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Abstract

Interest in finding statistical regularities in natural images has been growing since the advent 

of information theory and the advancem ent o f the efficient coding hypothesis that the human 

visual system is optimised to encode natural visual stimuli. In this thesis, a statistical analy

sis o f gradient directions in an ensem ble o f natural images is reported. Inform ation-theoretic 

measures have been used to com pute the am ount o f dependency which exists betw een triples 

o f gradient directions at separate im age locations. Control experim ents are perform ed on other 

image classes: phase randomized natural im ages, whitened natural images, and G aussian noise 

images.

The main results show that for an ensem ble o f natural images the average am ount o f de

pendency between two and three gradient directions is the same as for an ensem ble o f phase 

randomized natural images. This result does not extend to i) the amount dependency between 

gradient m agnitudes, ii) gradient directions at high gradient magnitude locations, or iii) indi

vidual natural images. Furtherm ore, no significant synergetic dependencies are found between 

triples o f gradient directions in an ensem ble natural images; a synergetic dependency is an 

increase in dependency between a pair o f gradient directions given the interaction o f a third 

gradient direction.

Additional experim ents are perform ed to establish both the generality and specificity o f 

the main results by studying the gradient direction dependencies o f ensembles o f noise (random 

phases) images with varying power law power spectra. The results o f the additional experim ents 

indicate that, for ensembles of images with varying power law power spectra, the am ount o f 

dependency between two and three gradient directions is determ ined by the ensem ble’s mean 

power spectrum rather than the phase spectrum. A framework is also presented for future 

work and preliminary results are provided for the dependency between second order derivative 

m easurem ents (shape index) for up to 9-point configurations.
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Chapter 1

Introduction

Vision science is a broad subject which incorporates a num ber o f disciplines: physics (optics), 

mathematics (statistics, geometry), engineering (signal processing), biology (neuroscience) and 

psychology (cognitive psychology). An interdisciplinary approach is necessary if  any thor

ough understanding o f visual system s— in particular the hum an visual system (HVS)— is to be 

achieved. In any mam m alian species, the visual system provides an im portant representation o f 

the physical world and is a vital com ponent in the survival o f the species.

In the case o f the HVS, advances towards an improved understanding o f this system  have 

been inspired by the assumption that the HVS is optim ised to encode natural stimuli, which is 

known as the efficient coding hypothesis proposed by Attneave [1]. The hypothesis posits that 

the HVS is specifically adapted to signals o f the natural environm ent because these are the most 

common signals the HVS receives. In the context o f neuron responses in the HVS, Barlow 

hypothesised that the role o f such neurons is to remove the statistical redundancies found in 

natural signals [2, 3]. The advent of inform ation theory and the efficient coding hypothesis has 

led to a profusion of research to find the statistical regularities in the natural environment.

O ther factors are likely to have influenced how the HVS has evolved to its current state. 

For example, any biological visual system  must enable the species to perform essential tasks 

which are necessary for its survival. The hardware o f the system will limit how much and how 

quickly information can be transferred within the system whilst remaining energetically sus

tainable. The hardware must also be robust to the environment: a visual system m ust— within 

reason— remain undam aged by stimuli. For example, it is known that the HVS is only sensitive 

to a certain range o f wavelengths in the electrom agnetic spectrum. The range o f  sensitivity 

is, approximately, from 400nm  to 700nm. This range does not include infrared and ultraviolet 

radiation, which, if absorbed by the visual system, would cause undesirable physical changes
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to its living cells. Nevertheless, it is possible to find living species which are sensitive to in

frared (pit viper snake) and ultraviolet light (bees and birds). However, for these species, the 

advantages outweigh the costs o f dam age to its cells. The evolutionary costs o f the hardware 

is another im portant factor in its evolution because for greater complexity in the hardware, the 

greater the risk and cost associated with encoding it in the DNA of the species.

1.1 Preview of Thesis

In the next section, several topics, which are covered in more depth in later sections o f this 

thesis, will be introduced here as motivation for the rest o f this work.

1.1.1 Natural Images

W hatever evolutionary factors may have determ ined the state o f the HVS today, light from  the 

environment is projected (upside down) onto a retina at the back o f the eye. This results in a 2-D 

image being formed from  a 3-D world in the HVS, and therefore the HVS must be perform ing 

all o f its processing on 2-D images. Thus, in this thesis, it is assum ed that an ensem ble o f 

natural images (any image taken from the natural environment) is an adequate representation o f 

the natural environment. M oreover, this thesis is concerned with low-level image analysis and, 

therefore, colour and motion (i.e. video or series o f images) are ignored. A study, by Caselles 

et al., showed that for a natural image there is no geom etric inform ation contained in the colour 

channels o f an image which is not present in its grey level image [4].

There has been a considerable am ount o f work on finding methods to extract low-level 

features from 2-D images. In particular, several low-level image features are extracted by us

ing polynom ial combinations o f derivative operators. This com putational approach to vision 

has been aided by M arr’s paradigm  that visual perceptual tasks can be formulated in terms o f 

information processing tasks and this approach is presented in Section 2.4.

1.1.2 Visual Perception: Gestalt Theory

Despite M arr’s paradigm, a 2-D image remains flat. Thus, it is likely that in processing 2- 

D images the HVS is making additional assum ptions in order to construct a 3-D world. The 

problem o f the ‘m issing dim ension’ in the HVS is known as the problem  of ‘inverse optics’, 

which is strongly linked to theories o f visual perception. Gestalt theory o f human perception, in 

particular perceptual grouping, along with other vision theories (e.g. structuralism, unconscious
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inference) are presented in Section 2.3.

Gestalt psychologists were able to establish a num ber o f qualitative grouping rules which 

govern human visual percepts. A motive for the m ethodology adopted in this thesis is an at

tempt at relating the Gestalt philosophy of holism  to the statistics of natural images by finding 

quantitative evidence for the advantages— in an inform ation-theoretic sense— in m aking m ulti

local geom etrically meaningful (e.g. gradient directions) m easurem ents in images, whereby 

multi-local is defined to mean local m easurem ents made sim ultaneously at multiple locations 

in an image.

1.1.3 Multi-local Statistics

In this work, multi-local statistics are classified firstly by the derivative order of the im age m ea

surements considered, and secondly, by the num ber o f locations at which these m easurem ents 

are made. For instance, the histogram  o f  the distribution o f gradient directions, resulting from 

randomly collecting gradient directions from  an ensemble o f natural images, is term ed 1-point 

first order statistics (see Fig. 1.1 for an illustration of gradient orientations in a natural image). 

W hen the mutual information between two gradient directions at separate locations is com 

puted, the result is classified as 2-point first order statistics. This is then extended to measure 

the dependencies of gradient directions at three separate locations which is classified as 3-point 

first order statistics.

1.1.4 Information Theory

To quantify the amount o f dependency between gradient directions in natural images 

inform ation-theoretic methods have been used, specifically interaction inform ation (higher 

order mutual information). For example, triples o f gradient directions are m easured and the 

mutual inform ation between a pair o f  gradient directions is computed. Furthermore, how the 

context o f a third gradient direction affects the 2-point mutual information is calculated. If, for 

example, 2-point dependency increases in the context o f  a third point, then m easuring triples o f 

gradient directions is termed synergetic. This means there is an additive (i.e. ‘holistic’) effect 

in measuring triples o f gradient directions simultaneously, however, if there is a decrease, the 

3-point dependency is term ed redundant. If there is neither an increase nor decrease, then there 

is no triple interaction.
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Figure 1.1: Top left: an example of a natural image. Top right: colour wheel key of gradient 
directions, e.g. red and cyan denote horizontally oriented gradient directions. Bottom left: the 
natural image above has been converted to a colour map of gradient directions. Bottom right: 
same as bottom left, but with only the strong (top 25% gradient magnitudes) gradient directions 
shown; applying this threshold to the gradient directions makes it resemble an edge orientation 
map.
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1.1.5 G ra d ie n t D irections

In order to search for multi-local dependencies in natural images, there are several reasons 

why it is appropriate and interesting to analyse gradient directions. One reason is because 

gradient directions describe the extrinsic geometry of a location in the image and are invariant 

to monotonic transformations (global brightness and contrast changes) of the image, as shown 

in Figure 1.2. Thus, the gradient direction together with the gradient perpendicular form a 

natural local coordinate frame (first order gauge), which is discussed in Section 2.4.3. A further 

advantage of gradient directions is that they are reasonably uniform over a finite range of values, 

which makes statistical analysis more convenient. This is in contrast to the distribution of 

filter responses which can be kurtosed and therefore more difficult to analyse using standard 

statistical methods.

Figure 1.2: Left side: illustrates a natural image with red lines oriented normal to the gradient 
direction. Right side: illustrates the same natural image but at a lower contrast, notice how the 
gradient norms remain in the same direction despite the global change in contrast.

1.1.6 H ig h er O rd e r  S ta tis tics

The choice of gradient directions is further motivated by the discovery, by previous authors, 

of higher order statistical regularities in ensembles of natural images (a detailed discussion is 

presented in Chapter 3.5). For example, a prevalence of horizontally and vertically oriented 

contours [5, 6, 7], Other authors have also observed the responses of edge detector-like filters 

and found that greater spatial dependencies exist between pairs of edges in natural images
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com pared to synthetic images (power spectrum o f natural images but with random ized phases). 

Moreover, in natural images, the dependency between edges is greatest when the second edge 

is along the initial edge direction [8]. This im plies that the dependencies between edges in 

natural images are affected by their relative orientation and position to each other. Studies also 

reveal that statistically the most likely contour joining two nearby edge segments is a line and 

then a circular arc [9]. Therefore, initially it was proposed in [9] that natural im ages have an 

abundance o f circles, however, further investigations in [10] reveal that natural scenes are in 

fact likely to have many closed smooth contours, not just circles.

The observations o f the co-occurrence statistics o f edges in natural images provides some 

evidence for why cortical neurons in the prim ary visual area (V 1) might be sensitive to lines o f 

particular orientation (a discussion o f V 1 physiology is in Section 2.2.2). It has been found that 

in the cat [11, 12] and prim ate visual cortex [13] there exist lateral connections which mostly 

link colum ns o f neurons with the same orientation preference. Attem pts have been m ade to 

learn the pattern o f excitation and inhibition o f these lateral connections from the statistics 

o f natural images [14]. These patterns are learned by integrating the inform ation from the 

responses o f spatially-nearby filters to build contours [15]. The orientation selectivity found in 

neurons has been hypothesised to be a result o f  the natural environment. However, analysis o f 

test images full o f oriented features but without any second order correlations do not result in 

oriented receptive fields being predicted [16]. Therefore, orientation selectivity may not be a 

consequence o f oriented features in the environment.

Several of the aforem entioned studies focus on finding statistical evidence of dependen

cies between pairs o f edges and contours, both o f which can act as cues to identify features in 

an image. However, edges are only found at locations in the image with high gradient m agni

tude. Furthermore, apart from a previous study o f 2-pixel and 3-pixel lum inance correlations 

in natural images [17], which revealed that the contribution o f 3-pixel correlations is extrem ely 

small com pared to the contribution o f 2-pixel correlations— over 90%— to the overall redun

dancy o f an ensemble o f natural images, there has not been a detailed study o f the statistical 

dependencies between two and three first order derivative measurem ents in natural images.

A further motivation for studying the statistics o f gradient direction dependencies is based 

on authors [1 ,2 ] who have already hypothesised that the hum an visual system (HVS) exploits 

statistical regularities in natural im ages to encode visual data more efficiently. This is known
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as the efficient coding hypothesis and is explained in m ore detail in Section 1.2. There are 

several theoretical [18, 19], neurophysiological [3, 20] and psychophysical [21, 22, 23, 24] in

vestigations which lend support to such a hypothesis. M oreover, it does not seem unreasonable 

that some form of statistical regularity in natural images could underlie Gestalt grouping rules 

which was first proposed in [25]. It has already been shown that when subjected to natural 

image stimuli, the response from pairs o f (Gabor) wavelet filters— which resem ble sim ple cell 

receptive fields in the m am m alian visual cortex (the physiology o f the HVS is sum m arised in 

Section 2.2)— show statistical relations that are consistent with the Gestalt grouping princi

ples of collinearity and parallelism  [26]. In this work, information theory is used to com pute 

the amount o f synergetic dependencies— if there are any— between geom etrically m eaningful 

measurements (gradient directions) in natural images. Synergetic dependencies would imply 

that there is an information advantage to a multi-local approach to the measurem ent o f  gradient 

directions.

1.1.7 Summary of Motivation

In summary, the motives for studying the statistical dependencies o f first order derivative m ea

surements at multiple locations and at various distances between measurements in natural im 

ages are due to:

•  Statistical dependencies having already been found in natural images for pairs o f edges, 

moreover, such dependencies are influenced by the relative orientations of the edges. 

Edges in an image are im portant because they are attributable to the properties o f object 

surfaces and the light field in the environment. Although the study of gradient directions 

is not restricted— unlike edges— to locations in the image where the gradient m agnitude 

is high.

•  The orientation selectivity found in certain visual cortical neurons and the presence o f 

lateral connections between neurons with the same orientation preference.

•  The relationship between Gaussian derivatives and the receptive field profiles o f visual 

cortical neurons.

•  Low-level image processing is concerned with the extraction o f features or local m ean

ingful structures in an image (grey-scale); it turns out that it is possible to construct such 

feature detectors from  certain com binations o f  derivative operators.



1.2. Efficient Coding Hypothesis 17

•  The search for synergetic dependencies between multiple geom etrically meaningful m ea

surements, which can provide quantitative evidence for the advantage— in a inform ation- 

theoretic sense— in adopting a multi-local approach to low-level image analysis.

1.2 Efficient Coding Hypothesis

A fundamental aim o f vision research has been to understand how the human visual system 

(HVS) processes visual information. It is im portant to understand what is being m easured by 

the HVS and how it processes these measurem ents. The term efficient in the efficient coding 

hypothesis [1, 2] is used to express that the HVS transm its the m aximum am ount o f inform a

tion from a given stimuli with the least num ber o f neurons [3]. This is different from  simply 

com pressing an image maximally where it is necessary to be able to recreate the original image 

and be concerned with how much inform ation has been lost. An efficient sensory system  should 

exploit any redundancy found in the incom ing signal. In the case o f the HVS, light from  the nat

ural environment is the incoming signal; this signal is typically approxim ated by an ensemble 

o f natural images in the literature.

The efficient coding hypothesis was advanced by Barlow who observed that neurons found 

relatively early in the processing stage o f a sensory nervous system were more active, and 

therefore, less specific than those neurons found at later stages [2]. Barlow hypothesised that 

the HVS removed redundancies inherent in natural visual stimuli [2], in other words the HVS 

encodes the information into a more efficient form: sparse coding. Otherwise the HVS would be 

overwhelm ed with information; it would require— if each visual stimuli were to have a unique 

representation— many more neurons than exist in the HVS.

For example, consider that the hum an retina contains around 120 million rods and about 

six million cones all o f which can receive inform ation from the environment. In [27], Kelly 

calculates that the maximum rate at which inform ation can enter the HVS is, for the entire 

retina, one gigabit o f data per second. This is a large am ount o f data and although all of 

this data cannot be made available for transm ission, it still indicates that the HVS would be 

required to exploit redundancies in the signal in order to reduce the information burden without 

com prom ising the effectiveness o f the HVS. Physiological evidence does suggest, as reported 

in Section 2.2, other cells (e.g. ganglion, bipolar, am acrine and horizontal) within the retina are 

com bining the inputs from several o f the photoreceptor cells thereby reducing the am ount o f
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information which eventually passes through to the visual cortex via the optic nerve.

In fact, exploiting image redundancies is likely to be necessary for processes at ‘deeper’ 

levels o f the visual cortex. Sparse coding represents complex data into a form that allows 

higher cortical areas to process the data more effectively, saving time and energy [28]. This 

latter point has been observed experim entally by Attwell and Laughlin who estim ated that the 

average firing rate of neurons (<  1Hz) must be low [29]. In an extension to this work, Lennie 

established what would be the energy cost o f an individual neuron spike, and thus, by using the 

known energy consumption o f the cortex, Lennie was able to estim ate that only 1% o f cortical 

neurons could be active concurrently [30].

Further experimental investigations, by Vinje and Gallant, and Reiche et al., into the re

sponse properties o f visual cortical neurons suggest that natural stimuli not only increase the 

selectivity o f neurons but also decorrelates their responses [31, 32]. Moreover, the decorrelated 

responses to natural stimuli are not isolated to cortical neurons. For example, previous studies 

by Srinivasan et al. showed that the centre-surround organisation of a receptive field found in 

retinal ganglion cells provides a m eans o f exploiting spatial correlations in natural im ages by a 

process o f inhibition in the surround of the receptive fields [20]. It would, after all, be inefficient 

if the HVS had different neurons responding to the same stimuli; this would imply that more 

than one neuron is transmitting the same information. Therefore, neuron responses should be 

independent o f each other, in the sense that one could not infer the response o f any particular 

neuron given the responses o f other neurons; this is a simple yet important property o f sparse 

coding.

However, despite the encouraging arguments presented in support for the efficient coding 

hypothesis, the hypothesis gives no weight to what task an organism is performing. Clearly, 

if there is a specific task which requires additional encoding to perform, why would the HVS 

encode it if it is a task which is never perform ed or likely to be perform ed? Moreover, an 

efficient code does not necessarily mean the inform ation contained in that code is represented 

in a useful way. Therefore, it seems appropriate that there must be an extension to the efficient 

encoding hypothesis to account for what task is being performed.

If visual systems such as the HVS sparsely code natural stimuli, evidence o f this behaviour 

should be observed in physiological studies. Indeed the response behaviour o f cortical neurons 

and retinal ganglion cells suggests that stimuli from natural images are being encoded in the
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HVS with greater sparseness than any other class o f image. To observe the effect o f  sparse 

coding, special attention m ust be paid to where the visual stimulus is applied. For example, a 

characteristic o f retinal ganglion cells is their behaviour when only its classical receptive field 

(C R F1) is stimulated (experim entally this is achieved by presenting only a small patch o f an 

image to a subject). W hen only the CRF of cortical cells are stimulated there is a significant 

chance o f correlated firing, i.e. no sparsity (suppression o f neuron firing). However, if the size 

o f the patch observed is gradually increased from two to four times the diam eter o f the CRF, to 

include the non-classical receptive field (nCRF2), the mean spike rate falls monotonically, and 

the effective bandwidth o f individual neurons is reduced [31, 33]. The reduction in effective 

bandwidth means that the range o f stimuli a neuron may represent is also reduced. In spite o f 

this, the information transmission rate increases by an amount which is statistically significant 

for a stimulus twice or three times the CRF diameter, but only marginally significant for a 

stimulus four times the diam eter o f the CRF. The information transm ission rate is im portant 

because it should at least remain constant or increase if sparse coding is occurring, if there is a 

reduction, it implies inform ation is being lost.

Observing how the inform ation transm ission rate increases or stays constant in term s o f 

individual neuron behaviour is im portant because if the rate stays constant a plausible deduction 

is that all o f the individual neurons have stayed constant. However, the findings reported in [33] 

suggest that it is certain neurons that are increasing their transmission rate significantly while 

others remain the same or even decrease significantly. Moreover, the significant increases are 

more frequent than significant decreases which leads to an overall rate increase. There is also 

an increase in the information per spike, which is calculated from  the inform ation per second 

divided by mean num ber o f spikes per second. Further, in [33], it is reported that stimulation 

of the nCRF increases the efficiency with w hich neurons are processing inform ation whereby 

efficiency is measured as a fraction o f the am ount o f information transmitted divided by the 

bandwidth available (maximum possible transfer o f information) and does not explicitly depend 

on the overall neuron spike rate.

In summary, it is found that the effect o f contextual m odulation of neurons increases i) 

information per spike, ii) efficiency o f inform ation transmission, and iii) selectivity (selectivity 

will be high when a neuron responds only to one stimulus, if it responds to all stimuli then it

'The size of the CRF, in Vinje and Gallant, is the diameter of the circle which circumscribes the minimum 
response field of the neuron [33],

‘The non-classical receptive field lies outside the classical receptive field.
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is said to have low selectivity). If  we put this together with the assumption that the HVS is 

optim ised to encode natural visual stimuli, and there have been theoretical studies— detailed in 

Chapter 3— by Attick, van Hateren and Field supporting this hypothesis, then it seems advan

tageous to study natural visual stimuli if we are to gain insight into the possible m easurem ents 

and com putations being perform ed in the HVS. All the previous points made in support o f  the 

efficient coding hypothesis provide the motivation for exploring the statistics o f natural images 

in Chapter 3 and motivates the im portance o f the research carried out on the statistics o f  gradient 

directions in natural images.

1.3 Overview of Thesis

In Chapter 2, general background material is provided to cover the broad approach to vision re

search and introduces material o f relevance to Chapter 3. Specifically in Chapter 2, the physical 

properties o f light and the problem  o f inferring a 3-D scene from  a 2-D image (inverse optics) is 

explained in Section 2.1. Both the hum an visual system (Sec. 2.2) and human visual perception 

(Sec. 2.3) are also discussed including the presentation o f several vision theories: Gestaltism , 

unconscious inference and ecological optics. Finally in Chapter 2, a short review o f com puta

tional attempts to extract features from images and the usefulness o f derivative operators for the 

detection o f features is presented (Sec. 2.4).

In Chapter 3, a more detailed critical analysis of related literature on natural im age statis

tics is reviewed, both to motivate the work in this thesis and to provide context to the results 

reported.

In Chapter 4, the methodology for com puting gradient measurements from images and 

how to com pute the dependencies o f gradient m easurem ents using information theory is pro

vided. Further, the accuracy and precision with which the dependencies are com puted are also 

described. In Chapter 5, details on the natural image database used is provided as well as 

the methodology for generating the other three main image classes (phase randomized natural, 

whitened natural and Gaussian noise) examined in this work.

In Chapter 6, the main results o f this thesis are presented on the 1 -point statistics o f gra

dient directions (Sec 6.1), and the dependencies between two (Sec. 6.2) and three (Sec. 6.4) 

gradient measurements. Additional experim ents are reported in Chapter 7, which aim  to ex

plore the main results in Chapter 6 by analysing other image ensembles and perform ing further
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analysis o f the main results.

In Chapter 8, a m ethodology for how the main work in this thesis should be taken forward 

is outlined along with prelim inary results (Sec. 8.1). Finally, b rief summaries o f each chapter, 

the main findings, and conclusions for this thesis are presented (Sec. 8.2).



Chapter 2

Background

In this chapter, relevant background m aterial is presented in a broader context. This supple

ments the critical analysis o f related work in the literature on natural image statistics in Chap

ter 3.

The nature o f light is discussed in Section 2.1 and how the light field can provide infor

m ation to a visual system about its environment. In Section 2.2, the physiology o f the hum an 

visual system is presented, which provides support to the efficient coding hypothesis and the 

search for gradient direction dependencies.

In Section 2.3 the role o f perception and vision theories are discussed, which m otivates the 

search for dependencies between m easurem ents made at separate locations in the image.

Lastly, in Section 2.4, a discussion o f com putational approaches to vision is given, which 

details the use o f derivative measurem ents in com puter vision, and how the gradient direction 

provides im portant information about the local image structure.

2.1 Light

Any visual sensory system, by definition, responds to stimulation by light. It is therefore 

instructive to understand the basic properties o f light which enters the human visual system 

(HVS). After all, it is only because there can exist a consistent relationship between light and 

objects in the natural environment that a useful representation o f the physical world can be 

achieved by any visual system. Objects in the natural world interact with light by absorption, 

reflection or transmission, therefore a brief introduction to such phenom enon are presented next.
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2.1.1 Properties of Light

The largest light source in the natural environm ent is the sun. The sun radiates across m ost 

o f the electrom agnetic spectrum but significantly the intensity peak in radiation is around the 

middle o f the visible spectrum (555nm ). Light from  the sun does not necessarily take a direct 

path to ground level. The earth’s atm osphere will filter the sun’s radiation, particularly ultravi

olet (variations do exist across latitude) and will cause scattering, diffraction and refraction o f 

sunlight.

Perhaps the most im portant or at least the largest example o f scattering is that o f sunlight by 

the earth’s atmosphere. This is a result o f reflections from small spherical particles and droplets 

which are much smaller than the wavelength A o f the scattered light1 (Rayleigh scattering).

Light can also be scattered from  particles that are larger than the wavelength o f the scat

tered light resulting in light appearing from  all directions (diffuse reflections). Thus, in the 

natural environment light appears not only from the sun but from  the sky (skylight). An inter

esting difference between objects illum inated by light from the sun and the sky is its effect on 

the shadows o f objects. Shadows originating from sunlight tend to be sharper than those caused 

by light from the sky. In fact, under cloudy conditions, with light coming from the sky in all 

directions, objects do not appear to have any shadows.

Visual systems rely on objects sending ‘outward signals’ which reveal properties about 

that object in the environment. This ‘outward signal’ arises from  the interaction o f light with 

objects. An incident photon from the light source strikes the surface o f an object changing the 

trajectory o f the photon. If the objects in the world were all com pletely transparent, i.e. all the 

incident light falling upon an object is transm itted through it, then the HVS would be in trouble; 

the reality is that all objects interact w ith a certain am ount o f light.

The surface properties of objects can cause two types o f reflections: i) diffuse reflections 

from granular/m atte surfaces where light is scattered in all directions, or ii) specular reflections 

from smooth polished surfaces where the angle of light reflected equals the angle o f incidence 

(mirror-like). Both diffuse and specular reflections are idealised properties; in the real world, 

objects display a mixture o f the two and other types as well. M oreover, the am ount o f diffuse 

or specular reflection can depend on the angle of incident light for some objects.

'The amount o f scattering of light is inversely proportional to the fourth power of the wavelength A-4  of the 
light. This is a reason why the sky appears blue; the reason it appears red during sunrise or sunset may be due to 
most of the blue wavelengths being removed as sunlight travels through more of the atmosphere.
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Figure 2.1: Illustrates the scattering of light rays from a surface (top) and from an object (bot
tom), where I indicates incident light ray. When light undergoes scattering, light rays are emit
ted in all directions.

In the natural environment there is not— strictly— only one source of light; reflections from 

objects are reflected again by other objects until finally absorbed. Hence there is generally more 

than one direction of light striking an object. This means that even for an idealised specular 

surface there can be multiple reflections and at different angles whenever other objects are 

present.

Surface

Figure 2.2: An example of a mirror reflection. I (R) indicates the incident (reflected) light ray, 
and i (r) is the angle I (R) makes with the Normal, where i«r.
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Figure 2.3: Diffuse scattering results in an incident light ray being reflected in all directions. I 
indicates an example of an incident light ray, and R the reflected light ray.

2.1.2 Inverse Optics

The behaviour o f light when projected onto a flat surface such as the retina is im portant to 

understand because the role the eye perform s in the HVS is to make perspective projections 

(light converges toward a single focal point) o f the 3-D environm ent onto the hum an retina to 

form 2-D optical images. The m apping from higher (3-D environment) to lower dim ensions (2- 

D image plane) is suited to m athem atical analysis (projective geom etry) as lawful relationships 

exist. However there are num erous ways objects interact with light (absorption, reflection, 

transmission) and therefore it is not possible to determ ine uniquely the 3-D scene from a 2-D 

image.

This is known as the inverse problem . How then does the HVS provide the perception o f 

a 3-D world from a 2-D  image if, for a given 2-D image, there is more than one possible 3-D 

scene which could be responsible. Despite this fact, the HVS appears to be adept at inferring 

3-D scenes sufficiently well for many tasks, i.e. humans can exist and move in this 3-D world.

The reliable performance o f the HVS has emphasised the role o f optical inform ation from 

the environment; this paradigm is known as ecological optics, which was first proposed by 

Gibson [34, 35]. He realised that an organism moves in its environment and therefore he posited 

that the additional information from a series o f 2-D optical images could be used to further 

constrain a model of the 3-D world, but this still does not fully constrain the mapping from 

images to the environment. Effectively Gibson added the dim ension o f time to the problem , but 

time can be an added dim ension to both 2-D im ages and the 3-D world.
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S u rface  O rien ta tio n  an d  S h ad in g

A useful piece o f scene inform ation is surface orientation. This cue suggests that surface per

ception is a combination o f the distance from an observer and the orientation o f small patches o f 

locally-flat surfaces. The two properties which are used in the literature to describe the orienta

tion o f a surface are known as slant and tilt, however, these are just a particular param eterisation 

where the viewer is the centre o f a spherical coordinate system. More generally, the local prop

erties o f a surface are described by a depth map, which describes the depth o f points relative to 

an observer. If the surface depth map is described as the zeroth order spatial derivative structure 

then the first and second order spatial derivatives of the surface depth map represent surface 

depth gradient and surface curvature respectively.

Both slant and tilt are concepts sim ilar to that proposed by M arr in his 2.5-D sketch [36, 

37, 38], and M arr and Nishihara [39]. For example, the optical projection o f a circular disk will 

be an ellipse; in this coordinate system  the slant determines the aspect ratio o f the ellipse, and 

the tilt determines the orientation o f the ellipse, as illustrated in Figure 2.4. Geometrically, slant 

is the difference in angle between the normal o f a surface and an observer’s line o f sight and is 

measured perpendicular to the image plane. Tilt is the direction o f the slant and is m easured in 

the image plane. This means that on the surface o f a sphere, with the eye at the centre, lines o f 

latitude have constant slant, and lines o f longitude have constant tilt.

An object illuminated by a single light source will reflect different amounts of light de

pending on the angle made between the light source and the surface orientation. If  the normal 

o f the local surface points toward the light source we get a m axima in the lum inance pattern, 

but as the angle increases between the normal and the light source then less light is reflected by 

the surface. Thus, over the surface o f the object a pattern o f lum inance values is created. The 

structure o f this pattern reveals inform ation about the local slant and tilt o f the surface, if  over 

the surface of the object the m aterial’s reflectivity does not change, i.e. we are dealing with a 

smooth Lambertian surface (the num ber o f photons of light em itted per unit area is the same 

whatever angle one observes the object), and there is only one collim ated uniform light source. 

In this case the total radiant power from  the surface is proportional to the cosine o f the angle 

between the surface normal and the observer’s line o f sight (Lam bert’s cosine rule).

In psychophysical experim ents it has been reported that different human observers describe 

the local surface orientation and shape from  shading qualitatively similarly when presented with



Figure 2.4: Illustration o f slant and tilt. The outer ring o f ellipses show constant slant but 
changing tilt whereas the horizontal row o f ellipses from  the centre to the right shows constant 
tilt but changing slant.

a picture o f a sculpted male torso (and even when abstract sculptures are presented) [40, 41]. 

Moreover, without exception, each observers’ results are consistent with an integral surface, 

i.e. a real 3-D object could be form ed from their observations. However, significant variations 

existed amongst observers when describing the amount o f depth.

If the assumption that the surface is smooth is replaced with a rough one— as is more likely 

to be found in the natural environment— the problem  changes. A texture forms on the surface 

o f the object, which is dependent on the illum ination and provides further constraints on the 

object shape, which human observers can detect [42, 43]. Furthermore, it has been shown that 

human subjects are able to match— artificially— the light field on a rendered Lam bertian sphere 

to the real-world illumination conditions o f roughly spherical objects [44].

D ep th  C u es

Cues to perceiving depth in 2-D images are abundant enough so that it is not necessary to use 

either two eyes (binocular vision) or move in the environment, therefore depth can be perceived 

from 2-D images. It has been shown in psychophysical experiments that— if available— human 

subjects will unconsciously use previous knowledge o f the sizes o f objects to help determ ine 

the depth o f objects [45, 46]. W hether or not previous knowledge is available, there are other
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sensible assumptions which can be made by the human visual system about the behaviour of 

light from more distant objects in order to perceive depth.

For example, a depth cue which has a lawful dependence with distance from the observer 

is the exponential decay of contrast with distance. This cue occurs in scenes which contain 

a large range of depth for example as shown in Figure 2.5. The contrast of near objects is 

less than those of far objects owing to the atmosphere scattering more light from more distant 

objects [47]. This cue is closely linked to the depth cue caused by blurring because blurring 

also results in a reduction of contrast, however, it has been shown that these two effects are 

separate and blurring is by itself used as a depth cue by the HVS [48, 49]. Further depth cues 

are presented in Section A.I.

Figure 2.5: Illustration of an image where the human visual system uses the exponential decay 
of contrast with distance as depth cue.

2.2 Human Visual System

The physical properties and transformations of light from the environment before reaching the 

HVS have now been discussed in Section 2.1. A misconception is to think that the physical 

properties of light correspond directly to measurements made by the HVS. For example, light 

waves can be characterised by two physical properties: amplitude (intensity) and wavelength. 

However, luminance, which is measured in candela per square metre, is a perceptual quantity 

that incorporates the luminance function of the HVS. The luminance function is wavelength de

pendent, unlike intensity which is measured in watts per square metre and is independent of the 

observer. Moreover, the HVS is sensitive to contrast. The HVS does not perceive wavelengths
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o f light but rather colours. For example, there is no spectral wavelength associated with black, 

white, pink or brown, but these colours are perceived by the HVS. Therefore, what happens to 

light once it enters the human eye is discussed next.

2.2.1 Retina

W hen light reaches the retina the projection o f the world is in fact upside down. The retina is re

sponsible for sensing light and perform ing the first stages of image processing. This processing 

is done via a circuit o f neurons which ultimately leads to signals being sent to the optic nerve 

(Section B .l describes the process o f neuron signals in more detail). The photoreceptor cells 

absorb photons which causes a chemical reaction to change the electrochemical potential o f  

the cell [50]. However, the probability o f a photon being absorbed depends on the photorecep

tor’s absorption spectrum and thus the energy and wavelength o f the incoming photon (Further 

details on photoreceptor cells can be found in Section B.2).

B ipo lar, H o rizo n ta l, an d  A m acrin e  C ells

Connections between photoreceptor cells and other layers o f cells in the retina vary in density. 

The ratio o f cone cells connecting to bipolar cells is 1 : 1. This ratio is m aintained for bipolar 

cells which connect to ganglion cells. However, further away from the fovea, the ratio changes. 

Progressively, more receptors connect to bipolar cells and more bipolar cells connect to one 

ganglion cell; so that the ratio o f bipolar to ganglion cells can be 125 : 1 [51].

Bipolar cells are either ON or OFF types, which respond differently to m essages from  the 

photoreceptor cells. An OFF pathway or ON pathway from bipolar cells through to ganglion 

cells is triggered depending on w hether a dark image on a light background (OFF) is being ob

served or vice versa (ON). The ON and OFF (direct) pathways coexist with (indirect) pathways 

running through horizontal and am acrine cells. Horizontal cells can influence the signals sent 

from photoreceptor cells to bipolar cells via a feedback circuit to photoreceptor cells or directly 

to bipolar cells. The feedback circuitry provides a mechanism to increase the sensitivity o f the 

photoreceptor cells in dim light conditions or reduce the sensitivity in bright conditions.

Furthermore, horizontal cells can increase the spatial sensitivity o f bipolar cells. This is 

achieved by horizontal cells providing an opposing surround signal (centre-surround organisa

tion). This is a process o f lateral inhibition: neighbouring stimulated neurons are inhibited so 

that only the m ost strongly stim ulated neuron fires thereby localizing the stimuli. However,
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the cost is a reduction in sensitivity to absolute intensities. Only differences in intensities are 

perceived (contrast).

Am acrine cells provide interconnections between ON and OFF bipolar cells and ganglion 

cells which further enhances the signal sent to ganglion cells. Am acrine cells also provide the 

only link from rods to ON bipolar cells to ganglion cells; there is no direct link. However, this 

indirect link allows for the perception o f very dim light via rods because the am acrine cells 

collect signals from many ON bipolar cells.

Overall, information through the retina follows two distinct paths: i) a direct path from 

the photoreceptor cells to bipolar cells to ganglion cells, and ii) an indirect path via horizontal 

cells and amacrine cells. However, inform ation eventually passes through to the ganglion cells, 

which are then responsible for delivering m essages to the optic nerve. From an inform ation- 

theoretic perspective, it is worth recalling that the num ber o f receptor cells outnum ber ganglion 

cells by 125 : 1 [51], therefore, a substantial reduction or com pression o f data is occurring, 

which lends support to the efficient coding hypothesis. The reduction in cells is achieved via 

the numerous horizontal connections among the different cells in the retina layers.

Ganglion Cells

Ganglion cells deliver optical inform ation from the retina to the brain via the optic nerve. Like 

bipolar cells, there are two types o f cells: ON-centre and OFF-centre ganglion cells. The two 

types of ganglion cells were first noted in 1953 by Stephen Kuffler [52], examples o f which are 

shown in Figure 2.8. The terms ON-centre and OFF-centre refer to how the cell responds to 

light. This response is characterised by the ce ll’s receptive field whereby a receptive field is an 

area o f the cell which, if  stimulated, causes a response.

In the case o f an ON-centre ganglion cell it has been found that by stimulating the receptive 

field near or at its centre (inner-white circle in Fig.2.8), the response of that cell is to increase its 

rate of firing compared with its rate when no stimulation is applied (spontaneous background 

firing). However, when the receptive field is stimulated away from the centre— in its surround 

(outer-grey doughnut region in Fig.2.8)— then activity reduces. Conversely, the OFF-centre 

cells have the opposite response to the ON-centre cells. These types of receptive fields are 

known as centre-surround and help to sharpen the spatial-localisation o f boundaries in images.

Both ganglion cell types have a receptive field profile that can be modelled mathem atically 

as a Laplacian o f a Gaussian (LoG) kernel 9 Ĝ ' a  ̂ +  - ■ A LoG kernel looks like
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Figure 2.6: Illustrates cell layers in the retina. Light enters through the bottom and meets, in 
the first layer: ganglion cells— shown here with two distinct sizes (dark red and light purple). 
Above the row of ganglion cells are the amacrine cells, shown in yellow, which have distinctive 
connections running parallel to the cell layers (vertical in figure). Above the amacrine cells are 
the bipolar cells shown in dark green, and above them are the horizontal cells, shown in orange, 
running parallel (like the amacrine cells) to the cell layers. Finally the rods (black rectangular) 
and cones (blue triangles) are at the back of the retina (top of figure). The figure also illustrates 
the different ‘direct’ and ‘indirect’ paths signals take (from the top to bottom of figure) through 
the retina’s cell layers.
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Figure 2.7: The Laplacian of a Gaussian kernel (LoG) is one example of a mathematical model 
of the receptive fields of ganglion cells. Both on ON-centre (left column) and OFF-centre (right 
column) can be modelled by the sign of the LOG. The receptive field’s spatial resolution is 
determined by the width of the LOG. Thus, the top row of LOGs illustrates receptive fields 
with lower spatial resolution compared to the bottom row, and is illustrative of the difference 
between receptive fields of ganglion cells found in the fovea compared to the periphery.

a Mexican hat as shown in Figure 2.7, which shows both ON-centre and OFF-centre profiles. 

The width of the kernels are narrowed when modelling profiles of ganglion cells in the fovea, 

which reflects the higher spatial-resolution found in the centre of vision. However, despite the 

mathematical convenience and elegance of the LoG filters, retinal physiology suggests that in

hibitory surrounds are weaker than modelled by the LoG filters. To complicate matters, the 

receptive field profiles of ganglion cells overlap, therefore, shining even a relatively small spot 

of light upon the retina will stimulate several ganglion cells. However, it is likely that each 

cell will respond differently because the same spot will fall on the centre of one cell’s receptive 

field but upon the surround of another. Note here, that in the main results of this work (Sec

tion 6.2 and 6.4, significant statistical dependencies are found between first order derivative 

measurements for an ensemble of natural images).

Furthermore, another finding by Kuffler is that the centre-surround form of ganglion cell 

receptive fields do not respond strongly to diffuse light but do respond strongly to local spatial 

variation in the intensity of light falling on the cells [52]. Therefore, for a given patch of 

uniformly bright light the ganglion cells which respond most strongly will be those with a 

receptive field located on the border of the patch, i.e. at the edge. The patch interior does not
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a) b)

Figure 2.8: Illustrates two main types of ganglion cells which have centre-surround receptive 
fields. The inner-white circle shows the ON-centre region. The outer-grey doughnut represents 
the OFF-centre region. The +/- denote respectively an excitatory/inhibitory response to that 
region being stimulated.

stimulate responses, however the brightness within the patch is still perceived.

At this point in the description of the HVS, it would be necessary to move out from the 

retina to discuss the optic chiasm and the lateral geniculate nucleus (LGN), which link the retina 

and primary visual system, but these areas are of lesser relevance to this thesis. Nevertheless, 

for completeness, they are included in Section B.3. A summary of the primary visual cortex is 

discussed next.

2.2.2 Primary Visual Cortex

The primary visual cortex (VI) is a significant part of the cerebral cortex, which is a 2mm 

thick crumpled sheet containing 1011 neurons. Area V I, is the largest and most dominant 

visual area of the entire cortex containing about 40% of all visual neurons [30]. Moreover, ‘VI 

probably contains all the machinery required to account for psychophysical performance on a 

range of fundamental perceptual tasks— the detection of contrast patterns in brightness or color, 

the discrimination of orientation and spatial frequency (Vogels 1990; Zohary 1992)’ [30]. Thus, 

V 1 probably plays a role in some high-level visual tasks such as forming boundaries of objects 

or contour integration, however, it is unlikely that V 1 is responsible for object recognition and 

the perception of scene layout.

V I C ells are O rientation Specific

The receptive fields of cortical cells found in VI are not circularly symmetric, but instead, 

respond to lines or edges with particular orientations. The receptive field maps, rather than 

simply having an ON-field and OFF-field, can have two ON-fields or OFF-fields together with 

one OFF-field or ON-field, as shown in Figure 2.9, the most common of which, is illustrated
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in Figure 2.9a). These receptive fields respond more strongly— w hether that be an inhibitory 

or excitatory response— when a stimulus fills more o f the region, but the response is reduced 

if two opposing fields are filled at the same time, essentially, the responses follow the laws of 

addition. Therefore, if all of the excitatory part o f the receptive field is stimulated along with 

all o f the inhibitory part, the overall response o f the cell will be null.

■) •») «)

Figure 2.9: Illustrates three com m on receptive fields for sim ple cells. (+)/(-) denote excita
tory/inhibitory regions. In a) a bar stimulus appropriately orientated to fit into the centre region 
(+) and not overlapping into any o f the (-) region will cause a m aximal response from the cell. 
Conversely, for b), a minimal response will occur when the centre region (-) is com pletely stim 
ulated. In c), a maximal response will occur when a stimulus is appropriately aligned to cover 
all o f the (+) region, and none o f the (-) region.

Cortical simple cells are responsive to oriented line segments. Therefore, for a simple 

shape, illustrated in Figure 2.10, only the cortical cells stimulated by the borders o f the shape 

in Figure 2.10 will be stimulated. The orientation o f the contours from the border m ust be 

appropriately oriented and appropriately long to cause a response; the contour must not excite 

any inhibitory regions of the cell’s receptive field. For example, simple cells that receive stimuli 

from the interior or exterior o f the shape in Figure 2.10 will not be excited because no lines are 

present; it is an area which is smooth and uniform. However, if the shape undergoes a translation 

or rotation, a whole new set o f simple cells will be excited. Therefore, for a given stimulus, only 

a small fraction o f cells are excited. The properties o f simple cells suggest the HVS is tuned to 

detecting contours and the orientation o f contours. Furthermore, cortical simple cell responses 

are not affected by absolute intensity changes [51].

V 1 Layers and Cell Grouping

In V 1, neighbouring cells have receptive fields that are sim ilar but not completely overlapping. 

Essentially, cells with sim ilar properties are grouped together in the cortex; exactly w hat those
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Figure 2.10: Illustrates that only cortical simple cells with receptive fields (RFs) that coincide 
with the boundaries of the shape will be excited. None of the cells with RFs in the interior of 
the shape will be excited, as the interior is uniformly bright; similarly, the exterior of the shape 
is uniformly bright. It is only precisely at the boundary that cortical simple cells will respond.

similarities are, and how they are spatially grouped, remains to be fully mapped out.

Broadly, however, cells receiving direct input from LGN neurons are the simplest found 

in the cortex. As one moves through the layers, the receptive fields of the cells go from being 

all centre-surround in layer 4Cb,  to some orientation-specific cells in 4C a, and complex cells 

in layers surrounding 4C.  End stop cells only occur in the deeper layers of 2 and 3, where 

they account for around 20% of the total cells in those layers. The changes in the OP of cells 

across cortical layers are not everywhere equally smooth; the OP of cells, instead of rotating 

‘uniformly’ in a clockwise direction, may reverse direction and begin rotating anti-clockwise, 

as can be inferred from Figure 2.12(a). Orientation preference in terms of left or right eye 

dominance is discussed in Section B.4.

Lateral C onnections in V 1

The vast majority of connections which were initially discovered in the cortex were found to 

run vertically [511— perpendicular to the orientation of the layers. However, lateral connections 

which can be relatively long (6mm — 8mm) [53] have been found to be more numerous. The 

connections run parallel to the cortex layers and connect cells with similar orientation prefer-
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Figure 2.11: Illustrates the different layers of cells in the striate cortex. Layers 2 and 3 generally 
contain complex cells; layers 4A  and 4B  contain simple cells; layers 4Co and 4C6 have both 
centre-surround and simple cells. Layers 5 and 6 contain complex cells. The red line indicates 
a slice through the layers from which a sample of cortex cells was taken in order to measure 
their OPs for Figure 2.12(a) [51].

(a) (b)

Figure 2.12: Illustrations of how the OP of cells change with distance in layers of V I. In 
both graphs the horizontal axis represents distance in the layers of V 1. Vertical axis represents 
the orientation preference (OP) of the cell illustrated by a thick black line. In (a) illustrates 
orientation preference (OP) of cells taken from a slice through the cortex layers, as indicated by 
the red line in Figure 2.11, (b) is an example of another slice (not shown). Straight lines might be 
expected indicating that the OP of cells changes continuously with distance, but abrupt changes 
can be found such as a reversal in the direction of rotation with distance in (a), and ‘larger’ 
jumps in the rotation for a given distance in (b) [51].
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ences. The lateral connections provide simple cells with the pathways to integrate inform ation 

over a larger area than would be possible by using only the extent o f their receptive fields [53].

Studies using fM RI by Kourtzi and Kanwisher [54] found that in the lateral occipital com 

plex (LOC), located in V4, an increase in activity occurs when subjects (monkey & hum an) are 

asked to view line objects com pared to short random lines; similarly, M urray et al. [55] found 

an increase in activity in LOC, but a decrease in activity in V 1. The fact there is a change in 

V I suggests some information is being relayed to higher centres o f the visual system by cells in 

the primary visual cortex when viewing extended lines rather than random short line segments. 

The strength o f lateral connections depends not just on the cells having parallel OPs, but also 

the physical spatial relation between the receptive fields [56, 57]. Thus, the strongest lateral 

connections occur when the cells have parallel OPs as well as being co-linear spatially, and on 

the contrary, a less strong connection will occur when parallel OPs are perpendicular to each 

other [58, 59].

The lateral connections betw een cells is important, especially from the viewpoint o f  per

ception and the global integration o f local visual cues. Exactly how such connections fit in 

with the topographic nature o f the visual cortex is an unsolved problem. Vision scientists are 

thinking o f ways to exploit the concept o f lateral connections, but the fact any long-range global 

integration is taking place as early as VI tells us how im portant integration o f visual inform ation 

will be to understanding human visual perception, which is discussed next.

2.3 Human Visual Perception

The output o f the human visual system (HVS) is a perception— in the observer’s m ind— o f the 

world which need not be veridical but m ust be o f use to the observer. It is im portant to discuss 

why, when observing a scene, visual inform ation is perceived in a certain way. There are several 

vision theories which try to address this problem: ecological optics, which em phasises the 

role o f the environment and learning to perceive the world through our movement (interaction) 

within it. Another approach simply posits that the world appears a certain way as a result o f the 

way the HVS is wired: if the system were wired differently the world would appear differently. 

It is still a controversial issue as to how much o f perception is through bottom-up processing 

in the HVS: is the retinal image (the input data o f the world) modified into higher levels of 

representations? How much is top-down: is the input the higher level representation w hich is
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modified by the image data?

Even though early low-level processes and behavioural responses are likely to be bottom- 

up (feed-forward), as dem onstrated by rapid categorisation experiments [60]. In [60], subjects 

were asked to respond to whether an animal was present or not in an unseen im age that was 

flashed for 20ms. The response times were such that only a feed-forward mechanism  could 

have been utilised by the HVS given the lim itations on the transfer rates o f inform ation in 

neurons. Nonetheless, there are examples o f where top-down mechanisms are contributing to 

certain visual percepts, as dem onstrated later in this section.

W hat is certainly a relevant question for the vision scientist is why, in the words o f 

Wertheimer, “W hen we are presented with a num ber o f stimuli we do not as a rule experi

ence ‘a num ber’ o f individual things, this one and that. Instead, larger wholes separated from 

and related to one another are given in experience” [61]. In other words, when observing a 

scene, whole objects are perceived, not an array o f separate picture elements (pixels).

W ertheimer was one o f the co-founders o f Gestalt theory (the other founders were Koffka 

and Kohler). A theory which has had an enormous im pact on research in visual perception in 

both the twentieth and beginning o f the twenty-first century. The Gestaltists m ade a significant 

contribution to understanding perceptual organisation by establishing a num ber o f qualitative 

grouping rules which govern hum an visual perceptions. Perceptual grouping can be described 

as a process by which our visual system collects data from an image and organises that data 

into subsets. This paradigm is the opposite o f structuralism, which was proposed by Wundt, 

and states that visual perceptions are built through associations between visual atoms, i.e. local 

analysis o f a scene contains sufficient inform ation to build perceptions. Gestalt theory opposed 

this view and proposed that global integration o f local analysis must also be performed.

2.3.1 Unconscious Inference and Likelihood Principle

Unconscious inference incorporates concepts from both structuralism and Gestaltism , but it 

is in contradistinction to G ibson’s ecological optics theory. It was proposed by Helm holtz in 

order to explain how the HVS is able to interpret 2-D retinal images to form a 3-D world. 

The explanation given is known as the likelihood principle; it states that the HVS bases its 

interpretations on the most likely 3-D environment which could have caused the 2-D retinal 

image [62].

The theory o f unconscious inference can be cast in a Bayesian framework: the HVS
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may adopt a Bayesian approach to make inferences from images (evidence) about the 3-D 

world [63]. This can be formulated in the following way. Given an Image I,  there exist a num 

ber (n) o f possible scene descriptions for the 3-D environment E n. First, assign prior probabil

ities to an image I  by P { I )  and scenes E n by P ( E n). Second, assign conditional probabilities 

on scenes E n given I  by

P ( E n \I) =  P ( E n , I ) P ( I ) ,  (2.1)

and an image I  given scenes E n by the likelihood function:

P ( I \ E n) =  P ( I , E n) P ( E n). (2.2)

Thus, Bayes theorem is formulated from equating the jo in t distributions P ( E n , I)  =  P ( I ,  E n ) 

to give, for a particular scene E n=\.

P ( a l „  ,  £ 1£ E l a 9

where P ( I )  =  P { E n) P { I \ E n) is a normalisation factor, i.e. what is the probability o f I  

given all the possible scenes E n. Equation 2.3 is o f the form:

(posterior) oc (likelihood) x (prior) (2.4)

The likelihood principle im plies that the HVS has a prior estimate of its belief in a certain 

hypothesis P ( E n) without evidence, but after evidence has been observed, the HVS recalculates 

a posterior belief in the hypothesis to form P ( E n \I).

The likelihood principle provides a framework in which it is possible to use im age statis

tics to make a guess at the prior distributions used in Equation 2.3. For instance, P ( I )  could be 

a prior distribution o f a statistic found from analysing natural images. P ( I )  can also provide 

information about P ( E n), which serves as a prior model o f the environment. Furtherm ore, 

the likelihood principle provides a fram ework in which competing hypothesis and ambiguous 

scenes can be handled; this phenom enon is called multistability, which is described in Sec

tion 2.3.4 and by Figure C.5.

Inferring a scene from images remains an im portant concept in com puter vision (as de

scribed in Sec. 2.4) for the developm ent o f com putational algorithms and it is hypothesised that
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the HVS uses inference to form percepts. This means that the HVS is prone to errors. If  the 

assumptions used by the HVS are false this can lead to wrong scene interpretations from  a set 

o f retinal images.

2.3.2 Gestaltists

Gestaltists studied how certain images evoke erroneous percepts and examples o f these illusions 

will be shown. The view of Mach: ‘The visual sense acts therefore in conformity with the prin

ciple o f economy, and, at the same time, in conform ity with the principle o f probability, when 

it exhibits a preference for straight lines.’ [62] incorporates the principle o f Pragnanz proposed 

later by Gestaltists and suggests the need for inference in visual perception. Pragnanz is a prin

ciple where the interpretation o f a visual scene takes on the simplest possible explanation; this 

is related to the ‘goodness o f figures’.

Figural goodness underpinned m uch o f Gestalt thinking. The claim  is that the HVS prefers 

regularity and simplicity when it com es to the perception o f figures. For example, a circle would 

be preferred to a random distribution o f lines. This means that the Gestaltists thought several 

perceptions were possible for any given figure, but the figure which is most ‘good’ is the one 

perceived. Figural goodness tried to address the phenom enon o f competing hypotheses, in an 

analogous way to the Bayesian approach which is to perceive the most likely figure. In other 

words, the Gestalt theory of figural goodness is that the HVS has a preconceived notion of 

what is ‘good’ and this could be interpreted within a Bayesian framework as some kind o f prior 

information or model. Unfortunately, the Gestaltists only gave qualitative descriptions o f what 

‘goodness’ might be. This becam e a criticism  o f work by the Gestaltists, what is ‘good’? Such 

problems and other flaws in Gestalt theory are discussed in Section C .l.

In spite o f these reservations, the Gestaltists made significant contributions to vision 

through psychophysical experiments and determ ined qualitative grouping rules that govern how 

visual data is partitioned. The main principles identified were similarity, proximity, good con

tinuation, and closure [61, 64]. Later, additional grouping rules such as common region [65] 

and connectedness which may be linked to proxim ity [66], were also proposed. However, the 

overall theme of the Gestalt paradigm  was holism: “the whole is greater than the sum o f the 

parts” . Further details on holism are provided in Section C.2.
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Perceptual Grouping

Perceptual grouping has an am biguous meaning, but herein it shall be described as the process 

o f grouping visual information into distinct objects. M oving from smaller, separated units of 

structure to larger organised segments o f structure. An alternative view to perceptual grouping 

might be the process by which our visual system collects data from an image and partitions 

them into particular ‘arrangem ents’. However, the partitions are unknown, the form at o f the 

data is unknown, but if the ‘arrangem ents’ can be understood, this may lead to an understanding 

o f how to perform perceptual grouping. The Gestaltists addressed this problem and proposed 

several ‘principles’ o f grouping which are explained in Section 2.3.3. The necessity for incor

porating ‘principles’ o f grouping or some priors o f how to organise image data is illustrated by 

Figure 2.13 which shows the enorm ous com putational task o f partitioning data into subsets by 

dem onstrating how many ways the integer n  can be written as a sum o f positive integers.

Log fp (n) ]
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Figure 2.13: Shows the partition function, p(n) ,  on a Logarithm ic-normal scale. The 
function, p(n), demonstrates the num ber o f ways the integer n  can be written as the sum 
positive o f integers, e.g. n =  4, can be written as any one o f the following subsets: 
{3+1}, {2+2}, { l+ l+ l+ l} ,  {2+1+1}, {4}. The rise with n  in the num ber o f subsets increases 
asymptotically like [67].

2.3.3 Gestalt Principles of Grouping

The four main grouping principles identified by the Gestalts are i) similarity, ii) com m on fate, 

iii) good continuation, and iv) closure. Only similarity will be described here, and the other 

principles are described in Section C.4).

Within the Gestalt principle o f similarity are different similarity cues that may compete 

with each other. For example, the grouping principle o f similarity implies that objects with sim 

ilar properties— such as size (Fig. 2.14a), orientation (Fig. 2.14b), and colour (Fig. 2.14c)— will 

be grouped together when all other principles are equal. Furthermore, proximity— a grouping
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cue— is linked with similarity o f position, as illustrated in Figure 2.14(d).

Size Orientation

■ ■ ■■■■■■■ / /  \ \ \ \  / /  \ \  / /

Color Proximity

Figure 2.14: Top left: squares o f the same size are grouped together. Top right: lines o f the 
same orientation are grouped together. Bottom left: squares o f the same colour are grouped 
together. Bottom right: pairs o f squares closest to each other are grouped together.

A lthough proximity is regarded as the m ost fundamental Gestalt grouping principle [68] 

because o f the H V S’s acute sensitivity to it [69], a criticism o f proximity is its failure to de

scribe how the strength o f the cue dim inishes with distance between elements. In [70], Oyama 

found that when presenting a regular rectangular dot lattice with vertically and horizontally 

aligned dots, which gives rise to two different (vertical and horizontal) organisations, the length 

o f time an observer experiences one organisation over the other was found to have a power law 

dependence on the ratio o f distances between the vertical and horizontal elements in the organi

sation. Furthermore, Kubovy and Holcom be [68] were able to show a mathematical relationship 

between the probability o f perceptually organising the lattice in the horizontal or vertical direc

tions and the minimum distance between the dots in the lattice. Moreover, Kubovy and H ol

combe found that the longer the stimulus is visible the stronger the proximity cue becom es and 

that scale invariance is observed: increasing the horizontal and vertical scales equally did not 

change the strength o f the cue. However, the proxim ity cue described by these results follow 

an exponential rather than a power law (i.e. scale-invariant) dependency on distance. M ore

over, later studies found that a probabilistic Gaussian distribution model fitted the proxim ity 

cue well [71].

From the description given so far for the principle o f similarity, it is not known, for ex

ample, how the cue of proximity supersedes similarity o f intensity? Details o f the com petition 

between grouping rules, and extensions to the grouping rules are provided in Section C.7.



2.3. Human Visual Perception
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The local edge-based approach, as described later in Section 2.4, to region segm entation is 

in contradiction to the holistic, global philosophy o f the Gestaltists. The Gestaltists believed 

perceived regions arose because o f their common properties attracting them together, rather than 

first performing some local edge detection. In support of Gestalt theory, there could be no better 

examples than illusionary contours and amodal completion, an example o f which is illustrated 

Figure 2.15. The fact the HVS perform s amodal completion lends support to the importance 

o f global analysis in perception over just local analysis. Even 3-D volumetric illusory percepts 

o f spheres can be produced [72]. This is an important result because it suggests that illusory 

contours are not merely some m inor add-on to an edge-detection mechanism, but rather an 

instance o f a more general perceptual phenomenon.

0

*  V *

Figure 2.15: The Kanizsa triangle is a good example o f how a complex set o f local cues give 
rise to a global phenomenon despite it being, in this instance, an illusionary phenomenon.

The explanation offered by Gestaltists for the types o f figures like the Kanizsa triangle 

(Fig. 2.15) is that objects which are partly occluded are ‘filled in ’ by the ‘sim plest’ figure. This 

refers back to the principle of Pragnanz: what is perceived will be as simple and regular as 

possible or ‘good’. In the Kanizsa figure, it is thought that the ‘pac-m en’ are more likely to be 

full circles; this gives rise to the illusion that a white triangle lies above the circles.

Another type o f illusion, which Gestaltists tried to explain, is multistability. M ultistability 

is the term used when the HVS experiences a perception that alternates between different possi

bilities. This phenomenon is illustrated in Figure 2.16. Depending on whether the white part is 

the background or foreground the percept is altered. A further discussion o f m ultistability can 

be found in Section C.5.
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Figure 2.16: An example of multistability; the perception alternates between a white vase and 
two black faces. The problem is also experienced with figure-ground scenes: depending on 
whether you perceive the white part as the background or the foreground, your perception will 
change.

Conclusions

Overall, the Gestaltists made a significant contribution to theories o f visual perception by real

ising that perceptual tasks need to incorporate more than ju st local analysis, and perhaps some 

form o f m ulti-local analysis.

Computational algorithms have incorporated Gestalt theory in their approach to region 

segmentation by adopting a global analysis o f a scene rather than just local analysis. For exam 

ple, rather than detect (local) edges to segment an image— as in the Canny edge detector— Shi 

and Malik [73] used a graph theoretic approach, which utilises the Gestalt grouping principle o f 

similarity to segment the image into m eaningful regions. Essentially, this becomes a problem  

o f graph partitioning. The algorithm groups pixels together based on maximising both the sim 

ilarity and dissimilarity between sets o f pixels and where the similarity measures are based on 

the luminance, colour and texture o f the pixels (motion is also implemented where im ages are 

treated as a spatiotemporal data set and pixels that are in the local spatiotemporal neighbour

hood are connected together). The results seem to outperform the Canny edge detector. Thus, 

from a conceptual point o f view, the advantages or at least the possibility o f using techniques 

that make use o f Gestalt theory and global analysis should be evident.

Furthermore, there have been successful attempts made at probabilistic models that utilise 

Gestalt grouping cues to group the edge points of objects into extended chains within artificial 

scenes2. Developments have been m ade by incorporating the statistics of natural im age contours 

as priors within a Bayesian fram ework [74]. The success enjoyed by such approaches helps to

2Trying to create contours which bound an object o f arbitrary shape within a natural scene has proved to be a 
much harder task.
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motivate the studies o f natural im age statistics which have received constant attention for over 

half a century. Therefore, natural im age statistics are important, and the main findings in the 

literature are covered in Chapter 3.

2.4 Computational Approach to Vision

Computational theories can approach problem s o f image processing without need for recourse 

to the HVS, but it is still instructive for either physiologists or computational theorists to un

derstand some of the work in either field. For example, an autonomous robot which can ‘see’ 

may not measure the environment with the same receptors or utilise the same image process

ing algorithms as the HVS but ultim ately the robot should be able to perform visual tasks as 

competently as the HVS or better.

The interdisciplinary approach to vision between com puter vision and hum an visual per

ception increased after M arr [38] proposed that visual perceptual tasks should be expressed as 

nothing more than an information processing task. In M arr’s scheme, the theory o f vision has 

three levels:

1. Computational level which describes the task,

2. Representational and algorithm ic— what form does the input and output take and what 

transformations are perform ed on the input to create an output, and

3. Implementation level— the hardware through which the representations and algorithm s 

are implemented, e.g. a computer.

2.4.1 Image Features

Much o f low-level image processing is concerned with the extraction o f features or local m ean

ingful structures in grey-scale images. Four low-level feature types proposed by M arr [38] were 

edges, bars (short line segments which end outside the receptive field), blobs (short bars with 

terminations at both ends or more com m only as a brighter/darker region with a darker/brighter 

surround), and terminations (the end o f edges or bars). These low-level feature types are all 

qualitatively different and make up the elem ents in his concept o f the raw primal sketch3.

3The feature types described by Marr had been previously identified in the works of Julesz as the atoms of early 
vision. However, Julesz placed the feature types in the context of modelling texture (texton theory) in images and 
texture perception [75] whereby texture is defined as a region with features that share some common statistical 
properties [21].
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Within each type is a token which corresponds to a particular type, furthermore, each par

ticular type is instantiated by certain properties such as its position, size, orientation and con

trast. The raw primal sketch aims to have a direct interpretation— in a computational sense— of 

what processes m ight be occurring in the HVS, especially in V I. Indeed the physiological find

ings in the striate cortex o f the cat by Hubei and Wiesel [76, 77] appear to have influenced the 

work of Marr. For example, the end-stop cells described by Hubei and Wiesel have a direct 

analogy to M arr’s inclusion o f bars in his set o f image primitives (types). Furtherm ore, the 

edge operators proposed by the M arr-Hildreth algorithm [78], presented in Section D .l, bear 

resemblance to certain cortical visual neuron receptive fields, and the detection com putation as 

the sum of operator outputs bears resem blance to theories proposed by Hubei and W iesel on 

what simple V 1 cells are doing to detect edges.

2.4.2 Derivative Operators as Feature Detectors

Before discussing how meaningful feature detectors can be constructed from certain com bina

tions o f image derivatives, it is necessary to introduce scale space theory because an im age o f 

the form L(x,  y)  is a discrete function, and therefore applying a differential operator directly to 

L ( x , y)  is ill-posed. However, if  then the image is modelled as a manifold (set o f lines, curves, 

and surfaces), in particular an infinitely differentiable manifold C°°,  a whole branch o f m ath

ematical tools (differential geometry) becomes available for analysing images. The m anifold 

allows functions to be defined which are continuous and differentiable, and to define a local 

coordinate system.

In order to move from a discrete representation o f an image function L(x,  y)  to a con

tinuous related set o f derived images, a scale param eter is introduced, which is a reasonable 

step given that L(x,  y)  is an observable m easured through some aperture of finite resolution. 

Moreover, features exist at certain scales in the image, and therefore it is necessary to probe 

the image at different scales. To do this, the original image L(x,  y)  is em bedded in L ' ( x , y ; <r), 

where cr is the resolution param eter and L' { x , y; o  =  0) =  L(x,  y)  [79].

Physically, an image is the result of a real m easurement made by a camera. A camera 

records a scene and that camera will have a label stating its resolution in terms o f a certain 

number o f pixels. The size o f one o f these pixels (assuming they are all the sam e) is what 

determines the inner scale o f the cam era (o): the smallest details which can be resolved by the 

camera from the scene (it is not infinitesimal, i.e. a  =  0). The total array o f pixels is then
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the largest detail which can be resolved by the camera and represents its outer scale. W ithin 

each pixel, light is collected over a certain area (the size o f the pixel). Thus, the am ount o f 

light falling on a pixel is integrated over space. A similar process occurs in the HVS, the eye is 

performing a m easurem ent with lim ited resolution determined by the photoreceptor cells (cones 

and rods) in the retina; however, the resolution is reduced by the fact that receptive fields in the 

HVS collect inputs from several photoreceptor cells.

Now that the scale space paradigm  has been introduced, it is possible to continue with 

the discussion o f the relationship between derivative operators and images. The order o f the 

derivative measurement applied to an image can provide information on its local structure. 

For example, the first order derivative calculates the slope, and the second order derivative the 

curvedness o f the local intensity landscape in the image. This mathematical analysis o f local 

structure is well-known as a Taylor expansion. In 2-Dimensions this is a essentially a series o f 

terms which approximate how the surface changes if we move from the current location (x , y)  

an infinitesimal amount (6 x , 6 y ). W hen more higher order derivative terms are included in 

the series the better the approxim ation o f the local structure (ignoring the structure o f noise in 

the image), and for an infinite num ber o f terms, the series becomes an exact description. The 

series in Equation 2.5 shows the Taylor series up to second order derivative terms, for brevity 

all L(x,  y)  on the right hand side o f the equation are written as L:

It is possible to demand that this description o f the local image structure is independent 

o f the choice o f coordinate system. In other words, the quantities measured are invariants, 

i.e. they do not change under transform ations such as rotations and translations o f the image. 

Invariants tend to be associated with physical entities because a physical entity is not dependent 

on the abstract coordinate system which is imposed. Therefore, invariants do not change under 

transformations o f a coordinate system.

Two examples of invariants o f image structure— com posed from first order derivative 

measurements— are the gradient m agnitude and the gradient direction; the gradient field o f

L( x  +  5 x , y  +  8y) =  L  +  —  (x -  Sx)  +  —  (y -  Sy)

+  0 ( 6 x 3, 8 y 3) +  ... (2.5)
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an image is given by:

V L { x , y )  =
(  dL(x,y) \

<5x
dL(x,
~ w ~  /

Lx ,
(2 .6)

where V  =  The gradient m agnitude is then calculated from y ( | ^ ) 2 +  ( l § )  ^

the gradient direction from a rc ta n  ( j f j ^  •

2.4.3 Gauge Coordinates and Gradient Direction

The gradient direction w  points along the direction o f greatest change in the image intensity. 

Thus, it provides information about the extrinsic geometry o f  the local image structure, and 

along with the direction perpendicular to it v =  w ± t which is tangential to the isophote (curves 

connecting points o f equal intensity, therefore the gradient direction is normal to isophote), 

provides a means to establish first order gauge coordinates. Problems arise when the gradient 

magnitude is zero, i.e. the gradient direction is undefined and thus so are the gauge coordinates. 

These locations are known as stationary points or singularities and there are different classes 

such as saddle points, and m inim a and m axima in the intensity. In Figure 2.17, the v  and 

w  gauge frame in each pixel is shown plotted for a first order mixed partial derivative o f a 

Gaussian blob.

2.4.4 Comer Detectors

A com er is a local neighbourhood in the image which has two edges with different orientations 

that intersect each other. A common form for com er detectors [80 ,8 1 ,8 2 , 8 3 ,8 4 ,8 5 , 86, 87,88] 

can be described by finding the local spatial extrem a in , which is commonly recast in

terms o f the product o f isophote curvature k m ultiplied by the gradient m agnitude raised to

Lnsome power n: k =  L vv is the second derivative in the direction perpendicular to the

gradient direction and is invariant to m onotonic transform ations o f the image intensities.

r _  LgLyy  +  L y L XX — 2L xL xyL y ^  ^
L V V  —  J 2

The particular case o f a com er m easure proposed by Blom [85] described by Equation 2.8 

gives an affine invariant com er detector:

k L w — LyyLw — L xLyy  “I- L y L xx 2L xL XyLy.  (2.8)
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Figure 2.17: Each pixel contains an orthogonal frame com posed of the gradient direction w  
(white arrows) and the gradient direction rotated clockwise by 7 t /2  v  (black arrows), which 
are respectively perpendicular and tangential to the curves o f equal intensity in the image 
(isophotes).

Although such com er operators are susceptible to errors from  noise in the image, a further opti

misation is obtained by considering the signed scale space m axim a (positive maxima, negative 

minima) [89] of the comer operator across several scales. The consideration of scale is impor

tant to detect comers with different spatial extent and helps to reduce the problems with noise 

from derivative measurements. A sharp com er produces a strong response if a fine scale opera

tor is used, and conversely a broad (rounded) com er produces a strong response when a coarse 

scale operator is used.

A different approach to com er detectors o f the form  L VVL \ is one based on the gradient 

direction [90]. In [90], the com er m easure used is || V 0||2 , the 2-norm of the grad o f the gradient 

direction computed from 9(x,  y)  =  a rc ta n  ’•

v e  =  {ox , oy }

{ L XL Xy L XXLy L XLyy L xyLy  [
Z f + z |  ’ i | T z |  J 

||V0| |2 =  (0* +  0y)
(LXy L X LxxLy)^ T  (LyyLX L XyI/y)

(LI  +
(2.9)
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It is possible to set up orthogonal directions o f curvature which depend on the local intrinsic im 

age geometry which can be used to form  a local frame. Such directions are called the principle 

directions. To derive the principle directions, we take the derivative of the gradient (Hessian):

and decompose the matrix into its eigenvectors and eigenvalues. To find the eigenvectors we 

first need to find the two eigenvalues « i ,  «2  by solving |H  — « I | =  0 where I  is the identity 

matrix, this gives:

It is then possible to find two eigenvectors o f H  by solving (H  — k i I ) K i  =  0 and (H  — 

« 2l ) K 2 =  0 to get:

Figure 2.18.

Not only do the eigenvectors o f the Hessian have a significant geometric interpretation 

but so do its eigenvalues k \ and «2 which are known as the principle curvatures and describe 

the amount o f curvature. In fact, the relationship between the principle curvatures provides a 

description o f the shape o f the local image surface which was introduced by Koenderink along 

with his definition for curvedness. Curvedness is defined as

(2 . 10)

(2 . 11)

K

L y y  —  L x x  +  y f e L % y  +  ( L X x  —  L y y ) ^  

*2Lxy

1

L x  X  ^ y y  +  y / 4 L ‘̂ . y - \ - ( L x X — L y y ) ' 2

K2 (2 .12)
1

An example o f the local frames o f K \  and K 2 plotted for each pixel o f an image is shown in
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Figure 2.18: Each pixel of this image— a mixed first order derivative Gaussian blob— contains 
an orthogonal frame of principal directions K \  (white) and (black) which show the maximal 
and minimal curvature directions respectively.

and in terms of partial derivatives as

l- s j L l x +  2 L x y l  +  L l y . (2.14)

The shape description, known as the shape index, is defined as

2 /  « i  +  K2 \  n— a rc ta n  I -----------  I (2.15)
7r \ K l  — K2

where «2 >  « i, and in terms o f partial derivatives,

2 / LxX +  Lyy
- - a r c t a n  ,____r xx- --̂ ---------  . (2.16)

7r v / 4 L |y +  ( L „ - L vy)2

The shape index has the range [—1, +1]. Examples of the shapes are shown in Figure 2.19, 

and an example of the shape index of a natural image is shown in Figure 2.20.

The shapes can be further generalised from the relative signs o f and k 2 and whether 

one or both are equal to zero. For example, a concave shape occurs for {« i, «2  >  0}, saddle

{ ki  >  0, «2 <  0} or {/«i <  0, «2  >  0}, convex {« i, «2 >  0}, spherical { k \ >  0, «2 >  0} or
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cup rut saddle rut trough

dome saddle ridge ridge cap

Figure 2.19: Illustrates eight shapes from the shape index defined by Koenderink.

{«! <  0, «2 <  0}, cylindrical {« i =  0, k,2 i=- 0} or {« i ^  0, «2 =  0}, and flat { « i =  0, «2  

0}.
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Cup Rut Saddle Ridge Cap

•  * • • • • • • •
Trough Saddle Rut Saddle Ridge Dome

(b)

Figure 2.20: Example of a natural image (top image) and its shape index (bottom image) en
coded using the scale shown at bottom.



Chapter 3

Natural Image Statistics

In this chapter, a critical analysis o f related literature to this thesis is presented. The assum ption 

that the HVS is optimised to encode natural visual stimuli is based on the prem ise that given 

the set o f all possible images, natural images are sparse. If  it is assum ed that the natural en

vironment can be approximated by an ensemble o f natural images, such an ensem ble should 

contain statistical regularities that distinguish it from  other im age classes. This is not to say 

that within the subset o f images, described as natural, there is not a degree o f variability. There 

is variability and the HVS would not want to be insensitive to such differences: there is no 

trouble in distinguishing a forest from a crop field. Research on natural image statistics has, 

by studying— predominately— natural image ensembles rather than individual natural images, 

attempted to characterise the properties o f any regularities.

Regularity in the mean power spectrum o f an ensemble o f natural images (Sec. 3.3) is 

presented first, including the scale-invariant properties of natural images in Section 3.3.1. In 

Section 3.4, the contrast statistics o f natural images are described, but these regularities do not 

distinguish an ensemble o f natural images from other image classes. In Section 3.5, higher order 

statistical regularities in natural images are discussed; for example, the statistics o f distributions 

of filter responses (Sec. 3.5.1), phase spectra (Sec. 3.5.2), and dependencies between edges 

(Sec. 3.5.4). The psychophysical significance o f any regularities found are also discussed in 

Sections 3.3.4 and 3.5.3.

3.1 Introduction

A fundamental aim of vision research has been to understand how the human visual system 

(HVS) processes visual information. Two o f the key questions are i) what is being m easured 

by the visual system? and ii) under what system  are those measurements being processed? In



3.2. Background: Fourier Analysis 55

order to help solve such questions, it is useful to consider constraints on the evolution o f the 

HVS. The first assumption is that the visual system must enable the species to perform essential

influenced by the most common signals it receives. Thirdly, the hardware of the system— how 

much information can be transferred and how quickly through the system.

The last two assumptions have motivated research into the statistics o f natural scenes be

cause this is the environment in which the HVS has evolved. Furthermore, understanding the 

amount o f information contained in natural scenes will help establish what the inform ation bur

den is on the HVS. At this point it may seem that the only benefit o f finding a relationship 

between the statistics o f natural images and the processes o f the HVS is one o f knowledge, i.e. 

understanding such a relationship will help establish what functions neurons are perform ing and 

how the environment has influenced the properties o f neurons. However, there are two further 

benefits for com puter vision. One is the development of com putational algorithm s w hich can 

perform vision tasks, and another one is the advancement o f hum an interactive devices. By un

derstanding how humans process visual information, improvements can be made to interactive 

devices thereby enhancing the experience o f users.

In trying to establish a quantitative relationship between the environment and the HVS, 

research has separated into two directions: i) establishing a model o f HVS based on the statis

tics o f natural images and ii) observing the responses o f the HVS when stimulated by natural 

images. Both approaches, however, have benefited from Shannon’s breakthrough in inform a

tion theory [91] which established how to quantify information transmissions. To begin with, 

however, it is instructive to provide background to the Fourier analysis o f images so that the 

significance o f one of the main statistical regularities found in natural images is made clearer.

3.2 Background: Fourier Analysis

The properties o f images can be expressed using Fourier analysis. In m athematical terms, 

Fourier theory provides a method to break an arbitrary periodic function into a weighted sum of 

sinusoidal functions. For a 1-D function f ( x ) defined on the interval — ir <  x  <  n  the Fourier 

series is represented by:

tasks that are necessary for its survival. The second is that the system ’s development has been

oo

(3.1)
n = 1
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where ao is a constant, and an and bn are the Fourier coefficients of f(x) given by:

(3.2)

an =  — I f ( x ) c o s n x d x  for n — 0 , 1 ,
J — I T

cosn x  dx  for n  =  0 ,1 (3.3)

bn =  — / f ( x )  s inn x  dx  fo rn  =  1 , 2 , .. ., (3.4)

Fourier analysis has aided development of harmonic analysis, which is the study of func

tions/signals as superpositions of waves. For example, a square-wave function, as shown in 

Figure 3.1 can be formed as a sum of sinusoidal components. Furthermore, it is possible to

Figure 3.1: Successively summing curves of sinusoids of higher frequency approximates 
a square wave (bold solid black line). The red curve shows the summation of sinusoids: 
£ (sin(7ra:) +  3 sin(37rx) +  |  sin(57rx) +  y sin(77rx) +  § sin(97rx) +  yj- s in ( l l7rx)).

sums of sinusoidal gratings. Figure 3.2 illustrates two sinusoid gratings with different orien

tation, phase, and frequency. Thus, an image can be represented as a 2-D function of position 

(ignoring scale and time) or as a signal with energy and phase. Thus, different images can 

be constructed with sinusoid gratings of different frequencies (i.e. the width of light and dark 

bands), amplitudes (luminance values of bands), phases (position of sinusoid) and orientations 

(angle of bars). However, it may not be obvious which sinusoid gratings would make up a par

ticular natural scene. What is clear is that the higher frequency sinusoids will be responsible for 

finer detail in an image, therefore, without them, a more blurred image results.

f  (x)

X

decompose a 2-D image into a summation of waves of different frequencies, for example, as
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Figure 3.2: Four examples of sinusoid gratings beginning top left, for comparison are sinusoids
with different orientation (top right), phase (bottom left), and frequency (bottom right).

Fourier T ransform

Applying a Fourier transform to an image will split it into its Fourier power spectrum and phase 

spectrum, which gives a complete description of the image when known together. For example, 

for a 2-D real-valued function f(x,y), its Fourier transform is given by:

/ oo
f(x ,  y) exp“2,ri(ux+”v) dx (3.5)

-OO

and its inverse Fourier transform by:

/ oo
F(u , v) eXp2m(ux+vy) du dv. (3.6)

-oo

The discrete forms of Equations 3.5 and 3.6 are given by:

- N - 1 N - 1
I ^ > w— > — 27r i ( u x - f v t / )

F(u,v)  =  f ( x , y ) e x p  n , (3.7)
x —0 y —0

and

f{x,  y) m i  ^  F (uiv ) exP2niiUN+vv) (3.8)
x=0 y=0

where x, y,  u  and v  run from 0 to N  — 1.
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From the Fourier transform function F(u,  v),  the amplitude and phase can be computed:

A( u , v )  =  >/Re[.F(ii, v)]2 +  Im [F(u, u)]2 (3.9)

« « , « ) -  a r c t a n (3 1 0 )

where A  =  amplitude spectrum (|A |2= power spectrum), 0  =  phase spectrum, and Re, Im 

indicate the real and imaginary components. Thus, a Fourier description of the luminance

function of an image L(x,y) in the spatial domain can be expressed in the spatial frequency

domain as:

L(u,  v) =  A {u , v) * (3.11)

Examples of the amplitude and phase spectra o f images are shown in Figure 3.3.

Figure 3.3: Illustrates a natural image (left) and its phase spectrum (middle) and amplitude 
spectrum (right). The amplitude spectrum shows that there is greater amplitude in the low 
frequency fourier components (light region in centre) than in the higher frequency components 
(darker regions toward the boundaries).

3.2.1 Local Energy

At each line and edge in an image there is phase congruency, which means that the phases of 

the Fourier components are equal at that particular location in the image, and when phases are 

congruent constructive interference occurs. This is most easily demonstrated for a 1-D step 

function e(x)  given by:

1
—1 if x  <  0,

(3.12)

+ 1  if x  >  0,

and which can be expressed in a Fourier representation as:
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The significant part of e{x)  is the behaviour at x =  0, where all the Fourier com ponents are ‘in 

phase’. At other locations x  ^  0, the Fourier components are ‘out o f phase’. This is the basis 

o f the Local Energy M odel or Phase Congruency M odel [92, 93], which postulates that the 

HVS perceives features at locations in an image where the Fourier components are m axim ally 

in phase. In other words, where the phase information is highly ordered rather than at points 

o f maximal intensity gradient. Furthermore, the Local Energy Model attempts to explain the 

results o f certain psychophysical experim ents on the performance of human subjects in feature 

tasks [94]. The model proposes that the HVS is able to process a visual signal in terms o f the 

phase and amplitude o f the signal’s individual frequency components, instead o f processing vi

sual data spatially as in a Gaussian-derivative framework. However, more recent investigations 

suggest there is not yet a com plete understanding o f how the HVS approaches feature detection 

o f edges, and therefore, neither approach to human feature detection— searching for peaks in 

the gradient field or peaks of local energy— should be ignored [95].

Phase Congruency

The measure o f phase congruency used in [92] is the ratio o f the local energy \E{x)  | and the sum 

of the amplitudes o f the Fourier com ponents A n at the corresponding frequency. Significantly, 

this ratio is invariant to global changes in luminance and contrast o f  the image. The local 

energy is the local Fourier components plotted head to tail as complex vectors on an imaginary 

versus real axes1; in other words, |E(x) \  is the path length taken by the Fourier com ponents 

from the origin to the end point o f  the vectors. Alternatively, |E{x) \  can be interpreted as 

J2n A n(cos((p(x) — <f>(x)) where 4>{x) is the mean phase angle o f all the Fourier components.

Having now presented Fourier analysis o f images and the Local Energy M odel, the char

acteristics o f natural image statistics shall be discussed next.

3.3 Power Spectrum

In this section, the second order statistics o f natural images shall be discussed. The second order 

statistics o f natural images is presented first, specifically the ensemble mean power spectrum, 

because of its significance in characterising natural images.

'The Fourier components projected on the real axis is simply the original signal.
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3.3.1 Power Law Scaling and Scale Invariance

The most prominent regularity reported in the literature is o f the power spectrum o f natural 

image ensembles. The orientation averaged power spectrum o f several different natural image 

ensembles has been found to scale as 1 / / Q, where a  is found to be approximately 2 for an 

ensemble o f natural images [96, 18, 97, 98, 99, 100], and /  is the spatial frequency in one 

dimension2. In other words, a power spectrum of the form l / / 2 indicates there is equal energy 

in equal frequency bands (octaves). Interestingly, prior to studies on the statistics o f  natural 

images, Deriugin, aided by the results o f Kretzm er on local statistics, had already found that 

the amplitude spectrum of television images followed a power law distribution [101, 102].

Significantly, images with power spectra o f the form S ( f )  oc f ~ a are considered scale- 

invariant under renormalisation3 m eaning that computing a statistic over an ensemble o f images, 

£ { /(x )}  will be equivalent to com puting the same statistic over the images at a different scale 

I ( o x )  m ultiplied by an appropriate constant:

In other words, a system displaying scale invariance will have the same general statistical prop

erties when that system undergoes a scaling transformation, therefore there is no characteristic 

or ‘typical’ scale. For example, applying the transformation /  —> a f  to a power spectrum of 

the form S ( f )  ex f ~ a gives

The power spectrum can be intuitively understood in terms o f pixel correlations given that the 

autocorrelation function and power spectrum form a Fourier transform pair (W einer-Khinchin 

theorem),

Thus, the power spectrum provides an alternative measure of how pixels in an image are corre

lated as a function o f the distance between pixels.

quency.
3Mathematically, scale invariance requires that the probability density function p(x), satisfy the condition 

p ( r x ) =  T~t*p(x),  where r  >  0. It is, however, common to find this referred to as self-similarity and the condition 
p ( r x )  =  p(x)  as full scale invariance.

£ { /(x )}  =  £{<7i/I{crx)}  Vor >  0. (3.14)

S ( a f )  oc ( a f )  a  oc a a S ( f ) . (3.15)

(3.16)

The power spectrum has been averaged over all orientations to produce a 1-D dependence upon spatial fre-
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3.3.2 Sources of Scale Invariance
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Several studies attempt to determ ine what image contents in natural images are responsible for 

the l / / 2 scaling o f its mean power spectrum. Experiments studying synthetic images have ad

dressed whether edges, rather than occlusions, or scaling o f object sizes and viewing distance, 

contribute to the scale-invariant property o f natural image ensembles [103, 104, 105, 106]. It 

is unsurprising that numerous hypotheses have tried to account for the scale-invariant property 

of natural images. One hypothesis suggests scale invariance results from the world being made 

up o f a collection o f independent objects whose sizes and distances follow a power law distri

bution [98, 103, 104]. However, others have proposed that it is specifically occlusions which 

contribute to the power law scaling o f natural images [105]. Lee and M um ford com pared the 

statistics from a natural image database and those generated from variations o f the dead leaves 

rtiodel (images formed from collages o f independent objects which occlude one another); their 

study concluded that there is good correspondence— statistically— between natural and synthet

ically generated images. This result supports the argument that occlusions are responsible for 

the power law scaling observed in natural image ensembles [104].

Attempts to address all o f the previously m entioned hypotheses by examining the influence 

of edges, occlusions and scaling through the study o f simple natural image models have been 

made. A number o f self-similar images (self-similar in terms o f the sizes o f objects), formed 

from circular disks which are occluding, non-occluding with edges, without edges, and non 

self-similar with an exponential size distribution o f objects have been investigated [106]. The 

conclusions drawn from the investigation o f these self-similar images is that edges do contribute 

to natural image ensembles having a power spectrum with power law scaling, however, self

similarity extends the spatial frequency range over which power law behaviour is found.

In summary, studies which have suggested that edges are not essential to scaling are based 

on a model o f only the second order statistics o f natural images. Results which do model the 

higher order statistics o f an ensemble o f natural images suggest that (i) edges or occlusions con

tribute to natural image ensembles having an average power spectrum with power law scaling, 

and (ii) the presence o f self similar sized objects extends the power law scaling over a broader 

range o f spatial frequencies.
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333 Variation in Natural Image Power Spectra

Variations exist for the values o f the power law exponent a  reported in different studies for 

different ensembles o f natural images. In the following studies [96, 18, 107, 97, 98, 99, 100], 

the variation o f a  is between 1.8 and 2.4. Individual natural images also show variation from  a 

l / / 2 power spectrum. The variation between individual natural images has been reported to be 

between 1.5 and 3 [107,108], which is larger than it is for the variation in the ensem ble average.

Further, it has been shown that the 2-D power spectra o f natural images are anisotropic over 

orientations; there exist horizontal and vertical orientation biases in the 2-D representation o f the 

power spectrum [5]. These biases are in part, due to there being, on average, more horizontally 

and vertically oriented structures in natural images. The reported approximate l / / 2 form  of 

the ensemble power spectrum o f natural images is averaged over orientations. Therefore, it 

does not describe the ensemble power spectrum o f natural images com pletely because o f the 

anisotropy over orientations.

Such variations in individual natural images and the ensemble power spectrum  o f  natural 

images, mean that it is important to distinguish between: i) an ensemble o f synthetic images 

with an equivalent average power spectrum to an ensemble o f natural images, and ii) an ensem 

ble generated from maintaining the power spectrum from each individual natural im age in the 

original ensemble. Despite both ensembles having the same ensemble averaged power spec

trum, only the latter phase randomized ensemble will explicitly preserve the average power in 

each frequency band (orientation) o f each natural image in the ensemble. The psychophysi

cal difference between these two ensembles o f images have been investigated by Tadmor and 

Tolhurst [109] who found that there are differences between the two classes o f images, even 

though both ensembles are described, in other work, as the phase randomized ensem ble o f nat

ural images. The influence of the power spectrum on perception, as studied in psychophysical 

experiments, is discussed further in Section 3.3.4.

3.3.4 Psychophysical and Physiological Significance of Power Spectra

For natural image ensembles (given that a 1 / /  scaling o f their amplitude spectra is observed, 

which is equivalent to l / / 2 power spectra) investigations were designed to find out what ef

fects, if any, occur for images with variations from  1 / /  scaling. Psychophysical experim ents, 

by several authors were constructed to find out how well humans could perform textural dis

crimination tasks. Crucially, results showed that human perform ance is best when textures have
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1/f amplitude spectra statistics [21, 22, 23, 110].

Further evidence in [111], reports that the power spectrum is im portant in the appearance 

o f images. If the power spectrum of a natural image is replaced with one m arkedly different 

from the original (containing strong geometric forms), for example from a grating (see Fig. 3.2 

for examples), features from the grating are visible rather than those from the original natural 

image. In [109], it is reported that even if the power spectrum of the natural im age is altered 

but maintains a 1 / / Q form, then the image will still be degraded (although in this study the 

images chosen were rich in textures and shading). Moreover, even if  the power spectrum  is 

replaced with an equivalent a  the image is degraded, which suggests the anisotropy in the 

power spectrum, that is the power in each orientation is also important in the appearance o f 

natural images. Thus, the power spectrum o f natural images is also important in determ ining the 

appearance of a natural image; the significance of phase spectra are discussed in Sections 3.5.2 

^nd 3.5.3.

Theoretical studies, perform ed by van Hateren, examined the relationship o f cortical neu

rons in the fly, and the spatiotemporal properties o f natural images [112]. Given that the spatial 

regularities o f natural images had been previously reported, it was also hypothesised in [112] 

that the movements unique to any particular animal provided a further regularity in the tem po

ral visual signal o f that animal. Also in the study, van Hateren proposed a theory that predicts 

a set of neural filters which m aximise inform ation transfer through noisy channels o f limited 

dynamic range.

Fairly good agreement between the m easured responses of the fly’s visual neurons and 

the predictions o f the model were found by van Hateren: the theory is able to produce quan

titative predictions of spatiotemporal receptive fields. However, the model did produce filters 

that increased redundancy for low signal-to-noise ratios. This, as mentioned by van Hateren, 

was an inconsistency with the original hypothesis that the fly’s visual neurons reduced redun

dancy [112]. It also highlights a point which has been ignored: what is the effect o f noise in 

the input and throughput o f the HVS. Inevitably there will be both uncertainty and variability in 

neural responses to identical stimuli. Thus far, in this thesis, it has been assumed that behaviour 

o f the HVS can be predicted precisely by the input, which is not the case. The HVS is subject 

to internal noise and this should be factored into any complete theory describing the processes 

o f the HVS.
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Other investigations by Kardar and Zee have modelled the receptive field of bam  owl 

neurons with a linear set of filter functions [113]. The results imply that the set of functions 

incorporate both audio and visual correlations o f the input signal, and maximises inform ation 

transfer by removing redundancies, but is also constrained by the cost o f rewiring neurons (it 

is, from a biological perspective, more expensive to make connections between two neurons the 

further apart they become).

Theoretical studies by Atick and Redlich concluded that the spatial properties o f  m am 

malian retinal ganglion cells are adapted to removing redundancies caused by statistical cor

relations that are present in signals with an overall 1 / /  amplitude spectra, in other words, a 

whitening (flattening of amplitude spectrum) operation is perform ed on images [114]. Tolhurst 

and Tadmor, and Parraga and Tolhurst, created several stimuli where the am plitude spectra 

varies gradually from 1 / / ;  both their findings also support the hypothesis that the HVS is op

timised to encode natural visual stimuli [115, 116]. In [116], the authors attem pt to answer 

whether discrimination o f the different am plitude spectra is achieved by i) com paring the out

put o f channels that respond to certain frequencies, or ii) by comparing the contrast across more 

than one frequency? The answer reported is i) unless the images are edge enhanced, in which 

case the answer is ii).

However, no description has been given to how exactly the HVS could exploit the statistical 

regularity o f ensembles o f natural images having 1 / /  amplitude spectra? One possibility is 

performing high and low pass filtering o f the image. For example, to reduce the redundancy in 

the image, the HVS should high pass filter the image. However, there are com plications that 

the HVS would need to overcome. The high frequency components o f an image contain a small 

fraction o f the power in a signal and noise, which results in the high frequency com ponents 

having high noise-to-signal ratios. Therefore, a balance is required between high pass and low 

pass filtering of the image, in order to remove redundancies as well as noise.

3.4 Contrast Statistics

Thus far, only second order statistics have been described, for example the correlations between 

pairs o f pixels in an image. First order image statistics relate to individual pixels and not de

pendencies between pixels (i.e. pixels are treated independently). For example, the distribution 

of pixel luminance values is a first order statistic, although it has been suggested that the first
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order statistics o f natural image ensembles do not appear to distinguish it from other image 

classes [110]. Nevertheless, first order statistics— albeit along with second order statistics—  

have been reported to account for the low correlation between local luminance and contrast 

found in natural images [117]. This matches the physiological evidence that local luminance 

and contrast gain control mechanisms in the HVS operate independently.

Significantly, Laughlin studied the fly’s visual system and found that the probability dis

tribution of contrasts— found in the fly’s natural environment— were transformed to a uniform 

distribution by the contrast response function (how neurons respond to stimuli o f varying con

trast) [118]. A uniform distribution is the maximum entropy distribution possible (for a finite 

range distribution); therefore, a uniform distribution implies the fly’s visual system is optim ised 

to process visual stimuli from its environment.

3.4.1 Contrast Adaptation

The contrast response function o f anaesthetized cats and monkeys is not static but has been 

shown to change rapidly according to the mean level o f contrast in a particular scene [119]. 

This allows the cat and monkey visual systems to be optimised to detect differences in contrast 

around the new mean-level-contrast. This enables adaption to the wide range o f contrast levels 

found in their natural environment, despite individual neurons having limited range.

Adaptation to contrast has also been found in the HVS, which is unsurprising given that 

the HVS fixates on a new location every 200-300ms. Both slow (caused by neurons becoming 

less sensitive after exposure to high contrast stimuli) and fast contrast gain control mechanisms 

have been found in V I [120, 121]. Furthermore, Gardner et al. demonstrated that contrast 

gain (the mean neuronal response divided by the stimulus contrast) changes occur in the HVS 

in areas V I, V2, V3 and V4. However, the response in V4 is different to the other visual 

cortical areas, in that a positive response is evoked whether there is an increase or decrease in 

contrast [122]. Gardner et al. conclude that the differences in V4 are a result o f two processes 

occurring in the HVS. One is the contrast gain adjustments which make neurons insensitive 

to slow changes in contrast. This is what Gardner et al. describe as uninformative changes 

and a further adjustment that makes neurons sensitive to fast changes. This is im portant given 

that the correlation for either local luminance or contrast is low in going from one fixation 

point to another when performing ‘natural tasks’ [117]. This means that rapid gain control of 

local luminance and contrast is needed and has been found physiologically. Overall, such an
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adaptation mechanism is interesting because it illustrates how the HVS is changing with respect 

to incoming signals, thereby transmitting the appropriate information to higher visual cortical 

areas.

3.4.2 Non-Gaussian Statistics of Natural Images

The power spectrum does not, by itself, reveal anything about whether or not a distribution 

is Gaussian. It is useful to determ ine whether the statistics o f natural images are Gaussian 

because this would indicate whether higher order dependencies exist in natural images. The 

idea of measuring two properties— scaling and Gaussianity— at the same time was introduced 

by Kandanoff and is called ‘coarse graining’: the statistics o f a coarse-grained system  should 

remain the same despite changes in scale [123], Ruderman observed that the scaling o f the local 

log-contrast (local contrast is com puted by taking the standard deviation o f a local im age patch 

and dividing it by the mean intensity o f that region) and local gradient distributions from  an 

ensemble o f natural images is non-Gaussian [124], which im plies that more than second order 

correlations exist.

Furthermore, Ruderman found another invariant o f natural image ensembles: images 

formed from local pixel variances have the same statistics as those from the original image 

pixel intensities. This invariance was found by performing a non-linear transform ation that re

moves the (non-Gaussian) exponential tail distribution o f filter responses to the log-contrast im 

age. Ruderman hypothesised that the exponential tails are a result o f the superposition o f many 

distributions o f different variances, i.e. regions o f low and high contrast. Therefore, by reduc

ing high (low) contrast regions to lower (higher) contrast regions (normalising the log-contrast 

fluctuations to their standard deviation), this would remove the exponential tail distribution. For 

example, 'ip(x) =  where (f>(x) =  l n ( I ( x ) / I o ) is the variance modified im age (Iq is

defined so that every image histogram has zero mean), 4>(x) is the local mean in a N x N  block, 

and o  is the standard deviation o f 0  in the block.

The normalisation procedure leads to images which are noise-like with almost Gaussian 

statistics; this makes the information transfer optimal for neuron channels with constraints on 

the variance [91,125]. It has been shown by Jaynes and Shannon that, for a continuous distribu

tion with fixed mean, the distribution that maximises the entropy is the Exponential distribution. 

However if the distribution has fixed variance, a Gaussian distribution maximises entropy. Fur

thermore, for either continuous or discrete distributions, with finite range, a uniform  distribution
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maximises entropy.
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3.5 Higher Order Statistics

In the main, only the first and second order statistics o f natural images have been reported, 

however, higher order statistical properties provide important information about natural images. 

Essentially, the higher order statistics of images could be defined as any property of im ages 

which cannot be extracted by first or second order statistics. One example of higher order 

statistics is computing the correlations o f more than two pixels: three pixel correlations. Petrov 

and Zhaoping [17] investigated the redundancy o f lum inance correlations in an ensem ble o f 

natural images at several spatial scales and pixel depths. It was found that the contribution 

to redundancy from three pixels was only 4% com pared with 50% for two-pixel correlations. 

Petrov and Zhaoping suggested this showed that the properties o f the receptive fields of V 1 

neurons are unlikely to have been constrained by having to m easure higher than second order 

redundancies, however, this does not necessarily mean that other higher order correlations are 

not important in the HVS. Although it is interesting to note the findings m ade by Schneidm an et 

al. in studying biological networks [126]. Schneidman et al. observed the responses o f neurons 

in vertebrate retinas and show that a m aximum entropy model (Ising M odel) that describes 

only the pairwise correlations between neurons— without assum ing higher order interactions—  

can capture over 90% of the total mutual inform ation (i.e. including higher order correlations) 

between the responses o f neurons. Schneidman et al., given the success o f their model, suggest 

that despite weak pairwise correlations, many such pairs can add up to a strongly correlated 

network and that this can be applied to not only neuron networks but biological networks in 

general.

3.5.1 Gabor Filters

Field observed the histogram responses of Gabor filters applied to six natural images [18]. The 

Gabor representation was chosen by Field because it has properties similar to those associated 

with cortical cells. These properties are sensitive to certain orientations and bands o f frequen

cies across a localised region o f space [127]. Field found that the distribution o f responses was 

markedly non-Gaussian: higher peak at zero and longer tails at extreme values com pared to 

a Gaussian distribution, which are signs o f excess kurtosis (a Gaussian distribution has zero 

kurtosis). Furthermore, experimental work by Baddeley et al. showed that if  anim als are view
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ing movies o f natural scenes, the distribution o f responses o f  visual cortical neurons is best 

described by an exponent function, P ( x )  oc e~ax [128]. Baddeley et al. suggested the firing 

rate o f neurons is consistent with an optim ised rate code: neurons maximise the am ount o f in

formation they carry during a fixed long-term-average firing rate. However, an alternative but 

equivalent interpretation is provided which is that neurons minimise their average firing rate 

whilst keeping a fixed amount o f information carrying capacity.

Field also develops a visual model [129] which utilises Gabor filters to form  a represen

tation o f an image. The basic framework o f  the model consist o f three key parts: i) Sensors 

which are the individual filters (representing complex cells), their properties include the width 

and length o f each sensor, which is determined by the frequency bandwidth o f the sensor, and 

the orientation bandwidth (a w ider bandw idth corresponds to a shorter length); ii) Channels 

which consist o f all the sensors that are sensitive to the same frequency and orientation (in two 

dimensions this will be an array); iii) Code refers to the collection o f channels necessary to rep

resent the image. At every position there are two orthogonal sensors that have phase relations 

in quadrature. The local energy is then the vector sum o f the two sensors. However, it is the 

frequency selectivity that enables natural images to be represented by only a very small num ber 

of cells; this is known as sparseness.

After Field established a relationship between the statistics o f natural images and the be

haviour of cortical cells, more researchers attem pted to produce a set o f basis functions that 

mimic cortical simple cells [6, 130, 8, 131, 132]. In the case o f Olshausen and Field, the basis 

functions are transformed in order to maximise the sparseness o f the basis (this is achieved by 

having the maximal amount of bases with coefficients equal to zero) whilst retaining as much 

information about the image as possible. Van der Schaff and van Hateren observed the indepen

dence o f complex cell responses and found that the distribution o f responses was m uch broader 

(non-Gaussian with high kurtosis) for natural images than for whitened images (1 /f am plitude 

spectra) [19]. Van der Schaff and van Hateren, therefore, concluded that cortical cells sparsely 

encode representations o f natural images, whereas for whitened images, there is a greater prob

ability o f a maximal response in the cortical cells.

PCA and ICA

Having established that the receptive fields o f simple cells are localised in space, orientation se

lective and bandpass, and moreover, that second order statistics (correlations) are not sufficient
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to fully describe natural images (phase inform ation cannot be ignored), it was surprising that 

previous work by Baddeley and Hancock attem pted to decompose natural image signals into 

only its principle components [6]. In other words, by choosing to perform PC A4 only linear 

decompositions are considered and therefore no more than second order correlations. Further, 

an added assumption is that natural images are stationary (invariant to spatial translations). 

Inevitably though, it means that principle com ponent analysis PCA, which assumes Gaussian 

signals, despite natural images having non-Gaussian properties, requires additional independent 

component analysis ICA [110].

ICA produces a set of basis functions that are independent (although not strictly 

independent[133] since these models [130, 131, 19, 134] describe images as linear super

positions. In doing so, Olshausen and Field (1996) [131], and others [130, 19] have shown 

that when a complete population o f neurons have their receptive fields optimised, in order to 

produce sparse representations of natural images, those receptive fields are sim ilar to cortical 

simple cells (i.e. they are non-orthogonal, localised, orientation selective and band-pass, and as 

independent as possible). It is, however, necessary to first decorrelate the image by whitening 

(flattening the amplitude spectrum) before performing ICA.

Van der Schaff and van Hateren derived independent com ponent filters from perform ing 

ICA on a large data set of natural images. Van der Schaff and van Hateren were also able to find 

filters which matched the receptive field properties (spatial frequency bandwidth, orientation 

bandwidth, length and aspect ratio) o f cortical simple cells, although what is not matched is the 

variability in the spatial scale of the filters. The generated independent com ponent filters are 

also fixed to one scale, unlike cortical simple cells, which have a range o f scales.

However, ICA is not perfect in other respects. Non-linear dependencies in natural im 

ages exist across space, scale and orientation [135, 136, 137]. Therefore, beyond ICA, basis 

functions o f wavelet transforms have been considered because such filters are sensitive to non

linear dependencies, and can therefore be used to detect whether any such dependencies exist 

in natural images. The choice of wavelet has been the Gabor-wavelet filter, which has been 

used because Gabor functions have been found to resemble simple cells in animal visual sys

tems [138].

4PCA is a technique used in statistics to reduce the dimensionality of a dataset whilst retaining as much in
formation content as possible. PCA exploits the fact that variables in the data are correlated. Usually the data is 
transformed to a series of weighted principle components where the first principle component will contain the most 
variance and successive components lower variance.
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3.5.2 Phase Spectra
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The power spectrum provides only a partial description o f an image. Knowledge o f the phase 

spectrum and any o f its regularities in an image are interesting because phase encodes infor

mation about the localisation of edges and lines. If  the phase information o f a natural image is 

kept, but the power spectra flattened, i.e. whitened, the lines and edges of an image will be pre

served [18]. Thus, edges and lines o f images cannot be determined from second order statistics 

alone, hence, it is inferred that the skewness (third order) and kurtosis (fourth order) o f image 

values contain phase information, as described in Equations 3.17 and 3.18.

where x  is the mean o f x.

However, skewness and kurtosis are not necessarily independent of second order correla

tions. Therefore, in order to measure phase-only skewness and phase-only kurtosis it is nec

essary to first whiten the image, which removes second order correlations. By following this 

procedure, it has been shown that natural images have positive phase-only kurtosis (i.e. non- 

Gaussian distribution of image values) but natural images with randomized phases have almost 

zero phase-only kurtosis (Gaussian distribution o f image values) [139]. This implies that there 

are correlations in the phase spectra o f natural images.

Thomson et al. also attempt to explain what consistencies in the phase spectra o f natural 

images might be responsible for positive phase-only kurtosis. It is argued that since kurtosis is a 

fourth order measurement, it m ust be formed from fourfold combinations o f image data. There

fore, phase-only kurtosis, viewed in the Fourier domain, is defined as the integral o f fourfold 

combinations o f frequency components. Phase-only kurtosis should not be viewed in the spatial 

domain because the absolute Fourier phases are not invariant to translations, but all higher-order 

moments are invariant.

However, the space o f fourfold combinations is very large, which makes it necessary to 

simplify the problem by considering two pairs o f frequency component. From each pair, a 

relative phase is measured as the difference in absolute phases o f its two com ponents. The

(3.17)

kurtosis (x) (3.18)
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result is two relative phase m easurem ents from each pair. Once cast in this form it is a m atter o f 

finding if positive correlations exist between one pair o f relative phases and the other pair, which 

would account for a positive phase-only kurtosis. Field, and later, Summers and Thom son, 

found positive correlation between relative spatial phases in natural images [140, 141]. The 

findings are supported by experimental studies by Victor and Conte who found that cortical 

cells are not sensitive to absolute spatial phases but are sensitive to relative spatial phases [142].

3.5.3 Psychophysical Significance of Phase Spectra

The importance o f spatial phase information has been described in several psychophysical ex

periments: Julesz and Schumer concluded that changes to the phase spectrum o f an im age re

sulted in the image being rendered unrecognisable [143]. This is supported by O ppenheim  and 

Lim who suggested that images are recognisable as long as the phase spectrum is adequately 

coded [144]. Field similarly found a dependence upon image phase information: participants 

would describe images with the amplitude spectra o f  a natural image but with random ized 

phases as ‘unnatural’ [18]. However, these results do not necessarily mean that the power spec

trum of natural images makes no contribution to the appearance o f images, as discussed in 

Section 3.3.4. In [145], it was reported that phase information was necessary to reconstruct 

localised features (edges and lines), in the absence o f other local information. If  then, by per

forming a local fourier transform o f patches in the image, and retaining the patch location in 

the image, the power spectrum of the patches could be used to determine the appearance o f the 

image.

Other authors, Piotrowski and Campbell, investigated phase perturbations: quantisation o f 

the phase spectrum (phase values take on certain discrete values, the number o f levels deter

mines the width o f bins and the total num ber o f bins). The study found that participants could 

still recognise images after quantisation o f the phase [146]. Further work by HiiBen et al. tried 

to address sim ilar questions based on images o f textures. The authors found that phase quan

tisation beyond the 16th-level (bin widths equivalent to 27t/ 16) in the interval [—7r, 7r) had no 

effect on the ability to recognise images.

Further investigations, by Thomson et al., observed the effects o f phase quantisation versus 

phase randomization [147]. The first aspect adddressed by the authors was finding the sim plest 

global statistics which are sensitive to image phase spectra, in contrast to observing m ultiple 

local first order statistics. Significantly, this approach was adopted not because the authors
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suspected that the HVS computes higher order statistics but that it provided constraints upon 

how the HVS may combine responses from  receptors. Thus, as mentioned previously, Thom son 

et al. chose to study skewness and kurtosis since non-Gaussian statistics cannot be described 

fully by just the mean and variance.

Thomson et al. concluded that percepts depend on the phase spectrum o f individual im 

ages, not upon the type o f phase perturbation used. However it is necessary to study higher 

order statistics, for example, the phase-only image kurtosis. Moreover, such studies use global 

statistical measures that pick up local sensitivities. The authors also suggest that further investi

gations into higher order statistics will be o f benefit to studies o f natural image perception, and 

moreover, provide further clues as to the types o f relative-phase receptors which are optim ised 

for the processing o f natural images.

Experimental studies by Felsen et al. found that the responses o f visual cortical com 

plex cells (not true for simple cells which have been shown to be adapted to exploit phase 

redundancies for sparse coding [130, 131, 19]) had greater sensitivity to natural stimuli than 

random stimuli [148]. This means that visual features are more detectable from natural stimuli. 

However, importantly it was found that sensitivity remained high for whitened natural stimuli 

implying that cortical complex cells are detecting phase regularities in natural images, rather 

than just regularities in the power spectrum [148].

3.5.4 Geometric Properties of Natural Images

Other regularities which have been found in natural images relate to the geometrical properties 

o f edges and lines within natural images. The simplest geometric regularity was found by 

observing the orientation o f contours. For example there exists a prevalence o f horizontal and 

vertical oriented contours in natural images [5, 6, 7].

The following studies detailed next, describe edge co-occurrence statistics in natural im 

ages. It should be noted that a complete comparison with the 2-point results in this thesis can 

not be made. This is because this thesis is concerned with the entire gradient field o f images and 

not only where the gradient m agnitude is high or where image segments belong to contours.

Nevertheless, it is possible to consider whether the 2-point results in this thesis, which 

measure the dependency between gradient directions as a function o f both distance and angle 

between the two gradient m easurements, are at least consistent with the edge co-occurrence 

statistics found by other authors; this comparison is made in Section 7.2.3.
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Co-occurrence Statistics

Further investigations by Sigman et al. m easured the probability o f any geometric relationships 

which exist in natural images by observing the relationship between pairs o f short image seg

ments. W hat is measured is the probability of finding pairs of short segments which have a 

certain position relative to each other and then recording the orientations o f those segments. 

How the probability changes with distance between the segment pairs and angle betw een the 

pairs is considered. Sigman et al. find that the m ost probable arrangement for segments adjacent 

to each other (side-by-side) is to be iso-oriented and the least probable is to be perpendicular. 

W hen two image segments are iso-oriented then the most probable spatial arrangement is to be 

part o f a common line (co-linear).

Iso-orientation is significant because iso-orienation is a property which is exploited in the 

HVS; the response o f cells in V I display side-inhibition [149, 150, 151], which occurs when 

a segment lies inside the cell’s classical receptive field as well as another segm ent (orthogonal 

to the receptive field orientation) just outside the cell’s classical receptive field (non classical 

receptive field). Further, for pairs of segments which have different relative orientations then a 

co-circularity rule is obeyed, that is the segments are maximally correlated when arranged on a 

common circle.

Sigman et al. conclude that there exist strong long-range correlations for collinear seg

ments in natural scenes. Sigman et al. also suggest that these long range correlations extend 

the concept that the output of linear-oriented filtering of natural scenes cannot be statistically 

independent. In summary, Sigman et al. found that the most significant geometric structures in 

natural visual scenes are the line and the circle [9].

A similar study by Geisler et al. also observed the co-occurrence statistics o f im age seg

ments as a function o f the distance, orientation difference between segments, and direction o f 

second element with respect to the first. Edges are extracted from images by using Log G a

bor functions, which resemble the responses o f cortical neurons in V I, to perform a two-stage 

filtering process. Images are first filtered with bandpass filters and with bandpass and oriented 

selective Log Gabor filters. W hat is interesting here is that a distinction is made as to whether or 

not the pairs o f edge elements are on the same contour; something which was not differentiated 

in [9]. Nevertheless, Geisler et al. find that nearby edge segments that are either co-linear or 

co-circular with the reference edge segment have greater probabilities o f occurring in natural
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images which is consistent with [9].

Chow et al. in [10] extended the work Sigman et al. by investigating what structures could 

produce the observations made in [9 ]. The hypothesis made in [9] is that natural scenes contain 

objects o f varied sizes and the continuity and smoothness o f those object boundaries lead to the 

finding of a co-circularity rule. Thus, to test the hypothesis, Chow et al. generated synthetic 

images from simple geometric objects: stadia and ellipses. Chow et al. concluded that even a 

small num ber of nearly circular objects— ellipses and stadia (two semi-circles jo ined by lines)—  

as well as circles would produce statistics consistent with a co-circularity rule. Furtherm ore, it 

is possible to extend the results to include segments o f closed contours and that the presence o f 

only a few circular arcs would also contribute to co-circularity. Therefore, the results o f Sigman 

et al. show that it is likely natural scenes have many closed smooth contours, not ju st circles.

Lee and Kardar [152] observed the properties of lines in natural images by decom pos

ing the power spectrum o f natural images into transverse and longitudinal Fourier components. 

These two components measure the variation in power along orthogonal directions— parallel 

and perpendicular—relative to a given wavevector in Fourier space. It was found that the Fourier 

spectrum o f natural images exhibited more power in their transverse com ponent than longitudi

nal component [152]. Lee and Kardar concluded that natural images must have an abundance 

of extended sharp edges; moreover, filters that remove much of the redundancy in such images 

were also constructed. Lee and Kardar were able to show some qualitative consistency with 

their theoretically constructed filter function, and the lateral connections (connections which 

link columns o f neurons with sim ilar orientation preference, OP) found between co-linear and 

co-oriented neurons in V 1. The consistency found was that the constructed filters were strongest 

for stimuli that are co-linear with parallel OPs, or co-circular for two neurons with orthogonal 

OPs (a consistent result with [9]) and, therefore, the optimal connection between two V 1 neu

rons is dependent on their orientation preference and correlations in the input signal.

Edge Statistics and Cortical Complex Cells

In another paper, van der Schaff and van Hateren, observed the statistics o f edges in an ensem 

ble o f natural images. Each image was transformed so that edges o f a particular orientation 

can be extracted [8]. This kind o f transform ation resembles the function cortical com plex cells 

perform, therefore, the study was expected to illuminate some of the coding properties o f cor

tical complex cells. Previously, it had been proposed that sparse coding in cortical com plex
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cells occurred due to the existence of edges in natural images in comparison to synthetic im 

ages (Gaussian noise images). Van der Schaff and van Hateren wanted to address w hether the 

responses o f complex cells are independent and sparse.

Van der Schaff and van Hateren found that in natural images there are extended spatial de

pendencies between pairs o f edges if the second edge is along the preferred orientation (along 

the initial edge direction) and albeit weaker correlation in directions other than the preferred 

orientation. Synthetic images dropped to zero correlation beyond the effective size o f the re

ceptive fields, moreover, at the same separation, the correlation in natural images was found to 

be small (<  0.5 bits). Dependency is also found between responses at the same location but 

with filters that have different orientation preferences. However, such dependency drops rapidly 

after effectively one orientation bandwidth o f a cortical complex cell. Furtherm ore, dependency 

across frequency scale drops rapidly after scale factors larger than 2.8 (this factor is equivalent 

to a frequency bandwidth ~  1.5 octaves) to 0.3 bits.

W hat is slightly paradoxical is that previously it has been stressed how im portant sparse 

representations are to encoding images efficiently. However, van der Schaff and van Hateren 

have showed that much o f the dependency in natural images is attributable to edges. Given 

sparsity increases with independent responses to stimuli, it is odd that the HVS should have 

neurons that are orientation selective. Van der Schaff and van Hateren address this paradox by 

asking whether it is possible to form a representation of natural images using independent filters 

which are not orientation selective.

To examine this, an isotropic model o f local variance (similar to local contrast but com 

pares logarithmic not linear intensity values) in natural images is studied using 7 x 7  pixel 

patches with an effective size equivalent to the representation o f cortical receptive fields. There

fore, a comparison of the mutual inform ation shared between two local variances and that o f 

two responses from cortical cells can be made.

Van der Schaff and van Hateren found that, for natural images, the dependency amongst 

local variances is greater than for orientation selective filters [8]. Therefore, orientation selective 

responses are more independent than local variances for natural images. However, synthetic 

images showed no change in dependencies between spatially separated orientation selective 

responses and local variance responses. Furthermore, the responses showed independence even 

in natural images once the filters are spatially separated by more than the effective extent o f the
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receptive field [8].

However, the observation that filters at different scales can be independent, once spatially 

separated beyond the extent of the receptive field, is in contrast to the single-scale independent 

component filters generated by ICA. A possible explanation for this, given by the authors, is 

that a filter with a large receptive field may overlap many sm aller receptive fields. Thus, it may 

be possible, by observing all the small receptive fields, to determine what the response o f the 

large receptive field will be, thus making them dependent despite the output of each small filter 

being independent.

3.6 Summary of Natural Image Statistics

In this chapter a number o f im portant regularities in natural images have been highlighted in 

order to motivate and support the work in this thesis. M uch o f the literature em phasises the 

scale-invariant property o f natural images from the observation that the average power spectrum 

of natural image ensembles follows a power law decay ( l / / 2) w ith respect to spatial frequency 

(averaged over orientation). The power spectrum is essentially a second order statistic, but there 

exist higher order statistical regularities, i.e. correlations between more than pairs o f pixels in an 

image. Another important spectrum of images is the phase spectrum, which has been reported 

to also have a power law decay. This implies that phase regularities exist in the phase-only 

kurtosis and phase-only skewness distributions o f  natural images.

The significance of both power spectra and phase spectra in the appearance of natural 

images have also been studied. Investigations suggest that both contribute to the appearance 

o f natural images. The ensemble o f power spectrum of natural images, which is averaged over 

orientations, is also not necessarily sufficient to describe features in individual natural images 

(in particular natural images rich in textures and shading, or containing strong geometric forms) 

because the power spectrum can be biased in particular orientations. The phase spectrum has 

been shown to contribute to features such as lines and edges in natural images, but w ithout the 

original power spectrum, significant degradation in the image such as blurring can occur, and 

loss o f features at certain orientations.

Geometric regularities have also been reported such as the co-circularity rule: given two 

short image segments in natural scenes the most likely contour joining them is either a line 

or circular arc. Experiments investigating the cause o f such a regularity conclude that natural
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images are composed o f many closed smooth contours and objects o f different sizes.

However, apart from highlighting the statistical regularities o f natural images, a continuing 

theme that has been developed throughout is the relationship between natural image statistics 

and the evolution o f the human visual system (HVS). Evidence has been presented to support the 

efficient coding hypothesis: the HVS is optimised to encode natural visual stimuli. It has been 

reported that even as early as the retina, ganglion cells are performing a whitening operation 

(flattening of the power spectrum) on visual stimuli, which reduces redundancy in the signal.

Furthermore, neurophysiological experiments have shown visual cortical neuron activity 

is suppressed when the visual system is being subjected to natural visual stimuli com pared 

to random stimuli. Such experiments have been performed on not only human subjects but 

also in the fly, cat and monkey, to show that sparse coding is a necessity for other biological 

organism with visual systems. Essentially, therefore, sensory neurons are limited in how much 

and how quickly they can transmit data, which affects the evolution o f any living organism ’s 

visual system.

Psychophysical experiments have also shown observers are better at discrim inating syn

thetic images with the same power spectrum power law decay as natural image ensembles. 

Furthermore, computational experiments have derived filter functions based on efficient coding 

constraints: filters which reduce redundancy, m aximise information transmissions, and increase 

independency between filters begin to resemble cortical visual receptive fields.

In conclusion, the benefits of investigating how the HVS has evolved to encode natural 

image stimuli is not just restricted to furthering understanding of the HVS, it is also beneficial 

for developing computational algorithms to solve perceptual tasks. Thus, the study o f natural 

image statistics is worthwhile and motivates the main work o f this thesis.



Chapter 4

Technical Aspects to Computations and 

Methodology

This thesis is concerned with the statistics o f gradient directions in natural im ages; in partic

ular statistics that describe how gradient directions at different locations are coupled, which 

includes how the coupling changes with separation. The coupling is quantified using measures 

o f dependency rather than correlation because it is possible for tw o variables to  be u ncorrelated 

but not independent if  there are non-linear dependencies betw een the variables. H°Nvever, the 

reverse is true, independence between two variables means the correlation is zero. For example, 

if one variable X  depends on the square o f the other Y 2, the correlation will be zef° but there 

is certainly a dependence between X  and Y.  Thus, in order to evaluate the am ount o f  depen

dency between gradient measurements, information-theoretic methods, in particular interaction 

information (higher order mutual information), which was first introduced by M cGill [153], 

later by Fano [154] and in more formal detail by Han [155], have been used. M oreover, interac

tion information is particularly useful for the treatment of more than two variables. Interaction 

information is discussed in Section 4.1.

In practice, to obtain an estimate o f the gradient direction dependencies, a jo in t Probability 

distribution o f gradient directions is formed. To estimate Shannon’s measure [911 o f entropy 

(Sec. 4.1.1), entropy estimators are applied to the jo in t probability distributions. Each entropy 

estimator has a particular bias and variance. Therefore, a selection o f entropy estim ators are 

discussed in Section 4.2 to reduce the bias, and in Section 4.3, the bootstrap procedure is d is

cussed as a method to assess the variance o f the entropy estimator. Lastly, in Section 4.4, an 

introduction to the application o f derivative Gaussian kernels to images is presented-
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4.1 Information Theory

Information theory is an appropriate framework for establishing whether exclusive 3-point in

teractions exist (synergetic dependencies between three measurements); by definition an inter

action is structure that cannot be described by any subset, i.e. any 2-point dependencies. For 

example, given two variables X  and Y , which may or may not be dependent on each other, then 

if knowledge o f a third variable Z  is acquired, the dependency between X  and Y  can change in 

the context o f Z . Let us then suppose that X  and Y  are independent, knowledge o f Z  can then 

result in X  and Y  becoming dependent. The reverse is also possible if X  and Y  were originally 

dependent; knowledge o f Z  can result in X  and Y  becoming independent. Furthermore, knowl

edge o f Z  may not change the dependency between X  and Y .  Moreover, degrees between the 

possible outcomes mentioned exist and interaction information provides a method o f quanti

fying such degrees. In other work [156], if a third attribute increases the dependency (m utual 

information) between two other attributes it is referred to as synergy. Conversely, if  the depen

dency decreases, this is referred to as redundancy. Both synergy and redundancy are described 

in Section 4.1.3. However, because inform ation theory can be attributed to the breakthrough 

made by Shannon on information entropy, this is discussed first.

4.1.1 Shannon’s Measure of Entropy

Shannon [91] introduced information entropy, as opposed to thermodynamic entropy (a m ea

sure of disorder in a system). Shannon provided theories on the communication o f discrete 

and continuous data (and a mixture o f both), however, the focus here shall be on the discrete 

description as this is most relevant for the type o f analysis used in this thesis. Inform ation en

tropy is a measure o f uncertainty in a given probability distribution (information entropy). The 

measure of information entropy H  proposed by Shannon, for events i, is;

It turns out this is the only choice for H  that can satisfy the following conditions:

1 H  should be in continuous in p i , i.e. a small change in pi does not cause large changes in H.

2 H  =  0 if the outcome is certain, i.e. if  and only if pi =  0, Vi except one.

3 H  is a maximum when all events are equally likely, i.e. pi =  1 / n ,  Vi.

(4.1)
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An alternative interpretation o f H  is to consider the ‘surprise’ o f an event occurring, which 

is also known as self-information: how surprised or informed are we when a certain event 

occurs. An initial guess is that for a given event a, which has a probability o f occurring o f 

pa, our surprise sa o f this event occurring is equal to 1 / p a. However, if an event is com posed 

o f two independent events, with the probability o f occurring pb and p c (i.e. p a — Pb-Pc), the 

total surprise should be the sum o f these events: s a =  Sb +  s c, but this gives 1/pb +  1 / p c, 

which is not equal to l / p a. Instead, the definition for the measure of surprise for an event 

x,  with probability px, should be sx =  — log px, which gives a total surprise o f — lo g p a =  

— log (pb-Pc) =  — logPfe — lo g p c. Thus the entropy is given by the surprise s x, weighted by the 

probability o f the event p x, therefore entropy is expected surprise.

The measure of entropy in Equation 4.1 is easily extended to jo in t events X  and Y .  There 

rtiay be several outcomes for each event, so let p { x i = i , y j = j )  be the probability o f outcome 

%i=i together with outcome y j = j .  The jo in t entropy is then given by:

H ( X , Y )  =  -  ^ 2 p ( x it yj )  l o g p ( x i l yj ) (4.2)
i j

and the marginal entropies are given by:

H ( X )  =  -  s2 2 p ( x i , y j ) ' ^ 2 \ o g p { x i , y j ) (4.3)
i,3 j

H (Y ) =  (4 -4)
i,j i

H ( X ,  Y )  is then a measure o f how uncertain we are about the pair o f random variables X  

and Y.  It is also possible to construct a measure o f conditional entropy, for example H ( X \ Y ) ,  

which describes how the entropy o f X  decreases with knowledge o f Y :

t f ( X |K )  =  - ] [ > ( * , , % )  log (4.5)
i j  PyVj)

where , p ( x i )  =  Y . j P { x uVj)^ P(Vj) =  Y , i P { x uyj)> a n d p(xi \ y j )  =  In other words

H ( X \ Y )  is a measure o f how much uncertainty remains about the value o f X  after knowing Y.
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4.1.2 Mutual Information

Using the jo in t entropy and marginal entropies, it is possible to construct Shannon’s m easure o f 

mutual information:

I(X;Y) is the amount o f uncertainty removed from X  with knowledge o f Y ,  or it can be inter

preted the other way: how much uncertainty remains in Y  given X .  This is because I ( X ;  Y )  is a 

symmetric measure, meaning that I ( X \ Y )  — I ( Y ; X ) .  Furthermore, there is self-inform ation 

I ( X \  X ) ,  which reduces to H ( X ) .

M utual information can also be written in terms o f relative entropy. This leads to the 

more intuitive interpretation that m utual information measures the ‘distance’ between the jo in t 

probability distribution p(xi ,  yj )  and the product o f their marginal distributions p(x{)  x p{yj ) .  

The measure o f the distance between probability distributions used for this is known as the 

Kullbeck-Leibler (KL) divergence. For the probability distributions p(x)  and p(y) ,  the KL 

divergence is defined as:

which is i) always positive K L  >  0, and ii) equal to zero only when p(x)  — p(y) .  Thus, 

rewriting mutual information in term s o f KL divergence:

I ( X \  Y )  =  H { X )  +  H ( Y )  -  H { X , Y ) (4.6)

(4.7)

(4.8)

I ( X ; Y )  =  KL{ p{ x , y ) \ \ p { x ) p { y ) ) . (4.9)

Mutual information can also be written in terms o f conditional entropies:

I ( X ; Y )  =  H { X )  -  H ( X \ Y )  =  H { Y )  -  H ( Y \ X ) . (4.10)

4.1.3 Interaction Information: Synergy and Redundancy

A useful depiction of interaction information is through Venn diagrams, which has been shown 

to be relevant by Yeung [157] because o f the similarity between set theory and inform ation-
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theoretic operations such as exclusion and inclusion. This also provides an alternative descrip

tion o f interaction information, in a set theoretic sense, o f mutual information as an intersection 

of entropy, joint entropy as a union, and the conditional entropy as a set difference, but this 

interpretation requires the association o f abstract sets in place o f random variables, therefore 

the formal description in terms o f set theory shall not be given here. Furthermore, the area o f 

regions in the Venn diagram are not necessarily proportional to the amount o f uncertainty, espe

cially in cases where the interaction information can be negative; such problems are discussed 

in [158].

Nevertheless, Venn diagrams help to visualise the terms involved in interaction inform a

tion. The most familiar example o f interaction information is that between two variables, which 

has been described in Equation 4.6 as mutual information and is illustrated in Figure 4.1. F ig

ure 4.1 shows terms like H ( X ) ,  which denote the entropy o f X ,  and H ( X \ Y ) ,  w hich is the 

entropy of X conditional on Y. It also shows the mutual inform ation shared between X  and Y, 

which is denoted I ( X \ Y ) .

H(X) H(Y)

l(X;Y)

Figure 4.1: Illustrates a venn diagram of the mutual information I ( X ;  Y )  between two random  
variables X  and Y.

If mutual information is extended to three variables the Venn diagram in Figure 4.2 is ob

tained. The important area o f Figure 4.2 is the region which overlaps in the centre I ( X ; Y ; Z ) .  

This is the mutual information between X , Y ,  Z.  In order to begin to interpret I { X \ Y \ Z )  

compare Figures 4.1 and 4.2. One observes that the region o f I ( X \ Y ) (Fig. 4.1) is replaced by 

the sum of I ( X ; Y ; Z )  + I ( X ; Y \ Z )  in Figure 4.2, and therefore:

I ( X ; Y ;  Z)  =  I ( X ; Y )  -  I ( X ; Y \ Z ) , (4.11)
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or expressed in terms of joint and marginal entropies:
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J (X ; Y ; Z)  = H { X )  +  H ( Y )  +  H { Z )

-  ( H { X ,  Y )  +  H ( X ,  Z)  +  H( Y,  Z) )  +  H { X ,  Y,  Z) .

(4.12)

The quantity I ( X ;  Y \ Z )  is the conditional mutual information between X  and Y  in the context 

o f Z  (i.e. when there is knowledge o f Z).  In terms o f jo in t entropies, I ( X ; Y \ Z )  is given by:

From the joint and marginal entropy terms, the interpretation o f I ( X \ Y \ Z )  can be read as 

the reduced uncertainty in X  due to knowledge o f Y  in the context o f Z.  The interpretation 

o f I ( X ;  Y\  Z)  (the interaction inform ation o f X ,  Y ,  Z)  is the difference between the m utual 

information o f X  and Y ,  and the conditional mutual inform ation o f X  and Y  (i.e. given Z),  

which can be stated more succinctly as the reduction in m utual information between X  and 

Y  when Z  is known. Equivalently, an alternative interpretation o f I ( X ; Y ; Z ) is how much 

uncertainty is removed from Z  by jointly knowing X  and Y  which is given by I ( X ,  Y ; Z) ,  

compared to the amount of uncertainty removed from Z  due to knowledge o f X  which is given 

by / ( X ;  Z ), and the uncertainty removed from Z  due to knowledge o f Y  which is given by 

I ( Y ; Z ) .  Therefore, we can rewrite I ( X ; Y ; Z)  as

If I ( X ; Y \ Z )  =  0, it follows from Equation 4.11 that I { X \ Y ; Z ) must be nonnegative, 

further, if I ( X ; Y; Z)  is positive then / ( X ; Y )  must also be positive. Also, if I ( X ;  Y;  Z )  = 0 ,  

then J (X ;Y jZ )  =  I { X \ Y ) ,  this means no triplewise dependencies exist. This is be

cause o f one o f two reasons: i) only pairwise dependencies exist between A  and B,  i.e. 

p(A,  B , C )  =  p(A,  B) p { C) ,  or ii) all three variables are independent o f each other i.e. 

p { A , B , C ) =  p ( A) p ( B) p ( C) .  Therefore, if  the dependency between X  and Y  increases 

when informed by Z , compared to without knowledge o f Z,  then I ( X ;  Y ; Z )  is negative, and 

when this occurs there is said to be synergy between X ,  Y ,  and Z.  If  the opposite occurs

I { X ; Y \ Z )  = H { X , Z)  +  H ( Y , Z)  -  H { Z ) -  H { X , Y, Z)  

= H { X \ Z ) - H ( X \ Y , Z ) .

(4.13)

/ ( X ;  Y ; Z)  =  / ( X ;  Z)  +  I ( Y ; Z ) -  / ( X ,  Y ; Z ). (4.14)
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where the dependency between X  and Y  decreases when informed by Z,  i.e. I ( X ;  Y ; Z)  

is positive, then there is said to be redundancy between X , Y ,  and Z.  It is also noteworthy 

that I ( X ; Y ; Z )  is symmetric such that all permutations o f X ,  Y ,  and Z  are equivalent, e.g.

I ( X ; Y; Z)  =  I ( Y ; Z ; X )  =  7 (Z ; y ; X ).

H(X) H(Y)

l(X;Y|Z)

«x;Y;a

l(Y;Z|X)

H(Z)

Figure 4.2: Illustrates a venn diagram of the interaction information I ( X ; Y ;  Z)  and conditional 
mutual information I ( X ; Y \ Z ) ,  I { X \  Z \ Y ) ,  I ( Y ; Z \ X )  between three random variables X ,  Y  
and Z.

An alternative viewpoint is to express mutual information in terms o f relative entropy by 

following Equation 4.2:

I ( X ; Y; Z)  =  K L ( p ( x , y,  z)  || q(x,  y,  z))  (4.15)

ivhr r r  n ( - v  i t  —  P ( x , y ) p ( x , z ) p ( y , z )where q{x,  y, z)  -  pf y ; (yyp(z) •

Therefore, the interaction information I ( X \ Y \ Z )  is the KL distance between the proba

bility distribution o f p ( x , y , z)  and q(x,  y , z).  However, the behaviour o f this KL divergence is 

not an appropriate ‘distance’ measure because q ( x , y , z)  does not necessarily satisfy the nor

malisation condition of a true probability distribution: Y I p  =  1* which can lead to K L  <  0.

Therefore, it is more common to define the total ternary mutual information, which is given by:

I ( X , Y, Z)  =  K L  (p(x,  y,  z))  || p ( x ) p ( y ) p ( z ) ) , (4.16)
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and in terms of joint and marginal entropies by:
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I ( X , Y, Z ) =  H ( X )  +  H ( Y )  +  H { Z )  -  H ( X , Y, Z) .  (4.17)

This is also referred to as the total correlation [159]. I ( X , Y , Z )  measures the total dependence 

between X ,  Y ,  and Z  and therefore is always nonnegative, and zero if  and only if the three 

variables are independent o f each other, i.e. p(A,  J3, C)  =  p ( A) p ( B) p ( C) .  Even if I ( X , Y, Z)  

is positive, it does not necessarily imply there are triplewise dependencies. For example, if 

p(A,  B , C )  =  p ( A , B) p ( C)  there are pairwise dependencies between A  and B  but no triplewise 

ones.

4.2 Entropy Estimators

Thus far, the entropy calculations have been based on knowing the true probability distribution 

p. In practice, only a sample of this distribution is available by making a finite num ber of 

observations N  and placing them into M  states. Therefore, only an estim ate o f p  and the 

entropy H  can be made. This leads to both statistical and systematic errors for such entropy 

calculations. For example, if pi,  in Equation 4.1, is replaced with pi =  where m  are the 

number of occurrences o f event i, the naive entropy estim ator (m axim um  likelihood estim ate) 

is produced:
M

H  = - ^ T p i l o g p i .  (4.18)
i

The naive estimator results in a systematic underestimation (bias) o f the entropy H  due 

to statistical fluctuations that make the distribution look less uniform. In other words, the ex

pectation value o f H,  which is the estimate o f the entropy, is different from the true value o f 

the entropy H,  i.e. E { H  — H )  ^  0, where E  denotes the expectation value. The bias exists 

because entropy is a non-linear function o f rii. Furthermore, because the logarithm is a concave 

function, the bias is negative, which can be shown using the Jensen inequality1. It is also clear 

that as p  —* 0 unusually high scores for the entropy are obtained because lo g p  —► oo. To 

reduce this bias, correction terms are added to the naive estimator. However, there is a trade-off 

between reducing the bias and increasing the statistical error.

To estimate the error, a Taylor expansion o f the logarithm term in Equation 4.18 can be

'The Jensen inequality is E[ f ( x) \  >  f ( E[ x} )  for convex functions, and E[f ( x) }  <  f ( E[ x] )  for concave 
functions.
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applied; expressing Equation 4.18 in terms o f n* and N:

(4.19)
i= 1

The naive estimator is then given by the first order term ip(x) =  log x,  and the second order 

correction term is - l / 2 x ,  as proposed by M iller [160]. Thus, the M iller entropy estim ator is 

given by:

t= i

Other estimators that reduce the bias, which are in fact asymptotically unbiased for large 

N, at the cost o f increased variance have been proposed by Grassberger [161], one o f which is:

where 'fj(x) =  jj In r(x), and T (x) =  (x — 1)!. However, the estimators proposed by Grass

berger are normally applied in situations where pi «  1, i.e. where there are insufficient 

samples taken compared to the num ber o f states; this results in several states having zero fre

quency.

In Figure 4.3 is an illustration o f the effect o f M iller’s correction on the entropy score 

estimated from two different histogram distributions. In the first case, Figure 4.3 left, has a low 

number of counts n  in each bin and the difference in entropy score between the naive and M iller 

entropy estimators is of the order o f 10“ 1 (nats). In the second case, Figure 4.3 right, which has 

a higher number o f counts in each bin, the difference between the two estimators is o f the order 

o f 10-2  (nats).

4.3 Variance of Entropy Estimators: Bootstrap

Not only is there an associated bias with any entropy estim ator but there is also a certain amount 

o f variance. We have chosen to calculate this variance using the bootstrap procedure introduced 

by Efron [162]; it is a method that can be used to obtain statistical inference about both the 

bias or variance o f a given estim ator © o f a statistic 0 .  It is based on a resam pling procedure 

which assumes that your sample is a good representation o f the true population. By randomly 

resampling (i.e. each element o f the original sample has an equal chance o f being sam pled) 

with replacement from the original sample (not the true population) one computes a num ber o f

(4.20)

(4.21)
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Naive = 2.661 Naive = 2.766
n Miller = 2.824 n Miller = 2.777

4 8 12 16 1 4 8 12 16 l

Figure 4.3: The entropy scores for both histograms are computed using the naive estim ator and 
with M iller’s correction, which are quoted above each histogram. On the left the bins i are 
populated with a low number o f counts n  in each bin. This results in a significant difference 
between the naive entropy estim ator and M iller’s correction. In contrast, the histogram  on 
the right has an adequate number o f counts in each bin and hence the difference between the 
estimators is smaller.

‘bootstrap samples’. Each bootstrap sample has the same num ber o f elements as the original 

sample but may contain duplicate elements. The num ber o f bootstrap samples that should be 

taken is determined empirically. Formally the num ber o f bootstrap samples should be infinite, 

however, the bootstrap procedure converges quickly with a greater num ber o f samples and 

therefore, depending on the precision required, a small but finite num ber o f samples can be 

taken. There will also be practical limitations such as the computation time as to how many 

samples can be reasonably gathered.

The new scores are then computed by applying the same estim ator © to the ‘bootstrap 

samples’, which leads to a new distribution o f ©W that differs from the original sampled distri

bution. The bootstrap distribution is an estimate o f the sampling distribution o f the true distri

bution. Thus to estimate the pc-percentile confidence limit of © we first calculate the standard 

deviation S  o f the bootstrap distribution of © ^  by:

and then multiply S(@(6)) by y/2 erf 1 p.

The key point is that the bootstrap method, unlike other statistical inference methods, does 

not make any a priori assumptions as to what shape this distribution takes (although it is possible 

to do a ‘parametric bootstrap’ by sampling from a known distribution). Therefore, the bootstrap 

method relies heavily on the assumption that the sample distribution is a good estim ate o f the 

true population and increasing the num ber o f ‘bootstrap sam ples’ increases the accuracy o f the 

bootstrap estimates.

(4.22)
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However, for the purposes o f the analysis in this thesis, and which is unique to this work, 

it has been necessary to modify the bootstrap procedure to deal with sampling from  histogram s 

which contain the frequency of data rather than raw data itself. To summarise, the steps involved 

in this non-parametric bootstrap procedure from histogram  counts are:

1. The data are a collection o f histogram s Tx where x  =  1 , . . . ,  M , which form the sample 

o f the true population.

2. Randomly draw with replacem ent a histogram  Tx=x-

3. Re-populate each bin in Tx=x  by randomly resampling from a Poisson distribution 

P [ z )  =  - ^ -j— with mean X equal to the original bin count2, where 2 is the bin label 

(event). Treating each bin count as a random Poisson variable is appropriate for estim at

ing the statistical fluctuations that occur within a given interval/bin due to the discrete 

property o f bin counts. In other words, we want to estim ate the bin count again if  we 

repeat the sampling; the bin count in this repeated sample is independent o f the original 

sample.

4. Repeat steps 2 and 3, M  num ber o f times, to create M  samples: Txb\

5. Sum all the bootstrap sample histograms together to form one total bootstrap histogram,

rpB' _  s p N rp(i})

6. Compute the statistic o f interest 0  (in this thesis, this will be the entropy o f the distribu

tion) using the same estim ator 0 ,  i.e. S ( T B').

7. Repeat the above steps, N  num ber o f times, to create N  num ber o f bootstrap estim ates 

for the statistic o f interest 0 y= i (T B' ).

Lastly, to calculate the p-percentile confidence limits o f the statistic of interest we com pute the 

standard deviation S  o f 0 y=i , . . . ,n(Tb ') m ultiplied by \ / 2 e r f -1  p.

If we follow the non-parametric bootstrap on sampled histogram data which have been 

sampled from three different distributions: Normal, Laplace and Uniform; we would expect 

the confidence limits on the entropy estimates to reflect the different uncertainty in estim ating 

the entropy. For comparison, Figure 4.4 left column shows an example o f three different sam 

ple histograms together with their bootstrap samples to their right. As expected the entropy

2 Although the total number o f counts in each bootstrap sample may be different from Tx=x ,  the total number of 
bootstrap sample histograms is still M ,  as per step 4.
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estimates for the sampled histograms taken from Laplace and Uniform distributions are below 

and above that of the Normal distribution; moreover, the confidence limits, estimated from the 

bootstrap procedure, are also above and below that of the Normal distribution.

entropy = 2.226 95% CL = 0.063

n entropy = 1.748 n 95% CL = 0.144

n entropy = 2.995 n 95% CL = 0.0002

Figure 4.4: Left column: top shows one example of a sample histogram taken from a Normal 
distribution with its entropy estimate quoted, middle from a Laplace distribution, and bottom 
from a Uniform Distribution. To the right of each sample histogram in the left column is one 
example of its bootstrap sample, with the 95% confidence limit (CL) in the entropy estimate 
quoted. The labels n and i on the vertical and horizontal axes indicate the number o f counts and 
bins respectively.

4.4 Applying Gaussian Derivatives to Images

Differentiation of a discrete image is not well defined. A technique to solve this problem is 

known as regularisation [163]. More generally, regularisation is a technique applied to data to 

make it behave well (this means that small changes in the input to a function leads to a small 

change in the function’s output, as outlined by Hadamard [164]) when certain operators (e.g. 

differential operators) are applied to that data. In the context of image analysis, regularisation 

forms the cornerstone of (Linear) Scale-Space theory which was first proposed by Iijima [165]
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and later, independently, by W itkin [166], and Koenderink [79].

4.4.1 Linear Scale-Space Theory

A step to make a sampled image well behaved when applying derivative operators is to smooth 

the image data first, for example, by interpolation, and then apply a derivative operator. How

ever, this changes the data before applying the derivative operator. Scale-space theory pro

vides an approach which leaves the data unchanged but regularises the operator instead. This 

involves sampling the data (image) with a smooth derivative test function (e.g. a Gaussian 

derivative) [8 6 ].

Therefore, to measure the gradient o f the image lum inance function L ( x , y ) ,  it is con

volved with the derivative o f a Gaussian kernel (d G ) =  { ^ r ,  ^ } ;  this convolution operation
2 , 2 i x +y

is denoted by (dG)  8 L  where G (x ,  y; a)  =  e ^  , and o  is the resolution param eter 

(the choice o f o  is important, see Section 4.4.2 for further information). This avoids differenti

ating the image directly [167]; instead, differentiation is applied to the Gaussian operator and by 

convolving it with the image the data is regularised [167]. Thus, differentiation is done before 

any smoothing o f the data. This relies on the jo in t properties o f convolution and the derivative, 

which are both linear operators and so is their functional composition. Therefore, the operation 

o f convolution and taking derivatives is associative:

d ( G  ® L )  =  G ®  (dL)  =  (dG)  8  L  (4.23)

The choice o f using a derivative Gaussian kernel is not arbitrary. Firstly, Gaussian deriva

tive functions have been used as basis functions to model the receptive fields o f simple V 1 cells 

in primates [168, 169, 170, 171]. Secondly, the foundation o f scale-space theory em phasises 

that vision is about making physical observations, therefore, observations are made through 

non-zero sized apertures. The Gaussian kernel happens to satisfy a number o f constraints upon 

the properties o f this aperture function when it acts as an operator on an image. In a perfect 

world (mathematics) this aperture could be made infinitesimally small thereby it would have 

a resolution o f zero. However, in reality, such an aperture would capture no light; therefore, 

the aperture should be of non-zero size. Furthermore, the aperture should be uncom m itted, 

for example there should be no preferences in the image for: i) location (shift invariance), ii) 

orientation (isotropy) o f structures, and iii) size o f structures (scale invariance).
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The constraints on the aperture have consequences on its form and application: it is ap

propriate to convolve the kernel with the image (this also regularises the image), the kernel 

integrates over a circular area, and successive observations o f the image lead to a w ider kernel; 

the Gaussian kernel satisfies these properties. It is also possible to derive the Gaussian ker

nel based on arguments o f causality: this means that by blurring an image no extra structure 

( ‘spurious detail’) should arise [79]. This assumption, along with invariance to translation and 

rotation, and treating all scales equally, leads to certain constraints on the relationship between 

first order derivative changes in scale ( ^ )  and the second order derivative change in space 

( | ^ ) .  In 1-Dimension, this means that as ^  decreases (<  0), increases (>  0) and vice

versa, so that ^  > 0 .  In other words, in moving to coarser scales, local m axim a in the

gradient field always decrease and local minima increase.

This leads to the familiar form  o f the diffusion equation >  0 o f w hich the

Gaussian kernel is the G reen’s function (i.e. it is the solution to this inhomogeneous differential 

equation subject to boundary conditions: as t  —> 0 , the original unblurred image is obtained). 

The quantity being diffused is the intensity o f the image over scale o  {t — y/2o).  Interestingly, 

the Gaussian kernel can also be derived by considering the entropy o f the observed signal [172]. 

The main concept in this derivation is that an uncom m itted observation m axim ises entropy 

under the constraints previously mentioned; in other words, the disorder is greatest when the 

observation has no preference for certain structure.

4.4.2 Errors Gaussian Derivative Operators

The accuracy in calculating the gradient o f a slope from  sampled data using the derivatives o f

Gaussian kernels is affected by both the order o f differentiation and the scale o f the kernel [173]. 

For a given derivative order n , the value o f the derivative worsens for sm aller scales o.  This 

is most easily understood in the Fourier domain as an aliasing effect caused by band lim ita

tion. Gaussian derivatives act as bandpass filters, as shown in Figure 4.5. This can be shown 

analytically, by considering the Fourier transform of Gaussian derivatives:

I 'T U iJ X (4.24)

=  (~iu;)nF { G ( o , x ) } .

where G(<j, x )  =  x2 / 2cr2.
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Figure 4.5: Illustrates the first order Gaussian derivative kernel normalised power spectrum. 
The maximum of the curve occurs at u  =  1; generally for n-th order derivatives the m axim um  
occurs at \fn.

For instance, the Fourier transform of the Gaussian kernel is defined from — 7r to ir. As the 

scale o f the kernel is decreased in the spatial domain, i.e. its extent decreases, this consequently 

broadens the kernel in the spatial frequency domain. Essentially as o  decreases in the spatial 

domain, more and more signal energy lies outside the kernel’s defined range in the spatial 

frequency domain. Pictorially this is seen as an inability to fit the zero crossings o f the Gaussian 

derivatives inside their Gaussian envelopes (higher order derivative equals higher num ber o f 

zero crossings). Mathematically, the error is expressed as the amount o f power which leaks 

from the kernel (i.e. in the aliased frequencies) relative to the the total power:

uj2ne - au2/2du
error(n , <r) =  ( « 3 )

For lower order derivative Gaussian kernels this error is small; it is necessary to go up to order 

4 before the error rises above 0.01. Thus, in practice, if  a sufficiently large scale is chosen the 

aliasing error becomes insignificant. Therefore, for the com putations in this thesis, a scale of 

4 is chosen (unless otherwise stated) when applying first order derivative Gaussian kernels to 

measure the gradient.

Another type of error results from the amplification o f low amplitude but high frequency 

noise by Gaussian derivatives. This has been studied by Blom et al. [174] who suggest that if  the 

scale of the Gaussian derivative is sufficiently large the error is not significant. The amplification 

is greater for higher order derivatives, but we can apply first order Gaussian derivatives o f scale 

4 without such problems.



Chapter 5

Methodology: Data Collection

In this chapter several methodologies are presented which include: how the four m ain im 

age classes are generated: natural, phase randomized natural, whitened natural and Gaussian 

(Sec. 5.1); how the gradient directions are m easured (Sec. 5.2); how the histogram  data is 

collected (Sec. 5.3 and Sec. 5.4); and how the mutual inform ation scores (Sec. 5.5) and their 

confidence limits (Sec. 5.6) are calculated.

5.1 Generating Image Classes

For the natural image class, a set o f 100 images are selected from a subset, which excludes 

images suffering from motion blur and saturation [175], o f the van Hateren database [8 ]. The 

images are 1024 by 1536, 12-bit images o f outdoor scenes; examples o f which are shown in 

Figure 5.1.

Phase randomized natural images are produced by randomizing the phases o f the natural 

images. First, the Fourier transform o f an image I is computed. Second, the phases o f the 

Fourier components are set to random values. Third, an inverse Fourier transform  is com puted 

to return to the spatial domain.

In contrast to phase randomized natural images, each whitened natural image is generated 

by leaving the phase o f a natural image unaltered but setting the power o f  each Fourier com 

ponent to unity. Finally, the class o f Gaussian noise images consist o f images with an image 

function whose luminance values are drawn from a Normal distribution. The Fourier transform  

of Gaussian noise images has a flat power spectrum with random phases. For com parison, an 

example from each image class is given in Figure 5.2.

Studying this quadruple o f image classes will add further understanding as to the im por

tance o f the power and phase spectra o f natural images and the amount o f its gradient direction
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Figure 5.1: Four examples of natural images taken from the van Hateren database [19]. Images 
contain a mixture of sky, vegetation and man-made structures.

Figure 5.2: Examples from the four image classes used in this study. From top to bottom and 
left to right: natural image, phase randomized natural image, whitened natural image (zoomed 
in), and Gaussian noise image (zoomed in).
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dependencies by grouping results in terms of similar power spectra or similar phase spectra. 

This grouping is possible because phase randomized natural images contain only the power 

spectrum information of natural images, and whitened natural images contain only the phase 

information from natural images. Furthermore, Gaussian noise images have neither the power 

nor phase spectra information of natural images, but have flat power and random phase spectra. 

A representation of the image classes’ similarities and differences is illustrated in Figure 5.3.

Power

Natural PR
•  •

WH 6N
•  •

------------------------------------------  Phase

Figure 5.3: A representation o f the similarities between the image classes in a power spectrum 
vs. phase spectrum space. Image Key: natural (Natural), phase randomized natural (PR), 
whitened natural (WH), and Gaussian noise (GN).

5.2 Extracting Gradient Directions and Magnitude

In order to measure first order derivatives of an image (as explained in Section 4.4.1) its lumi

nance function L =  L(x,  y)  is convolved with the partial derivatives of a Gaussian kernel d G  

(see, Fig. 5.4 for examples of the partial first order derivatives of a Gaussian): (dG)  <g> L  where
x 2 + y 2

G(x,  y\ o)  =  2 ^ 7  e ^  and o  is the resolution parameter (a  =  4 is used in this work unless 

otherwise stated).

The gradient direction at a point in the blurred image luminance function L ( x , y; a)  is then 

found by taking the arctangent of the ratio of the partial Gaussian cartesian first derivatives. To 

avoid boundary effects, it is necessary to window the image after convolution: points which are 

within 7<j (>  extent of kernel) o f the image boundary are excluded. Alternative methods could 

be implemented at the boundary such as extending the boundary by reflection, wrapping around 

to the opposite boundary, or truncating the kernel.

Furthermore, for some experiments gradient directions where the gradient m agnitude is 

large in each image are observed, i.e. gradient directions occurring at locations where the
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Figure 5.4: Left figure shows an x-derivative Gaussian kernel dxG(x,  y; o).  Right figure shows 
a y-derivative Gaussian kernel dyG ( x , y; o).

gradient magnitude falls below a certain threshold— specific to that image— are ignored. For 

each image, the threshold is taken to be the (3 /4 )^  quantile (third quartile) o f the gradient 

magnitude distribution o f that image. In collecting pairs or triples o f gradient directions, the 

threshold must be satisfied by all the gradient directions.

An example o f a natural image and the gradient directions where the gradient magnitude 

is large are shown in Figure 5.5. Further, in Figure 5.6, the x- and y-derivative of the natural 

image in Figure 5.5 left are shown, together with the gradient direction and magnitude.

Figure 5.5: Left figure shows a natural image and right is the gradient direction where the 
gradient magnitude is high. The gradient directions are encoded as a grey scale value. The 
scale of filter o  used is 4.

5.3 Data Collection

Data is collected by computing the values o f the gradient direction and the gradient magnitude 

for an ensemble of images (from the same image class) and forming histograms. In the case o f 

gradient directions the data is binned into 32 equal-sized bins of width 7r/8 for the 1-point data
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Figure 5.6: Top row: the x- and y- derivative images of Fig. 5.5 are shown left and right 
respectively. Bottom row: gradient magnitude and gradient direction image. The scale of filter 
o  used is 4.

and 16 for the 2-point and 3-point data. This choice for the num ber of bins allows a sufficient 

number o f counts in each bin to be collected in a reasonable time. Binning the data for gradient 

directions is made simple because the range o f directions (—7r,7r] is always finite and the same.

Binning gradient magnitudes, which have heavily skewed distributions o f differing ranges 

for each image class (shown in Fig. 5.7) is not so straightforward. For example, the gradient 

magnitude distribution of natural images is more skewed in favour o f weak gradients than it is 

for phase randomized images which has the peak o f its distribution shifted horizontally to the 

right toward stronger gradient magnitudes.

The n^  bin boundary has been set at the (n /1 6 ) th quantile value of each individual image 

giving a total o f 16 bins per dimension. The gradient magnitude histograms are formed for each 

image separately and summed together to form a total histogram for all images. The quantile 

values are determined from 100,000  gradient magnitudes in each image.

For 1-point statistics, one million gradient measurements are collected from a set o f 100 

images (10,000 gradients from each image) from the same image class. The one million gradi

ent measurements from each image class are binned as described in the previous section to form 

two 1-D histograms o f gradient directions and gradient directions where the gradient magnitude
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natural phase randomized

Gaussian noise

Figure 5.7: Histograms o f gradient magnitudes in the four different im age classes. The upper 
range o f each histogram is the 95th percentile.

is large for each o f the four image classes.

For the 3-point measurements, there are several choices over the spatial configuration of 

each location. For simplicity, a randomly oriented equilateral triangular configuration (see 

Fig. 5.8) has been chosen. From all the 3-point configurations possible, the equilateral tri

angle is the only one which is symmetrical and where all three points are equidistant from each 

other, therefore, it is a natural configuration to examine first.

The gradient at each vertex o f a triangle is recorded for 10,000 triangles per im age for 100 

images. The gradient direction is measured relative to the line drawn from the triangle’s centre 

o f symmetry to the respective locations at each vertex. This is repeated for different separations 

(k =  0 .2 5 ,0 .5 ,0 .7 5 ,1 ,1 .5 ,2 ,2 .5 ,3 ,3 .5 ,4 ,5 )  between the vertices o f the triangle, in multiples 

o f the filter scale o.  This enables the study o f how the 2-point and 3-point gradient direction 

dependencies change with separation between the m easurem ents in a manner independent o f 

the scale o f the Gaussian derivative kernel.

For each individual image and value o f k , the 3-point statistics are binned to form three 

3-D histograms. Each 3-D histogram  represents the gradient magnitude, gradient direction 

and strong (where the gradient magnitude is large) gradient direction statistics, denoted by 

s =  1 ,2 ,3  respectively. Thus, for each image class and value o f k there are 100 histogram s 

^s;t= i,2,...,ioo;Jt which are summed to produce a total histogram: Us;k (A , B , C).
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Figure 5.8: Illustrates the triangular spatial configuration adopted in the 3-point measurement 
(triples of gradient measurements). W hite arrows illustrate gradient directions. Circles have 
radius \ / 3<7 , which is the effective extent of the first derivative Gaussian kernel and the length 
o f triangle sides are 5a , i.e. k =  5.

For a given Ua;k(A, B ,  C) ,  three 2-D joint histograms can be produced by collapsing 

one dimension: US]k { A ,B ) ,  Ua]k{ A , C ) ,  Ua.k( B , C ) ,  which represent the results for 2 -point 

statistics. Furthermore, collapsing two dimensions produces three 1-D marginal histograms: 

Ua,k( A \ U a,k( B ) t Ua,k(C).

One example of a joint and marginal histogram for gradient directions is shown in Fig

ure 5.9. Note that a total of one million gradient triples is sufficient so that the mean bin count 

in a histogram is not close to zero, which makes the estimation o f information-theoretic scores 

less accurate. For the 3-D histograms, which are 163 in size, the mean bin count is 244.

Figure 5.9: Illustrates one example o f a 2-D histogram (left) formed from the 2-point statistics 
o f gradient directions, and one of its 1-D marginal histograms (right).



5.4. Overlap o f Kernels

5.4 Overlap of Kernels

100

A consideration in understanding the gradient direction dependencies is the physical extent o f 

the operators used to calculate them. If  the operators overlap heavily, it would be expected that 

there are some dependencies between the measurements; overlap does occur when the distance 

kcr between measurements is small. How much overlap occurs is illustrated in Figure 5.10. 

Note that the effective extent o f the first derivative Gaussian operator can be approxim ated ana

lytically from the position o f the zero crossing o f the partial Gaussian cartesian third derivative: 

G ( x ; o) =  G ( x ; o).  Thus, the effective extent is a/3<7 from its centre, which is

illustrated in Figure 5.11.

Figure 5.10: Illustrates the effective overlap of the triangular spatial configuration o f first 
order derivative Gaussian kernels (<j =  4) as shown in Fig. 5.8 but for sm aller k values 
{0.5, 1, 2, 3, 4}. The radius o f each circle is \ /3a:  the effective extent (see, Fig. 5.11) o f 
the kernels.

Figure 5.11: Illustrates how the effective extent of the first order derivative Gaussian is calcu
lated. The first order x partial derivative in one dimension is shown in (a). The distance from 
its centre to its inflexion points is denoted by the grey vertical lines in (a). The distance of 
the inflexion points from the centre are com puted from the first zero crossing (marked by grey 
vertical lines in (b)) o f the third order x partial Gaussian derivative (illustrated in (b)).

5.5 Entropy Estimates from Histogram Data

To calculate the mutual information between pairs o f gradient magnitudes or directions at a 

given separation, estimates are made o f the entropy o f the 2-D jo in t histogram  o f  gradient

-4

(a) (b)
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magnitudes or directions H{Us;k(A, B)],  and the entropy o f its two marginal distributions,

The maximum likelihood (naive) estim ator with M iller’s correction [160] is chosen to 

reduce the bias of the naive estim ator but reduce the variance o f other estimators w ith higher 

order corrections:

where N  and M  are the total num ber o f counts and bins respectively, rii is the num ber o f counts 

in bin i. Once the joint and marginal entropies are known the mutual information is calculated 

from:

Given that the entropy scores in Equation 5.1 are measured using natural logarithms, the units 

o f information are nats (for bits, logarithm base 2 is used). For the 3-point inform ation, we 

calculate the following interaction information using the 3-D histogram:

5.6 Bootstraps

Here a description is given as to how the bootstrap samples are formed from the histogram  data 

in order to compute the confidence limits on the information-theoretic calculations. To create 

a bootstrap sample, 100  (for each image class there are 100  images in each ensemble) his

tograms are drawn randomly with replacement from us-t;k• For each sample histogram  u s;t=T;k 

chosen, the bins are repopulated for that histogram by treating each bin count as a Poisson 

variable to form 100 new histograms u's.t .k. Treating the bin counts as Poisson variables sim u

lates the statistical fluctuations caused by discrete bin counts. A new total bootstrap histogram  

U^l(A ,  B,  C ) is then formed by summing u'a.t .k. From U^k {A, B , C ), the jo in t and marginal 

distributions can be formed, as shown for US]k(A, B,  C ). This process is repeated 200 times. 

To calculate the 2-point and 3-point mutual information confidence interval the bootstrap scores

Is,k { A ; B )  =  H [U s.k{A)\  +  H[Us,k{B)\  -  H[Us,k( A , B)]. (5.2)

Is,k(A; 13; C ) = H [U S]k( A )] +  H[US]k(B)} +  H[US]k(C)} +  H[Us.k{A, B , C)} (5.3)

-  ( H[Us,k(A ,B ) ]  +  H[U, ,k( A , C )] +  H[Us,k ( B , C ) } )  .
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are computed for r  =  1 , 2 , . . . ,  20 0  by (for brevity we have omitted the subscripts o f  U ^ . k):

+  -H[U^(A,B) ]  (5.4)

fr ,̂k(A’B; c ) =^[C/<6)(-4)] +  H{U{b)(B)\ +  H[U^(C)] + H[U(b\ A , B, C)] (5.5)

-  ^H[U^(A,B)} + H[U<-b\ A , C ) ] + H [ U (b\ B , C ) ] \ .



Chapter 6

Results

In this chapter, the 1-point histogram  distributions (Sec. 6.1), 2-point dependency (Sec. 6.2) and 

3-point dependency (Sec. 6.4) o f gradient directions, gradient m agnitudes (2-point and 3-point 

only) and gradient directions where the gradient magnitude is high (strong gradient directions) 

for ensembles o f the four image classes: natural, phase random ized natural, whitened natural 

and Gaussian noise are presented. Also, 2-point gradient direction dependencies for individual 

natural images are presented (Sec.6.3).

In this chapter, the gradients have been measured using first order derivative Gaussian 

kernels at a scale of o  =  4 in all cases. Results at different scales are not shown because it is 

found that gradient direction dependencies do not change at different scales for the four image 

classes: natural, phase randomized natural, whitened natural, and Gaussian noise, examined in 

this chapter.

6.1 1-point Statistics

Figure 6.1 shows the histogram o f gradient directions obtained from natural images, phase 

randomized natural images, whitened natural images and Gaussian noise images.

Figure 6.1 shows that natural images have a slight excess of vertically (peaks at | )  and 

horizontally (peaks at — <—) oriented gradients, which is consistent with the statistics o f ori

ented contours [5, 6 , 7]. The fact that for natural images there are more vertically up oriented 

gradient directions than down is not surprising given that natural images in the van Hateren 

set contain sky (lighter) and ground (darker); sunlight and skylight in the natural environm ent 

come from above. This is supported by the illustration in Figure 6.2 o f the average lum inance 

image o f 100 natural images from the van Hateren set.

It is less well-known that phase randomized natural images have a prevalence o f  vertically
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whitened
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Figure 6 .1: Histograms o f gradient directions for the four different image classes. Along the 
horizontal axis tick marks <—, —► indicate horizontally oriented gradients and tick marks at 
t and I indicate vertically upward and downward oriented gradients. Natural images show a 
prevalence o f horizontally and vertically oriented gradients (top left); phase randomized images 
show a prevalence o f horizontally oriented gradients only (top right); whitened natural images 
(bottom right) and Gaussian noise images (bottom right) have no orientation preference for 
gradients.

Figure 6.2: Illustrates the average o f 100 van Hateren natural images. It shows a light (due to 
sky) region in the upper part o f the image and a darker (due to ground) region in the lower part.
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oriented gradients. Investigations reveal that such a prevalence is again due to the m ajority o f 

the natural images (from which the phase randomized versions are computed) in the ensemble 

containing two high contrasting regions in the image, one in the upper half (usually sky) and 

one in the lower half (usually ground).

In Figures 6.3(a) and 6.3(b), an individual natural im age is shown (Fig. 6.3(a) top left) 

with its phase randomized version that has an excess o f horizontal gradients (Fig. 6.3(b) left). It 

is also obvious what contents in the natural image, shown in Figure 6.3(a) left, gives rise to the 

excess o f horizontal gradients. Therefore, Figure 6.3 suggests that not every phase randomized 

natural image has an excess o f vertical gradients.

The phase randomized im age (Fig. 6.3(a) bottom  right) obtained from  the natural image 

in Figure 6.3(a) top right, was deliberately chosen to illustrate contrasting statistics from  F ig

ure 6.3(a) bottom left. Figure 6.3(a) bottom right contains an excess o f vertical gradients as 

shown by its histogram of gradient directions (Fig. 6.3(b) bottom  right). In this instance, it is 

less obvious what is causing the excess o f vertical gradients. On closer inspection, Figure 6.4 

left, which is a region taken from the natural image in Figure 6.3(a) top right, shows how vertical 

gradients arise from the effect o f sunlight— from above— illum inating the leaves o f the bush; 

the gradient directions are encoded as a grey-scale value with white and black representing 

vertical gradient directions in Figure 6.4 right.

It might be argued that the excess o f vertical gradients for an ensemble o f phase ran

domized natural images are artifacts resulting from perform ing a Fourier transform and inverse 

Fourier transform, which are both periodic, on images with discontinuities at the top, bottom, 

left and right sides (i.e. image borders). The boundary effects are caused by artifact edges 

created by neighbouring pixels on opposite borders o f an image.

The difficulty with image border effects is that there does not exist a perfect solution to the 

problem, although a number o f different m ethods have been adopted in order to deal with them. 

For example, padding around all four borders o f the original image with i) zeros, ii) repeated 

tiling of the original image, and iii) m irror images o f the original. Alternatively, a windowing 

function can be applied to the image which will soften the strength o f any edges created at the 

image borders.

Nevertheless, in Figures 6.3(a) bottom and 6.3(b) bottom, examples o f phase random ized 

natural images are illustrated that exhibit either an excess o f vertical gradients o r an excess o f
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Figure 6.3: In (a) left column shows natural image (top) and its phase randomized image (bot
tom). Illustrated in (b) are the gradient direction histograms (gradient direction indicated by 
arrow) o f the images shown above in (a) arranged in the same order. In the left column o f (b) 
an excess o f horizontal gradients are found; in the right column an excess o f vertical gradients.
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Figure 6.4: Left: illustrates a region from Fig. 6.3(a) top right. Right: illustrates the effect o f 
the sun illuminating the leaves o f the bush by encoding the gradient direction on a grey-scale: 
white and black regions indicate vertical gradients, grey regions indicate non-vertical gradients.

horizontal gradients which have been highlighted previously as being due to image structure in 

the original natural image, and thus less likely to be artifacts o f the phase randomizing process.

The histogram distribution of gradient directions in whitened natural images shows a slight 

prevalence of vertically and horizontally oriented gradients. This is markedly flatter than the 

histogram peaks for natural images, which is surprising given that whitened natural images 

appear to preserve some features o f natural images. However, whitened natural images only 

appear to preserve those features that occur at high contrasting regions in the natural image. But, 

in whitened natural images, the intensity profile across, for example edges, would be sloped 

rather than being close to a step function. Therefore, observing weaker peaks in the 1-point 

gradient direction histograms for whitened images compared to natural images are likely. For 

Gaussian noise images, as expected, there is no gradient orientation preference (flat distribution) 

in its histogram o f gradient directions.

If we observe the distribution o f gradient directions where the gradient magnitude is high 

(Fig. 6.5) the histogram profiles change for all the image classes except Gaussian noise images. 

Natural images show a greater prevalence o f horizontally oriented gradient directions but no 

greater prevalence o f vertically oriented gradient directions (Fig. 6.5 top left). The increase 

in horizontal gradients implies the existence o f long upright objects in natural images which 

contrast sharply with that o f the background. This may be a consequence o f the fact that natural 

objects, e.g. trees, grow vertically toward the sun.

Phase randomized natural images show increases in the prevalence o f both vertically and 

horizontally oriented gradients (Fig. 6.5 top right) but the increase is most pronounced for verti

cal. For whitened natural images there is a subtle increase in both the prevalence o f horizontally 

and vertically oriented gradient directions (Fig. 6.5 bottom left). For reasons stated earlier, it is
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expected that whitened images converge towards natural images for gradient directions where 

the gradient magnitude is high as certain features are still visible in whitened natural images.

For Gaussian noise images, no noticeable change occurs in its gradient direction histogram 

(Fig. 6.5 bottom right); it remains flat. The change in the 1-point histogram distributions of 

gradient directions where the gradient magnitude is high and when there is no threshold set is 

different for all four image classes. This suggests that all four image classes behave differently 

when the gradient magnitude is high. This behaviour shall be observed for 2-point and 3-point 

dependencies between gradient directions, which are discussed next.

natural phase randomized

whitened Gaussian noise

Figure 6.5: Histograms of gradient directions (gradient direction indicated by arrow) where 
the gradient magnitude is high for the four image classes (natural, phase randomized natural, 
whitened natural and Gaussian noise images). For natural and phase randomized natural images 
the distribution has changed significantly from Fig. 6.1: there are more horizontally oriented 
gradient directions than vertically oriented ones for natural images, and more vertically oriented 
gradient directions for phase randomized natural images.

6.2 2-point Statistics

In this section the results of computations of 2-point dependencies of gradient directions and 

magnitudes, and gradient directions where the gradient magnitude is high (strong gradient di

rections) are presented. Figure 6.6  illustrates the amount of 2-point dependency between certain 

gradient measurements (magnitude or direction). Along the horizontal axes is the logarithm of 

the separation between measurements as a multiple k of the first order derivative Gaussian ker

nel scale cr =  4 used. The vertical axes is the mutual information shared between the two
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gradient measurements in natural units (nats) rather than bits. The error bars are the 95% con

fidence limits estimated using the bootstrap procedure described in Sections 4.3 and 5.6.

6.2.1 Gradient Direction Dependencies

The top chart in Figure 6 .6  shows results for gradient direction dependencies. W hat is clear 

is that all image classes show a decrease in mutual inform ation I  with increasing separation k 

between points. This is to be expected; the information shared between points should decrease 

as the points move further ap a rt The most significant observation is that natural and phase 

randomized natural images share the same amount o f 2 -point gradient direction dependency for 

a given separation, as do whitened natural and Gaussian noise images. Given that natural and 

phase randomized natural images share the same mean power spectrum but not phase spectrum, 

and whitened natural images and Gaussian noise images both have flat mean pow er spectra but 

different phase spectra, it suggests that the mean power spectrum o f the ensem ble o f images 

is more significant than the phase spectrum for determ ining the amount of 2 -point gradient 

direction dependency.

The agreement in results between natural images and phase randomized im ages (and be

tween whitened natural images and Gaussian noise images) is to a higher level o f  accuracy than 

the error bars which show the 95% confidence limits for the mutual inform ation scores. It is 

noticeable that the error bars for natural images and phase randomized natural im ages are larger 

than either whitened natural images and Gaussian noise images, which are both small. The 

larger error bars are most likely due to the increased variability in images within that particular 

image class over another, e.g. natural images com pared to Gaussian noise images. It should 

also be noted that the mutual information, at a given separation, is higher for natural and phase 

randomized natural images than it is for whitened natural and Gaussian noise images.

6.2.2 Gradient Magnitude Dependencies

For gradient magnitudes, as found for gradient directions, the mutual information for all image 

classes decreases with the spatial separation between measurements, as shown in the middle 

chart o f Figure 6 .6 . However, now all four image classes are distinct although overall the 

dependency between gradient magnitudes is less than it is for gradient directions for a given 

separation k. For the distance between measurements where k <  1, natural im ages have the 

greatest amount o f 2 -point mutual information followed by phase randomized natural im ages,
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Figure 6.6: Illustrates results o f 2-point statistics. Vertical axis: mutual information I  (A; B ) 
(nats); horizontal axis: distance (logarithmic scale) between measurements in multiples k o f 
<7 =  4. Key: natural image (red solid line), phase randomized (green dotted), whitened (blue 
dash-dot), Gaussian noise (yellow dashes). From top to bottom, 2-point mutual inform ation o f 
gradient directions (note that dotted curve is hidden behind solid curve, similarly dash-dot curve 
hidden behind dashes curve), gradient magnitudes, and gradient directions where the gradient 
magnitude is high (strong gradient directions).
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whitened natural images, and Gaussian noise images. However, for k >  1, although natural 

images and Gaussian noise images have respectively the most and least am ounts o f  dependency, 

whitened natural images show more dependency than phase randomized natural im ages, which 

is in contrast to their curves for k <  1 and the results in Section 6.2.1.

It is noticeable that the error bars for the gradient magnitude dependencies o f natural im 

ages are larger than those found for its gradient direction dependencies. This may be a conse

quence o f the histogram distributions o f gradient magnitudes shown in Figure 5.7. For natural 

images, the histogram is skewed markedly in comparison to a Normal distribution. The greater 

error bars indicate there is more variability in the jo in t histogram s o f gradient m agnitudes from 

image to image in the natural image class, than for its gradient directions.

In light o f the results o f the 2-point gradient magnitude dependencies, it seems sensible 

to consider the effect o f the gradient magnitude on gradient direction dependencies. This is 

discussed next.

6.23 Strong Gradient Direction Dependencies

In order to distinguish the gradient direction dependencies o f all four image classes only gradi

ent directions where the gradient magnitude is high are considered. Figure 6 .6  bottom, shows 

that all image classes are distinct when only gradient directions are measured where the gradient 

magnitude is in the top quartile. It also shows that, for all image classes, the dependencies are 

greater between gradient directions where the gradient m agnitude is high com pared to either 

gradient directions (Fig. 6 .6  top, where no threshold is set according to the gradient m agnitude) 

and gradient magnitudes (Fig. 6 .6  middle). Gradient directions where the gradient magnitude 

is high are also significant because the locations of edges in an image occur where the gradient 

magnitude is high.

Previous research by other authors has focused on the co-occurrence statistics o f edges 

which only occur at maxima in the gradient field. The studies have discovered several reg

ularities between pairs of edges in natural images. For example, it has been shown that the 

dependency between edges is greatest when the second edge is along the initial edge direction 

in natural images compared to its (synthetic) phase randomized versions [8 ]. A nother study 

has found that the most likely contour joining two edge segments that are not iso-oriented is a 

circular arc and if iso-oriented a line [9]; this result was extended to include that natural scenes 

are likely to have many closed smooth contours [10]. These previous results suggest that in
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natural images the dependency between pairs o f edges depends on their relative orientations. 

However, the results presented here are more general because they are not specific to edges 

alone. For example, although gradient direction dependencies in natural images increase where 

the gradient magnitude is high, there is also a greater increase in the dependencies found for 

phase randomized images. This suggests that it is not only edges which are contributing to the 

increased dependency between gradient directions.

Furthermore, the shape o f the curves in Figure 6 .6  bottom  are different to Figure 6 .6  top 

and middle. For all image classes, the dependency does not fall as sharply for k <  1. Moreover, 

for whitened natural images and Gaussian noise images, the dependency increases for 1.5 <  

k <  2.5. This is likely down to bands in the gradient directions. For example, Figures 6.7(a) 

and 6.7(b), show orientation maps o f one whitened natural image and Gaussian noise image, 

where the gradient direction is colour coded. The banding is most visible in the whitened image.

In order to visualise that a separation of k =  2.5 is sim ilar to the w idth o f the banding 

see Figures 6 .8 (a) and 6 .8 (b) which show black circles o f diam eter equal to a separation o f 

k — 2.5. In fact, the effect of this banding also appears in the dependency between the gradient 

directions in Figure 6 .6 . For 1.5 <  k <  2.5 there is a very subtle levelling off in the curves for 

both whitened natural images and Gaussian noise images. This suggests that gradient directions 

where the gradient magnitude is high emphasises the banding effect for 1.5 <  k <  2.5, resulting 

in an increase in the dependency between gradient directions.

6.3 Gradient Direction Dependencies of Individual Natural Images

So far, the results presented have been mainly for ensembles o f images. In this section, gradi

ent direction dependencies of individual natural images are compared with that o f their phase 

randomized versions (same power spectra as original natural image but with random  phases). 

Two examples o f an individual natural image and its phase randomized version are shown in 

Figure 6.9(a).

From the two natural images in Figure 6.9(a) the sampling o f gradient directions— as de

scribed in Section 5.3 but with 100,000 gradient directions per image rather than 10,000— was 

repeated ten times for different separations k. The 2-point and 3-point gradient direction depen

dencies are then calculated for each sample, at each k, for each image. For phase random ized
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(b)

Figure 6.7: For both whitened image in (a) and Gaussian noise image in (b), the gradient 
direction has been encoded as a colour (see key top right). Bottom left o f (a) and (b): the 
image top left has been converted to a colour map of gradient directions. Bottom  right o f (a) 
and (b): same as bottom left, but with only the gradient directions where the gradient magnitude 
is high.
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Figure 6 .8 : Figures (a) and (b) are the bottom right illustrations in Figures 6.7(a) and 6.7(b) but 
with black circles of diameter equal to k =  2.5 superimposed.

images, the same is done, but each time a new random phase distribution is generated. F ig

ure 6.9(b) shows, at each k , the mean information score o f the ten samples together with the 

95% confidence limits estimated from the standard error in the mean.

The results show that there are differences, which are significant but small, in the am ount

of dependencies o f gradient directions between an individual image and the equivalent natural 

image with randomized phases. Further, it is not simply the case that the difference is either al

ways smaller or always larger between individual natural images and phase random ized natural 

images; the two example images illustrated in Figure 6.9(b) were chosen to dem onstrate that 

both possibilities do occur. Therefore, the relationship found between the amount o f gradient 

direction dependencies and the power spectrum for an ensemble of natural im ages and their 

phase randomized versions cannot be extended to individual images.

6.4 3-point Statistics

In this section the results o f computing 3-point dependencies o f gradient magnitudes and gra

dient directions are presented. The focus in this section is on the triplewise interaction o f 

three gradient measurements A - B - C .  Recall that the interaction information o f three gradients 

I  (A; B\ C)  describes how the mutual information between A  and B  reduces in the context o f C.  

I  (A; 23; C ) describes information common to A , B,  and C  but which is not present in any sub

set, e.g. A - B , B -C , A -C .  In terms o f probability theory, even if  p ( A , £ ,  C )  — p (A ,  B ) p ( C ) ,  

this will result in no contribution to I(A \  B\  C ) because only A  and B  are dependent but A, B,  

and C  together are independent.
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Figure 6.9: In (a), left column shows natural images and right column their respective phase 
randomized image. In (b) results from natural image (red solid) and phase randomized (green 
dotted); the error bars on each curve indicate the 95% confidence limits. The upper pair of 
curves in (b) represent 2-point gradient direction mutual information score 7(^4; B),  and the 
lower pair the 3-point I  (A; B\  C) .  The top graph show results from the top images in (a), and 
the bottom graph from bottom images.
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Recall that positive values o f 3-point interaction inform ation I ( A \ B \ C ) indicate redun

dancy. If  I  (A; B\  C)  >  0 then I  (A; B )  (mutual inform ation between A  and B),  w hich de

scribes how the uncertainty in A  reduces when inform ed by B , m ust also be positive. Further

more, if I  (A; B\  C)  >  0, then / (A ;  B \C ) ,  which is the conditional mutual inform ation that 

describes how the uncertainty reduces between A  and B  in the context o f C,  m ust be less than 

I ( A ' B ) .  If I ( X ; Y ; Z ) =  0, then I ( X ; Y \ Z ) =  I { X \ Y ) ,  this means no triplewise depen

dencies exist. Moreover, I  (A; B\  C ) is not necessarily nonnegative. This suggests that there is 

a further reduction in the uncertainty between A  and B  in the context o f C.  If I  (A] B\  C )  is 

negative then this is said to indicate a synergetic dependency between A , B,  and C.

Figure 6.10 illustrates the am ount o f 3-point dependency between triples o f gradient m ea

surements (magnitude or direction). A long the horizontal axes is the logarithm  o f the separation 

between measurements as a multiple k o f the first order derivative Gaussian kernel scale <j  — 4 

used. The vertical axes is the interaction inform ation between the three gradient m easurem ents 

in natural units (nats) rather than bits. The error bars are the 95% confidence limits estim ated 

using the bootstrap procedure described in Sections 4.3 and 5.6.

6.4.1 Gradient Direction Dependencies

The top left graph in Figure 6.10 illustrates gradient direction dependencies. The first ob

servation is that all image classes display both redundant (I (A;  B; C)  >  0) and synergetic 

(I ( A ; B; C )  <  0) triplewise interactions for different values o f k , which is the separation be

tween gradient measurements (see Fig. 5.10 for an illustration o f different values o f k). Second, 

the relationship between the amount o f interaction / (A ;  B; C )  and the distance between points 

k is almost identical for natural and phase random ized natural images, which is the same as 

the 2-point results. For points separated by k <  2, alm ost all the interaction is redundant. The 

redundancy reduces in magnitude monotonically from k =  0.25 to k =  2. Crossover from  pos

itive to negative values occurs between 1.5 <  k <  2, and we find less than 0.1 nats o f synergy 

for separations between 1.5 <  k <  4.

W hitened natural and Gaussian noise images share an almost identical relationship be

tween the amount o f dependency betw een gradient directions and the distance betw een points. 

For points separated by k <  1, almost all the interaction is redundant. The redundancy reduces 

in magnitude monotonically from k =  0.25 to k =  1. Crossover from positive to negative val

ues occurs between 1 <  k <  1.5 and less than 0.1 nats o f synergy are found for 1 <  k <  2.5.
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Figure 6.10: Illustrates results o f 3-point statistics for gradient direction (top), gradient mag
nitude (middle), and gradient directions where the gradient magnitude is high (bottom) in dif
ferent image classes. Vertical axis: interaction information I(A; B; C ) (nats), Horizontal axis: 
distance (logarithmic scale) between measurements in multiples k o f cr. Key: natural image 
(solid line), phase randomized (dotted), whitened (dash-dot), Gaussian noise (dashes), note that 
dotted curve is hidden behind solid curve, similarly dash-dot curve hidden behind dashes curve. 
If I(A\  B\ C )  <  0 (>  0) there is said to be synergy (redundancy).
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In summary, the natural image class shows redundancy (positive values o f inform ation in 

Fig. 6.10) for separations k <  1.5 between gradient directions (and all separations for gradient 

magnitudes). This indicates that for k <  1.5 the influence o f knowing a third gradient direction 

C,  results in a reduction in the mutual information shared between the first two gradient direc

tions A  and B.  In other words, the dependence between A  and B  has decreased with knowledge 

o f C.

In contrast, synergy describes the amount o f dependence between A  and B  that has in

creased with knowledge o f C.  For all image classes the am ount o f synergy found is small 

compared to the amount o f redundancy. Further, the am ount o f synergetic dependency found 

between triples o f gradient directions in the ensemble o f natural images is not unique given that 

the ensemble o f Gaussian noise images also displays a sim ilar am ount o f synergy. However, 

the region in which synergy does occur is at a  greater separation k betw een m easurem ents for 

the ensemble o f natural images and phase randomized natural images (1.5 <  k <  4) than it is 

for either whitened natural images or Gaussian noise images (1 <  k <  2.5).

Lastly, as in the case o f the 2-point results, natural and phase random ized natural images 

share the same amount of dependency as do whitened natural im ages and Gaussian noise im 

ages. This suggest that the mean power spectrum of the ensem ble o f images is m ore significant 

than the phase spectrum in determining the 3-point gradient direction dependencies o f images.

6.4.2 Gradient Magnitude Dependencies

Notably, the dependencies o f  gradient magnitudes show no synergy for any image class, i.e. 

where I ( A ; B ; C )  <  0. The results suggest that gradient m agnitude dependencies are either 

redundant I ( A ; B ; C )  >  0 or there are no interactions com m on to all three gradient m agnitude 

measurements, i.e. I ( A ; B ; C )  =  0. W hen I  (A; B; C)  >  0, the redundant inform ation de

creases monotonically with greater separation between points (Fig. 6.10 middle) for all image 

classes.

Furthermore, as in the case o f 2-point dependencies, all image classes are distinct for gradi

ent magnitude dependencies. For k <  1, natural images have the greatest amount o f redundant 

3-point interaction information followed by phase randomized natural images, whitened natu

ral images and Gaussian noise images. For k >  1, natural images show the m ost redundant 

interaction information but this is now followed by whitened natural images, phase random ized 

natural images and lastly Gaussian noise images. This ordering follows results found for the
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computation of 2-point dependencies in Section 6.2.2.

6.4.3 Strong Gradient Direction Dependencies

Again it is possible to distinguish the gradient direction dependencies o f all four im age classes 

by only computing the dependencies between gradient directions where the gradient magnitude 

is in the top quartile. This results in a significant change in the way the amount o f redundancy 

between gradient directions falls with separation k. For gradient directions where the gradient 

magnitude is high, the amount o f redundant interaction inform ation is higher for a given k and 

the point at which the curves for all four image classes reaches zero is for greater k com pared 

to the dependency o f gradient directions where no threshold is set according to  the gradient 

magnitude.

Significantly, for natural im ages, the region in which synergy occurs is 2 <  k  <  4. This is 

within the same region as found for gradient directions (Fig. 6.10 top) 1.5 <  k  <  4. However, 

for phase randomized natural images, the region o f synergy is now 2.5 <  k <  5, w hich is a 

shift to greater separations com pared to previous results.

6.5 Discussion of Main Results: 1-, 2-, 3-point Statistics

The 1-point results consist o f histograms of gradient directions found in the four im age classes: 

natural, phase randomized natural, whitened natural and Gaussian noise. It has been found that 

natural images contain a prevalence o f vertical and horizontal gradients, and furthermore, there 

are more upward vertical gradients than downward. It has been argued that this bias is due 

to natural images being composed o f sky (lighter) and ground (darker) regions. This contrast 

between the upper and lower regions results in vertical upward gradients. For phase randomized 

natural images, there is a prevalence o f vertical gradients which has also been attributed to 

the sky and ground regions and that lighting in natural scenes, on average, is from  above due 

to sunlight and skylight. W hitened natural images have a weaker prevalence o f vertical and 

horizontal gradients compared to natural images. Gaussian noise images, as expected, have a 

flat distribution of gradient directions.

If only gradient directions where the gradient magnitude is high are examined, then the 

histogram for natural images changes to having more horizontal gradients than vertical. Phase 

randomized natural images have an even greater prevalence o f vertical gradients and an in

crease in horizontal gradients. W hitened natural images show a slight increase in horizontal
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and vertical gradients, and Gaussian noise images remain flat.

The 2-point and 3-point results show that the amount o f gradient direction dependency and 

its variation with separation between points k for an ensemble o f natural images is the same as 

for an ensemble o f phase randomized natural images. It is also found that whitened natural 

images (created from a flat power spectra, and phase spectra from natural images) have the 

same amount o f 2-point and 3-point gradient direction dependency as Gaussian noise images 

although both have less dependency than is found for natural images. These results suggest 

that for an ensemble of natural images the average dependencies between 2-point and 3-point 

gradient directions are dependent upon the ensem ble’s m ean power spectrum rather than the 

phase spectra o f natural images.

If  instead either the dependencies o f i) gradient directions where the gradient m agnitude 

is high, or ii) gradient magnitudes are computed, then all four im age ensembles (natural, phase 

randomized natural, whitened natural and Gaussian noise images) have distinct results. This 

observation suggests that there are, at least, some differences between the gradient direction 

dependencies in natural images and phase randomized images because the contributions from 

gradient directions where the gradient magnitude is high are different. Thus, it can be said that 

the relationship found between the amount o f gradient direction dependencies and the mean 

power spectrum of an ensemble o f natural images cannot be extended to the dependencies 

between gradient directions where the gradient magnitude is high, or between gradient m agni

tudes. It has also been shown that the amount o f gradient direction dependency for an individual 

natural image is different to its phase randomized natural image. Therefore the result does not 

generalise to individual natural images but remains a property o f only an ensemble o f natural 

images.

In summary, the main results presented suggest that for an ensemble o f natural images the 

amount of dependency between 2-point and 3-point gradient directions is determ ined by the 

ensemble’s mean power spectrum. This result is not trivial, i.e. it is not a more general property 

of first-order derivative measurements, given that the 2-point and 3-point gradient m agnitude 

dependencies from an ensemble o f natural images is distinguishable from its phase random ized 

ensemble as are dependencies between gradient directions where the gradient m agnitude is 

high. Furthermore, the relationship does not hold between individual natural im ages and phase 

randomized natural images.
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The main results also imply that the phase spectrum o f an ensemble of natural images, on 

average, does not contribute to the amount o f gradient direction dependency anymore than if 

the natural images contained random phases. This is surprising because the phase information 

o f natural images has been shown to contribute to localised features such as lines and edges in 

natural images (Sec. 3.5.2).

Alterations to the phase information degrades a natural image giving an ‘unnatural’ ap

pearance. Therefore, it was expected that the amount o f gradient direction dependencies o f an 

ensemble of phase randomized images would at least be different to natural images. However, 

in Section 3.3.4, it was described how the power spectrum can, for certain images which are rich 

in textures and shading or with strong geometric forms, contribute significantly to the appear

ance o f an image. Therefore, given that gradient direction dependencies have been examined 

rather than the orientation o f edges, it is not necessary for an ensemble o f images to retain 

line and edge structure in order to keep, on average, the same amounts o f gradient direction 

dependency.

An example o f a natural image with a distinct shading pattern and its phase randomized 

counterpart is presented in Figure 6.11. The phase randomized natural image (Fig. 6.11 right) 

looks like the shading pattern o f Figure 6.11 left.

Figure 6.11: Left: natural image with an interesting shading pattern. Right: phase randomized 
version of natural image (left) showing that the shading pattern is retained but the localisation 
o f any lines and edges is lost.

Next, in Chapter 7, further experiments are presented which aim to explore in more detail 

the results found in this chapter. The additional experiments conducted include examining the 

gradient direction dependencies of images with varying power law power spectra and random 

phases, and images generated from the dead leaves model.

Furthermore, the 2-point gradient direction dependencies are reported with respect to not
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only distance but the relative angle between gradient directions. Gradient direction dependen

cies are also computed for an in-a-line spatial configuration of points rather than a triangular 

configuration. Finally, an explanation for the presence of synergetic dependencies between 

3-point gradient directions is presented.



Chapter 7

Further Experiments

In order to clarify and generalise the main results presented in Chapter 6, additional experim ents 

are presented here.

In Section 7.1.1, investigations are carried out to see whether there exists a lawful depen

dence between the decay rate o f the gradient direction dependencies and a  the decay constant 

of the ensemble power spectrum which is o f the form  1 / / Q. In Section 7.1.2, it is dem onstrated 

that an ensemble o f images generated from the dead leaves m odel has the same am ount o f gra

dient direction dependencies as an ensemble o f natural images. In Section 7.1.3, an example 

of an image class (constant-sized disks) which has different gradient direction dependencies 

compared to its phase randomized version is presented. This image class is a modified version 

of the dead leaves model which has scale-variant gradient direction dependencies.

In Section 7.2 not only is the separation between two gradient directions considered but 

also the effect of the relative angle between the gradient directions.

In Sections 7.3.1 and 7.3.3, the synergetic gradient direction dependencies are explored in 

more detail. For instance, the effects of choosing a triangular spatial configuration o f gradient 

measurements is considered by comparing results computed from a line spatial configuration of 

measurements. Further, the hypothesis that synergetic gradient direction dependencies arise in 

images because the curl of any scalar field has zero curl is also investigated.

7.1 Analysis of Other Synthetic Images

In the following section the results from the analysis o f other classes o f synthetic im ages are 

presented together with the methodology to  generate each image class.
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7.1.1 Varying Power Spectral Slope Images

In the main results (Sections 6.2, and 6.4) it was observed that ensembles o f natural images 

and phase randomized natural images contain the same amount o f 2-point and 3-point gradient 

direction dependencies. Thus, it seems appropriate, because both those image classes have an 

approximate 1 /  f  2 mean ensemble power spectra, to study other classes o f images w ith varying 

power spectral slopes of the form S ( f )  oc 1 / / Q. The significance of images with this power 

law power spectra was discussed in Section 3.3.1.

Images were generated with varying power law dependency between the spatial frequency 

/ ,  and their power spectra S ( f ) .  In the spatial frequency domain, the phases are set to  random  

values on the interval [—7r, 7r] whilst respecting conjugate symmetry, and the power spectra are 

set to follow a power law of the form: S ( f ) a  l / / a where

a  «  3 ,2 ,1 .5 ,1 ,0 , —1, —2, —3

and then the images are inverse Fourier transformed to the spatial domain. Recall that natural 

images have a  «  2 and Gaussian noise images have no spatial frequency dependency (flat) 

power spectra, a  «  0. Examples o f noise images with a  «  3 ,1 , —1, —3 are illustrated in 

Figure 7.1. For greater values o f a  the image appears ‘sm oother’; this is to be expected because 

less high frequency energy is present.

The amount o f 2-point and 3-point dependency between gradient directions in varying 

power law power spectra images are shown in Figures 7.2 and 7.3 respectively. It shows that 

for all classes o f image, an increase in separation between the gradient direction measurements 

results in a decrease in the amount o f dependency between the gradient directions.

Figures 7.2 and 7.3 also show that a positive increase in a  (S ( f ) oc f a ) decreases the

2-point I ( X \ Y )  and 3-point I ( X , Y, Z)  mutual information between gradient directions.

For small separations k between the locations where gradient directions are extracted, we 

can quantify the relationship between a  and the decay rate o f gradient direction dependencies. 

The curves in Figure 7.2 produce straight lines when plotted with the vertical and horizontal 

axes scaled to natural logarithm and linear scales respectively, as shown in Figures 7.4 and 7.5.

Figures 7.4 and 7.5 show that for small separations k between gradient directions both 

the total 2-point and 3-point gradient direction dependencies decay exponentially w ith greater
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Figure 7.1: Illustrates examples o f images with different power law scaling of their power spec
tra with respect to spatial frequency. All images are blurred by convolution with a zeroth-order 
Gaussian of scale cr =  4. All images have random phase spectra but different power spectra. 
Top row shows images that have power spectra with l / / 3 and 1 / /  dependence respectively; 
bottom row shows images that have power spectra with /  and / 3 dependence respectively.
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Figure 7.2: Illustrates total 2-point gradient direction dependencies I (A ; B ) o f images with 
varying power law power spectra and random phases. Vertical axis: mutual information I(nats); 
horizontal axis: distance (logarithmic scale) between measurements in multiples k of o.  Each 
curve represents the amount o f 2-point dependency I (A\  B)  between gradient directions o f 
noise images with varying power law power spectra S ( f ) oc / Q. From the top to bottom curve 
a  «  —3 ,—2 ,—1 .5 ,—1 ,0 ,1 ,2 ,3 .
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Figure 7.3: Illustrates total 3-point gradient direction dependencies I (A,  B , C)  of images with 
varying power law power spectra and random phases. Vertical axis describes the amount of 
3-point gradient direction dependencies. Horizontal axis: distance (logarithmic scale) between 
measurements in multiples A: of o.  Each curve represents the amount of 2-point dependency 
I(A; B , C)  between gradient directions of noise images with varying power law power spectra 
S ( f )  oc / Q- Front the top to bottom curve a  «  —3, —2, —1 .5 ,—1 ,0 ,1 ,2 ,3 .
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Figure 7.4: Illustrates the total 2-point gradient direction dependencies I  (A; B ) o f curves in 
Fig. 7.2 on a natural logarithm versus linear axes.
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Figure 7.5: Illustrates the total 3-point gradient direction dependencies I ( A , B , C ) o f curves in 
Fig. 7.3 on a natural logarithm versus linear axes.
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distance between measurements. Thus, for k <  1, we have:

130

I ( X ; Y )  ocexp~Alfc (7.1)

I ( X , Y , Z )  o c e x p -A2fc (7.2)

and approximately, we find that Ai and A2 satisfy:

Ai = 2  +  0 .3 a  (7.3)

A2 = 1 .5  + 0 .2 a . (7.4)

In summary, Figure 7.6 illustrates that, for ensembles o f random phase spectra images 

where the mean power spectra is o f the form (S ( f ) oc / Q), a lawful relationship exists between 

the total 2-point and 3-point dependencies o f gradient directions and a .

7.1.2 Dead Leaves Model Images

The dead leaves model was first introduced by M atheron [176] and Serra [177] but was not 

applied to natural images until Ruderman [103] and Alvarez et al. [178]. The model assumes 

that the world can be approximated by a collection o f independent discrete objects o f different 

sizes but constant luminosity (across each object) which occlude one another. In this study 

we follow a similar procedure to that described by Lee, M um ford and Huang [179] to produce 

images which model the scale-invariant property o f an ensemble o f natural images and therefore 

its l / / 2 ensemble mean power spectrum.

Specifically, a 1 / r 3 distribution of disk sizes is used with 1 /8  <  r <  2048. The lum inance 

value o f each disk is drawn randomly from a histogram o f luminance values taken from an 

ensemble of natural images (the same ensemble o f natural images taken from the van Hateren 

database is used). The disks are progressively placed on to a plane o f dimensions 4096 by 4096 

until the whole area is covered. The images are then cropped to match the dim ensions o f the 

ensemble o f natural images which are 1024 by 1536. An example o f an image generated from 

the dead leaves model is shown in Figure 7.7. Figure 7.8 shows that the am ount o f  2-point 

gradient direction dependency for the ensemble o f natural images is approxim ately the same as 

the dead leaves model images. This result supports the hypothesis that the am ount o f  gradient 

direction dependencies will be the same for two ensembles o f images which have approxim ately
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Log I(nats) 2-point gradient directions

(a)

Log I(nat8) Total 3-point gradient directions

(b)

(c)

Figure 7.6: Illustrates the relationship between a  (exponent of the power law scaling of the 
power spectrum) and Ai, A2 the decaying exponents in Eqns. 7.1 and 7.2. Dashed curves in (a) 
and (b), from top to bottom, represent the curves in Figures 7.4 and 7.5 for images with power 
spectra (S( f )  oc f a ) a  »  - 3 ,  - 2 ,  -1 .5 , —1 ,0 ,1 ,2 ,3 , see (c) for colour key. Dotted curves 
next to each dashed curve are plots of Eqns. 7.1 and 7.2 with values given by given by Eqns. 7.3 
and 7.4.
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Figure 7.7: An example of an image generated by the dead leaves model, 

the same l / / 2 ensemble mean power spectra.

I(nats) 2-point gradient directions
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Figure 7.8: Shows 2-point dependencies between gradient directions for natural images (solid 
line) and dead leaves model images (dotted line which lies just underneath solid line).

7.1.3 Constant-Sized Disk Images

The dead leaves model, described in the previous section (Section 7.1.2), is now modified by 

using disks with constant sizes of radius r  =  40, illustrated in Figure 7.9, rather than a 1 / r 3 

distribution. Random values are used for the luminance value of each disk. The mean power 

spectrum of an ensemble of these images does not follow a power law and is therefore not 

scale-invariant. Scale variance was confirmed by repeating our computations of gradient di

rection dependencies at twice the previous scale, 2o.  Recall that the image distance between
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measurements is also scaled by o,  therefore, for a given separation k between gradient direc

tions, the amount of gradient direction dependency should be constant if scale invariance is to 

be satisfied.

Figure 7.9: Left, an example of a constant-sized disk image; right, a phase randomized constant
sized disk image.

Figure 7.10 shows that an ensemble o f constant-sized disk images has more 2-point gra

dient direction dependency than an ensemble o f their phase randomized counterpart images.

2-point gradient direction 
interactions of constant sized disk images

1 . 2 5

0 . 7 5

0 . 2 5

Figure 7.10: Illustrates comparison o f 2-point gradient directions interactions for constant
sized disk images (solid), their phase randomized counterparts (dotted), and constant-sized disk 
images at twice the scale (dash-dot).

If we examine the gradient directions of Figure 7.11 as a colour encoded direction map, 

then the phase randomized version does appear less ordered than the original constant-sized 

disk image and therefore this result is not surprising.

Figure 7.10 also shows that the amount o f 2-point gradient direction dependencies change 

depending on the scale of measurement. The amount of gradient direction dependency at scale
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o  is different to that at scale 2o.  The pattern of these results is also repeated for the 3-point 

gradient direction dependencies (results not shown).

Figure 7.11: Illustrates the maps o f gradient directions encoded as a colour for images in Fig
ure 7.9. Left, are the gradient directions for the constant-sized disk image; right, the phase 
randomized constant-sized disk image.

7.1.4 Conclusion of Further Experiments on Synthetic Images

Ensembles of images with varying power law power spectra, show an approximate lawful re

lationship between the power law exponent o f the ensem ble’s mean power spectrum and the 

spatial decay rate in the dependency between nearby gradient directions. Furthermore, the av

erage amount of dependencies between two and three gradient directions o f an ensemble o f 

natural images is approximately the same as those found in an ensemble o f dead leaves model 

images. The dead leaves model images are constructed from  a collage of disks with a cubic 

power law decay of sizes and luminance values drawn from the ensemble of natural images in 

order to match the scale-invariant properties found in ensembles o f natural images.

In support of the above findings, it has also been demonstrated experimentally that an en

semble of constant-sized disk images, which are generated from an adapted dead leaves model 

that does not maintain scale invariance and a power-law form power spectrum, shows more 

gradient direction dependencies compared to its phase randomized version.

7.2 Information Contour Map of 2-point Statistics

Thus far, the dependencies between 2-point and 3-point gradient directions have been described 

as a function of distance between measurements only, however, it is also possible to com pute 

dependencies as a function of angle between measurements. For example, in the 2-point config

uration, it is possible to compute how much information is shared between a gradient direction 

at B  which is a certain distance and direction from an initial point A.  Thus, by random ly
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choosing a point A,  and selecting an angle, a  and considering a point a distance k o  away 

(again c  =  4 is used as the resolution param eter of the first order derivative Gaussian operator), 

to find B,  see Figure 7.12. Then define, the angle (3 to be the gradient direction at B,  relative to 

the gradient direction at A.

kcr

Figure 7.12: Illustrates an example o f data collection to determine how the dependencies be
tween two gradient directions changes depending on their relative orientation. In the diagram, 
a point A  is chosen and its gradient direction (depicted by solid black arrow at A) is computed. 
Observing in a direction a  and distance kcr point B  is located. Compute the the relative gradient 
direction (3 at B  (the absolute gradient direction is shown as a dotted black arrow at B) as the 
difference between the two gradient directions at A  and B.

7.2.1 Methodology: Information Contour Maps

In the data collection process, 10,000 pairs o f points are collected such as A  and B  (shown in 

Fig. 7.12) per image for 100 images whereby the initial location of the first point in each pair 

is chosen randomly. Again, the ensemble o f  natural images are taken from the van Hateren 

database [112] used earlier in the main results o f the thesis; the composition o f phase random 

ized natural images and Gaussian noise images is also as described in Section 5.1. For each 

image and set o f 10,000 points, a range o f integer values o f k are considered in steps o f 1 in 

the range [1,16]; and values o f a  in steps o f tt/ 8  in the range (—7r, 7t] . The gradient directions 

measured at each location (at B  it is the relative gradient direction com pared to the gradient 

direction at A)  and are recorded in bins o f width 7r/32 over the range (—7r, 7t]. Thus a 2-D 

probability distribution is obtained containing different separations between gradient direction 

measurements and different angles between the gradient directions: pk{(3\o).
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Figure 7.13 illustrates the spatial extent of a first order derivative Gaussian operator of 

a  =  4 at A  (yellow circle), and another operator, 10 cr away at B  (red circle), to give a sense 

o f the separation of operators, relative to their size at these larger distances compared to the 

previous results which only considered separations up to k =  5.

Figure 7.13: Illustrates the construction in Figure 7.12 (to find how 2-point gradient direction 
dependencies change with orientation) overlayed on a part o f a natural image. Circles represent 
the width of two Gaussian operators lOcr apart, red circle and yellow circle. The circle radii are
v/3a.

Inform ation-T heoretic  C alcu la tions

In order to calculate the distribution of p((3) where there is no knowledge o f which direction 

a  is chosen, and no knowledge of how far B  is from A, the method described previously is 

repeated with randomly chosen B  as well as A. Thus, using the histograms p k(/3\a) and p(/3), 

what information is gained from the gradient direction at B  given the location o f and gradient 

direction at A  can be calculated. Again information theory is used to calculate the entropies of 

Pk((3) and pk(/3\a) as shown in Equations 7.5 and 7.6.

(7.5)
0

H k((3\oi) =  ^ r - p k((3\a).\n \pk((3\a)] (7.6)
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Thus, to compute the information obtained from knowledge o f k and a,  the mutual inform ation 

is computed:

Ik( f c a )  =  H((3) -  H k((3\a). (7.7)

The results are expressed using 2-D contour plots that depict how the am ount o f infor

mation between a second gradient direction decreases with distance and angle from an initial 

gradient direction located at the centre o f each plot and pointing horizontally right, as shown in 

the bottom right plot of Figure 7.14. The information scores are actually fractions o f  the mutual 

information shared between the two gradient directions divided by H((3)\

W ;a) = . _ Hk(p\a)
H ( 0 )  H(P)  U -a>

Equation 7.8 represents the fraction o f shared information which is obtained from  knowl

edge o f an initial gradient direction and the distance and angle to the second gradient direction. 

For instance, if  no information is gained from knowledge o f  a,  then Equation 7.8 would eval

uate to zero. In essence both equations (Eqn. 7.7) describe the information gained about the

gradient direction o f B  from A,  given knowledge o f a  for specific separations k.

7.2.2 Results: Information Contour Maps

The results in Figure 7.14 show that for ensembles o f natural images there is m ore depen

dency at locations perpendicular to the gradient direction at A  than for parallel directions. The 

anisotropy can be quantified with the following rule: the same fractional amount o f information 

is retained almost twice as far perpendicular than parallel. For k  <  5 there is very little differ

ence in the contours between natural random phases and natural images. M oreover, it should 

be noted that the contours are determined from a logarithmic scale thereby emphasising small 

information changes especially for k >  5 where differences emerge between natural images 

and phase randomized natural images.

Gaussian noise images, as expected, show marked differences from natural or phase ran

domized natural images; dependency drops to 1/100 in all directions by k =  3. There is also a 

slight bias toward information being retained parallel to the initial gradient direction rather than 

perpendicular, which is in contrast to natural images.
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Figure 7.14: Information contour maps of gradient direction dependencies for three different 
image classes: natural (top left), phase randomized natural (top right), and Gaussian noise 
(bottom left). The centre o f each map is the position o f a gradient direction pointing horizontally 
to the right as depicted in bottom right map. Red contours are fractions o f inform ation at 
1 /1 0 ,1 /2 0 ,1 /1 0 0 ,1 /2 0 0  as described by Eqn. 7.8 on a logarithmic scale. For — 1,

eva ûates t0 zero and is plotted here as black. Lighter shading corresponds to higher 
fractional information. The horizontal and vertical axes represent the values o f k  (separation 
between the pairs of gradient directions). Therefore, moving away from the centre— the first 
gradient direction location— the gradient direction dependency between gradient directions is 
shown to decrease radially for all image classes.
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Individual Natural Images

It is interesting to examine features in individual natural images that give rise to information 

contour maps which have either markedly increased dependency or decreased dependency com

pared to the ensemble average of natural images (Fig. 7.14 top left). Such examples are manu

ally chosen and illustrated in Figures 7.15(a) and 7.16(a).

(a) (b)

Figure 7.15: (a) An example of a single natural image which displays longer 2-point gradient 
direction dependencies compared to the ensemble average of natural images (Fig. 7.14 top 
left), (b) The 2-point information contour map of gradient direction dependencies of image 
(a). Contours here are the same as used in Fig. 7.14. The outermost contour is an artifact o f 
measuring dependency between gradient directions only to a radius of k =  16.

In Figure 7.15(a), the map shows that the amount o f dependency between gradient direc

tions is retained for greater distances compared to the mean results for an ensemble of natural 

images. The physical cause of the increased dependency between gradient directions is most 

likely a result of the ‘smoothness’ of the sky. In contrast, Figure 7.16(a)) illustrates a natural 

image whose information contour map (Fig. 7.16(b)) resembles that of the ensemble average 

for phase randomized images (Fig. 7.14 top right). This is not surprising as Figure 7.16(a)) is 

a scene of vegetation which appears more ‘noise-like’; there is little sense of structure in the 

image.

The ‘smoothness’ feature of sky is illustrated for the natural image in Figure 7.18(a). The 

contour lines in red show the homogeneity across the sky in terms o f intensity. However, in the 

ground section (fig. 7.17), a different pattern emerges, which tends to point to the fact, sky is the 

more significant part of the image contributing to the extended gradient direction dependencies 

in Figure 7.15(a).
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(a) (b)

Figure 7.16: In (a) is an example of a natural image. Illustrated in (b) is the information contour 
map of gradient direction dependencies of image (a); the map shows similar properties to that 
o f an ensemble of phase randomized images (shown in Fig. 7.14 top right).

Figure 7.17: Image of vast clear sky and dark ground
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Figure 7.18: Both images blurred to scale cr =  8. Contour lines in red, represent regions of 
equal intensity. Shown in (a) is the sky part o f Fig.7.17 and in (b) the ground part.
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7.23  Conclusions: Information Contour Maps

The 2-point dependency maps show that differences do emerge between natural images and 

phase randomized images. Therefore, it m ight be argued that the results for 2-point gradient 

direction dependency are inconsistent with the results in Section 6.2 which show that the de

pendency between gradient directions o f an ensemble o f natural images is determ ined by its 

mean power spectrum. However, the dependency shown in the contour maps are a function o f 

distance and angle, not just distance. Further, the difference which emerge here are only for dis

tances o f k >  5 where the amount o f inform ation is small given the contours in Figure 7.14 are 

on a logarithmic scale. The 1-D plots in the main results o f  this thesis (Fig. 6.6), also indicate 

that the 2-point gradient direction dependencies for k >  5 are weak.

Interestingly, the information contour m aps o f gradient direction dependency in natural 

images are consistent with other studies by Sigman et al. [9] and Geisler et al. [180], which 

indicate that an edge element is most likely to be co-linear to a reference edge element. This 

is supported here by the fact that given an initial gradient direction, dependency with another 

gradient direction extends furthest in a perpendicular direction to the initial gradient direction. 

However, the results do not exhibit any evidence for a co-circularity rule for gradient directions.

7.3 Experiments to find the Source of Synergetic Dependencies

In this section, experiments are conducted to provide insight into the possible sources o f the 

synergetic dependencies found between gradient directions in the main results o f this thesis as 

described in Section 6.4. The first experim ent is to recompute the 3-point gradient direction 

dependencies for a line, rather than a triangular, configuration o f measurements. The second 

experiment involves computing dependencies o f gradient vector fields with non-zero curl. This 

is because of a mathematical property that the gradient o f a scalar field (e.g. images) has zero 

curl, and it is hypothesised that this may act as an additional constraint on the dependencies 

o f gradient directions in images. Details are also provided on additional experiments looking 

at other random distributions o f noise images and the search for significant configurations of 

gradient directions.

7.3.1 Line Configuration

An inherent problem in computing the 3-point gradient direction dependencies for a line spatial 

configuration is that two different distances exist between the three points. Given three points



7.3. Experiments to find the Source o f Synergetic Dependencies 143

A,B,C in a line, there will be two pairs o f points equidistance from one another, say A— B 

and B— C, but also one other pair A— C twice the separation o f the other pairs. The horizon

tal axis in Figure 7.19 shows the separation between measurements k, as the shorter distance. 

This makes the comparison of 3-point gradient direction dependencies for a line configuration 

with the equilateral triangular configuration not particularly straightforward; although, com par

ison is somewhat aided by the fact the 3-point interaction information, given by I {A\  B;  C ), is 

symmetric with respect to A, B , and C  unlike, for example, I  (A; B\ C) .

7.3.2 Results and Discussion: Line Configuration

Figure 7.19 shows that the 3-point gradient direction dependencies for image classes w ith the 

same power spectrum, i.e. natural images and phase randomized natural images, and whitened 

natural images and Gaussian noise images, the gradient direction dependencies are still indistin

guishable even for a line spatial configuration, and in this respect the results herein support the

3-point gradient direction dependencies found for an equilateral triangular spatial configuration 

o f measurements.

However, the 3-point dependencies between gradient directions in a line spatial configura

tion show no synergy (synergy would be indicated by negative values in Fig. 7.19) for natural 

images and phase randomized images, unlike the triangular configuration results shown in F ig

ure 6.10. But, synergy is found in whitened natural images and Gaussian noise images, as 

shown in Figure 7.19. It is noticeable that, for Gaussian noise images, the m axim um  amount o f 

synergy occurs at half the k value com pared with the results from the 3-point gradient direction 

dependencies in Figure 6.10 (top) although this might in fact be due to the existence o f two 

unique distances— one half the distance o f the other— between the three gradient directions in 

a line spatial configuration.

7.3.3 Curl of a Gradient Field

In this section, it is investigated whether the mathematical property that the gradient o f  a scalar 

field has zero curl constrains the dependency between gradient directions.

Helmholtz’s theorem states that a vector field can be fully determined by its curl and diver

gence. The curl describes the rotation in a small region o f the field, and div describes the flow
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Figure 7.19: Illustrates results of the interaction information for 3-point line configuration of 
gradient directions. Compare this figure with Figure 6.10 which is for a triangular configuration 
of gradient directions. Vertical axis: I  (A; B ; C) interaction information (nats); horizontal axis: 
distance (logarithmic scale) between m easurem ents in multiples k o f o.  Image key: natural (red 
solid), phase randomized natural (green dotted), whitened natural (blue dash-dot), Gaussian
noise (yellow dashes). Recall, positive (negative) values o f information indicate dependencies
between the triple o f gradient directions which are redundant (synergetic).

into or out from a surface. For the gradient of a scalar field it can be shown to have zero curl:

F  (x ,y )  =  V 0  (7.9)

where, V  is the vector differential operator {i dx , j  dy },  where and if  0  is a 2-D scalar

field then curl(F) is given by:

V  x  F  =  (dydx<t> -  dxdy (t>) k  =  0 (7.10)

where k  =  i x j .  Thus, gradient scalar fields are not unrestricted vector fields.

The restriction on rotation in a small region (zero curl) also restricts the rotation in larger 

regions (zero circulation) due to the vector identity, known as Green’s theorem, which states 

that the line integral of a vector field F  around a closed curve C  is equal to the surface integral 

over the region bounded by C (denoted D ) o f the curl of the vector field:

f F .d s =  [ [ V  x F d A .  (7.11)
Jc  J Jd

Physically, Green’s theorem amounts to: the circulation around curve C is equal to the sum o f 

all circulations in a small region inside C. Therefore, for gradient scalar field (F  =  V 0 ) the
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line integral must also evaluate to zero, hence there is no circulation around a closed curve in 

V 0. Thus, it is hypothesised that the dependency between gradient directions is constrained by 

the requirement that the curl o f a gradient scalar field is zero.

In order to test the hypothesis, the dependency o f gradient fields with non-zero curl should 

be computed. One way to do this is by rotating the gradient field locally. For example, for a 

given image with luminance function, L(x,  y)  the x- and y-derivative fields are given by L x 

and L y where L x =  ^  and L y =  ^ . In order to produce a gradient field with non-zero curl, 

the x- and y-derivatives are interchanged, giving L x =  ^  and L y =  It is im portant that 

when the curl o f the vector field is made non-zero, the div is not then made to be zero because 

this also restricts the vector field, and therefore the div m ust also be non-zero. Therefore, in 

this experiment, the 3-point gradient direction dependencies in a triangular and line spatial 

configuration are computed from gradient vector fields m anipulated to have non-zero curl and 

non-zero divergence (V  x V 0  0, V.V</> ^  0). These com putations are to be com pared with 

results from the unmanipulated gradient vector fields w hich contain zero curl and non-zero 

divergence (V  x V 0  =  0, V .V 0  ^  0), the results o f which have been described in Sections 6.4 

and 7.3.2.

7.3.4 Results and Discussion: Curl of Gradient Field

Figure 7.20 top shows 3-point gradient direction dependencies I (A;  B; C)  for a triangular con

figuration points, after the gradient vector field has been altered to have both non-zero curl and 

non-zero divergence (V  x V</> ^  0, V .V 0  /  0); this chart should be com pared to the chart 

appearing in Section 6.2. The most obvious difference between the charts is that the depen

dency for a non-zero curl gradient field (Fig. 7.20 top) has no synergetic dependencies. In fact, 

overall, the redundancy between triples o f gradient directions has increased, and the point at 

which synergy was a maximum for natural images is now the point at which the dependency 

becomes zero at k =  2.5, and similarly for Gaussian noise images at k — 1.5. The increase in 

redundancy implies that, in comparison to the curl-free vector field, the mutual inform ation be

tween the gradient directions A  and B  when C  is known is less. This is to be expected because 

by making the vector field have non-zero curl, the gradient directions are less constrained, and 

thereby there is less dependency between gradient directions.

Figure 7.20 bottom shows the 3-point gradient direction dependencies for a line config

uration computed from a gradient vector field with non-zero curl and non-zero div. The de
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pendencies for a given k  are similar to that found in Figure 7.19, which were obtained from 

an unmanipulated gradient vector field. Therefore, the curl-free property is not a constraint 

between gradient directions in a line configuration. This is not surprising, notwithstanding that 

the circulation o f such a field is zero, because the line integral is over a closed curve. When 

computing the dependencies for a line configuration we have effectively an open curve. There

fore we might not expect the curl-free property o f the gradient vector field to be a constraint in 

a line configuration.

triangle configuration 
I(nats) non-zero curl
1.4
1 . 2 natural*

Gaussian noise*
0 . 8

0.6
0.4
0 . 2

Log k25 0.5 1.5

line configuration 
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■ natural*0.8
Gaussian noise*

0 . 6

0.4
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If 0.5 0.75 1.5

Figure 7.20: Shows 3-point gradient direction dependencies I (A\  B\  C)  of gradient vector fields 
manipulated from natural and Gaussian noise images to have non-zero curl and non-zero diver
gence, for triangular configuration (top) and line configuration (bottom). Top chart should be 
com pared to Fig. 6.10 top, and bottom chart to Fig. 7.19. Vertical axis: I  (A; B; C)  interaction 
information (nats); horizontal axis: distance (logarithmic scale) between measurements in m ul
tiples k o f a.  *Red solid curves are results from the manipulated gradient vector field o f natural 
images, and yellow dashes from Gaussian noise images.
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7 3 .5  Other Random Distributions

The observation that G aussian noise im ages have synergetic dependencies between gradient d i

rections in both triangular (Fig. 6.10) and line (Fig. 7.19) configurations, led to the hypothesis 

that the m ean-reverting property o f  draw ing pixel values from  a N orm al distribution contributes 

to the dependency betw een gradient directions. M ean reversion here is the tendency o f lum i

nance values to revert to a m ean value, w hich is the m ean o f the Norm al probability distribution 

(from  which the pixel values are drawn).

To exam ine this hypothesis, the lum inance functions o f im ages generated from two other 

random  distributions which have higher and low er kurtosis than the Norm al distribution were 

also exam ined. The distributions studied included the Laplace distribution: fatter tails than a 

N orm al distribution, therefore higher kurtosis and a greater chance o f high and low pixel values; 

and the U niform  distribution: less kurtosis than a Norm al distribution w ith no tendency for any 

m ean value.

Exam ination o f  the results show ed no significant differences in gradient direction depen

dencies betw een im ages generated from  these distributions and G aussian noise im ages.

7.4 Gradient Direction Configurations

A ttem pts were made to find if certain configurations o f gradient directions contributed sub

stantially more inform ation to the overall dependency between 3-point m easurem ents. Such an 

approach would provide qualitative differences betw een the im age classes by com paring w hich 

gradient direction configurations were m ost dependent in each im age class and which configura

tions provided synergetic dependencies. For exam ple, do the m ore dependent gradient direction 

configurations happen to be sym m etrical in ensem bles o f natural im ages?

Investigations o f all the image classes suggest that, although certain configurations dom i

nate, no obvious pattern (such as sym m etry or configurations corresponding to obvious im age 

structures) in the top ten most dependent configurations were found. This is also the case even 

after pooling over configurations that are transform ations in terms o f rotation and reflection, an 

exam ple o f such a configuration group is show n in Figure 7.21.

However, if we sim ply search for the m ost frequently occurring configurations in each 

im age class, m ore obvious patterns em erge. F igure 7.22 shows an exam ple taken from  con

figurations where k =  2 (see Fig. 5.10). T he results at k =  2 are not necessarily follow ed at
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Figure 7.21. Top row shows 3-point gradient direction configurations w hich are all equivalent 
under a ^  rotation o f each triangle. Bottom  row shows the reflections o f the top left triangle in 
vertical plane, and its rotations.

o ther values o f  k, but interestingly, for k =  2 (see Fig. 5.10), the synergetic dependencies are 

equivalent for all four im age classes, as shown in Figure 6.10.

For both natural im ages and phase random ized natural im ages, the most frequently oc

curring configuration at k =  2 is w here the gradient directions are all, approxim ately, in the 

sam e direction. For w hitened natural im ages and G aussian im ages this is not the case, the m ost 

frequently occurring configuration is that o f light and dark blobs, where the gradient flows into 

or out from the centre o f the configuration.

Despite all four im age classes having the sam e synergetic dependencies, there are qualita

tive differences between im age classes in term s o f the m ost frequent gradient direction config

urations found, although we find that natural and phase random ized natural im ages are similar, 

as are w hitened and G aussian noise im ages at k =  2. This sim ilarity between the pairs o f im age 

classes holds for k <  2. For k <  1, all four im age classes have gradient direction configurations 

w hich tend to be in the same direction, as illustrated in the top two rows o f Figure 7.22.

Interestingly, for all four im age classes at k — 2, w here synergetic dependencies exist, the 

least frequently occurring configurations are when the gradient directions indicate circulation 

in the gradient field, as shown in Figure 7.23 (exam ple is for natural im ages). This observation 

bears som e consistency with the notion that the zero-curl property o f the gradient o f  a scalar 

field contributes to synergetic dependencies, w hich was discussed in Section 7.3.3. A lthough, 

sim ilar configuration patterns are also found for 1 <  k <  5 for all image classes. Recall that no 

synergy is found for k <  1.
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N . N .

N N . /  \

Figure 7.22: M ost frequently occurring 3-point gradient direction configurations for separation 
k  =  2, (see Fig. 5 .10 for details o f k)  in the follow ing ensem bles o f images, from top row to 
bottom  row: natural, phase random ized natural, w hitened natural, and Gaussian noise.

F igure 7.23: Least frequently occurring 3-point gradient direction configurations for separation 
k — 2, (see Fig. 5.10 for details o f k)  for an ensem ble o f natural im ages, and this is also the case 
for phase random ized natural im ages, w hitened natural images, and G aussian noise im ages.
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7.5 Conclusions of Further Experiments

The m ain results in the previous chapter, Section 6.5, show that average dependencies betw een

2-point and 3-point gradient directions o f an ensem ble o f natural im ages are strongly dependent 

upon the ensem ble’s m ean pow er spectrum . T his conclusion was prim arily based on the results 

which show the am ount o f 2-point and 3-point gradient direction dependency is the sam e in 

natural im ages and phase random ized natural im ages; and also the sam e for w hitened natural 

im ages and G aussian noise images.

In this chapter, it has been shown that ensem bles o f im ages with varying power law pow er 

spectra and random  phases, show an approxim ate lawful relationship between the pow er law 

exponent o f the ensem ble’s m ean pow er spectrum  and the dependency between nearby gradient 

directions. But this lawful relationship breaks down for ensem bles o f  scale-variant ensem bles 

such as im ages generated from  constant-sized disks. If, the dependency between gradient d irec

tions is com puted for an ensem ble o f  dead leaves m odel im ages, w hich are a model o f  im ages 

that reproduce the scale-invariant properties o f  natural im ages such as the 1/  f 2 ensem ble pow er 

spectrum , then the dependencies are sim ilar to an ensem ble o f  natural images.

In this chapter it has also been dem onstrated  that the 3-point dependencies o f gradient 

directions at m ultiple locations does, to som e extent, depend on the spatial configuration o f 

those locations. This is based on com paring the 3-point statistics o f gradient directions in an 

equilateral triangular spatial configuration and a line spatial configuration. The triangular con

figuration, shows synergetic dependencies for all four im age classes (natural, phase random ized 

natural, whitened, G aussian noise), however, for the line configuration, only w hitened natural 

im ages and G aussian noise im ages contain synergetic dependencies, previously in a triangular 

configuration all four im age ensem bles had synergetic dependencies (Sec. 6.4). Recall syner

getic dependencies indicate that the m utual inform ation between two gradient directions, A  and 

B  is greater when a third gradient direction is know n than when it is not known.

Investigations o f the possible causes o f synergy observed in the triangular configuration of 

triples o f  gradient directions show that it is likely to be a result o f the m athem atical property 

that the gradient o f a scalar field has zero curl. However, this restriction on the curl o f the field 

is not relevant for a line configuration o f gradient directions because it is not around a closed 

curve. To sum m arise these results, Table 7.1 shows the configuration o f m easurem ents, w hether 

the gradient vector field is curl-free or not, and which image classes contain synergetic gradient
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direction dependencies.
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Triangular Line
C u rl=  0 
C u rl^  0

N, P, W, G 
None o 

o

Table 7.1: Sum m arises under what circum stances the four im age classes: natural (N), phase 
random ized (P), w hitened natural (W), and G aussian noise (G) have synergetic gradient d i
rection dependencies. Top row indicates the configuration o f m easurem ents, and first colum n 
indicates w hether the gradient vector field has been m anipulated to have non-zero curl.



Chapter 8

Preliminary Future Work and Conclusions

In Section 8.1 o f  this chapter, the m ethodology and results o f  prelim inary future work are pre

sented and the significance o f the findings are discussed in relation to the main results o f this 

thesis. In Section 8.2, a sum m ary o f  the thesis is given together w ith the main contributions o f 

this thesis.

8.1 Preliminary Future Work

The m ain work reported in this thesis could be extended in two ways: i) com puting n-point 

dependencies for n >  3 (i.e. for m ore than triples o f m easurem ents), and for ii) com puting 

dependencies between quantities depending on second order derivative m easurem ents, for ex

am ple the shape index. It turns out that it is m ost convenient, from a com putational viewpoint, 

to do i) and ii) sim ultaneously. This is because o f constraints on perform ing calculations on 

the probability distributions. Previously, the statistics on gradient directions, which ranged over 

[ —7T, 7r ), were collected into 16 bins o f  w idth 7r / 8 . This m eant when form ing the histogram s for

3-point dependency, it was necessary to populate 163 =  4096 bins. Extending this to the depen

dencies between five m easurem ents w ould m ake it necessary to populate over one m illion bins 

( 165 — 1 ,0 4 8 ,5 7 6 ), w hich can lead to greater errors in calculating the entropy estim ates from 

these histogram s if the bins are not sufficiently populated. To com pute 9-point dependencies 

w ould require alm ost seventy billion b ins m eaning a considerable am ount o f data w ould need 

to be collected w hich would not be m anageable. The 9-point dependency is interesting because
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in a 3 x 3 pixels configuration the centre pixel is com pletely surrounded as illustrated by:

* 2 X c  X 3 (8 . 1)

X 7 X 4 X 8

A solution to the problem  o f increased d im ensionality  is to reduce the num ber o f  cate

gories o f gradient directions to ju st five. W ith five categories the num ber o f bins w hich m ust

pendencies it is close to two m illion, w hich is still m anageable. However, there is no intuitive 

or reasonable way to split gradient directions into five categories. This is a reason for moving 

to second order derivative m easurem ents and the shape index; it is possible to split the shape 

index into five geom etrically-m eaningful categories.

The shape index describes the curvature o f a point in the im age, as explained in Sec

tion 2.4.5, but this will be briefly sum m arised again here. Second order derivative m easure

m ents are given by the Hessian m atrix, which calculates the gradient o f  the gradient, i.e. the 

curvature o f  a point not the slope:

It is possible to define curvature at a point in any direction but there are ju st two principle 

curvatures k \ ,  «2  (m axim al and m inim al curvature) found from  the eigenvectors o f the Hessian. 

T his leads to the shape index, w hich is com puted from  an arbitrary constant m ultiplied by the 

arctangent o f a specific ratio o f « i ,  K2 :

be populated for 5-point dependencies is ju st over three thousand 55 =  3 .1 2 5 ; for 9-point de-

Hessian L ( x . y ) (8 .2)

Shape Index =  — a r c t a n
7r

K\  +  *2  

K\ — «2
, Ki <  K2 (8.3)

and the m agnitude o f  curvature is given by the curvedness:

(8.4)

The shape index is often split into nine categories or labels: cup, trough, rut, saddle rut, saddle, 

saddle ridge, ridge, dom e, and cap. H ow ever, another choice is to break the shape index into
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just five categories with intervals across the range [—1 , 1 ) of:

•  c u p : [ - l , -1 3 /1 6 ) ,

•  rut: [ - 1 3 /1 6 ,- 6 /1 6 ) ,

•  saddle: [ - 6 /1 6 ,6 /1 6 ) ,

•  ridge: [6 /16 ,13 /16 ),

•  cap: [13/16,1).

The corresponding shapes to these five categories are illustrated in Figure 8.1.

rut saddle

cap

*

Figure 8.1: A convenient progression from 2-point and 3-point gradient direction dependencies 
is to study a greater number of points and 2 nd-order derivative measurements (e.g. shape in
dex). The shape index (derived from the curvature of image points) can be divided into the five 
categories illustrated above. Having just five categories makes it computationally feasible to 
compute the dependencies in 9-point configurations.

8.1.1 Extending Information Theory to 9-point Dependencies

Previously, in Section 4.1.3 the 3-point interaction information I ( A , B ; C ) ,  and total 3-point 

mutual information I  (A,  B , C )  were expressed in terms of joint and marginal entropies as:

/(A ; B; C)  =  H ( A ) + H { B ) + H ( C ) - ( H ( A ,  B ) + H ( A , C ) + H ( B , C ) ) + H ( A ,  B , C)  (8.5)

cup

and,

I{A,B,C) =  H ( A )  +  H(B) + H{C) -  H (8 .6 )



8.1. Preliminary Future Work 155

Recall that interaction inform ation o f an n-point configuration excludes any (n  — 1 ,2 , . . . ) -  

point configuration dependencies. Thus, extending this to 4-point interactions where for clarity 

H ( X , Y )  is denoted by H x v '■

I { A\  B\  C\  D)  =  ( H a  +  H b  +  H c  +  H d ) (8.7)

-  { H a b  +  H a c  +  H a d  +  H b c  +  H b d  +  H c d )

+  { H a b c  +  H a b d  +  H a c d  +  H b c d ) -  H a b c d *

and to 5-point interactions:

I {A:  B\  C: D\  E)  =  ( H A + H B + H c  +  H D + H E ) (8.8)

-  { H a b  +  H a c  +  H a d  +  H a e  +  H b c  +  H b d  +  H b e  4- H c d +

H c e  +  H d e )

+  (H a b c  +  H a b d  +  H \ b e  +  H a c d  +  H a c e  +  H b c d  +  H b c e +  

H b d e  +  H c d e )

-  ( H a b c d  +  H a b c e  +  H a b d e  +  H a c d e  +  H b c d e ) +  H a b c d e -

Therefore, for ease o f notation, if { A  B,  C.  D,  E }  is treated as a set o f 5 elem ents, Equation 8.8  

can be recast in term s o f the entropy o f  each A*-subset on the elem ents {A , B , C, D , E } ,  to give:

I (A: B: C: D\  E )  =  H{ \ - S u b s e t  a b c d e } ~  H  {2-Subset  a b c d e } (8.9)

+  H {3-Subseta b c d e } -  H{4-Subse t a b c d e }

-I- H {5-Subseta b c d e }

w here, for exam ple,

{ H a b c d  + H a b c e  + H a b d e  + H a c d e  +  H b c d e ) =  H  {4-Subset a b c d e } •
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Note that the num ber o f k-subsets from  a set o f  r  elem ents is given by the binom ial coefficient 

(it) =  Extending Equation 8.9 to 9 elem ents {A , B , C , D,  E , F,  G , / / , / } ,  gives:

9
I {A\  B\  C\  D\  E\  F\  G\  H\  I)  =  ^  ^( —1 )r 1//{ r-S u b se tJ4£C£)£'f’(7 / / /}  (8.10)

r=  1

and the total inform ation is:

I ( A , B . C , D , E , H G , H J )  =  H {  l-S u b seU f i r D £ } -  H  { A B C D E  E G  H I ) .  (8 . 11)

8.1.2 Methodology for 9-point Analysis

The four im age classes: natural, phase random ised natural, w hitened natural and G aussian noise 

(described in Section 5.1) are analysed for 9-point dependencies o f  shape index. Each im age 

L { x , y )  is o f  dim ensions 1024 by 1536, and each ensem ble contains 100 images from  each 

class. The distance between points is com puted by altering the values o f two param eters: a  and 

k. First, a  is the resolution o f the G aussian derivative operator G ( x , y \ a )  used to extract the 

shape index S I { x ,  y: a )  from the im age L { x , y).  The shape index is given by:

S I { x , y \ a )  =  2 a rc ta n
L & dXxG +  L 0  dyyG

y/A {L $  d xyG ) 2 +  (L  ® d xxG  - L ®  d yyG )2
(8 . 12)

where for brevity d xxG  =  ^ G { x .  y:cr) and £  denotes convolution. Second, S I ( x . y : a )  is 

divided into partitions o f size k  and a.  The values o f  k  observed are { 0 .2 5 ,0 .5 ,0 .7 5 ,1 ,1 .5 , 2}, 

and o  — {4 ,2 , 3 .1 , 3 ,1 } , to give the following convenient pairs o f value for ha:

k a  =  <
1 if/k =  { 0 .2 5 ,0 .5 ,0 .7 5 ,1 }

2 if k — {1 .5 ,2} .

(8.13)

For exam ple, to com pute the shape index o f  a 6  x 6  im age for ka  — 2 ( a  =  1), the shape index 

o f the im age is com puted and then partitioned into 2 x 2  subsets to form a 3 x 3 block such as,

X n *13 X15 

X 3 1  X 3 3  X 3 5

X 5 1  X 5 3  X 5 5
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One com plication w hich arises in this m ethodology is that the distance betw een each el

em ent X tj  is not fixed for any n-subset, i.e. there are several 5-point configurations in a given 

3 x 3  pixel block. Thus, for any set o f n-point configurations there are different distances be

tw een the elem ents, which is illustrated in Figure 8.2. Therefore, for each n-point configuration 

the average, m inim um , and m axim um  dependency is com puted.

* 1 5* 1 1

* 3 3

* 5 1

* 1 1 * 1 3

* 3 3

* 5 3

*55
■31

11

* 1 5

* 3 1 * 3 3 * 3 5

. * 5 5

' * 1 1 * 1 3

* 3 1

* 5 1 * 5 3

* 1 3

* 3 3  * 3 5

* 5 3

* 3 3  * 3 5

* 5 3  * 5 5

Figure 8.2: Illustrates four (out o f  a possible 126) 5-point configurations in a given 3x3 pixel 
block. D ifferent distances exist betw een elem ents X( j  in each configuration.

8 .1 J  Preliminary Results

Prelim inary results for the dependency o f 9-point configurations o f shape index are presented 

here. The results can be viewed from  two im portant perspectives: i) how dependency varies w ith 

n for a given distance betw een points, as shown in Figure 8.3, and ii) how dependency falls with 

d istance between points as shown in Figure 8.4; the second perspective is sim ilar to the analysis 

o f  gradient direction dependencies com puted in the m ain results o f this thesis. Figure 8.3 shows 

that for all image classes the total dependency between n-point configurations increases with 

greater n. O bserving the relationship in m ore detail, it is noticeable that for small k, the total 

dependency increases linearly with n. However, for larger separations between points, the 

total dependency grow s supralinearly w ith n.  M ost significantly, the shape index dependency 

for natural im ages and phase random ized natural im ages are indistinguishable, as they are for 

w hitened natural im ages and Gaussian noise im ages albeit lower. This is the same pattern which 

was observed for gradient direction dependencies in the main results o f this thesis.

However, for larger values o f k (i.e. k >  1), the shape index dependency becom es different 

between the im age classes. The difference is m ost pronounced for k — 2, but surprisingly 

phase random ized natural im ages increase over natural im ages, as do G aussian noise im ages 

over w hitened natural images. A lthough, in all cases, the differences between the im age classes 

is sm all such that if the results in F igure 8.3 are re-plotted in term s o f how the dependency for 

each n-point configuration changes w ith different separations k,  Figure 8.4 is obtained (this is
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Figure 8.3: Illustrates how the shape index dependency between points varies with the num
ber o f points n  in the configuration, at different distances between points k (see main text 
Sec. 8.1.2). Each curve in each chart represents different image classes. Vertical axis: the de
pendency between points in terms o f total mutual information /(n a ts); horizontal axis: indicates 
the number of points in the configuration n . The error bars denote the maximum and minimum 
information scores for that n-point configuration.
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the m ore fam iliar presentation o f  the results adopted for the 2-point and 3-point dependency 

o f gradient directions). Figure 8.4, shows that natural and phase random ized im age classes are 

indistinguishable, as are whitened natural and G aussian noise im age classes, where dependency 

is plotted as a function o f distance rather than num ber in the configuration. Figure 8.4, shows 

that at k =  2 , the am ount o f dependency is sm all relative to k <  2  values.

The dependencies exclusive to specific n-point configurations, i.e. when all (m  <  n)- 

point dependencies have been rem oved, are shown in Figure 8.5. Again, the fall in dependency 

w ith increasing k is sim ilar to that found for gradient direction dependencies. Figure 8.5 also 

shows that the am ount o f interaction inform ation for natural im ages and phase random ized 

im ages is again indistinguishable; this is also observed betw een whitened natural im ages and 

G aussian noise images. It is also noteworthy that negative values o f interaction inform ation, 

w hich indicate the presence o f synergy (w here the m utual inform ation between the subsets, (n- 

l)-points, is increased with know ledge o f the n^-poin t), occur only for n =  3 ,4 ,5  and only for 

certain spatial configurations. This shows some consistency w ith the synergetic dependencies 

found for 3-point gradient directions.

8.1.4 Conclusions to Preliminary Work

The 2-point and 3-point dependencies o f the shape index (second order derivative m easure

m ent) display consistencies w ith the dependencies o f gradient directions (first order derivative 

m easurem ent). It is found that ensem bles o f natural im ages and phase random ized natural im 

ages share the sam e am ount o f shape index dependencies, as do whitened natural im ages and 

G aussian noise images. Furtherm ore, all four classes o f im ages display som e synergetic depen

dencies for 3-point configurations.

The study o f higher than 3-point dependencies indicate that no differences em erge betw een 

natural im ages and phase random ized im ages; for k <  1.5 this is also true between w hitened 

natural im ages and G aussian noise im ages, w hich both have less dependencies than natural 

images. For k — 2, small differences do em erge for shape index dependencies for all four 

im age classes. W hether or not these results are significant will require further investigation 

because w ithout an explanation for the difference, we cannot be satisfied that the effect is solely 

due to the properties o f the im age class. A lthough it is noteworthy that a t k  — 2 the am ount o f 

inform ation is significantly sm aller than for k <  1 , and that for higher values o f  k there is less 

im age data to populate the histogram  bins on w hich the inform ation scores are based.



8.1. Preliminary Future Work 160

I(nats) n=2 I(nats)
0.7
0.6
0.5
0.4
0.3
0 . 2

0 . 1
- Log k1.5

n»3

o. e
0 . 6
0.4
0.2

Log k1.5

I(nats) n=4 I(nats)

1.5

0.5
Log k1.5

n=5

2.5

1.5

0.5
Log k0.25 0.5 0.75 1 1.5 2

I(nats) n=6 I(nats) n=7

Log k
l .s Log k

I(nats) n=8 1 (nats) n=9

Log k1.5

6

5
4
3
2

1
Log k0.25 0.5 0.75 1 1.5 2

natural whitened

phase randomized Gaussian noise

Figure 8.4: Illustrates how the shape index n-point dependency varies with distance between 
points k in different n-point configurations. Vertical axis: dependency between points in terms 
o f total mutual information /(n a ts ); horizontal axis: distance between points in n-point config
uration k. Each curve in each chart represents different image classes. The error bars denote 
the maximum and minimum information scores for that n-point configuration.
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Figure 8.5: Illustrates how the shape index n-point interaction information varies with distance 
between points k  in different n-point configurations. Vertical axis: interaction information 
/(n a ts ); horizontal axis: distance between points in n-point configuration k. The error bars 
denote the maximum and minimum inform ation scores for that n-point configuration.
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N evertheless, it is observed that for k <  1.5, w hitened natural im ages and G aussian noise 

im ages contain less dependencies than natural im ages or phase random ized natural im ages for 

up to 9-point shape index dependencies, w hich is a consistent observation with earlier results 

for 2-point and 3-point gradient direction dependencies.

In sum m ary, the prelim inary results here at least show enough consistencies to suggest that 

the pow er spectra o f natural im ages is still m ore significant than its phase spectra in determ ining 

the am ount o f its n-point shape index dependencies.
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In this section, sum m aries are presented for the m otivation o f this thesis, relevant work in 

the literature, and methodology. Lastly, a description o f  the m ain contributions o f this thesis 

together with som e final rem arks are given.

8.2.1 Summary of Background and Motivation

In Chapter 2, introductory m aterial w as presented on the properties o f  light. Exam ples were 

provided dem onstrating the way light interacts with objects in the environm ent; such a con

sistent relationship between light and objects in the environm ent enables the developm ent o f  a 

reliable biological visual system . Next, the efficient coding hypothesis that the hum an visual 

system  is optim ised to encode natural visual stimuli was d iscussed with supporting evidence 

from the literature. The physiology and functions o f  the visual system  were also discussed in 

C hapter 2 to m otivate the use o f first order Gaussian derivative operators to com pute gradient 

d irection dependencies in im ages. For example, studies o f  the human visual system  reveal: 

i) the presence o f neurons w ith specific orientation preferences to visual stimuli, and the ex

istence o f horizontal connections linking neurons w ith sim ilar receptive field profiles such as 

sim ilar orientation preference; and ii) the receptive field profiles of neurons resem ble G aussian 

derivatives.

To further m otivate the main study o f  this thesis, previous vision theories on hum an vi

sual perception, in particular Gestalt psychology, were presented in C hapter 2. The G estaltists 

hypothesised that the hum an visual system  uses a holistic approach to form perceptions and 

proposed several grouping principles. In this thesis, the holistic approach has m otivated the 

search for synergetic dependencies betw een m easurem ents m ade at m ultiple im age locations. 

Recall that, in the case o f 3-point m easurem ents, synergy describes dependencies w hich are not 

attributable to any 2 -point dependencies.

At the end o f  Chapter 2, com putational techniques applied to vision were presented. For 

exam ple, how features are extracted from  im ages and the significance of first order derivative 

m easurem ents in finding edges and object contours in images, i.e. exploring how the differential 

structure o f  im ages is related to im age features.
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8.2.2 Summary of Relevant Work

In C hapter 3, a num ber o f im portant regularities in natural im ages that have been reported in the 

literature were discussed. For exam ple, the scale-invariant property o f natural im ages and how 

the average pow er spectrum  o f natural im age ensem bles follow a power law decay with respect 

to spatial frequency (averaged over orientation). Therefore, the significance of this regularity 

in the m ean pow er spectrum  o f an ensem ble o f natural im ages was discussed in relation to the 

hum an visual system. For exam ple, it has been reported that neurons in the retina exploit re

dundancies in natural visual stimuli. Furtherm ore, neurophysiological experim ents have shown 

visual cortical neuron activity is suppressed when the visual system  is being subjected to nat

ural visual stimuli com pared to random  stimuli. Psychophysical experim ents have also shown 

observers are better at discrim inating synthetic im ages w ith the sam e power spectrum  pow er 

law decay as natural image ensem bles. Furtherm ore, com putational experim ents have derived 

filter functions based on efficient coding constraints: filters w hich reduce redundancy, m ax

im ise inform ation transm issions, and increase independency between filters begin to resem ble 

cortical visual receptive fields. Lastly in Chapter 3, geom etric regularities found between edge 

segm ents— in relation to their relative edge orientations— in natural images were discussed.

8.2.3 Summary of Methodology

In C hapter 4, it was explained how, in order to  evaluate the am ount o f dependency betw een 

gradient m easurem ents, inform ation-theoretic m ethods such as higher order mutual inform a

tion are used. To obtain an estim ate o f the gradient direction dependencies, jo in t probability 

distributions o f gradient directions were form ed from  extracting triples o f gradient directions 

in im ages for different separations between the triples. To estim ate Shannon’s m easure o f en

tropy, entropy estim ators were applied to the jo in t probability distributions. Furtherm ore, each 

entropy estim ator has a particular variance, and therefore a bootstrap procedure was em ployed 

to assess such uncertainties.

In C hapter 5, it was shown how the four im age ensem bles for the main results were gener

ated. The four m ain im age classes studied w ere natural, phase random ized natural (equivalent 

individual pow er spectrum  but random  phase spectrum ), whitened natural im ages (equivalent 

individual phase spectrum  but pow er spectrum  set to unity, i.e. flat), and G aussian noise im 

ages (lum inance function drawn from  a N orm al distribution). Triples o f gradient directions, 

arranged in an equilateral triangular and a line configuration, w ere collected from  each im age
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in each im age class ensem ble for different separations between m easurem ents. The average 

dependencies betw een gradient directions, gradient m agnitudes and strong gradient directions 

(i.e. at high gradient m agnitude locations) were com puted for an ensem ble o f im ages from  each 

class and for individual images. Finally, estim ates using the bootstrap procedure were m ade to 

com pute the uncertainty in the inform ation-theoretic calculations o f  the dependencies.

8.2.4 Main Findings

In C hapter 6 , results for the m ain experim ents on the four im age classes: natural, phase ran

dom ized natural, whitened natural, and G aussian noise are presented.

Section 6.1 shows that differences em erge betw een the four m ain im age classes in the 1- 

point statistics o f gradient directions. The histogram  data o f gradient directions obtained from 

the four im age ensem bles shows that natural im ages have a slight excess o f vertically and hori

zontally oriented gradients; this is different to phase random ized natural images, which have a 

prevalence o f vertically oriented gradients only. It has been argued that this bias is due to natural 

im ages being com posed o f sky (lighter) and ground (darker) regions. This contrast betw een the 

upper and low er regions results in vertical upward gradients. The histogram  distribution o f gra

dient directions in whitened im ages shows a slight prevalence o f  horizontally oriented gradients, 

and in G aussian noise im ages there are no gradient orientation preferences (flat distribution). 

However, the 1-point statistics do not reveal anything about the dependencies between gradient 

directions at separate im age locations, which is described by 2-point and 3-point statistics.

In Sections 6.2 and 6.4, results show that the average dependencies between pairs o f  (2- 

point) gradient directions, and between triples o f (3-point) gradient directions are strongly de

pendent upon the mean power spectrum  o f the ensem ble o f natural images. This observation 

is based on the am ount o f 2-point and 3-point gradient direction dependency being the sam e in 

natural im ages and phase random ized natural im ages, as well as in whitened natural im ages and 

G aussian noise images.

This im plies that the pow er spectra o f natural im ages are m ore significant than the phase 

spectra in contributing to gradient direction dependencies. At first this is a surprising result be

cause the phase inform ation o f natural im ages has been shown to contribute to localised features 

such as lines and edges in natural im ages (Sec. 3.5.2). However, for im ages rich in textures and 

shading or w ith strong geom etric form s, the pow er spectrum  can contribute significantly to the 

appearance o f  an im age (Sec. 3.3.4). It is therefore not necessary for an ensem ble o f im ages to
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retain line and edge structure in order to keep, on average, the sam e am ounts o f  gradient d irec

tion dependency. This finding also highlights the fact that gradient direction dependencies have 

been studied, and not dependencies betw een the orientation o f edge segm ents, which have been 

studied by other authors [8 , 9, 180]; although in sim ilarity to [8 ] it is found that dependency 

betw een 2 -point m easurem ents falls rapidly with distance, especially beyond the effective size 

o f the kernel operators.

A lthough a significant relationship is found betw een the gradient direction dependencies 

and the mean power spectrum  o f an ensem ble o f  natural im ages, if  instead the dependencies 

o f i) gradient directions at strong gradient m agnitude locations, and ii) gradient m agnitudes are 

com puted, the relationship fails and all four image ensem bles: natural, phase random ized natu

ral, whitened natural, and G aussian noise have different am ounts o f dependency. Furtherm ore, 

the am ount o f  2-point and 3-point gradient direction dependency o f individual natural im ages 

are different to their phase random ized versions. Therefore, the relationship found betw een the 

am ount o f gradient direction dependencies and the m ean pow er spectrum  o f an ensem ble o f 

natural im ages cannot be extended to its strong gradient direction dependencies, its gradient 

m agnitude dependencies, or individual natural images.

In C hapter 7 additional experim ents are perform ed on different ensem bles o f im ages. In 

S ection7 .1.1, ensem bles o f im ages with varying pow er law m ean pow er spectra (with respect to 

spatial frequency averaged over orientations) and random  phases were examined. It was found 

that an approxim ate lawful relationship betw een the power law exponent o f the ensem ble’s 

m ean pow er spectrum  and the spatial decay rate in the dependency between nearby gradient 

directions.

In Section 7.1.2, the average dependencies betw een two and three gradient directions o f 

an ensem ble o f  natural images is shown to be approxim ately the same as those found in an 

ensem ble o f dead leaves model im ages (generated from a collage o f disks with a cubic pow er 

law decay o f sizes and lum inance values draw n random ly from an ensem ble o f natural im ages). 

It was also dem onstrated that the relationship betw een the mean power spectrum  and gradient 

direction dependencies does not exist for ensem bles o f  im ages w ith scale-variant gradient d i

rection dependencies. For exam ple, in Section 7.1.3, an ensem ble o f  im ages generated from  a 

collage o f constant-sized disks and random  lum inance values showed m ore gradient direction 

dependencies com pared to its phase random ized version. The constant-sized disk im age class
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is an adaption o f  the dead leaves m odel w hich does not m aintain the scale-invariant properties 

o f  natural images.

In a separate investigation to the m ain experim ents, in Section 7.2, the 2-point gradient 

direction dependencies o f natural im ages and phase random ized images as functions o f both 

their spatial and angular separation highlighted extrem ely small differences between the two 

im age classes. The results for natural im ages were consistent with the contents o f natural im 

ages and studies by other authors o f edge co-occurrence statistics [8 , 9, 180]. For exam ple, for 

an ensem ble o f natural images, it was found that the am ount o f dependency between a known 

gradient direction and a second gradient direction extends further if  the observation is made 

perpendicular to the original gradient direction; this is consistent with an ensem ble o f natu

ral im ages containing num erous extended edges. This does not make the relationship found 

betw een the average gradient direction dependencies and the m ean power spectra o f natural 

im ages incorrect, but rather it provides a constraint on when this relationship applies.

The 3-point gradient direction statistics in Section 6.4 for an equilateral triangular spatial 

configuration revealed that synergetic dependencies found in an ensem ble o f natural im ages 

are equivalent to its phase random ized version. Furtherm ore, the am ount o f synergy found 

in natural im ages was not large com pared to the am ount o f redundancy, which suggests 3- 

point gradient direction interactions do not dom inate in natural images. M oreover, in natural 

im ages, the am ount o f synergetic dependencies in gradient directions is com parable to that 

found for Gaussian noise im ages and whitened natural im ages although the distance between 

m easurem ents at which the peak synergetic dependencies occur is greater in natural im ages 

than it is for G aussian noise images.

In Section 7.3.3 investigations into the causes o f synergy observed in the triangular con

figuration o f triples o f gradient directions in the four main im age classes show that it is likely 

to be a consequence o f the fact that the gradient o f a scalar field has zero curl (zero curl also 

im plies zero circulation around closed curves via G reen’s thoerem ). This is based on experi

m ents where curl free gradient vector fields are transform ed into non-zero curl and non-zero 

divergence fields. For this latter type o f gradient vector field, no synergetic 3-point gradient 

direction dependencies are found, and overall the am ount o f redundancy is increased.

Furtherm ore, in Section 7.3.1, it was found that for a line configuration o f gradient d irec

tions, only w hitened natural im ages and G aussian noise im ages display synergetic dependencies
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(natural and phase random ized natural im ages did not). These synergetic 3-point dependencies 

in a line configuration did not vanish upon adding curl to the gradient vector field because the 

gradient directions are not constrained along an open curve such as a line, unlike around a 

closed curve such as in the equilateral triangular configuration.

Lastly, in Section 8.1, prelim inary w ork to establish the dependencies in shape index (sec

ond order derivative) up to 9-point configurations show ed that synergetic dependencies are only 

found between shape index m easurem ents for 3-point, 4-point, and 5-point configurations in all 

four im age classes: natural, phase random ized natural, w hitened natural, and G aussian noise. 

This is consistent with observing 3-point synergy in gradient direction dependencies. Prelim 

inary results also indicate that the m ean pow er spectrum  o f an ensem ble o f  natural im ages is 

generally m ore significant than its phase spectrum  for nearby m easurem ents. However, for 9- 

point configurations at larger distances (where the dependency is already relatively sm all), small 

differences em erge betw een all four im age classes. But, further investigations are required to 

explain these differences in order to confirm  that this is not an artifact o f the experim ental 

procedure.

8.2.5 Limitations o f Work

In this section, the lim itations o f the w ork in this thesis are presented.

Information-theoretic Approach

The analysis in this thesis has em phasised the inform ation-theoretic m ethods to evaluate the 

dependency between gradient direction m easurem ents in images. A lthough this m ethodology 

suited the purpose o f this thesis; nam ely the search for quantitative evidence that there exists 

an advantage in m aking m ultiple m easurem ents in an im age, there is a limitation to this type of 

evaluation.

The lim itation refers to the difficulty in being able to describe how the interactions between 

gradient direction m easurem ents relate to im age features. One way to access further inform a

tion is to exam ine the histogram  data (from  w hich the entropies and inform ation m easures are 

calculated). Once the entropy of, for exam ple, the jo in t distribution between two gradient m ea

surem ents is calculated, knowledge o f the geom etric configuration o f the two gradient directions 

is lost unless careful consideration is paid to the m ethod o f  analysis. This is because the entropy 

o f  a distribution does not necessarily indicate the shape o f the distribution. N evertheless, it is
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possible to use the histogram  data in conjunction w ith the inform ation-theoretic calculations, 

as described in Section 7.4, and to perform  m ethods o f analysis that are more readily related to 

features in im ages, as perform ed in Section 7.2.

Overlap of Kernels

The results for different im age classes show that the statistical dependencies found betw een 

gradient direction m easurem ents occur when there is overlap between the derivative Gaussian 

kernels which are im plem ented to m easure the gradient direction.

The results in this thesis quantify the dependence betw een gradient m easurem ents in im 

ages, therefore it is necessary to m ake physical observations using non-zero sized apertures. 

Thus, the overlap between kernels o f  different m easurem ents is an unavoidable consequence 

when m easuring the gradient field o f an image as described in Section 4.4.1 o f the thesis, and 

is an intrinsic part o f  the dependence betw een physical m easurem ents.

An alternative approach to the one adopted in this thesis is to blur the im age first and then 

approxim ate derivatives by com paring neighbouring pixels (even in this instance there will still 

be overlap between m easurem ents). However, this w ould lead to a m odification o f the data 

before differentiation is applied, w hich is undesirable and is not equivalent to the derivative o f  a 

sam pled image. If it was possible to blur the im age and then apply an infinitesimal differential 

operator (equivalent to a derivative G aussian kernel w ith o  — 0) to this blurred im age, then this 

w ould be equivalent to the m ethod adopted in this thesis as described by Equation 4.23. In this 

latter case, it is apparent that we are not dealing w ith overlap between kernels, but the fact that 

differentiation and blurring o f the observed im age can not be separated, however, blurring is 

not an artifact because it is not possible to perform  m easurem ents at infinite resolution.

The reasons why taking the derivative o f  an im age is not straightforw ard is because the 

differential operator is an ill-posed functional, therefore in this thesis linear scale-space the

ory [79, 165, 166] is followed whereby the operator (kernel) is regularised rather than the 

operand (im age). Physical considerations o f  the behaviour o f such m easurem ents then leads 

to the use o f a G aussian kernel and its partial derivatives as being the appropriate fam ily o f 

kernels.

In other words, it is necessary to take the derivative o f an ‘observed’ im age, but such an 

‘observed’ im age is then not differentiable in the sense o f H adam ard [164]. The solution to this 

problem , as proposed by Schw artz [163], is to regularise the data by convolution with a sm ooth
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kernel, w hich is equivalent to convolving w ith the derivative o f  the kernel. Interestingly, from  

a physiological perspective, the kernel is equivalent to the role o f a receptive field, and the 

sim ilarity o f G aussian derivatives with the receptive field profiles o f cells in the prim ate visual 

cortex were pointed out by Young [168, 169, 170, 171].

Negative interaction information

The quantity I { X \  Y ; Z ), described in Equation 4.11, can be negative, which is initially surpris

ing because m utual inform ation betw een two random  variables is always greater than or equal 

to zero. However, this is not unexpected when we consider the m eaning o f I ( X ; Y\  Z ).

I ( X : Y : Z )  represents the reduction in m utual inform ation betw een X  and Y  given know l

edge o f Z . If  the m utual inform ation betw een X  and Y  decreases with knowledge o f Z , then 

I ( X : Y :  Z)  remains positive because this m easures the reduction in the m utual inform ation be

tween X  and Y  when knowing Z . If  the m utual inform ation betw een X  and Y  increases with 

know ledge o f Z , then we have that there is not a reduction in m utual inform ation betw een X  

and Y  w ith knowledge o f Z , but the opposite, w hich is signified by I { X \ Y ; Z ) <  0, w hich 

is the definition o f synergy. Thus, if I ( X ;  Y ; Z ) m easures the decrease in mutual inform ation 

betw een X  and Y  with know ledge o f Z , then when I ( X :  Y ; Z )  <  0, it im plies there is an 

increase in m utual inform ation betw een X  and Y  w ith know ledge o f Z .

A sim ple exam ple o f a system  displaying a synergetic dependency is one w here three 

random  variables A , B  and C  that can each take on values o f 0  or 1, are related by A  =  B  A C  

(m od 2), which is better known as the logical operation: exclusive disjunction (EOR). In this 

system , it is clear that A  is independent o f B  unless C  has been determ ined, therefore we m ust 

have that I (A: B)  =  0. Given the relationship im posed by EOR, we also have that H ( A \ C )  =  1 

bit (knowing only C leads to no less uncertainty about A),  but in knowing B  together w ith C, 

we can com pletely determ ine A,  hence there is no uncertainty, so that H ( A \ B ,  C)  — 0. Thus, 

using Equation 4.13, we can determ ine that I (.4: B \ C )  =  1 bit, and therefore I (A\  B\  C )  =  — 1 

bit.

8.2.6 Final Remarks

The main findings in this thesis are that for an ensem ble o f natural im ages the average am ount of 

their 2-point and 3-point gradient d irection  dependencies are determ ined by their m ean pow er 

spectrum. This has also been shown for ensem bles o f noise (random  phases) im ages w ith vary
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ing pow er law pow er spectra. M oreover, this relationship has been shown to not extend to 

the dependencies o f gradient directions at high gradient m agnitude locations, gradient m agni

tudes, individual natural im ages, or an ensem ble im ages with scale-variant gradient direction 

dependencies.

Furtherm ore, no significantly greater am ount o f 3-point synergetic1 gradient direction de

pendencies are found for natural im ages over o ther im age classes, for exam ple, its phase ran

dom ized and whitened versions, and G aussian noise im ages. Therefore, these results do not 

provide quantitative evidence for a G estalt holistic approach to vision. A lthough this does not 

rem ove the possibility that these weak synergetic dependencies could be part o f a larger network 

o f dependencies involving other m easurem ents (e.g. shape index and gradient directions which 

both display 3-point synergetic dependencies). Thus, a particular state could contain a large 

num ber o f weak signals, for exam ple, from  the dependencies o f  several different derivative or

der m easurem ents, which could then result in a strongly dependent overall state. Furtherm ore, 

the lack o f large synergetic dependencies betw een gradient directions does not necessarily mean 

that the inform ation-theoretic fram ew ork presented— to evaluate quantitatively the advantages 

o f m ulti-local analysis— would not yield stronger results for other m easurem ents, w hich are not 

necessarily based on image derivatives.

Overall, this thesis has re-em phasised the im portance o f the statistical regularity found in 

the mean Fourier pow er spectrum  o f natural im age ensem bles, not for, as previously reported by 

other authors, correlations between im age lum inance values, but for the average dependencies 

between gradient directions— a first order derivative m easurem ent. Initially, this is a surprising 

result because the pow er spectrum  is said to contain only second order statistics. It is also 

surprising given the appearance o f phase random ized natural images, which contain a lack 

o f  features such as edges and lines. However, the power spectrum  can contain inform ation 

about shading and texture patterns o f an im age. In this respect, it is not unreasonable that 

the average gradient direction dependencies are the same over an ensem ble o f natural images 

and phase random ized natural im ages. Finally, given that the relationship between the mean 

pow er spectrum  and gradient direction dependencies applies to ensem bles o f natural im ages 

and not individual im ages, it is therefore a statistical relationship that is unlikely to be due 

to som e m athem atical correspondence to the Fourier pow er spectrum . This is in contrast to

’Recall that synergetic dependencies imply that knowledge of an additional measurement increases the mutual 
information between previous subsets o f measurements.
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the autocorrelation function, w hich has a direct m athem atical correspondence to the pow er 

spectrum  via a Fourier transform  (W iener-K hinchin theorem ).



A ppendix A

Properties of Light

A.l Depth Cues

A change in luminance (edge) provides another cue to depth. The most com m on is partial 

occlusion. When an object partially occludes another, the occluding object is perceived to be 

closer to the observer than the occluded object, as shown in Figure A .I. This cue provides no 

information o f how far one object is behind the other. W hen there is ambiguity as to which 

object is the occluder and which is the occluded, the amount o f blurring o f the edge boundary is 

an additional cue that can help to distinguish which object is nearer; this is known as occlusion 

edge blur [181].

Figure A .l: A partially occluded object (black circle) appears further away from the observer 
than the occluding object (grey circle).

Texture gradients [34] can also be a cue to depth, an example o f which is shown in Fig

ure A.2. Surfaces have texture elem ents and by using the assumption that the elements are all 

the same size and shape [182] then gradually sm aller projections o f these elements can give the 

perception o f an increase in depth as well as changes in surface orientation.
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Figure A.2: Illustrates how texture elements o f a brick wall diminish in size giving the illusion 
o f depth even in a complicated scene such as this. Note also the presence o f other depth cues 
such as changes in shape and vanishing points.



Appendix B

Human Visual System

B.l Neuron Signals

Light reaching the photoreceptor cells must be converted into a neural signal (transduction). 

In fact, the percentage of signals successfully passed on once a photon is absorbed is around 

70% [183]. Neurons within the brain send signals via biochemical reactions to other neurons. 

A typical neuron (see Figure B .l) will contain dendrites which get excited more or less— within 

some continuous range— by the amount of certain chemical substances known as neurotrans

mitters. This works by creating differences in the potential inside and outside the dendrite. The 

chemicals involved in creating this potential in humans tend to be positively charged sodium 

ions and potassium ions, and negatively charged chloride ions and protein molecules.

Dendrite

Nucleus

Terminal

Cell body

Figure B .l: Illustration of a cortical neuron.

At rest, i.e. when not sending a signal, a neuron will actually have a resting potential of -70 

millivolts (mV). This negative potential is caused by an excess of sodium ions and potassium 

ions outside the neuron compared to inside the neuron (the set up o f this gradient potential re
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quires energy which is provided by the photoreceptor cells when they are stimulated by light). 

The messages from all the dendrites arrive at the cell body which is like the ‘call-centre’ of 

the neuron. The cell body, by using its outer semi-permeable membrane, which allows potas

sium ions to pass through easily unlike sodium or chloride ions, integrates messages from the 

dendrites. This integrated signal is relayed along the neuron’s axon using a series o f action po

tentials known as spikes. The number of spikes in a given time interval is known as the neuron’s 

firing rate and is a measure of the strength of the signal being transmitted by the neuron. Once 

the electric signal passes along the neuron’s axon, it reaches the terminals where it is converted 

back to a chemical signal. At this point, more neurotransmitters are released across a synaptic 

gap to stimulate more dendrites from other neurons.

B.2 Photoreceptor Cells

Photoreceptor cells— cones and rods— are located at the back o f the retina, as shown in Fig

ure 2.6. Interestingly, the number of rods outweighs the number of cones considerably. There 

are over one hundred million rods compared to just six and half million cones [184] although 

the diameter of a cone is approximately three times that of a rod.

tit)

Figure B.2: Left image shows the hexagonal packing of cones found in the fovea, and right 
shows a mixture of rods and cones found in the periphery [185].

Cones are used for bright daylight conditions and colour, moreover cones can detect faster 

changes in light levels than rods which are used in low-level light. In humans, most of the cones 

are packed tightly into a region called the fovea which provides for the highest resolution in the 

centre of the visual field (see Fig. B.3).

The reason the photoreceptor cells appear at the back of the eye is because this provides 

contact with a row of dark cells (pigment epithelium) which replenishes vital molecules in the 

photoreceptor cells after being exposed to light, furthermore, this layer absorbs any stray light 

from being reabsorbed. However, the positioning o f the photoreceptor cells means that light
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Figure B.3: Illustrates how the density o f  rods and cones in the hum an retina changes with 
eccentricity across the visual field [184].

m ust first pass through several layers o f ganglion cells, am acrine cells, bipolar cells and hori

zontal cells before reaching any rods or cones (Fig. 2.6). In fact, m uch o f the light entering the 

eye— around 90% — does not get absorbed by the photoreceptor cells, instead it is absorbed by 

non-receptive biological tissue (e.g. blood vessels) o r sim ply passes through the photoreceptor 

cells w ithout being absorbed [186].

B.3 Optic Chiasm and Lateral Geniculate Nucleus

The region o f the hum an visual system  between the retina and prim ary visual area (V 1), contains 

the optic chiasm  and lateral geniculate nucleus (LGN).

The axons o f the retinal ganglion cells, bundle and form fibres which make up the begin

ning o f the optic nerve. In m oving along the optic nerve to the optic chiasm  (x )  approxim ately 

a third o f the length o f the brain is covered. It is at the optic chiasm  that the neural fibres leading 

from the right side o f the left eye crossover to right side o f the brain; fibers from the left side 

rem ain on the left side o f the brain. This crossover of fibers is illustrated in Figure B.4.

Beyond the optic chiasm , is the optic tract and the lateral geniculate nucleus (LG N ) which 

is part o f  the thalam us. The thalam us is the perceptual hub o f the brain receiving inform ation 

from other senses such as touch and sound. The LGN itself is a body o f neurons arranged in 

several layers.

The receptive fields o f LGN cells are rather sim ilar to those o f ganglion cells: roughly 

circular and have a centre-surround o rg an isa tio n  188]. However, unlike ganglion cells, w hich 

only change spatially, the LGN receptive fields change spatially and temporally. The behaviour 

o f  LGN cells can be m odelled by the product o f  a Laplacian o f a Gaussian in the spatial dom ain, 

and a first order derivative G aussian in the tem poral domain.
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Figure B.4: illustrates the path light takes from the retina (aL,aR,bL,bR) to the striate cortex 
(VC), a  denotes the left eye; b  denotes the right eye. L denotes the left part o f the retina which 
receives optical inform ation from the right part of the visual field. R denotes the right part of 
the retina which receives information from the left part of the visual field. At x> half the the 
nerve fibres crossover, so that the left LGN receives input from aR  and bR. Consequently, the 
right LGN receives input from aL  and bL. Eventually, optic information from the left visual 
field (aL  and bL ) arrives in the visual cortex(VC) in the right hemisphere o f the brain. Thus 
optic information from the right visual field (aR  and bR ) arrives in the visual cortex(VC) in the 
left hemisphere o f the brain [187].
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The LGN is connects to V I [77], It is know n that the lateral geniculate cells also receive 

feedback inform ation from  the cerebral cortex and input from  the brainstem  reticular form ation 

(part o f  the brain associated with attention or arousal). Hypotheses suggest that this feedback 

loop adapts the receptive fields o f LGN cells by using inform ation processed in the cortex which 

is then relayed back to the LGN [189, 190].

The path leading from the eye to the lateral geniculate cells and then VI is topographically 

organised. Thus areas which were originally next to each other in the eye (retina) will also 

be next to each other in the LGN. This is supported by the fact that if  dam age were sustained 

to a part o f the hum an visual cortex then random ly delocalised blindness would not result. 

However, the central part o f the im age form ed on the retina undergoes cortical magnification 

in com parison to more peripheral regions which leads to som e distortion in the mapping [191]. 

T his is due to the denser population o f  cones near the fovea and the low ganglion to receptor 

ratio.

B.4 Hypercolumns

In [192] it has been reported that in the monkey striate cortex, cells have a preference for a 

particular eye. In some layers one eye will dom inant alm ost exclusively, e.g. in layer 4 (see 

Fig. 2.11). Therefore, cells in layer 4 are referred to as monocular. However, in layers above 

and below layer 4, there is a m ore equal share o f cells betw een the eyes; these cells are often 

called binocular.

Within a hypercolum n there are two inner-colum ns that represent cells which are subject to 

Left or Right eye dom inance. Within an individual hypercolum n, along one axis, the variation 

o f orientation preference in cells is sm ooth [193], as shown in Figure B.5. The top surface 

shows the surface o f  V I and below it, deeper levels o f  the cortex.
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Figure B.5: Illustrates the hypercolum ns o f  V I. Orientation preference rotates sm oothly along 
the axis horizontally to the right. The top layer is the surface o f the cortex, and along the other 
axis, cells w hich are subject to Left (L) or R ight(R) eye dom inance alternate. The dom inance 
spreads horizontally in the direction o f changing O P [194],



Appendix C

Human Visual Perception

C .l Philosophical Implications of Gestalt Theory

A criticism  o f the Gestalt theory o f perception is that it falls under the category o f indirect 

realism  (there were many advocates o f  this philosophy: Kant, Locke, Russell): the w orld is 

not perceived directly but through representations o f objects although such representations are 

derived from  real w orld d a ta1. In other words, perceptions are caused by the intrinsic qualities o f  

the environm ent— light and objects— that are interpreted to make inferences about the world. 

This appears to borrow from  both unconscious inference and ecological optics. The reasons 

G estalt theory is considered im plausible is due to the problem s o f infinite regression and the 

need for a homunculus. A lthough these problem s are inherent to indirect realism  and not ju s t 

G estalt theory. Despite these objections, there have been attem pts to continue the paradigm  o f 

internal representation by suggesting the world that is perceived is all in our head [195]. The 

theory suggests the boundary o f this perceived world becom es the edge o f our physical skull, 

beyond which, lies the real physical world. This would render the head that is known to be 

m erely a tiny— perceptual— copy o f our real one! N eedless to say, such views have been met 

w ith fierce criticism .

A theory proposed by Kohler, known as isom orphism , posits that the brain produces elec

trical fields w hich are o f the same shape as the projections o f observed objects. But this theory 

im plies that pictures are created in the head. However, w ho or what is observing this m odel 

in our head? U ltim ately this leads to an infinite regress o f beings m aking observations in the 

head [1871. M oreover, in [187], it explains that if the brain fields were really isom orphic, it 

would not be possible for perceptual grouping to occur since that would not be a true isom or-

'This is also known as representative realism.
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phism  o f reality. However, it may not seem  totally im plausible that 3-D im ages could be created 

in the brain since studies using fM R l scans have shown V I neurons ‘lighting u p ’ with patterns 

sim ilar to the scene being observed, e.g. for a scene o f a flickering checkerboard [55, 541. 

However, the study used a sim ple pattern, is it possible for the brain to create com plex natural 

scenes?

Interestingly, parallels can be drawn betw een G estalt philosophy and another branch o f re

search known as ‘com plexity’, which deals w ith how com plex system s evolve from very sim ple 

basic laws and interactions. In this paradigm , visual perception could be seen as a self organised 

critical system and when a critical point is reached a change in perception occurs. This provides 

a fram ework for m ultistability where it is a state betw een chaos and stability; such a transient 

condition is well described by self organised critical phenom enon. Visual perception could 

involve some form o f com plexity theory because there appears to be a discontinuity betw een 

the overall phenom enon (perception) and the individual elem ents (pixels) and their interactions 

(grouping rules). Indeed, it seems com plexity arising from sim plicity is analogous to the pro

cess o f observing a visual scene and form ing a perception. The perception, rather than being a 

sim plification (in the sense o f inform ation theory) contains a com plex meaning.

C.2 Holism

A holistic approach to perception contradicted the view o f structuralists who hypothesised that 

perceptual understanding is built from small parts (atom ism ). Structuralists sought the elem en

tal structures o f m ental items and believed that from associations between structures m ore com 

plex groups are formed. However, G estaltists suggested that wholes could not be split into such 

parts and their relations: “For an approach ‘from  above dow nw ard’ i.e. from w hole-properties 

dow nw ard towards subsidiary wholes and parts, individual parts ( ‘elem ents’) are not primary, 

not pieces to be com bined in and-sum m ations, but are parts o f w holes” [61]. Therefore, ex

perim ental work in G estalt theory tried to determ ine the nature o f such wholes. For exam ple, 

the visual percept in Figure C. 1 bottom  left illustrates a N ecker cube. If the twelve lines o f 

the cube are viewed in isolation, then all that is perceived are twelve lines orientated vertically 

or horizontally. However, if the sam e tw elve lines are viewed together, positioned in a spe

cific way, a perception o f depth can be created. This phenom enon is em phasised by the circles 

surrounding the N ecker cube (Fig. C .l top w ith circles, and bottom  left without circles). The
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cube’s position— inside o f the four circles— produces the perception that the four circles are 

located at different depths. However, w ithout the cube, the four circles appear located on a flat 

2-D surface (Fig. C. 1 bottom  right). A nother m ore com plicated exam ple o f holistic perception, 

w hich involves the influence o f memory, is presented in Section C.3.

Figure C. 1: The N ecker cube (bottom  left) illustrates how elem ents in a visual scene in isolation 
do not give rise to the same perception when grouped together. A lthough made up o f only 
lines and circles the Necker cube provides percepts o f  depth for the surrounding circles (top). 
Rem ove the Necker cube (bottom  right) and the perception o f  depth is lost and the circles appear 
to be on a 2-D flat surface.

C.3 Memory and Holistic Perception

W hen viewing Figure C.2 for the first time, the percept is o f a random  set o f black splodges. 

Eventually, however, the scene of a dalm atian dog sniffing the ground is perceived, and every 

time thereafter it will be perceived alm ost im mediately. Analysis o f such figures and their 

eventual perceptions address im portant questions as to the role o f m em ory in perception. The 

Gestalt proposal that perception works only from a ‘top-down fashion’ has been both supported 

and criticised. An argum ent used against ‘top-dow n’ processing occurring first is that if  it 

were first the dalm atian in Figure C.2 should appear to us im mediately. However, it is only 

a little later that the ‘w hole’ is perceived. A lternatively, as suggested by Rock, it could be
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that one searches the memory first and then takes into account the visual data; therefore, a 

‘top-down’ process rather a ‘bottom -up’ process is occurring. However, to almost everyone, 

unconnected elements are first perceived. It is only a little later that the ‘w hole’ is perceived. 

Explicitly, Rock states, ‘The recourse to the memory is only done if the stimulus is sim ilar to 

past experiences,....The memory is then accessed and is woven into the final percept so as to 

enrich it’ [196], whereby to enrich is to use past experience to alter the current perception. Rock 

im plies that when no similar past experience exists the current perception remains unaltered but 

it does not m ean that no recourse to m em ory has been attempted.

Another view is that both top-down and bottom -up processes are working together almost 

simultaneously. For example, Julesz proposed that, “In real-life situations, bottom-up and top-

down processes are interwoven in intricate ways, and the slogan o f Gestalt psychologists that
■

‘the w hole is more than the sum o f its parts’— a negation o f the structuralist view o f science— is 

probably true.’’ [197].

Figure C.2: On first viewing, it is not clear what the image is meant to represent, eventually 
though, a dalm atian dog sniffing the ground is perceived. Once the percept has been observed it 
appears com m itted to memory so that any later recourse to the figure prompts a more immediate 
recognition o f the dalm atian dog.

C.4 Common fate and Closure

Com mon fate is a grouping cue which posits that objects moving together will be grouped to

gether, all other things being equal, as illustrated in Figure C.3. Good continuation is illustrated 

in Figure C.4a). Instead o f perceiving four separate lines which all happen to meet at a common
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point, ‘the centre’, two straight lines crossing over at the ‘centre’ are perceived. Thus, if  all 

other factors are equal, elem ents that can be continued, will be grouped together. If there is 

an absence o f the proximity cue then the good continuation cue is stronger when performing 

contour completion tasks [15]. However, quantitative descriptions o f the good continuation cue 

are limited. Closure is demonstrated in Figure C.4b— two separate whole ellipses are perceived, 

rather than any continuation o f one curve from  the left hand side onto the right hand side.

a) b)  c )

11 i t  . . . . •  ' • •
I t

Figure C.3: Certain pairs o f squares will be paired together, arrows point to the direction the 
squares will move in. Proximity is a conflicting factor in this stationary display, but would not 
be if actual motion could be achieved.

a) b)

Figure C.4: Good continuation is dem onstrated in a), rather than perceiving the ends o f four 
straight lines all converging upon the same point, two lines crossing over is perceived. In b) 
the effect o f good continuation is superseded by closure; two separate objects are perceived as 
adjoined.

C.5 Multistability

M ultistability is present in the Necker cube (shown in Figure C.5 top); to make it more obvious 

the two alternative percepts are shown in Figure C.5 bottom left and right; the visual system has 

two com peting hypotheses as to which face is the front face o f the cube.

Kohler, a Gestalt psychologist tried to explain why m ultistability occurs. Kohler’s 

theory— neural fatigue hypothesis— suggests that m ultistability is the result o f neurons becom 

ing ‘tired’ o f firing after some time [198]. This hypothesis posits that each interpretation is a 

result o f a pattern o f neural activity. The perception experienced by the observer will be the
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Figure C.5: Illustrates the tw o m ultistable states (bottom  left and right) o f the Neckercube (top).

interpretation that has the higher activity o f neurons. A fter prolonged stimulation, neurons will 

experience a reduced firing rate as the neuron’s stock o f neurotransm itter substances (required 

to transport signals) reduces, which is neural fatigue. A m odel o f  neuron connections which 

could lead to m ultistable states when viewing a N ecker cube is described next in Section C.6.

C.6 Description of a Multistable Neuron Network

In [199], a m odel o f neuron connections w hich could account for multistability has been dem on

strated for the perception o f a Necker cube. The m odel essentially consists o f two sets o f  neural 

activity S i and S -2 which are disjoint (S \ f )  S 2 ). Each set represents the pattern o f neurons re

sponsible for a particular interpretation o f the scene. If S 1 is activated more than S 2 , it causes an 

inhibitory response in S 2 thereby reducing the firing rate o f neurons in S 2 , but in S 1 there is an 

excitatory response. Eventually neurons in S \ dom inate, however, after any prolonged period 

o f excitation neural fatigue occurs, w hich leads to a reduction in the firing rate o f neurons in S \ 

and an increase in the firing rate o f neurons in 52. Eventually neurons in S 2 dom inate, which 

leads to the observer experiencing the alternative scene interpretation. This cycle o f excitatory
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and inhibitory responses between S \ and S 2 continues leading to changes in the observer’s 

perception o f the scene.

C.7 Competition between Gestalt Grouping Principles

How Gestalt grouping principles, described in Section 2.3.3, com pete with each other was in

vestigated by Hochberg and Hardy who found that up to a certain ratio, intensity cues would 

supersede proxim ity cues [200]. Tversky et al. suggested that the influence o f closure is lim ited 

over good continuation and proxim ity [201]. Tversky et al. perform ed psychophysical experi

m ents to test the ability o f the HVS to perform  contour grouping. The subjects were asked to 

identify closed contours which are edge fragm ents arranged into a circle, and open contours 

w hich are edge fragm ents arranged into an ‘S ’ shape. These ‘target’ contours were hidden 

am ongst other random  edge fragm ents. The paper found that closure was not in itself im por

tant, and that good continuation and proxim ity were sufficient to account for both closed and 

open contours. However, the experim ental results do not suggest that closure never influences 

perceptual organisation. Therefore, Tversky et al. conclude that, ‘it is possible that closure 

m echanisms play an im portant role in perceptual organization’ [201]. The results are not nec

essarily incom patible with G estalt theory if contour grouping is regarded as a lower-level task 

com pared with perceptual grouping.

The Gestalt principles presented are very simple exam ples and in each case the principles 

are viewed in isolation. For natural stimuli, the principles will be in direct com petition with each 

other, m aking it much harder to determ ine the preference o f the HVS for any one o f principles.

Extensions to Gestalt Grouping Principles

The grouping principles o f the G estalts have been extended to include synchrony [202], com 

mon region [65], and connectedness [202]. The extended principle o f connectedness states that 

elem ents that are within the same closed region o f space will be grouped together. M oreover, el

em ents which have connections to each other through additional elem ents are grouped together, 

rather than elem ents w hich are simply in closer proximity. Palm er suggests that proxim ity is in 

fact derived from  connectedness and therefore connectedness is the underlying principle.
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C.8 Quantifying Figural Goodness

Gestaltists stated that sim plicity was the dom inating factor for figural goodness. It was not 

possible to reduce figural goodness to quantitative properties such as the num ber o f sides o f a 

figure, or they sim ply could not find them.

Relatedly, other authors have tried to find quantitative m easures. Properties such as the 

m ore sides a figure has the less ‘good’ it is. D ifferences of regularity are perceived by the HVS 

between figures with the same num ber o f sides. For example, there is a perceived difference 

between a rectangle and a parallelogram ; the square will be perceived as containing m ore ‘good

ness’. However, two groups: A ttneave [1], and Hochberg and M cAlister [203] independently 

proposed that figure ‘goodness’ could be quantified by considering the am ount o f inform ation 

it would take to encode such figures. Both groups presented evidence that ‘good’ figures would 

require fewer bits to encode them  than less ‘good’ figures. In the rectangle versus parallelogram  

example, all four interior angles o f the rectangle are the sam e (90 degrees) in contrast to the par

allelogram. Therefore, there are more regularities in the rectangle. Significantly, this difference 

can be expressed in term s o f the am ount o f  inform ation needed to encode the rectangle, which 

is less than for the parallelogram .

However, such a description does not account for the anisotropy o f perception. For exam 

ple, perception is not invariant to rotations. This property was originally noted by M ach, who 

found that when viewing both a square, and another square rotated by 45 degrees, the latter 

is perceived— despite there being no geom etrical difference between the two— as a diam ond 

rather than a square rotated.

Figure C.6: Illustrates the effect o f orientation upon perception. The square on the left is rotated 
by 45 degrees to give the figure on the right. The perception o f the figure on the right is that o f 
a diam ond not a square, even though both figures are geom etrically the sam e [196].

In [196], it was suggested that if an observer tilts their head by 45 degrees the original per
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ceptions o f the square and diam ond would remain, and therefore in his words, ‘Only a change 

in perceived orientation affects the perceived shape’ [196]. The Gestalts regarded this phe

nom enon as relational determ ination. Rather than consider the absolute geom etrical properties 

o f figures, the relations among properties and parts determ ine the perception. Note, in the ex

am ple o f the rotated square (diam ond percept) in Figure C.6, our imagination could be used to 

rotate it again by 45 degrees to reform  a perception o f a square. Conversely, if the square is 

rotated by 45 degrees in our im agination alone, it would still appear as a square in our mind. 

T his highlights the anisotropy in perception.
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Computational Approach to Vision

D.l Edge Detection Algorithms

A substantial am ount o f research has been dedicated to detecting edges and lines in im ages. 

Both features have been identified in the image processing com m unity as important because the 

cause o f an edge in an image is attributable to properties o f surfaces o f objects and the light 

field in the environm ent. The light reflected from  a surface will change across different surface 

m aterials, orientations o f those surfaces, and the am ount o f light falling onto those surfaces.

Com puter algorithm s perform ing edge detection utilise an edge operator which is applied 

across the whole image. The purpose o f this edge operator is to have different responses de

pending on the relationship betw een neighbouring lum inance values o f pixels. For exam ple, an 

edge operator should have a strong response when there are abrupt change between neighbour

ing lum inance values; a weak response when there are gradual changes betw een neighbouring 

lum inance values, and no response when lum inance values between neighbouring pixels is uni

form. Thus the overall output o f an edge operator should be high at locations where there are 

sharply contrasting regions in the image, and low at all other locations. Exam ples o f edge op

erators are shown in Figure D. 1 and the application o f one o f the vertical edge operators to the 

lum inance values o f  an image are shown in Figure D.2.

However, the example o f an edge shown in Figure D.2(a) is rather idealised. Edges in 

images o f natural scenes are not usually sharp step edges. There are several reasons which

(a) - 1  + 1 (b)
+ 1 
-1 ( c )

-1 0 +1
-2 0 +2
-1 0 +1

(d)
+ 1 +2 +1
0 0 0
-1 -2 -1

Figure D .l: Left: (a) & (b) are exam ples o f  sim ple vertical and horizontal edge operators 
respectively, and right: (c) & (d) are Sobel edge operators.
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1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0
5 5 5 5 1 1 1

(b)
0 0 0 -4 0 0 0

5 5 5 5 1 1 1 0 0 0 -4 0 0 0
5 5 5 5 1 1 1 0 0 0 -4 0 0 0
5 5 5 5 1 1 1 0 0 0 -4 0 0 0

Figure D.2: Left: (a) is an exam ple o f an im age displaying its lum inance values as a num eric 
quantity. Right: (b) shows the values after applying (convolution) the vertical edge operator 
illustrated in Fig. D .l (a).

cause the smoothing o f edges; it can be attributable to real effects in the environm ent or part o f 

the m easuring device (cam era) which produces the im age, for exam ple, using a square aperture 

produces edges (artifacts) that are not present in the scene. Regardless of the cause, finding 

real edges rather than artifacts (noise), means that edge detection algorithm s for natural images 

which adopt the strategy o f applying edge operators at several scales should do a better jo b  than 

one which use only one scale [87], an example o f such an algorithm  is described next.

Marr-Hildreth Zero-crossing Algorithm

The M arr-Hildreth zero-crossing algorithm  [78] is a m ulti-scale edge finding algorithm  that 

uses three spatial scales: fine, m edium  and coarse. The ‘zero-crossing’ refers to the use of 

second order differential operators to find edges; m athem atically, this is equivalent to finding 

m axim a in the first derivative o f the im age but its application, com putationally, is different. At 

an edge, the second derivative o f the intensity profile crosses zero at the location o f the edge, 

and is flanked by positive and negative values on either side, depending on the direction o f the 

edge. By com puting zero-crossings rather than m axim a, com putation time can be saved because 

rather than having to pass four first-differential operators— horizontal, vertical, two diagonal—  

over a 2-D image, only one operator need be used, as illustrated in Figure D.3. Notice that the 

M arr-H ildreth edge operator, in Figure D.3(c), resem bles the centre-surround organisation o f 

receptive fields found in ganglion cells (see, Fig. 2.8) and LGN cells (both cells are circularly 

sym m etric with a M exican hat shape).

-1 -1 -1 -1
(a) -1 +2 -1 (b) +2 (c) -1 +8 -1

-1 -1 -1 -1

Figure D.3: Vertical in (a), horizontal in (b) and two diagonal (not shown) edge operators can 
be replaced by the discrete version o f the M arr-H ildreth edge operator in (c) which m easures 
the second derivative o f a 2-D im age averaged over all directions.
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Canny Algorithm

Despite its m ulti-scale approach, the M arr-H ildreth algorithm  still suffers from finding artifacts 

or poor localisation o f edges; an alternative algorithm  was developed by Canny. The Canny edge 

detection algorithm  [204] uses a set o f eight differently oriented first order differential operators 

and detects edges as peaks in the output o f these operators. This m ulti-directional operator 

schem e provides better detection o f edges than the M arr-Hildreth algorithm  and according to 

Canny is optimal at finding the m ost edges by reducing error rates, and localizing edges as 

closely as possible to the actual edge position.

The optimisation part o f the algorithm  finds local m axim a by com paring pixels along the 

direction o f the gradient and suppressing any non-m axim al responses. This reduces the num ber 

o f false edges. There is then a two level— high and low— threshold stage; pixel values w ith gra

dient m agnitude higher than the high-threshold level are detected as edges, and if  a pixel value 

lies on a contour it is also classed as being on an edge if its gradient magnitude value is between 

the high- and low-threshold values. This allows the algorithm  to preserve w eaker edges, but 

the setting o f threshold values does affect the perform ance o f the algorithm  by reporting false 

edges or m issing edges.

Scale-space Algorithm

Neither algorithm — M arr and Hildreth, or Canny— properly integrates the output o f the edge 

operators at different scales. The problem  is determ ining which edges are part o f the sam e edge 

across the different scales. This is because the same edge may appear at different locations 

in the im age depending on the scale. Therefore, a deficiency in both algorithm s is accurately 

finding the location o f an edge. To im prove perform ance, it has been shown that edge operators 

should act at a continuum  of scales spanning the size of structures in the image from fine scale 

to coarse, not ju st three scales as in the M arr-Hildreth algorithm . This scheme was proposed 

by W itkin (Scale-space filtering) in his scale-space algorithm  [166] and was part o f a larger 

concept known as the scale-space o f an image, which is the stack o f images at different scales 

described by Koenderink [79] and Lindeberg [87].
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