to generate the p100 AC mutant used in this study, also contains the 

processing inhibitory domain (PID) of p100, which is located within the DD at 

the C-terminus. Deletion of the DD has been shown to be sufficient to trigger
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constitutive processing of p100 (Xiao et al., 2001b), and therefore our p100 

AC mutant can be constitutively processed to p52 even in the absence of an 
interaction with vFLIP.

The observation that vFLIP associates with p100 via a region in p100 that 

contains a Death Domain, and the recently resolved structure of vFLIP 

MC159L from the Molluscum contagiosum, has allowed us to speculate on the 

composition of the vFLIP-p100-IKK multi-protein complex and the mechanism 

via which it mediates p100 processing. A recent study has demonstrated that 

although vFLIP has a TRAF-2 interacting motif, this is buried in the interface 

between the two DEDs of vFLIP, and it is not accessible for interaction with 

TRAF-2 or any other signalling proteins (Matta et al., 2007). Therefore, it 

seems that vFLIP can bypass the function of upstream adapter proteins such 

as the TRAFs, to directly interact with IKK through its physical interaction with 

IKKy (Chaudhary et al., 1999; Field et al., 2003). Moreover, structural 

analyses of the crystal structure of MC159 have revealed two distinctive 

surface features for tandem DED structures, presumably including those of 

vFLIP of KSHV, which might be important for protein interactions. They are a 

conserved hydrophobic patch on DED2, which is surface exposed and 

available for interactions, and a hydrogen-bonded charge triad on the surface 

of DED1 and DED2, which contributes to the highly charged features on one 

face of the structure and has been proposed to be a hot spot for protein- 

protein interactions (Yang et al., 2005). Finally, the two DEDs of MC159 have 

been shown to rigidly associate with each other by folding to form a single 

compact dumbbell-shaped structure, and this association may reveal a mode 

for vFLIPs to mediate ternary complex interactions. Therefore, we propose a 

model whereby one of the DEDs of vFLIP of KSHV interacts with amino acids 

150-272 of IKKy (Field et al., 2003), while the other DED domain associates 

by homotypic interactions with a region in p100 (amino acids 753-900) which 

contains the p100 DD (section 3.2.2). vFLIP therefore bridges an interaction 

between p100 and the IKK complex. Subsequently, the dumbbell-shaped 

folding of the two vFLIP DEDs recruits p100 to IKKa, which along with IKKp is 

already associated with the N-terminus of IKKy (Rothwarf et al, 1998; 

Mercurio et al, 1999; May et al, 2000; Poyet et al, 2000; Ye et al, 2000) via its
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NEMO binding domain (May et al., 2002) (see section 1.3.3.2), and which 

eventually triggers the phosphorylation of p100 and its processing to p52. A 

schematic representation of this model is depicted in Figure 3.8. Although the 

catalytic activity of IKKp is dispensable for this process, we support a model 

whereby IKKp is part of the 700kDa IKK signalsome complex, which has been 

shown to associate with vFLIP (Liu et al., 2002), and there is no evidence to 

date to suggest otherwise.

Important questions regarding vFLIP as an activator of p100 processing still 

remain. As mentioned previously (section 1.3.4.3), the alternative pathway of 

NF-kB activation, where p100 processing leads to the release of RelB and 

p52-containing complexes into the nucleus, is distinct in a number of ways 

from the classical pathway, that degrades small IkB molecules to release 

RelA:p50 dimers (Muller et al, 2003; Saccani et al, 2003). In this study we also 

tested whether vFLIP could induce the processing of p100 to p52 independent 

of its ability to upregulate p100 expression through the canonical NF-kB 

activation. We showed that inhibition of the classical NF-kB pathway by 

transient transfection of the IkB super-repressor, had no effect on the ability of 

vFLIP to induce p100 processing (section 3.2.5), which suggests that the two 

pathways are indeed regulated by different mechanisms. However, we also 

observed that expression of the IkB super-repressor in Jurkat cells transduced 

with the vFLIP lentivector, led to lower levels of p100 and subsequently p52 

proteins. This was due to the fact that the nfkb2 gene is a transcriptional 

target of canonical NF-kB activation. This finding is in agreement with 

previous reports which have suggested that the two pathways are indirectly 

linked (Dejardin et al., 2002; Liptay et al., 1994), and activation of the 

canonical NF-kB pathway may influence the amplitude of the alternative 

pathway, through the transcription of nfkb2.

Deregulated p100 processing has been associated with a variety of T cell and 

B cell lymphomas (Demicco et al., 2005; Ishikawa et al., 1997; Kim et al., 

2000; Migliazza et al., 1994; Neri et al., 1991; Neri et al., 1996; Neri et al., 

1995; Xiao et al., 2001b). Therefore, we believe that that the alternative 

pathway plays a major role in the transforming ability of vFLIP. Consistent with

141



this hypothesis, siRNA-mediated knockdown of vFLIP expression results in a 

block in proliferation and the induction of apoptosis in PEL cells (Godfrey et 

al., 2005; Guasparri et al., 2004; Keller et al., 2000; Matta and Chaudhary, 

2004), which in one case was associated with the downregulation of p100 

processing (Matta and Chaudhary, 2004). In this study we attempted to 

determine the relative contribution of the alternative NF-kB pathway in the 

survival and proliferation of PEL cells, by suppressing the expression of p52 

using siRNA. In section 3.2.7, we showed that inhibition of p52 expression led 

to the induction of apoptosis in up to 60% of PEL cells, and a significant 

reduction of cell viability (section 3.2.7). These findings support our hypothesis 

that vFLIP-mediated p100 processing plays a key role in the proliferation and 

survival of KSHV-infected cells. However, the exact contribution of the 

alternative NF-kB pathway to the survival of PEL cells remains unclear, as it is 

possible that the vFLIP-mediated activation of the classical NF-kB pathway in 

these cells can counteract and compensate for some of the observed anti­

proliferative effect. This hypothesis can probably explain the fact that, 

although the p100/p52 siRNA led to a decrease in p100 levels, this was not as 

significant as the decrease observed for p52 levels, suggesting that the 

vFLIP-mediated activation of the classical pathway might be maintaining the 

p100 expression levels. It would be interesting to examine the alternative 

pathway independently, by constructing a lentiviral vector that encodes the 

IkB super-repressor and expressing it in various cells of interest. This would 

prove invaluable in consolidating the existing data on vFLIP-mediated 

activation of the alternative NF-kB pathway, and might provide a clearer 

picture of the exact role of the alternative versus canonical pathway in vFLIP- 

mediated transformation.
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Chapter 4

The Role of vFLIP in the Survival of Primary Endothelial Cells

4.1 Introduction

4.1.1 The Target Cell of KSHV

The biology of KS is poorly understood because the dominant cell type in KS 

lesions is not known (Regezi et al., 1993). Moreover, the cellular origin of the 

spindle cells of KS lesions is poorly defined (Gallo, 1998; Ganem, 1997). 

While KS is considered to be a neoplasm of KSHV-infected lymphatic 

endothelium (Beckstead et al., 1985; Jussila et al., 1998; Weninger et al., 

1999), and KS spindle cells express endothelial cell markers, they also have 

features of other cell lineages, including smooth muscle cells, macrophages, 

and dendritic cells (Gallo, 1998; Kaaya et al., 1995; Regezi et al., 1993). 

Spindle cells ubiquitously express several lymphatic lineage-specific proteins, 

including VEGFR-3 and podoplanin (Beckstead et al., 1985; Jussila et al., 

1998; Weninger et al., 1999), but all spindle cells also express some blood 

endothelial cell (BEC) markers such as CD34 (Regezi etal., 1993). Recently, 

three studies using gene expression microarrays of KSHV-infected 

endothelial, fibroblast and B cells showed that KSHV can induce 

transcriptional reprogramming of all these cell types (Hong et al., 2004; 

Naranatt et al., 2004; Wang et al., 2004). By investigating a number of genes 

that discriminate between lymphatic endothelial cells (LECs) and blood 

endothelial cells (BECs), but are also present in the KS expression signature, 

one group found substantially more LEC markers, than BEC markers, 

overlapping with the KS expression signature (Wang et al., 2004). Indeed, 

another group showed that infection of differentiated blood vascular 

endothelial cells with KSHV drove the cells to lymphatic reprogramming with 

induction of the main lymphatic lineage-specific genes, including PROX1, 

which play a major role in lymphatic development (Hong et al., 2004). 

However, the finding that both LEC and BEC markers were present in the KS 

signature, indicated that KS spindle cells do not faithfully represent either cell 

type, implying that KSHV infection induces a transcriptional reprogramming of
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both infected LECs and BECs, that causes them to move away from the 

uninfected populations and towards each other (Wang et al., 2004a). It seems 

that KSHV can infect both LECs and BECs in vitro, but LECs seem to be the 

favoured target of infection, since KSHV is not present in resident blood 

vessels (BECs) of KS lesions (Dupin et al., 1999), despite the production of 

virions in such lesions (Orenstein etal., 1997), and KS occurs most frequently 

at sites that are rich in LECs, such as skin, lymph nodes and mucosa, but not 

in organs without lymphatic vessels, like the brain. However, another 

hypothesis that has been addressed is that KSHV may infect endothelial-cell 

precursors and drive these cells towards a lymphatic endothelial-cell 

phenotype (Boshoff and Weiss, 2002; Jussila etal., 1998).

Several cytokines and their cognate receptors were found to be upregulated in 

the KS expression signature, indicative of autocrine growth loops. 

Angiopoietin-2 (ANG2), which is involved in lymphangiogenesis (Gale et al.,

2002)(discussed below), was highly upregulated in KSHV-infected LECs and 

BECs (Wang et al., 2004a), as was VEGFR-3, a receptor for VEGF-D that 

upon ligation stimulates lymphangiogenesis (Stacker et al., 2002). Other 

studies have shown that within minutes of target cell infection, KSHV can 

activate the phosphatidylinositol 3’-kinase (PI3K), protein kinase C-£ (PKC- Q, 

and mitogen-activated protein/ERK kinase signalling cascades (Naranatt et 

al., 2003). Together these data give us an insight into the early modulation 

events during KSHV infection.

Microvascular endothelial cells (MVECs) represent a mixed population of 

LECs and BECs (Makinen et al., 2001) and have been shown to be the most 

susceptible to KSHV infection, when compared to mesenchymal stem cells, 

smooth muscle cells, and fibroblasts (Wang et al., 2004a). KSHV is the first 

human pathogen capable of reprogramming endothelial cell transcriptomes 

and in vitro, it can infect both micro- and macrovascular endothelial cells, 

making them very useful for studying the role of KSHV in the pathogenesis of 

KS (Ciufo etal., 2001; Flore etal., 1998; Moses etal., 1999).
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4.1.2 Regulation of Endothelial Cell Survival

Survival of endothelial cells is critical for cellular processes such as 

angiogenesis. The process of angiogenesis plays an important role in many 

physiological (e.g. embryonic development) and pathological (e.g. tumour 

growth and metastasis) conditions. Inhibition of endothelial cell (EC) 

apoptosis, providing EC survival, is thought to be an essential mechanism 

during angiogenesis. Many angiogenic growth factors inhibit EC apoptosis. In 

addition, the adhesion of ECs to the extracellular matrix or intercellular 

adhesion promotes EC survival.

4.1.2.1 Angiogenic Growth Factors and Endothelial Cell survival

EC survival is maintained by proangiogenic growth factors and by contact to 

the extracellular matrix. Several endothelial growth factors, such as vascular 

endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), 

hepatocyte growth factor (HGF), and angiopoietin-1 are known to provide EC 

survival by inhibiting EC apoptosis. Vascular endothelial growth factor 

(VEGF) has been shown to be a potent mediator of angiogenesis that 

functions as a survival factor for ECs (Alon et al., 1995). It exerts its 

angiogenic effects by binding to the VEGF-receptor tyrosine kinases VEGF- 

receptor 1 (VEGFR1) and VEGF-receptor 2 (VEGFR2). VEGF has been 

shown to induce EC migration and proliferation (Neufeld et al., 1999). An 

important angiogenic and vasculoprotective property of VEGF is the 

promotion of EC survival by inhibiting apoptosis (Spyridopoulos et al., 1997). 

The inhibition of VEGF leads to apoptosis of ECs and vessel regression in 

several models of tumour angiogenesis (Benjamin and Keshet, 1997; Jain et 

al., 1998; Shaheen etal., 1999). However, developmental investigations have 

indicated the VEGF-mediated survival is only required until the vessel comes 

in contact with pericytes, at which time the mature vessel is less sensitive to 

alterations of the VEGF level for proliferation or regression (Benjamin et al.,

1999).

VEGF inhibits EC apoptosis that is induced by growth factor deprivation (Fujio 

and Walsh, 1999; Gerber et al., 1998) and tumour necrosis factor-(TNF- a)
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stimulation (Spyridopoulos et al., 1997). VEGF has been shown to induce the 

expression of antiapoptotic proteins such as Bcl-2, A1 (Gerber et al., 1998; 

Nor etal., 1999), survivin (Tran etal., 2002), and XIAP (Tran etal., 1999). Up- 

regulation of Bcl-2 in microvascular ECs (MVECs) enhances intratumoural 

angiogenesis and accelerates tumour growth (Nor et al., 2001). Although 

these results were initially attributed to Bcl-2-mediated endothelial cell 

survival, it was later shown that conditioned medium from Bcl-2-transduced 

human dermal microvascular ECs (HDMVECs) was sufficient to induce potent 

neovascularisation (Karl et al., 2005). Gene expression arrays revealed that 

the expression of the proangiogenic chemokines IL-8 (CXCL8) and growth- 

related oncogene-alpha (CXCL1) was significantly higher in HDMVECs 

exposed to VEGF or transduced with Bcl-2, than in controls (Karl etal., 2005). 

Moreover, NF-kB was also found to be highly activated in the same cells. 

These results demonstrated that VEGF induces expression of Bcl-2, which in 

turn acts in a proangiogenic signalling pathway through NF-kB and CXC 

chemokines (Karl et al., 2005). In fact, NF-kB might prove to be a key 

molecule produced by transformed cells, which stimulates the secretion of 

different cytokines such as VEGF, IL-6, IL-8, and monocyte chemotactic 

protein-1 (MCP-1) (Lee et al., 2003b; Stifter, 2006). MCP-1 secretion is 

reduced by 60% when blocking NF-kB production, which in turn leads to 

reduced production of IL-6 and VEGF, since MCP-1 upregulates VEGF and 

IL-6 (Stifter, 2006). Therefore, angiogenesis can potentially induce itself 

through NF-kB activation.

Furthermore, VEGF utilizes a PI3-kinase/Akt signalling pathway to protect 

ECs from apoptotic death (Fujio and Walsh, 1999). Inhibition of PI3K or a 

dominant-negative Akt mutant can abolish the antiapoptotic effect of VEGF on 

ECs (Fujio and Walsh, 1999). Interestingly, the survival effect of VEGF is 

dependent on the binding of VEGF on the VEGFR2 but not VEGFR1 (Gerber 

et al., 1998). Therefore, VEGFR2 and the PI3K/Akt signal transduction 

pathway are crucial in the promotion of EC survival induced by VEGF. The 

downstream effector pathways mediating the antiapoptotic effect include Akt- 

dependent activation of the endothelial nitric oxide synthase (NOS), leading to 

enhanced synthesis of NO, which promotes EC survival by inhibiting the
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cysteine protease activity of caspases (Dimmeler et al., 1999). The PI3K/Akt 

pathway also upregulates the transcription of survivin (Papapetropoulos et al.,

2000), can inhibit p38 MAPK-dependent apoptosis (Gratton et al., 2001), and 

stimulates the phosphorylation and thus inactivation of proapoptotic proteins 

such as Bad (Khwaja, 1999). Moreover, PI3K/Akt signalling can reverse EC 

sensitivity to Fas-mediated apoptosis via promoting the expression of the 

caspase-8 inhibitor FLIP (Suhara et al., 2001). VEGF can also induce the 

activation of the MAPK/ERK pathway and inhibit the stress-activated protein 

kinase/c-Jun amino-terminal kinase pathway (JNK) to exert its antiapoptotic 

effect (Gupta et al., 1999). More recently, VEGF was shown to activate the 

Raf-1 serine/threonine kinase via Src kinase, which resulted in the 

phosphorylation of Raf-1 and MEK-1-dependent protection of human 

endothelial cells from DR-mediated apoptosis (Alavi et al., 2003).

Angiopoietin-1/Tie2 is another endothelial-specific growth factor/growth 

factor receptor system involved in angiogenesis. Angiopoietin-1 (Ang-1) and - 

2 (Ang-2) are the ligands for the Tie2 receptor tyrosine kinase (Davis et al., 

1996; Maisonpierre et al., 1997). Angiopoietin-1 stimulation has no mitogenic 

effect on ECs. Angiopoietin-1 and the Tie2 receptor are important for the later 

steps of the angiogenic process, the remodelling, and the maturation of the 

newly formed vascular system, and have a stabilizing effect on capillaries 

(Suri et al., 1996). In vitro, angiopoietin-1 activation of the Tie2 receptor 

inhibits EC apoptosis (Kwak et al., 1999). This survival effect is dependent on 

the activation of PI3K and Akt (Fujikawa et al., 1999). Angiopoietin-1 induces 

PI3K-dependent activation of Akt and upregulates the antiapoptotic protein 

survivin (Papapetropoulos et al., 2000), whereas it has no effect on the 

transcription of Bcl-2. Another possible mechanism for the survival effect is 

the recruitment of pericytes (Jain, 2003). Angiopoietin-2 does not lead to the 

activation of the Tie2 receptor and it is believed to be a naturally occurring 

antagonist of the Tie2 receptor (Maisonpierre et al., 1997). However, it has 

since been demonstrated that a high concentration of angiopoietin-2 can also 

act as an apoptosis survival factor for endothelial cells during serum 

deprivation-mediated apoptosis, through the activation of the Tie2 receptor 

and subsequent PI3K/Akt signal transduction (Kim et al., 2000). Several lines
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of evidence suggest that angiopoietin-2, in combination with VEGF, leads to 

sprouting angiogenesis, while angiopoietin-2 in the absence of growth- 

promoting signals renders vessels susceptible to regression (Carmeliet, 2003; 

Hanahan, 1997; Holash et a/., 1999; Jain, 2003).

Basic fibroblast growth factor (bFGF) is an important angiogenic factor, 

which inhibits apoptosis induced by radiation (Fuks et al., 1994) or growth 

factor deprivation (Karsan et al., 1997). bFGF also upregulates the expression 

of the antiapoptotic proteins Bcl-2 and surviving (O'Connor et al., 2000), and 

activates the protein kinase Akt in ECs (Carmeliet et al., 1999).

Hepatocyte growth factor (HGF) is a potent mesenchyme-derived mitogen 

for a number of cell types, including epithelial and endothelial cells (Rosen et 

al., 1997). HGF is also a known angiogenesis factor by its ability to promote 

endothelial cell growth, survival, and migration both in vitro and in vivo 

(Bussolino et al., 1992; Grant eta!., 1993). Moreover, HGF has been shown to 

induce the production of VEGF by a variety of cells (Gille et al., 1998; Van 

Belle et al., 1998; Wojta et al., 1999), and has been correlated with higher 

levels of IL-8 and VEGF in tumour cells from head and neck squamous cell 

carcinoma (HNSCC). HGF-induced IL-8 and VEGF production was associated 

with the phosphorylation of its high-affinity receptor c-Met, and the subsequent 

activation of MEK and PI3K pathways (Dong et al., 2001). HGF can act in 

synergy with VEGF to promote endothelial cell survival and tubulogenesis in 

vitro, and enhance angiogenesis in vivo, and these morphogenic changes are 

accompanied by the synergistic induction of the anti-apoptotic genes Bcl-2 

and A1(Xin et al., 2001). Moreover, HGF has been shown to provide 

protection against detachment-induced apoptosis (anoikis) in HNSCC cells, 

and this effect is dependent on Erk and Akt signalling, but independent of NF- 

kB (Zeng etal., 2002).

Finally, TNF-a, a macrophage/monocyte-derived polypeptide, modulates the 

expression of various genes in vascular ECs and induces angiogenesis. This 

effect seems to involve NF-kB and the up-regulation of IL-8, VEGF, bFGF, 

and their respective receptors (Yoshida etal., 1997). Moreover, TNF-a and IL-
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1 can also activate the PI3K/Akt pathway to inhibit apoptosis, and this effect is 

independent of the TNF-a-induced antiapoptotic effect of NF-kB (Madge and 

Pober, 2000). Taken together, many growth factors are involved in the 

initiation and promotion of angiogenesis. A common property of these growth 

factors is the induction of EC survival. The inhibition of EC apoptosis by the 

distinct growth factors is dependent on PI3K/Akt signalling but may also 

include the upregulation of apoptosis inhibiting proteins such as survivin and 

Bcl-2.

4.1.2.2 Adhesion and Endothelial Cell Survival

Adhesion of ECs to the extracellular matrix and intercellular adhesion are 

essential for EC survival and angiogenesis. Cell-matrix interactions and EC 

migration are both mediated by integrins (Stromblad and Cheresh, 1996). In 

the absence of any extracellular matrix (ECM) interactions, ECs rapidly 

undergo apoptosis (Meredith et al., 1993), a phenomenon called anoikis. The 

interaction of cells via integrins with the ECM provides a potent survival 

signal. The vitronectin receptors avp3- and avps are expressed during in vivo 

angiogenesis and are markers of the angiogenic phenotype of ECs (Brooks et 

al., 1994).

Various signalling cascades have been considered to mediate the 

antiapoptotic effect of integrins. Regarding the intracellular signalling 

mediated by the avP3-integrin, it has been demonstrated that signalling from 

the avp3-integrin leads to inhibition of p53 transcriptional activity, decreased 

expression of the cell cycle inhibitor p 2 iWAF1/c,p\  and suppression of the bax 

cell death pathway in endothelial cells, thereby promoting EC survival 

(Stromblad et al., 1996). Moreover, attachment of ECs on vitronectin or 

osteopontin (ECM proteins that are known avP3-integrin ligands) induces NF- 

kB activity. This avp3-integrin-induced NF-kB activation is mediated by the 

small GTP-binding protein Ras and the tyrosine kinase Src, but not by MAPK 

or PI3K (Scatena et al., 1998). The avP3-integrin-mediated EC survival effect 

depends on the osteopontin-induced, NF-kB-dependent gene, 

osteoprotegerin (Malyankar et al., 2000). Inhibition of the avp3-integrin, and 

the subsequent antiangiogenic and apoptotic effect on ECs, has been shown
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to be associated with an increase in the intracellular ceramide (a proapoptotic 

lipid second-messenger) level, which may induce apoptosis (Erdreich-Epstein 

et al., 2005). Furthermore, various studies suggest an essential role for the 

PI3K/Akt pathway in the antiapoptotic signalling promoted by integrin-cell 

matrix interactions. It has been demonstrated that adhesion to the ECM 

induces PI3K/Akt, and overexpression of a constitutively active PI3K or Akt 

mutant can inhibit detachment-induced apoptosis of ECs (anoikis) (Khwaja et 

al., 1997; Wary et al., 1996). The association of other specific integrins such 

as the aspi- the avP3-, and the aipi-integrin with the adaptor protein She can 

regulate cell survival and cell cycle progression via the Ras/MAPK/ERK 

pathway (Wary et al., 1996).

Interestingly, integrin signalling can also affect and influence growth factor 

signalling. Angiopoietin-1 (Fujikawa et al., 1999), bFGF (Fujikawa et al., 

1999), or VEGF (Fujio and Walsh, 1999) fail to prevent EC apoptosis (anoikis) 

in suspension culture. However, it has been demonstrated that during EC 

stimulation with VEGF, the avp3-integrin co-immunoprecipitates with the 

VEGFR2, and that anti -avP3.antibodies inhibit the VEGF-induced 

phosphorylation of VEGFR2 and the subsequent activation of PI3K (Soldi et 

al., 1999). Consequently, this suggests that integrin ligation may enhance the 

antiapoptotic signalling mediated by VEGF. In conclusion, there seems to be 

a functional cross-talk between integrin- and growth factor-mediated 

signalling, which may act synergistically to promote EC survival.

4.1.2.3 Cell-Cell Adhesion and Endothelial Cell Survival

Recent evidence suggests that not only cell matrix contacts but also cell-cell 

contacts between ECs may support cell survival. VE-cadherin, an adhesive 

protein contained at endothelial adherens junctions that mediates inter- 

endothelial cell adhesion, has been shown to be essential for the VEGF- 

induced antiapoptotic effect (Carmeliet et al., 1999). Inactivation of the VE- 

cadherin gene can abolish the VEGF-induced activation of the PI3K/Akt 

pathway, upregulation of Bcl-2, reduction of p53 and p21 expression, and the 

subsequent prevention of EC apoptosis (Carmeliet et al., 1999). Therefore, 

VE-cadherin signalling is essential for the survival signalling mediated by
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VEGF. Taken together, cell matrix and cell-cell interactions provide EC 

survival by inhibiting EC apoptosis that acts synergistically to growth factors. 

This survival signalling is essential for the promotion of angiogenesis.

4.1.3 KSHV and Endothelial Cell survival

Previous reports have demonstrated that KSHV preferentially infects B 

lymphocytes (Ambroziak et a/., 1995), but a recent study from Pellet et al. 

demonstrated that 50% of patients had circulating endothelial cells infected 

with KSHV (Pellet et al., 2006). This is directly linked with the pathogenesis of 

KS since it is a complex angiogenic tumour characterised by both the 

presence of ectatic vessels and the proliferation of spindle cells, which may 

originate from endothelial cells (described in section 4.1.1). KSHV-infection of 

endothelial cells in vitro leads to transcriptional reprogramming of these cells 

(Hong etal., 2004; Naranatt etal., 2004; Wang etal., 2004). Gene-expression 

microarray profiling of KSHV-infected endothelial cells, showed that a 

considerable number of the genes found upregulated in the KSHV expression 

signature encode growth factors, their receptors, and cytokines (Di Bartolo 

and Cesarman, 2004). Array data has demonstrated that the expression of 

numerous cytokines necessary for endothelial cell survival is induced by 

KSHV, including Ang-2, MCP-1, and VEGFC (Wang et al., 2004). More 

recently, it was shown that KSHV infection of primary human umbilical vein 

endothelial cells (HUVECs) induced the expression of Ang-2, by activating the 

Ang-2 promoter via the AP-1 and Ets1 transcriptional factors, which were 

mediated by the ERK, JNK, and p38-MAPK pathways (Ye et al., 2007). This 

release of Ang-2 was subsequently required for KSHV-induced angiogenesis 

in vivo, highlighting the importance of Ang-2 in KS angiogenesis as well (Ye et 

al., 2007). Moreover, latent KSHV infection of HUVECs has been shown to 

result in the upregulation of several chemokines, such as MCP-1, NAP 2, and 

RANTES, as well as CXCL16 (Xu and Ganem, 2007), which has been 

associated with endothelial cell chemotaxis, growth, and proliferation (Zhuge 

et al., 2005). A model of acute productive infection in endothelial cells, 

demonstrated that KSHV infection led to potent activation of the NF-kB 

pathway, which resulted in the production of high levels of MCP-1 and was
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accompanied by virus-induced capillary-like structure formation during early 
stages of infection (Caselli et a/., 2007).

Several viral genes encoded by KSHV have been associated with cytokine 

release in KS lesions. vGPCR, through activating NF-kB, induces the 

expression of pro-angiogenic factors (VEGF, bFGF), proinflammatory 

cytokines (IL-ip, IL-6, IL-8, TNFa), and adhesion molecules (VCAM, ICAM-1, 

E-selectin) (Couty et al., 2001; Montaner et al., 2004; Pati et al., 2001; 

Schwarz and Murphy, 2001). Moreover, vGPCR and vlL-6 were recently 

shown to cause upregulation of Ang-2 in LECs infected with KSHV (Vart etal., 

2007). Furthermore, lentiviral transduction of mature and progenitor ECs with 

a vector encoding the viral CC chemokine vMIP-ll (viral macrophage 

inflammatory protein-ll), demonstrated that vMIP-ll expression can be 

angiogenic, and results in the upregulation of the expression of multiple 

proangiogenic factors, including VEGF, kinase insert domain receptor, 

neurophilin 2, carcinoembryonic antigen-related cell adhesion molecule 1, IL- 

1a, fibronectin, and integrins a3, a4, and a5 (Cherqui etal., 2007).

Interestingly, the major function of vFLIP of KSHV is the activation of the NF- 

kB pathway (discussed in section 1.4.5). Therefore, the majority of biological 

effects of vFLIP-mediated NF-kB activation can be linked to endothelial cell 

survival, since angiogenesis can potentially induce itself through NF-kB 

activation (Stifter, 2006). Examples include the vFLIP-mediated, NF-kB- 

dependent constitutive upregulation of IL-8 in HUVECs (Sun et al., 2006), 

which has been shown to stimulate angiogenesis and tumour growth (Koch et 

al., 1992; Sparmann and Bar-Sagi, 2004), the induction of CXCL16 in KSHV- 

infected HUVECs, which was attributed to vFLIP and its ability to activate NF- 

kB (Xu and Ganem, 2007), and the fact that the vFLIP was responsible for the 

spindling phenotype observed in KSHV-infected primary ECs, as well as the 

production of proinflammatory cytokine IL-6 and the proangiogenic cytokine 

IL-8 (Grossmann et al., 2006). Moreover, NF-kB regulates a number of anti­

apoptotic genes, which include members of the anti-apoptotic Bcl-2 family, the 

IAP family, and cFLIP (Burstein and Duckett, 2003), and have been shown to 

promote EC survival (discussed in section 4.1.2.1). It seems therefore, that
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vFLIP might be a key mediator of the transcriptional reprogramming observed 

in KSHV-infected ECs, and this effect potentially plays a major role in KS 

pathogenesis by promoting the survival and proliferation of KSHV-infected 

endothelial cells.

4.1.4 Aims

In this chapter we describe our studies on the effects of vFLIP expression on 

dermal microvascular endothelial cells (dMVECs), in order to gain some 

insight into its individual role in their survival and proliferation. We decided to 

use primary dermal microvascular endothelial cells (dMVECs), because we 

wanted to model the function of vFLIP in cells that were as close as possible 

to those targeted naturally for infection by KSHV. We therefore expressed 

vFLIP in dMVECs using lentiviral gene transfer and assessed its ability to 

activate NF-kB in these cells. Following this, we investigated whether vFLIP 

expression was capable of protecting these cells from detachment-induced 

apoptosis, and tried to determine the mechanism by which it does so.
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4.2 Results

4.2.1 MVECs are efficiently transduced with the vFLIP_eGFP lentivector 
and express vFLIP and GFP in vitro

Figure 4.1 shows the map of the dual promoter vector, into which vFLIP was 

subcloned. vFLIP was inserted under the stronger SFFV promoter, and 

emerald GFP was expressed from the weaker human polyubiquitin C (Ub) 

promoter, since GFP was only used as a marker for transduction. We knew 

from the work of fellow lab members that the Ub promoter works well in 

primary cells, in particular murine dendritic cells, although GFP fluorescences 

can be up to one log lower, when compared to GFP expression driven by 

SFFV, as seen by the mean fluorescence intensities (MFIs) in Figure 4.2A. 

vFLIP was amplified (567bp) by PCR from the pcDNA3.1 vector plasmid, 

using primers designed to introduce a BamHI and a Notl site at the 5’ and 3’ 

ends respectively. The vFLIP dual promoter vector is referred to as the 

vFLIP_eGFP vector and was used to transduce MVECs for all the 

experiments described in Chapter 4. The GFP vector was used as a control in 

most experiments to test whether any of the activation effects seen could be 

due to the vector itself or GFP expression.

We decided to test the transduction efficiency and expression of the 

constructs from the dual promoter lentivector in MVECs. Cells were 

transduced at an MOI of 30 (instead of an MOI of 10 for Jurkat 3T8 or 293T 

cells, as primary cells are more resistant to transduction) on day 0, and were 

cultured for 48 hours before assaying for GFP expression by FACScan 

analysis and confocal microscopy, as we seem achieve strongest transgene 

expression 2 days post-infection. For FACS analysis, live cells were gated to 

exclude cell debris and transduction efficiency was measured by GFP 

expression. Figure 4.2A shows that MVECs were efficiently transduced by 

lentivectors, with 76% of cells in the cultures staining positive for GFP using 

the GFP lentivector, and 53% of cells expressing GFP using the vFLIP_eGFP 

lentivector. Cells were also analysed for GFP expression using a confocal 

microscope and Figure 4.2B shows that MVECs are
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Figure 4.1 A dual promoter lentiviral vector for the expression vFLIP and the detection of 
transduction

The vFLIP_eGFP vector (2.), used to activate NF-kB, expresses vFLIP (567 bp) and emerald GFP (Em, 
780 bp).The original GFP vector (1.) was used as a control. Unique restriction sites are shown. LTR, 
long terminal repeat; y, packaging signal; RRE, rev responsive element; cPPT, central polypurine 
tract; SFFV, spleen focus forming virus promoter; WPRE, wood chuck post transcriptional regulatory 
element; Ub,ubiquitin promoter; AU3, deletion in U3 region (SIN vector).
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Figure 4.2 (A, B) Efficient in vitro transduction of MVECs and GFP expression using the 
vFLIP_eGFP and GFP lentiviral vectors

Human dermal microvascular endothelial cells (dMVECs) were either not transduced, or 
transduced with a lentiviral vector encoding GFP alone, or vFLIP and emerald GFP at an MOI=30. 
48 hours post transduction, the transduction efficiency was assessed by FACScan analysis and 
confocal microscopy for GFP expression. (A) Live cells were gated (not shown) and expression of 
GFP was analysed by FACS analysis 48h post transduction. The top right quadrant in each plot 
shows transduced MVECs expressing GFP (10, 000 events recorded per sample). The mean 
percentage of transduced MVECs was 55% for vFLIP_eGFP (standard deviation, S.D. = 5.06) and 
66.3% for GFP (S.D. = 4.33), out of three experiments. Values below the % transduced cells 
represent the mean fluorescence intensity (MFI). (B) Transduction efficiency and GFP expression 
were also measured using a BioRad confocal microscope 48h post-transduction.
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transduced by the GFP and vFLIP_eGFP lentivectors (identified by GFP 

expression on the bottom panels) and there is no background expression in 

untransduced cells. Remarkably, MVECs that were transduced with the 

vFLIP-eGFP lentivector displayed elongation similar to the spindle cell shape 

characteristic of KS tumour cells. This result agrees with the findings of 

Grossman et al., who observed that human umbilical vein endothelial cells 

(HUVECs), but also blood and lymphatic endothelial cells (LECs and BECs 

respectively) expressing the vFLIP protein, displayed dramatic elongation and 

spindling, virtually identical to that observed with authentic KSHV latency 

(Grossmann etal., 2006).

4.2.2 vFLIP induces up-regulation of p100 expression and a relatively 
small increase in the levels of p52 in MVECS

vFLIP of KSHV has been shown to be unique among the viral FLIP proteins in 

its ability to activate both the canonical (Chaudhary et al., 1999) and the 

alternative NF-kB pathways (Matta and Chaudhary, 2004). Our lab and others 

have shown that vFLIP-mediated activation of the alternative NF-kB pathway 

results in up-regulation of p 100 expression and generation of the active p52 

subunit in multiple solid tumour and haematopoietic cell lines, such as HeLa, 

CEM, Jurkat 3T8, and 293T cells (Matta and Chaudhary, 2004). We decided 

to test whether vFLIP expression in primary human dermal microvascular 

endothelial cells (MVECs) also leads to activation of NF-kB, and more 

specifically activation of the alternative NF-kB pathway. As shown in figure 4.3 

A and B, expression of vFLIP in MVECs led to higher levels of p100 precursor 

expression and generation of the p52 subunit. The up-regulation of p100 

indicates activation of the classical NF-kB pathway by vFLIP in MVECS, as 

p100 is an NF-kB responsive gene (Dejardin et al., 2002), while the 

accumulation of p52 suggests that the p100 precursor is being processed into 

p52, either by the activity of the alternative NF-kB pathway, or due to 

accumulation of excessive p100 which results in some constitutive processing 

into p52. Interestingly, the p100 and p52 levels observed in untransduced 

MVECs were quite high, as compared to those seen in uninfected Jurkats 

routinely used in such experiments (Figure 3.1, Chapter 3). This leads us to
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believe that NF-kB, through the alternative pathway, is already activated in 

these cells, possibly in response to an external stimulus (e.g. growth factor) 

present in the growth medium, or due to increased constitutive p100 

processing in these cells. Moreover, we observed that transduction with the 

control lentivector that expresses only GFP resulted in higher p100 expression 

levels (Figure 4.3A), when compared to uninfected cells. This means that 

transduction of the cells, or the vector itself, or GFP expression from the 

vector, can activate NF-kB to some degree in MVECs, although not to the 

extent of cells expressing vFLIP.

The cells were infected at an MOI of 30 using the vFLIP_eGFP lentivector 

(Figure 4.1), which resulted in 53% of MVECs being GFP positive after 

FACScan analysis for transduction efficiency. This vector, with two 

independent internal promoters driving expression of the transgenes, has 

been shown to induce high-level expression of multiple transgenes (Yu et al., 

2003), and has been found by members of our lab to be more efficient at 

infecting primary cells (e.g. dendritic cells). Moreover, analysis of these cells 

by Western Blotting for vFLIP protein levels showed that a significant amount 

of vFLIP was being expressed in the cytoplasm of these cells (Figure 4.3 A, 

middle panel). In contrast, transduction of MVECs at an MOI of 30 using the 

vFLIP_IRES_eGFP lentivector, which can express both vFLIP and eGFP from 

the internal ribosome entry site (IRES) of encephalomyocarditis virus (EMCV) 

under the control of the human cytomegalovirus (hCMV) immediate early 

promoter, and was used for all the transductions of cell lines in Chapter 3 

(Figure 2.1), resulted in only 24% of cells expressing GFP by FACScan 

analysis (data not shown). However, when cell lysates from the 

vFLIPJRES_eGFP-transduced MVECs were analysed for NF-kB activation, 

we observed up-regulation of p100 expression and generation of p52 to 

similar levels as those seen in vFLIP_eGFP-transduced MVECs (figure 4.3B 

upper panel), although the expression levels of vFLIP were lower using this 

vector (Figure 4.3B middle panel). Therefore, we were able to confirm our 

observations about vFLIP-mediated p100 upregulation using two different 

lentivectors, and the two results were consistent irrespective of vFLIP 

expression levels.
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Figure 4.3 (A, B) Stable vFLIP expression from two different lentivectors induces upregulation of 
p100 expression and generation of more p52 in MVECs

Human dermal microvascular endothelial cells (dMVECs) were either not transduced, or 
transduced with a lentiviral vector encoding GFP alone, or vFLIP and GFP. 40pg of cell lysate, 
prepared from 5x10 MVECs lysed in RIPA buffer 48 hours post transduction, was analysed on a 
12% SDS-polyacrylamide gel by im m unoblotting using a mouse monoclonal anti-p100/p52 
antibody for endogenous p100/p52 expression, and the anti-vFLIP antibody to check the 
expression level of vFLIP. (3-actin levels were visualised to ensure equal protein loading. (A) MVECs 
were transduced at an MOI of 30 with the double promoter lentivector vFLIP_eGFP for stable vFLIP 
expression. Transduction efficiency of the lentivector was measured by FACScan analysis of cells 
expressing GFP. 54% and 63% of cells expressed GFP after infection with the vFLIP_eGFP and GFP 
lentivirus respectively. (B) MVECs were transduced at an MOI of 30 with a lentivector that expresses both 
vFLIP and eGFP from an IRES, vFLIPJRES_eGFP.Transduction efficiency of the lentivector was measured 
by FACScan analysis of cells expressing GFP. 24% and 40% of cells expressed GFP after infection with the 
vFLIPJRES_eGFP and GFP lentivirus respectively.

159



w

4.2.3 vFLIP expression triggers the nuclear translocation of RelA/p65 
and the upregulation of RelB expression in MVECs

Our previous findings seem to indicate that vFLIP expression in MVECs leads 

to activation of the classical, and potentially of the alternative, NF-kB pathway 

(section 4.2.2). It is well established that, activated NF-kB is released from the 

IkB inhibitors in the cytoplasm, and translocates into the nucleus, where it 

induces the transcription of a number of cellular genes (Pahl, 1999). In order 

to confirm the specificity of NF-kB induction by vFLIP in MVECs, we decided 

to examine untransduced, and GFP- or vFLIP-transduced MVECs by 

immunofluorescence, to look for the presence of activated nuclear NF-kB. 

MVECs were grown on 24-well chamber slides and were either not 

transduced, or transduced with a control lentiviral vector encoding only GFP, 

or with a lentivector encoding both vFLIP and GFP. 48 hours post 

transduction, the cells were washed, fixed with paraformaldehyde, 

permeabilized, and incubated with polyclonal antibodies against RelA/p65, 

p52, and RelB. The nuclei of cells were stained with DAPI and transduction 

was confirmed by GFP expression. Figure 4.4A (RelA/p65 staining) shows 

that in MVECs infected with the vFLIP_eGFP lentivector, vFLIP expression 

specifically induced the translocation of p65 into the nucleus. Cells staining 

positive for nuclear p65, observed when p65 staining was merged with the 

nuclear DAPI stain (panel F), were also positive for GFP staining (panels G 

and H, indicated by arrows), observed when p65 staining was merged with 

GFP staining (panel G). The co-localization of nuclear p65 and GFP indicates 

that p65 translocated into the nuclei of these cells as a result of vFLIP 

expression after transduction with the vFLIP_eGFP lentivector. On the same 

slide, no nuclear p65 was found in any of the cells that did not stain positive 

for GFP (panel H). In contrast, p65 was predominantly localized in the 

cytoplasm of untransduced cells (data not shown) and cells transduced with 

the control lentivector encoding only GFP, and we did not observe any nuclear 

p65 staining (panel B) in these cells. In this case, cells staining positive for 

GFP did not stain positive for nuclear p65, indicating that the control 

lentivector did not induce any active NF-KB-p65 nuclear translocation. These 

results confirm the specificity of NF-kB induction by vFLIP, and further support
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Figure 4.4 (A) vFLIP expression in MVECs induces the nuclear translocation o f NF-icB-p65, but 
has no effect on p52 and RelB, which are predom inantly nuclear irrespective of vFLIP 
expression

Human dermal microvascular endothelial cells (dMVECs) were grown on 24-well chamber slides, and 
were either not transduced, or transduced w ith  a lentiviral vector encoding GFP alone, or vFLIP and GFP 
at an MOI of 30. (A) 48 hours post-transduction, the cells were washed, fixed, permeabilised, and stained 
w ith a rabbit polyclonal antibody against p65, p52, and RelB. DAPI staining was used as a nuclear stain, 
and GFP staining was used to  confirm  transduction by the lentivectors. DAPI-stained nuclei were 
merged w ith p65, p52, and RelB staining, (top right panels) to  confirm nuclear translocation, and all 
stains were merged (bottom  right panels) to  indicate nuclear translocation of p65, p52, and RelB 
induced by the vFLIP or GFP lentivectors. The arrows indicate cells positive for p65 nuclear staining, 
which are also positive for vFLIP expression, as assayed by the presence o f GFP in the nuclei.
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our previous findings (section 4.2.2), which show that vFLIP induces the 

activation of the classical NF-kB pathway in MVECs.

Subsequently, we stained GFP-, and vFLIP-transduced MVECs with 

polyclonal antibodies against p52 and RelB, to assess the role of vFLIP in the 

activation of the alternative NF-kB pathway. Interestingly, when we merged 

the nuclear DAPI staining with p52 and RelB staining, we observed that both 

p52 and RelB were predominantly localized in the nuclei of these cells (figure 

4.4A, panels J and N for p52 staining, and panels R and V for RelB staining). 

This effect was not mediated by vFLIP expression, since the cells were all 

positive for nuclear p52 and RelB staining, whether they expressed GFP 

(hence transduced by the GFP or vFLIP_eGFP lentivectors), or not (panels L 

and P for p52 staining, and panels T and X for RelB staining). Therefore, we 

concluded that the alternative NF-kB pathway is already activated in human 

dermal MVECs, which supports our previous observations that p52 

expression levels were high in untransduced and GFP-transduced MVECs 

when assessed by Western Blot (section 4.2.2).

We then analysed these images using the “Image J” image processing 

program developed by NIH, in order to quantify the cell staining based on the 

number of pixels, compare the different experiments, perform statistical 

analysis, and generate results in the form of graphs. We generated 

histograms of the nuclear and cytoplasmic staining for each image (for panels 

A-X), and used the median values from each histogram to compare the 

nuclear and cytoplasmic staining. This way we came up with a 

nuclearcytoplasmic staining ratio, which enabled us to compare between 

different images. Using this type of analysis we generated a graph, shown in 

figure 4.4B, which summarizes the results of this immunofluorescence study. 

Figure 4.4B shows that p52 staining is principally nuclear in these cells, 

irrespective of cells expressing GFP, or vFLIP and GFP. There is also much 

greater baseline RelB nuclear staining in untransduced cells, as compared to 

that seen with RelA/p65 nuclear staining of untransduced cells. Moreover, 

vFLIP expression does not seem to have any significant effect on RelB 

nuclear translocation. In contrast, the baseline localization of RelA/p65 is
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Figure 4.4 (B) vFLIP expression in MVECs induces the nuclear translocation of 
NF-KB-p65, but has no effect on p52 and RelB, which are predom inantly nuclear 
irrespective of vFLIP expression

(B) Comparison of nuclear:cytoplasmic NF-kB staining ratios between cells transduced with a 
lentivector encoding GFP alone, or vFLIP and GFP. Each high power field image seen in Figure 
4.4 (A) (A-X) was analysed using "Image J" software from NIH, to generate quantitative 
fluorescence data for the cytoplasms and nuclei, in the form of histograms.These data were 
then exported from ImageJ into Graphpad Prism 5 software for further analysis and 
presentation. Nucleancytoplasmic ratios for each NF-kB subunit staining (RelA/p65, RelB, and 
p52) were then calculated by comparison of median values from the histogram data. The 
results of the analysis are summarised in the above graph. Differences were calculated using 
paired student t tests, where p=<0.05 was considered significant. * indicates p=<0.05. The 
values of the individual nucleancytoplasmic ratios are depicted in the table, and each value 
represents the mean ratio of 5 replicates for each NF-kB subunit staining.
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mainly cytoplasmic for untransduced cells and cells transduced with the GFP 

lentivector, whereas vFLIP expression in these cells, but not the vFLIP_eGFP 

lentivector itself, is capable of driving the translocation of RelA/p65 to the 

nucleus. Moreover, we performed a statistical comparison of the RelA/p65 

nuclear:cytoplasmic ratio, between cells positive for GFP (i.e. transduced and 

hence expressing vFLIP) and those negative for GFP (i.e. untransduced), 

from the group of cells infected with the vFLIP_eGFP lentivector. This showed 

that there is significantly greater (p<0.02) RelA/p65 nuclear staining in cells 

expressing GFP and hence vFLIP, than in cells staining negative for GFP, re­

affirming statistically the specificity of activation of the classical NF-kB 

pathway mediated by vFLIP, which was also observed in the 

immunofluorescence images (panels G and H).

We also performed a different type of analysis, whereby we quantified the 

effect that transduction with the GFP and vFLIP_eGFP lentivectors has on the 

total relative staining of RelA/p65, p52, and RelB, which gives us an indication 

of their relative expression levels in these cells. Interestingly, as shown in 

figure 4.4C, we observed that in the case of total RelA/p65 staining in MVECs, 

successful lentiviral transduction and subsequent transgene expression 

induces an increase in total RelA/p65 levels (green line on the histograms, 

GFP+ve), irrespective of which transgene is expressed (GFP alone, or vFLIP 

and GFP). Therefore, it seems that transgene expression from the lentivector 

somehow activates the MVECs. This is in agreement with our previous 

observation, whereby transduction with the control lentivector that expresses 

only GFP, resulted in higher p100 expression levels in Western Blot (section 

4.2.2, Figure 4.3A), when compared to uninfected cells. In the case of p52 

staining (Figure 4.4C, p52 staining), neither transgene expression, nor vFLIP 

expression in particular, seemed to have any effect whatsoever on total p52 

staining, and hence p52 expression levels, confirming that vFLIP does not 

appear to have any effect on the activation of the alternative NF-kB pathway 

in these cells. Finally, analysis of total relative RelB staining (Figure 4.4C, 

RelB staining) demonstrated that, like RelA/p65 staining, expression of both 

GFP and vFLIP/GFP led to greater levels of RelB staining, however, vFLIP 

expression was capable of inducing considerably higher levels of RelB.
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Figure 4.4 (C) vFLIP expression from the vFLIP_eGFP lentivector increases total RelB 
expression levels in MVECs

(C) Quantification of total relative NF-kB subunit cell staining. Each high power field image 
seen in Figure 4.4 (A) (A-X) was analysed using "Image J" software, to generate quantitative 
fluorescence data in the form of histograms. The histograms in this figure represent an 
analysis of total relative NF-kB subunit staining, derived from the sum of cytoplasmic and 
nuclear staining for each individual field.The results are plotted in the form of relative NF-kB 
subunit staining against frequency %, in order to normalise data for the different number of 
pixels in cytoplasmic and nuclear fractions. A shift in the histogram denotes an increase in the 
total relative NF-kB subunit staining, which in turn signifies an increase in the protein 
expression levels.
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This observation is in agreement with our previous findings that vFLIP can 

induce the activation of the classical pathway of NF-kB, demonstrated by the 

vFLIP-induced nuclear translocation of p65 (Figure 4.4A and B) and the 

induction of higher expression levels of p100 (Figure 4.3), since it is known 

that like p100, RelB is a transcriptional target of the canonical NF-kB 

signalling pathway (Derudder et al., 2003; Verma et al., 1995; Yilmaz et al.,

2003).

4.2.4 vFLIP expression in MVECs confers resistance against 
detachment-induced apoptosis, when assayed by Annexin V staining

Endothelial cells, along with many other mammalian cell types, are dependent 

on adhesion to the extracellular matrix for their continued survival (Chapter 4- 

Intoduction). Upon detachment from the matrix, endothelial (Meredith et al., 

1993) and epithelial cells (Frisch and Francis, 1994) enter into programmed 

cell death. This cell detachment-induced apoptosis has been referred to as 

“anoikis”, from the Greek for homelessness (Frisch and Francis, 1994). 

Transformed cells are very frequently characterised by their ability to grow in 

the absence of contacts with a solid extracellular matrix (Stoker et al., 1968), 

which has serious implications for metastasis. We therefore set out to 

investigate whether vFLIP expression in MVECs could protect them from 

anoikis-induced apoptosis, therefore conferring anchorage independence to 

vFLIP-transduced cells. MVECs were either not transduced, or transduced 

with a lentivirus encoding GFP alone, or vFLIP and GFP (vFLIP_eGFP). 48 

hours post-transduction cells were removed from the culture dish and were 

either allowed to adhere onto normal plastic wells, or were re-plated onto 

plates coated with polyHEMA, a substrate known to prevent cell attachment to 

the matrix, for 16 hours. To examine the effects of vFLIP expression on 

MVEC’s anoikis, adherent and detached cells were then stained for Annexin 

V, which binds to phosphatidylserine (PS) and can therefore measure the 

translocation of PS (which is normally located exclusively at the inner side of 

the plasma membrane) to the outer layer or the external surface of the cell, 

and which is a marker for early apoptotic events. In adherent cultures the 

basal level for apoptosis was below 10% for untransduced and transduced
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cells alike (Figure 4.5A left hand side dot plots/Attached), excluding the 

possibility that lentivector transduction was in any way toxic in these cells.

Figure 4.5A shows dot plots after FACS analysis, from one representative 

experiment out of three with similar results obtained, of attached and 

detached MVECs stained for Annexin V. Anoikis was successfully induced 

after 16 hours of detachment on polyHEMA-coated wells, and both uninfected 

(Figure 4.5A top right plot) and GFP-transduced cells (Figure 4.5A middle 

right plot) were susceptible to apoptosis following removal from the 

extracellular matrix, with 37% and 48% of cells staining positive for Annexin V 

expression respectively . However, cells expressing the vFLIP protein were 

resistant to anoikis, with only 6% of cells staining positive for Annexin V after 

detachment (Figure 4.5A bottom right plot), as compared to 4% of cells that 

were positive in the attached culture. We obtained similar results when 

staining cells with propidium iodide (PI), which is used to discriminate late 

apoptotic or necrotic cells that have lost membrane integrity from early 

apoptotic cells (stained with Annexin V) which still have intact membranes. 

24% of uninfected cells and 26% of cells transduced with the GFP lentivector 

were necrotic (PI positive), in contrast to only 5% of cells transduced with the 

vFLIP_eGFP lentivector staining positive for PI (FACS plots not shown). The 

results obtained from three independent experiments are summarised in 

Figure 4.5C. In brief, MVECs attached to the culture plate, whether 

transduced or not, were >90% viable and lentiviral transduction did not seem 

to have any toxic effect on these cells. However, detachment from the matrix 

induced significant levels of cell death in MVECs, with 61% of untransduced 

cells, and 74% of GFP-transduced cells in total staining positive for either 

Annexin V (apoptotic) or PI (necrotic). In contrast, cells expressing vFLIP were 

rendered resistant to anoikis-induced apoptosis, since after detachment only 

11% of vFLIP_eGFP-transduced MVECs were apoptotic /necrotic, and 89% of 

these cells remained viable even after the loss of contact with the matrix.
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Figure 4.5 (A, B, C) Expression of vFLIP in MVECs rescues cells from detachment-induced apoptosis 
when assayed by Annexin V-Biotin binding

Human dermal microvascular endothelial cells (dMVECs) were either not transduced, or transduced 
with a lentiviral vector encoding GFP alone, or vFLIP and GFP. 48 hours post-transduction, cells were 
detached from the matrix by trypsinisation and either plated on control wells, or anoikis was induced 
by plating cells on polyHEMA-coated wells for 16h. Apoptosis was assayed by Annexin V-Biotin/PI 
staining. (A) Early apoptotic events were measured by labelling cells with Annexin V-Biotin (Trevigen), 
and detected with a secondary antibody binding to a red fluorescent-streptavidin. Annexin V staining 
is plotted against side scatter of cells. (B) Transduction efficiency was measured by FACScan analysis of 
cells expressing GFP. (C) Summary of results from Annexin V/PI staining. Cells staining positive for 
Annexin V are referred to as apoptotic, cells positive for PI as necrotic, and double negative cells as

a l iV e - 16 8



The cells were stained with Annexin V-Biotin and detected with a streptavidin 

-conjugated RPE-Cy5 red fluorescent secondary antibody (FL3 channel 

detection), instead of Annexin V-FITC (FL1 channel detection), as we wanted 

to check transduction efficiency by GFP expression, which is also detected by 

the FL1 channel. As seen in Figure 4.5A, single staining was performed for 

either Annexin V, or PI, and plotted against the side scatter, as opposed to 

Annexin V against PI, which is used to distinguish live, apoptotic and necrotic 

cell populations. This was due to the fact that triple staining was not possible 

due to overlap between the red and far red channels, which could not be 

overcome with any amount of instrument compensation. Nevertheless, this 

type of analysis means that we have probably overestimated the percentage 

of cells staining positive for Annexin V. Annexin V can detect apoptotic cells 

by being used as a sensitive probe for PS that is exposed on the outer leaflet 

of the cell membrane. However, due to the loss of membrane integrity in 

necrotic cells, Annexin V can enter the cells and also bind to the PS exposed 

on the inner leaflet of the cell membrane. Therefore, when we analysed cells 

undergoing anoikis-induced cell death using Annexin V, a fraction of the 

population that stained positive for Annexin V might have been necrotic cells, 

as they stain positive for both Annexin V and PI since the cell membrane is 

not intact. In contrast, PI positive cells are definitely only necrotic because the 

PI cannot cross the intact cell membrane. Simultaneous staining with Annexin 

V and PI is therefore recommended, when possible, to distinguish apoptotic 

cells from necrotic cells. In any event, we do not believe that this has any 

major bearing on our observation that vFLIP expression rescues MVECs from 

anoikis, since the difference in viability between cells expressing vFLIP and 

those that don’t is still quite substantial.
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4.2.5 vFLIP expression rescues MVECs from anoikis-induced apoptosis 
but not from growth factor removal, when assayed by DNA 
Fragmentation ELISA

In an effort to confirm our findings that vFLIP expression in MVECs confers 

protection against anoikis-induced apoptosis, uninfected MVECs, or MVECs 

transduced with the GFP lentivirus or the vFLIP_eGFP lentivirus, were 

removed from the plate, and were either allowed to re-adhere onto normal 

plates, or anoikis was induced by plating cells onto polyHEMA-coated wells 

for 16 hours. A fraction of the cells grown on control or polyHEMA-coated 

wells was also deprived of growth factors in the medium, in order to 

investigate whether the expression of vFLIP is able to suppress other forms of 

apoptosis in MVECs. The ability of these cells to undergo apoptosis upon 

detachment from the extracellular matrix and removal of growth factors was 

measured using a Death Detection ELISA (Roche) assay which specifically 

detects and quantitates mono- and oligonucleosomes (histone-associated 

DNA fragments) that are released into the cytoplasm of cells that die from 

apoptosis (Figure 4.6A). Cell metabolism was measured using an MTT cell 

proliferation assay, which is based on the cleavage of the yellow tetrazolium 

salt MTT to purple formazan crystal by metabolically active cells (Figure 4.6B).

As shown in figure 4.6A, uninfected cells, and cells transduced with the GFP 

lentivector, were highly susceptible to apoptosis following detachment from 

the extracellular matrix, and exhibited a 2-fold and 5-fold increase in DNA 

fragmentation respectively, which was significantly different (p=< 0.01) from 

their attached counterparts. However, MVECs expressing vFLIP were highly 

protected from apoptosis following detachment, with DNA fragmentation levels 

comparable to vFLIP-expressing cells grown on control plates (no significant 

difference observed), but significantly different (p=< 0.01) from uninfected and 

GFP-transduced MVECs.
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Figure 4.6 (A, B) Expression of vFLIP in MVECs confers resistance against detachment-induced 
apoptosis when assayed by DNA fragmentation ELISA, but does not rescue cells in the absence 
of growth factors

Human dermal microvascular endothelial cells (dMVECs) were either not transduced, or 
transduced with a lentiviral vector encoding GFP alone, or vFLIP and GFP. 48 hours 
post-transduction, cells were detached from the matrix by trypsinisation and either re-plated on 
control wells (Attached -PH), or anoikis was induced by plating cells on polyHEMA-coated wells 
for 16h (Detached +PH). A subset of cells was washed free of medium and plated on control or 
polyHEMA-coated wells in the absence of any growth factors (- Growth Factors). (A) Apoptosis 
was measured by using a cell death detection ELISA kit (Roche), which measures DNA 
fragmentation. Significant differences between the different samples are indicated on the graph. 
Differences were calculated using paired student t  tests, where p=<0.05 was considered 
significant.** indicate p=<0.01. (B) Cell viability was assessed using an MTT survival assay, which 
measures metabolic activity, as described in Materials and Methods. The results shown are the 
mean values from three independent experiments with error bars indicating the standard 
deviation between the three experiments. Transduction efficiency was assessed by FACScan analysis of 
cells expressing GFP. 57% of MVECs infected with the vFLIP lentivirus were GFP positive and 73% of 
MVECs infected with the GFP lentivirus were GFP positive.
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However, when the ability of vFLIP to protect MVECs from growth factor 

removal from the medium was measured, we observed that all three groups of 

MVECs were very susceptible to apoptosis due to the loss of growth factors, 

irrespective of vFLIP expression (Figure 4.6A). Moreover, when we combined 

detachment from the matrix with growth factor removal, this negated the 

protection from anoikis bestowed by vFLIP, and all cells seemed to undergo 

very high levels of DNA fragmentation.

When the same set of cells were tested for their viability and metabolic activity 

using the MTT assay (Figure 4.6B), it was observed that attached cells grown 

in control wells were substantially metabolically active, and transduction with 

the GFP or vFLIP_eGFP lentivectors did not seem to have any adverse 

effects on viability and metabolic activity. Upon detachment from the matrix, or 

growth factor removal, or both, the metabolic activity of all three sets of cells 

dropped considerably to similarly low levels, and even vFLIP expression did 

not seem to be able to restore the cells’ metabolic activity upon detachment 

from the matrix. The results from the MTT assay seem to indicate that MVECs 

respond to detachment from the matrix, and growth factor removal, by 

inducing what looks like cell cycle arrest, and remaining in a quiescent state. 

vFLIP does not seem capable of driving cells out of this state. Therefore, we 

can hypothesize that vFLIP expression can protect MVECs from anoikis by 

blocking the onset of apoptosis as measured by the DNA fragmentation 

ELISA, but it is not sufficient to maintain cells is a fully active metabolic state. 

Since surviving anoikis is a prerequisite for cancer progression and 

metastasis, these findings give us further insight into the important role that 

vFLIP plays in KSHV pathogenesis.
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4.2.6 vFLIP protects MVECs against detachment-induced apoptosis via 
the NF-kB pathway

Our previous findings have demonstrated that vFLIP is capable of protecting 

MVECs from detachment-induced apoptosis. We were therefore interested to 

investigate the mechanism by which it does so. As discussed in section 1.4.5 

of the Introduction, it seems that one of the main functions of vFLIP is to 

induce sustained NF-kB activation (Chaudhary et a/., 2000; Chaudhary et a/., 

1999; Liu et a/., 2002; Matta et al., 2003). Blocking NF-kB induces apoptosis 

in KSHV-infected PEL cells (Keller et al., 2000), leads to the downregulation 

of NF-KB-inducible cytokines (Sun et al., 2006), and reverses the vFLIP- 

mediated protection of cells against growth factor withdrawal-induced 

apoptosis (Sun et al., 2003a). Since we previously demonstrated that vFLIP 

can activate NF-kB in MVECs (section 4.2.2 and 4.2.3), we formed the 

hypothesis that vFLIP could also protect MVECs against detachment-induced 

apoptosis via the activation of the NF-kB pathway. To test this hypothesis, we 

decided to inhibit NF-kB using a known inhibitor of this pathway, namely Bay 

11-7082, which irreversibly blocks the phosphorylation of IkBo and the 

subsequent release of active NF-kB into the nucleus (Cahir-McFarland et al.,

2004). MVECs were grown to ~70% confluency and were either left untreated, 

or were pre-treated with 20pM of Bay 11-7082 for 1 hour at 37 °C. Cells were 

then washed free on the inhibitor, and were either not transduced, or 

transduced with a lentivector encoding GFP alone, or vFLIP and GFP. 48 

hours post-transduction cells were removed from the culture dish and were 

either allowed to re-adhere onto normal plates, or anoikis was induced by 

plating cells onto polyHEMA-coated wells for 16 hours. Subsequently, 

apoptosis was assessed using a Death Detection ELISA (Roche), which 

quantifies the extent of DNA degradation in cells.

Figure 4.7 shows that, as expected, in the absence of Bay 11-7082, vFLIP 

expression rescued cells from detachment-induced apoptosis, whereas 

untransduced and GFP-transduced cells were very susceptible to apoptosis, 

displaying a 9-fold increase in DNA fragmentation levels. However, treatment 

of the cells with the Bay 11-7082 inhibitor, and the subsequent inhibition of
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Figure 4.7 Inhibition of vFLIP-mediated NF-kB activation by Bay 11-7082 induces apoptosis in 
attached MVECs, and abolishes the vFLIP-mediated protection against anoikis

Human dermal microvascular endothelial cells (dMVECs) were either left untreated, or were pretreated 
with 20mM Bay 11-7082 for 1h. Untreated cells, and cells incubated with Bay 11-7082, were then 
washed twice with HBSS, and either not transduced (labelled Uninfected), or transduced with a 
lentiviral vector encoding GFP alone, or vFLIP and GFP. 48 hours post-transduction, cells were 
detached from the matrix by trypsinisation and either plated on control wells, or anoikis was induced 
by plating cells on polyHEMA-coated wells for 16h. Apoptosis was then measured using a cell death 
detection ELISA kit (Roche), which measures DNA fragmentation. The results shown are the mean 
values from three independent experiments with error bars indicating the standard deviation between 
the three experiments. Transduction efficiency was assessed by FACScan analysis of cells expressing GFP. 
57% of MVECs infected with the vFLIP lentivirus were GFP positive, and 73% of MVECs infected with the GFP 
lentivirus were GFP positive.
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NF-kB, led to a reversal of the protective effect mediated by vFLIP against 

detachment-induced apoptosis, and resulted in a 7-fold increase in DNA 

fragmentation levels, as compared to the levels observed in detached vFLIP- 

expressing cells in the absence of the Bay 11-7082 inhibitor. The present 

study shows that the ability of vFLIP to protect MVECs against detachment- 

induced apoptosis is associated with the activation of the NF-kB pathway, and 

therefore suggests a mechanism for this protective effect via the vFLIP- 

mediated NF-kB activation. Interestingly, pre-treatment of attached MVECs 

with the Bay 11-7082 inhibitor led to the induction of apoptosis in 

untransduced, GFP-, and vFLIP-transduced cells, which was most prominent 

in vFLIP-transduced cells. In fact inhibition of NF-kB resulted in a 5-fold 

increase in DNA fragmentation levels in untransduced cells, a 6-fold increase 

in GFP-transduced cells, and a 9-fold increase in vFLIP-transduced cells. 

These observations suggest that normal activation of NF-kB is essential for 

the survival of untransduced cells under physiological conditions.

4.2.7 Culture supernatant from vFLIP-expressing MVECs can rescue 
cells from anoikis

We set out to further investigate the mechanism by which vFLIP-mediated NF- 

kB can protect MVECS from detachment-induced apoptosis. Our previous 

findings in sections 4.2.4 and 4.2.5 (Figures 4.5 and 4.6) seem to suggest that 

expression of vFLIP by cells that have been successfully transduced with the 

vFLIP_eGFP lentivirus, does not only result in the protection of the cells which 

are positive for vFLIP expression, but can also rescue from anoikis most of 

the neighbouring cell population. This led us to believe that vFLIP expression, 

and the subsequent activation of NF-kB in MVECs, might induce the secretion 

of a survival factor into the medium, which can send survival signals to all of 

the cells growing within it.

KSHV infection of endothelial cells in vitro induces the expression of 

numerous cytokines (Di Bartolo and Cesarman, 2004), while in KS lesions 

several viral genes have been linked to cytokine release (An et al., 2005; 

Montaner et al., 2004). For example, vFLIP not only activates NF-kB (Liu et
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al., 2002), but it also induces IL-6 gene expression in a JNK- and AP1- 

dependent fashion (An et al., 2003) and therefore contributes to the cytokine- 

rich milieu of KS lesions. For this reason we decided to test whether the 

culture supernatant from MVECs transduced with the vFLIP_eGFP lentivector 

was capable of mediating protection against anoikis. MVECs were either not 

transduced, or transduced with a lentivirus encoding GFP alone, or vFLIP and 

GFP (vFLIP_eGFP). 48 hours post-transduction cells were removed from the 

culture dish and were either allowed to re-adhere or anoikis was induced by 

plating cells on polyHEMA for 16 hours. A subset of cells from the three 

groups was washed free of growth medium following detachment, and was 

resuspended and plated on polyHEMA for 16 hours in 500pl of culture 

supernatant (diluted 1:2) derived from untransduced, GFP, and vFLIP- 

transduced MVECs, to assess the effect of the different supernatants on 

MVEC survival during anoikis. The extent of apoptosis was determined using 

the Death Detection ELISA (Roche).

As shown in Figure 4.8, untransduced and GFP-transduced MVECs were very 

susceptible to detachment-induced cell death, since we observed more than a 

7-fold increase in the DNA fragmentation levels of both as determined by the 

Death Detection ELISA. However, cells transduced with the vFLIP_eGFP 

lentivector were protected from anoikis, confirming our previous findings 

(Figure 4.6A). Culture supernatant from uninfected cells did not protect 

untransduced or GFP-transduced MVECs from anoikis, and only the cells 

transduced with the vFLIP_eGFP lentivector were rescued. The same was 

observed when detached cells were incubated in culture supernatant from 

GFP-transduced cells, ruling out the possibility that lentiviral transduction or 

the vector itself induces any survival factor secretion. However, when 

detached MVECs were grown in culture supernatant derived from vFLIP 

expressing cells, untransduced and GFP-transduced cells were partially 

protected from anoikis, while vFLIP-transduced cells were fully protected. 

Indeed, untransduced and GFP-transduced cells exhibited an almost 2-fold 

decrease in DNA fragmentation levels and there was a significant difference 

(p=<0.05) between these levels and the DNA fragmentation levels of cells 

grown in the supernatant of untransduced, or GFP-transduced cells.
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Figure 4.8 Supernatant from vFLIP-expressing MVECs, is capable of mediating resistance against 
detachment-induced apoptosis in untransduced and GFP-expressing MVECs

Human dermal microvascular endothelial cells (dMVECs) were either not transduced (labelled 
Uninfected, or Ul on the graph), or transduced with a lentiviral vector encoding GFP alone, or vFLIP and 
GFP. 48 hours post-transduction, cells were detached from the matrix by trypsinisation and either 
plated on control wells, or anoikis was induced by plating cells on polyHEMA-coated wells for 16h. A 
subset of cells from all three groups was washed post-trypsinisation and plated in 500pl of 
supernatant, diluted 1:2 in normal medium, from untransduced, GFP, and vFLIP-transduced cells on 
polyHEMA-coated wells for 16h,to assess the effect of secreted factors in the respective supernatants 
on the survival of MVECs upon detachment. Apoptosis was measured using a cell death detection 
ELISA kit (Roche), which measures DNA fragmentation. The results shown are the mean values from 
three independent experiments with error bars indicating the standard deviation between the three 
experiments. Significant differences between the different samples are indicated on the graph. 
Differences were calculated using paired student t tests, where p=<0.05 was considered significant. 
* indicates p=<0.05. Transduction efficiency was assessed by FACScan analysis of cells expressing GFP. 63% 
of MVECs infected with the vFLIP lentivirus were GFP positive and 75% of MVECs infected with the GFP 
lentivirus were GFP positive. PH, polyHEMA.
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This data suggests that vFLIP-mediated NF-kB activation induces the 

secretion of one or several soluble survival factors, which are sufficient to 

confer a level of protection to cells against detachment-induced cell death. 

However, this secreted survival factor in the culture supernatant does not 

seem to be the only form of protection that vFLIP bestows on cells, since it 

was not capable of fully rescuing the cell populations that did not express 

vFLIP. We hypothesize that vFLIP expression in detached MVECs induces 

the activation of the NF-kB pathway, which in turn upregulates the expression 

and secretion of a survival factor that can act in a paracrine manner on 

neighbouring cells to protect them against detachment-induced apoptosis. 

The identity of the secreted factor remains unknown and we must now attempt 

to identify this factor by screening vFLIP-transduced MVECs for the 

expression of a number of cytokines and growth factors.
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4.3 Discussion

Kaposi’s sarcoma is considered to be a neoplasm of KSHV-infected lymphatic 

endothelium (Beckstead et a/., 1985; Jussila et al., 1998; Weninger et al., 

1999), as in most KS tumours KSHV infection is largely detected in the 

endothelial cell compartment. However, KSHV latency has been most 

extensively studied in B cells, which are considered to be the primary 

reservoir of infection. We therefore decided to individually examine the role of 

the latently-expressed vFLIP protein of KSHV in promoting cell survival and 

proliferation of KSHV-infected cells, by conducting our studies using human 

dermal microvascular endothelial cells (MVECs). These cells represent a 

mixed population of lymphatic and blood endothelial cells (Makinen et al.,

2001), and are therefore a good model for our studies by being closely related 

to those cells targeted naturally for infection by KSHV. In this chapter we have 

presented evidence suggesting a role for vFLIP in the modulation of the NF- 

kB pathway in MVECs, and we have demonstrated that ectopic expression of 

vFLIP confers MVECs with a survival advantage when challenged with an 

apoptotic stimulus.

We have previously shown that vFLIP expression in a variety of 

haematopoietic cell lines can induce the activation of both the canonical and 

alternative NF-kB pathways (Chapter 3). Since activated NF-kB is probably 

critical for the escape of immune surveillance and the prevention of apoptosis 

in KSHV-infected cells, we wanted to determine whether vFLIP is also 

capable of activating NF-kB in primary human MVECs. Indeed, lentiviral 

transduction of MVECs with a vector encoding vFLIP led to upregulation of 

p100 expression, suggesting canonical pathway activation, and generation of 

p52, indicating alternative pathway activation as well (Figure 4.3). However, 

levels of p100 and p52 were also quite high in untransduced cells and cells 

transduced with a control lentivector encoding only GFP, suggesting that the 

alternative NF-kB pathway is already activated in these cells, possibly through 

the action of an exogenous factor in the growth medium. This hypothesis was 

confirmed by an immunofluorescence assay examining the nuclear and 

cytoplasmic staining of RelA/p65, p52, and RelB in untransduced and
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transduced cells, which showed that although vFLIP induces a significant 

nuclear translocation of p65, the subcellular localization of p52 and RelB is 

already nuclear in these cells, irrespective of vFLIP expression (Figure 4.4). 

These findings indicate that in MVECs, vFLIP is only inducing the canonical 

pathway of NF-kB activation. However, we cannot rule out the possibility that 

vFLIP can also activate the alternative NF-kB pathway, since the basal levels 

of nuclear p52 and RelB were so high in all the cells that they might have 

masked any significant upregulation mediated by vFLIP. This hypothesis is 

further supported by the Western Blot analysis performed on the same cells, 

which demonstrated higher expression levels of total p52 in cells expressing 

vFLIP, as compared to those that didn’t (Figure 3.3 A and B). The elevated 

basal levels of nuclear p52 in untransduced cells and cells transduced with 

the control GFP lentivector can be explained by the fact that these cells are 

grown in a growth factor-rich medium, which apart from serum also contains 

VEGF, human fibroblast growth factor (hFGF), insulin-like growth factor (IGF), 

and human epidermal growth factor (hEGF), and some of these growth factors 

might be inducing downstream signalling cascades that lead to the activation 

of NF-kB. Indeed, NF-kB has been shown to be highly activated in MVECs 

exposed to VEGF, in conjunction with Bcl-2 anti-apoptotic signalling (Karl et 

al., 2005). Moreover, serum in the growth medium of certain cells, such as U- 

2 OS human osteosarcoma cells, has been shown to stimulate p100 

processing and generation of significant basal levels of p52 (Schumm et al.,

2006). MVECs transduced with the vFLIP lentivector, were examined for 48 

hours post-transduction and most of the cells positive for vFLIP expression 

(as assayed by the expression of GFP) displayed p65 nuclear translocation. 

These findings demonstrate that vFLIP induces the persistent activation of 

NF-kB in MVECs, and are consistent with a previous report showing activation 

of NF-kB in KSHV-infected MVECs at later time points post infection 

(Sadagopan et al., 2007), suggesting that vFLIP is responsible for the NF-kB 

activation observed during the late phase of infection with KSHV and probably 

for the NF-KB-dependent anti-apoptotic and pro-proliferative effects on KSHV- 

infected cell survival.
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Many mammalian cells are dependent on adhesion to the extracellular matrix 

for the continuous supply of survival signals. Upon detachment from the 

matrix, endothelial (Meredith et al., 1993), and epithelial cells (Frisch and 

Francis, 1994) undergo detachment-induced apoptosis, termed anoikis. These 

survival signals ensure that these types of cells cannot normally survive in the 

absence of cell-matrix interactions, and cells are therefore unable to 

proliferate in inappropriate sites or to survive in the absence of attachment, 

acting as a major defence against metastasis. Previous reports have shown 

that vFLIP is capable of rescuing haematopoietic cells from growth factor 

withdrawal-mediated apoptosis in an NF-xB-dependent manner (Sun et al., 

2003a), and Rat-1 cells transduced with a vFLIP retroviral vector displayed 

anchorage-independent growth and formation of colonies in soft agar, which 

was associated with the activation of NF-kB by vFLIP (Sun et al., 2003b). We 

therefore decided to study the effect of vFLIP on detachment-induced 

apoptosis of MVECs, by plating cells on culture wells coated with the 

substance polyHEMA, which prevents cell adhesion to the matrix, and 

measuring apoptosis by Annexin V staining and DNA fragmentation ELISA, 

and viability of the cells using an MTT assay. In this chapter we have 

presented evidence showing that vFLIP has the ability to protect cells from 

detachment-induced apoptosis, since cells expressing vFLIP were resistant to 

anoikis, while untransduced cells and those transduced with the control 

lentivector were very susceptible to detachment-induced cell death (Figures

4.5 and 4.6). However, when we removed the growth factors from the culture 

medium of these cells and assessed the ability of vFLIP to protect cells from 

growth factor withdrawal-induced apoptosis, we failed to observe any 

protective effect against apoptosis mediated by vFLIP (Figure 4.6A), in 

contrast to previous findings which have observed so (Sun et al., 2003a). This 

could be due to the fact that Sun et al. used a leukaemia cell line and 

removed only GM-CSF from the growth medium to induce apoptosis, whereas 

in our study we used primary cells, which are very sensitive and dependent on 

multiple growth factors for proliferation and survival, and we removed all the 

growth factors contained in the growth medium, perhaps exposing our cells to 

a much stronger apoptotic stimulus, which vFLIP was unable to counteract. It 

will be interesting to repeat this study in the future, by sequentially removing a
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single growth factor at one time and assessing for protection against 

apoptosis mediated by vFLIP. Moreover, although vFLIP expression resulted 

in a strong protective effect against apoptosis, cells expressing vFLIP did not 

recover their full metabolic activity, as assayed by MTT, upon detachment 

from the matrix (Figure 4.6B). However, it has been shown that although 

some adherent cell types such as fibroblasts, which are specialized in tissue 

invasion, do not undergo anoikis in the absence of contact with the matrix, 

they do become quiescent (Ben-Ze'ev et al., 1980; Folkman and Moscona, 

1978), which might explain the loss of metabolic activity observed in vFLIP 
expressing cells.

Since we previously demonstrated that vFLIP induces NF-kB activation in 

MVECs, we hypothesized that the ability of vFLIP to protect cells against 

detachment-induced apoptosis might be attributed to its ability to activate the 

NF-kB pathway in these cells. Indeed, when we blocked NF-kB activation by 

using the Bay 11-7082 inhibitor, which blocks the degradation of IkB, we 

observed a near complete reversal of the protective effect afforded to cells by 

the expression of vFLIP (Figure 4.7). Subsequently, we tried to elucidate the 

mechanism via which vFLIP-mediated NF-kB might protect MVECs against 

anoikis. We speculated that this protective effect might be the result of 

autocrine and paracrine survival signals from a secreted factor induced by 

vFLIP-mediated NF-kB, since NF-kB regulates the expression of a great 

number of cytokines and growth factors, and it plays an important role in 

regulating cytokines in PEL cells with pro-proliferative and angiogenic effects 

(An et al., 2003; Matta et al., 2007b; Poison et al., 2002; Wang et al., 2004a). 

As a mater of fact, our hypothesis was confirmed by results demonstrating 

that the supernatant alone from vFLIP expressing cells, but not that from 

untransduced cells or those that were transduced with the control lentivector, 

was capable of partially rescuing cells from anoikis (Figure 4.8), suggesting 

that this protective effect could be attributed to the NF-xB-dependent secretion 

of a soluble survival factor.

The next step in dissecting the mechanism of vFLIP-mediated protection 

against anoikis would be to identify the secreted factor and assess its ability to
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rescue MVECs from anoikis in the absence of vFLIP. However, time did not 

allow us to further investigate this experimentally, so we decided to come up 

with a list of likely candidates. This was achieved by analysing data from a 

gene expression microarray (GEM) of KSHV-infected lymphatic endothelial 

cells (KLECs), generated in the laboratory of our collaborator Prof. Boshoff 

and presented in a recent Blood paper by Lagos et al (Lagos et al., 2007). 

This analysis was made possible by the kind permission of Prof. Boshoff to 

examine the data generated by his laboratory, and with invaluable help from 

Dimitrios Lagos, who planned and executed most of the data analysis. Our 

approach was to initially identify all the genes with NF-kB responsive 

elements, and this was achieved from searching publicly available databases, 

most notably the “Rel/NF-KB target genes” database (http://bioinfo.lifl.fr/NF- 

KB), and the “Rel/NF-KB Transcription Factors” website of TD Gilmore 

(http://people.bu.edu/gilmore/nf-kb/taraet/index.html). Subsequently, we 

narrowed down this list by examining which of these genes were significantly 

upregulated by KSHV after infection of LECs. Finally, the list was narrowed 

down even further by extracting only the secreted factors from the list of NF- 

kB responsive targets significantly upregulated after KSHV infection of LECs. 

The analysis and extraction of the secreted factors from the GEM was 

performed using the website http://www.affvmetrix.com/analvsis/index.affx. 

which is available from the manufacturer of the hg-u 133+2 GeneChips 

(Affymetrix) used in this experiment. The final list is shown in Figure 4.9, in the 

form of a heat map of GEM data from 6 pairs of LECs and KLECs, and shows 

the NF-KB-responsive secreted factors significantly upregulated in KSHV- 

infected LECs.

Following examination of the list of secreted factors, a few of them stand out 

as the most likely candidates, such as IL-6, CXCL16, PDGFB, and BMP2, 

based on reports on their function in the literature. IL-6, has been shown to be 

secreted by KS tumour cells in culture and can stimulate KS tumour cell 

proliferation (Ensoli et al., 1989). In addition IL-6 can act as an autocrine 

growth factor for endothelial cells immortalized with the middle-size Ag of 

polyomavirus (PmT), inducing significant proliferation in PmT-endothelial cells 

and promoting the progression of vascular tumours (Giraudo et al., 1996).
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NF-KB-responsive secreted factors significantly upregulated in KSHV-infected LECs
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Figure 4.9 Secreted factors with NF-kB responsive elements in their promoters that are 
upregulated after KSHV infection of LECs

Heatmap of GEM data for NF-kB responsive secreted factors significantly upregulated upon 
infection of LECs (lymphatic endothelial cells) with KSHV. GEM profiles were obtained for 6 
pairs of LECs and KLECs (KSHV-infected LECs) as described in Lagos et al. 2007, and the data 
used to perform this analysis was kindly provided by Dimitrios Lagos and Prof. Chris Boshoff 
(Viral Oncology Group, Wolfson Institute for Biomedical Research, Cruciform Building,  

). Downregulated genes are shown in blue 
and upregulated genes in red.The heat map color scale indicates units of standard deviation 
from the mean expression of each row (red high and blue low expression). The threshold for 
significant differential gene regulation after KSHV infection of LECs was set at q<0.005. The 
NF-kB responsive genes within the GEM data were identified using online resources listing 
NF-kB target genes, namely http://bioinfo.lifl.fr/NF-KB, and
http://people.bu.edu/gilmore/nf-kb/target/index/html. The extraction of the secreted factors 
from the list of NF-kB targets, significantly upregulated after KSHV infection of LECs was 
performed using the website http://www.affymetrix.com/analysis/index.affx.
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CXCL16 expression has been shown, in a previous report, to be significantly 

induced following KSHV infection of primary human umbilical vein endothelial 

cells (HUVECs) (Xu and Ganem, 2007). CXCL16 has been proposed to be a 

novel angiogenic factor for HUVECs by playing a direct role in endothelial cell 

chemotaxis and growth. In fact, CXCL16 has been shown to stimulate the 

proliferation and chemotaxis of HUVECs in a dose-dependent manner, and 

also significantly induced tube formation of HUVECs on Matrigel (Zhuge et al.,

2005). Another likely candidate that stands out is the microvascular 

endothelial cell platelet-derived growth factor B (PDGFB), which has been 

implicated in neoplastic angiogenesis by stimulating VEGF expression in 

tumour endothelial cells (Guo et al., 2003), and has also been shown to 

stimulate survival pathways in murine bone endothelial cells (Langley et al.,

2004). Nevertheless, it has to be noted that PDGF is already present in the 

serum in the growth medium, but this does not exclude the possibility that 

vFLIP induces the production of even higher levels of PDGF, which can then 

contribute in rescuing cells from anoikis. Finally, the ligation of bone 

morphogenetic protein 2 (BMP2) to its receptor BMPR2 has been shown to 

promote the survival of pulmonary artery endothelial cells, and loss of BMPR2 

signalling predisposes endothelial cells to apoptosis (Teichert-Kuliszewska et 

al., 2006). It will be of great interest in the future to identify which is the 

secreted factor mediating this protective effect against anoikis. This could be 

achieved by inducing anoikis in MVECs and providing cells with the 

recombinant form of each of our target secreted factors, followed by 

assessing the ability of these factors to rescue cells from detachment-induced 

apoptosis, in the absence of vFLIP. A more complicated and sophisticated 

approach might involve a targeted RNAi screen.

Although the exact mechanism via which these secreted growth factors might 

protect against detachment induced apoptosis is not known, we suggest that 

this may be through the activation of the PI3K/Akt signalling pathway. As 

mentioned previously (section 4.1.2.2), numerous studies have suggested an 

essential role for the PI3K/Akt pathway in the antiapoptotic signalling 

promoted by integrin-cell matrix interactions. Cell-matrix interactions induce a 

PI3K/Akt cell survival pathway, and overexpression of constitutively active
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PI3K or Akt mutants have been shown to have the ability to inhibit 

detachment-induced apoptosis of endothelial cells (Khwaja etal., 1997; Wary 

et al., 1996). Interestingly, CXCL16 has been shown to induce cellular 

proliferation in human aortic smooth muscle cell, and is capable of increasing 

cell-cell adhesion in these cells in an NF-KB-dependent manner 

(Chandrasekar et al., 2004). Consequently, CXCL16-mediated NF-kB 

activation was shown to occur via heterotrimeric G proteins, PI3K, PDK-1, and 

Akt (Chandrasekar et al., 2004). Therefore, the vFLIP-mediated CXCL16 

secretion might mediate the protection of detached MVECs through a 

PI3K/Akt survival pathway, leading to the downstream activation of NF-kB, 

thereby maintaining long lasting activation and at the same time inducing the 

expression of anti-apoptotic genes regulated by NF-kB. Moreover, conditioned 

medium from multipotent stromal cells can inhibit hypoxia-induced apoptosis 

and cell death of primary human aortic endothelial cells (HAECs), and this 

anti-apoptotic function has been associated with its high content of anti- 

apoptotic and angiogenic factors, such as IL-6, VEGF and MCP-1. The effects 

of the conditioned medium on hypoxic HAECs could be reproduced by the 

addition of recombinant IL-6, and were attributed to its ability to activate the 

PI3K-Akt pathway (Hung et al., 2007). In addition, the receptors for platelet- 

derived growth factor, the PDGFRs, have been shown to be critical for 

PI3K/Akt activation. Reduced PDGFR expression in cells of tuberous sclerosis 

complex, a benign tumour syndrome with hyperactivation of the negative 

feedback regulator of PDFGR, mTOR, results in the inhibition of the PI3K/Akt 

signalling pathway (Zhang et al., 2007). As mentioned previously, PDGFB can 

stimulate survival pathways in murine bone endothelial cells, and this pro- 

proliferative effect has been associated with its ability to activate its 

downstream targets Akt and ERK1/2 (Langley et al., 2004). Finally, BMP2 has 

been implicated in the development of lung cancer, since it is highly 

expressed in almost 98% of human lung carcinomas (Langenfeld et al., 2005). 

BMP-2 has been shown to enhance mobility, invasiveness, and metastasis of 

cancer cell lines (Langenfeld et al., 2005a; Langenfeld et al., 2003; 

Langenfeld et al., 2006; Langenfeld and Langenfeld, 2004; Rothhammer et 

al., 2005; Valdimarsdottir et al., 2002). Forced expression of BMP2 enhances 

metastatic growth in the lungs of nude mice (Langenfeld et al., 2006), and this
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has been shown to be associated with the ability of BMP2 to induce 

transformation through the activation of the PI3K/mTOR signalling pathway 

(Langenfeld et al., 2005b). Collectively, these observations support our 

hypothesis that the candidate NF-KB-dependent secreted factors might be 

mediating the protection of MVECs against anoikis by signalling through the 

PI3K/Akt pathway. In light of our recent observation that the supernatant from 

vFLIP-expressing cells can partially rescue cells from anoikis, it would be very 

interesting to find out whether blocking of PI3K signalling in cells after 

exposure to vFLIP supernatant reverses the protective effect, which would 

indicate that the secreted factor prevents detachment-induced apoptosis by 

way of PI3K.

It is important to note that supernatant from vFLIP-expressing cells only 

partially rescued untransduced cells and cells transduced with the control 

GFP lentivector from anoikis (Figure 4.8), suggesting that additional genes 

induced by the NF-kB pathway might contribute to the protective effect of 

vFLIP against detachment-induced apoptosis. Anti-apoptotic genes regulated 

by NF-kB include Bcl-2, Bcl-XL, Bfl-1, XIAP, clAP1, clAP2, and cFLIP 

(Burstein and Duckett, 2003), and many of them have also been shown to be 

regulated by vFLIP for the survival of KSHV-infected PEL cells, such as clAP- 

1, clAP-2, and cFLIPl (Guasparri et al., 2004). Therefore, vFLIP might be 

mediating protection against anoikis by inducing the expression of a number 

of NF-kB target genes involved in the cell proliferation and the prevention of 

apoptosis.

Finally, Studies of X chromosome inactivation patterns in nodular KS lesions 

that contain latently infected spindle cells suggest that both monoclonal and 

polyclonal patterns of inactivation exist (Delabesse et al., 1997; Rabkin et al., 

1995; Rabkin et al., 1997). A study of size heterogeneity in KSHV terminal 

repeats in nodular lesions also demonstrated monoclonal, oligoclonal and 

polyclonal patterns of infection, implying that KSHV infection precedes tumour 

expansion (Judde et al., 2000). As inhibition of anoikis is a prerequisite for 

metastasis (Douma et al., 2004), we suggest that one of the actions of vFLIP 

in these latently infected cells is to inhibit anoikis and thereby contribute to the
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metastasis recognised as a hallmark of epidemic KS (Buchbinder and 

Friedman-Kien, 1992).
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CHAPTER 5 

Discussion and Future Directions

5.1 The function of vFLIP

This thesis has presented evidence implicating vFLIP of KSHV in the 

persistent activation of the transcription factor NF-kB. We have demonstrated 

that vFLIP can not only activate the classical NF-kB pathway, but is also a 

potent inducer of the alternative NF-kB pathway in a variety of cell lines. 

Expression of vFLIP results in classical pathway activation and the 

subsequent upregulation of p100 expression, which then feeds into the 

alternative pathway and is actively processed to produce the cleaved p52 

subunit. We have identified the region of p100 responsible for its association 

with vFLIP, which maps within the portion of the p100 C-terminus that 

contains the Death Domain. This has allowed us to speculate on the 

composition of the multi-protein complex responsible for mediating IKKa- 

dependent p100 processing, and the mechanism involved in vFLIP-mediated 

activation of the alternative NF-kB pathway. We now believe that the direct 

interaction of vFLIP with both IKKy and p100 through its Death Effector 

Domains, mediates the recruitment of p100 to IKKa, which can in turn 

phosphorylate p100 and lead to its ubiquitin-dependent degradation, without 

the involvement of any upstream adapters or signalling molecules. Moreover, 

we have shown that expression of vFLIP in human primary microvascular 

endothelial cells (MVECs), which are potential target cells for KSHV infection, 

leads to the activation of NF-kB and the nuclear translocation of RelA/p65, 

suggesting an important role for vFLIP-mediated NF-kB activation in the 

establishment of latent infection by KSHV. In addition, our findings indicate 

that vFLIP-mediated activation of the alternative NF-kB pathway plays a major 

role in the survival of KSHV-infected PEL cells, since inhibition of p52 

expression by siRNA leads to the induction of apoptosis and a decrease in 

viability of these cells. However, the exact contribution of the alternative 

versus the canonical NF-kB activation in the survival of KSHV-infected cells, 

and the subsequent transforming ability of vFLIP, still remains unclear.
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Together, these data confirm the hypothesis that the major function of vFLIP 

in KSHV infection is the activation of NF-kB via IKK. Our studies on the role of 

vFLIP on MVEC survival have demonstrated that activation of NF-kB by vFLIP 

has new and significant consequences. It appears that vFLIP expression is 

capable of rescuing MVECs from detachment-induced apoptosis in an NF-KB- 

dependent fashion, through the induction of a secreted survival factor. This 

finding is in agreement with previous reports implicating vFLIP in the 

upregulation of a number of cytokines and chemokines (see section 1.4.5), 

and has important implications for vFLIP in KSHV metastasis. This chapter 

explores some of the other questions concerning the function of vFLIP that 

remain unanswered.

5.2 How does vFLIP activate NF-kB?

Even though recent studies have outlined the strategy employed by vFLIP to 

activate NF-kB (Field et al., 2003; Liu et al., 2002; Matta and Chaudhary, 

2004; Matta et al., 2007; Matta et al., 2003), some issues have not been 

addressed yet. Therefore, although we now know that vFLIP activates the 

classical NF-kB pathway by being recruited to a 700kDa signalsome complex, 

which consists of IKKa, IKKp, and IKKy and has the ability to phosphorylate 

kBa (Liu et al., 2002), and the alternative pathway by recruiting p100 to IKKa 

via its interaction with IKKy (Matta and Chaudhary, 2004), we still don’t know 

how vFLIP activates the kinase activities of IKKp and IKKa, respectively. 

Previous studies initially speculated that a possible mechanism of NF-kB 

activation by vFLIP was the recruitment of upstream kinases or regulatory 

proteins, and the first study to show that vFLIP associates with and activates 

IKK, actually found that vFLIP could interact with the protein kinase RIP (Liu et 

al., 2002). However, since then the role of upstream kinases has been argued 

against and it is now clear that upstream activators of the NF-kB pathway 

such as RIP, NIK, and the TRAFs are dispensable for this process (Matta et 

al., 2007; Matta et al., 2003). The model that is currently supported is that 

vFLIP mediates NF-kB activation by directly binding to the IKK complex and 

activating it. It is possible then that vFLIP might activate IKK by directly 

binding to the complex and inducing a conformational change, which results in
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the oligomerisation and autophosphorylation of the kinase subunits. This is in 

agreement with reports which have indicated that overexpression of IKKp 

leads to the phosphorylation of IKKa and IKKp itself in the activation loops 

(Woronicz et al., 1997). Another possible mechanism, which could in fact work 

in synergy with the one mentioned above, involves the oligomerisation of the 

IKKy regulatory subunit of the IKK complex, which also mediates the direct 

interaction of vFLIP with IKK (Field et al., 2003). A recent study has shown 

that in unstimulated cells, IKKy can exist largely as a monomer, while 

following stimulation by IL-1p, or Tax from HTLV-1, IKKy dimerizes to form a 

high molecular weight complex with increased IKK activity (Fontan et al., 

2007). Moreover, another group recently suggested that in an inactive state, 

the helix-loop-helix 2 (HLH2) domain of IKKy packs against the coiled-coil 

region 2 (CCR2) and the leucine zipper (LZ) domains, to form a compact 

helical bundle, which makes key residues inaccessible to potential interacting 

proteins (Hong et al., 2007), and this conformation probably stabilizes the 

IKKy monomer. Interestingly, this region (HLH2) of IKKy partially overlaps with 

the vFLIP-binding motif on IKKy, suggesting that in resting cells, helical 

bundle formation prevents vFLIP binding by sequestering the necessary 

region of interaction. In this scenario, vFLIP would activate IKK in a fashion 

very similar to that proposed for the Tax oncoprotein of HTLV-1 (Hong et al.,

2007). Similar to Tax, it is possible that vFLIP stimulation initially induces the 

unfolding of IKKy into a fully extended and open conformation, whereby the 

previously sequestered groups would become accessible, and vFLIP could 

bind to the C-terminus of IKKy. Subsequently, binding of vFLIP to IKKy might 

stimulate its dimerization (Fontan et al., 2007). It is known that IKKa and IKKp 

are associated with the N-terminus of IKKy, which incidentally contains a 

region crucial for IKKy dimerization and is necessary for NF-kB activation 

(Marienfeld et al., 2006). Therefore, we speculate that stimulation and binding 

of vFLIP to the C-terminus of IKKy, results in a fully extended and dimeric 

IKKy molecule, which is an optimal conformation for the recruitment of the 

IKKa and IKKp kinase subunits, bringing them to close proximity and allowing 

IKK trans-autophosphorylation, activation, and induction of NF-kB.
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5.3 The implications of vFLIP-mediated NF-kB activation for KSHV

Many viruses carry limited genomic information and therefore heavily depend 

on host factors and processes for their survival, proliferation, and persistence. 

One of the most sophisticated strategies that viruses have developed is their 

ability to modulate cellular signalling pathways and transcription factors, and 

utilize them for their own survival advantage (Santoro et al., 2003). A good 

example of this process is presented by EBV, the closest human relative of 

KSHV (Alba et al., 2001; McGeoch and Davison, 1999; Montague and 

Hutchison, 2000), which expresses the viral oncoprotein that constitutively 

transmits signals that activate NF-kB and stimulate cell proliferation. LMP-1 

mimics the action of TNFR members like CD40, and provides signals to 

infected B cells which drive their differentiation from naVve B cells towards a 

memory B cell phenotype (Thorley-Lawson, 2001). This way the virus 

establishes and maintains persistent latent infection in the host. It appears 

that KSHV might employ a similar strategy in order to overcome obstacles like 

apoptosis and host immune responses, through the sustained induction of NF- 

kB by vFLIP.

NF-kB can be induced very early during infection of host cells by KSHV, and 

this activation seems to be sustained for a long period of time, possibly 

contributing to the establishment of latency (Sadagopan et al., 2007). The 

early phase of activation can probably be attributed to viral entry and the 

expression of lytic phase genes, such as K1 (Samaniego et al., 2001; Prakash 

et al., 2002) and vGPCR (Pati et al., 2001), many of which have been shown 

to have roles in inducing NF-kB. This early phase activation can serve as a 

first line of defence against apoptosis and host immunity, but can also 

influence viral gene expression, for example by activating the ORF50 gene 

RTA (Lan et al., 2004), which contributes to the establishment of latency by 

activating the transcription of the major latency antigen LANA (Lan et al.,

2005). Latency in KSHV-infected cells ensures the expression of viral proteins 

like vFLIP, which is probably the major factor responsible for maintaining the

192



w

sustained NF-kB activation, necessary for infected-cell survival in the later 
stages of infection.

The induction of NF-kB activation by vFLIP mediates survival of the KSHV- 

infected cells by activating various anti-apoptotic molecules, and by inducing 

the secretion of a number of cytokines. In fact, vFLIP has been shown to 

protect cells from growth factor withdrawal-induced apoptosis by upregulating 

the expression of the pro-survival Bcl-2 family member BcI-xl in an NF-KB- 

dependent manner (Sun et al., 2003). Moreover, inhibition of vFLIP 

expression by siRNA results in a significant decrease in NF-kB activity and the 

subsequent downregulation of NF-KB-regulated cellular prosurvival factors, 

such as cFLIP, clAP-1, clAP-2 (Guasparri et al., 2004). Activation of NF-kB 

signalling by vFLIP has also been associated with the release of numerous 

cytokines and growth factors, such as IL-8 (Sun et al., 2006), IL-6 (An et al., 

2003), MCP-1, NAP-2, RANTES, and CXCL16 (Xu and Ganem, 2007), which 

play a pivotal role in the pathogenesis of KS. Indeed, several cytokines which 

are secreted by KS tumour cells in culture, have been shown to stimulate KS- 

cell proliferation (Ensoli et al., 1989). Therefore, the activation of NF-KB- 

dependent cytokines and growth factors by vFLIP, is utilized by KSHV to 

protect infected cells from immune responses and apoptosis, and confers a 

growth advantage to the infected-cell population.

The delivery of these survival and pro-proliferative signals by vFLIP-mediated 

NF-kB activation requires sophisticated regulation of host gene expression, 

which would enable the virus to deliver the appropriate signal at the correct 

moment. We believe that this can be achieved by the ability of vFLIP to induce 

the activation of both the canonical and alternative NF-kB pathways. Classical 

pathway activation by vFLIP leads to the phosphorylation and subsequent 

ubiquitin-induced degradation of IkBo, releasing the so-called canonical NF- 

kB heterodimers, such as p50/RelA and p50/c-Rel (Pomerantz and Baltimore,

2002). The alternative NF-kB pathway regulates the processing of the p100 

precursor, which preferentially sequesters RelB in the cytoplasm, and 

therefore the induction of the alternative NF-kB pathway by vFLIP results in 

the generation and release of p52/RelB heterodimers (Dejardin et al., 1995).
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However, p100 can also associate with other Rel molecules, and this 

interaction generates a pool of separate p52-containing dimers, such as 

p52/p65 and p52/c-Rel (Naumann et al., 1993). These are retained in the 

cytoplasm by IkB inhibitors and require the activation of the IKK complex, 

through the induction of the classical pathway, to be released into the nucleus. 

Therefore, vFLIP also contributes to the formation of p52/p65 and p52/c-Rel 

dimers (through activation of the alternative NF-kB pathway), as well as their 

activation and release (through activation of the canonical NF-kB pathway). 

Each combination of Rel proteins shows differential specificity for DNA binding 

sites, and has its own transactivating potential (Verma eta l., 1995). Therefore, 

by releasing a wide and varying combination of Rel proteins into the nucleus, 

vFLIP is able to transmit a multitude of signals and can also regulate the 

transcription of different genes with great specificity, which allows for the fine- 

tuning of the different survival signals over time. In order to dissect the exact 

role and the mechanism of vFLIP-mediated NF-kB activation in the survival of 

KSHV-infected cells, it would be interesting in the future to use chromatin 

immunoprecipitation (ChIP) assays, in order to determine which gene 

promoters are engaged by which Rel molecules, in cells expressing vFLIP.

5.4 Role of the alternative NF-kB pathway in KSHV pathogenesis

In humans, aberrant processing of p100 has been found in various

lymphomas, such as cutaneous T-cell lymphomas, B-cell non-Hodgkin

lymphomas, chronic lymphocytic leukaemia, and myelomas (Rayet and

Gelinas, 1999; Sun and Xiao, 2003). These lymphomas are always

associated with the presence of C-terminal truncation mutants of p100 lacking 

the PID, which are capable of transforming fibroblasts, and therefore have a 

significant oncogenic potential (Ciana et al., 1997). Overproduction of p52 in 

mice results in lymphoid hyperplasia, suggesting that p52 plays an important 

role in promoting the proliferation of cells and blocking apoptosis (Ishikawa et 

al., 1997). Moreover, in human carcinomas of the breast, p52 is significantly 

overexpressed, and this upregulation is specific to tumour cells (Cogswell et 

al., 2000). Several oncogenic viruses have also been shown to induce the
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constitutive processing of p100, namely HTLV-1, which mediates the 

activation of p52 production by its transforming oncoprotein Tax (Xiao et al., 

2001), also the transforming protein LMP-1 of EBV can induce p100 

processing (Atkinson et al., 2003), and as described in this thesis and by 

others, vFLIP expression from KSHV results in the persistent activation of the 

alternative NF-kB pathway (Matta and Chaudhary, 2004). The fact that all of 

these oncogenic viruses have evolved the ability to induce constitutive p100 

processing, suggests that the alternative NF-kB pathway must play an 

important role in infected-cell survival and transformation. Therefore, it is 

logical to wonder how p52 mediates its oncogenic potential, and what 

mechanisms it employs to transform virally-infected cells.

Recently, p100 was shown to have a pro-apoptotic function, which was 

associated with the DD of p100 and the activation of caspase-8 (Hacker and 

Karin, 2002; Wang et al., 2002). Therefore, constitutive processing of p100 by 

a virus like KSHV would ensure the removal of the DD, and would abolish the 

pro-apoptotic potential of p100, facilitating cell transformation. Moreover, it 

has been demonstrated that p52 homodimers, in association with the Bcl-3 

coactivator, can induce the expression of the anti-apoptotic factor Bcl-2, and 

in breast cancer cells, elevated levels of p52 are associated with the 

upregulation of endogenous Bcl-2 expression (Viatour et al., 2003). In 

addition, a study on the role of stromal cells in the survival of non-Hodgkin’s 

lymphoma cells, showed that adhesion of the two cell types resulted in p100 

processing and generation of p52/RelA and p52/RelB dimers, which were 

associated with the upregulation NF-KB-dependent anti-apoptotic factors, 

such as XIAP, clAP, and clAP2 (Lwin et al., 2007). A different strategy of cell 

transformation by p52 might be the regulation of Cyclin D1 expression, as p52 

and Bcl-3 have been shown to associate with the Cyclin D1 promoter (Rocha 

et al., 2003; Romieu-Mourez et al., 2003; Westerheide et al., 2001), which 

would lead to progression through the G1-S phase of the cell cycle, thereby 

promoting the proliferation of virally-infected cells. Recently, a transgenic 

mouse model for ductal development in the formation of the mammary gland, 

demonstrated that overexpression of p100/p52 led to an increase in Cyclin D1 

levels, which was responsible for an accelerated rate of proliferation in ductal
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epithelium and the appearance of areas with hyperplastic growth (Connelly et 

al., 2007). A recent study on the effects of p52 on cell proliferation and the cell 

cycle, presented compelling evidence implicating p52 as a regulator of the 

tumour suppressor p53 and its target genes (Schumm et al., 2006). It appears 

that p53 recruits p52 to the promoters of its target genes, where p52 can 

regulate the recruitment of coactivators and corepressors to modulate p53- 

target gene expression. In this report, p52 was shown to downregulate the 

expression of the CDK inhibitor p 2 iWAF1/GIP1 in a p53-dependent manner, by 

being recruited to the p21 promoter by p53, and inducing the recruitment of 

the corepressor Histone Deacetylase 1 (HDAC1), thereby suppressing its 

expression (Schumm et al., 2006). Collectively, these data suggest that p52 

plays a major role in tumourigenesis by inducing the expression of anti- 

apoptotic genes and regulating the cell cycle, and provide a possible 

explanation as to why oncogenic viruses have evolved the ability to 

persistently activate the alternative NF-kB pathway.
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