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Abstract
The replication factor Cdcl8 (Cdc6 in other organisms) is required to initiate 

DNA replication and the S phase checkpoint, which restrains mitosis until 

replication is faithfully completed. In this thesis I have investigated these roles 

within the cell cycle of the single-celled eukaryote Schizosaccharomyces 

pombe (fission yeast), and in addition I have identified putative new roles for 

this replication factor.

The Cdcl8 ATPase loads the MCM complex, a putative DNA helicase, onto 

chromatin in late mitosis and early G1 phases in preparation for DNA 

replication. I have shown that the association of Cdcl8 with chromatin does 

not require ATP binding, whilst ATP binding is necessary to initiate an S 

phase checkpoint signal. ATP binding and hydrolysis are required for MCM 

loading activity and hence DNA replication. I also present evidence indicating 

that Cdcl8 can restrain mitosis from G1 in the absence of DNA replication, 

perhaps as part of a complex with the replication factors Cdtl and the ORC 

complex.

From my work it appears that Cdcl8 is required during S phase for at least 

two further roles. Firstly, Cdcl8 is needed to maintain the S phase checkpoint 

when DNA replication is affected by perturbations that are likely to involve 

stalled forks or DNA damage. Secondly, Cdcl8 may be required in an 

unperturbed S phase to prepare cells for entry into or progression through 

mitosis. This latter role is unlikely to involve DNA metabolism, and may 

instead be related to chromosome preparation or dynamics.
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Chapter 1 Introduction

Chapter 1. Introduction

1.1 The mitotic cell cycle

1.1.1 Overview

The eukaryotic mitotic cell cycle consists of an ordered sequence of events by 

which one cell gives rise to two identical daughter cells (cell duplication). The 

fundamental events underlying this process are the duplication and segregation 

of chromosomes followed by division of the cell, and these events are 

confined to specific phases of the cell cycle. DNA replication and duplication 

of chromosomes are restricted to the synthesis phase (S phase) and 

chromosome segregation occurs during the mitotic phase (M phase). These 

phases are often separated by two gap phases, named G1 and G2, which 

generally correspond to periods of cell growth. Models of how the cell cycle 

operates have been constructed from work carried out in a variety of 

experimental systems from yeasts to humans, but the fundamental concepts 

and mechanisms appear to be highly conserved. As the work presented in this 

thesis is entirely based on experiments carried out in the fission yeast 

Schizosaccharomyces pombe, I will focus on the fission yeast cell cycle, but 

refer to work in other organisms for comparative purposes.

Commitment to the mitotic cell cycle occurs in G1 at a point called ‘Start’ in 

yeasts or the ‘Restriction Point’ in metazoans. At this point cells assess their 

ability to properly complete a full mitotic cell cycle, based on a range of 

factors, from cell size to nutrient status. In higher eukaryotes the decision to 

pass the restriction point must also consider a host of external signals, 

including growth factors, attachment factors and developmental cues. The 

commitment to duplicate is an irreversible decision and cells have no option 

but to pass through S and M phases before returning to the next commitment 

point. Cells that are not prepared to commit to duplication can temporarily 

leave the cell cycle, usually from G l, and pass to a state known as 

‘quiescence’ (or GO). The quiescence state is characterised by a general 

reduction in a number of active systems involved in cell duplication (Blow
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Chapter 1 Introduction

and Hodgson, 2002), but cells in this state are still able to respond to a change 

in conditions or external cues that would enable them to re-enter the cell cycle. 

Other fates can await a cell, such as senescence in metazoans (an irreversible 

exit from the cell cycle) or sexual differentiation in fission yeast.

During S phase DNA replication occurs and cohesion is established between 

the newly synthesised sister chromatids. Cells then undergo a period of growth 

(G2) before mitosis. Here we see the formation of a bipolar spindle to which 

the kinetochores of each sister chromatid become attached. Loss of cohesion 

between sister chromatids then enables the segregation of each chromatid to 

opposite poles of the spindle (at the metaphase-anaphase transition). Upon exit 

from mitosis, the spindle breaks down and cells form a septum which splits 

the cell in the middle (the process of cytokinesis) giving rise to two new cells 

with an identical genotype. The length of the G1 and G2 phases can vary 

greatly between cell types. In Xenopus laevis, early fertilised embryos undergo 

a series of rapid cleavage divisions, and have a modified cell cycle which 

consists merely of alternating rounds of interphase consisting only of S and M 

phases (Newport et al., 1985). After the midblastula transition, the G1 and G2 

phases appear and the mitotic cell cycle resembles the cycle described above. 

In the budding yeast Saccharomyces cerevisiae, a size control operates in G1 

and represses the onset of S phase until cells reach a critical size. Once cells 

pass Start, they can then initiate mitotic events, such as spindle formation and 

budding, in parallel to DNA replication. Therefore cells spend only a small, if 

any, part of the cell cycle in G2. Also, budding yeast cells divide by a 

mechanism that allows the daughter cell to bud from the mother cell, instead 

of the symmetrical division that occurs in fission yeast and many mammalian 

cells (Forsburg and Nurse, 1991a).

The requirement to transmit genetic information accurately from parent to 

daughter cells raises two fundamental problems for the mitotic cell cycle. 

Firstly, there is the completion problem. This refers to the need to complete 

one process before the next process is initiated. The solution to this is the use 

of checkpoint systems, which restrain one process until an earlier process is

14



Chapter 1 Introduction

complete (Hartwell and Weinert, 1989). An example of this is the DNA 

replication checkpoint, which restrains mitosis whilst DNA replication is 

incomplete. Without such a system a premature mitosis would leave cells with 

an incomplete chromosome complement. Secondly, there is the alternation 

problem. This refers to the need to ensure that S phase is followed only by 

mitosis, and that mitosis is only followed by S phase (Broek et al., 1991). In 

principle this need is met by ensuring that the completion of one process leads 

to a loss of competency for that process. This competency is only restored 

following completion of the alternative process. An example of this is the 

removal of replication competence as cells progress through S phase. This 

competence can only be regained as cells exist the subsequent mitosis.

Without such controls, cells risk rereplication of DNA and polyploidy. In later 

sections the two examples used here will be discussed further.

1.1.2 The fission yeast life cycle

Fission yeast cells spend most of the mitotic cell cycle (approximately 70%) in 

G2 and they approximately double their mass before reaching the critical size 

required for entry into mitosis (figure 1.1). Fission yeast cells have a very 

short G1 period and cytokinesis occurs at the same time as the S phase of the 

following cell cycle. This means that a FACS profile (which plots DNA 

content against frequency) of a cycling population of cells displays only a 2C 

DNA peak (DNA replicated). DNA replication can be inhibited using the drug 

hydroxyurea (HU) which inhibits the enzyme ribonucleotide reductase (RNR) 

and results in the depletion of free nucleotides available for chain elongation. 

When replication is inhibited, cytokinesis occurs without chromosome 

duplication and a 1C DNA peak is produced.

The fission yeast cell is rod shaped (with constant width) and grows 

bidirectionally from its tips. Inhibition of the cell cycle can occur without 

inhibition of growth, and in such cdc (cell division cycle) mutants cells 

become highly elongated (Nurse et al., 1976). This phenomenon can also be 

seen by a continued rise in population mass with a plateau in cell number. Due 

to the characterised distribution of cells in the cell cycle, described above, this
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Chapter 1 Introduction

cell number plateau can be used to position the block-point of the cell cycle 

inhibition. If cells become blocked at the G2/M transition (e.g. using a cdc25- 

22 temperature sensitive (ts) mutant) then approximately 70% of the 

population in G2 will not commit to mitosis and cytokinesis. With only 

M/Gl/S phase cells continuing with mitosis and cell division, overall cell 

number increases in such mutants by approximately 30%. If cells become 

blocked in the cell cycle at Gl/S (e.g. using a cdcl0-v50 ts mutant), then most 

of the population will divide before reaching the block-point, leading to an 

approximate cell number doubling.

Pre-start fission yeast cells that are starved of nitrogen sources will exit the 

cell cycle into quiescence. Haploid cells in this position can conjugate with 

haploids of opposite mating type to form a diploid zygote (a process called 

shmooing). In continued starvation conditions, this zygote will undergo pre- 

meiotic S phase, two meiotic nuclear divisions and sporulation to produce four 

haploid spores in a zygotic ascus. The diploid zygote can be maintained as a 

diploid cell if grown on rich medium prior to meiosis. Diploid cells in these 

circumstances enter a mitotic cell cycle similar to that described for the 

haploid. Both haploid cells, with one copy of each chromosome (IN), and 

diploid cells, with two copies of each chromosome (2N), cycle between 1C 

(DNA unreplicated) and 2C (DNA replicated) states.

1.2 Control of the mitotic cycle-Cyclin Dependent 

Kinases

The complementary findings of two different approaches, a genetic one and a 

biochemical one, led to the discovery of the master regulator of the eukaryotic 

cell cycle: the cyclin-dependent kinase (CDK). Screens for cells that continued 

to increase their cell size in the absence of cell division {cdc mutants) were 

carried out in both budding yeast (Hartwell et al., 1974) and fission yeast 

(Nasmyth and Nurse, 1981; Nurse et al., 1976) and led to the isolation of 

many conditional, temperature-sensitive mutants. The most important mutants 

were those of cdc2, which displayed defects in both DNA replication and 

nuclear division (Nurse and Bissett, 1981; Nurse and Thuriaux, 1980). A
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Chapter 1 Introduction

similar phenotype was observed in mutants of the CDC28 gene in budding 

yeast (Hartwell et al., 1974), and complementation analysis showed that 

ectopic expression of the CDC28 gene in fission yeast could complement the 

ts cell cycle arrest of the cdc2-33 mutant (Beach et al., 1982). Later, a human 

homolog was cloned by its ability to complement the same ts mutant (Lee and 

Nurse, 1987). Hence these experiments identified a conserved role for the 

cdc2 gene in the eukaryotic cell cycle, and an early indication of gene function 

came when Cdc2 was shown to be a 34kD phosphoprotein with protein kinase 

activity against casein (Simanis and Nurse, 1986) and histone HI (Moreno et 

al., 1989).

The discovery of Cdc2 via biochemical means began with the identification of 

a maturation promoting factor (MPF) in the frog Rana pipiens. MPF was 

defined as the cytoplasmic factor from mature oocytes capable of inducing the 

first meiotic division in G2-arrested immature oocytes (Masui and Markert, 

1971; Smith and Ecker, 1971). MPF was also shown to be a mitotic inducer in 

somatic cells (Kishimoto et al., 1982; Sunkara et al., 1979). MPF was 

subsequently purified by its ability to induce maturation in Xenopus oocytes in 

the absence of protein synthesis (Lohka et al., 1988). The purified activity 

consisted of two proteins (45kD and 32kD) which also co-fractionated with 

histone HI kinase activity. Given the analogous roles for MPF and Cdc2 for 

mitotic induction, and their common HI kinase activity, antibodies against the 

conserved PSTAIR motif in fission yeast Cdc2 were tested against purified 

MPF and found to cross-react with the 32kD protein (Dunphy et al., 1988; 

Gautier et al., 1988). This protein was thus identified as the Xenopus 

homologue of Cdc2, and a homolog of Cdc2 was identified in starfish by a 

similar analysis (Labbe et al., 1988). Together these findings identified 

Cdc2/Cdc28 as a component of MPF and established Cdc2 as the key 

regulator of the onset of mitosis across eukaryotes.

The second protein of MPF was shown to migrate with the same mobility as 

starfish cyclin (Labbe et al., 1989). Cyclins were first identified in sea urchin 

eggs as highly unstable proteins that appeared following fertilisation and then
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Chapter 1 Introduction

oscillated with each subsequent cleavage division due to periodic proteolysis 

(Evans et al., 1983). Sequencing and immunoprecipitation experiments 

confirmed that the Cdc2 partner was a cyclin, and suggested that cyclin 

proteolysis inactivated MPF (Draetta et al., 1989; Labbe et al., 1989). Cdc2 

and its homologs were subsequently known as cyclin dependent kinases 

(CDKs).

Higher eukaryotes possess several different CDKs, each required for specific 

processes within the cell cycle. For the remainder of this section, however, I 

shall concentrate on the fission yeast Cdc2 kinase and its regulation. The 

regulation of Cdc2, in common with other CDKs, is based upon three 

mechanisms: association with cyclins, phosphorylation status and inhibiton by 

CDK inhibitors. A summary of these mechanisms, based on the ensuing 

discussion, is given in figure 1.2.

1.2.1 Cyclins

The first cyclin to be identified in fission yeast was Cdc 13. Overexpression of 

Cdc2 suppressed the cdcl3-117 ts mutant (Booher and Beach, 1987), and 

cdcl3  was cloned by its ability to rescue the same ts mutant (Booher and 

Beach, 1988; Hagan et al., 1988). Deletion of cdcl3 prevents entry into 

mitosis, indicating that both Cdc2 and Cdc 13 are required for mitosis (Booher 

and Beach, 1988; Hagan et al., 1988). These proteins were shown to form a 

stable complex and that Cdc 13 association was required for mitotic kinase 

activity (Booher et al., 1989; Moreno et al., 1989). Cdcl3 levels fluctuate 

throughout the cell cycle, peaking at mitotic entry, at the same time as the 

peak of Cdc2 mitotic kinase activity (Booher et al., 1989; Moreno et al.,

1989). At the metaphase to anaphase transition Cdc 13 is ubiquitinated and 

targeted for proteolysis by the 26S proteasome (Yamano et al., 1998). This 

mechanism is dependent upon recognition of a destruction box in the N- 

terminus of Cdc 13 by the anaphase promoting complex (APC). Removal of 

this destruction box leads to stabilisation of Cdc 13 and anaphase arrest 

(Yamano et al., 1996).
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C hapter 1 Introduction

The fact that Cdc 13 is only required for mitotic entry indicated that another 

cyclin (or cyclins) could act as the Cdc2 co-factor for DNA replication. 

Subsequently, two further cyclins were cloned: cigl and cig2. The former was 

cloned by a homology-based screen (Bueno et al., 1991) whilst the latter was 

cloned by three groups via three different approaches (Bueno and Russell, 

1993; Connolly and Beach, 1994; Obara-Ishihara and Okayama, 1994). The 

Cigl associated kinase activity is activated at mitosis with similar kinetics to 

the Cdc2/Cdcl3 kinase, but a clear role has yet to be established for the 

Cdc2/Cigl kinase (Basi and Draetta, 1995). The levels of Cig2 transcript, 

protein and kinase activity all peak at the onset of DNA replication, indicating 

that Cig2 may play a central role in initiating S phase in partnership with Cdc2 

(Connolly and Beach, 1994; Mondesert et al., 1996). Cells deleted for cig2 do 

display a delay over S phase entry (Bueno and Russell, 1993; Mondesert et al., 

1996) but are nonetheless viable. Both Cdc 13 and Cigl are able to substitute 

for Cig2 (Fisher and Nurse, 1996; Mondesert et al., 1996) suggesting 

functional redundancy amongst these cyclins. This has led to the development 

of the ‘quantitative model’ (Fisher and Nurse, 1996) in which the level of 

kinase activity, and not the cyclin partner, regulates cell cycle progression. 

This model is discussed further in section 1.2.4.

Two other cyclins have been identified in fission yeast although less is known 

about their function. The Pucl cyclin plays a role in cell cycle exit by 

inhibiting G1 arrest in response to nitrogen starvation, possibly by 

downregulating Ruml, an inhibitor of Cdc2 (Forsburg and Nurse, 1994; 

Forsburg and Nurse, 1991b; Martin-Castellanos et al., 1996). The Reml cyclin 

is only expressed in meiosis and is required for pre-meiotic S phase in the 

absence of Cig2 (Malapeira et al., 2005).

1.2.2 Phosphorylation of CDKs

Cdc2 is phosphorylated at two sites, tyrosine-15 (Y15) and threonine-167 

(T167). A CDK activating kinase (CAK) is required for T167 phosphorylation 

and Cdc2 activation, possibly working via stabilisation of the interaction
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between Cdc2 and cyclins (Gould et al., 1991; Ross et al., 2000). Two CAKs, 

Cskl and Mcs6, have so far been identified (Lee et al., 1999).

The Y15 residue is phosphorylated during interphase and dephosphorylation is 

required for entry into mitosis (Gould and Nurse, 1989). The peak of 

dephosphorylation at Y15 correlates with the peak of Cdc2 kinase activity 

(Moreno et al., 1989). Tyrosine-15 is located within the ATP binding domain 

of Cdc2 and its phosphorylation is likely to directly inhibit Cdc2 kinase 

activity.

The phosphorylation state of Y15, and hence the activity of Cdc2, is 

determined by the balance between the activity of inhibitory kinases and 

activating phosphatases. Cdc2 is phosphorylated at Y15 in cells blocked at 

G2/M in a cdc25-22 arrest, but is then rapidly dephosphorylated when cdc25 

function is restored and cells enter mitosis (Gould and Nurse, 1989).

Activation of the kinase is dependent on the cdc25 gene, and Cdc25 protein 

levels peak at the G2/M boundary, implicating Cdc25 as the phosphatase that 

activates Cdc2 through dephosphorylation on tyrosine 15 (Moreno et al.,

1989; Moreno et al., 1990). A human tyrosine phosphatase was shown to 

dephosphorylate Y15 and trigger mitosis in fission yeast (Gould et al., 1990). 

This phosphatase could also substitute for Cdc25 function, linking Y15 

dephosphorylation to Cdc25 activity. Purified human Cdc25 was used to 

dephosphorylate and activate a Cdc2-CyclinB complex from starfish oocytes 

arrested in G2 (Strausfeld et al., 1991), whilst Cdc25 from Drosophila 

melanogaster was shown to activate Xenopus MPF via dephosphorylation of 

Cdc2 (Kumagai and Dunphy, 1991). Together, these results support a 

conserved role for Cdc25 as an activator of the Cdc2 kinase by 

dephosphorylating the inhibitory tyrosine residue.

The main kinase responsible for Y15 phosphorylation is W eel. The Weel 

kinase is a dual specificity kinase which targets both serine and tyrosine 

residues (Featherstone and Russell, 1991; Parker et al., 1992). Weel 

phosphorylates Y15 of Cdc2 when complexed with a cyclin, and this
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phosphorylation inhibits the histone HI kinase activity of Cdc2 (Parker et al., 

1992). Another kinase, M ikl, has also been shown to phosphorylate Cdc2 at 

Y15 (Lee et al., 1994), but a null mutant does not affect cell cycle progression 

unless Weel function is also compromised (Lundgren et al., 1991).

The Cdc25 and Weel proteins are themselves subject to regulation. For 

example, the localisation of Cdc25 varies during the cell cycle; Cdc25 is 

retained in the cytoplasm during G1 and S phase by a 14-3-3 protein, and is 

then released and imported into the nucleus during G2 (Zeng and Piwnica- 

Worms, 1999). The Weel kinase is negatively regulated by the Niml/Cdrl 

and Cdr2 proteins (Breeding et al., 1998; Kanoh and Russell, 1998; Parker et 

al., 1993; Russell and Nurse, 1987) and Niml/Cdrl is itself negatively 

regulated by Nifl (Wu and Russell, 1997). Regulation of Cdc25, W eel and 

Mikl by the DNA replication and damage checkpoints will be described in 

section 1.5.

1.2.3 CDK inhibitors

The activity of CDKs is also regulated by a class of proteins known as £DK 

inhibitors (CKIs). In mammalian cells, a vast array of CKIs control the 

activities of various CDK/cyclin complexes, but these will not be addressed 

here. The best understood CKI in fission yeast is the Ruml protein. Ruml is 

required for G1 arrest in low nitrogen conditions or in the absence of CdclO 

function (Moreno et al., 1994; Moreno and Nurse, 1994). The cdc 10-129 

ruml A double mutant enters a fatal mitosis at restrictive temperature, 

suggesting that Ruml is required to restrain mitosis from G l. This checkpoint 

role is likely to operate pre-Start, before the inhibitory Y15 phosphorylation of 

Cdc2 by Weel (Hayles and Nurse, 1995). Ruml specifically inhibits 

Cdcl3/Cdc2 kinase activity through direct interaction with the complex, and it 

also promotes the proteolysis of Cdc 13 in early Gl-arrested cells (Correa- 

Bordes and Nurse, 1995; Correa-Bordes and Nurse, 1997; Martin-Castellanos 

et al., 1996; Moreno and Nurse, 1994).

Ruml protein levels are sharply periodic, peaking at early G l (Benito et al.,

1998), and its mRNA is stabilised in response to nitrogen starvation (Daga et

21



Chapter 1 Introduction

al., 2003). During S phase and G2, Ruml is phosphorylated by Cdc2, and this 

targets the protein for ubiquitin-mediated proteolysis (Benito et al., 1998; 

Jallepalli et al., 1998; Kominami and Toda, 1997). It is not clear which of the 

Cdc2/Cigl (Benito et al., 1998; Correa-Bordes and Nurse, 1997) or Cdc2/Pucl 

(Martin-Castellanos et al., 2000) complexes are required for Ruml 

phosphorylation. Sicl plays an analogous role in maintaining a low level of 

Cdc28/Cyclin B kinase activity in G l in budding yeast (Schwob et al., 1994). 

Sicl and Ruml functionally substitute for each other, demonstrating 

functional homology (Sanchez-Diaz et al., 1998). Sicl too is targeted for 

proteolysis following CDK phosphorylation (Feldman et al., 1997; Schwob et 

al., 1994; Skowyra et al., 1997; Verma et al., 1997a; Verma et al., 1997b).

The other CKI identified in fission yeast is the Sucl protein. Although little is 

known about its specific function, it inhibits Cdcl3/Cdc2 kinase activity and is 

required as an additional mechanism to promote mitotic exit (Basi and 

Draetta, 1995). Cells depleted of Sucl accumulate Cdc 13 and Cdcl3/Cdc2 

kinase activity causing cells to arrest with condensed chromosomes. Sucl has 

also been shown to inhibit MPF activity in Xenopus egg extracts (Dunphy et 

al., 1988).

1.2.4 The Cdc2 kinase cycle

In fission yeast, the cell cycle is controlled by a single CDK that becomes 

complexed to different cyclin partners during the cell cycle. The partial 

redundant nature of the cyclins, as introduced in 1.2.1, led to a consideration 

of how Cdc2 can promote alternating rounds of DNA replication and mitosis 

(Fisher and Nurse, 1996). Cdc2/Cdcl3 (in the absence of Cigl and Cig2) can 

promote ordered progression through the entire cell cycle, initiating both DNA 

replication and mitosis. In contrast, Cig2, and only partially Cigl, are capable 

of promoting DNA replication in the absence of Cdc 13 but neither can 

promote mitosis. This suggests that the requirement for CDK activity to 

promote DNA replication is less specialised than that required for the onset of 

mitosis. These results led to the quantitative model (Fisher and Nurse, 1996; 

Stem and Nurse, 1996), in which the fission yeast cell cycle is driven by a
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single oscillation in Cdc2 kinase activity (figure 1.3). The model predicts that 

a low level of kinase activity is required to prepare for DNA replication, and 

that an increase to a moderate level of kinase activity promotes the initiation 

of DNA replication. A further increase in kinase activity is then required to 

bring about mitosis, and the moderate and high levels of kinase activity are 

sufficient to prevent a further round of replication. Cyclin proteolysis upon 

exit from mitosis then re-sets the cycle back to low kinase activity in Gl.

Validation of this model is supported by studies disrupting the alternation of S 

and M phases. Depletion of Cdcl3 in G2 induces fission yeast cells to undergo 

multiple, discrete rounds of DNA replication without intervening mitoses 

(Hayles et al., 1994). In the absence of Cdc2/Cdcl3 in G2, cells fail to 

accumulate enough kinase activity to undergo mitosis and instead re-set the 

cell cycle back to G l and promote another round of S phase. This re­

replication is dependent on the presence of Cigl or Cig2 to support DNA 

replication. Further, overexpression of Rum 1 also induces extensive re­

replication by directly inhibiting Cdc2/Cdcl3 kinase activity (Moreno and 

Nurse, 1994), and this rereplication also requires either Cigl or Cig2 to initiate 

replication (Martin-Castellanos et al., 1996). Conversely if Cdcl3 and Cdc2 

are overexpressed in G l cells prior to Start, the increase in mitotic kinase 

activity will induce mitosis in the absence of DNA replication (Hayles et al.,

1994). The mechanisms by which moderate to high Cdc2 kinase activity 

inhibits DNA replication are addressed in section 1.4.

1.3 Initiation of DNA replication

In this section I shall describe the factors and processes required to prepare for 

and initiate DNA replication in fission yeast (figure 1.5). During the period of 

low Cdc2 kinase activity (late mitosis and early G l) cells prepare for 

replication via formation of pre-replication (pre-RC) complexes at origins of 

replication. Cdc2 and Hskl kinase activity is then required for the recruitment 

of further replication factors to the pre-RC and to initiate DNA replication.

The principles of this system are highly conserved in eukaryotes.
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The concept of the pre-RC stemmed from studies analysing nuclease digestion 

of the ARS1 origin of replication in budding yeast. Nuclease protection was 

seen throughout the cell cycle, provided by the origin recognition complex 

(ORC), but an extended footprint in Gl disappeared as cells progressed to G2 

(Bell and Stillman, 1992; Diffley and Cocker, 1992; Diffley et al., 1994). 

Extensive work since has shown that the additional factors loaded onto origins 

in G l are the Cdc6 (Cdcl8 in fission yeast) and Cdtl proteins, and a complex 

of mini-chromosome maintenance (MCM) proteins. Disruption of this 

complex upon initiation of replication, and inhibition of pre-RC formation by 

CDK activity, prevents another round of replication until cells pass through 

mitosis.

Preparation for and progression through S phase in fission yeast is dependent 

upon cdclO. A complex of CdclO, Resl, Res2 and Rep2 (sometimes known as 

MBF) acts as a transcriptional activator of several factors required for DNA 

replication (Aves et al., 1985; Ayte et al., 1995; Caligiuri and Beach, 1993; 

Lowndes et al., 1992; Miyamoto et al., 1994; Nakashima et al., 1995), such as 

the pre-RC components Cdcl8 and Cdtl (Hofmann and Beach, 1994; Kelly et 

al., 1993), and Cdc22, the large subunit of RNR (Lowndes et al., 1992; 

Maqbool et al., 2003). CdclO is also required for the expression of Cig2, the 

putative S phase cyclin, and in turn active Cdc2/Cig2 is a repressor of CdclO 

function (Ayte et al., 2001; Obara-Ishihara and Okayama, 1994). It is likely 

that Cdc2/Cig2 inhibition by Ruml association and Y15 phosphorylation 

allows pre-RC formation in G l. The appearance of Cdc2/Cig2 kinase activity 

would then trigger S phase and repress CdclO-mediated transcription of S 

phase factors.

1.3.1 Origins of replication

The sites at which DNA replication is initiated are referred to as origins of 

replication initiation (ORI). These origins have traditionally been identified by 

their ability to confer stability to plasmids in a transformation assay 

(autonomously replicating sequences or ARSs) and 2D gel electrophoresis 

demonstrated that initiation of replication occurred from within these
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sequences. The replication origins of budding yeast have been well 

characterised (Newlon and Theis, 1993; Theis and Newlon, 1997; Theis and 

Newlon, 2001). The ARS elements in budding yeast are approximately 100- 

150bp in size and share several common features. They consist of four 

elements that are sufficient for ARS activity: an A element, containing an 

1 lbp AT-rich consensus sequence (ACS), and three adjacent, partially 

redundant B elements. Approximately 400 budding yeast origins have been 

mapped on a genomic scale, using chromatin immunoprecipitation (ChIP) of 

the ORC and MCM components of the pre-RC (Wyrick et al., 2001) and by 

detecting sites of early DNA duplication on oligonucleotide microarrays 

(Raghuraman et al., 2001).

A number of fission yeast ORIs have been isolated and characterised (Clyne 

and Kelly, 1995; Dubey et al., 1996; Dubey et al., 1994; Maundrell et al.,

1988; Okuno et al., 1997; Okuno et al., 1999; Zhu et al., 1994). From these 

findings it is clear that fission yeast origins are larger and less well conserved 

than their budding yeast counterparts. They are typically 0.5-lkb in length and 

do not have recognisable consensus elements. They do, however, possess high 

AT content and often contain stretches of asymmetric A or T residues. A 

unique feature of the fission yeast ORC complex is its binding to origins via 

an N-terminal AT-hook binding domain of Orc4 (Chuang and Kelly, 1999; 

Kong and DePamphilis, 2001; Lee et al., 2001). This domain recognizes the 

structure of AT-rich stretches through the minor groove of DNA without the 

requirement of a specific nucleotide sequence. It has been suggested that 

several ORC binding sites are collectively required for efficient origin firing 

(Kong and DePamphilis, 2002; Takahashi et al., 2003). Cooperation between 

ORC complexes to attain the critical concentration to trigger replication would 

require a minimal length of AT-rich DNA, which is consistent with the 

0.5-1 kb length of fission yeast origins.

More recently, two different approaches have been taken to map and 

characterize fission yeast origins on a genomic scale. In the first instance the 

genome was scanned for 0.5kb-lkb stretches with high AT content (75% for
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0.5kb to 72% for lkb) (Segurado et al., 2003). This identified 385 ORIs at an 

average spacing of 33kb. Twenty of these ORIs were selected at random and 

subjected to 2D electrophoresis, and 18 displayed replication intermediates, 

indicative of origin activity. This collection of origins also failed to display 

true consensus sequences. Interestingly, similar to the case in budding yeast, 

the frequency of origins at the mating type locus, centromeres and 

subtelomeric regions was significantly higher than the average frequency 

across the genome. This suggests that origins or/and some component(s) of the 

pre-RC may be important for processes other than DNA replication (such as 

regulation of chromatin structure). Another approach to mapping origins in 

fission yeast has been to locate areas of early DNA duplication using DNA 

microarrays (Christian Heichinger, unpublished data). This method has 

isolated approximately 375 origins with considerable overlap with those 

identified by the bioinformatic approach. It has also revealed a range in the 

efficiency of firing within the origins, with an average efficiency of 29%. 

Efficient origins identified by this method show a high AT content (72% or 

more) and at least two groups of five or more asymmetric AT hook binding 

motifs (Maher and Nathans, 1996). This analysis suggests, however, that other 

factors, such as local chromatin structure, also influence origin selection and 

efficiency. In both approaches all origins are located in intergenic regions. A 

recent paper demonstrates that the features shared by characterized origins of 

replication, namely AT-richness and asymmetric strand composition, were 

common to many intergenic regions, and that at least half of intergenic regions 

have potential origin activity (Dai et al., 2005). Thus fission yeast may make 

use of a relatively promiscuous DNA binding motif to direct binding of ORC 

to common features in the genome. Consequently, origin selection may be a 

rather stochastic phenomenon and it is possible that origin selectivity may be 

in part governed by epigenetic phenomena such as the state of chromatin in 

these intergenic regions. Perhaps the ability of these AT-rich intergenic 

regions to function as origins correlates with the status of promoters of the 

encompassing genes.
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The origins identified in higher eukaryotes are even larger and more diverse in 

nature than those of fission yeast (DePamphilis, 1999), and will not be 

addressed in detail here. In brief, metazoan ORIs are similar to those of fission 

yeast in their lack of consensus sequences and in their preference to localize to 

intergenic regions close to promoters. A striking difference, however, is that 

many replication origins in mammals are associated with GC-rich islands 

(Delgado et al., 1998).

1.3.2 The ORC complex

The identification of ARS elements that function as replication origins in 

budding yeast led to the discovery of the proteins that bind directly to origin 

sequences, and these Ore proteins (Ore 1-6) defined the origin recognition 

complex (ORC) (Bell and Stillman, 1992; Diffley and Cocker, 1992).

Mutation or deletion of any subunit of the ORC complex prevents DNA 

replication and is lethal (Bell et al., 1993; Bell et al., 1995; Foss et al., 1993; 

Fox et al., 1995; Hardy, 1996; Hori et al., 1996; Li and Herskowitz, 1993; 

Liang et al., 1995; Loo et al., 1995; Micklem et al., 1993). The ORC complex 

remains associated with origins throughout the cell cycle (Diffley et al., 1994; 

Liang and Stillman, 1997; Rowley et al., 1995) and serves to recruit Cdc6 (and 

possibly Cdtl) to replication origins in preparation for S phase (Liang et al., 

1995; Piatti et al., 1995; Tanaka et al., 1997; Weinreich et al., 1999).

A homologous ORC complex has been identified in fission yeast and consists 

of six Orp proteins (ORC subunits from S. pombe) which are all essential for 

DNA replication and to restrain mitosis in the absence of DNA replication 

(Chuang and Kelly, 1999; Gavin et al., 1995; Grallert and Nurse, 1996; Ishiai 

et al., 1997; Leatherwood et al., 1996; Lygerou and Nurse, 1999; Moon et al., 

1999; Muzi-Falconi and Kelly, 1995). Orp4 ties the ORC complex to DNA via 

its N-terminus which features 9 copies of the AT-hook motif (Chuang and 

Kelly, 1999; Kong and DePamphilis, 2001; Lee et al., 2001; Moon et al.,

1999). It is likely that the ORC complex remains bound to origins throughout 

the cell cycle, as Orpl and Orp5 chromatin levels remain constant in a 

synchronised cell cycle (Lygerou and Nurse, 1999), whilst Orpl binding to the
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ars2004 and ars3002 origins is unaltered throughout the cell cycle (Ogawa et 

al., 1999). Both Orpl and Orp2 physically interact with Cdcl8 and ORC is 

likely to recruit Cdcl8 (and possibly Cdtl) to replication origins (Chuang et 

al., 2002; Grallert and Nurse, 1996; Kearsey et al., 2000; Leatherwood et al., 

1996; Nishitani et al., 2000).

Homologs of the Ore 1-6 proteins have been identified in higher eukaryotes, 

including Xenopus, Drosophila and mammals, and these proteins too are 

essential for DNA replication (reviewed in Bell and Dutta, 2002). The ORC 

complex has been shown to recruit Cdc6 and Cdtl in Xenopus (Coleman et al., 

1996; Maiorano et al., 2000; Romanowski et al., 1996; Rowles et al., 1996) 

and Cdc6 in human cells (Saha et al., 1998a). A number of studies into the 

stability and chromatin association of Ore subunits in mammalian cells have 

provided conflicting views of their regulation. What is clear is that Orel is 

regulated through the cell cycle, possibly as a mechanism to prevent 

rereplication (see section 1.4). In hamster cells Orel is released from 

chromatin as cells enter S phase and only rebinds upon exit from mitosis, 

whilst Orc2 remains chromatin associated throughout the cell cycle (Natale et 

al., 2000). Removal of Orel from the chromatin and prevention of re-binding 

in G2/M appears to depend upon CDK-mediated phosphorylation and 

ubiquitination, although Orel is not degraded here (Li and DePamphilis, 2002; 

Li et al., 2004). In human cells Orel is phosphorylated as cells enter S phase 

and this targets the protein for polyubiquitination and degradation by the 

proteasome (Mendez et al., 2002; Tatsumi et al., 2003; Tatsumi et al., 2000). 

Orel is then expressed and targeted to chromatin as cells exit from mitosis. 

RNAi of Orel suggests that Orel tethers other Ore subunits to the DNA, and 

that removal of ORC from the chromatin prevents MCM association with 

origins (Ohta et al., 2003).

1.3.3 Cdc18

Cdcl8 was cloned simultaneously by two independent means, as a suppressor 

of the temperature sensitive (ts) mutants cdclO-129 and cdcl8-K46 (Kelly et 

al., 1993). It was later shown that cdcl8  transcription is dependent upon
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CdclO, and hence the transcript appears in late mitosis and disappears during 

S phase (Baum et al., 1998). The protein itself is restricted to the G l and S 

phases of the cell. Phosphorylation at six sites by Cdc2 in mitosis and during 

S/G2 targets the protein for ubiquitination and proteolysis mediated by the 

proteasome (Jallepalli et al., 1997; Jallepalli et al., 1998; Kominami et al., 

1998; Kominami and Toda, 1997; Wolf et al., 1999). Cdcl8 is a highly 

unstable protein, and its half life in a cycling population has been estimated at 

approximately 5 minutes (Muzi Falconi et al., 1996).

Cdcl8 is an essential protein, and its deletion leads to an inability to initiate 

DNA replication (Kelly et al., 1993). In addition, cells lacking Cdcl8 enter a 

lethal mitosis in the absence of replication, suggesting that Cdcl8 is required 

for both DNA replication and for coordinating the completion of S phase with 

the onset of mitosis. Further studies have demonstrated that the replication 

function of Cdcl8 requires its ability to load the MCM complex onto 

chromatin prior to initiation (Kearsey et al., 2000; Nishitani et al., 2000). This 

key role for Cdcl8 is highlighted by the induction of rereplication of the 

genome upon overexpression of the wild-type protein (Nishitani and Nurse,

1995). This overexpression is effective from G2 and is potentiated by the co­

overexpression of Cdtl (Yanow et al., 2001).

The Cdcl8/Cdc6 protein is a member of the large family of ATPases known 

as ATPases associated with various cellular activities (AAA), and shares 

significant homology with certain ORC subunits, especially Orel (Neuwald et 

al., 1999). Archaea do not have any obvious homologs of the ORC complex, 

but do possess Cdc6-like proteins, raising the possibility that archaeal Cdc6 

may play a dual role in both origin recognition and MCM recruitment (Liu et 

al., 2000). Cdcl8/Cdc6 also shows significant homology with clamp loading 

proteins such as replication factor C (RFC). This has led to the suggestion that 

these enzymes catalyse analogous reactions; the ATP-dependent loading of 

ring-shaped molecules onto DNA (Perkins and Diffley, 1998). The primary 

sequence of Cdcl8 is shown in figure 1.4. Highlighted are the six Cdc2 

phosphorylation sites, five of which are located in the N-terminus, along with
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the Walker A (WA), Walker B (WB), Sensor I (SI) and Sensor II (SII) motifs 

that are typical of AAA ATPases. These motifs are addressed in further detail 

in chapter 3. The structure of a Cdc6-like protein from the archaeon 

Pyrobaculum aerophilum has been solved by crystallography to 2A resolution 

(Liu et al., 2000). Two domains of Cdc6 generate a two-lobed, cashew-shaped 

molecule. Between these domains the protein binds Mg. ATP using the Walker 

and Sensor motifs.

Cdc6 is required for DNA replication in a range of other systems (Coleman et 

al., 1996; Piatti et al., 1995; Yan et al., 1998). ChIP studies in budding yeast 

have shown that Cdc6 is required to recruit the MCM complex to replication 

origins in G l (Aparicio et al., 1997; Tanaka et al., 1997). In X. laevis, Cdc6 is 

required for the association of MCM proteins with chromatin (Coleman et al.,

1996). As with fission yeast, the depletion of Cdc6 in budding yeast leads to a 

lack of replication and aberrant entry into mitosis (Piatti et al., 1995).

1.3.4 Cdtl

Cdtl was originally identified in fission yeast as a protein induced by the 

CdclO transcription factor (Hofmann and Beach, 1994). Cdtl is an essential 

protein, required for DNA replication and the inhibition of mitosis in the 

absence of replication. As with Cdcl8, Cdtl is present and chromatin-bound 

in Gl/S and is required for the loading of the MCM complex onto chromatin 

(Nishitani et al., 2000). Cdtl and Cdcl8 are recruited to chromatin 

independently, but these proteins physically interact via the C-terminus of 

Cdcl8 (Nishitani et al., 2000). Although Cdtl, like Cdcl8, is degraded by the 

proteasome, this degradation does not appear to be regulated by Cdc2 

(Damien Hermand, unpublished data).

A Cdtl homolog has been identified in budding yeast which interacts with the 

MCM complex (Tanaka and Diffley, 2002). The nuclear accumulation of Cdtl 

and the MCM complex is interdependent, and is restricted to G l (dependent 

upon CDK inactivity). The Cdtl homolog in D. melanogaster (named DUP) is 

required for DNA replication in embryos and for the endoreduplication and
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amplification of chorion genes that take place in follicle cells during 

Drosophila oogenesis (Whittaker et al., 2000). In addition, DUP is required 

for the checkpoint preventing mitosis until completion of S phase, as DUP 

mutants enter mitosis with unreplicated DNA. The DUP protein colocalizes 

with Orel and Orc2, suggesting that it associates with replication origins 

(Austin et al., 1999).

Extensive work has been carried out with the Xenopus and human Cdtl 

proteins. Cdtl is required to load the MCM complex onto chromatin and for 

DNA replication in Xenopus egg extracts (Maiorano et al., 2000). Cdtl 

chromatin association is dependent upon the ORC complex but not upon Cdc6 

association. A recent study suggests, however, that a strict sequential assembly 

of Cdc6 and then Cdtl onto chromatin is required for replication competency 

(Tsuyama et al., 2005). Cdtl is degraded in S phase via ubiquitin mediated 

proteolysis (Arias and Walter, 2005).

The human homolog of Cdtl has been identified and cloned, and this protein 

is restricted to Gl (Nishitani et al., 2001; Wohlschlegel et al., 2000). Cdtl is 

essential for the loading of MCM proteins onto chromatin and for DNA 

replication (Rialland et al., 2002). Whilst it is clear that Cdtl is removed by 

the proteasome in S phase (Nishitani et al., 2004), the means by which this 

occurs remains controversial. One likely mechanism is Cdk2/4-mediated 

phosphorylation which promotes ubiquitination by the SCF(Skp2) ubiquitin 

ligase (Li et al., 2003; Liu et al., 2004). However, other mechanisms must 

exist, as mutant forms of Cdtl that do not stably associate with Skp2 are still 

degraded in S phase to the same extent as wild-type Cdtl (Takeda et al.,

2005).

Higher eukaryotes possess an additional control element over Cdtl activity. 

This element is the Geminin protein, first isolated in Xenopus as a factor 

destroyed upon mitotic exit that was capable of inhibiting DNA replication 

(McGarry and Kirschner, 1998). Geminin was subsequently shown to bind 

Cdtl and to inhibit the loading of MCM proteins onto chromatin (Tada et al.,
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2001; Wohlschlegel et al., 2000). Given this situation it was perhaps 

surprising to see that Cdtl and Geminin are mostly not coexpressed in 

interphase cells (Nishitani et al., 2001; Wohlschlegel et al., 2000). It may be 

that Geminin has a redundant role in S and G2 to inhibit any Cdtl that may 

escape degradation. Proteasome inhibitors stabilise human Cdtl in S and an 

interaction between Cdtl and Geminin was detected in these circumstances 

(Nishitani et al., 2001). What seems clear is that Geminin is not required to 

promote the proteolysis of Cdtl (Nishitani et al., 2004).

1.3.5 The MCM complex

The MCM proteins, Mcm2-7, were first isolated in budding yeast from 

mutants defective in the maintenance of mitotically stable minichromosomes 

(Maine et al., 1984). Highly conserved homologs have since been identified in 

fission yeast and metazoans, and each component is essential for the initiation 

and completion of DNA replication (Dutta and Bell, 1997; Kelly and Brown, 

2000; Tye, 1999). Work with Xenopus egg extracts showed that the Mcm2-7 

proteins function as a complex that is critical for DNA replication to occur 

(Chong et al., 1995; Kubota et al., 1997; Kubota et al., 1995; Madine et al., 

1995), and the MCM complex is a component of the pre-RC (see previous 

sections). Once the MCM complex has been loaded onto DNA, none of the 

other components of the pre-RC complex are required for the continued 

association of the MCMs with chromatin (Donovan et al., 1997; Hua and 

Newport, 1998; Rowles et al., 1999). In fission yeast (Kearsey et al., 2000; 

Maiorano et al., 1996; Okishio et al., 1996; Pasion and Forsburg, 1999; 

Sherman and Forsburg, 1998) and metazoan cells (Lei and Tye, 2001) the 

MCM proteins are localised in the nucleus throughout the cell cycle, with their 

chromatin association dependent upon Cdc6 and Cdtl function in M/Gl. In 

contrast, the MCM complex in budding yeast, in association with Cdtl, is 

excluded from the nucleus after S phase in a CDK-dependent manner (Labib 

et al., 1999; Tanaka and Diffley, 2002).

While the exact biochemical function of the MCM complex remains uncertain, 

evidence suggests that it is the replicative helicase that unwinds DNA ahead of
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the replication fork. Using ChIP, MCMs appear to travel with the replication 

forks (Aparicio et al., 1997; Tanaka et al., 1997) and genetic data shows that 

MCMs are required for fork progression as well as replication initiation (Labib 

et al., 2000). Biochemical and structural studies also lend weight to the idea of 

MCMs acting as a replicative helicase. The MCM complex has been purified 

from fission yeast and shown by electron microscopy to form a 

heterohexameric complex with a globular shape and central cavity that could 

assemble around the DNA duplex (Adachi et al., 1997). A complex of 

Mcm4/6/7 has been shown in fission yeast and mammalian cells to possess 

weak 3’-5’ helicase activity in vitro (Ishimi, 1997; Lee and Hurwitz, 2000;

Zou and Van Houten, 1999) and the Mcm4/6/7 complex from human cells 

forms a toroidal structure with six lobes and a large central cavity (Sato et al.,

2000). In Xenopus egg extracts the unwinding of plasmid DNA requires an 

intact MCM complex and ATP hydrolysis (Shechter et al., 2004). A number 

of studies have also analysed the single MCM protein within the archaeon 

Methanobacterium thermoautotrophicum. This protein forms a double 

hexamer structure with a large central cavity, and possesses robust 3’-5’ 

helicase activity with processitivity above 500bp (Chong et al., 2000; Kelman 

et al., 1999; Pape et al., 2003; Shechter et al., 2000). It has not yet been 

shown, however, that this MCM protein is required for DNA replication.

1.3.6 From pre-RC to replication

The transition from the pre-RC to replication elongation is a two-step process 

involving the recruitment of a number of additional factors to replication 

origins, to form the pre-initiation complex (pre-IC), followed by unwinding of 

DNA and DNA synthesis. A crucial component of this pre-IC in fission yeast 

is Cdc45, which is essential for DNA replication (Miyake and Yamashita, 

1998). Cdc45 and its cofactor Sld3 associate with chromatin after pre-RC 

formation and are required to recruit DNA polymerase (pol) a  onto the DNA 

(Gregan et al., 2003; Nakajima and Masukata, 2002; Uchiyama et al., 2001). 

Sld3 is also required for Cdc45 function in budding yeast (Kamimura et al.,

2001) and Cdc45 (also known as Sna41) is highly conserved and essential for 

replication in eukaryotes from budding yeast to Xenopus and humans (Hardy,
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1997; Hopwood and Dalton, 1996; Kukimoto et al., 1999; Mimura and 

Takisawa, 1998; Owens et al., 1997; Saha et al., 1998b). Cdc45 has been 

shown to recruit a range of replication factors to chromatin in these organisms, 

including the replication factors pol a , pol e, RPA and PCNA (Kukimoto et 

al., 1999; Mimura et al., 2000; Mimura and Takisawa, 1998; Zou and 

Stillman, 2000). In addition to the recruitment of replication factors Cdc45 

appears to have two other functions for DNA replication. Firstly, Cdc45 may 

be required for unwinding of DNA at initiation of replication (Walter and 

Newport, 2000). Secondly, Cdc45 is likely to function as a replicative helicase 

in concert with the MCM complex. Cdc45 travels with replication forks in 

budding yeast (Aparicio et al., 1999; Tercero et al., 2000) and forms a 

complex with the MCM proteins during S phase in Xenopus egg extracts 

(Masuda et al., 2003; Pacek and Walter, 2004). Furthermore, inhibition of 

either Cdc45 or the MCM complex prevents chain elongation and the 

Cdc45/MCM complex shows helicase activity in vitro.

A number of additional factors are required for Cdc45 chromatin association 

in S phase. Cdc23 (Mem 10 or Dna43 in other organisms) is bound to 

chromatin throughout the cell cycle and is essential for replication initiation 

and elongation (Aves et al., 1998; Gregan et al., 2003). Cdc23 is required to 

recruit Cdc45 to chromatin but is unlikely to be required for maintenance of 

Cdc45 on the DNA during elongation (Gregan et al., 2003). Instead, the role 

of Cdc23 in DNA elongation appears to be as a cofactor for the primase/pol a  

complex (Fien et al., 2004; Yang et al., 2005). In budding yeast and Xenopus, 

Mem 10 chromatin binding is dependent upon pre-RC formation and is 

restricted to S phase (Ricke and Bielinsky, 2004; Sawyer et al., 2004; 

Wohlschlegel et al., 2002). Here, too, McmlO is required to recruit Cdc45.

One study in budding yeast shows that McmlO is also required for 

stabilisation of pol a  during S phase (Ricke and Bielinsky, 2004).

In fission yeast Cut5 (also known as Dpbl 1) is also required for the 

recruitment of Cdc45 and initiation of DNA replication (Dolan et al., 2004; 

Saka and Yanagida, 1993). This function appears to be conserved in budding
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yeast and Xenopus, where direct interactions with pol e have also been 

reported (Araki et al., 1995; Hashimoto and Takisawa, 2003; Masumoto et al., 

2000). A novel set of proteins, known as the GINS complex, has been isolated 

in budding yeast and Xenopus that is also necessary for the recruitment of 

Cdc45 to chromatin (Kubota et al., 2003; Takayama et al., 2003). The loading 

of this ring-like structure is dependent upon the pre-RC and Cut5, and the 

GINS complex appears to travel with replication forks in association with 

Cdc45 and the MCM complex during S phase. Another protein required for 

the initiation of DNA replication is Drcl (Sld2 in budding yeast), which 

interacts with Cut5 (Noguchi et al., 2002; Wang and Elledge, 1999).

The transition from pre-RC to pre-IC is also dependent on two kinase 

activities: the S-phase CDK and DDK (Dbf4-dependent kinase), Cdc2 and 

Hskl in fission yeast respectively. Whilst the requirement for these two kinase 

activities for the recruitment of initiation factors to chromatin is well 

documented (reviewed in Bell and Dutta, 2002), the targets of CDK/DDK in 

this positive replication role are poorly defined. Drcl has been identified as a 

target of the S-CDK in fission and budding yeasts, and this phosphorylation is 

required for interaction with Cut5 and S phase progression (Masumoto et al., 

2002; Noguchi et al., 2002). In addition, Cdc28 phosphorylates pol e and this 

is likely to be required for DNA replication (Kesti et al., 2004). Members of 

the MCM complex are phosphorylated by DDK in a range of organisms, 

although the functional significance of this has yet to be determined (Brown 

and Kelly, 1998; Hardy, 1997; Jiang et al., 1999; Lee et al., 2003; Lei et al., 

1997; Masai et al., 2000).

1.4 Mechanisms that restrict S phase to once per cell 

cycle

As discussed in section 1.2.4, Cdc2 kinase activity in S phase and G2 is 

required to prevent rereplication of the genome. This mechanism appears to 

function through Cdcl8 and Orp2. Cdc2 activity from S to M is responsible 

for repressing cdcl8  transcription, and for the phosphorylation of Cdcl8 

which targets the protein for proteolysis. The importance of this regulation is
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shown by the observation that overexpression of Cdcl8 induces rereplication 

(Nishitani and Nurse, 1995). Importantly, though, elimination of the Cdc2 

phosphorylation sites from Cdcl8 is not sufficient to induce rereplication, 

suggesting that other mechanisms exist within the cell to prevent rereplication 

(Jallepalli et al., 1997; Lopez-Girona et al., 1998). One of these mechanisms 

might be the modification of Orp2. Orp2 is a phosphoprotein which is 

hypermodified by Cdc2 from S phase to mitosis (Leatherwood et al., 1996; 

Lygerou and Nurse, 1999; Vas et al., 2001). This phosphorylation is not 

required for DNA replication but is likely to be important in preventing 

rereplication of the genome: removal of the Cdc2 phosphorylation sites from 

Orp2 potentiates the rereplication caused by overexpression of wild-type 

Cdcl8 or Cdcl8 lacking its own phosphorylation sites (Vas et al., 2001). 

Whilst Cdtl degradation at Gl/S does not appear to be regulated by Cdc2 

(Damien Hermand, unpublished data), Cdc2 kinase does inhibit cdtl 

transcription, and the removal of Cdtl as cells enter S phase may also play a 

role in preventing rereplication. Overexpression of Cdtl potentiates the 

rereplication induced by overexpression of Cdcl8 (Yanow et al., 2001). Taken 

together, these results suggest that multiple, overlapping mechanisms exist 

within the cell to prevent rereplication within the fission yeast cell.

A system of overlapping mechanisms also appears to operate in budding yeast 

to prevent rereplication. Phosphorylation of Cdc6 by Cdc28 in S phase targets 

the protein for ubiquitin-mediated proteolysis (Drury et al., 2000; Elsasser et 

al., 1999) and Cdc6 function is also restricted by direct association with Cdc28 

(Mimura et al., 2004). Cdtl and the MCM complex, in association with each 

other, are removed from the nucleus during S and G2 in a CDK-dependent 

manner (Labib et al., 1999; Nguyen et al., 2000; Tanaka and Diffley, 2002).

In common with fission yeast, Orc2 (and Orc6) is phosphorylated by the S- 

phase CDK in S/G2 in budding yeast (Nguyen et al., 2001). Indeed, only when 

all three of these CDK-mediated mechanisms are abrogated can one induce 

rereplication in budding yeast (Nguyen et al., 2001).

The role of CDKs in preventing rereplication in metazoans is less clear-cut
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than it is in yeasts. As described in section 1.3.2, Orel is removed from 

chromatin at S phase in metazoans (and subsequently degraded in human 

cells). Although inhibition of Orel abrogates MCM chromatin association 

(Ohta et al., 2003), evidence that Orel regulation is important for preventing 

rereplication is lacking. Regulation of Cdc6 does not seem to form part of the 

metazoan control system, as this protein is bound to chromatin throughout 

most of the cell cycle (Alexandrow and Hamlin, 2004; Coverley et al., 2000; 

Mendez and Stillman, 2000; Oehlmann et al., 2004). Instead, the main route 

by which metazoans prevent rereplication during S phase and G2 appears to 

be by downregulation of Cdtl activity. As described in section 1.3.4, Cdtl is 

degraded at Gl/S and inhibited in S/G2 by Geminin in higher eukaryotes. The 

importance of these regulations is demonstrated by the fact that disruption of 

either gives rise to rereplication. Overexpression or stabilization of Cdtl in 

Xenopus (Arias and Walter, 2005; Li and Blow, 2005; Maiorano et al., 2005), 

Drosophila (Thomer et al., 2004) or human cells (Vaziri et al., 2003) gives 

rise to extensive rereplication. Similarly, depletion of Geminin leads to 

rereplication in the same Xenopus (Li and Blow, 2005), Drosophila (Quinn et 

al., 2001) and human systems (Melixetian et al., 2004; Zhu et al., 2004). 

Disrupting both systems has a synergistic effect in Xenopus (Li and Blow, 

2005). Collectively, these results indicate that, in most metazoan cells, the 

main feature that prevents rereplication is the absence of Cdtl activity, which 

can occur despite any potential CDK-dependent inhibitory phosphorylation of 

other pre-RC components.

1.5 The DNA replication and damage checkpoints

As alluded to earlier, cells face an intrinsic challenge of ensuring that one cell 

cycle process is only initiated after a previous process has been completed. 

The solution to this ‘completion problem’ is a collection of cell cycle 

checkpoints, whereby an uncompleted cell cycle event sends an inhibitory 

signal to later events (Hartwell and Weinert, 1989). The components of the 

checkpoint systems of cells are not required for normal progression through 

the cell cycle per se, but are called into action when a process is delayed or 

perturbed. Cell cycle checkpoints operate at three points in eukaryotes: at the
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boundaries of Gl/S, G2/M and metaphase/anaphase. In this section I shall 

concentrate on the mechanisms which control the G2/M transition in fission 

yeast, and specifically those which inhibit entry into mitosis when DNA 

replication is incomplete (replication checkpoint) or DNA damage is present 

(damage checkpoint). Throughout this thesis I will refer to the collective 

inhibition of mitosis when DNA is either incompletely replicated or damaged 

as the S phase checkpoint. The S phase checkpoint blocks entry into mitosis 

by inhibitory phosphorylation of Cdc2 at tyrosine-15 (Enoch et al., 1991; 

Enoch and Nurse, 1990; Rhind et al., 1997; Rhind and Russell, 1998; Rowley 

et al., 1992a).

Six so-called 'Rad' proteins are required for the S phase checkpoint: Radi, 

Rad3, Rad9, Radl7, Rad26 and Husl (al-Khodairy, 1992; al-Khodairy et al., 

1994; Enoch et al., 1992; Jimenez et al., 1992; Rowley et al., 1992b). Radi 

has homology to PCNA (Thelen et al., 1999) and Rad 17 has a limited 

homology to RFC (Griffiths et al., 1995). The similarities between checkpoint 

and replication proteins suggests that the former constitute complexes which 

interact with DNA to act as sensors for detecting DNA damage or 

impediments to replication. Indeed, complex formation within this set of 

proteins has been reported. The Rad9, Radi and Husl proteins form a 

heterotrimeric ring called the 9-1-1 complex (Griffith et al., 2002; Kostrub et 

al., 1998), Rad 17 forms a heteropentameric ring with the four RFC subunits 

(Griffith et al., 2002; Shimada et al., 1999) whilst Rad3 associates with Rad26 

(Edwards et al., 1999) (figure 1.6). The Radl7-RFC complex is bound to 

chromatin throughout the cell cycle (Griffiths et al., 2000) and is thought to 

load the 9-1-1 complex onto damaged DNA (Caspari and Carr, 2002). In 

addition to these Rad protein sensors in the S phase checkpoint, a number of 

replication factors may also be involved in relaying a signal of damaged or 

incompletely replicated DNA. Deletion of any of a range of factors required 

for initiation of DNA replication (e.g. DNA polymerase a )  results in an 

inability to initiate an S phase checkpoint (reviewed in Murakami and Nurse, 

2000) but the interplay between the replication and Rad proteins in this sensor 

role is poorly understood.
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Downstream of the sensor components are the transducers, Rad3-Rad26, Chkl 

and Cdsl, and Rad3-dependent Chkl and Cdsl phosphorylation is essential 

for checkpoint activation (Rhind and Russell, 2000). Cdsl activation occurs in 

response to inhibition of DNA replication, although Chkl can also fulfil this 

role in the absence of Cdsl (Boddy et al., 1998; Lindsay et al., 1998; Zeng et 

al., 1998), whilst Chkl is activated by DNA damage (Walworth et al., 1993). 

Divergence of the replication and damage checkpoint signals from Rad3 to 

Cdsl or Chkl requires specialised adaptor proteins. Cdsl activation by Rad3 

in response to replication inhibition is mediated by Mrcl (Tanaka and Russell, 

2001; Tanaka and Russell, 2004) whereas Crb2 is required for Rad3 

phosphorylation of Chkl in response to DNA damage (Mochida et al., 2004; 

Saka et al., 1997). Rad3 has also been shown to phosphorylate Rad26 in 

response to DNA damage independently of the other Rad proteins (Edwards et 

al., 1999). This suggests that Rad26 phosphorylation may be an initial 

response to DNA damage, but the functional significance of this 

phosphorylation is not yet known.

The Cdsl and Chkl kinases cause Cdc2 inhibition by phosphorylating M ikl, 

Weel and Cdc25 (Baber-Furnari et al., 2000; Boddy et al., 1998; Furnari et 

al., 1997; Nurse, 1997; O'Connell et al., 1997; Rhind and Russell, 2001; Zeng 

et al., 1998). Phosphorylation of Mikl and Weel activates these Cdc2 Y15 

kinases, whilst phosphorylation of Cdc25 inactivates this Cdc2 Y15 

phosphatase. In addition, Cdc25 phosphorylation results in association with 

Rad24, a member of the 14.3.3 protein family, and this leads to exclusion from 

the nucleus (Ford et al., 1994; Furnari et al., 1999; Lopez-Girona et al., 1999; 

Zeng and Piwnica-Worms, 1999).

The components and complexes of this checkpoint system are highly 

conserved across eukaryotes (see table 1.1), and will not be described in detail 

here (for a review see Nyberg et al., 2002). There are, however, a few 

significant differences in some organisms that are worth noting. In budding 

yeast, the S phase checkpoint signal does not inhibit entry into mitosis via

39



Chapter 1 Introduction

Cdc28 tyrosine phosphorylation, but rather prevents transition from metaphase 

to anaphase (Amon et al., 1992; Sorger and Murray, 1992; Stueland et al., 

1993). Rad53 activation leads to the inhibition of Cdc5, a positive factor in the 

metaphase/anaphase transition (Cheng et al., 1998; Glover et al., 1998; Nigg, 

1998), whilst Chkl stimulation leads to the activation of Pdsl, an inhibitor of 

the transition (Cohen-Fix and Koshland, 1997; Paciotti et al., 1998; Sanchez et 

al., 1999; Yamamoto et al., 1996). There are also some important differences 

in the use of PIKKs (phosphoinositide 3-kinase related kinases) as transducers 

in the checkpoint pathway. In mammalian cells two such kinases are used, 

ATR and ATM. ATR is required for transduction of signals involving single 

stand DNA breaks and replication inhibition, whereas ATM is required for 

transduction of signals involving double strand breaks (reviewed in Nyberg et 

al., 2002). In yeasts, the ATR homologs Rad3 and Mecl are used to convey all 

S phase checkpoint signals, whilst the ATM homologs Tell are involved in 

telomere metabolism (Matsuura et al., 1999; Ritchie et al., 1999).

Table 1.1 Components of the S phase checkpoint system in eukaryotes

Protein function Fission yeast Budding yeast Mammals

Sensors Rad9 Ddcl Rad9

Radi Rad 17 Radi

Husl Mec3 Husl

Rad 17 Rad24 Rad 17

Adaptors Crb2 Rad9 BRCA1

Mrcl Mrcl Claspin

Transducers Rad3 Mecl ATR

(Tell) (Tell) ATM

Rad26 Ddc2 ATRIP

Chkl Chkl Chkl

Cdsl Rad53 Chk2
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Note that Cdc2 is also active for DNA replication when associated with the 
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Figure 1.3 The quantitative model of Cdc2-mediated cell cycle 

progression based on a Cdc2 kinase cycle

Cells prepare for DNA replication when Cdc2 kinase activity is low in G l. A 

medium level of kinase activity (Med) triggers S phase whereas a high level 

of activity (High) is required to trigger mitosis. Both medium and high levels 

of kinase activity prevent the reformation of pre-RCs.
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Figure 1.4 Primary structure of the Cdcl8 protein

Black boxes represent consensus Cdc2 phosphorylation sites. Red boxes 

represent, from N-terminus to C-terminus, the Walker A motif (consensus 

GXXGXGKT), the Walker B motif (consensus HyHyHyHyDEXD), the Sensor 1 

motif (consensus HyHyXXXN) and the Sensor II motif (consensus GDXR), 

where Hy=hydrophobic residue.
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The replication complex contains, amongst other entities, DNA polymerases 

(pol) a  and e, primase, RFC and PCNA. Cdc45 recruits DNA pol a  to the 

pre-IC, and then likely travels along the DNA in association with the MCM 

complex. Cdc23 is required for Cdc45 recruitment and for primase/DNA pol 

a  function during elongation (and is hence pictured travelling with the 

replication complex). It is not known if Cdcl8 and/or Cdtl form part of the 

pre-IC, or if the proteins are present during S phase.
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Signals generated by incomplete replication diverge from Rad3 to Cdsl via 

Mrcl, whilst signals from DNA damage diverge from Rad3 to Chkl via 

Crb2.
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Chapter 2. Generation, analysis and screening of 
temperature sensitive (ts) cdc18 mutants

2.1 Introduction

This project aimed to produce a bank of temperature sensitive (ts) cdcl8  

mutants that could be used to isolate Cdc 18-interacting factors via suppression 

screening. Isolation of genes (from a cDNA library) capable of rescuing the 

mutant phenotypes could reveal novel interactions between Cdc 18 and other 

proteins.

Prior to this project, one ts cdcl8  mutant existed in the lab, namely cdcl8-K46 

(Nasmyth and Nurse, 1981). This mutant fails to grow at restrictive 

temperature and arrests at the end of S phase with 2C DNA that can not be 

segregated (chromosomes do not enter a pulsed field gel and cells cut in the 

absence of rad3) (Kelly et al., 1993). By randomly mutating cdc 18 it was 

hoped that a number of ts mutants could be found that displayed a range of 

phenotypes at restrictive temperature. Such phenotypes might involve a 

complete destabilisation of the protein (giving the null phenotype of cdc!8A), 

a replication deficient protein capable of initiating the S phase checkpoint 

(giving a 1C arrest), or a stable form of the protein that might ectopically 

activate the rad3 pathway or cause re-replication. In addition, a strategy for 

creating a replication deficient ts mutant by site-directed mutagenesis was 

devised. Glycine 317 (G317) is a highly conserved residue in Cdc6/Cdcl8 

proteins, and a specific alteration of the corresponding residue in budding 

yeast Cdc6 (G260D) gives a ts 1C cell cycle arrest with failure to load Mcm5 

onto replication origins (Feng et al., 2000). Hence the equivalent alteration 

(G317D) was attempted in fission yeast.

A total of 13 new ts cdc 18 mutants were isolated, each showing one of three 

different phenotypes. Mutants representing each class of phenotype were 

screened for suppressors from a fission yeast overexpression cDNA library,
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but only Cdcl8 itself was found to be able to suppress the mutant phenotype at 

restrictive temperature.

2.2 Results

2.2.1 Generation of ts cdc18  mutants

Both random and site-directed mutagenesis of cdcl8  was used to produce ts 

cdcl8  mutants. The target construct used was cloned genomic cdcl8  with the 

ura4 gene inserted after the cdcl8  ORF (figure 2.1). Mutagenic PCR 

amplification of the cdcl8-ura4 region gave fragments containing randomly 

mutated DNA. The mutagenic PCR reaction (Fromant et al., 1995) uses a non­

proofreading polymerase, MnCl2 to reduce stringency at the active site and 

unequal concentrations of dNTPs (see materials and methods). For site- 

directed mutagenesis, a mutant construct containing cdcl8-G317D  (pOHl) 

was obtained using a Stratagene QuickChange site-directed mutagenesis kit 

and complementary mismatched primers at the mutation site. High fidelity 

PCR amplification of the new cdcl8-ura4 region gave fragments containing a 

G317D version of cdcl8. Mutated cdcl8-ura4 fragments were purified using a 

QIAquick PCR purification kit and transformed into ura4A cells. Uridine 

prototrophs, produced from integration of the cdcl8-ura4 fragment (assumed 

to be at the genomic locus of cdcl8), were selected at 25°C. The integrants 

were then screened at 36.5°C for temperature sensitivity. The cdcl8-G317D  

integrant was temperature sensitive, as predicted. Of approximately 20,000 

integrants produced from the random mutagenesis procedure, 12 showed an 

inability to form colonies at the restrictive temperature and were selected.

A further screen was carried out for strains that were sensitive to HU, in either 

a temperature-dependent manner or not. Integrants were replica-plated to 

YE5S medium for 24 hours before replica plating to YE5S, YE5S with 12mM 

HU, and YE5S with 12mM HU at 36.5°C. Wild-type cells subjected to such 

treatment eventually leak through the HU block and form colonies, whereas 

checkpoint-deficient cells (e.g. rad3A) do not tolerate such treatment and die. 

None of the integrants produced from the random mutagenesis procedure were 

sensitive to HU at 25°C or at 36.5°C (although the above 12 isolates
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demonstrating basic temperature sensitivity failed to grow on HU at 36.5°C, 

as expected).

Microscopic inspection demonstrated that all 13 ts strains were highly 

elongated at 36.5°C (figure 2.2A), and hence the temperature sensitivity wa 

due to cell cycle arrest. To check that the temperature sensitivity was cdcl8- 

specific, and that no other ts mutations existed within the cell, strains were 

backcrossed to a wild-type ura4A strain. The resultant progeny showed a tight 

association of temperature sensitivity with the ura4 marker in all cases, and 

the 50:50 segregation of the ura4 marker showed that one integration event 

had occurred within the ts mutants. In order to show that the temperature 

sensitivity was due to a defect in cdcl8  function, strains were transformed 

with a wild-type copy of cdcl8  (expressed using a constitutive and thiamine- 

repressible nmt81 promoter). In the absence of thiamine, these transformants 

were capable of forming colonies at the restrictive temperature (figure 2.2B, 

C), showing that the sensitivity of the isolated stains was due to a defect of 

cdcl8.

2.2.2 General characterisation of ts cdc18  mutants

In order to assess the point of the cell cycle at which the ts mutants arrested, 

cell number and FACS analysis was performed. Exponentially growing 

cultures of the mutants were shifted from 25° to 36.5°C, and samples taken 

every hour. Cell number analysis revealed cell cycle arrest after an 

approximate doubling in cell number for all mutants (figure 2.3A). These data 

position the arrest point early in the cell cycle, from G1 to late S phase (see 

1.1.2). FACS analysis revealed that the mutants arrested with 1C DNA (G1 or 

early S arrest), 2C DNA (late S), or 2C DNA following a slow S phase 

(indicated by a transient 1C peak or spreading of the 2C peak to <2C regions) 

(figure 2.3B, table 2.1). It should be noted that the FACS profiles in these 

circumstances can drift towards the right as they persist in the block, probably 

due to an autofluorescence artefact as a consequence of cell elongation (Sazer 

and Sherwood, 1990). Thus the mutants showed a varying ability to initiate 

DNA replication (giving three different classes of phenotype), but in all cases
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a G1 or S phase checkpoint activation was induced. In order to investigate this 

activation further, the mutant alleles were crossed into a rad3& background. 

When these double mutants were shifted to restrictive temperature the cells 

did not elongate, but instead entered a lethal mitosis, giving the cut phenotype 

(figure 2.2D). On agar plates a cut phenotype can be seen by the production of 

very small, rounded cells that often appear brighter than wild-type cells 

(probably due to the lack of a nucleus in some cases). These results 

demonstrate that the arrest shown by the ts mutants is one caused by 

incomplete or aberrant DNA replication which signals to the Rad3 pathway.

Colony PCR and subsequent sequencing was used to confirm the location of 

the integration event and to analyse the sequence of the mutant alleles. Colony 

PCR uses genomic DNA from cells inoculated directly into the reaction as a 

template. Colony PCR here was performed using a ura4 primer (R6) and a 

primer complementary to a region of cdcl8  5’-flanking sequence that was not 

amplified by the original PCR reactions (275, see figure 2.1). In this way,

PCR products will only be produced from mutant copies of cdcl8  integrated at 

the genomic locus. All 13 ts mutants gave such products. By combining this 

data with the results of the genetic backcrosses it is possible to conclude that 

the mutants contain a single, mutant copy of cdcl8  at the genomic locus that is 

linked to ura4. Sequencing of the colony PCR products, across the entire 

cdcl8  ORF (in both forward and backward directions) identified a number of 

conservative and substitution mutations within the cdcl8  alleles (table 2.1).
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Table 2.1 Summary of new ts cdc!8 mutants

cdcl8 allele Arrest phenotype Amino acid substitutions

G317D 1C G317D

3.2 1C I109L, I260S, K481E, T486A, I551V

3.6 2C S55C, S159C, K162N, V197G

3.9 1C G317D, S552G

D8 2C, slow S I379F, Q392R, V459D, D499N, 

S506P, C523S, L532P

B2.1 2C, slow S D326V, K357I, V560A

B3.1 2C, slow S V284T, K474Q

F2.1 2C, slow S T101I, S311K. Q479L, K545R

H I.2 2C, slow S S520A, A526T, I535F, Q541L

H2.3 2C D219E, N443D, S494T, K540E, 

L553S

11.2 2C E434V, V560A

K3.2 2C N153S, N190K, V197A, H290L, 

L322I, I455N

L2.1 2C I243F, N275S, Y300F

Perhaps surprisingly, one mutant allele (3.9) produced from random 

mutagenesis contained the exact amino acid substitution designed for the site- 

directed mutant. Given the identical phenotypes of cdcl8-G317D  and cdcl8- 

3.9, it is reasonable to assume that the G317D substitution is the active change 

(that which gives rise to the mutant phenotype) of the two substitutions of 

cdcl8-3.9. As this mutant was obtained before the site-directed mutant, this 

allele has been used to investigate the phenotype given by the G317D change. 

These investigations, and the structural significance of the G317D 

substitution, are presented in chapter 3.

Using the sequence data of the remaining mutants to correlate structure with 

function is hampered by the presence of multiple amino acid substitutions (2- 

7) throughout the protein sequence of the ts alleles. In all cases there are two
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or more changes of side chain type (e.g. from aromatic to basic, which I will 

call ‘effective’ changes). Of 45 changes only two pairs of substitutions affect 

the same residue, and there is a wide range in the types of residues involved in 

the substitutions. There are no direct changes to any of the cdcl 

phosphorylation sites, and the proportion of changes in and around the WA, 

WB, SI and SII motifs (11%) is close to that expected at random (14%). 

(Approximately 73 residues, 14% of the primary sequence, constitute these 

motifs.)

It may be possible, however, to implicate particular mutations in the presented 

phenotype if we analyse those effective changes that affect residues conserved 

or similar across eukaryotes (from alignment of S. cerevisiae, S. pombe, X. 

laevis and H. sapiens Cdcl8/Cdc6 sequences) (figure 2.4 and table 2.2). For 

instance, in cdcl8-3.2, which arrests with 1C DNA, K481E represents an 

effective change to a residue conserved across these species In addition, 

T486A alters a residue that features a hydroxyl-type side chain across the 

same organisms. Neither of these residues lies within a previously 

characterised domain of the protein, but K481 does lie within an QQK motif 

that is highly conserved. Mutation of the entire QQK motif (to a run of three 

alanines) results in a completely non-functional form of the protein (Liu et al., 

2000). This QQK motif is affected in the cdcl8-F2.1 mutant (Q479L), but this 

strain also contains a change to the conserved residue S311, which lies within 

the Sensor I domain. The Sensor I domain is also affected in cdcl8-B2.1 

(D326V) whilst the WB domain is altered in cdcl8-B3.1 (V284T). This 

analysis still provides a limited extrapolation of the sequence data, given that, 

in many cases, there are still two possible active mutations (or none at all), and 

the alterations involving known domains (e.g. Sensor I) result in different 

arrest phenotypes. However, the identification of conserved residues in 

uncharacterised regions, that give a mutant phenotype upon mutation, may 

allow further investigation into the structure and function of C dcl8.
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Table 2.2 Mutations likely to be active in the mutant phenotypes of the ts 

mutants. Where no putative active mutations have been identified, all 

effective mutations alter non-conserved residues.

cdcl 8 

allele

Arrest

phenotype

Putative active 

mutations

Discussion

G317D 1C G317D See chapter 3

3.2 1C K481E

T486A

Conserved residue, QQK motif 

Hydroxyl side-chain

3.6 2C None identified

3.9 1C G317D See chapter 3

D8 2C, slow S Q392R

V459D

Conserved residue 

Aliphatic side-chain

B2.1 2C, slow S D326V Conserved residue, SI motif

B3.1 2C, slow S V284T Conserved residue, WB motif

F2.1 2C, slow S S311K

Q479L

Conserved residue, SI motif 

Conserved residue, QQK motif

H I.2 2C, slow S S520A

I535F

Conserved residue 

Aliphatic side-chain

H2.3 2C None identified

11.2 2C None identified

K3.2 2C I455N Aliphatic side-chain

L2.1 2C I243F Conserved residue

2.2.3 Overexpression suppressor screening of ts cdc18  

mutants

Suppressor screening was performed using the laboratory fission yeast cDNA 

library. The cDNA for this library was produced from total RNA collected 

from mitotic, meiotic and shmooing cells (with 2:1:1 ratio). The library 

construct consists of a cDNA cloned behind the runtl promoter, a selectable 

marker (e.g. budding yeast LEU2+) and a fission yeast ARS. The nmtl 

promoter provides constitutive high overexpression of its attached ORF in the
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absence of thiamine (its repressor) and provides significant expression even in 

the presence of thiamine.

Three ts mutants were used for suppression screening, one from each class of 

arrest phenotype: 3.9 (1C arrest), 3.6 (2C arrest) and F2.1 (2C after slow S). 

For each screen, approximately 109 cells were transformed with 10pig of 

cDNA library and plated onto selective medium containing thiamine at 25°C. 

Approximately 2 x 105 transformants were obtained from each transformation. 

Transformants were replica-plated to selective medium with and without 

thiamine at 25°C for 48 hours before replica-plating to selective medium with 

and without thiamine at 36.5°C. For cdcl8-F2.1, an additional screen was 

performed using a restrictive temperature of 34.5°C. After 2-4 days plates at 

restrictive temperature were inspected for colony growth and viable 

transformants were picked and patched to selective medium with thiamine at 

25°C. Between 46 and 96 colonies, all on medium lacking thiamine, were 

selected in each screen. Each clone was then subject to colony PCR to test for 

the presence of cdcl8  cDNA. By using one primer complementary to library 

vector sequence (C08) and one primer internal to the cdcl8+ ORF (R5) it was 

possible to identify transformants carrying cdcl8 plasmid. Positive clones 

(typically 80%) were discarded, and plasmid was extracted from the remaining 

clones. These plasmids were cloned using E.coli DH5-a and sequenced from 

the 5’ end using vector primer. The resultant sequences were mapped onto 

Artemis, a program that represents the annotated genome sequence of fission 

yeast. All of the sequences mapped to the cdcl8 locus. With one exception, all 

clones contained a full-length cdcl8  ORF with a 5’ UTR in the range of 70- 

130bp (mode of 75, mean of 92). The remaining clone contained a cdcl8 ORF 

lacking the coding sequence for the first 80 amino acids. Hence no factors 

other than Cdcl 8 itself were found that could suppress the temperature 

sensitivity of the ts cdcl8  mutants when overexpressed.

2.3 Discussion

The random and site-directed mutagenesis procedures used in this project 

successfully produced a bank of ts cdcl8  mutants. All of the mutants arrested
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early in the cell cycle at restrictive temperature, and showed a varying ability 

to initiate DNA replication (broadly defining three classes of mutant). In all 

cases the absence of replication (1C arrest) or aberrant replication (2C arrest) 

triggers an S phase checkpoint signal to halt the cell cycle. In the absence of 

Rad3, this signal can not be sent and cells proceed to a catastrophic mitosis 

(giving the cut phenotype). As wild-type Cdcl8 can rescue the defects seen at 

restrictive temperature, it is reasonable to assume that the defects represent a 

loss of function (recessive defects). The previously isolated ts cdcl8 mutant, 

cdcl8-K46, would fall into the third class of mutant created in this study. This 

mutant gives a radJ-dependent late S phase arrest that can be overcome in the 

presence of wild-type C dcl8.

It is interesting to consider that the isolated bank consisted entirely of cdc 

mutants. Firstly, this suggests that structural changes capable of completely 

destabilising the protein (and giving a null phenotype) would be lethal at a 

range of temperatures. Secondly, it suggests that changes which are capable of 

stabilising the protein (possibly giving re-replication) may be lethal at a range 

of temperatures. Alternatively, it may be that the chances of simultaneously 

affecting all of the sites responsible for destabilising the protein (e.g. the cdc2 

phosphorylation sites) in the random mutagenesis procedure are too small.

It is also interesting to reflect on the phenotypes of the bank of mutants 

produced. The mutants arresting with 1C DNA at restrictive temperature 

represent a novel ts phenotype in cdcl8  mutants. In these cases, the initiation 

function of Cdc 18 has been removed without affecting the ability of Cdc 18 to 

initiate the S phase checkpoint signal. This contrasts with the phenotype of 

cdcl8A, where cells fail to undergo DNA replication and proceed immediately 

into a lethal mitosis. Hence these mutants allow significant insight into both 

the initiation and checkpoint functions of Cdc 18, and will be investigated 

further in chapters 3 and 4.

The mutants arresting with 2C DNA at late S present a less clear picture. A 

traditional explanation is that the initiation function of Cdc 18 is not
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completely ablated, but is faulty in some way. Faulty initiation may allow bulk 

replication (taking the DNA content to 2C) but leaves chromosomes in a state 

unfit for mitosis (causing Rad3 checkpoint activation). Quite how this would 

happen mechanistically is unclear, especially as these alleles are recessive 

with respect to wild-type (from the complementation data). An alternative 

explanation may be that Cdc 18 plays a role within S phase aside from its 

initiation and checkpoint roles, and this is considered further in chapter 5.

The isolation of cdc 18 clones from the cDNA library that suppressed each of 

the screened ts mutants demonstrates that the screening procedure was 

effectively set-up. It was disappointing, and somewhat surprising, that no 

factor other than Cdc 18 was capable of suppressing the mutant phenotypes 

when overexpressed. The mutants used displayed a range of initiation 

problems, and the use of a semi-restrictive temperature (34.5°C) should have 

aided the activity of weak suppressors. Whilst the level of expression of 

inserts from the strong nmtl promoter is very high, it must be noted that the 

screens were conducted both with and without its repressor, thiamine. In the 

presence of thiamine a significant expression is still achieved without the 

possible deleterious effect of overexpression of certain factors. In addition, in 

the absence of thiamine high overexpression of Cdc 18, which we would 

normally expect to give rereplication, provided viable complementation. This 

suggests that factors within the library have an intrinsic range of expression 

levels, probably due to variations in UTR regions. Nonetheless, future 

screening attempts may require a different expression vector for the cDNA 

library. In addition, it may be that other mutants within the broad phenotypic 

classes, carrying different mutations, are more amenable to the screening 

procedures employed. Specific attention could be directed towards proteins 

displaying putative surface substitutions. A final consideration might be to 

attempt to remove the cdcl8  clones from the cDNA library, prior to screening, 

in order to reduce the work required to identify non-cdcl8 constructs obtained 

from the screen.
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cdc 18

Figure 2.1 Outline of ts m utant construction

Cloned cdc/8-ura4 (in pDH17) or cdc18-G317D-ura4 (in pOHl) were 

amplified using primers 247 and 256. Resultant PCR products were 

integrated into the genome (shown here by homologous recombination to 

replace the genomic cdc 18 ORF, in blue). Resultant uridine prototrophs were 

subjected to colony PCR using primers 275 and R6.



25°C 36.5°C

Figure 2.2 Visual phenotypes of ts cdcl8  m utants as illustrated by cdcl8- 

F2.1

A) At 25°C, cdc!8-F2.1 forms colonies and cell size is wild-type. At 36.5°C 

there is no cell division so there is no colony formation and cells are highly 

elongated. B) cdcl8-F2.1 transformed with an empty vector on selective 

medium. The phenotypes at both temperatures are identical to those of the 

mutant alone. C) cdcl8-F2.1 transformed with pnmt81-cdcl8. At At 36.5°C 

there is now colony formation. D) cdc!8-F2.1 in a rad3A background. At 

36.5°C cells now enter a lethal mitosis, giving a cut phenotype.
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Figure 2.3 Phenotypes of ts cdcl 8 mutants by cell number and FACS

A) As illustrated by cdcl8-H2.3, cell number plateaus after doubling at 

36.5°C. B) Cells arrest with 1C DNA (illustrated by cdc 18-3.9), 2C DNA 

(illustrated by cdcl8-H2.3) or 2C DNA after a slow S phase (as illustrated by 

cdcl8-F2.1) at 36.5°C.
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Figure 2.4 Multiple sequence alignment of Cdc6 proteins

Cdc6 proteins from S. cerevisiae (Sc), S.pombe (Sp), X. laevis (XI) and 

H. sapiens (Hs). Red highlighting denotes identity between all four 

sequences, black highlighting denotes identity between three of the 

sequences, and green highlighting denotes similarity between at least three 

sequences.



Chapter 3 Detailed analysis of the WA and WB domains of Cdcl 8

Chapter 3. Detailed analysis of the WA and WB 

motifs of Cdcl 8

3.1 Introduction

The WA and WB motifs of ATPases have been implicated in the processes of 

ATP binding and hydrolysis respectively (Neuwald et al., 1999). A number of 

in vivo and in vitro studies have been carried out on the conserved regions of 

Cdc 18 and its homologues, including the WA and WB motifs. In several 

organisms a model of nucleotide metabolism by this protein has been formed, 

yet some discrepancies, and differences between organisms, still exist.

The largest volume of work has been effected using budding yeast. Mutation 

of the conserved lysine residue of the WA motif (K114E) leads to a loss of 

MCM loading and hence replication, although the protein is still able to 

restrain mitosis (Weinreich et al., 1999). In this paper the mutant protein is 

still able to bind chromatin, which conflicts with other evidence which shows 

that the mutation prevents chromatin association in vivo and disrupts 

interaction with Orel in vitro (Wang et al., 1999). Mutation of the conserved 

glutamate residue of the WB motif (E224G) reduces MCM loading with 

concomitant defects in replication (Perkins and Diffley, 1998). These data 

suggest that ATP binding is not required for the checkpoint function of Cdc6, 

but binding and hydrolysis is required for MCM loading and replication. In 

addition to the WA and WB motifs, the Sensor I (SI) and Sensor II (SII) 

motifs have been implicated in Cdc6 function. As previously described, one 

particular mutation in SI (G260D) gives rise to a temperature-dependent loss 

of MCM loading and defects in replication (Feng et al., 2000). A number of 

other mutations in SI (e.g. N263A) and SII (e.g. R332A) give rise to 

temperature-dependent replication defects along with decreased MCM loading 

capability (Schepers and Diffley, 2001). Overexpression of the E224G (WB) 

and N263A (SI) forms of the protein, but not the K114E (WA) form, leads to 

a dominant inhibition of growth, characterised by incomplete replication 

(Perkins and Diffley, 1998). This suggests a common role for the WB and SI
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motifs in Cdc6 function. A partial trypsin digestion assay has shown that wild- 

type Cdc6 can alter the conformation of the ORC complex (Mizushima et al., 

2000). This activity is inhibited by mutation to the WA motif (K114E), 

mutation to the SI and SII motifs (N263A andR332E), and incubation with 

ATPyS (Mizushima et al., 2000; Takahashi et al., 2002). Taken together these 

results suggest that ATP hydrolysis enables MCM loading at origins by 

modifying the structure of ORC. ATP binding does not seem to be required 

for chromatin binding or checkpoint signalling.

The biochemical functions of the WA and WB motifs of human Cdc6 have 

been well studied in vitro (Herbig et al., 1999). Recombinant Cdc6 can bind 

and hydrolyse ATP, and interacts physically with itself and with human Orel. 

Mutation of the WA motif (K208A) prevents ATP binding but does not affect 

its association with Orel. Mutation of the WB motif (E285Q) prevents ATP 

hydrolysis without affecting ATP binding or association with Orel. 

Microinjection of either form into G1 cells either prevents replication (WA) or 

inhibits its completion (WB).

In Xenopus egg extracts too it appears as though ATP hydrolysis is required 

for its replication function, although here it seems that ATP binding is 

required for association of Cdc6 with replication origins (Frolova et al., 2002). 

Mutation of the WA motif (K202E) prevents the association of Cdc6 with the 

chromatin, concomitant with a lack of MCM loading and DNA replication. 

Mutation of the WB motif (E227G) does not significantly affect chromatin 

association, but does decrease MCM loading and greatly inhibits DNA 

replication. Both mutant proteins inhibit DNA replication when added to 

extract before the wild-type protein. DNA replication is supported, however, if 

either mutant protein is added to extracts at the same time as wild-type 

protein. In addition, DNA replication is supported if the WA and WB proteins 

are added to extracts together. These results provide compelling evidence that 

Cdc6 acts as a multimer in vivo, and suggest that ATP binding and hydrolysis 

occur in trans between Cdc6 subunits within the complex. This is supported 

by the detection of physical interaction between Cdc6 subunits in a number of
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papers (Frolova et al., 2002; Herbig et al., 1999; Saha et al., 1998a). 

Multimerisation of Cdc6 is also consistent with the dominant negative effects 

of certain mutant proteins in the systems described above.

In fission yeast, the WA and WB motifs are also essential for Cdc 18 function. 

Mutation of the WA motif (K205A) results in a completely non-functional 

protein that is unable to initiate replication or a checkpoint signal (DeRyckere 

et al., 1999). Mutation of the WB motif (DE286AA) has been reported by the 

same laboratory to give two phenotypes: either a slow S phase with an intact 

checkpoint response (DeRyckere et al., 1999) or a slow S phase with a partial 

checkpoint response (Liu et al., 2000). Mutation of the SI motif (N320A, 

D323A) gives a non-functional protein, whereas mutation of the SII motif 

(D418A, R420A, K421A) causes a late S phase arrest (Liu et al., 2000), 

implicating these motifs in Cdc 18 function. In this chapter I have used 

previously constructed and novel strains to expand our understanding of the 

WA and WB motifs in fission yeast. Neither the WA nor the WB domain is 

required for Cdc 18 chromatin association. An intact WA motif is required for 

checkpoint activation, MCM loading and DNA replication. The WB and SI 

domains are required for MCM loading and DNA replication but not for 

checkpoint activation. These results suggest that C dcl8 associates with 

chromatin in any nucleotide state. The binding of ATP then enables Cdc 18 to 

initiate a checkpoint signal, whilst hydrolysis enables origin licensing and thus 

DNA replication.

The overexpression of Cdc 18 gives rise to large scale rereplication of the 

fission yeast genome (Muzi Falconi et al., 1996; Nishitani and Nurse, 1995). 

This effect is equalled, if not bettered, by the overexpression of a C-terminal 

fragment of Cdcl8 (Greenwood et al., 1998). As the N-terminus (only) of 

Cdc 18 physically interacts with Cdc2, this result demonstrates that 

rereplication induced by Cdc 18 overexpression is not dependent upon the 

direct inhibition of Cdc2. In this chapter I show that rereplication induced by 

the C-terminus requires intact WA and WB motifs. This indicates that 

overexpression of Cdc 18 gives rise to rereplication by directly reloading

63



Chapter 3 Detailed analysis of the WA and WB domains of Cdc 18

MCM proteins, and not by an indirect effect, such as stimulating Rad3- 

dependent inhibition of Cdc2.

3.2 Results

3.2.1 Development of a chromatin association assay

A number of questions relating to the functions of Cdc 18 required an analysis 

of the localisation of various proteins to chromatin. Therefore I developed a 

chromatin association assay, which was based upon that published previously 

(Lygerou and Nurse, 1999). A number of adaptations of this protocol were 

made in order to optimise the yield and purity of the chromatin associated 

protein fraction, and the final adjusted procedure is given in the materials and 

methods. In brief, the protocol firstly prepares spheroplasts for each sample, 

using lysing enzymes to remove the cell wall in the presence of osmotic 

support (1.2M sorbitol). These spheroplasts are then lysed by removing this 

osmotic support and adding triton detergent. Spinning the total lysate gives a 

pellet, containing chromatin (amongst other entities), and a soluble fraction. 

Treating the pellet with DNasel, in the presence of 0.5M NaCl and 1% NP40, 

releases DNA-bound proteins. Hence upon further spinning one is left with a 

pellet and a supernatant containing proteins formerly associated with DNA: 

this is the chromatin associated protein fraction (figure 3.1 A).

A new strain was constructed for the assay development, named the COT 

strain (cdc25-22 orpl-HA cdcl8-TAP). Cultures of COT, growing 

exponentially at 25°C, were used as samples. The positive and negative 

controls used for the chromatin fraction were Orpl and a-Tubulin 

respectively. Orpl has been shown to bind chromatin constitutively 

throughout the cell cycle (Lygerou and Nurse, 1999) and a-Tubulin is a 

cytoplasmic protein. Cdc 18 was detected using a PAP antibody that recognises 

its TAP tag, Orpl was detected using an anti-HA monoclonal antibody and a - 

Tubulin was detected using and anti-Tubulin monoclonal antibody. Volume 

equivalents of soluble (S), chromatin (C) and final pellet (P) fractions were 

run on Westerns using a variety of treatments of the initial pellet (figure 3. IB). 

In all cases a large proportion of total Cdc 18 and Orpl is located in the soluble
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fraction. This likely represents a combination of soluble protein within the cell 

and protein that has been lost from the chromatin during the procedure (and 

hence has not been used as an indicator of in vivo soluble levels). A similarly 

large proportion of these proteins can be found in the initial pellet, and this 

represents chromatin-bound protein along with protein in unlysed cells and 

protein that had formed insoluble aggregates (Nishitani and Nurse, 1995). At 

optimised conditions, approximately 50% of these proteins are released from 

the initial pellet using DNasel in 0.5M NaCl (with or without 1% NP40). 

Extremely low amounts of Cdc 18 or Orpl are found in the chromatin fraction 

without such treatment, or by using 1% NP40 alone. None of the treatments 

increase the very low level of a-Tubulin released into the chromatin fraction.

Further verification and development of the technique involved analysing a 

synchronous mitotic cell cycle using a cdc25-22 block and release experiment 

with the COT strain. Cells were blocked at the G2/M transition by incubation 

at 36.5°C for 3.5 hours. Shifting the temperature of the culture down to 25°C 

released cells into a synchronous cell cycle, which was followed every 20 

minutes for the next 3 hours. One half of the culture was untreated and one 

half was released in the presence of 12mM HU. In the untreated sample S 

phase can be located between 80 and 120 minutes post release (as indicated by 

4C DNA and the rise in septation index, figure 3.2A, B). Both Cdtl (detected 

using a polyclonal anti-Cdtl antibody) and Cdc 18 can be seen to associate 

with chromatin prior to S phase and to dissociate after S phase (figure 3.2C), 

as previously reported (Nishitani et al., 2000). In addition, it has been shown 

that whilst the total amount of Mcm4 remains constant throughout the cell 

cycle, binding of low mobility Mcm4 to chromatin follows a similar 

periodicity to that of Cdcl8/Cdtl (Nishitani et al., 2000), and this is 

reproduced here (Mcm4 detected using a polyclonal anti-Mcm4 antibody). For 

the rest of the thesis my description of Mcm4 loading refers to the association 

of these low mobility forms of Mcm4 with chromatin.

In the presence of HU, cells arrest early in S phase. Cells septate in the 

absence of chromosomal duplication and hence a 1C DNA peak appears at
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120 minutes. Within the HU block Cdc 18, but not Cdtl, remains present 

(figure 3.2D) as previously observed (Damien Hermand, unpublished data). In 

addition, Cdc 18 and Mcm4 remain associated with chromatin, and these 

results are considered further in chapter 4. It is interesting to note that the level 

of Cdc 18 at its peak in a synchronous S phase is equal to the level of Cdc 18 in 

an HU block (figure 3.2E). It is still possible, however, that levels of C dcl8 

are elevated still further in a prolonged incubation in HU.

Cdc 18 can sometimes be seen on these Western blots as a closely spaced 

doublet, demonstrating the variability of mobility due to phosphorylation 

(Jallepalli et al., 1997). It is interesting that the doublet is apparent in both 

total and chromatin extracts, showing that phosphorylation of Cdc 18 does not 

remove it from chromatin (although it may prevent re-binding). Throughout 

this thesis tagged versions of Cdc 18, but not the native species, are often 

separated into different phospho-forms on the 7.5% gels used throughout.

Whilst the use of HA tagged Orpl as a chromatin loading control was 

successfully employed in the development of the assay, an alternative loading 

control was sought that did not require the introduction of the tagged orpl 

gene into each strain of interest. An anti-Orp2 polyclonal was generously 

donated by the Russell laboratory, which is effective in recognising Orp2 

without needing to affinity purify the serum (figure 3.3A). By using Orpl-HA 

from the previous experiments as a loading control, it was possible to assess 

Orp2 chromatin binding throughout the cell cycle. Although the 

phosphorylation status of Orp2 varies throughout the cell cycle, as reported 

(Vas et al., 2001), the total amount of Orp2 bound to chromatin (confirmed by 

densitometry) does not (figure 3.3B). In addition, HU treatment does not alter 

Orp2 loading. Thus Orp2 was subsequently used as a loading control for the 

chromatin association assay.
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3.2.2 A functional WA domain is required for DNA replication 

and checkpoint function but not for chromatin binding

A series of strains had been constructed previously within the laboratory 

(Greenwood, 2000) to assess the function of mutant Cdc 18 proteins. The first 

of these strains contains a wild-type copy of cdcl8 , integrated into the genome 

behind the thiamine-repressible nmt81 promoter (runt81-cdcl8+ , or the 

‘switch-off’ (SO) strain). This strain grows exponentially at 32°C in the 

absence of thiamine, as the level of Cdc 18 produced from the nmt81 promoter 

is sufficient to support growth without inducing re-replication. Upon thiamine 

addition transcription of the wild-type gene is repressed and cells rapidly 

accumulate with a 1C DNA content (figure 3.4A). Cells then proceed without 

delay into a lethal mitosis, giving the cut phenotype, as observed by DAPI 

staining of cellular DNA (figure 3.4B). For this thesis a cut phenotype is 

recorded if any of the following characteristics are observed:

a), uninucleate cells with a septum lying upon or cutting the nucleus.

b). septated cells with a nucleus in one side of the cell only or fragmented 

DNA in both sides.

c). anucleate cells.

The cut phenotype can often be seen on a FACS profile as a shift to DNA 

contents less than 1C, or on cell number analysis as an increase in cell number 

following cell cycle arrest. However, as septation does not always lead to cell 

division in these circumstances (especially in longer cells) such measures do 

not provide accurate quantification of the cut phenotype.

The next strain in the series had been used to show that the WA domain is 

absolutely required for Cdc 18 function (in agreement with DeRyckere et al., 

1999). Here, an HA-tagged version of cdcl8, containing a mutation of the 

conserved WA lysine residue (K205A), and expressed from the endogenous 

cdc 18 promoter, is integrated into the switch-off strain. The resultant strain 

(cdcl8-WA-HA; SO), grows exponentially at 32°C in the absence of thiamine. 

Upon thiamine addition cells rapidly accumulate with a 1C DNA content and
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proceed into a lethal mitosis, giving the cut phenotype (figure 3.4A, B). The 

rate of accumulation of 1C DNA and cut cells is very similar to that seen in 

the absence of the WA protein (SO strain), demonstrating that the WA version 

of Cdc 18 is not capable of either initiating DNA replication or initiating an S 

phase checkpoint. I was interested to find out if the lack of function of the WA 

protein over this timecourse is due to an inability to bind chromatin. Wild-type 

Cdc 18 can be resolved from the HA-tagged Cdcl8-WA on a 7.5% gel and 

detected using a polyclonal anti-Cdcl8 antibody (figure 3.4C). Chromatin- 

bound, wild-type Cdc 18 is present in cycling and HU-blocked cells, but is 

only just detectable an hour after the addition of thiamine. Cdcl8-WA was 

found to be chromatin-bound throughout the experiment and in cells blocked 

with HU. Whilst Cdcl8-WA can bind chromatin, it fails to load Mcm4 in the 

absence of wild-type protein. Thus an intact WA domain (and hence 

presumably ATP binding) is required for MCM loading, DNA replication and 

the S phase checkpoint, but not for Cdc 18 chromatin association.

For all remaining Western blots, a-Tubulin (total fractions) and Orp2 

(chromatin fractions) have been used as loading controls. Probing with other 

antibodies was only carried out once the loading of Tubulin or Orp2 was equal 

in all lanes. For most of the remaining figures these loading controls have not 

been shown, but loading controls have been included where the relative levels 

of other factors are being discussed.

3.2.3 Functional WB and Sensor I domains are required for 
MCM loading and DNA replication

Defining the role of the WB domain of Cdc 18 has been more difficult than 

defining that of the WA domain. In the same switch-off system as that 

described above, a mutation of one of the two acidic residues of the WB motif 

(E287G) was made previously (cdcl8-E287G-HA; SO) (Greenwood, 2000). 

This strain grows exponentially at 32°C in the absence of thiamine. Upon 

thiamine addition transcription of the wild-type gene is repressed and cells 

arrest at the end of S phase, as indicated by a plateau of cell number after an 

approximate doubling and 2C DNA (figure 3.5A). The absence of cut cells at
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5 hours demonstrates that the S phase checkpoint is intact. Cdcl8-E287G was 

found to be chromatin-bound throughout the experiment and in cells blocked 

with HU (figure 3.5B). Association of Mcm4 with the chromatin is seen in 

cycling and HU-blocked cells, but not at the block point.

These results suggest either that the WB domain is not required for the 

initiation or checkpoint functions of Cdc 18, or that the WB mutation used has 

not completely abrogated its function. In order to investigate this, the strain 

was forced to enter an HU block with wild-type cdcl8  repressed. The 

experiment used here employs two HU blocks, one to synchronise the culture 

and one to analyse the strain’s behaviour in the absence of wild-type cdcl8  

transcription. Cells were initially synchronised at early S phase by incubation 

in HU for 3 hours (figure 3.6A). HU was then washed out and thiamine added 

to the culture to repress transcription of wild-type cdcl8. An hour later, when 

DNA replication is complete and cells are entering G2, HU is added again. 

Two to three hours later cells accumulate with 1C DNA at early S phase. 

Figure 3.6B shows that cells enter this second HU block with only Cdc 18- 

E287G bound to the chromatin. In these circumstances a significant amount of 

Mcm4 is loaded on to chromatin (approximately 40% of that loaded in the 

presence of wild-type Cdc 18, as determined by densitometry). The residual 

ability of the Cdcl8-E287G protein to load MCMs onto chromatin may 

explain the entry of cells into S phase when only the Cdcl8-E287G protein is 

present. In addition, this residual activity suggests that the single WB mutation 

introduced into the protein does not completely abrogate its ATP hydrolysis 

function. Further evidence for these conclusions is provided in section 3.2.4.

A more clear-cut picture was obtained using another previously constructed 

strain. In this strain a midT-tagged version of cdc 18, containing a double 

mutation in the WB motif (DE286AA), is integrated behind the endogenous 

promoter. A wild-type copy of the gene is also present within the cell on a 

plasmid, under control of the nmt81 promoter (cdcl8-DE286AA-midT 

pnmt81-cdcl8 or, more concisely, cdcl8-DEAD-midT; SO) (Liu et al., 2000). 

This strain grows exponentially at 32°C in the absence of thiamine. Published
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results show that, upon thiamine addition, cells arrest with a 2C DNA content 

after a slow S phase. In addition, the S phase checkpoint signal is lost after 

approximately 5 hours. In my hands, however, a different phenotype is 

observed (figure 3.7A). Upon thiamine addition cells accumulate with 1C 

DNA and replication is absent throughout the timecourse. In addition, the S 

phase checkpoint is maintained for longer (12% cuts at 5 hours in comparison 

to 42% in the switch-off strain or 34% in the published results for this 

mutant). Figure 3.7B shows that Cdc 18-DEAD is bound to chromatin in 

cycling cells, in HU-blocked cells and throughout the timecourse. (Note that I 

was unable to resolve the midT-tagged mutant protein from its wild-type 

counterpart, and hence the former is followed using a polyclonal anti-midT 

antibody.) Commensurate with the lack of replication, the Cdc 18-DEAD 

protein is unable to load Mcm4 onto chromatin. These results demonstrate that 

an intact WB domain (and presumably ATP hydrolysis) is not required for 

chromatin binding or for S phase checkpoint initiation, but is required for 

MCM loading and hence replication.

The arrest phenotype produced by the Cdc 18-DEAD protein is reminiscent of 

that seen with the ts mutant protein Cdc 18-3.9 at restrictive temperature, as 

described in chapter 2. At 36.5°C this strain accumulates with 1C DNA and 

initiates the S phase checkpoint (cut cells are absent until after the 5 hour 

timepoint) (figure 3.8A). The mutant protein is bound to chromatin at the 

block point, but it cannot load Mcm4 (figure 3.8B). As a positive control for 

Mcm4 loading the same strain was incubated in HU at 25°C. As discussed in 

chapter 2, the active mutation in this protein is G317D. Glycine 317 lies 

within the Sensor I (SI) region of the protein. The Sensor regions of AAA- 

type proteins are commonly believed to either aid the process of ATP 

hydrolysis, or to transduce ATP hydrolysis into catalytic or/and 

conformational change (reviewed in Neuwald et al., 1999). The P. aerophilum 

structure enables us to see that the Sensor I region lies within close proximity 

to the co-ordinated Mg. ADP moiety and the WA, WB and Sensor II motifs 

(figure 3.9) (Liu et al., 2000). These results suggest that an intact SI domain is 

required for Mcm4 chromatin association and thus DNA replication, most
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likely by enabling ATP hydrolysis or by translating ATP hydrolysis into 

loading activity. The same conclusions can be reached in budding yeast, where 

the analogous G260D mutation also confers an inability to load MCM protein 

(Mcm5) onto replication origins (Feng et al., 2000).

The results from this section have further consequences for the S phase 

checkpoint role of Cdcl8. Cdc 18 that can bind ATP, but not hydrolyse it, is 

capable of sending an S phase checkpoint. The ability to initiate such a signal 

without loading Mcm4 onto chromatin, and hence without replication, 

suggests that Cdc 18 itself (or processes dependent upon it but not its initiation 

function) is responsible for checkpoint activation. In addition, it suggests that 

DNA replication intermediates are not necessarily required for the S phase 

checkpoint (although they may still be able to stimulate or/and potentiate such 

a signal). This will be discussed further in chapter 4.

3.2.4 Functional WA and WB domains are required for 
rereplication caused by Cdcl 8 overexpression

It has been shown that overexpression of the C-terminus of Cdc 18 (amino 

acids 150-577) causes rereplication to the same extent as overexpression of the 

full length protein (Greenwood et al., 1998). Overexpression of the N terminus 

(1-141) does not induce rereplication, but does cause cell cycle arrest via 

direct inhibition of Cdc2.1 was interested to find out if the rereplication 

caused by overexpression of the C-terminus of Cdc 18 required the activity of 

the WA and WB domains. This could indicate whether the ability of the C- 

terminus to cause rereplication depends upon its ability to load MCM proteins 

onto the DNA.

For this analysis I used a plasmid containing a copy of the C-terminus of 

Cdc 18 behind the nmtl promoter (pnmtl-cdcl8-C). A Stratagene 

QuickChange site-directed mutagenesis kit, and appropriate mutagenic 

primers, were used to introduce a number of mutations into the C-terminal 

ORF. These mutations affected the WA motif (K205A) or the WB motif 

(D286G, E287G and DE286AA). Wild-type cells were transformed with these
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constructs, including the intact C-terminal plasmid, and cultured at 32°C in 

selective medium containing thiamine. Cells were then filtered, washed and 

resuspended in selective medium lacking thiamine and cultured at 32°C for 20 

hours. After this time, overexpression of Cdcl8-C had caused large-scale 

rereplication (figure 3.10). Approximately 75% of cells had a DNA content of 

4C or more, with DNA contents rising up to 32C. In contrast, no rereplication 

was observed following overexpression of Cdcl8-C-K205A or Cdcl8-C- 

DE286AA. This demonstrates that intact WA and WB domains are required 

for rereplication induced by overexpression of Cdcl8-C. Hence the MCM 

loading activity of Cdc 18 is required for rereplication when this protein is 

overexpressed. Interestingly, an intermediate level of rereplication was 

induced by Cdcl8-C-E287G. This is consistent with the observation that 

Cdcl8-E287G (at wild-type levels) demonstrates residual Mcm4 loading 

activity (section 3.2.3). In addition, Cdcl8-C-D286G is incapable of causing 

any level of rereplication when overexpressed. This suggests that D286 is the 

more important acidic residue in the WB domain for ATP hydrolysis.

3.3 Discussion

The Cdc6 protein has been shown to possess ATPase activity in a human in 

vitro system, and here its WA and WB motifs are responsible for ATP binding 

and hydrolysis respectively (Herbig et al., 1999). It is thus reasonable to 

assume that mutations to the WA and WB motifs in other systems will 

abrogate or remove these respective biochemical activities. In this chapter, 

specific mutations to the WA, WB and SI motifs have enabled the 

construction of a model for nucleotide metabolism by Cdc 18. Cdc 18 can 

associate with chromatin irrespective of its nucleotide state, but ATP binding 

is absolutely required for both its checkpoint and initiation functions. 

Checkpoint activation does not require ATP hydrolysis, but hydrolysis is 

required for MCM loading and DNA replication. The SI domain plays an 

essential role in either enabling ATP hydrolysis or in translating hydrolysis 

into catalytic activity.
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This model has strong similarities with the Cdc6 models in other organisms.

In most cases it appears that chromatin association is not regulated by 

nucleotide binding, with the exception of Cdc6 in Xenopus, which requires 

ATP binding for chromatin association. In all cases the binding and hydrolysis 

of ATP appears to be required for the loading of the MCM complex onto 

chromatin, a prerequisite for DNA replication. Whilst many mutations of the 

WB motif gives rise to reduced MCM loading and impaired DNA replication 

(often giving rise to unfaithful duplication of part or all of the genome), the 

DE286AA mutation in fission yeast eliminates MCM loading and replication 

is apparently absent. The requirement for an intact SI motif in fission yeast for 

MCM loading is consistent with results in budding yeast, where SI mutations 

also impair MCM loading and DNA replication.

The relationship between nucleotide status and checkpoint function has only 

been assessed in fission yeast and budding yeast. ATP binding is required for 

checkpoint function in the former but not the latter yeast.

Despite significant homology between the eukaryotic and archaeal Cdc6-like 

proteins, the function and mechanism of Cdc6 may differ dramatically 

between the two kingdoms. The Cdc6-like factor in Sulfolobus solfataricus 

recruits MCM proteins to DNA containing bubble and fork structures, but this 

activity does not require DNA association or an intact WA motif (De Felice et 

al., 2004).

The results in this chapter have also suggested that rereplication caused by 

C dcl8 overexpression depends upon the ability of the overexpressed factor to 

load MCM proteins onto chromatin. This implies that when C dcl8 is 

expressed at high levels it can load significant amounts of MCM proteins 

without the need for increased Cdtl levels. This elevated MCM loading 

escapes the normal controls which prevent rereplication and stimulates 

replication of regions that have already been duplicated. These results are 

consistent with the findings that Cdcl8-induced rereplication requires 

functional Mcm4 (Kearsey et al., 2000). In addition these results are consistent
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with findings in budding yeast, where ts mutant cdc6-3 displays re-initiation 

of replication, increased DNA content and constant MCM chromatin 

association (Liang and Stillman, 1997). Interestingly, the C-terminus of C dcl8 

is still able to induce rereplication when it carries the E287G mutation, but not 

when it carries the D286G mutation. This suggests that the conserved 

aspartate residue in the WB motif is the more important acidic residue for 

ATP hydrolysis. It is the glutamate residue of the WB motif that has been 

targeted in all other systems to understand Cdc6 function, and this may 

explain the leaky phenotypes produced by such WB mutant proteins.
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Figure 3.1 Development of the chromatin association assay

A). Summary of chromatin association protocol.

B). Release of C dcl8 and Orpl from the initial pellet requires treatment with 

DNasel in 0.5M NaCl. Total extracts were used as antibody controls: HA= 

cdc25-22 orpl-HA, TAP= cdc25-22 cdcl 8-TAP.
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Figure 3.2 Chromatin association of proteins in a synchronous cell cycle

A) FACS profiles of cells released into a synchronous mitotic cell cycle, in 

the absence or presence of HU. B) Septation index of the two cell 

populations: without HU (■) and with HU (♦).
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Figure 3.2 continued

C) Analysis of proteins in total and chromatin extracts in a synchronous cell 

cycle. All numbers refer to time after release from cdc25-22 block in minutes. 

a-Tubulin and Orpl have been used as loading controls for total and chromatin 

blots respectively. D) The same analysis with HU added at release. E) 

Comparison of C dcl8 levels with or without HU at various stages of the cell 

cycle.
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checkpoint function but not for chromatin binding.

A) FACS profiles of the described strains in the presence of HU or thiamine.

B) Illustration of the cut phenotype as observed from DAPI staining, and the 

rate of appearance of cut cells in the timecourse for the SO strain (♦) and the 
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Figure 3.4 continued

C) Cdcl8-WA can bind chromatin but can not load Mcm4. Note that the 

level of wild-type C dcl8 produced from the nmt81 promoter is significantly 

lower than the level of Cdcl8-WA produced from the endogenous promoter. 

In addition, the level of C dcl8 produced from the endogenous promoter 

increases upon HU treatment, whereas that of C dcl8 produced from the 

constitutive nmt81 promoter does not.
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A) FACS profile of the cdcl8-E287G-HA\ SO strain throughout the described 
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Figure 3.7 Cdc 18-DEAD can not load Mcm4 onto chrom atin and hence 

can not initiate replication

A) In the presence of thiamine cdcl8-DEAD-midT; SO arrests with 1C DNA 

content. At 5 hours the S phase checkpoint begins to decay, with 12% of the 

cells displaying the cut phenotype. B) The Cdc 18-DEAD protein can bind 

chromatin but can not load Mcm4. Note that Cdtl is present and chromatin 

bound at the block point, locating the block to a position prior to the HU 

block point. This will be discussed further in chapter 4.
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not initiate replication at 36.5°C

A) At 36.5°C ts mutant cdcl8-3.9 arrests with 1C DNA content. The shift of 

the peak to the right between 4 and 5 hours is due to cell elongation. In an 

extended timecourse, the peak continues to drift to the right, past the 2C mark, 

in close correlation with increased cell length. B) The Cdc 18-3.9 protein can 

bind chromatin but can not load Mcm4 at 36.5°C. Note that Cdtl is present 

and chromatin bound at the block point, locating the block to a position prior 

to the HU block point. This will be discussed further in chapter 4.



Figure 3.9 Structure of the active site of P. aerophilum Cdc6

The ADP (purple) and Mg (black) components lie opposite the (3 sheet ((34) 

of the Sensor I domain. (34 contains 1164, the equivalent residue to G317 in 

fission yeast. Also shown here are (31/a3 of the WA domain and a l3  of the 

Sensor II domain.
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Chapter 4. Analysis of the S phase checkpoint 
function of Cdcl 8

4.1 Introduction

Depletion of the Cdc6 protein in fission yeast and budding yeast leads to a loss 

of DNA replication and aberrant entry into mitosis (Kelly et al., 1993; Piatti et 

al., 1995). This demonstrates that in these organisms the Cdc6 protein is 

required to initiate a replication checkpoint signal as well as to initiate DNA 

replication. The same phenotype is demonstrated in deletion mutants of other 

replication factors, leading to the generally accepted idea that the replication 

intermediates resulting from the actions of the initiation factors are responsible 

for the replication checkpoint signal. Certainly, Cdc6 does not appear to be 

required for DNA replication after the loading of MCM proteins onto 

replication origins (Donovan et al., 1997; Hua and Newport, 1998; Labib et 

al., 1995; Rowles et al., 1999). However, recent evidence demonstrates that 

Cdc6 persists in the cell following replication initiation, and that it plays a 

direct role in checkpoint activation or maintenance. Cdc6 is present in G2 in 

Drosophila (Crevel et al., 2005), and in human cells and Xenopus egg extracts 

Cdc6 is chromatin-bound throughout S and G2 (Alexandrow and Hamlin, 

2004; Coverley et al., 2000; Mendez and Stillman, 2000). Overexpression of 

Cdc6 in G2 in human cells blocks entry into mitosis in a Chkl-dependent 

manner (Clay-Farrace et al., 2003). In Xenopus egg extracts, Chkl activation 

in response to replication inhibition (using aphidicolin) is dependent upon 

Cdc6 (Oehlmann et al., 2004).

Recent work within the laboratory has also provided strong evidence for a 

direct role for Cdc 18 in the S phase checkpoint. Moderate overexpression or 

stabilisation of Cdc 18 gives rise to ectopic activation of Rad3 and cell cycle 

arrest, without apparent induction of rereplication (Damien Hermand and 

Naomi Fersht, unpublished data). Crucially, it has been shown that the S phase 

checkpoint is lost from cells blocked with HU when cdc 18 transcription is 

turned off (Damien Hermand, unpublished data). This demonstrates that
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Cdc 18 is required to maintain the S phase checkpoint in these circumstances. 

In contrast, the S phase checkpoint is not lost in HU blocked cells when cdtl 

transcription is suppressed.

In this chapter I present evidence suggesting that Cdc 18 is present and 

chromatin-bound throughout S phase. In addition, I demonstrate that Cdc 18 is 

required to maintain the S phase checkpoint in the cell cycle arrests imposed 

by cdcl7-K42 and poll-1  ts mutants, as well as in an HU block. The 

mechanism of Cdc 18 checkpoint function is explored; checkpoint function 

appears to require nucleotide binding and association with chromatin, but does 

not apparently require replication intermediates.

4.2 Results

4.2.1 Cdc18 is present in a range of cell cycle blocks

Cell synchronisation experiments have shown that Cdc 18 accumulates in the 

cell in G1 and S phases of the cell cycle, and disappears as cells go into G2 

(Nishitani and Nurse, 1995). From figure 3.2 it appears that Cdcl8 protein 

levels peak early in S phase. To further assess the natural history of Cdc 18 in 

the cell cycle, cells were synchronised at various points using a variety of ts 

mutants (in addition to using HU). The mutants used, and the points in the cell 

cycle where they arrest at restrictive temperature, are discussed herein (and 

summarised in table 4.1).

The cdc 10 gene is required for S phase. The Cdc 10 protein is a transcriptional 

activator for a number of genes required for DNA replication, including cdc 18 

and cdtl (Baum et al., 1998; Hofmann and Beach, 1994; Kelly et al., 1993) 

The ts cdclO mutants, such as cdcl0-v50, arrest with 1C DNA and mitosis is 

restrained from G1 in a rum l-dependent manner (Moreno et al., 1994; Moreno 

and Nurse, 1994).

The orpl gene encodes Orpl, part of the ORC complex required for DNA 

replication. The orpl-4 mutant arrests with 1C DNA and uninucleate cells. 

Chromosomes at the block point do not enter a pulsed-field gel, suggesting the
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presence of replication intermediates, and an early S phase block (Grallert and 

Nurse, 1996). However, 2D gel analysis failed to identify replication 

intermediates at the block point, suggesting a late G1 arrest (Synnes et al., 

2002). To support this, the checkpoint induced by the arrest is dependent upon 

Chkl (not Cdsl, the component responsible for the S phase checkpoint in an 

HU block), and Cdtl is present at the block point (figure 4.1).

The cdc23 gene is essential for DNA replication (Gregan et al., 2003) and the 

cdc23-M36 mutant arrests at late S phase: cell number plateaus after doubling 

and cells display 2C DNA at the arrest (Liang and Forsburg, 2001). By the 

same analysis, late S phase blocks are caused by the poll-1  and cdcl7-K42 

mutants (D’Urso et al., 1995, al-Khodairy and Carr, 1992). Poll encodes 

DNA polymerase a , which initiates leading and lagging strand synthesis in 

conjunction with primase (Baker and Bell, 1998). Cdcl 7 encodes DNA ligase, 

which ligates the Okazaki fragments of the lagging strand (Waga and 

Stillman, 1994).

In the final two mutants, cdc25-22 and cdc27-Pll, cells arrest with 2C DNA. 

Cell number plateaus after only an approximate 30% increase in cell number, 

indicating a G2/M arrest. Cdc25 activates Cdc2 at the G2/M transition, whilst 

Cdc27 encodes a subunit of the DNA polymerase 6 (pol 6) complex (MacNeill 

et al., 1996). This complex is involved in a number of DNA metabolism 

processes, including replication, repair and recombination (Bermudez et al., 

2002). It is not clear why the cdc27-Pll mutant arrests at G2/M (rather than in 

S phase). It may be that pol 6 is responsible for repair or recombination 

processes in an unperturbed G2.
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Table 4.1 Summary of ts mutants used in this study

Ts mutant Protein product Arrest point

cdcl0-v50 Cdc 10 transcription factor Gl

orpl-4 Orpl Gl/S

cdc23-M36 Cdc23 Late S

poll-1 DNA polymerase a Late S

cdcl7-K42 DNA ligase Late S

cdc27-Pll DNA polymerase 5 subunit G2

cdc25-22 Cdc25 G2

Each ts mutant was crossed into a cdcl8-TAP background prior to analysis. 

Exponentially growing cultures of the mutants were shifted from 25°C to 

36.5°C, and cell number followed for 6 hours. For strains arresting early in the 

cell cycle (G1 or S), samples for total and chromatin protein were taken 5 

hours post shift. For strains arresting late in the cell cycle (G2/M), samples 

were taken 3 hours post shift. Samples were also collected for wild-type cells 

(with cdcl 8-TAP) in a cycling population (36.5°C) and in an HU block (5 

hours at 36.5°C). Total and chromatin-bound protein for each cell-cycle status 

is shown in figure 4.1.

As previously observed, Cdc 18 and Cdtl are present (and chromatin-bound) in 

a cycling population. Cdc 18 levels (and Mcm4 chromatin binding) increase 

upon treatment with HU, whereas Cdtl disappears in such circumstances. As 

expected, Cdc 18 and Cdtl are absent when their transcriptional activator,

Cdc 10, is inactivated. These proteins are also absent from the G2/M block 

imposed by the cdc25-22 mutant, although Cdc 18 can be detected at much 

higher exposure. This either represents a genuine and very low-level 

expression of Cdc 18 at the block-point, or is perhaps a consequence of leakage 

of a small proportion of the population into Gl.

At the orpl-4 arrest point both Cdc 18 and Cdtl are present and chromatin- 

bound (although not at the levels seen in an HU block). In addition, Mcm4 is
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not bound to chromatin, supporting the idea that the arrest point lies at late Gl 

as opposed to early S phase. This latter result is in agreement with an in situ 

chromatin assay which showed that Mcm4 loading is absent in the orp l-4 

mutant (Kearsey et al., 2000). These data collectively suggest that the Orpl 

defect in these cells does not interfere with the binding of the loading factors, 

Cdc 18 and Cdtl, to replication origins, but rather alters the platform onto 

which the MCM proteins are normally loaded. Alternatively, it may be that the 

amount of Cdcl8/Cdtl loaded onto origins, or the manner in which they bind 

to ORC, is insufficient to allow MCM loading.

All of the induced late S phase arrests lack Cdtl, or Mcm4 chromatin binding, 

as expected. However, Cdc 18 is present and chromatin-bound in all cases (at a 

level similar to that seen in an orpl-4 block). This finding has two possible 

interpretations. Either Cdc 18 is present and chromatin-bound throughout S 

phase, or Cdc 18 expression is induced in late S phase blocks in response to 

incomplete or damaged replication.

Also of interest is the picture presented at the G2/M block caused by the 

cdc27-Pll mutant. Cdtl and chromatin-associated Mcm4 are absent, but 

Cdc 18 is present (and chromatin-bound) to the level seen in the late S phase 

blocks. This could mean one of two things. Firstly, it may be that Cdc 18 is 

normally present in G2 cells, at a point prior to the cdc25-22 block. Given that 

all data produced thus far in fission yeast shows that Cdc 18 levels drop as 

cells complete S phase, and rise again as cells enter the next cell cycle, this 

seems unlikely. More likely is that Cdc 18 is being induced in response to the 

problems experienced when Cdc27 is inactivated. If, indeed, a G2/M arrest is 

caused by failure of pol 6 to repair damage normally experienced in G2 for 

example, then Cdc 18 may be produced as a checkpoint or repair response. In 

support of this, Cdc 18 transcript level has been shown to double in response to 

DNA damaging agents (Chen et al., 2003), and that this induction is greatly 

increased if cells are synchronized in G2 first (Watson et al., 2004). It would 

be interesting to ascertain if the Cdc 18 protein itself is induced in response to 

DNA damage in G2.
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The presence of Cdc 18 after initiation of replication could, in principle, put 

the cell at risk of rereplication. However, a number of controls exist to prevent 

rereplication in the cell (reviewed in Nishitani and Lygerou, 2002). The 

removal of Cdtl at the Gl/S transition, for example, would enable Cdc 18 to 

exist in the cell at later points in the cell cycle without negating genome 

stability.

4.2.2 Cdc18 is required for maintenance of the S phase 

checkpoint
The inability of cells to establish an S phase checkpoint in the absence of 

cdcl8  has been well characterised (Kelly et al., 1993). In recent times this 

checkpoint role has been expanded in two important ways. Firstly, it appears 

as though, contrary to popular belief, this initiation function is due to the 

protein itself, and not necessarily reliant on the replication intermediates 

produced by the initiation function of Cdc 18 (section 3.2.3 and explored 

further in 4.3.5). Secondly, the S phase checkpoint is lost from cells blocked in 

HU when cdcl8  transcription is turned off (Damien Hermand, unpublished 

data). This demonstrates that Cdc 18 is required to maintain the S phase 

checkpoint in these circumstances. The presence of Cdc 18 in the G l and S 

phase blocks analysed in the previous section suggested that Cdc 18 might play 

a universal role in the maintenance of the S phase checkpoint. As such, the 

requirement for Cdc 18 in the checkpoints induced by the cdcl7-K42 andpoll- 

1 mutants was analysed.

To replicate the requirement for Cdc 18 to maintain an HU-induced 

checkpoint, wild-type and switch-off (SO) strains were arrested in 12mM HU 

for 3 hours at 32°C (figure 4.2A). At this point thiamine was added to the 

cultures to repress nmt transcription. In the continued presence of HU, the SO 

strain enters mitosis and produces cut cells (figure 4.2B). The wild-type strain 

also eventually cuts in a prolonged HU incubation, but at a rate much lower 

than that seen in the SO strain. Thiamine addition significantly reduces the 

levels of Cdc 18 in the SO strain but not in the wild-type strain (figure 4.2A).
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The nmt81-cdcl8+ gene was then crossed into the cdcl7-K42 background, 

producing the cdcl7-K42; SO strain. Both the cdcl7-K42 and cdcl7-K42; SO 

strains were arrested at late S phase by shifting to 36.5°C (figure 4.3A). At 

this point thiamine was added to the cultures to repress nmt transcription. At 

continued restrictive temperature, the cdcl7-K42; SO strain enters mitosis and 

produces cut cells (figure 4.3B). The cdcl7-K42 strain also eventually cuts at 

restrictive temperature, but at a rate much lower than that seen in the cdcl 7- 

K42; SO strain. Thiamine addition significantly reduces the levels of Cdc 18 in 

the cdcl7-K42; SO strain but not in the original cdcl7-K42 strain (figure 

4.3A).

Next, the nmt81-cdcl8+ gene was then crossed into the poll-1  background, 

producing the poll-1’, SO strain. Both the poll-1  and po ll-1 ; SO strains were 

arrested at late S phase by shifting to 36.5°C (figure 4.4A). At this point 

thiamine was added to the cultures to repress nmt transcription. At continued 

restrictive temperature, the poll-1; SO strain enters mitosis and produces cut 

cells (figure 4.4B). The poll-1 strain also eventually cuts at restrictive 

temperature, but at a rate lower than that seen in the poll-1; SO strain. 

Thiamine addition significantly reduces the levels of Cdc 18 in the poll-1; SO 

strain but not in the original poll-1  mutant (figure 4.4A).

These results show that Cdc 18 is important for maintaining the cell cycle 

arrests caused by the cdcl7-K42 and poll-1  mutants in addition to that caused 

by HU treatment. This suggests that Cdc 18 is universally required for the S 

phase checkpoint. There are likely to be a range of structures produced in such 

circumstances, from stalled forks to unprocessed Okazaki fragments and DNA 

damage. Hence Cdc 18 may be required to restrain mitosis when replication is 

perturbed by a range of insults.

4.2.3 Maintenance of the S phase checkpoint requires 
nucleotide binding

In chapter 3 it was shown that an intact WA domain, and hence probably 

nucleotide binding, is required to initiate an S phase checkpoint. As it is now
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apparent that Cdc 18 is required to maintain the S phase checkpoint, I was 

interested to know if nucleotide binding or/and hydrolysis was required for 

this checkpoint maintenance. To this end, the approach used in section 4.2.2 

was applied to the following strains: cdcl8-WA-HA\ SO, cdcl8-DEAD-midT; 

SO and cdcl8-3.9 (figure 4.5). These strains were arrested in 12mM HU (3 

hours at 32°C for the SO strains and 4 hours at 25°C for the ts mutant) before 

addition of thiamine (SO strains) or shift to 36.5°C (ts mutant). In the 

continued presence of HU, cdcl8-WA-HA; SO enters mitosis and produces cut 

cells at a rate very similar to that seen with the SO strain. In contrast, cdc 18- 

DEAD-midT; SO and cdcl8-3.9, like the wild-type strain, cut at a much lower 

rate in prolonged HU incubation.

These results show that the WA domain of Cdc 18 is required to maintain the S 

phase checkpoint. In contrast, the WB and Sensor I domains are not, 

suggesting that ATP hydrolysis is not required for checkpoint maintenance. 

However, it is possible that ATP hydrolysis in the WB and Sensor I mutants 

used here has been stimulated by wild-type activity in the initial HU block, if 

binding and hydrolysis occurs in trans within Cdc 18 complexes. Either way, 

though, proteins which are bound to nucleotide (ATP or ADP) are capable of 

maintaining the S phase checkpoint, whereas a protein that can not bind 

nucleotide (WA mutant) can not maintain the checkpoint. Hence maintenance 

of the S phase checkpoint requires nucleotide binding.

4.2.4 Cdc18 checkpoint function correlates with Cdcl8 
chromatin binding

Another important question from the studies presented so far is whether the 

checkpoint function of Cdc 18 requires localisation to chromatin. If chromatin 

binding is essential, then we should see Cdc 18 bound to chromatin in all cases 

where an S phase checkpoint has been induced. Indeed, as shown by figure

4.1, Cdc 18 is bound to chromatin in all S phase cell-cycle arrests tested. In 

addition, the checkpoints initiated by the WB and Sensor I mutants correlate 

with Cdc 18 chromatin association. This contrasts with a lack of an absolute 

correlation between the checkpoint and Cdtl/Mcm4 chromatin association. In
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another ts cdc 18 mutant, cdc 18-3.<5, a late S phase arrest correlates with Cdc 18 

chromatin binding but not with Cdtl/Mcm4 chromatin binding (figure 4.6). 

Hence a positive checkpoint signal correlates with Cdc 18 chromatin 

association. However, if chromatin-bound Cdc 18 sends the checkpoint signal 

then this activity requires nucleotide binding: the Cdcl8-WA protein binds 

chromatin yet does not initiate a checkpoint (section 3.2.2).

To explore this further I analysed a checkpoint active form of Cdcl8, the TA 

mutant (Damien Hermand, unpublished). In the Cdcl8-TA protein the 

acceptor threonine residue in all six cdc2 phosphorylation sites has been 

mutated to alanine, and these changes greatly increase the stability of the 

protein. Cells containing Cdcl8-TA are viable only in the absence of Rad3 (in 

rad3A, or rad3-ts at 36.5°C); ectopic activation of Rad3 by Cdcl8-TA causes 

cell cycle arrest. In a cdcl8-TA rad3-ts strain a shift from 36.5°C to 25°C 

induces a G2/M arrest, suggesting that Cdcl8-TA is present in G2 cells and 

can send a checkpoint via Rad3 from this position (Damien Hermand, 

unpublished). I was interested to see if Cdcl8-TA was bound to chromatin in 

G2 cells.

For this analysis a cdcl8-TA rad3A cdc25-22 strain was synchronised at G2/M 

by incubating at 36.5°C for 3.5 hours. Shifting to 25°C released these cells 

into a synchronous cell cycle, and samples were taken at 0 (G2/M), 80 (S) and 

120 (G2) minutes post release (figure 4.7). A control strain of cdc 18+ rad3A 

cdc25-22 was subjected to the same procedure, and Cdc 18 in total and 

chromatin extracts was detected using anti-Cdcl8 polyclonal antibody. At the 

G2/M block levels of both Cdcl8-TA and Cdc 18 are very low. The levels of 

Cdcl8-TA in cycling cells and during S phase are several fold higher than 

wild-type levels, as expected from the increased stability of the mutant 

protein. At 120 minutes cells have completed S and have entered G2. Here, 

wild-type protein has disappeared, whereas Cdcl8-TA persists and is 

chromatin-bound. Hence a form of Cdc 18 that causes a G2/M arrest when 

Rad3 is present binds chromatin in G2. These results lead to several 

conclusions. Firstly, we again see a correlation between Cdc 18 chromatin
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binding and its ability to send an S phase checkpoint. Secondly, the results 

illustrate the multi-layered control over rereplication that exist within the cell. 

In the mutant strain, Cdc 18 levels in S phase are elevated, and the amount of 

Cdc 18 in G2 approximately equals that seen in S phase of a wild-type strain. 

Despite this, there is no evidence of rereplication, demonstrating that 

mechanisms such as the removal of Cdtl and phosphorylation of Orp2 are 

sufficient to prevent rereplication even in the presence of fairly large increases 

in Cdc 18 level. Lastly, the results have implications for the control of Cdc 18 

chromatin binding. The presence of Cdcl8-TA on chromatin in G2 suggests 

either that it persists on chromatin during replication (and its removal depends 

on direct degradation) or that Cdcl8-TA can rebind chromatin in G2 having 

been removed during S. In the latter case, as well as targeting the protein for 

degradation, Cdc 18 phosphorylation may prevent its rebinding to chromatin. 

(Note that phosphorylation does not remove Cdc 18 from the chromatin-see 

section 3.2.1).

Whilst S phase checkpoint activation and maintenance correlates with Cdc 18 

chromatin binding, it has not been possible to demonstrate conclusively that 

chromatin association is required for Cdc 18 checkpoint function. Such 

conclusions would require identifying a form of Cdc 18 that does not bind to 

chromatin, which so far has not been identified. In this instance two 

approaches would be used. If a non-binding form of Cdc 18 was found that 

could still send a checkpoint then we could conclude that the soluble form of 

Cdc 18 would be sufficient for checkpoint function. If a non-binding form was 

found that could not send a checkpoint, then we should attempt to reattach it to 

the chromatin. Restoration of the checkpoint would then show that the 

chromatin-bound form of Cdc 18 is responsible for checkpoint function.

4.2.5 Cdc18 checkpoint function appears not to depend upon 
replication intermediates.

As we saw in chapter 3, mutant forms of Cdc 18 (Cdc 18-DEAD and Cdc 18- 

3.9) that are capable of binding but not hydrolysing ATP can initiate an S 

phase checkpoint. In these circumstances it seems likely that replication
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intermediates are absent: cells show a 1C DNA peak, Mcm4 is not loaded onto 

chromatin, and Cdtl is still present (which at least places the arrest point prior 

to the HU block point). This would suggest that Cdc 18 is able to initiate a 

checkpoint response irrespective of its loading function which allows 

replication.

To explore this further, cdcl8-3.9 was subjected to analysis by pulsed-field gel 

electrophoresis (PFGE). This electrophoresis technique can separate whole 

fission yeast chromosomes according to their size (figure 4.8). Entry of 

chromosomes into such gels is retarded by certain structural changes to the 

DNA, such as chromosome circularisation or the presence of replication 

intermediates. For instance, chromosomes from cells arrested in S phase by 

HU do not enter a pulsed field gel, and remain in the loading well. 

Chromosomes that are structurally unstable or fragmented, such as those 

prepared from cdcl7-K42 at restrictive temperature, appear on the gel as a 

smear or a fast migrating band. The chromosomes from the ts mutant cdc 18-

3.9 enter the gel at permissive temperature, but are retained in the loading well 

at restrictive temperature. This suggests the presence of replication 

intermediates at the ts arrest point that has been studied, in disagreement with 

the previous data. It may be that this result is misleading, however. As 

discussed in section 4.2.1, the orpl-4 ts mutant shows a 1C arrest with Cdc 18 

and Cdtl, but not Mcm4, bound to chromatin. In this case, as with cdcl8-3.9, 

chromosomes do not enter a pulsed field gel at restrictive temperature 

(Grallert and Nurse, 1996). However, 2D gel-electrophoresis failed to detect 

any replication intermediates from the early ars3001 origin in these 

circumstances (Synnes et al., 2002). It may be that replication intermediates 

are absent from these cells, but that pre-initiation structures are present 

(perhaps as a consequence of Cdcl8/Cdtl origin binding) which prevents gel 

entry. In any case, further analysis of cdcl8-3.9 is needed to fully answer the 

question of whether Cdc 18 sends a checkpoint in the absence of replication 

intermediates. Such analysis could include looking for the relevant structures 

by 2D gel electrophoresis or by scanning for amplified regions by DNA 

microarray analysis. These methods have their own disadvantages however.
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For instance, the former is unlikely to have the sensitivity required to find a 

low number of intermediates across the entire genome, whereas the latter may 

not be able to recognise the scenario whereby intermediates exist but no DNA 

synthesis has occurred.

4.3 Discussion

Given the short length of S phase in fission yeast (approximately 20 minutes at 

25°C) it has been difficult to assess the behaviour of proteins during this phase 

of the cell cycle using synchronised cultures. The picture presented in section

4.2.1, using cells arrested at various points of the cell cycle, suggests that, like 

in metazoan cells, Cdcl8 is present and chromatin-bound throughout S phase. 

It is still possible, however, that Cdcl8 is induced in the late S phase arrests 

analysed in response to stalled or damaged replication. In either case, the 

presence of C dcl8 in these arrests is required to maintain the checkpoint 

induced in these circumstances. As Cdcl8 is required for checkpoint 

maintenance at early S (e.g. HU block) and late S (e.g. cdcl7-K42) it seems 

that Cdcl8 plays a universal role in maintenance of the S phase checkpoint, 

restraining mitosis whenever replication is perturbed by stalled forks or 

damage. These results are consistent with the requirement for Cdc6 in 

aphidicolin-induced Chkl activation in Xenopus (Oehlmann et al., 2004). The 

presence of Cdcl8 in the G2/M arrest imposed by cdc27-Pll suggests that 

C dcl8 may even be involved in the response to DNA damage outside of S 

phase. The roles of the Cdc6 protein as a positive (replication initiation) and a 

negative (S phase checkpoint) regulator of the cell cycle may explain why 

both overexpression and underexpression of Cdc6 has been observed in 

human tumours (Karakaidos et al., 2004; Robles et al., 2002).

Cdtl is not required for checkpoint maintenance in HU (Damien Hermand, 

unpublished data), and indeed this factor is not present in any of the cell cycle 

arrests positioned after replication initiation. The absence of Cdtl following 

initiation could enable the continued presence of C dcl8 (to perform a 

checkpoint role, for example) without the risk of rereplication. MCM loading 

is also apparently absent at the late S phase blocks, suggesting that chromatin-
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bound MCMs are not required for checkpoint maintenance. Indeed, in the 

Xenopus work it was shown that the requirement of Cdc6 for Chkl 

phosphorylation does not depend on its ability to load Mcm2-7 onto 

chromatin.

The inability of the WA mutant protein to maintain the S phase checkpoint in 

HU-blocked cells suggests that ATP binding is required both to initiate and to 

maintain the S phase checkpoint. The WB and SI mutants, however, do 

maintain this checkpoint, demonstrating that C dcl8 forms bound to nucleotide 

are capable of initiating and maintaining the S phase checkpoint. It may be 

that Cdcl8-ATP initiates the S phase checkpoint, and that Cdcl8-ADP 

maintains the checkpoint after ATP hydrolysis.

In all cases studied, a positive checkpoint signal correlates with C dcl8 

chromatin association, suggesting that C dcl8 effects its checkpoint function 

from the DNA. Such a model would appear to be the most likely, as 

localisation to the chromatin would allow C dcl8 to detect incompletely 

replicated or damaged DNA, and to initiate the appropriate signal. Indeed, it 

appears as though Cdcl8 is required to anchor Rad3 to the chromatin in 

response to HU (Damien Hermand, unpublished data). In Xenopus egg 

extracts, however, aphidicolin-induced Chkl activation does not require 

association of Cdc6 with chromatin (Oehlmann et al., 2004). This may reflect 

fundamental differences between the two species, although much of the Cdc6 

protein in the extracts remains nuclear, where it may still be able to detect 

directly structures such as stalled replication forks. If, indeed, Cdc6 chromatin 

association during S phase in Xenopus is not required for its checkpoint 

function, then this may reflect an additional role for Cdc6 (aside from its 

initiation and checkpoint functions). This idea is addressed further in 

chapter 5.

Demonstrating that C dcl8 chromatin association is required for its checkpoint 

function will rely upon removing C dcl8 from the DNA. This could involve 

disrupting the ORC complex, or altering C dcl8 itself. The sole ts Orp mutant
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available is orpl-4, and Cdcl8 still binds to chromatin in this mutant 

background (section 4.2.1). One approach to altering C dcl8 may be to target 

its C-terminal winged-helix domain (Liu et al., 2000). The winged-helix 

domain is responsible for DNA recognition in a number of transcription 

factors. Two important features of the motif are the recognition helix, which 

binds in the major groove of DNA, and a Pj3 wing which contacts the 

phosphodiester backbone. Whilst C dcl8 interacts with the ORC complex 

(Grallert and Nurse, 1996; Leatherwood et al., 1996) it may be that C dcl8 also 

interacts directly with DNA via this winged-helix domain. However, 

mutations to either the recognition helix or the pp wing result in late S phase 

arrest (Liu et al., 2000). This suggests that these mutations do not prevent 

chromatin association, as it seems highly unlikely that MCM loading and 

DNA replication (albeit erroneous) can occur without C dcl8 interacting with 

replication origins. Mutation of the nearby QQK motif, however, does lead to 

a completely non-functional protein (Liu et al., 2000), and it would be 

interesting to see if this mutant protein can still associate with chromatin.

Although more work is required, it appears as though C dcl8 can initiate the S 

phase checkpoint without initiating DNA replication (and hence without 

replication intermediates). This suggests that C dcl8, perhaps as part of the 

pre-replicative complex, can inhibit mitosis in the absence of replication, as 

well as when replication is perturbed by stalled forks or damage. It is still 

likely that DNA structures provide the signal for Rad3 activation within S 

phase, and such a signal is likely to be stronger than that provided by the pre­

initiation complex; ts mutants arresting within S phase maintain a checkpoint 

response for longer than those arresting with 1C DNA (data not shown). 

Within S phase, Cdcl8 appears to function as a signalling molecule in the 

checkpoint response; repression of cdcl8  transcription in an HU block leads to 

aberrant entry into mitosis yet replication intermediates are still visible 

(Damien Hermand, unpublished data).
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Chapter 5. Investigation of a third role for Cdc18 

in the cell cycle

5.1 Introduction

As discussed in chapter 2, a number of ts cdcl8 mutants were isolated that 

arrest at late S phase with 2C DNA. Two possible explanations for this 

phenotype are as follows. Firstly it may be that the initiation function of 

C dcl8 is not completely removed, but is faulty in some way. Faulty initiation 

may allow bulk replication but leaves chromosomes in a state unfit for mitosis 

(causing Rad3 checkpoint activation). An alternative explanation may be that 

C dcl8 plays a role within S phase aside from its initiation and checkpoint 

roles.

In order to investigate this second possibility, I adapted a procedure first 

employed to position the point of function of a number of ts genes (Nasmyth 

and Nurse, 1981). In this ‘sequencing’ experiment the point of function of a 

gene is assessed in relation to the HU arrest point. In principle, cells are 

arrested in HU at permissive temperature before shifting to restrictive 

temperature and removing HU. A continuation of the cell cycle (as indicated 

by a rise in cell number) demonstrates that the temperature-dependent defect 

lies prior to the HU arrest point. A continued cell-cycle arrest (as indicated by 

no rise in cell number) demonstrates that the temperature-dependent defect 

lies after the HU arrest point (but prior to cell division). In these experiments 

the ts cdcl8  mutant cdcl8-H2.3 sequences after the HU block point, 

suggesting a role for C dcl8 post initiation. In this chapter I will describe how 

further experiments show that this ts allele carries two distinct recessive 

defects, one of which sequences after HU and is not related to its checkpoint 

function. This defect does not apparently affect replication or the structural 

integrity of the DNA, but still causes a cell cycle arrest, most likely at G2/M. 

Hence C dcl8 may play a role in S phase that is required for cell cycle 

progression at a later stage. The possible identity of this function is discussed.
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5.2 Results

5.2.1 Cdc18-H2.3 sequences after HU

In the original sequencing experiment by Nasmyth and Nurse, cells were 

released from an HU block at the same time as shifting to restrictive 

temperature. I was concerned that this approach may not allow enough time 

for inactivation of the ts protein before cells continued through S phase. In 

addition, I was concerned that restrictive conditions used, 36°C in yeast 

extract, were not sufficient to completely hold a ts arrest. Hence a revised 

sequencing experiment was devised, as detailed in figure 5.1 A. Strains are 

initially arrested in 12mM HU for four hours at 25°C. Cells are then incubated 

at 36.5°C for one hour, in minimal medium, prior to HU wash out, and cell 

number followed for five hours after.

Wild-type cells complete DNA replication within one hour of HU wash out 

and progress through the cell cycle: cell number doubles by four hours and 

continues to rise thereafter (figure 5. IB, C). In contrast, as expected, cell 

number does not increase for the ts mutant cdcl7-K42 despite a doubling of 

DNA content. As previously discussed, cdcl 7 encodes DNA ligase, which 

ligates the Okazaki fragments of the lagging strand at the end of S phase. In 

the replication-deficient ts mutant cdcl8-3.9y arresting in HU at 25°C bypasses 

the MCM loading deficiency and cells complete replication and continue 

through the cell cycle after HU wash out. However, this mutant does arrest in 

the next cell cycle (whilst at restrictive temperature), as shown by the 

appearance of a 1C peak and plateau of cell number after an approximate 

doubling. Finally, ts mutant cdcl8-H2.3, which arrest at late S with 2C DNA 

in a shift-up experiment, was subjected to the sequencing experiment. 

Although DNA replication was apparently complete one hour after HU wash 

out, cell number failed to increase, indicative of continued cell cycle arrest. 

Hence cdcl8-H2.3 sequences after HU. This result initially suggests that 

C dcl8 may play a role in cell cycle progression post initiation, although it is 

possible that this role is specifically required in response to HU.
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Next, the sequencing experiment was adapted to remove the temperature shift 

or to shift cell temperature two hours after HU wash out (Figure 5.2A). In both 

cases, replication is complete two hours after HU removal, and cell number 

increases thereafter (figure 5.2B, C). As expected, cell number increase at the 

lower, permissive temperature is delayed in comparison to that seen at 

restrictive temperature. Hence cdcl8-H2.3 is resistant to HU at 25°C, although 

we can not rule out a sensitivity to HU at 36.5°C. Importantly, if C dcl8 does 

have a role in cell cycle progression post initiation, then this role is likely to be 

completed within S phase: shifting cdcl8-H2.3 to restrictive temperature as 

cells enter G2 does not inhibit cell number increase (until the next cell cycle).

5.2.2 Cdc18-H2.3 is a recessive allele

I was interested to know if cdcl8-H2.3 was a recessive allele. To this end, a 

stable diploid was constructed containing a wild-type copy of cdcl 8 and the 

cdcl8-H2.3 allele (heterozygous mutant diploid). A homozygous wild-type 

diploid strain was used as a control. In both these strains, shifting to 36.5°C 

led to an exponential rise in cell number (data not shown). In addition, when 

these strains were subjected to the sequencing experiment, cell number 

increased at very similar rates after HU wash out (figure 5.3). These results 

demonstrate that the cdcl8-H2.3 allele is recessive with respect to wild-type in 

both the shift-up and sequencing experiments. Further confirmation of this 

was obtained using the cdcl8-H2.3 haploid transformed with wild-type cdcl8  

behind the nmt81 and nmt41 promoters {cdcl8-H2.3; pnmt81-cdcl8 and 

cdcl8-H2.3; pnmt41-cdcl8). In both transformants, shifting to 36.5°C led to 

an exponential rise in cell number (data not shown). Further, cell number 

increases for these transformants after HU removal in the sequencing 

experiments (figure 5.3). As cdcl8-H2.3 is a recessive allele, the cell cycle 

arrests seen in the shift-up and sequencing experiments can be best understood 

as a loss of function of C dcl8.

5.2.3 Cdc18-H2.3 has two distinct defects

Further insight into the cdcl8-H2.3 mutant was provided by pulsed field gel 

analysis. When cdcl8-H2.3 is shifted to restrictive temperature its 

chromosomes fail to enter a pulsed field gel, indicative of structural alterations
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to the DNA (such as replication intermediates) (figure 5.4A). In contrast, 

chromosomes from cdcl8-H2.3 subjected to the sequencing procedure do 

enter the gel following completion of replication at 6 hours (figure 5.4B). This 

suggests that cdcl8-H2.3 has two distinct defects; one which produces 

incomplete DNA structures when presented prior to initiation, and one that 

does not when presented post initiation.

Further evidence for two defects was gained by introducing the cdcl8-H2.3 

allele into a rad3ts background (cdcl8-H2.3 rad3ts). When this double mutant 

is shifted to 36.5°C cells rapidly enter a lethal mitosis and cut (75% cuts 6 

hours after the shift). A different picture is presented in the sequencing 

experiment however. In the sequencing experiment, the rad3ts strain 

progresses through the cell cycle after HU wash out (figure 5.5). Only a small 

proportion of cells (12%) display the cut phenotype at the end of the 

experiment which may be due to the loss of Rad3 signalling occurring before 

HU removal. In some cells this leads to (lethal) mitosis before the cell can 

complete DNA replication. In contrast to rad3ts, cell cycle arrest is maintained 

in the double ts mutant (cdcl8-H2.3 rad3ts), and a similar number of cut cells 

are seen at the end of the experiment (12%).

These results show that cdcl8-H2.3 has two distinct defects. The first, 

presented by a shift-up experiment, affects DNA replication such that 

incomplete DNA structures are produced. These structures prevent entry of the 

chromosomes into a pulsed field gel and induce a Rad3-dependent checkpoint. 

In the absence of Rad3 function cells display the cut phenotype, which could 

reflect an attempt to segregate unfinished sister chromatids. The second 

defect, presented by the sequencing experiment, does not appear to lead to 

incomplete replication. Chromosomes at this block point do enter the gel, and 

cells do not cut in the absence of Rad3 function. Additionally, the absence of 

any increase in cell number for cdcl8-H2.3 rad3ts in the sequencing 

experiment also shows that the mutant C dcl8 protein is not ectopically 

activating the Rad3 pathway in these circumstances (consistent with the 

recessive nature of the allele). Furthermore, this shows that the cell cycle
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arrest caused by cdcl8-H2.3 in the sequencing experiment does not work via 

the rad pathway.

5.2.4 Cdc18 effects its third role during S phase for transition 

later in the cell cycle

To explore these experiments further, levels of Cdcl8 protein in total extracts 

were followed at particular points throughout the sequencing experiment 

(figure 5.6). In wild-type cells, C dcl8 levels increase upon treatment with HU 

(0 to 4 hours). Shifting to 36.5°C causes a decrease in C dcl8 level (5 hours). 

Completion of replication and entry into G2 (at 6 hours) leads to removal of 

C dcl8, which rises again in the next cell cycle (8 hours). A similar pattern is 

seen with ts mutant cdcl8-3.9. Entry into G2 at 6 hours leads to the removal of 

C dcl8, but at 8 hours cells have arrested at the 1C (ts) block point in the next 

cell cycle. Here, significant levels of C dcl8 are seen, consistent with results 

from figure 3.8. The same pattern is also seen in cdcl8-H2.3, with the 

significant difference that C dcl8 appears to be absent at the block point (6 and 

8 hours). The cell number and FACS data from 5.2.1 suggests that the block 

point for cdcl8-H2.3 in the sequencing experiment lies between late S phase 

and mitosis. As C dcl8 appears to be present in late S phase blocks (chapter 4), 

the lack of C dcl8 at 6/8 hours suggests that the post-HU arrest point induced 

by cdcl8-H2.3 lies in G2 or early M (and not within S phase).

Taken together, the data from the previous sections suggest that Cdcl8 plays a 

third role within the cell cycle, aside from its replication initiation and 

checkpoint functions. This role is performed either in a normal S phase, or in 

response to HU, and its product is required for progression through G2/M.

This role is unlikely to involve the production of faithfully duplicated DNA, 

but may instead be involved in faithful chromosome duplication or dynamics. 

It would be interesting to define the arrest point of cdcl8-H2.3 in the 

sequencing experiment more clearly, and to find out which checkpoint system 

restrains cell cycle progression in these circumstances.
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5.2.5 Cdc18 is detectable after transcriptional repression in 
an HU block

The findings of this chapter are in apparent disagreement with the conclusions 

from a previous set of experiments (Muzi Falconi et al., 1996). In this paper 

the sequencing experiment was applied to a switch-off strain. Cells were 

arrested in HU before thiamine addition to repress cdcl8  transcription. HU 

was then removed, and cells progressed through the cell cycle until they 

reached the following S phase. From those data it was concluded that C dcl8 

plays no role in the cell cycle after initiation of replication. I used the SO 

strain described in chapter 3 to perform a similar sequencing experiment 

(figure 5.7A). Cells were arrested in 12mM HU for 3 hours at 32°C. Thiamine 

was then added to the culture and HU removed an hour later. Within another 

hour DNA replication was complete and cells progressed through the cell 

cycle, as shown by the appearance of a 1C DNA peak (7 hours). C dcl8 levels 

were followed prior to the removal of HU in this experiment (figure 5.7B). 

Whilst thiamine addition greatly reduces the level of C dcl8 in the HU block, 

C dcl8 is not completely removed. Densitometric analysis was conducted on 

the Western blots using the Image J program. Allowing for a higher 

background staining in the 4 hour lane for the C dcl8 Western blot, and 

normalising for a-Tubulin levels, I estimate the level of C dcl8 at 4 hours to 

be 5-10% of that present at 3 hours. Note that C dcl8 appears to persist at low 

levels for up to 3 hours after thiamine addition in a prolonged HU incubation 

(figure 4.2A). Thus while sequencing with the SO strain initially suggests that 

C dcl8 plays no role in the cell cycle after the initiation of replication, it may 

be that the inability to completely remove the protein compounds the 

experiment. Whilst the level of C dcl8 produced in SO systems, in the 

presence of thiamine, is insufficient to support its replication or checkpoint 

function, it may be sufficient to support the putative third role described in the 

previous sections.

5.3 Discussion

The original sequencing experiment performed with cdcl8-H2.3 was designed 

to identify the cause of the late S phase arrest phenotype at restrictive
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temperature. In the end, both of the two alternative possibilities put forward 

for this were found to exist. The Cdcl8-H2.3 protein does seem to lack 

accurate initiation function, such that bulk replication can occur but in a 

manner which leaves the DNA unfit for segregation. Perhaps the protein loads 

the MCM complex onto DNA in a way which leads to mutagenic replication 

(via the MCM complex itself or via the subsequent erroneous loading of other 

factors, such as non-proofreading polymerases). In addition to this initiation 

defect, Cdcl8-H2.3 seems to lack a function required in S phase (or in 

response to HU) for progression later on in the cell cycle. These two defects 

are consistent with the behaviour of the ts mutant in a shift-up experiment. 

Upon shift to restrictive temperature, only about 10% of cells, located in S 

phase at the time, will be affected by the loss of the putative third role for 

C dcl8. Only these cells will arrest in G2/M, and will not contribute to cell 

number increase throughout the experiment. The rest of the cell population 

(mostly G2 cells) will progress to the initiation-defect block point, and will 

divide during the timecourse, giving rise to an approximate doubling in cell 

number. In all cases a 2C DNA content is produced.

The nature of the S phase function effected by C dcl8 is unclear. The results 

presented here suggest that C dcl8 is required in S, or in response to HU, for 

cell cycle progression. However, the defect leaves chromosomal DNA intact 

and cells remain blocked in the absence of Rad3 function, suggesting that 

C dcl8 is responsible for processes outside of DNA metabolism (replication, 

recombination and repair). In Xenopus egg extracts, Cdc6 rebinds to origins 

once replication forks have moved away from the sites of initiation (Oehlmann 

et al., 2004). Whilst the continued presence of Cdc6 is required for its 

checkpoint function, re-binding to chromatin is not. This raises the possibility 

that Cdc6 re-binds to origins in order to perform some other function, apart 

from its replication and checkpoint functions.

It may be that C dcl8 is required for higher order processing of chromosomes, 

such as condensation or cohesion. A novel ts cdcl8 mutant {cdcl8-641) is 

suppressed by separase and the condensin subunits SMC2 and SMC4 (Yuasa
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et al., 2004). These factors also suppressed other ts mutants involved in DNA 

metabolism, such as DNA topoisomerase III (separase and SMC2) and Orc5 

(separase and both SMCs). These results suggest a relationship between DNA 

replication and chromosome dynamics. The five subunit condensin complex is 

required for chromosomal condensation (Sutani et al., 1999), and has been 

implicated in S phase checkpoint control (Aono et al., 2002). Defects in any of 

the condensin subunits inhibit Cdsl activation in response to HU, an 

analogous scenario to the loss of checkpoint maintenance in HU when C dcl8 

levels are reduced. Whilst the putative third function of C dcl8 is unlikely to 

relate to its checkpoint function, it may well relate to the condensation activity 

of the condensing complex. Also of possible relevance is the recent finding 

that, in Xenopus, recruitment of cohesins to chromosomes requires fully 

licensed chromatin and is dependent on ORC, Cdc6, Cdtl and Mcm2-7 

(Takahashi et al., 2004). Loading of condensin or cohesin complexes onto 

chromosomes would be consistent with the MCM loading function of C dcl8, 

and its homology with other clamp loaders such as RFC (Perkins and Diffley, 

1998). Interestingly, C dcl8 has been found to interact with Swi6 in a 2-hybrid 

screen (Louise Chretien, unpublished data). Amongst the roles for Swi6 in the 

cell are the recruitment of cohesins to chromatin and establishment of 

heterochromatin.

An alternative possibility is that C dcl8 is required to load the mitotic kinase, 

Cdc2-Cdcl3, onto chromosomes in order to promote entry into mitosis. This 

CDK complex is recruited to origins during S phase in an ORC-dependent 

manner, and this recruitment is required to prevent rereplication (Wuarin et 

al., 2002). It may be that C dcl8 is required for this Cdc2 loading activity, 

which is in turn required for both origin suppression and for enabling Cdc2 

mitotic function (such as initiating chromosome condensation). Whatever the 

role of C dcl8 highlighted in this chapter, its action is supported by protein 

levels insufficient to provide replication and checkpoint activities. This 

suggests that the number of sites at which C dcl8 operates or the number of 

reactions catalysed by the protein is small.
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A number of new investigations are required to expand the possibility that 

C dcl8 has a third role in the fission yeast cell cycle. Of great importance is to 

understand the point of the cell cycle at which the ts mutant cdcl8-H2.3 

arrests in the sequencing experiment. To this end a GFP-tagged version of a- 

Tubulin should be introduced into this mutant, and fluorescence microscopy 

used to ascertain the microtubular structures present at the block. A high 

proportion of mitotic spindle structures would indicate an early mitotic block, 

for example. In addition, it is important to find out which checkpoint system 

(if any) restrains the cell at the block point. A candidate system would be the 

spindle checkpoint, which prevents the metaphase-anaphase transition until all 

chromosomes have established a bipolar attachment with the spindle.

In order to test this, the behaviour of cdcl8-H2.3 in the sequencing experiment 

in a spindle checkpoint deficient background (e.g. bublA ) should be analysed.
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Figure 5.1 Cdcl8-H2.3 sequences after HU

A) Outline of sequencing experiment. B) FACS profiles of the indicated 

strains during the sequencing experiment.
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Figure 5.1 continued

C) Cell number after HU wash out for wild-type (•) , cdc!7-K42 (A), cdcl 8-

3.9 (♦ ) and cdc!8-H2.3 (■).
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C) Cell number after HU wash out for cdcl8-H2.3 without heat shift (A ), or 

with shift two hours after wash out (♦). Data from the original sequencing 

experiment is also shown (■).
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Chapter 6 General discussion

Chapter 6. General discussion
The results described in this thesis suggest that C dcl8 has multiple roles in the 

cell cycle of fission yeast. A well-established role for C dcl8 is in the initiation 

of DNA replication. In addition, however, C dcl8 appears to be required in S 

phase for the S phase checkpoint (both for establishment and maintenance) 

and for an additional function required for cell cycle progression. The ability 

of C dcl8 to induce rereplication when overexpressed is well documented 

(Nishitani et al., 2000; Nishitani and Nurse, 1995; Yanow et al., 2001). Thus 

using C dcl8 for these additional roles provides the cell with the challenge of 

ensuring that C dcl8 does not induce rereplication from within S phase. As 

shown in section 4.2.4, expressing C dcl8 in G2 to levels normally seen in S 

phase (using the Cdcl8-TA mutant) does not induce rereplication, 

demonstrating that this challenge can be met. In this respect it may be that 

fission yeast displays similarities with metazoan cells, where tight regulation 

of Cdtl appears to be the primary means of preventing rereplication. The 

absence of Cdtl in HU-arrested cells suggests that Cdtl is degraded early in S 

phase, and phosphorylation of Orp2 may also contribute to this control system 

(Vas et al., 2001). The variety of roles for C dcl8 in the cell cycle poses 

questions about the timing and co-ordination of these roles, along with the 

mechanism by which each function is effected. As such I shall present a model 

for the behaviour of C dcl8 through the fission yeast mitotic cell cycle.

6.1 Cdc18 in M/G1 phases

C dcl8 appears in late mitosis/early G l, when Cdc2 kinase activity is minimal, 

and loads MCM proteins onto replication origins at this time (in concert with 

Cdtl) (Jallepalli et al., 1997; Kearsey et al., 2000; Kelly et al., 1993; Muzi 

Falconi et al., 1996; Nishitani et al., 2000; Nishitani and Nurse, 1995). From 

my results, there appears to be no nucleotide regulation of C dcl8 chromatin 

association, but binding and hydrolysis of ATP is essential for the MCM 

loading activity (if we assume that the WA and WB motifs of C dcl8 are 

required for ATP binding and hydrolysis respectively).
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It is possible that, also during G1 (post start), C dcl8 initiates an S phase 

checkpoint signal that is sufficient to restrain mitosis. This would mean that 

the replication checkpoint could be active in G l, when replication is absent, as 

well as in S, when replication is incomplete. The notion of such a ‘G l-M ’ 

checkpoint was first suggested after work with an Orpl ts mutant, orpl-4  

(Synnes et al., 2002). At restrictive temperature S phase does not occur and 

replication intermediates appear to be absent (from 2D-gel analysis), yet a 

Rad3/Chkl-dependent inhibition of mitosis is present. In this thesis I have 

identified a replication-deficient C dcl8 ts mutant (cdcl8-3.9) which also 

displays a Rad3/Chkl-dependent checkpoint in the apparent absence of 

replication intermediates. In both the orpl-4  and cdcl8-3.9 mutants, Cdtl and 

C dcl8 are bound to chromatin but Mcm4 is not. Collectively, these data 

suggest that these mutants arrest, in a Rad3-dependent manner, in late G l due 

to an inability to load MCM proteins and hence to initiate DNA replication. In 

contrast, cells lacking Orpl or C dcl8 (or indeed Cdtl) fail to initiate an S 

phase checkpoint and enter a lethal mitosis (Grallert and Nurse, 1996; 

Hofmann and Beach, 1994; Kelly et al., 1993). Whilst more work needs to be 

done to rule out the presence of a low level of replication intermediates in 

these ts arrests, it seems possible that C dcl8, perhaps in a complex with ORC 

and C dtl, initiates an S phase checkpoint in late G l. From this work, C dcl8 

needs to bind ATP (but not to hydrolyse it) to initiate this signal. Presumably 

wild-type C dcl8 is capable of initiating or maintaining this checkpoint signal 

following MCM loading (i.e. in the ADP-bound state).

6.2 Cdc18 in S phase

As cells proceed into S phase, and DNA replication begins, C dcl8 is 

apparently required for (at least) two further processes. Firstly, C dcl8 is 

required for maintaining the S phase checkpoint when DNA replication is 

perturbed. I have shown that C dcl8 is required to restrain mitosis when 

replication is disturbed by HU or by using ts mutants of DNA pol a  or DNA 

ligase. Such perturbations are likely to represent a range of DNA insults (e.g. 

from stalled forks to damaged structures), and indeed involve both Cdsl (HU) 

and Chkl (ts arrests) responses. Thus C dcl8 may be universally required for
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the S phase checkpoint in much the same way as the Rad proteins. From my 

results it seems likely that C dcl8 is present throughout S phase and would 

thus be able to respond to insults to the integrity of the DNA during this time. 

In contrast, Cdtl appears to be removed from the cell as it progresses into S 

phase, and Cdtl is not required to restrain mitosis in an HU block (Damien 

Hermand, unpublished data). It will be interesting to illuminate the mechanism 

by which C dcl8 maintains the S phase checkpoint. My results reveal a 

correlation between checkpoint function and C dcl8 chromatin association, 

and this is consistent with findings that C dcl8 is required for Rad3 chromatin 

association in response to HU treatment (Damien Hermand, unpublished data). 

One approach to understanding further the behaviour of C dcl8 will be to 

locate the position of C dcl8 on the chromatin throughout S phase. One 

possibility is that C dcl8 (or a subpopulation of C dcl8), travels along the DNA 

with the replication fork. At the fork C dcl8 would be able to detect 

impediments to replication progression and hence signal to the Rad checkpoint 

system. Another possibility is that C dcl8 is recruited independently to sites of 

stalled forks or damage, perhaps in a Radl7-dependent manner. These 

possibilities could be explored by using ChIP to follow C dcl8 localisation in 

origin and non-origin areas, throughout S phase, and in relation to ORC, 

replication factors, and Rad proteins. Using ChIP on DNA microarrays (chip- 

ChlP) would enable this analysis on a genomic scale.

Investigation of the cdcl8-H2.3 ts mutant has revealed a putative third role for 

C dcl8 in the cell cycle, also within S phase. However, one caveat with the 

sequencing experiment used to identify this role is that HU was used to 

synchronise the cells in early S phase. Hence the loss of function displayed by 

cdcl8-H2.3 may reflect an inability to respond to HU at restrictive 

temperature, rather than an inability to effect a normal S phase function post 

initiation. However, even this possibility would reveal an interesting role for 

C dcl8; such a role in HU response would be separate from its checkpoint 

function and is unlikely to involve DNA metabolism. A novel, alternative 

method of arresting cells at early S would be required before this matter could 

be conclusively resolved.
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For the remaining discussion I shall assume that the results from chapter 5 

reveal a role for C dcl8 in a normal S phase as opposed to a non-checkpoint 

role in response to HU. The nature of this role is a matter for speculation at 

this stage, and more work needs to be carried out to confirm the process 

dependent upon this function. The lack of C dcl8 protein at the block point in 

the cdcl8-H2.3 sequencing experiment suggests that the cells arrest in G2 or 

mitosis, but further investigation is required to confirm this, and to locate the 

block more precisely. Two candidate arrest points would be at the G2/M 

transition and the metaphase/anaphase transition. From my results it seems 

that the putative third role does not relate to DNA metabolism, and hence I 

hypothesise that C dcl8 is required for some chromosome function which is 

subsequently needed for entry into or progress through mitosis. The proposals 

suggested in chapter 5 include the establishment of cohesion between sister 

chromatids, preparation of chromosomes for condensation in mitosis, or the 

localisation of the mitotic CDK complex to chromosomes in readiness for 

mitotic entry. RFC has been shown to have a least two specific functions in 

the cell, both of which involve loading proteins (PCNA and the 

9-1-1 complex) onto DNA (Kim et al., 2005). Given the homology of Cdcl8 

to RFC it may be that the S phase roles of C dcl8, like its M/Gl role of 

recruiting MCM proteins to replication origins, involve loading of proteins or 

protein complexes onto DNA. For instance, C dcl8 may load Rad3 onto 

chromatin in response to stalled forks and may load cohesin subunits onto 

chromatin during S phase. If such functionality is identified, then it will be 

interesting to see if this activity is dependent upon ATP hydrolysis, and if so, 

whether these multiple catalytic roles require a cyclic replacement of ADP 

with fresh ATP.

As with the role for C dcl8 in the S phase checkpoint, knowing the localisation 

of C dcl8 during S phase is likely to help us model the behaviour of C dcl8 in 

this third, putative role. It will be interesting to know if C dcl8 effects its two 

S phase functions from the same location, or whether different subpopulations 

of C dcl8 effect different roles from different positions. For example, one
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could imagine C dcl8 travelling with the replication fork during S phase, 

enabling the loading of cohesin subunits and also recruiting Rad3 if the fork is 

stalled. On the other hand, one subpopulation of Cdcl8 may remain at the 

origin, perhaps to load condensins, whilst another subpopulation is recruited to 

sites of DNA damage for the S phase checkpoint. Many DNA replication 

factors have been shown to participate in cohesion, including DNA helicases, 

S-phase checkpoint factors (e.g. Mrcl), RPC, and DNA polymerases 

(reviewed in Skibbens, 2005). The process of DNA replication also appears to 

be closely linked to chromosome condensation (Christensen and Tye, 2003; 

Pflumm, 2002). Significantly, a number of DNA replication factors, including 

C dcl8, were recently shown to interact genetically with both cohesion and 

condensin components in fission yeast (Yuasa et al., 2004). Another possible 

role of C dcl8 at replication origins in S phase may be to recruit the mitotic 

CDK complex, Cdc2-Cdcl3. This recruitment is dependent upon ORC and is 

required to prevent rereplication (Wuarin et al., 2002). It may be that C dcl8 is 

also required for this recruitment, and that Cdc2 localisation to origins both 

prevents rereplication and facilitates Cdc2 mitotic activity. If Cdc2-Cdcl3 

mediated repression of replication involves degradation of origin bound C dcl8 

then we must additionally postulate that a separate, non-origin population of 

C dcl8 is responsible for its S phase checkpoint function.

6.3 The Cdc18/Cdc2 switch

One important issue raised by the newly discovered functions of C dcl8 in S 

phase is the relationship between C dcl8 and Cdc2. A traditional view 

describes C dcl8 simply as a target for negative regulation by Cdc2. Hence at 

late mitosis and G l, a period of low Cdc2 kinase activity, C dcl8 can 

accumulate and functions in pre-RC formation; increased Cdc2 activity at the 

G l/S  transition triggers DNA replication and the removal of C dcl8 from the 

cell. Whilst Cdc2 kinase activity acts to repress cdcl8  transcription (Ayte et 

al., 2001; Baum et al., 1998) and targets the Cdcl8 protein for ubiquitin- 

mediated proteolysis (Jallepalli et al., 1997; Jallepalli et al., 1998; Kominami 

et al., 1998; Kominami and Toda, 1997; Wolf et al., 1999), other work has 

shown that C dcl8 can in turn inhibit Cdc2 kinase activity via the Rad
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checkpoint system (Greenwood et al., 1998; Zarzov et al., 2002). Hence 

C dcl8 and Cdc2 have an antagonistic relationship, and the cell cycle sees a 

switch from a C dcl8 dominant state (M/Gl) to a Cdc2 dominant state (G2). 

What is unclear is how this switch is coordinated during S phase, and a model 

of the Cdcl8/Cdc2 switch in this part of the cell cycle must take into account 

the role of C dcl8 in maintaining an S-phase checkpoint and its putative role in 

preparing the cell for mitosis. In both cases, the specific localisation of C dcl8 

(or a subpopulation of C dcl8) on the chromatin may influence its 

susceptibility to Cdc2-mediated phosphorylation or/and degradation. For 

example, a subpopulation of C dcl8 travelling with the replication fork may be 

immune to proteolysis, whilst other subpopulations are sensitive. From the 

replication fork C dcl8 may load cohesin proteins and recruit Rad3 at times of 

replication perturbation. When forks meet and resolve at the end of S phase 

C dcl8 would be released and degraded. Another factor to consider is the 

possibility that C dcl8 is modified or/and stabilised in response to perturbation 

of DNA replication. When transcription of cdcl8 is repressed in an HU block 

the C dcl8 protein level rapidly decreases (figure 4.2). Thus the C dcl8 pool in 

an HU block is subject to constant degradation, and the level of C dcl8 in the 

cell is maintained by a supply of newly synthesised C dcl8. Closer 

investigation on a timescale of minutes rather than hours is required, however, 

to determine if the rate at which C dcl8 is degraded in an HU block is reduced 

compared to the rate in other circumstances. This will help to determine if 

subtle changes in C dcl8 stabilisation are a feature of the Cdcl8/Cdc2 switch 

in S phase.

6.4 Conservation of Cdcl 8 function amongst eukaryotes

The role of Cdcl8/Cdc6 proteins (herein referred to as Cdc6) in pre-RC 

formation has been well studied and is a highly conserved feature of 

eukaryotic DNA replication (reviewed in Bell and Dutta, 2002). Cdc6 binds to 

replication origins via the ORC complex and loads the MCM complex onto 

DNA in concert with Cdtl. This MCM loading activity of Cdc6 is dependent 

upon ATP hydrolysis and is required for DNA replication. The requirement 

for ATP binding for Cdc6 origin association in Xenopus may reflect an
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additional control step for pre-RC formation in this system (Frolova et al., 

2002).

Other functions for Cdc6 have been less well studied. Deletion of Cdc6 in 

budding yeast, fission yeast or Drosophila gives rise to inappropriate entry 

into mitosis, implicating Cdc6 in the S-phase checkpoint (Crevel et al., 2005; 

Kelly et al., 1993; Piatti et al., 1995). Recent work in fission yeast, described 

and presented in this thesis, has demonstrated that Cdc6 works intimately with 

the Rad checkpoint system as part of the S phase checkpoint after initiation of 

DNA replication. A role for Cdc6 in S phase checkpoint function is also likely 

to be detailed in higher eukaryotes; Cdc6 is required for Chkl activation in 

response to aphidicolin in Xenopus (Oehlmann et al., 2004) whilst 

overexpression of Cdc6 in human cells leads to a Chkl-dependent inhibition of 

mitosis (Clay-Farrace et al., 2003).

The putative involvement of Cdc6 in chromosome dynamics during S phase in 

fission yeast, identified in this thesis and supported by genetic interactions 

between Cdc6 and separase/condensin subunits (Yuasa et al., 2004), has not 

been reported in any other system to date. Interestingly, a separate, additional 

function for Cdc6, other than its role in DNA replication and the S phase 

checkpoint, has been suggested from work with mouse Cdc6. Mouse Cdc6 

expressed in hamster cell lines associates with the spindle apparatus (Illenye 

and Heintz, 2004), and Cdc6 is essential for spindle formation during 

maturation of mouse oocytes (Anger et al., 2005). It will be interesting to see 

if mammalian Cdc6, which is present throughout the mitotic cell cycle, is 

required for all of the emerging functions for Cdc6 in these systems. The 

interaction between DNA replication and other cellular processes, such as 

chromosome cohesion, is an expanding area of research. As such, factors with 

a well-defined role in DNA replication are becoming implicated in other 

processes, and a good example is the ORC complex. Components of budding 

yeast ORC have been known to be involved in transcriptional silencing for 

some time (Bell et al., 1993; Loo et al., 1995), and increasingly ORC has been 

implicated in the regulation of heterochromatin and chromosome structure in a
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range of systems (Leatherwood and Vas, 2003; Prasanth et al., 2004). A 

similar picture may emerge for Cdc6-a replication and checkpoint factor with 

additional roles in chromosome metabolism.
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Chapter 7. Materials and methods

7.1 Fission yeast physiology and genetics

7.1.1 Nomenclature for genes and proteins

The following nomenclature has been used for the thesis. For fission yeast 

genes, the name of the gene is in lower case and italicised (e.g. cdcl8). The 

wild-type allele is designated by a + sign (e.g. cdcl8+). The mutant form of 

the gene is in lower case and italicised, with an allele number or abbreviated 

description when specified (e.g. cdcl8-K46 or cdcl8-WA). Tag abbreviations 

are then added to the genotype description were necessary (e.g. cdcl8-WA- 

HA). The protein encoded by the gene has the first letter in upper case and the 

rest of the gene name in lower case (e.g. C dcl8 or Cdcl8-WA). For budding 

yeast genes, the name of the gene and the wild-type allele are in upper case 

letters and italicised (e.g. CDC6). The mutant form of the gene is in lower case 

letters and italicised, with an allele number when specified (e.g. cdc6-l). The 

protein encoded by that gene has the first letter in upper case and the rest of 

the gene name in lower case (e.g. Cdc6). When referring to homologous genes 

or proteins in fission yeast and budding yeast, the two names may be divided 

by a forward slash (e.g. cdcl8/CDC6). For genes and proteins in metazoa, the 

nomenclature used for fission yeast has been applied. Genes present within a 

cell but located on a plasmid are preceded by the character ‘p \  Where nmt81- 

cdcl8  (SO) has been crossed into a mutant strain, or where pnmt41/81-cdcl8 

has been transformed into a mutant strain, individual genes are separated by a 

semi-colon (;).
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Table 7.1 S trains used in this study

Genotype Shorthand used in text

h- ade6-M210

h- ade6-M210 leul-32

h- ade6-M216 leul-32 ura4-D18

h+ ade6-M210 leul-32 ura4-D18

h- ade6-M210 nmt81-cdcl8+ SO

h- ade6-M210 nmt81-cdcl8+ cdcl8-WA-HA cdcl8-WA-HA; SO

h- ade6-M210 nmt81-cdcl8+ cdcl8-WB-HA cdcl8-E287G-HA; SO

h- ade6-M210 ura4-D18 his3-Dl Acdcl8::ura4+ 

leul +: :cdcl 8-DE286AA-midT with pDAD112 

(containing nmt81-cdcl8 his3+)

cdcl8-DEAD-midT; SO

h- leul-32 ura4-D18 cdcl 8-TAP-KanR cdcl 8-TAP

h- ade6-M210 leul-32 rad3-136 rad3A

h- ade6-M210 leul-32 rad3ts rad3ts

h- ade6-M216 leul-32 cdcl7-K42 cdcl7-K42

h+ ade6-M210 leul-32 poll-1 poll-1

h- leul-32 ura4-D18 rad3::ura4 cdc25-22 

cdcl 8-PI -6-TAP-KanR

cdcl8-TA  in rad3A and 

cdc25-22 background

h- leul-32 ura4-D18 rad3::ura4 cdc25-22 

cdcl 8-TAP-KanR

WT cdcl 8 in rad3A and 

cdc25-22 background

h-/h- ade6-M210/ade6-M216 leul-32/leul-32 Homozygous wild-type 

diploid

h- ade6-M210 leul-32 cdc25-22 orpl-HA

h+ leul-32 ura4-D18 cdc25-22 cdcl8-TAP

7.1.2 Strain growth and maintenance

All strains were derived from the wild-type 972h- and 975h+ strains. Medium 

and growth conditions are as previously described (Moreno et al., 1991). 

Techniques used to grow and maintain fission yeast strains, to store and revive 

frozen cultures, to check phenotypes, to perform and analyse genetic crosses
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by tetrad analysis or random spore analysis were performed as previously 

described (MacNeill and Fantes, 1993; Moreno and Nurse, 1994). All 

experiments were performed using cells in exponential growth in minimal 

medium at 32°C. For ts strains, 25°C was used as the permissive temperature 

and 36.5°C was used as the restrictive temperature (unless otherwise stated).

7.1.3 Strain construction

For construction of ts mutants by random mutagenesis, a total of 56 mutagenic 

PCR reactions were performed, and pairs were pooled. Pooled mixtures (28) 

were then purified using a Qiagen QIAquick kit and DNA eluted in 30/d 

water. 2/d of this prep was run on a 0.8% agarose gel (to check for the 

presence of the required PCR product), whilst the remainder was used for 

transformation of wild-type cells. For construction of ts mutants by site- 

directed mutagenesis, a total of 6 high-fidelity PCR reactions were performed, 

and pairs pooled. These pooled mixtures were then treated as above.

All other haploid strains were constructed by genetic crosses. Where each 

desired genotype is individually traceable (e.g. by antibiotic resistance or 

temperature sensitivity) strains were isolated following random spore analysis. 

For other cases (e.g. double ts mutants) tetrad analysis was employed. To 

construct the COT strain, ten isolates were obtained demonstrating 

temperature sensitivity (cdc25-22) and resistance to Kanamycin (cdcl8-TAP). 

Protein extracts were then prepared from these isolates which were probed for 

HA staining, identifying strains with the desired orpl-HA genotype.

Diploid strains were constructed by crossing h+ ade6-M210 strains with h- 

ade6-M216 strains on low nitrogen plates, and transferring the cross to minus 

adenine plates after 16 hours. Diploids were then maintained on YE medium, 

or sporulated on low nitrogen plates. Non-sporulating diploids were obtained 

by plating out approximately 103 cells and screening for stable isolates on low 

nitrogen. These stable diploid versions were used for experiments in liquid 

culture. Sporulation of these stable diploid strains (to check for 

heterozygosity) was achieved by plating out approximately 103 cells and 

screening for sporulating isolates on low nitrogen medium.
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Table 7.2 Strains constructed in this study

Genotype Shorthand used in 

text

h+ ade6-M210 leul-32 ura4-D18 cdcl 8-3.2-ura4+ cdcl8-3.2

h+ ade6-M210 leul-32 ura4-D18 cdcl 8-3.6-ura4+ cdcl8-3.6

h+ ade6-M210 leul-32 ura4-D18 cdcl8-3.9-ura4+ cdcl8-3.9

h+ ade6-M210 leul-32 ura4-D18 cdcl8-D8-ura4+ cdcl8-D8

h- ade6-M216 leul-32 ura4-D18 cdcl8-B2.1-ura4+ cdcl8-B2.1

h- ade6-M216 leul-32 ura4-D18 cdcl8-B3.1-ura4+ cdcl8-B3.1

h- ade6-M216 leul-32 ura4-D18 cdcl8-F2.1-ura4-\- cdcl8-F2.1

h- ade6-M216 leul-32 ura4-D18 cdcl8-Hl.2-ura4+ cdcl8-H1.2

h- ade6-M216 leul-32 ura4-D18 cdcl8-H2.3-ura4+ cdcl8-H2.3

h- ade6-M216 leul-32 ura4-D18 cdcl8-11.2-ura4+ cdcl 8-11.2

h- ade6-M216 leul-32 ura4-D18 cdcl8-K3.2-ura4+ cdcl8-K3.2

h- ade6-M216 leul-32 ura4-D18 cdcl8-L2.1-ura4+ cdcl8-L2.1

h- ade6-M216 leul-32 ura4-D18 cdcl8-G317D- 

ura4+

cdcl8-G317D

h+ ade6-M210 leul-32 ura4-D18 cdcl8-3.2-ura4+ 

rad3-136

cdcl8-3.2 rad3A

h+ ade6-M210 leul-32 ura4-D18 cdcl8-3.6-ura4+ 

rad3-136

cdcl8-3.6 rad3A

h+ ade6-M210 leul-32 ura4-D18 cdcl8-3.9-ura4+ 

rad3-136

cdcl8-3.9 rad3A

h+ ade6-M210 leul-32 ura4-D18 cdcl8-D8-ura4+ 

rad3-136

cdcl8-D8 rad3A

h- ade6-M210 leul-32 ura4-D18 cdcl8-B2.1-ura4+ 

rad3-136

cdcl8-B2.1 rad3A

h- ade6-M210 leul-32 ura4-D!8 cdcl8-B3.1-ura4+ 

rad3-136

cdcl8-B3.1 rad3A

h- ade6-M210 leul-32 ura4-D18 cdcl8-F2.1-ura4+ 

rad3-136

cdcl8-F2.1 rad3A
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h- ade6-M210 leul-32 ura4-D18 cdcl8-Hl.2-ura4+  

rad3-136

cdcl8-H1.2 rad3A

h- ade6-M210 leul-32 ura4-D18 cdcl8-H2.3-ura4+ 

rad3-136

cdcl8-H2.3 rad3A

h- ade6-M210 leul-32 ura4-D18 cdcl8-11.2-ura4+ 

rad3-136

cdcl 8-11.2 rad3A

h- ade6-M210 leul-32 ura4-D18 cdcl8-K3.2-ura4+ 

rad3-136

cdcl8-K3.2 rad3A

h- ade6-M210 leul-32 ura4-D18 cdcl8-L2.1-ura4+ 

rad3-136

cdcl8-L2.1 rad3A

h- ade6-M210 leul-32 ura4-D18 cdcl8-G317D-ura4+ 

rad3-136

cdcl8-G317D

rad3A

h- ade6-M210 leul-32 ura4-D18 cdcl8-H2.3-ura4+ 

rad3ts

cdcl8-H2.3 rad3ts

h+leul-32 his3-Dl cdc25-22 orpl-HA cdcl 8-TAP-KanR COT

h+ ade6-M210 leul-32 ura4-D18 his3-Dl cdc25-22 

cdcl 8-TAP-KanR

cdc25-22 cdcl8- 

TAP

h+ ade6-M210 leul-32 ura4-D18 his3-Dl 

cdcl0-v50 cdcl8-TAP-KanR

cdcl0-v50 cdc 18- 

TAP

h+ ade6-M210 leul-32 ura4-D18 his3-Dl orpl-4 

cdcl 8-TAP-KanR

orpl-4 cdc 18-TAP

h+ ade6-M210 leul-32 ura4-D18 his3-Dl 

cdc23-M36 cdcl 8-TAP-KanR

cdc23-M36 

cdc 18-TAP

h+ ade6-M210 leul-32 ura4-D18 his3-Dl poll-1 

cdcl 8-TAP-KanR

poll-1 cdcl8-TAP

h+ ade6-M210 leul-32 ura4-D18 his3-Dl 

cdcl 7-K42 cdcl 8-TAP-KanR

cdcl7-K42 cdcl8- 

TAP

h+ ade6-M210 leul-32 ura4-D18 his3-Dl 

cdc27-Pll cdcl 8-TAP-KanR

cdc27-Pll cdc 18- 

TAP

h- ade6-M210 leul-32 cdcl7-K42 nmt81-cdcl8+ cdcl7-K42\ SO

h- ade6-M210 leul-32 poll-1 nmt81-cdcl8+ po ll-1 ; SO

h-fh- ade6-M210/ade6-M216 leul-32/leul-32 ura4- 

D18/ura4-D18 cdcl8+/cdcl8-H2.3-ura4+

heterozygous 

mutant diploid
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7.1.4 Transformation of fission yeast

Approximately 108 exponentially growing cells were used per transformation. 

Cells were washed once in 1ml water, then resuspended in 200/d water.

Herring sperm DNA (100/^g) and transforming DNA were added, along with 

0.5ml PLATE (40% PEG 4000, lOOmM lithium acetate, lOmM Tris-HCl (pH 

7.5), ImM EDTA). This mixture was vortexed and incubated at room 

temperature overnight. Cells were washed twice in 1ml water before 

resuspension in water. Cells were then plated out onto selective medium at 

32°C (or 25°C for ts strains).

7.1.5 Use of Hydroxyurea (HU)

Hydroxyurea (HU) was used at 12mM in minimal medium. For timecourses in 

solution, a 6mM top-up was added every generation time (e.g. every 4hrs at 

25°C). To release cells from an HU block, cells were filtered, washed and 

resuspended in minimal medium lacking HU.

7.1.6 Use of n m t  expression system

The nmt promoter is derived from the nmtl gene, which is required for 

thiamine biosynthesis (Maundrell, 1990). Proteins lying behind the nmt 

promoter in expression systems are expressed in vivo. There are three versions 

of the nmt promoter; the strongest is nm tl, nmt41 is weaker and nmt81 is the 

weakest. All are repressed in the presence of thiamine, although with the wild- 

type promoter, nm tl, there is a significant background expression level even in 

the presence of thiamine. The relative, approximate expression strengths of 

nmt promoters are given in the table below, along with the laboratory 

nomenclature for the plasmids containing these promoters.
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Table 7.3 Comparison of the expression levels of nmt promoters

nmt

promoter

Repressed

conditions

Induced

conditions

ura4+

marker

LEU2+

marker

nmtl 20 6160 pREP4 pREPl

nmt41 4 100 pREP42 pREP41

nmt81 1 6 pREP82 pREP81

To repress the nmt promoter, thiamine was added to a minimal medium at a 

final concentration of 30/*M. To induce expression from an nmt promoter, 

cells cultured in the presence of thiamine were filtered, washed and 

resuspended in minimal medium lacking thiamine. Induction typically occurs 

approximately 16 hours later.

7.1.7 Population mass and cell number

Population mass was followed by measuring the optical density (OD) of the 

cell culture at 595nm using an Amersham Ultraspec 2100 pro 

spectrophotometer. All experiments were carried out in logarithmic phase for 

growth, between OD of 0.1 and 0.9. Cell number was determined using a 

Coulter counter. Cells were fixed by adding 1.6mls of formal saline (0.9% 

saline, 3.7% formaldehyde) to 0.4ml of cell culture and stored at 4°C. Before 

counting, 18mls of filtered ISOTON solution was added and cells were 

sonicated for 30 seconds on level 6 of Soniprep 150 sonicator (MSE). The 

number of cells in a 0.5ml aliquot of each sample was taken in triplicate and 

averaged.

7.1.8 Flow cytometric analysis

The DNA content of cells was assessed using a Becton Dickinson 

fluorescence activated cell sorter (FACS). Cells were fixed by suspension in 

lml 70% ethanol and stored at 4°C. Cells were then rehydrated by spinning 

through 3ml 50mM sodium citrate, and treated with RNase (0.2mg/ml final in 

0.5ml 50mM sodium citrate) at 37°C for at least 3 hours. Cells were then 

stained with propidium iodide (2//g/ml final in 0.5ml 50mM sodium citrate) 

and sonicated for 30 seconds as (described above) prior to analysis.
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7.1.9 Visualisation of nuclei by DAPI staining

Cells fixed in 70% ethanol were rehydrated in water, heat fixed to a slide and 

mounted in l//g/ml of DAPI (4’, 6-diamidino-2-phenylindole) in 50% 

glycerol. Cells were visualised using a Zeiss Axioplan microscope and 

photographed with a Hamamatsu C4742-95 digital camera.

7.2 Molecular biology techniques

7.2.1 General techniques

The following techniques were performed essentially as described (Sambrook 

et al., 1989): preparation of competent bacteria, transformation of bacteria 

with DNA, restriction enzyme digests of DNA, and gel electrophoresis of 

DNA. Both small (miniprep) and large scale (maxiprep) preparation of DNA 

from bacteria was done using Qiagen QIAprep kits. PCR products were 

purified with a Qiagen QIAquick kit.

7.2.2 PCR reactions

All PCR reactions were carried out in a Biometra TGradient PCR cycler. The 

mutagenic PCR reactions were carried out in a final volume of 100//1 

containing 500ng template DNA (pDH17), 50pmol each of primers 247 and 

256, IX Taq buffer, 1.76mM MgCl2, 0.5mM MnCl2, 0.56mM dATP, 0.9mM 

dCTP, 0.2mM dGTP, 0.14mM dTTP and 8U of Taq DNA polymerase. 25 

cycles were used in the PCR, with a melting temperature of 94°C (30s), 

annealing temperature of 42°C (30s) and extension temperature of 72°C (4 

minutes).

High fidelity PCR of the pOHl plasmid was carried out in a final volume of 

50/d containing 50ng plasmid, 50pmol each of primers 247 and 256, 0.1 mM 

dNTP mix, 3.5U of Expand High Fidelity enzyme mix (Roche) and IX High 

Fidelity reaction buffer. 35 cycles were used in the PCR, and cycle details 

were as above.
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For the Colony PCR reactions, a small loop of the appropriate colony was 

innoculated into the reaction mix before addition of the polymerase. The mix 

was then boiled for 10 minutes before cooling on ice and adding of 3.5U of 

Expand High Fidelity enzyme mix. The reaction contained 50pmol of each 

primer, 0.1 mM dNTP mix and IX High Fidelity reaction buffer. 35 cycles 

were used in the PCR, and cycle details were as above, with the following 

exceptions. For colony PCR of the new ts cdc 18 mutants (with primers 275 

and R6) an annealing temperature of 45°C was used. For colony PCR of 

isolates rescued by a cDNA plasmid (with primers C08 and R5) an annealing 

temperature of 50°C was used, with an extension time of 3 minutes.

Site directed mutagenesis was carried out using a Stratagene QuickChange 

Site-Directed Mutagenesis Kit, according to the kit instructions, using 50- 

500ng of DNA template and 18 PCR cycles. Mutation of pDH17 plasmid (to 

yield pO Hl) was effected using primers G317DF and G317DR with an 

annealing temperature of 55°C and an extension time of 24 minutes. Mutation 

of pnm tl-cdcl8-C  (ARC 746) to yield various mutant forms of the Cdc 18 C- 

terminus was effected using primers K205AF, K205AR, D286GF, D286GR, 

E287GF, E287GR, D286AF, D286AR, E287AF and E287AR with an 

annealing temperature of 55°C and an extension time of 12 minutes.
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Table 7.4 Primers used in this study

Primer

Name

Primer Sequence (5* to 3’)

G317DF CCG ACTTCG AG ATT A ATTTTGGT AG AC ATTGCA A ATGCC

G317DR GGCATTTGCAATGTCTACCAAAATTAATCTCGAAGTCGG

247 CG AT ATGTGTG AA ACTCC

256 CAATCATATTCAGTTTTGTGT

275 G A AGTT A AT ATT ACTT AGT AGC

R6 GCAT ACATAT AGCCAGTGGG

C08 GCTACTGGATGGTTCAGTCAC

R5 CATCGGCAACACTCAATGAGG

K205AF GCCCCTGGCACAGGAGAGACCGTTCTGCTTCACAACG

K205AR CGTTGTGAAGCAGAACGGTCTCTCCTGTGCCAGGGGC

D286GF CCCAGTCATTATTGTTTTAGGTGAAATGGATCACTTGATTGC

D286GR GCAATCAAGTGATCCATTTCACCTAAAACAATAATGACTGGG

E287GF CCCAGTCATT ATTGTTTT AGATGG AATGG ATC ACTTGATTGC

E287GR GCAATCAAGTGATCCATTCCATCTAAAACAATAATGACTGG

D286AF CCCAGTCATTATTGTTTTAGCTGAAATGGATCACTTGATTGC

D286AR GCAATCAAGTGATCCATTTCAGCTAAAACAATAATGACTGGG

E287AF CCCAGTCATTATTGTTTTAGATGCAATGGATCACTTGATTGC

E287AR GCAATCAAGTGATCCATTGCATCTAAAACAATAATGACTGGG

236 T A ATTCTACTGCC A A ATTG

237 G AACAAAGCAT ATT ACTCCC

238 AACAAGTTCGGAATTTTGCG

R1 GGTCCTTTTGGGGGTTTTAGGAG

284 CAGAACGGTCTTTCCTGTGCC

R3 CGAGAGGGCCATTCAAAAAGCG

R4 CCGGGCACATAATTCAATTGCAGC
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7.2.3 DNA sequencing

Sequencing was carried out using the dideoxynucleotide method (Sanger et 

al., 1977). DNA sequencing PCR was effected in a final volume of 20/d 

containing 50-500ng template DNA, 1/<M sequencing primer and 9/d of 

CRUK termination ready reaction mix (A-dye terminator, C-dye terminator, 

G-dye terminator, T-dye terminator, dITP, dATP, dCTP, dTTP, Tris-HCl (pH 

9), MgCl2, thermal stable pyrophosphatase, and AmpliTaq DNA polymerase, 

FS). Samples were run on a 4.8% acrylamide gel and detected using an ABI 

Prism 377 DNA sequencer. The Cdc 18 ORF was sequenced in the forward 

direction using primers 275, 247, 236, 237 and 238, and in the reverse 

direction using R l, 284, R3, R4, R5 and 256 (or R6 when ura4+ lies 3’ to the 

cdcl8  ORF).

7.2.4 Fission yeast plasmid extraction

Fission yeast cultures (10ml) were grown to exponential phase in selective 

medium. Cells were then collected by centrifugation, resuspended in 1ml 

water, and transferred to an Eppendorf. Cells were collected using a 5 second 

spin in a microfuge, the supernatant was decanted away and cells resuspended 

in 200/d lysis solution (2% Triton X-100, lOmM Tris-HCl (pH 8), 1% SDS, 

ImM Na2EDTA, lOOmM NaCl). 200/d phenol:chloroform:IAA (25:24:1) and 

0.3 g acid washed glass beads were added before vortexing for 2 minutes. The 

tube was then centrifuged for 5 minutes and the upper, aqueous layer removed 

and added to 200/d phenol:chloroform:IAA in a fresh eppendorf. Vortexing 

and centrifugation was repeated as above and the upper layer removed. DNA 

was precipitated from this layer, washed in 70% ethanol and resuspended in 

10/d TE. This DNA preparation was further purified using the Q-Biogene 

Geneclean II kit, with an elution volume of 15/d water. 5 /d of this purified 

prep was transformed into competent E.coli cells.

7.2.5 Pulsed-field gel electrophoresis
Approximately 2xl08 cells were stopped with sodium azide (ImM) and 

collected by centrifugation. Cells were washed and resuspended in SP1 buffer 

(40mM EDTA, 1.2M sorbitol, 50mM sodium citrate, 50mM disodium
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phosphate, pH 5.6). Cell density was estimated using a haemocytometer 

before Zymolyase-IOOT was added to 0.6mg/ml. Cells were incubated at 37°C 

and spheroplasting monitored by mixing 10/d samples with 1/d 20% SDS. 

When 95% lysis was achieved spheroplasts were collected by centrifugation 

and resuspended in 1% low melting point agarose in TSE (0.9M sorbitol, 

45mM EDTA, lOmM Tris-HCl, pH 7.5) at a concentration of 8 x 107 cells per 

100/d. Cells were dispensed into 100/d plug moulds and allowed to solidify at 

4°C. Plugs were removed and incubated in 0.25M EDTA, 1% SDS, 50mM 

Tris-HCl, pH 7.5, at 55°C for 90 minutes. Plugs were then incubated in 0.5M 

EDTA, 1% lauryl sarcosine, lmg/ml proteinase K, lOmM Tris-HCl, pH 9.5, at 

55°C for 24 hours. This proteinase K step was repeated before washing twice 

in TIOxE (lOmM EDTA, lOmM Tris-HCl, pH 7.5) at 25°C for 30 minutes, 

once in TIOxE containing 0.04mg/ml PMSF (50°C, one hour), and twice in 

TIOxE (25°C, 30 minutes). Plugs were stored in 0.5M EDTA, lOmM Tris- 

HCl, pH 9.5

For whole chromosome gels, plugs were loaded into a 0.8%, 1 x TAE gel and 

electrophoresed at 14°C in 1 x TAE using a BioRad CHEF-DR III Variable 

Angle System with the following conditions: 24 hours with switch time of 

1200 seconds, angle of 96° at 2V/cm, 24 hours with switch time of 1500 

seconds, angle of 100° at 2V/cm, and 24 hours with switch time of 1800 

seconds, angle of 106° at 2V/cm. Gels were stained in water containing 

5/^g/ml ethidium bromide and destained in water for one hour and overnight 

prior to photographing on a UV box.

For Notl digested chromosome gels, plugs were washed twice in TIOxE at 

25°C for 30 minutes, once in 2x Notl buffer (37°C, one hour,) and once in lx 

Notl buffer (37°C, one hour). Chromosomes were then digested in lx  Notl 

buffer and 50 units of Notl at 37°C overnight. Plugs were washed in TIOxE 

(25°C, 30 minutes), loaded into a 1%, 0.5 x TBE gel and electrophoresed at 

14°C in 0.5 x TBE for 24 hours (switch time of 60-120 seconds, angle of 120° 

at 6V/cm).
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7.2.6 Protein extract preparation

Total boiled cell extracts were prepared from 2xl08 OD units as described 

(Nishitani and Nurse, 1995). Cells were washed once in STOP buffer (150mM 

NaCl, 50mM sodium fluoride, ImM sodium azide, lOmM EDTA, pH 8.0), 

resuspended in 200/d of HB buffer (25mM MOPS, pH 7.2, 15mM MgCl2, 

15mM EGTA, ImM DTT, 1% Triton X-100, 60mM 6-glycerophosphate, 

O.lmM sodium vanadate, ImM PMSF, 20/^g/ml leupeptin and 10//g/ml 

aprotinin) and boiled for 6 minutes. Cells were then broken by adding glass 

beads and vortexing in a Bio 101 FastPrep 120. Extracts were recovered by 

piercing the bottom of the tube with a needle and centrifuging into an 

Eppendorf tube at 2000 rpm for 1 minute. Protein concentrations were 

determined with a BCA/Copper (II) sulfate assay (Sigma B9643). 

Approximately 50//g of protein were run on gels for Western blotting.

7.2.7 Chromatin extract preparation

Approximately 2xl08 OD units were stopped with sodium azide (ImM) and 

collected by centrifugation. Cells were washed once with water, once with 

1.2M sorbitol, and resuspended in 0.9ml of SP2 (1.2M sorbitol, 50mM sodium 

citrate, 50mM disodium phosphate, pH 5.6). Lysing enzymes (Sigma) were 

added at 1 mg/ml (L2265) or 5mg/ml (L1412) and cells were incubated at 

30°C. Spheroplasting was followed by mixing 2/d samples with 2/d 2% Triton 

X-100, and analysing the extent of lysis. When two thirds of the cells lysed the 

reaction was terminated with lOmM Tris-HCl, pH7.5. Spheroplasts were then 

spun through a sucrose gradient (15% sucrose, 1.2M sorbitol, lOmM Tris-Cl, 

pH7.5) at 2000rpm for 4 minutes, and washed twice in 1.2M sorbitol, lOmM 

Tris-HCl, pH7.5. Spheroplasts were lysed in BE10 buffer (20mM Hepes, 

pH7.9, 1.5mM magnesium acetate, 50mM potassium acetate, 10% glycerol, 

0.5mM DTT, ImM PMSF, 20//g/ml leupeptin, 40/^g/ml aprotinin, 1.5/^g/ml 

pepstatin and 2mM benzamidine) containing 1% Triton X-100, O.lmM 

sodium vanadate and 5mM ATP, and incubated on ice for 10 minutes. A 

proportion of the lysate was kept for the total cell extract, and a proportion 

used to estimate total protein concentration by BCA method (see previous). 

The remaining fraction was centrifuged through a 30% sucrose cushion, and
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the supernatant removed (corresponding to the Triton-extractable fraction).

The pellet was washed once in BE10 buffer containing 5mM ATP and O.lmM 

sodium vanadate. Chromatin associated proteins were released from the pellet 

by resuspending in BE 10 buffer containing 0.5M NaCl and incubating with 

550 units of DNase I (Sigma D7291) for 30 minutes at 25°C. NP40 was 

optionally added at 1% for the final 15 minutes of this incubation. Spinning 

through 30% sucrose gave a final pellet and a supernatant containing the 

chromatin-associated proteins.

7.2.8 Western blotting

Protein extracts were mixed with 4X LDS sample buffer and loaded onto 

BioRad pre-cast SDS polyacrylamide gels of varying percentages (15X 15ja\  

wells). Unless otherwise stated, gels were run at 150V for 8minutes, then at 

200V for 42 minutes. Proteins were transferred to PVDF Immobilon 

membrane (Millipore) in 10% methanol, lOmM CAPS (pH 11) at 46V for one 

hour. Membranes were blocked in PBSA containing 5% milk and 0.05% 

Tween 20 for one hour. Primary antibodies were incubated in 5% milk, 0.05% 

Tween 20 for one hour or overnight, and the membrane washed three times in 

PBSA containing 0.05% Tween 20 for 10 minutes. Horseradish peroxidase- 

conjugated anti-rabbit or anti-mouse antibodies were used as secondary 

antibodies and were detected using an ECL kit (Amersham). Proteins tagged 

with the TAP tag (Protein A and Calmodulin Binding Protein) were detected 

with a peroxidase-anti-peroxidase antibody (PAP) which can be detected 

directly with the ECL kit. Quantitative analysis of the resultant films 

(densitometry) was perfomed using Image J 1.33u (http://rsb.info.nih.gov/ij/).
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Table 7.5 Antibodies used for Western blotting

Antibody Incubation conditions

anti-Cdcl8 polyclonal 

(This study)

1:1000 dilution of affinity purified 

Ab, overnight.

anti-Cdtl polyclonal 

(H. Nishitani)

1:500 dilution of affinity purified 

Ab, overnight.

anti-Cdc21 polyclonal 

(Z. Lygerou)

1:500 dilution of affinity purified 

Ab, overnight

anti-Orp2 polyclonal (P. Russell) 1:2500 dilution of serum, one hour.

anti-midT polyclonal (Bethyl A 190- 

211 A)

1:1000 dilution of affinity purified 

Ab, two hours

anti-HA monoclonal (CRUK, 12CA5) 1:500 dilution, one hour

anti-a-Tubulin monoclonal 

(Sigma T5168)

1:10000 dilution, 30 minutes

PAP (Sigma P1291) 1:500 dilution, one hour.

anti-rabbit HRP (Amersham 

NA934V)

1:1000 dilution, one hour

anti-mouse HRP (Amersham 

NA931V)

1:1000 dilution, one hour

7.2.9 Antibody affinity purification

Polyclonal antibodies were affinity-purified from crude rabbit serum using a 

Western blot procedure. Purified antigen protein (250-500//g) was loaded onto 

a single, large well in a polyacrylamide preparation gel. The percentage gel 

and run time depended on the size of the antigen. After running the gel, 

protein was transferred to nitrocellulose membrane (Amersham) in 10% 

methanol, lOmM CAPS (pH 11) at 46V for one hour. The antigen band 

(located by Ponceau staining) was excised and blocked in PBSA containing 

5%milk for one hour. The membrane was then washed three times in PBSA 

for 10 minutes before an overnight incubation with crude serum. The 

membrane was washed three times in PBSA for 10 minutes prior to elution.
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To elute antibody from the blot the membrane was incubated in 300/d elution 

buffer (0.2M glycine, ImM EGTA, pH 2.5) for 10 minutes. Elution buffer was 

removed and neutralised with 0.1M Tris-HCl, pH 8.8. The elution step was 

then repeated.

7.2.10 Isolation of anti-Cdc18 polyclonal antibody

Purified Cdcl8-6His protein, produced in our lab, was used as antigen by 

Harlan Sera-Lab for rabbit immunisation (400//g primary immunisation and 

five 200//g boosters). Terminal bleed serum was affinity purified and used in 

test Western blots for Cdcl8 specificity (data not shown). This antibody was 

designated as OH1 anti-Cdcl8 polyclonal.
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