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Abstract

Skilful seasonal predictability of European climate would bring widespread socio­

economic benefits. However, little useful skill has been identified to date. This work 

extends prior research to show evidence for significant skill in predicting the winter 

North Atlantic Oscillation (NAO). The research divides into two topics. First, the 

work clarifies what is the best lagged predictor for the winter NAO by standardising 

the assessment of four previously published lagged NAO predictors. A new NAO 

predictor -  the zonal gradient in summer northern hemisphere (NH) subpolar air 

temperature -  is examined. This predictor outperforms other NAO predictors over 

assessment periods out to 100 years. This finding suggests that it is NH subpolar re­

gions rather than the midlatitudes or the tropics which provide the best NAO lagged 

predictability. A physical mechanism linking summer NH subpolar climate and the 

winter NAO is proposed. Summertime subpolar atmospheric perturbations lead a 

pattern of North Atlantic sea surface temperature which persists into autumn. This 

pattern could feed back onto the atmosphere to influence the sign and magnitude 

of the winter NAO. Second, the study explores further the mechanisms which un­

derpin the observed NAO predictability -  in particular how summer NH snow cover 

links to the winter NAO -  by using a coupled general circulation model (CGCM). 

A validation of the CGCM snow cover representation 1972-2002 is presented. The 

CGCM captures well the observed annual cycle and spatial distribution of NH snow 

cover. However, the CGCM exhibits critical deficiencies in the seasonal interaction 

between snow cover and the atmosphere. The CGCM exhibits a significant link 

between summer snow cover and the winter NAO 1972-2002. However, this link 

is nonstationary during the twentieth century and does not function through the 

mechanism seen in observations. Winter NAO predictability in a single CGCM 

integration cannot therefore be distinguished from internal model variability.
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Chapter 1

Introductory Material

1.1 Introduction

Winters in Europe are known to exhibit different climatic characteristics from one 

year to the next. However, it is also known that certain weather types persist for 

several winters in succession (Johansson et al. 1998, Wanner et al. 2001). Increasing 

research is focusing on understanding the causes of variations in UK and European 

winter weather on seasonal, interannual and decadal time scales. In particular, 

recent attention has focused on the seasonal forecasting of large-scale climate modes, 

which influence weather patterns on hemispheric spatial scales.

The North Atlantic Oscillation (NAO) is the dominant mode of winter climate 

variability over the North Atlantic (Walker and Bliss 1932, Barnston and Livezey 

1987). The NAO is characterised by a dipole oscillation in North Atlantic sea-level 

pressure between the subpolar (Icelandic) low pressure and subtropical (Azores) 

high pressure regions (Saunders and Qian 2002). The NAO index represents the 

strength of the meridional sea-level pressure gradient between these regions. High 

values of the winter NAO index are linked to increased storminess over northern 

Europe, while low values are linked to increased storminess over southern Europe 

and the Mediterranean (Figure 1.1). Teleconnected atmospheric and oceanic effects 

associated with the winter NAO are also observed over a wide area surrounding the 

North Atlantic. Accurate and timely forecasts of the winter NAO index are therefore 

an important challenge for seasonal forecasters and current research is directed at 

improving the quality and lead time of NAO forecasts.

Seasonal climate forecasting aims to predict the mean state of the atmosphere
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months or seasons in advance. Research over the last couple of decades has shown 

that, in many regions of the world, the seasonal climate is potentially predictable 

(Goddard et al. 2001). The aim of this thesis is to investigate the seasonal pre­

dictability and modelling of the winter NAO. The main objective is to use empirical 

models to determine the current level of available seasonal predictability. This work 

builds on previous forecasting attempts by presenting improved seasonal predictive 

models for the winter NAO.

This Chapter begins with a description of the background and process of seasonal 

climate forecasting (Section 1.2). A review and comparison of the two different 

methodologies employed in solution to the problem is presented. Section 1.3 outlines 

the need for accurate seasonal forecasts of the winter NAO and identifies potential 

users of the forecasts. Section 1.4 defines the first research topic in this thesis, which 

compares four empirical seasonal prediction models for the winter NAO. Section

1.5 outlines the second research topic, which examines the capability of a coupled 

general circulation model (GCM) to reproduce observed winter NAO predictability 

from lagged snow cover. The motivation for these research areas is outlined, along 

with the specific research questions that will be addressed by this work. A brief 

summary is presented in Section 1.6.

1.2 Seasonal climate forecasting

1.2.1 Physical basis

Seasonal climate forecasting (SCF) is a revolutionary technology aiming to predict 

the likely state of the climate several months ahead (Mathieu et al. 2004). SCF 

has been performed for over a century based on the identification of environmental 

indicators that precede shifts in climate (Goddard et al. 2001). However, SCF has 

received renewed interest during the past 20 years through the realisation that the 

El Nino Southern Oscillation (ENSO) phenomenon offers potential global seasonal 

predictability. The scientific basis for SCF lies in the lower boundary of the at­

mosphere (i.e., ocean and land), which acts as a climate pacemaker by modulating
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NAO + N A O -

Figure 1.1: Schematic showing the regional climatic impacts of the positive (left) 
and negative (right) phases of NAO d j f - Surfaces mark SSTs and sea ice extension, 
arrows show the flow systems in ocean, atmosphere and rivers, blue and red lines 
indicate near-surface sea-level pressures and white rectangles describe characteristic 
climate conditions or important processes. After Wanner et al. (2001).
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the variability of the atmosphere on seasonal and longer time scales (Palmer and 

Anderson 1994). These potentially predictable low-frequency signals are extracted 

either using empirical statistical methods (e.g., Barnston 1994) or by employing 

sophisticated dynamical GCMs (e.g., Palmer et al. 2004). Both of these approaches 

are currently used operationally at meteorological centres around the world.

The day-to-day details of the atmosphere, such as individual cyclonic storms, 

are generally accepted to be unpredictable beyond ~10 days. SCF is concerned 

not with the individual details but with departures from a climate normal over a 

specified period. Typically, the climate normal is a time mean of the parameter 

in question and the averaging period ranges between one month and a season. 

It is common for forecasts to be made for climate anomalies, which represent the 

departure of an individual event from the climate normal. Clearly, the magnitude of 

individual anomalies is dependent on the time period for which the climate normal 

is calculated.

Time scales

The amount of predictability available in SCF depends significantly on the time and 

spatial scales of the analysis. Low frequency variations are more predictable than 

high frequency phenomena (van den Dool and Saha 1990). Therefore, seasonal 

forecasts are issued for a time mean period of predetermined length rather than 

for individual weather events. The definitions of the forecast lead time and the 

predictor and forecast periods are shown in Figure 1.2. Typical time scales for the 

predictor and validation periods involved in SCF range between a single month and 

a year. However, a season is considered the shortest averaging period that allows 

an acceptable signal-to-noise ratio and the longest averaging period that does not 

mix different times of the year too much (Johansson et al. 1998).

Forecast lead times vary from 0-3 months (e.g., Saunders and Qian 2002, Palmer 

et al. 2004) to as long as one year (e.g., van den Dool and Nap 1985). Clearly, a 

longer lead time is more valuable to an end user. However, the maximum useful 

lead time is dependent on the skill of the forecast at that lead. For example, given a
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> -  TIMEPredictand PeriodPredictor Period Lead Time

Forecast 
Issue Time

Forecast 
Validity Time

Figure 1.2: Definitions of predictor period, forecast lead time and predictand period. 
After WMO (2002) and Lloyd-Hughes (2002).

choice between a forecast with low skill 6 months ahead and a forecast with highly 

significant skill 3 months ahead, the end user would have to decide whether the 

extra 3 months lead time offsets the reduced accuracy of the prediction. In practice, 

forecasts are typically issued at a range of lead times and the skill increases closer 

to the validation time (e.g., Lloyd-Hughes et al. 2004).

Spatial scales

The spatial scale of the forecast region is also important in SCF. Lorenz (1969) 

presented theoretical arguments showing that climatic phenomena occurring on 

large spatial scales have a longer range of predictability than those on smaller 

spatial scales. This consideration means that seasonal forecasts tend to be made 

for climatic regions (e.g., eastern United States, northwest Europe etc). However, 

seasonal forecasts can also be made for point locations where a single weather station 

is situated in a particularly localised climate regime (e.g., at a coastal boundary) 

(van den Dool and Nap 1981).

On the global scale, most SCF predictability derives from the ENSO phe­

nomenon. ENSO is the dominant mode of global climate variability on seasonal-to- 

interannual time scales and arises from coupled ocean-atmosphere interactions in 

the tropical Pacific Ocean (Bjerknes 1966, Wallace et al. 1998). Although centred 

on the Pacific, ENSO has major teleconnected impacts around the globe, which 

are thought to arise through the propagation of tropical Pacific wavelike distur­

bances (Trenberth et al. 1998). Mathieu et al. (2004) showed that SCF skill is 

observed in the North Atlantic and European (NAE) sector during ENSO events. 

However, the NAE sector relationship with ENSO is complex and these authors
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stated that SCF systems must focus on local conditions as well as those over the 

tropical Pacific Ocean. This point is further emphasised by the obvious recognition 

that Atlantic conditions are likely to be still more important during non-ENSO 

years. Graham et al. (2000) found that ENSO-related improvements in predictabil­

ity over the Northern Hemisphere apply predominantly to North America and that 

in non-ENSO years the levels of skill are similar between locations.

Aside from ENSO, hemispheric and regional scale SCF predictability is generally 

concerned with the influence of patterns of lagged global and regional sea-surface 

temperature (SST) (Lorenz 1969). Tropical Atlantic SSTs have been shown to in­

fluence seasonal Atlantic hurricane activity (Saunders and Harris 1997, Goldenberg 

et al. 2001) and interannual rainfall variability from Brazil to West Africa (e.g., 

Hastenrath 1984, Enfield 1996). Extratropical North Atlantic SSTs have also been 

shown to play a significant role in SCF on hemispheric scales (Radcliffe and Mur­

ray 1970, Colman and Davey 1999, Rodwell and Folland 2002, Saunders and Qian 

2002).

At smaller spatial scales in the extratropics, two SCF mechanisms have been 

identified based on direct and indirect climatic effects. The first mechanism is the 

direct persistence in atmospheric conditions caused by proximity to water bodies, 

which occurs on small spatial scales of the order ~200 km (van den Dool and 

Nap 1981). The second mechanism concerns the indirect large-scale persistence of 

the background atmospheric circulation. Extratropical synoptic weather systems 

have a dominant influence on climate at this larger spatial scale and therefore 

predictability is assumed to be lower than with the first mechanism (van den Dool 

1983). However, in extratropical regions, for accurate SCF one has to combine the 

two effects (van den Dool and Nap 1981).

Verification

Seasonal forecasts only have value if they are accurate above and beyond what could 

be expected by random chance. The accuracy of SCF systems is commonly referred 

to as the forecast ‘skill’ and several different ‘skill scores’ have been developed to
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quantify their value. The main purpose of skill scores is to chart the variation in 

the success of a given series of forecasts produced in a standard format and checked 

in a standard objective way (Gilchrist 1986). Skill scores also enable the accuracy 

of forecasts produced by different models and using different climatic variables to 

be compared. Skill is considerably more difficult to assess in SCF than in short- 

or medium-range weather forecasting because of the increased time scale of the 

forecast, and hence the reduced frequency with which forecasts can be made and 

evaluated (Zwiers and von Storch 2004).

Seasonal forecasts can be either probabilistic or deterministic and different skill 

scores are used for each type. Probabilistic forecasts provide probabilities of the 

occurrence or non-occurrence of an event or a set of fully inclusive events (WMO 

2002). Some examples of verification measures are the Brier Score (Brier 1950), 

Relative Operating Characteristic (Palmer et al. 2000) and the Rank Probability 

Score (Wilks 1995). Deterministic forecasts provide a single expected value for the 

forecast variable (e.g., a predicted value of monthly mean temperature) (WMO 

2002). They are typically assessed against a prediction of the climatological mean 

and verified using the Pearson or rank correlation, or mean-squared skill scores 

(Wilks 1995, WMO 2002).

1.2.2 Dynam ical SCF

Having discussed the physical basis and the different time and spatial scales involved 

in SCF, we now examine the contrasting methodologies employed in solution to the 

problem. These methodologies are to use either dynamical or empirical climate 

models, respectively.

Dynamical SCF for a month or season ahead is distinguished from short- and 

medium-range dynamical forecasting by being concerned with a period that extends 

beyond the limit of predictability for individual weather systems. ‘Limit’ in this 

sense refers to the time taken in a numerical model simulation for small errors 

consistent with practical observational inaccuracies in the initial atmospheric state, 

to grow to saturation values (Gilchrist 1986). Palmer and Anderson (1994) stated
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that for SCF it is not sufficient to simply expand the length of integration of a 

numerical weather prediction (NWP) model; the model must be coupled to the lower 

boundaries, most importantly to the oceans. Uncertainties in the initial conditions 

of these integrations cause random errors to erode forecast skill. Sensitivity to 

initial conditions may be filtered, to a degree, through use of the ensemble mean 

of a series of model integrations, each run with slightly different initial conditions 

(e.g., SST fields for a series of consecutive days). Ensemble meaning has proved 

relatively successful in reducing initial condition uncertainty in SCF (e.g., Lin et al. 

2004). Such GCM ensemble integrations, forced with sufficiently accurate observed 

SSTs, represent an upper limit on the potential predictability available from coupled 

ocean-atmosphere GCMs (Brankovic and Palmer 2000).

While SCF ensembles from a single GCM reduce initial condition uncertainty, 

recent projects have sought to reduce the effects of model formulation error by 

employing an ensemble of predictions from different GCMs. The scientific basis 

for these multi-model ensembles is that each GCM formulation is different and the 

combined ensemble therefore explores forecast uncertainty due to model formula­

tion (Krishnamurti et al. 1999). One of the earliest examples of this approach 

was the PRediction Of climate Variations On Seasonal to interannual Time scales 

(PROVOST) project (Palmer et al. 2000, Brankovic and Palmer 2000, Graham 

et al. 2000). PROVOST showed that, using four atmospheric GCMs, the multi­

model skill exceeds that of the individual models. Effectively, the multi-model acts 

as a filter for the strongest model in the ensemble (Graham et al. 2000). More re­

cently, the DEMETER project (Palmer et al. 2004) used seven independent global 

coupled GCMs to produce multi-model ensemble hindcasts 1980-2001. DEMETER 

hindcast skill appears in general to be an improvement on that seen in PROVOST. 

However, comparisons are difficult because different assessment time periods and 

verification times are employed.

A major limitation of the multi-model ensemble approach is the influence of sys­

tematic errors in the GCM climate evolutions. Each GCM in the ensemble exhibits 

a particular pattern of errors in its output. The errors in a single model can be 

of a similar magnitude to the signal being predicted (Brankovic and Palmer 2000).
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The multi-model climatology is used to validate the hindcast skill, which means 

the skill assessment may be biased. A procedure for correcting bias in multi-model 

ensembles has been outlined (Palmer et al. 2000, 2004). This involves applying a 

linear correction to the output from each GCM, by expressing the prediction as an 

anomaly relative to the GCM climatology. The resulting skill values are therefore 

a good approximation to ‘true’ independent hindcast skill. However, model biases 

are not necessarily linear, and this correction could be improved (F. Doblas-Reyes 

personal communication, January 2005).

The multi-model approach has shown success in reducing uncertainties from ini­

tial conditions and model formulation. However, it cannot be considered the final 

solution to dynamical SCF (Palmer et al. 2004). This is because even the most 

sophisticated coupled GCMs have inherent deficiencies and these are often shared 

between models (e.g., representation of subgrid-scale processes such as convection). 

Palmer et al. (2004) stated that the DEMETER results have motivated a more 

theoretical approach to representing model uncertainty using stochastic-dynamic 

subgrid models. The future of dynamical SCF will also rely heavily on the ex­

pected improvements in the physics of coupled GCMs. In particular, improved 

representation of land surface coupling may lead to increases in SCF predictability 

(e.g., Frei et al. 2003, Gong et al. 2004).

1.2.3 Empirical SCF

Lorenz (1970) stated that ‘weather is what you get; while climate is what you ex­

pect’. Empirical SCF follows this principle, with forecast models formulated based 

on the way the climate system has evolved in the past. Statistical methods are 

employed on historical observational data sets to identify relationships between a 

predictand variable and one or more predictor variables. The major benefit of em­

pirical, compared to dynamical, SCF is the relative reduction in computing power 

required to produce a forecast. This makes empirical SCF feasible at meteorological 

centres without access to supercomputers (e.g., in the developing world). Further­

more, the expanding global repository of historical climate observations means that
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empirical modellers are able to examine a huge number of combinations of predictive 

relationships.

The most reliable SCF tools are presently statistical (Zwiers and von Storch 

2004). Powerful new statistical techniques such as neural networks (e.g., Hsieh and 

Tang 1998) and cluster analysis (e.g., Mimmack et al. 2001) have been employed in 

an effort to improve empirical models. However, Zwiers and von Storch (2004) state 

that much of the work that has had a large impact on climate research has used 

relatively simple techniques. In this thesis, we focus on simple statistical techniques 

such as linear regression (Wilks 1995) and also more sophisticated data reduction 

techniques such as principal components analysis (PCA) (von Storch and Zwiers 

1999).

Empirical methods also have a number of disadvantages and limitations. First, 

great care is required to find relationships that are based on the physics of the 

climate system. A statistically significant correlation between two variables does 

not imply that those variables are physically linked. Many spurious associations 

have been identified in this way both in climatology and other disciplines (Zwiers 

and von Storch 2004). In any global map of correlation with a sample size of 

N  = 30, on average 5% of the area will show coefficients greater than \r\ = 0.36 in 

the absence of any ‘real’ significant correlation. Furthermore, gridded climate fields 

contain relatively few spatial degrees of freedom because individual grid points are 

not independent. This can lead to erroneous interpretation of empirical results 

(Livezey and Chen 1983). Careful and detailed investigation using all available 

data must be undertaken to ascertain cause and effect. Often, the only credible 

way in which to discriminate between statistically ‘significant’ features and truly 

dynamical features of the system is dynamical plausibility and reproducibility in 

detailed dynamical models (Zwiers and von Storch 2004).

Second, the stability of significant predictive links with time is an important test 

for empirical models. Predictive relationships are seldom stationary when assessed 

over periods of decades and longer. One example is the predictability of the Indian 

monsoon, where forecast skill has been shown to vary on inter-decadal time scales 

associated with the ENSO phenomenon (Sahai et al. 2000). Nonstationarity in pre-
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Em pirical D ynam ical

Advantages Disadvantages Advantages Disadvantages

Uses all historical 
data

Non-linear effects 
usually not modelled

Global coverage Spatial resolution

Identifies precursive 
relationships

Physical mechanisms 
may not be eluci­
dated

Physical mechanisms 
can be established

Not as well devel­
oped as statistics

Useful predictions 
out to ~  9 months

Difficulty predicting 
for new regimes

Regime changes can 
be modelled

Unclear that skill 
will exceed that of 
statistics

Reduced CPU/cost 
required

Restricted number of 
predictors

More direct treat­
ment of uncertainties 
through ensembles

Increased CPU/cost 
required

Table 1.1: Summary comparison of empirical and dynamical methods used for SCF. 
After Lloyd-Hughes (2002).

dictive relationships can also occur due to creep or sudden changes in instrumental 

measurement systems for particular climate variables (Zwiers and von Storch 2004). 

These changes are discussed in greater detail in Chapter 2.

Third, empirical models are reliant on the temporal resolution of the input data. 

This means that if monthly data are employed, only climatic processes acting con­

sistently on time scales >1 month will be captured. Given the dynamic nature of 

the extratropical atmosphere, on these time scales many important processes will ei­

ther not be observed or ‘smoothed out’ by averaging. These processes can be either 

subgrid-scale (e.g., sea spray or small convective cells) or temporally limited (e.g., di­

urnal radiative effects or synoptic weather systems). The problems discussed above 

show that consistent operational verification over years and, preferably, decades is 

required to truly evaluate the utility of empirical SCF models.

1.2.4 Dynam ical versus empirical SCF

The main advantages and disadvantages of empirical and dynamical SCF are sum­

marised in Table 1.1. Gilchrist (1986) stated that empirical models derived using
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statistical methods may provide a better way of investigating extended-range pre­

dictability than using GCMs. While statistical methods are currently prominent, 

the widely accepted goal is to produce reliable dynamical SCF systems (Zwiers and 

von Storch 2004). The argument often put forward in favour of dynamical SCF is 

that GCMs have a clear development path, which will lead to improved forecasts 

in time (e.g., Palmer and Anderson 1994, Goddard et al. 2001). However, past 

experience has shown that improving GCMs has not been straightforward and, 

consequently, progress in dynamical SCF systems has been relatively slow (van 

Oldenborgh et al. 2003).

Traditionally, climate modellers have fallen into either the empirical or the dy­

namical camp but seldom both. However, the opposition of dynamical and statisti­

cal methods is a false antithesis and the possibility exists of combining the benefits 

of both methods (van Oldenborgh et al. 2003). Indeed, most dynamical SCF sys­

tems are presently ‘two tier’ (e.g., Kanamitsu et al. 2002, Lin et al. 2004). This 

means that the lower boundary conditions (usually SSTs) are forecast using empir­

ical methods and are then employed to force a dynamical model. Another recent 

example is described by Barnston et al. (2003), who combined a fully coupled GCM 

with a statistical model to produce a more skilful operational SCF model.

There are several important factors to consider when selecting an appropriate 

SCF methodology. First, dynamical SCF can only be conducted effectively with 

supercomputing resources (including technical support). Second, empirical and dy­

namical SCF make different demands on data sources. Empirical SCF requires long, 

homogeneous climate records for specific locations, while dynamical SCF often re­

quires daily, global fields to initialise GCM simulations. Third, the time required to 

conduct dynamical SCF experiments is much greater than for empirical modelling. 

Fourth, the methodology should be selected appropriate to the level of expertise at 

a particular research centre. These factors, coupled with the previous discussion, 

suggests that empirical methods are the preferred method for the purposes of this 

study.
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1.3 Potential benefits of SCF

As part of the motivation for undertaking this study, it is important to assess the 

potential benefits and identify end users of the timely and accurate winter NAO 

forecasts. A seasonal forecast is only of more than academic use if there is an end 

user who attaches value to that forecast. Furthermore, forecast quality is ultimately 

in the perception of the beholder and not just in the evaluation of the forecaster 

(Hartmann et al. 2002). A numerically accurate forecast is therefore of little use 

unless the information is easily interpreted by end users.

In Section 1.3.1 we define the need for, and potential benefits from, accurate 

and timely forecasts of the winter NAO. Second, we identify some of the end users 

who could benefit from these forecasts. The users fall into two broad categories, 

namely, industrial and societal. These categories are based on the different methods 

of payment for the forecast output. Industrial users are expected to fund privately 

the forecasts that they use because the data will be employed for financial gain. By 

contrast, with societal users, the cost is normally paid by a government or national 

meteorological service because the information is of benefit to society. These user 

groups are examined in more detail in Section 1.3.2.

1.3.1 Benefits of seasonal forecasting for the winter NAO

The winter NAO is a large-scale climatic mode that influences seasonal weather 

patterns from November to April over a large region surrounding the North Atlantic 

(Hurrell 1995). The climatic impacts of changes in the phase of the winter NAO are 

observed in temperature, precipitation and storminess. Consequently, agricultural 

harvests, water management, energy supply and demand, and yields from fisheries, 

among many other things, are directly affected by the NAO (Hurrell et al. 2003). 

This means that there exists a large potential demand for accurate and timely 

forecasts of the winter NAO.

Many studies have investigated the economic, ecological and societal impacts 

of NAO variability. Here, we present the findings of just a few to demonstrate 

the benefits that could be gained from skilful winter NAO forecasts. The largest
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economic stake in NAO-related risk appears to exist in the energy sector. Hurrell 

et al. (2003) described how Norway and Sweden began to trade energy in the early 

1990s based on winter NAO forecasts. The two countries are ideally suited to this 

arrangement because their climates are affected differently by the NAO and their 

energy production is distributed differently between hydro, nuclear and fossil fuel 

power. Consequently, during negative NAO phases when precipitation is low, Nor­

way tends to supplement its hydropower production by purchasing nuclear power 

from Sweden. During positive NAO winters of high precipitation over Norway, 

Sweden finds it cost effective to purchase hydropower from Norway.

Trigo et al. (2004) found that interannual variability in winter precipitation and 

river flow on the Iberian peninsula are related significantly to changes in the NAO 

index one month in advance. It was shown that accurate forecasting of the NAO 

could yield major benefits to the local hydroelectric power industry, which accounts 

for ~20% of the total annual electricity production. However, these authors high­

lighted that winter NAO predictability is nonstationary and varies on decadal time 

scales. Winter NAO predictability is known to be higher since 1950 than before 

1950 (e.g., Rodwell and Folland 2002), although such variability may be a natural 

feature of the climate system (e.g., Osborn et al. 1999).

NAO forecasts can also have political and humanitarian implications for a coun­

try or region. Cullen and deMencol (2000) studied the connection between the 

NAO and stream flow of the Euphrates and Tigris rivers. Water supply shortages 

and surpluses are a major issue in this region for irrigation farming. Decreases in 

rainfall over the Middle East, associated with the positive trend in the NAO index 

since the 1970s, have had catastrophic effects on crop yields. Consequently, high 

level political disputes have arisen because of water withdrawals from the rivers 

between Turkey, where most of the rain falls, and Syria, situated downstream. Ac­

curate NAO predictions would therefore be an important tool for water resource 

management in this region and may help to diffuse potential disputes before they 

arise.
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1.3.2 User groups 

Industrial

Traditionally, weather-related risk was considered only to be significant for compa­

nies whose output was specifically weather-dependent (e.g., energy providers, ice­

cream manufacturers etc.). However, the weather risk market has expanded such 

that the energy, banking, commodity trading and insurance/reinsurance sectors are 

all now represented (Clemmons 2002). Individual companies can act to offset their 

weather-related exposure by using SCF. The increasing awareness of the potential 

industrial benefits to be gained from SCF has led to the creation of weather-specific 

financial markets in London and Chicago. These markets are driven by companies 

and investors hedging their assets against weather predictions for a range of time 

scales from days to seasons. In this case, the forecasts themselves are potentially 

worth a huge amount of money and the more accurate and timely a forecast system 

is, the greater its financial value.

A seasonal forecast delivered to a company or organisation is likely to be tailored 

to their specific needs in terms of location, time period and presentation. However, 

the accuracy of the forecast can only be as good as the model from which the data 

are derived. In the UK, many private weather consultancy firms currently issue 

forecasts to companies who pay significant amounts for the service. However, it is 

common for weather consultancy firms simply to amalgamate freely available data 

from several national meteorological services in producing the forecast product. 

This process can be thought of as a simple ‘ensemble’ prediction, adding interpre­

tation and presentation but no additional climatological information to the forecast 

product.

Another major limitation in industrial SCF is the cost of the data used in 

producing the forecast and the forecast output data itself. Many SCF research 

projects have made their output data freely available to researchers for analysis 

(e.g., DEMETER). Problems may arise when these data are used not for research 

purposes but for financial gain. The data then derive significant value for the 

intellectual and resource investment in their creation. The costs involved in data
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preparation and processing have the potential to render industrial SCF financially 

unviable if forecast skill is not high enough to warrant such high levels of investment.

Societal

A forecast made for society is likely to show lower levels of detail than a forecast 

made for a specific organisation or company. There are several intuitive reasons 

for this assertion. First, the number of end users is far greater and therefore it is 

simply impossible for a single meteorological service or seasonal forecast group to 

produce a point and time specific forecast for every person in the country. Typically, 

forecasts are published for cities or regions and cover periods of weeks, months and 

seasons (e.g., UKMO 2004). Second, the number of different purposes to which 

the end users will put the forecast information is almost as large as the number 

of users. Therefore, the information content must be general enough to have some 

value to the majority of users. Third, national meteorological services are becoming 

increasingly reliant on private, rather than government, investment to fund their 

operations. In terms of SCF, this means that a scaled-down forecast will be made 

freely available to the public, while private companies can pay for a more detailed 

and informative forecast if they so wish.

Societal users include health service providers who may need to plan 1-3 months 

ahead to purchase a certain quantity of influenza vaccinations. Prolonged anoma­

lous cold weather during winter is associated with ‘excess winter mortality’ caused 

by significant increases in respiratory and cardiovascular diseases (Mercer 2003). 

Conversely, seasonal prediction of anomalous warm periods is also of critical im­

portance, as seen in France during summer 2003, where more than 10,000 deaths 

resulted from a summer heat wave (Levinson and Waple 2004). Individual soci­

etal end users potentially include families wishing to plan holidays and gardeners 

interested in when and what to plant on their allotments next season.

There is a common perception both in the meteorological community and in 

society that seasonal forecasts are unreliable. This uncertainty about the accuracy 

of seasonal forecasts precludes users from making more effective use of them (Hart­
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mann et al. 2002). The problem seems to stem from poor communication of the 

available skill and, in particular, the reliability of that skill. User groups must be 

informed of problems such as seasonality and nonstationarity in SCF models. Deci­

sion makers need to know when forecasts are not reliable enough for their purposes 

(Hartmann et al. 2002).

1.4 Seasonal predictability of the winter North  

Atlantic Oscillation

1.4.1 Definition and background

The overall theme of this thesis is to investigate the seasonal predictability of the 

winter North Atlantic Oscillation (NAO). This Section outlines the first research 

topic for this study, which compares the hindcast skill achieved using four published 

empirical winter NAO predictors. The NAO is defined as a meridional redistribu­

tion of atmospheric mass between the subpolar and the subtropical North Atlantic 

(Hurrell et al. 2003) and is the dominant mode of boreal winter climate variability 

over the North Atlantic sector (Walker and Bliss 1932, Barnston and Livezey 1987). 

The NAO is linked strongly to patterns of winter temperature, precipitation and 

storminess over the whole North Atlantic sector (Hurrell 1995, Trigo et al. 2002). 

Johansson et al. (1998) stated that the amplitude and time scale of the NAO are 

also large enough to drive persistent conditions over much of northern Europe and 

the North Atlantic sector for several winters in succession. Accurate and timely 

forecasts of the winter NAO are therefore an important challenge for seasonal fore­

casters and increasing research is focusing on improving forecast quality and lead 

time.

The term North Atlantic Oscillation was first used by Walker (1924) to describe a 

mode of climate variability that dominated world weather. Walker and Bliss (1932) 

were among the first to construct an NAO index, which related to temperature and 

pressure anomalies over northern Europe. More recently, Hurrell (1995) and Jones 

et al. (1997) constructed indices to represent the NAO based on localised pressure
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differences between stations in Iceland and the Azores or Gibraltar, respectively. 

High NAO phases represent lower pressures over Iceland, while low NAO phases 

indicate a reduced meridional pressure gradient over the North Atlantic. The NAO 

can also be represented by the leading component of variance in North Atlantic 

sector gridded sea-level pressure fields (e.g., Hurrell 1995). The individual NAO 

indices used in this study, and methods employed in their construction, are discussed 

in detail in Section 2.3.

Figure 1.3 shows winter North Atlantic mean sea-level pressure (MSLP), 2 m 

air temperature and precipitation anomalies associated with positive and negative 

winter NAO phases 1950-2001. The positive phase (panels a and b) shows lower 

MSLP over Iceland and increased MSLP over western Europe and the North At­

lantic associated with a northward shift of the North Atlantic storm track. The 

temperature pattern is consistent with increased warm advection over northern Eu­

rope from cyclonic storms. The negative phase (panels c and d) shows the inverse 

pattern in MSLP and temperature. The precipitation pattern in the positive phase 

results in increased accumulation over the UK, northwest Europe, Scandinavia and 

western Russia. During the negative phase, precipitation is increased across much 

of southern Europe and the Mediterranean region.

1.4.2 The winter season

Some justification of the narrowing of the research to the winter season is required. 

Furthermore, the term ‘winter season’ itself requires precise definition. The decision 

to focus this research on the winter season is taken for several reasons. First, the 

Northern Hemisphere (NH) winter atmosphere is dominated by large-scale modes 

of climate variability (e.g, the NAO) (Barnston and Livezey 1987). These modes 

are easily detected in observations and GCM data above the background climatic 

noise. Climate modes are assumed to be more predictable than individual weather 

events because they vary on time scales of weeks and months rather than hours 

and days. The reasons for this are discussed further in Section 1.4.4. Second, the 

influence of ENSO is known to be strongest in winter, which may offer increased
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Figure 1.3: The temperature, mean sea-level pressure (MSLP) and precipitation 
effects of the positive (panels a and b) and negative (panels c and d) phases of the 
winter NAO. Panels a and c: contours represent DJF MSLP anomalies (contour 
interval is 2.5 hPa and negative contours are dashed), shading represents DJF 2 
m NCEP/NCAR air temperature anomalies (shaded at 0.25, 0.5, 1, 2 and 3°C 
where blues are negative and reds are positive). Panels b and d: shading represents 
anomalies in DJF mean CRU 0.5° rainfall accumulation (shading interval is 5mm). 
Positive and negative NAO phases relate to mean of upper and lower NAO^jf  
terciles 1951-2001. Anomalies are calculated with respect to the 1950-2001 mean. 
MSLP data are area weighted by the cosine of latitude.
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global predictability (Mathieu et al. 2004). Third, it was shown in Section 1.3 

that accurate NAO forecasts are of greatest benefit to the many potential end user 

groups during winter.

The standard climatological definition of the winter season is the December- 

January-February (DJF) time mean. As a result, a large volume of research into 

winter NH climate employs this averaging period (e.g., Brankovic and Palmer 2000, 

Rodwell and Folland 2002, Feldstein 2002, Saunders et al. 2003). However, this 

period is not employed universally. In studying the NAO, Hurrell (1995) used the 

period December through March. Thompson and Wallace (2000) found that the 

climate of the North Atlantic sector is most active and shows the largest linear trend 

January through March, a period also used by Shukla (1998). Other authors have 

argued that major winter climate modes such as the NAO are best observed over 

the longer period November through April (Thompson and Wallace 1998, Hurrell 

et al. 2003). However, we will henceforth use the term ‘winter’ to denote the mean 

for the DJF season. This is justified by the large body of research outlined above 

coupled with the climatological definition. The term ‘winter NAO’ will be referred 

to in the remainder of this thesis as NAOd j f -

1.4.3 NAO or AO?

Ahead of a discussion on NAO predictability, some explanation is required of what 

exactly is meant by the term NAO. Recently, Wallace (2000) noted that the original 

definition of the NAO index by Walker and Bliss (1932) is more like the current 

definition of the Arctic Oscillation (AO) (Thompson and Wallace 1998) than the 

currently accepted definitions of the NAO. Figure 1.4(a and d) shows the patterns 

of 300 hPa geopotential height associated with the NAO and AO indices. The AO 

pattern is more zonally elongated and centred further to the west than the NAO. 

The meridional cross-sections (panels b, c, e and f) show that these differences are 

prominent throughout the depth of the atmosphere.

The NAO/AO debate concerns whether the AO is a true physical mode of 

variability or an artefact of performing statistical data reduction techniques on
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Figure 1.4: Correlations between monthly geopotential height anomalies and the 
NAO (left panels) and AO (right panels), respectively, for all months November to 
April 1958-97. Panels a and d show maps of the correlation at 300 hPa; panels b 
and e show meridional cross-section at 40°W; panels c and f show meridional cross- 
section at 10°E. Geopotential height data are from the NCEP/NCAR reanalysis, 
AO data are from Thompson and Wallace (1998) and NAO is based on index of 
Hurrell (1995). After Wanner et al. (2001).
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hemispheric domains. Ambaum et al. (2001) showed that NH empirical orthogonal 

functions (EOFs) for streamfunction, zonal wind and temperature fields do not give 

dynamically consistent patterns. This means that it is not possible to decide which 

patterns are physically based and which result from the EOF technique. In contrast, 

these authors demonstrated that regional EOFs are physically consistent between 

different fields. Furthermore, Feldstein (2002) found that the NAO exhibits the 

same linear trend and variance characteristics as the AO. This suggests that the 

terms NAO and AO may in fact describe the same phenomenon (Wallace 2000).

Observational evidence (Thompson and Wallace 1998) has suggested that the 

AO involves a coupling between the troposphere and stratosphere, whereas the NAO 

is confined to the troposphere. However, Baldwin and Dunkerton (2001) reported 

that only the strongest AO anomalies propagate down from the stratosphere to the 

troposphere and that tropospheric anomalies can also precede stratospheric anoma­

lies. Consequently, the AO concept has caused researchers to consider interaction 

between the troposphere and stratosphere, whereas the NAO concept has focused 

attention on ocean-atmosphere interaction in the boundary layer (Wanner et al. 

2001).

The above discussion suggests that the NAO is a more physically useful mode 

of variability for the winter North Atlantic sector. Furthermore, the consistency 

between NAO-related fields is a requirement in empirical studies to confirm dy­

namical plausibility. The NAO also dominates in the lower troposphere over' the 

North Atlantic, which is the main area of interest for this study. For these reasons, 

we will now focus on the NAO rather than the AO.

1.4.4 Boundary forcing of the N A O  djf

There remains no clear consensus as to whether the NAO djf is a purely atmospheric 

phenomenon or whether it is influenced to some extent by external boundary forcing 

(Wanner et al. 2001). However, on interannual and decadal time scales, there is 

mounting evidence in observations (e.g., Radcliffe and Murray 1970, Czaja and 

Frankignoul 2002, Rodwell and Folland 2002, Saunders and Qian 2002) and from
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GCM simulations (e.g., Rodwell et al. 1999, Sutton et al. 2001) to suggest that the 

NAO d j f  responds to changes at its lower boundary. This implies that the ‘white’ 

internal atmospheric power spectrum is ‘reddened’ by the lower-frequency changes 

at the underlying boundary. Hurrell and van Loon (1997) have shown that the 

NAO spectrum has become redder with time over the last century.

Local in situ forcing of the NAO d j f  is suggested to occur at the boundary 

with the North Atlantic Ocean. However, the specific region of the Atlantic that 

exhibits the strongest relationship with the NAO is a source of debate. Hurrell 

et al. (2004) proposed that the NAO d j f  responds primarily to variations in trop­

ical or subtropical North Atlantic SST, whereas Radcliffe and Murray (1970) and 

Junge and Stephenson (2003) suggested SSTs southeast of Newfoundland are most 

important. Aside from local Atlantic SSTs, N A O d j f  teleconnections have been 

found with SSTs in other major ocean basins. Robertson (2000) found that SSTs 

in the southern Atlantic also influence the atmosphere in the northern extratropics. 

Hoerling et al. (2001) identified links between decadal and multi-decadal NAO d j f  

variability and SSTs in the Indian and tropical Pacific oceans. Sutton and Hod- 

son (2003) showed that interannual changes in the NAO^jj? may also be related 

to ENSO variability. Furthermore, ocean dynamics are also suggested to play a 

role in the decadal and multi-decadal relationships between the NAO d j f  and SSTs 

(Bjerknes 1964, Eden and Jung 2000).

Other boundary variables have been proposed as potential sources of N A O d j f  

predictability. The first is the areal extent of snow cover for different regions of the 

NH. Cohen and Entekhabi (1999) proposed a link between autumn season Eurasian 

snow cover and the upcoming winter AO index. Increased snow cover is postulated 

to drive an amplification of orographically forced in situ stationary Rossby waves, 

which stimulate coupling between the troposphere and stratosphere. This coupling 

occurs in observations and in an atmospheric GCM when snow cover is allowed 

to vary freely but not when snow cover is fixed (Gong et al. 2002). Synoptically, 

increased snow cover is associated during autumn with a westward expansion of 

the Siberian high over Europe and the North Atlantic, which could influence the 

evolution of the NAO d j f  (Cohen and Entekhabi 1999).
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More recently, Bojariu and Gimeno (2003) found that the link between Eurasian 

snow cover and NAOdjf is more significant when snow anomalies from April to 

October are employed. They proposed that this reflects the important influence 

of snow albedo and hydrological feedbacks during spring and summer. Saunders 

et al. (2003) found that June-July mean NH snow cover is related significantly to 

the N A O d j f - They proposed a dynamical link between snow cover and N A O d j f  

through hemispheric-scale zonal gradients in subpolar air temperature, which are 

associated with persistent circulation anomalies and SST anomalies in the North 

Atlantic during subsequent months.

1.4.5 Lagged N AO djf predictability and skill

Davies et al. (1997) showed that only a maximum of 10-15% of the N A O d j f  variance 

can be explained by SST boundary forcing. While this is not a large proportion, 

any positive skill has value to end users because it represents an improvement 

over the intrinsically unpredictable day-to-day atmospheric variations. Therefore, 

attempts have been made at several research centres to produce seasonal forecasts 

for N A O d j f -

Dynamical SCF models have shown some skill in reproducing the historical 

record of N A O d j f  variability. Rodwell et al. (1999) forced an atmospheric GCM 

ensemble with observed global SSTs and found a correlation of r = 0.41 between the 

observed and ensemble mean N A O d j f  indices (1947-1997). However, Bretherton 

and Battisti (2000) pointed out that caution must be used when interpreting results 

of this kind. They showed that the predictability of low frequency atmospheric 

variability increases with ensemble size. This is because the ensemble mean filters 

out the variability associated with internal atmospheric dynamics and leaves behind 

the coupled low-frequency signal. More reliable dynamical forecasts are produced 

using coupled GCMs (CGCMs) because the atmosphere and ocean evolve together 

in a physically consistent fashion. However, using the Meteo France, UKMO and 

ECMWF CGCMs, the DEMETER ensemble mean correlation skill (henceforth rs) 

for predicting N A O d j f  from November is only rs = —0.03 for 1958-2001. The skill
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improves to rs = 0.51 when seven CGCMs are used over the shorter period 1980- 

2001 (Palmer et al. 2004), although most of the skill comes from the Meteo France 

and CERFACS models.

Currently, the highest and most reliable skill for lagged NAO djf predictions 

comes from empirical studies. Recent studies have uncovered links between preced­

ing late spring to autumn North Atlantic SST anomalies and the N A O d jf-  Rodwell 

and Folland (2002) highlighted a pattern of May North Atlantic SST that is related 

significantly to the upcoming winter mean 500 hPa geopotential height field, achiev­

ing a hindcast skill of rs = 0.45 for the period 1948-1997. Saunders and Qian (2002) 

found that two modes of late summer/early autumn North Atlantic SST variability 

1950-2001 were skilful in predicting a range of NAO d j f  indices with a hindcast cor­

relation skill between rs = 0.47 and rs = 0.63. Relationships between lagged North 

Atlantic SSTs and NAOdjf have also been highlighted by Drevillon et al. (2001), 

Czaja and Frankignoul (2002) and Cassou et al. (2004). These authors show that a 

horseshoe-like SST pattern in summer explains up to 16% of the early winter NAO 

variance 1958-1997.

Another lagged NAO d j f  predictor is the monthly mean areal extent of snow 

cover over different regions of the NH. Reliable satellite observations of snow cover 

are available only since 1972 (Robinson et al. 1993). Thus, the influence of anoma­

lous snow cover on the winter atmospheric circulation and climate has received less 

attention than that of SST anomalies. Saito et al. (2001) highlighted the strong 

relationship between Eurasian snow cover in October and the upcoming winter AO 

index, which yields a correlation of r — —0.55 for 1972-1999. Saunders et al. (2003) 

used NH snow cover to predict a range of NAO d j f  indices and found that the 

June-July mean produced the most significant predictability with rs = 0.61 for 

1972-2001. A significant correlation of r — —0.56 is highlighted by Bojariu and Gi- 

meno (2003) between April to October mean Eurasian snow cover and the NAO d j f  

index 1973-1998. These studies suggest a recent significant link between NH climate 

in summer and that in the upcoming winter.

Figure 1.5 summarises the NAOd jf  skill currently available from dynamical and 

empirical models 1972-2002. Plotted are the observed NAOd jf  index and hind-
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Figure 1.5: Cross-validated NAO d j f  hindcasts 1972-2001 from dynamical and em­
pirical SCF models. Line colours denote: observations (CRU NAO d j f )  (grey), 
DEMETER ensemble mean (red), May SST (SVD) model (blue) and JJ NH Snow 
cover model (yellow). The NAOdjf values are standardised with respect to the 
1972-2001 mean.

casted N A O d j f  indices from the November to DJF DEMETER ensemble (Palmer 

et al. 2004), the May SST (SVD) model of Rodwell and Folland (2002) and the 

June-July (JJ) NH snow cover model of Saunders et al. (2003). Observations are 

from the CRU N A O d j f  index (Jones et al. 1997) and the Pearson correlations with 

the hindcasted N A O d j f  indices are r =  0.17, r =  0.25 and r =  0.53, for DEME­

TER, May SST (SVD) and JJ NH snow, respectively. The observed and hindcasted 

N A O d j f  time series are standardised to zero mean and unit variance for display 

purposes. In reality, both the DEMETER and statistical predictions underestimate 

the observed N A O d j f  variance. The hindcasted variances as percentages of the 

observed N A O d j f  variance range from 7% for DEMETER to 25% for the JJ NH 

snow cover model, which means that large departures from the mean are not well 

modelled. These results show that N A O d j f  hindcast skill is currently highest us­

ing empirical, rather than dynamical, SCF models. Therefore, we now focus on 

assessing lagged N A O d j f  predictability from empirical models.

N A O d j f  H i n d c a s t  m o d e l s  1 9 7 2 - 2 0 0 1
 1------------------------------------------------------------- 1- ------------------------------------------------------------ r

OBS --------- DEMETER
- May SST (SVD) JJ NH Snow
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1.4.6 Research questions

The above findings highlight the current confusing situation in the literature where 

several authors have uncovered significant predictive links and skill for the NAOdjf 

using different prior climatic predictors. Furthermore, these authors all reference 

the links and skill to different NAO indices and/or employ different predictand 

time periods and/or use different skill assessment methodologies and measures. In 

this study we attempt to provide a standardised platform on which to evaluate 

and compare the predictive N A O d j f  skill arising from the chosen predictors. The 

comparison is performed by using the same hindcast procedure for all predictors. 

Hindcasts are made for three different N A O d j f  indices over three extended time 

periods out to 100 years and skill is assessed using two skill measures. Where 

possible, hindcast sensitivity to the choice of predictor observational data set is also 

examined by using two data sets for each analysis. These methods will allow us to 

provide answers to the following specific research questions, which are addressed in 

Chapter 3:

(i) What is the most skilful lagged predictor of the N A O d j f ?

(ii) Are the predictive NAOd jf  relationships stationary when assessed over 100, 
50 and 30 year periods?

(iii) Does the most skilful period coincide with other periods of variability in either 
N A O d j f  or the predictors?

(iv) What are the physical mechanisms that underpin the link between the N A O d j f  
and the most skilful lagged predictor?

1.5 GCM representation of NAO links to prior 

Northern Hemisphere snow cover

As discussed in Section 1.4.5, summer NH snow cover was recently identified as a 

skilful lagged predictor of N A O d j f  (Saunders et al. 2003). Figure 1.6 shows the sig­

nificant relationship between summer NH snow cover and the upcoming N A O d j f - 

However, little is understood about the physics underpinning snow-climate inter­

actions spanning warm to cold seasons. The mechanisms are probably different
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Figure 1.6: The correlation between lagged NH snow cover and three N A O djf 
indices 1972-2002 for bi-monthly snow cover periods ranging from JF (January- 
February) to ND (November-December). Negative correlation coefficients calcu­
lated with detrended time series are plotted. Dashed lines denote confidence levels 
corrected for serial correlation. After Saunders et al. (2003).

to those identified linking Eurasian snow cover and the winter climate, since the 

troposphere and stratosphere are uncoupled during summer (Saito et al. 2004). To 

date, GCMs have not been used to assess the summer snow/NAOd j f  link. The aim 

of the second research topic in this thesis is to examine the output from a twentieth 

century coupled GCM integration and assess to what extent this link is captured. 

This will help to clarify the physical basis for the relationship.

1.5.1 T he relationsh ips b etw een  snow  cover and clim ate  

Contem poraneous relationship

Snow lying on the Earth’s surface in large quantities has a profound effect on the 

atmosphere overlying the snow covered regions and on the whole climate system. 

Snow cover is the most variable NH land surface condition in both space and time 

(Cohen and Rind 1991). The major snow covered regions at all times of the year are 

located over northern and central Eurasia and northern North America. Blandford 

(1884) was one of the first to suggest a link between the evolution of NH climate
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and prior snow cover. Recently, increasing research has focused on how lagged snow 

cover affects the major NH winter climate modes such as the NAO d j f  (Watanabe 

and Nitta 1998, Cohen and Entekhabi 1999, Gong et al. 2003, Saunders et al. 2003).

Snow influences the atmosphere through its effects on the surface energy budget. 

The net radiation budget at the surface Q* can be expressed as

Q* =  N S W  + NLW  +  H +  LyE +  G + M  + R , (1.1)

where NSW is net short-wave radiation, NLW is net long-wave radiation, H  and 

LyE  are the net turbulent fluxes of sensible and latent heat and G is the net 

conductive ground heat flux, M is advective energy flux and R is the heat transfer 

due to precipitation. Over large spatial scales, the net contribution from G , M  and 

R  is small (Cline 1997). The dominant terms affecting the seasonal variability of Q* 

on the spatial scales of seasonal predictability are the radiative (NSW and NLW) 

and turbulent (H  and LyE) fluxes. NSW at the surface is defined as

N S W  =  (K  +  k ) ( l - a ) ,  (1.2)

where K  is the incoming direct short-wave (solar) radiation, k is the downwelling 

diffuse short-wave radiation and a  is the surface albedo. NLW at the surface is 

defined as

N L W = ( L d - L u), (1.3)

where Lp is downwelling long-wave (infrared) radiation and Lu is upwelling long­

wave radiation.

Cohen and Rind (1991) outlined the main influences that snow cover can have 

on Q*. First, the high reflectivity of fresh snow can increase a  by 30-50%, thus 

reflecting a greater amount of incoming short-wave solar radiation before it is ab­

sorbed at the surface. Second, snow has a higher thermal emissivity than most other

natural surfaces and therefore increases the amount of infrared radiation emitted

to the atmosphere. Third, fresh snow acts as a thermal insulator because of its low 

thermal conductivity, preventing a positive flux of sensible heat from the ground
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Figure 1.7: The energy budget above a snow covered surface. White circles denote 
transfers of energy: Qe is latent heat flux through condensation or sublimation, 
Qh is sensible heat flux through convection, Qp is heat advected by rain falling on 
snow, “)Q” is energy exchange within snow pack and snow melt, Qg is soil heat flux 
through conduction. “K” is short-wave solar radiation, “L” is long-wave infrared 
radiation, “\ ” denotes energy directed towards the surface and “[” denotes energy 
directed away from the surface. (Courtesy of D. Cline).

into the atmospheric boundary layer. Fourth, melting snow is a sink for latent heat. 

Fifth, Groisman et al. (1994) stated that snow cover suppresses convection. These 

effects are summarised in Figure 1.7.

Temporal and spatial variability

The spatial extent of snow cover varies in time more than any other climate variable 

(Cohen and Rind 1991). Annual variations in monthly mean NH snow cover swing 

between a maximum of ~  4.5 x 107 km2 in January to a minimum of ~  0.5 x 107 

km2 in July (Robinson et al. 1993). Longer time scale trends are also known to 

be superimposed on the annual snow cover cycle. Much of the downward linear 

trend since the early 1970s is anticorrelated with increasing observed global mean
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temperatures (e.g, Jones et al. 1999). Indeed, Groisman et al. (1994) found that the 

areal extent of mean annual NH snow cover 1973-92 declined by ~  0.17 x 107 km2. 

Furthermore, on top of the linear trends are also decadal variations (Brown 2000) 

that could be related to oscillations in global ocean temperatures and/or associated 

atmospheric circulation changes (Watanabe and Nitta 1999).

Lagged relationships

Snow cover is suggested to impart a lagged influence on climate through several 

mechanisms. The first mechanism is a hydrological feedback, where melting snow 

causes persistent soil moisture anomalies. Over Eurasia, spring snow depth anoma­

lies can affect the regional atmosphere until the following summer through soil 

moisture effects (Ose 1996). Qian and Saunders (2003) found that winter Eurasian 

snow cover also has a lagged teleconnected effect on upcoming summer UK and 

European temperatures. The delay in the atmospheric response results from modi­

fication to the surface radiation budget. Additional heat energy is required to warm 

the surface due to the increased specific heat capacity of the wet surface layers and 

to the latent heat energy required to evaporate the extra moisture (Walsh et al. 

1985, Shinoda 2001). However, some debate exists as to the magnitude of the hy­

drological feedback. Shinoda (2001) and Robock et al. (2003) both conclude that 

the ‘memory’ of snow cover through soil moisture persists at the surface for a maxi­

mum of one month and at depth for a maximum of two months. This suggests that 

the direct association between melt season soil moisture anomalies and the subse­

quent climate over Eurasia is quite limited in duration. However, by modifying the 

surface energy budget over a large region such as Eurasia, even for one month, soil 

moisture anomalies could have a lagged impact on NH climate.

The second mechanism is a radiative feedback caused by the changing influence 

of snow cover on the surface energy budget during the annual cycle. Groisman et al. 

(1994) found that the NH net radiative balance at the top of the atmosphere has 

a distinct seasonal evolution that is linked to changes in the areal extent of snow 

cover. The dominant and competing terms in the energy budget are surface albedo
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(a) and outgoing long-wave radiation (OLR). The radiative feedback is positive 

in autumn and early winter because decreased OLR outweighs increased a. Only 

from February onwards does the increased a  dominate, which results in a net NH 

cooling.

The third mechanism is a dynamical feedback, where snow mass anomalies over 

a particular region (e.g., Eurasia) can significantly affect global atmospheric circu­

lation patterns through hemispheric-scale wave trains (Kodera and Chiba 1989). 

Investigations into dynamical snow feedbacks have focused largely on the link be­

tween the Indian summer monsoon and prior Eurasian snow cover (e.g., Becker 

et al. 2001, Robock et al. 2003). Dynamical teleconnections have also been identi­

fied between the dominant mode of NH winter variability and prior Eurasian (e.g., 

Cohen and Entekhabi 1999, Watanabe and Nitta 1999, Cohen and Saito 2003) and 

NH (e.g., Saunders et al. 2003) snow cover. Figure 1.8 shows the detrended, stan­

dardised time series of N A O _ d j f ,  October mean Eurasian snow cover and JJ mean 

NH snow cover. The Pearson correlation between N A O d j f  and the snow cover time 

series is r = —0.37 for October and r  =  —0.58 for JJ. These correlations suggest a 

physical link between lagged snow cover and NAOdjf- However, 30 years of data 

is not sufficient to test rigorously the stationarity of these relationships.

The interactions between lagged snow cover and the winter climate modes 

may be a two-way process. Robock et al. (2003) showed that the evolution of 

Eurasian snow cover from winter to spring is negatively correlated with the pre­

ceding NAO djf- This suggests that reduced snowfall during positive NAO winters 

causes persistent warm temperatures during subsequent months, which maintain the 

reduced snow conditions. Cohen and Saito (2003) introduced similar arguments to 

explain the observed link between JJ NH snow cover and NAO.d j f - They stated 

that increased summer snow cover is indicative of a cool background climatic state, 

which persists until autumn when dynamical feedbacks occur between Siberian snow 

and the NAO djf- The coupled nature of the snow-atmosphere relationship provides 

an added challenge for GCM simulations.
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Figure 1.8: Time series of CRU NAO d j f  (black line), October mean Eurasian snow 
cover (blue) and JJ mean NH snow cover (red). Snow cover series are multiplied by 
-1 for display purposes. All time series are detrended and standardised with respect 
to the 1972-2001 mean.

1.5.2 G C M  sim ulation o f snow  cover

Investigations into the interactions of snow cover and the climate system are re­

stricted because observational data describing the areal extent of snow cover are 

spatially and temporally limited before the early 1970s when reliable satellite im­

agery became routinely available (Robinson et al. 1993). This limitation is even 

more acute during the summer season when in situ observations of snow cover at 

a particular location are inconsistent because of the reduced areal extent of snow 

cover (Brown 2000). Furthermore, empirically derived results are difficult to in­

terpret because snow cover, air temperature and the atmospheric circulation are 

all interdependent. Cohen and Rind (1991) stated that observational studies are 

affected by the problem that if a winter with increased snow cover is colder than 

normal, is it colder because of the snow cover, or is there more snow cover because 

it is colder? In view of these limitations, the dynamical impact of snow cover on the 

atmosphere may be better assessed using GCM integrations forced with different
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snow cover scenarios. The current ability of GCMs to represent snow/atmosphere 

links is examined by discussing the potential limitations in numerical simulations 

of snow cover.

Results from previous GCM studies of snow variability have presented sharply 

contrasting findings. Randall et al. (1994), who examined snow feedbacks in 14 

GCMs as part of the Atmospheric Modelling Intercomparison Project (AMIP), 

reported that the impact of snow anomalies on the atmosphere depends largely on 

the GCM used and ranges from strong positive feedback to even weak negative 

feedback. Foster et al. (1996) examined 7 different GCMs and found that most 

exhibited more accurate snow cover representations during winter and summer than 

in autumn or spring. Frei and Robinson (1998) showed that most of 27 different 

AMIP GCMs reproduced an annual cycle of snow extent similar to observations but 

interannual variability was around one-half the observed magnitude. This was due 

to underestimation of snow cover during autumn and winter and overestimation 

during spring. This work also showed that snow cover in the AMIP GCMs, in 

contrast to observations, was unrelated to global SSTs. More recently, Frei et al. 

(2003) found that the second generation of AMIP GCMs (AMIP-2) produced a 

more realistic annual cycle but still underestimated the magnitude of interannual 

snow variability. They identified the major ongoing problem as regional-scale bias, 

particularly over the Eurasian continent.

The Coupled Model Intercomparison Project (CMIP) has evaluated systemati­

cally the accuracy of a suite of coupled GCMs (Covey et al. 2003). However, this 

project has yet to report on the representation of snow and related processes in 

the coupled GCMs. Specific comparisons between different land and snow surface 

modelling schemes have been performed, two examples being the Project for the 

Intercomparison of Land-surface Parameterisation Schemes (PILPS) (Slater et al. 

2001) and snowMIP (Etchevers et al. 2002). However, these projects are performed 

‘off-line’, which means that the snow models are assessed prior to being incorporated 

into a coupled GCM. Clearly, the interaction of the snow model with the other com­

ponents of a coupled GCM presents a different set of problems than representing 

just snow processes.
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Typically, snow accumulation and snow melt in GCMs are simulated by applying 

simple energy and mass balance accounting procedures (Foster et al. 1996). Recent 

improvements in GCMs have focused on adding vertical resolution and improved 

one-dimensional (vertical) physics. These algorithms frequently neglect or over­

simplify important physical processes associated with subgrid-scale temporal and 

spatial variability of the snow covered area. These processes include wind blowing 

of snow, orographic influences, available insolation and vegetation distribution (Lis­

ton 2004). The lack of subgrid snow distribution representations in most GCMs has 

been identified as a deficiency in snow cover evolution and atmospheric interaction 

simulations (Slater et al. 2001). Snow cover in a GCM is typically specified to cover 

an entire grid cell homogeneously. Snow is seldom so uniformly distributed in na­

ture, particularly at the snow margins, and this parameterisation has implications 

for the evolution of the surface energy budget. This is most important in grid cells 

over complex orography, where snow distribution is most variable in nature.

A further consideration when comparing results from observational and GCM 

snow studies is the difference between snow cover, snow mass and snow depth. While 

an area covered with deep snow is almost certainly uniformly covered, differences 

arise when the amount of snow is small (Frei and Robinson 1998). Furthermore, a 

deep snow layer has different effects compared to a thin layer on the sensible and 

latent heating terms of the surface energy budget. The standard output in GCMs 

is snow depth or mass because this is the most important variable in relation to 

the other climatic parameters within the model. However, the observational data 

describe the areal extent of snow cover and so the two are not readily comparable 

in all cases. Therefore, in order to compare the observational and GCM responses 

to snow cover, an index representing GCM snow cover is required.

1.5.3 GCM  simulation of snow/atmosphere links

As with previous observational studies, the majority of GCM simulations involving 

snow cover have concentrated on Eurasian snow links to the Indian summer mon­

soon (e.g., Vernekar et al. 1995, Liu et al. 2004). However, recent investigations
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have focused on the lagged influence of NH regional and hemispheric snow cover on 

the upcoming winter atmosphere, including over the Atlantic sector. Gong et al. 

(2003) used a 20-member atmospheric GCM ensemble to examine the relationship 

proposed by Cohen and Entekhabi (1999) linking autumn Siberian snow cover and 

upcoming winter NH climate. The GCM was forced with realistic high and low 

snow cover extents over Siberia. Dynamically, the ensemble mean for high Siberian 

snow showed increased local anomalous upward wave activity associated with a 

weakened stratospheric vortex and a negative AO anomaly. The spatial pattern 

of the GCM response correlated strongly with observations but was only one-third 

of the magnitude. This weakened response may result from errors in the GCM 

formulation or from artificial damping by the ensemble averaging process. To our 

knowledge, this thesis is the first study to employ data from a coupled GCM to 

examine teleconnected links between summer snow cover and the atmosphere of 

the North Atlantic sector.

The above discussion, and that in Section 1.4.5, highlights the debate concern­

ing the exact nature, magnitude and timing of the NH winter atmospheric response 

to lagged snow cover. This subject has received less attention than the role of 

lagged SST anomalies. Previous observational studies imply but do not conclu­

sively prove a causal relationship between lagged snow cover and winter climate 

(Gong et al. 2003). Furthermore, many of these studies achieve results whose sta­

tistical significance is marginal (Fasullo 2004). The stationarity of these results has 

also yet to be determined. Previous studies using atmospheric GCMs to simulate 

snow/atmosphere links have shown promising results. This suggests that using a 

coupled ocean-atmpsphere GCM may provide increased information about NAO djf  

predictability from lagged summer snow cover. These factors provide the motivation 

for the second research topic in this thesis.

We will perform a verification of the dynamical teleconnection proposed by Saun­

ders et al. (2003), linking NH summer snow cover and NAOd jf - Our methodology 

differs from that of other GCM snow studies (e.g., Gong et al. 2003) because data 

are taken from a single coupled GCM (CGCM) integration. The CGCM is run with 

observed twentieth century radiative forcing and with all other parameters allowed
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to evolve freely. Using this approach, a s n o w / N A O l i n k  will be observed only if 

the CGCM formulation is sufficiently realistic and exhibits a strong signal-to-noise 

ratio. For this reason, we first perform a verification of the accuracy of spatial and 

temporal snow cover variability within the CGCM. This provides the first detailed 

verification of twentieth century snow cover variability in a CGCM. This study 

forms a link between previous observational and atmospheric GCM studies and po­

tential future CGCM perturbation experiments. Therefore, this research could be 

useful to dynamical modellers developing future generations of CGCMs. Further­

more, this analysis will allow the stationarity of the observational findings to be 

tested in a realistic CGCM simulation.

1.5.4 Research questions

Dynamical model simulations of lagged snow cover relationships with the NAO d j f  

are shown above to be limited both in number and, potentially, by the accuracy 

of individual GCMs. The performance of coupled GCMs in reproducing observed 

patterns of spatial and temporal snow cover variability has not been determined 

rigorously. In Chapter 4, we attempt to validate the accuracy of a coupled GCM 

for snow/atmosphere investigation by answering the following questions:

(i) Can CGCM snow depth data be employed to create an index of monthly mean 
snow cover?

(ii) How well does a coupled GCM simulate the observed spatial and temporal 
variability in seasonal snow cover when forced with observed radiative forcing 
1972-2002?

(iii) Does the coupled GCM simulate realistically the observed contemporaneous 
in situ links between seasonal snow cover and the atmosphere 1972-2002?

(iv) Does coupling a GCM to the ocean improve its representation of snow cover 
variability?

The findings from Chapter 4 will show whether a coupled GCM is accurate at 

representing snow cover and associated atmospheric variability. In Chapter 5 we test 

the capability of the coupled GCM to represent NAO djf predictability associated 

with summer NH snow cover. The following specific questions are addressed:
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(i) Does a coupled GCM capture observed temporal NAOjojf variability during 
the twentieth century?

(ii) Does a coupled GCM represent accurately the observed lagged and contem­
poraneous links between snow cover and the NAO d j f  1972-2002?

(iii) Is the physical mechanism linking summer snow cover and the NAO d j f  the 
same in the coupled GCM as in observations?

(iv) Is the link between summer snow cover and the NAO d j f  stationary during 
the twentieth century?

(v) What are the main limitations in using a coupled GCM for snow/atmosphere 
modelling?

1.6 Summary

The contrasting methodologies employed in the seasonal forecasting of winter North 

Atlantic climate are described. Empirical models currently offer higher and more 

reliable seasonal forecast skill. However, increasing research is directed towards im­

proving dynamical seasonal forecast systems. This study will focus on the seasonal- 

to-interannual predictability of the winter North Atlantic Oscillation (NAO) avail­

able from empirical models. The impacts of the winter NAO are clear, as are the 

benefits of accurate and timely seasonal NAO forecasts. Particular beneficiaries will 

be energy providers, water resource managers, farmers and the insurance industry.

The research divides into two main topics. First, several previous empirical 

modelling studies have identified predictive links and skill for the winter NAO. This 

work will clarify what is the best lagged predictor for the winter NAO. Second, 

summer snow cover has been identified in observations as a skilful lagged winter 

NAO predictor. This study uses output from a coupled GCM to validate this link 

and assess its stationarity during the twentieth century.
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D ata Selection

2.1 Introduction

Several hundred years of meteorological observations have led to the accumulation 

of an enormous body of climate data. The aim of this Chapter is to identify which 

of the many available climate data sets best suit the data requirements of this 

thesis. These requirements are for the data to have little bias and the best available 

temporal and spatial coverage for the parameters of interest. The available historical 

data sets are examined and a review of the methods involved in their formulation is 

presented. This will allow an informed selection to be made of the most appropriate 

data sets for use in this study.

Meteorological and oceanographic data are taken from two main sources. First, 

direct measurements are made at observing locations on the ground or at sea. 

These data provide the longest records, extending (occasionally) back several hun­

dred years, for example, the Central England Temperature index (Manley 1974). 

However, there is considerable bias in the density of the observation network to­

wards the industrially developed regions of the world such as Europe and North 

America. Second, remote sensing satellites in orbit around the Earth detect ra­

diances emitted from the surface. Satellite observations provide global coverage 

but records do not extend further back than the early 1970s. Long data records 

are essential for empirical SCF applications to determine the stability of predic­

tive relationships. However, remotely sensed data play an increasingly important 

role in the observation and reconstruction of mean sea-level pressure (MSLP), air 

temperature, sea surface temperature (SST) and snow cover data.
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The required climate parameters for this thesis are the predict ands (what we 

predict) and the predictors (what we use to predict). The main predictand is the 

winter NAO (NAOd j f ) -  Section 2.2 examines available global MSLP data, which 

are employed to calculate the N A O d j f  indices. The methods used to compute 

the various NAO d j f  indices are discussed in Section 2.3. The chosen predictors 

comprise lower boundary variables including near-surface air temperatures, SSTs 

and snow cover extent. We review data for, air temperature in Section 2.4, SST in 

Section 2.5 and snow cover in Section 2.6. The Chapter concludes with a summary 

of the data sets selected for use in this thesis.

2.2 MSLP data

Observations of MSLP at land stations and aboard ships have been performed rou­

tinely since the mid-1800s. Interpolating those data into MSLP fields with complete 

global coverage has been more problematic. Reliable satellite and reanalysis prod­

ucts have increased the accuracy of complete global MSLP data for the period since 

1980. However, the reliability of global reconstructed MSLP data sets based on sur­

face observations is limited before around 1950 because of data sparsity in certain 

regions. Furthermore, these data sets are commonly available over the ocean only.

Measurement

Barometry is concerned with measuring static pressure, which is the force per unit 

area exerted by the atmosphere against any surface in the absence of air motion 

(Brock and Richardson 2001). Consequently, the instrument used to measure static 

air pressure is the barometer. The SI unit of atmospheric pressure is the Pascal 

(Pa), although in meteorology use of the millibar (mb) is still common. As a result, 

atmospheric pressures are typically given in hundreds of Pascals (hectopascals, hPa), 

where 1 hPa =  1 mb.

Barometers used for meteorological observations are typically either mercury 

or aneroid. Mercury barometers work by the weight of the atmosphere balancing 

against a column of mercury in a long glass tube. The movements of the top of
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the mercury column are calibrated to represent a certain change in atmospheric 

pressure. Mercury barometers are known to be stable in time, which is important 

for climatological use. However, they are very sensitive to motion and difficult to 

automate, making them unsuitable for field use.

Aneroid barometers are fluidless and work via changes in atmospheric pressure 

causing a metallic diaphragm to deflect inside an evacuated chamber. The metallic 

diaphragm sensor is a circular capsule made from an elastic metal. Increasing 

atmospheric pressure causes greater deflections and these are calibrated empirically 

at assembly. The smaller design and metallic construction make aneroid barometers 

more suitable for automated weather stations and in the field.

Errors

Each barometer design has associated errors and inhomogeneities that must be 

considered. Mercury barometers suffer mainly from dynamical wind pressure su­

perimposed on the static pressure, which can result in errors of several hPa (Brock 

and Richardson 2001). These errors are difficult to trace due to the time-varying 

nature of dynamical wind pressure. Contamination in either the mercury or the 

vacuum at the top of the glass tube can also lead to inconsistency in the readings. 

Finally, the storage and maintenance of a mercury barometer is critical and it must 

be kept vertical and fixed.

The main source of error in aneroid barometers is from the nonlinear response of 

the barometer to changes in ambient air temperature. A temperature correction is 

incorporated at assembly, however, due to the many sources of temperature errors, 

there is always some residual temperature error (Brock and Richardson 2001). A 

hysteresis effect can cause significant problems through defects or irregularities in 

the diaphragm shape or material. Finally, drift caused by diaphragm creep can only 

be suitably corrected by periodic checking and offset correction.

Page 59



Chapter 2 Data Selection

D a ta  se t T im e  p e r io d R e so lu tio n C ov erag e R efe ren ce

ERA-40a 1958 to present ~  2.5° x 2.5° Global ECMWF (2003)

ERSLP (Recon)b 1854 to 1997 2° x 2° Ocean Smith and Reynolds (2004b)

GMSLP2.1f (BP97)C 1871 to 1994 5° x 5° Global Basnett and Parker (1997)

Kaplan (KEA)d 1854 to 1992 nU O X o Ocean Kaplan et al. (2000)

NCEP/NCARe 1948 to present 2.5° x 2.5° Global Kalnay et al. (1996)

a ECMWF 40 yeax reanalysis, 
k Extended Reconstructed Sea Level Pressure.
c UKMO Hadley Centre Global Mean Sea Level Pressure (version 2.If). 
d Kaplan Reduced Space Optimal Interpolation. 
e NCEP/NCAR reanalysis.

Table 2.1: Global analyses of sea level pressure data. Data set titles in brackets are 

those given by Smith and Reynolds (2004b) and allow comparison with Figure 2.1.

Global gridded data sets

Five global reconstructed MSLP data sets are listed in Table 2.1. The data set titles 

in brackets are the titles given by Smith and Reynolds (2004b) and are used in the 

following to allow a comparison with Figure 2.1. Observational data over the ocean 

in Recon and KEA are taken from the Comprehensive Ocean-Atmosphere Data 

Set (COADS) (Woodruff et al. 1998). COADS data are from a network of buoys 

and ship observations. GMSLP2.1f is the only MSLP data set offering complete 

global coverage over both land and ocean for the entire twentieth century. Oceanic 

observations are taken from COADS and the UKMO Marine Data Bank, while 

land observations are taken from 700 historical station records and several oceanic 

or ‘near global’ gridded MSLP data sets. The reader is referred to the references 

in Table 2.1 for details of the exact methods used in the computation of each data 

set.

The spatial correlation between four of the MSLP data sets (over the ocean 

only) listed in Table 2.1 is shown in Figure 2.1. National Centers for Environmental 

Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis 

data are plotted from 1980 onwards to coincide with the satellite era. The lowest 

correlations between the data sets are observed prior to 1950, when sampling is 

more sparse. The correlation between Recon and GMSLP2.1f is lowest in all time
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Figure 2.1: Comparison of global reconstructed MSLP data sets. Lines show an­
nual spatial Pearson correlations (60°S-60°N) between the Smith and Reynolds 
(2004b) data (“Recon”), Basnett and Parker (1997) (thin solid line, “BP97”), Ka­
plan et al. (2000) (dashed line, “KEA”) and NCEP/NCAR reanalysis (thick solid 
line, “Rean”). After Smith and Reynolds (2004b).

periods, which is attributed to the reduced smoothing and greater noise content in 

the GMSLP2.1f data (Smith and Reynolds 2004b). NCEP/NCAR reanalysis data 

assimilate many different types of data from in situ observations and satellites and 

are considered to be more accurate than the historical reconstructions since the 

1980s (Smith and Reynolds 2004b).

Smith and Reynolds (2004b) outlined the main sources of error in global recon­

structed MSLP data:

(i) Data quality problems, particularly over land. These include discontinuities 
between data sets related to the corrections applied to high-altitude stations.

(ii) Quality control procedures were applied to the observational data to remove 
noise and gaps. A subjective threshold of 5 standard deviations was used to 
classify outliers, and the results showed some sensitivity to different thresh­
olds.

(iii) Trends caused by changes in data sampling. One interesting issue is that bet­
ter weather forecasts allowed ships to avoid severe storms and, inadvertently, 
introduced a bias to MSLP sampling over the ocean. The removal of these 
artificial trends from the data may be sensitive to the type of corrections 
applied.

(iv) The Earth’s apparent gravity changes slightly from the equator to the Pole, 
creating the need for minor corrections (~ ±2 hPa).
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Selection of M SLP data

Two complete global MSLP data sets are selected for use in this study, namely, GM- 

SLP2.1f and NCEP/NCAR reanalysis data. These data sets combine the need for 

long records with complete (including over land) spatial coverage. The GMSLP2.1f 

data are selected because the Smith and Reynolds (2004b) were not available at the 

time of the analysis. However, the reliability of pre-1950 GMSLP2.1f data may be 

poor over some land areas and in data sparse regions (Basnett and Parker 1997). 

Furthermore, there is greater noise in the data than in the Recon data (Smith and 

Reynolds 2004b). The results from these periods and regions must therefore be 

interpreted with some caution.

2.3 NAO indices

There is no single way to ‘define’ the NAO (Hurrell et al. 2003), and consequently 

there are many different methods used to compute NAO indices. Walker and Bliss 

(1932) were among the first to construct an NAO index, which related temperature 

and MSLP anomalies from European and North Atlantic observing stations. The 

NAO indices referenced commonly in the literature employ different data sets and 

statistical methods in their computation but most are derived from MSLP.

Station based NAO indices

The simplest form of NAO index is calculated as the difference in MSLP at stations 

located within the opposing centres of the NAO dipole pattern (see Figure 1.4a). 

The MSLP data are typically standardised to reduce the dominance of the higher 

latitudes caused by their greater variability. The northerly centre is termed the 

‘Icelandic Low’ and the MSLP record at Reykjavik is used. The southerly centre 

is termed the ‘Azores High’ but this centre has a larger spatial extent than the 

Icelandic Low and, consequently, there is no universally agreed station to represent 

it. Hurrell (1995) used MSLP from Ponta Delgada in the Azores (henceforth Hurrell 

NAO index), while Jones et al. (1997) used MSLP from Gibraltar (henceforth CRU
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NAO index). These NAO indices exhibit certain differences, which represent the 

temporal and spatial variability in the NAO dipole pattern. This variability results 

from the seasonal migration in the relative positions of the Icelandic Low and Azores 

High (Hurrell et al. 2003).

One advantage of using a station based approach is that long and accurate 

records of MSLP are available (e.g., from 1824 for Iceland). Furthermore, proxy 

data have also been used to reconstruct an NAO index back to 1500 (Luterbacher 

et al. 2002). The disadvantage of using station data is that the temporal and spa­

tial variability of the NAO dipole are nonstationary (Barnston and Livezey 1987). 

Therefore, an index that is not tied geographically to two specific stations may be 

more representative of NAO variability.

Spatially varying NAO indices

One method used for overcoming the problem of spatial variability in the NAO 

dipole is principal components analysis (PCA). In this approach, the NAO is com­

puted by projecting the leading eigenvector (EOF) of the North Atlantic MSLP 

cross-covariance matrix back onto the original gridpoint values of MSLP (Hurrell 

et al. 2003). Wallace (2000) states that the early NAO index of Walker and Bliss 

(1932) can be considered an iterative approximation to PCA.

PCA is considered to produce a better representation to the NAO index than a 

simple station based approach. This is because the EOF weights take into account 

seasonal migration in the two NAO centres of action. Furthermore, the EOF weights 

the MSLP time variability over regions where there may be no stations located. 

Hurrell (1995) was one of the first to employ an NAO index based on the PCA of 

North Atlantic sector winter MSLP fields (henceforth MSLP PCI NAO index).

There are certain disadvantages to the PCA approach. First, the data used in 

the PCA are typically grids of reconstructed or reanalysis MSLP data sets. These 

data may not be reliable over land or over the ocean away from major shipping 

lanes (Smith and Reynolds 2004b). Paradoxically, the only way to ensure that 

reconstructed data are accurate is through comparison with observations and, by
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definition, these data sets are least accurate where observational data are sparse.

Second, while PCA captures seasonal and interannual migration in the NAO 

pattern, it tends to smooth out spatial variations occurring over longer time peri­

ods. Several studies have highlighted that the mean position of the NAO dipole 

is nonstationary on decadal and longer time scales (e.g., Jung and Hilmer 2001). 

Therefore, the EOF pattern is sensitive to the time period being assessed. Hur­

rell (1995) computed the EOF using winter MSLP data 1899-2001, while other 

authors have employed shorter time periods (e.g., Saunders and Qian 2002). This 

means that the PCA-based NAO indices computed in different studies may not be 

comparable.

Selection of NAO indices

In order to provide a rigorous assessment of winter NAO prediction skill, three 

NAO indices are selected for this study. They are the CRU, Hurrell and Hurrell 

MSLP PCI indices, respectively. The selection of two station based indices and one 

spatially varying index provides a set of predictands that cover a large area of the 

North Atlantic. The chosen predictors must therefore influence the atmosphere on 

sufficiently large spatial scales to provide predictability for all three NAO indices.

2.4 Near-surface air temperature

Historical records of temperature are the longest of all meteorological records. Ac­

curate and reliable monthly mean temperature data are available for the UK dating 

back to 1659 (Manley 1974). Compared to other parameters such as precipitation, 

temperature varies more slowly and predictably in space and time. This means 

that fewer stations are required to achieve a representative observing network of the 

temperature conditions over a particular region. However, orographic effects and 

proximity to water bodies can cause air temperatures to vary much more rapidly 

over short distances (e.g., van den Dool and Nap 1981). Satellite retrievals since 

the early 1980s have made uniform global air temperature measurements available
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for the first time, but debate exists as to the reliability of some of these data (e.g., 

Spencer and Christy 1990, Fu et al. 2004).

Measurement 

I n  s i t u

Air temperature is one of the most fundamental of all meteorological parameters. 

The most common and simple method employed for temperature measurement is 

the liquid-in-glass thermometer. Several alternative instruments for measuring in 

situ air temperature are reviewed in Brock and Richardson (2001). However, the 

majority of global climatological near-surface temperature observations are still 

made using manual thermometers.

Satellite

Remote sensing of air temperature is performed using infrared and microwave 

sounding instruments. Satellite-borne sensors detect radiances emitted from an 

atmospheric layer, which are linearised based on an a priori estimate of the tem­

perature profile to yield temperature data. Near-surface air temperatures are gen­

erally estimated using an empirical relationship with surface (or skin) temperature 

(see also Section 2.5). Infrared instruments such as the high resolution infrared 

radiation sounder (HIRS) have good horizontal and vertical resolution but suf­

fer from the attenuation of radiances by clouds at infrared wavelengths (e.g., 4.3 

pm). Microwave sounding units (MSU) have the advantage that the transparency 

of clouds is much increased at microwave frequencies (e.g., 50.31 GHz). However, 

their limitation is that the vertical and horizontal resolution is ~10 times coarser 

than HIRS. Research has attempted to exploit the advantages of HIRS and MSU 

through a combination of the data from both instruments (Goldberg and McMillin 

1999). Satellite observations are therefore becoming more useful for retrieving areal 

estimates of temperature, but thermometer measurements remain the only source 

of observational data in many regions of the world.
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Errors

Errors in the measurement of air temperature in excess of 2 to 3°C are not uncom­

mon in many networks (Brock and Richardson 2001), which are usually acceptable 

for the general public. However, numerical models at all scales of motion are greatly 

affected by errors even as large as 1°C due to their sensitivity to initial conditions 

(e.g., Crook 1996). Temperature data errors are often caused by changes in ther­

mometer design. However, other sources of inhomogeneity and bias also exist. The 

most common problem is observer error. This may occur either during measurement 

or in the transcription of records. Comprehensive error detection requires compar­

isons with either nearby station data, station metadata, documentary records or 

even reference to the original registers. Since this is time consuming and not prac­

tical for large data sets, automated procedures have been developed. These are 

based on the identification of data points outside a predefined confidence interval 

for the statistical distribution representative of the temperatures at the point in 

question.

Errors in remotely sensed near-surface temperatures stem from two sources. 

First, the retrieval process is based on converting nonlinear emitted radiances to 

linear estimates of atmospheric temperature. This is achieved using weighting func­

tions that are chosen to minimise the thickness of the atmospheric layer they repre­

sent. However, the weighting functions are imperfect and radiances detected from a 

given layer also contain information from neighbouring layers. These errors are re­

moved through empirical estimates of the temperature profile. Second, near-surface 

layer radiances cannot be detected precisely by either infrared or MSU instruments. 

Therefore, near-surface air temperatures are typically inferred from surface (skin) 

radiances. The relationship between surface and near-surface air temperature can 

only be verified through in situ observations, which means that errors are more 

likely over data sparse regions.
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Global gridded data sets

The irregular distribution of available station data requires that some form of grid- 

ding is necessary, in order for large-scale temperature analyses (e.g., hemispheric 

averages, principal component patterns etc) not to be biased (Jones and Moberg 

2003). One common method of interpolating station temperature data onto a regu­

lar grid is the ‘climate anomaly’ approach (e.g., Jones 1994). This method reduces 

all the station temperature data to monthly anomalies with respect to a common 

period, such as 1961-90. Gridbox anomaly values are then produced by a simple 

averaging of the individual station anomaly values within each grid box. The ad­

vantage of this method is that localised differences between stations (e.g., through 

elevation effects) are minimised. The major disadvantage is that stations must have 

enough years with data within the common period in order to be used. Clearly, 

this method is applicable to other climatic parameters that are measured system­

atically at a sufficiently dense network of surface stations (e.g, wind speed and 

precipitation).

Several independent global gridded temperature data sets have been produced 

(Table 2.2). Complete global coverage is offered in the reanalysis data from NCEP/- 

NCAR (Kalnay et al. 1996) and the ECMWF 40-year reanalysis (ECMWF 2003). 

In the reanalysis system, station and (post 1980) satellite observations are assimi­

lated into a coupled GCM integration. The relative weights given to the observa­

tional data and the model output are determined by the quality and quantity of 

observations for a certain area at a given time. Therefore, in the pre-satellite era, 

model-related biases may exist over data sparse regions. The ERA-40 data have 

certain advantages over NCEP/NCAR, such as a higher top stratospheric level (1 

hPa compared to 10 hPa in NCEP/NCAR). However, ERA-40 is still relatively new 

and has not been verified as extensively as the NCEP/NCAR data.

There are also global gridded temperature data sets without complete coverage. 

CRUTEM2 (Jones and Moberg 2003) has data over land only but offers histori­

cal records over all five continents dating back to 1856. The data contain a high 

percentage of missing grid cells, particularly in the Southern Hemisphere. Cover-
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D ata  set T im e period R esolution Coverage Reference

CRUTEM2a 1856 to present 5° x 5° Land only Jones and Moberg (2003)

ERA-40b 1958 to present ~  2.5° x 2.5° Global ECMWF (2003)

COADSc 1871 to 1994 5° x 5° Ocean only Woodruff et al. (1998)

NCEP/NCARd 1948 to present 2.5° x 2.5° Global Kalnay et al. (1996)

a Climatic Research Unit, University of East Anglia. 
b ECMWF 40 year reanalysis. 
c Comprehensive Ocean Atmosphere Data Set. 
d NCEP/NCAR reanalysis.

Table 2.2: Global analyses of 2 m air temperature data.

age is good throughout the record over Europe and North America but is limited 

over eastern Eurasia prior to the 1930s. COADS data are based on ship and buoy 

observations (Woodruff et al. 1998) and are therefore unavailable over land.

Choice of air temperature data

The requirements for air temperature data in this thesis concern their temporal 

and spatial coverage. The data must span a period of at least 100 years to al­

low predictability studies with the long NAO records. Furthermore, a significant 

percentage of the NH land must be covered to allow teleconnected climatic relation­

ships to be assessed. Two data sets satisfy one or more of these criteria, namely, 

CRUTEM2 and the NCEP/NCAR reanalysis data. A comparison of NCEP/NCAR 

and CRUTEM2 data for NH regions poleward of 35° is shown in Figure 2.2. The 

large number of missing data in CRUTEM2 is apparent, but over the common areas 

with data the correspondence with NCEP/NCAR is high. Inconsistencies between 

the data sets probably arise through differences in their spatial resolutions and the 

CGCM output in the NCEP/NCAR data.
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(a) CRUTEM2 1963 (c) NCEP/NCAR 1963

(b) CRUTEM2 1989

-3  -2  -1  - 0.5  0.5  1 2 3

Figure 2.2: DJF mean 2 m air temperature anomalies from CRUTEM2 (a and 
b) and NCEP/NCAR reanalysis (c and d) data. Data are for 1963 (top panels) 
and 1989 (bottom panels), which correspond, respectively, to extreme negative and 
positive NAO phases. Missing data in CRUTEM2 are white space. Colour levels are 
at 0.5, 1, 2, 3 and > 3°C, where blues indicate negative and reds indicate positive 
temperature anomalies.

(d) NCEP/NCAR 1989
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2.5 Sea surface temperature

Historical records of SST extend back to the mid 1800s. In the pre-satellite era, 

SSTs were measured in situ by ships and buoys. The primary in situ observational 

data sources are the COADS (Woodruff et al. 1998) and the UKMO Historical 

SST (MOHSST6) data set (Parker et al. 1995). Such observations suffer from two 

main drawbacks. First, these data offer limited spatial coverage, with observations 

being concentrated along shipping lanes (Figure 2.3 top panel). Second, there may 

be considerable variation in measurement error from one observation to the next, 

depending on the methods employed.

Global satellite SST observations have been available since the early 1980s, and 

offer an alternative data source with near uniform spatial coverage and observational 

accuracy across the globe. An example of remotely sensed SST data is shown 

in the middle panel of Figure 2.3. Note the data gaps in regions of persistent 

cloud cover over the tropical Pacific, where very high levels of water vapour in the 

atmosphere make satellite retrievals difficult for much of the year. Several methods 

have been employed to fill in the missing values in the in situ and satellite data 

to yield complete ‘reconstructed’ analyses with global coverage. The bottom panel 

of Figure 2.3 illustrates the output from the NCEP Optimal Interpolation (01) 

analysis (Reynolds and Smith 1994).

Measurement 

I n  s i t u

Historically, SST has been referenced to a bulk near-surface ocean temperature 

obtained by tossing a bucket over the side of a ship. Since the design and insulation 

of buckets has changed with time, corrections must be applied (Folland and Parker

1995). During World War II, engine room intake-water thermometers superseded 

bucket measurements. These temperatures are affected by the depth of the ship’s 

intake, the loading of the ship, the configuration of the engine room and the point 

where the measurement is taken. Such differences contribute to noise in the SST 

measurements. However, biases also arise because the engine room heat more than
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Figure 2.3: A comparison of global SST coverage for a week in December 1999 
based on: In situ observations (top), satellite observations (middle) and the NCEP 
01 analysis model (bottom). The colour bar indicates the SST anomaly in °C. 
(Courtesy of R. W. Reynolds).
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offsets any cold bias from the depth of the intake. Overall, the difference between 

engine intake and bucket temperature is typically 0.3°C (see also Trenberth et al. 

(1992) and Rayner et al. (2003)).

Satellite

At no stage in the observational record have in situ SST measurements covered 

the entire global ocean (Parker et al. 1995). In particular, the Southern Ocean 

has generally not been monitored (Rayner et al. 2003). Therefore, the advent of 

reliable satellite SST retrieval systems has revolutionised the observation of SSTs 

in data sparse regions. Since the 1980s, satellite-borne infrared radiometers have 

been used to retrieve SST. The two most widely used instruments are the advanced 

very high resolution radiometer (AVHRR) and the European along-track scanning 

radiometers (ATSR) onboard the ERS1, ERS2 and ENVISAT earth observation 

satellites. These instruments measure infrared radiances from the Earth’s surface 

in discrete wavelength channels (typically at 3.7, 11 and 12 /mi). MSU are also used 

to measure surface temperatures, particularly for regions under persistent cloud 

cover such as the tropical Pacific (see Figure 2.3 and Section 2.4). However, their 

limitation is that the vertical and horizontal resolution is ~25 times coarser than 

AVHRR or ATSR.

The radiance relates to the temperature of the top few microns of the ocean 

(the skin), and this can differ from the bulk temperature sampled by traditional in 

situ measurements. Two physical processes contribute to the discrepancy between 

skin and bulk SSTs. The first is the skin effect, which arises as a result of con­

ductive heat loss from the ocean, and generally results in a skin temperature up to 

0.4°C cooler than the bulk temperature; the exact value depends on the net ocean- 

atmosphere heat flux and on wind speed. The second is the development of the 

diurnal thermocline, a thermally-stratified layer which builds up under conditions 

of strong insolation and low wind speed. This can result in a skin temperature up 

to 3°C warmer than the bulk temperature. These biases in satellite-derived SST 

data must be corrected to ensure consistency with the historical SST record. The
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correction process is discussed in detail by Rayner et al. (2003).

Errors

Trenberth et al. (1992) listed five sources of error in monthly mean SSTs estimated 

from in situ measurements. All of these problems are present in the COADS data 

set. However, Bottomley et al. (1990) and Parker et al. (1995) discussed methods 

to minimise effectively the influence of these biases in the MOHSST6 data set:

(i) Individual observations are not particularly accurate. The standard deviation 
between engine intake and bucket temperatures taken from the same ship was 
found to be 0.9°C (Saur 1963). Moreover, ship to ship observations made 
within 100 km and 6 hours had a standard deviation of differences ~1.5°C 
(Bernstein and Chelton 1985). Based on these studies, the expected standard 
error of an individual observation is 1°C.

(ii) Incomplete sampling of the diurnal cycle can be significant. Cornillon and 
Strama (1985) show that at times when winds are light, diurnal heating can 
exceed 2°C. Typical values are much less than this and are generally of the 
order 0.2 to 0.3°C (e.g., Morrissey (1990) for north of Australia).

(iii) Incomplete sampling of intramonthly variance other than the diurnal cycle 
and seasonal cycles (Fu et al. 1988).

(iv) Incomplete sampling of intramonthly mean variance due to the seasonal cycle, 
which has typical amplitudes for SST of 3°C in the Southern Hemisphere and 
5°C in the NH but only 1°C in the tropics.

(v) SST gradients across a single grid box can cause errors in regions of strong 
gradients (e.g., Kuroshio and Gulf Stream currents). Minor changes in ship 
track across such regions can lead to substantial apparent anomalies in local 
SST. For large area averages the effects should be less since the random errors 
will tend to cancel each other out.

Satellite data are ‘tuned’ by regression against quality controlled drifting buoy 

data. The corrections are often quite large (~1°C) (Reynolds 1988), which brings 

into question the reliability of satellite estimates in regions where this calibration 

is not performed directly. While retrieval algorithms adjust for attenuation by 

tropospheric water vapour, they can be fooled, and the temperature of cloud tops 

can be mixed with SSTs. Aerosols emitted by volcanic eruptions can also lead to 

serious biases (Reynolds and Smith 1995).
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Data set Time period Resolution Coverage Reference

ERSST2a 1854 to 1997

oCMXoCM Global Smith and Reynolds (2004a)

GISSTb 1871 to 2003 1° X 1° Global Rayner et al. (1996)

HadISSTlc 1871 to present 1° X 1° Global Rayner et al. (2003)

Kaplan 1856 to 1991 5° x 5° Near global Kaplan et al. (1998)

NCEP OI.v2d 1950 to present 1° x 1° Global Reynolds et al. (2002)

a Extended Reconstructed Sea Surface Temperature (version 2). 
b Global Ice and Sea Surface Temperature. 
c UKMO Hadley Centre Ice and Sea Surface Temperature. 
d NCEP Optimal Interpolation analysis (version 2).

Table 2.3: Global analyses of sea surface temperature data.

Global gridded data sets

Table 2.3 summarises the five main global reconstructed SST data sets available in 

terms of their temporal coverage, spatial extent and resolution. While the details 

of the analyses vary, their reconstruction divides into three steps:

(i) Bias correction of satellite data using high quality ship and buoy data.

(ii) Estimation of spatial covariance structure of bias corrected SSTs.

(iii) Interpolation of historical in situ data to match modern covariance structure.

Each SST reconstruction is a blend of in situ and satellite measurements and 

is therefore subject to the errors described above. Additional uncertainty arises 

from the particular interpolation procedure applied. Since no SST data set can be 

described as definitive, it is difficult to quantify these errors. Differences between 

analyses can be revealed by comparison to the reference data where available. How­

ever, such comparisons are not independent since much of the reference data will 

have been incorporated into the analyses. Therefore, differences are likely to be sen­

sitive to the reconstruction method employed. The development of SST data sets 

remains an active area of research (e.g., Rayner et al. 2003, Smith and Reynolds 

2004a).

Figure 2.4 shows the comparison of annual and near-decadal averages from five 

SST data sets over six different regions. Grid boxes partially covered by sea ice
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are excluded from the area averaging. The time series shown are anomalies with 

respect to the 1961-90 mean. Good agreement between data sets is seen over the 

Gulf Stream region (panel a), the Baltic Sea (panel d) and the Pacific Nino 3.4 

region (panel f). The Kaplan et al. (1998) data exhibit the greatest differences to 

the other data sets before 1940 over the Kuroshio region (panel b). The highest 

spread of SST values is observed over the Southern Ocean (panel e), which is the 

least well observed region.

Choice of SST data

Reconstructed SST data are chosen because of their continuous coverage and the 

rigorous quality control applied in their formulation. Of the reconstructed data, 

HadlSSTl is favoured because of its 1° spatial resolution, temporal coverage back 

to 1871, lack of bias and weak trend with respect to the reference data (Rayner 

et al. 2003). However, because of the uncertainties outlined above, care must be 

taken when interpreting results originating from data sparse regions.

Sea ice data are incorporated into HadlSSTl and are important for forcing 

atmospheric GCM simulations. However, the sea ice data are heterogeneous because 

sea ice has been observed using a variety of methods and in very different levels of 

detail throughout the historical record (Rayner et al. 2003). Furthermore, sea ice 

has a longer intrinsic time scale than SST and grid boxes with fractional ice cover 

can have detrimental effects on SST analyses. The present study employs SST data 

extensively to investigate seasonal-to-interannual predictability. Sea ice is therefore 

removed prior to computing all analyses to minimise these effects.

2.6 Snow cover

Background

Station measurements of snow cover have been made for over a century in parts of 

the Former Soviet Union, China and the United States (Brown 2000). However, 

the spatial coverage provided by these stations is generally limited to low eleva-
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Figure 2.4: Smoothed annual SST anomalies averaged over (a) Gulf Stream re­
gion (35°N-45°N, 70°W-50°W); (b) Kuroshio region (30°N-40°N, 125°E-160°E); (c) 
Greenland region (50°N-70°N, 70°W-30°W); (d) Baltic Sea; (e) Southern Ocean 
south of 50°S; (f) Pacific Nino 3.4 region (5°S-5°N, 170°W-120°W). Anomalies are 
calculated with respect to the 1961-90 mean and only ice-free grid boxes with data 
are used. A 21-point binomial (near-decadal) filter was applied to annual anoma­
lies. Thin black curves are unsmoothed HadlSSTl annual anomalies. “HadMATI” 
refers to the Hadley Centre night time marine air temperature data set, “OI.v2” 
refers to Reynolds et al. (2002), “GISST3.0” refers to an updated version of Rayner 
et al. (1996), “HadSST” refers to Jones et al. (2001) and “Kaplan et al.” refers to 
Kaplan et al. (1998). After Rayner et al. (2003). Figure is ©  Crown Copyright 
2003.
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tion regions and to snow courses in mountainous regions (Robinson et al. 1993). 

An urban bias also exists which may give rise to an underestimation of coverage. 

Global snow cover data have only become available since the advent of remote sens­

ing satellites. NH lands have been monitored continuously since the 1960s. The 

Southern Hemisphere has only been monitored sporadically.

Measurement

Snow amounts at observing stations are still measured by the traditional stake 

method. Measurements are taken from the top of the stake to a round board 

placed on the surface. This averages out local surface roughness effects. Global 

snow cover data are measured by manual interpretation of visible band satellite 

images. Snow is identified by recognising characteristic textured surface features 

and brightness patterns.

Reconstruction

Brown (2000) described the process of using snow depth data to reconstruct in­

dices of areal snow cover extent for North America and Eurasia. Daily observations 

of snow depth from more than 500 stations with complete records were collected. 

These data were then interpolated to a ~200km2 polar stereographic grid. The effect 

of topography was ignored because the station network remained fixed throughout 

the reconstruction period and the individual stations were at low elevation. Monthly 

snow cover values were derived by averaging the total snow covered (above a thresh­

old depth of 2 cm) land area in the daily grids.

Errors

Robinson et al. (1993) listed four potential sources of error in satellite derived 

estimates of snow cover:

(i) The inability to detect snow cover when solar illumination is low or when 
skies are cloudy.

(ii) The underestimation of cover where dense forests mask the underlying snow.
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(iii) Ambiguities in the recognition and demarcation of patchy snow cover.

(iv) Difficulties in discriminating snow from clouds in mountainous regions and in 
uniform lightly vegetated areas that have high surface brightness when snow 
covered.

Brown (2000) listed the main sources of error in the snow cover reconstruction:

(i) Serious data gaps over China, Mongolia and Siberia meant that only data for 
March, April and October could be reconstructed for Eurasia.

(ii) The number of stations with data over Eurasia was only one-third of that 
over North America and their locations were biased towards western Eurasia. 
However, this problem may not be serious because most of the interannual 
variability in Eurasian snow cover occurs over western Eurasia (Clark et al. 
1999).

(iii) Relaxation of the complete record criterion increased spatial coverage but 
introduced substantial errors into the snow cover indices (~10% error by al­
lowing just one missing year in the station records).

(iv) There was some sensitivity to the chosen value of snow depth threshold. A 
value of 2 cm was used but other authors have used thresholds of 3 cm (Frei 
and Robinson 1998) and 2.5 cm (Frei et al. 2003).

Choice of snow cover data

The longest satellite based records available are provided by Rutgers University. 

These begin in 1966 but are only considered to be reliable since 1972 (Robinson 

et al. 1993). The charts are provided weekly on an 89x89 cell NH grid having a 

polar stereographic projection. Cell resolution ranges from 16,000km2 to 42,000km2. 

Only cells whose area is interpreted to be at least 50% snow covered are considered 

snow covered.

A secondary source of snow cover data are the indices of Brown (2000). The data 

are available (and considered reliable) for the period 1915-97 for North America and 

the period 1922-97 for Eurasia. Prior to 1971, the snow cover indices are derived 

entirely from station snow depth data, but after 1971 they are blended with the 

satellite observations. However, due to data sparsity, the reconstruction was only 

performed November-April for North America and in three months (March, April 

and October) for Eurasia.
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P a ra m e te r D a ta  se t T em p o ra l coverage S p a tia l re so lu tio n S ource

MSLP GMSLP2.1f 1871 to 1994 5° x 5° UKMO

MSLP NCEP/NCA R 1948 to present 2.5° x 2.5° CDCa

NAO CRU Index 1821 to present - CRUb

NAO Hurrell 1865 to present - NCARC

NAO Hurrell MSLP PC I 1899 to present - NCAR

Temperature CRUTEM2 1856 to present 5° x 5° CRU

Temperature NCEP/NCA R 1948 to present 2.5° x 2.5° CDC

SST H adlSSTl 1871 to present 1° x 1° UKMO

SST NCEP/NCA R 1948 to present 2.5° x 2.5° CDC

Snow cover NO A A Satellite 1972 to present 2° x 2° Rutgers GSL^

Snow cover Brown 1922 to 1997 - NSIDCe

a US Climatic D ata Center.
b University of East Anglia, Climatic Research Unit.
CUS National Center for Atmospheric Research.
^Rutgers University Global Snow Lab. 
eNational Snow and Ice D ata Center.

Table 2.4: Summary of the main data sets used in this study.

2.7 Summary

Table 2.4 shows the main data sets used in this study. All other data not mentioned 

specifically in this table are taken from the NCEP/NCAR reanalysis (Kalnay et al.

1996). This includes wind and temperature fields on pressure levels and surface ra­

diative fluxes. As described in Section 2.4, reanalysis data assimilate observations, 

satellite and coupled GCM data to produce complete global coverage. Therefore, 

caution should be exercised when interpreting results derived using reanalysis data 

over regions with few observing locations. Furthermore, few accurate climatological 

observations of surface radiative fluxes were made over land prior to satellite data 

becoming available. This means that these data in particular may suffer from inho­

mogeneities in the early record that cannot be verified against other observations.
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W hat is the Best Lagged Predictor of the  

W inter NAO?

3.1 Introduction

Bjerknes (1964) hypothesised that fluctuations in the winter NAO (henceforth 

NAOd j f )  index on interannual and longer time scales are associated with ocean- 

atmosphere interaction. Since then, observational and GCM investigations have 

confirmed the influence of the NAO d j f  circulation on the Atlantic Ocean. How­

ever, the question of whether — and to what extent — the ocean or land surface 

imparts a reciprocal influence on the atmosphere remains a topic of much debate 

(Bretherton and Battisti 2000, Drevillon et al. 2001, Marshall and Coauthors 2001). 

The presence of a lagged influence on the N AO d j f  would offer the prospect of sea­

sonal to decadal winter climate prediction over the North Atlantic and adjacent 

continents (Paeth et al. 2003).

The aim of this Chapter is to examine “What is the best lagged predictor of 

the winter NAO?”. This is investigated by providing a standardised platform on 

which to evaluate and compare the predictive NAO d j f  skill arising from four pre­

viously published lagged NAO d j f  predictors and a new predictor. The Chapter is 

structured as follows. Section 3.2 outlines the chosen assessment periods, predic- 

tand NAO d j f  indices, predictors and the different observational data sets used to 

compute them. Here we also describe our hindcast procedure and the method for 

evaluating hindcast skill and its statistical significance. Results from the hindcast 

comparison are presented in Section 3.3. The stationarity of the predictive rela­

tionships is also discussed. Section 3.4 contains interpretation of the key findings
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from these results and a detailed examination of the physical mechanisms linking 

the most skilful lagged predictor to the N A O d j f • Section 3.5 presents a discussion 

of our findings and their implications for the broader topics of seasonal forecasting 

and twentieth century North Atlantic sector climate variability. Finally, a summary 

and conclusions are presented in Section 3.6.

3.2 M ethodology

3.2.1 D ata

NAO d j f  indices

Figure 3.1 shows the three N A O d j f  indices employed as predictands in this study. 

The selected indices are the CRU, Hurrell and MSLP PCI N A O d j f  indices de­

fined in Section 2.3. Despite being calculated using different methods and with 

different data sets, the three indices cross-correlate strongly over the period 1900- 

2001. The following are the Pearson product-moment correlation coefficients be­

tween the N A O d j f  indices: CRU/Hurrell r = 0.88, Hurrell/MSLP PCI r = 0.85 

and CRU/MSLP PCI r = 0.86. However, as shown in Figure 3.1, there are quanti­

tative and qualitative differences between the indices. The CRU index has a clear 

positive bias (100-year mean is 0.56) and has the highest 100-year variance (1.52 

compared to 1.32 and 1.02 for the Hurrell and MSLP PCI indices, respectively).

Previously published NAOdjf predictors

The four previously published N A O d j f  predictors examined in this study are shown 

in Table 3.1 and are all taken from results published since 2001. They were selected 

for comparison because they are believed to encompass the highest currently ob­

served seasonal predictive skill for the winter NAO.

The first N A O d j f  predictor (henceforth May SST (SVD)) is the time series of 

May North Atlantic (10°N-80°N) SST derived from a singular value decomposition 

(SVD) analysis with DJF mean 500 hPa geopotential height over the North Atlantic 

sector (Rodwell and Folland 2002). In the original analysis, the SVD procedure
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Figure 3.1: Temporal evolution of the (a) CRU, (b) Hurrell and (c) MSLP PCI 
NAO d j f  indices 1900-2001 in standardised units. Solid line indicates linear trend 
as determined by a least squares fit.

was performed in ‘cross-validated’ mode, where each year in turn was removed 

from the data set and the SVD analysis repeated. Time series were calculated by 

projecting onto the data for each removed year the loading patterns calculated using 

the remaining data. The resulting SST time series was called the ‘predicted’ NAO 

series and the corresponding geopotential height time series the ‘observed’ NAO 

series. The correlation skill was taken as the correlation between these two time 

series.

Our implementation of the SVD analysis differs from that employed by Rodwell 

and Folland (2002). First, in accordance with other analyses in this study, we 

employ a five-year block elimination to the SVD procedure. This means that we 

remove each year in turn and additionally two years either side. This mitigates 

against serial correlation artificially inflating the covariance between the SST and 

geopotential height time series. Second, we employ the SST time series from the 

SVD as the ‘predicted’ time series and the CRU, Hurrell and MSLP PCI NAOdjf 

indices as the ‘observed’ time series. Third, we remove sea ice from the SST fields 

prior to performing the SVD (sea ice was retained in the original analysis). Fourth,
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standardised SST and geopotential height anomalies are employed to ensure that 

all grid cells contribute equal variance in the SVD procedure. Fifth, we employ 

different data periods.

These differences in implementation mean that our results are expected to differ 

from those of Rodwell and Folland (2002). However, as a preliminary check, we 

first reproduced the cross-validated hindcast correlation skill (ra = 0.45) using their 

original implementation. This ensured that our SVD algorithm was functioning 

correctly.

The second predictor (henceforth JJASO SST (PC2)) is the second principal 

component (PC2) of June through October mean (JJASO) North Atlantic (0°- 

65°N) SST (Saunders and Qian 2002). This is slightly the stronger of two lagged 

JJASO SST predictive modes employed by Saunders and Qian (2002). The loading 

pattern of the second EOF is derived using standardised anomalies of SST to en­

sure that all grid cells contribute equal variance in the principal component analysis. 

This pattern (see Saunders and Qian (2002) their Figure la) features a ring of SST 

anomalies around an opposite-signed centre off Newfoundland. Radcliffe and Mur­

ray (1970) were the first to identify a relationship between autumn SST anomalies 

off Newfoundland and the atmospheric circulation during subsequent months over 

western Europe.

The third and fourth NAOd jf  predictors employ the monthly mean areal extent 

of snow cover, with observations considered reliable since 1972. The third predictor 

is snow cover over Eurasia in October (Saito et al. 2001). The fourth predictor is 

the June-July (JJ) mean snow cover for the entire Northern Hemisphere (Saunders 

et al. 2003).

N ew  NAOdjf predictor

Alongside the four previously published predictors outlined above, we also examine 

a new NAOd jf  predictor that is an index of the zonal gradient in June-July (JJ) 

Northern Hemisphere (NH) subpolar 2 m air temperature. This index and its link
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Lagged Predictor Assessment
Period

Domain Area NAOd j f  Index Reference

May SST (SVD) 
JJASO SST (PC2) 
Oct EU Snow Cover 
JJ  NH Snow Cover

1948-1998
1950-2001
1972-2000
1972-2002

90W-40E, 10N-80N 
100W-0E, 0N-65N 

n /a  
n /a

Z500 SVD
C R U /C PC /PC 1
AO*
CRU/CPC**/PC1

Rodwell and Folland (2002) 
Saunders and Q ian (2002) 
Saito et. al (2001)
Saunders et. al (2003)

* Arctic Oscillation index (Thompson and Wallace 1998). ** Climate Prediction Center, U.S.

Table 3.1: Summary of current NAO seasonal prediction studies examined in this 
Chapter.

to NAO d j f  was introduced by Saunders et al. (2003). The index is defined as

N A  T  EU
AxT6ojv-70Jv := ----------------SG , (3.1)

where NA, EU and SG refer to subpolar (60°N-70°N) 2 m air temperatures over 

centres in North America, Eurasia and southern Greenland, respectively. These 

centres are shown in Figure 3.2 and correspond to where gridded JJ air temperature 

is correlated most significantly with contemporaneous NH snow cover. The two 

negative centres are a direct thermal response to anomalous snow cover, while the 

positive centre is a contemporaneous teleconnection.

Gridded 2 m air temperature data are available back to 1900 from the CRUTEM2 

data set (Jones and Moberg 2003) for NA, EU and SG. We therefore calculate the 

A x T q o n - 7o n  index (henceforth AT) for the period 1900-2001 and employ it as an 

NAO d j f  predictor. The summer period is selected because during the summer 

months the relationship peaks between the AT index and N A O d j f  (Saunders et al. 

2003). Figure 3.3 shows that the link is strongest in JJ using both the CRUTEM2 

and NCEP/NCAR reanalysis data (Kalnay et al. 1996) for the 50- and 30-year 

assessment periods. However, for the 100-year period the link is significant over 

an extended summer period May through September (MJJAS). Therefore, we also 

evaluate the NAO d j f  predictive skill of the longer MJJAS mean AT.
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0.01 0.05  0.10  0.10  0.05  0.01

Figure 3.2: The correlation pattern significance between detrended time series of 
June-July Northern Hemisphere snow cover extent and gridded June-July 2 m air 
temperature. Significances are corrected for serial correlation with lags out to 15 
years included. Colour scale denotes where correlation is positive (reds) or negative 
(blues). After Saunders et al. (2003).

P red ic to r d a ta  sets

As outlined above, this work reexamines the results of previously published studies 

to standardize and compare NAOdjf predictive skill. Wherever possible, we employ 

the same data sets used in the original works. However, as we also extend the 

analysis period back in time to 1900, it was necessary to use alternative data sets 

to provide data for this longer period. The data sets used in this study are listed 

in Table 3.2

3.2 .2  Trends

Throughout this thesis, the influence of linear (i.e., monotonic) trends on correlation 

and regression analyses is considered. When correlation or linear regression are used 

to investigate predictability, the analysis is computed using both raw data (i.e., with 

trends included) and detrended data (with a linear trend removed). This quantifies 

the influence of monotonic trends on predictability. A climate process Y  can be
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j — i— i— i i i i ■ i
JF FM MA AM MJ JJ JA AS SO ON ND DJ JF 

Lagged Season

NCEP/NCAR
0.751 I l 1-----1---- 1-----1-----1-----1-----1-----1---- 1

CRUTEM2
-i 1------ 1------ 1------ 1------ 1------ 1------ 1------ 1------ 1— r

Figure 3.3: Correlation coefficient between the lagged seasonal AT temperature 
index and the upcoming CRU NAOdjf  index. Top panel shows correlations for 
the CRUTEM2 AT index and bottom panel is for NCEP/NCAR data. Dark lines 
denote correlation coefficient and faint lines denote 5% significance level corrected 
for serial correlation.

1972-2001_i i i i
JF FM MA AM MJ JJ JA AS SO ON ND DJ 

Lagged Season
F

decomposed into

Y(t )=T(t )  + e(t),(3.2)

where T is its deterministic (predictable) component, e is the unpredictable (noise) 

component and t is time. Assuming T is a linear trend, it can be modelled using 

the relation

T(t)=(30 + Pit , (3.3)

where the parameters /30 and are the intercept and slope of the trend line, respec­

tively. The latter represents the trend magnitude. These coefficients are estimated 

using an ordinary least squares regression fit of Y  against t. The statistical sig­

nificance (p < 0.05) of the trend is estimated using the Mann-Kendall test (e.g., 

Hisdal et al. 2001). This test is conducted against H0 that the time series contains 

no trend.

In this Chapter, a linear trend is removed from the time series of all predictors 

and NAOdjf  indices prior to performing the hindcast procedure. This ensures 

that trends do not influence either the model formulation or the skill assessment. 

The trend is calculated as a least-squares regression fit over each full assessment
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period. Henceforth, all values quoted are calculated using detrended data. For the 

period 1900-2001, hindcast skill is typically 10-15% lower using raw data than using 

detrended data (not shown). For the periods 1950-2001 and 1972-2001, hindcast 

skill is higher by ~10% and ~5%, respectively when raw data are used. These are 

percentages of actual skill and not absolute.

3.2.3 Hindcast m ethodology

Previous studies of NAO d j f  hindcast skill have examined data since 1950. Here, 

we assess hindcast skill, where possible, over the entire twentieth century. Specifi­

cally, NAOdjf predictability is assessed for the three periods 1900-2001, 1950-2001 

and 1972-2001, with the 1972-2001 period corresponding to the interval of reliable 

satellite snow cover data (Robinson et al. 1993). These three assessment periods 

also allow the stationarity in N A O d j f  hindcast skill to be examined.

The predictive skill of the selected N A O d jf predictors is computed for each 

assessment period using cross-validated (Michaelsen 1987) hindcasts with block 

elimination (WMO 2002) and (except for the May SST (SVD) predictor) linear re­

gression models. Linear least squares regression is valid if the predictor, predictand 

(N A O d jf) and hindcast error time series are all normally (Gaussian) distributed 

(Wilks 1995). The Lilliefors goodness-of-fit test (Wilks 1995) is used to examine 

normality. The null hypothesis (H0) is that the data are drawn from a population 

with a theoretical Gaussian probability density function (PDF). For all predictor 

variables and the three N A O d jf indices we could not reject H0 using the Lilliefors 

test and therefore conclude that all distributions are not significantly different from 

Gaussian.

The hindcast model to predict the N A O d jf index y  in a given year t  using 

predictor x takes the form

Vt — A) + (3\Xt +  et (3.4)

where the coefficients (3o and (3\ are determined by an ordinary least squares re­

gression and et is the residual. A five-year block elimination is employed, which 

means that for a given predictand year t , data for the years t-2, t -1, t, t + 1 and
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Predictor 1900-2001 1950-2001 1972-2001

May SST (SVD) GM SLP2.1P, HadlSSTl NNR Z500 & SST, HadlSSTl NNR Z500 & SST, H adlSSTl
JJASO SST (PC2) H adlSSTl NNR SST, HadlSSTl NNR SST, HadlSSTl
Oct EU Snow Cover Brown/Rutgers** Brown/Rutgers Brown/Rutgers
J J  NH Snow Cover - - Rutgers

*Data available 1900-1994. **Data available 1922-2001

Table 3.2: Data sets used to compute NAO d j f  predictors in this study. NNR 
denotes NCEP/NCAR reanalysis data.

£+2 are removed from the regression. This mitigates against inflation of hindcast 

skill due to serial correlation in the predictor and/or predictand time series. Fur­

thermore, predictors derived from principal components (PCs) are also subjected 

to block elimination in their formulation. This ensures that the PCs do not contain 

information from years that are eliminated from the regression procedure. For each 

predictor a time series of hindcasted NAOd jf  values is calculated whose skill is 

verified against the corresponding observed N A O d jf series.

Skill assessment

In validating the hindcast skill from each predictor, we employ two skill measures. 

These are the correlation skill (r5) and the mean-squared skill score (M S S S ) against 

a simple prediction of climatology. The former is the Pearson product-moment 

correlation coefficient between the observed and predicted N A O d jf time series. 

The latter is the measure recommended by the World Meteorological Organization 

for verification of deterministic seasonal forecasts (WMO 2002) and is defined as

\jf c  zp
MSSSj  =  (1 -  j ^ - )  x 100% (3.5)

where MSEj  is the mean-squared error of the hindcasts and MS ECj is the mean- 

squared error for climatology. The climatology used in this study is the long-term 

mean for each assessment period.

The statistical significance of each skill value is estimated using a randomised 

resampling method (Manly 1997). The observed and hindcast N A O d jf time series 

are both randomly shuffled (with replacement) to create two new synthetic time
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series drawn from the same populations as the original time series. The length of 

the two synthetic time series is reduced to equal the ‘effective’ number of degrees 

of freedom (discussed below) between the original time series. Skill values are 

calculated for the two randomised time series and this shuffling/resampling process 

is repeated in Monte Carlo fashion 25,000 times. The statistical significance is 

determined by the number of times that the skill value from the random data 

exceeds the original observed skill value. Our null hypothesis (H0) is that there 

is no link between a given predictor and NAOdjf and that any observed skill is 

achieved by random chance. The a priori threshold of statistical significance is set 

at 0.05, which represents the probability that H0 is incorrectly rejected (Type I 

error). Our test is one-tailed as only positive values of correlation skill and M S S S  

will lead to a rejection of Ho (Wilks 1995).

The influence of serial correlation between two time series reduces the number 

of statistical degrees of freedom (DOF) available to the analyst. Failure to correct 

for this reduction increases the chance of Type I errors. Throughout this thesis 

we correct for serial correlation using the method of Davis (1976), which involves 

calculating the effective DOF between the time series that are being correlated. 

The effective DOF is N' = N / t , where N  is the actual DOF and r  is the reduction 

factor
oo n

T =  Y ,  Px{i)pY{i) ~  1 +  2 Y p x ( i ) p y ( i )  (3.6)
i= —oo i=  1

and p is the autocorrelation function over n lagged years (Eqn.4.4). The value of n 

is typically one-half the length of the time series. Analysis of all predictors shows 

that the May SST (SVD) predictor has the highest serial correlation with a lag-1 

correlation coefficient of 0.53 and a mean over ten lagged years of 0.38. The other 

predictors have lag-1 coefficients between 0.20 and 0.30 and a mean over ten years 

of around 0.10.

Field significance

Statistical analyses of gridded climate fields suffer from problems associated with 

temporal autocorrelation (discussed above) and also problems associated with spa­
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tial autocorrelation. The stronger the spatial autocorrelation in a field, the lower 

the independence between sampling locations, which reduces the spatial DOF. This 

increases the chances of finding coherent regions of, for example, significant correla­

tion because large numbers of non-independent statistical tests are performed on a 

finite set of data locations. The coherent regions imply a strong physical association 

over a large area between the variables being correlated. However, because of the 

lack of independence between the locations, the region may in fact be a series of 

interrelated Type I errors.

Field significance and the number of spatial DOF in a field are estimated using 

the two-stage method of Livezey and Chen (1983). First, the number of locally 

significant tests tha t are required for field significance (p < 0.05) is computed using 

the binomial distribution, assuming all locations are independent. If the observed 

number of locally significant tests does not exceed the number required assuming 

independence, then the field is not significant. Second, a Monte Carlo resampling 

method is used to repeat the original test but using Gaussian random data, i.e., 

violating H0 deliberately each time. This provides a PDF of the expected number of 

locally significant tests occurring in the field by random chance. The upper bound 

of spatial DOF in the observed field is computed by comparing the p =  0.05 level 

on the PDF with the original binomial distribution.

3.3 NAO hindcast skill

Table 3.3 shows the NAO d j f  cross-validated hindcast skill (and significance) for 

each predictor against the three NAO d j f  indices over all three assessment time 

periods. The analysis of these results based on assessment time period now follows.

3.3.1 1900-2001

For the 100-year period, significant hindcast skill is found for all three NAO d j f  

indices using both AT index predictors. The long summer (MJJAS) mean produces 

the most significant skill (a 6-9% improvement over a prediction of climatology) and
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Period Lagged Predictor D ata set CRU NAODJF 
r (p) M SSS  (p )

Hurrell N A O d j f  
r (p) MSSS ' (p )

MSLP PGId j f  
r  (p) M SSS (p)

May SST (SVD)* Had 0.11 (0.19) 0 (-) 0.15 (0.10) 2 (0.07) 0.15 (0.14) 1 (0.10)
JJASO SST (PC2) Had 0.13 (0.11) 1 (0.08) 0.15 (0.09) 1 (0.07) 0.09 (0.06) 0 (-)

1900-2001 J J  A xTqqn—70N CRUT 0.18 (0 .05) 2 (0 .04) 0 .24 (0 .02) 5 (0 .02) 0.21 (0 .04) 4 (0 .03)

M JJAS A xT6ojv-70N CRUT 0.26 (0 .01) 6 (0 .01) 0 .31 (< 0 .0 1 ) 9 (< 0 .0 1 ) 0.28 (0 .01) 7 (< 0 .0 1 )
Oct EU Snow Cover# B rn /R ut 0.13 (0.12) 1 (0.09) 0.08 (0.25) 0 (-) 0 .28 (0 .01) 7 (< 0 .0 1 )

May SST (SVD) Had 0.07 (0.35) 0 (-) 0.16 (0.17) 1 (0.11) 0.12 (0.25) 0 (-)
May SST (SVD) NCEP 0 (-) 0 (-) 0.11 (0.28) 0 (-) 0.03 (0.44) 0 (-)
JJASO SST (PC2) Had 0.24 (0 .05) 5 (0 .03) 0.25 (0 .05) 6 (0 .03) 0.17 (0.12) 1 (0.09)
JJASO SST (PC2) NCEP 0.24 (0 .05) 5 (0 .03) 0 .24 (0 .05) 5 (0 .03) 0.18 (0.10) 2 (0.07)
J J  A a,T 60JV-70JV CRUT 0.33 (0 .02) 10 (0 .01) 0 .27 (0 .05) 6 (0 .03) 0.33 (0 .03) 10 (0 .02)

1950-2001 J J  AajTgojv—7ojv NCEP 0.46  (< 0 .0 1 ) 21 (CO.Ol) 0 .36 (0.02) 12 (0 .01) 0.46 (< 0 .0 1 ) 21 (0 .01)
J J  A xTqqn-70N N C EP/C R U T 0 .44  (< 0 .0 1 ) 19 (C 0.01) 0 .36 (0.02) 12 (0 .01) 0.45 (< 0 .0 1 ) 20 (< 0 .0 1 )
M J J A S  A ajTisoN —70N CRUT 0.21 (0.10) 4 (0.07) 0.27 (0.06) 7 (0 .04) 0 .33 (0 .03) 11 (0 .02)
M JJAS A xT6on -7 on NCEP 0.33 (0 .02) 10 (0 .01) 0 .32 (0 .04) 9 (0 .02) 0 .43 (0 .01) 18 (0 .01)
M JJAS A x TeoN-70N N C EP/C R U T 0.29 (0 .04) 8 (0 .03) 0 .33 (0 .03) 10 (0 .02) 0.42 (0 .01) 17 (0.01)
Oct EU Snow Cover B rn /R u t 0 (-) 0 (-) 0 (-) 0 (-) 0.15 (0.15) 0 (-)

JJ  A xTe0N-70N CRUT 0.54  (C 0.01) 29 (< 0 .0 1 ) 0 .57  (< 0 .0 1 ) 32 (< 0 .0 1 ) 0.51 (0 .01) 25 (< 0 .0 1 )
J J  A xT60N-70N NCEP 0.58  (< 0 .0 1 ) 34 (< 0 .0 1 ) 0 .56  (< 0 .0 1 ) 31 (< 0 .0 1 ) 0 .54 (0 .01) 29 (< 0 .0 1 )
JJ  A xTqoN-70N N C EP/C R U T 0 .59  (< 0 .0 1 ) 35 (< 0 .0 1 ) 0 .57  (< 0 .0 1 ) 33 (< 0 .0 1 ) 0.55 (0 .01) 30 (< 0 .0 1 )
M JJAS A xTeoN-70N CRUT 0.45 (0.03) 20 (0 .02) 0 .49 (0 .02) 23 (0 .01) 0.45 (0 .03) 19 (0 .02)

1972-2001 M JJAS AxTbojv—7oiv NCEP 0.51 (0 .01) 26 (< 0 .0 1 ) 0 .47 (0 .01) 22 (0 .01) 0 .50 (0 .02) 24 (0 .01)
M JJAS A x T s o iv —7o^v N C EP/C R U T 0.48 (0 .02) 22 (0 .01) 0 .47 (0 .02) 22 (0 .01) 0 .47 (0 .02) 22 (0 .01)
Oct EU Snow Cover Rut 0.26 (0.11) 6 (0.07) 0.07 (0.39) 0 (-) 0.26 (0.11) 5 (0.08)
JJ  NH Snow Cover Rut 0 .53 (0 .01) 28 (< 0 .0 1 ) 0.51 (0 .01) 24 (< 0 .0 1 ) 0 .53 (0 .01) 27 (< 0 .0 1 )

*Data available 1900-1994. # D a ta  available 1922-2001.

Table 3.3: Skill values from cross-validated NAO hindcasts. Data set abbreviations: Had =  HadlSST, CRUT =  CRUTEM2, Brn/Rut 
=  Combined Brown and Rutgers snow cover index, NCEP =  NCEP/NCAR Reanalysis, Rut =  Rutgers, r is the correlation skill 
value and M S S S  is the percentage improvement in mean-square skill score over climatology, p is the probability that the observed 
skill value was obtained by random chance, with values shown in brackets. Bold type denotes skill values significant at less than 5% 
as determined by a Monte Carlo resampling test with 25,000 iterations.
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the JJ mean results in a 2-5% improvement. In terms of correlation skill, the values 

range from 0.26 to 0.31 for MJJAS, which explains 7-10% of the variance in the 

NAO d j f  time series over 100-years. Significant skill is achieved using October 

Eurasian snow cover (data available 1922-2001) to predict the MSLP PCI NAO d j f  

index. However, the poor performance of this predictor against the two other 

NAO d j f  indices reduces confidence in this result. The May SST (SVD) (data 

available 1900-1994) and the JJASO SST (PC2) predictors both show positive skill 

over this period but the skill values are not statistically significant. Aside from 

October Eurasian snow cover there is little variability in predictor performance 

against NAO d j f  index. The two A T  indices show highest skill in predicting the 

Hurrell NAO d j f  index but the differences are typically only around 10% of the 

total skill.

3.3.2 1950-2001

For the 50-year assessment period, statistically significant skill is achieved using 

the JJASO SST (PC2) predictor and both A T  indices. The JJASO SST (PC2) 

predictor shows rs values of 0.17-0.25 (3-6% variance explained) and MSSS values 

of 1-6%. However, the skill predicting the MSLP PCI NAOdjf index is not statis­

tically significant. The May SST (SVD) predictor exhibits no significant skill over 

this period against any of the N A O d j f  indices. In contrast to the 1900-2001 period, 

it is the JJ A T  rather than the MJJAS A T  that is most skilful for all three N A O d j f  

indices. The former has maximum rs =  0.46 and M S S S  = 21%, whereas for the 

MJJAS index the maximum skill values are rs = 0.43 and M S S S  =  18%. The 

CRUTEM2 A T  indices show skill 20-30% lower in this assessment period than the 

NCEP/NCAR A T  indices. Calculating AT using the time-mean of the CRUTEM2 

and NCEP/NCAR data sets produces skill levels close to those achieved using 

NCEP/NCAR alone. October Eurasian snow cover produces no skill against all 

three N A O d j f  indices. In terms of skill performance with N A O d j f  index, the 

JJASO SST (PC2) predictor performs best against the CRU and Hurrell indices. 

The JJ A T  predictor shows highest skill against the CRU and MSLP PCI N A O d j f
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indices, whereas for the MJJAS AT predictor the MSLP PCI NAO d jf  index stands 

out against the other two.

3.3.3 1972-2001

Highest hindcast skill in this period is achieved using the JJ AT index and the areal 

extent of JJ NH snow cover. The JJ AT index shows the highest skill values (max­

imum rs — 0.59 and M S S S  = 35%) this skill showing little sensitivity to NAOdjf 

index or choice of temperature data set. JJ NH snow cover also shows highly sig­

nificant skill (maximum rs = 0.53 and M S S S  = 28%) against all three NAOdjf 

indices. As in the 50-year assessment, the link between AT and the NAOdjf indices 

is strongest for the JJ period rather than for the long summer (MJJAS) period. The 

combined CRUTEM2-NCEP/NCAR mean JJ  AT index shows skill slightly higher 

than that achieved with each single data set JJ AT index. For MJJAS AT the skill 

lies between that achieved using CRUTEM2 and NCEP/NCAR data individually. 

Neither of the SST-based predictors or the October Eurasian areal snow cover ex­

tent produce significant skill for the 30-year assessment period. However, further 

analysis shows that significant hindcast skill is found during this period when the 

principal component for the JJASO SST (PC2) predictor is calculated using data 

extending over the period 1950-2001 (not shown) rather than 1972-2001 as here.

3.3.4 Stationarity

The increase in NAOd jf  predictive skill observed using the summer AT indices 

between the 1900-2001 assessment period and the 1972-2001 period suggests that 

the relationship between AT and the NAOd jf  is nonstationary. Therefore, the 

modest skill seen over the full 100-years could be drawn entirely from the 1972-2001 

skilful period. To test this hypothesis we first perform a rolling cross-correlation 

analysis for both the JJ and MJJAS AT indices against the CRU NAOd jf  index 

for all possible 30-year periods 1900-2001 (Figure 3.4). A linear trend is removed 

from both time series prior to each correlation value being computed. The pattern 

of correlation variability is dominated for both indices by a low-frequency oscillation
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with a period of around 60-years. The correlations have two distinct maxima in the 

30-year periods beginning at about 1905 and 1965. The MJJAS correlation peaks 

for both maxima at around r  =  0.5, whereas the two JJ peaks are at r = 0.1 and 

r  =  0.6, respectively.

The analysis was repeated using high- and low-pass filtered NAO d j f  data to as­

sess the influence of low-frequency variability on the rolling correlation (not shown). 

The high-pass filtered data show a similar correlation pattern to that in Figure 3.4, 

whereas the low-pass filtered data deviate from the original pattern during the 

period 1920-1950. This suggests that the multidecadal cycle in the original corre­

lation pattern is more representative of the high-frequency than the low-frequency 

variations in the CRU N A O d j f  index.

Despite the coincidence between periods of high correlation and periods of 

strongly positive NAO d j f  index in the early and late twentieth century, the AT 

indices perform equally well in predicting above or below median NAOdjf events. 

Hindcasts using MJJAS AT are correctly above and below median in 54% of the 

observed above and below median CRU N A O d j f  seasons 1900-2001. For the pe­

riod 1950-2001 the JJ AT index is correct in 64% of cases, while for 1972-2001 the 

figure is 71%. We therefore conclude that the hindcast skill from the summer AT 

indices is nonstationary and this lack of stationarity is not linked to multidecadal 

variability in the N A O d j f  indices.

3.3.5 Data set dependence

Table 3.3 shows that, in general, the N A O d j f  hindcast skill exhibits little sensitivity 

to the choice of SST or 2 m air temperature data set. Specifically, the JJASO SST 

(PC2) predictor produces almost identical skill against the three N A O d j f  indices 

whether it is calculated using HadlSST or NCEP/NCAR data 1950-2001. The 

largest skill sensitivity to data set is observed for the AT indices calculated using 

CRUTEM2 and NCEP/NCAR data 1950-2001. Using CRUTEM2 data, the JJ 

AT predictor explains 11% of the variance in the CRU and MSLP PCI N A O d j f  

indices compared with 21% using NCEP/NCAR data. The figures are 7% and
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Figure 3.4: Correlation coefficients between the JJ and MJJAS AT indices and the 
upcoming CRU NAOd jf  index for running 30-year windows commencing 1900 to 
1971. Faint dashed line indicates 5% significance level corrected for serial correla­
tion.

13% for the Hurrell NAOd jf  index, respectively. A possible explanation for this 

sensitivity comes from the spatial coverage of the CRUTEM2 data set. Unlike the 

NCEP/NCAR data, the CRUTEM2 data are land-based and do not include data 

over the ocean. Since more than 50% of the southern Greenland AT region lies 

over the ocean and it has twice the weighting of the Eurasian and North American 

regions, the southern Greenland region is likely to contribute the largest errors in 

AT. Thus, the CRUTEM2 data may contain larger AT index errors than the 

NCEP/NCAR data.

3.4 Summer AT influence on upcoming NAO d j f

3.4.1 Relationship between NAO djf lagged predictors

Quantifying the links between the different NAOdjf lagged predictors will help to 

clarify the physical basis for the lagged predictability. Table 3.4 shows the cross­

correlation matrix for all predictors over the three assessment periods. For the 

100-year period, the SST predictors, JJ AT and MJJAS AT are all significantly 

correlated (p < 0.05). October Eurasian snow cover is only linked significantly 

to JJASO SST (PC2). The summer AT indices explain 27-29% of the 100-year

r(Predictor, CRU N A O djf)

• MJJAS

Page 95



May JJASO JJ M JJAS Oct JJ
SST (SVD) SST (PC2) a x t g o n - 7 0  N A x T Go n - 7 0  N EU Snow NH Snow

Period Lagged Predictor D ata set Had NCEP Had NCEP CRUT NCEP CRUT NCEP B rn/R ut Rut

May SST (SVD) Had - - 0.30 - 0.30 - 0.35 - 0.07 -

JJASO SST (PC2) Had - - - - 0.54 - 0.52 - 0.23 -

1900-2001 J J  A x T Go n —70N CRUT - - - - - - 0.80 - 0.04 -

MJJAS A x T Gq n - 7 o n CRUT - - - - - - - - 0.02 -

Oct EU Snow B rn /R u t - - - - - - - - - -

May SST (SVD) Had - 0.78 0.35 0.56 0.26 0.47 0.29 0.41 0.04 -

May SST (SVD) NCEP - - 0.37 0.42 0.23 0.50 0.40 0.53 0 .0 0 -

JJASO SST (PC2) Had - - - 0.88 0.52 0.49 0.50 0.44 0.26 -

JJASO SST (PC2) NCEP - - - - 0.48 0.59 0.42 0.47 0.33 -

1950-2001 J J  A x T g o n —7 o n CRUT - - - - - 0.69 0.82 0.58 0.01 -
J J  A x T e o N -7 0 N NCEP - - - - - - 0.58 0.82 0.26 -

M JJAS A x T 6o n - 7 0 N CRUT - - - - - - - 0.77 0.07 -

M JJAS A x T e o N -7 0 N NCEP - - - - - - - - 0.28 -

Oct EU Snow B rn/R ut - - - - - - - - - -

J J  A x T q o n —70JV CRUT 0.33 0.39 0.52 0.50 - 0.74 0.84 0.64 0.02 - 0.51

J J  A x T g o n - 7 o n NCEP 0.47 0.52 0.48 0.46 - - 0.69 0.87 0.32 - 0.67

M JJAS A x T q o n —7 o n CRUT 0.25 0.29 0.35 0.28 - - - 0.83 0.03 - 0.55

1972-2001 M JJAS A x T 60n - 7 o n NCEP 0.34 0.36 0.29 0.24 - - - - 0.27 - 0.58

Oct EU Snow Rut 0.16 0.15 0.22 0.29 - - - - - 0.20
J J  NH Snow Rut 0.29 0.26 0.43 0.40 - - - - - -

Table 3.4: Matrix of cross correlations between predictors for all three assessment periods. Values are absolute Pearson product- 
moment correlation coefficients. Bold type denotes values significant at less than 5% as determined by a Monte Carlo resampling test 
with 25,000 iterations. Data set abbreviations are as in Table 3.3.
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variance in the JJASO SST PC2 predictor. The links between the JJ and MJJAS 

AT indices and the JJASO SST (PC2) predictor also remain significant for the 1950- 

2001 period. October Eurasian snow cover is uncorrelated with any of the other 

predictors over this period. For the period 1972-2001, the correlation between the 

NCEP/NCAR JJ AT index and JJ NH snow cover is r  =  —0.67. This value is 

lower (r =  —0.51) for the CRUTEM2 JJ AT index but remains significant. The JJ 

AT index (but not the MJJAS AT index) is related significantly to the JJASO SST 

(PC2) predictor. Also, JJ NH snow cover is not correlated significantly with the 

SST predictors. However, as before, if the JJASO SST (PC2) predictor is calculated 

using data over the period 1950-2001, the JJ NH snow cover predictor is correlated 

significantly to JJASO SST (PC2). October Eurasian snow cover is, once again, 

uncorrelated with any other predictor, including prior JJ NH snow cover.

3.4.2 Role of prior winter N A O d j f

While a significant relationship between two NAO djf predictors could indicate 

that both predictors capture all or part of the same process related to the upcoming 

N A O d jf, the relationship could also indicate an NAO djf-related influence from the 

previous winter on both predictors. For example, the May SST (SVD) and JJASO 

SST (PC2) patterns may arise from the persistence of the previous winter’s NAO 

circulation over the North Atlantic. To test this possibility we reverse the hindcast 

procedure and use the lag-1 N A O d jf to  predict the May SST (SVD), JJASO SST 

(PC2) and JJ AT time series. Table 3.5 shows that there is a significant {p < 0.05) 

link between the prior winter NAO and upcoming May SST (SVD) pattern for 

the 100-year but not for the 50-year assessment period. There is also a link to 

the JJASO SST (PC2) predictor but this is only significant (for both the 100- and 

50-year periods) when using the lag-1 Hurrell N A O d jf index. The JJ AT index 

exhibits significant skill against the three prior N A O d jf indices 1900-2001 with 

values slightly lower than for the May SST (SVD) predictor. Significant skill is not 

observed for the JJ AT index for the period 1950-2001. For the 1972-2001 period 

of highest N A O d jf predictability (Table 3.3), neither the JJ AT index nor the two
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SST indices are significantly predicted by any prior NAOpjp  index. In summary, 

Table 3.5 shows that there is little influence from the previous winter NAO on the 

predictors. This is consistent with each NAODjp  index having an insignificant lag-1 

autocorrelation over each assessment period (Table 3.5).

3.4.3 Role of lagged snow cover

Table 3.3 shows that October Eurasian snow cover has no predictive skill for 

NAOd j f  when assessed over all years. However, Cohen and Saito (2003) propose 

that autumn Eurasian snow cover influences Northern Hemisphere winter climate 

only during certain years. Such years are termed £Type-A’ because their atmo­

spheric evolution resembles the AO pattern (Thompson and Wallace 1998). Con­

versely, winters that evolve with an NAO-type pattern are termed ‘Type-N’. We 

test the theory of Cohen and Saito (2003) by compositing winters into ‘Type-A’ and 

‘Type-N’ and find that October Eurasian snow cover performs better in ‘Type-A’ 

than in ‘Type-N’ years. However, the number of ‘Type-A’ winters (1961-2000) is 

just ten and their cross-validated NAO d j f  hindcast skill is not statistically signifi­

cant (rs = 0.63, p = 0.06). Therefore, October Eurasian snow cover has predictive 

potential in only ~25% of winters. Furthermore, there is currently no a priori 

method for determining whether a winter will evolve into ‘Type-A’ or ‘Type-N’. We 

conclude that Eurasian snow cover may provide predictability for the winter AO 

but summer NH snow cover offers greatest predictability for the NAOpjp.

3.4.4 Physical basis for summer AT influence on upcoming 

winter NAO^j/?

Extratropical seasonal predictability is normally assumed to be low, due to the 

dominating influence of chaotic weather systems, particularly in the autumn and 

winter seasons. This appears to contradict the links we observe between summer 

subpolar air temperature gradients, snow cover and the upcoming winter climate. 

There is little persistence intrinsic to the extratropical atmosphere and the decor­

relation time is known to be ~10 days. Therefore, for the summer/winter link to
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Period Lagged
Predictor

NAO 
r[lag-1] (p)

May SST (SVD) 
r  (p ) M SSS  (p)

JJASO SST PC2 
r  (p) M SSS  (p)

J J  A x T ^ 0 N -7 0 N  

r  (p) M SSS  (p)

1900-2001
CRU N A O /jjf  
Hurrell N A O d j f  

MSLP P C IDJF

0.13 (0.32) 
0.24 (0.07) 
0.20 (0.15)

0.31 (C 0 .01) 9 (C 0 .01) 
0 .32 (C 0 .01) 10 (C 0.01) 
0 .42 (C 0 .01) 18 (< 0 .0 1 )

0.14 (0.10) 0 (-) 
0 .26  (0 .01) 6 (0 .01)
0.15 (0.10) 1 (0.07)

0 .27 (0 .01) 7 (0 .01) 
0 .3 1 (< 0 .0 1 ) 9 (< 0 .0 1 ) 
0.25 (0 .01) 6 (0 .02)

CRU NAOd j f  
1950-2001 Hurrell NAOd j f  

MSLP PC lz> jF

0.15 (0.45) 
0.24 (0.21) 
0.17 (0.43)

0.04 (0.30) 0 (-) 
0.15 (0.14) 0 (-) 
0.19 (0.12) 1 (0.16)

0.07 (0.31) 0 (-) 
0 .29  (0 .02) 7 (0 .02)
0.01 (0.46) 0 (-)

0.10 (0.19) 0 (-) 
0.12 (0.19) 0 (-) 
0.12 (0.17) 0 (-)

Table 3.5: As Table 3.3 except for lag-1 autocorrelation (r[lag-l]) of NAO djf indices and skill values from cross-validated hindcasts 
using the three NAO d j f  indices as predictors.
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work, the memory of the summer atmospheric state must persist in a slowly-varying 

boundary variable that can feed back onto the atmosphere at a later time.

Following Saunders et al. (2003), we propose the following mechanism for the 

influence of summer climate on that of the upcoming winter: Summer (JJ) NH snow 

cover anomalies are negatively correlated with JJ subpolar near-surface air temper­

ature (T2m) over northern Siberia and northwest Canada and positively correlated 

with JJ T2m over Southern Greenland. The resulting subpolar zonal temperature 

gradients induce a contemporaneous atmospheric circulation response and lagged 

SST response centred on the North Atlantic. The atmospheric response is charac­

terised by anomalies in MSLP and midlatitude zonal wind. The SST response is 

characterised by basin-scale anomalies and the establishment of meridional gradi­

ents southeast of Newfoundland. When this pattern persists into winter, it could 

feed back onto the atmosphere to influence the sign and magnitude of the NAOdjf-

There is good observational evidence to support this hypothesis. First, there is 

a significant link (p < 0.01) between changes in JJ  Northern Hemisphere snow cover 

and JJ AT for the period 1972-2001 (Table 3.4). Table 3.3 shows that AT is the 

best overall NAO djf predictor and NH snow cover may be the largest contributor to 

AT. Second, the atmosphere adjacent to the AT regions is significantly perturbed 

during June and July. Figure 3.5 shows zonally averaged zonal wind anomalies as a 

function of height above the AT regions and the North Atlantic (1950-2001) before 

and during high minus low JJ AT tercile years. Prior to June and July the only 

consistent signal for all three regions is located in the stratosphere at high latitudes 

during April. By May, there are significant anomalous easterlies over central Eurasia 

but not above North America or the North Atlantic. In June and July, a significant 

signal occurs over Eurasia and North America characteristic of a strengthened polar 

vortex and a weakened midlatitude jet. A corresponding teleconnected signal is seen 

over the North Atlantic in June and July which extends from the surface to the 

lower stratosphere. A band of significant anomalous westerlies is centred between 

50°-60°N, with anomalous easterlies to the North and South. This highlights that 

during extreme AT years, contemporaneous subpolar atmospheric teleconnections 

are formed between northern Eurasia, northern Canada and the North Atlantic.
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Figure 3.5: Composite vertical cross section of zonally averaged zonal wind anoma­
lies based on high minus low terciles of June-July AT index 1950-2001. Zonal 
averages are calculated over (a) Eurasia, 25°E-70°E, (b) North America, 120°W- 
90°W and (c) North Atlantic, 50°W-20°W. Data are dimensionless standardised 
anomalies. Contour interval is 0.3 and dashed contours denote negative anomalies. 
Shaded areas denote values significant at less than 5% as determined by a Student’s 
t-test.
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Our proposed mechanism for the influence of summer climate on that of the 

upcoming winter is further supported by Figure 3.6, which shows the hemispheric- 

scale anomaly patterns in height-averaged (925 to 200 hPa) zonal wind, MSLP and 

SST in months before, during and following high minus low JJ AT tercile years 1950- 

2001. A clear strengthening of signals is apparent in the atmosphere in June and 

in the SST in July over the North Atlantic sector. The zonal wind, MSLP and SST 

signals appear causally connected, with the zonal wind anomalies collocated with 

gradients in MSLP anomalies and with SST anomalies. The atmospheric signal 

is prominent in June and July but dissipates thereafter, although it is apparent 

in the JJASO mean. In contrast, the SST anomaly pattern strengthens in July 

and persists, although weakening a little by October. The timing, lag and spatial 

pattern of the SST signal is consistent with its forcing by the anomalous atmospheric 

circulation associated with JJ AT. This conclusion is further supported by the 

significant (p < 0.05 for all time periods) link between JJ AT and JJASO SST (PC2) 

(Table 3.4). The persistent SST signal located southeast of Newfoundland in Figure 

3.6 lies adjacent to the main region of North Atlantic cyclogenesis, which marks 

the beginning of the North Atlantic storm track. Through anomalous meridional 

SST gradients and associated turbulent heat, moisture and momentum fluxes, the 

observed SST pattern could influence the frequency and intensity of extratropical 

cyclones and, subsequently, NAO d j f  (Rodwell et al. 1999, Peng and Whittaker 

1999, Peng et al. 2003, Cassou et al. 2004).

Figure 3.7 shows the mean anomalies in vertically averaged zonal wind, MSLP 

and SST for the winter seasons before and following high minus low JJ  AT terciles. 

The situation preceding JJ AT shows a moderate positive NAO d j f  pattern in the 

zonal wind anomalies but SSTs close to climatology with no significant departures 

from the mean except near the equator. This further underlines that NAO d j f  

predictability from JJ AT does not derive from interannual NAO d j f  persistence. 

The winter SST pattern after extreme JJ AT episodes exhibits a strong meridional 

gradient off Newfoundland, which has persisted from the previous summer.

Next, we attempt to show whether the evolving anomalies seen in Figure 3.6 

indicate a real response to JJ AT or merely represent increased climatological vari-
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Figure 3.6: Composite of (a) vertically averaged (925-200 hPa) North Atlantic sector 
zonal wind anomalies, (b) North Atlantic sector mean sea-level pressure anomalies 
(MSLP) and (c) North Atlantic SST anomalies based on high minus low terciles 
of June-July AT index. Contour interval is (a) 1 m s-1, (b) 1 hPa and (c) 0.2°C. 
Dashed contours denote negative anomalies and zero contour is labelled. Shaded 
areas denote values significant at less than 5% as determined by a Student’s t-test.
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Figure 3.7: As Figure 3.6 except for winter (DJF) seasonal means (a) preceding 
and (b) following high minus low June-July AT terciles.

ance in those months. This is quantified by plotting the percentage of grid cells in 

each month that are locally significant (p < 0.05). Figure 3.8 shows the percentages 

for zonal wind over the region [30°N-80°N, 120°W-40°E] and for SST over the re­

gion [0°-65°N, 100°W-0°]. The horizontal lines denote estimates of field significance 

(p < 0.05) assuming 30 spatial DOF in the zonal wind field and 15 spatial DOF in 

the SST field. These values are appropriate because Livezey and Chen (1983) state 

that hemispheric atmospheric fields contain ~30-60 spatial DOF. The actual spatial 

DOF may oscillate around these estimates depending on the month. However, even 

with a conservative estimate for DOF of 15 the zonal wind and SST signals are 

both field significant.

The zonal wind signal peaks in June and July, consistent with Figure 3.6. The 

SST response develops one-month later, peaking in July and August, and persisting 

until October. By October, the majority of the SST signal comes from the sub­

tropics. The SST response decreases to December, which is associated with greater 

variability in the atmospheric pattern August through October. Neither the at­

mospheric or SST patterns exhibit any winter-to-winter persistence. We therefore 

conclude that the anomalous atmospheric circulation associated with JJ AT is lead­

ing North Atlantic SST variability with a time lag of ~1 month.
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3.5 Discussion

NAO d j f  hindcast skill is nonstationary over the twentieth century, implying that 

the predictive relationships vary in time. There are several potential causes for non- 

stationarity. First, data quality may contribute to the variations in N A O d j f  skill. 

During the early part of the record, observations are more sparse than during the 

recent 1972-2001 period of highest skill. This reduction in data quality may degrade 

NAO d j f  hindcast skill and contribute to nonstationarity. Second, nonstationarity 

in predictive relationships may arise from low-frequency multiannual or decadal 

oscillations in the predictor and/or predictand indices. An analysis of spectral co­

herency (Bloomfield 2000) was performed on the predictors and NAO d j f  indices to 

determine the dominant time scales of interaction. The results (not displayed) show 

that the preferred oscillatory period for each predictor with the NAO d j f  differs de­

pending on the assessment period. For example, the MJJAS AT index and CRU 

NAO d j f  index are significantly coherent at a period of 7 years 1900-2001, 4 years 

1950-2001 and 8 years 1972-2001. These changing multiannual periods for spectral 

coherency may contribute to the observed nonstationarity in predictive relation­

ships. A further cause of the nonstationarity may be competing influences from 

SST forcings outside the North Atlantic, in particular, variations in the strength of 

ENSO (Sutton and Hodson 2003).

Using our standardised hindcast procedure, the May SST (SVD) predictor pro­

posed by Rodwell and Folland (2002) exhibits no significant N A O ^jf skill. Differ­

ences between our methodology and the original methodology include the assess­

ment time periods, NAO ^jf indices, skill measures, block elimination and sea-ice 

removal. These differences may explain a proportion of the skill. A simple spatial 

correlation analysis illustrates why May SST may offer less N A O ^ jf predictabil­

ity than JJASO SST. Correlating North Atlantic SST and the upcoming CRU 

NAO d j f ,  the region off Newfoundland exhibits an area of significant (p < 0.05) 

correlation three times as large with JJASO SST than with May SST (not shown). 

The zonal wind composite for May in Figure 3.6 also shows dipolar anomalies over- 

lying this region. This implies that May SST could be related to NAO d j f  through
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Figure 3.8: Area average of absolute standardised monthly mean anomalies of SST 
(solid line, dimensionless) and vertically averaged (925-200 hPa) zonal wind (dashed 
line, dimensionless) associated with high minus low terciles of June-July AT index. 
Values represent area average over the region [20°N-65°N, 100°W-0°E] for SST and 
the region [40°N-65°N, 120°W-40°E] for zonal wind.

our proposed AT mechanism but the predictive link from May is weaker. This 

concurs with the findings of Radcliffe and Murray (1970), who show that autumn 

SSTs off Newfoundland offer greatest predictability for the subsequent winter.

SST persistence associated with JJ AT is shown to occur from summer into late 

autumn. This suggests that the JJ AT link to winter climate is independent of 

interannual NAO/x/j? persistence associated with North Atlantic SSTs submerged 

beneath the mixed layer during summer (Deser et al. 2003). The decrease in the 

SST signal from October to December seen in Figure 3.8 indicates that the AT- 

induced SST anomalies are not significant departures from climatology in these 

months. However, by November and December the NAO circulation dominates 

over the North Atlantic sector and the passive SST response will be NAO-driven 

more than AT-driven. Therefore, the role of early summer AT is only to enhance 

summer and autumn SSTs that can feed back onto the atmosphere prior to the 

dominant winter NAO circulation becoming established.

Summer NH snow cover is assumed to play a significant role in establishing AT 

(see Table 3.4). However, the JJ AT index produces higher N AO d j f  skill than does 

JJ NH snow cover (see Table 3.3), which implies that AT is the more important 

NAO d j f  predictor. Since JJ NH snow cover explains ~50% of the variance in
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NCEP/NCAR JJ AT, other climate forcings must explain the remaining 50%. 

Another possibility is that the AT index forces changes in NH snow cover and 

JJ NH snow is not critical to the physical mechanism. In this case, an as yet 

unidentified third variable could influence AT. Further investigation is required to 

deduce the exact order of these relationships.

The mechanism linking summer AT to NAO d j f  relies on the persistence of sum­

mer/autumn SST anomalies and their feedback onto the NAO d j f -  However, AT 

produces better N A O ^jf hindcast skill than JJASO SST (PC2) despite the shorter 

time lag between this SST signal and the 'NAO dj f -  Several possible explanations 

exist for this apparent contradiction. First, the JJASO SST (PC2) predictor may 

not capture completely the feedbacks either from JJ AT or to the N A O d j f -  This 

explanation would be consistent with the use by Saunders and Qian (2002) of two 

JJASO lagged modes (EOF 2 and 5) of North Atlantic SST variability to enhance 

NAO d j f  skill. Second, the feedback from AT to the NAO d j f  may occur through a 

third variable and the associated JJASO SST pattern is a side-effect of the anoma­

lous summer AT atmospheric circulation. Third, summer AT could be physically 

unrelated to N A O f j f  and they correlate through random interaction of their low- 

frequency oscillations. Our results support a physical relationship between summer 

and winter climate but further investigation using coupled dynamical models is 

required to fully understand this link.

Our findings suggest that it is the NH subpolar regions rather than the mid­

latitudes or the tropics which provide the best extended-range NAO d j f  seasonal 

predictability. This contrasts with recent thinking based on atmospheric GCM 

experiments, which indicate that variations in tropical SSTs are of primary im­

portance for explaining the N A O d j f  trend 1950-2000 (Hurrell et al. 2004). While 

our analysis focuses solely on interannual variability by using detrended time series 

throughout, we find that using data with trends included also gives similar results.
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3.6 Summary and conclusions

This Chapter presents a detailed assessment of the current levels of seasonal empir­

ical predictability of the North Atlantic Oscillation (NAO). A standardised hind­

cast procedure is used to validate four previously published lagged predictors of 

the NAO d j f - A new predictor based on the zonal gradient in summer Northern 

Hemisphere subpolar 2 m air temperature (AT) is also examined. Over three ex­

tended assessment periods out to 100-years, summer AT is most skilful in predicting 

NAO d j f - For the period 1900-2001, May-September mean AT offers highest skill 

(~6-9% improvement over climatology). Since 1972, June-July mean AT produces 

highest skill (~35% improvement over climatology). The increase in NAO d j f  pre­

dictability since 1972 is observed for all predictors except those derived using SSTs 

and coincides with a period of high decadal NAO d j f  variability. The intervals of 

best predictability from the AT/NAO d j f  link coincide with positive trends in the 

NAO d j f  index in the early and late twentieth century. However, AT performs 

equally well predicting above or below median N A O djf seasons.

Evidence is presented supporting a physical link between summer AT and 

NAOdjf- First, there is a strong contemporaneous association between summer 

AT and Northern Hemisphere snow cover extent. Snow cover plays a significant 

role in establishing AT in summer. During subsequent months, the atmospheric re­

sponse to AT is centred on the midlatitude North Atlantic. Circulation anomalies 

over the ocean lead by ~1 month a pattern of North Atlantic SST, which per­

sists into autumn. SST persistence is strong off southeast Newfoundland, which 

coincides with the main region of North Atlantic cyclogenesis. Therefore, through 

meridional SST gradients and in situ surface fluxes, the SST pattern could influence 

the formation of extratropical cyclones and, subsequently, the N A O d j f -
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Chapter 4

Coupled GCM Representation of 

Observed Snow Cover and Associated  

Atmospheric Variability 1972-2002

4.1 Introduction

Summer Northern Hemisphere (NH) snow cover was identified in Chapter 3 as a 

skilful lagged predictor of the winter NAO (N A O d jf)- However, observations of NH 

snow cover prior to 1972 are considered unreliable for climatological investigations 

(Robinson et al. 1993). The limited availability of observational data leads to prob­

lems in assessing stationarity and statistical significance of these snow/atmosphere 

links. Therefore, general circulation model (GCM) simulations are employed to 

investigate these links in more detail. Atmospheric GCM experiments have been 

conducted to simulate the observed (Cohen and Entekhabi 1999) relationship be­

tween autumn season Eurasian snow cover and the upcoming NH winter climate 

(e.g., Gong et al. 2003). To date, no GCM experiments have been conducted to 

simulate the observed (Saunders et al. 2003) link between summer NH snow cover 

and the NAOd jf - Furthermore, the use of coupled GCM (CGCM) integrations in 

previous snow/atmosphere investigations is very limited. In this Chapter and the 

next, we address the research questions posed in Section 1.5.4. The main question 

is “How well does a CGCM represent the observed link between summer NH snow 

cover and the N A O d jf? ”- We investigate this problem using the output from a 

twentieth century climate integration run on a leading CGCM.

This study is divided into two parts. The first part, presented in this Chapter,
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compares the observed temporal and spatial variability in snow cover for all seasons 

to that simulated in the CGCM. Previous validation studies of snow cover in GCM 

simulations have been performed over relatively short periods (e.g., 1979-1995 in 

Frei et al. (2003)). CGCM and observational data are compared for the 31-year 

period 1972-2002. The nature of the CGCM’s seasonal in situ atmospheric response 

to snow cover over Eurasia and North America is examined to establish how well the 

CGCM simulates the observed interaction between snow cover and the atmosphere.

The second part, presented in Chapter 5, focuses on the observed link between 

summer NH snow cover and the NAO d j f - First, a comparison is performed of ob­

served and CGCM N A O d j f  variability 1904-2002. Second, NAO d j f  predictability 

from lagged snow cover in the CGCM is quantified using lagged correlation and 

cross-validated NAO d j f  hindcasts. Third, we examine whether the physical mech­

anisms linking summer snow cover and the NAO d j f  in the CGCM are the same as 

in observations. Fourth, we investigate the stationarity in NAO^jtt predictability 

from lagged snow cover is quantified using the CGCM data for the extended pe­

riod 1904-2002. We conclude this study with a review of the limitations in using 

a CGCM for snow/atmosphere investigations. A number of recommendations for 

potential improvements to CGCM formulations are made.

This Chapter is structured as follows. Section 4.2 provides a brief description of 

the CGCM used in this study. Details are also presented of the twentieth century 

climate integration from which the CGCM data are taken. The correlation and 

wavelet analysis methods employed in this study are discussed in Section 4.3. Sec­

tion 4.4 describes the conversion of CGCM snow output to an index of snow covered 

area (SCA). Here, the comparison between the observed and CGCM representation 

of the temporal and spatial variability of SCA is presented. Section 4.5 examines 

the in situ atmospheric temperature and surface flux responses to regional SCA. A 

discussion of the findings is presented in Section 4.6 and a brief summary is given 

in Section 4.7.
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4.2 ECHAM 4/O PYC3

The CGCM scheme selected for use in this study is the ECHAM4 atmospheric GCM 

coupled to the OPYC3 oceanic GCM, which was jointly sponsored by the Max 

Planck Institut fiir Meteorologie (MPI) and the Deutsches Klimarechenzentrum 

(DKRZ). This modelling scheme was selected for three main reasons. First, the ease 

of access to a comprehensive set of output data from a long (1860-2050) historical cli­

mate integration included in CMIP. These data were provided through the Hamburg 

World Data Center for Climate CERA Internet data portal. Second, to date, only 

a small number of published studies have used the ECHAM4/OPYC3 CMIP data 

to perform comparisons with observations (e.g., Hanssen-Bauer and Forland 2001, 

Skaugen and Tveito 2004). This work is the first to validate ECHAM4/OPYC3 

snow cover representation and therefore makes effective use of this large repository 

of CGCM data. Third, successful results have been achieved in investigations into 

snow/atmosphere interaction using the earlier ECHAM3 atmospheric GCM (e.g., 

Gong et al. 2003). The present study therefore builds on previous investigations 

and examines how coupling ECHAM4 to the ocean affects the representation of 

snow/atmosphere interaction.

GCM formulation

The ECHAM4 atmospheric GCM has evolved from the spectral numerical weather 

forecasting model of the European Centre for Medium-range Weather Forecasts 

(ECMWF) and has been modified extensively at MPI for climate applications (Chen 

and Roeckner 1996). Compared to ECHAM3, ECHAM4 includes improvements 

to cloud and radiation, moisture transport, convection, boundary-layer turbulence 

and land surface schemes. A detailed description of the dynamical and physical 

structure (and the simulated climatology) of ECHAM4 is documented in Roeckner 

et al. (1996). The atmosphere has 19 hybrid vertical levels and the uppermost level 

is centred at 10 hPa. Both annual and diurnal cycles are included. The time-step 

employed in all integrations is 24 minutes with radiation fluxes updated every 2 

hours (Chen and Roeckner 1996). Turbulent surface fluxes are calculated from
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Monin-Obukhov similarity theory. Within and above the atmospheric boundary 

layer, a higher-order closure scheme is used to compute the turbulent transfer of 

momentum, heat, moisture and cloud water (CMIP 2005).

Snow is a prognostic variable in ECHAM4 and is augmented by snowfall and 

depleted through sublimation and melting. The snow pack core temperature is 

computed using the heat diffusivity/capacity of ice in regions of permanent con­

tinental ice and for bare soil where snow depth is less than 2.5 cm. When snow 

depth is greater than 2.5 cm, the snow pack core temperature is derived using an 

auxiliary conduction method. The temperature at the surface of the snow pack is 

extrapolated from the core temperature and is constrained not to exceed the snow 

melt temperature (0°C). The soil moisture reservoir is augmented by melting snow. 

Ice and snow albedo are temperature dependent and the latter is also a function of 

the fractional forest area in a grid box. The ECHAM4 snow output field is gridded 

snow depth in metres, where each grid cell is assumed to have uniform snow depth.

A new global data set of land surface parameters is used in ECHAM4 based on 

Claussen et al. (1994). The parameters are constructed from the the major ‘Olson’ 

ecosystem complex. A land soil model is used that comprises the budgets of heat 

and water in the soil, the snow pack over land and the budget of land ice. Vegetation 

effects such as the interception of rain and snow by the canopy are parameterised 

in a highly idealised way (CMIP 2005). The atmosphere is coupled to the OPYC3 

ocean GCM, whose name derives from its isopycnal vertical coordinate system. Full 

details of OPYC3 are provided by Oberhuber (1993). ECHAM4 and OPYC3 are 

coupled quasi-synchronously and exchange information once a day (Roeckner et al. 

1999).

GSDIO integration

In this study we employ data from the 1860-2050 coupled sulphate aerosol, green­

house gas and ozone integration (GSDIO) performed using ECHAM4/OPYC3. GS­

DIO was a transient integration that included observed historical greenhouse gas, 

direct and indirect sulphate aerosol forcing 1860-1990. After 1990, greenhouse gas
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and aerosol emissions are constrained to follow the IPCC emissions scenario IS92a. 

This scenario prescribes effective (representing all greenhouse gases) CO2 emissions 

increasing at 1% per year.

The spin up process for the coupled ECHAM4/OPYC3 run is used to calculate 

the flux adjustments required to prevent the GCM climate from ‘drifting’ during 

transient simulations. First, ECHAM4 was integrated for 20 years with prescribed 

SSTs and sea ice extents until quasi-equilibrium was reached. Second, OPYC3 was 

spun up for 500 years forced with climatological surface fluxes from the 20-year 

uncoupled ECHAM4 run. Third, OPYC3 was run for a further 500 years forced by 

daily anomalies of heat and freshwater fluxes derived from the 20-year uncoupled 

ECHAM4 run. Fourth, ECHAM4 and OPYC3 were coupled and integrated for 100 

years, while restoring the SST and salinity towards climatology. During this coupled 

run, annual mean flux adjustments for heat and freshwater were derived and frozen 

after 100 years. Fifth, the frozen flux adjustments were applied throughout the 

subsequent GSDIO integration.

The GSDIO integration was performed using a spectral T42 resolution (Carte­

sian resolution ~  2.8° x 2.8°). OPYC3 was run with 11 ocean vertical density 

levels at the same T42 resolution as ECHAM4. To facilitate the comparison of the 

GSDIO fields with gridded observational data, all GSDIO fields were interpolated 

from the T42 spectral grid to a regular 2.5° x 2.5° lat-lon grid. This was achieved 

using a method of bilinear interpolation. Although increasing the apparent spatial 

resolution, this method is likely to result in a loss of some information where grid 

cells overlap. However, as the difference between the mean T42 and 2.5° grid box 

sizes is relatively small, the loss of information was found not to affect our results. 

Monthly mean anomalies are employed and seasonal averages are computed from 

the monthly anomalies. The ECHAM4/OPYC3 GSDIO coupled integration will, 

henceforth, be referred to as ‘ECHAM4’.
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4.3 M ethodology

4.3.1 Correlation

Relationships between two time series are assessed using the Spearman rank corre­

lation coefficient (rr a n k ) instead of the traditional Pearson correlation coefficient 

(r). Rank correlation does not suffer from the problems associated with the Pearson 

correlation, namely, sensitivity to outliers and underestimation of nonlinear effects 

(Wilks 1995). The Pearson coefficient is used in this study only for computation 

of pattern correlations and autocorrelations. The Spearman rank correlation takes 

the form

T r a n k  =  1 -  N ( N 2 _ 1 y  (4 1 )

where D{ is the difference in rank between the ith pair of data values and N  is the 

length of the series. Where there are tied values, each is assigned the average rank 

of the group.

Statistical significance is assessed through a transformation of the correlation 

coefficient. The trank coefficient for a sample size V > 20 follows an approx­

imately normal distribution with zero mean and a = l/yJ(N  — 1) (Wilks 1995). 

The transformed variable is

z = trank yj {N — 1) (4.2)

Each correlation is tested against H0 that the time series are uncorrelated (z =  0). 

As in Chapter 3, the number of degrees of freedom is reduced by the factor r  (see 

Section 3.2.3).

4.3.2 Low-frequency variability 

Wavelet analysis

Wavelet analysis or wavelet transformation (WT) is a tool for analysing local varia­

tions in spectral power (Torrence and Compo 1998). WT employs a family of base 

functions (termed ‘wavelets’) that are scaled and translated to map out the entire
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time-frequency domain. A criticism of wavelet analysis is that the choice of wavelet 

is somewhat subjective. However as noted by Torrence and Compo (1998) the same 

is true for traditional transforms such as Fourier, Bessel and Legendre. A physical 

signal should be independent of the choice of wavelet. Lau and Weng (1995) rec­

ommend that the analysing wavelet should bear some resemblance to the signal of 

interest. Since climate signals can be expected to be smooth and continuous, this 

leads naturally to the choice of non-orthogonal complex bases such as the Morlet 

and Paul functions (for a full discussion see Lau and Weng (1995)). The Morlet 

waveform is the most common and is selected for this analysis.

WT requires the data to be cyclic, which means that the beginning of the 

data is assumed to map smoothly onto the end. In general this is not the case 

and discontinuities are present at the endpoints which introduce spurious harmonic 

components. One way of reducing this problem is to pad the ends of the time series 

with zeros prior to transformation and remove them after the transformation. While 

this reduces edge effects, they are not eliminated entirely and as one goes to larger 

scales the amplitude of the spectrum near the ends is reduced as more zeros enter 

the analysis. The ‘cone of influence’ (COI) is the region in the wavelet spectrum in 

which edge effects become important.

The COI is defined as the e-folding time for the autocorrelation of wavelet power 

at each scale. The wavelet power of a discontinuity at the edge drops by a factor 

of e-2 over this period, therefore edge effects will be negligible beyond this point 

(Torrence and Compo 1998). The size of the COI at each time period provides 

information on the decorrelation time for a peak in the power spectrum. Peaks 

which last longer than this are likely to represent true harmonic components and 

not random fluctuations.

Peaks in the wavelet power spectrum are tested against a null hypothesis that the 

time series under investigation has the spectral characteristics of red noise. There­

fore, it is assumed that the time series can be modelled as a lag-1, autoregressive 

process

Xi = axi-i  +  Zi (4.3)
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where a  is the lag-1 autocorrelation coefficient and the Zi are Gaussian white noise. 

A u tocorre la tion

The prefix auto- in autocorrelation denotes the correlation of a variable with itself. 

The Pearson autocorrelation of a time series X at lag k is

Px(k)  =  -^Cov(Xj,Xi+jc). (4.4)

Together, the collection of autocorrelations computed for various lags are termed 

the autocorrelation function (Wilks 1995). This is displayed graphically, with the 

autocorrelations plotted as a function of lag. Pearson correlation is used as it is more 

traditionally employed to compute autocorrelation than Spearman rank correlation.

4.4 Comparison of observed and ECHAM4 snow 

cover variability

4.4.1 Derivation of ECHAM 4 snow cover indices

As discussed in Section 1.5.2, it is first necessary to create an index representing 

monthly mean CGCM snow covered area (SCA). This index can then be compared 

to the observed quantity, namely, SCA. We employ the method devised by Frei 

et al. (2003) because it is simple and compares closely to the method used for 

creating SCA indices from visible satellite images. The method converts gridded 

snow depth output to an index of fractional SCA by summing the areas of snow 

covered grid boxes. Fractional coverage, rather than absolute values in units of 

area, was preferred because data on different grids have different total land areas. 

Therefore, standardising by total land area provides a more robust comparison 

between the CGCM and observations.

A simple calculation is employed to determine what proportion of a grid cell 

with a certain snow depth is snow covered. Frei et al. (2003) estimated that SCA 

is a linear function of snow depth for grid cells with <2.5 cm snow depth (i.e., a
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depth of 1.25 cm corresponds to a fractional SCA of 50% of the grid cell area). 

These authors summarized the conversion from snow depth to fractional SCA by 

the following equations:

f i  = 1 d i > d c (4.5)

fi = di/dc di < dc (4.6)

=  Oi), (4.7)
R

where d{=snow depth (m) for grid cell i; dc=critical snow depth (2.5 x 10~2 m); 

/^fractional snow coverage for grid cell i\ /^ f ra c tio n a l coverage for region R; 

and up land  area in grid cell % (m2). ECHAM4 SCA indices are computed for the 

three land areas poleward of 20°N employed in the observational snow cover indices 

by Robinson et al. (1993). These areas represent Eurasia (EU), North America 

including Greenland (NA) and the entire Northern Hemisphere (NH), respectively.

In all months in the GSDIO simulation, Greenland was found to have zero 

snow depth lying on the ice sheet. Compared to observations, this introduced a 

negative bias to the ECHAM4 SCA indices because the land area of Greenland 

(2.18 x 106km2) was omitted. To remove this bias in the SCA indices, the land 

area of Greenland is included as completely snow covered in all months of the year 

for the NA and NH indices. This corresponds closely to the snow coverage seen 

over Greenland in observations. Greenland is classified as a glacier in ECHAM4 

and analysis of the surface albedo (cn) showed that Greenland is prescribed with 

a  ~  0.8 in all months during the GSDIO run. The potential limitations in the 

atmospheric response to a lack of Greenland snow cover must be considered when 

interpreting the ECHAM4 results. Henceforth, all snow cover data used have been 

bias-corrected over Greenland.
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4.4.2 Spatial variability

The simplest comparison of observed and modelled SCA is that of the respective 

seasonal mean spatial distributions. Grids of fractional SCA for ECHAM4 were 

produced and the seasonal means are shown in Figure 4.1 alongside observations 

1972-2002. The seasonal differences between observations and ECHAM4 are also 

plotted. In all seasons the mean spatial extent in ECHAM4 compares closely with 

the observations. The greatest differences are seen during winter and autumn over 

the snow margins of southern Siberia and the central United States. These are 

regions where snow cover has its greatest interannual variability, particularly during 

autumn. The Tibetan plateau region shows large errors in all seasons but these are 

confined to a relatively small area. The Pearson pattern correlations (Wilks 1995) 

between observations and ECHAM4 are highest for winter, spring and autumn 

{ f ' D J F  = 0.88, t 'm a m  — 0.90, t s o n  — 0.90) and lowest during summer ( t j j a  = 0.82). 

Overall, these results show that the annual cycle in SCA is well reproduced by 

ECHAM4.

We also compared observed and ECHAM4 spatial SCA extents using the monthly 

mean SCA over an entire region. Figure 4.2 shows the percentage difference in 

SCA between observations and ECHAM4 for NA, EU and the NH 1972-2002. Pos­

itive values denote months where ECHAM4 produces less snow than observed and 

negative values indicate the opposite. Over NA, ECHAM4 underpredicts SCA in 

all months except February, with largest errors in June and November. Over EU, 

ECHAM4 overpredicts February through May and underpredicts June through Jan­

uary. The NH pattern corresponds closely to the mean of the NA and EU plots. 

These results show that the largest magnitude errors in ECHAM4 are found in in­

dividual months rather than across one particular season. Specifically, the largest 

errors in SCA over the entire NH are seen in June, November and December. Frei 

et al. (2003) found the largest errors for the mean of 15 atmospheric GCMs occurred 

during spring and autumn over all regions.
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Figure 4.1: Spatial distribution of seasonal mean snow cover extent for winter 
(DJF), spring (MAM), summer (JJA) and autumn (SON) for observations (left), 
ECHAM4 (centre) and observations minus ECHAM4 (right). Colours indicate mean 
fractional coverage. Shading interval is 0.1, with values <0.1 not coloured.
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Figure 4.2: Percentage difference in monthly mean fractional SCA between obser­
vations and ECHAM4 1972-2002. Values are plotted for land area over Eurasia 
(EU), North America (NA) and the Northern Hemisphere north of 20°N (NH).

4.4.3 Temporal variability 

Trends

Analysis of the temporal variability of SCA within ECHAM4 is important to un­

derstand the relationships linking SCA and the climate system. The first step is to 

assess the magnitude of long-term linear trends in SCA 1972-2002. In this Chapter, 

comparisons between ECHAM4 and observations are conducted using data with 

trends included unless specified. Large-scale snow cover variability is likely to be 

a sensitive indicator of climate change (Frei et al. 2003). The observed increase 

in global mean temperature during the twentieth century (e.g., Jones et al. 1999), 

would therefore be expected to produce negative trends in SCA. Seasonal trends 

are calculated as a percentage of the seasonal mean. For a time series with strong 

seasonality, this ensures that trends are comparable between seasons.

Table 4.1 shows the trends in observed and ECHAM4 SCA 1972-2002. In ob­

servations, largest trends for all regions are seen during spring and summer. The 

largest percentage change is -22.86% per decade for summer over EU. However, the 

mean spatial snow extent during summer is only 21% of that during spring, which 

means that similar snow amounts are disappearing due to negative trend during 

spring and summer. Smaller and non significant trends are found during winter
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Region Annual DJF MAM JJA SON

NA -2 .0 2 -0.57 -2 .10 -11 .4 6 -0.18
OBS EU -1 .8 4 -0.15 -3 .56 -22 .8 6 1.08

NH -1 .91 -0.31 -2 .95 -15 .30 0.53

NA -1 .8 2 -0.77 -2.31 -1.97 -3.19
ECHAM4 EU -3 .9 6 -3 .3 7 -3 .6 4 -13 .72 -5 .7 3

NH -3 .11 -2 .42 -3 .1 3 -5 .3 4 -4 .6 0

Table 4.1: Linear trends in annual and seasonal SCA indices 1972-2002 estimated 
using an ordinary least-squares regression fit. Trends are the percentage change 
in seasonal SCA per decade. Bold type denotes significant (p < 0.05) trends as 
determined by a Mann-Kendall test.

and autumn for all regions. ECHAM4 shows a different pattern, with significant 

trends seen in all seasons and in the annual mean over EU and NH but only in the 

annual mean over NA. The magnitude of trends over NA is uniformly lower than 

EU and NH during all seasons. The seasonal variation of the ECHAM4 trends also 

differs to observations. Values of ~-4% per decade are found during all seasons in 

EU and NH, with the notable exception of summer in EU, which shows a much 

larger trend (-13.72%).

The negative trends in observed and ECHAM4 annual mean SCA 1972-2002 

are in anticorrelation with the significant increase in near-surface air temperature 

over the same period. The ECHAM4 NH annual mean temperature 1972-2002 

correlates strongly with observations (trank — 0.70), which means that the tem­

perature influence on SCA is approximately the same. Bamzai (2003) observed 

trends consistent with surface warming in the timing of both autumn snow onset 

and spring snow melt, particularly over EU. The negative annual mean trends have 

similar magnitudes in observations and ECHAM4. Seasonal trends are significant 

during spring in observations and ECHAM4 but during autumn are significant only 

in ECHAM4. ECHAM4 SCA appears to respond to increasing temperature with re­

duced seasonality compared to observations. Trends are stronger than observations 

during winter but weaker during summer, except over EU.
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Interannual variability

The interannual correlation between GCM and observed SCA indicates the propor­

tion of GCM SCA variability driven by boundary conditions and the proportion 

driven by internal atmospheric dynamics (Frei and Robinson 1998). The significant 

negative trends described above have an influence on year-to-year SCA variations. 

This influence is strongest during summer, when linear trend accounts for ~20% 

of the variance between observed and ECHAM4 SCA. Therefore, we present the 

comparison of interannual SCA variability using detrended data.

Figure 4.3 shows the interannual anomalies in observed and ECHAM4 detrended 

seasonal mean SCA for NA, EU and NH and the rank correlations between the in­

dices 1972-2002. The overall correspondence between ECHAM4 and observations 

is very low. This shows little improvement on the accuracy achieved by the at­

mospheric GCMs investigated by Frei et al. (2003). All correlations are actually 

negative except those for summer, which peak for NH SCA (r =  0.30). The low 

correspondence could result from problems with the ECHAM4 internal dynamics 

and/or problems associated with the SCA response to boundary forcing. The tran­

sient nature of the CGCM integration means it is likely that the ECHAM4 and ob­

served boundary forcings exhibit temporal and spatial differences 1972-2002. The 

interannual variability of ECHAM4 SCA is of similar magnitude to observations 

during spring. For the other seasons, variability is ~20% greater than observed 

during winter, ~3 times lower than observed in summer and around half observed 

during autumn.

The correlation between the NA, EU and NH SCA indices illustrates the relative 

importance of the EU and NA regions in the NH climate system. Table 4.2 shows 

Frank between the detrended regional SCA indices for annual and seasonal means 

1972-2002. In general, NH SCA is correlated more strongly with EU than with 

NA and ECHAM4 correctly simulates this relative importance. Two important 

differences between observations and ECHAM4 are seen during summer. First, 

the links between NA/NH and EU/NH are highly significant {trank  > 0-9) in 

observations but are weaker in ECHAM4. Second, there is a significant { t r a n k  =

Page 122



C hapter 4 Snow Cover and Atmospheric Variability in a CGCM 1972-2002

NA EU NH
6
3

r=-0.24

0
3

6
1980 1990 2000

r=-0.15

-6
1980 1990 2000

6
3

r=-0.34

0
■3

■6
1980 1990 2000

6
3

r=-Q.10

0
3

■6
1980 1990 2000

r=-0.22

- 3

1980 1990 2000

r=-0.13

- 3

-6
1980 1990 2000

6
3

r= 0.29

0
•3

6
1980 1990 2000

r= 0.03

1980 1990 2000

- 3

-6

r= 0.30

1980 1990 2000

6
3

O 0 
(/)

- 3

-6

r=-0.06

xwkfm
1980 1990 2000

Year

6
3

r=-0.13

0
- 3

-6
1980 1990 2000

Year

6
3

r=-0.31

0
- 3

-6
1980 1990 2000

Year

Figure 4.3: Time series of detrended seasonal mean SCA anomalies 1972-2002 for 
NA (left), EU (centre) and NH (right). Observed values are in blue and ECHAM4 
values in red. Data are percentage SCA anomalies. Rank correlation coefficients 
are displayed.
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Regions Annual DJF MAM JJA SON

NA and EU 0.30 0.26 0.07 0.66 0.33
OBS NA and NH 0.68 0 .70 0 .50 0.91 0 .60

NH and EU 0.88 0.82 0 .85 0 .90 0 .94

NA and EU 0.03 0.06 -0.03 0.39 -0.21
ECHAM4 NA and NH 0.48 0 .49 0.51 0.75 0.36

NH and EU 0.85 0 .8 7 0.81 0 .8 7 0 .78

Table 4.2: Rank correlation coefficients between detrended annual and seasonal 
SCA indices for North America (NA), Eurasia (EU) and NH 1972-2002. Bold type 
denotes significant (p < 0.05) correlations (corrected for serial correlation).

0.66) link between NA and EU in observations but not in ECHAM4 { t r a n k  —  

0.39). These results show that the greatest differences occur during summer between 

observed and ECHAM4 hemispheric-scale SCA variability. The correlation analysis 

also confirms that the NA region is most inaccurate in ECHAM4 (see also Figure 

4.2). Compared to observations, ECHAM4 NH SCA variability occurs on more 

regional scales, which means snowfall (and atmospheric responses to SCA) over EU 

and NA may be more localised.

Low-frequency variability

Longer time scale fluctuations are known to be superimposed on the interannual 

variability in the regional and NH SCA indices (Brown 2000). Figure 4.4 shows the 

wavelet power spectra for seasonal mean observed and ECHAM4 NH SCA indices 

1972-2002. The significance level (p < 0.05) is displayed as a solid black contour 

line. The plots for EU and NA SCA resemble closely those for NH (not shown).

The observed SCA indices exhibit statistically significant variability only prior 

to 1990. This suggests that after 1990, the observed SCA spectrum has either been 

white or exhibited variability at periods greater than 16 years, which lie outside the 

COI with 30 years of data. During winter, the dominant period before 1990 is ~7 

years, while for spring and summer it is ~2-3 years. Only during autumn is strong 

power seen at decadal time scales, although this is not significant and lies outside 

of the COI. The ECHAM4 plots show little significant power at any period during
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Figure 4.4: Wavelet power spectra of seasonal mean NH SCA 1972-2002 for ob­
servations (left) and ECHAM4 (right), y-axis shows period in years and cone of 
influence is indicated by cross-hatching. Colour shading indicates wavelet power 
at levels S/3, S/2, S, 2S and 3S, where S is the standard deviation of the seasonal 
wavelet power. Black contour denotes significant (jp < 0.05) power.
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any season. During winter, there is an area of strong power at ~7 years around 

1980 but this is not significant. Furthermore, during spring and summer power 

is exhibited at 2-3 year periods but with no significance and/or during different 

years to the significant power found in observations. The autumn season shows 

the largest difference to observations, with significant power at ~2-3 years at the 

beginning and end of the analysis period and no power at periods over 4 years. 

These results show that decadal time scale variability is only present prior to 1990 

in observed NH SCA during winter.

Another measure of SCA variability on longer than interannual time scales is the 

autocorrelation function. The autocorrelation shows the extent to which events in 

one year are independent of those in neighbouring years out to a specified number 

of lagged years. Figure 4.5 shows the autocorrelation functions out to a lag of 10 

years for the seasonal mean NA, EU and NH SCA indices 1972-2002. Generally, 

the ECHAM4 and observed autocorrelations correspond well, particularly at lag 1 

year. There are greater differences during summer, with ECHAM4 underestimating 

the observed lag-1 autocorrelation by 0.5 over NA, 0.2 over EU and 0.25 for the 

NH. Furthermore, during summer the observed autocorrelation remains greater 

than 0.25 out to lag-5 for all regions. This suggests a high degree of multi-annual 

persistence in observed summer SCA that is underestimated by ECHAM4. By 

contrast, ECHAM4 does not capture the strong negative autocorrelation observed 

during winter over EU and NH. This feature in observations may warrant further 

investigation.

To assess fully the temporal SCA variability within ECHAM4, it is also instruc­

tive to examine the interseasonal persistence of SCA anomalies. Table 4.3 shows 

t r a n k  between SCA anomalies over NA, EU and NH in summer (JJA) and winter 

(DJF) and between DJF and JJA 1972-2002. ECHAM4 underestimates persistence 

in both seasons over NA but overestimates persistence over EU. Larger errors oc­

cur over NA, where strong winter to summer persistence is seen in observations. 

Over the entire NH, ECHAM4 overestimates slightly the persistence in both sea­

sons, which is due to the dominance of the EU index in NH SCA (Table 4.2). The 

relationship linking summer to winter climate is examined in detail in Chapter 5.
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Figure 4.5: Autocorrelation function out to a time lag of 10 years for seasonal NA, 
EU and NH SCA indices 1972-2002. Blue line is observed SCA and red line is 
ECHAM4 SCA.
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OBS ECHAM4
Region JJA-DJF DJF-JJA JJA-DJF DJF-JJA

NA 0.16 0.39 -0.14 0.09
EU -0.09 0.06 0.22 0.15
NH 0.11 0.19 0.26 0.20

Table 4.3: Rank correlations between summer (JJA) to winter (DJF) SCA and DJF 
to JJA SCA indices for observations and ECHAM4 1972-2002 over NA, EU and 
NH.

The results in this Section show that the seasonal mean spatial distribution of 

SCA 1972-2002 is well represented, which suggests that the annual cycle of snow 

cover is more accurately modelled in a CGCM than in atmospheric GCMs (e.g, Frei 

and Robinson 1998, Frei et al. 2003). However, regional biases still exist, with large 

errors over NA during summer and over EU during spring. Negative linear trends in 

ECHAM4 SCA are stronger in winter and weaker in summer than in observations, 

in response to a realistic increase in mean air temperature. The representation of 

observed interannual SCA variability is poor for all regions and all seasons. Summer 

shows the highest interannual correlations but summer SCA variability in ECHAM4 

is ~3 times lower than in observations. Furthermore, observed multi-annual per­

sistence of winter and summer SCA anomalies is not captured by ECHAM4. This 

evidence supports the theory that ECHAM4 SCA is driven predominantly by in­

ternal dynamics and does not respond to boundary forcing in the same fashion as 

observed SCA. However, the ECHAM4 and observed boundary forcings 1972-2002 

are likely to exhibit spatial and temporal differences.

4.5 Climatic response to in situ snow anomalies

We now assess the regional climatic response associated with changes in contempo­

raneous in situ SCA over EU and NA. As discussed in Section 1.5.2, a fundamental 

problem exists in diagnosing cause and effect from contemporaneous snow cover 

analyses. Therefore, no assumptions can be made about the dominant direction of 

any association, i.e., from snow to atmosphere or from atmosphere to snow. How­
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ever, we are concerned with assessing the differences between the observed and 

CGCM depictions of the snow/atmosphere relationship. The term ‘response’ is 

therefore used in the following only to describe an association between snow and 

the atmosphere and does not imply causality.

4.5.1 Atm ospheric tem perature response

Figure 4.6 shows the observed and ECHAM4 zonal mean atmospheric temperature 

response as a function of height over EU (50°E-100°E) associated with high minus 

low contemporaneous EU SCA terciles. The nature of the atmospheric response 

was found to be approximately linear (not shown), which validates the use of the 

composite difference between high and low snow events. Positive anomalies indicate 

a warming and negative anomalies indicate a cooling associated with high SCA 

anomalies. The signs are reversed for low SCA anomalies.

In observations, during all seasons a cooling is seen above the snow covered 

region that extends barotropically to the tropopause level. The cooling is strongest 

(and most significant) closer to the surface below 850 hPa, where magnitudes are 

~3°C. During winter and spring, when SCA is most abundant over the EU region, 

the cooling involves the entire land area north of 40°N. A less coherent atmospheric 

response is observed at ~  30°N. During summer, the cooling is confined to the region 

north of 60°N, although it is not confined in the vertical. The atmospheric pattern 

for autumn is more complicated, with a weaker (not significant) cooling centred 

on 55°N and a significant warming to the north at ~75°N. During all seasons, 

the stratospheric response is opposite-signed to the tropospheric response, and of 

similar magnitude.

In ECHAM4, the overall magnitude and spatial pattern of the EU temperature 

response generally matches the observations winter through summer and shows 

greatest differences during autumn. The autumn pattern shows an overly significant 

cooling and no warming at ~75°N. There are also certain differences between the 

patterns winter through summer. First, during winter the cooling in ECHAM4 

is centred ~10° further south than observations even though the spatial extent of
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Figure 4.6: Zonally averaged (50°E-100°E) Eurasian atmospheric temperature on 
pressure levels for high minus low EU SCA terciles for observations (NCEP/NCAR 
reanalysis, top panels) and ECHAM4 (bottom panels) at latitudes 20°N-80°N. Data 
are temperature anomalies and contours are plotted at 0.25, 0.5, 1, 2 and 4°C. 
Dashed contours indicate negative anomalies and the thick solid contour denotes 
the zero line. Shading denotes significant (p < 0.05) differences as determined by a 
Student’s t-test.
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SCA is highly similar to observations (Figure 4.1). This suggests that ECHAM4 

responds more strongly to SCA over Kazakhstan and southern Siberia compared 

to the observations, which appear to respond more to SCA over central Siberia. 

Second, during spring the significance of the tropospheric cooling is overestimated 

compared to observations. Third, during winter and summer the magnitude of the 

ECHAM4 stratospheric response is ~25% lower than in observations.

Figure 4.7 shows the zonal mean (120°W-90°W) atmospheric temperature re­

sponse to SCA over NA. The observed pattern is very similar to that seen for 

the EU region, with significant cooling close to the surface and an opposite-signed 

anomaly in the stratosphere during all seasons. The main difference is that, dur­

ing winter, the observed cooling is centred ~10° further south over NA than over 

EU. The presence of the Tibetan plateau means SCA extent is less zonally homo­

geneous over EU than over NA. The cooling over Tibet is (relative to the zonal 

mean) strongest and most localised during winter (not shown). In all other seasons 

the tropospheric cooling is centred at approximately the same latitude in NA and 

EU. As over EU, ECHAM4 reproduces well the observed temperature response over 

NA both in terms of magnitude and spatial location. The pattern during autumn 

corresponds more closely with observations over NA than over EU. However, the 

largest difference is seen in the winter stratosphere, where ECHAM4 produces a 

significant high latitude cooling where the observations show a warming.

The atmospheric response to SCA during summer over both EU and NA is in­

teresting for two reasons. First, during summer the SCA is confined to relatively 

small areas of high elevation over Tibet, northern Siberia and northern and western 

Canada (see Figure 4.1). Despite this limited extent, the observed temperature 

response remains significant during summer through the depth of the atmosphere. 

Second, despite low observed persistence between winter and summer (Table 4.3) 

there is strong persistence from spring to summer ( t r a n k  = 0.79). Mean summer 

snowfall over EU and NA is almost zero away from the highest peaks and there­

fore the majority of the SCA in summer is likely to have fallen during spring and 

persisted. This is an important finding because it suggests that the significant at­

mospheric signal observed during summer is the result of a lagged relationship with
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Figure 4.7: As Figure 4.6 except for zonally averaged (120°W-90°W) NA atmo­
spheric temperature, NA SCA terciles and contours are plotted at 0.5, 1, 2, 3 and 
4°C.

spring snowfall. Furthermore, this persistence is captured accurately by ECHAM4.

In summary, the in situ atmospheric response to SCA is consistent between sea­

sons and continents. High SCA terciles are associated with an equivalent barotropic 

cooling, which extends from the surface to the tropopause above the snow covered 

regions. An opposite-signed anomaly is seen in the stratosphere. ECHAM4 re­

produces these observed patterns with accuracy in spatial position and magnitude, 

although differences are most pronounced during winter and autumn in both EU 

and NA.

4.5 .2  Surface flux response

As discussed in Section 1.5.1, snow interacts with the overlying atmosphere pre­

dominantly through its effects on the surface energy balance. We now examine 

these effects through net radiative fluxes (net short-wave plus net long-wave radi­

ation, henceforth NET) and net turbulent fluxes (sensible plus latent heat fluxes,
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henceforth TUR). Figure 4.8 shows the contemporaneous EU seasonal NET for ob­

servations and ECHAM4 associated with high minus low EU seasonal SCA terciles 

1972-2002, while Figure 4.9 shows seasonal TUR for the same years. In the standard 

convention, fluxes are positive away from the surface, which means that positive 

flux anomalies correspond to the surface losing energy (cooling).

The observations for EU show seasonal variations in the respective dominance of 

NET and TUR in response to SCA anomalies. During winter, insolation is low over 

northern EU (typical DJF mean at 60°N is only ~50Wm-2 compared to ~350Wm~2 

during spring). Overall the surface loses energy through NET and TUR but the 

flux magnitudes are lower than in the other seasons. During spring and autumn, 

when both SCA and insolation are high, the snow covered regions exhibit localised 

NET gains and large-scale TUR losses. The summer season shows NET losses over 

much of EU and strong TUR losses over the permanent snow covered regions of 

northeast Siberia.

The NET and TUR fluxes in ECHAM4 for EU show little resemblance to those 

in observations for any season. The Pearson pattern correlations between observed 

and ECHAM4 NET and TUR are shown on the left of Table 4.4. None of the pattern 

correlation coefficients are significant and the strongest coefficient is negative (r =  

—0.21). During winter, ECHAM4 correctly simulates the low NET fluxes over 

northern EU but overestimates NET losses over southern EU. Over snow cover the 

majority of ECHAM4 fluxes occur through NET during all seasons, whereas in 

observations TUR is dominant.

Figure 4.10 shows the contemporaneous NA NET anomalies associated with high 

minus low NA seasonal SCA terciles, while Figure 4.11 shows the TUR fluxes for the 

same years. The observations show NET losses in all seasons except summer, when 

large NET gains are seen across NA. During winter, observations show simultaneous 

losses in NET and TUR over central NA, which suggests greater cooling than over 

EU for the same season. For the other seasons, NET dominates over NA, with 

TUR anomalies more localised and weaker in magnitude. In general, the observed 

flux response over NA is more coherent than over EU, which suggests the surface 

energy budget responds to SCA in a more uniform fashion. This could result from
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Figure 4.8: Observed (NCEP/NCAR reanalysis, left) and ECHAM4 (right) seasonal 
mean surface net radiative flux anomalies (Wm~2) over EU for high minus low EU 
SCA terciles 1972-2002. Colours indicate positive (reds, surface losing energy) or 
negative (blues, surface gaining energy) fluxes.
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Figure 4.9: As Figure 4.8 except for sensible plus latent heat fluxes.
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Eurasia North America
Season NET TUR NET TUR

DJF -0.12 -0.10 0.59 0.15
MAM -0.02 0.07 0.57 0.37
JJA 0.06 -0.09 0.15 0.05
SON -0.21 0.13 -0.08 0.24

Table 4.4: Pearson pattern correlations between seasonal mean net surface radiative 
(NET) and sensible plus latent (TUR) fluxes for observations and ECHAM4 1972- 
2002 based on high minus low EU and NA SCA terciles. Left side shows values for 
EU, right side shows values for NA.

the more homogeneous terrain east of the Rocky mountains compared to that over 

Siberia. The orographic differences between EU and NA influence TUR and NET 

through SCA, insolation and cloudiness, surface type and soil moisture.

The pattern correlations for NA are shown on the right of Table 4.4. ECHAM4 

is relatively accurate over NA for NET during winter and spring (r > 0.5) and 

for TUR during spring (r =  0.37). The spatial position of the ECHAM4 NET 

cooling is accurate during winter and spring, although the magnitudes are ~50% 

greater than observed. The NET cooling anomalies are collocated with opposite- 

signed TUR anomalies, which raises the question: are the NET losses increased to 

compensate for spurious TUR gains or is the opposite true? Further investigation 

is required to determine whether NET or TUR fluxes contribute the larger errors.

The ECHAM4 responses over NA and EU share several similarities. First, NET 

fluxes are 2-3 times as strong as TUR fluxes during all seasons. Second, the mag­

nitudes of NET fluxes are overestimated compared to observations, particularly 

during winter and spring. Third, TUR fluxes over snow cover in ECHAM4 are 

almost always negative, whereas in observations they are almost always positive. 

This difference is seen most clearly during summer, when the SCA is confined to 

northern Canada and Siberia (see Figure 4.1). In ECHAM4, summer TUR gains 

over the snow covered regions balance NET losses, whereas in observations the op­

posite occurs. This suggests that the largest errors in the ECHAM4 response to 

SCA occur in situ above the snow cover.
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Figure 4.10: As Figure 4.8 except for NA net surface radiative fluxes and SCA 
anomalies.
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Figure 4.11: As Figure 4.8 except for NA sensible plus latent heat fluxes and SCA 
anomalies.
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In summary, large differences are found between observations and ECHAM4 in 

both the magnitude and spatial pattern of the NET and TUR flux responses to 

anomalous in situ SCA. The differences are most pronounced for all seasons over 

EU and during summer and autumn over NA. Winter and spring over NA are the 

only seasons modelled realistically by ECHAM4. Observations show TUR losses 

over snow covered surfaces during all seasons. However, during summer when SCA 

extent is reduced, ECHAM4 exhibits NET losses and collocated TUR gains over 

snow cover.

4.6 Discussion

The response of ECHAM4 SCA to increasing global mean temperature 1972-2002 

has important implications for climate change investigations. One of the climate 

feedbacks expected to exacerbate global warming is the snow albedo feedback 

(Houghton et al. 2001). Decreased snow cover (through increased melting) will 

lower a  and increase the amount of solar radiation absorbed at the surface. This 

feedback is expected to be strongest during spring and autumn when insolation is 

high and NH SCA is large (Bojariu and Gimeno 2003). During winter, insolation 

is small at high latitudes and temperatures are generally further below 0°C than 

during spring and autumn. Therefore, minor increases in winter temperature will 

not result in a large reduction in SCA. The trends in observed SCA 1972-2002 

show the largest decreases during spring and summer and no significant decrease 

during winter or autumn. However, the presence of a significant negative trend in 

ECHAM4 winter SCA suggests that the magnitude of the snow albedo feedback 

is overestimated compared to observations. In the shorter-term, this has implica­

tions for seasonal predictability because the resulting trends in ECHAM4 winter 

temperatures may act to damp or eradicate predictive links.

The NET and TUR flux responses to SCA in ECHAM4 show large differences 

to observations over EU and NA. There are several factors that could explain these 

errors. First, seasonal mean a  ~  0.7 over snow covered land poleward of 60°N. 

This is realistic for fresh snow but somewhat high for snow that has been lying on
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the ground for more than a few weeks. Second, atmospheric transmissivity (r, the 

amount of short-wave radiation reaching the surface) may be inaccurate. Seasonal 

mean surface net short-wave radiation was found to be realistic (not shown), which 

means that r  could be overestimated to compensate for the high values of a. Third, 

clouds have a net warming effect at high latitudes because the decrease in insola­

tion is outweighed by an increase in long-wave radiation from the clouds to the 

surface. Further investigation is required into the reciprocal influences of SCA and 

cloud cover in ECHAM4. This could examine the relationship between SCA and 

NET fluxes at the top of the atmosphere during clear and cloudy sky conditions 

(e.g., Groisman et al. 1994). However, cloud processes are heavily parameterised 

in ECHAM4 and additional complications could arise from the introduction of the 

indirect sulphate aerosol effect in GSDIO (Roeckner et al. 1999).

In observations and (to a lesser degree) in ECHAM4, NET cooling anomalies 

are located further south during autumn than during spring, when the SCA extents 

are similar (Figure 4.1). One explanation for this could be that soil at the snow 

margins is wetter during spring because of the moisture released by winter snow 

melt. The moisture would lower a  in spring relative to the drier soils during autumn. 

Soil moisture is known to play a large role in snow feedback on the surface energy 

budget (Ose 1996). Further investigation is required to ascertain the effects of soil 

moisture from melting snow in ECHAM4. This could help to explain some of the 

inaccuracies in the surface flux response.

4.7 Summary and conclusions

This Chapter presents a comparison of the temporal and spatial variability of sea­

sonal SCA 1972-2002 in observations and a coupled twentieth century climate sim­

ulation. SCA indices for the coupled GCM (ECHAM4), were computed as the 

fraction of the snow covered land area from monthly mean snow depth fields. Neg­

ative linear trends in ECHAM4 SCA are stronger than observations in winter and 

weaker in summer. These trends occur in response to a realistic increase in mean air 

temperature, which may cause overestimation of the winter snow/albedo feedback
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in ECHAM4. The annual SCA cycle in ECHAM4 compares closely with observa­

tions. However, seasonally varying regional biases are found, which are largest over 

NA during summer and over EU during spring. The representation of observed 

interannual SCA variability is poor for all regions and all seasons. Compared to 

observations, ECHAM4 summer SCA shows highest interannual correlations but 

only one-third of the variability. Furthermore, observed multi-annual persistence 

of winter and summer SCA anomalies is not captured by ECHAM4. This evidence 

supports the theory that ECHAM4 SCA is driven primarily by internal dynamics 

and that twentieth century boundary forcing in ECHAM4 is different to observa­

tions.

The in situ atmospheric responses to SCA are compared and found to be con­

sistent between seasons and continents. High seasonal SCA is associated with an 

equivalent barotropic cooling, which extends from the surface to the tropopause 

above the snow covered regions. An opposite-signed anomaly is seen in the strato­

sphere. ECHAM4 reproduces these observed patterns with accuracy in spatial po­

sition and magnitude, although differences are most pronounced during winter and 

autumn in both EU and NA. ECHAM4 captures accurately the significant lagged 

snow/temperature feedback in summer. However, ECHAM4 seasonal mean surface 

fluxes are accurate only over NA during winter and spring. The flux response above 

snow cover shows the largest errors in ECHAM4, particularly during summer.
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Chapter 5

Coupled GCM Representation of 

Observed AO o . j f  Predictability from 

NH Summer Snow Cover

5.1 Introduction

In Chapter 4, the ECHAM4 CGCM run with observed historical radiative forcing 

was shown to reproduce accurately the observed annual cycle and spatial distribu­

tion of snow covered area (SCA) 1972-2002 over Eurasia (EU) and North America 

(NA). The seasonal in situ atmospheric temperature anomalies associated with 

SCA were also reproduced accurately. However, the interannual SCA variability 

in ECHAM4 compared poorly to observations. Evidence was presented suggesting 

that the ECHAM4 SCA indices were governed primarily by internal dynamics and 

responding to different boundary forcings. The surface radiative flux response over 

the snow covered regions was accurate only over NA during winter and spring. This 

showed that ECHAM4 did not capture realistically the modification to the surface 

energy budget caused by snow cover, which is the major influence that snow has on 

the atmosphere (Cohen and Rind 1991).

This Chapter investigates the ECHAM4 representation of observed links be­

tween Northern Hemisphere (NH) summer SCA and the winter NAO (NAOd j f )- 

We examine whether the CGCM captures the timing and magnitude of this relation­

ship for the period 1972-2002. The teleconnected atmospheric and oceanic responses 

to changes in summer NH SCA are investigated. Saunders et al. (2003) proposed 

a feedback mechanism linking summer NH SCA and the N A O d j f - This involved
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a contemporaneous subpolar zonal temperature response to NH SCA, which is as­

sociated with circulation changes over the North Atlantic and anomalies in North 

Atlantic SST during subsequent months. Observational evidence supporting this 

mechanism is presented in Chapter 3 but the link appears to be nonstationary dur­

ing the twentieth century. We use the ECHAM4 data available for the extended 

period 1904-2002 to assess the stationarity in this link.

This Chapter is structured as follows. The lead/lag correlation procedure is 

outlined in Section 5.2. Section 5.3 examines ECHAM4 twentieth century NAO d j f  

variability. In Section 5.4 the NAO predictability arising from NH SCA within 

ECHAM4 is investigated and quantified for all leads and lags over the period 1972- 

2002. Section 5.5 presents an analysis of the physics underpinning the link between 

summer NH SCA and N A O d j f  in  ECHAM4. This includes an investigation into 

the role of subpolar zonal temperature gradients in ECHAM4 N A O d j f  predictabil­

ity and their teleconnection to the North Atlantic sector. The stationarity of the 

predictive sn ow /N A O D j f  link and mechanisms is examined in Section 5.6. A dis­

cussion of the results is presented in Section 5.7 and the strengths and weaknesses 

in ECHAM4 for coupled snow/atmosphere investigations are highlighted in Sec­

tion 5.8. Recommendations for potential improvements to CGCM formulations are 

made. Finally, Section 5.9 provides a brief summary of the main findings in this 

Chapter.

5.2 M ethodology

5.2.1 Lead/lag correlation analysis

Spearman rank correlations are computed between SCA and the NAO for each 

month at every lead and lag between 0 and 12 months. In this way a matrix of 

correlation at all leads and lags is constructed. Each point represents the correlation 

between SCA data in a given month with the NAO index leading or lagging by 

up to 12-24 months. True physical correlations may be expected to extend to 

neighbouring cells in the correlation matrix. This is because physical relationships
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would be expected to exert an influence for a time period greater than a single 

month. A subjective method of identifying true correlations in these matrices, 

as opposed to Type I errors, is therefore to examine clusters of locally significant 

(p < 0.05) correlations. An objective method is also employed, namely, the field 

significance test described in Section 3.2.3. In this Chapter, when correlation or 

regression is used to investigate predictability, a linear trend is removed from all 

data (see Section 3.2.2). This is consistent with the method of Saunders et al. 

(2003) and that employed in Chapter 3.

5.3 ECHAM4 NAODJF variability

Ahead of investigating the relationship between NH SCA and the NAO d j f ,  it is 

instructive to assess N AO d j f  variability in ECHAM4. If the CGCM N A O d j f  

bears no resemblance to the observed NAO d j f - ,  then even a perfectly modelled 

snow/atmosphere relationship may not offer predictability for NAO d j f - Figure 5.1 

shows the interannual variability in three ECHAM4 NAO.djf indices 1904-2002. 

The ECHAM4 indices are calculated using the same methods and data regions em­

ployed in constructing the observed CRU, Hurrell and MSLP PCI N A O d j f  indices 

used in Chapter 3 (see Section 3.2.1). Henceforth, ‘ECHAM4 CRU NAO d j f  de­

notes the index computed using standardised MSLP from Gibraltar minus Iceland, 

while ‘ECHAM4 Hurrell N A O d j f ’ employs standardised MSLP from Ponta Del- 

gada (Azores) minus Iceland. ‘ECHAM4 MSLP PCI N A O d j f ’ denotes the index 

using the first principal component of North Atlantic sector MSLP. This means 

that the ECHAM4 N A O d j f  indices can be compared to the observational indices 

shown in Figure 3.1.

Several differences between the ECHAM4 and observed N A O d j f  indices are 

apparent. First, the correspondence between the three pairs of indices is low; the 

rank correlation between the observed CRU N A O d j f  and ECHAM4 CRU N A O d j f  

is t r a n k  = 0.11 for 1904-2002 and t r a n k  =  0.21 for 1972-2002. Second, contrary 

to observations the linear trend is almost zero for all of the ECHAM4 indices 1904- 

2002. Over the shorter 1972-2002 period the trends are also small (not shown).
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Figure 5.1: Temporal evolution of the ECHAM4 NAO indices. The indices are from 
ECHAM4 MSLP data and calculated using the same methods and data regions 
employed in constructing the observed indices shown in Figure 3.1, which are (a) 
CRU, (b) Hurrell and (c) MSLP PCI NAOdjf  1904-2002 in standardised units.

Third, the correspondence between the three ECHAM4 indices is lower than in 

observations. The highest correlation is found between the ECHAM4 MSLP PCI 

and ECHAM4 CRU NAOdjf indices { t r a n k  = 0.89), while the lowest correlation 

is found between ECHAM4 Hurrell and ECHAM4 CRU N A O d j f  { t r a n k  — 0.69). 

This compares with the range t rank  = 0.84 to 0.85 in observations 1904-2002.

As discussed in Section 1.2.1, seasonal climate forecasting is concerned primarily 

with extracting low-frequency signals from climate data. Potential N A O d j f  pre­

dictability can be assessed through analysis of the dominant periods of variability 

in the N A O d j f  indices. If the N A O d j f  exhibits variability on time scales associ­

ated with boundary forcing then predictability may be expected. However, if the 

N A O d j f  exhibits variability consistent with an internal atmospheric process, then 

the likelihood of seasonal or interannual predictability is small. Figure 5.2 shows the 

wavelet power spectra and significance for the observed CRU and three ECHAM4 

N A O d j f  indices 1904-2002. Areas of significant (p < 0.05) power are enclosed by 

a black contour line. The observed CRU index shows recent significant power at 

decadal periods: ~8 years 1970-1990 and ~6 years 1990-2000. Prior to 1970, there
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is no significant power at any period except a minor peak at ~3 years in 1923. 

This confirms that the N A O d j f  spectrum has become redder since 1950 (Hurrell 

and van Loon 1997) and helps to explain why observed N A O d j f  predictability has 

increased over the same period (Rodwell and Folland 2002, Trigo et al. 2004).

The three ECHAM4 N A O d j f  indices exhibit very different patterns of vari­

ability compared to the observed CRU N A O d j f  index. First, all of the ECHAM4 

indices exhibit a peak in decadal variability (~12 years) around 1910-1940. Second, 

all of the indices show greater significant variability before 1950 than after 1950. 

Third, a second significant peak is seen for the ECHAM4 CRU and MSLP PCI 

N A O d j f  indices at a ~5 year period around 1950. Fourth, the spectrum for the 

ECHAM4 Hurrell index differs most from the other indices. The Hurrell index ex­

hibits more power at shorter periods and the 1910-1940 decadal peak has greater 

significance. This shows a contrast to observations, where the spectra for the CRU, 

Hurrell and MSLP PCI indices are in strong agreement (not shown).

These results highlight several reasons why ECHAM4 N A O d j f  may offer lower 

predictability than the observed N A O d j f - First, the low correlation between the 

observed and ECHAM4 N A O d j f  indices means that they respond to twentieth cen­

tury boundary forcing in different ways or that the boundary forcings are different. 

Observational N A O d j f  prediction schemes tend to perform better during periods 

of high decadal NAO variability (e.g., Rodwell and Folland 2002). Therefore, in 

observations greatest potential predictability occurs since 1970, while in ECHAM4 

potential predictability is greatest during the early 1900s. Second, the lower corre­

spondence between the three ECHAM4 N A O d j f  indices suggests that MSLP varies 

over smaller spatial scales in ECHAM4 than in observations. Third, the increas­

ing greenhouse gas concentrations in GSDIO appear to have little impact on the 

N A O d j f  in ECHAM4. This concurs with the study of Paeth et al. (1999), who 

found small trends in annual mean NAO 1860-1989 but positive trends 1990-2060.
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Figure 5.2: Wavelet power spectra of N A O d j f  indices 1904-2002. Plots show the 
observed (a) CRU, (b) ECHAM4 CRU, (c) ECHAM4 Hurrell and (d) ECHAM4 
MSLP PCI N A O d j f  indices. Cone of influence is indicated by cross-hatching. 
Colour shading indicates wavelet power at levels S/3, S/2, S, 2S and 3S, where 
S is the standard deviation of the seasonal wavelet power. Black contour denotes 
significant (p < 0.05) power.
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5.4 ECHAM4 NAO d j f  predictability from lagged

NH snow cover

5.4.1 L ead/lag correlation analysis

The limitations and caveats concerning potential ECHAM4 NAOf j f  predictability 

from lagged SCA were discussed above and in Chapter 4. Considering these limita­

tions, the ECHAM4 representation of NAO^jf  predictability associated with NH 

SCA is examined. We begin with an exploratory lead/lag correlation analysis to 

highlight the general level of predictability between NH SCA and the NAO out to 

lead times of ~1 year. The specific seasonal predictability of NAO^jf  is discussed 

in Section 5.4.2.

Figure 5.3 shows observed and ECHAM4 lead/lag rank correlations between 

monthly means of NH SCA and the NAO 1972-2002. The ECHAM4 CRU and Hur- 

rell indices are displayed to illustrate the differences between them. The ECHAM4 

MSLP PCI index was not computed for the monthly mean NAO. Monthly means 

were used instead of seasons to allow subseasonal relationships to be detected. Co­

efficients are shaded relative to their significance assuming 30 degrees of freedom, 

with the levels corresponding to p=0.1, 0.05 and 0.01, respectively. The diagonal 

line denotes contemporaneous correlations. Elements left of the diagonal denote 

SCA leading, while elements right of the diagonal denote the NAO leading.

In observations, the correlation between summer SCA and the winter NAO is 

strongest where June, July and August SCA lead January and December NAO. 

The correlation with upcoming February NAO is not significant, which implies that 

summer SCA may be a better predictor of December-January mean NAO than 

N A O f j f - There is also a significant correlation when January NAO leads June 

and July SCA, which indicates a link from summer to winter and then back to 

summer. Significant contemporaneous SCA/NAO correlations are confined to the 

winter months, when the NAO influence over EU SCA is at its peak (Robock et al. 

2003). The NAO also leads significantly by one month SCA variations in March, 

May and October.
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Figure 5.3: Lead/lag rank correlation matrices between monthly mean NH SCA 
and the NAO for observations (top), ECHAM4 CRU (centre) and ECHAM4 Hurrell 
(bottom). Contemporaneous correlations denoted by diagonal line. Elements left 
of diagonal denote SCA leading and right of diagonal denote NAO leading. Colour 
shading denotes statistical significance assuming 30 degrees of freedom at 0.01, 
0.05 and 0.1 levels; blues indicate negative, while reds indicate positive correlation. 
Coefficients where p > 0.1 are not plotted. All data are detrended.
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The correlation matrix for ECHAM4 CRU shows July, August, October and 

November SCA are correlated significantly with the upcoming December and Jan­

uary NAO. However, for the Hurrell NAO index significant relationships are seen 

only with August and October SCA for January NAO and with July SCA for De­

cember NAO. Contemporaneous and lag-1 correlations during winter are not sig­

nificant in ECHAM4, indicating that NH SCA does not respond directly to NAO 

forcing in the CGCM. The ECHAM4 Hurrell index exhibits more clustering of sig­

nificant correlations than the CRU index, which means the Hurrell links are more 

likely to be ‘real’ climatic signals, rather than Type I errors.

Except in a few cases, the magnitude of the correlations shown in Figure 5.3 is 

highly variable month-to-month for both observations and ECHAM4. This raises 

the possibility that the coefficients represent a series of Type I errors, rather than 

physical SCA/NAO relationships. Assuming all 432 elements of the 32x12 matrix 

are independent (which they almost certainly are not), at least 6.8% of the corre­

lations would need to be locally significant (p < 0.05) to obtain field significance 

(p < 0.05) using the Livezey and Chen (1983) test. The percentage of locally sig­

nificant correlations is 4.6% in observations and 4.3% and 3.8% for the ECHAM4 

CRU and Hurrell indices, respectively. Therefore, the correlation matrices are not 

field significant. However, they are still a useful diagnostic tool for comparing the 

SCA/NAO relationships in observations and ECHAM4.

5.4.2 NAO d j f  predictability in ECHAM 4

We now assess seasonal NAOjj j f  predictability arising from NH SCA in ECHAM4 

using lagged rank correlation. Figure 5.4(c) shows the correlation between ECHAM4 

bi-monthly NH SCA and the three NAO d j f  indices 1972-2002 (panels (a) and (b) 

are discussed in Section 5.6.1). The significant link peaks in summer for July- 

August (JA) mean NH SCA, which is one month later than in observations (see 

Figure 1.6). A similar pattern was found using EU SCA but for NA SCA the sum­

mer peak was positive and not significant (not shown). The differences between 

the ECHAM4 NAODJF indices mean the CRU and Hurrell indices are borderline
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Period Lagged
Predictor

CRU NAODJF 
r  (p) M SSS  (p)

Hurrell NAO d j f  
r  (p) M SSS  (p)

MSLP P C lDt7F 
r  (p) M SSS  (p)

1937-69 JA NH SCA 0.19 (0.11) 3 (0.16) 0.25 (0.06) 5 (0.09) 0.16 (0.12) 2 (0.19)

1972-2002 JA  NH SCA 0.25 (0.07) 3 (0.09) 0 (-) 0 (-) 0.23 (0.10) 0 (-)

Table 5.1: Skill values from ECHAM4 cross-validated N A O d j f  hindcasts for 1937- 
69 (top) and 1972-2002 (bottom) using JA mean NH SCA. r is the correlation 
skill value and M S S S  is the percentage improvement in mean-square skill score 
over climatology, p is the probability that the observed skill value was obtained by 
random chance, with values shown in brackets. Skill significance levels determined 
by a Monte Carlo resampling test with 25,000 iterations. All data are detrended.

statistically significant. In general, MSLP PCI slightly overestimates the posi­

tive correlation during spring, while Hurrell NAO d j f  underestimates the negative 

correlation during autumn. In contrast to observations (Figure 1.6), there is no sig­

nificant contemporaneous link during winter between NH SCA and NAO d j f - This 

shows that winter snow cover variations over the NH are not driven by the NAO d j f  

circulation pattern. Instead, more regional-scale processes could be responsible for 

snowfall and persistence in SCA.

The significant link identified above between JA NH SCA and N A O d j f  1972- 

2002 is quantified by constructing an empirical model and producing N A O d j f  hind­

casts. The hindcast, skill verification and significance testing methodologies are the 

same as those employed in Chapter 3 (see Section 3.2.3). The cross-validated hind- 

cast skill from ECHAM4 JA NH SCA for the three N A O d j f  indices 1972-2002 

is shown in the bottom row of Table 5.1. The JA snow cover predictor produces 

positive, although not significant, skill against the CRU and MSLP PCI N A O d j f  

indices. However, there is zero skill for predicting the Hurrell index. This is an 

interesting finding given that the correlation with JA NH SCA is similar for all 

three N A O d j f  indices (Figure 5.4). This result, coupled with the relatively low 

skill for the CRU and MSLP PCI indices, suggests that the physical link between 

JA NH SCA and N A O d j f  niay be weaker in ECHAM4.
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Figure 5.4: Lagged rank correlation between ECHAM4 bi-monthly mean NH SCA 
and the three NAO d j f  indices for (a) 1904-36, (b) 1937-69 and (c) 1972-2002. 
Dotted lines denote statistical significance (p < 0.05) corrected for serial correlation. 
All data are detrended.
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5.5 Physical basis for NAO d j f  predictability in 

ECHAM4

A significant link is identified in ECHAM4 between JA NH SCA and NAO d j f  

1972-2002. However, no significant hindcast skill was produced using JA NH SCA 

as a lagged NAO djf predictor. Therefore, it is unclear whether these variables 

are physically linked or whether the relationship is a Type I error. If ECHAM4 

summer NH SCA and N A O d j f  are physically linked, then it is despite the poor 

representation of SCA variability and associated surface fluxes in the CGCM. This 

raises the question: does the ECHAM4 link act through the same mechanism as 

that proposed from observations? To address this question, each element of the 

proposed link is examined in ECHAM4 for the three-month JJA summer season. 

This longer season is employed because the summer SCA link to N A O d j f  peaks 

during JJ in observations and during JA in ECHAM4. Therefore, by averaging over 

these three months we expect to capture both signals and maintain consistency by 

using the same time period for observations and ECHAM4.

5.5.1 Subpolar zonal tem perature gradients

The physical mechanism proposed to link JJ NH SCA to the N A O d j f  in obser­

vations is outlined in Section 3.4.4. The first part of the proposed link involves a 

significant association between summer NH SCA and zonal gradients in subpolar 

2 m air temperature (AT, see Section 3.2.1). We assess whether, as in observa­

tions, AT is linked to anomalous NH SCA in ECHAM4. Saunders et al. (2003) 

constructed AT based on three regions of significant temperature correlation with 

contemporaneous JJ NH SCA (Figure 3.2). Figure 5.5 shows the contemporaneous 

single-point rank correlation between JJA mean NH 2 m air temperature and NH 

SCA 1972-2002. Coefficients are shaded where \ t r a n k \  > 0.2 and are approximately 

significant (p  < 0.05) where \ t r a n k \  > 0.4. For observations, the pattern is similar 

to Figure 3.2 except that correlation coefficients are plotted instead of correlation 

significance. The negative correlations over the snow covered regions of northern
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Figure 5.5: Rank correlation coefficients between JJA mean NH 2 m air temperature 
and NH SCA for observations (NCEP/NCAR reanalysis, left) and ECHAM4 (right) 
1972-2002.

EU and NA are evident, as is the significant positive correlation over southern 

Greenland. The spatial pattern in ECHAM4 shows negative correlations overlying 

the snow in EU and NA, although correlation magnitudes are ~50% greater than 

observed. However, the teleconnected positive correlation over southern Greenland 

is absent in ECHAM4. Instead, the entire North Atlantic sector exhibits a nega­

tive relationship with NH SCA. This means that the subpolar zonal gradient in air 

temperature associated with NH SCA is not established in ECHAM4 during JJA.

A correlation analysis reveals that the absence of the zonal temperature gra­

dients in ECHAM4 means that the JJA A T  index is not correlated significantly 

with contemporaneous NH SCA (top half of Table 5.2). However, this could simply 

result from employing the JJA averaging period instead of JJ or JA. To test this, 

the contemporaneous relationships between NH SCA and AT for JJ and JA are 

also presented. In observations the link peaks in JJ and is ~30% stronger with 

detrended data than with raw data. This reflects the significant negative trends 

seen in summer SCA 1972-2002 (Table 4.1). ECHAM4 shows a similar pattern to 

observations but the coefficients are uniformly weaker and not significant during 

any season. Furthermore, trend has less impact than in observations, and detrend­

ing the ECHAM4 data only strengthens the correlation during JA and JJA. This is
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because the trends seen in ECHAM4 NH SCA during summer are of similar mag­

nitude to the rest of the year (Table 4.1). These results show that NH SCA and 

AT in ECHAM4 are not related significantly during JJ, J Aor JJ A.

Greenland teleconnection

The absence of a relationship in ECHAM4 between NH SCA and AT appears to be 

due to the absence of a teleconnection between NH SCA and 2 m air temperature 

over southern Greenland. Figure 5.5 shows that ECHAM4 captures negative corre­

lations over the snow covered regions, while the greatest differences to observations 

occur over the North Atlantic sector. The Greenland region is weighted double 

compared to EU and NA in the AT index, and errors in this region also account 

for inconsistencies in observational AT analyses (see Section 3.3.5). If the absence 

of the Greenland teleconnection causes the NH SC A /A T link to break down, then 

the link should be stronger using a AT index which excludes Greenland

A xTeg =  N A  + E U , (5.1)

where AxT e g  represents AT excluding Greenland and EU and NA are the 2 m 

temperatures area averaged over the EU and NA regions, respectively, as shown 

in Figure 3.2. The correlations between NH SCA and A Teg are listed in the 

bottom half of Table 5.2. The coefficients are significant in ECHAM4 with JJ 

and JJA A Teg] the latter is also significant using detrended data. Interestingly, 

the observed correlations are weaker with A Teg than with AT. This reflects the 

importance in AT of the positive teleconnection to southern Greenland in Figure

5.5. These results show that the teleconnection between NH SCA and Greenland 

is modelled poorly in ECHAM4 and its absence has a significant impact on the 

relationship between NH SCA and AT.

Hemispheric response to NH  snow cover

Next, we attempt to determine why the hemispheric-scale AT link does not become 

established in ECHAM4 during summer. This is achieved through a comparison
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JJ
OBS
JA JJA JJ

ECHAM4
JA JJA

AT RAW -0.41 -0.20 -0.35 -0.32 -0.10 -0.25
AT DET -0.68 -0.41 -0.56 -0.32 -0.17 -0.32

A T e g  RAW -0.28 -0.22 -0.26 -0.47 -0.30 ■-0.49
A T e g  DET -0.43 -0.24 -0.33 -0.32 -0.16 ■-0.43

Table 5.2: Rank correlation coefficients between contemporaneous NH SCA and 
AT and A Teg 1972-2002 for JJ, JA and JJA seasonal means. Bold type denotes 
significant (p < 0.05) correlations (corrected for serial correlation). RAW denotes 
data with trends included, while DET denotes data with a linear trend removed.

of the contemporaneous NH atmospheric circulation associated with NH SCA in 

observations and ECHAM4. Figure 5.6 shows JJA mean 500 hPa geopotential 

height anomalies poleward of 30°N associated with high minus low JJA NH SCA 

terciles 1972-2002. Observations show that the teleconnected response to NH SCA is 

larger in magnitude (and more significant) than the in situ response above the snow 

covered regions of EU and NA. South of 50°N there are continental-scale negative 

height anomalies across EU and NA. Away from the North Pole, large-scale positive 

height anomalies are found only over the North Atlantic south of Greenland. This 

corresponds to the region where warm air temperature anomalies are seen in Figure

5.5. The positive height anomalies adjacent to the North Pole are located upstream 

(west) of the EU and NA snow covered areas.

The ECHAM4 height response exhibits several differences to observations. First, 

a larger number of stronger, more localised height anomaly centres produce a less 

zonally homogeneous response than in observations. The ECHAM4 centres form a 

zonal ‘wave-train’ with positive (anticyclonic) height anomalies located adjacent to 

negative (cyclonic) height anomalies in series around the subpolar NH. However, 

this wave-train does not form a perfect circle and a weak meridional ridge extends 

from Scandinavia to the Middle East. Second, the response is stronger in ECHAM4 

above the snow covered regions, particularly over northern Siberia. Third, the 

North Atlantic response south of Greenland in ECHAM4 has the opposite sign 

to observations, with the positive height anomaly located south of the negative
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OBS

ECHAM4

OBS minus ECHAM4

o

Figure 5.6: JJA mean 500 hPa geopotential height anomalies for observations (top), 
ECHAM4 (centre) and observations minus ECHAM4 (bottom) associated with high 
minus low JJA NH SCA terciles 1972-2002. Contour interval is 5 dm for top and 
centre panels and 10 dm for bottom panel. Red contours denote positive values 
and blue contours denote negative values. Grey shaded areas denote differences 
significant at 5% as determined by a Student’s t-test.
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anomaly. The difference plot shows that the largest height differences are found 

over the North Atlantic (up to 30 dm), with significant differences in the area south 

of Greenland.

The effect of NH SCA on the hemispheric zonal flow is best seen in the lower- 

tropospheric wind fields. Figure 5.7 shows the JJA mean 850 hPa wind vectors 

for the same composite of years as Figure 5.6. In observations the circulation pat­

tern associated with the continental-scale height anomalies exhibits easterly wind 

anomalies over Eurasia and westerly wind anomalies over North America. The an- 

ticyclonic flow around the positive height anomaly south of Greenland is associated 

with warm, poleward advection from the Gulf Stream region. In ECHAM4, the 

850 hPa wind pattern shows the flow around the smaller, more localised height 

anomalies seen in Figure 5.6. The zonal flow linking EU, NA and Greenland is 

not established because of the presence of ridges situated over Eastern Europe and 

northern Canada. The negative height anomaly south of Greenland is associated 

with cooler, equatorward advection into the region east of Newfoundland. Thus, the 

absence of the teleconnected anticyclonic anomaly south of Greenland in ECHAM4 

is likely to explain why NH SCA and AT are uncorrelated.

Absence of Greenland snow cover

The problems identified above in the ECHAM4 atmospheric response near Green­

land to NH SCA may be associated with the lack of snow cover over Greenland 

in the GSDIO run (see Section 4.4.1). To investigate this possibility we analyse 

the capability of ECHAM4 to reproduce the well-documented temperature telecon­

nection involving Greenland and northern Europe, known as the North Atlantic 

‘seesaw’ (Rogers and van Loon 1979). This feature is strongest during winter but 

is observed all year round, albeit with weaker magnitude in summer. If ECHAM4 

reproduces closely the observed seesaw pattern in the absence of Greenland snow, 

then it is reasonable to conclude that the lack of Greenland snow does not influence 

the atmospheric response to NH SCA.

The seesaw is represented by an index of monthly mean 2 m temperature area-
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Figure 5.7: As Figure 5.6 except for JJA 850 hPa winds in observations (top), 
ECHAM4 (centre) and observations minus ECHAM4 (bottom). Vectors show 
monthly mean wind anomalies in ms-1.

Page 159



Chapter 5 NAOdjf Predictability from Lagged NH Snow Cover in a CGCM

1.0
co
CO 0.5o>ki_o
o
ch.0) 0.0
VcoQ.  SEESAW

 NH SCA
-0 .5

J F M A M J  J A S O N D
Month

Figure 5.8: Pearson pattern correlations between contemporaneous observed and 
ECHAM4 2 m air temperature composite means for high minus low terciles of 
Greenland temperature (solid line) and NH SCA (dashed line) 1972-2002. Green­
land temperature is area average for region [67°N-72°N, 52°W-47°W].

averaged over central Greenland [67°N-72°N, 52°W-47°W]. Figure 5.8 shows the 

monthly pattern correlations between observed and ECHAM4 NH (poleward of 

50°N) 2 m temperatures associated with high minus low terciles of the seesaw and 

NH SCA 1972-2002. ECHAM4 captures the seesaw with high accuracy during 

winter, when the seesaw is strongest (r ~  0.75). However, this drops to a minimum 

of r  ~  0.25 during June and July, when the seesaw is weakest. Examination of 

the ECHAM4 summer temperature patterns reveals the largest errors are in the 

teleconnections over the snow covered regions of EU and NA, while the errors above 

Greenland are small (not shown). This is further evidence that ECHAM4 represents 

in situ temperature responses more accurately than teleconnected responses.

By contrast, the pattern correlations for the hemispheric-scale temperature re­

sponse to NH SCA are weaker than for the seesaw response in all months except May 

and June. Figures 4.6 and 4.7 showed that ECHAM4 depicts accurately the in situ 

temperature responses to SCA. However, on the hemispheric-scale the errors are up 

to ~10°C; ECHAM4 underestimates the response to NH SCA for autumn through 

spring and overestimates the response during summer. During winter ECHAM4 is 

accurate in the temperature response above Greenland. However, ECHAM4 rep­
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resents poorly the teleconnected responses to NH snow cover during all months. 

This suggests that errors in the ECHAM4 temperature response to NH SCA do not 

result from the absence of snow cover over Greenland.

5.5.2 N orth A tlantic sector response

The second part of the proposed mechanism linking NH SCA and NAO d j f  in­

volves a contemporaneous atmospheric response to AT during summer centred on 

the North Atlantic. This leads by ~1 month patterns of SST near Newfoundland 

and in the subtropics, which persist into autumn. Since AT is not established dur­

ing summer in ECHAM4, we examine instead the response to NH SCA over the 

North Atlantic sector. If the response in ECHAM4 without AT is the same as 

in observations with AT, this would suggest that AT does not play a major role 

in observed NAO d j f  predictability. Therefore, the absence of a snow/AT link in 

ECHAM4 provides the opportunity to validate the observed AT link.

Figure 5.9 shows the evolution of ECHAM4 monthly mean anomalies in 850 hPa 

zonal wind, MSLP and SST over the North Atlantic sector April through October. 

The anomalies are associated with high minus low JJA NH SCA terciles 1972- 

2002. The SCA data are multiplied by -1 because the NH SCA and AT indices 

are negatively correlated (Table 5.2). This facilitates a comparison with Figure 3.6, 

which shows the response to AT terciles in observations 1950-2001. The zonal wind 

and MSLP responses show little coherency between months, which is reflected in the 

low magnitude JJASO seasonal means. Only during June and August is there any 

significant zonal wind response in ECHAM4 to NH SCA over the North Atlantic. 

In observations, there is a significant zonal wind response during both June and 

July and also in the JJASO mean.

The ECHAM4 SST fields show that significant SST anomalies evolve June 

through October in the absence of either AT or a consistent zonal wind or MSLP 

response. However, the SST anomalies exhibit several differences compared to those 

associated with AT in observations. First, the positive anomaly centred on 50°N 

July through September is located northwest of the Newfoundland anomaly seen in
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Figure 5.9: As Figure 3.6 except for ECHAM4 JJA mean (a) 850 hPa zonal wind, 
(b) MSLP and (c) SST anomalies associated with high minus low JJA NH SCA 
terciles 1972-2002. NH SCA index is multiplied by -1 to facilitate comparison with 
Figure 3.6.
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observations. Second, the subtropical SST anomaly centred on 30°N June through 

September has the opposite sign to observations (note that the SCA index is mul­

tiplied by -1). Third, the ECHAM4 anomaly magnitudes in the JJASO mean are 

~30% lower than observed, which reflects the reduced persistence between months 

compared to observations. These results show that SST anomalies persisting for 

two or three months occur in the North Atlantic in ECHAM4 without an associ­

ated significant atmospheric signal above the ocean. However, the pattern of SST 

anomalies is different to that in observations associated with AT (Figure 3.6). This 

suggests that AT does indeed play a major role in observed N A O d j f  predictability 

through its association with North Atlantic SST.

The evidence presented above shows that the link between NH SCA and N A O d j f  

functions differently in ECHAM4 compared to observations. First, the zonal gra­

dients in subpolar air temperature (AT) associated with NH SCA are not estab­

lished in ECHAM4. This is because a teleconnected contemporaneous anticyclonic 

anomaly south of Greenland does not form during JJA. This means that for high 

NH SCA conditions cooler northerly air is advected over southern Greenland, com­

pared to warm advection from the Gulf Stream region seen in observations. Second, 

the absence of a AT link to NH SCA means that there is no significant contem­

poraneous response to NH SCA in zonal wind and MSLP over the North Atlantic. 

Third, in the absence of this atmospheric forcing in ECHAM4, SST anomalies near 

Newfoundland and opposite-signed subtropical SST anomalies do not evolve in the 

months following June. Fourth, the reduced meridional SST gradients near New­

foundland lessen the influence of North Atlantic SST on extratropical cyclogenesis 

and, consequently, N A O d j f  predictability. What remains to be proven is whether 

the significant link between ECHAM4 summer NH SCA and N A O d j f  is a physical 

relationship or a Type I error.

5.6 ECHAM4 stationarity 1904-2002

We now examine the stationarity in both the N A O d j f  predictive link and the 

physical mechanism discussed above. This is assessed by subdividing the 1904-2002
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period into three independent segments. These segments cover the periods 1904- 

36, 1937-69 and 1972-2002, respectively, and are chosen because they contain an 

approximately equal number of years (the 1972-2002 period is retained to allow 

comparison with the previous analyses).

5.6.1 NAO djf predictability

The stationarity of general NAO predictability and NAOdjf predictability from 

lagged NH SCA is assessed. The lead/lag correlation matrices between ECHAM4 

monthly mean NH SCA and the NAO for 1904-36 and 1937-69 exhibit a similar 

level of intermonth variability as for 1972-2002 and are not field significant (not 

shown). This means that the general level of NAO predictability from NH SCA has 

remained low in ECHAM4 during the twentieth century. The stationarity in the 

lagged bi-monthly NH SCA/NAO d j f  link is found by comparing the three panels 

in Figure 5.4. The significant peak linking JA SCA and NAO d j f  is only present 

for the Hurrell index 1937-69 and not for any index 1904-36. In contrast to the 

1972-2002 period, the earlier plots show a significant contemporaneous link between 

January-February mean NH SCA and NAO d j f - This represents the strong impact 

of the NAO circulation on snow cover, which is seen in observations 1972-2002.

The stationarity of the predictive link between JA NH SCA and NAO djf is 

also assessed for the earlier time periods. The top row of Table 5.1 shows the 

cross-validated NAOdjf hindcast skill achieved 1937-69 using JA NH SCA as a 

lagged predictor. Positive skill is found against all three N A O d j f  indices, whereas 

1972-2002 skill is only seen against the CRU and MSLP PCI N A O d j f  indices. 

This is surprising because the link between JA SCA and the CRU and MSLP PCI 

N A O d j f  indices is weaker 1937-69 than 1972-2002 (Figure 5.4). However, none 

of these hindcast skill values is significant using our resampling test. No positive 

skill was found using any other summer averaging period or for the earlier period 

1904-36 (not shown). We conclude that N A O d j f  predictability from summer NH 

SCA is low in ECHAM4 throughout the twentieth century.

Prior to 1950, observations show reduced N A O d j f  predictability (Table 3.3).
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However, it is unclear whether ECHAM4 exhibits reduced N A O d j f  predictabil­

ity over this period for the same reasons as observations. The lack of ECHAM4 

N A O d j f  skill could be a representation of the observed reduction in boundary forc­

ing on N A O d j f  or of the dominance of internal dynamics in the CGCM. The lack 

of ECHAM4 N A O d j f  predictability prior to 1950 is somewhat surprising given the 

significant decadal N A O d j f  variability seen during the same period (Figure 5.2). 

However, analysis of the wavelet power spectrum for JA NH SCA reveals no low- 

frequency variability prior to 1950 (not shown). Figure 4.4 shows strong, but not 

significant, decadal variability in JJA NH SCA after 1980. Therefore, the absence 

of ECHAM4 N A O d j f  predictability 1900-50 can be attributed to a lack of decadal 

SCA variability, while 1972-2002 it is due to a lack of decadal N A O d j f  variability.

5.6.2 Physical basis for NAO d j f  predictability

The findings presented in Section 5.5 suggest that ECHAM4 N A O d j f  predictability 

1972-2002 does not occur through the same mechanism as the link proposed from 

observations. Since N A O d j f  predictability from NH SCA is nonstationary 1904- 

2002, it is reasonable to expect that the links between NH SCA and the North 

Atlantic would also be nonstationary over this period. This is assessed first through 

the association between summer NH SCA and 2 m air temperature. Figure 5.10 

shows the spatial correlation between JJA mean NH SCA and 2 m temperature 

poleward of 30°N for 1904-36 and 1937-69, which can be compared with Figure 5.5 

for 1972-2002. Overall, the earlier patterns show strong similarities to the 1972-2002 

pattern, with negative correlation above the snow covered areas and the absence of 

a teleconnected positive correlation south of Greenland. The teleconnection to the 

North Pacific is stronger in the earlier plots than 1972-2002, suggesting a greater 

degree of hemispheric-scale variability in this region prior to 1972. These results 

show that in ECHAM4 the NH SCA teleconnection to the North Atlantic is not 

present at any time during the twentieth century, which explains the low N A O d j f  

predictability prior to 1950 discussed above.

Since the mechanism proposed from observations is not present in ECHAM4,
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Figure 5.10: As Figure 5.5 except for ECHAM4 1904-36 (left) and 1937-69 (right).

the link between JA NH SCA and N AO d j f  must function through an alternative 

mechanism. Cohen and Saito (2003) proposed that persistence of cool conditions 

from summer into winter underpins the relationship between observed NH SCA 

and the NAOd j f - This is tested in ECHAM4 by calculating the persistence in 2 m 

air temperature poleward of 50°N in the months before, during and following high 

minus low JJA NH SCA terciles. We present these data for both observations and 

ECHAM4 1972-2002 and for ECHAM4 during the earlier time periods 1904-36 and 

1937-69. If persistence of cooler conditions is related to NAO d j f  predictability, 

then persistence should be observed in observations and ECHAM4 1972-2002 but 

not in ECHAM4 1904-36 when there is zero hindcast skill.

Figure 5.11 shows the month-to-month pattern correlation between fields of 2 m 

air temperature for pairs of months from April/May (A/M) to November/December 

(D/M). The month pairs J /J  and J/A  are contemporaneous with the NH SCA 

anomalies. For the period 1972-2002, persistence is low in observations (r < 0.5 

for all months), while in ECHAM4 persistence peaks during J/A  and A/S. How­

ever, the ECHAM4 pattern correlation drops to below r  =  0.3 during S/O, which 

means that persistence does not extend for more than ~ l-2  months following JJA 

SCA anomalies. Furthermore, the period 1904-36 in ECHAM4 (found to have zero 

hindcast skill) displays a similar level of persistence as 1972-2002 from J/A  to S/O.
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Figure 5.11: Pearson pattern correlation coefficients between fields of 2 m air tem­
perature for pairs of adjacent months denoted by their first letters. Temperature 
fields are the composite mean associated with high minus low JJA NH SCA terciles. 
Line colours denote: observations 1972-2002 (black), ECHAM4 1972-2002 (blue), 
ECHAM4 1937-69 (orange) and ECHAM4 1904-36 (red). Dashed horizontal lines 
show pattern correlations at r  =  0.4 and r  =  0.6, respectively.

These results suggest that persistence in air temperature is unrelated to NH SCA 

anomalies (and consequently NAOdjf predictability) both in observations and in 

ECHAM4.

There are two main conclusions from this analysis. First, during the period when 

ECHAM4 NH SCA is related significantly to N A O d j f  (1972-2002), the link does 

not occur through the same mechanism as seen in observations. Furthermore, the 

sign, location and magnitude of the NH SCA-related North Atlantic SST anomalies 

make them unlikely to influence the N A O d j f  directly. Second, ECHAM4 N A O d j f  

predictability from NH SCA is nonstationary 1904-2002. However, periods of high 

N A O d j f  predictability are unrelated to persistence in cooler air temperatures from 

summer to winter. Therefore, we conclude that the significant link seen in ECHAM4 

between JA NH SCA and N A O d j f  is most likely the result of a Type I error, rather 

than a physical relationship.

J/A A/S 
Pair of Months

O BS 19 7 2 -2 0 0 2  
ECHAM4 19 7 2 -2 0 0 2  
ECHAM4 1 9 3 7 -6 9  
ECHAM4 1 9 0 4 -3 6
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5.7 Discussion

Overall, the low level of NAO d j f  predictability seen in ECHAM4 is disappointing 

because it prevents a more thorough exploration of the physical mechanisms pro­

posed to underpin observed N A O d j f  predictability from NH SCA. This contrasts 

with the results of Gong et al. (2003), who found a significant link in ECHAM3 

between autumn Siberian snow cover and the winter AO index. The differences 

between these studies could arise from two factors. First, Gong et al. (2003) used 

an ensemble of atmospheric GCM integrations, whereas we examine a single CGCM 

integration. The lack of predictability in the present study suggests that the signal- 

to-noise ratio from a single ECHAM4 integration is not sufficient to detect contem­

poraneous or lagged snow/NAOd j f  links. This means the ability to distinguish 

snow-related climate responses from internal variability is restricted. Second, the 

transient coupled ECHAM4 integration is subject to climatological drift. Moreover, 

this study has shown that coupling the atmosphere and ocean in ECHAM4 may 

result in less accurate boundary forcing of the atmosphere than using prescribed 

ocean conditions. This is because oceanic variability may diverge from observations 

during the transient integration 1860-2050. Further investigation is required into 

the influence of coupling on the boundary forcing.

An important finding highlighted in Section 5.5 is that the AT link to the 

North Atlantic sector depends more on the teleconnection with southern Greenland 

than with the snow covered regions of EU and NA. The key dynamical property 

of the teleconnection appears to be an anticyclonic anomaly south of Greenland 

associated with high NH SCA, which advects warm air polewards from the Gulf 

Stream region during summer. These findings are in agreement with the discussion 

in Chapter 3, which stated that in observations NH snow cover explains only ~50% 

of the variance in summer AT. In ECHAM4, the A T  variance explained is less 

than 10% with Greenland included and ~20% excluding Greenland. Therefore, 

the inaccurate representation of teleconnections in ECHAM4 means summer snow 

cover is less related to AT (and to NAO d j f ) than in observations.

The air temperature response above Greenland in ECHAM4 is accurate during
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winter despite the absence of snow cover on the Greenland ice sheet. However, larger 

errors were found over Greenland during summer, which raises several possibilities. 

First, the atmospheric response to the lack of Greenland snow could be seasonal. 

Second, the observed seesaw pattern is weaker during summer and its hemispheric- 

scale effects are reduced. Therefore, ECHAM4 may capture the reduced NH climate 

variability during summer but with large errors in the teleconnected temperature 

responses. Third, the model may have been tuned to perform well during winter, 

when climate variability is increased and predictability is greater. From the analysis 

in this study, it is not apparent which of these explanations is most likely.

The observational evidence presented in this thesis supports an active, dynam­

ical teleconnection between NH SCA and the North Atlantic sector. The results 

found in ECHAM4 are therefore contradictory to the observational results. This 

study was intended as a preliminary investigation to highlight the potential use of 

CGCMs in investigating lagged NAO d j f  predictability from NH snow cover. The 

next stage will be to employ an ensemble of CGCM integrations forced with re­

alistic NH SCA scenarios to determine the precise role of NH SCA in NAO d j f  

predictability. This should yield more information on the potential for seasonal 

NAOdjf predictability from lagged snow cover.

5.8 Limitations of CGCMs for snow/atm osphere 

modelling

This study has highlighted the strengths and weaknesses of using a twentieth cen­

tury CGCM integration for snow/atmosphere investigations. One of the key aims 

of this research was to evaluate the limitations in CGCM snow modelling and to 

propose potential improvements that could be made to future CGCMs for this pur­

pose. Four main limitations were highlighted in the ECHAM4 CGCM, three of 

which are likely to affect other CGCMs.

First, the boundary forcing and response of hemispheric and regional SCA in­

dices was different in ECHAM4 and observations. Evidence to support this assertion
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comes from a variety of sources. The correlation between the time series of observed 

and ECHAM4 interannual SCA variability 1972-2002 is low (t r a n k  < 0.3) for all 

seasons except summer, when ECHAM4 underestimates the magnitude of SCA 

variability by ~60%. The presence of multi-annual persistence and decadal SCA 

variability is not captured by ECHAM4. Furthermore, trends in ECHAM4 SCA 

exhibit less seasonality compared to observations in response to a realistic increase 

in mean air temperature 1972-2002. Improvements to schemes coupling the land, 

ocean and atmosphere are essential to ensure that the time scales of variability 

from snow to atmosphere and atmosphere to snow are represented accurately. Such 

improvements are already incorporated into the latest generation of CGCMs and 

future validation studies will show what benefits this has brought.

Second, climate variability in ECHAM4 appears to occur on more regional spa­

tial scales than in observations. This is demonstrated in analyses of ECHAM4 SCA, 

NAO and NH geopotential height variability. One explanation for this could be the 

relative dominance of internal (and therefore smaller scale), compared to boundary- 

forced (larger scale), atmospheric variability in the CGCM. This is highlighted by 

a lack of low-frequency (i.e., large scale) NAO or SCA variability 1904-2002 and 

by the absence of a contemporaneous link between NH SCA and NAO^j^. The 

effect of this limitation is that hemispheric-scale teleconnections and NAOd jf  pre­

dictability appear to be lower in ECHAM4 than in observations. These limitations 

may be reduced in an ensemble integration, which would filter the internal model 

variability.

Third, the correlation between observed and ECHAM4 seasonal snow-related 

surface fluxes is t r a n k  ~  —0.15 for EU and t r a n k  ~  0.30 for NA 1972-2002. Since 

the contact between the snow surface and the atmosphere occurs through these 

fluxes, this limitation means ECHAM4 would not be expected to capture correctly 

the in situ or teleconnected atmospheric responses to snow cover. Yet, the in situ 

atmospheric temperature responses to regional SCA over NA and EU are modelled 

accurately in ECHAM4. Further investigation is required to determine the reason 

for this apparent contradiction. The CGCM may be deficient in the representation 

of cloud cover above the snow surface and/or soil moisture processes related to snow
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melt. These factors are difficult to verify because of the lack of reliable observational 

data for comparisons.

Fourth, the ECHAM4 GSDIO integration was run with no snow cover on the 

Greenland ice sheet. An explanation for this limitation was not forthcoming from 

MPI or DKRZ despite repeated requests. Therefore, it is unknown whether the 

effect of Greenland snow was parameterised in GSDIO through another variable, 

for example, glacier thickness or ice depth. One of the problems in the ECHAM4 

representation of NH SCA/NAO d j f  links was found to be the representation of the 

summer air temperature teleconnection between EU, NA and southern Greenland. 

Although tests showed that the air temperature response above Greenland is accu­

rate during winter, greater errors are seen in this region during summer. Therefore, 

the absence of snow cover over Greenland may contribute, at least in part, to the 

reduced NAO d j f  predictability from summer snow cover in ECHAM4.

5.9 Summary and conclusions

This Chapter presents an analysis of twentieth century ECHAM4 NAO d j f  pre­

dictability associated with lagged NH snow cover. ECHAM4 NAO djf variability 

corresponds poorly to observations 1904-2002. The general level of NAO predictabil­

ity available from lagged NH SCA 1972-2002 is low in observations and ECHAM4. 

Furthermore, ECHAM4 does not capture the contemporaneous NAO d j f  influence 

on SCA. However, a significant link is identified between July-August (JA) mean 

NH SCA and NAO dj f ,  which produces positive, but not statistically significant, 

hindcast skill.

The physical mechanism linking ECHAM4 summer NH SCA and NAOd jf  func­

tions differently to the link in observations. The contemporaneous zonal gradients 

in summer subpolar air temperature (AT), associated with NH snow cover in obser­

vations, are not established in ECHAM4. This is because the ECHAM4 response 

to NH SCA is more regional in scale. Consequently, the observed teleconnected 

anticyclonic anomaly over the North Atlantic, associated with high NH SCA, is 

not found during summer. The contemporaneous atmospheric and lagged oceanic
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responses to NH SCA over the North Atlantic do not correspond to observations, 

which means the SST feedback onto NAO d j f  during autumn is absent. The JA 

NH SCA/NAO d j f  link in ECHAM4 is nonstationary during the twentieth century, 

which is not explained by AT or by persistence in cooler temperatures from summer 

into winter. It is therefore likely that the link in ECHAM4 is a Type I error rather 

than a physical association.

Four main limitations for snow/atmosphere modelling are identified in ECHAM4. 

First, the boundary forcing and response of SCA is different in observations and 

ECHAM4. Second, compared to observations, climate variability in ECHAM4 oc­

curs on more regional spatial scales. This is most likely related to the dominance 

of internal dynamics in ECHAM4. Third, problems were identified in the energy 

balance of snow covered surfaces, which may result from errors in cloud param- 

eterisation or deficiencies in soil moisture hydrology. Fourth, the ECHAM4 run 

contained no snow over the Greenland ice sheet, which may lower NAOd jf  pre­

dictability during summer.
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Chapter 6

Conclusions and Future Work

6.1 Introduction

This thesis has investigated the predictability of North Atlantic winter climate 

on seasonal-to-interannual time scales. Chapter 1 frames the problem of seasonal 

climate forecasting (SCF) and discusses two alternative methodologies for SCF. 

The motivation for the specific areas of research in this thesis is also presented. 

Climate data requirements for these research areas are discussed in Chapter 2. The 

results from the original research are reported in Chapters 3, 4 and 5. Chapter 3 

examines empirical predictability for the winter NAO (NAOdjf) and compares four 

published prediction schemes using a standardised assessment. Chapter 4 assesses 

the capability of a coupled GCM (CGCM) to represent the observed temporal and 

spatial variability in Northern Hemisphere (NH) snow cover 1972-2002. Chapter 

5 quantifies the NAOd j f  predictability associated with NH summer snow cover in 

the CGCM simulation and investigates its stationarity during the twentieth century. 

This Chapter summarises the main conclusions from this work and provides answers 

to the research questions posed in Sections 1.4.6 and 1.5.4. Potential future research 

arising from this work is also discussed.

6.2 Best lagged NAO^jf predictor (Chapter 3)

Chapter 3 presents a detailed assessment of the current level of seasonal empirical 

NAOdjf predictability. A standardised hindcast procedure is used to validate four 

previously published lagged NAO d j f  predictors. A new predictor based on the
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zonal gradient in summer NH subpolar 2 m air temperature (AT) is also examined.

(i) What is the most skilful lagged predictor of the N A O d j f ?

Over three extended assessment periods out to 100-years, summer AT is most skilful 

in predicting NAO d j f - For the period 1900-2001, May-September mean AT offers 

highest skill (~6-9% improvement over climatology). Since 1972, June-July mean 

AT produces highest skill (~35% improvement over climatology).

(ii) Are the predictive NAOdjf relationships stationary when assessed over 100, 50 

and 30 year periods?

An increase in NAOdjf predictability since 1972 is observed for all predictors except 

those derived using SSTs. Our findings concur with those of previous studies (e.g., 

Rodwell and Folland 2002, Trigo et al. 2004), who found that predictability has 

increased since 1950. Skill from the summer AT predictor exhibits a ~60 year cycle. 

Predictability from SSTs is highly variable since 1950 and depends on the specific 

regions, time periods and statistical methods employed. It is unclear whether the 

nonstationarity is a result of increasing greenhouse gas emissions or a natural feature 

of the climate system (Trigo et al. 2002).

(iii) Does the most skilful period coincide with other periods of variability in either 

N A O d j f  or the predictors?

The increase in skill since 1972 coincides with a period of high decadal NAO d j f  

variability. The intervals of highest predictability from the A T/N A O djf link co­

incide with positive trends in the NAOdjf index in the early and late twentieth 

century. However, AT performs equally well predicting above or below median 

NAO d j f  seasons.

(iv) What are the physical mechanisms that underpin the link between the N A O d j f  

and the most skilful lagged predictor?

Evidence is presented supporting a physical link between summer AT and NAO^jj^. 

NH snow cover plays a significant role in establishing AT in summer. During 

subsequent months the atmospheric circulation response to AT is centred on the

Page 174



C h ap te r 6 Conclusions and Future Work

midlatitude North Atlantic. These circulation anomalies lead by ~1 month the 

formation of a pattern of North Atlantic SSTs, which persist into late autumn. 

SST persistence is strong off southeast Newfoundland, which coincides with the 

main region of North Atlantic cyclogenesis. Therefore, through meridional SST 

gradients and in situ surface fluxes, the SST pattern could influence the formation 

of extratropical cyclones and, subsequently, the N A O d j f -

Further research

This study has focused on predicting N A O d j f - Future investigations should deter­

mine the predictability found for NAO indices computed over different averaging 

periods. For example, Thompson and Wallace (2000) found that the North At­

lantic climate is most active January through March. Linear statistical techniques 

are employed to model the relationships between the lagged predictors and the 

N A O d j f - However, there is no reason to suggest that these links are best described 

using linear models. Several studies have highlighted asymmetrical relationships 

between the climate system and positive and negative N A O d j f  phases (e.g., Trigo 

et al. 2002, Peng et al. 2003). Future investigations employing nonlinear regression 

techniques (e.g., Dewer and Wallis 1999) could be conducted to assess the degree 

of nonlinearity in the predictive relationships.

N A O d j f  predictability may be further improved by clarifying the causes of 

nonstationarity during the twentieth century. For example, skill from persistent 

North Atlantic SSTs during autumn is higher in some years than others. Future 

research could employ observational data or an atmospheric GCM ensemble to 

investigate why these links are nonstationary. Furthermore, N A O d j f  predictability 

arising from North Atlantic SSTs has been shown to compete with the influences of 

ENSO and Indian Ocean SST variability (Hoerling et al. 2001, Sutton and Hodson 

2003). Future research should aim to quantify the exact magnitude of the North 

Atlantic influence by taking steps to isolate the North Atlantic signal from that of 

the other basins. In observational studies this could be approximated by analysing 

the residuals from a regression of ENSO on North Atlantic SST. However, the
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impact on the atmosphere from SSTs in one particular region is best examined using 

a GCM forced with fixed or climatological SSTs except in the region of interest.

6.3 Coupled GCM snow validation (Chapter 4)

Chapter 4 presents a comparison of the temporal and spatial variability of sea­

sonal snow covered area (SCA) in observations and a coupled GCM (CGCM). 

The CGCM employed is the ECHAM4/OPYC3 scheme (henceforth ‘ECHAM4’) 

sponsored jointly by the Max Planck Institut fur Meteorologie and the Deutsches 

Klimarechenzentrum.

(i) Can CGCM snow depth data be employed to create an index of monthly mean 

snow cover?

Indices of fractional SCA 1904-2002 were computed from snow depth output taken 

from the ECHAM4 twentieth century coupled climate integration. The SCA indices 

represent monthly mean snow cover over North America (NA), Eurasia (EU) and 

the entire NH poleward of 20°N. Grid cells are considered to be completely snow 

covered above a threshold depth of 2.5 cm. Greenland was shown to have zero snow 

depth lying on the ice sheet throughout the ECHAM4 integration. The NA and 

NH SCA indices were therefore corrected to include the Greenland land area.

(ii) How well does a coupled GCM simulate the observed spatial and temporal vari­

ability in seasonal snow cover when forced with observed radiative forcing 1972- 

2002?

Negative linear trends in ECHAM4 SCA are stronger than observations in winter 

and weaker in summer. These trends occur in response to a realistic increase in 

mean air temperature, which may cause overestimation of the winter snow/albedo 

feedback in ECHAM4. The annual SCA cycle in ECHAM4 compares closely with 

observations. However, seasonally varying regional biases are found, which are 

largest over NA during summer and over EU during spring. The representation 

of observed interannual SCA variability is poor for all regions and all seasons. 

Compared to observations, ECHAM4 summer SCA shows highest interannual cor­
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relations but only one-third of the variability. Furthermore, observed multi-annual 

persistence of winter and summer SCA anomalies is not captured by ECHAM4. 

This evidence supports the theory that ECHAM4 SCA is driven primarily by in­

ternal dynamics and that the boundary forcing and response of ECHAM4 SCA are 

different to observations.

(iii) Does the coupled GCM simulate realistically the observed contemporaneous in 

situ links between seasonal snow cover and the atmosphere 1972-2002?

High seasonal SCA is associated with an equivalent barotropic cooling, which ex­

tends from the surface to the tropopause above the snow covered regions. An 

opposite-signed anomaly is seen in the stratosphere. ECHAM4 reproduces these 

observed patterns with accuracy in spatial position and magnitude, although dif­

ferences are most pronounced during winter and autumn in both EU and NA. 

ECHAM4 captures accurately the significant lagged snow/temperature feedback 

in summer. However, ECHAM4 seasonal mean surface fluxes are accurate only 

over NA during winter and spring. The flux response above snow cover shows the 

largest errors in ECHAM4, particularly during summer. Furthermore, the observed 

contemporaneous link between winter NH SCA and NAO d j f  is not captured in 

ECHAM4.

(iv) Does coupling a GCM to the ocean improve its representation of snow cover 

variability?

Compared to atmospheric GCMs, ECHAM4 shows some improvements in the rep­

resentation of the annual SCA cycle and in situ atmospheric temperature responses 

to SCA (Frei and Robinson 1998, Frei et al. 2003). However, regional biases and 

the dominance of internal dynamics in SCA variability are not improved in the 

coupled model. Twentieth century boundary forcing of SCA and the N A O djf are 

most likely different to observations. Furthermore, serious limitations are found in 

the surface energy balance above snow cover. Improvements are expected from the 

next generation of CGCMs, most of which are currently operational without flux 

adjustments (Covey et al. 2003).
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Farther research

The validation of GCMs will always be limited by the lack of a definitive set of 

observational data with which to compare the models. In this study, NCEP/NCAR 

reanalysis data were employed for temperature, winds and surface fluxes but these 

data are themselves derived from a CGCM and are not without inhomogeneities. To 

minimise these effects, future comparisons of observed and CGCM snow/atmosphere 

interaction should be performed using as wide a selection of observational/reanalysis 

data as possible, e.g., ERA-40 data. Where possible, this should include station 

observations.

The focus on the ECHAM4 CGCM allowed for a more detailed examination 

of snow/atmosphere interaction than in previous CGCM snow validations (e.g., 

Frei and Robinson 1998, Frei et al. 2003). However, future research investigating 

N A O d j f  predictability should seek to minimise the effect of individual CGCM er­

rors by comparing results from a suite of CGCMs. The deficiencies in the ECHAM4 

surface fluxes and albedo may be better simulated in other models. For example, 

data are available from a twentieth century integration run on the UKMO coupled 

HadCM3 model. However, Covey et al. (2003) found that current CGCMs share 

many of the same deficiencies. Therefore, improvements may not be seen until the 

next generation of coupled GCMs become available to the research community.

Some of the inaccuracies identified in the CGCM response to SCA may be due 

to the formulation of the SCA indices. The Frei et al. (2003) method is not ideal 

because all grid cells with snow depth > 2.5 cm are assigned the same weight. 

More complex SCA indices could be computed and these may yield improvements 

in apparent CGCM performance. One example of an alternative SCA index is to 

use the leading principal component of snow depth. However, SCA indices involving 

snow depth have the limitation that they diverge from the observational snow cover 

indices, which hinders comparison. Recent research also suggests that increased 

information on snow/atmosphere interaction can be obtained by weighting snow 

cover indices by latitude and insolation (Pielke et al. 2004).
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6.4 NAO d j f  predictability from snow cover in a 

coupled GCM (Chapter 5)

Chapter 5 presents an analysis of twentieth century ECHAM4 NAO d j f  predictabil­

ity associated with lagged NH snow cover.

(i) Does a coupled GCM capture observed temporal NAOdjf variability during the 

twentieth century?

The range and magnitude of N A O d j f  variability is captured accurately. However, 

three ECHAM4 N A O djf indices exhibit several differences to three equivalent ob­

servational N A O djf indices. First, the CGCM and observed indices show low 

correspondence 1904-2002. Second, there is little trend in the ECHAM4 indices 

1904-2002 or 1972-2002. Third, ECHAM4 fails to capture correctly the timing of 

observed peaks in decadal N A O d j f  variability. These factors contribute to lower 

N A O d jf  predictability in ECHAM4 than in observations.

(ii) Does a coupled GCM represent accurately the observed lagged and contempora­

neous links between snow cover and the N A O d j f  1972-2002?

The general level of NAO predictability available from lagged NH SCA 1972-2002 

is low in observations and ECHAM4. ECHAM4 does not capture the contempora­

neous N A O d j f  influence on SCA, however, a significant link is identified between 

July-August (JA) mean NH SCA and N A O d j f - This is one month later than the 

link identified in observations (Saunders et al. 2003). Cross-validated hindcasts us­

ing ECHAM4 JA NH SCA as a lagged N A O d j f  predictor show some positive, but 

not statistically significant, skill.

(iii) Is the physical mechanism linking summer snow cover and the N A O d j f  the 

same in the coupled GCM as in observations?

The physical mechanism linking JA NH SCA and N A O d j f  in  ECHAM4 functions 

differently to the link proposed from observations. The contemporaneous zonal gra­

dients in summer subpolar air temperature (AT), associated with NH snow cover 

in observations, are not established in ECHAM4. This is because the ECHAM4
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teleconnected response to NH SCA is more regional in scale than in observations. 

Consequently, the contemporaneous teleconnected anticyclonic anomaly over the 

North Atlantic, associated with high NH SCA, does not form during summer. Dur­

ing the months following JA, persistent North Atlantic SST anomalies evolve in 

ECHAM4 but they exhibit different magnitudes and spatial positions compared 

to observations. Therefore, the feedback to the atmosphere from meridional SST 

gradients in the region near Newfoundland does not occur (c./. Section 3.4.4).

(iv) Is the link between summer snow cover and the N A O d j f  stationary during the 

twentieth century?

The significant link between JA NH SCA and N A O djf is present during the periods 

1937-69 and 1972-2002 but not during 1904-36. However, neither summer A T  nor 

persistence in air temperatures explain this significant link. Persistence of cooler 

conditions is seen for 1-2 months following summer NH SCA anomalies. However, 

persistence is also seen during the 1904-36 period, when there is no significant link 

between JA NH SCA and N A O d j f - If is therefore likely that the link in ECHAM4 

is a Type I error rather than a physical association.

(v) What are the main limitations in using a coupled GCM for snow/atmosphere 

modelling?

Four main limitations are identified in ECHAM4. First, the boundary forcing and 

response of the ECHAM4 SCA indices is different to observations. This suggests 

a need for improved CGCM land surface schemes, which should be available from 

the next generation of coupled models. Second, compared to observations, climate 

variability in ECHAM4 occurs on more regional spatial scales. This is most likely 

related to the dominance of internal dynamics in ECHAM4, which acts on smaller 

spatial scales than boundary-forced variability (e.g., Lorenz 1969). These limita­

tions would be reduced in an ensemble integration. Third, problems were identified 

in the radiative balance of snow covered surfaces, which may result from errors 

in cloud parameterisation or deficiencies in soil moisture hydrology. Fourth, the 

ECHAM4 run contained no snow over the Greenland ice sheet. During winter the
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atmospheric response over Greenland was unaffected. However, larger differences 

to observations were found over this region during summer.

Further research

Further investigation is required to clarify the physics underpinning the mechanism 

linking summer NH snow cover and the NAOdjf. The relationship between snow 

cover, AT and the teleconnection to the North Atlantic could be examined using 

CGCM experiments forced with observed and/or idealised snow cover scenarios. 

However, this would require a CGCM capable of responding on hemispheric, rather 

than purely regional, spatial scales. Another solution would be to analyse the 

output fields from the DEMETER project (Palmer et al. 2004) to assess whether the 

link is better captured in the multi-model ensemble. The influence of the summer 

zonal wind anomalies on North Atlantic SST near Newfoundland also needs to be 

quantified. One simple method would be to examine the SST evolution in response 

to an idealised wind field imposed on a passive ocean. The N A O d j f  response 

in the idealised experiment could then be compared to the N A O d j f  response to 

climatological SSTs.

Snow cover and soil moisture are related significantly, particularly during spring 

and summer (Ose 1996, Shinoda 2001, Robock et al. 2003). Some of the limitations 

identified in ECHAM4 snow/atmosphere interaction may result from deficiencies 

in the CGCM hydrological cycle. A comparison between observed and modelled 

soil moisture fields should reveal how well the CGCM simulates hydrological snow 

feedbacks. However, a major limitation is that long records of soil moisture are 

restricted to station observations over China and the Former Soviet Union (Robock 

et al. 2003).

This study has focused on the predictability of the N A O d j f ? which is the dom­

inant mode of variability for North Atlantic winter climate. However, the N A O d j f  

mode explains ~40% of the variance in twentieth century winter North Atlantic 

MSLP (Hurrell et al. 2003), which means other modes explain the remaining 60%. 

Barnston and Livezey (1987) described several such modes, including the East At­
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lantic, Eurasia-1 (or Scandinavian) and Eurasia-2 (or East Atlantic/West Russia) 

patterns. Future work should assess whether additional North Atlantic predictabil­

ity can be derived from the influence of lagged snow cover on these patterns of 

variability.

6.5 Final remarks

NAO d j f  predictability above the levels reported previously for the period 1972- 

2002 has been identified from empirical models. However, nonstationarity in the 

predictive relationships means that, to a large extent, we cannot rely on these 

models for future NAO djf predictions. CGCMs offer significant opportunities for 

resolving these issues through detailed investigation of the physics underpinning the 

empirical relationships. Yet this work has highlighted major problems in the rep­

resentation of climate processes in current CGCMs. Future generations of CGCMs 

may be more accurate, but experience has shown that it is not easy to make big 

improvements in these models (van Oldenborgh et al. 2003). The way forward for 

seasonal forecasting must be increasing interaction between empirical and dynam­

ical modellers and a realisation that both camps depend on each other for future 

progress.
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