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ABSTRACT

Unlike many nicotinic subunits, the a l  nicotinic subunit and the 5-HT3A subunit are 

able to form functional homomeric receptors. Despite sharing this ability, they have 

differences in cell-surface expression in human embryonic kidney (HEK) cells, with 

5HT3A subunits forming a large number of functional receptors, whereas the a l  

subunit forms few or no correctly folded receptors as assayed by radioligand binding 

with [125I]a-BTX. A series of chimeras between a l  and 5HT3A were constructed to 

investigate which domains of the subunits were important for folding and cell 

surface expression. Only chimeras that contained the region from the beginning of 

Ml to the end of M3, and M4 domain of the 5HT3A subunit were able to form 

correctly folded receptors.

The chimeras that gave high levels of radioligand binding were also found to be 

functional using whole-cell patch-clamp recording. Functional characteristics were 

examined, and differences were found in single channel conductance and 

desensitization. Chimeras with the large cytoplasmic loop and the extracellular N- 

terminal region of a l  had larger single channel conductances than the 5HT3A 

receptor, with the inclusion of the a l  large cytoplasmic loop and the N-terminal 

domain increasing the conductance by approximately 10 and 2 fold respectively

Co-expression of a l  with RIC3 (a protein originally identified in C. elegans) in 

HEK cells, results in high levels of cell surface expression. These receptors were 

shown to be functional, with whole cell responses from 20-300 pA. showing fast 

desensitization (time constant of 66±13 ms) and strong inward rectification. RIC3 

was also shown to increase the functional expression of the a8 and the rat a3|32 

nAChRs, which rarely formed detectable functional receptors when expressed alone. 

On co-expression with RIC3 almost all cells expressing a8  responded giving an 

average response of 240 pA, and all cells expressing a3|32 responded giving an 

average response of 99 pA. C. elegans RIC3 has been shown to increase the 

functional expression of the human 5HT3A receptor by 168 %. Human RIC3 had no 

effect on human 5HT3A and in fact decreased the functional expression of the murine 

5HT3A by 59 %.
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1.1 Neurotransmitter receptors

The nicotinic ACh receptors and the 5-hydroxy try ptamine type 3 receptors are the 

focus of this thesis. These two neurotransmitter receptor classes are both ligand- 

gated ion channels. When ligand-gated ion channels are activated by an agonist or 

drug, an ion-permeable transmembrane channel opens, thus transferring a signal 

from outside the cell to within the cell. Nicotinic acetylcholine receptors (nAChRs) 

and 5-hydroxy try ptamine type 3 receptors (5-HT3RS) are oligomeric proteins with 

five membrane-spanning subunits and a conserved cysteine loop in the N-terminal 

extracellular region formed from a disulphide bond between two cysteine residues, at 

positions 126 and 142 for the a  7 nAChR subunit and at 138 and 153 in the 5-HT3A 

subunit. Analysis of the gene sequences of these receptors and others sharing these 

characteristics has shown that they have a common evolutionary ancestor, and thus 

are all part of a large gene super-family (Ortells and Lunt, 1995). The first ligand- 

gated ion channel from this family to be biochemically isolated and studied 

extensively was the Torpedo nAChR (Changeaux et al., 1970). Subsequently, many 

more members of this family have been identified, for example the gamma- 

aminobutyric acid receptors GABAaR and GABAcR, and glycine receptors in 

vertebrates, and 10 nAChRs in Drosophila over 40 nAChRs in C. elegans.

1.1.1 The nicotinic acetylcholine receptors (nAChRs):

There are two types of AChRs, named nicotinic and muscarinic. Nicotinic AChRs 

are ligand-gated ion channels, whereas muscarinic AChRs are G-protein coupled 

receptors. These two types of AChRs were originally distinguished 

pharmacologically by their sensitivity to nicotine (isolated from the tobacco plant) 

and muscarine (isolated from the poisonous mushroom Amanita muscaria) (Dale, 

1914).

1.1.1.1 A short history of Torpedo nAChR

As mentioned above, the first well-characterised ligand-gated ion channel was the 

acetylcholine- (ACh) activated cationic channel protein from the electric organ of the 

ray. (La Torre et al., 1970, Changeux et al, 1970). The electric organs of two 

species of ray, Torpedo {californica and marmorata) and the electric eel 

Electrophorus electricus, contain a very high density of nAChRs that have been

17



shown to resemble the nAChR at the neuromuscular junction (Sealock et al., 1982). 

A snake toxin a-bungarotoxin (a-BTX), that was shown to bind and inactivate the 

Torpedo nAChR almost irreversibly (Lee and Chang, 1966), has been used to purify 

large quantities of the Torpedo nAChR protein (Changeux et al., 1970; Miledi et al., 

1971).

The purified Torpedo electric organ receptor has been shown to be made up of four 

different proteins, of molecular weights 40, 48, 62 and 60 kDa (Hucho et al., 1976) 

named a, p, y and 6 respectively. The total molecular weight of the assembled 

nAChR is approximately 250 kDa (Reynolds and Karlin, 1978). The receptor was 

proposed to be pentameric, containing two a, and then one of each of the p, y and 6 

subunits as there appeared to be more a  subunit protein compared to the other 

subunits when separated by electrophoresis (Hucho et al., 1976). Functional 

characterisation of the Torpedo electric organ nAChR was achieved by reconstitution 

of the four subunit proteins in planar lipid bilayers (Labarca et al., 1984) and also by 

injection of the four subunit mRNAs into Xenopus oocytes (Sumikawa et al., 1981, 

Barnard et al., 1982). It was shown properties of this receptor were different to the 

native ACh-activated receptors in oocytes (Kusano et al., 1977), which are 

muscarinic AChRs.

Torpedo nAChR a , p, y and 6 subunits were the first ligand-gated ion channel 

subunits to be cloned (Noda et al., 1982, Claudio et al, 1983, Noda et al., 1983a). 

The nAChR subunits expressed at the neuromuscular junction and in the central 

nervous system of vertebrates and invertebrates have now also been identified and 

cloned. The Torpedo nAChR is still used as a model nAChR, for example 

ultrastructural studies have given us insight into the three-dimensional structure of 

the nAChR at very high resolution (4 A; Unwin et al., 2003). This has not been 

possible for other nAChRs, due to the absence of suitably pure source of receptors.

1.1.1.2 Vertebrate neuromuscular nAChRs

It was known from the 1940s that there were receptors at the skeletal neuromuscular 

junction that responded to ACh (Fatt, 1949). The cDNA sequences of Torpedo 

nAChR subunits were used to isolate homologous proteins in muscle. Mammalian

18



a , p, y and 6 were identified (Noda et al., 1983a; Lapolla et al., 1984, Nef et al., 

1984, Tanabe et al., 1984) and a novel subunit was cloned (e) that exhibited close 

sequence similarity to the y subunit (Takai et al., 1985). The 8 subunit and was 

shown to be expressed predominately in the adult form of the vertebrate 

neuromuscular nAChR, whilst the y subunit is only expressed in the foetal form 

(Mishina et al., 1986). These two forms of the muscle nAChR have different 

functional characteristics including greater single channel conductance, greater 

calcium permeability and faster desensitization in receptors containing the 8 subunit 

(Mishina et al, 1986; Villarroel and Sakmann, 1996) thus there is a developmental 

switch that changes the functional characteristics of the muscle nAChR. The muscle 

nAChR was thought to resemble the Torpedo receptor, also having a pentameric 

subunit structure (Sealock et al., 1982).

1.1.1.3 Vertebrate neuronal nAChRs

Nicotinic AChRs are present throughout the central and peripheral nervous systems, 

as demonstrated by nicotine and a-BTX binding (Clarke, 1985; McGehee and Role, 

1995). However, these nAChR are not a homogeneous group of receptors as at the 

neuromuscular junction. It has been shown that the nAChRs activated in 

sympathetic neurones do not bind to a-BTX (Patrick and Stallcup, 1977), and are not 

blocked by a-BTX (Carbonetto et al., 1978). Thus, it was demonstrated that there 

was more than one subtype of nAChR in the nervous system, with some nicotinic 

receptors that, unlike the muscle nAChR, do not bind a-BTX. In fact it has since 

been demonstrated that there is much greater diversity of nAChR subtypes (Sargent,

1993).

Molecular cloning has identified 12 vertebrate neuronal nicotinic subunits (Boulter et 

al., 1985; Boulter et al., 1987; Deneris et al., 1988; Deneris et al., 1989; Wada et al., 

1988; Boulter et al., 1990; Couturier et al. 1990a; Elgoyhen et al., 1994; Elgoyhen et 

al., 2001), and these have been divided into two categories, a  and “non-a” (Boulter 

et al., 1987). The a8  subunit has been identified in chick (Schoepfer et al., 1990), 

but not in any other vertebrates. Subunits are classified as a  subunits by the 

presence of an adjacent pair of cysteine residues in the extracellular amino- (N-) 

terminus, equivalent to Cys192 and Cys193 of the Torpedo nAChR a  subunit. These
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cysteine residues form a disulphide bond and are thought to contribute to the ligand- 

binding domain of the Torpedo nAChR, shown by labelling with a tritiated nicotinic 

ligand (Kao et al., 1984; Kao and Karlin, 1986). The neuronal p subunits do not 

show particular sequence similarity with muscle p subunit compared to the y or 6 , 

and have been referred to as “structural” subunits (Schoepfer et al., 1988), although 

the neuronal p2 and p4 subunits contribute some residues to the ligand binding site 

(Parker et al., 1998, Wang et al., 1998).

1.1.2 5-hydroxytryptamine type 3 receptors (5-HT3Rs)

There are a number of different subtypes of the 5-hydroxy try ptamine receptors (5- 

HT1-7R), however, most of the 5-HT receptor subtypes are G-protein coupled 

receptors and are not discussed in this thesis.

The 5-HT type 3 receptors (5-HT3RS), like the nAChRs, are excitatory cation- 

selective ligand-gated ion channels (Derkach et al., 1989). The 5-HT3A subunit was 

cloned from NCB-20 cells (a murine/hamster hybrid brain cell line; Maricq et al., 

1991). This subunit is able to generate functional homomeric receptors when 

expressed in Xenopus oocytes. A homologous subunit has been cloned in a number 

of other species including rat (Johnson and Heinemann, 1992), human (Belelli et al., 

1995) and guinea pig (Lankiewicz et al., 1998). There is some diversity in 5-HT3R 

subunits generated through alternative splicing. The first cloned murine variant is 

now referred to as the long form, whereas an alternative splice variant (which lacks 6 

amino acids in the intracellular loop) is termed the “short” form (Hope et al., 1993). 

There is no significant difference in function of the short and long forms of the 

murine 5-HT3A receptor (Glitsch et al., 1996) and the only pharmacological 

differences are in the efficacy of 2-methyl-5-hydroxytryptamine (2-Me5-HT) and 

meta-chlorophenylbiguanide (mCPBG) (Niemeyer and Lummis, 1998) and the 

potency of ondansetron (Hope et al., 1993).

5-HT3A subunits, equivalent to the short splice variant identified in mouse, have been 

cloned in rat (Miquel et al., 1995; Isenberg et al., 1993), human (Belelli et al., 1995; 

Miyake et al., 1995) and guinea pig (Lankiewicz et al., 1998). Two additional splice 

variants of the human 5-HT3A subunit have also been identified, but are unable to
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form functional homomeric receptors (Brtiss et al., 2000). However, both the 

truncated splice variant and the long splice variant modify the function of the 

receptor when co-expressed with the short form (Briiss et al, 2000).

Although the 5-HT3A subunit is able to form recombinant homomeric receptors, this 

is not sufficient to explain the properties of some native 5-HT3R.S, even with 

incorporating the splice variants into the receptor (Hussy et al., 1994). More 

recently, additional 5-HT3R subunits have been cloned. The 5-HT3B subunit is 

unable to form functional homomeric receptors, however it can form heteromeric 

receptors with the 5-HT3A subunit (Davies et al., 1999b). This heteromeric receptor 

has different properties to the homomeric receptor (Dubin et al., 1999). The 5-HT3C 

subunit alters the functional response to 5-hydroxytrptamine (5-HT) when co­

expressed with the 5-HT3A subunit (Dubin et al., 2002). Other putative subunits 

have also been cloned (5-HT3D and 5-HT3E, Niesler et al., 2003), but have not been 

well characterized.

1.2 The Structure of nAChRs and 5-HT3Rs

The nAChR and 5-HT3R subunits share structural characteristics that are common to 

the members of the super-family of ligand-gated ion channels to which they belong. 

Both contain an N-terminal signal peptide, which is cleaved to form the mature 

protein. The subunits have a similar overall topology, with a large extracellular N- 

terminal domain, four putative transmembrane domains (M1-M4) and a short 

extracellular carboxy- (C-) terminal domain (Noda, 1983; Maricq et al., 1991), see 

Figure 1.1.

1.2.1 Primary amino-acid sequences and homology

Comparison of the nucleotide sequence of genes within this ligand-gated ion channel 

super-family suggests that all the members originated from a common ancestral gene 

(Ortells and Lunt, 1995), see Figure 1.2. All members of the super-family of ligand- 

gated ion channels, including the nAChR, 5-HT3R and GABAaR subunits, have two 

conserved cysteine residues in the N-terminal region, which forms an important 

disulphide bond. The protein sequence in the N-terminal forms the ligand-binding
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Transmembrane
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Ion channel pore

Extracellular

Intracellular

Figure 1.1 The predicted topology o f the nAChR and 5 -HT3R subunits, and 

pentameric structure o f the assembled receptor

(A), The subunits have a large extracellular N-termial domain which contains 

the ligand binding site, the main immunogenic region and sites for N- 

glycosylation. Following the N-terminal domain are four transmembrane (Ml- 

M4) domains and then a short extracellular C-terminal domain. There is a 

large hydrophilic cytoplamsic loop in between M3 and M4, and this contains a 

number of putitive sites for phosphorylation. (B), The receptors are formed of 

five subunits arranged around a central ion channel pore. Adapted from Millar, 

2003.
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Adapted from Ortells and Lunt, 1995. This evolutionary tree was constructed 

from the alignment of the amino acids of ligand-gated ion channels.
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domain and determines the agonist specificity (Eisele et al., 1993) and contains sites 

for asparagine-linked glycosylation (Nomoto et al., 1986; Quirk et al., 2004). The 

large M3-M4 cytoplasmic loop shows the least sequence similarity between 

subunits, and contains several potential sites of phosphorylation (Huganir and 

Greengard, 1990; Lankiewicz et al., 2000). A possible consequence of the 

variability of the large M3-M4 cytoplasmic loop is that intracellular interactions can 

be specific to certain subunits and receptors. This would allow receptors to be 

functionally modulated, trafficked and targeted selectively.

1.2.2 Arrangement and subunit stoichiometry: Pentameric receptors

The Torpedo nAChR contains four subunit proteins, a , p, y and 6 (Hucho et al., 

1976). These subunits form a pentameric receptor with the subunit stoichiometry of 

aya5|3 (Karlin et al., 1983, Pedersen and Cohen, 1990). This native receptor forms 

dimers in the Torpedo membranes that are cross-linked at the 6 subunits (Hamilton 

et al., 1979; DiPaola et al., 1989). The pentameric structure has been confirmed by 

high resolution electron microscopy (Brisson and Unwin, 1985), which showed five 

rod shaped subunits at 25 A resolution, and a pentameric transmembrane region at 

4A resolution (Miyazawa et al., 2003).

A soluble ACh binding protein (AChBP) has been isolated from snail glia and has 

24% sequence similarity with the a  7 subunit, and 20-24% sequence similarity with 

the other nicotinic subunits (Smit et al., 2001). The AChBP forms a soluble 

pentameric transmitter receptor that can suppress cholinergic transmission by 

binding to ACh. The AChBP has been demonstrated to also bind nicotine, d- 

tubocurarine and a-BTX (Brejc et al., 2001). The crystal structure of the AChBP has 

been determined at 2.7 A and shows structural similarity to the extracellular region 

of the Torpedo nAChRs (Brejc et al., 2001). This is a useful tool to predict more 

precisely the position of individual amino acids in the nAChRs and 5-HT3RS. 

Recently the structure of the Torpedo nAChR resolved at 4 A has been refined and 

the structure of the AChBP was compared to that of the a  subunit (Unwin, 2005).

The nAChR in murine skeletal muscle has a similar predicted topology to the 

Torpedo receptor (Sealock, 1982). Once homologous subunits (muscle a,p,y and 6)
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were cloned, sucrose gradient sedimentation showed muscle nAChR had a similar 

apparent molecular weight to the Torpedo receptor, implying that it assembled into a 

oligomer with five subunits. The y subunit is only expressed at high levels in 

embryonic muscle or following denervation. After birth the levels of y decrease and 

instead the homologous s is expressed a high levels selectively by the muscle cell 

nuclei located under the neuromuscular junction. The s subunit replaces the y subunit 

within the pentamer (Mishina et al., 1986).

There is evidence that neuronal nAChRs are also pentameric complexes. Expression 

of cx4p2 receptors containing reporter mutations has been used to estimate the 

number of subunits in each receptor (Cooper et al., 1991). This suggested that there 

were five subunits, and has been confirmed by metabolic labelling of methionine 

residues (Anand et a l,  1991). Elucidating which subunits make up neuronal AChRs 

is complex, as most cells express more that two subunits and evidence suggests that 

more that two subunits may co-assemble (see section 1.4). Two well studied 

heteromeric receptors contain a4  and p2 subunits (Boulter et al., 1987, Schoepfer et 

al., 1988) and a3 and p4 subunits (Duvoisin et a l,  1989; Parker et a l,  1998). These 

combinations are thought to have two a  subunits and three p subunits (Cooper et al., 

1991; Anand et a l, 1991; Boorman et a l, 2000), although other ratios have been 

proposed depending on the expression ratio of the two subunits (Zwart and 

Vijverberg, 1998, Nelson et a l, 2003). Some nAChR subunits are capable of 

forming homomeric receptors (e.g. a l ,  a9; Couturier et al., 1990a, Elgoyhen et a l,

1994) and it has been reported that homomeric a l  receptors have five binding sites 

for the ligand methylycaconitine (MLA) (Palma et a l,  1996a) implying a pentameric 

structure.

The 5-HT3A subunit can also form homomeric receptors (Maricq et a l, 1991). The 

molecular weight of the 5-HT3R is consistent with the receptor being made of up 

five of the 5-HT3A subunits. This receptor has more directly been shown have a 

pentameric structure using electron microscopy with receptors purified from NG1 OS- 

15 cells (Boess et al., 1995). Although the resolution was much lower than studies 

on the Torpedo nAChR, five densities of protein can be seen around a hollow pore. 

The stoichiometry of the heteromeric 5-HT3R is as yet unknown.
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1.2.3 The ligand-binding domain

1.2.3.1 The nAChRs ligand-binding domain

The ligand-binding domain in Torpedo and muscle nAChR has been shown to be at 

two non-equivalent sites (Neubig et al, 1979, Prince and Sine, 1996), and is located 

between the a  and non-a subunits (Pederson and Cohen, 1990, Galzi et a l,  1991, 

Taylor et al. ,2000). The subunit pairs, ay and a 6 , form an a-BTX binding site 

(Kurosaki et al., 1987). Residues from both the a  (Kao et al., 1984, Kao and Karlin, 

1986, Galzi et a l, 1990) and the 8/y subunits (Czajkowski et a l,  1993, Sine, 1993, 

Martin et al., 1996) contribute to the binding site. Electron microscopy of the 

Torpedo nAChRs at 4 A has demonstrated the presence of two cavities in the 

extracellular region that are proposed to form the ligand binding sites (Unwin, 2005).

It has been suggested that heteromeric neuronal receptors contain two a  subunits and 

three (3 subunits ((X2P3) (Cooper et a l, 1991; Anand et a l,  1991; Boorman et a l, 

2000), and would therefore be expected to contain two binding sites, similar to the 

muscle and Torpedo nAChRs. The different affinities of nicotinic ligands observed 

with the a5  verses ay ligand binding sites is similar to that seen with a4|32 versus 

a4(34 binding sites (Parker et al., 1998). Thus the diversity of neuronal nAChR 

subunits means that heterogeneous populations of receptors with varying affinities 

for agonist and antagonists, and varying functional properties, can occur within the 

nervous system. Homomeric nAChRs would be expected to have five ligand 

binding sites, with the same subunit contributing the principal and complimentary 

components (Corringer et al., 2000). It has been reported that recovery of the 

homomeric a l  nAChR from MLA inhibition is best fitted with a five binding site 

model (Palma et a l,  1996). In functional experiments, the Hill coefficient in 

obtained for homomeric receptors {a l or a chimeric receptor) from concentration- 

response curves is usually approximately 2 (Corringer et a l,  1995; Servent et a l,

1997), which implies that activation of the receptor may only require agonist binding 

to two sites within the receptor.

Important amino acids on the principal and complimentary components that are 

involved in binding nicotinic ligands have been identified on the Torpedo nAChR by 

affinity labelling and site directed mutagenesis. These have then been modelled into

26



a

heteromeric receptor

Principal
component

Loop A

W U8Loop B DIM/
S165

Y187

Loop C ±,172

Complementary
component

P

Figure 1.3 Model of the nAChR ligand binding domain.

The pentameric complex of subunits is shown, with two a  and three (3 subunits 

around the central pore. The two binding sites are shown at two a/|3 interfaces. 

The schematic of this interface is enlarged and shows the six loops of amino 

acids that form the ligand binding site. The priciple component of the binding 

site comes from the a  subunit (loops A-C) and the complimentary component 

from the p subunit (loops E and F). Adapted from Iter and Bertrand, 2001
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six loops of amino acids (Corringer et al., 2000), with loops A-C from the a  subunit 

and loops D-F from the 6, ory subunit (Figure 1.3). The residues on the a  subunit 

include Trp86 and Tyr93 in loop A, Trp149 in loop B and Cys192, Cys193 Tyr190 and 

Tyr198 in loop C (Galzi and Changeux, 1995). The residues identified in the a  

subunit are present in the a2, a3, a4, a6, a l  and a8  subunits. The a5 subunit lacks 

conserved tyrosine residues, from loops A and C (Boulter et al., 1990, Couturier et 

al., 1990b), and may actually be a structural non-a subunit (Ramirez-Latorre et al., 

1996, Wang et al., 1996, Kuryatov et al., 2000). The residues on the y or 6 subunits 

include Trp55 ad Trp57 in loop D, Tyr111 and Arg113 in loop E and Asp180 in loop F 

(Chiara et al., 1998; Chiara et al., 1999; Martin et al., 1996). The residues in the D 

loop are conserved in |32, p4, a l  and a8 subunits (Corringer et al., 2000). Mutations 

of residues homologous to those in the six loops show significant changes in the 

apparent affinity of nicotinic agonists and competitive antagonists (Corringer et al., 

2000).

1.2.3.2 The 5 -HT3R ligand-binding domain

The extracellular N-terminal region of the 5-HT3A subunit has been demonstrated to 

contain the ligand-binding domain (Eisele et al., 1993). The ligand-binding domain 

has been proposed to be similar to that of the nAChRs, and residues important for 

serotonergic agonist binding have been predicted on the basis of the known structure 

of the AChBP (described in Section 1.2.2) (Reeves et al., 2003). The residues are 

proposed to be organised in domains equivalent to the loops A-F of the nAChRs 

(Reeves and Lummis, 2002).

Site-directed mutagenesis has been performed on residues in the 5-HT3A subunit 

predicted to be important for ligand binding (Reeves and Lummis, 2002). In loop A,
• 1 TO 1

mutation of Glu and Phe altered the binding characteristics of the receptor 

(Boess et al., 1997; Steward et al., 2000). Additionally mutation of Trp121 and Pro123 

resulted in receptors that showed no ligand binding (Spier and Lummis, 2000; Deane 

and Lummis, 2001). In loop B, mutation of Trp183 altered the potency of agonists 

(Spier and Lummis, 2000). The region in 5-HT3A subunit equivalent to the C loop is 

involved in the binding of the serotonergic agonist m-chlorophenylbiguanide 

(mCPBG) (Mochizuki et al., 1999). In loop D, mutation of Trp90, Arg92 and Tyr94
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affect ligand binding (Yan et al., 1999). Finally, in loop E, Tyr141, Tyr143 and Tyr153 

are also involved in ligand binding. The similarity of the 5-HT3A ligand-binding 

domain is illustrated by the mutation of Phe130 to Asn (the equivalent residue in 

Torpedo a  nAChR subunit), which results in a receptor that is activated by ACh 

(Steward et al., 2000).

1.2.4 The channel domain

1.2.4.1 The nAChR ion channel

The nAChRs are permeable to both monovalent and divalent cations (Fucile, 2004). 

The ion channel of the Torpedo nAChR is formed by amino acid residues 

contributed by the transmembrane domains of the a , p, y, 6 subunits (Hucho et al., 

1986). The importance of the M2 sequence for channel properties has been 

demonstrated with chimeras of bovine and Torpedo y subunits, and point mutations 

of the residues within M2 and at each end of the channel (Imoto et al., 1986, Imoto 

et al., 1988; Leonard et al., 1988). This has been confirmed by labelling with non 

competitive blockers such as [ HJchlorpromazine, that bind inside the channel once 

it is opened by agonist. Labelling was detected in 6-Ser262 in M2 (Giraudat et al., 

1986), the homologous residues a-Ser248 and p-Ser254 (Hucho et al., 1986), y-Ser 257 

(Revah et al., 1990), y-Leu260, P-Leu257, and y-Thr253 (Revah et al., 1990). This 

contribution from each subunit forms rings of residues within the channel (Figure 

1.4). The residues which are accessible to labelling by [3H chlorpromazine from 

inside the channel provide evidence for an a-helical structure for M2 (Revah et al., 

1990).

In addition to these polar and non-polar rings of residues there are also three rings of 

negatively charged residues within M2. The Torpedo nAChR residues a-Asp238, a- 

Glu241 and a-Glu262 and the equivalent residues in p,y and 6 form negatively charged 

rings around the lumen of the channel (Figure 1.4; Imoto et al., 1988; Stroud et al.,

1990). These negatively charged rings are thought to attract cations and repel anions 

both from inside and outside the cell. These rings are know as the outer 

(extracellular), intermediate and inner (cytoplasmic) rings (Imoto et al., 1988). 

Equivalent residues have been mutated in the a l  receptor and have been shown to be 

involved in ion channel properties. The a l  subunit can be converted into an anion
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■Q Intermediate ring g

Figure 1.4 A model o f the high affinity binding site for the open channel 

blocker, chlorpromazine.

The M2 amino acids of the P and y subunits are shown in a helical 

conformation. The sphere labelled CPZ represents the space filled by 

chlorpromazine. The filled circles are amino acids labelled by l3Hj-CPZ, 

showing the rings of polar and non-polar residues in the channel. The rings of 

charged resides at either end of M2 (labelled inner, intermediate and outer) are 

also shown. Adapted from Revah et al, 1990.
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channel with the appropriate mutations (Galzi et al., 1992). The removal of a 

negative charge at the Glu237 residue abolishes the normally very high calcium 

permeability of a l  but does not alter the flow of monovalent cations (Bertrand et a l , 

1993). For complete conversion to an anionic channel this negative charge must be 

removed and additional proline residue needs to be added between residues 234-237 

(Galzi et al., 1992, Corringer et al., 1999). This small loop of residues has been 

hypothesized to be a gating region in this receptor (Corringer et al., 1999).

The a l  subunit has been used extensively as a model receptor in a number of 

mutagenesis studies. Because the a l  subunit is able to form homomeric channels, 

mutagenesis of only one cDNA will alter that residue in all five subunits of the 

receptor. The homomeric a l  nAChR is more permeable to calcium than the muscle 

and Torpedo and most other neuronal nAChRs (review Fucile, 2004). The a l  

nAChR has a calcium permeability (fractional current carried by calcium in%, Pf) of 

approximately 10-20 % (Fucile, 2004), which is higher than the calcium permeable 

NMD A receptors. Mutation of a7-Leu247 (homologous to Torpedo y-Leu260) to 

serine or threonine altered ion channel properties, including loss of desensitization 

and rectification, and the proposed addition of another conductance state (Revah et 

al., 1991, Bertrand et al., 1992). It has been suggested that the leucine ring is 

involved in preventing ion permeation in a desensitized state, and mutation to non­

hydrophobic residues results in this state becoming conducting.

The structure of the Torpedo nAChR channel has been visualized with electron 

microscopy (Figure 1.5; Miyazawa et al., 1999, Miyazawa et al., 2003, Unwin, 

2005). High resolution (4 A) images indicate that M2 is a-helical, as are the other 

transmembrane domains. This method also revealed more about the topology of the 

M2 helix and how the protein forms a gate or barrier against ions when shut. The 

M2 helix is about 40 A long and tilts radially inwards from the extracellular region 

until the middle of the membrane where it kinks at a-Leu251. This is the narrowest 

point is at a-Leu and a-Ser , a-Val and a-Phe , which form a hydrophobic 

girdle around the pore that is less than 3.5 A in diameter for about 8A until a - 

Val259. This is too small for the monovalent and divalent cations to pass though 

and thus creates a closed gate. When the receptor is activated the proposed
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Figure 1.5 The 3-dimensional structure of the nAChR, visualized by electron 

microscopy\

(A), Three cross sections views through the Torpedo nAChR at 4.6 A 
resolution, from Miyazawa et al., 1999. (B), Ribbon diagrams of the receptor 

(from the amino-acid sequence fitted to the density map obtained by electron 

microscopy) viewed from the (a) synaptic cleft (b) the plane of the membrane. 

The a-Trp149 is highlighted in yellow, and the subunits in red (a), green (p), 

blue (y) and light blue (6). The purple boxes in (A) and (B) indicate the 

equivalent positioning within the Torpedo subunits of the three arginine 

residues within the 5HT3A subunit which are thought to determine the single 

channel conductance. E, extracellular; I, intracellular. Adapted from Unwin, 

2005.
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mechanism for opening the channel is a rotation of the M2 helix which causes a 

weakening of the hydrophobic forces in the girdle so that it comes apart, widening 

the pore (Unwin, 1993; Auerbach, 2003).

1.2.4.2 The 5-HTjaR ion channel

The 5-HT3R.S are also cationic ion channels (Jackson and Yakel, 1995). Although 

there is no comparable electron microscopy data for the 5-HT3A subunit 

transmembrane domain, it is thought to be very similar to the structure described 

above for the nAChR. The M2 domain has been shown to be a-helical (Reeves et 

al., 2001, Panicker et al., 2002), with a kink in the middle near a lysine residue, 

which is reminiscent of the Torpedo nAChRs (Miyazawa et al., 2003).

There is a high degree of sequence similarity in the M2 domains of the a l  and 5- 

HT3A subunits (approximately 75%). Mutation of the equivalent residue to the a l-  

Leu247 nearly eliminated the rectification seen in the wild type receptor and slows the 

rate of desensitization (Yakel et al., 1993), which is similar to the results of the 

mutation in a l  (Bertrand et al., 1992). The 5-HT3A has three rings of negatively 

charged residues as described for the nAChRs. Similar to the study described above 

for the a l  receptor, the homomeric 5-HT3A receptor can be converted to an anion 

channel by a similar set of mutations (Gunthorpe and Lummis, 2001), but the mutant 

channel also showed differences in apparent affinity for 5-HT and the time course of 

the response. Mutation of only the glutamate residue to an alanine neutralized one 

ring of negative charge at the intracellular region of M2, and made the ion channel 

non-selective (Thompson and Lummis, 2003). Introduction a ring of positive charge 

at the extracellular end of M2 made the ion channel anion selective without largely 

changing other properties of the receptor (Thompson and Lummis, 2003). A 

mutation of an lie294 in M2 decreases the calcium permeability of the 5-HT3A 

receptor (Reeves and Lummis, 2000), which is similar to the results of a mutation in 

a homologous position of the a l  subunit (Bertrand et a l , 1993).

The heteromeric 5-HT3R, with 5-HT3A and 5-HT3B subunits, has a lower calcium 

permeability compared to the homomeric 5-HT3A receptor (Davies et al., 1999b). 

This may be due to the lack of the rings of negatively charged residues in the M2
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domain of the 5-HT3B subunit (Dubin et al., 1999). The heteromeric channel also 

has a larger single-channel conductance, however this has been attributed to residues 

the large cytoplasmic loop of the 5-HT3B subunit rather than the ion channel (Kelley 

et al., 2003). Three arginine residues in the intracellular loop within the amphipathic 

helix (Position shown in Figure 1.5), when mutated to the equivalent residues in the 

5-HT3B subunit, cause the homomeric receptor to have a conductance comparable to 

the heteromeric receptor. These arginine residues are positively charged and may act 

as an electrostatic barrier to positively charged ions trying to flow through the 

receptor on channel opening.

1.3 Folding and assembly, trafficking and targeting of nAChRs 

and 5-HT3R

The ligand-gated ion channels described in the previous sections have a complex 3- 

dimensional structure. To produce the final receptor from a number of linear protein 

sequences, the subunits must fold into the correct membrane spanning topology and 

assemble with other subunits in the correct stoichimetry and arrangement (Green and 

Millar, 1995). This occurs in the endoplasmic reticulum, where the receptor also 

undergoes post-translational modifications before being exported to the plasma 

membrane.

1.3.1 Folding and assembly

Nicotinic receptors assemble slowly and inefficiently (Merlie and Lindstrom, 1983) 

in comparison to other transmembrane proteins. This is thought to be due to 

inaccurate folding of the subunit proteins, which has been monitored by the 

formation of ligand binding sites and conformational epitopes for monoclonal 

antibodies (Merlie and Lindstrom, 1983). It has been shown for the Torpedo 

subunits that correct folding requires interactions with other subunits (Paulson et al.,

1991). It is thought that much of the secondary structures form during synthesis of 

the protein, the formation of the tertiary structure occurs after subunit 

oligomerization (Gething and Sambrook, 1992).
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1.3.1.1 Chaperone proteins and other receptor-associated proteins

Chaperone proteins are thought to be involved in the folding of nAChR subunits, and 

may retain misfolded subunits within the endoplasmic reticulum. The chaperones 

BiP (immunoglobulin binding protein) and calnexin associate with the a , (3 and 

6 subunits of muscle nAChRs and the 5-HT3 receptor subunits (Blount and Merlie, 

1991; Forsayeth et a l , 1992; Gelman et a l , 1995; Keller et a l, 1996; Boyd et a l, 

2002). Co-expression of calnexin with the muscle nAChR subunits enhances 

assembly and surface expression of the receptor (Chang et a l, 1997). The 

chaperone protein 14-3-3r| associates with the a4|32 nAChRs, and co-expression 

with cx4j32 increases steady-state levels of the a4  subunit (Jeanclos et a l, 2001).

In additional to chaperones, other proteins have been demonstrated to affect surface 

expression of nAChR and 5-HT3RS. Rapsyn (43K) is involved in the clustering of 

muscle nAChRs (Froehner et a l,  1991), but not for neuronal nAChRs. Co­

expression of the visinin-like protein-1 (VILIP-1) with a4|32 AChRs caused an up- 

regulation of the surface expression of receptors (Lin et a l 2002). The RIC3 

(resistant to inhibitors of cholinesterase) protein interacts with both nAChR subunits 

and the 5-HT3A subunit (Williams et a l, 2005; Lansdell et a l,  2005; Cheng et a l, 

2005). Human RIC3 has been shown to enhance the correct folding of the a l  

subunit (Williams et a l,  2005; Lansdell et a l,  2005) and also enhance the functional 

expression of heteromeric nAChRs (Lansdell et a l,  2005) and human 5-HT3A 

receptors (Cheng et a l , 2005).

1.3.1.2 Post-translational modifications in folding and assembly

Both the nAChRs and the 5-HT3R subunits have putative sites of phosphorylation 

and N-glycosylation, and it has been demonstrated that post-translational 

modifications can effect receptor expression. Examples with the nAChRs include 

phosphorylation of a4|32 receptors which may be involved in the up-regulation of 

this receptor in HEK cells by nicotine (Gopalakrishnan et a l, 1997), and N- 

glycosylation at specific sites is required to form correctly folded 0x2 (3y 6 receptors in 

Xenopus oocytes (Gehle et a l,  1997). Post-translational modifications also affect 5- 

HT3RS. Receptor stability is affected by the N-glycosylation sites on the 5-HT3R 

subunits (Boyd et a l, 2002), and glycosylation at N 109 on the 5-HT3A subunit has
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been demonstrated to be important for receptor assembly (Quirk et al., 2004). In 

addition to phosphorylation and glycosylation, palmitoylation of assembling a l  

receptors has a role in forming receptors able to bind a-BTX (Drisdel et a l, 2004).

1.3.1.3 Models of nAChR assembly

There are at present two models that describe the assembly of a, (3, y and 6 subunits 

into the nAChR in the endoplasmic reticulum (Wanamaker et al., 2003). The first 

model involves the association mature subunits to form the heterodimers ab  and 

ay, and then the pentameric receptor including the |3 subunit (Blount et a l, 1990). 

This model is not consistent with results obtained with pulse-labelled subunits, and 

the method of solubilisation performed in experiments that support the first model 

may have dissociated subunit complexes (Wanamaker et al., 2003).

In second model the subunits associated in the order: aPy -*apy6—̂ P y b  (Green 

and Claudio, 1993). The subunits are not folded into their mature form before 

association with each other. Folding events that bury a disulfide bond loop in the a  

subunit N-terminus occur after its association with p and y, and once this loop is 

buried the trimer apy can bind a-BTX and also form the tetramer aPyb (Green and 

Wanamaker, 1997). The same event then occurs on the p subunit, which allows the 

formation of the pentamer a 2Pyb. However this model is probably too simple, as it 

does not take into account the results that show that ap6  and ayb are able to form a- 

BTX binding sites (Gu et al., 1991) and that ap6  form functional channels (Kurosaki 

et al., 1987). Thus in vivo is it likely to be more complex, with other subunit 

combinations and assembly pathways present to a greater or lesser extent. The 

assembly of neuronal nicotinic and 5-HT3A subunits has not been well characterized. 

It has been shown that a l  only binds a-BTX after forming pentamers (Anand et al., 

1993).

1.3.1.4 Subunit combinations

It has been possible to express functional recombinant receptors with the Torpedo, 

muscle and most neuronal nAChR subunits, with the right combination of subunits. 

The minimum requirment for heteromeric receptors is the subunits needed to make
1 QO 1 Q "1

the binding site; at least one a  subunit containing the Cys and Cys residues, and
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another subunit to form the complimetary component of the binding site. Despite 

containing the two adjacent Cys residues a5 cannot form homomeric, or heteromeric 

receptors with only |3 subunits (Boulter et al., 1990; Couturier et a l, 1990b). The a5 

subunit only forms functional receptors with other a  subunit and (3 subunit 

heteromeric combination, such as a3p4 (Wang et al., 1996; Gerzanich et al., 1998).

In contrast to these heteromeric receptor formations, the a l  and a8 subunits form 

functional homomeric receptors in Xenopus oocytes (Couturier et al., 1990a, 

Gerzanich et al., 1994). However, they generally do not form functional receptors in 

a number of cell lines examined (e.g. HEK cells), despite having sufficient protein 

expressed (Cooper and Millar, 1997; Cooper and Millar, 1998; Sweileh et al., 2000). 

In one case a stable HEK cell line expressing functional a l  receptors was established 

(Gopalakrishnan, 1995), however this is likely to be due to this isolate expressing 

factors that other HEK cells lack that enable the a l  subunit to form functional 

receptors (see Chapter 4 Section 4.1). The expression of other nicotinic subunits with 

a l  or a8  in HEK cells made no difference (Cooper and Millar, 1997; Cooper and 

Millar, 1998). The 5-HT3A folds more efficiently that nAChR subunits and forms 

homomeric functional receptors in all the cell lines tested (Hargreaves et al., 1994; 

Cooper and Millar, 1997; Gunthorpe et al., 2000). A chimera constructed from the 

NH2-terminal domain of the a l  subunit and the transmembrane and COOH-terminal 

of 5-HT3A subunit forms functional channels when expressed in oocytes (Eisele et 

al., 1993). When a similar chimera was tested in the cell lines that did not express 

functional a l  receptors (e.g. HEK cells) they did form functional channels with the 

ligand binding properties of the a l  subunit (Cooper and Millar, 1997; Corringer et 

al., 1998). It has been suggested that the a l  subunit cannot form the correct 

conformation in these cell lines for ligand binding (Rakhilin et al., 1999). Thus it 

seems that there are important interactions between parts of the subunit protein 

beyond the extracellular N-terminus that allow the correct folding of the a l  protein.

1.3.2 Trafficking and targeting

Assembled proteins are transported from the endoplasmic reticulum to the plasma 

membrane. To prevent unassembled or incorrectly folded protein leaving the 

endoplasmic reticulum, many receptors have endoplasmic reticulum retention signals
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in their amino acid sequence that are only masked when the subunit is assembled 

into oligomeric complexes (Ma and Jan, 2003). Endoplasmic reticulum retention 

signals have been identified in some nAChR subunits, for example the muscle a  

subunit has a PLYFXXN sequence in Ml that is involved in the retention of the 

subunit in the endoplasmic reticulum (Wang et al., 2002). This motif is conserved in 

all muscle-type nAChR subunits and most neuronal subunits (a2-a6  and |32-p4). A 

retention motif has also been found in the 5-HT3B subunit, in the first cytoplasmic 

loop between Ml and M2, which is sufficient to cause the retention of the 5-HT3A 

subunit when it is transplanted into the homologous region (Boyd et al., 2003). The 

correct folding of the a l  protein may hide a retention motif, and when it misfolds 

and is exposed this may cause less receptor to be transported to the cell surface 

(Rakhilin et al., 1999).

The fact that certain ligand-gated ion channels do not reach the cell surface of a 

specific type of cell could be an important way of regulating the pharmacological 

profile of that cell. For example, as well as the a l  receptor, there have been few 

reports of the heteromeric a 9 a l0  nAChR forming ligand binding sites in cells other 

than oocytes. The a9  subunit forms functional homomeric receptors in a murine 

cochlear cell line (Jaggar et al., 2000). This is not surprising since these a9  and alO 

are not generally found in the CNS or PNS, and one of the few sites of high levels of 

expression are the cochlear hair cells (Elgoyhen et al., 1994; Elgoyhen et al., 2001). 

Thus, cochlear hair cells must presumably express something that permits expression 

of this nAChR.

There have also been studies of subcellular targeting of nAChRs. For example, 

muscle nAChRs are denser at the thickened postjunctional folds of the endplate as 

compared to the non-thickened bottom folds, which are equivalent to the 

extrajunctional regions (Salpeter and Harris, 1983). There is evidence from an in 

vivo study that the long internal loop of the a3 subunit targets the receptors to 

specialized postsynaptic membranes (Williams et al., 1998). The a l  subunit has 

been shown to be targeted to distal locations of the chick sciatic nerve (Roth et al., 

2000), and to the somato-dendritic portion of neurones in the chick nucleus 

semilunaris (Sorenson et al., 2001). The distribution of the splice variant of the a l
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nAChR subunit overlaps with that of the a l  subunit when expressed in cultured rat 

cortical neurones, but is also targeted to distinct areas (Severance and Cuevas, 2004). 

This implies that the differences in sequence allow the subunits be targeted to 

different regions.

1.4 Native neuronal nAChRs and 5-HT3RS

The distribution of nAChR and 5-HT3R subunit mRNA and protein has been 

thoroughly investigated, however the subunit composition of all native receptors is 

as yet unknown. Some work has been done to elucidate the subunit combinations 

that form receptors in native cells, for example, chick ganglion neurons there are 

thought to be only 3 populations of receptors (Conroy and Berg, 1995).

1.4.1 Native nAChR distribution and subtypes

Ligand binding with [3H]ACh and [125I]a-BTX has been investigated in the brain to 

examine the distribution of potential neuronal nAChRs. Both these ligands bound to 

muscle nAChRs but showed a differential pattern of binding in the brain (Clarke et 

al., 1985). This has been shown to be more complex than just two types of neuronal 

nAChRs. This is due to the number of different possible receptors that could contain 

five subunits from a 2 -a l, a 9 ,a l0  and |32-|34 (also cx8 in chick).

In situ hybridisation and immunohistochemistry experiments investigated the 

distribution of specific subunit mRNA and protein and demonstrated the differing 

expression patterns of the nAChR subunits. For example the (32 subunit mRNA is 

widely distributed throughout the brain (Swanson et al., 1987; Paterson and 

Nordberg 2000). In contrast the a2  subunit mRNA is only seen in the 

interpeduncular nucleus (Wada et al., 1988). As there is considerable overlap in the 

expression of many of the subunit mRNA, suggesting that the proteins they encode 

may have the opportunity to come together to form receptors.

1.4.1.1 Subtypes of nAChRs in the Central Nervous System

The cx4 and (32 subunit mRNAs and proteins are widely expressed in the central 

nervous system (Goldman et a l , 1987; Deneris et al., 1988; Swanson et al., 1987).
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They form functional heteromeric receptors when expressed recombinantly (Boulter 

et a l, 1987; Buisson et a l, 1996) with high affinity to nicotine (Connolly et al.,

1992). Immunodepletion experiments in chick brain have shown that a large 

proportion of the epibatidine binding receptors contain a4  and |32 (Conroy and Berg, 

1998). These two subunits probably form the primary site for high affinity nicotine 

binding in the central nervous system (Zoli et al., 1998). Both a4  and (32 knockout 

mice lack high affinity [ H]-nicotine binding sites (Marubio et al., 1999, Picciotto et 

al., 1995).

Additional subunits combine with the a4|32 receptor to form diverse receptors in the 

central nervous system. The a5 subunit has been shown to assemble with a4  

subunits in the brain (Conroy et al., 1992). The (33 and |34 subunits have been shown 

to co-assemble with a4|32 in rat cerebellum (Forsayeth and Kobrin, 1997). 

However, there are also nAChRs that contain no (32 subunit. When the (32 subunit is 

knocked out there are still high affinity [ H]-epibatidine sites in the dorsocaudal 

medulla oblongata, pineal gland and habenula-ventral interpeduncular system, which 

are consistent with the pharmacology of a3(34 (Zoli et al., 1998).

Radioligand binding of [125I]a-BTX in the brain is thought to be due to a l  nAChRs. 

The localization of a l  mRNA has been shown to overlap with [125I]a-BTX binding 

sites (Seguela et al., 1993) and a l  knockout mice lack a-BTX binding. Nicotine 

induced currents in rat hippocampal slices that are blocked by a-BTX and MLA are 

not present in the knockout mice (Orr-Urtreger et al., 1997).

The radioligand [125I]a-BTX also binds to the a8 subunit, however, this subunit has 

only been identified in chick (Schoepfer et al., 1990). The a l  homomeric receptors 

are thought to account for 74% of a-BTX binding sites in chick brain (Keyser et al.,

1993) and 65-70% of a-BTX receptors in the chick optic lobe (Gotti et al., 1994). 

The a 8 homomeric nAChRs are thought to account for 9% of a-BTX binding sites 

in chick brain (Keyser et al., 1993) and heteromeric a7 a8  nAChRs account for 20- 

25% of the a-BTX binding sites in the chick optic lobe (Gotti et al., 1994).
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1.4.1.2 Subtypes of nAChRs in the Peripheral Nervous System

Little or no a4  subunit is expressed in the periphery (Rust et al., 1994). In contrast, 

the a3 and |34 transcripts are highly expressed and thought to be the primary high 

affinity nicotinic receptors in the periphery (Corriveau and Berg, 1993; Mandelzys et 

al., 1994). The a3 subunit has been shown to co-immunoprecipitate with the |34 

subunit in the rat trigeminal ganglion (Flores et al., 1996). Other subunits are 

thought to co-assemble with some a3|34, including a5 and |32 in the chick ciliary 

ganglion (Vernallis et al., 1993; Conroy and Berg, 1995) and the rat trigeminal 

ganglion (Flores et al., 1996). The a6  and |33 subunits were shown to assemble with 

a3|34 in the chick retina (Vailati et al., 2000).

[125I]a-BTX binding sites are seen in cultured sympathetic neurones (Patrick and 

Stallcup, 1977; Carbonetto et al., 1978). The a l  mRNA is highly expressed in the 

rat superior cervical ganglion and adrenal medulla (Rust et al., 1994) and chick 

ciliary ganglion (Corriveau and Berg, 1993). In the chick peripheral nervous system, 

the a l  homomeric receptors are thought to account for only 14% of a-BTX 

receptors in the chick retina whereas the a8 homomeric receptors account for 69% 

(Keyser et al., 1993). The chick retina also has heteromeric a7a8  nAChRs which 

account for 17% of a-BTX receptors (Keyser et al., 1993). Some evidence suggests 

that a l  may assemble with subunits other than a8. In both rat and chick there are 

thought to be at least three subtypes of receptor that may contain the a l  subunit, 

because there are distinct pharmacological subtypes that are sensitive to a-BTX and 

MLA (Yu and Role, 1998b, Cuevas et al., 2000). Possible subunits that could 

assemble with a l  are p2 (Britto et al., 1992) or p3 (Palma et al., 1999). There is 

also a splice variant of the a l  subunit, that forms receptors that have different 

functional and pharmacological properties to the original homomeric a l  receptor 

(Severance et al., 2004). This splice variant has been detected in the peripheral 

nervous system and could account for a-BTX sensitive receptors that have distinct 

properties to the original a l  subunit.

There is the possibility that there are more nAChR subunits to be found and cloned 

in some species, although this is unlikely in humans since the whole genome has 

been sequenced and searched for homologous sequences. In chick ciliary ganglion
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there is a population of nAChRs that are sensitive to a-BTX but have not yet been 

shown to immunoprecipitate any known subunit (Pugh et a l, 1995).

1.4.1.3 The a 9  and a 9 a l0  nAChRs

Responses to ACh have been detected in cochlear hair cells (Art et al., 1984), but 

most AChR subtypes are not expressed there (Hiel et a l, 1996). Only the a9  and 

alO  nAChR subunits are expressed in cochlear hair cells, with their expression 

generally restricted to the peripheral vestibular system (Elgoyhen et a l, 1994; 

Elgoyhen et a l, 2001), although a9  is found in the rat dorsal root ganglion neurones 

(Lips et a l, 2002). The expression pattern of a9  and alO  is not exactly the same and 

a9  is expressed alone in areas such as nasal epithelium (Elgoyhen et a l, 2001).

1.4.2 Native 5-HT3R subtypes and distribution

The 5-HT3R is present in the nervous system in a number of areas including cortical 

areas, olfactory regions, the hippocampus and the amygdala (Kilpatrick et al., 1988; 

Marazziti et a l, 2001). There are two subtypes of 5-HT3RS in the nervous system; 

the homomeric 5-HT3AR and the heteromeric 5-HT3R. The 5-HT3A subunit mRNA 

is expressed in both central and peripheral rat neurones whereas the 5-HT3B subunit 

mRNA is mostly restricted to the peripheral nervous system (Morales and Wang,

2002). There have been reports of 5-HT3B subunit protein in the hippocampus 

(Monk et a l , 2001), and also in cell lines of neuronal origin (Hanna et a l, 2000). 

Thus, there may be a mixture of homomeric and heteromeric receptors in the brain, 

with a larger proportion of homomeric receptors in the CNS. The mRNA of the 5- 

HT3C is found in the adult human brain, however no 5-HT3D and 5-HT3E subunit 

mRNA has been detected in the brain (Niesler et a l , 2003).

1.4.3 Developmental changes in neuronal subunit expression

There are developmental changes in the expression of some of the nAChR subunits. 

For example, in chick ciliary ganglion there is a significant increase in the expression 

of the a5 subunit from embryonic day 8 (E8) to El 8 (Corriveau and Berg, 1993). 

There also is a significant increase in the expression of a3 and a l  subunits from 

postnatal day 1(P1) to P14 in rat superior cervical gangion neurones (Mandelzys et 

a l, 1994).

42



1.5 Functional expression of recombinant nAChRs and 5-HT3Rs

The Torpedo nAChR was the first ion channel to be expressed in a heterologous 

system (Barnard et al., 1982). Since then, functional expression has been used to 

examine the pharmacological and functional properties of all the ligand-gated ion 

channels in a variety of expression systems. Xenopus oocytes have been used 

extensively as a model system to express recombinant DNA, and receptor properties 

have been studied using two electrode voltage clamp and patch-clamp recording. 

Many mammalian cell lines have also been used to express receptor subunits, as they 

are more representative of the conditions the native protein encounters. Both patch- 

clamp recording and calcium-influx assays have been used to examine functional 

characteristics. It is important to note that there is variability in functional 

characteristics of the same receptor depending on the cell type it is expressed in, the 

experimental conditions used and the system used to examine function. For 

example, there have been differences noted in functional characteristics of receptors 

expressed in Xenopus oocytes compared to mammalian cells, such as the single­

channel conductance of a l  and cx3|34 nAChRs (Lewis et al., 1997; Section 1.5.3). 

Differences are also observed between patch-clamping and calcium-influx assays. 

When the human 5-HT3B subunit is co-expressed with the human 5-HT3A subunit in 

HEK cells, the E C 5 0  for 5-HT is ten fold greater when 5-HT responses were recorded 

using patch-clamp experiments compared with a calcium-influx assay (see Section 

1.5.1). This could be due to calcium influx assays being more sensitive, or that the 

response to calcium has a different E C 5 0  to the whole cell responses observed.

1.5.1 Agonist potency and efficacy

Agonists to the nAChRs include ACh, nicotine, 1,1-dimethyl-4-phenylpiperazinium 

(DMPP), cytosine, epibatidine, and choline. These have varying binding affinites, 

potencies and efficacies on different nAChR subtypes such as those listed in Section 

1.4. There are also differences between the same receptor subtype in different 

species, for example DMPP has a much lower efficacy of 3% on chick a l  compared 

to 78% on rat a l  (Vazquez and Oswald, 1999).

Choline is a product of the break down of ACh, and is known to have low potency at 

heteromeric receptors such that the physiological concentrations would be
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ineffective. However, it has been shown that choline has a much higher potency at 

the a  7 receptor (Alkondon et a l , 1997) which allows a l  nAChRs to be activated at 

physiological concentrations. This could allow a paracrine method of nAChRs 

activation, and suggests a physiological role for a l  nAChRs in places where there 

are no cholinergic inputs. Nicotine is more potent at a4|32 receptors than other 

subtypes. The EC50 values range from 0.8 (chick, Ramirez-Latorre et a l, 1996) 

to 15 |iM (rat, Fenster 1997) compared to 106 pM for human a3|34 (Gerzanich et a l,

1998).

The agonists of 5-HT3RS include (in rank order of potency for murine 5-HT3A) 

mCPBG > 5-HT > 2-Me-5-HT > PBG (Hope et a l, 1993; Mair et a l, 1998). As 

with nAChRs there are some species differences, for example 2-Me5-HT only has a 

efficacy of 9.1% in murine 5-HT3A as compared to 87% in human 5-HT3A (Hope et 

a l, 1993; Belelli et a l, 1995). The new diversity of the 5-HT3R subunits introduces 

potential control over the function of the 5-HT3R. With the addition of the 5- 

HT3B subunit the heteromeric receptor has different apparent affinities for agonists. 

For example, both 5-HT and 2-Me-5-HT become less potent agonists, but mCPBG 

and 1-PBG become more potent agonists with heteromeric receptors expressed in 

Xenopus oocytes (Davies et a l, 1999b; Dubin et a l,  1999), and a mammalian cell 

line (Stewart et a l, 2003). There was no difference seen in efficacies at the 

homomeric and heteromeric receptors (Dubin et a l,  1999). There are also small 

differences between splice variants of the 5-HT3A subunit. For example, the potency 

and efficacy of mCPBG is greater at the short compared to the long splice variant of 

the murine 5-HT3a subunit (Niemeyer and Lummis, 1998).

1.5.2 Antagonist potency

There are antagonists that show a much higher potency for certain receptor subtypes, 

thus allowing selective antagonism. The a l  and a8  nAChRs are antagonised by low 

concentrations of a-BTX and ML A (Couturier et a l,  1990a; Palma et a l, 1996a; 

Gerzanich et a l,  1994; Gotti et a l, 1994). The toxin a-conotoxin Mil is a selective 

antagonist for a3|32 nAChRs (Cartier et a l, 1996). In comparison d-tubocurarine is 

regarded as a typical competitive antagonist at all the nicotinic receptors. Although 

d-tubocurarine acts as an competitive antagonist at the muscle nAChR, it has been
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demonstrated to open nACh channels in rat myotubes (Trautmann, 1982), thus it 

may be viewed as a very bad agonist, which can occlude the binding site for more 

efficient agonists.

It has been reported that long-term exposure to nicotine can causes persistent 

inactivation of a4(32 and a l  nAChRs when expressed in oocytes (Hsu et al., 1996; 

Olale et a l,  1997). This has been demonstrated for the a4|32 in a mammalian cell 

line (Gentry et al., 2003) however other reports show no long-lasting inactivation 

when a4|32 or a l  were expressed in a mammalian cell line or in native cells (Kawai 

and Berg, 2001; Buisson and Bertrand, 2001). The a3 nAChRs are only 

desensitized by much higher concentrations of nicotine compared to the a4(32 

receptors, and this inactivation is rapidly reversible (Olale et al., 1997).

1.5.3 Rectification

Nicotinic AChRs have been observed to have strong voltage dependency or inward 

rectification (Forster and Bertrand, 1995). In comparison, the homomeric 5-HT3A 

receptor does not display as great a rectification, and the heteromeric 5-HT3A/3B 

receptor shows no rectification at all (Davies et al., 1999b). Mutations in the M2 

region of the a l  subunit have been reported to abolish rectification (Leu 247, Revah et 

al., 1991; Glu237, Forster and Bertrand, 1995).

1.5.4 Desensitization

The characteristics of desensitization vary between the nAChRs (Quick and Lester,

2002). Different subunits alter the desensitization distinctly when they are included 

into the nAChR. This allows a mechanism to vary the length of time the current, 

including calcium ions, is allowed into the cell during exposure to agonist. The 

amount of calcium entering the cell is very important as calcium levels control many 

aspects of cell function such as neurotransmitter release. The a l  and a 8 receptors 

desensitize very quickly with time constants of a few 10s of ms, whereas the a4p2 

desensitizes more slowly, with a time constant of about 1 second (Ragozzino et al.,

1997). In contrast to the homomeric a l  and cx8 receptors, the homomeric a9  

receptor desensitization is very slow and is incomplete even after long agonist 

applications (Elgoyhen et al., 2001). When alO  forms a heteromeric receptors with
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a9  the desensitization is much faster. The a l  subunit has been reported to associate 

with the 02 subunit and the resulting receptor has a slower rate of desensitization 

(Khiroug et al., 2002). The splice variant of the a l  subunit recently reported forms 

homomeric receptors that also desensitize more slowly (Severance et al., 2004).

The (34 containing nAChRs have even slower kinetics of desensitization than 02 

receptors, which has been attributed to the N-terminal domain of these subunits 

(Bohler et a l , 2001). Residues in the loop B and C region of the ligand-binding 

domain affect the potency of ligands to desensitize the receptor (Corringer et a l ,

1998).

The 5-HT3A homomeric receptor desensitizes more slowly than most nAChRs 

(Ragozzino et a l, 1997; Gunthorpe et a l, 2000), but the heteromeric 5-HT3A/3B has a 

faster rate of desensitization compared to the homomeric receptor (Dubin et al,

1999). Single residues have been demonstrated to be important for the 

characteristics of desensitization of the 5-HT3A receptor including Leu286 in the M2 

domain (Yakel et al, 1993) and Ser248 in the Ml domain (Lobitz et a l, 2001).

1.5.S Conductance

All the nAChRs have relatively large single-channel currents that can be resolved 

with outside-out patch-clamp recording. The conductances range from 5 to 55 pS 

(Papke et a l, 1989; Role, 1992). Some of the receptors have more than one 

conductance state which can be clearly seen in single-channel recordings, for 

example chick a402 (22.3±1.0 and 41.8±1.5 pS; Ragozzino et a l, 1997). Although 

the single-channel conductance should be an intrinsic characteristic of the protein 

there are some differences seen when comparing receptors expressed in Xenopus 

oocytes as compared to mammalian cell lines. For example chick a l  has a single­

channel conductance of 45 pS in Xenopus oocytes, but two conductance levels are 

observed in mammalian cell lines and the largest measured conductance was only 32 

pS (Ragozzino et a l, 1997).

The homomeric 5-HT3A receptor has a low sub-pS single-channel conductance 

(Brown et a l, 1998) that cannot be resolved with single-channel recordings. The
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single-channel conductance can be estimated by noise analysis of the current during 

agonist application (Traynelis and Jaramillo, 1998). In contrast to the homomeric 5- 

HT3A receptor, the heteromeric 5-HT3A/3B receptor has a conductance of 16 pS 

(Davies et al., 1999b) which is comparable to the nAChRs. Adding to previous 

studies which attributed the characteristics of the single-channel current to the ion 

channel (Imoto et al., 1988), it has been demonstrated that residues in the large 

cytoplasmic loop determine the size of the single-channel conductance of both the 

a l  (Chapter 3, Section 3.6.3) and the 5-HT3R subunits (Kelley et al., 2003).

1.5.6 Calcium permeability

The calcium permeability of a receptor can have important effects on the host cell. 

Many cellular processes are dependent on the specific levels of calcium in a closely 

localized area, for example modulation of neurotransmitter release at synapses, 

regulation of calcium sensitive ion channels or control of calcium sensitive second 

messenger systems. The nAChRs are permeable to both monovalent and divalent 

cations. Different subtypes of the nAChRs have different calcium permeabilities, 

with Pf values ranging from 1.5% for the a4p4 nAChR (Lax et al., 2002) to 70% 

calculated in a murine cochlear cell line where AChRs are thought to contain the a9 

subunit (Jagger et al., 2000). Considering that the a9  homomeric receptor does not 

desensitize very rapidly (Section 1.5.7.1), depending on the receptor density, a large 

amount of calcium could enter the cell on ACh release. Muscle nAChR subtypes 

have a significant calcium permeability although generally less than most neuronal 

nAChRs (Fucile et al., 2004). They have Pf values comparable to some neuronal 

subtypes, and in fact murine a lp le S  has a greater Pf than the human a4(34 subtype 

mentioned above (Pf = 4.1%, Ragozzino et al., 1998).

The range of calcium permeabilities of nAChRs allows them to have varied roles 

within the cell. Many subunit combinations have not been measured yet, but so far it 

seems that the heteromeric combinations a4p2, a4p4 and cx3|34 have lower calcium 

permeability than the homomeric a l  and a9  or the a 9 a l0  receptors (review, Fucile 

et al., 2004). There are much more complex subunit combinations, and it has been 

shown that when a5 is incorporated into a number of heteromeric receptors, one of 

the consequences is an increase in calcium permeability (Gerzanich et al., 1998). A
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mutation found in some patients suffering from a rare form of epilepsy replaces a 

serine residue in the M2 region of the a4 subunit with phenylalanine and results in a 

receptor with virtually no calcium permeability (Kuryatov et a l, 1997). Thus 

calcium influx through at least the a4 containing receptors seems to be important for 

normal brain function.

The homomeric 5-HT3A receptor was thought to be impermeable to calcium (Eisele 

et al., 1993) however direct visualisation of calcium influx upon agonist application 

indicated that there was some permeability to divalent cations (Hargreaves et a l, 

1994; Reeves and Lummis, 2000). As discussed above, co-expression of 5-HT3Aand 

5-HT3B subunits result in a receptor with a much greater single-channel conductance. 

However there is evidence that the calcium permeability is drastically reduced 

(Stewart et al,. 2003), although another publication showed significant calcium 

influx comparable to that of the homomeric receptor (Dubin et al., 1999). At present 

the calcium permeability of the heteromeric 5-HT3 receptors remains uncertain.

1.5.7 Comparison of native to recombinant receptors

In many cases the characteristics of recombinant receptors are very similar to native 

nAChRs, but there are important differences. This implies that either the subunit 

combination of the recombinant receptor, or the environment of the host cell do not 

match that of native receptors. For example, the native Torpedo nAChR is in 

dimeric form with two receptor cross-linked at the 6 subunit, but when the Torpedo 

nAChR subunits are expressed in Xenopus oocytes only single pentameric receptors 

are formed (Sumikawa et al., 1981; DiPaola et al., 1989). This demonstrates the 

differences in host cell environment can affect the biochemical properties of the 

receptor.

1.5.7.1 Homomeric nAChRs

The a l,  a8 and a9  subunits are able to form homomeric receptors when expressed 

in Xenopus oocytes and some mammalian cell lines. However, there have been 

some questions as to whether these subunits form homomeric or heteromeric 

receptors in the brain. Neuronal a-BTX binding receptors have been proposed to be 

homomeric a l  receptors (Chen and Patrick, 1997; Drisdel and Green, 2000).

48



However, homomeric recombinant and native a l  nAChRs have been demonstrated 

to have similar but non-identical pharmacological properties in the chick brain. For 

example, native a l  receptors have a 50 fold lower affinity for cytisine compared to 

recombinant homomeric receptors expressed in Xenopus oocytes (Anand et al.,

1993). Also, the EC50 for ACh and nicotine differs between native and recombinant 

a l  and a8 nAChRs (Gotti et al., 1994).

The different properties of native a l  nAChRs when compared to recombinant 

homomeric receptors may be due to the assembly of a l  with other nicotinic subunits 

(Virginio et al., 2002). The a l  subunit has been proposed to form heteromeric 

receptors with the a5 subunit (Yu and Role, 1998a; Cuevas et al., 2000), the (33 

subunit (Palma et al., 1999), the (32 subunit (Khiroug et al., 2002) and the a8 subunit 

(Keyser et al., 1993). The a5 subunit may affect the single-channel conductance of 

a l  nAChRs (Yu and Role, 1998a). The (32 subunit has been demonstrated to co- 

assemble with a l  and cause the resultant receptor to have a slower rate of 

desensitization (Khiroug et al., 2002). Alternatively the a l  nAChRs may indeed be 

homomeric, but may undergo post-translational modification only in native cell 

lines, providing them with specific pharmacological and functional characteristics 

(Blumenthal et al., 1997).

It has been shown that the biophysical characteristics of the a 9 a l0  heteromeric 

receptor, compared to the a9 homomeric receptor, are more similar to those of some 

of the nAChRs found in the cochlea (Elgoyhen et al., 2001). For example the rate of 

desensitization is much faster for some native and a 9 a l0  receptors, compared to the 

homomeric a9 receptor.

1.5.7.2 Heteromeric nAChRs

A number of paired combinations of nAChR subunits have been tested in 

recombinant systems, but the characteristics do not account for all native nAChRs. 

Subsequently, three, four and even five subunit combinations have been tested 

(Vernallis et al., 1993; Kuryatov et al., 2000). The inclusion of a5 into a3(32 and 

a3(34 receptors has produced characteristics that are more similar to the receptors in 

some areas of the brain (Wang et al., 1996; Gerzanich et al., 1998).
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1.5.7.3 Homomeric verses heteromeric 5 -HT3 receptors

The 5-HT3A subunit is able to form homomeric receptors in Xenopus oocytes 

(Maricq et al., 1991) and in mammalian cells lines (Hope et al., 1996). However, the 

functional and pharmacological properties of the homomeric receptor do not match 

those of the native channels (Briiss et al., 1999). Splice variants of the 5-HT3A 

receptor have some functional diversity, but is not sufficient to account for the 

differences observed between recombinant and native receptors (Hubbard et al., 

2000). For example, estimates of the single-channel conductance of some of the 

native receptors are much larger than that of the homomeric 5-HT3A (Hussy et al., 

1994; Gunthorpe et al., 2000) and the efficacies of 2-Me5-HT and mCPBG are 

greater at native 5-HT3 receptors (van Hooft et al., 1997a).

Recently the 5-HT3B subunit was cloned, and can form a heteromeric receptor with 

the 5-HT3A subunit (Davies et al., 1999b). The recombinant heteromeric receptor 

has characteristics that are more similar to native 5-HT3 receptor, including a larger 

single-channel conductance (Davies et al., 1999b; Dubin et al., 1999; Hanna et al.,

2000). The 5-HT3B mRNA has been shown to be present in many cell lines that 

express endogenous 5-HT3 receptors (Hanna et al., 2000) but it should be noted that 

the neuroblastoma cell line, NB41A3, contains the 5-HT3B transcript but has 5- 

HT3RS with the characteristics of the homomeric receptor (Stewart et al., 2003). 

When the 5-HT3B subunit is introduced by transient transfection, the 5-HT3 receptors 

expressed have the characteristics of the heteromeric receptor. Thus, it seems the 

NB41 A3 cells may not have sufficient 5-HT3B transcripts to produce the heteromeric 

5-HT3 receptor.

Three additional 5-HT3 subunits have been cloned (Dubin et al., 2002; Niesler et al.,

2003). The 5-HT3C has also been reported to associate with the 5-HT3A subunit and 

affect its function (Dubin et al., 2002). The transcripts for the 5-HT3D and 5-HT3E 

subunits have not been shown to be present in the nervous system (Niesler et al.,

2003).
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1.6 Function of nAChRs and 5 -HT3RS in the central nervous 

system
The nAChRs have been shown to have important roles outside the central nervous 

system. The muscle nAChR is essential for transmission from the nerve to the 

muscle. The a3 subunit has been demonstrated to be essential for survival in mice, 

as a3 knockout mice die during the first post-natal week. This is presumably 

because a3 nAChRs mediate fast transmission in the autonomic nervous system 

(Cordero-Erausquin et al., 2000). Nicotinic AChRs in the central nervous system are 

thought to be involved in cognitive functions such as learning and memory. 

Nicotine can improve memory in rats (Levin and Simon, 1998) however mice that 

lack the (32 subunit also have improved memory, but there is no improvement with 

nicotine (Jones et al., 1999; Cordero-Erausquin et al., 2000). This may implicate the 

|32-containing receptors in a dual role of inhibition memory formation, but mediating 

the positive effects of nicotine. The |32 and |34 subunits are also important for 

survival as knockout mice lacking both have retarded development and die young, 

(Cordero-Erausquin et al., 2000). This suggests that (34 probably can substitute for 

(32 in places necessary for development as these problems are not seen in the (32 only 

knock out mice (Picciotto et a l , 1995).

5-HT3 receptors have been shown to be involved in cardiac, intestinal and lung 

function in the body. The role of the 5-HT3 receptors in the central nervous system is 

not fully understood, but they may be involved in anxiety and cognition (Barnes and 

Sharp, 1999). In experiments with a 5-HT3A knockout mice, the lack of this subunit 

has an ambiguous effect upon anxiety, with differing results depending on which 

behavioural tests are used (Bhatnagar et al., 2004a/ However, mice that lack the 5- 

HT3A subunit show less of the sex differences that are seen in tests for anxiety 

(Bhatnagar et al., 2004b).

1.6.1 Pre and post-synaptic nAChRs

The primary role for nAChRs in the central nervous system is thought to be 

presynaptic modulation of neurotransmitter release resulting in regulation of synaptic 

transmission (Role and Berg, 1996; Wonnacott, 1997; Levin and Simon, 1998). The
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modulation of release can also occur through receptors that are not in the terminal 

region (preterminal) and this distinction can be shown by the blockage of modulation 

by tetrodotoxin (Wonnacott, 1997). The modulation of release of a number of 

neurotransmitters have been demonstrated, including dopamine, GABA, 

noradrenaline and glutamate (Role and Berg, 1996; Wonnacott, 1997). For example, 

a4|32 containing nAChRs are found on the terminals of dopamine neurones in the 

striatum, and modulation of dopamine release by (32 containing nAChRs has been 

demonstrated (Wonnacott, 1997; Wonnacott et al., 2000). The population of these 

receptors may be heterogeneous as some may also contain either or both of a5 and 

(33.

GABA synaptic transmission in the hippocampus is also modulated by nAChRs. 

This has been demonstrated to be due to a7-containing nAChRs located on the 

hippocampal interneurones (Alkondon et a l, 2000). The a l  agonist choline triggers 

action potentials in hippocampal interneurones, which are blocked by the a l  

selective antagonist MLA. Presynaptic nAChRs may also act as autoreceptors to 

modulate ACh release via a feedback mechanism. Release of ACh from the nerve 

terminal would activate the presynaptic nAChRs enhancing mobilisation of more 

ACh and thus aiding continual ACh release in situations of sustained nerve 

stimulation (Wonnacott, 1997).

Presynaptic nAChRs may have functions other than modulation of neurotransmitter 

release. The receptors could act to modulate other aspects of nerve terminal 

function, for example via calcium signalling. Nicotinic AChRs participate in 

regulating neurite outgrowth and pathfinding of growth cones (Role and Berg, 1996).

Postsynaptic nAChRs have been demonstrated to mediate fast transmission outside 

the central nervous system. The signal from the motor neurone to the muscle is 

transmitted by a homogenous population of nicotinic receptors on muscle cells. 

Nicotinic AChRs also mediate fast transmission at the Renshaw cell-motorneurone 

synapse (Dourado and Sargent, 2002), and the efferent synapses of the cochlea hair 

cells and within the autonomic ganglia (Role and Berg, 1996). Within the central 

nervous system few cases of fast nicotinic transmission have been documented,
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indicating that the primary role of nAChRs in the brain may be other than fast 

transmission. Fast transmission has been shown in the hippocampus and visual 

cortex (Jones et al., 1999), and possibly a few other areas (Role and Berg, 1996). 

Nicotinic AChRs occur in areas where there are no cholinergic projections to 

mediate fast transmission, and their role may instead be paracrine. This would be 

feasible for a l  containing receptors which are activated by physiological 

concentrations of choline, which is a metabolite of ACh (Alkondon et al., 1997). 

ACh is broken down by cholinesterase too quickly to mediate paracrine 

transmission, but choline is removed much more slowly.

1.6.2 Pre- and post-synaptic 5-HT3Rs

There is evidence for fast transmission which is mediated by cholinergic neurones in 

the amygdala (Sugita et al., 1992), in hippocampal interneurones (McMahon et al.,

1997) and the developing visual cortex (Roerig et al., 1997).). Also, postsynaptic 5- 

HT3 receptors are found on GABAergic interneurones in the central nervous system 

(van Hooft and Vijverberg, 2000).

There is also evidence of the presence of presynaptic 5-HT3 receptors in the CNS and 

they are thought to have a role in the modulation of neurotransmitter release. 

However, presynaptic 5-HT3 receptor modulation of neurotransmitter release has not 

been decisively proved (Lambert et al., 1995; van Hooft and Vijverberg, 2000). 

Presynaptic 5-HT3RS have been implicated in the modulation of release of a number 

of neurotransmitters including dopamine, 5-HT, GABA and cholecystokinin. 5- 

HT3R mediated 5-HT release has been investigated in the amygdala: the presence of 

presynaptic 5-HT3 receptors has been shown in synaptosomes from the amygdala by 

immunocytochemistry, and when the serotonerigic system is chemically lesioned the 

number of 5-HT3R is significantly reduced. However, there has been no 

demonstration of 5-HT3 receptor mediated 5-HT release in this system (van Hooft 

and Vijverberg, 2000). 5-HT3R mediated 5-HT release has been shown in other 

brain regions but the presence of presynaptic 5-HT3 receptor on these nerve terminals 

has not been confirmed.
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5-HT3 mediated dopamine release has been investigated in the nucleus acumbens. 

There is some evidence it occurs from in vivo studies but it has not been 

corroborated by in vitro experiments, and the exact location of the receptors is 

inconclusive (van Hooft and Vijverberg, 2000). There is conflicting evidence for 5- 

HT3 mediated dompaine release in the striatum (van Hooft and Vijverberg, 2000).

Thus, the 5-HT3 receptor has been implicated in mediating the release of a number of 

neurotransmitters, however the results remain ambiguous. There is little direct 

evidence for presynaptic 5-HT3 receptor influence on GABA release and the results 

on the influence on ACh and noradrenaline release vary from inhibition, to no effect, 

to enhancement (van Hooft and Vijverberg, 2000).

1.6.3 Tobacco dependence

Tobacco smoking has been demonstrated to be highly addictive, and the principal 

addictive component is nicotine (Jones et al., 1999). Both tobacco smoking and 

nicotine self administration in animals are associated with an increase in dopamine 

release in the nucleus accumbens (NAc) upon nicotine intake (Mansvelder and 

McGehee, 2002). These dopamine neurones are part of the mesolimbic 

dopaminergic pathway which is thought to be the primary area that reinforces the 

effects of natural rewards such as food. Drugs such as nicotine and cocaine are 

thought to exploit this pathway to result in an unnatural addiction (Jones et al.,

1999).

The principal dopaminergic projections to the nucleus accumbens come from the 

ventral tegmental area (VTA). The release of dopamine onto the NAc neurones is 

modulated by the nAChRs in the VTA rather than in the NAc (Nisell et al., 1994). 

In the VTA there are dopamine neurones, GABAergic neurones and glutamatergic 

presynaptic terminals that synapse onto the dopamine neurones (Mansvelder and 

McGehee, 2002). The glutamatergic excitatory inputs to the dopamine neurones 

may originate from the prefrontal cortex, and contain a  7 nAChRs (Mansvelder and 

McGehee, 2000). The GABAergic inhibitory inputs to the dopamine neurones 

originate from local interneurones, the NAcc and ventral pallidum, and these are 

likely to contain cx4|32 receptors (Mansvelder et al., 2002). The excitatory and
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inhibitory inputs contain different nAChRs and they respond differently to the low 

dose of nicotine that occurs upon smoking. This dose of nicotine has been shown to 

cause long term enhancement of glutamatergic transmission, due to long term 

potentiation and a lack of desensitization of the a l  nAChRs at this nicotine 

concentration (Mansvelder and McGehee, 2000). This long term potentiation of the 

glutamatergic synapse is aided by the activation of nAChRs (probably a4(32) on the 

dopamine neurone. This provides additional post synaptic activation to remove the 

magnesium block of the NMDA receptor and hence facilitate potentiation of 

excitatory transmission at these synapses. In p2 knockout mice there is no nicotine 

self-administration, and there is no long term activation as a result of nicotine 

application. This supports the idea that |32 containing nAChR activation in the 

postsynaptic dopamine neurone may be necessary for the induction of long term 

potentiation (Picciotto et al., 1998).

Long term depression of GABAergic transmission occurs as the a4p2 receptors 

desensitize rapidly at this concentration of nicotine (Mansvelder et al., 2002). As a 

result the dopamine neurones receive a net increase in excitatory input, which could 

explain the prolonged excitation of the mesolimbic dopamine system that is the 

result of a single application of nicotine (Mansvelder and McGehee, 2002).

The mechanism described above involves a single dose to a naive system that has 

had no previous exposure to nicotine. Most smokers maintain chronic levels of 

nicotine. Chronic exposure to nicotine has been shown to upregulate a number of 

nAChRs. There is increased [3H]-nicotine binding in postmortem brain tissue of 

smokers (Benwell et al., 1988) and in mice with continuous nicotine administration 

(Marks et al., 1992). The concentration of nicotine required to upregulate different 

subtypes of nAChRs differs, with only a4p2 upregulated at nicotine concentrations 

equivalent to the plasma concentration in smokers (Peng et al., 1997; Molinari et al.,

1998). The number of surface a4p2 receptors are also upregulated to a greater 

extent than a3 or a l  containing receptors (Peng et al., 1997). The concentrations of 

nicotine required to desensitize nAChRs also differ, as does the extent of the 

desensitization. The a3|32 containing receptors are much less sensitive to 

desensitization by nicotine than a4(32. The a3(32 receptors also are not fully
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desensitized even at high nicotine concentrations, compared to the full ablation of 

the a4|32 responses at nM concentrations (Hsu et al., 1996; Olale et al., 1997). 

These results suggest that only cx3|32 receptors would not be affected by the nicotine 

concentrations present in smokers.

1.6.4 Pathology

Nicotinic receptors have been implicated in a number of neurological disorders 

including epilepsy, Alzheimer’s disease, Parkinson’s disease, schizophrenia, anxiety 

and depression, Tourette’s syndrome and Lewy-body disease (Paterson and 

Nordberg, 2000; Picciotto and Zoli, 2002). Some of these are discussed in more 

detail below.

The hypersensitivity of the gastro-intestinal tract that is thought to cause the 

symptoms in irritable bowel syndrome may be mediated partially through 5-HT3 

receptors (Jones and Blackburn, 2002). The 5-HT3 receptor has not been specifically 

linked to neurological disorders, but antagonists to this receptor may prove useful for 

treatment for psychoses and anxiety (Jones and Blackburn, 2002).

1.6.4.1 Epilepsy

A number of specific mutations of nicotinic subunits have been identified in patients 

suffering from a rare form of epilepsy, autosomal dominant nocturnal frontal lobe 

epilepsy (ADNFLE) (Corcia et al, 2005). These mutations involve the a4 and |32 

subunits. A misssense mutation in the M2 domain of the a4  subunit, at Ser247 that 

causes it to be replaced by a phenylalanine, is associated with ADNFLE (Steinlein et 

a l, 1995). When the mutant a4  subunit is expressed with (32 in Xenopus oocytes, 

the resultant a4|32 receptors desensitizes faster and recover from desensitization 

more slowly than with the wild type receptors (Weiland et al., 1996). The mutant 

receptor also has a higher EC50, less inward rectification, virtually no calcium 

permeability and loses the larger of two single-channel conductance states (Kuryatov 

et al., 1997). The overall result is a decrease in function for this receptor. This 

could result in epilepsy if the receptor is part of an inhibitory circuit, for example 

modulating a GABA synapse. Other mutations that have been identified in a4  also 

cause a loss in function, whereas two mutations in the |32 subunit cause a gain of
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function (Corcia et al., 2005). Other loci containing other nicotinic subunits have 

also been linked to ADNFLE but no specific mutations have been identified (Corcia 

et al., 2005)

1.6.4.2 Alzheimer’s disease

The loss of nicotinic binding sites has been seen in a number of neurodegenerative 

diseases including Alzheimer’s disease (Picciotto and Zoli, 2002) and 

anticholinesterases have been used with some success to treat this disease (Racchi et 

al., 2004). The a4|32 nAChR has been implicated, as it is the major subtype lost in 

Alzheimer’s disease (Paterson and Nordberg, 2000). Radioligand binding and 

immunoblotting in the temporal cortex show a decrease in [3H]-epibatidine binding 

and a4  protein levels, but no difference in cx3 or a l  protein levels (Martin-Ruiz et 

al., 1999). (3-Amyloid has been shown to modulate a l  activity (Pym et al., 2005) 

and it has been reported that activation of a l  nAChRs may mediate the protective 

effect of nicotine against p-Amyloid induced neurotoxicity that occurs in 

Alzheimer’s disease (Kihara et al., 2001).

1.6.4.3 Parkinson’s disease

Parkinson’s disease is linked to the decrease in dopamine neurones in the substantial 

nigra, but there is also a decrease in the number of cholinergic neurones (Whitehouse 

et al., 1983) and a loss of nAChR binding sites in the cortex (Whitehouse et al., 

1988). There is evidence that nicotine may have a protective effect against 

Parkinson’s disease (Morens et al., 1995; Quik and Kulak, 2002), and that the a6 

subunit may be an important new drug target (Quik and Kulak, 2002).

1.6.4.4 Schizophrenia

This is a complex condition that is still not well understood. It is reported that the 

percentage of smokers in the schizophrenic population is much higher than normal 

(Paterson and Nordberg, 2000), however this may be due to patients compensating 

for the deficits induced by the antipsychotic drugs used for treatment (Lena and 

Changeux, 1998). Schizophrenia has been linked to a polymorphism at chromosome 

15ql4 which is the locus of the a l  gene (Paterson and Nordberg, 2000). A decrease 

in the expression of a l  nAChRs in the hippocampus has been reported for
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schizophrenic patients (Freedman et al., 2000). It has been reported that the cx 7 

receptor mediates inhibition of the response to repeated auditory stimuli, and loss of 

this inhibition, through loss of the a l  receptor, may cause the sensory gating 

disturbances seen in schizophrenic patients (Freedman et al., 2000).

1.6.4.5 Anxiety and depression

Nicotine has been reported to have an effect on both anxiety and depression, 

however the effects are complex as they can be anxiolytic or anxiogenic (Picciotto et 

al., 2002). The a4p2 receptor and the a l  subunit have been implicated in anxiety 

through mutant mice studies and the action of specific agonists (Picciotto et al., 

2002). These two nAChRs have also been linked to depression through increased 

levels of cytosine binding in animal models and linkage studies to the a l  subunit 

gene (Picciotto et a l, 2002).

1.6.5 Therapeutic potential

The involvement of nicotinic receptors in a number of disorders (described above) 

place them in an important position as a potential target for drug treatments. The 

protective nature of smoking against disorders such as Parkinson’s disease points to 

therapeutic potential of nicotinic agonists. Nicotine has been reported to have 

beneficial effects upon memory and thus could aid patients with cognitive 

dysfunction (Levin and Simon, 1998). Agonists to the a l  receptor could increase 

neuroprotection against P-Amyloid induced neurotoxicity (Geerts, 2005). Alternative 

nicotinic agonists could play an important role in helping patients with smoking 

cessation.

5-HT3 antagonists, for example ondansetron, have revolutionised the treatment of 

cancer by inhibiting the emesis caused by chemotherapy and radiotherapy (Jones and 

Blackburn, 2002). The 5-HT3 receptor has not been directly linked to many 

disorders or diseases. However 5-HT3 antagonists have been reported to have 

beneficial effects in preclinical trials for psychoses, cognitive dysfunction and 

anxiety disorders (Barnes and Sharp, 1999; Jones and Blackburn, 2002). No benefit 

has been shown in clinical trials as yet.
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1.7 C o-assem b ly  and cross-p h arm acology  o f  the nA C hR s and the 

5 -H T 3R

The co-assembly of recombinant 5-HT3A and nicotinic subunits has been reported. 

The 5-HT3A subunit has been shown to co-assemble with the a4 nicotinic subunit 

and form a heteromeric receptor that has increased calcium permeability in HEK 

cells, and a distinct sensitivity to block by the nicotinic antagonist d-tubocurarine in 

Xenopus oocytes (van Hooft et a l, 1998). The a4  subunit forms part of the lining of 

the ion channel pore in these heteromeric receptors when expressed in Xenopus 

oocytes (Kriegler et al., 1999). The (32 subunit has also been reported to associate 

with the 5-HT3A subunit, but the association with the 5-HT3A subunit does not enable 

the a4  or |32 subunit to be detected on the surface of HEK cells (Harkness and 

Millar, 2001). These results are ambiguous and functional significance of the co­

assembly remains unclear. A study of the porcine brain indicated that nicotinic 

subunits are not part of native 5-HT3 receptors (Fletcher et al., 1998), so it remains 

uncertain whether native cx4 and 5-HT3A do co-assemble and form heteromeric 

receptors (Nayak et al., 2000). There has been no indication that the 5-HT3A subunit 

co-assembles with other nicotinic subunits.

There is some pharmacological cross-reactivity between the nAChRs and the 5-HT3 

receptors, with opposing effect of ligands. Nicotinic agonists including ACh and 

nicotine act as competitive antagonists at the 5-HT3 receptor (Gurley and Lanthorn, 

1998). 5-HT has been demonstrated to antagonise a l  receptors (Palma et a l, 1996b) 

and the 5-HT3 antagonist tropisetron is a potent and selective a l  nAChR partial 

agonist (Macor et a l,  2001). However, some ligands have been identified that act in 

the same way upon the a l  and 5-HT3 receptors. PSAB-OFP is an agonist (Broad et 

a l,  2002) and 5-hydroxyindole potentiates the currents produced by agonists (van 

Hooft et a l, 1997b; Zwart et a l, 2002) at both these receptors.

1.8 A im  o f  th is study

The nAChRs and the 5-HT3RS are widely expressed in the nervous system, and the 

importance of these receptors in brain function has been highlighted by the number 

of neurological disorders in which they are implicated. One aim of this study was to
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gain a better understanding of the structural and functional properties of the a l  

nAChR and the 5-HT3A receptor, which show a number of similarities. Recombinant 

subunits were expressed in HEK cells to compare differences between the a l  and 5- 

HT3A receptors. The 5-HT3A subunit efficiently forms functional receptors, however 

the a l  subunit does not, so chimeras of these two subunits were constructed to 

investigate which domains caused this difference. The functional differences 

between the 5-HT3A and a l  subunits were examined using the chimeras, again to 

identify which regions of the subunit determine these differences.

The a l  subunit is able to form functional receptors in some expression systems and 

recently the RIC3 protein has been shown to enable the a l  subunit to form a-BTX 

binding sites. Another aim of this study was to examine whether these binding sites 

represented functional receptors, and how RIC3 affected other receptors including 

the 5-HT3A receptor and the a8  and a3|32 receptors. Part of the work on RIC3 in 

Chapter 4 has been published (Lansdell et a l, 2005).
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CHAPTER 2 

MATERIALS AND METHODS
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2.1 Materials

All chemicals were obtained from BDH unless otherwise specified. All restriction 

enzymes with buffers were obtained from Promega unless otherwise stated. A 

Biofuge 13 (Heraeus Instruments) was used to centrifuge samples unless otherwise 

specified.

2.1.1 Original plasmid constructs

Rat a l  nAChR subunit cDNA in pcDNAlneo (Invitrogen) was obtained from Dr. 

Jim Patrick (Baylor College of Medicine, Houston) and excised and subcloned into 

the Hindlll/Xhol sites of pZeoSV2(+) (Invitrogen). Human a l  and chick a8 nAChR 

subunit cDNAs (Peng et al., 1994; Schoepfer et al., 1990) were obtained from Dr 

Jon Lindstrom (University of Pennsylvania, PA., USA). Human a l  subunit cDNA 

was subcloned into pcDNA3neo (Invitrogen) in this laboratory by Dr Sandra Cooper 

(Cooper, 1998). Chick a8  subunit cDNA was subcloned from pBluescript SK(-) 

(Stratagene) and subcloned into pcDNA3neo in this laboratory by Dr Sandra Cooper 

(Cooper, 1998).

Murine 5-HT3a(l) subunit cDNA in pCDM6xl (Maricq et al., 1991) was obtained 

from Dr David Julius, (University of California) and subcloned into both 

pZeoSV2(+) and pRK5 in this laboratory by Dr Sandra Cooper (Cooper, 1998) and 

Dr Elizabeth Baker (Baker, 2003) respectively. Human 5-HT3A in pcDM8 was 

obtained from Ewen Kirkness (Institute for Genomic Research, Rockville, 

Maryland).

The C. elegans RIC3 cDNA was obtained from Millet Treinin (Hebrew University, 

Israel) and was subcloned into pcDNA3 in this laboratory by Dr Stuart Lansdell. 

Human and Drosophila RIC3 cDNA were cloned into pcDNA3neo in this laboratory 

by Dr Stuart Lansdell and Dr Anne Doward (Doward, 2005).

The properties of the plasmid expression vectors used in this project are summarised 

in Table 2.1. All subunit cDNAs or chimeric constructs were in the expression 

vector pZeoSV2(+) for experiments in Chapter 3. For experiments in Chapter 4, 

chick a8, human a l  and all RIC3 constructs were in pcDNA3neo. Rat a3 and (32
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were in pRK5. Rat a l  was in pcDNAlneo. Murine 5-HT3A was in pRK5. Human 

5-HT3A was in pcDM8 .

Table 2.1 Summary o f  the plasmid expression vectors used in this study

Expression
Vector

Promotor Inducible/
Constitutive

Poly-A
Signal

Selection

pcDNAlneo CMV Constitutive SV40 Kanamycin 
SupF* (amp/tet)

pcDNA3neo CMV Constitutive Bgh Kanamycin
Ampicillin

pRK5 CMV/SP6 Constitutive SV40 Ampicillin
pcDM8 CMV/SP6 Constitutive SV40 SupF* (amp/tet)
pZeoSV2(+) SV40 Constitutive SV40 Zeocin

Abbreviations: amp -  ampicillin, Bgh -  bovine growth hormone, CMV -  

cytomegalovirus, tet -  tetracycline, poly-A -  polyadenylation, SV40 -  Simian virus 

* SupF: Plasmids with the SupF gene require growth in a bacterial strain that 

contains the P3 episome (MCI061; Invitrogen). The P3 episome contains ampicillin 

and tetracyclin selectable markers which contain amber mutations that are 

complemented by the SupF transfer RNA.

2.2 Subcloning techniques

2.2.1 Polymerase chain reaction (PCR)

Polymerase chain reaction amplification was performed in a peltier thermal cycler, 

PTC-225 (MJ Research) (PCR). Typical reactions were carried out in 30-50 pi and 

contained 10-200 ng of plasmid DNA, 0.05-0.5 pM forward and reverse primers 

(synthetic oligonucleotide primers were obtained from Genosys), 250 pM dNTPs, lx 

polymerase buffer plus MgCh (for Taq only) or MgSC>4 (for KOD only), and 2.5 U 

of a DNA polymerase enzyme. One of three enzymes were used, Taq (Promega), 

Pfu (Stratagene) or KOD (Novogen). Taq only has 5’to 3’ exonuclease activity 

whereas the other two enzymes also have 3’ to 5’ exonuclease activity. As a 

consequence, Taq has a lower DNA synthesis fidelity and was only used for standard 

diagnostic PCR reactions, or to add TA overhangs onto Pfu or KOD PCR products.
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2.2.2 Agarose gel electrophoresis

PCR products, digested plasmid DNA fragments and excised DNA inserts were 

separated by molecular weight by electrophoresis through a 1% agarose gel. 

Electrophoresis-grade agarose (Invitrogen) was dissolved in TAE buffer (Tris- 

acetate: 0.04 M Tris-acetate, 0.0001 M EDTA) and 0.3 pg/ml of ethidium bromide 

was added. DNA samples were run along-side DNA size markers either, 1 pg of 

Hindill digested Lamda (k) DNA (Invitrogen) or PCR markers (Promega). This 

enabled estimation of the size of the sample DNA. Samples and markers were 

loaded in IX blue/orange loading dye (Promega). DNA was visualized by means of 

a UV transilluminator (UVP).

When DNA was required for subsequent purification, low melting point agarose was 

used (Invitrogen) and DNA fragments were excised after electrophoresis using a 

sterile scalpel. DNA was extracted from the agarose gel using the Wizard™ DNA 

clean up system (Promega). The agarose gel was melted in a hot block and mixed 

with 1 ml of Wizard™ DNA-binding resin. DNA was isolated from the resin using a 

Wizard™ clean up column and washed with 2 ml of 80% isopropanol. The 

isopropanol was removed from the column by centrifugation and evaporation. The 

DNA was then eluted with 50 pi of sterile pre-warmed milli-Q water and centrifuged 

for 1 minute at 13,000 rpm. 5 pi of this DNA was run on a diagnostic agarose gel to 

estimate the yield.

2.2.3 Restriction digestion of DNA

All restriction enzymes and reaction buffers were obtained from Promega unless 

specified otherwise. Reactions were carried out in 30 pi, containing 1-2 pg of DNA, 

5-10 U of restriction enzyme in the appropriated buffer. The reaction was incubated 

at an appropriate temperature (typically 37°C) for 1-2 hours. For “double digests” in 

which the DNA was digested with two restriction enzymes requiring incompatible 

buffers, the first reaction was performed as above. The reaction was then made up to 

100 pi in the preferred digestion buffer and incubated with the second enzyme for 1- 

2 hours. After plasmid DNA was digested it was run on an agarose gel along side 

uncut DNA to ensure that the restriction enzyme had cut the DNA as expected. For 

double digests of plasmid vectors, plasmid DNA was digested by each enzyme
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singly with the same protocol and run along side on an agarose gel to ensure that 

both enzymes had cut the DNA as expected.

2.2.4 Dephosphorylation of DNA

When subcloning involving digestion with a single restriction enzyme or two 

enzymes that had compatible overhangs, 5’ phosphate groups were removed using 

calf intestinal alkaline phosphatase (CIP) (Promega). This was done to prevent re­

ligation of the plasmid DNA. CIP (2-3 U) was added to the restriction digest 

reaction. This was incubated at 37°C for 30 minutes and then another 2-3 U of CIP 

was added to the mixture and incubated at 37°C for a further 30 minutes.

2.2.5 DNA ligation

Ligation was carried out in a volume of 10 pi, and contained a molar ratio of vector: 

insert of 1:3, 0.5 U of the T4 DNA ligase (Roche) and lx T4 DNA ligase buffer. 

Background re-ligated vector was determined by performing a ‘control’ ligation 

which contained no insert. Ligation reactions were incubated overnight at 14°C.

2.2.6 Competent cells for transformation

The XL 1-blue strain of Escherichia coli (E. coli) bacteria (Stratagene) were prepared 

as follows: from a frozen glycerol stock, cells were streaked onto a Luria-Bertani 

(LB) agar plate and grown overnight at 37°C. A single colony was picked and used 

to inoculate 20ml of LB medium (10 g/1 bacto-tryptone, 5 g/1 Bacto-yeast extract, 10 

g/1 NaCl, adjusted to pH 7.0 with NaOH) and grown overnight at 37°C with shaking 

at 225 rpm. The culture was transferred to 500ml of SOB (20 g/1 bacto™-peptone 

(DIFCO, Becton Dickinson), 5 g/1 bacto-yeast extract, 0.5 g/1 NaCl, 2.5 mM KC1, 10 

mM MgCh). The culture was then incubated at 37°C with shaking at 225 rpm until 

the optical density measured at 550 nm was 0.5-0.55. The culture was then 

centrifuged at 2500 rpm (using a Beckman J2-M1 centrifuge, JA-14 rotor), for 15 

minutes at 4°C. The supernatant was poured off and the cells resuspended in 20 ml 

of ice-cold RF1 (100 mM RbCl (Sigma), 50 mM MnCl2.4H20 (Sigma), 30 mM 

potassium acetate, 10 mM CaCl2.2H20, 15% w/v glycerol (Sigma), pH adjusted to

5.8 with 0.2 M acetic acid, filter sterilized (0.22 pM)) and incubated on ice for 15 

minutes. This was then centrifuged at 2500 rpm for 9 minutes at 4°C, the
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supernatant poured off and the pellet resuspended in 3.5 ml of ice-cold RF2 (10 mM 

RbCl, 10 mM MOPS (3-N-morpholinopropanesulphonic acid) (Sigma), 75 mM 

CaCl2.2H20, 15% w/v glycerol, pH adjusted to 6.8 with 0.2 M acetic acid, filter 

sterilised (0.22 pM)). The cells were incubated on ice for 15 minutes. Aliquots 

were fast frozen in a dry ice/ethanol bath and stored at -80°C.

2.2.7 Bacterial transformation

Bacterial transformations were performed using 50 pi frozen stocks of competent 

E.coli cells prepared as described in Section 2.1.6. 1-20 ng of plasmid DNA, or 2-4 

pi of ligation mixture was gently mixed with the cells in a Falcon 352005 

polypropylene tube (Becton Dickinson) and incubated on ice for 30 minutes. The 

cells were then subjected to a heat shock at 42°C for 90 seconds and then placed on 

ice for 2 minutes. 500 pi of SOC (SOB with 20 mM glucose from Sigma) was 

added and this was incubated at 37°C with shaking at 225 rpm for 1 hour to allow 

expression of the antibiotic resistance gene. Aliquots of this were plated on to LB- 

agar plates containing inhibitory concentrations of the appropriate antibiotic (50 

pg/ml ampicillin (Sigma) or 25 pg/ml Zeocin from Invitrogen).

2.2.8 Preparation of plasmid DNA

2.2.8.1 Small scale preparation of plasmid DNA by alkaline lysis 

extraction

LB medium (2 ml) containing the appropriate antibiotic was inoculated with a single 

bacterial colony. This was grown at 37°C overnight with shaking at 225 rpm. The 

bacterial culture was then centrifuged at 13,000 rpm for 30 seconds and the 

supernatant aspirated off. The cells were resuspended in 100 pi of ice-cold solution I 

(50 mM glucose, 25mM Tris.HCl -  pH 8, 10 mM EDTA (Sigma) -  pH 8) with 

vortexing. 200 pi of Solution II (0.2 NaOH, 1% SDS) was added and carefully 

mixed by inversion. 150 pi of ice cold solution III (3 M potassium acetate, glacial 

acetic acid) was added and mixed carefully by inversion and stored on ice for 5 

minutes. This mixture was then centrifuged at 13,000 rpm for 5 minutes and the 

supernatant transferred to a new eppendorf. 400 pi of Phenol/chlorophorm 

(Amresco) (1:1) was added and mixed with vortexing to extract the protein from the 

sample. This was then centrifuged at 10,000 rpm for 2 minutes. The top layer of
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liquid was transferred into a tube containing 800 îl of 100% ethanol, vortexed and 

centrifuged at 13,000 rpm for 5 minutes. The supernatant was aspirated off and the 

pellet washed with 70% ethanol. The remaining ethanol was evaporated off by 

placing the tube into a hot block for a few minutes. The DNA was then resuspended 

in 20 pi of MQ water containing 50 p,g/ml RNAse A (Roche).

2.2.8.2 Large scale preparation of plasmid DNA

Plasmid purification kits from Qiagen (Qiagen Plasmid Maxi Kit and Qiagen 

HiSpeed™ plasmid Midi Kit) were used according to the manufacturers instructions. 

LB medium (250 ml -  maxi, or 50 ml - midi) of was inoculated with a single colony 

or a stab from a glycerol stock and grown overnight at 37°C with shaking at 225 

rpm. Cells were harvested by centrifugation at 6,000 rpm (using a Beckman J2-M1 

centrifuge, JA-14 rotor) for 15 minutes at 4°C. The pellet was resuspended in ice 

cold buffer PI (50mM Tris.Cl (pH 8.0), 10 mM EDTA, lOOp-g/ml RNAse A) by 

vortexing. Buffer P2 (200mM NaOH, 1% SDS) was added and mixed gently by 

inverting, and incubated on ice for 5 minutes. Buffer P3 (3 M potassium acetate, pH 

5.5) was added and mixed gently by inverting, and incubated on ice for 10-15 

minutes (room temperature for the midi kit). Different volumes of buffers were used 

for the two kits, 10 ml of buffers P I-3 were used for the maxi kit, and 6 ml for the 

midi kit.

Centrifugation was used to isolate the DNA in the maxi kit protocol. The mixture 

was centrifuged at 13,000 rpm (using a Beckman J2-M1 centrifuge, JA-14 rotor) for 

30 minutes at 4°C. The supernatant was added to a Qiagen tip, previously 

equilibrated with 10 ml QBT (750mM NaCl, 50mM MOPS, 15% isopropanol, 

0.15% Triton X-100). The supernatant moved through the tip by gravity flow, then 

the tip was washed twice with 30 ml of QC (1 M NaCl, mM MOPS, 15% 

isopropanol), and the DNA eluted with 15 ml of QF (1.25 M NaCl, 50 mM Tris.HCl 

(pH 8.5), 15% isopropanol) into a glass tube. The DNA was precipitated with 0.7 

volumes of room temperature isopropanol and this was centrifuged at 10,500 rpm 

(using a Beckman J2-M1 centrifuge, JA-17 rotor) for 30 minutes at 4°C. The 

supernatant was then poured off and the pellet washed with 5 ml of room
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temperature 70% ethanol, and then air-dried for 10-15 minutes. The pellet was then 

resuspended in 1 ml of TE buffer (10 mM Tris.Cl, ImM EDTA, pH 8.0).

The HiSpeed midi kit (Qiagen) used filtration to isolate the DNA. The cell lysate 

was forced gently through a QIAfilter cartridge and into a Qiagen tip that was 

previously equilibrated with 4 ml QBT. When this had passed through by gravity 

flow the tip was washed with 20 ml of QC, and the DNA eluted with 5 ml of QF. 

The DNA was precipitated with 0.7 volumes of room temperature isopropanol and 

incubated at room temperature for 5 minutes. The precipitated DNA was then forced 

through a QIA precipitator with a syringe, and the QIA precipitator was washed with 

2 ml of 70% ethanol. Air was then forced through repeatedly to dry the membrane 

of the QIA precipitator. The DNA was then eluted with 600 pi of TE buffer.

The yield of the DNA preparation was determined using ether a BIORAD 

SmartSpec™ 3000 spectrophotometer or a Beckman Coulter DU 800 

spectrophotometer. The absorbance at 260 nm (A260) and 280nm (A280) was 

measured. The DNA concentration was determined from the absorbance measured 

at 260 nm. A solution containing 50 pg/ml of double-stranded DNA has an 

absorbance of 1 at 260 nm, calculated assuming that the mass of a nucleotide pair in 

DNA is 660 daltons. The purity of the DNA was determined from the value of 

A260/A280, with approximately 1.8 indicating pure DNA. The DNA preparation was 

also run on an agarose gel to visualize the DNA.

2.2.9 Site-directed Mutagenesis used to construct a 7 1TM-5 HT3A 

Site-directed mutagenesis (SDM) was performed using the QuikChange™ site- 

directed mutagenesis kit (Stratagene) to the manufacturers instructions. Two 

complimentary oligonucleotide primers (typically of length 25-45 bp) were designed, 

containing the desired. Oligonucleotide primers were designed so that the GC base 

content (%GC) was a minimum of 40%, the melting temperature (Tm) was greater 

than or equal to 78°C using the equation:

Tm=81.5+0.41(%GC) - 657/N -% mismatch
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Where N is the primer length in bases. Primers were designed to end in G or C to 

ensure then ends of the primer hybridise to the template DNA. Primers were 

purified by polyacrylamide gel electrophoresis by the supplier (Genosys).

Site-directed mutagenesis reactions were performed in a volume of 50 pi containing 

50 ng of template, 125 ng of each of the two oligonucleotides, 1 pi of dNTP mix 

from kit, lx reaction buffer and 1 pi of P/wTurbo DNA polymerase (2.5 U/pl). The 

reaction was heated to 95 °C for 30 seconds and then the thermocycling reaction was 

performed for 12-18 cycles as follows:

95°C for 30 seconds (denaturation)

55°C for 1 minute (annealing)

68°C for 1/ minute per kilobase of plasmid length (extension).

The reaction mixture was then cooled on ice for 2 minutes and then 1 pi of the 

restriction enzyme Dpnl (10 U/pl) was added to digest the methylated, non-mutated 

parental template DNA. DNA was incubated with Dpnl at 37°C for 1 hour. 

Bacterial cells were then transformed with the DNA product. 1 pi of digested DNA 

was mixed with 50 pi of XL 1-blue supercompetant E. coli cells in a chilled Falcon 

2059 polypropylene tube (Becton Dickinson) and incubated on ice for 30 minutes. 

The cells were then heat shocked at 42°C for 45 seconds, put on ice for 2 minutes 

and then incubated in 500 pi of NZY+ broth (10 g/1 of NZ amine (casein hydrosylate 

enzymatic, Invitrogen), 5 g/1 yeast extract, 5 g/1 NaCl -  pH 7.5, 12.5 ml/1 of 1 M 

MgCL, 12.5 ml/1 of MgS04  and 10 ml/1 of 2 M glucose) for 1 hour with shaking at 

225 rpm. 250 pi of this transformation mix was plated onto LB agar plates 

containing the appropriate antibiotic and incubated at 37°C overnight.

The mutation was verified by nucleotide sequencing, and in cases where mutagenesis 

created a novel restriction enzyme site, by restriction enzyme digestion.

2.2.10 Nucleotide sequencing

Fluorescent-based cycle sequencing was carried out using the ABI Prism® BigDye ™ 

Terminator Cycle Sequencing Ready Reaction Kit 1.0 and 1.1 (ABI Applied 

Biosystems, Applera UK) according to the manufacturer’s instructions. The reaction
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was carried out in a volume of 20 pi and contained 200-500 ng of template DNA, 3.2 

pmol of primer and 8 pi of Terminator Ready Reaction Mix (dye-labelled ddNTP 

terminators, unlabelled dNTPs, AmpliTaq DNA polymerase, MgCl2 and buffer). 

The thermocycling reaction was performed for 25 cycles as follows:

96°C for 30 seconds (denaturation)

50°C for 15 seconds (annealing)

60°C for 4 minutes (extension)

DNA was precipitated by the addition of sodium acetate (2 pi, pH 5.2) and 99% 

ethanol (50pl) per 20pl of reaction. This was incubated on ice for 15 minutes and 

then centrifuged at 13,000 rpm for 15 minutes. The supernatant was aspirated off 

and the pellet washed in 500pl of 70% ethanol. The remaining ethanol was 

evaporated off by placing the tube in a hot block for a few minutes, and then 

resuspended in 10 pi of formamide. Samples were sequenced using an ABI Prism® 

3100-Avant Genetic Analyzer (ABI Applied Biosystems). Fluorescent DNA 

fragments were run on a 50 cm capillary array using POP 6 polymer (ABI Applied 

Biosystems) and the data was extracted using HOO-Avant Data Collection Software 

Version 1.0 (ABI Applied Biosystems). Sequences were analysed using either 

SeqEd™ (ABI Applied Biosystems) or Mac Vector™ 7.2.2 (Accelrys).

2.3 M am m alian  cell line and transfection

A subclone of the human embryonic kidney (HEK) 293 cell line, tsA201 cells, were 

obtained from Dr William Green (University of Chicago, IL, USA). This HEK cell 

line stably expresses an SV40 temperature sensitive T antigen.

2.3.1 Cell culture

Human embryonic kidney tsA201 cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) (Gibco-Invitrogen) in a humidified incubator containing 

5% C 0 2 at 37°C. DMEM contains 2 mM L-GlutamaxTM (Gibco-Invitrogen), 10% 

heat inactivated foetal calf serum (FCS) (Sigma), 100 units/ml penicillin and 100 

pg/ml streptomycin (Gibco-Invitrogen).
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2.3.2 Transient transfection

Cells were transfected using the Effectene™ Transfection Kit (Qiagen) according to 

the manufacturer’s instructions. Cells were trypsinised and re-plated the day before 

transfection, and then again 4-6 hours before transfection to 25-30% confluency. The 

cells were left for 4-6 hours to allow them to adhere to the bottom of the plate, and 

then media was removed to make the appropriate volume. For radioligand binding, 

western blotting and calcium-influx assays, 10 cm plates (Corning) were used 

containing 3 ml of medium. To transfect a 10 cm dish, 0.6 pg of plasmid DNA was 

added to 120 pi of Buffer EC in a sterile microfuge tube. 4.8 pi of Enhancer (DNA 

condensing enhancer solution) was added and incubated for 5 minutes. 13 pi of 

Effectene (non liposomal lipid formulation which coats condensed DNA with 

cationic lipids) was added and incubated for 10 minutes. 600 pi of growth medium 

was added and this mixture was dropped onto the cells making a final volume of 

approximately 3.7 ml. After 16 hours, 7 ml of growth medium was added.

For electrophysiological studies and enzyme-linked assays, cells were plated onto 13 

mm glass cover slips (VWR international) coated with collagen (10 pg/ml) and 

poly lysine (Sigma) (10 pg/ml) in a 3.5 cm dish (Falcon, Becton Dickinson) 

containing 1 ml of medium. The same procedure was used as above with 0.2 pg 

DNA, 1.6 pi of Enhancer, 4.3 pi of Effectene and 200pl of growth medium. Cells 

were used 38-48 hours after transfection.

2.4 R adio ligand  binding

Radioligand binding was were used to estimate the amount of expressed receptor. 

Binding was performed on either intact cells (to determine levels of receptor 

expressed on the cells surface) or permeabilised cells (to determine the level of total 

cellular receptor). All calculations were performed using Microsoft Excel.

2.4.1 Iodinated a-bungarotoxin ([125I]a-B T X ) binding

The radioligand [125I]a-bungarotoxin ([125I]a-BTX; specific activity 200 Ci/mmol) 

was purchased from Amersham. Cells were rinsed and harvested with Hanks’ 

buffered saline solution (HBSS; 1.26 mM CaCb, 0.49 mM MgCl2.6H20, 0.41 mM
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M gS04.7H20 , 5.33 mM KC1, 0.44 mM KH2P 04, 137.9 mM NaCl, 0.34 mM 

Na2H P04.7H20 , 5.56 mM D-Glucose) and split into two samples for total and 

whole-cell binding. For total binding, cell membranes were prepared by 

freeze/thawing and were resuspended in phosphate buffer containing protease 

inhibitors (4 pg/ml pepstatin, 8 pg/ml leupeptin, 8 pg/ml apoprotinin) and 2.5% 

bovine serum albumin (BSA) (Sigma). Membranes were incubated with 15 nM 

a-B TX  radioligand (5 nM [125I]a-BTX and 10 nM unlabelled a-BTX , 

Calbiochem) for 2 hours on ice. Non-specific [ I]a-BTX  binding was determined 

by adding 1.25 mM nicotine (Sigma) and 1.25 mM carbamylcholine-chloride 

(Sigma). Samples were harvested onto Whatman GF/A filters pre-soaked in 0.5% 

w/v polyethylene-imine (Sigma) with a Brandel cell harvester (Model M36, Semaat, 

UK) and assayed in a gamma counter. To assay cell-surface [125I]a-BTX binding, 

cells were incubated and harvested at room temperature as described above for cell 

membranes using HBSS instead of phosphate buffer.

The values obtained using the gamma counter (counts per minute, cpm) were 

converted into fmol of ligand bound using the following equation:

10Specific counts per minute/(E x S x 2.2 x 10' )

Where the specific counts per minute is equal to the total counts minus the non­

specific counts, E is the efficiency of the counter and S is the specific activity of the 

radioligand in Ci/mmol. This value was then converted into fmol per mg of protein 

or fmol per 106 according to the amount of protein or number of cells per assay tube 

(see section 2.4.3). Cells were counted using a haemocytometer.

2.4.2 Tritiated radioligand binding

The radioligand [3H]GR65630 (specific activity 75 Ci/mmol) was purchased from 

Perkin Elmer. This radioligand is membrane permeable and was therefore used for 

binding to permeabilised cells. Cell membranes were prepared by freeze/thawing 

and were resuspended in phosphate buffer containing protease inhibitors (4 p,g/ml 

pepstatin, 8 p,g/ml leupeptin, 8 (ig/ml apoprotinin). Membranes were incubated with 

radioligand (10 nM [3H]GR65630) for 2 hours on ice. Non-specific binding of
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[3H]GR65630 was determined by adding 12.5 mM 5-hydroxytryptamine (5-HT) 

(Sigma). Samples were harvested onto Whatman GF/B filters pre-soaked in 0.5% 

w/v polyethylene-imine with a Brandel cell harvester, and assayed by scintillation 

counting. The values obtained using the scintillation counter (disintegrations per 

minute, dpm) were converted into fmol of ligand bound using the equation:

1 9Specific disintegrations per minute/(S x 2.2 x 10' )

Where specific disintegrations per minute is equal to the total disintegrations minus 

the non-specific disintegrations, and S is the specific activity of the radioligand in 

Ci/mmol. There is no need to include the efficiency of the counter as the 

scintillation counter was set to give the disintegrations per minute, which is equal to 

the counts per minute divided by the efficiency of the counter.

2.4.3 Protein assay and cell counting
The protein concentration of cell membrane preparations was determined using a 

BioRad DC protein assay according to the manufacturer’s instructions. Typically, 

20 pi of diluted sample (1/10) or bovine serum albumin (BSA) standard was added 

to a semi-microcuvette (Starstedt) and mixed with 100 pi of Reagent A (alkaline 

copper tartrate solution). 800 pi of Reagent B (a dilute Folin Reagent) was added 

and mixed with vortexing. This was incubated at room temperature for 15-30 

minutes. Protein concentration was determined by measurement of the absorbance at 

750 nm with a spectrophotometer. Samples were compared to BSA standards at 

concentrations of 0.1, 0.2, 0.4, 0.8, 1.0, 1.2 mg/ml.

2.5 C ell surface enzym e-linked  an tib od y assay

The antibody pAbl20 (Spier et al., 1999) was used to label the extracellular N- 

terminal domain of the 5-HT3A subunit and the 5-HT3A3’4Loop'a7 chimera. The 

primary antibody pAbl20 was used at 1/750 and the secondary antibody goat-anti- 

rabbit was used at 1/2000. Cells transiently transfected onto 13 mm glass cover slips, 

were washed with HBSS supplemented with 25 pM MgCb and 25 pM CaCh 

(HBSS++).
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Non-specific binding was blocked by incubation in HBSS^ with 2% BSA 

(BLOCK). Cells were incubated with the primary antibody in BLOCK and 10% 

FCS for 1 hour in a humidified chamber. Cells were then washed five times in 

HBSS and fixed using 3% paraformaldehyde (Sigma) for 15 minutes. Cells were 

incubated in the secondary antibody conjugated to horseradish peroxidase (HRP) in 

BLOCK and 5% FCS for 1 hour in a humidified chamber. Cells were washed five 

times and then incubated in 750 pi of a liquid HRP substrate (3,3’,5,5’- 

tetramethylbenzidine, Amersham) to quantify antibody binding. The density of the 

colour change was measured with a spectrophotometer at 655 nm

2.5.1 Total cell receptor enzyme-linked antibody assay

The assay was performed essentially as described above but with the following 

changes: Cells were first fixed using 3% paraformaldehyde and permeabilised with 

0.1% Triton-XlOO, and then non-specific binding was blocked. The BLOCK 

solution contained 2% BSA, 10% FCS, 5% milk and 0.1% Triton-XlOO. 0.1% 

Triton-XlOO was also included in the wash solution.

2.5.2 Immunofluorescent microscopy

The protocol used for immunofluorescent labelling was very similar to that described 

for the enzyme-linked assay (Section 2.4). Cells were transfected as described in 

Section 2.2.2. Rhodamine a-B TX  (Molecular Probes) was used to visualize 

receptor localization in the cell. Cells were first fixed using 3% paraformaldehyde 

and permeabilised with 0.1% Triton-XlOO, and then non-specific binding was 

blocked. The BLOCK solution contained 2% BSA. The cells were incubated with 

250 nM rhodamine a-BTX in BLOCK for 1-2 hours in a dark humidified chamber 

then washed five times with HBSS++ and then once in water. The glass cover slips 

were mounted onto glass slides (BDH) in FluorSave (Calbiochem), and examined 

with a Zeiss Axiophot microscope using a Plan-Apochromat 100X 1.4 oil-immersion 

objective.
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2.6 In tracellu lar calcium  assay

Cells were re-plated into dark-walled 96-well tissue culture plates (Falcon, Becton 

Dickinson) 12-16 hours after transfection. The assay was performed 40-48 hours 

after transfection. The medium was removed from the cells which were then 

incubated in the membrane-permeable ratiometric calcium-sensitive dye Fluo 4 

acetoxymethyl ester (1 pM) plus 0.02% Pluronic® F-127 (Sigma) in HBSS at room 

temperature for 1 hour. The cells were then washed 2-3 times in HBSS and then 

incubated in an appropriate buffer, either HBSS or high calcium (HCA). The 

composition of the HCA buffer is as follows: 35 mM sucrose, 75 mM CaCh, 25 mM 

Hepes pH 7.4). The response of the cells to agonist was then assayed using a 

fluorometric imaging plate reader (FLIPR) (Molecular Devices, Winnersh) 

(Schroeder and Heagle, 1996). Cells were excited by light of 488 nm from a 4 W 

argon-ion laser and the emitted fluorescence passed through a 510 to 570 nm 

bandpass interference filter before detection with a cooled ‘charge coupled device’ 

camera (Princeton Instruments). A range of concentrations of agonist were prepared 

in a separate 96-well plate (Nunclon) for each assay, such that each column had a 

different concentration. The agonist was added to the cells and, after the continued 

presence of the agonist for 2 minutes, 2 pM iononmycin (Sigma) was applied to the 

cells. Ionomycin permeablilsed the cell membranes and allows calcium to enter.

The data was exported and analysed using Microsoft Excel. The background level of 

fluorescence was calculated for each well using the average of the values and time 

points before agonist application. The fluorescence value at each time point was 

divided by the backgound level to normalise the data. Each 96-well plate had at least 

two rows of mock transfected cells. Data averaged from these cells were used as a 

negative control. To calculate the actual response of each well of transfected cells, 

the values at each time point of the mock transfected cells were subtracted from the 

values of the transfected cells at equivalent agonist concentration applications within 

the same 96-well plate. There were two to four rows of cells transfected with the 

same DNA, and the results of these were averaged.
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The size of the peak of the response was plotted against the concentration of agonist 

used to produce concentration-response curves. The data was imported into 

SigmaPlot, which was then used to fit the data with the Hill equation:

R=Rmax x (AnH/(AnH + ECso""))

Where R is the response to agonist, R max is the maximum response to agonist, A is 

the concentration of agonist, nH is the Hill coefficient and EC50 is the concentration 

that evokes the half maximal response.

2.7 Electrophysiological recording

HEK tsA201 cells, grown on glass cover slips coated in collagen and polylysine, 

were co-transfected with pEGFP-C2 (Clontech), encoding green fluorescent protein, 

and plasmids containing either wild type or chimeric subunit cDNA in the ratio of 

1:20 .

2.7.1 W hole-cell patch-clamp recording

Whole-cell recordings were performed at room temperature, 38-48 hours after 

transfection. All chemicals listed in this section were obtained from Sigma. 

Recording solution contained (in mM): 110 NaCl, 5.4 KC1, 0.8 MgCh, 1.8 CaC^, 25 

glucose, 0.9 NaH2PC>4, 44 NaHCC>3 equilibrated with 95% O2 and 5% CO2. 

Borosilicate glass pipettes (Harvard GC150F-7.5) of resistance 2-8 MQ contained 

(in mM) 140 CsCl, 10 Hepes, 10 EGTA, 0.5 CaCb, 29.53 CsOH, pH adjusted to 

7.26, osmolarity 283 mOsm/Kg H2O. The series resistance and the whole cell 

capacitance were measured, and for all cells patched they were 28±0.4 MQ and 33±3 

pF respectively («=388). For cells transfected with 5-HT3A the series resistance was 

compensated by at least 80 %. Unless otherwise specified, the holding potential was 

-60 mV. Fast cell superfusion was achieved with a theta-barrelled application 

pipette made from 1.5 mm diameter borosilicate glass theta tubing (Harvard AH-30- 

0114), which was moved laterally using a stepper motor.
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Agonist evoked currents were recorded using an Axopatch 200B amplifier. These 

were stored on magnetic or digital audio tape for subsequent analysis or digitised 

online at 10 kHz using WinEDR (Strathclyde Electrophysiology Software; 

www.strath.ac.uk/Departments/PhysPharm) after filtering and further amplification 

to provide a low-gain DC, 2 kHz record that was used to measure the agonist- 

induced mean current.

2.7.2 Antagonist block and time course o f recovery

Whole-cell responses were blocked by the appropriate antagonist (Chapter 4). 

Antagonist was applied by exchanging the recording solution flowing through the 

bath for recording solution plus antagonist. The theta-barrelled application pipette 

was moved away from the cell to allow antagonist to wash on between agonist 

applications. Once a block of the responses was achieved the bath flow was 

changed back to recording solution alone to wash off the antagonist. The time 

course of recovery from block was examined for receptors that gave repeatable 

whole-cell responses every 10 seconds. The percentage of block of the response (as 

compared to the size of the response before the block) was plotted against time and 

the data fitted with an exponential equation:

C=Cmax X

Where C is the percentage block, Cmax is the maximum block, t is the time after the 

antagonist was removed and x the decay time constant for recovery from block. This 

allowed the estimation of the time constant, x, of recovery.

2.7.3 Reversal potential and rectification analysis

Rectification was investigated over the voltage range from -60 to +40 mV in 10 mV 

steps using three 500 ms agonist applications at 10 second intervals every minute. 

The size of agonist responses were verified at -40 and -60 mV after the final 

response at +40 mV. The data points were then fitted with a polynomial equation 

and the reversal potential (Erev) was calculated from the solved equation. The 

rectification was then quantified as follows:
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Rectification Index=[l4o/(40 -Erev)]/[I-6o/(-60-Erev)]

Where I40 is the current at +40mV, L60 is the current at -60 mV.

2.7.4 Desensitization analysis

The kinetics of desensitization were analysed on 20 second agonist applications for 

most constructs. For rat a  7 subunit, shorter (500 ms) agonist applications were used 

because of the rapid and complete desensitization of this receptor. Responses were 

inverted and fitted with single or double exponential functions:

I=SS+Imax x e'(t/x) (single) or I=SS+Imaxi x e'(t/xl) + ImaX2 x e'(t/x2) (double)

Where I is the whole cell current, Imax is the peak of the whole cell current, SS is the 

steady state current, t is the time after the peak of the whole cell current and x is the 

time constant of desensitization. The fit of a single or double exponential was fitted 

by eye. Thus the time constants (x) and relative amplitude for double exponential 

function and the steady state desensitization were obtained. Where a double 

exponential fit was used, a weighted time constant was calculated by multiplying 

each time constant by the proportion of its’ starting amplitude.

2.7.5 Conductance estimation from noise analysis

A high-gain band pass (2 Hz -2  kHz) record was recorded for variance and spectral 

density analysis. Both this high gain AC recording and the low gain DC recording 

were divided into segments of 0.82 seconds duration and edited to remove any 

segments with obvious artefacts.

2.7.5.1 Noise variance analysis

The relationship between the variance and the single-channel current can be derived 

from the binomial theorem, assuming that channels open independently from one 

another (Traynelis and Jaramillo, 1998). For a cell with N channels that have a 

single-channel current of i, the mean current (I) is equal to:

I=iNp
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where p is the probability that the channel is open. The current variance (o 21) is 

equal to:

or2 r=i2Np(l-p)

When this is rearranged and N is substituted for: 

aVilOp)

This means that when p is small (<0.1) then the variance is directly proportional to 

the mean current, with the single-channel current as the constant of proportion. The 

variance of each high gain AC segment was determined and plotted against the mean 

current of the equivalent low gain DC segment. This was then fitted with a straight 

line by linear regression and the single-channel conductance derived from the slope 

of the line (i), divided by the holding potential of the recording (-60mV in this case).

2.7.5.2 Noise power spectral density analysis

The relationship between the variance of the current fluctuations and the kinetics of 

receptor activation was examined by generating a power spectrum. The objective 

was to show how energy (amplitude squared per frequency) is distributed across the 

frequencies of the variance. A 10% cosine taper window was applied to each 

segment and the single-sided spectral density computed by fast Fourier transform 

and averaged over 16-32 logarithmically spread frequency ranges. The mean 

background spectrum was subtracted from the mean spectrum in the presence of the 

agonist to give the net agonist-induced noise spectrum. The single-channel 

conductance was calculated from the integration of the net power spectrum fitted 

with a single or the sum of two lorentzian components as judged by eye (Dempster 

2001);

S=S(0/(l+ (f/fc)2 (single) or S= S«,)i/(l+(f7fci)2+ S(0)2/(l+(f/fc2)2

Where S is the spectral density, S(o> is the asymptotic spectral density at zero 

frequency, f  is the frequency of the variation and fc is half power frequency. The
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time constant T=l/(2jtfc) is an estimate of the mean single channel open time 

(reviewed Traynelis and Jaramillo, 1998). For two-component spectra a weighted 

noise time constant was calculated from xw = x\A\ + T2A 2 where A\ and A2 are the 

relative areas of each Lorentzian component. The number of lorenztian equations 

used to fit the data does not reflect the number of conductance states. The single 

channel conductance, y, was calculated from;

Y=S(0)/ 4Im(V-Vrev)

Where Im is the mean current, V is the holding potential and Vrev is the reversal 

potential of the receptor.

2.8 S tatistical analysis

All statistical analysis was performed on Microsoft Excel, with a minimum 

significance level of /K0.05. For most comparisons in Chapter 3 and all in Chapter 

4, an F test was performed to examine whether data had the similar variances. If the 

variances were not significantly different a student’s t-test was performed. In cases 

where the variances were significantly different a modified Z test was performed. 

For the binding data in Chapter 3 Section 3.3.2 a 1-way analysis of variance and 

subsequent Tukey’s test was performed to determine whether any sample were 

significantly different.
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CHAPTER 3 

a7/5-HT3A Subunit Chimeras
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3.1 Introduction

The nAChR a l  subunit was first cloned in 1990 and, although it has been shown to 

generate functional homomeric receptors when expressed in Xenopus oocytes 

(Couturier et al., 1990a; Campos-Caro et al., 1997), considerable difficulties have 

been encountered in attempts to generate functional nAChRs by heterologous 

expression of a l  in a range of mammalian cell types (Cooper and Millar, 1997; 

Kassner and Berg, 1997; Rangwala et al., 1997; Zhao et al., 2003). In contrast, such 

difficulties have not been encountered in heterologous expression of homomeric 5- 

hydroxytryptamine (5-HT; serotonin) type 3 receptors (5-HT3RS). Heterologous 

expression of the 5-HT3A subunit results in efficient formation of functional 5-HT3RS 

in all cell types which have been examined (Maricq et al., 1991; Hargreaves et al., 

1994; Cooper and Millar, 1997; Gunthorpe et al., 2000).

A subunit chimera containing the extracellular domain of the a l  subunit and the 

transmembrane and intracellular domains of the murine 5-HT3A subunit generates 

high levels of functional cell-surface receptors in all cell lines tested, including cells 

in which a l  fails to do so, for example human embryonic kidney (HEK) cells (Eisele 

et al., 1993; Blumenthal et al., 1997; Rangwala et al., 1997; Cooper and Millar, 

1998). These findings have suggested that inefficient folding, assembly or 

trafficking of the a l  subunit can be attributed to regions other than the N-terminal 

domain (transmembrane and intracellular regions). This conclusion is supported by 

studies conducted with chimeras of a l  and 5-HT3A (Campos-Caro et al., 1996; 

Dineley and Patrick, 2000; Valor et al., 2002) and chimeras containing other nAChR 

subunits fused with a l  (Campos-Caro et al., 1997) or with parts of the 5-HT3A 

subunit (Cooper and Millar, 1998; Cooper et al., 1999; Harkness and Millar, 2001).

In the present study a series of subunit chimeras were constructed. The aim of this 

project was to identify which domains of the nAChR a l  subunit and the 5-HT3A 

subunit are important for folding, assembly or trafficking of these receptors. By 

heterologous expression of these chimeras in HEK tsA201 cells, domains have been 

identified which markedly influence folding, assembly, cell-surface expression and 

ion-channel conductance.
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3.2 Construction of chimeras

A number of chimeric subunits (Figure 3.1) were constructed containing regions of 

the rat nAChR a l  subunit (Seguela et al., 1993) and the murine 5-HT3A subunit 

(Maricq et al., 1991). All constructs were verified by nucleotide sequencing.

The a 7 (V201)/5-HT3A chimera (here referred to as a 7v201-5-HT3A) has been described 

previously (Eisele et al., 1993; Cooper and Millar, 1998). Three further a7/5-HT3A 

subunit chimeras (a7 S235-5-irnA a7 D265-5-HT3A a 7G301‘5‘HT3A) each of which

contained an N-terminal a l  domain and a C-terminal 5-HT3A domain have also been 

described previously (Cooper, 1998).

Chimeras in which the Ml and M2 domains of a l  were replaced by the 

corresponding regions of the 5-HT3A subunit (a72™'5'HT3A), and M l-M3 domains of 

a l  were replaced by the corresponding regions of the 5-HT3A subunit (a73™'5'HT3A), 

have been described previously (Cooper, 1998). Additional subunit chimeras were 

constructed, details of which are in the subsequent Sections (Section 3.2.1-3.2.7).

3.2.1 a 71TM-5HT3A

A chimera was constructed, in which the Ml domain of a l  was replaced by the 

corresponding region of the 5-HT3A subunit (a7 1TM'5'HT3A). A BspEl site was 

introduced into the a 7v201-5-HT3A chimeric DNA after Ml (at Ser235) by amplification 

using PCR with olignucleotides OL694(+) and OL695(-> The resulting fragment was 

subcloned into a Hindlll site (in the 5’ end of the multiple cloning site) and a BspEl 

site (introduced by site directed mutagenesis at Ser235) in a l.

Oligonucleotides used to amplify a7 V201'5'HT3A fragment:

OL694(+) 5’ CGA CTC ACT ATA GCG AGA CCC AAG CTT GCT A G 3'

Hindlll

OL695(.) 5' CTT GAA AGA GAC TCT CTC TCC GGA GTC CG 3'

BspEl
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Figure 3.1 Diagram of a7/5-HT3A chimeras.

The a l  and 5-HT3A domains are shown are shown, see keys. The four 

transmembrane (M1-M4) domains are indicated by the dashed boxes. TM- 

transmembrane domain. Loop -  M3 to M4 cytoplasmic loop. * indicates 

constructs nreoared bv the author.
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Oligonucleotides used for the site directed mutagenesis of cx7:

OL692c  5 GCT GCC TGC AGA CTC CGG AGA GAA AAT CTC TCT TG G 3'

BspEl

OL693(., 5' CCA AGA GAG ATT TTC TCT CCG GAG TCT GCA GGC AGC 3'

BspEl

3.2.2 a 7 4™ '5'HT3A

A chimera was constructed in which the M l-M3 and M4 domains of a l  were 

replaced by the corresponding regions of the 5-HT3A subunit (a74™'5'HT3A). This 

was achieved by annealing complementary PCR fragments amplified from a 7 3™’5' 

HT3A (region up to just before M4) and 5-HT3A (M4 to the end), and DNA 

polymerase I was used for elongation resulting in a change from a l  (at Val443) to 5- 

HT3a (at Val433). This fragment was then subcloned by digestion with Nhel and Sail 

into pZeo at the Nhel and Xhol sites in the multiple cloning site.

Oligonucleotides used to amplify the a 73™-5-HT3A fragment:

T7(+) 5 ATT AAT ACG ACT CAC TAT AGG G 3

OL292( )5 CAG CAG CCT GTC CAG CAC GCA GGC TCG AAA CTT CCA T 3

5-HT3A | al

Oligonucleotides used to amplify 5-HT3A fragment:

OL29i(+) 5 TTT GCA GCC TGC GTG CTG GAC AGG CTG CTG TTC CGC A 3

al | 5-HT3A

OL276(.) 5 - AAG CTG CAA TAA ACA AGT TGG GC 3

3 2 3 q  ^3-4Loop-5-HT3 A

A chimera was constructed in which the M3-M4 intracellular loop of a l  was 

replaced with the corresponding region of 5-HT3A (ay3-4100?-5̂ ™ ), An Xbal site 

was introduced into the a 7G301-5-HT3A chimeric DNA (at Leu419) by amplification 

using PCR with olignucleotides T7 and OLso9(-)- The resulting fragment was 

subcloned into a BamEE site and an Xbal site in the multiple cloning site of pRK5 

(pRK5G301*).
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Oligonucleotides used to amplify a 7G301-5’HT3A fragment:

T7 - as shown above in Section 3.2.2

OL509(-) 5' GCA GCC TG TCTAGAA CGT ATC CCA C 3

Xbal

An Xbal site was introduced into the a l  cDNA (at Val444) by amplification using 

PCR with olignucleotides OL5o8(+) and SP6(.). The resulting fragment was subcloned 

into an Xbal site in pRK5G301*. As pRK5G301* was cut with a single restriction 

enzyme, to prevent religation the linearized plasmid was dephosphorylated by 

treatment with calf intestinal phosphatase (Chapter 2 Section 2.1.4).

Oligonucleotides used to amplify the a7(M4) fragment:

OL308(+) 5' CTG CTG TCT AGA CCG CTT GTG CC T3'

Xbal

SP6(.)5' TCT AGC ATT TAG GTG ACA CTA TAG 3l

3.2.4 5-HT3A3’4Loop"a7

A chimera was constructed in which the M3-M4 loop of 5-HT3A was replaced with 

the corresponding region of a l  (5-HT3A3“4Loop"“7). A section of the a 74™-5-HT3A
• 9 7 1chimera was subcloned from an Accl site at the position Val to an Apal site in the 

3’ end of the multiple cloning site, into an Accl site at Val286 to a Apal site after the 

3’ end of the cDNA in 5-HT3A subunit.

3.2.5 a 7 1/4™-5HT3A

A chimera was constructed in which the Ml and M4 domains of a l  were replaced 

with the corresponding regions of the 5-HT3A subunit (a 7 1/4™-5-HT3A) a  B stZ lll 

site was introduced into the a 7 ™ -5-HT3A chimeric DNA (at Val443) by amplification 

using PCR with oligonucleotides T7iong and OL745(.). The resulting fragment was 

subcloned into an EcoRl site (at the 5’ end of the multiple cloning site) and a
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BstZMl site in the a 74™-5-HT3A (introduced by site directed mutagenesis at a l  Val443 

making V443I, by Sebastian Kracun, this laboratory).

Oligonucleotides used to amplify the a 7 1TM-5-HT3A fragment:

T7iong(+)5 GAA ATT AAT ACG ACT CAC TAT AGG GAG 3’

OL745(.) 5 CGG TCC AGTATACAG GCT GC 3’

BstZMl

Oligonucleotides used for site directed mutagenesis of a 74™-5-HT3A

OL59i(+)5GGA AGT TTG CAG CCT GTA TAC TGG ACA GGC TGC TGT TCC GC3

BstZMl

OL592(-)5 GCG GAA CAG CAG CCT GTC CAG TAT ACA GGC TGC AAA CTT CC3

BstZMl

3.2.6 a 7 "2/4TM-5-HT3A

A chimera was constructed in which the M l-M2 and M4 domains of a l  were 

replaced with the corresponding regions of the 5-HT3A subunit (a 7 1/2/4™-5-HT3A) 

Exactly the same method was used as described for the a 7 1/4™-5-HT3A chimera in 

section 3.2.5, but using a fragment of the a 72™-5-HT3A chimera instead of the a 7 1TM'
5-HT3A c J1jm e r a

3.2.7 a 7 ^ - 4TM-5-HT3A

A chimera was constructed in which the Ml and M3-M4 domains of a l  were 

replaced with the corresponding regions of the 5-HT3A subunit (a 7 1/3-4™-5-HT3A) a  

Kpnl site was introduced into the a 7 ,TM-5-HT3A chimeric DNA between M2 and M3 

(at a position equivalent to Ser266 in a l)  by amplification using PCR with 

oligonucleotides T7iong and OLi69(-> The resulting fragment was subcloned into an 

EcoBl site (in the 5’ end of the multiple cloning site) and a Kpnl site in the a 7 D265'5' 

HT3A chimera (at a l  Ser266).

Oligonucleotides used to amplify a 7 1TM-5-HT3A fragment:
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T7iong - as shown above in section 3.2.5

OLi69(.)5' GGG GGT ACC ATC AGA TGT TGC TGG CAT GAT CTC3' 

Kpnl

RESULTS
3.3 Radioligand binding to assay correctly folded receptor protein

3.3.1 The a 7 VJ01 5 HT3A chimera

Human embryonic kidney tsA201 cells were transiently transfected with plasmid 

expression vectors encoding either the nAChR a l  subunit or a previously described 

subunit chimera, a 7V201-5-HT3A (Cooper and Millar, 1998). The subunit chimera 

a yV20i-5-HT3A contains N-terminal extracellular domain of the nAChR a l  subunit 

together with the C-terminal (intracellular and transmembrane) domain of 5-HT3A.
19SRadioligand binding was performed with [ I]a-BTX on transfected cells (as 

described in Chapter 2, Section 2.4). A Student’s t-test was used to test for 

significant differences. As has been reported previously (Eisele et a l, 1993; 

Blumenthal et a l, 1997; Rangwala et al., 1997; Cooper and Millar, 1998), high
1 9 Slevels of [ I]a-BTX binding were detected on the surface of cells transfected with 

a 7v20i-5'HT3A subunjt chimera (3.0±0.4 pmol/mg protein, n= 12; Figure 3.2), which 

were significantly different from background (p<0.001) and from the levels of 

binding seen with cells transfected with a l  (p<0.005). High levels of [,25I]a-BTX 

binding were also detected in permeabilised cells (3.4±0.7 pmol/mg protein, n= 11, 

significantly above background/K0.001). In contrast, no significant specific binding
p c

of [ I]a-BTX was detected on the surface of cells (0.01±0.01 pmol/mg protein) or 

in permeabilised cells (0.01 ±0.01 pmol/mg protein) transfected with the a l  subunit. 

These findings are in agreement with previous studies (Cooper and Millar, 1997) 

which have demonstrated that the lack of specific [125I]a-BTX  binding is a 

consequence of an inability of the a l  subunit to assemble efficiently into an 

appropriately folded nAChR in this host cell environment.

These and previous findings have clearly implicated regions within the C-terminal 

region of the a l  subunit in inefficient assembly of functional nAChRs (Eisele et al.,
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1993; Blumenthal et a l, 1997; Rangwala et al., 1997; Cooper and Millar, 1998). 

Similar conclusions have been made from studies conducted with similar subunit 

chimeras which contain the N-terminal region of other nAChR subunits (e.g. a4  and 

|32 subunits) fused to the C-terminal region of 5-HT3A (Cooper et al., 1999; Harkness 

& Millar, 2001).

3.3.2 Additional a7/5-H T 3A chimeras

With the aim of identifying more precisely subunit domains influencing nAChR 

folding and assembly, several further a7/5-HT3A subunit chimeras were constructed 

as described in Section 3.1 (Figure 3.1) and the statistical significance was tested 

using an analysis of variance and a subsequent Tukey’s test. Chimeric subunits were 

expressed in tsA201 cells and examined for their ability to form a high-affmity 

binding site for [125I]a-BTX. As illustrated in Figure 3.2 and 3.3, no specific 

binding of [125I]a-BTX was detected in cells transfected with a7/5-HT3A chimeras 

containing an N-terminal a  7 subunit domain which terminated after transmembrane 

region Ml (a7S235-5'HT3A), M2 (a7D265'5-HT3A), or M3 (a7G301*5-HT3A). It would 

appear, therefore, that a l  sequences within the region of Ml (i.e. contained in 
a yS235-5-HT3A put absent jn a7 v20i-5-HT3Â  &re imp0rtant jn regulating efficient subunit

folding and assembly. A similar conclusion was made by a previous study of a7/5- 

HT3a chimeras (Dineley and Patrick, 2000).

Additional a7/5-HT3A subunit chimeras were constructed which contained the entire 

a l  sequence, except for selected transmembrane domains and in between 

transmembrane domains derived from the analogous regions of 5-HT3A (a7 1TM'5' 
HT3A, a 7 2™ - 5-HT3A, a 7 3TM-5-HT3A a 7 4TM-5-HT3A p i g u r e  3  ^  chimeras containing the

Ml region of 5-HT3A (a7 1TM’5’HT3A), Ml and M2 plus M l-M2 intracellular loop of 5- 

HT3a (a 72™-5-HT3A) or the M l, M2 and M3 plus the M l-M2 intracellular and M2- 

M3 extracellular regions (a 73™-5-HT3A) showed little or no specific [125I]a-BTX  

binding on the cell surface or within the cell (Figure 3.2). Replacement of the Ml 

domain of a l  alone with the analogous region of 5-HT3A is, therefore, not sufficient 

to permit efficient folding of a l.  Expression of a chimera (a74™'5'HT3A), which 

contained all four of the predicted transmembrane domains and the M l-M2 and M2- 

M3 regions from 5-HT3A, but containing the N-terminal and the large M3-M4
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Figure 3.2 Specific surface [125I]a-BTX binding of a7 and a7/5-HT3A 

chimeras in transiently transfected tsA201 cells.

Cells were counted and protein was assayed for each experiment to give (A), 

specific binding in pmol per 106 cells and (B), specific binding in pmol per mg 

of protein. n=6-12. The results were tested for significant differences using an 

analysis of variance and a subsequent Tukey’s test. * p<0.05 and ** /xO.Ol 

when compared to all other samples except a 7V201'5HT3A and a74™'5HT3A
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Figure 3.3 Specific total [  I]a-BTX binding o f a l  and al/5H Tu chimeras 

in transiently transfected tsA201 cells.

(A) Binding was done on the same cells as for whole cell binding, but cells 

were permeabilized, see methods section 2.3.1. n=6-12. The results were tested 

for significant differences using an analysis of variance and a subsequent 

Tukey’s test. ** /?<0.01 when compared to all other samples except a7 V201'
5HT3A and a l4TM-5HT3A Saturation binding in cells transfected with (B) the

a l V201-5HT3a and (C) the a l 4TM-5HT3a, n=2. Data was fitted with the Hill

equation in SigmaPlot. Kd values of 4.1±0.5 nM, 6.1±0.6 nM, and nH values of 

1.3±0.1, 1.3±0.3 respectively.
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intracellular loop of a7, resulted in high levels of specific [125I]a-BTX binding on 

the cell surface (2.6±0.4 pmol/mg protein, n=6; Figure 3.2, /?<0.001) and with 

permeablilsed cells (3.5±0.7 pmol/mg protein, «=6; Figure 3.3, /?<0.001). These 

values are not significantly different from those of the a 7v201-5-HT3A chimera. 

Saturation binding was performed on the a 7v201-5-HT3A ancj a 74TM-5-HT3A 

determine the concentration of [125I]a-BTX that would provide a fair comparison of 

the levels of binding of these two chimeras. There was no significant difference in 

the size of the dissociation constant or the hill coefficient tested (student’s t-test). 

The proportion of the receptors on the cell surface can be determined by dividing the 

cell surface binding by the total (permeabilised) cell binding. There was no 

significant difference between the two constructs that showed specific radioligand 

binding (a 7V20'-5-HT3A 73±6%, a 7 « M . 5-HT3A 85±19%, student’s t-test). This suggests 

that the subunit sequence within both the Ml and M4 regions are critical in 

regulating efficient subunit assembly and subsequent export to the plasma 

membrane.

To examine whether the transmembrane domains other than Ml and M4 are 

necessary for correct subunit folding and assembly, additional chimeras were made 

containing the entire a7  sequence except for the Ml and M4 of 5-HT3A (a 7 1/4™'5' 

HT3A) the M l, M2, M l-M2 intracellular region and M4 of 5-HT3A (a 7 1/2/4™-5’HT3A) 

and the M l, M3, M3-M4 intracellular loop and M4 of 5-HT3A (a 7 1/3-4™-5-HT3A)> 

None of these chimeras showed significant specific [125I]a-BTX  binding on the cell 

surface or within the cell (n=4, Figures 3.2 and 3.3).

These findings demonstrate that efficient subunit folding and assembly (as assayed 

by [125I]a-BTX binding) is possible in tsA201 cells only for those subunits 

examined which contain the region from the beginning of Ml to the end of M3, and 

including M4 from 5-HT3A (a 7V201-5-HT3A and a74™'5'HT3A). Replacement of the 

large intracellular loop of a 7V201-5-HT3A with that of the a l  subunit (a 74™-5-HT3A) did 

not have a significant effect on levels of [125I]a-BTX  binding (Figures 3.2 and 3.3). 

To examine further the influence of the large intracellular loop, two additional 

chimeras ( a 7 3'4LooP-5‘HT3A ancj 5-HT3A3*4Loop‘a7) were constructed (Figures 3.1). No 

[125I]a-BTX binding was detected in cells transfected with a 73-4Lo°p-5-HT3A (Figures
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3.2 and 3.3). High levels of specific binding of the 5-HT3A receptor ligand 

[3H]GR65630 (a membrane-permeable ligand) were detected in permeabilised cells 

transfected with 5-HT3A3’4Loop’a7 (0.47±0.14 pmol/mg protein, n=4; Figure 3.4A). 

When this construct was compared with the 5-HT3A subunit (0.30±0.09 pmol/mg 

protein, «=4; Figure 3.4A) there appeared to slightly greater specific binding with 

the 5-HT3A3’4Loop’a7 chimera, however this was not a statistically significant 

difference (student’s t-test). These findings are consistent with the conclusion that 

only those subunit chimeras containing regions from the beginning of Ml to the end 

of M3, and including M4 of 5-HT3A fold and assemble efficiently in tsA201 cells. 

These findings also provide further evidence that efficient or inefficient subunit 

folding is not determined by sequences present within the large intracellular loop 

region.

3.3.3 Enzyme-linked assay to determine cell surface receptors

As the serotonergic radioligand [ H]GR65630 is membrane permeable, it was not 

possible for it to be used selectively to detect cell surface receptors. For this reason 

an enzyme-linked assay was used with tsA201 cells transfected with the 5-HT3A 

subunit and the $_HT3A3’4Loop’a7 chimera to examine levels of cell surface receptor. 

The antibody pAbl20, which is immuno-reactive to the extracellular N-terminal 

domain of the 5-HT3A subunit (Spier et al., 1999), was used with the protocol 

described in Chapter 2, Section 2.5, for both intact cells (w=7) and permeabilised 

cells («=5) and either a student’s t-test or modified z-test has been used to test 

significance. As expected, the 5-HT3A subunit showed a significant signal above 

background for cell surface receptors (p<0.005) and total cell protein (p<0.005) 

(Figure 3.4). The 5-HT3A3‘4Loop’a7 chimera showed significant total cell protein 

(p<0.01), in agreement with data from radioligand binding. Again, this appeared to 

be greater than with the 5-HT3A subunit, but was not a statistically significant 

difference. With intact cells there was also a significant signal (p<0.005), however 

this was consistently higher in cells transfected with the 5-HT3A3’4Loop'a7 chimera 

compared to the 5-HT3A subunit (/?<0.01). Thus it seems that the 5-HT3A3'4Loop’a7 

chimera is more efficiently expressed at the cell surface than the 5-HT3A subunit. It 

was not possible to compare the cell surface to total cell signals, because the 

background levels of antibody binding in permeablilsed cells was much greater than
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A B C

Figure 3.4 Surface and total expression o f  5-HT3A and the 5-HT3A3'4Loop~a7 

chimera transiently transfected in tsA201 cells.

(A), specific total [3H]GR65630 binding in permeabilised cells n=4. Enzyme- 

linked assay on (B) permeablilsed, n=4 and (C) whole cells, n=7. The results 

were tested for significant differences using a student’s t-test or a modified Z 

test, **p<0.01.
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with intact cells, thus probably masking some of the 5-HT3A N-terminal protein 

levels.

3.4 Intracellu lar calcium  assay

The experiments described provide strong evidence for the role of discrete subunit 

domains as determinants of the ability of subunit proteins to form correctly folded 

ligand-binding sites and to be expressed on the cell surface. However, they do not 

address the question of whether these subunit chimeras are able to generate 

functional agonist-gated ion channels. To examine this question, the chimeras that 

showed significant cell surface radioligand binding were assayed for function using 

an intracellular calcium assay with a population of cells. HEK tsA201 cells were 

transiently transfected with either the 5-HT3A subunit or one of the three chimeric 

constructs that showed significant radioligand binding in Section 3.4 (5-HT3A3*4Loop' 

<l7,a7v201'5'HT3A and cx74™'5'HT3A). The cells were re-plated into 96-well plates and a 

fluorescent calcium-sensitive dye was used as described in Chapter 2, Section 2.6. A 

fluorometric imaging plate reader (FLIPR) was used to measure in the influx of 

calcium upon agonist application. The agonist was added to the wells 35 seconds 

into the trace (indicated with a red arrow) after which time the cells are constantly 

bathed in the agonist. Agonist-induced elevations of intracellular calcium were 

detected in cells transfected with the 5-HT3A subunit, as would be expected (Figure 

3.5A), and also the three chimeric subunits. As would be expected from the 

presence of the N-terminal region of 5-HT3A, the 5-HT3A3"4Loop’(x7 chimera responded 

to 5-HT3 receptor agonist (mCPBG), Figure 3.5B. The agonist mCPBG was chosen, 

as it is a more potent ligand at the homomeric 5-HT3A receptor than 5-HT ( E C 5 0  0.8 

pM, Mair et a l,  1998). Similarly, nicotinic agonists (DMPP and nicotine) induced 

elevations of intracellular calcium were detected in cell transfected with the a7 v201'5' 

HT3A and a 74™-5-HT3A chimeras, which have the a l  N-terminal regions (see Figure

3.5 C and D). More consistent increases in intracellular calcium were detected with 

DMPP compared to nicotine, where the increase in calcium did not always relate to 

the concentration of nicotine used. Thus, the chimeras that showed binding also 

showed significant calcium influx upon application of agonist. This was interpreted 

as showing function of these constructs.
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Figure 3.5 Agonist-induced calcium responses in tsA20J cells transiently 

transfected with 5-HTu and a7/5-HT3A chimeras.

(A), 10 jiM CPBG applied to cell transfected with 5HT3A subunit. (B), 10 pM 

CPBG applied to cells transfected with 5HT3A3'4Loop‘a7 chimera. (C), 17 pM 

DMPP applied to cells transfected with the a7V201'5HT3A chimera. (D), 1.8 pM 

DMPP applied to cells transfected with the a74™'5HT3A chimera. The red line 

indicates when the agonist was applied.
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Agonist concentration-response curves were determined using a 96-well FLIPR 

assay, to give a rough estimate of the potency of the agonists and the comparative 

size of the responses obtained. Each column of wells had a different concentration 

of agonist, and 2-4 rows of wells were transfected with each DNA contruct 

(including an “empty” vector as a control) thus giving an n number of 2-4 for each 

concentration. Two different buffers were used, Hank’s buffered saline solution 

(HBSS) and a high calcium buffer (HCA, see Chapter 2 Section 2.6). The HBSS 

buffer has physiological concentrations of calcium (1.26 mM), whereas the high 

calcium buffer has 75 mM CaCl, a very high level of calcium which may amplify the 

influx of calcium. The results shown are from a single transfection, and the results 

were fitted with the Hill equation using SigmaPlot (see Chapter 2 Section 2.6). For 

cells transfected with the 5-HT3A subunit, maximum calcium influx was achieved 

with 0.3 pM mCPBG in HBSS (Figure 3.6 A) and 10 pM mCPBG in HCA(Figure 

3.7 A). The EC50 of this ligand with this subunit is 0.8 pM (Mair et a l , 1998), and 

the value obtained from this experiment is close at approximately 0.2 pM (HBSS) 

and 2.1 pM (HCA). When compared to the 5-HT3A3'4Loop’a7 chimera, it can be seen 

that this chimera responds by a greater amount to the same concentration of ligand. 

Thus, there are either more receptors per cell or the efficacy of this ligand is greater 

at this chimera than at the 5-HT3A subunit. According to the enzyme-linked assay 

experiments (Section 3.4.3) there was three times the amount of the protein on the 

cell surface in cells transfected with the 5-HT3A3’4Loop’a7 chimera when compared 

with the 5-HT3A subunit. This is sufficient to account for the greater response of the 

chimera in the calcium-influx assay. From the concentration-response curve for 

mCPBG with this chimera in Figure 3.6B and 3.7B the EC50 (0.3 pM HBSS, 1.3 pM 

HCA) is similar to that of the 5-HT3A subunit.

The concentration-response curves for the nicotinic ligand DMPP were obtained 

with the a 7V201-5-HT3A anci a74™‘5'HT3A chimeras (Figures 3.6 C and D, 3.7 C and D). 

It can be seen that the a 74™‘5'HT3A chimeras respond to a greater extent to the same 

concentration of ligand when compared to the a 7v201-5-HT3A chimera by 

approximately four times (at 50 pM DMPP). The level of surface radioligand 

binding was not significantly different between these two chimeras, thus the 

difference in the calcium influx may be due to differences in efficacy of this ligand
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Figure 3.6 Concentration-response relationship for agonist induced calcium 

responses from tsA201 cells in HBSS, transiently transfected with 5-HT3A and 

a7/5-HT3A chimeras.

From one experiment with (A), CPBG applied to cells transfected with 5-HT3A 

subunit. (B), CPBG applied to cells transfected with 5-HT3A3'4Loop'a7 chimera. 

(C) DMPP applied to cells transfected with the a 7 V201'5HT3A chimera. (D), 

DMPP applied to cells transfected with the a 7 4™ ' 5HT3A chimera.
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Figure 3.7 Concentration-response relationship for agonist induced calcium 

responses in tsA201 cells in high (75mM) calcium buffer transiently 

transfected with 5 -HT3A and a7/5-HTiA chimeras.

From one experiment with (A), CPBG applied to cells transfected with 5HT3A 

subunit. (B), CPBG applied to cells transfected with 5-HT3A3'4Loop‘a7 chimera.

(C) DMPP applied to cells transfected with the a7 V201’5HT3A chimera. (D), 

DMPP applied to cells transfected with the a74TM'5HT3A chimera.
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between the two receptors. Alternatively, it is possible that a proportion of the 

surface receptors are non-functional in cells transfected with the a 7V201'5 Hr3A 

chimera. The EC50 values can only be estimated from the results in the HCA buffer, 

as it can be seen in Figure 3.6 C and D that the saturating concentration of ligand has 

not been reached in HBSS. The EC5o values in the HCA buffer were 4.87 pM for 

the a7 V201'5'HT3A chimera and 1.6 pM for the a7 4™'5 HT3A chimera.

3.5 Whole-cell responses

The chimeras that showed calcium influx on application of agonist were also tested 

for function by whole-cell patch-clamp recording in transiently transfected HEK 

tsA201 cells. The purpose of these experiments was to examine in more detail the 

functional properties in single cells as opposed to a population of cells. Cells were 

co-transfected with a receptor subunit or chimera and a GFP containing plasmid. It 

was confirmed that cells that express the GFP protein also express a chimeric protein 

when they are co-transfected (Figure 3.8).

A B C

Figure 3.8 HEK tsA201 cells co-transfected with o f™ -5-1*™ anj  pEGFP- 

C2, stained with rhodomine ctBTX.

(A) light micrograph and the same cells (B) showing GFP fluorescence and (C) 

rhodomine fluorescence. There is a good correlation between cells that show 

fluorescence in (B) and (C).
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In each case, functional responses to rapid agonist application were obtained at -60 

mV holding potential (unless stated otherwise), as illustrated in Figure 3.9. Either a 

student’s t-test or modified z-test was used to test for significance when comparing 

either the size or the functional characteristics of the responses. The 5-HT3A and 5- 

HT3A3’4Loop’a7 receptors responded to 5-HT3 receptor agonists (mCPBG and 5-HT) 

with inward currents. 5-HT was chosen to be used for the subsequent experiments as 

it is less potent than mCPBG, and it was desirable to have responses less than 2 nA. 

The average response of the 5-HT3A receptor to different concentrations of 5-HT 

were as follows: 0.139±0.039 nA to lpM  5-HT (n=6) and 1.28±0.439 nA to 4 pM 5- 

HT (n=4). The 5-HT3A3'4Loop'a7 chimera had significantly larger responses at 1 pM 5- 

HT (1.3±0.5 nA >7=10, p<0.05). This is an order of magnitude greater than the 5- 

HT3A responses to this concentration. This cannot be solely accounted for by the 

approximately three fold greater amount of protein on the cell surface (Figure 3.4). 

A number of responses were obtained from this chimera at a higher concentration (2 

pM 5-HT), with an average response of 0.8±0.2 nA (n=6). This is not significantly 

different from the responses at 1 pM 5-HT, suggesting that 1 pM is equal to or 

greater than the maximally effective concentration. The E C 5 0  of 5-HT on the 

homomeric 5-HT3A receptor is 2.6 pM (Hubbard et al., 2000), thus 5-HT seems to be 

more potent at the 5-HT3A3"4Loop*a7 chimera compared to the 5-HT3A subunit assuming 

that this E C 5 0  is equal to that of the homomeric 5-HT3A receptor in these 

experiments.

The a 7V20,-5-HT3A ancj a y4TM-5-HT3A responded to the nicotinic agonist

DMPP (Figure 3.9 C and D, 400 pM and 100 pM respectively). Three 

concentrations of DMPP were applied to the a 7V201-5-HT3A chimera, and there was no 

significant difference in the size of the response, (100 pM, 287±117 pA, n=6; 200 

pM, 245±54 pA, n=5; 400 pM, 295±121 pA, n=5) it was therefore concluded that 

100 pM is equal to or greater than the maximally effective concentration. 

Concentrations below 100 pM were tried but the responses were not reliable. In 

contrast to the a7 v201"5"HT3A chimera, the a 74™'5*HT3A chimera showed responses at 

concentrations as low as 20pM DMPP. The average response at 20 pM DMPP 

(372±94 pA, n=l) was not significantly different from the responses of the a7 V201'5' 

HT3A chimera at 100 pM DMPP. A higher concentration of DMPP was applied to
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Figure 3.9 Whole-cell responses in tsA201 cells transiently transfected with 

5-HT3a and a7/5-HT3A chimeras.

The bar above the responses indicates a 500 ms application of agonist with (A), 

4 pM CPBG applied to a cell transfected with the 5-HT3A subunit. (B), 4 pM 

CPBG applied to a cell transfected with 5HT3A3'4Loop'a7 chimera. (C), 400 pM 

DMPP applied to a cell transfected with the a 7 V201'5HT3A chimera. (D), 100 pM 

DMPP applied to a cell transfected with the cx7 4™ ' 5 H T 3a  chimera. Holding 

potential was -60 mV.
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cells expressing the a 74™_5’HT3A chimera (lOOpM DMPP, 439±64 pA, n—4), but 

there was no significant difference between responses to 20 pM and 1 OOpM. Thus, 

it seems that 20 pM may be greater or equal to the maximally effective concentration 

for the a 74™-5'HT3A chimera. As there are approximately equal numbers of receptors 

on the cell surface (see Figure 3.2), the differences between the two chimeras may be 

due to either a greater number of functional receptors on the surface of cells 

transfected with the a 74™-5'HT3A chimera, or DMPP is a more potent agonist at the
a 7 4TM-5-HT3Ar e c e p t( )r s  ^  ^  a 7 V201-5-irr3A

All of the subunits for which radioligand binding was detected, and for which 

functional expression has been confirmed (5-HT3A, 5-HT3a3’4Loop'(i7, a 7V201'5'HT3A 

and a74™'5'HT3A), contain identical hydrophobic transmembrane domains (Ml, M2, 

M3 and M4) from 5-HT3A, but different N-terminal and large cytoplasmic loop 

domains (either a7  or 5-HT3a). The homomeric a7  and 5-HT3A receptors have some 

significantly different functional properties including desensitization, rectification 

and single-channel conductance, and it was therefore decided to examine these 

properties in the a7/5-HT3a chimeras transfected in a HEK tsA201 cell line.

3.5.1 Reversal potential and rectification properties

The reversal potentials for the a7 and 5-HT3A subunit receptors are not significantly 

different from each other (Puchacz et al., 1994; Hubbard et al., 2000), however there 

is a large difference in the rectification properties. The reversal potential and 

rectification of the subunits were investigated by obtaining triplicate responses at 

holding potentials from -60 to +40 mV (an example of a cell transfected with the 5- 

H t3a3-4Loop-«7 chimera, with brief (500 ms) agonist applications shown in Figure 

3.10). There were no significant differences in these two functional characteristics 

between the four subunits. The reversal potentials for the 5-HT3A subunit and the 5- 

HT3A3'4Loop'a7, a7 v20l'5'HT3A and a 74™‘5~HT3A chimeras were 1.15±1.25, 5.83±2.62, 

4.78+2.55 and 3.64+2.40, mV respectively, similar to that previously described for 

the wild-type 5-HT3A subunit (-2.7mV; Hubbard et al., 2000) and the rat a l  subunit 

(OmV; Puchacz et al., 1994). The rectification profile for the four subunits showed 

little inward rectification, the rectification indices (see Chapter 2, Section 2.7.3) were
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Figure 3.10 Reversal potential and rectification o f whole-cell responses from  

tsA201 cells transiently transfected with 5 -HT3A and a?/5-HT '3.4  chimeras.

(A), an example of brief agonist applications done in triplicate to obtain 

current-voltage relation, with a cell transfected with the 5-HT3A3'4Loop‘ct7 

chimera. (B)-(E), mean current voltage relations for the 5-HT3A subunit (B), 

the 5-HT3A3'4Loop*a7 chimera (C), the a 7 V201' 5HT3A chimera (D) and the ctf4™" 

5HT3 a  chimera (E). The responses were normalised to the response obtained at - 

60 mV. «=5.
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0.93±0.09, 1.08±0.04, 0.94±0.08 and 1.01 ±0.15 respectively. These functional 

characteristics are more similar to those shown previously for the 5-HT3A receptor 

(Gunthorpe et al, 2000, Hubbard et al, 2000) as compared to the a l  subunit 

(complete inward rectification; Puchacz et a l, 1994, Zhao et al., 2003).

3.5.2 Desensitization properties

The homomeric a l  nAChR is known to desensitise rapidly, and the responses have a 

time constant of decay in the region of tens of milliseconds (e.g. 75 ms, Ragozzino et 

al, 1997). In comparison, the 5-HT3A subunit desensitises much more slowly with a 

time constant in the timescale of seconds (e.g. 2.13 s, Gunthorpe et al, 2000). The 

desensitization of the three chimeras and the 5-HT3A subunit were compared using 

long 20 second agonist applications (Figure 3.11 A). 1 pM 5-HT was applied to the 

5-HT3a subunit and the 5-HT3A3'4Loop'a7 chimera. This concentration is lower than 

the EC50 value of the homomeric 5-HT3A receptor, however the maximally effective 

concentration would produce very large responses that would not give reliable data. 
200 pM DMPP was applied to the a 7V201-5’HT3A ancj a y4TM-5-HT3A cijjmeraSj an(j ^ is

value should give the maximum whole-cell responses. The decay of the 

desensitization was fitted with an exponential equation. The time constant of decay 

could then be obtained (see Chapter 2 Section 2.7.4), see Figure 3.11 for examples of 

the decay fitted with an exponential equations for 5-HT3A and each of the chimeras. 

The steady state desensitization calculated from the curve fitted to 18 seconds of 

agonist application and expressed as a % (he final current divided by the peak 

current) was also compared.

There was a significant difference between the a 7V201'5-HT3A ancj a 74TM-5-HT3A 

chimeras, both activated by nicotinic agonists (denoted nicotinic subunits) as 

compared to the 5-HT3A3’4Loop'a7 chimeras and 5-HT3A subunit, activated by 

serotonergic agonists (denoted serotonergic subunits). However, the rate of decay 

was not determined from the maximally effective concentration of 5-HT, thus the 

nicotinic and serotonergic subunits cannot be directly compared. The time constant 

for decay for the two nicotinic subunits were 223±32 ms for a 7v201"5-HT3A ancj 

925±220 ms for a 74™-5-HT3A (Figure 3.13A). These values are smaller than 

previously published values obtained for the homomeric 5-HT3A receptor (2.13 s,
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Figure 3.11 Long agonist applications: whole cell responses from tsA201 

cells transiently transfected with 5-HT\ 4 and a?/5-HT3a chimeras.

(A), 1 pM CPBG applied to a cell transfected with 5-HT3A subunit. (B), 1 pM 

CPBG applied to a cell transfected with the 5-HT3A3‘4Loop'a7 chimera.

(C), 200 pM DMPP applied to a cell transfected with the a 7 V201*5HT3A chimera.

(D), 20 pM DMPP applied to a cell transfected with the cx7 4™ * 5 H T 3a  chimera. 

The black bar above the trace indicates the agonist application.
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Figure 3.12 Inverted whole-cell responses from tsA201 cells transiently 

transfected with 5 -HT3A and a7/5-HT3A chimeras, fitted with an exponential 

equation to detemine desensitization characteristics

20 second agonist applications were analysed to obtain the time constant of 

decay and the percentage of desensitization of the 5-HT3A subunit (A) the 

5-HT3A3"4Loop"c‘7 chimera (B) the a7 V201'5HT3A chimera (C) and the a74™'5HT3A 

chimera (D) see methods section 2.6.4. D, percentage desensitization; x, time 

constant of decay, n= 5. A single exponential was used to fit to the data in (A),

(B) and (C) and a double exponential was used to fit the data in (D).
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Figure 3.13 Desensitisation characteristics o f whole-cell responses from  

tsA201 cells transiently transfected with 5-HTsa and ol7/5-HT$a chimeras.

20 second agonist applications were analysed, to obtain the mean time constant 

of the decay of desensitization (A) and the mean percentage of desensitization

(B) in cells transfected with the 5-HT3A subunit and the 5-HT3A3'4Loop'a7, a7- 

V201-5m3Aand a,74™'5HT3Achimeras. *=6-8.
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Gunthorpe et al, 2000). This indicates that the N-terminal extracellular domain may 

play a role in determining the rate of desensitization.

There was a significant difference between the a 7V20,-5-HT3A an(j a y4TM-5-HT3A 

chimeras (223±32 ms and 925±220 ms respectively, p<0.02), which suggests that the 

large intracellular loop can also affect the rate of desensitization. However, the time 

constant for decay of the 5-HT3A3 4Loop"a7 chimera (7067±878 ms) was not 

significantly different to that measured for the 5-HT3A subunit, despite having 

different intracellular loops.

The steady state percentage desensitization estimated from the exponential fitting 

was also determined for the four constructs. This was greater for the two 

serotonergic subunits when compared to the nicotinic subunits (70.8±3.2% for
a 7 V20l-5-HT3A ^  6 4  6 ± 2  9 0/0 f o r  9 0  7 ± 0  9 o/o  f o r  ^

84.1±7.1% for 5-HT3A, Figure 3.13B, n=6-8, p<0.05), despite the serotonerigic 

agonist not being at maximally effective concentration. There was no significant 

difference between the two nicotinic subunits, or between the serotonergic subunits.

3.5.3 Estimate of the single-channel conductance from noise analysis

Previous studies have reported that homomeric 5-HT3A receptors, produced by the 

heterologous expression of 5-HT3A, exhibit very small (sub-pS) single-channel 

openings (Hussy et al., 1994; Kelley et a l, 2003) in contrast to the homomeric rat a l  

subunit that have been shown to have a significantly larger single-channels of 72 and 

87 pS when expressed in Xenopus oocytes (Fucile et a l,  2002), although it should be 

noted that the conductance for chick a l  is lower in mammalian cell lines (18.5 and

31.5 pS; Ragozzino et a l, 1997) when compared to Xenopus oocytes (45 pS; Revah 

et al, 1991). Historically the single-channel properties of nAChRs have been 

attributed to the M2 transmembrane domain (Imoto et a l, 1986; Leonard et a l, 

1988).

Surprisingly, considerable differences were apparent in the noise variance of 

functional responses obtained with these chimeras with long agonist applications
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(Figure 3.10), suggesting that regions outside of the four proposed transmembrane 

domains exert an influence upon ion channel properties.

Consistent with previous studies (Hussy et al., 1994; Kelley et al., 2003) tsA201 

cells expressing 5-HTsa generated whole-cell responses with little detectable noise 

during agonist application (Figure 3.10A). Noise analysis of responses obtained 

with 5-HT3A was used to estimate a single-channel conductance of 0.7±0.1 pS, («=8; 

Figures 3.14 and 3.15). There was no significant difference in the values obtained 

by the noise analysis variance method compared to the noise power spectral density 

estimate (student’s t-test). Surprisingly, the 5-HT3A3’4Loop'a7 chimera, in which the 

M3-M4 cytoplasmic loop of 5-HT3A was replaced with that of the a l  subunit, 

generated receptors with a single-channel conductance of 9.6±1.9 pS («=11), which 

was significantly higher than that of 5-HT3A (/?<0.05). Analysis of whole-cell 

responses recorded from cells transfected with the a 7V201-5-HT3A chimera revealed an 

average single-channel conductance of 2.2±1 pS (n=9), but this was not significantly 

different from the sub-pS conductance observed with 5-HT3A. (0.7±0.1 pS). This was 

because 4/9 of the cells had low single-channel conductances. Their average of 

0.8±0.1 pS was the same as the 5-HT3A receptors. The average of the other 5 cells 

was 2.4±0.9 pS and was significantly different from 5-HT3A subunit (/?<0.05). Cells 

transfected with the a 74™-5-HT3A chimera expressed receptors with a single-channel 

conductance of 21.5±2.4 pS (n=8). This was significantly larger (p<0.05) than the 

conductance of receptors generated by the 5-HT3A3'4Loop’w7 chimera. These results 

indicate that replacement of the two domains, the extracellular N-terminal domain 

and the M3-M4 cytoplasmic loop of 5-HT3A with that of a l  lead to a significant 

increase in channel conductance.

The noise power spectrum can also be used to estimate the of the mean single­

channel open time from the x value obtained from the lorentzian fit. There was no 

significant difference in the x values estimated for the 5-HT3A subunit (24.2±4.3 ms, 

n=8), the a 7V20,-5-HT3A chimera (18.0±5.3 ms, n=9) and the a 74™-5-HT3A chimera 

(18.6±6.8 ms, n=8). The x value for the 5-H T 3A3'4Loop'a7 chimera was significantly 

greater than the other constructs (38.0±3.3 ms, n=l l,p<0.05).
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Figure 3.14 Estimation of single-channel conductance using the noise 

analysis variance method to analyse whole-cell responses from tsA201 cells 

transiently transfected with 5-HTsa and a7/5-HT3A chimeras.

20 second agonist applications were analysed to obtain the single channel 

conductance of the 5-HT3A subunit (A) the 5-HT3A3'4Loop'a7 chimera (B) the a7- 

V20i-5HT3A cj1jmera (q  and the a74™'5HT3A chimera (D) see methods section 

2.6.5.1. «=8-ll.
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Figure 3.15 Estimation o f single-channel conductance using the noise power 

spectral density method to analyse whole-cell responses from tsA201 cells 

transiently transfected with 5-HTsa and a7/5-HT3A chimeras.

20 second agonist applications were analysed to obtain the single channel 

conductance of the 5-HT3A subunit (A) the 5-HT3A3̂ Looi>a7 chimera (B) the a7- 

v2oi-5ht3a c hjm em  ( Q  and the a74™'5HT3A chimera (D ) see methods section 

2.6.5.2. x, estimate of mean single-channel open time, y, estimate of single­

channel conductance . «=8-l 1. A double lorenztian was used to fit the data in 

(A) and (B) and a single lorentzian was used to fit the data in (C) and (D).
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3.6 D iscussion

Difficulties in the efficient expression of functional a l  nAChRs in many 

heterologous expression systems have been a considerable hindrance to their detailed 

study. Evidence that subunit chimeras containing the extracellular domain of the 

nAChR a l  subunit fused to the C-terminal domain of the 5-HT3R subunit 5-HT3A 

(Eisele et a l, 1993) has been widely exploited by several research groups as a means 

of circumventing difficulties in heterologous expression of a l  (Eisele et al., 1993; 

Blumenthal et al., 1997; Rangwala et a l, 1997; Cooper and Millar, 1998). In a 

previous study aimed at identifying subunit domains influencing the folding and 

assembly of the a l  it was concluded that inefficient folding and assembly could be 

attributed, in part, to regions close to the Ml hydrophobic transmembrane domain 

(Dineley and Patrick, 2000). In this study we provide evidence that transmembrane 

domains other than Ml have an equally profound influence upon the efficiency of 

subunit folding. Only subunit chimeras in which the regions of a l  from the 

beginning of Ml to the end of M3, and including M4 were replaced with the 

corresponding regions from the 5-HT3A subunit were found to fold efficiently into a 

conformation, which exhibited specific high affinity binding of the nicotinic 

radioligand [125I]a-BTX. No binding was seen if the construct contained the M l, 

M2, M3 or M4 of cx7.

Differences in the efficiency with which a l  and 5-HT3A subunits are able to generate 

functional cell-surface receptors might have been predicted to be influenced by 

regions such as their large cytoplasmic M3-M4 domain. This region of nAChR 

subunits has been shown to interact with a range of intracellular proteins (Maimone 

and Enigk, 1999; Jeanclos et al., 2001; Lin et a l, 2002) and to influence receptor 

targeting (Williams et a l, 1998). Our findings suggest that it is not this region of a l  

that is responsible for inefficient folding, assembly and cell-surface expression. In 

fact when the intracellular loop of 5-HT3A was replaced with that of a l  there was a 

statistically significant increase in the amount of receptor protein on the cell surface 

(Figure 3.5C).

The chimeras that showed significant binding have also been shown to be functional 

with two different methods. Using a calcium-influx assay, consistent responses were
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obtained that were dependent on agonist concentration. This method can be used in 

the future to examine in more detail the concentration-response relationship, 

however there are some reports of variability in values such as the EC50 when 

comparing calcium-influx assays to whole-cell patch-clamping, with a difference of 

nearly ten fold (Feuerbach et a l, 2005). This may be due to different concentrations 

of agonist required to give the maximal calcium response compared to the whole cell 

reponse. Alternatively, as the EC50 for the calcium assay is lower, it may be that this 

method is more sensitive thus will register responses as low concentrations that elicit 

no visible response in whole cell recording.

By using whole-cell patch-clamp recording, it was possible to examine various 

functional properties of the functional chimeras and compare them, directly to the 

homomeric 5-HT3A subunit, and indirectly to values reported previously for the 

homomeric a l  subunit. The rectification values of the chimeras were not 

significantly different to that with the 5-HT3A subunit. This is as may be expected as 

the rectification has been attributed to the M2 channel domain of these receptors 

(Forster and Bertrand, 1995), and this is the region that the three chimeras have in 

common with the 5-HT3A subunit.

The results of desensitization characteristics were less clear cut. Chimeras that 

contained the N-terminal of the a l  subunit desensitise faster than expected for the 

homomeric 5-HT3A subunit thus the N-terminal domain may be important 

determinant of the rate of desensitization. The N-terminal domain has been reported 

to be important for desensitization of the (32 and (34 subunit nAChRs (Bohler et a l , 

2001; Francis et a l, 2000). There were also significant differences in the rate of 

desensitization for the two chimeras that had the same a l  N-terminal domain. The 

a yV20i-5-HT3A an(j a y4TM-5-HT3A cijimeras had different large cytoplasmic M3-M4

domains, thus this domain may also determine the speed of desensitization. The rat 

a l  subunit and the mouse 5-HT3A have different potential phosphorylation sites in 

the M3-M4 domain (Seguela et a l, 1993; Maricq et a l,  1993), which may contribute 

to differing properties of desensitization as phosphorylation has been proposed to be 

a mechanism of regulation of desensitization (Quick and Lester, 2002). It should 

also be mentioned that these two chimeras had desensitization characteristics that
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were different to the homomeric a l  receptor. This implies that the channel domain 

is also important in determining the rate of desensitization.

The steady state percentage desensitization was estimated from the exponential 

fitting of responses to a 20 second agonist application. The a7 v201'5'HT3Aand a74™' 

5-HT3A c j1-m e r a s  s h o w e ( j a steady state level of activation of approximately 30%. The 

homomeric 5-HT3A receptor showed significantly less activation (only 9.3±0.9%), 

and the homomeric rat a l  receptor is know to fully desensitize within a few seconds 

(see Chapter 4, Section 4.). Thus it seems that the equilibrium between the open and 

desensitized states of these two chimeras is different from both the 5-HT3A and 

homomeric a l  subunit receptors.

An unexpected finding to emerge from this study was evidence that subunit domains 

other than the putative transmembrane regions have a significant influence upon 

single-channel conductance. Extensive experimental evidence exists to suggest that 

the M2 domain of ligand-gated ion channels lines the channel pore and exerts a 

direct influences upon ion channel properties. Residues within the M2 region of the 

Torpedo nAChR can be photo affinity labelled by channel blockers (Giraudat et al., 

1986; Hucho et al., 1986). The influence of residues within the M2 domain upon ion 

channel properties has been demonstrated by construction of subunit chimeras 

(Imoto et al., 1986) and by site-directed mutagenesis (Imoto et al., 1988; Leonard et 

al., 1988; Charnet et al., 1990; Villarroel et al., 1991).

This study provides evidence obtained from the series of subunit chimeras to 

demonstrate that single-channel conductance is influenced by regions other than the 

predicted transmembrane regions. The result that the cytoplasmic M3-M4 loop 

domain of the nAChR a l  subunit can influence channel conductance agrees with a 

recent investigation of the human 5-HT3 receptor channel conductance which 

examined chimeras constructed between the 5-HT3A and 5-HT3B subunits (Kelley et 

al., 2003). This study identified three arginine residues within the amphipathic helix 

in the large M3-M4 cytoplasmic loop as being critical in influencing 5-HT3 receptor 

single-channel conductance. These arginine residues are present in the 5-HT3A but 

not the 5-HT3B. A mutated 5-HT3A subunit without these arginine residues has a
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greater single-channel conductance (25.1 ±0.8 pS) than the wild type homomeric 

receptor (0.76±0.22 pS). The murine 5-HT3A subunit also has these arginine 

residues, which the rat a l  subunit lacks. The results in this study confirm that 

constructs that contain a M3-M4 cytoplasmic loop without these arginine residues 

have a greater signal channel conductance. In terms of the 3-dimensional receptor 

struture the large intracellular loop may form part of a cage-like structure beneath the 

inner mouth of the ion channel that is seen by electron microscopy (Figure 1.5). 

Residues in the structure may act to control the flow of ions into the channel. In this 

case the positively charged arginines may form an electrostatic barrier making it 

harder for cations to enter the channel, resulting in a smaller conductance compared 

to cation channels without these positive residues.

In addition, evidence has been obtained that conductance can be influenced by the 

extracellular N-terminal domain of ligand-gated ion channels. When the 5-HT3A N- 

terminal domain is replaced by that of a7, the single-channel conductance estimate 

increases about two fold. This could be an intrinsic characteristic of the protein, or 

dependent on the interaction of a specific type of ligand with the protein. It would 

be difficult to determine more precisely which region of the N-terminal is 

responsible as changes in the ligand-binding domain could easily effect agonist 

binding and result in a chimera that was not functional. Recently a compound 

(PSAB-OFP) has been described which is an agonist of both the a l  and the 5-HT3A 

subunits (Broad et al., 2002). It would be interesting to use this to examine the 

conductance in the functional chimeras from this study.
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CHAPTER 4 

RIC3 affects functional expression of multiple 

nAChR subtypes and the 5-HT3A receptor.
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4.1 Introduction

The a l  nAChR subunit has been shown to form functional receptors in Xenopus 

oocytes (Couturier et al., 1990a) and some mammalian cell lines (Puchacz et a l, 

1994; Gopalakrishnan et a l, 1995). However, no evidence of functional expression 

of a l  nAChRs can be detected when the a l  subunit is expressed in a number of 

other mammalian cell lines, for example HEK cells (Cooper and Millar, 1997; 

Sweileh et a l , 2000). There has also been difficulty expressing functional chick a8 

receptors in this cell line (Cooper and Millar, 1998) despite the ability of a8  to form 

functional nAChRs in Xenopus oocytes (Gerzanich et a l, 1994; Gotti et a l, 1994). 

This implies that the host cell environment may be important for the correct subunit 

folding, assembly and cell surface expression of these ligand-gated ion channels. A 

number of nAChR-interacting proteins have been identified and have been shown to 

enhance the expression of nAChRs. Calnexin and BiP are involved in the assembly 

of muscle nAChRs (Gelman et a l,  1995; Blout and Merlie, 1991), and chaperone 

protein 14-3-3r] has been shown to increase the levels of a4|32 receptors (Jeanclos et 

a l, 2001). Until recently, no factors have been identified which facilitate the 

functional expression of a l  or a8  subunits in HEK cells.

A recent study with Caenorhabditis elegans has identified a protein encoded by the 

gene ric-3 (Halevi et a l,  2002). Mutations of this protein cause the intracellular 

accumulation of nicotinic receptors, suggesting that this protein has a role in the 

maturation of nAChRs (Halevi et a l,  2002). Co-expression of C. elegans RIC3 with 

the C. elegans nAChR DEG-3/DES-2 in Xenopus oocytes revealed an enhancement 

of the nAChR function (Halevi et a l,  2002). This enhancement was not restricted to 

C. elegans nAChRs, and has also been observed with homomeric rat a l  receptors 

expressed in Xenopus oocytes (Halevi et a l,  2002). The RIC3 protein has been 

shown to have no effect on functional expression of some other ligand-gated ion 

channels, for example the GABA, glutamate and glycine receptors (Halevi et a l, 

2002; Halevi et a l,  2003). However RIC3 has been reported to reduce functional 

expression of the murine 5-HT3A receptor expressed in Xenopus oocytes (Halevi et 

a l, 2003).
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Vertebrate and invertebrate homologues of the C.elegans RIC3 protein have been 

cloned and this family of proteins are predicted to have two transmembrane domains 

separated by a proline-rich spacer region (Halevi et al., 2003). The C. elegans RIC3 

is predicted to have two coiled-coil domains after the second transmembrane 

domain, whereas all the other RIC3 genes examined (Ostertagia ostertagi, 

Drosophila melanogaster, Danio rerio, Xenopus leavis, murine and human; Figure 

4.IB) have one predicted coiled coil domain (Halevi et al., 2003). The proposed 

topology of this protein places the N-terminal and C-terminal on the cytoplasmic 

side of the membrane (Figure 4.1 A; Halevi, et al., 2003).
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Figure 4.1 Structure and topology o f the RIC3 proteins 

The C. elegans RIC3 protein is predicted to have two transmembrane domains 

separated by a proline rich domain, followed by two coiled coil domains 

(predicted by Halevi et al., 2002; Halevi et al., 2003). (A) shows the predicted 

topology of the C.elegans RIC3 protein. (B) is adapted from Halevi et al., 

2003 and shows the structure and conservation within the RIC3 gene family.

The human RIC3 homologue has been reported to enhance the function of the a  7 

nAChR (both the human and rat), but reduce the function of the heteromeric a4(32
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and a3|34 nAChRs and the murine 5-HT3A receptor when expressed in Xenopus 

oocytes (Halevi et al., 2003). Human and C. elegans RIC3 have also been co­

expressed with the a l  subunit in HEK cells, to investigate whether this would result
11Sin correctly folded a l  receptors in this cell line. A significant level of [ I]a-BTX 

binding (Lansdell et al., 2005) and fluorescent labelled a-BTX (human RIC3 only 

Williams et al., 2005) has been reported on the surface of these cells that is not 

detected when the a l  subunit is expressed alone. The human RIC3 protein has been 

demonstrated to associate with the human a l  subunit (Williams et al., 2005, human 

RIC3 only; Lansdell et al., 2005). There is also a significant increase in cell surface 

radioligand binding when RIC3 was co-expressed with either the chick a8 subunit or 

one of a number of heteromeric nAChR subunit combinations (a3p2, a3|34, a4|32 

and a4|34; Lansdell et al., 2005). It is not clear what effect RIC3 has upon 5-HT3A, 

as there are differences depending on the assay used and the species of the 5-HT3A 

subunit and the RIC3 protein expressed (Doward, 2005).

This chapter examines whether nAChR subunits can form functional receptors when 

co-expressed with RIC3 in a HEK cell line (tsA201). Although not known at the 

time this part of the current project was performed, data published subsequently 

(Williams et a l , 2005), has reported that the human a l  forms functional receptors in 

HEK cells when co-expressed with human RIC3. For this chapter whole-cell patch- 

clamping has been used to examine the effect of RIC3 when co-expressed in HEK 

cells with the following nAChRs: human and rat a l ,  chick a8  and rat a3p2 subunits, 

thus results with all but one of these combinations are novel. In addition the effect 

of RIC3 upon the functional expression of the 5-HT3A subunit was also examined.

RESULTS

4.2 Functional a  7 receptors formed when co-expressed with RIC3

As has been discussed previously (Cooper and Millar, 1997) difficulties have been 

reported in attempts to detect functional homomeric a l  nAChRs in transfected HEK 

cells. In the present study, HEK tsA201 cells were transfected with the a l  subunit 

alone and examined by whole-cell patch-clamping. None of the cells examined 

showed a response to ACh (n=ll, Figure 4.2). These results are consistent with
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B a l  alone + Ce RIC3 + hRIC3 +dRIC3

Human a l 0/9 9 / u 13/17 5/5

Rat a l 0/8 6/7 8/8 4/6

Number of cells that responded / t o t a l  num ber o f ce lls  ch a llen ged
with 2 0 0  n.M ACh

Figure 4.2 Mean size o f whole-cell responses o f a l  co-expressed with RIC3 

in tsA201 cells..

(A) Mean size of responses in cells transfected with either the human or rat a l  

subunit, and either C.elegans RIC3, human RIC3 or Drosophila RIC3. (B) 

The table indicates the fraction of cells that responded to 200 |uM ACh. The n 

number for the calculated mean is in larger type. The differences between 

groups were tested for significance with using either a student’s t-test or a 

modified Z test. * indicates p<0.05
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previous studies that show that no significant a-BTX binding can be detected on the 

surface of transfected HEK cells when the a7  subunit is expressed alone (Cooper 

and Millar, 1997). HEK tsA201 cells were transfected with the a  7 subunit (human 

or rat) and RIC3 (C. elegans, human or Drosophila), which has been shown 

previously to allow significant a-BTX binding to be detected on the cell surface 

(Lansdell et al., 2005; Williams et al., 2005). Cells were examined by whole-cell 

patch-clamping and challenged with 200 jxM ACh to determine whether functional 

a l  nAChRs could be detected.

4.2.1 Whole-cell responses in cells co-expressing a 7 and RIC3

When the a l  subunit was co-expressed with RIC3, a large proportion of cells 

examined show significant whole-cell responses upon application of ACh. It should 

be noted that all cells transfected with 5-HT3A subunit cDNA gave whole cell 

responses when challenged with 5-HT. This implies that the a l  subunit is still no as 

efficient as the 5-HT3A subunit at forming functional receptors even when expressed 

with RIC3. All combinations of the a l  nAChR subunit (human or rat) and the RIC3 

protein (C. elegans, human or Drosophila) tested showed function in most cells 

examined (examples of whole-cell responses in Figures 4.3 and 4.4). Of the cells 

transfected with human a l  subunit and a RIC3 protein, 27/33 gave whole-cell 

responses when challenged with ACh. Similarly, most cells transfected with rat a l  

subunit and a RIC3 protein gave whole-cell responses (18/21). The whole-cell 

responses ranged from 20 to 300 pA. There was no significant difference in the size 

of the responses between the human and rat a l  subunit transfections (Figure 4.2). 

There was also no significant difference in the size of the responses of cells 

transfected with the human a l  subunit, although it did appear that cells co­

expressing the human a l  subunit with the Drosophila RIC3 had smaller responses 

(Figure 4.2). There was no significant difference between the size of the responses 

in cells with the rat a l  subunit co-expressed with either C. elegans or human RIC3, 

but the responses were significantly smaller in cells co-expressing the rat a l  subunit 

and Drosophila RIC3 (Figure 4.2, p<0.05). These data show that the RIC3 protein 

enables the a l  subunit to fold correctly and form functional receptors. This occurs 

with mammalian a l  subunits and human, C. elegans or Drosophila RIC3 proteins, 

although this appears less efficient with the Drosophila RIC3.
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Figure 4.3 Whole-cell responses o f human a.7 co-expressed with R1C3 in 

tsA201 cells.

Examples of whole-cell responses in cells transfected with the human a7 

subunit either with (A) C.elegans RIC3, (B) human RIC3 or (C) Drosophila 

RIC3. The lower black bar indicates the application of 200 pM ACh, the upper 

line indicates the bath application of 100 nM ML A. The right hand column 

shows responses after the antagonist was washed off.

123



50pA

500ms

B

n r
y  50pA

500ms

500ms
nr~

Figure 4.4 Whole-cell responses o f rat a l  co-expressed with RIC3 in tsA201 

cells.

Examples of whole-cell responses in cells transfected with the rat a l  subunit 

either with (A) C.elegans RIC3, (B) human RIC3 or (C) Drosophila RIC3. 

The lower black bar indicates the application of 200 pM ACh, the upper line 

indicates the bath application of 100 nM ML A. The right hand column shows 

responses after the antagonist was washed off.
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4.2.2 Inhibition of whole-cell responses with an a l  nAChR antagonist

A reversible block of whole-cell responses to ACh was observed on application of 

the antagonist methyllycaconitine (MLA). ACh (200 pM) was applied for 500 ms 

every 10 seconds. After stable and reproducible responses were observed, 100 nM 

MLA was washed into the bath. A fast block of the response was seen, and once full 

block was achieved, the MLA was washed off and a slow recovery from the 

inhibition was observed (example of one cell shown in Figure 4.5A). It was not 

possible to accurately measure the on-time course of the MLA inhibition, as in most 

cases the inhibition reached 100% in less than three ACh applications. The loss of 

inhibition was measured over time for both the human and rat a l  nAChRs, and the 

recovery was fitted with an exponential equation (Figure 4.5 B and C) to calculate 

the time constant (x=l/k_i). There was no significant difference between the time 

constants calculated for the human (189±26 s, n=6) and rat (204±16 s, n=6) a l  

nAChRs. These values agree with those published for MLA block of the human a l  

nAChR (Palma et a l, 1996a). It can be estimated that the rate constant for the 

association (k+i) of MLA must be equal to or greater than 3xl07 s^M '1, as full block 

occurred in the presence of 2 nM within 30s. This value agrees with the value of 

2.7x107 s^M '1 published by Palma et al. (1996). Thus, the dissociation equilibrium 

constant can be estimated (Lj/k+i) to be approximately 0.2nM. This value is slightly 

smaller than that estimated by radioligand binding (Davies et al., 1999a), however 

this was done on homogenised rat brain membranes which may not have contained 

only homomeric a l  nAChRs.

4.3 Functional a 8  receptors formed when co-expressed with RIC3

The chick a8 subunit shows close sequence similarity to the a l  subunit (Schoepfer 

et al., 1990). This subunit can form functional homomeric nAChRs when expressed 

in Xenopus oocytes (Gerzanich et al., 1994, Gotti et al., 1994), and is blocked by the 

antagonists a-BTX and MLA. Just as with the a l  subunit, there have been problems 

expressing functional a8  receptors in cell lines such as tsA201 (Cooper and Millar, 

1998). It has been shown that when the a8 subunit is co-expressed with RIC3, 

significant [125I]a-BTX binding can be detected on the cell surface (Lansdell et al., 

2005). Surprisingly, when the a8 subunit was expressed alone in tsA201 cells
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Figure 4.5 MLA inhibition o f  response to ACh in tSA201 cells transfected 

with a l  andRIC3.

(A) An example of responses to brief (500 ms) agonist applications (200 pM 

ACh) every 10 seconds, from a cell transfected with the the human a l  subunit 

and C.elegans RIC3. (B) and (C) plot of % of inhibition with time during wash 

off of MLA for (B) the human a l  subunit co-expressed with RIC3 (n=6) and 

(C) the rat a7subunit co-expressed with RIC3 (n=5). % of inhibition was 

calculated by comparing the reponses on recovery to the average of 3 

responses before antagonist application.
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and examined by whole-cell patch-clamping, a small number of cells (3/11) showed 

functional responses evoked by brief applications of 100 pM ACh. The a8 subunit 

was then co-transfected with RIC3 (C.elegans or human) DNA. Cells were 

examined by whole-cell patch-clamping and challenged with 100 pM ACh to 

determine the functional level of a8 nAChRs.

4.3.1 Whole-cell responses in cells co-expressing a 8 and RIC3

When the a8 subunit was co-expressed with RIC3 (C. elegans and human), almost 

all cells showed rapid whole-cell responses upon brief application of 100 pM ACh 

(examples of whole-cell responses in Figures 4.6). There was no significant 

difference in the size of the responses between the a 8 subunit transfected alone 

(72±26 pA, n= 3), and with human RIC3 (124±24 pA, n= 14). However, there was a 

significant difference in the number of cells that responded to agonist (Figure 4.7). 

All cells that had been transfected with the a8 subunit and human RIC3 responded 

when challenged with lOOpM ACh (n= 14), compared with only 3/11 cells 

transfected with the a8 subunit alone. Cells transfected with a8 and C. elegans 

RIC3 gave significantly bigger responses than the a8 subunit alone, and the a8 

subunit with human RIC3 (356±103pA, «=14, /K0.05). Thus, the RIC3 protein 

appears to enhance the ability of the chick a8 subunit, as well as the a l  subunit, to 

form functional receptors. In this case the C. elegans RIC3 seems to increase the 

functional expression by a greater amount than the human RIC3. This could be due 

to a greater number of functional receptors, which is in agreement with greater 

amount of [125I]a-BTX binding with the a8  subunit and C. elegans RIC3.

4.3.2 Inhibition of whole-cell responses with nicotinic antagonists

MLA was used to block whole-cell responses in cells transfected with a8 and RIC3, 

but in most cases there was no recovery from this inhibition during the length of the 

recording. Concentrations as low as 2 nM blocked the response and no recovery was 

seen with 11/12 cells, even after 25 minutes in one case. The nicotinic antagonist, d- 

tubocurarine was used as an alternative antagonist that is known to be reversible. 

Four cells showed reversible block with this antagonist (10 pM, examples of this can 

be seen in Figure 4.6). The nicotinic antagonist a-BTX (10 nM) was also applied to
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Figure 4.6 Whole-cell responses o f chick a8 co-expressed with R1C3 in 

tsA201 cells.

Examples of whole-cell responses in cells transfected with the chick a8 

subunit either with (A) C. elegans RIC3 or (B) human RIC3. The lower black 

bar indicates the application of 100 pM ACh, the upper line indicates the bath 

application of 10 pM d-TC. The right hand column shows responses after the 

antagonist was washed off.
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Figure 4.7 Mean size o f whole-cell responses o f  chick a8 co-expressed with 

RIC3 in tsA201 cells.

Mean size of responses in cells transfected with the chick a8  subunit either 

alone or with C. elegans RIC3 or human RIC3. The table below indicates the 

fraction of cells that responded to 100 pM ACh. The n number for the 

calculated mean is in larger type. The differences between groups were tested 

for significance with using either a student’s t-test or a modified Z test.. * 

indicates /?<0.05
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two cells that showed some recovery in only a few minutes after washing, implying 

that this antagonist may be quickly reversible at the chick a8 receptor, unlike the a  7 

receptor. This rapidly reversible block of a8  with a-BTX has not previously 

reported. Because the a8 receptor was slower to recover from desensitization than 

the a l  receptors, it was more difficult to obtain the data required to examine the time 

course of recovery with this concentration of agonist. The recovery from 

desensitization was almost as slow as the recovery from block. For this reason there 

is no analysis on the time course of recovery of antagonist on cells expressing the a8 

receptor.

4.4 Functional <x3p2 receptors formed when co-expressed with 

RIC3

Functional expression of rat a3p2 has been reported in Xenopus oocytes (Boulter et 

al., 1987; Luetje and Patrick, 1991; Fenster et al., 1997; Covernton and Connolly, 

2000), however there are no reports in mammalian cells. Specific radioligand 

binding of [3H]epibatidine has been reported to cells transfected with the rat a3 and 

|32 subunits, but this level of binding is low compared to other nAChR subunit 

combinations. Co-expression of the rat a3 and p2 subunits with human RIC3 

significantly increases the level of binding over four fold (Lansdell et al., 2005). 

When the rat <x3 and P2 subunits were transfected into tsA201 cells and examined by 

whole-cell patch-clamping, only a few cells showed functional responses (2/10) to 

400 pM ACh. The a3 and P2 subunits were also transfected with RIC3 (C. elegans 

or human) and again cells were examined by whole-cell patch-clamping and 

challenged with 400 pM ACh to determine the functional level of a3p2 nAChRs.

4.4.1 Whole-cell responses in cells co-expressing a 3 p 2  and RIC3

When the a3 and p2 subunits, and RIC3 were transfected together, all the cells 

patched showed whole-cell responses upon application of ACh («= 18, example 

traces of responses from cells expressing the a3 and p2 subunits and RIC3 are 

shown in Figure 4.8). Cells transfected with the a3 and p2 subunits and RIC3 

showed significantly larger responses than cells expressing the receptor subunits
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Figure 4.8 Whole-cell responses o f  rat a3/32 co-expressed with R1C3 in 

tsA201 cells.

Examples of whole-cell responses in cells transfected with rat a3 and (52 

subunit either with (A) C. elegans RIC3 or (B) human RIC3. The lower black 

bar indicates the application of 100 pM ACh, the upper line indicates the bath 

application of 10 pM dTC. The right hand column shows responses after the 

antagonist was washed off.
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Figure 4.9 Mean size o f whole-cell responses o f  rat a3/32 co-expressed with 

RIC3 in tsA201 cells.

Mean size of responses in cells transfected with the rat a3 and |32 subunits 

either alone or with C. elegans RIC3 or human RIC3. The table below 

indicates the fraction of cells that responded to 400 pM ACh. The n number 

for the calculated mean is in larger type. The differences between groups were 

tested for significance with using either a student’s t-test or a modified Z test.. 

** indicates /?<0.01
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alone (19±3pA, n=2, /?<0.01). The mean response with C. elegans RIC3 was 

112±27pA (n= 9), and with human RIC3 was 86±12pA (n=9). There was no 

significant difference in the size of the responses in cells transfected with the a3 and 

(32 subunits with C. elegans RIC3 compared to human RIC3. Thus co-expression of 

RIC3 increases the number of cells expressing functional rat a3|32 receptors and also 

increases the size of the response (Figure 4.9).

4.4.2 Inhibition of whole-cell responses with a nicotinic antagonist

Whole-cell responses were reversibly blocked by the nicotinic antagonist d- 

tubocurarine (examples shown in Figure 4.8). A complete block of responses to ACh 

was obtained with 10 pM d-tubocurarine. As with the chick a8 receptor, the rat 

a3|32 receptor did not recover from desensitization as quickly as the a l  receptor. For 

this reason, only two responses were made every minute, which made it more 

difficult to examine the time course of the recovery from block.

4.5 Functional level of 5-HT3A receptors co-expressed with RIC3

The 5-HT3A subunit belongs to the same ligand-gated ion channel family as a l ,  

however it is able to form functional receptors in the cell lines in which no functional 

a l  receptors can be detected (Cooper and Millar, 1997; Gunthorpe et a l, 2000). The 

murine 5-HT3A subunit has been co-expressed with human RIC3 in Xenopus oocytes, 

and this resulted in the loss of 5-HT-induced currents (Halevi et al., 2003). Human 

or murine 5-HT3A subunits were expressed alone in tsA201 cells, and examined by 

whole-cell patch-clamping. Large whole-cell responses were obtained upon 

application of 2pM 5-HT (see figure 4.10), a value close to the E C 5 0  for both the 

human and murine subunits (Brown et al., 1998; Hubbard et al., 2000). There was 

no significant difference in the size of the currents obtained with the murine and 

human 5-HT3A receptors (Figure 4.11). HEK tsA201 cells were transfected with the 

5-HT3A subunits (human or murine) and RIC3 (C. elegans or human). Cells were 

examined by whole-cell patch-clamping and challenged with 2 pM 5-HT to 

determine the functional level of 5-HT3 receptors.
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Figure 4.10 Whole-cell responses o f  5-HT3A receptors co-expressed with RIC3 

in tsA201 cells.

Examples of whole-cell responses in cells transfected with the human (A,B 

and C) or murine (D,E and F) 5HT3A subunit either alone (A and D) or with 

C. elegans RIC3 (B and E) or human RIC3 (C and F). The black bars indicate 

the 500 ms application of 2 pM 5HT.

134



<a
I/)

7000  r

6 0 0 0

w 5 0 0 0  c 
o a
$  4 0 0 0

S  3 0 0 0  
a> 
o £5 
c
g 1000

2000

* *

< < r o r o r o r o
h -

m
1 - U U U

X X OL 2 2 2
in I/") a> QJ JZ sz
JC E U

+
<m

u
+
<n

+
<

H

+<.m
1 -

1 - 1 - X X
X

1
X

1
i

LO
1

LD
LD LD sz £JZ E

B 5-HT3A
a lo n e

+ Ce RIC3 + hRIC3

H u m an  5-HT3A 10/10 1 1 / u 9/9

Murine 5-HT3A 14/14 16/16 20/25

N u m b e r  Of cells t h a t  r e s p o n d e d / t o t a l  num ber of cells  ch a llenged
with 2 (iM 5-HT

F i g u r e  4.11  Mean size o f whole-cell responses o f 5-HT3A receptors co­

expressed with RIC3 in tsA201 cells..

( A )  M e a n  s i z e  o f  r e s p o n s e s  in  c e l l s  t r a n s f e c t e d  w i t h  e it h e r  h u m a n  o r  m u r in e  5 -  

H T 3 a , a n d  e it h e r  C. elegans R I C 3  o r  h u m a n  R I C 3 . ( B )  T h e  ta b le  in d ic a t e s  th e  

f r a c t io n  o f  c e l l s  th a t  r e s p o n d e d  to  2  p M  5 -H T . T h e  n n u m b e r  fo r  th e  c a lc u la t e d  

m e a n  is  in  la r g e r  t y p e .  N o t e  th a t  a l l  c e l l s  t e s t e d  r e s p o n d e d  e x c e p t  in  th e  c a s e  o f  

m u r in e  5 - H T 3A c o - e x p r e s s e d  w i t h  h R I C 3 , w h e r e  5 /2 5  c e l l s  d id  n o t  r e s p o n d .  

T h e  d i f f e r e n c e s  b e t w e e n  g r o u p s  w e r e  t e s t e d  fo r  s i g n i f i c a n c e  w it h  u s in g  e it h e r  a  

s t u d e n t ’ s  t - t e s t  o r  a  m o d i f i e d  Z  t e s t . .  * in d ic a t e s  j o < 0 .0 5 ,  * *  i n d i c a t e s p < 0 .0 1 .

135



4.5.1 Whole-cell responses in cells co-expressing 5-HT3A and RIC3

When 5-HT3A is transfected with RIC3 there are different effects upon the level of 

function (enhancement versus reduction) depending on which species of 5-HT3A 

subunit and which species of RIC3 protein were examined (see Figure 4.10 and 

mean whole-cell responses in Figure 4.11). There was no significant difference in the 

size of currents in cells transfected with human 5-HT3A subunit alone (2069±397pA, 

«=10), or with human RIC3 (1750±558pA, n=9). When human 5-HT3A is 

transfected with C. elegans RIC3 the currents in response to 5-HT were significantly 

greater (5551±1109pA, n= 11, p<0.02). With cells transfected with human 5-HT3A 

subunit with or without RIC3, all cells tested responded to agonist.

When the murine 5-HT3A subunit was transfected with C. elegans RIC3, all cells 

gave whole-cell responses when challenged with ACh (2534±496 pA, n= 16), and 

responses were not significantly larger than those observed with the murine 5-HT3A 

subunit transfected alone (1651 ±3 59 pA, n= 14). In contrast to this and the result for 

the human 5-HT3A subunit, when the murine 5-HT3A subunit was transfected with 

human RIC3, the whole-cell responses obtained were significantly smaller (669±172 

pA, «=20, /?<0.05). Also, five of the twenty-five cells tested showed no response to 

agonist. These results agree with those obtained by using a calcium-influx assay 

(Doward, 2005). Thus, it seems that the RIC3 protein has differential effects that 

depend on the which species of the 5-HT3A subunit and the RIC3 protein are co­

expressed.

4.6 Functional ch aracteristics o f  a l  and 5-H T 3A expressed  w ith  

R IC 3

The effect on functional characteristics upon co-expression of RIC3 with the a l  and 

5-HT3A subunits was examined. It has been reported that interacting proteins can 

affect the functional characteristics of receptors, for example VILIP-1 and the a4|32 

nAChR (Lin et al., 2002) and calmodulin and NMDARs (Ehlers et a l, 1996; Rycroft 

and Gibb, 2002). The rat a l  subunit or murine 5-HT3A subunit was transfected with 

human RIC3 into HEK tsA201 cells. Rat a l  and murine 5-HT3A were chosen to be 

investigated as chimeras have been constructed from these two subunits (Chapter 3).
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Human RIC3 protein was chosen as it caused an increase in functional expression of 

the rat a l  receptor and a reduction in functional expression of the murine 5-HT3A 

receptor (Section 4.2 and 4.5). Rectification, desensitization and single-channel 

conductance were investigated as described in the Chapter 2, Section 2.7.

4.6.1 Rectification of a 7 and 5-HT3A expressed with human RIC3

Previous studies have demonstrated that there is no significant difference between 

the reversal potentials of the homomeric a l  and 5-HT3A receptors (Puchacz et al., 

1994; Hubbard et a l,  2000). In contrast, the a l  receptor has been shown to exhibit 

much greater rectification compared with the 5-HT3A receptor (Puchacz et al., 1994; 

Hubbard et al., 2000). The current-voltage relationship of the a l  or 5-HT3A subunits 

co-expressed with RIC3 was investigated by obtaining triplicate responses at holding 

potentials from -60 to +40 mV (see, for example, Figure 4.12A). The reversal 

potential and rectification were determined from the current-voltage relations (Figure 

4.12B and C). There was no significant difference in the reversal potential between 

the rat a l  subunit (8.1±2.4 mV, n=6) and the murine 5-HT3A subunit (9.0+3.0 mV, 

>7=5). Co-expression of RIC3 with murine 5-HT3A subunit caused no significant 

difference in the reversal potential compared to murine 5-HT3A subunit alone 

(1.2+1.3 mV, n=5). There was also no significant difference between the rat a l  

subunit and three cx7/5-HT3A chimeras ( a 7 v 2 0 1 5 ' H T 3A , 4.8+2.6 mV; a 7 4 ™ ' 5 ' H T 3A , 

6.6+2.4 mV; 5-HT3A3 4Loop'a7, 5.8+2.6 mV; >7=5, Chapter 3). Thus it appears that the 

RIC3 protein does not alter the reversal potential when expressed with the murine 5- 

HT3A receptor subunit.

The rectification characteristics of the murine 5-HT3a receptor were not affected by 

co-expression of RIC3. There was little or no rectification seen in the current- 

voltage relation for the 5-HT3A subunit expressed alone (Figure 3.10B) or with 

human RIC3 (Figure 4.12B). There was no significant difference in the coefficient of 

rectification (method of calculation in Chapter 2, Section 2.7.3) between the murine 

5-HT3A subunit expressed alone (0.93+0.08, n=5), or with human RIC3 (0.95+0.20, 

>7=5). As has been shown previously for the a l  receptor, the rat a l  receptor showed 

much greater rectification, that can be seen in the current-voltage relationship 

(Figure 3.10A and C). The coefficient of rectification was significantly lower with
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Figure 4.12 Current voltage relations o f  whole-cell responses from tsA201 

cells transiently transfected with 5-HT3a or a l  and R1C3.

(A), an example of brief (500 ms) agonist applications (200 pM ACh) done in 

triplicate to obtain current-voltage relation, with a cell transfected with the rat 

a l  subunit and human RIC3. (B) and (C) current-voltage plot for murine 

5HT3A co-expressed with human RIC3 (B) and rat a l  co-expressed with 

human RIC3 (C), The responses were normalised to the response obtained at - 

60 mV. n=5-6.
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the a l  subunit (0.18±0.04, n=6, p<0.005), than observed with the 5-HT3A subunit 

(transfected with or without human RIC3), or any of the three cx7/5-HT3a chimeras 

( a 7 V 2 0 1 5 ' H T 3A , 0.94±0.08; a 7 4 ™ ' 5 ' H T 3 A , 1.01±0.15; 5-HT3A3'4I'00|>a7, 1.08±0.04; n=5). 

The large amount of rectification of the a l  receptor seen here is consistent with 

previously published results (Puchacz et a l , 1994). Thus is appears that the RIC3 

protein does not alter the rectification characteristics of the 5-HT3A receptor.

4.6.2 Desensitization o f a  7 and 5-HT3A expressed with human RIC3

The homomeric a l  and 5-HT3A receptors have very different desensitization 

characteristics. The a l  nAChR desensitizes much faster (within tens of ms) than the 

5-HT3A receptor (Ragozzino et al., 1997; Gunthorpe et al., 2000). 5-HT was applied 

for 20 seconds to the cells transfected with the 5-HT3A subunit and RIC3. ACh or 

DMPP were only applied for 500 ms to the cells transfected with the a l  subunit and 

RIC3 because the whole-cell responses fully desensitized within that time. The 

difference in the desensitization characteristics can be seen clearly in the whole-cell 

responses (Figure 4.13A and B), which confirm that the rat a l  receptor desensitizes 

much faster than the murine 5-HT3A receptor. The decay of the desensitization was 

fitted with an exponential equation from which time constant of decay could then be 

obtained (Chapter 2, Section 2.7.4). The steady state desensitization estimated from 

the single exponential fitting of a response from a 20 second agonist application for 

5-HT3A and 500 ms agonist application for a l  was also compared.

There was no significant difference in either the time constant of decay or the 

percentage of de sensitization of whole-cell responses between cells transfected with 

the murine 5-HT3A subunit alone, or with human RIC3. The time constant for decay 

for the murine 5-HT3A subunit with human RIC3 (6895±1682 ms, n=6, Figure 

4.13C) was not significantly smaller than the 5-HT3A subunit alone (9201±1345 ms, 

n=6). The steady state desensitization was approximately the same with murine 5- 

HT3A with RIC3 (91.7±3.2%) as with murine 5-HT3A alone (89.9±2.5%). It appears 

that the co-expression of the murine 5-HT3A subunit with human RIC3 does not 

affect the characteristics of desensitization of this receptor.
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Figure 4.13 Desensitization analysis o f whole-cell responses from tsA201 

cells transiently transfected with 5-HT3a or a l , and R1C3.

Whole cell responses were analysed to obtain the time constant of decay and 

the percentage of desensitization. (A) and (C): the murine 5-HT3A subunit co­

expressed with human RIC3, with a 20 second application of 1 pM 5-HT. (B), 

(D) and (E): the rat a7  subunit co-expressed with human RIC3, with 500 ms 

application of (D) 200 pM ACh and (E) 200 pM DMPP. (A) and (B) show 

examples of the redordings used for analysis. (C), (D) and (E) show examples 

of average of the responses from one cell («=3-5), inverted and fitted with an 

exponential equation to estimate the time constant of decay and the percentage 

of desensitization.
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Cells expressing the rat a l  subunit and human RIC3 gave whole-cell responses that 

had significantly faster time constants (ACh, 66.5±12.8 ms, «=8,/?<0.001) compared 

to values for the murine 5-HT3A receptor, from this study and previously published 

(Gunthorpe et al., 2000). DMPP was also used so that a l  could be compared with 

three a7/5-HT3A chimeras (Chapter 3, Section 3.6.1). The time constant for decay 

with DMPP (54.7±16.5ms, n=l) was not significantly different from that obtained 

from ACh applications, and was significantly smaller than the values obtained for 

the three a 7 /5 -H T 3A chimeras ( a 7 v2015'HTiA, 223.2±31.5 ms; aT 4™ '5'1" ,* , 924±220 

ms; 5-HT3A3'4Loop'a?, 7067±878 ms; n=6-8) (p<0.001). The values o f  the tim e 

constants of decay for the rat a l  receptor determined here are consistent with values 

previously published (chick a l , 75 ms; Ragozzino et a l, 1997).

The steady state desensitization of whole-cell responses was significantly greater for 

the rat a l  receptor compared to that of the murine 5-HT3A receptor. The 5-HT3A has 

been shown to completely desensitize (Gunthorpe et al., 2000) but in that study a 

much higher concentration of 5-HT was used. Only 1 pM 5-HT was used in the 

present study, and this value is smaller than the EC50 value, thus is sub-maximal and 

will not produce as much desensitization as 30 pM 5-HT.

For cells expressing functional a l  receptors the steady state desensitization with the 

agonist DMPP was 99.9±0.6% («=7) and with ACh was 99.5±0.03% («=8). The 

steady state de sensitization was significantly greater than values obtained with the 

same concentration of DMPP, from cell transfected with one of two a7/5-HT3A 

chimeras (a7V2015‘HV  70.8±3.2%; a 7 4™'5-HT,A, 64.6±2.9%; p<0.001). There was 

no difference in the steady state desensitization after 500 ms with ACh compared to 

DMPP. This complete de sensitization seen for the rat a l  receptor is consistent with 

responses reported previously (Gopalakrishnan et al., 1995).

4.6.3 Single-channel conductance of 5-HT3A expressed with human RIC3

Single-channel conductance was estimated for the murine 5-HT3A receptor using 

noise analysis. Due to the rapid desensitization of the rat a l  receptor it was not 

possible to obtain a reliable estimate. A very large number of responses (>100) 

would be needed per cell to perform the analysis as the responses are so short. The
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murine 5-HT3A receptor has been shown to have a small single-channel conductance 

of about 0.7±0.1 pS (Chapter 3, Section 3.6.3, Hussy et al., 1994; Kelley et a l, 

2003).

As with murine 5-HT3A subunit transfected alone, there was little detectable noise 

during agonist application in cells where the murine 5-HT3A subunit was co­

expressed with human RIC3 (Figure 3.14A). Noise analysis was performed on long 

responses (as described in Chapter 2, Section 2.7.5). There was no significant 

difference in the estimate of the single-channel conductance by the variance method 

for the murine 5-HT3A subunit alone (0.50±0.06 pS, n= 8) compared with the 5-HT3A 

subunit expressed with human RIC3 (0.62±0.15pS, n=6). Noise power spectral 

density analysis also showed no significant effect of RIC3 on single-channel 

conductance. The single-channel conductance of the 5-HT3A subunit expressed alone 

was 0.67±0.10pS («=8), and the 5-HT3A subunit expressed with RIC3 was 

0.81±0.13pS (w=6). Using the noise power spectral density method of analysis the 

kinetics of channel gating were characterized (see Chapter 2 Section 2.7.5.2). There 

was no significant difference between the mean single-channel open time of the 

murine 5-HT3A alone (x=24.2±4.3 ms, n=8) and with human RIC3 (t=36.9±1 1.4 ms, 

«=6). Thus, co-expression of human RIC3 does not appear to change the single­

channel conductance or the channel kinetics of the murine 5-HT3 a receptor.
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Figure 4.14 Noise analysis o f  whole-cell responses from tsA201 cells 

transiently transfected with 5 -HT3A and RIC3.

20 s e c o n d  a g o n is t  a p p l i c a t io n s  w e r e  a n a ly s e d  t o  o b ta in  th e  s in g le  c h a n n e l  

c o n d u c t a n c e  o f  t h e  5- H T 3A s u b u n it .  R e s u l t s  fo r  o n e  c e l l  a r e  s h o w n . ( A ) ,  A n  

e x a m p l e  o f  a  r e s p o n s e ,  t h e  b la c k  a b o v e  t h e  tr a c e  in d ic a t e s  th e  a g o n is t  

a p p l ic a t io n .  ( B ) ,  E s t im a t io n  o f  s i n g le  c h a n n e l  c o n d u c t a n c e  b y  th e  v a r ia n c e  

m e t h o d .  ( C ) ,  E s t im a t io n  o f  s i n g le  c h a n n e l  c o n d u c t a n c e  b y  t h e  n o i s e  p o w e r  

s p e c t r a l  d e n s i ty .
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4.7 D iscussion

There have been difficulties reported for the expression of functional a l  nAChRs in 

many heterologous expression systems. The a l  subunit protein can be detected, for 

example by immunoprecipitation, but neither specific binding with a-BTX nor 

conformationally sensitive antibodies were able to detect the appropriately folded 

protein (Cooper and Millar, 1997). It has, therefore been proposed that the a l  

subunit is incorrectly folded when expressed in such host cell types as HEK and 

Chinese hamster ovary cells (Cooper and Millar, 1997; Sweileh et al., 2000). 

Although the a l  subunit forms functional homomeric receptors in Xenopus oocytes 

(Couturier et al., 1990a) and some mammalian cell lines such as GH4C1 (Virginio et 

al., 2002), little is understood about how this protein folds into the correct 

conformation. The Torpedo and muscle nAChRs have been more extensively 

studied (Chapter 1, Section 1.3.1). Although the muscle nAChR forms receptors in 

many cell lines, this has been shown to be slow and inefficient (Merlie and 

Lindstrom, 1983, Wanamaker et al., 2003), with only 20-30% of synthesized 

subunits assembling into mature receptors.

Various factors are thought to aid assembly of non-a7 nAChR subunits. For 

example the endoplasmic reticulum chaperone calnexin has been shown to associate 

with nascent a l  subunits. This interaction decreases shortly before assembly with 

other subunits (Gelman et al., 1995) and calnexin has been shown to enhance surface 

expression of muscle nAChRs when they are co-expressed in HEK cells (Chang et 

al., 1997). BiP has also been shown to be involved in the assembly of muscle 

nAChR (Blount and Merlie, 1991; Forsayeth et al., 1992). The neuronal subunit a4  

interacts with the chaperone protein 14-3-3r), and this interaction significantly 

increases the steady state levels of a4j32 receptors (Jeanclos et al., 2001). Thus it 

was not unexpected to find a protein that, when co-expressed with the a l  subunit, 

increased cell surface expression and function of this nAChR.

The RIC3 protein has been shown to have an effect on nicotinic receptors of C. 

elegans (Halevi et al., 2002). RIC3 has also been shown to cause a functional 

upregulation of rat and human a l  receptors when expressed in Xenopus oocytes, 

indicating that it may interact with these receptors (Halevi et al., 2002; Halevi et al.,
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2003). These results suggest that the RIC3 protein may enable the a7  subunit to fold 

correctly in cells that are not normally permissive, allowing the formation of 

functional receptors. Radioligand binding and immunoblotting studies in HEK cells 

have shown that both human and rat a l  subunits, when co-expressed with human or 

C. elegans RIC3, form a-BTX binding sites on the cell surface (Lansdell et al., 

2005; Williams et a l, 2005). The human a l  subunit has been shown to co-assemble 

with the human RIC3 protein, as demonstrated by co-immunoprecipitation (Lansdell 

et al., 2005, Williams et al., 2005). These results support the idea that RIC3 

associates with a l  and helps the protein fold correctly. This chapter has investigated 

the effect of RIC3 upon the level of functional a l  receptors and some of the 

functional characteristics of the receptor.

4.7.1 RIC3 co-expressed with the a 7 nAChR subunit

In the present study, no functional human or rat a l  receptors could be detected in 

tsA201 cells transfected with only the a l  cDNA. When any of the three RIC3 

constructs (C. elegans, human or Drosophila) were co-expressed with the a l  

receptors, whole-cell responses were seen in response to ACh in a large proportion 

of the cells. Thus, in the presence of RIC3, not only is the a l  protein now folded in 

such a way that it allows a-BTX to bind, but the subunits assemble into functional 

receptors. The whole-cell responses that were obtained with ACh could be blocked 

with the a7/a8 selective antagonist MLA. The recovery from block by MLA 

displayed a time course that was consistent with data previously reported for a l  

(Palma et al., 1996a). The rat a l  receptors expressed with human RIC3 have 

functional characteristics that are typical for the a l  receptor. They show strong 

inward rectification, which has been reported repeatedly for a l  receptors (Puchacz et 

al., 1994; Forster and Bertrand, 1995). The a l  receptors are known to desensitize 

rapidly (Virginio et al., 2002; Ragozzino et al., 1997). The results from this thesis 

show clearly that, when expressed with human RIC3, the rat a l  also desensitizes 

rapidly, with a time constant of only tens of ms with both the natural agonist ACh 

and also in response to DMPP.
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Thus it seems that the RIC3 protein associates with the a  7 subunits, and allows the 

subunits to fold correctly or associate with each other correctly to form both the a- 

BTX binding site and a functional receptor. This agrees with the results of Castillo 

et al. (2005), who suggest that the RIC3 protein acts to both increase the number of 

mature or correctly folded receptors and also facilitate the transport of the receptor to 

the cell surface. As functional characteristics of the rat a l  receptor with RIC3 are in 

agreement with data already published in the literature (Puchacz et al., 1994; 

Gopalakrishnan et al., 1997; Ragozzino et al., 1997), it is possible that in all the 

expression systems where the a l  subunit is able to form functional receptors an 

endogenous RIC3 protein may be expressed. A Xenopus RIC3 homologue has been 

cloned (Halevi et al., 2003), and endogenous RIC3 transcripts have been identified 

in SH-SY5Y cells, a human neuroblastoma cell line (Lansdell et al., 2005), which 

expresses functional endogenous a l  receptors (Puchacz et al., 1994).

4.7.2 RIC3 co-expressed with other nAChR subunits

RIC3 has been reported to increase the levels of other nicotinic receptors. The a 8 

subunit gives no specific binding when expressed alone (Cooper and Millar, 1998), 

and the rat a3 and |32 subunits give low levels (Xiao and Kellar, 2004; Lansdell et 

al., 2005). Radioligand binding studies with the chick a 8 and rat a3j32 nicotinic
1 c  -i

receptors (with [ I] a-BTX and [ Hjepibatidine respectively) showed increased 

number of radioligand binding sites when co-expressed with RIC3 (Lansdell et al., 

2005). The effect of RIC3 upon the level of functional expression of these nicotinic 

receptors was investigated to determine if, as with the a l  receptor, co-expression of 

RIC3 increases the expression of functional receptors.

When the a 8 subunit was expressed alone, most cells examined by whole-cell patch- 

clamping gave no response to agonist, although 3/11 gave small whole-cell 

responses. Response in cells expressing only the a 8 subunit was unexpected 

because no specific binding has been detected with [125I]a-BTX when the a 8 subunit 

was expressed alone (Cooper and Millar, 1998). The absence of specific [125I]a- 

BTX binding could be due to only a very small number of cells expressing correctly 

folded and thus functional receptors, so small that it cannot be detected by 

radioligand binding. This conclusion is supported by the results that when cells are
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transfected with both the a 8 subunit and the RIC3 protein (C. elegans or human), 

there was a significant level of binding (Lansdell et al., 2005) and 28 out of 29 cell 

examined gave whole-cell responses when challenged with an agonist. The whole­

cell responses were blocked by the a7 /a8  selective antagonist MLA and recovery 

did not occur within the time of the whole-cell recording. There is no data published 

on the reversibility of the block by MLA on recombinant a 8 receptors. The nicotinic 

antagonist d-tubocurarine reversibly blocked the whole-cell responses. The 

antagonist a-BTX was also used to block the responses, but it was ambiguous 

whether this block was reversible. Thus it seems that the RIC3 protein allows more 

a  8 subunits to fold correctly or associate with each other correctly to form both the 

a-BTX binding site and a functional receptor.

When the rat a3 and |32 subunits were expressed together most cells patched gave no 

response to agonist, although 2/9 cells gave measurable whole-cell responses. This 

is in agreement with the low level of radioligand binding observed compared to other 

subunit combinations such as a3|34, which has a Bmax 150 times greater than a3|32 

(Xiao and Kellar, 2004). No data has been published on the function of rat a3|32 

receptors in mammalian cells. This is not surprising as the 2 out of 9 cells that did 

respond to agonist had very small responses to 400pM ACh, a concentration more 

than 2 fold greater than the EC50 obtained in Xenopus oocytes (two components: 

6.9±2.0pM and 170±120pM; Covernton and Connolly, 2000). Such a small number 

of cells producing functional receptors would make it difficult to examine function 

by whole-cell patch-clamping. When the rat a3 and (32 subunits were co-expressed 

with RIC3 (C. elegans or human) all cells that were challenged with agonist gave 

whole-cell responses, and the mean size of the responses was significantly greater 

than that of responses obtained in cells without RIC3. These responses were 

reversibly blocked with d-tubocurarine, a nicotinic antagonist.

The action of RIC3 is not restricted to the a  7 nAChR. RIC3 causes the functional 

upregulation of both chick a 8 and rat a3|32 receptors. In addition it has been shown 

that human RIC3 also increases the number of epibatidine binding sites and the 

calcium influx upon agonist application in cells expressing rat a3j34, a4|32 and 

a4|34, (Lansdell et al., 2005). Human RIC3 assembles with rat a4(32, shown by

147



immunoprecipitation (Lansdell et a l, 2005). It has also been demonstrated that co­

expression of RIC3 has no effect on a 9 a l0  receptor expression in tsA201 cells 

(Lansdell et a l , 2005). Thus, RIC3 is a general nicotinic receptor-associated protein 

that can up regulate the functional expression of many but not all nicotinic subtypes.

4.7.3 RIC3 co-expressed with 5-HT3A receptors

The nicotinic receptors are not the only ligand-gated ion channels that are affected 

by RIC3. Human RIC3 has been shown to almost completely abolish function of the 

murine 5-HT3a receptor expressed in Xenopus oocytes (Halevi et a l , 2003). Human 

5-HT3a has also been shown to transiently interact with human RIC3 (Cheng et a l, 

2005). Radioligand binding studies conducted in a mammalian cell line have shown 

that the total number of 5-HT3 receptor binding sites is greater with co-expression of 

either C.elegans or human RIC3 (Doward, 2005). However use of an enzyme-linked 

antibody assay has revealed differences between the murine and human forms of 5- 

HT3a (Doward, 2005). There is no difference in the amount of murine 5-HT3a 

receptor detected on the cell surface with or without RIC3 (C. elegans or human), but 

a greater amount of human 5-HT3a receptor has been detected on the cell surface 

when co-expressed with RIC3 (Doward, 2005). In the present study the effect of 

RIC3 upon the level of functional expression of human and rat 5-HT3a receptors in 

tsA201 cells was investigated to determine if, as with the a  7 receptor, co-expression 

of RIC3 increases the level of functional expression. Radioligand binding assays 

show more 5-HT3a receptor on the cell surface with co-expression of RIC3, 

suggesting that the level of function expression should also be greater. However, the 

enzyme-linked antibody assay show no difference in the level of murine 5-HT3a 

subunit on the cell surface when it is co-expressed with RIC3, which suggests that 

level of functional expression of this receptor will be no different.

The 5-HT3a receptor (human or rat) gave whole-cell responses from all cells 

challenged with 5-HT. When C. elegans RIC3 was co-expressed with the murine 5- 

HT3a subunit no difference was detected in the size of the responses. In contrast 

there was an increase the mean size of the responses to 5-HT in cells expressing the 

human 5-HT3a subunit and C. elegans RIC3 compared to human 5-HT3a alone. 

When human RIC3 was co-expressed with the human 5-HT3A subunit it had no
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effect on the level of receptor function. This agrees with the results of Cheng et al., 

2005, who also showed that increasing the amount of RIC3 DNA used for 

transfection of cells caused an increase in the number of surface receptors and in 

receptor function in a concentration-dependent manner. Co-expression of human 

RIC3 with murine 5-HT3A caused a reduction in the magnitude of responses (mean 

response was decreased to 40% of the size of the response with murine 5-HT3A 

alone), and some cells showed no response at all. This reduction is not as great a 

decrease as seen in Xenopus oocytes (Halevi et al., 2003), which highlights again the 

differences that the expression system appears to exert. The functional 

characteristics of the murine 5-HT3A subunit when expressed with RIC3 are not 

significantly different from the murine 5-HT3A subunit expressed alone (Chapter 3, 

Section 3.6). The desensitization, reversal potential and rectification, and single­

channel conductance are all the same with and without the RIC3 protein.

The presence of an extracellular isoleucine (I218) just before the first putative 

transmembrane domain has been reported as responsible for the loss of functional 

murine 5-HT3A receptors in Xenopus oocytes, by hindering the transport of mature 

receptors to the cell surface (Castillo et al., 2005). However, in mammalian cells the 

human RIC3 protein causes a decrease in function (assayed by recordings of agonist- 

induced changed in levels of intracellular calcium and by whole-cell 

electrophysiological recording), but no change in the surface levels of the murine 5- 

HT3A receptor (Doward, 2005). These results seem contradictory, however these 

differences could be explained by a decrease in the agonist sensitivity of the 5-HT3A 

receptor. The alteration of agonist sensitivity of a nAChR has been shown 

previously with VILIP-1 and the a4|32 receptors (Lin et a l 2002). However the 

human RIC3 and the 5-HT3A subunit have been shown to interact only transiently 

(Cheng et al., 2005), so if RIC3 does affect the agonist sensitivity, this might require 

a long-lasting modification of the receptor that was retained after the two proteins 

separated. Alternatively, the human RIC3 protein might decrease the proportion of 

functional murine 5-HT3A receptors expressed on the cell surface, without affecting 

the total amount of subunit protein. This does not agree with the radioligand binding 

data, which suggests that there are more correctly folded 5-HT3A receptors on the 

cell surface when the subunit is co-expressed with RIC3.
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Further experiments with RIC3 need to be performed to investigate the discrepancies 

between the radioligand binding, enzyme-linked assays and functional assays and 

also to confirm the mechanism of action of RIC3 upon the subcellular trafficking and 

the resulting functional expression of the 5-HT3A subunit. Future studies can do be 

done to examine which regions of the subunits that have been shown to interact with 

RIC3 are needed for this interaction.
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CHAPTER 5 

CONCLUSION
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5.1 Inefficien t fo ld ing o f  the a l  nA C hR  sub u n it

The folding and assembly of the muscle nAChR has been demonstrated to be 

inefficient, with only 30% of synthesized a  subunits assembling into receptors 

(Merlie and Lindstrom, 1993). The a l  subunit has been reported to form no 

functional recombinant receptors in some cell lines (for example HEK and COS) in 

which functional recombinant muscle nAChR, other neuronal nAChRs and 5-HT3RS 

are detected (Cooper and Millar, 1997; Sweileh et al., 1998; Gunthorpe et al., 2000). 

The a l  subunit is able to form functional receptors in Xenopus oocytes (Couturier et 

al., 1990a) and some neuronal cell lines (Puchaz et al., 1994; Cooper and Millar, 

1997; Virginio et al., 2002) and the protein is detected in HEK cells by antibodies to 

a linear epitope, but not by conformationally sensitive antibodies (Cooper and 

Millar, 1997). Thus, it has been suggested that some cell lines lack factors such as 

chaperones that are needed for the a l  subunit to fold correctly. Both the a l  subunit 

and the 5-HT3A subunit are able to form functional homomeric receptors in Xenopus 

oocytes, but despite forming similarly complex structures to make functional 

receptors, the 5-HT3A has been demonstrated to do this efficiently in all cell lines 

tested.

5.1.1 a7/5-H T 3A chimeras

A chimera with the N-terminal extracellular domain of a l  and the transmembrane 

and intracellular domains of the 5-HT3A subunit has been demonstrated to form 

functional receptors gated by ACh in HEK cells, where no a l  function is detected 

(Eisele et al., 1993; Cooper and Millar, 1997). The present study has extended the 

research previously published by narrowing down which regions within the 

transmembrane and C-terminal domains of the 5-HT3A subunit confer the ability to 

fold and assemble efficiently into functional receptors in HEK tsA201 cells.

A series of a7/5-HT3A chimeras was constructed replacing various domains of a l  for 

the equivalent 5-HT3A sequence (Chapter 3, Figure 3.1) and the cell surface 

expression of correctly folded receptors was established by radioligand binding and 

enzyme-linked assays. Chimeras showing cell surface expression were then tested 

for function using a calcium-sensitive dye in a FLIPR based assay and by whole-cell 

patch-clamp recording. In each case where surface expression was found, the
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receptors were functional suggesting only correctly folded (and hence functional) 

receptors are transported to the cell surface. All chimeras that contained the four 

transmembrane domains of 5-HT3A showed significant radioligand binding and were 

found to be functional. These results suggest that all four transmembrane domains 

of the 5-HT3A subunit are necessary for efficient expression of correctly folded 

functional receptors. The large cytoplasmic M3-M4 domain has been proposed to 

influence folding and assembly of neurotransmitter receptors as this region has been 

shown to interact with a range of intracellular proteins (Maimone and Enigk, 1999; 

Jeanclos et al., 2001; Lin et al., 2002). However, there was no detrimental effect on 

serotonergic radioligand binding when the 5-HT3A large cytoplasmic loop was 

replaced with the equivalent a 7 sequence. Additionally, when the a 7 intracellular 

loop was replaced with the 5-HT3A intracellular loop the receptor still formed no a- 

BTX binding sites. Thus, from the results obtained in this study, it was concluded 

that only the regions from just before Ml to the end of M3, and just before M4 to the 

end of the protein determine the efficiency of folding and assembly of these 

receptors.

5.1.2 The a  7 subunit co-expressed with RIC3

The wild-type a l  subunit is able to form functional receptors in some mammalian 

cell lines, for example in SH-SY5Y cells which contain endogenous a l  receptors 

and can express heterologous a l  receptors efficiently (Puchacz et al., 1994). Also 

GH4C1 cells which do not express endogenous a l  receptors, can express 

heterologous a7 receptors and (Virginio et al., 2002). This has been attributed to 

host-cell specific factors that aid the correct folding and assembly of a l  subunits in a 

small number of expression systems that include Xenopus oocytes. Recently the 

RIC3 family of proteins has been identified and implicated in the maturation of 

several nAChR subtypes, including the a l  nAChRs, when expressed in Xenopus 

oocytes (Halevi et al., 2002; Halevi et al., 2003). A correlation between the 

expression of RIC3 and the ability to express functional a l  receptors has been 

shown: the presence of RIC3 transcripts was demonstrated in SH-SY5Y cells that 

endogenously express a l  receptors, but no R1C3 transcript could be detected in HEK 

tsA201 cells, which are unable to express functional heterologous a l  receptors 

(Lansdell et al., 2005). Co-expression of a l  and RIC3 in HEK cells has been
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demonstrated to result in cell surface expression of an a l  nAChR capable of binding 

a-BTX (Williams et a l, 2005; Lansdell et al., 2005). The aim of this study was to 

examine how co-expression of RIC3 affected the level of functional expression of 

a l  nAChRs expressed in HEK tsA201 cells. This was investigated by whole-cell 

patch-clamp recording of cells transfected with cDNAs of different species of a l  

and of RIC3.

It has been demonstrated in this thesis that functional a l  nAChRs can be detected 

only when the subunit is co-expressed with RIC3 (Chapter 4, Section 4.2). Co­

expression of the human a l  subunit and human RIC3 resulted in functional nAChRs, 

as has also been demonstrated by Williams et al. (2005). The combinations of 

human or rat a l  subunit and human or C. elegans RIC3 all gave mean whole-cell 

responses of approximately the same size (Chapter 4, Section 4.2.1). Co-expressing 

the a l  subunit with Drosophila RIC3 also resulted in functional a l  nAChRs, but 

gave smaller whole-cell responses with human or C. elegans RIC3.

The functional characteristics of the rat a l  nAChR when co-expressed with human 

RIC3 were investigated by examining whole-cell responses. The reversal potential, 

rectification characteristics and desensitization (Chapter 4, Section 4.6) were all very 

similar to those reported previously for a l  receptors expressed in Xenopus oocytes 

or studied in native cells such as cultured hippocampal neurones (Mike et al., 2000). 

When expressed with human RIC3, both the human and rat a l  subunit formed 

receptors which were blocked by the antagonist MLA (Chapter 4, Section 4.2.2). 

The recovery from block had characteristics similar to those previously published for 

the a l  receptor (Palma et al., 1996a). These results indicate that the functional 

characteristics of the channel have either not been altered by co-expression with 

RIC3, or, that all other cells expressing functional a l  receptors also co-express 

RIC3. It is possible that the RIC3 protein may act by enhancing the efficiency of 

subunit folding, assembly. It has been proposed that RIC3 does not affect receptor 

trafficking as it has been reported that there was no difference in the amount of cell 

surface a l  subunit detected in the presence or absence of RIC3 (Williams et al., 

2005). However, it has also been suggested that the effect of RIC3 upon the a l  

subunit in Xenopus oocytes is mediated at two levels; an increase in the number of
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mature receptors and facilitation of transport to the plasma membrane (Castillo et a l , 

2005).

The RIC3 protein co-assembles with the a l  subunit, as demonstrated by 

immunoprecipitation (Doward, 2005; Williams et al., 2005); thus the action of RIC3 

upon the a l  subunit may be mediated directly through the association of these 

proteins. This may be a transient association as it has been demonstrated in Xenopus 

oocytes that labelling of the a l  subunit only coincides in some places with RIC3 

labelling (Castillo et al., 2005).

5.1.3 RIC3 co-expressed with other neurotransmitter receptor subunits

In this thesis it has been demonstrated that the RIC3 protein can affect the expression 

of nicotinic neurotransmitter receptor subunits other than a l  (Chapter 4, Section 4.3- 

4.4; Lansdell et al., 2005). When the a 8 nicotinic subunit was expressed alone in 

fibroblast cells, no a 8 receptor can be detected with radioligand binding (Cooper and 

Millar, 1998). However, when RIC3 is co-expressed in HEK with the a 8 subunit 

specific radioligand binding is detected (Lansdell et al., 2005). In this thesis, it was 

investigated whether the level of functional expression assayed by whole-cell patch- 

clamp recording, would increase with co-expression of RIC3. In cells expressing the 

cx8 subunit alone three out of 11 cells responded to ACh (Chapter 4, Section 4.3). 

This was unexpected as no specific radioligand binding with this subunit has been 

demonstrated previously (Cooper and Millar, 1997; Lansdell et a l , 2005). A much 

greater proportion of the cells tested showed functional expression when the a 8 

subunit was co-expressed with RIC3 and the responses were of greater magnitude 

(Chapter 4, Section 4.3.1).

Radioligand binding assays demonstrate that cell expressing the a3 and (32 subunits 

show low levels of specific binding in comparison to other subunit combinations 

such as a4|32 (Xiao and Kellar, 2004; Lansdell et a l , 2005). When a3 and |32 

subunits were co-expressed, only two out of ten cells showed small whole-cell 

responses (Chapter 4, Section 4.4). When RIC3 was co-expressed with the a3 and 

(32 subunits an increase in radioligand binding and an increase in calcium influx 

upon application of nicotinic agonist has been demonstrated (Lansdell et a l , 2005).
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When tested with whole-cell patch-clamp recording, the whole-cell responses were 

larger and a higher proportion of cells responded to agonist in the presence of RIC3 

(Chapter 4, Section 4.4.1).

Additionally, when co-expressed with RIC3, an increase has been reported in the 

number of radioligand binding sites, and in agonist-induced intracellular calcium 

influx in cells expressing a4(32, a4|34 or a3(34 nAChRs (Lansdell et al., 2005). 

These results and the results in this thesis indicate that RIC3 is a general nAChR 

associated protein that acts to increase the number of functional receptors. 

Previously reported nAChR-accessory proteins (Calnexin, BiP and 14-3-3r|) have 

been demonstrated to up-regulate only muscle nAChR (Chang et al., 1997; 

Forsayeth et al., 1992) and a4(32 receptors (Jeanclos et al., 2001).

The RIC3 protein also affects the functional expression of 5-HT3A receptors (Chapter 

4, Section 4.5). Co-expression of human RIC3 with murine 5-HT3Ahas been shown 

to result in the loss of functional expression of this receptor when expressed in 

Xenopus oocytes (Halevi et a l , 2002). In contrast, when this receptor is expressed in 

a mammalian cell line (HEK), there is an increase in radioligand binding (Doward 

2005) and cell surface receptors (Cheng et al., 2005) when the 5-HT3A subunit is co­

expressed with RIC3. There are differences in the effect of RIC3 upon the 

expression of 5-HT3A, depending on the species of RIC3, the species of 5-HT3A and 

the technique used to examine the levels of expression. For example, compared to 

expressing the subunit alone, co-expression of human 5-HT3A with human RIC3 

gave a greater number of surface receptors, but the same level of functional 

expression as assayed by agonist-induced calcium influx (Doward, 2005). There is 

no difference in cell surface receptor expression with murine 5-HT3A alone and with 

human RIC3 (Doward, 2005); however agonist-induced calcium influx is lower 

when human RIC3 is co-expressed with the murine 5-HT3A subunit (Doward, 2005; 

Chapter 4, Section 4.5.1). This thesis examines the functional expression of the 5- 

HT3A receptor by whole-cell patch-clamp recording as an alternative method to the 

calcium-influx assay.
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All cells expressing one of the 5-HT3A subunits (human or murine) responded to 5- 

HT (Chapter 4, Section 4.5). Upon co-expression of C. elegans RIC3, there was an 

increase in the size of whole-cell responses from cells expressing the human 5-HT3A 

subunit, but no difference in cells expressing the murine 5-HT3A subunit. In 

contrast, when human RIC3 was co-expressed with the human or murine 5-HT3A 

subunit there was no difference in the size of the whole-cell response from human 5- 

HT3 A receptors, but a decrease in response from the murine 5-HT3a receptor (Chapter 

4, Section 4.5.1). Thus this thesis shows that no generalization can be made about 

the action of RIC3 upon the 5-HT3A receptor. In the future it would be interesting to 

clone the murine RIC3 protein and see what effect it would have upon the murine 5- 

HT3A subunit. Also, since the cell line used in these experiments was of human 

origin, it would be interesting to investigate if there were any difference if a murine 

cell line was used.

It has been demonstrated that if the ratio of human RIC3 to the human 5-HT3A 

subunit is increased, the level of functional expression also increases (Cheng et al., 

2005). The RIC3 protein (when in sufficient quantities) may increase the level of 

functional expression of the human 5 -HT3A subunit, but may act differently at the 

murine 5-HT3A subunit. When expressed in Xenopus oocytes the lack of detectable 

functional murine 5-HT3A receptors when co-expressed with human RIC3 has been 

attributed to inhibition of export of the receptor to the plasma membrane. This 

requires an extracellular isoleucine close to the first transmembrane receptor domain 

(Castillo et a l , 2005). It would be interesting to see if loss of this isoleucine also 

abolished the effect of co-expression of human RIC3 in HEK tsA201 cells. As yet 

there is no hypothesis as to how RIC3 enhances the functional expression of human 

5-HT3A. By using the chimeric subunits described in Chapter 3, studies can be 

performed in the future to examine which part of the subunits are necessary for both 

the interaction with RIC3 and the resultant effect on function.

Human RIC3 has been shown to co-assemble with the cx3, a4, (32 and (34 nAChR 

subunits and the 5-HT3A subunit (Lansdell et a l , 2005; Williams et a l,  2005; Cheng 

et a l,  2005). This suggests that, as for the a l  subunit, the action of RIC3 upon these 

subunits may involve direct interaction with the RIC3 protein. The co-assembly of
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human RIC3 and human 5-HT3A has been proposed to be transient as RIC3 and 5- 

HT3A co-immunoprecipitate only a few hours after metabolic labelling (Cheng et a l, 

2005). In this case RIC3 may promote some posttranslational modifications, for 

example palmitoylation (Drisdel et a l , 2004) that is required for forming the correct 

receptor structure or transport to the cell surface (Cheng et a l , 2005).

The RIC3 protein has been demonstrated to have multiple actions. It increases the 

number of nAChRs and their transport to the membrane, but also acts on the 5-HT3A 

subunit, and affects the level of functional expression. In the future, the chimeras 

constructed between the rat a  7 and murine 5-HT3A subunits can be co-expressed 

with RIC3 to identify which regions of the subunits are important for the association 

with RIC3 and the effect that RIC3 has upon the receptor subunit. It has been 

reported that amino acids in the putative amphipathic helix in the large cytoplasmic 

loop of the human a l  subunit are necessary for the positive effect of RIC3 upon the 

number of surface a-BTX binding sites (Castillo et a l, 2005). This intracellular 

loop region does not affect the efficiency of protein folding of the a l  subunit as 

demonstrated in Chapter 3 (Section 3.3.2), where exchange of the 5-HT3A and a l  

M3-M4 sequences did not effect the number of radioligand binding sites. However, 

this region may important for the mechanism by which RIC3 enables a l  to fold to 

form a-BTX binding sites.

5.2 Functional characteristics of the homomeric a 7  and 5-HT3A 

receptors

The a l  nAChR subunit and 5-HT3A subunit have approximately 33% sequence 

similarity, but they have very different functional properties, thus it was of interest to 

examine which of the sequence differences were important for function. Out of the 

thirteen chimeras constructed from the a l  and 5-HT3A subunits in this study, three 

were functional (5-HT3A3'4L°op'e'7) a 7 v201'5'HT3A and a7 ‘>™-5-HT3A) Jhe functional 

characteristics of these three chimeras were compared with the 5-HT3A receptor 

(Chapter 3, Section 3.6) and the a l  receptor (co-expressed with RIC3; Chapter 4, 

Section 4.6).
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5.2.1 Reversal potential and rectification

There was no significant difference in the reversal potential of the homomeric a l  

and 5-HT3A receptors, and the three chimeras also had similar reversal potentials. 

The a l  receptor shows much greater rectification then the 5-HT3A receptor, and the 

chimeras all resembled the 5-HT3A receptor. The 5-HT3A subunit and the three 

chimeras share only the four transmembrane domains. Thus the results in this thesis 

suggest that this is the region that determines the rectification characteristics of these 

receptors. Surprisingly, rectification is not affected by the large cytoplasmic loop, 

even though this region contains amino acids that affect the single-channel 

conductance (see below).

5.2.2 Desensitization characteristics

The a l  receptor desensitizes approximately 40 times faster than the 5-HT3A receptor. 

The 5-HT3A3'4Loop’a7 chimera had desensitization characteristics similar to the 5-HT3A 

receptor, but the a 7v201-5'HT3A ancj a y4TM-5-HT3A chjmeras rates 0f desensitization 

that were in between the a l  and 5-HT3A receptors. Also the rate of desensitization 

was significantly faster for the a 7V201-5-HT3A chimera, compared to the a 74™-5-HT3A 

chimera. These results demonstrate that multiple regions may determine the rate of 

desensitization. Both the a l  and 5-HT3A subunits and the 5-HT3A3"4Loop’a7 chimera 

desensitize to a greater degree than the a 7v201'5'HT3A an(j a 74TM-5-HT3A cj1imeraS; 

which had a high level of residual activation after desensitization (-30%). Having 

the N-terminal extracellular region of a l  but the transmembrane domains of 5-HT3A 

results in a receptor that does not fully desensitize even upon long agonist 

applications.

5.2.3 Single-channel conductance

The single-channel conductance of the a l  receptor is approximately 50 times greater 

than that of the receptor formed form 5-HT3A subunits. Previously the 

transmembrane domains, and particularly M2, have been postulated to determine the 

single-channel conductance of nicotinic receptors (Imoto et al., 1986). However the 

results of this thesis and also work published by Kelley et al (2003) suggest 

otherwise. Using noise analysis to determine the single-channel conductance, the 

three chimeras were shown to have significantly greater single-channel conductance
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than the 5-HT3A receptor, despite all four constructs containing the same 

transmembrane domains. Inclusion of the large cytoplasmic loop of the a l  receptor 

(comparing 5-HT3A to 5-HT3a34Loop'°7, and a 7V20|-5-HT3A t0 aytTM-s-HTBÂ  increased

the conductance ten fold, and inclusion of the N-terminal domain of a l  (comparing 
5-HT3A to a 7V2°'-5-HT3A 5 _ H X 3 A 3-4Loop-„7 t 0  a 7 4TM-5-HT3A)  increased the conductance

two fold. Thus, both the large cytoplasmic loop and the N-terminal domain are 

involved in determining the single-channel conductance of the a l  and 5-HT3A 

receptors. It has been demonstrated that the low conductance of the 5-HT3A receptor 

can be attributed to three arginine residues in the large cytoplasmic loop (Kelley et 

al., 2003), and the a l  sequence contains none of these arginine residues.

5.3 Sum m ary

The aim of this thesis was to further investigate structural domains responsible for 

the inefficient folding, assembly and functional expression of the a l  subunit. The 

exchange of a minimum of two domains of the a l  subunit cDNA sequence 

(including Ml to M3 and M4 to the end of the subunit) for that of the 5-HT3A 

subunit, created chimeras that were able to form functional receptors. Thus the 

domains that dictate the correct folding and assembly of these receptors have been 

narrowed down. It was also demonstrated that the transmembrane domains 

determine the rectification of the receptors and that the large cytoplasmic loop and 

the N-terminal domain determine the single-channel conductance.

The a l  subunit forms functional receptor in some mammalian cell lines, and this has 

recently been suggested to be due to the presence of the RIC3 protein. This thesis 

demonstrates that the a l  subunit forms functional receptors only when co-expressed 

with RIC3 in HEK cells. It has also been demonstrated that RIC3 increases the 

functional expression of other nicotinic receptors (a8 and a3(32), and influences the 

functional expression of the 5-HT3A receptor.
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