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A bstract

A bstract

This thesis pursues a single line of enquiry: lightness, brightness, and visual illusions. In 
particular, it focuses on W hite’s effect, simultaneous brightness contrast, and low-level the­
ories that can account for both phenomenon.

In the first part (Chapters 1-2), the problem-space is defined before a review of lightness 
and brightness theories from both low- and high-level vision.

In the second part (Chapter 3), the only two low-level VI models of brightness, capable 
of accounting for both W hite's effect and simultaneous brightness contrast, are shown to 
be reliant 011 the amplification of low spatial frequency information derived for large-scale 
RFs, to accurately reconstruct images and account for the illusory brightness apparent in 
both effects. It is argued that these large-scale RFs do not exist in VI, and tha t the global 
re-weighting and re-normalisation schemes employed by these models are not constrained 
by the known local nature of intra-cortical connections. Hence, it was concluded th a t these 
models are not biologically plausible.

In the third part (Chapter 4), the issue of recovering low spatial frequency and local mean 
luminance information without explicitly sampling it, is considered. The problem is for­
mally defined in the Scale-Space framework and solved analytically. That is, an algorithm 
for recovering local mean-luminance (and low spatial frequencies), from the information 
implicit in contrast coding cells typically found in VI, is constructed, and is referred to as 
the Implicit Luminance Coding (ILC) model.

It is argued that the ILC model is not biologically-plausible, by virtue of its global optimisa­
tion framework being unconstrained by the known local nature of intra-cortical connections. 
Subsequently, a new algorithm is proposed, based on a numerical approximation to the an­
alytical solution. The biologically-plausible ILC algorithm is developed into a complete 
low-level model of brightness, which makes use of the information present in multiple scale 
channels. The model is shown to be capable of accounting for both W hite’s effect and 
simultaneous brightness contrast, by means of an interplay between two independent as­
similation and contrast mechanisms.

The final part (Chapter 5), is concerned with the application of the model to visual phe­
nomenon synonymous with lightness and brightness, including all known variants of W hite’s 
effect and simultaneous brightness contrast, and some effects tha t are traditionally ac­
counted for by appealing to mechanisms from high-level vision, thus facilitating the delin­
eation of low-level from higher-level phenomena. The biologically-plausible ILC model is 
shown to be in good accordance with this experimental data. Furthermore, qualitative ac­
counts for the temporal evolution of the filling-in process were provided and shown to be in 
agreement with experiment, and novel predictions as to the temporal evolution of W hite’s 
effect relative to simultaneous brightness contrast are described.
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Chapter 1: Lightness and Brightness

C hapter 1: L ightness and B rightness

Before anything pertaining to lightness and brightness can be discussed it is necessary to 

define these terms and establish their connection to the physical world.

Luminance, Illuminance, Surface Reflectance, and Intrinsic Images

The 2-D distribution of light-intensity, incident on the retina from a scene, is referred to 

as the luminance (or retinal image). The physics which governs the nature of luminance is 

dependent on two factors: the source of light in the scene, and how the surfaces of objects 

within the scene reflect light towards the observer.

A more rigorous description of the relationship between luminance and environment requires 

a formal definition of the latter. Consider a simplified model of the environment consisting 

of a planar world embedded in a 3-D space, together with an observer and a light source. 

The light source is assumed to be a point at infinity so tha t illumination incident on the flat 

world is uniform. Furthermore, all surfaces in this world are assumed to be Lambertian, 

tha t is, they scatter light equally in all directions such th a t the luminance is independent of 

the observers position. The luminance at point (x ,y)  in the retinal image, L(x ,y ) ,  arising 

from this scene, analogous to tha t when viewing a painting in an art gallery, is given by,

L ( x , y) = R(x, y ) I ( x , y ), (1.1)

where R (x ,y )  is the surface reflectance (or reflectance) and is defined as the fraction of the 

incident illumination, 7(x, y), th a t is reflected towards the observer. It should be noted tha t 

for uniform illumination, 7(x, y) is a constant for all x  and y, but it is instructive to cast 

both the reflectance and illumination in this way as it motivates the notion th a t luminance 

may be regarded as the product of two distinct reflectance and illuminance ‘intrinsic images’ 

(Barrow & Tenenbaum, 1978).
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Chapter 1: Lightness and Brightness

Although idealised environments such as the planar world represent only a trivial subset of 

all possible scenes, by abstracting away the 3-D layout of surfaces it is possible to negate 

the effects of shading and study lightness and brightness in isolation from any confounding 

factors. It is for this reason that so much attention has been focused on this paradigm, and 

in particular to what are referred to as ‘M ondrian’ scenes; planar worlds comprising of an 

array of ‘overlapping’ rectangular surfaces of varying reflectance, so called because of their 

apparent resemblance to the paintings of Piet Mondrian.

W ithin such a context, lightness is defined as the perceived reflectance of a surface. It 

can be considered as representing the visual system’s attem pt at extracting the physical 

reflectance based on the luminance from a scene. Brightness, however, is defined purely 

as the perceived luminance of a surface or region, irrespective of the underlying physical 

properties that generated it. Unlike luminance, illuminance, and reflectance, which axe all 

physically measurable quantities, lightness and brightness are intrinsically subjective vari­

ables (Adelson, 2000). The two are intimately linked, and the difference between lightness 

and brightness judgements is subtle. For example, in Mondrian scenes under isotropic illu­

mination the two perceptual dimensions are essentially equivalent.

A greater importance is ascribed to lightness over brightness, and often the latter is seen 

as preceding the former. This stance is motivated by the wealth of information about the 

environment which is implicit in the reflectance of a surface, and hence in the perception 

of this reflectance. Reflectance is physically determined by the amount of electromagnetic 

energy absorbed - as opposed to reflected - by the electronic structure in the surface layers 

of a material. Hence, a change in reflectance can be attributed to a change in m aterial - 

information necessary for object recognition.

Lightness and Brightness in Complex Scenes

Despite the additional complexity, 3-D worlds can also be idealised to facilitate the study of 

lightness and brightness in ‘real world’ settings. The simplest physical construct considers



Chapter 1: Lightness and Brightness

objects as ensembles of Lambertian surfaces in the same 3-D space as the observer and a 

source of uniform illumination. The luminance in this world is then given as a modification 

to (1.1),

L(x, y) =  R{x, y ) I ( x , y)n(x, y) ■ s, (1.2)

where n(x , y) is the unit surface-normal (in the 3-D space) of the surface, and s is the unit 

direction of the illumination (Adelson & Pentland, 1996). The luminance from a surface in 

this 3-D space is not only dependent on reflectance, but also on its orientation relative to 

the direction of illumination. T hat is, the luminance may now be decomposed into three 

intrinsic images: reflectance, illuminance, and shading.

Shading is of no consequence in the flat world where all surfaces are constrained to  lie on 

the same plane, and where a spatial variation in luminance can only be attribu ted  to a 

change in reflectance. Here, there is a one-to-one relationship between scene configuration 

and luminance. However, in the real world paradigm there is a many-to-one relationship 

between possible scene configurations and a single luminance image. A change in luminance 

at any point can now be attributed to either a change in reflectance or a change in surface 

orientation.

Accounting for the biological substrates of lightness now becomes intrinsically more involved 

than any discussion of a simple neural representation of the retinal image (although this 

may still apply to brightness); additional information about the configuration of the scene 

has to be inferred or extracted from the luminance. Regardless of this increase in com­

plexity, our brains still perform the task near-perfectly, especially remarkable given tha t 

scenes in the natural world are not entirely composed of opaque Lambertian surfaces, but 

include surfaces with specular components, translucent, and transparent surfaces; for which 

illumination is not uniform and does not pass unadulterated through the atmosphere, and 

surfaces are illuminated by the light reflected from other surfaces (ambient illumination),
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Chapter 1: Lightness and Brightness

together with that from well-defined sources.

In this setting, the symmetry between lightness and brightness judgements is broken. Light­

ness is involved with determining the underlying reflectance of a surface, and hence aims 

to remain invariant under variations in illuminance and shading, whereas brightness will be 

an explicit function of these parameters.

Lightness Constancy

Given the fundamental role of lightness information in visual perception, it is crucial that 

the lightness associated with a surface, is always associated with that surface, regardless of 

any change in the environment; it must be invariant to produce the stable visual world we 

are accustomed to. For example, a change in illuminant resulting in an altered luminance 

should not affect the lightness attributed to any surface, despite the difference in informa­

tion provided to the visual system. Such invariance in lightness is referred to as ‘lightness 

constancy’.

Although lightness constancy may seem an obvious and simple desire, the means by which 

the visual system achieves it is not fully understood for even the simplest environments. 

For example, consider the flat world environment, but without uniform illumination, such 

tha t I { x , y ) is no longer a constant for all x  and y. Reflectance is given from (1.1),

n /   ̂ L (x ,y)  ,1 o \
R ( x -y) = l ( ^ y  (L3)

It is clear tha t from the luminance alone it is not possible to determine the reflectance. Pu t

another way, given the reflectance and illuminant intrinsic images it is possible to calculate

the luminance, but it is impossible to calculate (or unmultiply’) the precise reflectance 

and illuminance images tha t gave rise to the luminance; once again there is a many-to-one 

relationship between scene configuration and luminance as soon as any realism is intro­

10



Chapter 1: Lightness and Brightness

duced into our models of the environment. By inspection of (1.3) it can be seen tha t this 

problem may be tackled by either determining or inferring the illuminance image from the 

information implicit in the luminance, or by discounting its effects altogether; both  kinds 

of approach will be discussed later.

One im portant issue which needs to be highlighted, is whether exact reflectance values 

need to be recovered, or if an alternative representation that maintains all proportionalities 

between the reflectances of different surfaces, is adequate for assigning lightness. As an 

example, consider the original flat world environment with uniform illumination, I ( x , y) = 

C,  where C  is an arbitrary constant. Reflectance is now given by,

R(x-v )  = (1.4)

Although reflectance can be analytically recovered with knowledge of the illuminant, it is 

now possible to assign lightness to a surface through its scaling of 1/C  relative to other 

surfaces. This example illustrates what may be referred to as a ‘representation’ of the vi­

sual world. In this context the visual system is not reverse-engineering the physics of a 

scene, but instead attributes lightness by defining its own reflectance metric, which is also 

invariant under transformation of scene configuration.

From Lightness Constancy to Colour Constancy

In the formalism developed above, reflectance (and hence lightness) is not dependent on 

the wavelength of the incoming light. Reflectance has corresponded to the fraction of 

illumination in the entire visible region of the electromagnetic spectrum, th a t is reflected 

by a surface. It is possible to extend this formalism to deal with the perception of colour 

and colour constancy, by incorporating a dependence on wavelength, A, into the formalism 

described above, such that (1.1) becomes,
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Chapter 1: Lightness and Brightness

L(x,  y, A) =  R ( x , y , A)/(x, y, A). (1.5)

There now exists a luminance, reflectance, and illuminance image for every wavelength. In 

this context, colour perception may be viewed as a generalisation of lightness perception; 

hence, any successful theory of colour constancy is a successful theory of lightness constancy,

where limits are determined by the range of the electromagnetic spectrum that pigment in 

human photo-receptors cells can respond to. It should be noted, that the inverse operation 

is not possible; the relationship between lightness and colour is not symmetric. However, 

concepts from the relatively simpler study of lightness may nevertheless facilitate a greater 

understanding of colour, and this alone is motivation enough to justify its further investi­

gation.

L ightness and B righ tn ess Illu sions

However perfect we assume our ability to remain lightness constant to be, there is an upper 

limit to performance. In particular, failures in lightness constancy could be manifest in 

certain visual illusions. The nature of these inadequacies in visual perception betray the 

underlying mechanisms through which lightness and brightness are realised by the brain, 

and thus warrant study.

by default. This can be made explicit by showing that (1.1) and (1.3) can be recovered via 

(1.5) through integration,

(1.6)

(1.7)
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Chapter 1: Lightness and Brightness

Particularly im portant illusions in the study of lightness and brightness are simultaneous 

brightness contrast, W hites effect, and Adelson’s ‘wall of blocks’ demonstration. In simul­

taneous brightness contrast (Figure 1.1, left), the grey patch on the right appears darker 

than the one on the left, although in reality both patches are equi-luminant and only differ 

in the luminance of their surrounds (Helmholtz, 1887; Hering, 1964; Adelson, 2000). In 

W hite’s effect (Figure 1.1, right), the nature of the simultaneous brightness contrast effect 

is reversed through the introduction of a grating pattern  in the stimulus. The left patch 

is perceived as being darker than the right patch, despite the local luminance being darker 

and not lighter as in simultaneous brightness contrast (White, 1979; Blakeslee &: McCourt, 

1999). In Adelson’s ‘wall of blocks’ (Figure 1.2) the same simultaneous brightness contrast 

effect is observed between the grey diamonds in both variants. However, the strength of 

the effect for the stimulus on the left is greatly reduced when the configuration of some of 

the edges are altered with respect to the stimulus on the right, despite leaving the local 

luminance relations of each grey diamond unchanged (Adelson, 1993).

These effects are thought by some to result from the brain attributing different interpreta­

tions as to the origins of the luminance for the different surfaces under scrutiny, and hence 

the reflectance of these surfaces. T hat is, these effects are the direct result of the brain 

trying to remain lightness constant. Exactly how this may be facilitated remains unknown, 

and a contentious issue. Alternatively, there is a school of thought which suggests tha t 

these phenomena arise simply from the encoding of luminance information in the early (or 

low-level) visual areas of the brain, and make no reference to the involvement of any higher- 

level processing. In this context, the illusions are a direct consequence of the biological 

mechanisms which facilitate brightness judgements. This work will primarily focus on this 

latter philosophy.
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Figure 1.1: An example of the simultaneous brightness contrast effect (left), and W hite’s effect (right). In simultaneous brightness 
contrast the grey square on the white background appears darker than it’s counterpart on the black background. In W hite’s effect, the 
grey patch on the left (surrounded by more black than white), also appears darker than it’s counterpart on the right (surrounded by more 
white than black). For both of the illusions, the strength of the effects depend on spatial scale: W hite’s effect should appear stronger 
as the grating increases in spatial frequency (as the reader moves the page away from them) (White, 1981); and simultaneous brightness 
contrast will appear stronger when the grey test areas decrease in size relative to their surrounds (Yund k  Armington, 1975).
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Figure 1.2 : Adelson’s ‘Wall of Blocks’ demonstration. The grey diamonds in both pictures are of the same luminance as the background 
and are framed by surrounds of either high of low luminance, the areas of which are equal between stimuli. Yet, the magnitude of the 
simultaneous brightness contrast effect on the right ought to appear far stronger than that on the left.
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Chapter 2: Models of Lightness and Brightness

Figure 2 .1: Knill and Kersten’s variation on the Craik-Cornsweet-O’Brien effect.

Chapter 2: M odels of Lightness and Brightness

There exists no explicit and formal definition of what constitutes low- and high-level vision. 

Low-level vision has come to be regarded as an umbrella term for the relatively simpler 

functions of the visual system, such as light adaptation and the identification of lines and 

edges, which lead to a direct neural representation of fundamental image structure. These 

mechanisms are widely thought to be confined to the retina, lateral geniculate nucleus, 

and primary visual cortex (VI), and are collectively referred to as the ‘primary visual 

stream ’. Such low-level processes do not involve cognition; the brain responds to low-level 

stimuli even when anaesthetised (for example, see Zeki (1983); Brewer, Press, Logothetis,
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Chapter 2: Models of Lightness and Brightness

and Wandell (2002)). In contrast to  this rather parsimonious definition of low-level vision, 

higher-level vision may be neatly summarised as ‘what comes next’. It is concerned with 

more complex tasks, such as the identification of objects and the interpretation of scenes, 

and as such is likely to involve cognition.

As alluded to at the end of the previous chapter, it is the belief of the author tha t a large set 

of lightness and brightness illusions axe nothing more than artefacts derived from the en­

coding of luminance information in the primary visual stream, and the subsequent decoding 

(or image reconstruction). That is to say, it is believed that a lot of lightness and brightness 

illusions axe derived from the type of low-level visual processes described above. However, 

it is not believed that all such phenomena can be attributed to the primary visual stream  

alone; it will be necessary for higher-level process, more concerned with inferring the origins 

of the luminance from the configuration of the scene as a whole, to enter into accounts for 

some illusions. W hat follows below is a discussion of when high-level processing is thought 

to become relevant.

A variation on the Craik-Cornsweet-O’Brien effect by Knill and Kersten (1991) gives an 

excellent demonstration of where the delineation between low- and high-level effects are 

hypothesised to occur, and is depicted in Figure 2.1 (for a more complete discussion of the 

effect refer to Chapter 6). The faces of the joined cubes at the bottom  of the figure have 

both been generated with the same luminance ramp, increasing linearly in luminance from 

right to left. At their juncture there is a discontinuity in luminance as one ramp ends and 

the other begins. As a consequence of this border, the cube on the left appears darker than 

the one on the right, despite the fact tha t their luminance profiles are identical. It is widely 

held view that the illusion is manifest as a direct result of the edge between the luminance 

ramps, and thus belongs in the domain of low-level vision (Cornsweet, 1970). However, at 

the top of Figure 2.1 the effect is largely nulled after the cubes have been changed into 

cylinders through alteration of the lines at the top and bottom, regardless of the fact tha t 

the luminance profiles are identical to tha t of the cubes below. In the latter case, the lu­

minance ramps axe likely to be intexpxeted as the shading from the curved surfaces of the

17



Chapter 2: Models of Lightness and Brightness

cylinders, and as such the reflectance of the underling surfaces, and hence the lightness, 

are assigned to be the same. In the case of the cubes (and any 1-D or 2-D version of this 

effect), there are no such cues in the scene and the effect remains.

This process is similar is in a similar vein to how the latent simultaneous brightness contrast 

effect present in Adelson’s ‘Wall of Blocks’ demonstration (Figure 1.2), is modified after a 

change in the configuration of the geometry in the scene, but not the underling luminance 

values. For the stimulus on the right, the grey diamonds are interpreted as existing be­

neath light or dark transparency media. But, as they both have the ‘same’ luminance the 

diamonds under the darker transparency must have a higher surface reflectance, and hence 

appear brighter as the visual system attem pts to remain lightness constant. On the other 

hand, for the stimulus on the left there are no such higher-level cues to alter the interpre­

tation of the scene and subsequent lightness computation, and hence only the residual SBC 

effect is observed between the two sets of grey diamonds (Adelson, 1993).

Both of the above demonstrations represent examples of how higher-level scene interpreta­

tion, and inference of the origin of the luminance, can have an overriding affect on visual 

cognition. The latter part of this chapter is concerned with reviewing some of the more 

prominent higher-level theories of lightness, some of which take the rather extreme view that 

all such phenomenon are the direct result of the kind of higher-level processes described 

above (Helmholtz, 1887; Purves, Shimpi, &; Beau-Lotto, 1999). The view held here, is tha t 

all phenomena which lack any cues tha t are relevant to inferring the 3-D configuration of 

the scene and the origin of the luminance, are all low-level effects, and tha t any modifica­

tion of such effects (such as those discussed above) are the direct consequence of inference 

processing downstream, acting on the low-level brightness outputs from VI. The follow­

ing part of this chapter, and indeed the underlying theme of this work, will be concerned 

with low-level theories and the extent to which they are capable of explaining lightness and 

brightness phenomena.

18



Chapter 2: Models of Lightness and Brightness

M odels of Low-Level Vision

Low-level theories of lightness and brightness may be collected into two groups; those for 

which retinal mechanisms of light adaptation are the primary mechanism, and those which 

model local interactions (more specifically, the lateral inhibition between photoreceptor 

cells) in the retina through the receptive field properties of retinal ganglion cells, and their 

subsequent input to VI. W hat follows is a brief account of both approaches.

R etinal Adaptation and the Generic Channels M odel

Adaptation in the retina refers to the modification of the response mechanism, such tha t 

the retina is always maximally sensitive to small variations in luminance relative to the 

mean level. This acts as an efficient method for extending the overall operating range of the 

visual system, without loss of precision (Goldstein, 2003). The physiology of the retina im­

poses a lower-bound on the time taken to make a transition between any two adaptational 

states, and this latency is apparent when one directly views a bright light and suddenly 

turns away to a darker region, resulting in a transient ‘after image’ of the light in the visual 

field, revealing the adaptational process at work. T hat adaptational effects in the retina 

may influence the perception of colour and lightness is an idea first proposed by von Kries 

(1902, 1905), which has since been developed into complete theories of colour and lightness 

perception.

More specifically, adaptation arises through a modification of the original photoreceptor 

cell (PRC) responses by subsequent layers of neural circuitry in the retina, the net result of 

which are the responses of retinal ganglion cells (RGCs) (Hecht, 1920; Shapley & Enroth- 

Cugell, 1984; Brown &c Masland, 2001). At any one point on the retina in normal photopic 

viewing conditions, the mapping between the responses of the three classes of cone-PRC 

and the corresponding RGCs, is widely considered as being well-approximated by a series of 

successive linear operations: an initial multiplicative scaling, followed by an additive shift, a 

recombination into opponent colour signals, and an attenuation. Collectively this is referred 

to as the ‘generic channels’ framework (Maloney, 1999). This linear transform ation from
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Chapter 2: Models of Lightness and Brightness

PRC to RGC responses may be formally expressed as,

oxy = A H S (t +  p xy). (2.1)

where p xy = ,PsV] are the responses from the L-, M-, and S-cones at point (x, y)

on the retina, t  is the additive shift, S =  diag[s\, S2, S3] and A  =  diag[a\, a2 , 03] are the 

3 x 3  diagonal matrices corresponding to the multiplicative scaling and attenuation, H  is 

the 3 x 3  opponent transformation matrix, and oxy are the RGC signals. Assuming tha t H  

can be determined by arguments for the efficient coding of information in the optic nerve 

(Buchsbaum k  Gottschalk, 1983; Zhaoping, 2002), then each adaptational state in the 

model is determined by nine parameters. The salient point here, is that the responses of

RGCs are a linear function of the PRC responses, such tha t (2 .1) can be generalised to,

=  / ( p xy), (2 .2)

where /  is a linear function. Hence, any abstract model of colour or lightness constancy 

th a t produces a representation of intrinsic colours or lightness, based on some linear trans­

formation of the PRC responses, can be reconciled with the generic channels model, and 

understood through the architecture of the retina.

L ow -D im ensiona l M odels  a n d  C o lo u r C o n s ta n c y

Physics-based approaches to understanding colour constancy have focused on constructing 

low-dimensional linear models of illuminants and reflectances in the natural environment, 

and then estimating the parameters required to recover reflectance, given the information 

present in cone-PRC responses. W hat follows is a summary of the low-dimensional models 

framework described by Maloney (1999).

W ithin this framework, the physical response of a PRC of class k at a point (x, y) on the
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retina, p^ , is given by,

p f  =  j d X  Sfc(A)flI»(A)/I »(A), (2.3)

where k = 1 ,2,3, and Sk{A) defines the relative PRC response to an illumination as a func­

tion of wavelength A, and are functions tha t have been empirically determined (Stockman 

& Sharpe, 2000). Mathematically, it is possible to regard the reflectance as a vector in an 

infinite-dimensional vector space (or function space), where the inner-product between any 

two such vectors, a  =  A(A) and b  =  B ( A) is defined as,

fOO
a  • b  =  /  dX A(A)£(A).

J oc

Any vector in this space may be expressed in terms of a set of basis functions, b{(A),

B(  A) =  ^ / 3 i!.i (A), (2.4)
i = 1

where the $  axe the projections of B ( A) onto b{(A), given by B  • b*. Expressing reflectance 

in this form and substituting into (2.3) gives,

OO

ply = Z &
p =  l

where the q%y are the projections of a surface’s reflectance onto the respective basis functions 

r X!/(A), of that space, and p = 1 ,2 ,3 ,..., N.  This may be rewritten as the m atrix equation,

/ dX Sk(X)rpV(X)Ixy(X). (2.5)

p xy =  Lq x y (2 .6)
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where L^p — J  d \  Sfc(A)rpy(A)/XJ/(A). Thus, if L 1 exists, then a surface’s reflectance, 

characterised by q xy, may be recovered by,

<fy = L ~ 1p xy. (2.7)

The successful calculation of L -1 from the available information in the luminance is the 

principle concern of this approach. However, before L is inverted it has to be determined. 

Firstly, this requires the successful calculation of basis functions, which is possible by one 

of two methods: principle component analysis, or linear regression such as least-squaxes. 

The crucial point is tha t regardless of the method used, the basis functions will be depen­

dent on the particular data  set tha t the model is being fitted to, prompting the question 

of precisely how to define the ‘natural environment’ in the context of surface reflectances. 

Secondly, as there are only three classes of PRC, p xy = \p*y ,Pm ,PsV], L must be a 3 x 3 

dimensional matrix for (2.7) to exist. Thus, the infinite series expansion of the reflectance 

has to be truncated to the three basis functions which capture the greatest variance in the 

data. Knowledge of these basis functions is assumed a priori. Finally, the illuminant has 

either to be determined or inferred from the luminance. Although many algorithms exist 

for determining the illuminant in any given scene, only the ‘reference surface’ and ‘grey 

world’ methods will be discussed here, and the reader is directed to Maloney (1999) for a 

comprehensive discussion.

The reference surface algorithm relies on a priori knowledge of the reflectance of a given 

(reference) surface in the scene, so tha t when combined with the information in PRC re­

sponses to this surface, the illuminant, and hence q xy, can be calculated via (2.7). Choice 

of reference surface is arbitrary, but may be pegged to the brightest in the scene for plau­

sible biological implementation1. The grey world algorithm builds on the reference surface 

algorithm by making the assumption that the reflectance of the reference surface is that of 

the mean reflectance in natural scenes, which is also assumed a priori. It was originally 

thought that this reference surface was grey (from which the name of the algorithm was

xas this surface would be easy to determine, and it may be assumed that the brightest surface in the 
scene is ‘w hite’, and hence reflects all wavelengths equally.
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derived), but this is not necessarily so. This approach has the advantage of not requiring 

a reference surface to be found in the scene, but will estimate the illuminant incorrectly if 

the reflectance composition in the scene is such that the mean reflectance is a significant 

distance away from that of the natural environment. Once again, this raises the question 

of how to define what is a natural environment.

It should be noted that (2.7), or any linear function of (2.7), is of equivalent form to (2.2), 

and hence it is possible to conceive that if the a priori knowledge assumed by the algorithms 

described above is encoded into the adaptation control mechanisms of the retina, then the 

generic channels model, or any subsection of, may represent a linear model for calculating 

reflectance.

Von Kries Algorithms and the R etinex Theory of Colour Vision

It was originally suggested by von Kries (1902, 1905), that adaptation acts through a scaling 

of the sensation caused by a light. Translated into the generic channels framework, this is 

equivalent to a scaling of the PRC responses,

oxy = S p xy, (2.8)

where S =  diag[s\, S2 , 53], in alignment with the multiplicative scaling phase, and deter­

mination of the parameters, s*, requires a theory for the adaptational control mechanism, 

such as the “Retinex theory” of Land and McCann (1971). Retinex is a theory of colour 

and lightness perception in the retina or cortex, originally developed to recover the intrinsic 

colour of surfaces in Mondrian scenes, independent of the illuminant. That is, it exhibits 

colour textitand lightness constancy.

The central postulate of Retinex is that each cone class corresponds to a separate ‘retinal 

system’, which independently calculates the lightness of surfaces based on the reflectance 

information in the part of the spectrum that each PRC is responsive to. Thus, Retinex
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can be thought of as acting 011 three luminance images, each derived from a specific PRC 

class. The three lightness values from the three retinal systems then define a point in a 3-D 

response space, which defines the colour of a surface. This is an example of a representation 

of sensory information; reflectance is not calculated explicitly.

The theory works 011 the principle tha t between any two adjacent PRCs, the effect of any 

spatially dependent or constant illuminant may be factored out by taking the ratio of the 

luminance at those points. For example, consider the luminance between two adjacent 

points, L\ = r \ I  and L 2 = r2/ ,  infinitesimally separated such that the effects of a spatially 

varying illuminant are negligible over this distance. The ratio of the luminances,

L i =  n 
L 2 T2

is by default independent of the illuminant. Similarly, the ratio of luminances between 

two distant points can be calculated by the successive multiplication of all ratios th a t exist 

between the first point and the last point. For example, consider the luminance between 

three adjacent points, L\ = r \ I ,  L 2 = r2 Z, and L3 =  r^I.  The ratio between the first and 

the third is given by,

L\ _  L\  Z/2 _  r i
L3 Z/2 Z/3 rs

This may also be implemented by using the logarithm of the luminance ratio, such that,

log =  (log Li  -  log L 2) + (log Z/2 -  log Z/3), (2.9)

which is easier to engineer with a biological network of cells (through addition/subtraction 

of responses undergoing saturation). Thus, if all ratios are calculated with respect to some 

reference surface (for example, the ‘white' in any image), then only changes in reflectance,
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or edges, will result in a change in ratios, and these values can be used to assign lightness 

to a surface. This demonstrates clearly demonstrates the importance of edges, a subject 

which will be discussed further at a later stage.

The array of PRCs in the retina do not sample the luminance continuously, so the PRCs 

may be thought of as producing pixel values in a luminance, or log-luminance image. In 

this context, Horn (1974) showed that the Retinex algorithm is treating the image as a 1-D 

structure, and tha t the log-luminance ratio between adjacent points is equivalent to the 

output of a 1-D derivative operator on the log-luminance image, at tha t point. Thus, the 

log-luminance ratios between any two non-adjacent points can be recovered by integrating 

the derivative of the log-luminance image between the two points. However, the assumption 

th a t the effect of a spatially dependent illuminant is negligible between two infinitesimally 

separated points has to be dropped as a consequence of discrete sampling. Between two 

neighbouring pixels the value of the illuminant will change, and with it the value of the 

corresponding ratio, even when no change in reflectance is present. This can be circum­

vented by applying a threshold operation (which is an inherently non-linear process) to each 

log-luminance ratio, setting all minor deviations from 0 back to 0 , in order to discriminate 

between changes due to illumination and those due to changes in reflectance2. However, 

the threshold has to be chosen carefully: too low, and the effects of the iluminant will not 

be cancelled; too high, and some low-contrast edges may be erroneously cancelled together 

with the illuminant.

The problem of choosing a reference surface was addressed by Land and McCann (1971), 

and biological networks for performing this function were proposed. However, their ap­

proach was later dropped for being computationally convoluted, and Land (1983) proposed 

a simpler version of Retinex that does not depend on locating a reference surface. Instead, 

all ratios are taken relative to the average reflectance in the scene. This is achieved by hy­

pothesising that at some rate any given cell in the retina will emit a ‘signal’ in the direction 

of all adjacent cells, analogous to emission by a point source. The signal will comprise the

2 or minor deviations form 1 back to 1, in the case of normal ratios.
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logarithm of the output from the cell, and when it reaches the next cell, will have the output 

from that cell subtracted and thresholded, before that value, or signal, carries on through 

the rest of the cells in the retina. The result of each spontaneous cell emission, is th a t the 

log-ratio of every cell response relative to the emitting cell (referred to as the designator), 

is calculated at some stage. The final designator is the average designator value for many 

emissions. It is possible to consider this process occurring in three ‘layers’: one consisting of 

the photoreceptor cells which sample the retinal image and have a logarithmic output; one 

which stores the running differences between adjacent cells (the log-ratios), or the signal at 

each point; and one which calculates the average from many such emissions.

The version of Retinex was analysed by Brainard and Wandell (1986), who showed th a t if 

the number and duration of retinal signals are large enough, then the lightness values, 1%V, 

of the k-th retinal system, axe given by,

x y

/^  =  l o g ^ - ,  (2.10)

where Gk corresponds to the geometric mean of receptor responses for the k-th  receptor 

class, and which is in accordance with (2.8). It was also shown that when this version of 

Retinex is applied to Mondrian scenes, colour constancy was achieved for a change in illu­

mination (up to the same thresholds as human colour constancy), but failed under a change 

in environment. That is, when the colour of a few surfaces in the Mondrian were altered, 

so were the colour values attributed to the unaltered surfaces. This is not surprising, given 

tha t a change in constituent colours will cause a change in the value of Gk, and hence the 

lightness values attributed by (2.10). Hence, Retinex alone is not a sufficient theory of 

colour constancy. However, as a theory of lightness its capabilities need not be limited by 

this failure. Although lightness values may depend on the surfaces in the environment, so 

long as they are assigned correctly in relation to one another, then an accurate representa­

tion of lightness can still be achieved. That it, the absolute lightness value is not im portant, 

only the ‘distances’ to the lightness of other surfaces. However, it should be noted tha t
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Figure 2.2: An example of a rotationally symmetric DoG RF (left) and its cross-section 
(right). The brighter regions respond maximally to higher luminance, while the darker 
regions have a suppressive response to higher luminance.

Retinex has not been shown to be capable of offering an explanation for lightness illusions 

such as simultaneous brightness contrast or W hite's effect.

In the mathematical analysis of Retinex as a theory for determining lightness (and not 

colour). Horn (1974) also extended the theory to work with 2-D images represented as 2- 

D images (unlike in Retinex). Rather than taking the first derivative as in the 1-D case, 

the Laplacian in 2-D was chosen as the simplest direetionally invariant linear differential 

operator (unlike the directional derivative). In order to produce the differential image this 

approach convolves, or ‘filters', the image with the Laplacian operator, and this naturally 

leads to the discussion of filter-based theories of lightness and brightness.

R ecep tiv e  F ie lds and  F ilte r-B a n k  M odels

Modelling the local interactions of the retina through the receptive field (RF) properties of 

RGCs avoids requisite knowledge of the underlying neural circuits and their description in 

the generic channels framework. This facilitates an exploration of luminance information 

processing downstream from the retina through to VI. The RF structure of RGCs has been 

empirically mapped (for example, see Hubei and Wiesel (1977) or Hubei (1988)), and can be 

modelled, for example, by the rotationally symmetric Laplacian of Gaussian (LoG), or dif­

ference of Gaussian (DoG) functions (illustrated in Figure 2.2) (Rodieck, 1965; Marr, 1982).

The response of the RGC corresponding to point (x, y ) on the retina is then given by the
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weighted sum of all points 011 the retinal image, where the weighting is specified by the 

corresponding value of the RF centred on (x , y ). This may be formally expressed as the 

convolution of the RF with the retinal image,

L{x, y) 0  RF( x , y )  = j  J  d£dr RF( £ . t ) L { x  -  £,y  -  r ) , (2.11)

where integration is over the domain of the retinal image, and where the RF is considered a 

linear filter in this operation. It should be noted that the integrals will turn to sums as the 

retinal image is sampled discretely by the PRC mosaics. The form of a LoG or DoG RF, 

is such that it will give a positive weighting to a circular region about its centre and model 

lateral inhibitions through negatively weighting a surrounding annular region. This con­

figuration is referred to as ‘centre-ON surround-OFF', exists for both the achromatic and 

opponent colour channels, and is complemented by the existence of corresponding 'centre- 

OFF surround-ON’ channels (Rodieck, 1998; Masland, 2001).

W ithin the achromatic channel alone. RGCs are found with RFs differing greatly in spatial 

extent, with mean RFs sizes increasing with distance away from the fovea (Bisti, Clement, 

Maffei, & Mecacci, 1977; Hubei, 1988). Each spatial configuration may be thought of as be­

ing optimally tuned to a specific spatial frequency (SF) in Fourier-space. It is often assumed 

that for each SF tuning there exists an ensemble of RFs, all tuned to the same SF, and 

arranged into a regular array (or ‘filter bank'), which covers the retinal image. If the retinal 

image is successively sampled in this manner, then each filter bank constitutes a distinct SF 

channel. Under this view, input from the retina to VI (via the lateral geniculate nucleus3), 

and any subsequent processing, may be thought of in terms of these separate SF signals. 

Models based on filtering the retinal image in this way, although not explicit biological 

models of the primary visual stream, adequately represent the basic response properties of 

the underlying neurons and provide insight to psychophysical data. This alone is motivation 

to discuss them in the context of lightness and brightness.

3which shares the same RF properties (Hubei, 1988).
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Figure 2.3: An example of how the RF properties of RGC and LGN cells can be used to 
assign the correct brightness to that seen in the simultaneous brightness contrast configura­
tion. The centre-ON (red disc) surround-OFF (blue disc) RFs are depicted at the moment 
when the centre-ON units are entirely over the grey test patches. The plot below gives an 
indication of what the response from these cells would be like as they traversed the cross 
section of the stimulus.

Although many models based on filter banks have been constructed, even the simplest ap­

plication of this paradigm has the power to explain lightness and brightness phenomena 

that many theories of light-adaptation cannot. Perhaps of greatest importance is the ex­

planation that this approach can afford simultaneous brightness contrast (Figure 1.1, left). 

This effect can be understood by considering the response of a single bank of centre-ON 

surround-OFF RGCs, to a stimulus with a test patch just smaller than an individual RF, 

as depicted in Figure 2.3. The response of all cells with RFs straddling the border between 

background and test patch (with the centre-ON unit entirely over the test patch), will be 

greater for the darker background as it will elicit less inhibition than its brighter counter­

part. Hence, if the responses of these cells are used to assign lightness and brightness then 

they correctly predict that the test patch on the darker background will appear brighter 

(Cornsweet, 1970; Goldstein, 2003).

An interesting point is raised when the test patch size relative to that of the RF is increased, 

to the extent that there will be RGCs responding solely to the grey test patches (and whose
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response will be zero if modelled with LoG or DoG RFs with equally balanced excitatory 

and suppressive regions). W ithin the filter bank, only the cells at the edges of the test patch 

will exhibit the behaviour which accounts for simultaneous brightness contrast. Yet, the 

effect still persists. If the filter bank paradigm is to be successful, then this implies that the 

lightness or brightness attributed to the patch as a whole must have been determined by 

the responses at the edges of the test patch, and the bounded area ‘filled-in’ by some other 

mechanism.

It is im portant to note that modelling the response of the primary visual stream in this 

manner does not explicitly address the problem of recovering surface reflectance. The vast 

majority of filter-based approaches to low-level vision are simple models of the underlying 

physiology, whose output is more comparable to brightness rather than lightness judge­

ments. This is not to say that such approaches are not capable of computing surface 

reflectance - reflectance calculations are performed on the output from neurons responsible 

for sampling the retinal image via their RF structure - just that they are rarely cast within 

this specific computational context. Regardless, one interesting product of this, is that it 

allows for a classification of visual phenomena based on the mechanism(s) responsible for 

their existence: those that are generated from the basic properties of neurons, and those 

that are a direct consequence of reflectance- and lightness constancy-based calculations. 

W hat follows is a brief discussion of various filter-based models and their ability to provide 

accounts of various lightness and brightness illusions.

M ulti-Scale Filter Banks

The central theme for this class of model is the integration of SF information for use in 

the assignment of lightness or brightness. While a single filter bank is capable of pro­

cessing a stimulus comprised of information on the same scale, real world scenes contain 

objects of various sizes, and hence information at all spatial scales, and any ‘realistic’ model 

of lightness or brightness perception must unify this information into a single interpretation.
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Figure 2.4: An example of an orientation-selective Log-Gabor RF (left) and its cross- 
sectional response profile (right).

Kingdom and Moulden (1992) implemented this approach in their Multiple Independent 

Descriptions Averaged Across Scale (MIDAAS) model of luminance coding. The basic idea 

underlying MIDAAS is that brightness assignments are made individually within each SF 

channel and then averaged to give the final brightness image. This is achieved by first 

incorporating the effects of light-adaptation through the application of an independent gain 

to each (LoG) filter. This is set to be inversely proportional to the average luminance in the 

region sampled by the filter4. Post-filtering, the SF channels (separated at octave intervals) 

are thresholded (introducing a non-linearity), so only the relatively strong signals expected 

from features at that scale are transmitted, and thus isolated, before a power transformation 

of the signal is applied. Zero-crossings in the resultant signals are then used to classify the 

response profiles of bars and edges, and the corresponding empirically determined brightness 

profile is then associated with each class of response. The brightness profiles derived from 

all channels are then recombined through a linear average to give the predicted luminance 

profile to the stimulus. The algorithm generates the correct psychophysically determined 

lightness assignments for various simple illusions, as well as assigning brightness correctly 

to features such as bars mounted on edges. However, the model is dependent on a priori 

knowledge of the brightness profiles associated with each configuration of zero-crossings. It 

is not clear how such information could be learnt. Furthermore, the model fails to assign 

brightness correctly in W hite’s effect (Figure 1.1, right) (Kingdom & Moulden, 1992).

Although models based on the RFs of RGCs are capable of explaining some simple lightness

4divide-by-zero complications are bypassed through the introduction of a baseline gain
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and brightness illusions, they fail on other more complex stimuli. In particular, W hite’s 

effect easily foils the canonical filter bank approach used to account for simultaneous bright­

ness contrast. In W hite’s effect (Figure 1.1, right), the grey test patch on the left has twice 

as much border with black bars in the image, than the white bars, and vice-versa for the 

test patch on the right. Thus, one would expect the patch on the left to appear brighter 

than that 011 the right, based 011 the filter-derived account of simultaneous brightness con­

trast. However, the opposite effect is observed, as if the test patches have instead been 

assimilated with the mean luminance of their surrounds. Through the use of oriented filters 

(the non-rotationally symmetric RF structures usually associated with the simple cells of 

V I), it is possible to construct filter bank models to accommodate such anomalous illusions 

into a theory of the primary visual stream (Blakeslee Sz McCourt, 1999; Dakin &; Bex, 2003).

The non-rotationally symmetric RFs of VI may be modelled by a variety of functions such 

as the set of Gabor and Log-Gabor functions, the set of Gaussian derivates, or oriented DoG 

filters. An example of such a filter is given in Figure 2.4. These RFs are characterised by 

an elongated centre-ON region with adjacent elongated centre-OFF lobes, or some repeated 

form of this structure. The orientation of the elongated regions determines the orientation 

of SFs tha t the filter will be most responsive to. This allows for the existence of separate 

filter banks at various orientations for every SF channel, allowing for an orientation-specific 

SF analysis of the retinal image.

RFs with these characteristics have been used by Kingdom, McCourt, and Blakeslee (1996) 

to provide a qualitative account of the grating induction illusion (see Figure 2.5), which is 

more effective than that afforded by rotationally symmetric filters. Consider a bank of filters 

oriented in the direction of the test stripe, with centre-ON regions set to the same width, 

such that the inhibiting lobes rest solely on the underlying grating. When the luminance 

of the grating is low, inhibition is least and the response of the cell to that point of the test 

stripe is high in comparison with that of a RF overlapping a region where the grating has a 

high luminance. Hence, the lightness assigned to the test stripe is also oscillatory, but out 

of phase with the inducing grating by factor of 7r.
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A more quantitative model of VI that combines information from oriented filter banks at 

multiple scales has been developed by Blakeslee and McCourt (1999, 2001, 2004). Their 

oriented difference of Gaussian (ODOG) model incorporates 42 filter banks: Six filter banks 

oriented from -60° to 90° in increments of 30°, with each orientation sampled at seven SFs 

(with filters tuned to 0.1c/° to 6.5c/° in octave intervals, covering the visible range for hu­

mans). The output at every orientation is combined across scale through a weighted linear 

sum, where the weights (or gains) are determined by a power-law function of frequency 

(with a slope of 0.1 when linearised), consistent with the shallow low-frequency fall-off of 

the suprathreshold contrast sensitivity function (Georgeson &; Sullivan, 1975). T hat is, it 

takes in to account the fact that the suprathreshold detection level of a high SF grating 

is at higher luminances than lower SF, implying that the gains on the latter channels are 

less than that on the former. The salient point here, is that orientation information is 

combined across spatial scale, consistent with the psychophysical investigations of Olzak 

and Wickens (1997), to give six orientation channels. Each channel is then normalised 

by its space-averaged root mean square (RMS) contrast, with the intention of weighting 

the stimulus features extracted by all orientation channels equally, and ensuring that high 

contrast features captured by filters at one orientation will not overwhelm lower contrast 

features captured by filters at other orientations. This stage of processing, necessary to the 

model’s success, is motivated by the non-linear contrast gain responses of simple cells in VI, 

which can be modelled by dividing the initial half-squared response of a cell by the average 

half-squared responses from a group of other cells (Carandini, Heeger, &; Movshon, 1997). 

In the context of the ODOG model (which does not explicitly implement this non-linear 

neural model of contrast gain control), this group of cells is defined to be all other cells 

tuned to the same orientation, across the entire visual field. Finally, the output from all 

orientation channels is combined in an un-weighted linear sum to provide the final bright­

ness output. The ODOG model is shown to assign brightness correctly to W hite’s effect, 

simultaneous brightness contrast, and grating induction, all in alignment with psychophys­

ical data  collected on these illusions (Blakeslee &: McCourt, 1999). In particular, it predicts 

the increase in effect strength with SF for W hite's effect. This places the ODOG model
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in a privileged place amongst current theories of brightness perception. However, it should 

be recognised that this model does not provide any insight as to why these specific neural 

mechanisms should be combined in this way. That is, no progress is made in understanding 

their computational significance.

An alternative approach to processing information at multiple scales and orientations, in­

spired by the known statistics of natural scenes (NS), is proposed by Dakin and Bex (2003), 

and from here on is referred to as the Natural Scene Statistics (NSS) model. It should be 

noted that the model was originally cast with rotationally symmetric RFs common to the 

LGN. but as the filters used are approximately equivalent to an un-weighted linear sum of 

oriented RFs (see Chapter 3), it can also be described in the context of VI simple cells. The 

distribution of SFs, or power spectra, of NS are known to be proportional to 1 / / Q, where 

/  is frequency and a: is a constant that lies within the range 0.7 to 1.5. Thus, there is an 

abundance of low SF information. Field (1987) showed that the response of an ensemble of 

filter bank channels in VI (modelled using Log-Gabor RFs) to NS with these statistics has 

a distinct form; filter bank outputs are approximately constant across SF channels. The 

NSS model starts with the assumption that the visual system has a priori knowledge of the 

statistics of NS, and uses this information to reconstruct the image from the filter bank re­

sponses, through a weighted linear sum over SF channels. This is implemented through the 

adjustment of the gain, 1 / / Q, on each SF channel, such that the output over all channels is 

approximately constant, in alignment with Fields’ findings. The amplitude of each channel 

is expected by the visual system to be proportional to 1 / f a (Tadmor &; Tolhurst, 1994), 

and the modification of the gains comes through the global adjustment of a  for all channels. 

The net effect of this process is to increase the power of low SFs and attenuate higher ones, 

increasing the brightness of larger patches, or ‘filling-in’, whilst reducing image detail. This 

approach is capable of accounting for W hite’s effect (amongst many others), which chal­

lenges the authority of the ODOG model. Furthermore, this NSS model is simpler tha t the 

ODOG model. Only one set of gains are required (for SF channels), and mentioned above, 

a direct consequence of the properties of the Log-Gabor model of VI RFs is th a t an an 

un-weighted linear sum of filters at the same SF, but over all differing orientation tunings,
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is equivalent to filtering with just one centre-surround-like filter. Thus, the model could be 

implemented at the level of the retina or lateral geniculate nucleus (LGN), as well as VI. 

The gains are also set according to a specific computational principle, and the RF model 

implemented encodes information optimally for all SFs and orientations (that is, there are 

no preferred orientations or SFs).

Local Energy M odels

The possible dependence of lightness and brightness on the information contained in lines 

and edges has already been discussed (in the context of simultaneous brightness constrast). 

However, none of the approaches discussed so far has been principally concerned with a 

biologically plausible means of feature classification, and subsequent lightness and bright­

ness assignment. For example, although the MIDAAS algorithm of Kingdom and Moulden 

(1992) is explicitly driven by lines and edges and their accurate identification, the brightness 

assigned to the regions they subtend is contingent on a set of heuristics correctly interpret­

ing the filter bank responses.

Morrone and Burr (1988) have avoided the need for labelling filter responses with their 

underlying causes, through the idea of ‘local energy’. This approach is based on the de­

scription of lines and edges in Fourier-space. A line is an even function when the origin 

is centred on its midpoint, and hence its Fourier-series representation consists purely of 

cosine components. Similarly, an edge, when considered as a step function with the origin 

centred on the midpoint of the discontinuity (the mean luminance), is an odd function with 

a Fourier-series consisting entirely of sine components. Thus, the Fourier phase spectrum is 

constant for both lines and edges. It is 0/7T at all frequencies for a line and ±l[ for an edge. 

For other choices of origin the phase spectrum will not be constant, but the distinction 

between lines and edges is maintained by exploiting the fact that the phase of all Fourier 

harmonics (referred to as ‘arrival phases’) will be identical at the point of an isolated line or 

edge; that is, they occur at points of the waveform where the arrival phases are maximally 

similar, and the average arrival phase (over all harmonics) at that point determines the
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nature of the feature: values near zero correspond to a line, and values near |  correspond 

to an edge.

Although the visual system does not have explicit knowledge of the phase arrivals at all 

points of the retinal image, this information may be extracted via a system of paired filter 

responses. If, as the psychophysical and physiological data  suggests, there exist an even- 

and odd-symmetric filter for every point on the retinal image (Pollen Sz Ronner, 1981), 

then the even-symmetric filters will respond maximally to the even-symmetric components 

of the image, and the odd-symmetric filters will respond maximally to the odd-symmetric 

components. These filters represent the even and odd parts of a local Fourier representation 

of the retinal image, and can be chosen to be orthogonal in the same way as sine and cosine 

functions. Thus, the phase spectrum (and hence the phase arrivals) can be determined by 

proxy at any point.

Local energy is defined as the magnitude of a vector in the orthogonal space defined by the 

pair of filter responses, and vectors in this space represent the response of the filter-pair 

to a specific point on the image. Similarly, the mean phase arrival is represented by the 

orientation of this vector. Mean phase arrivals corresponding to lines or edges, in turn 

correspond to extrema in local energy. W hether a line or an edge signals a transition from 

light to dark (or vice versa), depends on the polarity of the phase arrival (positive and 

negative respectively), which in turn  depends on whether the local energy is at a maximum 

or minimum. Edges that cause a change in lightness or brightness are made to propagate 

this change until the next line or edge, although a mechanism for performing this operation 

is not described.

Biologically, the even- and odd-symmetric filters correspond to the RFs of simple cells in 

VI, and the local energy corresponds to the output of complex cells, the responses of which 

can be modelled as a non-linear function of the square of inputs from simple cells (Dayan &; 

Abbott, 2001). Morrone and Burr (1988) describe a complete model of this system of cells, 

implemented with four pairs of complementary filters (modelled by Log-Gabor functions
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with constant bandwidth), which span the visible SF range and are approximately equally 

well tuned to all SFs; each filter-pair are matched to have the same power spectrum, but 

differ only in phase. Local energy is calculated and analysed independently for each scale, 

and is capable of correctly signaling lines and edges at each scale.

Later versions of the local energy model (Burr &: Morrone, 1994), extend its application to 

multiple orientations as well as scale, and demonstrate that high SF information structures 

the way the low SF information is perceived. Additionally, when phase information is suf­

ficiently far apart the features attributed to each set of phase arrivals will not be bound 

together perceptually and this can lead to transparency effects. However, the model fails 

completely to locate any features on a pure sinusoid, as local energy is uniform everywhere. 

Similarly, it fails with heavily blurred images. It is suggested that such low-pass informa­

tion may be encoded differently, perhaps directly from the luminance itself, and that local 

energy is used purely for feature detection which then influences lightness and brightness 

perception.

Lightness and Neural Networks

Models of lightness perception that embody explicit knowledge of the response properties 

of cortical cells, their interactions, and the anatomical organisation of the visual pathways 

from the retina through to V4, can be realised through the construction of multi-layer neu­

ral networks. A comprehensive discussion of such models is outside the scope of this review, 

but one such approach courtesy of Grossberg (2003), is worthy of mention for its account 

of a possible ‘filling-in’ mechanism for lightness. This is of particular note as nearly all 

theories of lightness that are dependent on lines and edges to successfully determine light­

ness, require that this information is somehow propagated between features. Grossberg 

has proposed that boundaries are determined by successive processing in the V 1 inter-blob 

and V2 inter-stripe regions, while the appropriate filling-in is facilitated by successive pro­

cessing in the VI blob and V2 thin-stripe regions. These pathways then converge to result 

in the correct filling in of geometrical shapes determined by the identification of boundaries.
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More specifically, boundaries tha t determine the perception of geometrical shapes are sig­

nalled in the V2 inter-stripe area in response to complex cells in the VI inter-blob area 

tuned to orientations directed inwards towards to one another. These complex cells pool 

the input from complementary pairs of simple cells in the VI inter-blob regions, which 

although being tuned to the same orientation and position are sensitive to different con­

trast polarities. It should be noted that in doing this complex cells loose their ability to 

respond to colour, and so in some respects the boundary is ‘invisible’ to the VI inter-blob 

pathway. Networks within V2 are thought to select the boundary grouping from among 

many possible interpretations of a scene, and may be thought of as performing a type of 

statistical inference to select and complete the statistically most favoured boundary group­

ings of a scene (while suppressing noise and incorrect groupings). This system will build 

boundaries across space like in the Kanizsa square illusion, and is by default insensitive to 

contrast polarity. The filling-in process begins in the retina where lateral inhibitions are 

modelled by a centre-ON surround-OFF network of cells capable of discounting the effects 

of spatially varying illuminants. This results in a modified luminance profile for the retinal 

image, which is used in networks downstream in the blob cortical system to fill space by 

means of an anisotropic diffusion process, subject to the constraint of the geometrical shape 

determined in the complementary pathway, and thus making the boundary visible.

In a more recent development of this modular neural processing strategy, relative measures 

of surface lightness axe mapped to an absolute lightness scale, by means of a novel ‘an­

choring process’ (Hong & Grossberg, 2004; Grossberg & Hong, 2006). As mentioned in the 

discussion of low-dimensional and Retinex models of colour vision, measuring the lightness 

of surfaces relative to the brightest surface (assumed to be white) or the mean reflectance 

of natural scenes (assumed a prioir), in an attem pt to generate an absolute measure of 

lightness, does not work in all circumstances. Grossberg and Hong (2006) circumvent the 

problems encountered with these approaches by introducing a higher-level stage of process­

ing (assumed to exist in V2 or V4), which measures the lightness of all surfaces relative 

to highest output in a large scale blurred version of a neural surface representation of the 

scene, which exists upstream in VI or V2. This method of anchoring the lightness of sur­
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faces to a specific reference point is shown to be more successful than the mean reflectance 

and highest-luminance-as-white rules. Interestingly, the large scale blurring has the effect 

of making the anchoring reference point lower than the value attributed to any small scale 

region of the image that is also the brightest. Subsequently, such regions axe predicted to 

be super-luminous, or sources of light in the image, and in agreement with experiment.

In addition to this extra unit of higher-level processing, a new method for filling in surfaces 

based on boundary information is also proposed (Hong &; Grossberg, 2004; Grossberg & 

Hong, 2006). The previous filling-in algorithm based on a diffusive processes is replaced 

by an approach which uses the magnitude of the response in low-SF channels as a measure 

of the reflectance of a surface, and performs the filling-in across the surface by means of 

long-range horizontal connections, which are gated by the boundary signals (created using 

the same processing stage as the previous incarnation of the model), and constrained in 

cortical distance to lie within the maximum range of possible intra-cortical connections, as 

determined by experiment (Angelucci et al., 2002; Stettler, Das, Bennett, & Gilbert, 2002). 

This has the advantage of performing the filling-in stage with fewer iterations than  required 

with the diffuse filling-in algorithm, by two orders of magnitude.

Arranging visual information processing into sub-modules of functionally-specific neural 

networks, and integrating the outputs to yield visual perception, has the capability of 

assigning lightness correctly to simultaneous contrast, the Craik-Cornsweet-O’Brien effect, 

Mondrians, natural scenes, and can capture some of the temporal dynamics of the filling-in 

process. However, they suffer from requiring the determination of many free parameters 

- in their most recent work Grossberg and Hong (2006) require 50 free param eters to be 

determined or fitted to experimental data, with different phenomena requiring different sets 

of parameters. This greatly diminishes the explanatory power of such approaches, as the 

choice of parameters needs subsequent motivation. Furthermore, such models demonstrate 

that a lot of lightness computations require processing beyond the low-level functionality of 

VI, in particular because global-scale calculations, such as the anchoring process described 

above, are required at some stage. Processing on these scales in more commonly associated

40



Chapter 2: Models of Lightness and Brightness

with areas of the cortex downstream from VI (Grossberg &; Hong, 2006).

Models of Higher-Level Vision

As discussed at the beginning of this chapter, if all lightness and brightness phenomena 

are derived solely from low-level visual processes, then they ought to be unaffected by the 

presence of higher-level properties (or cues) present in the scene. For example, depth and 

form perception are not involved at this stage of visual processing, and subsequently cannot 

affect lightness. Thus, all images, no m atter how complex in composition, are processed as 

if they are Mondrians, and any illusory phenomena axe purely the result of such processes, 

and can be labelled as brightness phenomena. However, it has been shown that lightness 

perception is drastically altered when cues pertaining to the properties of complex scenes 

(such as depth and form), axe present.

Some models axe based on the view that brightness cannot exist independently of lightness 

and lightness constancy, and all such judgements are fundamentally determined by higher- 

level interpretations of the scene. As this latter point cannot be discounted, some of the 

more prominent higher-level approaches will be discussed.

The Bayesian Approach: Inferring the M ost Likely Origin of the Luminance

One approach to vision, usually attributed to the works of Helmholtz (1887), is to cast it in 

terms of Bayesian inference. That is to say, tha t all visual perception is, is the result of the 

visual system trying to infer the most likely underlying real-world situation tha t generated 

the visual input, given prior knowledge of the statistics of natural scenes in the world (which 

are presumably learnt whilst the visual system is developing). Figure 2.6 demonstrates how 

simultaneous brightness contrast can be explained in this way. Figures 2.6b-d represent the 

most likely scenarios which could generate the spatial configuration in Figure 2.6a (equiva­

lent to the simultaneous brightness contrast stimulus illustrated in Figure 1.1, left). They 

include: Surrounds with different illumination under the same illumination (B); surrounds 

of the same luminance, but one is in shadow (C); surrounds of the same luminance, but only 

one is illuminated (D); and, the surrounds form difference faces on a cube, one of which is in
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♦
B r < C

Figure 2.6: Simultaneous brightness contrast (A) and fours different ways that this par­
ticular configuration of surfaces could have arisen: Surrounds with different illumination 
under the same illumination (B); surrounds of the same luminance, but one is in shadow 
(C); surrounds of the same luminance, but only one is illuminated (D); and, the surrounds 
form difference faces on a cube, one of which is in direct illumination whilst the other isn’t 
(E). Reprinted from Williams, McCoy & Purves (1998).

direct illumination whilst the other isn’t (E). As only one of the four causes for Figure 2.6a 

is due to an actual change in reflectance for the surrounds, it’s more likely that one of the 

surrounds is illuminated in a different way to the other, in which case, if the luminance gen­

erated from the two test patches is the same, then it is likely that one ought to be brighter 

than the other if lightness constancy is to be maintained (Williams, McCoy, &; Purves, 1998).

A computational framework for inferring the origin of the luminance through calculation of 

the underlying reflectance, shading, and illumination intrinsic images, has been suggested

A

♦
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Figure 2.7: Examples of junctions in an image.

by Adelson and Pentland (1996). A cost function is defined, and a requirement made that 

the interpretation of the luminance preferred by the visual system must always yield the 

minimum cost. This is essentially equivalent to using Bayesian inference, where the cost 

of each interpretation is analogous to its prior probability of occurrence. Although the 

premises of this approach are reliable and logical, it only works for trivial configurations of 

surfaces in 3-D space, is computationally intensive, and the choice of cost function (or prior 

probability) is hard to justify, as the statistics of naturally occurring shapes and possible 

methods of illumination are not available for analysis. Hence, the power of such models to 

correctly explain lightness in complex scenes remains open to debate. However, there exists 

an alternative system for assigning lightness in complex scenes, which although heuristic 

in nature, is highly successful in explaining many of the phenomena discussed so far, and 

doesn’t suffer from the problems faced by the construction of such computational models. 

The discussion of this paradigm, based on image features referred to as junctions, occupies 

the next part of this chapter.

Local Ju n c tio n  A nalysis

A good source of information about the nature of edges in a global context, whether they 

correspond to a change in reflectance, a sharp change in shading due to a change in surface
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orientation, or the positioning of an attenuating transparent strip over an object, may be 

determined by proxy through the analysis of ‘junctions’ in the image. Formally, a junction 

is defined as a place where two or more contours come together (Adelson, 2000). Junctions 

can be classified into various types: L, T, X, Y, and ip, dependent on the configuration of 

the contours relative to one another (as betrayed by the letter which represents them). For 

example, two connected but differently oriented surfaces necessarily exhibit a Y-junction 

at the end points, while a ^-junction signals a change in reflectance at some point along 

this edge (Sinha & Adelson, 1993). A reflectance edge that is not deliberately made to 

coincide with any corners of the underlying 3-D object exhibits a T-junction at the end 

points, and the intersection of two reflectance edges on a surface, as in a checker-board, is 

represented by an X-junction. Finally, the unconnected corner of a surface is represented 

by the L-junction. Examples of these junctions are illustrated in Figure 2.7. The ‘strength’ 

of the interpretation inferred by the junction is assumed to decrease with distance along 

the edges from the junction point; hence the interpretation assigned to a single edge can 

be affected by the existence of nearby junctions. This system facilitates, to some extent, 

the reversal of the mapping between a 3-D object onto a 2-D image. However, it should 

be noted tha t there does not exist any well determined ‘look-up table’ tha t automatically 

associates a junction type with a specific interpretation. For example, it is believed by some 

th a t T-junctions indicate the presence of transparency in the image, while others insist that 

T-junctions impart a sense of ‘belongingness’ between the two surfaces tha t form the stem 

of the T  (Anderson, 2001).

The junction paradigm correctly predicts th a t images with an absence of Y- and ^-junctions, 

which are likely to correspond to illumination edges (and hence 3-D shapes), will appear 

as flat (Sinha Sz Adelson, 1993). Furthermore, by keeping all image attributes constant, 

other than a slight perturbation to lines and edges, such that particular junction types are 

created or abolished, the appearance of a scene can be drastically changed. An analysis 

based on these principles can be used to provide a qualitative explanation of some of the 

complex phenomena described in Chapter 1. For example, the ‘Wall of Blocks’ demonstra­

tion can be explained through a change from ip- to X-junctions (Figure 1.2, left, to Figure
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1.2, right). When this occurs the interpretation of the scene is altered from one where lu­

minance changes are attributed to reflectance and shading on a 3-D structure, to one where 

the luminance changes are attributed solely to reflectance changes in a 2-D image and the 

existence of a transparency across the image. In the latter case, the inferred transparency, 

combined with the similar luminance of both sets of grey diamonds, leads to an inference 

tha t the reflectance of the grey diamonds ‘under’ the dark transparency must be lighter than 

their counterparts with the light surrounds. Thus, this illusion is attributed to higher-level 

reflectance calculations.

However, junctions have failed to provide a complete account of W hite’s effect. In the stan­

dard W hite’s effect (as illustrated in Figure 1.1, right), T-junctions exist between the grey 

test patches and their coaxial bars (which form the stem of the Ts, while the top component 

comes from their collinear contours with adjacent bars). Anderson (2001) claims th a t these 

T-junctions signal the existence of a transparency in a scission of the image into i t ’s causes. 

In this paradigm the grey test patches are assumed to be the transparency, such tha t the 

bars on which they axe placed can influence their luminance. Hence, if the black bar is 

removed then the lightness of its test patch becomes lighter, whereas if the white bar is 

removed then the lightness of the test patch becomes darker. So, in an attem pt to remain 

lightness constant this processes yields W hite’s effect5. Alternatively, the T-juncions may 

signal tha t the test patch and their coaxial bar ‘belong’ to one another, such tha t they are 

only interpreted within this context, with the only simultaneous brightness contrast effect 

that can occur and influence brightness being the one between the coaxial bar and the test 

patch, which also produces W hite’s effect (Todorovic, 1997; Gilchrist et al., 1999). However, 

Figure 2.8 demonstrates a circular version of W hite’s effect with no junctions, in which the 

effect is still as strong as the more traditional version (Howe, 2005). Furthermore, junctions 

have not been shown to explain the SF dependency of W hite’s effect (White, 1981; Kingdom 

&; Moulden, 1991; Blakeslee &; McCourt, 1999; Anstis, 2004). Hence, the role of junctions 

in accounting for this phenomenon is controversial.

5A salient point here, is that such models make the implicit assumption that the area of the brain which 
performs this higher-level interpretation, receives the image information in an unadulterated form.
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Figure 2.8: An example of the type of stimulus used by Howe to demonstrate how W hite’s Effect is not dependent on junctions within 
the stimulus.
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The relative success of local junction analysis in facilitating scene interpretation motivates 

their further study. Furthermore, it is possible tha t the information in junctions is actually 

being used by higher-level areas of the visual cortex. Physiological studies of RFs in V4 

have revealed cells which responsd to complex junction-like contour configurations, highly 

selective for size, shape, and orientation (Gallant, Connor, Rakshit, Lewis, & Essen, 1996). 

This is not an unreasonable hypothesis, as the importance of lines and edges in low-level 

vision has already been emphasised, and so it is conceivable that at higher-levels of pro­

cessing, information derived from complex ensembles of lines and edges, such as junctions, 

may also be utilised in some way.

The Anchoring Theory of Lightness

Another heuristic approach to lightness perception, is the Anchoring Theory of Lightness 

(Gilchrist et al., 1999). A full account of this theory is beyond the scope of this work, but 

the principles on which it is based will be described.

At the heart of this theory is the idea that the lightest surface in a scene is perceived as the 

‘white’ (the anchor), and that the lightness of all other surfaces are computed relative to 

the white surface (the scaling process). In this functional sense it is similar to  the first in­

carnation of Retinex (Land &; McCann, 1971), although the Anchoring Theory of Lightness 

is never cast as a functioning computational model tha t is capable of making quantitative 

predictions.

In addition to the anchoring and scaling processes, is the notion of ‘frameworks’ for in­

terpretation. More specifically, as well as a global anchor and scaling, there may exist an 

independent local anchor(s) and scaling(s) derived from a given surface’s ‘belonging’ to a 

given region. The final lightness attributed to a surface is a trade-off between local and 

global lightness assignments. For example, in the simultaneous brightness contrast stimulus 

(Figure 1.1, left), the local frameworks are the light surround and the test patch within it 

(left), and the dark surround and the test patch within it (right). In the framework on
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the left the surround is anchored to white and the test patch is considered darker. For the 

framework on the right, the test patch is anchored to white while the surround is considered 

darker. Globally, the surround on the left is the white. As the test patch on the right cannot 

be the global white it is scaled to be just below, and as the test patch on the left is not as 

dark as the surround on the right, it is scaled to be lighter. Thus, the test patch on the 

right is perceived to be brighter than that on the left, correctly predicting the existence of 

simultaneous brightness contrast.

A similar interpretation is afforded to W hite’s effect (Figure 1.2, right). The test patch on 

the dark bar is said to belong to the framework of the dark bars, and the test patch on the 

white bar is said to belong to the framework of the white bars. In the former framework 

the test patch is the local white, while in the latter framework the bars axe the local white. 

The white bars are also the global white, so the test patch on the dark bar has to be darker, 

while the test patch on the white bars is not as dark as the black bars, and has to be lighter. 

Hence, the test patch on the dark bars is lighter than tha t on the white bars, producing 

W hite’s effect. Like local junction analysis, it is not clear how this paradigm can account 

for the SF dependency of the effect.

Sum m ary

Low-level models of vision are based on the underlying physiology of the primary visual 

stream, and within this context lightness and brightness phenomena are artefacts of the 

processes of encoding and decoding (or reconstructing) the original image. These mod­

els are successful a t attributing brightness in simpler visual illusions such as simultaneous 

brightness contrast, and in some cases W hite’s effect.

Low-level physics-based models of colour vision, based on the adaptational mechanisms of 

the retina, suffer from the problem of requiring a reference surface or some sort of an­

chor in the visual world, in order to be able to infer the illuminant and attribu te  lightness 

with the aim of retaining lightness constancy (Maloney, 1999). Furthermore, there exists 

only one biological model of how the primary visual stream may achieve such calculations:
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Retinex theory (Land &; McCann, 1971; Land, 1983). The Retinex theory of colour vision 

makes relative measures with regards to lightness; the lightness of a surface is a ttribu ted  

relative to the lightness of all other surfaces. As a consequence of this, the theory also re­

quire a reference surface or anchor, against which all relative measures are implicitly made. 

Furthermore, Retinex theory is not capable of accounting for visual phenomena such as si­

multaneous brightness contrast, without additional modification (Rudd & Arrington, 2001).

Simple theories based on modelling the response of RGCs through their RF properties can 

be successful in predicting the existence of simultaneous brightness contrast (Cornsweet, 

1970; Goldstein, 2003), but are not cast in a meaningful computational context - they are 

models of the underlying physiology and are not aiming to achieve a particular calcula­

tion in the way that Retinex and the physics-based models of colour vision axe. Thus, 

models constructed in these terms are models of brightness and not lightness. These the­

ories also suffer from the need for some kind of ‘filling-in’ process to propagate brightness 

signals between the responses of cells at the edges of the surface (where they are instigated).

However, RF-based models which avoid the need for an explicit ‘filling-in’ process, can 

be constructed by filtering the image at multiple scales, and possibly at multiple orien­

tations for each scale (using the RF properties of cortical neurons), and integrating this 

information into a single reconstruction of the original image (Kingdom &; Moulden, 1992; 

Blakeslee Sz McCourt, 1999; Dakin Sz Bex, 2003). These approaches have also been success­

ful in correctly assigning brightness in phenomena such as grating induction, as well as the 

canonical simultaneous brightness contrast effect. W hite’s effect, however, remains partic­

ularly hard to account for, and only models which implement some kind of re-weighting or 

re-normalisation procedure across seperate SF and/or orientation channels, before integrat­

ing information into the final reconstruction have been successful in accounting for both 

simultaneous brightness contrast and W hite’s effect (Blakeslee Sz McCourt, 1999; Dakin Sz 

Bex, 2003).

Arranging visual information processing into sub-modules of functionally-specific neural

uomx*
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networks, and integrating the outputs into to yield visual perception, has the capability of 

assigning lightness correctly in a variety of circumstances, and for a variety of visual phe­

nomena (Grossberg, 2003; Hong &; Grossberg, 2004; Grossberg & Hong, 2006). However, the 

explanatory power of such approaches is weakened by the large number of free-parameters 

that arise from the computational complexity of these models, and which subsequently need 

to be determined. Furthermore, in order to achieve their results modules of higher-level pro­

cessing downstream from the low-level functionality of V1 are necessary.

Higher-level models of vision, which cast vision as the problem of inferring the source of 

luminance though the interpretation of the scene, have been shown to be successful in 

providing accounts for simultaneous brightness contrast, W hite’s effect, and more complex 

phenomena such as Adelson’s ‘Wall of Blocks’ demonstration, which low-level models have 

thus far not addressed.

However, these models fail at providing quantitative predictions. The Bayesian, or pure sta­

tistical inference approach, has proven successful at explaining lightness in a variety of both 

simple and complex phenomena (Purves et al., 1999), and could be built into a computation 

model. However, the approach is impeded when it comes to determining and justifying the 

choice of prior probability distributions, as the statistics of naturally occurring shapes and 

possible methods of illumination are not available for analysis. It is also ‘computationally 

expensive’, requiring large amounts of processing time (Adelson & Pentland, 1996). As 

such, no fully functioning computational models of lightness employing this approach are 

known to exist.

Assigning lightness through the analysis of junctions in the scene has proven successful in 

correctly attributing brightness in complex scenes such as Adelson’s ‘Wall of Blocks’ demon­

stration, and simpler configurations such as W hite’s effect (Adelson, 1993; Sinha &: Adelson, 

1993; Anderson, 2001). Junctions appear to be a good proxy for interpreting cues as to 

the precise configuration of the scene. However, this paradigm is not capable of making 

quantitative predictions. Furthermore, this approach fails at correctly assigning lightness
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to the circular variant of W hite’s effect, which is devoid of any junctions (Howe, 2005).

The Anchoring Theory of Lightness has proven exceptionally successful at a ttribu ting  light­

ness in many complex phenomena, including simultaneous brightness contrast and W hite’s 

effect (Gilchrist et al., 1999). It achieves it’s success through a combination of a global 

analysis of the scene, together with a cascade of increasingly local analyses, by means of 

a set of heuristic rules. Furthermore, it attributes lightness relative to the the white (or 

anchor) in the scene. The main problem with this approach, is that which plagues all other 

higher-level models of vision - it is not capable of making quantitative predictions and has 

yet to be cast as a biologically plausible computational model of visual processing. Addi­

tionally, this approach is not capable of offering an explanation as to why the magnitude of 

W hite’s effect increases in parallel with the SF of the inducing grating in the stimulus.

It is possible to interpret the above in such a way that reinforces the views about vision set- 

out at the beginning of this chapter - tha t low-level vision alone can account for ‘simpler’ 

visual phenomena such as simultaneous brightness contrast and W hite’s effect, and that 

they fail only when explicit cues pertaining to the exact configuration of the scene are 

present in the image. It is not believed tha t such cues genuinely exist in simultaneous 

brightness contrast and W hite’s effect. Thus, higher-level, more complex theories are not 

required to account for these types of phenomena.
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C hapter 3: A n A nalysis o f Current N eural M odels

W hite’s effect and simultaneous brightness contrast are of particular importance in the 

study of vision, as accounts for these phenomena come from both theories of low- and high- 

level vision, as described in the previous chapter. Hence, implicit in the study of these 

phenomenon is the exploration of where low-level vision ends, and high-level vision begins; 

where visual information is coded and subsequently decoded to infer the nature of the 

source. So far, it has not been possible to resolve this moot point.

Although low-level neural models have been shown to be competent at explaining simultane­

ous brightness contrast, W hite’s effect has proven particularly tricky, and to the knowledge 

of the author, only two theories capable of accounting for both simultaneous brightness 

contrast and W hite’s effect are known to exist (Blakeslee & McCourt, 1999; Dakin & Bex, 

2003). As this work is primarily concerned with ideas tha t place such illusions in low-level 

vision, a deeper understanding of how low-level vision alone can concurrently account for 

phenomena such as simultaneous brightness contrast and W hite’s effect is necessary, if these 

views are to be upheld. Hence, there is a need for a more detailed understanding and eval­

uation of exactly how and why current models of brightness can account for W hite’s effect 

- are the mechanisin(s) responsible for the effect biologically plausible, and are they part 

of any meaningful computational paradigm? Therefore, a greater insight into which of the 

precise components of these models are fundamental in explaining these effects, is required. 

A suitable entry point into this line of enquiry begins with a detailed analysis and compara­

tive study of the only two low-level models capable of accounting for simultaneous brightness 

contrast and W hite’s effect: the ODOG model proposed by Blakeslee and McCourt (1999), 

and the NSS approach suggested by Dakin and Bex (2003).

In this study, both models are assembled computationally from the specifications detailed 

in their respective publications, and the brightness profile attributed by each model to the 

same variation on W hite’s effect is compared to psychophysical data (to be discussed be­

low). Additionally, an examination into the robustness of these brightness profiles to the
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Figure 3.1: Variations of W hite’s effect used in this study, with cross-sectional luminance 
profiles at the mid-point. The frequency of the inducing grating is 0.5c/° (left) and 1.0c/° 
(right).

Figure 3.2: A circular variation of W hite’s effect stimulus with an the inducing grating 
frequency of 1.6c/° (left), and a cross-section of the luminance profile at the mid-point 
(right).

removal of key components of each model is carried out in an attem pt to isolate, understand, 

and evaluate the key factors that may be responsible for brightness judgements in low-level 

vision.

W h i t e ’s E ffec t: T e s t S tim u li  a n d  P s y c h o p h y s ic a l  D a ta

An example of W hite’s effect is given in Figure 3.1 (left). This particular variant was orig­

inally used by Blakeslee and McCourt (1999) in their computational and empirical study 

of the effect, and is similar to the original first presented by White (1979), the only signif­

icant difference being that the grey test patches in the image are in-line with one another 

as opposed to vertically displaced. As already mentioned in this work, the test patch on 

the black bar should appear lighter than the test patch on the white bar, as if the test
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patches have assimilated some of the luminance from the adjacent bars, in contradiction to 

what is predicted by simultaneous brightness contrast. W hite (1981) also showed th a t the 

magnitude of the effect is dependent on the spatial frequency of the grating, so long as the 

aspect ratio of the test patches remains constant (Kingdom & Moulden, 1991). An example 

of this dependency on SF should be apparent in Figure 3.1 (right) where the SF of the 

inducing grating has been doubled relative to the variant in Figure 3.1 (left), from 0.5c/° 

to 1.0c/° (a more complete discussion of the effect’s dependency on SF will be postponed 

until Chapter 5). It should also be noted at this stage, tha t the exact spatial configuration 

of the stimulus need not match the one in Figure 3.1, as illustrated in Figure 3.2, which 

demonstrates the effect when the grating and test patch regions take the form of circular 

rings (removing the junctions from the original version - a point which will be returned to 

later on this chapter) (Howe, 2005). However, unlike the spatial configuration, the lumi­

nance of the test patches relative to the tha t of the inducing grating is of critical importance 

for the existence of the effect. Spehar, Gilchrist, and Arend (1995) have shown that the 

effect will not persist when the luminance of the test patches axe above tha t of the light 

bar (when the luminance of the light bar is below that of the test patches), and when the 

luminance of the test patches is below that of the dark bar (when the luminance of the dark 

bar is greater than tha t of the test patches). Examples of such variants of W hite’s effect 

can be seen in Figures 5.32 and 5.33, and will also be discussed in greater detail in Chapter 5.

The variant of W hite’s effect used for the central part of this study is tha t depicted in 

Figure 3.1 (left). The W hite’s configuration part of the stimulus spans 10° of visual angle 

(represented by 256 pixels in this case), both vertically and horizontally, with the frequency 

of the inducing grating at 0.5c/°. The height of each test patch is twice its width (1° in this 

case), and the luminance of each test patch is set at the mid-point between the luminance 

of the light and dark bars (a grey-scale level of 128). The full stimulus is 20° in width 

and length, and is constructed by presenting the W hite's configuration on a background 

with a luminance set at the mean luminance of the image (also a grey-scale level of 128). 

This configuration suppresses any erroneous effects that may occur as a result of using large 

spatial filters. This specific variant of W hite’s effect was chosen for both its simplicity and
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because psychophysical da ta  has been acquired using this stimulus (Blakeslee Sz McCourt, 

1999), and hence the predicted brightness profiles for this stimulus can be directly linked 

with experimental data. More specifically, Blakeslee and McCourt (1999) report th a t the 

test patch on the black bar is found with a brightness of 54% of the white in the scene, and 

that the test patch on the white bar is found with a brightness of 45.5% of the white in the 

scene. Thus, the overall effect strength (defined as the brightness of the test patch on the 

white bar, less tha t of the test patch on the black bar), is calculated to be 8.5%.

In addition to the above, two other variants of W hite’s effect will be tested with the models. 

The variant in Figure 3.1 (right), with an inducing grating at double the frequency (1.0c/°), 

but with the same aspect ratio of tha t in Figure 3.1 (left), will be used, and ought to predict 

th a t the effect strength increases, as discussed above (White, 1981). Although this effect 

has already been demonstrated for the ODOG model (Blakeslee &; McCourt, 1999), using 

gratings with lower SFs than 0.5c/°, this has not yet been demonstrated with the NSS 

model (although one would expect the model’s predictions to be consistent, given tha t it 

has a relatively scale-invarient approach to processing SF information). Furthermore, when 

deconstructing the models in order to understand and evaluate their underlying mechanisms, 

using a stimulus with a different SFs will serve as a check tha t any conclusions derived from 

this analysis are applicable across all SFs tha t the models respond to. The circular variant 

of W hite’s effect as depicted in Figure 3.2, with an inducing grating of 1.6c/°, will also be 

used. The motivation for testing it with the models comes from the fact that it has not yet 

been tested with either of them, and because this particular variant has a different spatial 

configuration - the test patches (or rings) only have boundaries with their coaxial rings, 

and not with any bar tha t they are placed within. Thus, if the models successfully predict 

the existence of W hite’s effect in this configuration, then it will demonstrate tha t they can 

account for the effect in more general terms, and not just for a particular configuration.
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T h e N atu ra l Scene S ta tis tic s  M od el

The model of brightness described by Dakin and Bex (2003) is inspired by the work of Field 

(1987), who developed an efficient image-coding scheme based on a Log-Gabor model of 

VI RFs. Efficient image-coding in this context, relates to the ability of each filter bank 

to represent the greatest amount of information,6 a t a particular SF and orientation, with 

the fewest possible filters, and for visual information at all SFs and orientations to be rep­

resented by as few filter banks as possible7. W ith this coding scheme, it was found tha t 

the variance (or energy) in each filter bank's response to natural scenes is approximately 

constant and flat across all SF channels (Field, 1987). More specifically, a plot of log-energy 

vs. log-SF yields a straight line with a mean slope of -0.04 (Dakin & Bex, 2003). This is a 

direct result of the fact that the SFs of natural scenes have a distribution of l / / a , where /  

is frequency and a  is a constant tha t is always found to lie in the range of 0.7 - 1.5.

Based on these findings, a simple model of brightness coding is proposed, and is illustrated 

schematically in Figure 3.38. It is conjectured tha t brightness arises out of the need to be 

able to reconstruct the source image from the information within the responses of each SF 

channel, and tha t the visual system has a priori knowledge of the statistics of natural scenes, 

expecting all candidate reconstructions to give rise to the observed constant response across 

SF channels (presumably as a mechanism for validating reconstructions). If the latter is not 

possible with an unweighted linear combination across SF channels, then it can be achieved 

by introducing a multiplicative gain of l / / a across every channel, and choosing a  to result in 

a slope of -0.04 on a plot of log-energy vs. log-SF. If the viewed image has a perfect 1 /  f 01 dis­

tribution of frequencies, then a  is close to 0 and the correct reconstruction is approximately 

that of the unweighted linear combination across SF channels. If the image has a frequency 

distribution tha t deviates from that of natural statistics, then a  is chosen such tha t low SFs 

are adequately amplified and high SFs adequately attenuated, until the desired response

6in this case measured by the variance in filter responses to an image.
7hence the responses from all filters become maximally un-correlated.
8It should be noted, that the original version was cast in terms of circularly symmetric RFs, which could 

be used in the LGN, but in this work it has been interpreted in terms of oriented RFs, which could be 
implemented in VI. However, the two versions are approximately equivalent, as the sum over orientations 
for a particular SF is approximately equal to the circularly symmetric RF.
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Figure 3.3: A schematic representation of the NSS model: The output from banks of 
Log-Gabor filters are summed across orientation to produce SF channels (the cr’s), which 
are then re-weighted with a 1 /5 F Q gain, until the linearly combined output satisfies the 
expectations of the visual cortex.
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Figure 3.4: An example of a Log-Gabor filter in the spatial domain (left), and a cross-section 
of the response profile at the mid-point (right).

across SF channels is achieved. It is suggested that a reconstruction of this sort on images 

that deviate heavily from the statistics of natural images, such as the variant of W hite’s 

effect used in this study, can lead to anomalous brightness being attributed to parts of an 

image, and that the resulting amplification of low SF information leads to the ‘filling-in’ 

in what are traditionally thought to have been edge-driven lightness and brightness illusions.

T h e  L og -G abor C ode

The details of the Log-Gabor code as used and constructed to replicate the NSS model are 

as follows: In the Fourier domain, the response of each RF (or filter) to SFs is defined as,

G{f) =  e x p | -  2[ 4 , 2 } ,  (3.1)

where /  is frequency (and represents the radial component of a vector in Fourier-space), 

fpeak is the peak response frequency, and as f  is the relative spread in response frequency. 

These filters are uniquely defined in the Fourier domain, and no analytical expression exists 

for Log-Gabor filters in the spatial domain. Hence, all filtering is carried out in the Fourier 

domain, and the numerical inverse-Fourier-transform is used to produce the resultant image 

in the spatial domain. An example of a Log-Gabor filter in the spatial domain is shown 

in Figure 3.4. Similarly, in the Fourier domain the response sensitivity of each filter to a
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SF pattern  oriented at an angle 6 (the polar angle of a vector in the 2-D Fourier-space), is 

given by,

G(0) =  e x p l  - ^ - 1 .  (3-2)

where 0 is the peak response angle, and oa is the spread in angle response sensitivity. The 

final filter is given by,

G (/,0 ) =  G (/)G (0). (3.3)

This separable polar distribution of SF and orientation is unique to Log-Gabor filters. An­

other advantage of Log-Gabor filters over conventional Gabor filters, is tha t on a log-SF 

axis the response curve is a perfect Gaussian distribution and does not over represent low 

SFs, unlike the conventional Gabor model of VI RFs.

In order to effectively (and indeed efficiently) cover the Fourier domain, the bandwidth 

of the SF channels9, was kept to 1 octave, and the peak frequency varied from 2 cycles 

per-image to 128 cycles per-image10 in octave intervals (equivalent to 0.1c/° to  6.4c/°). To 

achieve this, it is necessary that,

^ S F  fp e a k  GXp < /— —=—=• /  > (3 * 4 )
1 21og2[e]v '21n[2] I

\n\asFl Speak] =  constant, (3.5)

9bandwidth is defined as log2(A — B ) ,  where A  and B  are the SFs at which the RF yields half of the  
maximum response.

10filters selective for frequencies below 1 cycle per-image were avoided as they were too small to adequately 
sample in the Fourier domain, and filters principally selective for frequencies above 128 cycles per-image were 
avoided as they were too small to adequately represent in the spatial domain.
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for all peak frequencies. The resultant overlap between filters at differing peak SF tunings 

leads to an approximately equal amplification for all SFs in this range.

Similarly, for SFs at all orientations to receive equal amplification with filters tuned to  6 

separate angles (from 0 to 27r in intervals or | ) ,  it is necessary that the filters have an 

orientation bandwidth of such that,

"  =  w f c l '  ( 3 ' 6 )

Each SF channel is constructed from an unweighted linear combination of all filter banks

w ith the same SF selectivity, but differing orientation, and the energy in each channel is

then determined by discretely sampling the response-envelope of each SF channel. The

response envelope, V(x .y ) ,  is defined as,

V (x ,y )  = \J  E ( x , y ) 2 +  0 ( x , y ) 2, (3.7)

where E (x ,y )  is the output in the spatial domain from the even Log-Gabor filter, and 

0 ( x ,  y) is the output from the odd Log-Gabor filter (it should be noted tha t all reconstruc­

tion were made using the even set of filters). In practice, the even and odd Log-Gabor 

filters are equivalent to the real and imaginary components of the Log-Gabor filters, as 

defined in Fourier-space. This gives a phase-independent measure of the response of any 

given point in a SF channel. The discrete sampling reflects the minimum number of RFs 

required by the visual system at each spatial scale, and as such the number of sampling 

points is proportional to the size of the RFs in each channel.
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Figure 3.5: The raw NSS model output for the 0.5c/° (left) and 1.0c/° (right) W hite’s effect 
stimuli, and the predicted brightness cross-sections at their mid-points. The output is in 
model-units, defined as the pixel-value increments in the reconstruction of the image.

Figure 3.6: The NSS model output for the 1.6c/° circular variant of W hite’s effect, and the 
predicted brightness cross-section at the mid-point.

R e su lts

The model correctly predicts the brightness for all variations on W hite’s effect, as illus­

trated  in Figures 3.5 and 3.6. For the 0.5c/° canonical stimulus (Figure 3.5, left), the mean 

predicted brightness of the test patch on the left is 58% of the brightness of white, and 

40% of the brightness of white for the test patch on the right, yielding an effect strength 

of 18%, compared to the empirically determined effect strength of 8.5%. For the 1.0c/° 

stimulus (Figure 3.6, right), the mean predicted brightness of the test patch on the left is 

65% of the brightness of white, and 30% of the brightness of white for the test patch on 

the right, yielding an effect strength of 35%, which is much greater in magnitude than the 

variant with an inducing grating at a lower SF, as observed psychophysically (White, 1981). 

The NSS model’s predictions for the circular variant of W hite’s effect is also in agreement 

with what is observed psychophysically (Howe, 2005), in that the brightness of the test 

ring between the dark bars is darker than the test ring between the light bars (with an
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average predicted effect strength of 44% the brightness of white in the scene), as illustrated 

in Figure 3.6. One point of concern, however, is tha t the predicted brightness of the bars in 

the inducing grating are not constant across the reconstructed stimuli11. This may be due 

to error derived from the 0.1c/° filters, whose size exceeded that of the entire stimulus.

Figure 3.7 illustrates the output from each SF channel to the 0.5c/° stimulus. It is clear 

that it is the lowest two SFs (0.1c/° and 0.2c/°), which generate W hite’s effect, while all 

other channels predict a simultaneous brightness contrast effect12. Similarly, Figure 3.8 

illustrates the output from each set of filter banks at every orientation (combined across 

SF preference). It can be seen tha t all filters tha t are not oriented parallel to the inducing 

grating contribute to W hite’s effect, while the set of filters that axe in parallel contribute 

towards a simultaneous brightness contrast effect.

We can explain why this stimulus produces such channel outputs. The average luminance 

of the grating (without the grey test patches) is the same as the background. Thus, to the 

larger spatial filters the display is effectively uniform, and their response are negligible. Now 

consider what happens when a single grey test patch is added to a black bar, as illustrated 

in Figure 3.9. To a large spatial filter this is seen like a spike in luminance (or a delta 

function which is ‘on’ at the centre of the stimulus), and the resulting output is similar to 

tha t when convolving the filters with an image comprised of a genuine spike at the centre 

of a background with uniform luminance (yielding a map of the filters response profile). 

Figure 3.10 illustrates filter bank output for the stimulus in Figure 3.9, and it is clear to see 

this behaviour working for the larger filters, but disappearing when the size of the filters 

approaches tha t of the test patch. Similarly, if the test patch were to be introduced onto a 

white bar, then the same response, but opposite in polarity, will occur. Thus, by amplifying 

the output from low SF selective filters, this response is amplified above that of the high 

SF selective filters, yielding W hite’s effect. This effect is not apparent when the filters are

11 a similar effect is also observed in Figure 3d of (Dakin & Bex, 2003), which illustrates the NSS model 
output for another version of W hite’s effect.

12The same trend was found for the 1.0c /°  stimulus, but in this case it was the lowest three SF channels 
that demonstrated W hite’s effect.
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oriented at |  to the vertical (parallel to the grating), as at this orientation the response 

from the higher SF selective filters produces a simultaneous brightness contrast effect, which 

is far stronger than the output from low SFs.

It is possible to conclude that according to the NSS model, the amplification of low SFs are 

responsible for the perceived lightness of the test patches in W hite's effect.

V v

I J m a  1
■ h p r }i£—m

1

Figure 3.7: The output for each SF channel in the NSS model, with cross-sectional profile, 
in response to the 0.5c/° W hite’s effect stimulus.
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Figure 3.8: The output across SF for each orientation of filter bank (or hypothetical orien­
tation channels), in the NSS model, with cross-sectional profile, in response to the 0.5c/° 
W hite’s effect stimulus.
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Figure 3.9: Introducing a grey test patch onto a grating is analogous to a spike (or delta 
function) on a background of uniform luminance, for filters with a large spatial scale.

Figure 3.10: The response of 0.1c/°, 0.2c/°, and 1.6c/° filters (at - J ,  0, and J  to the 
vertical) to the ‘delta function’ stimulus in Figure 3.8.
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T h e O riented  D ifference o f  G aussians M od el

The ODOG model of Blakeslee and McCourt (1999) is similar to the NSS model, in tha t 

is casts brightness as a problem of reconstructing the original image from the information 

contained within a set of filter bank outputs, at multiple scales and orientations. However, it 

differs in three fundamental ways. Firstly, VI RFs are modelled using anisotropic difference- 

of-Gaussian (DoG) functions. Secondly, gains are applied individually to  each filter bank 

selective for a particular SF, and are chosen to be in accordance with the suprathreshold 

detection level of gratings, which is at higher luminances for high SF gratings than lower 

SFs. This implies tha t the gains on the former channels are greater than that of the former 

(Georgeson &; Sullivan, 1975), and this leads to SF dependent gains that are inversely pro­

portional to  those implemented in the NSS model. Thirdly, the filter banks are arranged 

into orientation selective channels through a weighted linear sum across SF selectivity, tha t 

are then normalised by their space-averaged RMS contrast. The latter non-linear processing 

step has the effect of weighting the stimulus features extracted by all orientation channels, 

such th a t high contrast features captured by a channel a t one orientation will not overwhelm 

lower contrast features represented by channels a t other orientations. The ODOG model is 

illustrated schematically in Figure 3.11.

The DoG Code

The details of the DoG code constructed to replicate the ODOG model are as follows: The 

DoG filters are defined in the spatial domain by,

° o G ( x , y )  = I  ( ^ e x p j  -  ± ± *  J  -  j L e x p j  -  ^  . (3.8)

where oc represents the spatial constant for the two Gaussians used to construct the filter. 

W ith this configuration, the resultant filters are non-isotropic and oriented as a result of 

the variance in the ^-direction in the second Gaussian, being twice that of its extent in the 

^-direction. An example of such a filter is illustrated in Figure 3.12.
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Figure 3.11: A schematic representation of the ODOG model: The output from banks of DoG filters are combined in a weighted linear 
sum across SF producing orientation channels (the 0’s), which are then re-normalised by their RMS output, before being integrated to 
produce the predicted brightness response.
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Figure 3.12: An example of an anisotropic DoG filter in the spatial domain (left), and a 
cross-section of the response profile a t the mid-point (right).

Figure 3.13: A DoG filter (left) and Log-Gabor filter (right) in the Fourier domain. Both 
filters are selective for SFs of 1.6c/° oriented at an angle of |  to the horizontal. The cross­
hair represents the origin of the Fourier domain. The DoG filter is fax more distributed 
over SFs in the x- and ^-directions, and hence is less selective for this orientation when 
compared to the Log-Gabor filter. Consequently, using these DoG filters at 6 orientations 
will over-represent orientation information at SFs.

The spatial constants are selected such that the peak response frequencies in the Fourier 

domain cover the range of 0.1c/° - 6.4c/° in octave intervals, in parallel with the NSS model. 

For each spatial scale there are filters at six orientations separated by an angle of The 

bandwidth of each filter is ~  1.9 octaves for SF and ~  |  radians for orientation (both 

approximately double the corresponding values used with the Log-Gabor code).

Unlike the Log-Gabor code, the DoG code has not been constructed to be efficient in any 

way, and as a result of the larger SF bandwidth of the filters, lower SF are naturally over­

represented (as illustrated in Figure 3.17, left). That is, lower SFs are amplified more than
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Figure 3.14: The raw ODOG model output for the 0.5c/° W hite’s effect stimulus (left), and 
the predicted brightness cross-section at the mid-point (right). The output is in model-units, 
defined as the pixel-value increments in the reconstruction of the image.

Figure 3.15: The ODOG model output for the 1.6c/° circular variant of the W hite’s effect 
stimulus (left), and the predicted brightness cross-section at the mid-point (right). The 
ODOG model clearly fails to provide an account of this effect.

higher SFs. Similarly, orientation information is over-represented at all SFs, due to the 

broad orientation tuning of these filters. These properties of the DoG code can be seen in 

Figure 3.13 where DoG filters are compared to the Log-Gabor filters in the Fourier domain.

R esu lts

Figures 3.14 shows that the model correctly predicts the perceived lightness for canonical 

variants of Whites effect, for both 0.5c/° and 1.0c/° inducing gratings, and as claimed by 

the authors. More specifically, the effect strength for the 0.5c/° is predicted to be 17% of the 

brightness of white (compared to the empirically derived effect strength of 8.5% determined 

by Blakeslee and McCourt (1999)), and the effect strength for the 1.0c/° is predicted to 

be 39% of the brightness of white, consistent with data that demonstrates that the effect 

strength increases with the SF of the inducing grating (White, 1981; Blakeslee & McCourt,
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ODOG M odel V a r i a t i o n s
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Figure 3.16: A summary of the predicted brightness of the test patches in the 0.5c/° W hite’s 
effect stimulus, as predicted by variations of the ODOG model, each with a different com­
ponent of the model knocked-out. The bars represent the predicted brightness of the test 
patches as a percentage of the mean predicted brightness in the entire output (that is, 50% 
of the predicted brightness of white in the scene). Negative values correspond to values 
beneath the mean luminance of the output. The blue bars represent the values assigned to 
the test patch on the right hand side of the stimulus (on the white coaxial bar), and the red 
bars represent the values assigned to the test patch on the left hand side of the stimulus 
(on the black coaxial bar).

1999). However, Figure 3.15 shows that the model does not predict the existence of W hite’s 

effect for the circular configuration, which goes against the psychophysical data collected 

with such stimuli (Howe, 2005).

The output of the model in response to the 0.5c/° W hite’s effect stimulus, but with key ele­

ments individually knocked-out, are summarised in Figure 3.16. W ithout the SF dependent 

gains a strengthening of Whites effect was observed. However, the output of the model 

without the RMS contrast normalisation resulted in a loss of Whites effect, and a weak 

simultaneous brightness contrast effect was observed instead. To examine the role of low 

SFs, the output of the model without the 0.1c/° and 0.2c/° filters was calculated. It was
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Figure 3.17: The cumulative gain applied to all SFs (measured in cycles per image for the 
stimulus), by the ODOG model (left), and for the NSS model in response the 0.5c/° W hite’s 
stimulus (right).

found that W hites effect was lost and once again replaced with a simultaneous brightness 

contrast effect. These results are in alignment with the operation of the NSS model, and 

are not surprising when one considers the cumulative gain over SF for the two models, as 

illustrated in Figure 3.17. Both models amplify low SFs relative to high SFs.

Figure 3.18 illustrates the output from each orientation channel, and it can be seen that only 

the channel oriented perpendicular to the inducing grating (at |  to the vertical) contributes 

to generating W hite’s effect. It is also this channel that receives the greatest amplification 

from the divisive normalisation stage, as can be seen from the RMS contrast values for each 

channel as illustrated in Figure 3.19.

Based on the above results, the affect of knocking out the 0.1c/° and 0.2c/° filters in only 

the |  channel was examined, and found to  be enough to convert Whites effect to a simul­

taneous brightness contrast effect13. Thus, it is possible to conclude that it is the low SFs 

in the \  oriented channel that generate the effect, as they ‘fill-in’ the simultaneous bright­

ness contrast effect arising from the boundaries of the coaxial bar and the test patch (and 

hence this account is analogous to the Todorovic (1997) account, which uses T-junctions to 

discount the simultaneous brightness contrast arising form the boundaries of the test patch

13for the 1.0c /°  W hite’s stimulus it required the 0.1 c /° , 0.2c /° , and 0.4c/° filters to be knocked-out for 
simultaneous brightness contrast to be generated.
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Figure 3.18: The output across SF for each orientation channel in the ODOG model, with 
cross-sectional profile, in response to the 0.5c/° W hite’s effect stimulus.
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Figure 3.19: The ODOG RMS contrast normalisation values for the 0.5c/° W hite’s stimulus.
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and the adjacent bars). However, as the output from this channel is relatively small, it 

receives a natural amplification through the renormalisation procedure, and subsequently 

this channel’s output comes to dominate.

Given the above analysis, it becomes clearer as to why the ODOG model is not be capable 

of providing the same account for the circular variant of W hite’s effect (Howe, 2005), as 

demonstrated in Figure 3.15 - this variant of W hite’s effect lacks boundaries between test 

patch and coaxial bars (and the resulting T-junctions). Thus, the ODOG model clearly 

fails at providing an account for this version of W hite’s effect in much the same way as 

T-junction analysis does.

D iscu ssion

Both the ODOG and NSS models were shown to predict W hite’s effect through the use of a 

similar computational principle, regardless of the difference in their constituent mechanisms. 

That is, in both models low SF information receives a boost relative to high SF information. 

As a result of this analysis, it is possible to infer tha t it is this enhancement of low SFs 

that generates W hite’s effect in the context of these neural models of brightness coding. 

However, the exact nature and purpose of low SF representation in VI is a controversial 

issue, and the biological plausibility of the low SF amplification mechanisms in the ODOG 

and NSS models is a  moot point, for reasons to be discussed.

The Spatial Extent o f Information Integration in V I

The existence in VI of simple cells with Gabor-like RFs tuned for the low SFs required by 

these models, is a controversial issue. The RFs of these cells would have to span a very large 

extent of the visual field, requiring the existence of long-range intra-cortical connections. 

Figure 3.21 demonstrates this by plotting the normalised response profile for log-Gabor RFs 

tuned to 0.1 c/° and 0.2c/°, as used in the NSS model - the 1024 x 1024 pixel plots represent 

40° x 40° of visual angle, and it is clear to see tha t they will respond to stimulation as far 

away as 20° and 10° from their respective centers. However, recent physiological studies 

have measured the spatial extent of VI RFs in Macaque and found the mean radius of the
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Figure 3.20: Log-Gabor RFs tuned to 0.1c/° (left) and 0.2c/° (right). Their peak responses 
have been normalised to 1.

classical RF to be between 0.4° and 1.5° (depending on eccentricity within the parafoveal 

representation), with some radii as large as 3° (Sceniak, Hawken, & Shapley, 2001; Ca­

vanaugh, Wyeth, &; Movshon, 2002). Both of these studies aimed to map the entire spatial 

extent of VI receptive fields by measuring a cell’s response to circular patches of drifting 

grating, of various diameters, at the optimum SF and orientation - a technique regarded 

as more sensitive than the traditional method of determining the minimum response field 

(found by these authors to lead to RF size estimates half as large).

In addition to measuring the extent of the classical receptive field (CRF), the extent of 

the suppressive surround (SS) was also determined in both these studies. This latter part 

of a cell’s RF, located outside and adjacent to the CRF, has been shown to modulate the 

initial response of the CRF, although it is unresponsive to independent stimulation (All- 

man, Miezin, &; McGuinness, 1985; DeAngelis, Freeman, &: Ohzawa, 1994; Levitt &; Lund, 

1997). Hence, a single cell can respond to information over a larger area than the limits of 

the CRF would imply; the mean radius of the SS was found to be between 1.1° and 3.5° 

(depending on eccentricity within the parafoveal representation), with some radii as large 

as 5°. Although both the ODOG and NSS models do not explicitly model the effect of the 

SS, some important results from Sceniak et al. (2001) and Cavanaugh et al. (2002) will be 

summarized to add context to the discussion of information integration and the size of RFs 

in VI.

A parsimonious, yet competent account of the interaction between the CRF and SS can be
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Figure 3.21: Concurrent plots of a 0.2c/° tuned log-Gabor RF profile (black lines) against 
the profiles of the DoG model of CRF and SS interaction, with various empirically derived 
parameters: the ‘mean cell’ of the population (left); the largest possible cell with both CRF 
and SS (centre); and the largest possible cell with CRF only (right).

achieved by using a difference of Gaussians function to model the combined RF of cells in 

VI (DeAngelis et al., 1994; Sceniak et al., 2001). In this framework the response of the 

CRF is modeled by a positive Gaussian with spatial extent a, and gain K a, and the SS is 

represented by a negative Gaussian centered on the CRF, with spatial extent 6, and gain 

Kb. The overall response is the sum of the two individual responses. The underlying RF is 

expressed formally as,

DoG(r ) =  K a exp j  -  j  -  A^exp j  -  ^ y ^  }. (3.9)

Both Sceniak et al. (2001) and Cavanaugh et al. (2002) successfully fitted this function to

the responses of a large population of V I cells (138 and 315 cells respectively), with the

mean error under 10%. The various RFs determined by the parameters in the model were 

characterized by defining the suppression index (SI) as,

s /  =  S -  <3-10>

where SI was found to lie in the range 0-1: An SI of 1 implies that the strength of the SS 

equals tha t of the excitatory CRF, and a SI of 0 th a t the strength of the SS is negligible 

relative to tha t of the excitatory CRF. For the population of cells used by Sceniak et al.

(2001), the mean SI was found to be 0.62 with the mean value of a equal to 1.0° (some cells 

were found with values as large as 3.3°), and the mean value of b equal to 2.2° (some cells 

were found with values as large as 8.0°). These measurements are consistent with those
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found independently by Cavanaugh et al. (2002). From this information it is possible to 

establish tha t the mean value of Kb =  0.28^0. The 1-D spatial response profile for such a 

‘mean cell’ is plotted in Figure 3.21 (left) concurrently with a 0.2c/° tuned log-Gabor RF, 

for comparison. Similarly, the largest possible CRF extent in this paradigm is constructed 

by assuming th a t a =  3.3° and Kb = 0 (when SI =  0), and the largest possible RF with 

both CRF and SS is constructed by assuming a = 3.3°, b =  8.0° (when SI =  1). These RF 

response profiles are also plotted concurrently with a 0.2c/° tuned log-Gabor RF in Figures 

3.21 (right) and 3.21 (centre), respectively. It can be seen tha t the 0.2c/° tuned log-Gabor 

RF has systematically larger spatial spread than the empirically motivated DoG model of 

CRF and SS interaction. If these results are taken as an indication of RF sizes and the 

extent of spatial summation in VI, then it is possible to exclude the 0.1 c/° Gabor-like RFs 

from being biologically plausible, and it becomes hard to justify the existence of RFs tuned 

to 0.2c/° without involving the SS.

These results are given additional weight from recent studies that have measured the physi­

cal extent of horizontal and lateral intra-cortical connections in VI. Angelucci et al. (2002) 

repeated the above single-unit recording experiments with circular patches of drifting grat­

ing as stimuli, fitted the responses to the DoG model of CRF-SS interaction to derive the 

spatial param eters (in equation 3.9), and then by anatomical staining and tracing, the actual 

physical spread of intra-cortical connections from cells in the same locations were derived 

(assuming normality within the population of cells), and compared. The sample mean of 

the intra-cortical connection distances was estimated to be 1.24° ±0.15° (for the area of the 

cortex representing 2°-8° of eccentricity in visual space), and was found to be significantly 

correlated with the spatial spread of the CRF (a in equation 3.9, and measured to be 1.2°), 

but not correlated to the spatial spread of the SS (measured to be 5.4°). However, the extent 

of the SS was found to be consistent with the regions of visual space conveyed by feedback 

connections from the extrastriate  cortex. These results are also supported by Stettler et al.

(2002), who used an alternative m ethod of anatomical staining and tracing to identify the 

physical spread of intra-cortical connections and the extent of feedback connections form 

the extrastriate cortex.
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Figure 3.22: Examples of SF tuning curves found in a sample of VI simple cells, reproduced 
from Xing, Shapley, & Hawken (2004).

0

Figure 3.23: An example of a ‘blob’ type RF in VI. The closer the colour of the pixels in 
the image are to red, then the greater the response to luminance in that region of the RF. 
Reproduced from Ringach (2001).

Given these suggested limits on the distances that information can be communicated be­

tween neurons in VI, a picture emerges in which simple cells with multi-region Gabor-like 

RFs cannot be responsible for representing low SFs in VI. Furthermore, any global anal­

ysis and renormalisation in VI is also constrained by these limits to be relatively local in 

extent. Both the ODOG and NSS models employ global re-normalisation processes that 

are intrinsically non-local. Thus, it is hard to think of the ODOG and NSS models as being 

represented by the biology of VI.

T h e  C od ing  o f L u m inance  in V I

To code low SFs, information need not be integrated from across large extents of the visual 

field, and cells which respond to luminance and low SFs are often found in the cytochrome 

oxidase (CO) regions of VI (Silverman, Grosof, De Valois, &; Elfar, 1989). Recent studies

Spatial Frequency (cycles/degree)
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Figure 3.24: An example of the stimulus configuration used to test the response of a cor­
tical neuron to a temporally modulated surrounding luminance level. The receptive field 
represents the CRF and SS. Reproduced from Rossi & Paradiso (1999).

utilizing reverse-correlation techniques for mapping RFs have identified cells in VI th a t 

are low-pass in SF (Xing, Ringach, Shapley, Sz Hawken, 2004). Figure 3.22 illustrates five 

example tuning curves representative of the different types of cells in VI, as found by Xing 

et al. (2004). The tuning curve in Figure 3.22a clearly shows a cell with a low-pass re­

sponse to SF. Furthermore, it was found tha t this cell was poorly tuned to orientation. 

These details are consistent with the ‘blob’ like RFs found in an earlier reverse-correlation 

study by Ringach (2001), an example of which is illustrated in Figure 3.23. Figure 3.22b 

illustrates a cell that is tuned to SF (>  lc /° ), but which also has a response to very low SF 

and tha t was found to be sharply tuned for orientation. It should be noted th a t cells with 

these characteristics have also been found in the optic tract and LGN, as well as VI (Rossi 

& Paradiso, 1999). Figures 3.22c-e show SF tuning curves for cells that are highly tuned 

for both SF and orientation, but which do not have a large responses to low SFs, and are 

characteristic of purely contrast responsive cells. Thus, it appears that both luminance and 

contrast information is present in VI.

However, the role that these cells play in the representation of surface luminance remains 

unclear. In VI, and to a lesser extent in LGN, a set of luminance sensitive cells have been 

found with responses that can be influenced by the presence of a contrasting surround with

78



Chapter 3: An Analysis of Current Neural Models

a temporally m odulated luminance level (Rossi &; Paradiso, 1999; Kinoshita & Komatsu, 

2001). An example of such a stimulus configuration is illustrated in Figure 3.26. The 

contrasting surround is arranged to be around the surface within which the cell’s CRF and 

SS reside during stimulation. Hence, the cell’s response should be independent from the 

luminance of the surround. Perceptually, the stimulus should give rise to a tem porally 

modulated SBC effect (this configuration is equivalent to one half of the canonical SBC 

illusion, as depicted in Figure 1.1, left, with the surround luminance temporally m odulated). 

W hat has been found in such experiments, is tha t there exists a group of such cells whose 

responses are consistent with the perceived brightness in these stimulus configurations, and a 

group whose responses correlate with the absolute magnitude of the test patch’s luminance. 

Similarly, Roe, Lu, and Hung (2005) have found neurons in the CO ‘thin stripe’ regions of 

V2, whose responses axe consistent with the apparent brightness of the Craik-Cornsweet- 

O’Brien illusion (see Chapter 5 for a detailed discussion, and Figure 5.43 for an example 

of this phenomenon). Thus is appears tha t there exist cells which code actual luminance, 

and cells which represent luminance. A theory underpinning the existence of both will be 

outlined in the next section.

Low Spatial Frequencies and the Fourier Representation of Images in V I

The computational principle motivating the incorporation of spatially-large, low SF tuned 

Gabor-like filters into the ODOG and NSS models, is that without them there would be no 

‘filling-in’ of the surfaces bound by edges (which would be signaled by cells tuned to  higher 

SFs), and hence the reconstruction of the retinal image would be incomplete. Such filter- 

derived models are performing an  image reconstruction based on something tha t resembles 

a local-Fourier analysis of the original image; the filters provide a measure of the terms in 

a Fourier series representation of a local region of the image. However, the local mean (or 

D.C) level is not adequately represented by these filters, and in essence the low SF filters 

are compensating for this deficit.

In theory, the ODOG and NSS models could be modified to incorporate the filter output 

from cells tha t are low-pass in SF, possibly with blob-like receptive fields replacing the low
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SF cells that are large in spatial extent (the blobs need not be large to sample low SF and 

D.C.). In practice, this would introduce an additional low-pass SF channel in place of those 

tuned to 0.1 c/° and 0.2c/°, but as this is essentially providing a measure of the local D.C. 

component it is not clear how any meaningful SF or orientation dependent gains could be 

applied, if at all, and hence whether W hite’s effect would emerge. Essentially, it would not 

naturally fit into the current incarnations of the ODOG and NSS models.

An alternative view is presented, based on the properties of the luminance responsive cells 

discussed thus far. It is conjectured that the cells which appear to consistently respond 

to absolute surface luminance, are those which appear to leak local D.C information in 

their response (Figure 3.22b), and that they do not play an important role in surface rep­

resentation, as their response to a surface would be hard to disambiguate from th a t to  a 

sub-optimal grating; tha t is. their leaky behaviour is not part of any significant functional 

role. However, it is believed that the blob-like cells are involved in surface representation, 

but tha t they are not part of an explicit feed-forward luminance code - if arrays of such cells 

did exist, and the retinal image is explicitly represented in the cortex, then there would be 

little reason for the existence of contrast coding cells upstream from VI.

This view is supported by work which proposes that contrast coding cells exist as a direct 

result of the optic tract having a limited channel capacity, which is physically incapable of 

transm itting the required amount of luminance information for an explicit representation 

of the retinal image (Barlow, 1961, 1981). The amount of information which can be trans­

m itted through the optic nerve has been estimated to be two orders of magnitude less than 

the amount of information arriving at the retina (Kelly, 1962; Nirenberg, Carcieri, Jacbs, 

&; Latham, 2001; Z. Li, 2006). By coding contrast, however, the necessary information is 

efficiently coded (Buchsbaum Sz Gottschalk, 1983; Z. Li, 2006). Further motivation for the 

existence of contrast coding cells is tha t they make for good ‘feature detectors’, responding 

well to bars and edges, the fundamental constituents of images (Marr, 1982). T hat is, they 

are optimised for performing image processing tasks.
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Instead, it is proposed here, th a t the blob-like cells represent the luminance as inferred from 

the responses of contrast coding cells, and tha t their resultant output represents inferred 

surface luminance. In the context of the experiments described above, this theory is im­

plicitly asserting that the cells found to responsive to absolute surface luminance are those 

that leak D.C., and those which respond in accordance with perceived brightness are the 

VI blobs. This view forms the basis for an alternative model of luminance coding developed 

in the next chapter.
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Figure 4.1: An example of a natural scene with information present at multiple scales.

Chapter 4: The Im plicit Coding of Luminance in V I

In this chapter, an alternative approach to modelling the functionality of VI is presented. 

The model deviates from the local-Fourier analysis techniques deployed by the NSS and 

ODOG models, and consequently large spatial filters tuned to low SFs are not required. 

Instead, the problem of recovering the local mean (or D.C.) level of luminance from the 

output of contrast-coding filters (tuned to the SFs typically found in V I), is cast m athe­

matically in the Scale-Space paradigm, and then solved. The model implicitly codes the 

luminance of a given surface, and as such is referred to as the Implicit Luminance Coding 

(ILC) model.

Scale-Space, Local Jets, and the Known Functionality o f V I

The Scale-Space theory of image processing has been developed by a segment of the com­

puter vision community, with the aim of providing a multi-scale representation for images 

(Koenderink, 1984; Lindeberg, 1996; Haar Romeny, 2003). The need to describe an image 

at multiple scales arises from the fact that some information is more relevant a t smaller 

scales, and some at larger scales: for example, discussing the concept of a solar system on 

the scale of individual particles yields little meaningful information, and it is more relevant 

to think about it at the scale of individual planets. Similarly, in the natural scene depicted 

in Figure 4.1, there is meaningful information at the scale of individual leaves as well as at
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Figure 4.2: An example of a set of derivative of Gaussian filters, up to second-order in x- 
and y-differentiation.

the scale of the tree’s trunk. When analysing this image, choosing one scale for describing 

both sets of objects will results in a loss of information relative to independent descriptions 

at both the scale of leaves and tree’s trunk.

One crucial requirement for such a multi-scale image representation, is that image features 

at coaxse-scales should constitute simplifications of corresponding structures at finer-scales; 

they should not be accidental phenomena created by the method for suppressing fine-scale 

structures. Scale-Space theory achieves such a multi-scale representation by convolution of 

the image with a Gaussian filter and its derivatives, as given by,

dn dm 1 ( - ( z 2 +  y2) |  tA ^
9n,m(x,K a) = ̂̂  exp j  2g2 j , (4.1)

where the notion of scale is represented by the standard-deviation, cr, of the Gaussian func­

tion. Figure 4.2 depicts a set of such Gaussian Derivative (GD) filters up to second order
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Figure 4.3: An example of first (left) and second order (right) GD filters oriented to an 
angle of \  to the horizontal. These filters are created by ‘steering’ GD filters of the same 
order, oriented to angles of 0 and |  to the horizontal.

in x- and y-differentiation. As a model for the RF structure of VI simple cells, GD fil­

ters have proven a successful alternative to the DoG and Gabor models, and accurately fit 

empirically-derived RFs with fewer parameters (Young, Lesperance, &: Weson Meyer, 2001; 

Young & Lesperance, 2001).

T he  R e p re se n ta tio n  of O rien ta tio n  In fo rm a tio n

One of the interesting properties of the GD filters, is that it is possible to construct GD 

filters oriented (or ‘steered’) to an angle away from the horizontal and vertical, through a 

weighted linear combination of filters oriented to the horizontal and vertical (Freeman & 

Adelson. 1991). First and second order oriented filters are constructed as follows,

01 =  yi,o cos 0 +  yO)i sin 0 (4.2)

02 =  02,0 cos2 0 -  201,1 cos 0 sin 0 +  00,2 sin2 0, (4.3)

where gf and g\ represent first- and second-order filters oriented at angle 0 to the horizontal.
a n.

Figure 4.3 illustrates exampes of gf  and 024 filters. An advantage of steering filters, is that 

fewer filters are required to represent information at all orientations; only a subset of the

set of filters tuned to all orientations, are required to represent all orientation information.
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Furthermore, the second-order gi,\ filter, whose structure is harder to reconcile with the 

known RF properties of cells in V I, can now be thought of as being produced from the 

output of g\  and <72,0 (by re-arrangment of Equation 4.3), whose structures are common to 

VI. This latter point is critical for another property of GD filters, which make extensive 

use of the g\,\ filter, and will be described shortly.

The Local-Jet: From Filter Output to Image

In accord with the ODOG and NSS models, which use a weighted linear sum of filter 

outputs to reconstruct the original image, the output from GD filters can be combined to 

reconstruct the input image. In Scale-Space, this proceeds by the exploiting the fact th a t 

the convolution of an image with a GD filter is equivalent to using the appropriate derivative 

operator, on the output of the original image convoluted with a pure Gaussian filter. T hat 

is,

dn dm

dn dm 7/
-7(x ,y ;a),

dxn dym

where 7(x, y) is the original image and 7(x. y\a )  is a blurred version of the image (through 

convolution with a Gaussian filter of scale a). Given the above relation, it is then possible 

to construct a 2-D Taylor expansion at a point (x, y) on the blurred image (using the output 

of GD filters at that point), which can then be used to approximate the blurred image at a 

point (x +  Ax, y +  A y) in the neighbourhood around the original sampling point, where,

7(x +  A x ,y  +  Ay; <7) =
Q=0 fj=0

(A x)Q(A y)0 
a\/3\

8a d13 -

fJO rW ;*)dx ,Q By'P x ' = x , y ' = y

and is the definition of a local-jet (Florack, Haar Romeny, Viergever, & Koenderink, 1996). 

Truncating this series expansion of the blurred image to include only terms up to  second-
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order, yields an approximation tha t can be computed using the filters in Figure 4.2, which 

are typical of the RFs of cells in VI,

I ( x  +  A x ,  y +  A y ,  a) ~  go# +  (Ax)pi,0 +  (Ay)g0,i

+  ̂ (A x )232,o +  {Ax){Ay)ghl  +  i ( A y ) 2g0,2. (4.4)

The first term in (4.4), #o,o> represents a measure of the mean luminance in the region 

about the sampling point, and plays an analogous role to the large spatial filters of the NSS 

and ODOG models, which attem pt to sample the local mean (or D.C.) component of a

local-Fourier representation of the image. However, as the <70,0 filters respond to  regions of

uniform luminance (i.e. 0 c/°), they do not have to be large to represent low SF information 

adequately. In fact, there is no size constraint at all, and the filters fulfil their purpose at 

every scale of interest.

It should be noted, that in terms of neural processing, the local-jet is equivalent to  the 

weighted linear sum of filter outputs, where the weights (or gains) are determined by the 

coefficients of the 2-D Taylor expansion. Such a calculation is easily executed by a neuron 

which integrates the information from the output of cells with the necessary RF properties, 

with varying degrees of synaptic connection strength representing the required gains. This 

process would proceed in the same way as th a t for calculating the outputs of VI cells from 

the weighted linear sum of LGN cell outputs (Dayan & Abbott, 2001). Thus, in this context 

the way in which the local-jet reconstructs the image is analogous to the way in which the 

image is reconstructed by the ODOG and NSS models.

Local Jets and the Role of ‘B lob’ Cells in V I

Chapter 3 concluded by proposing th a t the responses of cells with the single-lobed or ‘blob’ 

like RF structures that have been found in V I , are consistent with tha t of inferred luminance 

in a representation of surfaces. T hat is, th a t the responses of such cells are not derived from
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Figure 4.4: The test image for the ILC model, referred to as “Lena” . The image is 256 x 
256 pixels large and has a 1 / / Q distribution of power as a function of SF (with a  =  —0.04), 
in keeping with all images classified as natural scenes.

a feed-forward luminance code from the retina to VI, but are inferred from the responses of 

contrast coding cells. Formulating these ideas in the context of Scale-Space, the responses 

of the <7o,o filters required to reconstruct the original image using local-jets, must be derived 

from the outputs of higher-order GD filters, in character with the way that the g\,\ filters 

have no clear analog in VI, but can be recovered from the information in other filters th a t 

do (by means of steering filters).

Given the above discussion, a new model of low-level brightness is proposed, based on the 

following ideas:

• An approximation to the retinal image is reconstructed using the outputs of contrast 

coding cells of the type most commonly found in VI. These are modelled using the 

first- and second-order GD filters of Scale-Space;

• the cells in VI need not sample the retinal image continuously. RFs need only overlap 

to the extent that information is neither obviously lost or redundant, in keeping with 

the ideas on coding efficiency described by Field (1987);

•  a blurred version of the retinal image is used as the desired approximation to the 

retinal image. This is reconstructed in-between the sampling points of GD filters by 

using an approximation of the second-order local jet (without the <70,0 component), 

to ‘fill-in’ local brightness values in square regions around each sampling point. Each 

square region is referred to as a Local Brightness Tile (LBT);
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Figure 4.5: An example of Lena reconstructed using local jets (with a scale of a  =  2 pixels), 
arranged in a lattice structure, and two adjacent local brightness regions (or tiles). The 
first- and second order GDs are sampled at the centre of each LBT. The two tiles overlap 
(represent mutual information) in the shaded region.

•  the <?o,o mean-luminance component associated with each LBT is either inferred or 

recovered through global analysis of the image. This value is then added to every point 

on the LBT. The resulting set of ‘shifted’ LBTs yield the final brightness image. Thus, 

low SF information in the image is reconstructed as opposed to explicitly sampled. 

The set of 50,0 components constitute the global luminance structure of the image;

• the image is reconstructed independently at multiple scales, which are subsequently 

combined in an un-weighted linear sum to yield the final predicted brightness image.

Recovering Global Luminance Structure at a Single Scale: An A nalytical 

Solution

Figure 4.5 depicts a reconstruction of the test image depicted in Figure 4.4, performed using 

local jets without the <70,0 component (and with a scale of a — 2 pixels) to construct LBTs, 

which are arranged in a lattice structure. Also shown are two adjacent LBTs. The first- 

and second order GDs used in each local jet are sampled at the centre of each LBT. It is
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local-brightness tile

constant brightness 
shift added to minimize 

the m ean-squared 
difference of values in 

the overlap regions overlap region 
between tiles

Figure 4.6: An example of how two LBTs are brought into alignment, implicitly coding the 
mean luminance level of the local jets.

clear that the resulting output contains nothing more than a representation of the lines and 

edges in the original image (at a scale of o = 2 pixels). Formally, the relationship between 

tile (i , j ) constructed without the zero-order component in the local jet, 7 jj, and the desired 

tile constructed with the zero-order component in the local jet, I{j,  is given by,

=  Ii,j “I" Zi,ji (4.5)

where Zij is a constant, and Zij = go,o is the correct solution to (4.5). The set of Zij's 

can be correctly recovered from the information held just within the LBTs, the /» j’s. Con­

sider the blurred version of the image, 7, as a continuous function on R2 (put aside the 

fact that it is intrinsically discrete and composed of pixels). When I  is reconstructed using 

local jets without the zero-order term, discontinuities are introduced into the function, at 

the boundaries between adjacent LBTs. This is as a direct consequence, of the fact that 

the value at the origin of every LBT (the sampling point), is 0 by default14 regardless of 

the fact that the true image I  may be continuously increasing or decreasing; that is, the 

reconstruction ignores the global luminance structure which varies by an additive constant

14which can be easily seen by setting A x  =  A y =  yo.o =  0 in (4.4)
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throughout each point on every LBT. One way of recovering the global luminance struc­

ture is to enforce continuity between all adjacent tiles. This is achieved as follows: firstly, 

by structuring the tiles in such a way th a t adjacent tiles ‘overlap’, so that information 

at the boundary of one tile is also contained at the boundary of the adjacent tile. Fig­

ure 4.6 depicts two such ‘overlapping’ tiles and indicates the overlap region of each tile in 

red15. Secondly, by finding the Zij for each tile th a t minimises the squared difference of 

the mean values in the overlap regions, between adjacent tiles. That is, finding the addi­

tive shift tha t makes adjacent tiles as continuous as possible, as demonstrated in Figure 4.6.

The squared difference of the mean values in the overlap regions of tiles I i j  and h+\,j in 

Figure 4.6, is given by,

k p s ) - [ k p \
k=1 /  \  k=1

(4.6)

where there axe n  pixels in the boundary, and • represent the local brightness values 

at the boundaries, and M i j  and M t+ ij the mean local brightness values at the boundaries. 

When an additive constant is added to  tile 7*j, (4.6) is then modified to,

&i+l,j  — [ { Mi j  +  Zi j )  Mi- |- l ,  j ]  • (4 * 7 )

15It should be noted that in the final image reconstruction, after all of the Zij  have been calculated and 
added to the LBTs, only one of the two overlap regions at every tile boundary are kept, and the other is 
discarded. The convention followed in this work is to discard all overlap regions above and to the right.
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JQ
The optimal Zij is then calculated by solving = 0 for Zij, which yields the following

solution,

Zij =  Mi+i j  — M i j , (4.8)

the difference in the mean boundary values. It should be noted, that minimising the mean 

squared difference16 (as opposed to  the squared difference of the means), yields an identical 

solution to (4.8).

For a LBT surrounded by four adjacent tiles, the optimal Zij is determined by minimising 

the sum of the squared difference of the means, for all four adjacent tiles. This sum defines 

an error function,

E{Zij)  =  &i,j+l 4“ 4“ S i j —i +  S%—\ j ,  (4*9)

which is minimised by the solution to  f 1 = °> s iven by>

Zij = — [(Mij+i — Mij) +  (Mi+ij —  Mij)

4" { M i j -1 — M i j ) +  (M i - i j  — Mij)],  (4.10)

the mean of the differences of the mean boundary values. Both of the these examples of

tile alignment have only considered the additive constant applied to one tile to bring it

into alignment with its neighbours, and have neglected the fact that each neighbouring tile 

needs to have an additive constant added to it in order to align the entire set of tiles (and 

not just one to all the others). T hat is, all Zij have to be calculated simultaneously. In 

order to step up to this level of complexity, a new error function for the entire set of tiles

16d efin ed  as, S?+ltj =  £  [ ( / ® /  +  Z i j )  -  •
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has to first be defined,

N  M  1 1

E(z )  = E E E  E  Si+pJ+q, (4.11)
i = l j = l p = —1 q= —1

where,

^i+pj+q ~  [{Mij  4- Zij) (Mi+pj+q -^i+pj+q)] i (4-12)

and where N  and M  are the dimensions of the array of LBTs.

If a tile is at the boundary of the image then,

M bou ndary  =  ZbounddTy =  0, (4.13)

such that Si+pyj+q =  [M i j  +  Zij]2. This is equivalent to aligning all boundary tiles to  the

same ‘virtual plane’, and is a  requirement for an analytical solution to the problem, as will

become apparent17.

The optimal set of Z i j ’s are now derived from the solution to dEJ ^  =  0, which yield a 

system of N  x M  simultaneous linear equations,

A C1 ( ^ ^ ^
— =  'y " y   ̂ [(zi+pj+q — Zij) +  (Mj+pj+g — Mij) \  =  0, (4-14)

a Z i 'j p = - \ q = - l

17Physicists may recognise these as the Dirichlet boundary conditions that arise in the solution to some 
well known differential equations.
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with TV x M  unknowns. Equation (4.14) can then be re-written as,

w t\j • z =

where qi j  =  -  £ £ = - 1. S j= _ i  ( Mi +Pj + q — M i j ) ,  and w i j  is vector of length TV x M  and 

contains constants th a t weight the set of additive constants, z, such that,

l l
Wi,j ' Z =  ' y  1 y  > ( z i + p , j + q  ~  z i , j ) •

p = - 1 <7= — 1

The entire set of w i j  can then be assembled into a sparse matrix, W , with dimensions 

(TV x M )  x (TV x M ) ,  where each row represents one of the w Jj,  such tha t the entire set of 

simultaneous linear equations defined in (4.14) can be written as,

W z  =  q, (4.15)

where q  is a vector of length TV x M  containing all of the qi j .  The solution of (4.15) now 

reduces to finding W -1 . Provided th a t the  boundary conditions in (4.13) are satisfied, then 

det[W] ^  0, and W -1 always exists, such tha t,

z =  W -1q, (4.16)

where W -1 is not sparse, but fully populated. It should be noted that the optimal shifts, 

z, calculated using equation (4.16), do not constitute a unique solution to =  0. The

full set of solutions are given by z =  z +  c, where c is an arbitrary constant. However, this

does not change the validity of the solutions, as c  is added to all Z i j  simultaneously, which 

preserves the state  of continuity between adjacent tiles. T hat is, the minimum configuration 

of tile aligment arrived by minimising E ( z), is invariant under a translation of z, and the
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m inim ize global 
error function

recover global 
brigh tn ess structure

Figure 4.7: An example of how the global luminance structure can be analytically recovered.

complete set of solutions lie on a 1-D manifold (a line), in the (N  x A/)-dimensional space 

of additive shifts.

Figure 4.7 illustrates how this process can be used to recover the global luminance struc­

ture, that is, estimate the po,o components of the local jets used to fully reconstruct the 

image. Figure 4.8 illustrates a map and plot of the differences between a reconstruction 

made using the actual 510,0 components (sampled from the image), and those calculated 

using the algorithm described above. It is clear to see from the concurrent plot of the 

reconstruction cross-sections tha t the two are almost identical. This is confirmed by the 

root-mean-squared error (RMSE) between the two reconstructions, which was calculated 

to be 0.014 model-units18., where the standard deviation of model output values for the 

reconstruction made using the actual #oto components was calculated as 0.42 model-units. 

Thus, it is possible to accurately recover the local-mean (or D.C.) luminance level without 

directly sampling it, or using filters with a large spatial extent as an approximation.

The error in the reconstruction of the global luminance structure is a direct result of the error 

incurred by the local jets when estimating the form of I{j  with derivative information from 

a single point, and only using GD filters up to second-order. Figure 4.9 illustrates a map 

and plot of the differences between a reconstruction made using the actual <70,0 components 

and those calculated using the algorithm described above, for the same size of LBT as 

before, but with GD filters set at double the scale (<r =  4); analogous to decreasing the size

18where model-units are defined as the pixel-values increments in the reconstructed image
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Figure 4.8: (left) A map of the differences between reconstructions made using the actual 
<70,0 components and th a t calculated using the analytical ILC algorithm, (right) A plot of 
the reconstruction made using the actual ^0,o components (black) and those derived from 
the analytical ILC model (red), for a cross-section at the midpoint of the figure on the left.

Figure 4.9: (left) A map of the differences between reconstructions made using the actual 
<70,0 components and th a t calculated using the analytical ILC algorithm. The tiles are the 
same size as th a t used in Figure 4.8, but the scale of the GD filters used in the local jets 
is doubled (a =  4), such that there is less error in the reconstruction, (right) A plot of the 
reconstruction made using the actual <70,0 components (black) and those derived from the 
analytical ILC model (red), for a cross-section at the midpoint of the figure on the left.

of the LBTs. As the function becomes smoother and more predictable, the reconstruction 

error decreases: the RMSE between the two reconstructions was re-calculated to be 0.0033 

model-units.

A Biologically Plausible Im plem entation of the ILC M odel

Despite the success of the analytical ILC algorithm in reconstructing the global luminance 

structure, its mathematical formulation is incompatible with the distributed processing 

properties of neurons (MacKay, 2003). That is, it is asking too much of a single neuron 

to be able to invert a large m atrix analytically. Furthermore, the information required to 

compute the global brightness structure comes from across the entire visual field19. Thus,

19by inspection of (4.16) it can be seen that every  optimal Zij  is a weighted linear sum of all the g /s ,  and 
hence the M i tj , which come from across the entire visual field.
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the ILC algorithm would require the existence of a network of long-range inter-neurons 

to transm it this information - depending on the existence of such a system of cells in VI 

would be controversial, as discussed in Chapter 3. If the ILC approach to recovering global 

luminance structure is to  be considered a viable biological process, then it needs to  be cast 

in the computational context of neurons.

One way in which this problem can be addressed, is by relaxing the criterion for an analyti­

cally exact solution and proceeding to minimise the error function with a numerical approx­

imation to the analytical solution. Minimising an error function by gradually converging to 

an optimal solution is a processes synonymous with the training phase of neural networks, 

and in-particular with the functionality of Hopfield networks, which can be constructed to 

solve similar optim isation problems (Dayan & A bbott, 2001; MacKay, 2003). The con­

struction of a fully operational spiking neural network tha t implements the ILC algorithm 

is beyond the remit of this work. Instead, what will be described is a biologically-plausible 

implementation of the ILC algorithm, based on a numerical method for minimising the error 

function. Furthermore, it will be shown th a t by considering only local interactions between 

neighbouring LBTs, a globally optim al solution can still be recovered.

Perhaps the simplest algorithm for minimising a function, is the method of Gradient Descent 

(GRADD). By taking steps proportional to  the negative of the gradient of the function at 

the current point, the GRADD algorithm approaches the local minimum of the function 

(Press, Teukolsky, Vetterling, & Flannery, 2002). For the error function defined in (4.11), 

each step proceeds as,

zn+1 =  zn -  7V £ (z ) |z=zn , (4.17)

where n  is the number of iterations, 7  is a constant and determines the size of each ‘step’ 

across the function, and z° are the initial conditions th a t must be defined before the algo­

rithm  begins (and which may affect the outcome).
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If z° =  0 are the chosen initial conditions and 7  =  | ,  then the components of (4.17) after 

the first step become,

1 1 1
*11  =  - 4 E  S  (M i+Pd+g -  M i.i)

p = - 1 <?=—1

1 1 1
Z 12 = 5Z (-̂ H-P̂ +q -  ^1,2)

P = - l  q=~ 1 

1 1 1
=  — 4 (Mi+p,j+q — M i j )  . (4.18)

p = - 1 < 7 = -l

Hence, the best the algorithm can do without a priori knowledge of what the initial condi­

tions should be, is to shift each tile by the mean difference of the mean boundary values as in 

(4.10). If these shifts are immediately added to their LBTs, and as opposed to  progressing 

to step n  = 2 of (4.17), the mean difference of the mean boundary values is recalculated,

and step (4.18) repeated, then an alternative to  (4.17) is constructed. This algorithm is a

modification of (4.17) such that,

zn+1 =  zn -  7 V £ (z ; n ) |z=o, (4-19)

where,

*5?1 =  z"j ~ 1 E  E  (w +p j+ i  -  m "j ) ■ (4-2°)
p = - 1 g = —1

This is designed to be the simplest and most biologically plausible implementation of the

GRADD algorithm: if the shift required for each LBT is represented by a single cell, then

the only inputs th a t this cell would require are its boundary differences with neighbouring 

cells. This process could also proceed in real time, which would not be the case if each tile
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Figure 4.10: A plot of the RMSE per-tile after each successive iteration of (4.19), for the 
test image reconstructed with local jets of a  =  2, as in Figure 4.5.

Figure 4.11: The reconstruction of the test image at a scale of a = 2 using the biologically 
plausible implementation of the ILC algorithm. From left to right: the reconstruction 
terminated after 0, 8, 64, and 512 iterations of (4.19).

has to receive input about the shifts from neighbouring tiles, before its own shift could be 

updated (which would be the consequence of a direct application of (4.17) when n > 1).

Figure 4.10 shows a plot the RMSE alignment error per-tile after all of the shifts have been 

added to their corresponding LBTs,20 for the test image reconstructed with local jets of 

a =  2 as in Figure 4.4. The plot clearly shows the rate a t which this biologically-plausible 

implementation of the ILC algorithm converges. The RMSE alignment error per-tile for 

the analytical version of the ILC algorithm is calculated as 0.62 model-units, and after 1000 

iterations the biologically plausible ILC algorithm arrives at 0.72 model-units; within close

20RMSE alignment error per-tile is defined as the sum of S*+ =  £ YJk=\ [(£%/ +  2»,j) — > f°r
all tile boundaries in the image, divided by the number of tiles representing the image.
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proximity of the analytical solution to  (4.16).

Figure 4.11 illustrates the reconstruction of the test image at a scale of a = 2 a t intervals of 

0, 8, 64, and 512 iterations of (4.19), and dem onstrates the ability of the biological imple­

mentation of the ILC algorithm to not only recover the global luminance structure, but also 

to accurately reconstruct an image from a set of contrast coding cells in VI th a t sample the 

image discretely. It should be noted a t this stage, th a t it is not crucial th a t the RFs are 

perfect GDs - small deviations from this form will introduce some degree of error into the 

LBTs, and the minimum possible alignment error, but will ultimately yield similar results 

via the reconstruction process.

Towards a Com plete M odel o f Luminance Coding in V I

Before the biological ILC algorithm can be used to  model low-level visual processes, the 

following issues have to be considered: the role of multiple scale and SF channels; the 

scales at which the visual system recovers the global luminance structure; the algorithm ’s 

performance under noisy conditions; and the minimum number of iterations which the 

algorithm needs to perform in order to  achieve an accurate reconstruction.

M ultiple Scale Channels

Motivation for the inclusion of multiple scales in the model comes from the principles of 

Scale-Space: th a t there is a need to  represent image information at multiple scales as 

different types of information are present a t different scales. Furthermore, there are the 

physiological studies which have found cells tuned to many different SFs (De Valois, Al­

brecht, & Thorell, 1982), and evidence from psychophysical experiments which demonstrate 

that sensitivity to a particular range of SFs can be altered by adaptation to SFs in tha t 

range (Goldstein, 2003). Thus, the existence of multiple scales is a reasonable assumption.

The issue of ‘how many channels and at what scale’, is constrained from physiology and 

the available computing power for running the model. Following on from the discussion in
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Figure 4.12: The final multi-scale reconstruction of the test image is the result of an un­
weighted linear sum of the reconstructions at every scale.

Chapter 3 regarding the range of SFs represented in VI, early studies seldom found many 

simple cells in the foveal representation of VI tuned to SFs below 0.5c/°. The mean SF 

tuning was found to be between 3.0c/° and 4.6c/°, and cells tuned to SFs as high as 15c/° 

were also discovered (De Valois et al., 1982; Foster, Gaska, Nagler, &; Pollen, 1985; Silver­

man et al., 1989).

The final incarnation of the biological ILC algorithm has been configured to use images with 

dimensions of 512 x 512 pixels to represent 10° of visual angle. W ith this configuration, GD 

filters with a scale of a = 16 (or 0.313°) are tuned to SFs of 0.6c/° for first-order derivatives 

and 0.8c/° for second order derivatives. Similarly, GD filters with a scale of a = 1 (or 

0.020°) are tuned to SFs of 9.6c/° for first-order derivatives and 12.8c/° for second order 

derivatives. Filters with a < 1 are not used to avoid discretisation problems. The half-width 

of each square LBT, Ax, is set to a for each scale, such that the distance between adjacent 

sampling points is 2a, and the Gaussian envelopes of filters at adjacent sampling points 

sum to approximately one across the entire image. This forces all pixels to contribute an 

approximately equal amount to the total output of all filters21. Thus, information from 

the retinal image will not be over or under-represented in the filter output. Furthermore,

21 That is, if a 2-D Gaussian distributions with scale a  are arranged on a lattice with a spacing of 2 a , then 
the sum over all distributions will be approximately equal to one across the entire image. Each point on the 
image will then contribute an approximately equal amount to the responses of the GD filters

100



Chapter 4: The Implicit Coding of Luminance in VI

Figure 4.13: The test image in Figure 4.4 degraded by a source of Gaussian distributed 
noise with the standard-error of the noise set to 64 grayscale values.
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Figure 4.14: (left) A plot of the reconstruction made using the analytical ILC algorithm 
for the original image (red) and the noise degraded image (black), for a cross-section at 
the midpoint of the a = 16 (0.31°) scale channel’s output. The RMSE between the two 
reconstructions was calculated to be 0.019 model-units. (right) A plot of the reconstruction 
made using the analytical ILC algorithm for the original image (red) and the noise degraded 
image (black), for a cross-section at the midpoint of the <7 =  1 (0.02°) scale channel’s output. 
The RMSE between the reconstructions was calculated to be 0.1 per-tile.

LBTs with A x =  a  will not incur a pathological amount of error in their approximation 

of the blurred image, as demonstrated in Figure (4.8). This configuration yields 256 tiles 

for a cr =  16 (0.313°) channel and 65,536 tiles for a a =  1 (0.020°) channel. If the size of 

the image used were larger, such that filters tuned to higher SFs could be used, then the 

number of tiles involved would result in the model taking a prohibitory long time to run. 

However, seeing as the vast majority of simple cells in VI are tuned to SFs between 0.5c/° 

and 8.0cf° (De Valois et al., 1982; Silverman et al., 1989), it is felt that the model configured 

as described above, is capable of accurately representing the scales present in VI. Between 

cr =  16 (0.313°) and <7 =  1 (0.020°) channels, the other scale channels which are included 

are <r =  8 (0.156°), a =  4 ( 0.078°), <7 =  2 (0.039°). The principle reason for assembling
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Figure 4.15: (left) Multiple-scale reconstruction of the noisy test image with a cross-sectional 
profile taken at the mid-point, (right) Reconstruction of the test image at a scale of cr =  
1 (or 0.020°) with a cross-sectional profile taken at the mid-point. The multiple-scale 
reconstruction has the effect of averaging out the effects of the noise in the test image.

scale channels in octave intervals, is that this forces the number of tiles necessary to cover 

the image to be an integer number for each scale. This configuration also yields first- and 

second order GD filters with a mean SF tuning of 4.3c/°, which lies in the range found in 

VI. The final output of the biological ILC is the result of an un-weighted linear sum of the 

reconstructions at every scale. Figure 4.12 demonstrates the model’s output for the test 

image. Although the sum over scales has no obvious significance, as it does for the NSS and 

ODOG models, where it is motivated by each channel representing a component in a local 

Fourier-series representation of the image, its necessity will become more obvious after the 

issue of ‘robustness to image noise’ is discussed.

R o b u s tn e ss  to  Im ag e  N oise

Figure 4.13 illustrates a version of the test image in Figure 4.4 degraded by Gaussian 

distributed noise with a standard-error of 64 grey-scale values. This may be considered a 

crude model of the noise present in the primary visual stream from the PRCs in the retina up 

to the set of simple cells whose RFs are modelled as GD filters. Figure 4.14 shows concurrent 

plots of the reconstructions made by the analytic ILC algorithm for both the degraded and 

original test images, for the largest and smallest scales. It is apparent that the large scale is 

little effected by the presence of noise whereas the small scale is heavily perturbed. This is 

reflected in the RMSE between the reconstructions, calculated as 0.019 for the large scale 

and 0.1 for the small scale (almost an order of magnitude greater). Furthermore, Figure 

4.15 illustrates the output for the analytical multi-scale reconstruction of the degraded test
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Figure 4.16: Natural scene image used in the analysis of algorithm convergence.
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Figure 4.17: (left) A plot of the average RMSE per-tile, expressed as a percentage of the 
total RMSE per-tile after each successive iteration, (right) A plot of the average RMSE 
per-tile, expressed as a percentage of the RMSE per-tile of the analytical reconstructions, 
after each successive iteration, for each individual scale channel: (yellow) a =  1 (0.020°), 
(blue) <7 =  2 (0.039°), (green) a  =  4 (0.078°), (red) (7 =  8 (0.156°), (black) a  =  16 (0.313°).

image (left) and the analytical reconstruction for just the smallest scale (right). It is clear 

to see that the multi-scale reconstruction has a considerably less granular appearance as a 

consequence of the strong smoothing properties of the large scale channel, while retaining 

a high-level of acuity. Hence, it can be concluded that the larger scales, in the context of a 

multi-scale reconstruction, play an important role in providing a robust calculation of the 

global luminance structure.

D e te rm in in g  th e  N u m b e r  o f I te ra tio n s

The RMSE per-tile, over all scales, and expressed as a percentage of the total RMSE per-tile 

before the algorithm began, was calculated for three natural scene test images (Figure 4.1, 

Figure 4.4, and Figure 4.16), and averaged. Figure 4.17 (left) illustrates how this quantity 

evolves through time (with the number of iterations), and Figure 4.17 (right) illustrates 

how this quantity evolves when it is calculated for each individual scale channel. It is clear
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that the algorithm does not need to progress further than  about 300 iterations before an 

adequate reconstruction is achieved in terms of error. However, as opposed to selecting 

a fixed number of iterations based on a subjective judgement, the following concept was 

used instead: the analytical solution given by equation (4.16), is a linear combination of all 

mean local brightness values at the boundary. That is, it takes information from all tiles. 

Motivated by this fact, it was decided tha t each tile must have at least one opportunity 

to ‘in teract’ with the tile most distant to it. The two most distant tiles at any scale are 

in opposite corners of the image. For these two tiles to be able to interact, it takes twice 

as many iterations as there are tiles between the corners. This is as a consequence of a 

tile not being able to ‘interact’ with a tile tha t is not directly adjacent, and hence having 

to interact by proxy, via adjacent tiles, which takes two steps as opposed to one. For the 

<7 =  1 (0.02°) scale channel there are 362 tiles between corners, and hence 724 iteration 

are required for these two to have the opportunity to interact. Although the larger scales 

require fewer iterations in this paradigm, it makes little sense to term inate the algorithm 

for one scale, while another scale is still being processed, and hence 724 iterations will be 

used for all channels.

By inspection of Figure 4.17, it is apparent tha t all scale channels will have a RMSE per-tile 

of < 10%. However small this figure may appear, it should be acknowledge th a t there are 

a total of 87,296 tiles in the model, and thus in relative terms the to tal amount of error in 

the system is still significant.

The Spatial Frequency Content of the Biological ILC M odel’s Output

Now th a t a complete model of luminance coding in VI has been proposed, it remains to test 

the quality of its image reconstruction. This will be performed by analysing the SF content 

of the model’s reconstructions for white noise, a natural scene with a j z  distribution of 

SFs (Figure 4.4), and a 0.4c/° fundamental frequency square wave grating. Results will 

be compared with the SF content of the original input and with tha t from a multi-scale 

blurring at the same spatial scales as the model (equivalent to including the actual po,o 

components in the reconstruction, or convoluting the input images with a 2-D version of
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Figure 4.18: The SF content of the model’s output (blue lines) compared to that of the 
input image (black lines) and that from a multi-scale blurring at the same spatial scales as 
the model (red lines), for white noise (top left), a natural scene (top right), and a 0.4c/° 
square wave grating (bottom).

the filter depicted in Figure 4.25). The comparison with the multi-scale blurring output has 

been included, so that differences in SF representation can be compared against the pure 

blurring properties of the model, and thus highlight any that arise out of the biological tile 

alignment process.

Figure 4.18 (top left) illustrates the SF content of the model’s output to white noise. It 

can be seen that both the model’s output and that from the multi-scale blurring have less 

energy than white noise from 0.45c/° onwards, and that the model’s output has less energy 

than than the multi-scale blurring up until 17.5c/°, after which the model has marginally 

more energy (by «  1%). Thus, the biologically motivated reconstruction process, which will 

be shown to generate contrast effects, does not represent SFs as efficiently (in terms of raw

Power Spectrum  o f  IVhite N o ise
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information), as the multi-scale reconstruction th a t will not be shown to generate contrast 

effects.

Figure 4.18 (top right) illustrates the SF content of the model’s output to a natural scene. 

Once again, both the model’s output and tha t from the multi-scale blurring have less energy 

from 0.45c/° onwards, and the model’s output has less energy than than the multi-scale 

blurring from 0.77c/° until 4.5c/°, after which the model has «  2.5% more energy than 

the multi-scale reconstruction, and «  15% less energy than the natural scene. Thus, the 

biologically motivated reconstruction process marginally increases the high SF content of 

this natural scene relative to the multi-scale blurring (although this is more likely to be 

high SF reconstruction noise), but in general does not represent high SFs efficiently.

Figure 4.18 (bottom) illustrates the SF content of the model’s output to a 0.4c/° square 

wave grating. Consistent with the outputs discussed above, the model represents the low­

est SFs (0.4c/° and 1.2c/°) almost perfectly with respect to the original image and the 

multi-scale blurring, and onwards from 1.2c/°, both the model’s output and tha t from the 

multi-scale blurring encode the higher SFs inefficiently, with the model having a marginally 

higher energy than  the output from the multi-scale blurring (again, this is more likely to 

be high SF reconstruction noise).

To summarise, the model represents low SFs (<  lc /° )  with reasonable accuracy, but higher 

SFs are considerably suppressed. This is a result of the intrinsic multi-scale blurring prop­

erties of the model, which can be seen by comparing the model’s output to th a t from a 

multi-scale blurring with no necessary reconstruction. However, the model represents higher 

SFs (>  5c/°)  marginally better than  the pure multi-scale blurring output, by «  1% — 3%. 

This is likely to arise out of the remaining tile-alignment error inherent in the model’s re­

constructions a t multiple scales, for which it has been shown that there is more error in the 

higher spatial-scale channels. This is of particular relevance, as later on in this chapter it 

will be shown th a t this error is responsible for generating contrast effects.
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M odelling Lightness and Brightness Illusions

The multi-scale biological ILC model configured as outlined above, is considered a model of 

brightness based on the known physiology of VI. It has already been shown to accurately 

reconstruct natural scene images. The next part of this work returns to the discussion 

of lightness and brightness illusions, and is concerned with using the model to to provide 

accounts for these phenomena. Although the results of this process are covered in greater 

detail in Chapter 5, simultaneous brightness contrast and W hite’s effect will be briefly dis­

cussed here as an example of how the constituent parts of the model come together to 

generate these effects.

From M odel O utput to  Predicted Brightness

To be able to relate the model’s output to psychophysical reality in a clear and consistent 

manner, it is necessary to transform the output into psychophysically measurable units. 

A simple way by which model units can be suitably transformed is to scale them relative 

to the m odel’s response to black and white in a scene, such that the brightness of black 

relative to  white is 0%, and tha t of white relative to white 100%. All other brightness levels 

can now be expressed as a percentage of the brightness of the white in a scene, which can 

be determined psychophysically. This can be achieved by the following linear and affine 

transform ation on model units (MU),

_ , M U  + Abs(B)  _
brightness = ----- -— —------ x 100,

* B  +  W

where B is the model’s minimum response to the black in the scene, and W the model’s 

maximum response to white. Only areas which are far from the influence of edges will be 

used to  determ ine B and W, and in the event tha t there is no suitable area, a region of black 

or white will be added to the top-right corner of the scene, within the mean-luminance grey 

padding and away from the influence of the stimulus. The expected value of B across all 

scenes used to test the model (in Chapter 5), was estimated to be -449 model units with a
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standard deviation of 16 model units. The expected value of W was estim ated to  be 453 

model units with a standard deviation of 18 model units. In theory, both B and should not 

be random variables, but the existence of a deviation in their values arises out of the fact 

this it is impossible to determine the responses to black and white in complete isolation 

from rest of the scene.

The M inim um  Discrim inable Response

Now th a t it is possible to map the model’s output into a psychophysically measurable 

space, it is pertinent to ask what is the just noticeable difference (JND) in the framework 

derived above. A model for JNDs in human perception was first proposed by Weber (1978), 

who stated  th a t a change in any perceptual dimension, P , is described by the following 

differential equation,

d p  =  k ^ - ,

where S  is the m agnitude of the stimulus and k  a constant of proportionality. Thus, for a 

unit change in perception, or JND,

dSjND  =  kS.  (4-21)

In the context of visual perception and psychophysics, S  represents the mean luminance 

of an image, and k  has been empirically determined, both in human and prim ates, to lie 

within the range of 0.1-0.14 (Cornsweet & Pinsker, 1965; Huang, MacEnvoy, &: Paradiso, 

2002). The vast majority of stimuli reported in Chapter 5 have been constructed with a 

mean-luminance of 50%, hence the model will predict a significant change in brightness for 

regions with a 5%-7% difference in predicted brightness. Stimuli with a mean luminance 

above or below 50% will have their predicted brightness interpreted accordingly.
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Figure 4.19: The model’s output for the simultaneous brightness contrast stim ulus origi­
nally shown in Figure 1.1 (left), and its cross-sectional predicted brightness profile taken  as 
indicated by the position of the markers (right). The model correctly predicts th a t th e  test 
patch on the left is darker than that on the right.

Figure 4.20: The cross-sectional predicted brightness profile of each scale used in the  recon­
struction above. The furthest left is the output for the largest channel (cr =  16 or 0.31°), 
and the furthest right is the output for the smallest channel (a =  1 or 0.02°).

SB C  a n d  W h ite ’s Effect: A Tale o f C o n tra s t  a n d  A ssim ila tio n

Figure 4.19 illustrates the output of the model for the simultaneous brightness contrast 

configuration (Figure 1.1, left). It is clear to see that the brightness of the test p a tch  on 

the left is correctly predicted to be darker than  the one on the.right, and the difference 

between the mean predicted brightness of the test patches is 19.5%, which is greater than 

two JNDs. Figure 4.19 illustrates the raw output from each scale used in the reconstruction. 

It is obvious that the effect is derived predominantly from the output of the smaller scales, 

while the largest scale predicts some degree of assimilation.

Figure 4.21 illustrates the output of the model for a W hite’s effect display (Figure 1.1, 

right). It can be seen that the test patch on the left is correctly predicted to be darker than 

the one on the right (at all points except at the very centres of the test patches), and  the 

difference between the mean predicted brightness of the test patches is 6.2%, approxim ately 

one JND. Figure 4.22 illustrates the raw output from each scale used in the reconstruction.
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Figure 4.21: The model’s output for the W hite’s effect display originally shown in Figure 1.1 
(left), and its cross-sectional predicted brightness profile taken as indicated by the position 
of the markers (right). The model correctly predicts that the test patch on the left is darker 
than that on the right.
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Figure 4.22: The cross-sectional predicted brightness profile of each scale used in the recon­
struction above. The furthest left is the output for the largest channel (<r =  16 or 0.31°), 
and the furthest right is the output for the smallest channel (cr =  1 or 0.02°).

In contrast to  the output for the simultaneous brightness contrast display, the effect is gen­

erated by the larger scales, while the output from the smaller scales predict simultaneous 

brightness contrast.

These results lead to the following hypothesis as to  how the model correctly predicts the 

existence of both these phenomena: simultaneous brightness contrast (or induction effects) 

are generated by reconstruction error in the global luminance structure of the smaller scales. 

W hite’s effect (or assimilation effects), are generated by the blurring inherent in the recon­

structions a t larger scales.

The latter proposition can be verified by examining the actual22 zero-order components of 

local jets used to reconstruct the W hite’s effect display (Figure 4.23). It it clear to see 

that the effect is ‘hard coded’ into the global luminance structure of the largest scales (as a

22 that is, as sampled by zero-order GD filters.
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Figure 4.23: Cross-sectional plots of the actual global luminance structure at all scales, for 
the W hite’s effect display (Figure 1.1, right).
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Figure 4.24: Cross-sectional plots of the actual global luminance structure at all scales, for 
the simultaneous brightness contrast display (Figure 1.1, left).

consequence of large scale blurring), and it is this which drives the effect. In contrast, the 

actual global luminance structures for the simultaneous brightness contrast display do not 

betray the source of the effect, but again shows evidence of assimilation at larger scales. 

Thus, contrast effects are generated by the error incurred by the biological ILC algorithm 

terminating before it converges to the optimal solution. As a direct consequence of this, 

contrast effects will eventually vanish as the number of iterations in the model approach 

infinity, whereas assimilation effects will remain.

There exists an asymmetry between the assimilation and contrast mechanisms in the model: 

assimilation is confined to short distances, whereas contrast can occur unconstrained by 

distance. Figure 4.25 illustrates how the magnitude of the blurring effect varies across 

space. The plot was constructed by summing Gaussian envelopes at each scale used in the 

model. It can be seen from the plot, that the effect is very strong over short distances, 

but falls off rapidly: the effect diminishes by a factor of two after ~  0.07°. The contrast 

effects are not constrained by any formal aspect of the model, only by the degree of error 

in the reconstruction, which is a function of the number of iterations. It is manifest most 

obviously a t edges, as it is in these regions that the shape of the LBTs will have the highest 

degree of extrinsic curvature. As a direct consequence, adjacent tiles in this region require
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B lu r

Figure 4.25: The strength of the blurring effect as a consequence of the model reconstructing 
a smoothed version of the image at every scale. The plot is constructed by summing 
Gaussian envelopes at each scale.

more alignment and therefore more iterations, before optimal error alignment is reached. As 

optimal alignment error is never reached (due to the algorithm stopping at 724 iterations), 

the effect persists to the final brightness output.

W h ite ’s E ffect a n d  th e  C ho ice  o f S p a tia l Scales

As the model's prediction for W hite’s effect is based on the assimilation derived from the 

intrinsic blurring of the reconstruction process, the magnitude of the effect is critically de­

pendent on the scales chosen to comprise the final model. Figure 4.26 demonstrates the 

effect of successively removing the lowest spatial scale channel from the reconstruction, for 

the 0.8c/° W hite’s effect stimulus discussed previously and illustrated in Figure 4.21. It is 

clear to see tha t if only the lowest (cr =  16, or 0.31°) spatial scale channel is removed, then 

the effect is nulled, and then as further low spatial scale channels are removed, then the 

effect is reversed to SBC. Thus, the model’s predictions for W hite's effect (and subsequently 

all assimilation effects), are fundamentally connected to the choice of spatial scale channels. 

If only one lower spatial scale channel were added, then the magnitude of all assimilation 

effects would be greater (although at the detriment to the magnitude of all predicted con­

tra s t effects), and vice-versa.

This is of particular relevance, as later in Chapter 5 (Figure 5.29) it will shown that the
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Figure 4.2G: The model’s predictions for W hite’s effect (0.8c/° inducing grating), as progres­
sively more spatial scale channels are removed from the reconstruction. No spatial scales 
removed (furthest left), then the next lowest spatial scale channel is removed from each 
successive reconstruction, until the highest spatial scale channel remains (furthest right).

effect at this inducing grating SF is smaller than has been reported by some studies. This 

is a direct result of the choice of SF channels in the Biological ILC model, and in contrast 

to the ODOG and NSS models, which predict larger effects for this W hite’s effect stimulus, 

by virtue of of their particular choice of SF channels (as discussed in Chapter 3). However, 

for the reasons discussed previously in this chapter, relating to the known size of RFs in VI 

and m atters of modelling elegance, and because in the next chapter the model will be shown 

to yield a good fit to  many different configurations of W hite’s effect (and other assimilation 

phenomenon), the choice of spatial scale channels in the current incarnation of the model 

are deemed a good representation of the independent spatial scale channels used in VI.

Comparing the B iological ILC M odel to  the ODOG and NSS M odels

The biologically plausible incarnation of the ILC model described in this chapter differs 

from the ODOG and NSS models in a number of ways. Perhaps most significantly, it is 

not based on a local Fourier representation of the image - the computational context within 

which the model operates, is defined by the conjecture that the visual system does not 

have access to the local mean luminance (or D.C.) within the image, and must imply this 

from the response of contrast coding cells. The model explicitly predicts that this informa­

tion, once calculated, will be present in the blob-like cells of VI, and hence predicts that
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the response of these cells will always always correlate with perceived luminance, and not 

absolute luminance. This is in contrast to the ODOG and NSS models, which use RFs 

< 0.3c/° to  estim ate the local mean luminance levels in the image, the existence of which 

is controversial (as discussed in C hapter 3).

As a direct consequence, the ILC model utilises the simple contrast coding cells found in 

VI to measure the 1st- and 2nd-order derivatives of a blurred version of the original image. 

This information is then used to  reconstruct an approximation of the image in a square re­

gion around each sampling point (or LBT), using a truncated Taylor expansion without the 

Oth order component, which is calculated by aligning overlapping regions of reconstructed 

image by means of an error minimisation scheme. As the derivatives of the blurred image 

do not need to be sampled continuously to  generate each tile, the biological ILC model 

does not need to assume th a t RFs for all the necessary SF tunings are present continuously 

across the visual field, which is an implicit assumption of the ODOG and NSS models. 

Furthermore, it does not make use of contrast coding cells which are tuned to SFs below 

0.6c/°, keeping the model within the realms of biological plausibility. Instead, low SFs are 

present in the reconstructions of the blurred image.

The ODOG and NSS models make use of image re-normalisation and SF channel re­

weighting schemes, respectively. Both of these non-linear responses are based upon the 

statistics from across the entire set of filter responses, and neither model proposes a mecha­

nism for how this information is calculated and communicated across the visual cortex - it is 

not feasible for one side of V 1 to  be immediately connected to the other as a consequence of 

the limited range of intra-cotical connections (as discussed in Chapter 3). The biologically 

plausible incarnation of the ILC model proposes an explicit mechanism for how information 

can be passed from one region of VI to another, without relying on long-range intra-cortical 

connections. This was m otivated as a means for minimising global tile alignment error from 

the information present in local tiles.

Furthermore, the biological ILC model accounts for both SBC and W hite’s effect through
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two separate mechanisms of contrast and assimilation, in contrast to the ODOG and NSS 

models, which achieve accounts for these effects through a single re-normalisation and 

SF channel re-weighting scheme. The model predicts th a t contrast is a long-range effect, 

whereas assimilation is a short-range effect in comparison.

Finally, one way in which the biological ILC model differs from the ODOG and NSS models, 

is tha t a complete reconstruction of the image is carried out for every spatial scale in the 

model, and then the set of reconstruction are assembled in an un-weighted linear sum to 

produce the final reconstruction. This is in contrast to the ODOG and NSS models, which 

only produce the one reconstruction out of the information present in separate SF channels, 

and are thus more com putationally ‘cheap’, requiring less biological energy to run.
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C hapter 5: R esu lts  &: D iscussion

The purpose of this chapter is to  to  compare predictions of the model to various lightness 

and brightness phenom ena with the aim of confirming the theory. The prim ary purpose 

of this task  is to  validate the model as being indicative of how the visual system is pro­

cessing information. T ha t is, if the model and the visual system both fail at reproducing 

the original image, and in the same places, then it may be a direct consequence of sharing 

similar mechanisms. Secondly, as the model is based on the physiology of VI (and possibly 

V2), then all phenom ena th a t it can account for could be attributed to processing within 

these areas of the cortex. This will facilitate the differentiation between the many high- 

and low-level principles th a t these phenomena are usually attributed to.

The chapter is divided into three sections according to  the type of phenomenon under 

discussion: sta tic  lightness and brightness illusions (of contrast and assimilation); percep­

tual filling-in effects; and the tem poral dynamics of these phenomena. Static lightness and 

brightness illusions are characterised as phenomena th a t arise as a result of the specific 

configuration of surfaces in a scene, and as discussed in Chapter 2 have been attribu ted  

to both mechanisms of low- and higher-level vision. In attem pting to explain this class of 

phenomenon with the  model, an a ttem pt is made to a ttribu te  them to just low-level visual 

mechanisms. Perceptual filling-effects are characterised by illusions tha t are thought to  be 

purely driven by the presence of edges in the scene, and hence their existence attributable to 

the specific mechanism(s) responsible for filling-in the brightness of a surface, based on this 

edge-derived information. As the model explicitly contains a mechanism for filling-in, then 

it ought to  account for these effects as well. The tem poral dynamics of the filling-in process 

have only been modelled once before (Grossberg & Todorovic, 1988), and are beyond the 

rem it of most models of brightness. By applying the model in this area an extra dimension 

of validity for the  model may be obtained. W ithin each class, as many different examples 

of the phenom ena as known to the author were tested, to prove that the model can account 

for the class of effect, and not just one particular configuration.
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W ithin each section, the predictions of the model are made in the context of the psychophys­

ical experiments th a t are used to  investigate the phenomena; the stimuli processed by the 

model are identical to those used in the corresponding psychophysical investigations, and 

where possible, all param etric variations on the stimuli have also been processed by the 

model. The param etric studies have been incorporated into the modelling for two reasons: 

it allows for a more rigourous test of the model’s account of any given phenomenon; and 

where successful, it then provides a detailed explanation of how and why the phenomenon 

occurs in its many guises.

The link between psychophysics and the output of the model are made by comparing the 

brightness of designated test patches within the stimuli: as estim ated by participants in 

an experiment, and as predicted by the model. Psychophysics which investigate brightness 

phenomena usually require the participant to perform one of two tasks: either adjusting 

the luminance of a  test patch  until it matches in brightness with a  control test patch, thus 

directly measuring the difference between the luminance and brightness of the test patch 

(for example, see Rudd and Zeemach (2005)); or, by identifying the brightness of a test 

patch within the stimulus, w ith one in an array of test patches of varying luminance, whose 

absolute luminance has been predeterm ined together with th a t of the  the test patch under 

consideration, hence indirectly measuring the difference between luminance and brightness 

(for example, see Spehar, Clifford, and Agostini (2002)). These measurements are linked 

with the predictions of the model by defining the predicted brightness of a test patch to be 

the mean model ou tpu t in the test patch region. This makes an explicit assumption about 

the information used to  make brightness judgements. It is the brightness of the test patch 

as a whole th a t is im portant, and not th a t of any sub-region(s), which are often found to 

be lighter and darker, both  psychophysically and computationally (Blakeslee &; M cCourt, 

1999). However, as the vast m ajority of psychophysics measures the brightness of entire 

test patches, it is felt th a t this is the best way to proceed in linking experiment to  theory.
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Static Lightness and Brightness Illusions

Static lightness and brightness illusions axe defined as those illusions deriving from stim­

uli comprised of an ensemble of regions (or surfaces) of varying luminance, and which are 

present from the onset of a  stationary stimulus, and remain present regardless of eye sac- 

cades and the duration of presentation.

These illusions can be divided into three groups: those in which a test patch’s brightness 

moves in the opposite direction to the luminance of i t ’s surround, increasing the perceived 

contrast at i t ’s edges (and referred to as simultaneous brightness contrast effects); those 

in which simultaneous brightness contrast effects are amplified or suppressed depending on 

the interpretations th a t can be ascribed to  the origin of the luminance under consideration, 

usually as a consequence of m anipulating the geometrical configuration of the stimulus, 

with different variants of the  same stimulus corresponding to different perceptions of the 

scene as a whole (lightness effects); and finally, those in which the brightness of a test patch 

is assimilated with the overall luminance of its surround (and referred to as assimilation 

effects).

Sim ultaneous B rightness C ontrast Effects

Figure 5.1 dem onstrates the canonical simultaneous brightness contrast (SBC) effect (ini­

tially described in C hapter 1). The brightness of the test patch on the left is found to be 

darker than  th a t on the right, despite the luminance of both being equal to th a t of the 

grey background (which is set to  be equal to the mean luminance of the inset stimulus). 

Hence, an increase in contrast is perceived at the boundaries of the test patches and their 

surrounds (Helmholtz, 1887; Hering, 1964; Goldstein, 2003). The model’s output for this 

SBC stimulus is illustrated in Figure 5.2 (and was also discussed in Chapter 4, in terms of 

the ILC model’s contrast mechanism). The mean brightness for the left test patch is calcu­

lated at 40.3% of the brightness of white in the scene, and for the right test patch 59.8%, 

clearly predicting the phenomenon’s existence. In addition to the difference in test patch 

brightness, the model also makes a more subtle prediction: that each test patch’s surround
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S p a t i a l  P o s i t i o n

Figure 5.1: An example of the simultaneous brightness contrast stimulus used (left), and its 
cross-sectional luminance profile taken as indicated by the position of the markers (right). 
The width of the two grey test patches are 1°, the size of the inset stimulus 5°, and the 
entire stimulus 10°.
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Figure 5.2: The model’s output for the simultaneous brightness contrast stimulus shown 
above (left), and its cross-sectional predicted brightness profile taken as indicated by the 
position of the markers (right).

exerts an influence on the grey background. This is easily observed on the predicted bright­

ness cross-section in Figure 5.2, where on either side of the inset stimulus the predicted 

brightness of the background is either suppressed or amplified relative to mean brightness 

(above the 5% — 7% JND threshold), depending on the original luminance of the surround. 

This supplementary SBC effect is also, albeit to lesser extents, predicted by the ODOG 

(Blakeslee &; McCourt, 1999) and NSS models (Dakin &: Bex, 2003), but to the author’s 

knowledge this has yet to  be verified experimentally. Furthermore, it should be noted that 

the parts of the surrounds closest to the centre of the stimulus are predicted to have a sig­

nificantly amplified brightness relative to their corresponding parts on the opposite side of 

the test patch, a prediction which is in direct conflict with the anchoring theory of lightness 

(X. Li &: Gilchrist, 1999), which would predict that the highest luminance in the stimulus 

(in this case the entire white surround) should always be seen as the global white. This
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Figure 5.3: An example of the SBC stimuli used to test the influence of the test patch 
and surround areas on the m agnitude of the effect. These are essentially the same as those 
illustrated in Figure 5.1, but with each test patch and surround pair constituting a separate 
stimulus. All surrounds were fixed at 6° in height and width, while the size of the test 
patches were varied.

issue will be clarified when discussing R udd’s brightness matching experiments (Rudd & 

Zeemach, 2005). It should also be noted th a t these latter predictions preserve the contrast 

relationships in the original stimulus; the contrast a t the border between background and 

surround is approximately half tha t of the contrast at the boundary between the surrounds.

In addition to the above, the size of the test patches were also varied parametrically in an 

attem pt to predict the behaviour of the effect as the areas of the surrounds were altered with 

respect to tha t of the test patches. In a brightness matching experiment where the stimuli 

were similar to those presented in Figure 5.3, Yund and Armington (1975) varied the sizes 

of the test patches and the surrounds from l°-20°, in an attem pt to establish how the spatial 

scale of the stimuli influenced the effect. It was shown that the effect has an approximately 

linear dependency on the area of the surround, relative to the test patch. Using the stimuli 

configurations dem onstrated in Figure 5.3, the width of the test patches were varied from 

0.375°-3° in octave intervals, and the models output calculated. It was not possible to use 

larger test patches due to the size of the overall stimulus exceeding what can be processed 

by the current incarnation of the model. Figure 5.4 plots the predictions for the strength 

of the effect (the predicted brightness of the test patch on the dark surround less that on 

the bright surround), against the area ratio of the surround to the test patch, together with 

the appropriate part of the empirical trend-line derived by Yund and Armington (1975).
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Predicted  Strength of E ffect Vs. Area Ratio
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Figure 5.4: A plot of the SBC effect strength versus the area ratio of the surround to the 
test patch. The dark solid line represents the model’s ouput, and the lighter dashed line, 
the trend-line from the same experiment by Yund &; Armington (1975).

It can immediately be seen tha t the magnitude of the effect strength is found to be larger 

than what is predicted, and th a t the strength of the effect is not predicted to be linear as 

the trend-line would suggest.

However, for area ratios >  100 (or a test patch width of 0.75°), the model predicts that the 

brightness of the test patch should start to decrease, as the assimilation mechanism begins 

to have an affect. As all the data  collected on this effect has refrained from using stimuli 

with area ratios this large, this prediction of the model cannot yet be verified.

Given the nature and polarity of SBC, it is reasonable to question whether it is a universal 

effect of a region’s surrounding luminance configuration, or whether it is only manifest un­

der certain conditions. In particular, in order for SBC to occur, is the luminance of the test 

patch constrained to lie below th a t of the highest luminance in the stimulus? If the test 

patches have the highest luminance in the stimulus, that is, if it’s luminance is incremental 

with respect to tha t of the surrounds as in Figure 5.5, then the anchoring theory of lightness 

would predict tha t their brightness would remain unchanged by the surrounds, as the test 

patches would both be interpreted as white in both global and local anchoring frameworks,
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Figure 5.5: An example of the stimulus used by Rudd & Zeemach to test the anchoring 
theory of lightness when in the presence of the conditions necessary for SBC to occur. The 
diameter of the inner discs are set a t 0.7°, and the outer discs at 1.4°.
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Figure 5.6: The model’s output for the stimulus shown above. The predicted brightness 
of the test patch on the right is marginally higher than that on the left, and subsequently 
violates the anchoring theory of lightness.

and hence should both appear identically as white. Rudd and Zeemach (2005) tested this 

explicitly using the canonical brightness matching paradigm and the stimulus illustrated 

in Figure 5.5. It was found th a t the anchoring theory of lightness was not upheld in this 

situation; the brightness of the test patches were found to be modulated by the luminance 

of their surrounds in the same fashion as in the canonical SBC effect. Given that the model 

already appears to violate the anchoring theory of lightness, it was tested on the stimulus 

depicted in Figure 5.5, and the result can be seen in Figure 5.5. Although only a small 

and suppressed SBC effect, the predicted brightness of the test patch on the right is higher 

than tha t of the left, writh a net difference of 2.1% (it should be noted that the JND for the 

stimulus is 0.2% — 0.3% as the mean luminance is 2%). Thus, the model is in agreement 

with the findings of Rudd and Zeemach (2005), who found the greatest magnitude of the 

effect to be «  8%, for the optimal stimulus configuration.

122



Chapter 5: Results &: Discussion

S 20 0
e 150

100 200 300 400 500 
Spatial Position

Figure 5.7: An example of the stimulus used by Rudd & Zeemach to test the effect of 
distant edges and surrounds on SBC. The diameter of the inner discs axe set a t 0.7°, the 
outer discs at 2.1°, with the inner surround on the right at 1.4°. The luminance of the test 
patches’ immediate surrounds are identical.

Figure 5.8: The model’s output for the stimulus shown above. The predicted brightness of 
the test patch on the right is marginally lower than th a t on the left, indicating th a t distant 
edges and surrounds can also induce SBC.

An interesting artifice of the transformation from model units to percentage of the white in 

the scene, can be seen in Figure 5.6 in the regions away from the stimuli that ought to be 

black, but are in fact brighter. In the regions immediately around the discs a SBC effect 

occurs to darken the adjacent areas, and assign values that are ‘blacker than black’. It is 

clear from this th a t modifications of the model to place a threshold on the lowest possible 

value might need to be introduced, unless these effects are to be considered as actual reality, 

which is not the opinion of the author

Using the same paradigm, Rudd and Zeemach (2005) extended their test of SBC’s univer­

sality by trying to induce the effect with regions of luminance (and edges) that lay beyond
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Figure 5.9: An example of the kind of stimulus used used to demonstrate the SBA phe­
nomenon. The stimulus is identical to  tha t used to demonstrate canonical SBC, with the 
exception that the test patches are not the larger squares closest to the large surround, but 
are in fact two smaller squares set into the original grey squares, but with a slightly higher 
luminance. The size of the outer grey squares is 0.75°, and the size of the inner grey test 
patches is 0.375°. The brightness of the test patches is observed to assimilate to that of the 
outer squares, whose brightness is under the influence of the canonical SBC effect.
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Figure 5.10: The model’s output for the stimulus shown above (left), and its cross-sectional 
predicted brightness profile taken as indicated by the position of the markers (right).

the test patches immediate surround. Figure 5.7 demonstrates the type of stimulus used to 

probe for such effects: the immediate surrounds of both test patches are identical in terms 

of luminance, but the test patch on the right has an additional outer surround whose lu­

minance differs from th a t of the surround. It was found that distant edges do indeed affect 

the brightness of the test patch, in the much the same way as the canonical SBC effect. 

Figure 5.8 illustrates the model’s output for the same stimulus, which correctly predicts 

that the right hand test patch is darker than that on the left, by 2.9%. Rudd and Zeemach 

(2005) found the greatest magnitude of this effect to be «  7% for the optimal stimulus. 

This phenomenon is closely related to that of simultaneous brightness assimilation (SBA), 

an example of which is demonstrated in Figure 5.9. Here, the canonical SBC stimulus of
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Figure 5.1 is modified with the addition of two smaller test patches within the original test 

patches, and of a slightly higher luminance. The brightness of the new test patches moves 

in the same direction as the SBC effect which acts on the original grey squares set into 

the large surrounds. T hat is, their brightness is assimilated into that of their immediate 

surround, which is itself under the influence of a SBC effect (Shapley &; Reid, 1985). Figure 

5.10 illustrates the model’s ou tput for this stimulus, which encapsulates this ‘action-at-a- 

distance’ effect: the left test patch has a brightness of 42.1%, while the right test patch has 

a brightness of 73.4%, thus predicting th a t the effect is also asymmetric with respect to 

the luminance of the surround. Using a similar stimulus, Shapley and Reid (1985) discov­

ered tha t there was a linear relationship between the m agnitude of the effect (C) and the 

difference in brightness between the slightly larger squares th a t the test patches lie within 

(dB), such th a t C  = OAbdB. For the model’s output, dB  = 36.8% and C  = 31.3%, which 

implies th a t C  =  0.85dB . Thus the effect is predicted to  be greater than  what is found 

experimentally.

There are many other phenomena th a t may be considered as falling under the umbrella-term 

of simultaneous brightness contrast effects, especially when considered in the context of the 

model’s account for their existence. Figures 5.11, 5.13, and 5.15 dem onstrate some more well 

known phenomena of this type: Mach Bands, Vasarely’s Pyram id, and Chevreul’s Illusion. 

Traditionally, these phenomena have been attribu ted  to the output of isotropic centre-ON 

/  surround-O FF receptive fields of retinal ganglion cells (Adelson, 2000), in much the same 

way as the SBC has (as discussed in Chapter 2). However, here we offer an alternative 

explanation derived from the model (based on the the induced contrast th a t results from 

erroneous reconstruction of the real image, as discussed in Chapter 4). The aim here will 

not be to replicate param etric studies on these effects, bu t to demonstrate how the model 

can yield significant accounts for contrast effects other than  SBC.

In M achs’ Bands23, the brightness of the regions a t either side of the ram p are amplified 

with respect to th a t of the surfaces to  which they are physically part of, thus producing light

23which, it should be noted, is an essentially 1-D effect derived from 1-D stimuli
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Figure 5.11: An example of the stimulus used to elicit the Machs’ Bands phenomenon. The 
width of the inset stimulus is 5°, and the width of the ramp is 1.2°.
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Figure 5.12: The model’s output for the Mach Bands stimulus above (left), together with 
the mean predicted brightness cross-section, calculated over the range of the inset stimulus 
height (right). Machs’ Bands are clearly visible at either side of the ramp.

and dark bands at the high and low end of the ramp (Ratliff, 1965; Ross, Morrone, & Burr, 

1989). Figure 5.12 illustrates the model’s output for the Mach Bands stimulus, with the 

mean predicted brightness cross-section clearly indicating the presence of Mach Bands24, 

with a magnitude of «  8% (significant). The model generates the effect as a direct result of 

the same mechanism responsible for SBC. Consider the ramp as playing an analogous role 

to the test patch within a SBC stimulus. At the border between surface and ram p there is 

a relatively rapid change in luminance tha t facilitates an amplification in brightness, much 

the same as tha t predicted at the border between test patch and surface in Figure 5.1. 

However, the mean brightness of the ramp is not altered as there is an approximately equal 

and opposite shift coming from the opposite side. Thus, only the brightness a t the borders 

is amplified.

24it should also be noted that as the luminance of the light surface in the stimulus is that of white, and 
that the Mach Band has a higher brightness than this surface, the model once again demonstrates violation  
of the anchoring theory of lightness.
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Figure 5.13: An example of the stimulus used to generate Vasarely’s Illusion. The width of 
the inset stimulus is 5°, and the width of each step is 0.25°.

eu Spatial Position

Figure 5.14: The model’s output for the Vasarely’s Pyramid stimulus above (left), together 
with the mean predicted brightness cross-section, calculated over the entire range of a step 
as indicated (right). The corner regions of the step are accurately predicted to be brighter.

In Vasarely’s Pyramid, a stack of ever-decreasing squares, of ever-increasing luminance, 

are perceived as being brighter at their corners than at their mid-sections (Vasarely, 1970; 

Adelson, 2000). The stimulus and the corresponding model output axe illustrated in Figures 

5.13 and 5.14 respectively. The mean predicted brightness cross-section for one of the ‘steps’ 

clearly indicates that the brightness is higher towards the edges, or corners, by «  8%. The 

model’s account for this is much the same as that for Mach Bands: at every edge there is 

induced contrast as a result of the above surface having a higher luminance, and vice-versa. 

However, a t corners this effect is compounded: it is significantly denser. Hence, corners are 

perceived as having a greater brightness than the mid-sections.

Chevreul’s Illusion demonstrates how a homogeneous surface may appear inhomogenous. 

It is comprised of contiguous surfaces of increasing luminance; a luminance staircase. For
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Figure 5.15: An example of the stimulus used to generate Chevreul’s Illusion. The width 
of the inset stimulus is 5.25°, and the width of each step is 1.25°.
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Figure 5.16: The model’s output for the Chevreul’s Illusion stimulus above (left), together 
with the mean predicted brightness cross-section, calculated over the range of the inset 
stimulus height (right). The brightness of the central surfaces are predicted to be in- 
homogeneous.

all but the first and last surfaces, the brightness of each surface is inhomogeneous, with the 

brightness towards the left-hand edge always being greater than that on the right (Chevreul, 

1890; Morrone, Burr, k  Ross, 1994). The model’s output for such a stimulus is illustrated 

in Figure 5.16, and the mean predicted brightness cross-section clearly demonstrates this 

effect, with the brightness on the left-hand of each step predicted to be «  9% brighter than 

the right-hand side. Once again, the model generates the effect through induced contrast at 

boundaries, in exactly the same manner as Mach Bands are generated. However, this does 

not explain why the effect is not predicted for the first and last surfaces. To understand 

why this is, it is useful to consider the raw outputs for the model’s largest and smallest scale 

channels, illustrated in Figure 5.17. To the large scale, the inset stimulus is treated as ramp 

with a rapid onset from the background, which produces very will defined peaks for the first 

and last surfaces. The small scale treats the first and last surfaces as it might test patches
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Figure 5.17: The response of the largest and smallest scale channels to the Chevreul’s 
Illusion stimulus. The solid line represents the largest scale channel, a =  16 (or 0.31°), and 
the dashed line the smallest scale channel, a  =  1 (or 0.02°).

in the canonical SBC stimulus, as the polarity of the edges on either side of each surface are 

identical. But, magnitude of the surrounding luminance is not identical on both sides, and 

it still predicts a ram p in brightness pointed towards the direction of greater brightness. 

However, this effect is dwarfed by the response from the largest scale and its presence in 

the resultant output is negligible. This also demonstrates the continual interplay between 

the assimilating effects of the larger scales and the contrast inducing effects of the smaller 

scales.

Lightness Illusions

When information deriving from a specific interpretation of a scene is used to infer the 

nature of a  region’s luminance, and thus compute the underlying surface reflectance of a re­

gion, it is often said that higher-level lightness computations axe being made (see Chapters 

1 and 2 for more). It is thought that such computations can have an affect on brightness, 

and some brightness illusions, as the visual system attem pts to remain lightness constant. 

Such illusions are here referred to as ‘lightness illusions’. It is not clear that what such illu­

sions represent is indeed evidence of higher-level processing, and some illusions have been 

predicted by low-level models of brightness (for example, Blakeslee and McCourt (2001)). 

Here, the model (an essentially low-level model of brightness), is applied to four different 

types of such illusion with the aim of trying to differentiate where higher-level inferential
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Figure 5.18: Adelson’s ‘Wall of Blocks’ stimuli. The grey diamonds in both inset stimuli are 
of the same luminance as the background and are framed by surrounds of either high of low 
luminance, the areas of which are equal between stimuli. The width of the inset stimuli is 
6.25°. The width of the diamonds is 2.1°, and the height is 0.9°. A SBC effect is perceived 
in the diamonds, but is greatly amplified in the right stimulus.

Figure 5.19: The model’s output for Adelson’s ‘Wall of Blocks’ stimuli.

processing may not be necessary to provide an accurate account for the phenomenon, and 

in what situations it might be required.

Figure 5.18 depicts an adaptation of the ‘Wall of Blocks’ stimuli as used by Adelson (1993) 

to demonstrate the affect of scene interpretation on brightness (and originally discussed in 

Chapter 1). In both stimuli, a SBC effect was found in the grey diamonds (the whole ones), 

which are the designated test patches. However, for the stimulus on the right, the strength 

of the effect was found to be over 300% greater than the one on the left (Adelson, 1993). 

While the low-level nature of the original SBC effect is not in doubt, the change in the 

strength of the effect is. The model’s output for these stimuli is illustrated in Figure 5.19, 

and the effect’s strength25 was calculated at 6.3% for the left stimulus, and 5.3% for the

25defined here are the mean brightness of the test patches with the darker surrounds, less that of the mean 
brightness of the test patches with the lighter surrounds.
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Figure 5.20: The Kofka’s Rings triptych (A, B, and C, going from left to right). The width 
of each inset stimulus is 5°, the width of the ‘ring’ is 3.34°, and the height 3°.

Figure 5.21: The model’s output for the Kofka’s Rings triptych.

right (both significant SBC effects). Thus, the model predicts that the effect should get 

weaker, and not stronger. Clearly, the low-level mechanisms described by the model cannot 

account for this phenomenon. The higher-level explanation offered by (Adelson, 1993) is 

indeed more favourable: for the stimulus on the right, the grey diamonds are interpreted as 

existing beneath light or dark transparencies. But, as they both have the ‘same’ luminance 

the diamonds under the darker transparency must have a higher surface reflectance, and 

hence appear brighter as the visual system attem pts to remain lightness constant. On the 

other hand, for the stimulus on the left there is no such transparency interpretation and 

subsequent lightness computation, and hence only the residual SBC effect is observed.

Similaxly, the model fails to capture the modulation of the SBC effect as seen in Kofka’s 

Rings, demonstrated in Figure 5.20. In this phenomenon, the canonical SBC effect is ob­

served in A, in the two different halves of the square-ring. In B, the two halves are separated 

and the strength of the effect increases. When the spatial configuration of the rings is al­

tered, such that the half of the ring on the black surround interfaces with the white surround
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Figure 5.22: An example of the stimulus used to generate Agostini’s amplification of SBC. 
The width of the inset stimulus is 5.3° and the width of the test patch is 0.28°.

Figure 5.23: An example of the stimulus used as a control for Agostini’s amplification of 
SBC. The width of the inset stimulus is 5.3° and the width of the test patch is 0.28°.

(and vice-versa), the effect strength increases yet further (Kofka, 1935; Adelson, 2000). The 

model’s output is illustrated in Figure 5.21, and the effect strength was calculated as being 

10.2% for all stimuli A-C. That is, the model does not predict perception. Once again, 

the higher-level interpretation is more appealing: In A, the ring is perceived as being a 

single entity existing above the surround. However, for B and C, the interpretation is of 

two separate entities beneath a light and dark transparency, but with the same ‘luminance’, 

hence the half of the ring on the dark background must have a lighter surface reflectance 

(and vice-versa). Hence, in the interests of remaining lightness constant, i t ’s brightness is 

greater. The fact tha t the strength of the effect is greater for C than B, may be accounted 

for by appealing to Gestalt-like grouping cues, which would attach the half of the ring on 

the dark surround to the light surround (and hence i t’s lightness), and similarly for the 

other half of the ring (Adelson, 2000).
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Figure 5.24: The model’s output for the stimulus used to generate Agostini’s amplification 
of SBC.
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Figure 5.25: The model's output for the stimulus used as a control for Agostini’s amplifi­
cation of SBC.

Whereas the model failed to provide low-level accounts for the Wall of Blocks and Kofka’s 

rings phenomena, it does provide an account for two other supposed lightness illusions. Fig­

ures 5.22 and 5.23 dem onstrate a new variant of SBC, in which the addition of a luminance 

ramp in 5.22 yields a SBC effect that is approximately three times the strength of tha t found 

in 5.23, which has the same mean luminance surrounding the grey test patches (Agostini & 

Galmonte, 2002). One explanation that the authors give for this amplification of the effect, 

is that the luminance gradient is interpreted as a change in illumination toward the centre 

of the stimulus, which places the test patch in some degree of shadow with respect to the 

stimulus in Figure 5.23, and hence for the test patch to retain its brightness it must have 

a very light surface reflectance. In the interests of lightness constancy, it is then perceived 

as being brighter. As this interpretation cannot be ascribed to the stimulus in Figure 5.23, 

the obvious inference is made about the test patch’s surface reflectance, and i t’s brightness 

remains un-amplified. Figures 5.24 and 5.25 illustrate the model’s output for both of these 

stimuli, with the test patch of the gradient variant being greater in brightness than that
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Figure 5.26: An example of a Wertheimer-Benary Cross stimulus (left) and the correspond­
ing model ou tput (right). The width of the cross’s arms are 5° in length and 1° in width.

of the control. The mean predicted brightness for each test patch was calculated at 42.8% 

for the gradient variant, and 31.3% for the control. While this is far from the threefold 

increase th a t was initially reported, it is still a very significant shift in the magnitude of the 

effect26. More importantly, this cannot be accounted for by appealing to the responses of 

isotropic centre-ON /  surround-OFF receptive fields of retinal ganglion cells, whose output 

is proportional to the luminance of the test patch’s immediate surround, the mean of which 

is identical in both versions of the stimulus. Through an understanding of how the model 

works by inducing contrast at borders, it is possible to account for this effect as follows: in 

the control version, the contrast between the central dark square (on which the test patch 

is mounted) and the surrounding squares is greater at the borders than  tha t in the version 

with the ramps. This causes the dark square itself to experience a SBC effect making it 

darker. In accordance with the phenomenon of simultaneous brightness assimilation, this 

reduction in brightness will also be passed onto the test patch, regardless of the SBC effect 

in the opposite direction, tha t it experiences as a result of being mounted on a dark surround.

Finally, Figure 5.26 demonstrates the Wertheimer-Benary Cross and the model’s output for 

this stimulus. In this stimulus, the isosceles triangle set into the cross appears brighter than 

that set outside the boundaries of the cross, regardless of the fact tha t the mean luminance 

of both surrounds is identical (Benary, 1924; Blakeslee & McCourt, 2001). Accounts for 

the effect once again appeal to notions of transparency and ‘belonging’. The triangle on

26it should be noted that the same effect, but in the opposite direction, was observed using stimuli that 
were inverted in luminance.
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the cross may be interpreted as being underneath a dark transparency, but as it has the 

same luminance as the other triangle, i t ’s surface reflectance must be lighter, and hence it 

is perceived to be brighter in the interests of achieving lightness constancy. Alternatively, it 

has been said th a t the triangle on the cross is perceived as belonging to the cross, and hence 

it is processed within this context and contrasts only with the cross. Similarly, the triangle 

on the background is perceived as belonging to the background, is processed within this 

different context, and hence contrasts with the background. However, the model predicts 

the mean brightness of the triangle on the cross to be 5.8% brighter (significant), than  the 

triangle on the background. Thus, it is possible to reject the higher-level accounts in favour 

of simpler low-level mechanisms. It is unclear exacly ‘how’ the model yields this effect. It 

may be th a t the contrast effect is greater for the triangle on the cross as directly adjacent 

there is a greater expanse of dark cross (especially to the right), than there is for the triangle 

on the background. Hence, as SBC is dependent on the area of the surround, the  effect is 

larger for the triangle on the cross.

A ssim ilation Effects

One of the aims of this work to is provide biologically feasible accounts of both  SBC and 

W hite’s effect concurrently. It has already been shown (in Chapter 4), th a t the  model 

encapsulates this behaviour. The purpose of this section is to  test the model on the many 

param etric variations of W hite’s effect, w ith an aim to dem onstrating that the the phe­

nomenon in its entirety is accounted for by the model.

Figure 5.27 dem onstrates a typical W hite’s effect stimulus (White, 1979; Blakeslee Sz Mc- 

Court, 1999). Recall th a t the effect’s significance arises from the fact th a t an explanation 

based on our knowledge of SBC would predict th a t test patches surrounded by more dark 

than  light (those on the white bars), should appear brighter than their counterparts sur­

rounded by more light than  dark. However, this is not the case and the effect proceeds in the 

opposite direction to tha t predicted by SBC27. As a direct consequence, no straight-forward 

explanation based on the responses of isotropic centre-ON /  surround-OFF receptive fields

27or in the correct direction for SBC along the coaxial bars only.
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Figure 5.27: An example of a stimulus used to demonstrate W hite’s Effect. The size of the 
inset stimulus is 5°, the frequency of the inducing grating is 1.6 c/°, the width of the test 
patches is 0.31°, and the height is 0.62°. The luminance of the test patches is equivalent to 
that of the background, which is set to mean luminance.
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Figure 5.28: The model’s output for the W hite’s effect stimulus above (left), and its cross- 
sectional predicted brightness profile taken as indicated by the position of the markers 
(right). The test patch on the right can be seen to have a greater predicted brightness than 
the one on the right.

of retinal ganglion cells is possible. Figure 5.28 illustrates the model’s output for such a 

stimulus, clearly predicting the effects existence in this situation (as discussed in Chapter 

4). Quantitatively, the mean predicted brightness for the test patch on the light bar is 

42.2% and 58.1% models units for the that on the dark bar. The effect is accounted for by 

the interaction between contrast and assimilation: each test patch receives the appropriate 

contrast signals at all surrounding boundaries, but in addition is assimilated to the mean 

luminance of i t’s surround by the intrinsic blurring in the reconstruction process.

One of the most well known parameters that determine the magnitude of W hite s effect 

is the SF of the inducing grating (White, 1981; Kingdom k  Moulden, 1991; Blakeslee k  

M cCourt, 1999, 2004; Anstis, 2004), with the caveat that the aspect ratio of the test patches
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E ffect Strength Vs. S p a tia l Frequency of Inducing Grating
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Figure 5.29: A plot of the logarithm of the ratio of predicted brightness to actual luminance, 
as a function of SF, for W hite’s effect. The dark line represents the models’ predictions, 
and the lighter line the data  collected by Anstis (2004). The solid lines represent the values 
for test patches on the dark bar, and the dashed lines represent the value for test patches 
on the light bar of the grating.

must be held constant throughout the subsequent variations in spatial scale (Kingdom &; 

Moulden, 1991). From 0.5c/° onwards, the strength of the effect is seen to increase with 

the SF of the inducing grating. At around 0.5c/° and below the data is less clear: Anstis 

(2004) reports da ta  tha t suggests the effect reverses in polarity at around 0.5c/°, with the 

magnitude of this reversal increasing as SF decreases (a plot of this data  is reproduced in 

Figure 5.29 along with the model’s predictions). Kingdom and Moulden (1991) also report 

data which suggests that the effect can be reversed at low SFs, although he reports this 

as occurring at 0.63c/° (for one observer). Blakeslee and McCourt (2004), however, report 

data which suggests tha t the strength of the effect does not reverse around the 0.5c/° mark, 

but reaches a minimum that is also maintained for lower SFs. The model’s output for 

W hite’s stimuli consisting of inducing gratings with SFs between 0.5c/°-3.2c/° is illustrated 

in Figure 5.29, plotted concurrently with the data collected by Anstis (2004). The magni­

tude of the predicted effect is shown to be similar to what is actually observed, unlike the 

model’s predictions for SBC, which are less than what is found psychophysically. This is 

more so at higher SFs when the two plots intersect, and less to at low SFs (at 0.4c/° the 

test patch on the black bar is predicted by the model to be 10% brighter than shown in the
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E ffec t Strength Vs. SF with Constant Test Patch Height
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Figure 5.30: A plot of the predicted strength of W hite’s effect, as a function of the spatial 
frequency o f the inducing grating, when the test patch height is held constant at 0.4°. The 
solid line represents the predicted effect strength, and the dashed lines the data collected 
for the two observers in the experiment by Kingdom & Moulden (1991).

data). The point at which the effect reverses in polarity and becomes SBC is also predicted 

to occur a t  a  higher SF than  what is shown in the data  (0.6c/° as opposed to 0.4c/°). 

Even with these  differences, it is still fair to claim that the model’s interplay between two 

separate mechanism s of contrast and assimilation appears to captures the behaviour of the 

data  rem arkably well.

It should b e  noted (as discussed in Chapter 4), that the point of reversal for the effect 

is dependent on the choice of spatial scales in the model. It is entirely possible that an 

alternative choice of spatial scales would fit this particular data better (although it is likely 

that this will be at the detriment to the SBC predictions, which will be reduced, and are 

already p redicted  to be weaker than the data  suggets).

T hat W h ite ’s effect is a result of an assimilation mechanism is a moot point. Kingdom and 

Moulden (1991) conducted experiments with the aim of showing that an assimilation mech­

anism could not fully account for W hite’s effect. In their first experiment, the height of the 

test patch rem ained constant as SF (and thus the aspect ratio) was varied. The motivation
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E ffect Strength Vs. Test Patch Height
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Figure 5.31: A plot of the predicted strength of W hite’s effect, as a function of the test 
patch height on a W hite’s Effect stimulus with an inducing grating of 1.6c/° as in Figure 
5.27.

behind this is as follows: If the effect is driven by assimilation across the vertical borders 

of test patch (as the model predicts), then while the length of the border is held constant 

and the length of the border with the coaxial bar is shortened (as SF increases), then the 

magnitude of the effect should increase as the assimilation signal penetrates further into 

the test patch. Figure 5.30 illustrates the model’s predictions for this experiment, in align­

ment with the explanation just given and in direct conflict with the data of Kingdom and 

Moulden (1991), who found that the effect decreased as SF increased (the data  for observers 

BM and FK are axe plotted with the model’s prediction in Figure 5.30). Furthermore, it 

was shown th a t the magnitude of the effect decreased when the test patch height doubled. 

If assimilation across the vertical borders of the test patch is responsible for W hite’s ef­

fect, then the magnitude of the effect should increase with the test patch height. Figure 

5.31 illustrates the model’s prediction for such as experiment, which is in good alignment 

with the explanation just given, once again contradicting the data collected by Kingdom 

and Moulden (1991). However, these studies are implicitly replicated in data  collected by 

Blakeslee and McCourt (2004), and with twice as many observers28. No evidence was found 

to support the findings of the first experiment, and in actual fact the magnitude of the effect

28 four as opposed to two.
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Figure 5.32: An example of a stimulus used to demonstrate the Double-Decrement W hite’s 
Effect. The size of the inset stimulus is 5°, the frequency of the inducing grating is 1 c/°, the 
width of the test patches is 0.5°, and the height is 1.5°. The luminance of the test patches 
is equivalent to th a t of the background, which is set to mean luminance.

too aoo wo « o  m

Figure 5.33: An example of a stimulus used to demonstrate the Double-Increment W hite’s 
Effect. See Figure 5.32 for details about stimulus dimensions.

was found to increase with SF, as predicted by the model’s assimilation driven mechanism. 

For the second experiment, only two of the four participants provided evidence in favour 

of the original findings, and only for high SF inducing gratings29, rendering the situation 

unclear.

In addition to the param etric variation of spatial parameters, many other variants of W hite’s 

Effect have been produced in an attem pt to disentangle i t’s source(s). Two of the more 

profound variants are provided by Spehar et al. (1995). In these versions, the luminance 

relationships between the test patches and the inducing grating have been altered, such 

that the test patches constitute either increments to the maximum-, or decrements to the 

minimum-luminance of the gratings. These two conditions are referred to as the Double-

29the effect was not demonstrated for inducing gratings with SFs lower than Ac/0.
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Figure 5.34: The model’s output for the  Double-Decrement W hite’s effect stimulus (left), 
and its cross-sectional predicted brightness profile taken as indicated by the position of the 
markers (right). The m agnitude of the effect has been suppressed.
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Figure 5.35: The model’s output for the  Double-Increment W hite’s effect stimulus (left), 
and its cross-sectional predicted brightness profile taken  as indicated by the position of the 
markers (right). The magnitude of the effect has been clearly suppressed.

Increment (DI) or Double-Decrement (DD) conditions, and are demonstrated in Figures 

5.33 and 5.32 respectively. Spehar et al. (1995) found that W hite’s effect was not demon­

strated in either DI or DD conditions, and in some cases the effect reversed to give SBC. 

Table 5.1 lists the model’s output for these stimuli, for inducing gratings of 0.8c/° and 

1.0c/°. Although a large and significant suppression of the effect has taken place, some de­

gree of W hite’s effect remains as a direct result of assimilation, although the overall strength 

of the effect is <  5%, and thus probably not discriminable. This minimum residual effect 

may be accounted for by that fact th a t in the original experiment an inducing grating of 

0.5c/° was used when collecting data. T he m agnitude of W hite’s effect is already known to 

be very weak for inducing gratings a t these SFs (as discussed above), and so the effect of 

changing the luminance relationships in this way need only be small to nullify, or reverse 

the effect. Stimuli with inducing gratings of 0.5c/° could not be used with the model, as
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the model already predicts th a t the effect is reversed for this stimulus. It is claimed th a t 

the model does indeed explain the DI and DD variants of W hite’s Effect.

Another stim ulus which dem onstrates the reversal or nulling of W hite’s Effect is illustrated 

in Figure 5.36, and was originally pu t forwards with the aim of testing the junctions-based 

explanation of the effect30. The stimulus keeps the area local to the test patch equivalent 

to th a t in the canonical W hite’s Effect stimulus, such th a t any explanation dependent on 

assimilation ought to  still predict th a t W hite’s effect is present, when in actual fact it is per­

ceived as being either nulled or reversed (Howe, 2001). Figure 5.37 illustrates the model’s 

output for this stimulus. The mean predicted brightness of the test patch is calculated at 

48.9% (1.1% darker then the actual luminance of the test patch), clearly predicting th a t the 

effect has been nulled. How then  does the model, w ith an explicit assimilation mechanism, 

predict this effect? Once again, this is a direct result of the interplay between assimilation 

and contrast. W hen whole bars are present in the inducing grating, the m agnitude of the 

SBC effect between the light bars and the test patch is relatively small and assimilation 

dominates. However, when parallel sections of the dark bars are removed, the area of the 

test patch’s surround is increased, thus increasing the size of the SBC effect until it comes 

to dom inate over assimilation. To add weight to this explanation, the number of incom­

plete bars in Figure 5.36 was varied and the predicted size of the effect calculated. Pairs of 

bars (one either side of the bar on which the test patch was mounted), were systematically

30the junction structure in this version of the stimulus is identical to that in the canonical stimulus, but 
the effect is no longer present, an effect which cannot then be attributed to junctions.

Table 5.1: The mean predicted brightness for the test patches in the DI and DD versions 
of W hite’s Effect, together with the % change in the strength of the effect, w ith respect to 
a canonical W hite’s stimulus with an inducing grating of the same SF.

T P  o n  L ig h t B ar T P  o n  D a rk  b ar %  C h an ge  in  E ffect S tr e n g th

0 .8  c /°  D D 38.4% 39.8% 75% decrease from control

0 .8  c /°  D I 61.1% 62.4% 76% decrease from control

1 .0 c /°  D D 22.7% 25.4% 77% decrease from control

1 .0 c /°  D I 74.8% 77.4% 78% decrease from control
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Figure 5.36: An example of the type of stimulus used by Howe to demonstrate how W hite’s 
Effect m ay be nulled or reversed. The size of the inset stimulus is 5°, the SF of the inducing 
grating is 1.6 c/°, the width of the test patch is 0.31°, and the height is 0.93°.
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Figure 5.37: The model’s output for the Howe’s variant on the W hite’s Effect stimulus 
(left), an d  its cross-sectional predicted brightness profile taken as indicated by the position 
of the m arkers (right). The effect has been nulled.

completed, starting from the perimeter. If the model is indeed displaying an interaction 

between assim ilation and contrast, then as the size of the bar-less area surrounding the test 

patches decreases, then so should the magnitude of the W hite’s Effect suppression. Figure 

5.38 illustrates the results, which are in clear agreement with the known functionality of 

the ILC m odel. These results have not been replicated psychophysically and represent a 

novel prediction of the model.

Finally, in  another attem pt to investigate the importance of junctions in W hite’s effect, a 

circular version of the effect without any junctions was constructed, an example of which 

is dem onstrated  in Figure 5.39 (Monnier &; Shevell, 2003: Howe, 2005). The model’s out­

put for th is  stimulus is shown in Figure 5.40, from which it can clearly be seen tha t grey 

test contours surrounded by black contours appear darker than test contours surrounded
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P red icted  Test Patch Brightness Vs. No. of Complete Gratings
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Figure 5.38: A plot of th e  mean predicted brightness of test patches in W hite’s effect, as a 
function of the number of complete bars in the inducing grating. Stimuli with an inducing 
grating of 1.6c/°, sim ilar to tha t in Figure 5.36 were used. The solid line represent the 
mean predicted brightness of a test patch on the dark bar, and the dashed line the mean 
predicted brightness of a  test patch on the light bar.

by white contours, in keeping with the traditional version of the effect. Interestingly, an 

additional prediction of the model is evident in Figure 5.4 - the brightness of the contours 

flanking the test contours are amplified with respect to the other contours, depending on 

their original brightness. The dark bars are predicted to be darker, and the light bars 

lighter, once again violating the Anchoring Theory of Lightness.

Another set of phenom ena which have are classified as similar to that of W hite’s effect are 

those of Todorovic (1997), demonstrated in Figure 5.41. Stimulus A induces the canonical 

SBC effect and the grey square (of same luminance as the background) appears brighter 

than the background and  its inverse counterpart on a light surround; in B, the addition of 

four white squares results in the grey ‘cross’ having equal amounts of grey-white and grey- 

black border, but the SBC still persists, albeit suppressed; and finally in C, the ‘arm s’ of 

the cross are extended further than in B. such that the grey cross now has more grey-white 

border than grey-black, but yet a SBC effect still persists in much the same manner as 

W hite’s Effect. The m odel’s output for these stimuli are illustrated in Figure 5.42, and the 

predicted effect strength from A-C was calculated as: 19.8%, 10.7%, and 8.2 % respectively.
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Figure 5.39: An example of the type of stimulus used by Howe to demonstrate how W hite’s 
Effect is not dependent on junctions within the stimulus. The size of the inset stimulus is 
5°, the SF of the inducing grating is 1.6 c/°.
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Figure 5.40: The model’s output for the circular variant on the W hite’s Effect stimulus 
(left), and its cross-sectional predicted brightness profile taken as indicated by the position 
of the markers (right). The effect is clearly visible.

These follow the same trend, but have a far larger magnitude than the psychophysical results 

reported by (Blakeslee & McCourt, 1999), which when converted to the units used in this 

report are 6.5%, 4.2% and 2.8%. Despite this, it is still possible to claim with a significant 

degree of confidence tha t the model and i t ’s contrast and assimilation mechanisms generalise 

and correctly predict the existence of this assimilation phenomenon in addition to W hite’s 

effect.
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Figure 5.41: An example of the stimuli used to demonstrate Todorovic’s effect (A, B, and 
C, from left to right). The inset stimuli are all 5° in width, and the width of all the squares 
in A and B is 1°. C differs from B in that the arms of the 'cross’ are longer. Versions of 
these stimuli with the luminance inverted (black to white and white to black), were also 
processed so tha t the predicted effect strength could be calculated.

Figure 5.42: The model’s output for Todorovic’s stimuli..

Perceptual F illing-In and Edge-D riven Surface Perception

The term filling-in is an umbrella term  describing a group of effects where a region of the 

visual field is kfilled-in’ with brightness values that are not present in the original image, 

either by design of a stimulus, or due to lack or input at the retina either in the blind-spot 

at the optic nerve, or in a  scotoma (real or artificial). It is likely that the mechanisms 

that mediate these differing effects are themselves different, although all three are pertinent 

to surface perception as a whole (Komatsu, 2006). Currently, only the effects related to 

illusory brightness values between edges are of interest, as the model has not explicitly been 

designed to operate in any other situation. The difference between these and the lightness 

and brightness illusions discussed above is subtle: in the latter the surfaces are usually well 

defined and explicitly represented, whereas in the former they are not, and the phenomenon 

often results from the explicit inference of the surface.
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Figure 5.43: An example of the type of CCOB stimulus as used by Dakin and Bex (2003). 
The diam eter of the inner disc is 0.64° and the diameter of the outer disc is 1.7°.
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Figure 5.44: The model’s ou tput for the CCOB stimulus above (left), and its cross-sectional 
predicted brightness profile taken as indicated by the position of the markers (right). The 
effect is clearly visible and the centre disc is predicted to be lighter than the surrounding 
annulus.

The Craik-Cornsweet-O’Brien Effect

One of the most famous examples of such a phenomenon is the Craik-Cornsweet-O’Brien 

(CCOB) effect (O 'Brien, 1959: Craik, 1966; Cornsweet, 1970), an example of which is 

demonstrated in Figure 5.43. W ith the exception of the circular edge profiles, the lumi­

nance of the entire stimulus is uniform. Yet, the central disc, which is surrounded by an 

edge which goes from dark to light, appears to be brighter than the surrounding annulus, 

which is defined by defined by two concentric circular edge profiles that go from light to dark 

into the annulus31 (Moulden & Kingdom, 1990; Dakin & Bex, 2003). Hence, the brightness 

of the surfaces enclosed by the circular edges has been explicitly filled-in based on the in­

formation provided by the edge. Figure 5.44 illustrates the the model’s output for the the 

stimulus and it can be seen that the annulus is predicted to be darker than the central disc 

- when measured, this difference is predicted to be 7.7% (significant). This is a direct result

31 it should be noted that polarity of the effect is dependent on the the polarity of the edges, which if 
reversed would also reverse the direction of the effect.
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of assim ilation between the edges and the neighbouring surface, and as such the effect is 

predicted to persist even as the number of iterations, or time, increase indefinitely. This is 

in accordance w ith the findings from experiments investigating the tem poral evolution of 

the CCOB effect, as conducted by Dakin and Bex (2003).

It should be noted th a t the circular edge profiles were created from filtering two concentric 

black and white discs32 with a Laplacian of Gaussian filter with scale a = 17 pixels (or 

0.33°). The m otivation for using circular edge profiles is because they enclose the entire 

stim ulus area and do not require any additional edges to define the surface(s) where the 

effect is present. Hence, purely the CCOB effect is being studied, and no edge-derived 

contrast effect is present. The Laplacian of Gaussian filtering produces edges with equal 

amounts of light and  dark, and hence the mean luminance of the edge is neutral and cannot 

affect a significant contrast effect on the surrounding area. This latter point is a criticism of 

the types of CCOB stim uli used by Moulden and Kingdom (1990). In their studies into the 

effect, they made use of circular edge profiles with large light or dark gradients constituting 

the edge profiles. Given how the model is known to work, it was felt th a t any effect a t­

tribu ted  to  these stim uli would be as a direct result of contrast between the gradient on the 

edge and the subsequent surface, and not a genuine example of filling-in due to edge-based 

information. Hence, the  stimuli were constructed using the m ethod of Dakin and Bex (2003).

The m odel’s predictions for m agnitude of the effect as a function of the distance between 

edges, and hence the  am ount of filling-in required, was also studied. The scale of the Lapla­

cian of Gaussian filter used to  create the stimuli was kept at a =  0.85 pixels (or 0.017°), 

and the w idth of the  disc and the annular region were always equivalent (and increased 

in octave intervals), in keeping with the methodology of Dakin and Bex (2003). Care was 

taken when calculating the mean predicted brightness of the disc and annulus, and only 

brightness values where the original stim ulus’s edge gradient was not present, were used in 

the m easurem ent of the model’s output. Figure 5.45 illustrates the predictions of the model, 

which are tha t the  effect should decrease as a function of the distance, and hence the size

32in this case of Figure 5.43 the larger of the two discs was white.
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Figure 5.45: A plot of the model’s output for the magnitude of the effect as a function of the 
distance between between edges. The solid line represents the mean predicted brightness of 
the central disc and the dashed line represents the mean predicted brightness of the annulus. 
The scale of the Laplacian of Gaussian filter used to create the stimuli was kept at a — 0.85 
pixels (or 0.017°), in keeping with methodology of Dakin and Bex (2003).

of the area that requires filling-in. This behaviour is likely to result from the finite range 

of the intrinsic blurring in the model’s reconstruction of the original image. Additionally, 

the strength of the effect in the annulus is predicted to be weaker than that in the disc. It 

should be noted tha t this was not explicitly observed in the experiments of Dakin and Bex 

(2003).

The parametric manipulation above was also repeated, but this time allowing the scale 

of the Laplacian of Gaussian filter used to construct the stimuli, and hence the size of the 

gradient, to increase proportionally with the distance between edges. Figure 5.46 illustrated 

the model’s output, which predicts that the effect should remain approximately constant 

with respect to the previous study, as the greater the size of the gradient, then the greater the 

degree and distance over which the blurring can act. Although different stimuli were used, 

this effect of gradient size on effect strength was also implicitly observed in the experiments 

by Moulden and Kingdom (1990).
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Figure 5.46: A plot of the model’s output for the magnitude of the effect as a function of the 
distance between between edges. The solid line represents the mean predicted brightness of 
the central disc and the dashed line represents the mean predicted brightness of the annulus.
The scale of the Laplacian of Gaussian filter used to create the stimuli was doubled with
each successive increase in stimulus size.

G ra tin g  In d u c tio n

Although sometimes regarded as a type of brightness illusion, the phenomena referred to 

as Grating Induction (GI) is also discussed as an example of filling-in, and sometimes re­

ferred to as a ‘visual phantom ’ (Komatsu, 2006). Figure 5.47 demonstrates the type of 

stimulus which elicits the effect, as used by McCourt and Kingdom (1996). W ithin the test 

strip, which possesses the same luminance as the grey background, a cosine grating is in 

anti-phase with th a t above and below, is filled-in to the test strip. Figure 5.48 illustrates 

the model’s ou tput for this stimulus, and clearly predicts a significant effect. Unlike the 

CCOB, the model predicts tha t this effect is driven by induced contrast on the boundaries 

between the actual grating and the test strip, and the anti-phase nature of the induced 

grating is in synchrony with the polarity of the SBC effect projected into the test strip from 

the boundaries.

The magnitude of the  GI effect has been shown to decrease as SF increases (McCourt &: 

Kingdom, 1996; Blakeslee & McCourt, 1999). McCourt and Kingdom (1996) measured 

the strength of the effect using inducing gratings between 0.0625c/°-4.0c/° (a plot of their
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Figure 5.47: An example of the stimulus used to demonstrate Grating Induction. The 
test strip in the centre of the stimulus has a height of 1° and the same luminance as the 
background. Above and below are sections of a 0.25c/° cosine grating with a minimum 
values of 0 and a maximum of 255. A cosine grating in anti-phase to that above and below 
is perceived within the test strip.
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Figure 5.48: The model’s output for the Grating Induction stimulus above (left), and its 
mean predicted brightness cross-section calculated over the range of the entire test patch 
(right). The presence of the anti-phase cosine grating within the test strip is clearly pre­
dicted.

data  for observers BM and FK is reproduced in Figure 5.49 together with the model’s 

predictions). For one participant, no effect could be measured above 0.5c/°, where as the 

cut-off was closer to 1.0c/° for the other participants. This study on GI was modelled 

using inducing gratings between 0.125c/°-0.5c/°, and effect strength was defined as the 

mean predicted brightness of the light regions of the induced grating, less that of the dark 

regions33. The models’ predictions for this study are illustrated in Figure 5.49, and are in 

good accordance with the data  collected by McCourt and Kingdom (1996), as the effect is 

predicted to decrease as SF increases, and the cut-off is predicted to be at 0.5c/°.

33grating with SF lower than 0.125c/° could not be measured as their spatial extent would be too large 
to be processed by the model.
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Figure 5.49: A plot of the model’s output for the magnitude of the effect as a function 
of the SF of the inducing grating. The dashed line represents the predicted magnitude of 
the effect in the stim ulus’s test strip, and the dashed lines represent the data collected by 
Moulden &: Kindgom (1996).

The Tem poral D ynam ics o f Filling-In and Brightness

A novel aspect of this model with respect to the many models of lightness and brightness 

coding (as discussed in chapter 2), is tha t it can make predictions for the temporal dynam­

ics of filling-in. Even though no explicit temporal dimension has been incorporated into 

the model, each iteration in the gradient decent of the biologically plausible tile alignment 

process, can be thought of representing the passing of a single ‘unit of tim e’. The exact 

duration of each tim e unit depends on how long the underlying neurons need to align the 

local brightness tiles from the state  they’re in at iteration i, to the state at iteration i+1. 

Hence in this context, it may not be possible to make accurate quantitative predictions for 

the time necessary for a given surface to be perceived as being filled-in, but it is possible to 

make predictions on how the filling-in process will evolve through time.

Of particular relevance is the work on the temporal dynamics of the filling-in process by 

Paradiso and Nakayama (1991). In their study a white disk target on a black background 

was presented to participants for 16ms, after which a white circle on a black background 

was presented as a mask, several milliseconds afterwards. The duration between target and 

mask was varied, as was the diameter of the target disk, such that the mask may impede
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Figure 5.50: The model’s output for the reconstruction of a white disk (5° in diameter) on 
a black background, a t 0%, 5%, 40%, 100%, and 300% of the iterations used to reconstruct 
all other stimuli in this chapter (from left to right). The predicted brightness cross-sections 
are taken at the midpoint of the disk.

the filling-in process at earlier or later stages of i t’s evolution. The observer’s task was to 

perform an achromatic colour matching task on a concentric circular region at the centre 

of where the larger target disk was originally presented. The aim of this experiment was 

to test the concept th a t edges are responsible for the nature of the filling-in, and hence the 

filling-in ‘signal’ ought to travel outwards from them (from the edge of the white disk and 

into the centre). Thus, by presenting a circular contour (with a smaller diameter then the 

white disk), shortly after the initial white disk, and before it has been completely filled-in, 

the filling-in signal should be halted (or at least impeded) by the presence of this new edge, 

and the central test-region should appear darker, if this mode of filling-in is indeed correct.

It was found th a t for a fixed target disk diameter, the brightness of the matching region 

was dependent on the time before mask onset. Longer onsets produced greater brightness, 

converging on precise matches with the original white target disk. Shorter onsets produced 

the opposite effects. Furthermore, as the diameter of the target was decreased, the bright­

ness of the matching was also decreased (as if the mask was catching the filling-in and 

impeding it sooner rather than later). Another variation of this task was performed using 

a discontinuous mask (a dashed circular contour), with varying gap sizes and a fixed target 

disk diameter. It was found that the larger the gaps the closer the brightness match was
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Figure 5.51: A plot of the model’s output for the brightness of a 1° concentric disc within 
tha t depicted in Figure 5.50, as a function of temporal duration (% of maximum iterations 
used).

with the target disk luminance, as if the filling-in was seeping around the gaps. All of the 

above is taken as evidence for a diffusive filling-in process progressing from the edges in the 

disk.

Due to the lack of an explicit tem poral dimension is it not possible to replicate these stud­

ies with the model. However, it is still possible to make a qualitative comparison with the 

model’s predictions for the evolution of the filling-in process in the same stimulus, with the 

conclusions of Paradiso and Nakayama (1991). Figure 5.50 depicts the model’s predicted 

brightness for a 5° white target disk at 0%, 5%, 40%, and 100% of the iterations used to 

reconstruct all other stimuli in this chapter. Before any iterations, all that is present is the 

multi-scale reconstruction of the disk’s edge. As ‘tim e’ passes, the disk’s brightness first 

becomes apparent at the edges, before becoming manifest at the centre. At all stages the 

edges are always predicted to be brighter than the centre, a direct consequence of induced 

contrast at edges, and as time progresses this effect becomes visible weaker. Figure 5.51 

plots the mean predicted brightness of a concentric ‘matching disk’ 1° in diameter. The 

model predicts that the brightness of the matching disk is a non-linear monotonic function 

of time. A similar non-linear relationship between brightness and time was also found by
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Paradiso and Nakayama (1991). However, what Figures 5.50 and 5.51 also dem onstrate is 

how the edges of the disc are predicted to  be massively («  45%) brighter than  the centre, 

something th a t was not reported in the original study, and something th a t is not observed in 

our everyday visual experiences. This prediction can be better understood if one considers 

the model’s ou tput for the white disc stimulus after 300% of the iterations used process 

all other stimuli (Figure 5.51, furthest right). It is clear to see tha t in this instance tha t 

the disc is approxim ately uniform in predicted brightness. Thus, it is the same mechanism 

responsible for producing SBC (the residual error after a truncated minimisation of the 

global LBT error function), th a t yields this anomalous prediction. The number of itera­

tions chosen to use in the model was prim arily based on the number required to  accurately 

reconstruct natural scene images, which do not have such large surfaces and as much error 

in the resultant reconstruction. W hat the reconstructions in Figure 5.50 may imply is th a t 

for stimuli like the white disc to  be a ttribu ted  the correct brightness, a separate mechanism 

may be required for setting the num ber of iterations to use, based on the information con­

tent of the scene being viewed.

The Temporal Evolution o f SBC and W hite’s Effect

The model’s implicit tem poral dimension can also be used to make predictions for the 

tem poral evolution of visual phenomena. At this stage we return  to  SBC and W hite’s effect 

with the aim of using the model to  predict which of the two effects is the first to  manifest. 

The variant of SBC chosen for this study is th a t illustrated in Figure 5.18, and has two 1° 

test patches. The variant of W hite’s effect used is illustrated in Figure 5.27, and has an 

inducing grating of 1.6c/°. These particular variants of SBC and W hite’s effect were chosen 

because the m agnitude of the effect between their two test patches are almost identical 

at 19.5% and 16.9%, respectively (within one JND). Thus, when comparing the tem poral 

evolution of the two phenomena, any effect strength derived biases will not be present. The 

m agnitude of the effects, as a percentage of the m agnitude at the maximal filling-in time, 

were computed for 0%, 0.5%, 1%, 2%, 5%, 10%, 20%, 50%, 100% of the number of iterations 

th a t constitute the maximal filling-in time. Figure 5.52 illustrates the results of this study,
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Figure 5.52: A plot of the relative predicted magnitudes of SBC and W hite's effect as a 
function of the number of iterations in the model (measured as a percentage of the number 
of iterations of the maximal filling-in time). The dashed line represents the magnitude 
of SBC as a percentage of the m agnitude at the maximal filling-in time, and the solid line 
represents the magnitude of W hite’s Effect as a percentage of the magnitude at the maximal 
filling-in time.

from which two im portant predictions can be drawn: Firstly, at onset W hite’s effect is 

not predicted to  be present (there is a -3% effect strength that indicates an insignificant 

SBC effect), while SBC is predicted to be perceived at onset (there is a 5.2% effect that 

can be considered significant); secondly, the magnitude of the SBC effect rises rapidly, and 

becomes greater than the maximal effect strength before converging on the maximal value, 

while W hite’s effect, in comparison, rises steadily to the maximal value. To the knowledge 

of the author no experimental da ta  exists with which to verify these predictions, and they 

represent novel predictions of the ILC model.

A Com parison w ith  O ther M odels

W ith the exception of the param etric studies, all of the effects modelled above were tested 

with the ODOG model of Blakeslee and McCourt (1999) and the NSS model of Dakin and 

Bex (2003) (unless this output has already been published). The aim of this process was 

to isolate differences in the outputs of the three different models, and hence isolate the 

computational mechanisms required to generate the phenomena.
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Spatial Poaition

Figure 5.53: The output of the ODOG model for the smallest CCOB stimulus, with a 
diameter of 0.85°, and with the central disc and annulus width both at 0.32°.

It is possible to report tha t the NSS model is capable of accounting for all of the effects that 

the Implicit Luminance Coding (ILC) is capable of accounting for. However, this is not the 

case for the ODOG model. In addition to the circular variant of W hite’s effect discussed in 

Chapter 2 (and seen in Figure 5.39), the ODOG model could not account for the circular 

variant of the CCOB illusion. The ODOG model’s output for this stimulus is illustrated in 

Figure 5.53. The mean predicted brightness of the circular disk and surrounding annulus 

were calculated at 49% and 52.6% respectively, which results in the opposite polarity to 

that which has been determined experimentally (Dakin &: Bex, 2003; Moulden &; Kingdom, 

1990).

Summary

The ILC model has been tested on a wide range of visual brightness phenomena that cover 

both contrast and assimilation effects, as well as some lightness phenomena that are thought 

to arise from scene interpretation. For the former, it has demonstrated that accounts can 

be provided by a biologically plausible low-level interaction between two assimilation and 

contrast mechanisms. Complete accounts of both the SBC and W hite’s Effect, together with 

all pertinent variations are included. Furthermore, accounts of other examples of contrast 

and assimilation effects (Mach Bands, Vasarely’s Pyramid, Chevreul’s, and Todorovic’s 

illusions) have been provided, demonstrating that the ILC model does not just predict 

the correct brightness for a few examples in each class of phenomenon investigated. In
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general, SBC effects are predicted to be weaker than  reported in the da ta  (by % 20%), 

while assimilation effects are in closer agreement (within % 5% — 10%). For lightness 

phenomena, it has shown th a t Adelson’s ‘Wall of Blocks’ and Kofka’s rings may require 

a better understanding of higher-level visual processing in order to be able to provide full 

accounts (in keeping with the views on visual processing discussed in C hapter 2). However, 

in the case of the Agostini and Benary Cross effects, it has shown th a t these phenomena 

do not need to  be explained in term s of higher-level processing. The ILC model explicitly 

violates the Anchoring Theory of Lightness in some scenes, by predicting small variations 

in brightness ( «  3% -  5%) for different regions of white in the scene. The ILC model is 

also capable of pu tting  forward good accounts for two im portant filling-in phenomena, the 

CCOB and grating induction effects, as well as providing an understanding of the tem poral 

dynamics of this process th a t is in qualitative agreement with experiment. Furthermore, 

its implicit inclusion of a tem poral dimension also predicts tha t SBC will be present at 

stimulus onset, while W hite’s effect will not, and th a t the tem poral evolution of the two 

effects are very distinct, w ith SBC being greater in m agnitude before it settles to  the 

long-term predicted brightness value. These la tte r predictions are not possible with the 

other models th a t have been described in this work. However, in examining the tem poral 

evolution of brightness it was shown th a t the model’s fixed number of iterations (the fixed 

duration for reconstructing the im age), may have to be relaxed in order to  correctly predict 

the brightness of some simple non-natural scene configurations.
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C onclusions

This thesis has pursued a single line of enquiry: lightness, brightness, and visual illusions. 

More specifically, this work has been centred on the view that lightness and brightness 

phenomena are the direct consequence of low-level visual mechanisms, but only when vi­

sual cues tha t support a specific interpretation of the scene are in absence. W hen visual 

cues pertaining to such things as depth perception, transparencies, and changes in illumina­

tion are present, it is conjectured th a t higher-level visual mechanisms m odulate the output 

from low-level visual mechanisms, in an a ttem pt to accurately infer the origins of the lumi­

nance and remain lightness constant. W ithin this context, lightness and brightness illusions 

could be thought of as either lightness or brightness phenomena. This is in contrast to 

some models of higher-level vision, which claim th a t all such phenomena are the result of 

higher-level mechanisms th a t a ttem pt to  accurately infer the origins of the luminance and 

remain lightness constant (Sinha & Adelson, 1993; Purves et al., 1999; Gilchrist et al., 1999).

In particular, this work has focused on W hite’s effect, SBC, and theories th a t can account 

for both phenomenon. W hite 's effect has been of particular interest, as it defies the canon­

ical low-level neural explanations based on a simple filtering of the image w ith receptive 

fields of the type commonly found in the prim ary visual stream, whereas such theories are 

capable of accounting for SBC. However, ideas from higher-level vision have proved highly 

(although not completely) successful in predicting W hite’s effect and SBC (Todorovic, 1997; 

Gilchrist et al., 1999; Anderson, 2001). This has generated a debate on the precise nature 

of the calculations th a t generate lightness and brightness. One of the aims of this work 

was to provide evidence th a t phenomena classified as higher-level, such as W hite’s effect, 

can be accounted for by neural models of low-level vision, which also account for brightness 

induction effects.

In C hapter 2, current low- and high-level theories of lightness and brightness were reviewed 

in the context defined above. It was concluded that higher-level theories could not provide 

accounts for all variants of W hite’s effect, such as the circular variant (Howe, 2005) or the
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change in effect strength  with the SF of the inducing grating (White, 1981; Blakeslee k  

M cCourt, 1999; Anstis, 2004), and th a t  the NSS model of Dakin and Bex (2003), and the 

ODOG model of (Blakeslee k  M cCourt, 1999), were the only low-level theories of bright­

ness capable of accounting for bo th  W hite 's effect and SBC, based on neural processes. 

As such, in C hapter 3 both  models were reconstructed, analysed, and evaluated through a 

system atic analysis of their constituent parts. It was shown that both models are reliant 

on the amplification of low SF inform ation, to accurately reconstruct images and account 

for the illusory brightness apparent in W hite’s effect. Furthermore, it was show th a t the 

ODOG model could not a account for the  circular variant of W hite’s effect, as the account 

it provides for the conventional stim ulus configuration (W hite, 1979; Blakeslee k  M cCourt, 

1999), is based on kind of ‘neural T -junction analysis’, and in the circular variant of the 

effect there are no junctions of any kind.

It was argued th a t the large spatial R F s used by the ODOG and NSS models to represent 

low SF information, are not likely to  exist in VI. Based on recent physiological studies which 

have aimed to  measure the spatial extent over which visual information can be integrated 

in the cortex (Sceniak et al., 2001; Angelucci et al., 2002; Cavanaugh et al., 2002; Stettler 

et al., 2002), it shown shown th a t the existence of 0.2c/° and 0.1c/° tuned Log-Gabor RFs 

does not fit w ith even the most accom m odating data. Similarly, the global re-weighting and 

re-normalisation schemes employed by the NSS and ODOG model are not constrained by 

the local nature of intra-cortical connections. Hence, it was concluded th a t these models 

are not biologically plausible.

However, physiological recordings from VI and upstream  have shown th a t low SF informa­

tion (0.2c/°-0.2c/°) does exist (Rossi k  Paradiso, 1999; Ringach, 2001; Xing et al., 2004), 

and cells have been found with responses to either the actual or perceived luminance of 

surfaces (Rossi & Paradiso, 1999; K inoshita k  Komatsu, 2001; Roe et al., 2005). A frame­

work for interpreting these results was proposed: cells which appear to consistently respond 

to absolute surface luminance, are those which leak local D.C (or local mean luminance) 

information in their response - they do not play a functional role in surface representation
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as their response to a surface would be hard to disambiguate from th a t to a sub-optimal 

grating. ‘Blob’-like cells (see Figure 3.23) (Ringach, 2001) are involved in surface represen­

tation, but are not part of an explicit feed-forward luminance code. If arrays of such cells 

did exist, and the retinal image is explicitly represented in the cortex, then there would be 

little reason for the existence of contrast coding cells upstream  from V I - a  view supported 

by information theoretic analyses of the prim ary visual stream  (Barlow, 1961; Kelly, 1962; 

Barlow, 1981; Nirenberg et al., 2001; Z. Li, 2006).

Following on from the conclusions of C hapter 3, a new model of luminance coding was 

proposed in C hapter 4. Firstly, the issue of recovering low SF and local mean luminance 

information without explicitly sampling it was considered. The problem was defined in 

the framework of Scale-Space, and based on the output from a set of GD spatial filters. 

Recovering information about local mean-luminance (and hence low SFs), is equivalent to 

predicting the output of zero-order GD filters (equivalent to the ‘blob’-like RFs found by 

Ringach (2001) and illustrated in Figure 3.23), from the information implicit in the con­

trast coding higher-order GD filters. T hat is, th a t cells with ‘blob’-like RFs code implied 

luminance. The functionality of Scale-Space was leveraged to solve the problem: it was 

proposing th a t VI simple cells provide a measure of the first- and second-order derivatives 

of a blurred version of the retinal image (tha t is, th a t Scale-Space is a model of VI simple 

cells), and th a t this information is sampled at discrete intervals by overlapping receptive 

fields. An approxim ation of the Taylor series (or local jet) representation of the image, op­

erating with the available differential information, is used to ‘fill-in’ local brightness values 

in a square region about each sampling point. Reconstruction of the zero order term  (the 

global luminance structure), is performed by enforcing continuity between neighbouring re­

gions of local brightness. This is achieved by shifting the absolute brightness level of each 

local region, and optimising the shifts such th a t the variance in the differences in brightness 

within overlapping regions is minimized. This technique can effectively reconstruct natural 

scene images.

However, the optim isation process is not biologically plausible; neurons are not capable
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of solving systems of linear equations analytically, especially when it involves integrating 

information from the entire extent of visual space, as discussed at the end of C hapter 3. An 

alternative m ethod by which the optim isation can proceed was then proposed. It is based on 

the gradient-decent numerical approxim ation to the problem, and is shown to utilise local 

interactions between neighbouring local brightness regions to recover the global brightness 

structure in a biologically-plausible manner, consistent with the known functionality of neu­

rons. This process introduces error into the reconstruction of the local brightness structure, 

which has the overall effect of inducing contrast a t borders in an image, as observed in the 

simultaneous brightness contrast effect, introducing a new way of looking at a well known 

phenomenon.

The final model consists of five such reconstructions, a t five different scales, combined in an 

un-weighted linear sum to produce the final predicted brightness image. The use of multiple 

scales was m otivated by for several reasons: information a t multiple scales is available to 

the cortex (Georgeson & Sullivan, 1975; Hubei, 1988); information at differing scales is of 

equal im portance (Koenderink, 1984); and, because it was shown th a t the reconstruction 

of the global brightness structure  was relatively invariant to  noise for larger scales. The 

implications of the la tte r are th a t a robust reconstruction of the image with good acuity, for 

both  small and large scales can be achieved by integrating information from multiple scales. 

The scales were chosen such th a t the RFs used in each reconstruction do not exceed the 

sizes commonly found within V I (De Valois et al., 1982; Sceniak et al., 2001). The use of 

larger scales also introduces blurring over greater distances into the reconstruction, which 

has the  affect of providing an explanation for W hites effect.

In C hapter 5, a wide range of brightness, lightness, and filling-in stimuli were tested on 

the biological ILC model, whose ou tpu t was compared to  experimental data. The model 

proves to  be very successful at providing accounts for these phenomenon, based on the inter­

play between the contrast and assim ilation mechanisms described above. In particu lar the 

model was shown to  be capable of providing comprehensive accounts of all known variants 

of W hite’s effect and SBC (although in general the  m agnitude of the former were found to
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be greater than that found psychophysically, and the magnitude of the latter were found 

to be smaller). As a consequence of this. W hite's effect is predicted to be the result of an 

assimilation mechanism acting independently of the contrast mechanism responsible for the 

accounts of SBC. Furtherm ore, the model provides support for the view that both SBC and 

W hite's effect are derived purely from low-level visual mechanisms, and that higher-level 

visual process do not have a significant part to play in accounting for such phenomena, 

as lnus been suggested (Sinha <k Adelson. 1993; Purves et al., 1999; Gilchrist et al., 1999). 

Similarly, the model's accounts for Agostini's SBC illusion (Agostini & Galmonte, 2002) 

and the Benary Cross (Benary. 1924) imply tha t these effects are also not the result of 

higher-level visual processing.

However, the model was not capable of providing accounts for the ‘Wall of Blocks' (Adelson, 

1993) and Kofkas' rings (Kofka. 1935) demonstrations. Both of these dem onstrations could 

involve changes in cues for spatial configuration, which could alter the interpretation of the 

scene, the inferred origin of the luminance, and hence the attribu ted  lightness. Thus, in 

its failure the model has supported the view that higher-level visual mechanisms modulate 

the output from low-level visual mechanisms only when genuine visual cues are present in 

the scene, where a genuine visual cue could now be defined in relation to what the model 

predicts.

One novel aspect of the model with respect to other low-level models of brightness, is tha t 

it is possible to make qualitative predictions for the temporal evolution of brightness. In 

particular, it was shown th a t the tem poral evolution of brightness filling-in is a non-linear 

function of time, as determined empirically by (Paradiso & Nakayama, 1991). Furthermore, 

it was possible to make unique predictions for the temporal evolution of W hite's effect rel­

ative to SBC. It is predicted tha t SBC will be present at stimulus onset, while W hite’s 

effect will not. and that the tem poral evolution of the two effects are very distinct, with 

SBC being greater in magnitude before it settles to the long-term predicted brightness value.

That the model is in general agreement with empirical data, suggests that the explicit sarn-
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pling of local mean luminance information is not essential for determining the brightness 

in images. Given that information theoretic arguments exist to support the view th a t this 

information is not explicitly transm itted  to the cortex, then it has been shown how the 

visual system can circumvent this lim itation. Furthermore, the model's competent predic­

tions also serve as a justification for the choice of spatial scales used to determine brightness.

The model has. however, proved to be insufficient in some circumstances. It was shown that 

the model failed to accurately reconstruct a solitary white disc. 5C in extent, 0 1 1  a black 

background. However, when the model was allowed to iterate 200% more times than the 

that deemed necessary to reconstruct natural scenes, an accurate reconstruction could be 

obtained. This implies that a separate mechanism to control the number of iterations in 

the model, which converges to those chosen in the case of natural scenes, may be required, 

and points to a stream  of investigation for future work.

Additionally, future research efforts could be made to investigate whether the model could 

be used to understand how other filling-in mechanisms operate. For example, when filling-in 

regions that are not present in the original image, either by design of a stimulus, or due 

to lack or input at the retina either in the blind-spot at the optic nerve, or in a scotoma 

(real or artificial), as discussed bv Komatsu (2006). Information in the derivative structure 

surrounding a region of the image for which there is no response, could be used to infer the 

derivative structure within this region, possibly by extending the size of the LBTs of the 

surrounding regions, before proceeding with the iterative tile aligning algorithm.
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