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Abstract

Bilateral exchange networks are structures in which a finite set of players have a
restricted framework of bargaining opportunities with each other. The key restric-
tions are that each player may participate in only one ‘exchange’ and each of these
may only involve a Il)ajr of players. There is a large sociology literature which in-
vestigates these networks as a simplified model of social exchange. This literature
contains many predictions and experimental results, but not a non-cooperative game
theoretic analysis. The aim of the thesis is to provide this.

The analysis builds on the economic theory literature on non-cooperative bar-
gaining, principally the alternating offers and Nash demand games. Two novel
perfect information models based on the alternating offers game are considered and
it is demonstrated that tHey suffer from several difficulties. In particular, analysis
of an example network shows that fc_>r these two models multiple subgame perfect
equilibria exist with considerable qualitative differences. It is argued that an al-
ternating offers approach to the problem is therefore unlikely .to be successful for
general networks.

Models based on Nash demand games also have multiple solutions, but their
simpler structure allows investigation of equilibrium selection by evolutionary meth-
ods. An agent based evolutionary model is proposed. The results of computer
simulations based on this model under a variety of learning rules are presented. For
small networks the agents often converge to unique long-term outcomes which offer
support both for theoretical predictions of 2 and 3 player alternating offers models
and experimental results of the sociology literature. For larger networks the results
become less precise and it is shown they sometimes leave the core. It is argued that
a modified evolutionary model has scope for avoiding these difficulties and providing

a constructive approach to the problem for large networks.
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Chapter 1

Introduction and Overview

Social exchange is a framework for studying a wide range of ongoing mutually prof-
itable social interactions which take place between pairs of participants. These in-
teractions typically take place within networks of many possible exchanges. Network
position can be a crucial determinant of the outcomes that a participant receives
from social exchange. As a simple example of social exchange, suppose that one
person in a community has a monopoly on a valuable skill (e.g. literacy or medical
training) whereas all the others have identical skills and resources and are incapable
of acting collectively. The monopolist will receive many offers to exchange their
skill (e.g. requests to read letters or provide medical aid) and over time exchange
outcomes will develop which they find favourable (e.g. monetary rewards, pleasant
company, actions denoting social status).

The relationship between network structure and the outcome of social exchange
has recently been the focus of considerable research by sociologists. One research
direction has concentrated on a simplified model of social exchange networks in which
there are many discrete rounds and in each round every participant may take part in
at most one exchange with another participant. There is a network of opportunities
for exchange which is fixed over all rounds. The bilateral exchanée networks of

the title mathematically describe such settings. Sociologists have proposed many
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theories predicting exchange in these settings and carried out extensive laboratory
experiments with human subjects.

Bilateral exchange networks can also be used to model special cases of economic
exchange. There exists a substantial economic theory literature on non-cooperative
game theoretic models of bargaining between two participants. This thesis develops
extensions of these models which apply to general bilateral exchange networks. This
is of use to the theories of both economic and social exchange. In particular, it
allows an investigation of whether the sociological theories mentioned above can be
supported by rigorous non-cooperative game theoretic models. Also, the extensive
experimental results of the sociology literature provide a convenient test for the
predictions of game theoretic models. The overall aims of this research are to find

models which:

a) Adequately support experimental results and satisfy other reasonable proper-

ties!,
b) Produce predictions for large networks representing typical social networks.
c) Explain the relationship between network parameters and outcome.

There are two leading approaches to non-cooperative models of bargaining be-
tween a pair of participants in the economic theory literature. The first is based on
the alternating offers game of Rubinstein [56]. It models the bargaining process as
a sequence of proposals made alternately by the two participants. Each proposal
must be accepted or rejected before a counter-proposal is made. The first accepted
proposal is binding. The bargaining process entails costly delays which, although
typically small, turn out to be the mechanism providing the game with a unique
outcome under a solution concept motivated by assumptions of players’ rationality,
namely subgame perfect equilibrium. However, the complicated strategies spaces of

this game preclude an evolutionary approach. The second approach is based on the

1Some ‘reasonable properties’ are developed throughout the thesis and collated in section 9.1.1.
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Nash demand game proposed by Nash [53]. This game abstracts away many details
of the bargaining process and simply requires each player to simultaneously demand
a utility value. If it is feasible for both players to receive their demand then they do
so. Otherwise both receive nothing. Under solution concepts motivated by players’
rationality, this model supports a very wide range of outcomes. However, its simple
strategy structure is well suited to an evolutionary approach.

It is easy to state many plausible sounding extensions of the alternating offers
game to the setting of bilateral exchange networks. However, seemingly innocent
variations in the rules of these extensions can hide significant implicit assumptions
about the bargaining opportunities available to players. In this thesis, the features of
such extensions are investigated and, based on this, two novel models are proposed
which apply to general bilateral exchange networks and allow appropriate bargaining
opportunities to players.

Once the possibility of more than one exchange is introduced, the analysis of
models based on the alternating offers game using subgame perfect equilibrium typ-
ically requires considerable effort. Even intuitively obvious results can require com-
plicated proofs2. However, this thesis succeeds in proving several results describing
the SPE behaviour of the two novel nfodels mentioned above for several small net-
works. The models are shown to support a wide range of solution outcomes for
certain networks involving significant qualitative payoff differences. It is argued
that the underlying causes of this multiplicity are likely to also apply to most large
networks. It is concluded that, except for the smallest networks, only weak pre-
dictions are likely to be produced by the alternating offers approach, such as loose
upper and lower bounds on the payoffs of certain positions. These do not match the
more precise experimental results of the sociology literature, failing aim a) above.

Evolutionary models based on the approach of the Nash demand game are shown

to be a much more successful approach. In this thesis, an evolutionary.model is de-

2For example, many such results are contained in section 5.4.
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veloped and implemented as a computer simulation. The simulation results give
strong predictions for the outcomes of bargaining in several bilateral exchange net-
works. These predictions match the patterns found by sociology experiments for
some networks, such as line networks, as required by aim a) above. Furthermore
they complement the experimental results by showing that in some settings they
remain valid over much longer time scales. Also, very strong support is found for
the von Neumman-Morgenstern triple solution to 3 player ring networks. This com-
plements the theoretical support this solution receives from an alternating offers
approach of Binmore (3] (where this solution is first proposed). A theoretical result,
theorem 7.3, on the evolutionary model is also proved, predicting the payoffs of cer-
tain networks positions under various conditions representing a limiting case (low
mutation) of the evolutionary model. The predictions of this theorem are supported
qualitatively by the simulation results but not quantitatively. Thus theorem 7.3
reveals one mechanism by which network parameters can drive the results of bar-
gaining, matching aim c) above, but results are also affected by other evolutionary
pressures.

For a particular network the simulation results offer support to non-core solu-
tions. It is argued that the support for these solutions is due to the bargaining
opportunities available to players being overly restricted in the game underlying the
evolutionary model. This hinders the potential usefulness of this particular evolu-
tionary model for large networks. However, in general the evolutionary approach
based on the Nash demand game shows considerable potential for development to
study large networks; aim b) above.

Both approaches mentioned above provide support for some qualitative features
of theoretical predictions of the sociology literature, and many of the experimental
results. Also the theoretical results described above provide support for some of the
intuitions described in the sociology papers for factors that drive the outcome of

bargaining. However no support is found for the ad-hoc assumptions at the heart
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of the theories of the sociology literature. This research suggests that theories and
experiments of social exchange should seek to investigate how network level outcomes
are generated from individual level behaviour rather than such assumptions.

Chapter 2 is a literature review of social exchange, focusing on network effects.
In particular, it contains a summary of experimental results. Chapter 3 consists of
some preliminary mathematical material, such as a definition of a bilateral exchange
network and an outline of the game theoretic concepts which are used later. Chapter
4 contains a literature review of the alternating offers game and various extensions of
this game which model bargaining situations with more players. Some novel material
is included as well, exploring various features of these models and their effects on
subgame perfect equilibrium behaviour. Chapter 5 defines two novel extensions of
the alternating offers game and analyses them for various example networks with
a small number of players. Chapters 6 — 8 are concerned with the evolutionary
approach based on the Nash demand game. Chapter 6 defines an extension of the
Nash demand game to large bilateral exchange networks and gives an overview of
an evolutionary model. A review of related literature is also contained. Chapter
7 discusses the details of this model in more depth and also contains some limited
theoretical analysis of it. Chapter 8 contains the results of simulations using this
model.

Chapter 9 is the conclusion. One section of this chapter summarizes the theo-
retical results and simulation data obtained for various bilateral exchange networks
throughout the thesis. These results are compared with each other and with the
theories and experimental data of the sociology literature. There is also some dis-
cussion on what this reveals about the forces driving the outcome of bargaining in
particular networks. The other main section of the conclusion is a discussion of the
suitability of the models proposed throughout the thesis. Also, some future research
directions are proposed, including possible ways to adapt the evolutioné,ry model of

chapter 6 to allow the investigation of larger networks.
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Finally, note that the more technical material of many chapters, mainly lengthy
proofs, is relegated to appendices. These appear at the end of the corresponding

chapters.
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Chapter 2

Sociological Background

This chapter reviews the sociology literature on social exchange. Section 2.1 is on
early work on social exchange and also serves to describe what is usually meant by
the term ‘social exchange’. Section 2.2 focuses on the simple case of dyadic ezchange;
exchange between a pair. Section 2.3 discusses extending the investigation of social
exchange from dyads to networks and also briefly mentions one area of applica-
tion. Many social exchange researchers have concentrated on studying negatively
connected networks. Thgse are discussed in section 2.4 and form the basis for the
bilateral exchange networks investigated in this thesis. Section 2.5 describes several
predictive theories from the sociology literature for negatively connected networks.
The remaining sections discuss laboratory experiments in this setting. Section 2.6
describes typical features of the experimental designs used. Section 2.7 summarizes
some experimental results obtained from the literature. Section 2.8 briefly discusses
some issues raised by these results. In chapter 9 this experimental data is compared

to the results of this thesis.
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2.1 Early Work

The roots of the literature on social exchange include the work of Homans [35]
(chapters 3 and 4), Blau [12], and Emerson [25]. The area of study is any form
of pairwise exchange in a social setting. Indeed, Emerson sees social exchange as a
framework for the investigation of any observations about reciprocal social behaviour
based on interactions between pairs. This allows a very wide definition of what is
exchanged. However, requiring a social setting puts some constraints on the domain
of study. Some conditions which are typically mentioned are that exchanges are face-
to-face and bilateral, opportunities for exchange are repeated rather than one-offs,
and there is no mechanism for participants to enter into formal binding contracts.
Thus, only special cases of economic exchange can be considered as social exchange.

An example of social exchange considered by all three authors mentioned above
is a workplace where workers sometimes ask each others’ advice!. Homans describes
this as social exchange where advice is exchanged for “approval”’, e.g. flattery.
Emerson offers an interpretation where exchanges take place with the expectation
of future reciprocal exchange. If the exchange relationship is to continue, the advisee
must supply something the advisor values, e.g. help around the office or pleasant
company. Blau interprets help as being exchanged for “status”, a social signal which
plays several roles. It signals that the advisor is a good source of help on this subject,
which presumably is valuable for the receiver. It also signals that the advisee is under
certain social obligations. If these are reneged upon then he is liable to some form of
punishment by his social group, e.g. he will not be supplied with advice by anyone

else. Thus possible sources of reciprocity are due to social pressure or to maintain a

!This is based on a field study by Blau [11] of an office of federal agents auditing firms to
enforce certain laws. Discussing details of a case is officially forbidden. However, the cases are
quite complex and the agents often feel they require assistance. They are reluctant to go to their
supervisor, believing it may adversely influence their annual rating. Instead they often ask the

advice of a more experienced agent, which is unofficially permitted.
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valuable flow of exchange.

Other examples of social exchange given by these authors include the exchange
of favours between neighbours e.g. the loan of items, or the exchange of invitations
to participate in some social activity such as dinner parties or tennis matches. A
more large scale example is the “Kula ring” studied by Malinowski [41]. This was
a complicated system of ceremonial exchange between Melanesian islanders which
entailed considerable social obligations and offered opportunities for strategic be-
haviour. The custom of exchange indirectly linked a large ring of islands many of
which had little direct contact.

Blau discusses some limits to what can be modelled by social exchange. He
contrasts the local influence that can be achieved through these means with “im-
personal power on a large scale”. This is split into economic power and political
authority. Differences between economic and social exchange have already been
mentioned. Political authority requires institutions to transmit commands. These
may act partly through networks of social exchange, but also partly through eco-
nomic action or through actions that affect large numbers of people without social
contact, e.g. mass media.

For the purposes of the discussion in this chapter it is convenient to assume that
a player’s? outcome from exchange can be easily quantified by a numerical measure,
which I shall refer to as their payoff. The authors mentioned above construct various
theories of how this can be achieved which differ from standard economic theories of

utility. The measures used by Homans and Emerson?

are related to the frequency
with which a valued action is performed by a potential exchange partner, and so have

some basis in concrete experimental data. The exact details of what is meant by a

2The sociology literature generally uses the term ‘actor’ for a participant in exchange. 1 use
‘player’ for consistency with the game theoretic terminology used in the other chapters of the

thesis. .
3This refers to the measure Emerson used in [25]. In [21] a frequency based measure is no longer

used.
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payoff can be glossed over in this chapter, since most of the discussion below requires
only a qualitative notion of payoff. The exception is the laboratory experiments of
sections 2.6 and 2.7. In these payoffs have a concrete meaning in terms of the

payments the experimental subjects receive.

2.2 Dyadic Exchange and Power

Early research pays particular attention to dyadic (i.e. two player) exchange. Emer-
son’s approach to dyadic exchange influences much of the subsequent literature. His
theory developed over time and the version I describe here is taken from {22]4. An
exchange relation between players A and B is considered in which these players have
resources z and y respectively which they can exchange. The following definitions
are made®:

“The dependence (D4p) of A on B in a dyadic exchange relation ...is a joint
function (1) varying directly with the value of y to A, and (2) varying inversely with
the availability of y to A from alternate sources.”

“...the power of A over B (P4p) is the potential of A to obtain favorable out-
comes at B’s expense.”

The latter definition is supported (in [25]) by a quote from Weber [69] (page
152):

“Power is the probability that one actor with a social relationship will be in a

position to carry out his own will despite resistance.”

“The earlier version of [25] is in terms of what is referred to in section 2.3 as a reciprocal setting;
the players occasionally have opportunities to make rewarding actions to each other. The later
version of [22] which is presented in the text is in terms of what is referred to in section 2.3 as a
negotiated setting; in each time period the players must agree the terms of a bilateral exchange.
One reason for the switch to a negotiated setting is that this matches the experimental setup used

in [22]. .
®Emerson does not appear to explicitly define a value for Dg, although in [25] he writes “this can

readily be accomplished with considerable precision” of the definition of a closely related quantity.
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Emerson equates P4p and Dpg4. Furthermore, in [21], in the context of two
players who must split a unit of payoff, Emerson and Cook argue that if P4 = Pga
then the payoff is split equally®, and if there is an inequality then this indicates
which player takes the majority of the payoff.

Markovsky et al [45] make the following similar but more straightforward defi-
nition of power:

“Power is ... [a] potential for obtaining relatively favourable resource levels.”

In this and Emerson’s definitions of power it is important to note the use of the
word ‘potential’. The literature commonly makes a distinction between power and
exercised power (or power use). For example, Markovsky et al [44] claim that a
player with a power advantage (under a measure of power defined in section 2.5.1
below) could obtain the maximum available gains from exchange if they chose to
fully exert their power. Some reasons which are given in the literature (e.g. see
Cook and Emerson [21]) for why not all power is exercised include equity norms or
other psychological biases, players who are not fully rational, and social pressure.

The above discussion of the definition of power is given because many sociological
predictions on social exchange in networks are phrased in terms of power differences
between network positions. On the other hand, the laboratory experiments of the
literature reveal only exercised power.

Homans [35] makes several qualitative propositions on the frequency of actions
in an ongoing dyadic relationship where the players may take actions which reward
each other. These propositions are not detailed here as they do not generate a
specific prediction for a dyadic exchange. However, he does conclude from them
that in a situation where one central player has an opportunity to exchange with

two outlying players, the outliers do worse than they would if the other outlier did

SThis is a vague conclusion as it is not robust to a reinterpretation of the meaning of ‘payoft’. In
[21] details are not provided of how a payoff scale representing preferences is constructed. However
in an experiment later in [21], experimental subjects earn cash payments proportional to their total

payoffs over many exchanges.
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not exist whereas the central player does better.

2.3 Exchange Networks

In practice, social exchange is not restricted to two player settings. An interesting
question to sociologists is the effect of the structure of a network of exchange oppor-
tunities on the payoffs that the players receive. Emerson [25] provides some ideas
on how to move from studying exchange in pairs to studying networks. He proposes
a classification of connections between exchanges. A pair of exchange opportunities
with a player in common can have a positive or negative connection. Two exchange
opportunities have a positive connection if exchange in one “facilitates exchange”
in the other’. They are said to be negatively connected if exchange in one will
“diminish or prohibit exchange” in the other®. Emerson acknowledges that this
classification does not include all possible connections.

In many subsequent papers, the terms positive and negative are usually used
— and often defined — to mean the following stronger forms of these definitions.
Positively connected exchanges may only form together and negatively connected
exchanges may never form together. These strong definitions are useful in a negoti-
ated exchange setting. In this there are a series of rounds. In each the players must
come to a set of bilateral agreements amongst themselves giving terms of exchange,
constrained by the connections between exchange opportunities. An alternative is
a reciprocal setting in which players make each other unilateral gifts in the hope of
future reciprocity®. Most of the subsequent work has concentrated on the negotiated
setting. An exception is the work of Molm et al (e.g. [48, 50]) which investigates net-
work effects in a reciprocal framework. The definitions of negotiated and reciprocal

settings are taken from Molm et al [50).

"These quotes are taken from the summary of Emerson’s classification in {73].
8 According to Emerson’s scheme these are the bilateral versions of connections. In unilateral

connections, the effects mentioned are one-way.
91t is hard to see how the strong definitions could be applied in this setting.
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One reason for an interest in power in exchange networks is its influence on
network formation, as discussed by Emerson in [25]'°. Oue example he considers
is a network in which all exchange opportunities are between a central player and
a large set of outlying players, and all exchanges are negatively connected. This is
a unilateral monopoly in which the central player can extract a large payoff from
the outliers. Emerson argues that this situation provides incentives for an outlier to
diversify what they can exchange with the central player in order that their exchange
opportunity becomes less negatively connected to the others. Alternatively, there

is also an incentive for the outliers to bargain collectively. Emerson draws parallels

between these processes and possible paths in the development of a society.

2.4 Negatively Connected Networks

Most sociological research has concentrated on studying negatively connected ex-
change networks'!. These use the negotiated setting of the previous section and the
restriction that the strong form of negative connection exists between any pair of
exchanges involving a common player. Thus in a round of play a player may be
involved in at most one exchange. A rationale for concentrating on this case is given
by Emerson and Cook in [21]:

“...a) the relation of power and dependence to position in negatively connected
networks is relatively straightforward, and b) negative connections are easily oper-
ationalized in the laboratory.”

Another standard assumption is that each exchange opportunity takes the form
of splitting a number of payoft points. This number is usually constant across all

12

exchange opportunities Also note that networks are assumed to stay constant

ONetwork formation has not been a major interest of subsequent research. Two exceptions are

Cook and Emerson [21] and Walker et al [68] which contain some material on network formation.

YPapers which consider other types of exchange network include Markovsky et al (45]. Skvoretz

and Willer [66] and Yamaguchi [75].
'230me papers, such as Cook and Emerson [2i] and Molm et al [50]. investigate negatively
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over time. That is, the exchange opportunities do not vary.

Several competing predictive theories have emerged. a few of which are briefly
summarized in section 2.5 below. These approaches typically rely on some parameter
values or functions which are chosen on an ad-hoc basis!3. A common characteristic
of these approaches is that they are not generated directly from assumptions about
individuals. Indeed the outcome is often claimed to be fairly robust to the specifica-
tion of individual behaviour. For example Lovaglia et al [39] state of a certain class
of networks:

“...structural determinants are so powertul . . . that actor cognitions can introduce
only minor variations at best.”

However, assumptions about the behaviour of individual players are sometimes
made. For example, it is often assumed that players who are excluded from exchang-
ing will lower their subsequent demands, and those who are included in an exchange
will raise theirs. These sometimes occur as assumptions used in simulations (e.g.
in Cook et al [22]) and sometimes as general assumptions (e.g. in Markovsky et al
[45]').

Many laboratory experiments have also been carried out as empirical tests of
the competing theories of the literature. Section 2.6 describes the design of these
experiments. They concentrate on investigating the outcomes produced in different
network settings, and test hypotheses about aggregate outcomes rather than indi-
vidual behaviour. The literature also mentions many simulation results. These are
not discussed here because usually only a few derived statistics are published rather

than detailed results and the models implemented by the simulations are usually

connected networks in which the number of payoff points available varies in different exchange

opportunities.
13For example the functional form of Dpa mentioned earlier. or the weights in the GPI function

described in section 2.5.1.

4Here they take the form of ‘scope conditions’ which delimit the domain of applicability of the
theory. It follows that these scope conditions are assumed to capture an aspect of players’ behaviour

in some interesting situations.
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not documented in much depth!®.

A central concern for a non-cooperative game theoretic approach to modelling
bargaining is the structure of the bargaining process. For example, is there a time
limit at which bargaining must cease? How much communication between players
is allowed? Can a player bargain with two others simultaneously? These details can
greatly affect the outcomes supported by such models as is made clear in the follow-
ing chapters!'®. The sociology literature is generally agnostic on most of these points.
It may be that the solutions proposed by the literature are thought to be robust
to these details; this is often the case with information, as discussed shortly. How-
ever, in the majority of laboratory experiments, subjects interact through computer
terminals and thus it is necessary to have a detailed specification of a bargaining
process. Such specifications are described in section 2.6. These may give some in-
sight into the assumptions made by researchers. However. it is quite possible that
many of these assumptions are made for experimental expediency rather than on a
theoretical basis, so too much should not be read into them.

One element of the bargaining process which is discussed explicitly in the litera-
ture is information. However, there is not a consensus on the effect of information.
For example in [45] Markovsky et al state:

“Having information on negotiations other than one’s own is expected to accel-
erate the use of power, but not affect relative power.”

On the other hand in [22] Cook et al state:

“An important feature of our laboratory research is that actors. . . have no knowl-
edge of the network beyond their own opportunity set. ... This fecature allows us to
examine ‘purely’ structural determinants of behaviour.”

In other words, they do not rule out the possibility that information could affect
the outcome. The role of information has been explored experimentally (e.g. in Lo-

vaglia [39]). However, as discussed in section 2.8 below, the results are inconclusive.

!> An exception is Markovsky [42].
15For example see the discussion of section 4.4.5.
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The sociology literature generally makes little use of game theory to model social
exchange networks. One exception is the work of Bienenstock and Bonacich (e.g. [1.
2]) who apply cooperative game theoretic solution concepts to the problem. However,
they do not probe the assumptions underlying these different solution concepts to
form a view on which, if any, is most appropriate to the situation. Also, Willer and
Skvoretz (72| consider a simplified non-cooperative model of bargaining in which
some players have limited strategy choices while others act “parametrically” i.e.
according to fixed rules. For example they consider a negatively connected exchange
network in which a central player can split 24 payoff units with one of two outlying
players in each round. In their model, in each round the outlying players must
choose simultaneously from two possible strategies: demand d units or d — 1 units.
These correspond to sticking to a convention or undercutting. The central player
simply (randomly) chooses a player with the lowest demand, gives them the number
of points which they demanded and keeps the rest. In the following round d is set to
whatever value the preceding lowest demand was!'7. This illustrates a mechanism by
which the outlying players undercut each other in this network, driving down their

payoffs over time.

2.5 Predictive Theories

This section briefly sketches some theories from the sociology literature which pre-
dict the outcome of negatively connected exchange networks in which all exchanges
involve splitting the same number of payoff points. The main motivation for this is
to allow some similarities between parts of these theories and the results of this the-
sis to be highlighted in the discussion of the concluding chapter. Thus the theories

discussed are those mentioned in later discussions.

17This is essentially a version of an extension of the Nash demand game to 3 players with very
simplified strategy sets played repeatedly. Chapter 6 discusses extensions of the Nash demand game

to bargaining situations with more than 2 players.
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Many other theories exist in the literature. Some continue to be developed by
their authors, whereas others have been abandoned following poor performance in
experiments'®. One active branch of research concerns theories based on the power-
dependence arguments outlined in section 2.2. Some examples are Molm et al [49]

and Yamagishi et al [73].

2.5.1 NET: GPI

In [45] (1988), Markovsky, Willer et al introduce a predictive theory which they
name ‘network exchange theory’. Later, other researchers often used this term to
describe the whole field of social exchange in networks, so in [43] (1997) Markovsky
coins the acronym NET to refer to the particular research program based on [45]. 1
follow this convention here. Over the course of several papers. NET has undergone
several revisions and grown quite complicated: various techniques must be applied
in different cases. This section discusses one particular technique from the original
paper in the context of negatively connected networks. Section 2.5.2 discusses some
other aspects of NET.
The graph-theoretic power index (GPI) is defined in [45] as follows:
Py = Z(—l)iﬁl’mm
i>1
where m;; is the number of elements in any set of paths!? starting from z of length

i such that no vertex other than z occurs in two paths’.

18 An example is the network vulnerability measures proposed in Cook et al [22] which performed

badly in an experiment of Markovsky et al [45].

19This entails viewing the network as a graph whose vertices are the set of players and whose
edges are the set of unordered player pairs which have exchange opportunities. A path is defined
in section 3.2. Cycles are not viewed as paths for this definition (this can be deduced from the GPI

values given for the kite and stem networks in Markovsky et al [44]).

2992 is not well defined. For example consider a network with players {1.2.3.4.5} and exchange

opportunities between the pairs {12.13,23,24.35}. For o = 1 and { = 3. two sets of paths as
described in the definition are {123}. {124, 135}. If m,, was defined as the macimum number of

elements in any such set then it would be well defined.
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The rationale for this expression is that odd length paths arc beneficial to the
power of a player z but even length paths are detrimental. For example. consider
a player z in a negatively connected exchange network. Suppose a new player y
is added whose only exchange opportunity is with x. This can ouly strengthen the
bargaining position of z. However suppose another new player z is now added whose
only exchange opportunity is with y. This improves the bargaining position of y and
thus weakens z. This argument can be extended inductively. The weighting that
the formula gives to these effects is ad-hoc. A subset of paths are given weights of
identical magnitude, 1, and the others are given no weight (i.e. those that would
produce at least one overlapping path if they were included) .

A possible motivation for the ‘non-overlapping’ condition in the GPI definition,
based on an example given in [45] is as follows. Consider a player z in a negatively
connected exchange network. Suppose a player y is added whose only exchange
opportunity is with z. Then player x receives an added contribution of 1 to p,. If
y were connected to another bargaining network, then the contribution to p, of the
branch including y must be between 0 and 1. That is, player © does better than
if y did not exist, but worse than if x could monopolise y. The non-overlapping
condition ensures that the contribution of the y branch falls within these limits.
However, this argument is only persuasive in a tree setting.

The GPI values are assumed to predict which player receives a greater payoff
conditional on an exchange occuring. Only a qualitative prediction about outcomes
is made in [45]: given that players z and y exchange, x receives a greater share of
the payoff than y if and only if p, > p,. In [44]. Markovsky et al state that in these
cases:

“exchange outcomes approach maximum differentiation across positions, con-
strained only by the size of the resource pools”

The question of which exchanges forin is addressed in other NET pai)ex's such as

Lovaglia et al [38].
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2.5.2 NET: Other Predictions

Various papers have pointed out networks for which versions of NET perform badly.
For example Yamagishi and Cook [74] contains simulation results for two networks
(including the stem network, a diagram of which is given in section 2.7) which GPI
methods match poorly. These have prompted various modifications to NET. For
example Markovsky et al [44] introduces an ‘iterative extension’ of GPI to deal with
these networks.

An extension to NET which is particularly relevant to the results of this thesis
is the concept of weak and strong power. This is iutroduced in Markovsky et al [44].
A summary of this theory is as follows. Strong power results in near-total payoff
differentiation and is more characteristic of small sparsely connected networks. It is
stated in [44] that the source of large differentiation is that:

“strong power structures exhibit a ‘ratcheting’ process whereby actors in struc-
turally disadvantaged positions serially outbid one another...”

In Markovsky et al [44] strong power effects are predicted by an iterative version
of GPI. Rules are given which classify players as having high and low strong power
network positions based on their GPI values. Players in high and low strong power
positions are predicted to receive payoffs of 1 and 0 respectively. When these GP1
rules predict no strong power differences, weak power effects may result in mild
payoff differentiation. Weak power is said to be more characteristic of large densely
connected networks which are more typical of social relations. It is claimed in [44]
that:

“Weak power differentials have the saine microfoundation as strong power differ-
entials: Actors seeking to avoid exclusion from exchanges accept deals... unfavorable
to themselves.”

Weak power is predicted by a method that gives a “probability of exclusion™.
Lovaglia et al [39] extend this weak power model to give quantitative predictions of

payoffs.
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Lovaglia et al [38] give the following heuristics on strong power as a simpler al-
ternative to iterative GPI calculations. Note that a “relation” means an exchange
opportunity. a “break” means an exchange opportunity which never forms in prac-
tice, and an “equal power structure” is one in which neither strong nor weak power
effects exists and all exchanges which form involve an equal split of the available

payoff. The comment in brackets is mine.

“i) Adding a relation between a low strong-power position and a high strong-power
position does not change the type of power [i.e. high or low] of any position

in the network.

ii) Adding a relation between two high strong-power positions does not change

the type of power of any position in the network.

iii) Adding a relation between two low strong-power positions creates a weak or

equal power structure.

iv) Adding a relation between weak or equal power positions cannot create a strong

power structure.

v) Breaks occur between high strong-power positions or between high strong-
power positions and equal or weak power positions. but not between equal or

weak power positions.”

In Lovaglia et al [40], the authors adinit that the version of NET current at the
time of writing (2001) typically produces poor predictions for large networks. They
argue that a reason for this is because interior high strong power positions have
significant chances of being excluded, and thercfore payoffs do not reach maximum

differentiation?!. Also they suggest that as more players are included in networks.

21The experimental results in section 2.6 below illustrate that in odd length line networks. in
which strong power is predicted by GPI, payoft differences become lower for longer lengths. The only
players in such networks who are guaranteed to exchange are those with an exchange opportunity

with a player at the end of the line.



there is a greater chance of at least one deviating from standard behaviour and thus

disrupting the expected outcome.

2.5.3 Degree Dependence

A player’s degree is defined to be the number of exchange opportunities they have.
Lovaglia et al [39] state the following prediction. based on Marsden [46], which I
refer to as degree dependence:

“The higher an actor’s degree, the higher the actor’s expected profit.”

In Lovaglia et al [39], the following argument is presented as one possible ex-
planation for this effect. Players are not fully rational and base their decisions on
information which seems particularly salient to the situation at hand. This includes
their degrees and the degrees of their neighbours. This argument seems plausible in
the short-run for inexperienced players. It is less obvious whether it applies in the
long term as players are able to learn about their bargaining opportunities in the
network. Therefore whether experimental results support this effect is an interesting

question.

2.6 Experimental Design

The experimental designs of laboratory studies of social exchange networks in the
sociology literature vary considerably. Also, full details of the bargaining procedures
used are not always given. However some features are almost always present. The
experimental subjects participate in a number of rounds. In each round a subject
is associated with each position in the network under investigation. The network
does not change between rounds, although subjects are occasionally moved to other
positions (e.g. Skvoretz and Willer [66]). In each round any subject may participate
in at most one exchange. Every exchange opportunity is represeuted by a number
of payoff points which can be split between the two subjects. At the end of the

experiment subjects receive cash payments depending on the poiuts they have won.
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The number of rounds used in the experiments detailed in section 2.7 varies from 16
(for some networks in Skvoretz and Willer [66]) to 60 (Lucas ct al [40]). Typically
there are 24 points in each exchange opportunity. However Lucas et al [40] and one
experiment in Lovaglia et al [39] use 30 points in each exchange opportunity, and
Cook and Emerson [21] and Cook et al [22] contain some exchange opportunities
with 24 points and others with only 8 points. The payment per payoff point is
usually constant but sometimes increases in later rounds (e.g. Lucas et al [40]).
Multiple sessions are played replicating the experiment with different subjects.
The remainder of this section details some of the variations in experimental
design which occur. In a few experiments (e.g. Markovsky et al [45]) subjects
bargain face-to-face, and choose their own bargaining process. under a few restric-
tions. However, typically subjects communicate through computer terminals. In
this case, the experimenters must design a bargaining process. effectively choosing
a non-cooperative game to model bargaining. The details of this process are not
always fully described in the experimental papers. The features which are given are
quite diverse. Some experiments (e.g. experiment 2 in Lovaglia et al [39]) require
subjects to make simultaneous?? demands, and exchanges form when demands are
jointly feasible?3. This is a similar approach to the Nash demand game (described
in chapter 6). Some such experiments (¢.g. Lucas et al [40]) also allow a ‘second
chance’ bargaining round for subjects who do not exchange immediately. Other ex-
periments (e.g. Bienenstock and Bonacich [1]) require subjects to repeatedly make
offers to each other, and exchanges form when an offer is accepted. This is a similar

approach to the alternating offers game (described in chapter 4). In some experi-

22Decisions are ‘simultaneous’ in this context if they are not revealed or acted on until everyone
has made one. That is, the computer program waits until a decision has been received from everyone

before allowing subjects to make further input.

23Gometimes many configurations of exchanges may be possible under this restriction. In exper-
iment 2 of Lovaglia [39] the computer uses an exogenous rule to decide which exchanges form in

such cases.



ments these offers must be made simultaneously and in others they may be made
at any time. A fairly complicated system is sometimes used to decide acceptance,
requiring several signals being sent between the subjects. This is especially neces-
sary in the case where acceptance decisions are made simultancously. Subjects are
sometimes (e.g. Lovaglia et al [39]) restricted to only changing their offers by 1 point
from that of the previous round.

The level of information given to subjects by experimenters differs. Indeed. the
alms of some experiments (e.g. Lovaglia et al [39]) include investigating the effects
of information. Others (e.g. Lucas et al {40]) restrict information in an attempt to
avoid the use of fairness norms; subject preferences whicli depend not just on payoffs
earned, but also on whether the payoffs to other subjects are perceived to be ‘fair’.
Some pieces of information that are withheld from subjects include: the actions of
other subjects, the global structure of tlie network, and the payofts of other subjects
— sometimes even the payoffs of subjects’ exchange partners were disguised.

The treatment of subjects outside the experiment also varies. Many papers
(e.g. Cook and Emerson [21]) describe allowing the subjects to meet beforehand for
instruction about the experiment. It can be argued that this may encourage the
use of fairness norms and reputational effects; subjects acting as if they would meet
the others again and playing to establish a good reputation. The rationale given by
Cook and Emerson [21] for this is to reassure subjects that they are playing against

humans not computer programs>*.

2.7 Experimental Results

This section summarizes experimental results from the sociology literature. As men-
tioned above, there is considerable variation in the experimental designs used to

generate these results. The results are included only as a guide to the qualitative

21ndeed in Willer and Skvoretz [72]. this method was used because subjects sometimes were

playing against computer programs!
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features they reveal in these networks, so only particularly striking variations in de-
sign are noted. However it is noted whether subjects are given "complete’ or ‘limited’
information2. This is done to illustrate that it is not obvious whether this choice
has a powerful effect on the outcomes.

The level of detail to which experimental results are given in the corresponding
papers varies. The results in this section have been taken from papers which at
least give average payoff splits in most exchange opportunities. A payoff split is the
average number of payoff points received by each player in an exchange opportunity
conditional on that exchange forming. Some other papers ouly publish variables
derived from this data. Even some of the results below have heen slightly modified
from the raw data (e.g. Markovsky ct al [44]). Where it has been published. the
frequency of each exchange is also included. Blanks in the tables below represent
information which is not provided. Note that results for synunetric positions in
networks are often aggregated. For example, for the 4 player line network discussed
below most papers do not give the average payoft splits in each exchange but give
the average of any split between an inner player — i.e. player 2 or 3 in figure 2.3 -
and an outer player —i.e. player 1 or 4 - and the average of any split between inner
players?6. Another variation is in the rounds of play that average results are given
for. Sometimes they are given over all rounds and sometimes (c.g. Lucas et al [40])
only over a final portion of rounds. The experiments below use cakes of 24 payoft
points in all exchanges except where mentioned otherwise.

Most papers also include statistics on the distribution of the data around the
mean values. This is used to check that the results are significant compared to
various null hypotheses based on network position being unimportant. This is not
included as these results are only used as a rough qualitative guide to beliaviour in
this thesis. Note that the issue of whether play has converged to a stable pattern

which will survive for future rounds is not directly investigated by these experiments.

ZPapers are not always precise in what they mean by these terms.

26This makes it difficult to assess the extent to which average payoffs are symmetric.
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Most of the data in the tables below lies in average split cohunns. The heading
of such a column gives the players involved in the split c.g. *1-2". The data in this
column is of the form ‘zi-z” where z1 + 9 = 1. These are the average proportions
of the available payoff points that the players receive conditional on the exchange
forming. Sometimes the heading contains two exchanges e.g. 1-2 or 3-4°. In this
case the data of the column is also of the form ‘ry-25" where 2y + o = 1. This time
z1 is the average proportion of the available payoff points that player 1 or 3 receives

in any exchange with player 2 or 4 respectively.

Star Networks

Figure 2.1: 3 and 4 player star networks

I refer to networks of at least 3 players with the property that all exchanges
involve one common player as star networks. 1 refer to the common player as the
central player and the others as the outliers. Both [40] and [04] contain experiments
on a 3 player star network. The other papers listed in table 2.1 contain results for a
4 player star network. In [40], 30 point cakes and a limited information setting are
used. A complete information setting is used in [66] and [64]. but I aimn unsure about
the remaining experiments. In [72] the central position was played by a computer

program which always accepted the best offer made to it.

Stem Network

In [39] two experiments are performed. That labelled b) in table 2.2 uses 30 point
cakes and has a limited information setting. That labelled a) uses 24 point cakes
and a complete information setting, as do the remaining experiments listed in table

2.2.
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Paper | Average centre-outlier split
[65] 0.793 - 0.207
[66] 0.901 - 0.089
(72] 0.988 - 0.012
[64] 0.665 - 0.335
[40] 0.832 - 0.168

Table 2.1: Star network results

e

Figure 2.2: Stem network

Average split

Number of

Paper 2-1 2-3 or 24 3-4 2 3 or 2-4 exchanges
[66] | 0.637 —0.363 | 0.687 - 0.313 8 (of 64 possible)
[44] | 0.601 - 0.399 | 0.639 — 0.361

39] a) | 0.663 — 0.337 | 0.583 - 0.417 2

[39] b) | 0.671 — 0.332 | 0.582 — 0.418 | 0.606 - 0.397 “infrequent”

Table 2.2: Stem network results
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4 Player Line

Figure 2.3: 4 player line network

The experiment of [40] uses a limited information setting and 30 point cakes.
A complete information setting is used in [66] and [39]. It is unclear what the
informational assumptions of the remaining experiments listed in table 2.3 are. In
[72] the central positions, 2 and 3, were played by a computer programs which always
accepted the best offers made to them and sometimes made offers of 12 payoff points

to each other.

Average split

Paper {2-1o0r3-4 2 3 Frequency of 2 - 3 exchange

[65] | 0.522 — 0.478

(1] | 0.597 - 0.403 | 0.517 - 0.483 0.16% 27
[66] | 0.585 — 0.415 0.18
[39] | 0.600 — 0.400

3

0.647 — 0.337 | 0.501 - 0.499 0.11

]
]

2] | 0.542 - 0.458
I

Table 2.3: 4 player line network results

5 Player Line

Figure 2.4: 5 player line network

2"This seems surprisingly low. Possibly the % symbol in [1] is a typographical error.
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The experiment of [40] uses a limited information setting and 30 point cakes. A
limited information setting is also used in [22], whereas [G4] uses complete informa-
tion. The network of [22] is not strictly a 5 player line: it also contains an exchange
opportunity for players 1 and 5 to split 8 payoff points. This exchange was rarely

used.

Average split

Paper | 2-3 or 4-3 2-1lor4d 5

(22] | 0.556 - 0.444 | 0.600 ~0.400
[64] | 0.608 - 0.392 | 0.640 ~0).360
(40] | 0.831 - 0.169 | 0.879 ~0.121

Table 2.4: 5 player line network results

In [64] the frequencies of each exchange are also recorded. The other experiments

listed in table 2.4 do not give any data about the frequency of exchanges.

Exchange | 12 23 34 45

Frequency | 0.70 1 0.29 | 0.38 | 0.62

7 Player Line
1234567

Figure 2.5: 7 player line network

Two experiments were carried out on this network. In [64]. 10 rounds of play are
used whereas [40] uses 60. The outcomes in [40] are from the last 20 rounds of play,
whereas [64] does not mention whether or not its results are similarly taken from
the later part of the experiment. As before. [40] uses 30 point cakes and limited

information and [64] has complete information.
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Average split

Paper 2-1 or 6-7

2-3 or 6-5

4-3 or 4-5

[64] | 0.581 -0.419

[40] | 0.792 -0.208

0.745 -0.255

0.582 -0.418 | 0.523 - 0.473

0.708 -0.292

Table 2.5: 7 player line network results

In [64], the frequencies of each exchange are also given:

Exchange | 12 23 34 45

o0 67

Frequency | 0.73 | 0.

25 1 0.47 | 0.50

0.25 | 0.74

In (40}, average payoffs for each position are given. The following table presents

these as a proportion of the maximum available payoft.

Player 1 2

) )

Payoff propotion | 0.260 | 0.750 | 0.279 | 0.708

0.296 | 0.807

0.187

Other Networks

In [64] experiments are carried out on several other networks. Partial results of one

network, the “Strong4” network, are given here as they lend some support to the

degree dependence hypothesis. This experiment uses complete information.

Dr—

Figure 2.6: Strongd network
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Exchange opportunity | Average split Frequency
BA or BC 0.874 -0.126 | BA: 0.49 BC: 0.36
BD 0.815 -0.185 0.05
BF 0.812 -0.188 0.03
BH 0.914 —0.086 0.06

Table 2.6: Strongd results
2.8 Discussion

The most clear-cut experimental results are those of Lovaglia ct al [40]. That is,
these have the greatest relative differences between average payoffs for different
players. Producing such results was a deliberate aiin of this paper. Two features of
the design which were intended to aid this are that a larger than typical number of
experimental rounds is used with results only taken from the final third of rounds.
and that limited information is used. The motivation for limiting information is to
avoid fairness norms.

The experimental data given above provides some support for the degree depen-
dence hypothesis. Positions A B and C iu the Strongd network studied in Skvoretz
[64] form a 3 player star, but player A also has other neighbours. Player A does bet-
ter than the central player in any star network experiment, inucluding those carried
out in the same paper under the same experimental design?®.

The experiments do not give any clear indications about the effect of limiting
information. Lovaglia et al [39] contains two experiments on the stem network under
different informational settings and finds uno significant variations. However, there
is a lot of variation between some results above and tlic available evidence does not

allow a strong view to be taken on whetlier information has a significant cffect.

2The only variation in experiment desgin meutioned in [64] is that 12 scssions of 30 rounds are

used for the 3 player line and 8 sessions of 32 rounds are used for the Strongd network.



In the networks for which NET predicts strong power, such as odd length lines,
high and low strong power players do not receive payotfs of 1 and 0 as predicted.
Payoff differences between high and low power players (respectively even and odd
numbered players in odd length line networks) seemn smaller for larger networks. for
example for the 7 player line in comparison to the 3 player line.

Finally, the experiments do not give unconditional support to symmetric out-
comes forming. The experiment of [39] on the stem network. which is labelled b)
in the table above, the average payoff split between players 3 and 4 is significantly

unequal.
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Chapter 3

Mathematical Preliminaries and

Definitions

This chapter contains definitions which are repeatedly used later and summarizes
relevant mathematical background material. Section 3.1 defines bilateral exchange
networks. These are mathematical descriptions of the negatively connected social
exchange networks discussed in the previous chapter. and form the main focus of
study in this thesis. Section 3.2 is comprised of relevant graph theoretic definitions.
Section 3.3 contains background material on game theory. Appendix 3.4 develops the
game theory material more formally. This level of formality is required for various
results, but for the purpose of clarity is only used in appendices and footnotes. The
appendix also presents a theorem of Harris on the existence of subgame perfect
equilibria. A corollary is proved showing existence for a class of games commonly

used in this thesis.

3.1 Bilateral Exchange Networks

Section 3.1.1 contains the definition of a bilateral exchange network, and other re-

lated definitions. Section 3.1.2 discusses how these definitions represent the neg-
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atively connected networks described in section 2.4. This principally involves a
discussion of the use of utility functions. Finally. section 3.1.3 defines notation for

some example networks which are often used.

3.1.1 Definitions and Notation
Definition 3.1. R* is the non-negative real interval [0, o0).

Definition 3.2. A (2 player) utility cake is a compact convex non-empty subset of
R+? which allows free disposal i.e. if (a.b) is contained then so is every (¢, d) such

that ¢ < a, d <b.
Let K* be the set of all utility cakes.

Definition 3.3. A bilateral exchange network is a triple N = (P, E, K), where P is
a finite set of players, E is a set of exchange opportunitics. which are unordered pairs

of distinct players, and K : P x P — K* U {0} is a utility cake function satisfying
1. K(a,b) = 0 if and only if (a,b) € E.
2. K(b,a) = {(ob,0q) | (0a,0p) € (a,b)}

The set P is the set of distinct bargainers. Since an aim of this thesis is to
represent the process of bargaining as a game, P is referred to as the set of players.
For simplicity, P takes the form {1,2,3....,n} unless specified otherwise.

An exchange opportunity represents a pair of players who liave the possibility
of forming an exchange!. An exchange opportunity (a.b) is often referred to by
the shorthand ab and K(ab) by K. where this will not cause confusion. The
utility cake function & maps two players with an exchange opportunity to the set of
feasible von Neumann-Morgenstern utility pairs for that coalition?. In the expression

(0a,03) € K%, o, refers to the utility of player x. Thus condition 2 above means

that K% and Kb effectively refer to the same set of utility pairs.

In the terminology of economic theory, E represents the set of feasible coalitions.

2Section 3.1.2 discusses the use of von Neumann-Morgenstern utility functions.
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Note that E is not strictly necessary in the definition above. It could be defined
in terms of K and P as® {(a,b) | a,b € P and K («.b) # 0}. However, it is convenient
to include E. For example, this allows a network to be defined hy stating P, E and
a single utility cake which applies to all exchange opportunities.

A cake K% = {(0,0)} can be interpreted as showing that the only possible
interactions between e and b are non-profitable. It seem intuitively obvious that
the outcome of a bargaining situation should be robust to whether or not any such
opportunities exist?. The possibility of such cakes is only included in the definition
because they do affect the outcomes of some later bargaining models®, indicating

that they are not robust in this sense®.

Definition 3.4. For ab € E, the boundary function f°:[0. M) — R* is given by
Fe () = max{y | (x.y) € K}
where M® = max{M | (M,0) € K%},

Recall that utility cakes are compact. Thus the sets used in this definition have
maximum elements as required.

As a shorthand for the composition of boundary functions. let

fa’b’c""’y'z(aa,) P f”‘b()fb‘c() e Ofyvz(o‘u)

Note that the domain of such a function may be empty”.

3 Also, it would be necessary to replace condition I on K with A(a,a) = i.

4This assumes that transmission of information does not occur through tlhiese interactions. This
possibility is outside the scope of this thesis and the bargaining models studied do not include any

mechanisms for such information transfer.
5See section 4.4.4 for example.

SThe same results can be usually be found using cakes containing only utilities of less than some
sufficiently small e. Sometime it is also necessary to take the limit ¢ — 0. Cakes of the form {(0.0)}
simply permit straightforward examples. .

"For example suppose f12(z) = f>'(x) = 1 — x and f**(x) = 3 — . The respective domains
of these functions are [0, 1], [0.1] and [0.3]. The function f"**(r) = 2+ .+ has domain [0. 1] and

1,2,3.1

range [2,3], which does not intersect the domain of f**. Thus the domain of f is empty.
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payoff to playver b

1

0 payoff to player a

Figure 3.1: A utility cake and its boundary function

Stating a boundary function defines a corresponding utility cake. In fact, giving

@l

an extension of a boundary function - ¢.g. some polynomial f“Y: R — R ~ is usually

the easiest way to define a utility cake®.

Definition 3.5. The m-unit cake is gencrated by the boundary function m — .

The (one) unit cake is written as ypit. The unit cake function is Aypit(ad) = Knie-

Such cakes are referred to as m-unit cakes since they correspond to situations

where 2 players have an opportunity to split m units of utility.

Definition 3.6. The outer boundary of a utility cake K is the set
{(z,y) €K |2’ >z andy >y = (2,y) g K}

Note that the outer boundaries of K% and K% represent the same set of utility

pairs for players a and b.

Definition 3.7. The cake K% is said to be insatiable it f** and f»@ are strictly

monotonic.

¥In this case the domain of the actual boundary function should be taken to be {0.r] where

r = min{z > 0|f*"(z) = 0}.



An equivalent condition is that f¢®¢ is the identity. A consequence of the
definition is that the outer boundary of K% contains no straight line segments.

An interpretation of this condition is as follows. For any pair ¢ = (g,,0,) € K
such that o, > 0, there exists another pair (\,, ;) € K such that A, < o4 and
Ap > op. Thus from any bargaining outcome o as described. plaver a has an available
concession; a utility pair which reduces his own share of the cake and increases that

of player b.

Definition 3.8. An outcome for a bilateral exchange network N = (P, E. L) is a
pair o = (F,q) where F' C F is the set of realised exchanges and ¢: P — R7T is the

share function. An outcome is feasible if it satisfies the following conditions:
1. A player may only exchange ounce. i.e.

abe Fandace F=b=rc¢

2. The shares of any pair of exchanging players must be in their utility cake. i.e.

ab € F = (qa.q) € K

3. Non-exchanging players receives zero shares. i.e.
acg FVee P= ¢, =0
A value x € R™ is said to be feasible from i to j for some players 7 and j ifij € E
and z < f4(0).
3.1.2 Utility Theory

To make any investigation into players’ behaviour in a bargaining situation it is
necessary to know something about their preferences over the possible outcomes.
This section briefly discusses how assumptions about preferences and other con-
siderations lead to thé situations described in section 2.4 as negatively-connected

networks being represented by bilateral exchange networks.
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It is assumed that each player has a transitive and complete preference relation
over all possible outcomes of bargaining”. A player’s preferences can then be repre-
sented by a utility function assigning a real number to each outcome. One outcome
is strictly preferred to another if and only it has a higher associated utility.

A two player bargaining problem can then be represented by a set K of utility
pairs for all possible outcomes. However, note that many different representations
are possible, as utility functions under the definition above ouly represent ordinal
preferences. Under the assumption of a non-discrete set IC, it can be shown that a
reasonable resolution of the 2 player bargaining problem cannot be based on ordinal
utility functions alone (see section 4.3.2 of Shubik [63] for example). A non-discrete
utility cake seems desirable in a social exchange setting because the intensity of
player’s actions may vary continuously, and in an economnic setting because contracts
may allow outcomes constructed as lotteries over other outcomes.

To make any progress on analysis of general a bargaining problem it is neces-
sary to introduce more preference structure. One resolution is to use cardinal von
Neumann-Morgenstern utility functions. These also require players’ preferences on
lotteries of outcomes to be specified. That is, they encapsulate attitudes toward
risk. Various extra axioms on preferences over lotteries must be satisfied (see My-
erson [52] for example). The result is a utility function in which a player’s utility
of a lottery is equal to the expectation of their realised utility value in that lottery.
Another important property is that von Neumann-Morgenstern utility functions are
unique up to positive affine transformations!?. In this thesis, players’ von Neumann-
Morgenstern utility scales are normalised so that a payoff of zero corresponds to the

payoff of not taking part in an exchange!!.

9These assumptions and some of the other axioms of von Neumann-Morgenstern utility men-
tioned below can be criticised on experimental grounds. For example. see section 1.7 of Myerson

[62] for a summary of some experimental results.
10 A transformation of the form x — az + /3 where o > 0.
1t is assumed that players are indifferent between all outcomes in which they do not exchange.
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Consider the conditions on a utility cake given in definition 3.2. Utility cakes
are assumed to be in R*? by only considering outcomes such that no player strictly
prefers not to exchange. Utility cakes are assumed to be non-empty because oth-
erwise there is no opportunity for an exchange which both players view as at least
as good as not exchanging. In an economic context, free disposal corresponds to
allowing players to sign contracts agreeing to ‘throw away’ some of the proceeds of
exchange e.g. by burning money. In the context of social exchange, as mentioned
above, the intensity of player’s actions may vary continuously. This goes some way
towards generating free disposal!?. Utility cakes are assuned to be convex by al-
lowing any outcome which is a lottery over other outcomes aud applying the first
property of von Neumann-Morgenstern utility mentioned above. Utility cakes can
be defined as the minimal sets satisfying the above properties and containing a fi-
nite set of points corresponding to the ‘basic outcomes™ of bargaining. Under this
definition the cakes also satisfy compactness.

Consider a negatively connected network in the sense of section 2.4. Assume
that each player’s utility depends only on his own exchange. That is, a player is
indifferent between different global outcomes in which he makes the same exchange
on the same terms. This is reasonable if players have little knowledge of how their
exchange may affect the pattern of exchange elsewhere in the network!3. The set
of outcomes of the network can then be represented in terms of the utility cakes

representing the possible outcomes of each exchange opportunity. This generates

the definitions of a bilateral exchange network and the outcome of such a network

12Fyee disposal is not just included in the list of conditions for convenience. It is necessary for
some later results such as that of footnote 20 of chapter 4. Also, note that insatiability (see definition

3.7), convexity and the inclusion of (0,0) in a utility cake imply free disposal in any case.

131n small networks this may be unlikely. For example consider a four player line network with
exchange opportunities 12, 23, 34 (L4 in the notation of section 3.1.3). I players 2 and 3 know the
structure of the network then they know that in the case that they form an exchange with each
other, players 1 and 4 receive utilities of zero. Should players 2 and 3 have some preference for

‘fairness’, their utility in the exchange 23 is reduced.

53



used in section 3.1.1.

3.1.3 Example Networks

This subsection defines networks which are used later. Recall from section 3.1.1 that
P=1{1,2,...,n}.

Definition 3.9. An n-player line network satisfies E ={12,23....,(n—=1,n)}. The

n-player unit line network L, also satisfies &' = Kpit.

Definition 3.10. An n-player ring network satisfies E = {12,23....,(n—1,n),nl}.
The n-player unit ring network R, also satisfies K = K.

Definition 3.11. For n > 3, an n-player star network satisties E = {1k]|2 < k < n}.

Player 1 is called the central player, and the others are called ovutliers.
Note that a 3 player line network is a star network.

Definition 3.12. A network is bipartite if P can be partitioned into sides P; and

P, such that all exchanges ab € E contain one player from each side.

Note that 2n-player ring networks and all line and star networks are bipartite.

3.2 Graph Theoretic Definitions

Definition 3.13. A graph is a pair (V| E) where V is a set of vertices and E is a
set of edges, pairs of distinct elements of V. A graph is said to be directed if the

pairs in E are ordered and undirected if not.

In all the graphs considered in this thesis V' is a finite set. An edge (a,b) is often
written as ab where this will not cause confusion. A subgraph of (V, E) is any graph
(V',E') such that V' C V and E' C E. The subgraph of (V. E) induced by W C V
is (W, F) where F = {ab€ E | {a,b} C W}

Given a graph (V,E), b € V is said to be a neighbour of a € V if ab € E or

ba € E. The number of neighbours of v € V is called its degree.
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A walk in graph (V, E) is a sequence (v;)g<i<n such that viv;41 € E. A path in
graph (V, E) from a to bis a walk (v;)o<i<n such that vy = «, v, = b and all vertices
in the sequence are distinct with the permissible exception that vq may equal v,,. In
the latter case if also n > 0 then the path is called a cycle.

An undirected graph is said to be connected if there is a path between every
distinct pair of vertices. A connected component of an undirected graph is a maximal
connected subgraph. That is, it is a connected subgraph S such that there exists no
distinct connected subgraph S’ such that S is a subgraph of S’. Any graph may be
partitioned into connected components.

An undirected graph is called a (undirected) tree if it is connected and contains
no cycles. A directed graph T = (V, E) is called a (directed) tree if contains no
cycles and there exists a root r € V such that there is a path in T from » to every

other node in V.

3.3 Game Theoretic Definitions and Results

Section 3.3.1 informally defines a game. The formal details arce contained in section
3.4.1 in the appendix to this chapter. Section 3.3.2 contains some other game the-
oretic material. Again, many of the formal details are relegated to the appendix,
mainly section 3.4.2. Section 3.3.3 describes how games can represent the outcome
of bargaining in bilateral exchange networks. Section 3.3.4 discusses subgame per-
fect equilibrium (SPE), the main game theoretic solution concept used in chapters 4
and 5. It also contains the statement of an existence result for SPEs which applies
to most of the games considered in these chapters. The prootf is contained in section

3.4.3 in the appendix, and is a corollary of a SPE existence theorem of Harris [33].

3.3.1 A Summary of the Definition of a Game

There is a finite set P of players. The set of periods is given by the non-zero natural

numbers N*. In each period, every player chooses some action independently of the



other players. A vector of actions for all players is called an action profile.

An infinite history of the game is a sequence of action profiles for each period
and also a ‘zero period’, which is included for notational convenience. The definition
of a game is based on the set of possible infinite histories of the game, H>.

A finite history is a subsequence of the first n elements of any infinite history
for any n. Finite histories are often referred to below simply as histories, since they
are discussed more often than infinite histories.

Given a finite history of length n, consider the set of action profiles which can
be appended to this sequence to produce a valid finite history of length n+ 1. Since
players choose their actions independently, this set factorises into sets of actions for
each player called action sets.

A (pure) strategy for a player maps from a finite history to an action in the
corresponding action set. A vector of strategies for each player is called a strategy
profile. A strategy profile specifies a unique infinite history of the game which results
if the players choose actions according to these strategies'®.

A payoff function T maps from a infinite history to a vector containing a payoff
in R for each player. The payoff for player i is written 7;. In this thesis, these values
typically represent utilities available to players in utility cakes and thus lie in R*.

A game is a pair (H* «) as described above. A game of perfect information
is one such that given any finite history, at most one action set is not a singleton.

That is, only one player may take a non-trivial action in each period.

3.3.2 Further Game Theoretic Terms

A mized strategy maps from a finite history to a probability distribution over the
corresponding action set. These are rarely used in this thesis.
The decision function D maps from a finite history to the player whose action

set is not a singleton. In the case where no such player exists D(h) can be defined

14 A technical condition is introduced in section 3.4.1 to ensure that this is the case.



as 0.

In a game of perfect information, a history can effectively be represented by the
sequence of actions made in each period by the player with a non-singleton action
set (no entries need be made for periods where no such player exists). The action
profile at each period can be inferred from this, as described in section 3.4.2. This
is usually the most convenient method of representing histories.

It is often useful to allow terminal finite histories. Such a history has an as-
sociated payoff and empty action sets; the game is over once a terminal history is
reached. Section 3.4.2 shows that the above definition of a game allows a method
of expressing terminal finite histories. In the remainder of the thesis (except the
appendix of this chapter) games are often defined assuing terminal histories are
possible without reference to the details of this method. In such a definition payofts
must be given for both terminal and non-terminal infinite histories. In making these
definitions, the phrase ‘infinite history’ is often used as a shorthand for ‘non-terminal
infinitie history’, where this does not cause confusion.

A 2 x 2 game is a 2 player game such that both plavers have two actions in
their action set in the first period and all one period histories are terminal. The
payoffs of such a game can be represented by functions p;(2.x2) giving the payoff to
player i if players 1 and 2 make actions x; and x5 respectively in the first period. A
2 x 2 game is symmetric if both players have the same action set in the first period
and p1(z1,T2) = po(z9,z;) for all actions (x1,z2). A definition of more general
symmetric games can be made similarly.

Given a finite or infinite history z, a subhistory is a subsequence of the first n
elements of z for any n less than the length of . A subhistory is a finite history.

Given a game G and a non-terminal finite history z of length ¢, the subgame H
of G generated by z is (informally) constructed as follows. Take all histories of G
with z as a subhistory, and delete the first ¢ terms. Use the resulting set as the set

of histories of H. Payoffs, strategies and other terms must be defined accordingly



for H. The subgame H represents a game beginning after the history z has taken
place. A more formal definition is given in section 3.4.2.

A game with random mowves is as follows. Following certain finite histories an
action is taken at random according to a fixed probability distribution rather than by
a player. Introducing random moves complicates the proof of corollary 3.1. However
the only games with random moves analysed in this thesis'® have a simple form so
that this result is not required. Some more complicated games with random moves
are mentioned in passing.

Given a pure strategy profile f for a game G without randomn moves, a (pure)
best reply (or best response) to this profile for player i is any pure strategy for player
i which maximises the payoff to player ¢ when all other plavers play according to
f. If f contains mixed strategies or the game includes raudom moves then a (pure)
best reply to f for player ¢ is any pure strategy which maximises the expected payoff
to player ¢ when all other players play according to f. A best reply for i can also be
given if a strategy is only specified for every player other thau :.

A Nash equilibrium of a game is a strategy profile f satisfying the following
property. No player can increase their payoff by deviating from f while all other
players play according to f. A strict Nash equilibrium is a strategy profile in which
any player receives a lower payoff by deviating in this wayv. A subgame perfect
equilibrium (SPE) of a game is a strategy profile satisfying the following stronger
property. In any subgame no player can increase their payoff by deviating from f

while all other players play according to f.

Definition 3.14. Suppose G(¢) is a family of games indexed by parameter e. A
limiting SPE payoff of this family under the limit € — €* is a vector p = (p;i)iecp
with p; € R satisfying the following property. For any sequence (¢;)jen such that

lim; o0 €; = €*, there exists a sequence (p’)jen such that there is a SPE of G(e;)

with payoff vector p/ and lim oo p’ = p.

15That is, the extensions of the Nash demand game defined in chapter 6.



3.3.3 Bargaining Games and Models

A bargaining game on a network N = (P, E, K) is a game with players P such that
each terminal and infinite history of the game is associated with a feasible outcome
of N as well as a payoff. For any terminal or infinite history h of the game, ¢;(h)
represents the share of player ¢ in the corresponding feasible outcome. The payoff
of each player i must satisfy 7;(h) < g;(). This bound ensures that the feasibility
constraints of definition 3.8 apply to payvoffs as well as shares. Associating an out-
come with terminal and infinite histories also allows discussion of which exchanges
form in such histories.

A share represents the utility a player places on a particular exchange agreement.
A payoff represent the utility also taking into account the cost of participating in the
bargaining process. For example an agreement reached immediately would typically
be preferred to the same agreement reached after a lengthy period of bargaining. A
terminal or infinite history has both shares and payoffs defined for later convenience.

A bargaining model is a function which maps a bilateral exchange network and
certain extra structure to a bargaining gaine. Such a model represents specific rules
for bargaining which can apply to many networks!6. The extra structure is split
into two parts. Endogenous structure is an integral part of the bargaining situation
which is not described by the bilateral exchange network!? (c.g. discount factors
representing the time preferences of players). Ezogenous structure is not an integral
part of the bargaining situation but is necessary to provide a well defined game (e.g.
specification of a first mover).

The division between exogenous and endogenous structure is subjective. Indeed,
so is the division between exogenous structure and the model itself; a complete

specification of the bargaining model could be included in the exogenous structure!

*This is similar to Muthoo’s notion of a ‘procedure’ in [51].
7 Typically endogenous structure contains only functions with domain £ or F i.e. properties of

individual players or exchange opportunities.



The choice of where to draw the line is a modelling choice to aid in interpretation.
Section 4.4.1 on the market bargaining game provide an examnple of the usefulness
of endogenous and exogenous structure.

In this thesis bargaining games are represented by script letters — e.g. G -- whereas
bargaining models are represented by plain text e.g. A/. Note that a model and its

arguments also represents a bargaining game e.g. M(N.E. X) = M.

3.3.4 Subgame Perfect Equilibrium

SPE is the usual solution concept used for games of perfect information. The usual
motivation for its use is as follows (see Binmore [5] or I'ndenberg and Tirole [30]
for more details). Nash equilibrium is a necessary requirement for a strategy profile
to represent a stable solution of any game. Given any other strategy profile there
exists a player who would prefer to unilaterally deviate from it. However some
games possess multiple Nash equilibria, and some seem inore plausible as solutions
of the game than others. The results in an equilibrium selection problem. One
reason for some Nash equilibria being less plausible is that they allow players to
make ‘incredible threats’. An example of this in a 2 player bargaining situation is
that one bargainer may make an initial demand and threaten to never exchange
should it be refused. Should this bargainer be put in the position where he must
carry out this threat then it is clearly not in his own interest to do so. However,
in an appropriate game modelling 2 player bargaining (e.g. the alternating offers
game of section 4.2) a Nash equilibrium can be constructed in which one player
uses a strategy corresponding to this incredible threat and the other accepts the
initial demand. The motivation for SPE is to avoid incredible threats by requiring
strategies to form Nash equilibria of every subgame. In the exanple just given this
rules out the threat of never exchanging.

Note that for a game in which a terminal history is always reached within a finite

number of a periods, an equivalent definition of SPE to that given in section 3.3.2
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is as follows. In any subgame no player can increase their payoff by unilaterally
deviating to another action in any single period. In this thesis, this distinction is of
little conceptual importance and can usually be neglected except in proofs!3.

The existence of SPEs is straightforward to prove for games of perfect information
in which all infinite histories have a terminal subhistory and there are a finite number

of terminal histories!®

using Zermelo’s algorithm (see theorem 3.2 of Fudenberg and
Tirole [30] for example). This condition does not hold for many of the bargaining
games in chapters 4 and 5 of this thesis. In this case, the existence of SPEs is a more
complicated issue. Indeed it is easy to define games in which no SPE exists?. For
most games in chapters 4 and 5, a SPE existence theorem of Harris [33] resolves this
issue. Bargaining literature generally does not require such an existence theorem.
Instead, a typical resolution is as follows. Existence is assumed, and some properties
of a SPE are deduced - e.g. a unique SPE outcome is found. These properties are
then used to construct a simple strategy profile - e.g. a stationary strategy profile —
which can easily be verified to be a SPE. This method does not always suffice in this
thesis because in some cases it is not straightforward to explicitly construct example
SPEs (see section 5.4.7 for example).

For several bargaining games used later?!, the method just described does suf-
fice. Section 3.4.3 of the appendix to this chapter defines a class £ which captures
the remaining bargaining games of perfect information which are used below. The

following corollary of Harris’ theorem is then proved:

Corollary 3.1. There exists a SPE for all games in the class £.

181 the proofs of section 5.4, lemma 5.8 is used to take care of the technicalities relating to this

distinction.
19That is, games of perfect information with a finite set of infinite histories.

20For example, consider the one-player game in which a player must choose an element « € [0. 1)

and receives payoff z.
21That is, the alternating offers game, the telephoning model and Herrero’s model.
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3.3.5 Evolutionary Game Theory

Non-cooperative game theory typically concentrates on finding the equilibria of
games, especially Nash equilibria. This raises the positive question of whether these
equilibria describe how players actually play the game and if so. how players con-
centrate on an equilibrium. One traditional answer is that players are rational and
concentrate on an equilibrium through a process of introspection based on common
knowledge of the details of the game??. This is problematic for several reasons.
Firstly, common knowledge of the details of the gamme seems a heavy requirement?3.
Secondly, finding an equilibrium through introspection may be a very difficult task??*.
Thirdly, in a game for which multiple equilibria exist, a mechanism must be pro-
vided for all players to coordinate their play upon a particular equilibrium. Another
difficulty is the equilibrium selection problem mentioned in the previous section.
Equilibrium refinements strengthen the conditions of Nash equilibrium in an at-
tempt to select the more plausible equilibria. Subgame perfect equilibrivun is an
example. However a large number of refinements exist in the literature (e.g. sce
chapter 5 of Myerson [52]) and it is often difficult to decide which one is appropri-
ate, especially when intuitive insight into the situation being modelling is hard to
come by.

Evolutionary game theory offers a different approach to the questions mentioned
above. This posits a process where players repeatedly play a game and use trial
and error methods to decide what strategies to play. Strategies which earn players

higher payoffs flourish and eventually a stable pattern of play may emerge. This

22G8ee chapter 1 of Fudenberg and Tirole [30] for a development of this argument.
231 particular, in the case that mixed strategies are considered and von Neumann-Morgenstern

utilities are used. these details must include the preferences of all players over all lotteries of terminal

or infinite histories of the game.
24 For example, two player zero-sum games are guaranteed a unique SPE outcome (see section 3.8

of Myerson [52] for example) but for complicated many games in this class (e.g. chess) this outcome

is not known and it is certainly not the case that players always coordinate on it.
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setting can be formalized mathematically as a dynamical system.

Simple trial and error methods or learning rules have the advantage that they
do not necessarily require a large amount of information about the game. In a social
setting they are also attractive because they capture the intuition that people have
limited cognitive resources to apply to a large number of decisions and thus often
use simple heuristics. A problem is which learning rules to use. This suggests the
application of psychological results and the search for results which are robust for
many learning rules.

Evolutionary game theory typically postulates a large population of players for
player position in the underlying game. One approach is to study the expected
behaviour of these populations under particular dynamics. This generates deter-
ministic population equations, such as the replicator dynamics. See Weibull [70] for
a survey of results following this approach. Another approach is to study models
retaining stochastic features2®.

Evolutionary game theory provides some support to the equilibrium concepts
mentioned at the start of this section. For example sce sections 3.3 and 5.2 of
Weibull [70] on the connection between Nash equilibria and the stationary states of
the replicator dynamics, or section 4.2 of Samuelson [57] for more general dynamics.
Also, some stochastic models provide methods of selecting between multiple equilib-
ria in certain settings. For example see Binmore et al [8] and Kandori et al [37]. The
approach of the latter forms the basis for the evolutionary model of chapter 6 and is
discussed in more depth in section 6.1. Also, for some situations evolutionary game
theory offers an explanation for the departure of behaviour from that predicted by
equilibrium concepts. For example Gale et al [31] and Seymour [60] investigate evo-
lutionary models of the ultimatum game. This game has a unique SPE but it is not

supported by evidence from laboratory experiments, whereas the papers mentioned

Z’Many papers investigate the connection between these two approaches, for example Binmore

et al [8] and Seymour [61].
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contain predictions from evolutionary models which are a close match.

3.4 Appendix: Formal Game Theoretic Detalils

Section 3.4.1 contains the definition of a game used by Harris in [33]. Section 3.4.2
contains brief note on the application of this definition and makes some further
definitions in this setting. Section 3.4.3 contains Harris’s theorem on SPE existence

and proves corollary 3.1 showing existence for a class of games used in this thesis.

3.4.1 Full Definition of a Game

This section is based on the setting used by Harris in [33]. Some terms are renamed
for later convenience. In particular Harris’s use of ‘history’ is replaced with ‘infinite
history’ to allow ‘history’ to refer to finite subhistories, since these are most often
under discussion outside this section.

The definition is based on the set of infinite histories of the game, H*. For
convenience in stating theorem 3.2, this is embedded in a larger product space S,
which is defined as follows.

There is a finite set P of players, indexed in this appendix by i. The set of periods
is given by the non-zero natural numbers N7, indexed here by ¢. In each period t,
each player i chooses, independently of the other players, some action which can
be represented by an element of S;;. The outcome of each period can therefore be

represented by an element of
So= 1154
i€P

Play begins in period 1. An infinite history of the game can be represented as an
element of

S = {0} x HSI,

teN+

where {0} is included for later notational convenience.
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Any z € S can be written as r = (z),en where 29 = 0. and 2, € S, for t € N*.
Any z; € S; can be written as z; = (x4;).cp Where z;; € Sy;. Finally, given z € S,
define \jx = (z5)seN0<s<t-

The set H*® of infinite histories of the game is a non-empty subset of S. Let
MH = {\zjx € H®}

be the set of all finite histories of length t. Finite histories are usually referred to
simply as histories.

The set of outcomes possible in period ¢ depends upon the initial history up to
period ¢t — 1:

Af(Mi—1z) = {yly € HZ A—1y = M- 1z}

Players choose their actions independently so A;(A\—;x) factorises as
A{,()\f,_lfli) = H 14(,11()\?.—13;)
€EP
Api(A—1z) is the action set of player ¢ following history A;—yx. Note that A, and
Ay; are correspondences.

In any period t a period-strategy for player i in that period is a function
fu: M1 H — Sy
which satisfies
fti(hi—1z) € Ap(M-17)

for all x € H*®. That is, period-strategies must always specify actions in the appro-
priate action set. Given a period-strategy for each player in each period, a strategy
for player i is

fzi - (fLr,)tEN‘*

and a strategy profile is
f=(fi)iep
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Let F(H*) be the set of all strategy profiles. The notation reflects that this set
is defined by the choice of H*°. Denote by F;(H*®) the set of strategies of player i.
If fe F(H®) and g; € F;(H®), let

fA\g; = (hi)iep

g;i fori=j
where h; = !

fi otherwise
Given a strategy profile f, z € H* and ¢t € N, define «(f.x,t) as the infinite
history resulting from the strategy profile f being used following history A;z. In

other words, a(f,z,t) has the recursive definition:

asi(f,z,t) = zg for s <t

aSi(f>x7t) = fsvl[(a‘r)()g'rgs] for s >t

To guarantee that a(f,z,t) € H™, the following condition is introduced. For any
z € S such that \;z € M\ H for all t € N, it is the case that € H®®. That is, if
every finite initial subsequence of x is a history, then z is an infinite history.

A payoff function © = (m;);cp is made up of functions of the form m; : H>® — R.

Each function m; describes an individual’s payoff in each outcome of the game.
Definition 3.15. A game is a pair (H*,7) as described above.

Definition 3.16. A game of perfect information is one that satisfies the following
condition. Given any h € H* and any t > 0, there is at mnost one i € P such that

the action set Ay (Ai—1x) is not a singleton.

Definition 3.17. Given a game (H®, ), a strategy profile f is called a subgame
perfect equilibriurn (SPE) if it satisfies the following condition for all x € H*>, ¢t € N,

i € P and all strategies g; € F;(H*>):
ﬂ'i(Ot(f,CU,t)) 2 ﬂ—i(a(f\givw‘/t)) (31)
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3.4.2 Further Definitions and Notes

Note that the only form of imperfect information that definition 3.15 can describe
is simultaneous actions. This is sufficient for the games used in this thesis. Also
note that to construct a game in the form of definition 3.15, the choice of Sy; is not
important. For example this set could be constructed as the union of all actions
that might be taken in any history of the game. The choice of S;; only becomes
important in applying the conditions of theorem 3.2 in section 3.4.3.

Definition 3.15 requires all finite histories to have actions sets and only assigns
payoffs to infinite histories. The possibility of a finite terminal history is not directly
allowed. However, a finite history Az can effectively represent a terminal history if
the only y € H® such that \jy = Az is y = x. For s > ¢, the action set Ay (As—1x)
is a singleton, so the infinite history z and its associated payoffs are guaranteed to
be realised.

The decision function from finite histories to P can be defined as follows. For
z € H® andt € N*, D(\;_1z) is defined to be the unique i € P such that A;(A-12)
is not a singleton, where such an i exists. In the case where no such player exists,
D(M\—1z) can be defined as 0.

Given z € H* for a game of perfect information. let 2, = x;p(»,_,s) (or if
D(M—1z) = O, let ; = ). The sequence & = (&;);en+ then fully describes the
history z, as follows. Suppose that the first ¢ — 1 action profiles are known. Then
D(M\—1z) can be found. The action of this player in period t is Z;. Every other
player?® has a singleton action set, so they have only one possible action at period
t. Thus the action profile at period ¢ can be constructed. A sequence of the form of
% is usually the most convenient method of representing histories, especially in this
thesis where the rules governing the order of play are always reasonably simple.

A Nash equilibrium of a game (H°,7) can be defined as a strategy profile f

which satisfies equation (3.1) for any z € H*, i € P, all strategies g; € F;(H*) and

2Tn the case D(Ai~12) = 0, this means every player.
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t=0.

A subgame of (H*,n) can be defined as follows. For + € H> and t € N, the
subgame generated by the history A,z is (H*. %) where H* = {y € H®|\y = \, T}
and 7 is the restriction of 7 to domain H®. Strategics can also be mapped to
restricted forms for subgames; it is only necessary to ensure that the actions for
periods up to ¢ correspond to those of . The notational details are omitted. Using
these definitions, it is possible to state the equivalent definition of a SPE as a strategy

profile which is a Nash equilibrium of every subgame.

3.4.3 Proof of Corollary 3.1

First the class of games £ mentioned in corollary 3.1 is defined. The first condition

on this class is:

E1 S; CAUB and B =1 x C, where A and C are finite sets and I is a real
interval [0, M] with M > 0.

An interpretation of this condition is given below. To define the remaining conditions
on £ some more notation is required. Assume that condition £.1 holds on a game

(H®, ) of perfect information. Given x € H, let

Q(z) = {t € N[, € B}
be the set of periods ¢ at which an action in B is taken by>" D()\,_1z). For t € Q,
Z; can be written as (u¢,¢) € I x C. Let

J = {(n)en+m € I}

For n € J and z € H*, define b(z,7) by replacing y, with 7, in = for all t € Q(x).
~ Let
K(z) = {ne€ Jb(z,n) € H}

be the set of all sequences in J which generate a valid history in this way.

271t does not matter that this set excludes periods where all action sets are singletons.
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Definition 3.18. The class £ is the set of those games of perfect information which

satisfy the condition £.1 and:

£.2 For any x € H®™ there exists p;(z) € R for each t € )(x) such that

K(z)={ne€ J|Vt € Q(z) n € [0.p/]}

£.3 For any x € H*, under the subspace topology induced on A’ (z) by the weak
topology, the function p; : K(h) — R* defined by p;(n) = m;(b(x,n)) is con-

tinuous.

This class is meant to represent those bargaining ganes of chapters 4 and 5 which
are games of perfect information and for which SPE existence cannot be easily be
proved by construction. It is now shown that these games do indeed lie in €. This
is done informally but the details are straightforward to check for each individual
game.

Condition £.1 is straightforward. The actions in A represent acceptance or re-
fusal decisions, the values in I represent numerical demand levels?8, and the elements
in C represent decisions about to whom demands are mmade. ' can be taken to be

a singleton if no decisions of this sort are required.

ZThe set I is restricted to a closed and bounded interval to satisfy the first condition of theorem
3.2 below. If I were allowed to be any compact set in the definition of &, then the class would
include the alternating offers game, the telephoning game and Herrero’s model. Corollary 3.1 could
be proved by a similar method to that used below. This is not done in order to keep the notation
required simple and because SPE existence can be proved by construction for the models mentioned.

It seems plausible that SPE existence is conserved for the bargaining games under investigation
if I were an unbounded interval. However, there seems no great beuefit in extending the allowed
form of I thus since this would only amount to extending the range of non-feasible demands which

players can make.
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Next, condition £.3 is demonstrated. For the games in question

kf» (n) in case i
mi(b(z, 1)) = < Ky in case ii

0 otherwise

\
where k is a constant which is independent of 7. Case i is ‘in x player i accepts a
demand made by player j in period t’ and case ii is ‘in 2 a demand made by player
i in period ¢ is later accepted’.

By the definition of a utility cake, f/' is continuous (in the Euclidean topology)
over its range for all values of i and j. In case i, for n € K(«), n; must be in the
range of f7*. Otherwise b(x,n) would not be a valid history. contradicting n € K (x).
This shows that condition £.3 holds.

It remains to demonstrate condition £.2. The bargaining games in question
fall into one of two classes. For each class values of pi(7) are given to satisfy the
condition.

The first class?® comprises games where a proposer (a player making a demand)
may make any numerical demand in I (as defined in condition £.1). For this class
pi(x) = f47(0) in the case that in z player i accepts a demand made by player j in
period t, and p;(z) = M otherwise. That is, numerical demands that are accepted
can be changed to any value which is feasible to the acceptor. Numerical demands

which are not accepted can be changed to any value in .

29Typically this class contains games with exogenous orders of play. Games in this class are: the
market bargaining game, unilateral demand exogenous order models and the exogenous ordering

model.
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The second class®® comprises games where a proposer i must specify3! a set
of responders R C P and may make any numerical demands up to minjeg f740).
That is, numerical demands must be feasible to all players in R. These games satisfy

condition £.2 with
pi(z) = min f7*(0)
JER
The following result is theorem 1 of Harris [33]. I have slightly altered the

statement of the theorem but made no alterations to the coutent.

Theorem 3.2. Suppose that (H*°, P) is a game of perfect information. The fol-
lowing is a sufficient condition for the existence of a subgame perfect equilibrium in
(H®, P). Topologies on the sets Sy; exist such that the resulting product topology on
S satisfies:

1. For allt € Nt and i € P, S;; is compact.

2. For allt € Nt and i€ P, S;; is Hausdorff.

3. H* is a closed subset of S.

4. For allt € N, the correspondence A, is lower hemicontinuous.
5. For all i € P, m; is continuous.

Notes:

1. The continuity conditions 4 and 5 use appropriate topologies induced by those
on S and S;;. For example, condition 5 uses the subspace topology induced on

H® by that on S.

30Typically this class contains games with endogenous orders of play. Gamnes in this class are: the
telephoning game, the perfect information models of Calvé-Armengol, and the endogenous ordering

model.
31Formally, it could be required that there is a function from C (as defined in condition £.1) to

the set of subsets of P.
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2. Condition 4 means that given any 2 € H* and any open set U C S, containing
T, there exists an open set V' C A\;_1H containing \,_;z such that for all

/\5_1’0 € V, At(/\,,_lv) NnU # @

The proof of the following corollary can now be given.

Corollary 3.1. There exists a SPE for all games in the class £.

Proof. Let Tt be the subspace topology on I induced by Euclidean space. Let T4
and T¢ be the discrete topologies on A and C. Let Tz be the topology on B given by
the product topology of T and T. Let T be the topology on S); given by arbitrary
unions of elements of T4 UTpg. Let T be the resulting product topology on S.

It is immediate from this definition that 7" satisfies propertics 1 and 2 of theorem
3.2. Property 5 is a consequence of conditions £.1 and £.3.

To prove property 3, consider a sequence (x,)qen With &, € H* for all a, which
is convergent in 7. Let x be its limit. By definition of T there exists some a
such that for a > a, z, = b(za,n*) for some n*. Furthermore, for ¢t € Q(h),
(n%)aen is convergent under T;. By condition £.2, n! € [0.p]. It follows that
ny = limg—00 7 € [0, ;] and thus z = b(zn,n) € H*® where 11 = (11)1e(n)-

To prove property 4, suppose that x € H® and t € N*. By definition of 7’
and condition £.2, there exists an open set V C A;_{ H such that A\;_yv € V implies
Ai—1v = A_1b(z,n) for some 7. Fix some such V. Select any v € H* such that
Ai—1v € V. Define w = (wg)sen by ws = vg for s < t and ws = =4 for s > t. Note
that w = b(x,n) for some 75 such that n, € [0, p;(z)], so by condition £.2, w € H*.

Since A\j_1w = A\—1v, x4 € Ay(A—1v) as required. O
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Chapter 4

The Alternating Offers Game
and Multi-Player Extensions in

the Literature

Rubinstein’s alternating offers game [56] is a highly successful model of 2 player
bargaining over a utility cake. In the notation of the previous chiapter, this situation
is a 2 player bilateral exchange network with the single exchange opportunity 12;
the simplest non-trivial bilateral exchange network. The structure of the game is
follows. A player, the proposer, proposes a feasible utility pair from the cake. The
other player, the responder, then chooses whether to accept or refuse it. If she refuses
it becomes her turn to make a proposal. If she accepts. the game ends. The game
continues in this way until a proposal is accepted. The initial proposer is player 1.

The accepted utility pair represents players’ shares. In the alternating offers
game the bargaining process is costly. There is a discount factor ¢; € (0,1) for each
player ¢ modelling their time preferences, and bargaining incurs a delay, 7. The
payoff of player i is found by multiplying their share by 47. In an infinite history
in which no proposal is accepted payoffs are zero. Rubinstein [56] proves that this

game has a unique SPE. A version of the game with costless bargaining given by
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taking 6; = 1 can easily be shown to support a wide range SPE outcomes.

It is greatly desirable that games with a high level of bargaining detail, such as the
alternating offers game, possess a unique SPE, or at least that their SPE outcomes
lie close together, since equilibrium selection is problematic. Imposing a subjective
choice of equilibrium refinement relies on having a strong intuitive grasp of the
situation being modelled. In all but the simplest multi-player hargaining situations
this is not the case. The alternative is to use evolutionary methods. However,
current evolutionary methods cannot easily be applied to such games since they
have strategy spaces of large dimension!. A similar problem applies to computer
simulations of evolutionary models?. It is hard for a computer to store or access
quickly highly complicated strategies. For example in the alternating offers gamne
for each player there are infinitely many subgames in whicli proposals must be made,
resulting in strategy spaces of infinite dimension.

The simple structure and unique SPE of the alternating offers game makes it an
attractive candidate for generalisation to other bargaining situations. This chapter
investigates the alternating offers game and various generalisations which have been
proposed in the literature. The purpose is to prove results and develop concepts
that are used in chapter 5 to construct extensions applicable to general bilateral
exchange networks.

An outline of this chapter is as follows. Section 4.1 describes various concepts
from the economic theory approach to bargaining which are required in this and
later chapters. Section 4.2 is on the alternating offers game. Sections 4.3 and 4.4

describe two generalisations of this model to 3 player ring networks which are defined

1See Seymour [59] for an approach to constructing and analysing dynamics for 2 player games
of infinite dimension. Also, see Seymour [60] for an application of these dynamics to the ultimatum
game which does not support the unique SPE of that game under all conditions. This cautions
against viewing a unique SPE outcome in the alternating offers game or its extensions as necessarily

also being an exact prediction in an evolutionary setting.
2To make any progress on this approach it seems necessary to make simplifying assumptions

about the form of strategies.
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by Binmore in [3]: the telephoning game and the market bargaining game. These
games both have unique SPEs, which suggests that it may be possible to extend
them to model bargaining in larger networks. Sections 4.2 4.4 cach begin with a lit-
erature review. Further discussion and analysis of the alternating offers and market
bargaining games relevant to later work is also provided. This includes a discussion
of Binmore’s argument for preferring the approach of the market bargaining game
to that of the telephoning game, and a case for altering the delay scheme of the
market bargaining game. Section 4.5 briefly summarizes other relevant bargaining

models from the literature.

4.1 Definitions from Bargaining Theory

The outcomes of a general bargaining situation with set of players P can be described
by giving a multiplayer utility cake C(Q) for each Q C P. The elements of a
multiplayer utility cake are of the form (z;);eq with 2; € R* for all ¢ € Q. They
represent the utility vectors which can be realised by the players in @ if all members
of Q agree®.

Suppose C(Q) is a multiplayer utility cake. A Pareto improvement on z =
(zi)icg is a vector y = (¥i)ieq such that y; > z; for all i € Q and y # x. A
utility vector z € C(Q) is Pareto optimal if it has no Pareto improvement in C(Q).
The Pareto boundary of a utility cake is its Pareto optimal subset. For example,
the Pareto boundary of a 2 player utility cake is its outer boundary, as defined in

definition 3.6, minus any vertical or horizontal line segments except the end points

which do not lie on an axis.

3 Various properties can be placed on the function C to capture reasonable features of bargaining
situations. Some such properties are convexity and compactness of utility cakes. and superadditivity
(informally; if players in Q can realise a utility vector if all members of () agree. they can also realise
this vector under an agreement by all members of Q' D Q). These properties are not required for

the limited discussion of multiplayer utility cakes in this thesis.



Definition 4.1. Given a set of players P and a multiplayer utility cake C'(Q) for
all Q C P, the core of this bargaining situation is the set of outcomes (z;)iep such

that (z;)icq is Pareto optimal in C(Q) for all Q C P.

A bilateral exchange network (P, E, K) can be described? in terms of multiplayer
utility cakes by defining C(Q) from K% in the case that Q = {¢.b} and ab € E, and
C(Q) = 0 otherwise. It is then straightforward to see that the core of a bilateral
exchange network N is the set of all share vectors * = (x;)icp corresponding to
feasible outcomes of N such that for all ub € E, (2, 2;) has no Pareto improvement
in K4,

In a non-core bargaining outcome, some subset @ of players have incentives (or at
least no disincentives) to switch multilaterally to different hehaviour. Nonetheless,
non-core bargaining solutions are not automatically implausible. Players in @ may
have disincentives to switch to different behaviours unilaterally. This depends on the
details of the bargaining process. For example, switching to a Pareto improvement
may be an involved task if @ is large. It could entail a risk of miscoordination:
if some players in Q do not participate in the switch and instead make agreements
with players outside ) then the remainder might be left with poor available utilities.
In this thesis, bargaining solutions of small networks are expected to usually lie in

the core. If not, a plausible explanation is required.

Definition 4.2. An (asymmetric) Nash bargaining solution is a function g(/C, &)
from a (2 player) utility cake K and a status-quo element € € K satisfying axioms 1
— 4 below. If axiom 5 is also satisfied then the function is called a symmetric Nash

bargaining solution.

1. Individual rationality

For i =1 or 2, gi(K,§) > &

4 A more natural description would be to define non-empty values of C'(Q) for all Q satisfying
superadditivity (see footnote 3). However the description given in the text suflices to allow the core

of N to be found.
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2. Pareto optimality

g9(K, &) is Pareto optimal in K.

3. Independence of irrelevant alternatives

If £ C K and g(K,€&) € £ then g(L,€) = g(K,§).

4. Scale independence

For any positive affine transformation® a : R? — R?:
g(ak, af) = ag(K, )

5. Symmetry

For the transformation® 4 which maps (z,z2) to (2s.2):
It can be shown that ¢g(K, &) is a Nash bargaining solution if and only if

9(K,€) = arg max,, ,,)(z1 — &) (z2 — &)' 7

where the maximisation is taken over the subset of X coutaining elements on which
¢ is not a Pareto improvement, and v € (0,1). There is a unique Nash bargaining
solution associated with each . The values v and 1 — 4 are called the bargaining
powers of players 1 and 2 respectively. Equal bargaining powers, 7 = %, gives the
unique symmetric Nash bargaining solution. Proofs of these facts are included in
Roth [55].

The status-quo point £ represents the outcome if bargaining breaks down. Re-
call from section 3.1.2 that the von Neumann-Morgenstern utility functions used
in utility cakes are chosen so that ¢ = (0,0). Henceforth any reference to a Nash

bargaining solution assumes this value of €.

5 And its corresponding extension to subsets of R?.
SAnd its corresponding extension to subsets of RZ.
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Many of the axioms in definition 4.2 can be criticised on both experimental and
conceptual grounds (for example see Roth [55]), and other solutions exist which use

different axioms. An example is the bargaining solution of Kalai and Smorodinski

[36).

4.2 Alternating Offers Game

4.2.1 Literature Review

Given a utility cake K'2 and a discount factor vector A = (§;.82) € (0,1)?, the

alternating offers game A(K1?,A) is as follows.
1. Player 1 is the first proposer.
2. The proposer, p, makes a proposal o € K!2.

3. The other player, r, is the responder and must cither accept or refuse. Ac-

cepting terminates the game.

4. Following a refusal, the responder becomes the next proposer and the game

returns to step 2.

Delay: The delay, 7(h), of any finite history h is equal to the number of refusals
that have occurred.

Payoffs: If proposal o is accepted in history h then payofts are (le(h)a L (5; (h)ag).
In an infinite history (i.e. one in which no proposal is accepted) payoffs are zero.

Given a proposal by player p of 0 = (071.02), 0, is referred to as the demand of
p and o, as the offer of p to the other player 7 (the next responder). If the proposal
o is accepted then in the terminology of section 3.3.3, o1 and o2 are the shares of

players 1 and 2.

Lemma 4.1. A(Kynit, A) has the unique SPE payoff:

1—52 (52(1_51)
1—018 1— 38109

(4.1)
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The following proof is essentially that of Shaked and Sutton [62]. The statement
below highlights methods which are used repeatedly later. The theorem of [62] also
applies to non-unit cakes and similarly finds a unique SPE payoff. Ouly the unit
cake case is given here to avoid introducing too much notation, but few extra details

are required”’.

Proof. Fix A and let A = A(K ¢, A). Assumne that A has a SPE. By the definition
of SPE it follows that all subgames of A have SPEs. Define a pre-proposal subgame
of A to be one at the start of step 2 of the game. Let B; be the set of pre-proposal
subgames of A4 with proposer i.

For a subgame B, let 7(B) be the associated delay. Let P;(8) be the set of all
values 6;7(3)7@; such that m; is a SPE payoff to player ¢ in B. Let II; = { gz g Pi(B).
Let 7; = supIl; and 7, = inf II;.

Let (i,7) = (1,2) or (2,1). The following relations are now proved:

T <1-4;m

; (4.2)

7 > 1= ;7 (4.3)

Consider any subgame B € B;. Suppose player j refuses the initial proposal made
in B. Then the set of SPE payoffs to player j in the resulting game is a subset of
{6;(6)“:1: | « € II;}. So in B the SPE payoff of player j is at least (5;(3)“1[]-. If
player i received a SPE share of more than 1 —§;x; in B such a payoff would not be
possible. This proves equation (4.2).

Suppose player ¢ offers A > §;7; in B. If player j refuses, her payoff in any SPE
is at most 6;(B)+17"rj. Thus in any SPE of B she accepts the proposal involving A.

This proves equation (4.3).

"The only significant extra detail is to show that the analogues of equations (4.4) and (4.5) yield

a unique solution.
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Combining these inequalities gives:

T <1 -6;(1 — 6;7;) (4.4)

m, 2 1-6;(1-dim) (4.5)

Solving these yields #; < 7i; < m; where fi; = IL_B—OOL By definition 7; < 7, so
10y g

T = T = 7.
Consider a SPE of A in which the initial proposal of plaver 1 is refused. Let
(p1,p2) be the payoffs to players 1 and 2. By the above it must be the case that

p1 = 71 and py = drne which gives p; + py = 1. But, since a proposal is refused in

the history generated by this SPE, it must be the case that
(p1.p2) = (0{01,0502) (4.6)

for some (01,02) € Kynit and 7 > 1. Thus p; + po < 6 which is a contradiction.
Therefore in any SPE, players 1 and 2 exchange immediately. and the SPE payoff
must be (71,1 — 721), as required.

It remains to prove that A has a SPE as assumed above. It is easy to confirm
that the following strategy profile is a SPE®. Let (i,5) = (1,2) or (2,1) as before.
Player i always makes the proposal (py,p2) where p; = i1, and p; = 1 — @;, and

accepts offers if and only if they are 1 — i; = §;7; or better. O

Binmore [4] argues that the most important case of the alternating offers game is
where the costs of bargaining are small. The justification is that following a refusal,
players have an incentive to make new offers as soon as possible. Situations in which

this is not possible seem rare. This case can be investigated by setting? §; = n¢ and

8Indeed, it can be shown that this is the unique SPE.
9See Osborne and Rubinstein [54] for an axiomatic approach to preferences over time/share pairs

which yields a utility function using this form of discounting. A gencral method of solution to the
alternating offers game which also applies to other specifications of time/share preferences is given
in Binmore [4). This shows that under some other time/share preferences the characterisation of

the limiting outcomes made here does not hold.
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taking the limit € — 0. In this relation, §; is the discount factor for a refusal, ),
represents the discount factor for a unit of delay, and € represents the length of delay
following a refusal.

In this case it can easily be shown that the outcome of equation (4.1) converges
in the limit € — 0. The same is true of the analogous result for an arbitrary utility
cake K!2. This limiting outcome has two important features'®. Tirstly, it is equal
to the corresponding limiting outcome to a variation on the alternating offers game
in which player 2 acts first. This shows that the exogenous choice of first mover
has no influence in this limiting case. Secondly, it is equal to the asymmetric Nash
I &y

bargaining solution when player 1 has bargaining power —

m This shows that

I even in the case

time preferences over incurred delays can select a unique outcome
where delays are arbitrarily small. This is in contrast to the case of costless delays -
i.e. 81 = 02 = 1 — in which any utility pair on the Pareto boundary can be supported
as a SPE outcome!?.

A variation on the alternating offers game is to allow outside options, as follows.
Each player has an outside option share of m; € R*. At step 3 of the game, the
responder has additional choice of opting out of bargaining. If this option is exercised
by player i in history h then the payoff of player i is <)':(h) m; and the other player
receives payoff zero. This setting is especially interesting with respect to bilateral
exchange networks. It can be viewed as a simplified model of a case where either

player has a chance to participate in an alternative exchange!”, but only one player

may take this opportunity.

9For a proof see Binmore [4].
HTndeed, these time preferences can select any asymmetric Nash bargaining solution and any

outcome on the Pareto boundary.
2let ¢ = (01,02) be on the Pareto boundary. The following strategies form a SPE yielding

the payoff ¢. Both players always propose o. Player ¢ accepts a proposal A = (A1, Az) if and only

/\1‘ 2 ;.
13 A player who has no such alternative can simply be endowed with 7, = 0.
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It can be shown (see Binmore {3] and Muthoo [51]) that. with discount factors
again taking the form J; = 7, the limiting SPE payoffs'! of this variation as € — 0
are the same as those of the alternating offers game where the cake K2 is replaced
by15

{(z1,22) € K*? | 2y > my. 29 > o}

These payoffs can be represented algebraically as (9.1 — @) where:

¢=myV {fz‘l(mz) Any)

and n; is the limiting SPE payoff to player 1 in the alternating offers game without
outside options. Note that V and A are infix maximun and miniinum operators

respectively.

4.2.2 Discussion and a Variation

In the terms of section 3.3.3, A(K!2.A) is a bargaining model with endogenous
structure A. There is also exogenous structure; the choice of the first proposer.
This is embedded in the choice of which player is labelled as 1, but could easily be
made explicit.

The core of the proof of lemma 4.1 is robust to many variations of the game rules
(for example see Binmore [4]). The following variation, which introduces personal
delays, is especially relevant to later work. In particular. the models of chapter 5
reduce to this game for 2 player networks. The motivation for using personal delays
is the subject of section 4.4.4.

The alternating offers game with personal delays, AP (K12 A), is the same
as A(K'2, A) except for the specification of delay and payofts. In any finite history

h, the personal delay of player i, 7;()), is the number of times player i has refused

11 the sense of definition 3.14.
131f m, or mo is non-zero then this new set is not strictly a utility cake as it does not satisfy

free disposal. However the same proof applies to this case. Alternatively the minimal utility cake

containing this set could be used to give the same result.
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in the course of the history. If proposal ¢ is accepted in finite history h then payoffs

are (5{1(’1) 01,5;2“1)02). In an infinite history payoffs are zero.
Corollary 4.2. Arersonel(KC12 AY has the same unique SPE as A(K'2.A).

Proof. The proof of lemma 4.1 applies here with the following modifications. Let
A = Apersonal(jc - A). For a subgame B, let 7;(B) be the associated personal delay
of player i. For z € {i,j}, replace each occurrence of 7(B) in the exponent of &,

with 7,(B). Equation (4.6) should be replaced with

(p1,p2) = (6] 01,657 02)

where 71 + 79 > 1. It is still the case that p; + po < 1. as required. O

4.3 The Telephoning Game

The telephoning game is defined by Binmore in [3]. In the terminology of section
3.3.3, this is a bargaining model for 3 player ring networks. It requires a discount
factor vector A = (dy,d2,d3) € (0,1)3.

The telephoning game for network N. T(N.A), is defined as follows:

1. Player 1 is the first proposer.

2. Denote the proposer by p. The proposer selects a different player to be re-

sponder r and makes a proposal o € KP".
3. The responder must either accept or refuse. Accepting terminates the game.

4. Following a refusal the responder becomes the next proposer and the game

returns to step 2.

Delay: The delay, 7(h), of any finite history h is equal to the number of refusals

that have occurred.
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Payoffs: If player r accepts the proposal o of player p in history h, then players p
and r receive payoffs (5;(}1) op and 4y (h) o, respectively. The remaining player receives
payoff zero. In an infinite history all payoffs are zero.

Recall from definition 3.10 that R3 is a 3 player ring network with unit cakes.
Binmore (3] proves that for §; < §; < 3, the game 7 = T(R3. A) has a SPE in which
the payoffs of players 1 and 2 are the same as in the alternating offers game on K ;¢
with the same discount factors for players 1 and 2. Furthermore it is shown that
in a game with the same definition as 7 except that player 3 is the first proposer,
there is a SPE in which player 3 earns only as much as player 2 does in the SPE of
T just described. It is argued that this is an unreasonable property of a bargaining
model since player 3 is the most patient player.

The telephoning model is not considered as a good bargaining model in this
thesis due to the existence of the SPEs just mentioned. urther discussion of this
case is postponed until section 4.4.5 as it is more fruitful to discuss it in parallel
with the market bargaining game. Part of this discussion explicates the arguments

against the use of the telephoning model in more depth.

4.4 The Market Bargaining Game

4.4,1 Literature Review

Binmore [3] defines a bargaining model for 3 player ring networks which he names the
market bargaining game. It is referred to here as the market bargaining game with
public delays to distinguish it from a modified version which will be introduced in
section 4.4.4. Sometimes I refer simply to ‘the market bargaining game’ in contexts
where the differences between these versions are irrelevant. The model requires a
discount factor vector A = (8;,d2,83) € (0,1)3.

The market bargaining game with public delays for network N. M public( 7 A )

is as follows.
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1. Player 1 is the first proposer.

2. Denote the proposer by p. The responder, r, is the player satisfying!® r =

p + 1(mod 3).
3. The proposer makes a demand!” 7, € [0, m(N)).

4. The responder may accept the most recent demand of any other player if one
exists and it is feasible, or refuse all demands. Accepting a demand terminates

the game.

5. Following a refusal, the responder becomes the new proposer and the game

returns to step 2.

Recall from section 3.1.1 that a demand o, by player p is said to be feasible to
player r if o, < f™P(0). Define m(N) to be the maximumn demand which is feasible
from some player to another in N.

In [3], Binmore does not explicitly define how delays occur and affect payofts in
this game. It seems reasonable to assume that he intended the use of public delays
as in the original alternating offers game. That is, as follows.

Delay: The delay, 7(h), of any finite history h is equal to the numnber of refusals
which have occurred.

Payoffs: If a demand o, made by player p is accepted by player r in history h
then players p and r receive payoffs 5;(}1)% and (5,701) 7" (o)) respectively. The third
player receives payoff zero. In an infinite history all payofts are zero.

The solution to this model involves the following set. Recall definition 3.6 of an

outer boundary.

1611 other words, for p=1or 2. 7 = p+ 1. For p = 3. » = | siuce this is the unique element of

{1, 2,3} equivalent to p + 1 modulo 3. This construction is used scveral times in this thesis.
"m(N) is defined following the definition of the game. The restriction on demands to a closed

interval is a technical condition required for corollary 3.1 to hold. A greater value of i (N) would

not affect the following analysis.
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(01.0,03)

3 (0,02, 03) )

Figure 4.1: A 3 player network with a von Neumaun-Morgenstern triple

Definition 4.3. A von Neumann-Morgenstern triple is a set of points {(oy, 02,0),
(01,0,03), (0,02,03)} such that (o;,0;) lies on the outer boundary of K¥. The

values o; are referred to as the components of the triple.

It is proved in [3] that for cakes which are insatiable in the sense of definition
3.7, if a von Neumann-Morgenstern triple exists then it is unique!S.

Binmore argues that the market bargaining game with public discounting has a
unique SPE in the limit ¢ — 0 in the case where discount factors are of the form

0; = 0. The following theorem summarizes one case of his results. Recall that

definition 3.14 defines a limiting SPE payoff.

Theorem 4.3. Let N be a 3 player ring network with insatiable cakes in the sense
of definition 3.7 and an empty core. For i € P firn; € (0.1) and let A = (§;)iep
where 6; = n¢ for € > 0. There is a unique limiting SPE payoff of (g1,02,0) to
MPWES(N A) as € — 0, where (01,09.03) are the components of the unique von

Neumann-Morgenstern triple of N.

A proof is given in the next section. It is essentially that of Binmore [3] but

explicates the limiting process in slightly more detail.

18This is straightforward since such a von Neumann-Morgenstern triple must satisfy o, =

f1%31(51) and the right hand side is a strictly decreasing function of ;.
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In the case that the core of a 3 player ring network is non-empty, then there
exists a player who receives zero in all core outcomes!?. Suppose without loss of
generality that this is player 3. This case is illustrated by figure 4.2 (page 104).
Binmore argued that in this case the unique limiting SPE of the iarket bargaining
game with public discounting is equivalent to that of the alternating offers game
between players 1 and 2 on K2 with outside options f31(0) and f32(0) for players
1 and 2 respectively. In section 4.6 it is proved that this conclusion is false: it
requires personal discounting.

It is important to note that the unique SPE of the market bargaining game when
a von Neumann-Morgenstern triple exists does not correspond to a unique solution
of the bargaining situation. This is because the unique SPE which is produced is
dependent on the identity of the first player i.e. on which player is labelled as 1.
Binmore argues:

“...one may ask which coalition would be expected to form. The question is
clearly unanswerable. . . without further structure being applied”.

In the market bargaining game, this extra structure is supplied by the numbering
of the players.

In a major difference to the telephoning game, the market bargaining game
players allows player to commit to multilateral demmands. That is, a player may
make a demand which either neighbour may choose to accept. Binmore argues that
allowing such demands is more natural from the following premise:

“ ..one cannot expect players to submit to constraints that limit their payoffs
unless there is some mechanism that forces the constraint on them.”

He goes on to say that the instability he found in the telephoning game suggests
that:

* . if it were the custom to deal exclusively by telephone (or bilaterally through

19Quppose otherwise. Then there must exist distinct core outcomes o and ¢’ such that (gi.0;) €
K% and (o},0%) € K% for some distinct 7,5,k € P. Whichever has the higher utility for j is a

Pareto improvement on the other for a pair of players.
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private conversations), then there would be players who would wish to disturb the
custom by advertising or shouting or whatever was necessary to gain attention for
their offers.”

The use of multilateral demands and the preceding argument are discussed fur-

ther in section 4.4.5.

4.4.2 Further Analysis

Lemma 4.4. In a 3 player ring network with insatiable cakes in the sense of defi-
nition 3.7, the core is empty if and only if a von Neurnann-Morgenstern triple with

non-zero components exrists.

Proof. Suppose the core is non-empty. Let ¢ = (¢q,c2,¢3) be an element of the core.
Choose k € P such that ¢x = 0. Let i and j be the other players. For p € {i,j} and
any z € (0, fP*(0)], it must be the case that f*P(z) < ¢,. Otherwise (f*?(z),x) is
a Pareto improvement on (cp,c;) in KP*. Therefore (f*'(x), f*/(x)) does not lie on
the outer boundary of K for any 2 > (), and no von Newmann-Morgenstern triple
can exist in which player £ has a non-zero component.

Suppose the core is empty. Select i = 1 or 2 to minimise f**(0). Let j be the
other element of {1,2}. Let a = f*3(0). Let g(z) = (f*'(x), f*?*(x)) for = € [0,q].
It must be the case that g(0) € K'2. Otherwise (a,b,0) is in the core where (a,b)
lies on the Pareto boundary of K2 and either equals (f3(0), 32(0)) or a Pareto
improvement on it. It must be the case that g(a) € int K!'? otherwise the vector
(c1,c2, ) is in the core, where ¢; = 0 and ¢; = f>7(«r). Since ¢ is continuous and
strictly monotonic, it follows that some g(o3) = (01, 02) lies on the outer boundary

of K'? and o, 02,03 are all positive. These are the components of the required von

Neumann-Morgenstern triple. O

As mentioned above, the following proof of theorem 4.3 contains slightly more

.
‘Ld)‘-

detail about the limiting process than that in Binmore
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Theorem 4.3. Let N be a 8 player ring network with insatiable cakes in the sense
of definition 3.7 and an empty core. Fori € P fiz n; € (0,1) and let A = (5;)icp
where 6; = n; for € > 0. There is a unique limiting SPE payoff of (01.09.0) to
MPWEe(N A) as € — 0, where (o1,09.03) are the components of the unique von

Neumann-Morgenstern triple of N.

Proof. Let M = MPUulic(N A) for some A. Note that by corollary 3.1 a SPE of M
exists.

Suppose player 1 makes an initial demand of A\; < o7 in M. Let A be the
resulting subgame. First it is proved that in any SPE this is accepted by either
player 2 or 3. Suppose otherwise. Fix a SPE e of A in which 2 and 3 both refuse
A1. Let 8 and v be the payoffs of plavers 2 and 3 in ¢. Then 3 > f12(\)) and
v > fl’?’(/\l). Hence 3 > o2 and v > g3 which is a contradiction since (o3, 03) is on
the outer boundary of K23, Thus in any SPE of M the payoff of player 1 is at least
o1.

Suppose player 2 makes an initial demand of A\; > o1 in M. Let B be the
resulting subgame. Suppose player 2 refuses and makes a demand of Ay < o9 in B.
Let B’ be the resulting subgame. Observe that f13(\;) < o3 < f>3(\2). Hence in
any SPE of B, player 3 does not accept the demand Ay. There cannot be a SPE of
B’ in which players 3 and 1 both refuse the demand A9 by a similar argument to the
previous paragraph. Hence in any SPE of B the payoff of player 2 is at least dp09.

Thus in any SPE of M the payoff of player 1 is in the interval [oq. f21(8209)].
In the limit § — 1 both bounds tend to oy so this is the unique limiting SPE payoff
to player 1 in M.

Note that in A player 2 may earn f'?(A;) > o3 by accepting the initial demand.
Thus the SPE payoff of player 2 in M is at least dp02. Therefore o3 is the unique
limiting SPE payoff to player 2 in M. A higher limiting payoff would result in an

non-feasible SPE payoff for all sufficiently simall €. O
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In the case that the insatiability condition does not hold. the proof still holds
under the condition that a unique von Neumann-Morgenstern triple exists??. The
only additions necessary are as follows. In the second paragraph. the case that
fY2(A\1) = 02 and f13(\;) = o3 is not possible because otherwise (A1, 09,03) would
then be the components of a second von Neumann-Morgenstern triple. In the third
paragraph the case that f13(\;) = f23(\;) = o3 is not possible. Otherwise it must
be the case that o3 is the maximum feasible payoff to plaver 3. aud (Ay, f12(Ay).03)

are the components of a second von Neumann-Morgenstern triple.

4.4.3 General Notes

The market bargaining game demonstrates that multiple solutions of a bargaining
network can be described by a game with a unique SPE. The choice of player num-
bering selects between these outcomes. In the terms of section 3.3.3, the model
has exogenous structure which is embedded in the player labelling. This exogenous
structure could be made explicit by instead requiring a bijection ¢ from P to {1,2,3}
representing the order in which players act.

The market bargaining game can provide a prediction tor any network of up to 3
players. If the network does not contain 3 cakes, the missing cakes can be replaced
by?! {(0,0)}. Adding non-profitable exchange relations to a bargaining situation
should not change the solution??.

The market bargaining and telephoning games could be defined for any network

20 Multiple von Neumann-Morgenstern triples can exist when the insatiability condition fails. It
can be shown that should this occur, it must be the case that a pair of compouents from ecach triple
must lie on a vertical or horizontal part of the outer boundary of the corresponding utility cake.
It can be proved that theorem 4.3 still holds under the additional condition that (o1.02,03) are
the components of the von Neumann-Morgenstern triple maximising the component of plaver 1.
However, case seems of little interest as the outcome is not robust to many small variations in the

outer boundary of the cake.
21 An alternative is to replace them with e-unit cakes and take the limit ¢ — 0.
22Gee footnote 4 of chapter 3.
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of more than 3 players. In most such networks multiple exchanges may form. How-
ever, the market bargaining and telephoning games do not provide mechanisms for
bargaining to continue after a single exchange. The models of chapter 5 introduce
such mechanisms.

A feature of the model is that the proposer is allowed to make demands which
are non-feasible to either neighbour?3. It is certainly necessary to allow demands
which are non-feasible to one player (e.g. suppose K!? is a unit cake and K23 =
K = {(0,0)}). An alternative approach would be to only allow demands which
are feasible to at least one neighbour. If this approach were used, corollary 3.1 can
no longer be used to prove the existence of SPEs. If existence is assumed, the proof
of theorem 4.3 still applies so the SPE outcome is unchanged. The SPE analysis
of the market bargaining game?* shows that players choose not to make demands
which are non-feasible to both neighbours (except for the case of a player who does
not exchange in any SPE, whose demand does not affect play). For this reason
and the difficulty of proving SPE existence. the alternative rule seems unnecessarily
complicated, especially if it must later be generalized to the case of more than 3
players.

Another feature that arguably seems unrealistic is that if a player is a responder
and all her offers are infeasible then she must still make the action of refusing them
and incur a delay. This feature is a technical condition required to apply corollary

3.1 on SPE existence?®, although intuitively it still seems likely that SPEs exist in

23The specification of m(N) means that there exists a player who must make demands which are
feasible to at least one neighbour. This fact does not have any significance: m(/N) can be increased

without affecting any results.
24That is, the proof of theorem 4.3 above and that of lemma 4.6 below.
25 Suppose a responder did not incur a delay should she have no feasible demands in step 4 of the

game. Consider the following (infinite) history h. In period t; the respouder r has a single feasible
demand, made by player p in period t;. The demand is A = f"”(0). Player + refuses this demand
and eventually receives share s, after delay 7. Any open set (under the topology of S described in

corollary 3.1) containing h contains a history h’ which is the same as /i except that the demand in
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models without it?6. There are some plausible arguments in support of this feature.
For example, the delay could be viewed as modelling the time required to prepare a

proposal.

4.4.4 Public and Personal Delays

This section argues the case for using personal delays rather than public delays. The
argument can be summed up as follows. A perfect information model with public
delay may require players to wait and accumulate delay while distant players act.
The use of personal delays captures the intuition that cach plaver is only affected
by delays caused by local actions.

The market bargaining game with personal delays, A/P™0"( V] A) has the same
definition as APUPliC( N A) except for the specification of delays and payoffs. In any
finite history £, the personal delay of player i, 7,(/1), is the nunber of times player ¢
has refused in the course of the history. If a demand o, made by player p is accepted
by player r in history h then players p and r receive payofts 6;”(”)0,, and 5:"(’1) P (o)
respectively. The third player receives payoft zero. In an infinite history all payoffs
are zero.

Using personal rather than public delays has little effect if the conditions of theo-
rem 4.3 hold. This is not surprising as the solution described there is independent of

the relative time preferences of players, and delay only features briefly in the proof.

Corollary 4.5. Under the conditions of theorem 4.3, the limiting SPE outcome of

Mpersonal(N A 4s the same as that of MPUH(N,A) given by theorem 4.5.

Proof. As for theorem 4.3. O

period t; is A + ¢ for € > 0 sufficiently small. In k' player  does not incur a delay in period ta.

Thus ,.(h) = 7 s but ()67~ !s,.. This violates continuity on 7, condition 5 of theorem 3.2.
26 A5 discussed in the next section, such SPEs would have some advantageous properties; there

would be no need to introduce personal delays for the market bargaining game. However, as argued
in section 4.4.4, it is still desirable to introduce them for bargaining models on larger bilateral

exchange networks.
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At first sight, personal delays do not seem appropriate in a realistic bargaining
model. After all, why should it be possible for two plavers to cxchange with each
other and experience non-equal delays? The following lemma illustrates the motiva-
tion for the use of personal delays. It describes the SPE behaviour of both variations

of the market bargaining game for a case where theorem 4.3 does not apply.

Lemma 4.6. Suppose N is a 8 player ring network such that K2 = K qnd
the core of N contains an element ¢ = (c¢y,c2.0). For each i € P fiz m; € (0,1).
For e > 0, let A = (81,02,083) where 6, = 1)5. Let M be cither MPEC(N A) or
Mpersonal(NA). The unique limiting SPE outcome of M in the limit ¢ — 0 is
(6,1 — ¢,0) where

¢ = f2H0) v {[1 = £22(0)] A

I 1— o4
np = lm —-—
! e—01 — (5|()5‘

and w is 1 in the case of personal delay and 2 in the casc of public delay.

The infix operators V and A represent the maximumn aud minimum operations
respectively. An equivalent definition of ¢ is ‘the element of the closed interval
bounded by f31(0) and 1 — f32(0) closest to ny’. It is easy to shown that the
conditions on §; guarantee that the limit given for n; converges. Figure 4.2 shows a

network where the conditions of this lenuna are met.
Proof. See section 4.6. O

This lemma states that the solution of MPe°#! coincides with that of the al-
ternating offers game on K'2 with the same discount factors, and outside options
f31(0) for players i = 1 and 2. For MP"Pli¢ the solution coincides with that of the
same alternating offers game with outside options. except that the discount factor
of player 2 is 62.

It can be proved that the characterisation of the result just made also holds in

the more general case where K!2 # K", In the case where the core is non-empty
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and contains an element c¢ such t‘hat c3 > 0 and ¢; = 0. a shnilar result can be
proved?’. The details of the proof of the general case are along the same lines as
the proof given in section 4.6. Only the special case is given to minimise the length
of the proof.

A sketch of the proof of lemma 4.6 is as follows. In a subgame at the start
of step 4 with responder ¢ = 1 or 2, the responder is guarantced a SPE share of
f3%(0). For example suppose i = 2. Player 2 may accept the demand of player 1 if
it yields a share of at least f2(0). Otherwise. the demand of player 1 cannot be
feasible to player 3. In this case player 2 may refuse the demand of player 1 and
make any demand feasible to player 3 and it will be accepted in SPE. If it were
refused by players 1 and 3 in a SPE they must both receive higher payoffs, but no
such outcome is feasible. Players 1 and 2 therefore effectively have outside options
equal to the lowest payoff they could receive in the core. Now the arguments of the
alternating offers game with outside options can be used. However, in the case of
public demands, if player 2 refuses and the most recent demands of players 1 and
2 are not feasible to player 3, then the delay is incremented by 2 since player 2 has
refused and player 3 must also refuse. Thus the arguments of the‘altemating offers
game must be used but with player 2 effectively having the discount factor 63.

Lemma 4.6 illustrates that the solution of the market bargaining game with
public discounting is not consistent with that of the alternating offers game. As
discussed in section 3.1.1, this can be seen from the case where K13 and K23 are
both the trivial cake containing only the origin. The reason for the inconsistency is
that player 2 is forced to incur an extra delay by waiting for player 3 to act.

It can be argued that the inconsistent solution produced by the public discount-

ing version of the market bargaining game is simply an artifact of requiring player

27TThere is one case which displays a novel SPE. Let j be the player other than ¢ and 3. If the
payoff of player j in the alternating offers game with player 3 on cake K% with the -appropriate
discount factors is less than any payoff he could receive in the core. then the exchange ij forms in

SPE, the limiting SPE payoff of player j is f'*/(0) and the others receive zero.
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3 to refuse and incur a delay when she has no feasible deinands. If this were not the
case then all resulting limiting SPEs would match those of the personal delay model.
Indeed, perhaps this rule is what was intended by Binmore in [3]. This resolution
has two problems. Firstly, as noted above (in footuote 25 of this chapter), corollary
3.1 can no longer be used to prove the existence of SPEs. Sccondly. it is not obvious
that this resolution works successfully for larger networks. although it certainly does
not seem impossible. If it is the case that exchanges form immediately in SPE -
and this usually seems to be the case for perfect information models — then there
may not be players available to provide disruptive delays after the first round. The
inconsistent result of lemma 4.6 hinges on the fact that player 3 provides such a de-
lay in every round. However, it may not be straightforward to prove this immediate
exchange result?®. I prefer to use personal delays because it rules out this possible
source of inconsistent solution from the outset.

Note that games using personal delays caunot be referred to as temporal mono-
poly games. This term is useful for games in which players have time preferences, and
there is a time value associated with each history of the gaine satisfying appropriate
conditions such as monotonicity. In a temporal monopoly game, only oue player
may act at a particular time value. However, in a gamce using personal delays a
single history may represent different time values to different players.

Another application of lemma 4.6 is to the network given by K2 = K% = K.
and K3! = {(0,0)}. The limiting SPE outcome is? (0,1.0). As discussed in section

4.4.3, this can be viewed as a prediction for the network L; defined in section 3.1.1.

28The proof of this result is typically quite straightforward for games with unilateral demands.
such as the telephoning game and various models discussed in section 4.5. However. it is argued in

section 4.4.5 that it is desirable to allow multilateral demands to be made in models.
29T his outcome is in a von Neumman-Morgenstern triple. It can also be demonstrated that this

is the outcome by a method based on theorem 4.3.



4.4.5 Multilateral Demands

It is problematic to justify multilateral demands of the sort used in the market
bargaining game as part of a realistic bargaining process. One problem is that
making proposals to several neighbours with the guarantee that each neighbour will
have a chance to accept before the proposer takes any further actions requires a
high level of commitment. Another problem occurs if the outcomes in a bargaining
situation are more complicated objects than a single munerical value. It may then
be a difficult task to create proposals to several neighhours which the proposer is
indifferent between, and certainly not one that can be performed immediately in a
bargaining situation3?,

In light of these difficulties, I interpret the argument given at the end of section
4.4.1 which Binmore made for allowing the use of multilateral demands as follows.
Multilateral demands are not intended as a literal description of the bargaining
process. Instead they operate as a device allowing ongoing bilateral bargaining
between players to be interrupted. The proof of theorein 4.3 illustrates that there
exists a situation in which an individual player has an inceutive to do so, as discussed
presently. In a more realistic bargaining model, other devices could be employed for
this purpose. One candidate is to use a random order of play. Another is to use
unilateral demands and a well chosen order of play, as discussed in section 4.5 below.
However, multilateral demands have the advantage of producing a tractable and
concise model which is consistent with the solution of the alternating offers game.

In the proof of theorem 4.3, it is shown that in the case where the core is
empty (and the cakes are insatiable), if the first player in a market bargaining game
makes any demand less than their SPE payoff then it is accepted by the following
player in SPE. This central argument of the proof is quite robust to variations of

the rules. It only requires that both ncighbours of the proposer have a chance

3This task may be easier in a setting where the bargaining situation is repeated. Bargainers

then have an opportunity to become familiar with the available proposals of this sort.
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to accept his demand. Indeed, it holds even if no further multilateral offers are
permitted. This can be interpreted as meaning that if only a single player is willing to
bargain non-bilaterally then they can secure at least as much as in the von Neumann-
Morgenstern triple outcome described in theorem 4.3. Since in any other outcome at
least one player who exchanges can do better in a von Newmann-Morgenstern triple
outcome, this player has an incentive to break a bilateral bargaining convention.
Thus maintaining such a convention requires exogenous pressure and it can be seen
as the less usual case. This is the main argument in this thesis against the use of
telephoning game.

The market bargaining game asswmnes that proposers must demand the saine
utility from each possible responder. Omne may reasonably wonder whether this
assumption of public demands is necessary since, as noted above, the difficulty to
players of producing such proposals may be significant. That is, the case for public
demands as part of a literal description of a bargaining process is weak. However. as
argued above, the intention of introducing multilateral demands is not to make such
a literal description, but to capture the realistic possibility of bilateral bargaining
being interrupted. The use of public multilateral demands also allows players the
opportunity to commit to unrealistic threats, as illustrated by the following example.
Suppose all cakes are unit. Player 1 can initially demand utility z < 1 from player
2 and utility 0 from player 3. Player 2 must accept this demand in SPE because
otherwise player 3 is guaranteed to receive a SPE payvoff of 1. giving plaver 2 a
SPE payoff of zero. In effect player 1 has given player 2 an ultimatum that he will

capitulate to player 3 unless player 2 accepts his terms.
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4.5 Other Models

Herrero’s Model

Herrero’s bargaining model of [34] is for a bargaining situation with a set of players
P and the single multiplayer utility cake3!
K= {(zi)iep | vi € R+~,Z~'1fi =1}
€
A single discount factor ¢ € (0,1) which applies to all players is also required. The

model is the following straightforward extension of the alternating offers gaine.
1. Player 1 is the first proposer p.
2. The proposer, p, makes a proposal o € K.

3. Each player other than the proposer sequentially decides whether to accept or

refuse the proposal. If all accept then the game is terminated.

4. Following a refusal, the next proposer is the player satisfying p’ = p + 1

(mod |P|) and the game returns to step 2.

Delay: The delay, 7(h), of any finite history & is equal to the number of refusals
which have occurred.

Payoffs: If the proposal o is accepted in history /i, then the payoff of player i is
"W, . In an infinite history all payoffs are zero.

Herrero proves the following result (proposition 4.1 in [34]).

Theorem 4.7. If § > |P|1~1 then any o € K is a SPE outcorne of the model.

The details of the proof are omitted as they are not required in later arguments.
The crucial step is to construct SPEs for each i € I” in which player ¢ receives share 1

and all other players receive zero. If a player deviates from this SPE, he is'punished

311 fact this definition of a game holds for any utility cake K C (RT)I?1. Herrero’s proof of

theorem 4.7 also holds for this case with only a few cosmetic modifications.
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by the play of a SPE in which the deviator receives zero. If the deviation involved
making a proposal, then in the punishment SPE a plaver for whom the deviator
proposed the lowest share receives a share of 1. To tempt the other players into not
playing this punishment SPE, the deviator must offer them each a payoff of more
than 4. But this is not possible given the condition placed on 4.

The reason that this argument does not apply in bargaining games on bilateral
exchange networks is that not all the other players have a veto. To avoid a punish-
ment SPE of the sort described, the deviator need offer only one other player more
than &, which is always possible32.

Herrero’s theorem shows that generalisations of the alternating offers game to
general bargaining problems suffer from indeterminate solutions. The result that
the market bargaining game possesses a unique SPE suggests that generalisationus to
the restricted setting of bilateral exchange networks may avoid this problem. This

is a motivation for the attempt to develop such models in chapter 5.

Unilateral Demand Exogenous Order Models

In (3], Binmore briefly considers a generalisation of the alternating offers gaine with
the same rules as the market bargaining game (with public delay) except that the
responder may accept only the demand of the most recent proposer. In this model,
only unilateral demands may be made, but, unlike the telephoning game, the order

of play is exogenously fixed. The nth proposer is the plaver p,, satisfying p, =

32 A variation on Herrero’s model is to require the proposer to only make a demand. and let
an exchange form once the sum of the most recent demands is no more than 1. Then such a
punishment SPE could not always exist. For example in the 3 player case. consider a strategy
profile in which the initial demands of players 1. 2. and 3 are 0. 0. and 1. Player 2 could instead
demand A < 1 — & and in SPE an exchange would form after player 3's demand. This argument
holds under various delay schemes e.g. delay for player 7 equals «) number of demands of player ¢
minus one (a personal scheme) or b) number of demands of playcer 1 minus one (a public scheme).
In Osborne and Rubinstein [54] (section 3.13) it is mentioned that for a version of this model with

more restrictions on play no complete analysis is available.
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n(mod 3). Binmore shows that in the case where the core is empty the solution of
this model coincides with that of the market bargaining game. However, in the case
where the core is non-empty, the model has a serious deficiency. Consider the case
where K2 is a unit cake and K2 and K3! are e-unit cakes. Player 1 has a large
advantage in this case since he can make demands to player 2, but player 2 cannot
make counterdemands. This produces®? a SPE payoff strongly biased towards player
1. The bias is due to the choice of ordering rather than any aspect of the bargaining
situation, so this is not a good candidate for a bargaining model.

For the network just discussed, an alternative player ordering which allows play-
ers 1 and 2 to make demands to each other and treats them symmetrically seems
more appropriate. However, for this model to be useful. a plaver ordering is required
which is appropriate for any network. Thus it must implement the von Neumann-
Morgenstern triple solution in the case of a network whose core is empty. A model
involving such an intricate ordering seenis a less appealing candidate for a bargain-
ing model than the market bargaining gaine on grounds of concision, especially as it
seems likely that the necessary player ordering would becoime even more complicated

for larger networks.

A Model of Corominas-Bosch

In [23], Corominas-Bosch introduces a model of bargaining for a setting in which
players are partitioned into a set of buyers and a set of sellers and all exchange
opportunities involve one player from each set. It is assuined that each seller owns
an indivisible good and each buyer possesses money. 1f a seller and a buver trade
at price p and time ¢, they receive utilities of é'p and 0'(1 — p) respectively. In the
terminology of section 3.1.1, this setting is a bipartite bilateral exchange network

with unit cakes.

33This can easily be proved along the lines of the proof of lennua 4.1. Define #; and 7, as in that
proof. Then m, > 1 — 4272 and T2 < F32(0) V [1 —- m,]. Combining these gives 72 < f32(0) V 8272,

so it must be the case that 72 < f*%(0) = ¢.
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An outline of the model is as follows. Either the buyers or sellers are chosen to
be the initial proposers. The other players are the responders. The proposers simul-
taneously make demands. Then each responder must choose to either accept one
proposed demand value or refuse them all. This decision is made simultancously by
all responders. A deterministic matching rule is given that selects which exchanges
take place3?. This matching rule guarantees that the maximum possible number of
exchanges form. In cases where no two responders accept the same demand. this rule
is straightforward, but in other cases it can be quite complex. Agents who exchange
are removed from the network. The process is then repeated with the players who
responded most recently now taking the proposing role. Tle time of an exchange
corresponds to how many times this process was repeated before the exchange took
place.

Corominas-Bosch shows that for many networks there exists a unique SPE out-
come under this model. However, there are also networks for which multiple SPE
outcomes exist. She gives the example of L5 (as defined in section 3.1.3). This is
a bilateral network with players 2 and 4 on one side aud players 1, 3 and 5 on the
other. In the case where players 2 and 4 propose first. for certain parameters used
by the matching rule there are multiple SPE payotfs®’. The set of SPE payoffs to
players 2 and 4 is [ﬁ, 1]. Recall that l—b- is the unique SPE payoff to the first

proposer in an alternating offers game on a unit cake with common discount factor
d.
This model allows simultaneous actions. An equivalent representation is in terms

of imperfect information. Proposers do not necessarily make proposals simultane-

34The alternative where responders may choose to accept a particular neighbour is also considered
in Corominas-Bosch [23] (in section 3.8). The details of the argument mentioned below showing

that Ls produces multiple SPEs continue to hold.
351n the case where players 1, 3 and 5 propose first there is a uuique SPE outcome in which they

receive payoff zero and player 2 and 4 receive payoff 1. Since all players thus have some interest in
not proposing first, this suggests incorporating the decision of when to enter the market as part of

the model.
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ously, but do make them without knowledge of the other proposals (e.g. proposals
are placed in sealed envelopes). This seems a more realistic description of a bar-
gaining situation than either simultaneous actions or perfect information. Indeed,
this avoids some unrealistic features of perfect information bargaining models. For
example there is no necessity to use personal delays since every player gets to act
in every time period. Also it provides a method to avoid the problems of instantly
adaptive exchange (discussed below in section 5.3.1). Ou the other hand, given the
presence of simultaneous actions, it seems natural to allow players to use mixed
strategies. This suggests SPE analysis may not find all the solutions.

A difficulty with applying the Corominas-Bosch model to the setting of bilateral
exchange networks is how to deal with noun-bipartite networks. There are many such
networks (for example, complete networks) with no obvious structure suggesting a
rule to determine which players are the proposers in a given round. Since this rule
is likely to have a significant influence on the outcouie of the model, an arbitrary
choice does not seem satisfactory. It seemns more natural to extend the nodel in
alternative bargaining settings which do not restrict players to a single exchange.
This would allow some players to be both proposers and responders.

Chatterjee and Dutta [19] investigate similar models to those of Corominas Bosch
in the case of a 4 player bipartite network in which each player is connected to both
players on the other side of the network. The principal difference is that is no longer
assumed that all utility cakes are unit cakes®®. It is shown that for each of their
models there is a case where either the model has no SPE or auny SPE involves a
delay in reaching agreement. This is in contrast to the behaviour of the model of

Corominas-Bosch on the unit cake versions of this networks and casts doubt upon

the robustness of the unit cake solutions.

36There are other differences. For example, players choose to accept demands of particular players

rather than simply demand values.

102



Models of Calvé-Armengol

Calvé-Armengol [16, 17, 18] proposes a series of bargaining models for bilateral
exchange networks with unit cakes under the constraint that all negotiations are
bilateral. In [18], a perfect information model is presented in which a neighbour
of the proposer is randomly selected to be the responder. and the proposer must
then make a unilateral offer to the responder. The responder may accept the offer
or refuse and become the next proposer. This model has the restriction that the
game ends when a single exchange forms and non-exchanging players receive payoff
zero®”. A unique stationary SPE is found for any network. In [16], a similar model
of bargaining in a 3 player line network is proposed. with the difference that the
responders are chosen according to a pre-specified order. On the other hand [17]
contains a 2-stage model. In the first stage each player selects a single neighbour
as their bargaining partner. In the second stage a randomly chosen initial proposer
makes a demand. Their bargaining partuer is the responder and may accept the
demand or refuse and become the next proposer. Again this game terminates once a
single exchange forms and non-exchanging players receive zero. The usual approach
to discounting is used in all these models. Noue of these models reproduce the
limiting prediction of the market bargaining game for the L3 given in section 4.4.4
above. Instead they produce an outcomes in which the central player receives an
outcome identical to that in the alternating offers game over one of the two cakes.
This underlines the discussion in section 4.4.5 that the market bargaining game
supports qualitatively different outcomes to the case of purely bilateral negotiations

by providing a mechanism for them to be interrupted.

37This allows the models to illustrate features arising from the bargaining situation without
having to deal with complications of instantly adaptive exchange as discussed below in section 5.3.1

(although a one-exchange rule could be viewed as an extreme case of instantly adaptive exchange).
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4.6 Appendix: Proof of Lemma 4.6

Lemma 4.6. Suppose N is a 8 player ring network such that K2 = K gnd
the core of N contains an element ¢ = (¢1.¢2.0). For each i € P fix 1, € (0,1).
For € > 0, let A = (0y,02,03) where §; = 5. Let M be cither MPPU(N A) or
Arpersonal(NCA). The unique limiting SPE outcome of M in the limit ¢ — 0 is

(¢,1 — ¢,0) where

¢ = f310) v [[L = f2H0)] A ]

I 1-9¥
ny = Im —————
e—01 — 5105

and w is 1 in the case of personal delay and 2 in the case of public delay.

Recall that V and A are infix maximum and minimum operators. Figure 4.2

shows a network where the conditions of this lemma are met.

player 1

player 3 playver 2

Figure 4.2: A 3 player network with a non-empty core

Proof. Let wqy = 1 and wy = w. Fix A. Define pre-proposal and post-proposal
subgames of M to be those at the start of, respectively. steps 3 and 4 of the game.

Let B; be the set of pre-proposal subgames of M with proposer i.
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Let B be a subgame of M. In the case of personal delay. let 7i(B) be the
associated personal delay of player i. In the case of public delay. let 7;(B) be the
associated delay. Let P;(B) be the set of all values 5,‘7’(5)7,- suchi that 7; is a SPE
payoff to player i in B. Note that by corollary 3.1, M has a SPE and therefore so
does B. Hence P, is non-empty.

Let Iy = Ugep, P1(B). Let II, = | Jz Po(B) where the union is taken over the
subset of By such that the most recent demand of player 1 is more than f3!(0). Let
7 = supll; and 7; = inf I1;.

It must be the case that for z € {1,2}. ¢, > f34(0). Otherwise (0, ¢c;) would be
Pareto dominated by (0, f3%(0)) € K3 and ¢ would not be in the core. This gives

1—f320) > 1-c2 =c; > f510) and so:
1— f32(0) > /1) (4.7)

Let (i,7) = (1,2) or (2,1). Let A be a pre-proposal subgame of M with proposer
i. In the case i = 2 suppose also that the most recent demand of player 1 in A is
more than f31(0).

Suppose player i demands \; < f*/(0) in A. Let B be the resulting subgame.
Suppose that in a SPE of B a post-proposal subgame B’ is reached with responder
j in which the demand ); is available. By (4.7), A; < 1 — f3J(0). Thus the share
of player j in any SPE of B’ is more than f3/(0) so the exchange ij must form.
Suppose that in a SPE of B a post-proposal subgame B” is reached with responder
3 in which the demand ); is available. Then the share of player 3 in any SPE of
B" is non-zero. Thus in any SPE of B the first responder, . must accept a demand
otherwise a contradiction is produced. If r = 3 then the only feasible demand is that
of player i. If r = j then accepting the demnand of player i results in a better payoff
than accepting any demand of player 3 since 1 — A, > F3(0). Thus the demand X;
is accepted in SPE and so:

x> [340) (4.8)
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Suppose player i demands A; < [1 — f39(0)] A [1 — (5;”’ 7j] in A. Let C be the
resulting subgame. In the case where \; < f*/(0) it has already been shown that
this demand is accepted in any SPE of C. So suppose \; > f3%(0). If player 3 is the
responder in C then j must be 1 and player 3 cannot accept the demand of player j
since it is infeasible. Thus in any SPE of C, either player 3 accepts the demand of
player i, or a post-proposal subgame of C with responder j, C’, is reached in which
the demand ), is available (In the case i = 1, then C’ = C). Since 1 — \; > £3(0),
it must be the case that the exchange 35 does not form in any SPE of C’. If player j
refuses in C’ then the delay she incurs when an exchange forms is at least 7;(C’) + 1.
In the case that j = 2, if player 2 refuses in a SPE of C’ then player 3 must also
refuse before an exchange forms in that SPE. If public discounting is used then the
delay that player 2 incurs when an exchange forms is at least 79(C’) + 2. Thus if
player j refuses in a SPE of C’ then her SPE payoff is at most 5;+'va 7j, which is less
than that of accepting A; in C’. This shows that \; is accepted in any SPE of A.
However, if i = 2 and public discounting is used, tlie delay may be incremented by

1 before it is accepted. Thus
m; > 6w {[1 — FAIO) A1 — 0% ﬁj]} (4.9)
Suppose there is a SPE e of A in which player i receives a share of

p > FHO)V L= 60|

|
i

Suppose the play e involves a post-proposal subgame of A with responder 3 being
reached. Then it must be the case that in e player 3 refuses in this subgame for
the following reason. If the exchange 3i forms then the share of player ¢ is no more
than f3%(0). If the exchange 3j forms then the share of player ¢ is zero. Therefore
it must be the case that the play of ¢ involves a post-proposal subgame D with
responder j being reached. In the play of e, player j receives a payoff of.less than
aj = 5;1(D)(1—,L¢i). Let ); be the most recent demnand of player i in D. If A; < f3%(0)

then player j could earn a higher payoff than o iu D by accepted the demand of
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player i. If A; > f3%(0) then player j could earn a pavoff of at least 6;‘(D)+w’1]- in

SPE of D. This contradicts the existence of e. Thus

R A (ORAS e

] (4.10)

Let
1- ()‘;LJ
mi = —— =
1- 5;‘ OJ- J

Note that m; has the property that 2 — [1 — (5;”’(1 — 0"x)] has the same sign as

z—m,. Thus substituting (4.10) into (4.9) and combining the result with (4.8) gives:
o 2 60O VI = SO0 A} (4.11)
Substituting this into (4.10) gives:
7 < fA0) VAV B (4.12)
where

A=[1=8F0) A1 =6+ f2(0)
B=[1-6f0)]Al~-d5m

x 211,']'—1‘
6" =0,

Observe that taking the limit ¢ — 0 in equations (4.11) and (4.12) yields
lim,om; > ¢ and lim, 071 < ¢. Since my < 7|, it must be the case that
lime_om; = limeo@1 = ¢. Thus ¢ is the unique limiting SPE payoff to player
1 as required.

Let £ be the subgame resulting from an initial demmand of Ay by player 1 in M.
In the case that A; < f31(0) the SPE payoff of player 2 in £ is at least 1 —A; > 1—¢.
In the case that A1 > f>!(0) the SPE payoff of player 2 in £ is at least do7m,. Using
equation (4.11) and taking the limit ¢ — 0, this also gives a lower bound of 1 — ¢.
Thus the limiting SPE payoff of player 2 in M is at least 1 — ¢. It cannot be higher

or for some € > 0 there must be a SPE with payoffs that are not feasible in N. O
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Chapter 5

Novel Extensions of the

Alternating Offers Game

This chapter contains two bargaining models which extend the market bargaining
game of the previous chapter to model bargaining in bilateral exchange networks
with more than 3 players. Section 5.1 presents the exogenous ordering model. This
is a straightforward extension of the market bargaining game. It requires an exoge-
nously specified ordering on the players which represents the order in which they
play. This model does not produce as precise a prediction as the market bargaining
game; the SPE outcome is shown to be highly dependent on the exogenous ordering.
This is illustrated for the network Lg as defined in section 3.1.3.

The existence of multiple solutions motivates the c¢ndogenous ordering model of
section 5.2. In this model players’ actions determine the order of play, aithough the
first player to act must still be exogenously chosen. It is shown that this model also
supports a wide range of SPE outcomes for L;. Also. proving this result requires
exhaustive consideration of many cases. This suggests that there may be many
larger networks for which solving this model is not practical. Finally, the rules that
are required to allow an endogenous ordering while retaining the character of the

market bargaining game seem quite unrealistic.

108



Section 5.3 discusses the multiple solutions found for both models in greater
depth. It also introduces and discusses the concept of instantly adaptive exchange, an
often undesirable feature of many perfect information bargaining models including
those of this chapter. Sections 5.4 is an appendix containing most of the proofs for
this chapter.

Due to the problems detailed in this chapter, an approach to modelling bargain-
ing in general bilateral exchange networks based on the market bargaining game
does not seem feasible. This conclusion is discussed in more detail in section 9.1.2
of the concluding chapter. However, the models of this chapter do produce some
predictions, especially for small networks. Interpretation of these results is post-
poned until section 9.2 of the concluding chapter, where they are compared with the

predictions of other chapters.

5.1 The Exogenous Ordering Model

5.1.1 Definition

This is a direct generalisation of the market bargaining game in that it also uses
an exogenous order of play. As in the market bargaining game, the player order-
ing is embedded in the labelling of the players: recall the assumption that P =
{1,2,...,n}. As well as a network N = (P, E,K). the model requires a vector of
discount factors A = (6;);ep where §; € (0,1). Define m(N) to be the maximum
demand which is feasible! from some player to another in N.

The exogenous ordering model produces the following game, X(N,A):

1. Initially all players are active. Players 1 and 2 are respectively the first pro-

poser and responder.

1Recall from section 3.1.1 that a demand o, by player p is said to be feasible to player r if

op < f77(0).
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2. The proposer p makes a demand? o, € [0,m(N)].

3. The responder r may either accept the most recent demand of any active

neighbour if it is feasible, or refuse all demands.

4. a) If r accepts then players p and r exchange and become inactive. Any players
with no active neighbours also become inactive. If no active players remain
then the game terminates. Otherwise the new responder +/ is the minimal
active player i > 7, or if no such player exists, simply the minimal active

player i. The game returns to step 3.

b) If r refuses, the new proposer p’ is r and the new responder 1’ is as defined

in 4 a). The game returns to step 2.

Delay: In any finite history A, the personal delay of player ¢, 7;(h), is the number
of times player i has refused in the course of the history.

Payoffs: Let h be a terminal or infinite history. If a demand o, made by player
p was accepted by player r in a subhistory A’ of h then the payoffs of players p and r
in h are 5;"(hl)op and 5:"(’11) fP"(op) respectively. All players who are not allocated
a payoff in this way receive zero.

Note that once players exchange their personal delays do not increase. Thus
payoffs are well defined. The definition of a payoff is slightly more complicated than
in the previous chapter because there is now the possibility of an infinite history in
which some players exchange but others continue to bargain indefinitely.

The definition above of an active plaver aims to describe those who have not yet
exchanged but still have a possibility of doing so. Thus a player can become inactive
either by taking part in an exchange or by all their neighbours doing so and thereby
losing the possibility of taking part in an exchange.

A subgame in which the next action to be taken must be in step 2 is called a

2The restriction on demands to a closed interval is a technical condition required for corollary

3.1 to hold. Defining m(NN) to take a greater value would not affect the following analysis.
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pre-proposal subgame. One in which the next action must be in step 3 is called a
post-proposal subgame. Thus the subgames of a game .V generated by this bargaining
model are partitioned into pre- and post-proposal subgaines. Note that there exists
another game which is clearly equivalent”® to X but does not permit such a partition
to be made. This game requires a respouder to either accept a demand or make
a new demand. The latter case implies that the responder has rejected all feasible
demands. Choosing a representation of the model which allows a partition into pre-
and post- proposal subgames simplifies SPE analysis. For example, observe that the
proof of lemma 4.1 on the SPE behaviour of the alternating offers game is based on
the SPE payoffs in similarly defined pre-proposal subgames.

Observe that in a post-proposal subgame where the responder has no feasible
demand it is necessary for her to refuse and incur a delay cost. A similar feature is
found in the market bargaining game. The reasons for this are discussed in section
444.

For 2 and 3 player networks, the exogenous ordering model gives bargaining
games which are the personal delay versions of the alternating offers and market
bargaining games respectively. Hence it is consistent with earlier results on these
networks. Also note that for games generated by this model, if a situation is reached
in which a connected component of the subgraph induced by active players containg
only 2 or 3 players then in this component play continues* as in the alternating offers

or market bargaining game. This observation is often crucial to the SPE behaviour

- of this model.

31n the sense that there is a payoff preserving bijection between the sets of infinite histories which
also preserves the identities of players who must make actions. See the definition of equivalence up

to discounting in section 5.4.1 for a more precise definition.
4That is, the players in this component continue using the rules of the alternating offers or

market bargaining game. However, they may already have made some demands which can still be
accepted, and have already incurred some delays. Also. play nmay also be occurring ocutside this

component.
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5.1.2 Analysis for Lj

This section investigates the SPE behaviour of the exogenous ordering model for the
network Ls. In particular, the effect of different orders of play is explored. Since
the order of play is embedded in the player numbering, this requires using other
networks which are equivalent to Lz except for this nunbering. For this section,
let P = {1,2,3,4,5}. Given a sequence p = (p;)1<;<5 such that {p;} = P, let
E(p) = {p1ip2.p2p3, p3psa,paps}. Then Li(p) = (P.E(p). Kuit) is a 5 player line
network with unit cakes. The sequence p can be written pypops3pyps as there is no
risk of confusion. For example, 54321 represents the sequence such that p, = 6 — i.

By corollary 3.1, X (N, A) has a SPE, and hence so does every subgame. The
following two lemmas are on the SPE outcomes of X(Ls(p),A) for two values®
of p. The proofs of these results rely on a number of supporting lemmas and so
are relegating to section 5.4.3 in the appendix of this chapter. However the main

arguments are straightforward and are sketched below.

Lemma 5.1. For eachi € P firm; € (0,1). Fore > 0. let A = (4;)iep where §; = 1.
Then X (L5(31524), A) has a unique limiting SPE payoff® in the limit e — 0 in which

players 1 and 2 receive payoff 1 and the others receive zero.

The key part of the proof is as follows. Suppose players 1 and 2 initially demand
less than 1. If play reaches player 5 then player 5 is guaranteed a non-zero SPE
payoff and it must be the case that either player 3 or 4 receives a SPE payoff of zero.
This player would have preferred to accept the initial demand of their neighbour, so
this is not SPE play. Thus in SPE both players 3 and 4 accept.

Note that this argument hinges on the fact that players 3 and 4 know which

5

exchange will form if they both refuse. If player 5 randomised between accepting

players 1 and 2 this would not be true. Then in the cuse where players 3 and 4 both

5 For some other orderings I could not solve the corresponding bargaining game. An example is

54123.
SRecall that definition 3.14 defines a limiting SPE payoff.
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refuse they would both have non-zero expected payoffs. This would disrupt the SPE
argument given and support a solution in which the payoffs to the players are less

extreme than 0 and 1.

Lemma 5.2. Let A; = (4;)icp such that 8; = § for all i. Then X(L5(41325), As)

has two SPE outcomes, (1 —n,n,1—n,7.0) and (0. .1 =i, .1 =) where n = ﬁg

Recall from lemma 4.1 that 7n is the SPE payoff to the first mover in an alternating
offers game on a unit cake in which both discount factors are 4.

A sketch of the proof is as follows. Suppose players 1 and 2 initially demand less
than 1. If play reaches players 4 and 5, then they are hoth guaranteed non-zero SPE
payoffs, and player 3 receives zero. Hence in SPE player 3 accepts the lowest demand
from players 1 and 2. Suppose player 1 demands A < 7. Then either player 3 accepts
this, or players 2 and 3 exchange in SPE. In the latter case player 1 is effectively
left in an alternating offers game with player 4 who thus accepts the demand of A
in SPE. Suppose player 1 demands A > 7 initially. If player 2 demands more than
) then players 1 and 3 exchange, leaving player 2 effectively in an alternating offers
game with player 5 so player 2 receives a SPE payoft of dn. A better action for
player 2 is to demand slightly less than A since this is accepted by player 3 in SPE.
This leaves player 1 in an alternating offers game with player 4 in which player 1
receives a SPE payoff of d72. Thus the initial action of player 1 in SPE is to demand
n. Using the arguments just given it is quite easy to show that player 2 then also
demands 7 in SPE. Which of the two SPE outcomes described in the lemina occurs

depends on which neighbour player 3 chooses to accept.

5.2 The Endogenous Ordering Model

The endogenous ordering model is defined in section 5.2.2. Section 5.2.1 is a pre-
liminary section discussing the motation for the rules of this model. Section 5.2.3

discusses some features of these rules. Amongst other things, it is proved that they
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produce a well defined game. Finally, section 5.2.4 describes the SPE behaviour of
games generated by this model for various networks. The proofs are contained in

the appendix to this chapter.

5.2.1 Motivation

At first sight the rules of the endogenous ordering model described in section 5.2.2
below seem an unnatural choice. This preliminary section explains how these rules
arise from the motivation of producing a perfect information model allowing an
endogenous ordering of play while retaining the character of the market bargaining
game.

By the latter statement I mean that players must be able to make multilateral
demands as described in section 4.4.5. In a perfect information setting such demands
must entail a degree of forward commitinent; the proposer commits to making no
further action until all players to whom the demand was made have had a chance
to consider it.

Consider the question of how the next player to act in a perfect information
bargaining model is decided endogenously. In a model based on the alternating
offers game, the natural mechanism by which a player can influence the future order
of play is by making somebody a proposal. Therefore in the endogenous ordering
model, the proposer chooses one player to whom his multilateral demand is made
as the candidate for next responder.

However such a model allows a situation where a proposer is surrounded by
neighbours who have made forward commitments and thus cannot immediately con-
sider the proposer’s next demand. In the endogenous ordering model, the proposer
chooses a pseudo-responder. 1If the pseudo-responder has made a multilateral de-
mand to some players who have not yet considered it, the right to act next is passed
on to one of these. Which of these players receives this right has a .crﬁcial effect

on the order of play. Thus this choice is endogenised. Proposers must choose an
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ordering over the set of players to whom their multilateral demand is made. If they
later become pseudo-responder, the right to act is passed on to the first player in
this set who has not yet had a chance to respond.

In the endogenous ordering game, players are allowed to make multilateral de-
mands to any set of neighbours. There seems no reason to force players to make
demands to all neighbours. Players with many neighbours would then be forced into
much longer-term forward commitment than those with few neighbours which may
well be a significant disadvantage.

The model resulting from the argument in this section does not appear a natural
model of bargaining. It seems overly complicated and has artificial seemning features
which do not obviously correspond to auything from the original bargaining situa-
tion. For example following a proposal it is quite possible for there to be a sequence
of pseudo-responders ending in a next responder far from the proposer and SPEs
can depend on the opportunity to set up such sequences. This model is investigated
anyway to find out whether the two motivating features given at the beginning of

this section produce an interesting SPE outcome despite these drawbacks.

5.2.2 Definition

The endogenous ordering model is for a network N = (P, E, K) such that (P, E) is a
connected graph?. The model also requires a vector of discount factors A = (8;);ep
where 0; € (0,1), and a first proposer p; € P.

The model produces the following game, F(N, A, py):

1. Initially all players are active. p; is first proposer.

2. The proposer p makes a demand o, € R* and chooses an ordered non-empty

sequence V,, of distinct active neighbours. o, must be feasible to all players in

"There is no reason to investigate a non-connected bilateral exchange network rather than study
its connected components individually. The condition is imposed simply because it is required for

the game to be well defined.



Vp. The pseudo-responder is the first element of Vi

- The pseudo-responder ) becomes the responder if V;, contains no players.
Otherwise the first element of V, is chosen as the next pseudo-responder and

this step is repeated.

. Let R be the set of active neighbours ¢ of the responder r such that V, contains
r. T may accept the most recent demand of any player in R or refuse all

demands.

. a) If r accepts, players p and r exchange and become inactive. Any players
with no active neighbours also become inactive. For all x € P, p and r are
removed from the sequence V, if they are contained in it. If no active players
remain the game terminates. Otherwise, the new pscudo-responder is chosen
from the set of active players who are neighbours of either x or y, where x
and y are the most recently exchanged pair such that either has an active
neighbour. An unspecified rule is used to make this choice deterministic. The

game returns to step 3.

b) If r refuses then, for all z € P. 1 is removed from the sequence V, if it is

contained in it. The new proposer is 7. The game returns to step 2.

Delay: In any finite history £, the personal delay of player i, 7;(h), is the number

of times player ¢ has refused in the course of the history.

Payoffs: Let h be a terminal or infinite history. If a demand o, made by player

p was accepted by player 7 in a subhistory A’ of & then the payoffs of players p and r

in h are 6;” () op and (5;"(’1’) fP"(op) respectively. All players who are not allocated

a payoff in this way receive zero.

In step 2 an action must be taken of the form giving values of o, and V).

Such a pair is referred to as a proposition. A proposition is written in the form

(05, (v1, 2, . ..)] where (vq,v2,...) = V. A proposition of the form [0, (vy)] is often
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referred to below as a wnilateral demand of op to vi. A proposition of the form
[0, V] where V, includes all active neighbours of p is often referred to a multilateral
demand of o,.

Note that in this description V; refers to the most recent value of this variable.
Formally, it should be thought of as a function whose domain is the set of finite
histories of the game. In the analysis of this model the notation V,(h) is sometimes
used to make it clear which value is referred to.

A subgame in which the next action to be taken is in step 2 is called a pre-
proposal subgame. One in which the next action is in step 4 is called a post-proposal
subgame. As for the exogenous ordering model, the subgames of a game generated

by this bargaining model are partitioned into pre- and post-proposal subgames.

5.2.3 Discussion

First it is shown that the model produces well defined games. The choice of a new
pseudo-responder in step 5a) is well defined since (P, E) is connected. The following
argument shows that step 3 terminates and thus the selection of a responder is
well defined. Let h be a finite history which ends with a proposition. Let ¥ =
(0, %1, %2, - ..) be the sequence of pseudo-responders produced by step 3 following
h. By step 3, ¥i41 occurs in Vi, (h). If vy proposed more recently than v; in h
then ;41 was removed from V,;, in step 5. Thus it must be the case that v; proposed
more recently than ;41 in h, and the sequence ¥ must be finite as required.

The following example for a 4 player line network illustrates a potential problem
with the rules of the model. Suppose player 1 and 2 use strategies in which they
refuse all demands and always make propositions such that V; = (2) and V5 = (1).
This results in an infinite history in which no exchanges forn and all players therefore
receive payoff zero. Players 3 and 4 are denied an opportunity to exchange even
though they take no actions and incur no delays. A possible resolution of this

problem is that if such strategies are uscd then players 1 and 2 are deemed to have
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exchanged, both receiving payoff zero, and the game continues as in step 5a). A rule
which covers all cases of this problem would be complicated. However, this is not
required as the problem is unlikely to emcrge in SPE: it would require neighbouring
players to refuse all demands from each other and prefer to receive payoff zero®. It
certainly does not affect SPE behaviour in the results of this section.

By corollary 3.1, F(N,A,p;) has a SPE and hence so do all its subgames. The
restriction on the demand o, to be feasible to players included in V), is a technical
condition required by this corollary. It sccins intuitively unlikely that players would
wish to make non-feasible demands in SPE. This is especially so for the unit cake
networks studied in this section since a demand is either feasible to all neighbours
or to none. In general however it cannot be ruled out since propositions involving
non-feasible demands could allow the future order of play to be influenced in such a
way as to alter SPE behaviour.

The method of choosing a new pseudo-responder following an exchange which
is outlined in step 5a) is natural for tree networks such as those investigated in
this section. In this case, following an exchange the active players are split up into
separate connected components. Play in each component should continue, and since
there are no exchange opportunities between cowmnponents. which component plays
first is irrelevant. Consider any component. Amongst all players in this component
with an exchanged neighbour. let a be that with an exchanged neighbour whose
exchange was most recent. The choice is unique since (P, E) is a tree. Had an
exchange not taken place then a would have been the next pseudo-responder in this
component. So it is consistent to let a be the first pseudo-responder in its component
following the exchange. The choice of pseudo-responder is deterministic because, as

discussed in section 3.3.2, the introduction of random moves complicates the proof

8Problematic SPEs are thus only possible in a network with a cake of the form {(0,0)}. Even
in a network where such a SPE exists there would be another SPE in which the players in question
receive zero by exchanging. The problematic SPE could then simply be ignored rather than adding

extra rules to eliminate it.
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of corollary 3.1 on SPE existence. However. it is intuitively obvious that for tree
networks a random rule will give the saine SPE structure.

Although the choice of a pseudo-responder is well-defined for non-tree networks,
it is rather ad-hoc. In addition the particular deterministic (or random) rule used
may well affect the SPE structure. Further work would be required to determine

which, if any, rule is suitable for these networks.

5.2.4 Analysis for Particular Networks

This section describes the SPE behaviour of tlie endogenous ordering model for var-
ious small networks. The proof of the results in this section are placed in sections
5.4.4 — 5.4.7 of the appendix to this chapter as they are quite lengthy. However
sketches of the key parts of these proofs are given. Note that discussion and inter-
pretation of this behaviour is postponed to section 5.3.2. which discusses the results
of both models in this chapter, and the conclusion, chapter 9.

In the case of a 2 player bilateral exchange network. F' reduces to an alternating
offers game with personal delays. In the case of a 3 player line network, lemma
5.4 shows that the limiting SPE payoffs are (0.1.0). In the case of a 3 player ring
network, F does not reduce to the market bargaining game with personal delays.
Section 4.4 contains results giving the limiting SPE outcomes of the market bargain-
ing game in two situations. These results are theorem 4.3 and lemma 4.6. Under the
conditions of these results, F' has limiting SPE outcomes which represent essentially
the same solutions®. The proofs for these cases are by similar methods to theorem
4.3 and lemma 4.6. However under the conditions of lemma 4.6 another class of

SPEs exists for F', providing other possible limiting SPE payofts.

YThere are two differences. First. in F the first actor may be any player. rather than 1. Secondly.
under the conditions of theorem 4.3 - a von Ncumann-Morgenstern triple exists - the result for F
does not predict whom the first actor chooses to exchange with. However, the exchange reached is
the same as in theorem 4.3 if the first actor were renumbered as player 1 and the other exchanging

player were renumbered as player 2.
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An example of a SPE in this class is as follows. Recall that the conditions of
lemma 4.6 are that K2 = ;¢ and there is an element of the core in which player
3 receives payoff zero. See diagram 4.2 (page 104) for an illustration of this case.
Suppose player 3 is the first to act and makes an initial proposition of (o, (1,2]) for
any value of o3. Player 1 then makes the proposition (f%1(0).[3]). This results in
a post-proposal subgame with responder 2 in which player 3 has an offer of payoff
zero on the table from player 1. In the SPE under discussion. player 2 now makes a
particular demand of oy to player 1. Player 3 then refuses the offer of zero, makes
some other proposition and player 1 accepts the demand of player 2. If player 2
makes an initial demand of more than o, then player 3 accepts the offer of zero from
player 1 and player 2 receives zero. The value of oy can be chosen sufficiently small
so that player 1 receives a better payoff from his initial action than by acting as in
the SPE described in lemma 4.6.

These SPEs involve player 3 deciding to accept and refuse offers of zero as it
benefits player 1. They therefore do not seem very robust!",

For the network L4 and uniform discount factors of 4. multiple limiting SPE out-
comes again exist under F. However, there are only two: (3, 3.%,3) and (0,1, 1,0).

In the case of Ls, the endogenous ordering mnodel supports a wide range of mul-
tiple SPE outcomes. However, these are much more plausible than those described
above for Ls. In section 5.4.7 of the appendix it is shown that at least two SPEs
exist for the game A3 = F(Ls, As,3). Recall that Ay refers to discount factor vector
in which all discount factors equal §. In the high payoff SPE. player 3 receives a
payoff of 7. In the low payoff SPE, player 3 receives a payoff in an interval close to
0, both bounds of which tend to 0 as 6 — 1.

The key difference in behaviour in these two SPEs is as follows. Suppose player

3 makes an initial proposition of (o3, [2.4]) where o3 < ii. Suppose that player 2

YFor example they seem unlikely to be stable evolutionarily.  Also. suppose players’ payoffs
from exchanging were subject to small random positive perturations. Then player 3 would not be

indifferent between an offer of zero and not exchanging.
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eventually makes a counter demand of g, > 7 to player 3. either unilaterally or
multilaterally. The resulting subgame is a post-proposal subgame with responder
player 4. Suppose player 4 refuses. It turns out that the resulting subgame effectively
has the same SPE behaviour as a 3 player line network with players 3,4,5 in which
player 4 is the central player and proposer and player 3 has an outside option of
1—09. That is, in any SPE of this subgame player 4 makes a multilateral demand of
o9 and it is accepted. However, player 4 can choose to exchange with either player
3 or 5 and is indifferent between these choices. If the exchange 34 forms then player
2 is left in an alternating offers game and would have preferred to accept the initial
demand of o3. This supports the high pavoft SPE of Aj. If the exchange 45 forms
instead then player 3 is left in bargaining game on a 3 player line network with
players 1,2,3 and would wish to have made a very low initial offer. This supports
the low payoff SPE of A3!1.

It is also proved that in any bargaining game generated by the endogenous order-
ing model on Ly with discount factors Ay, players 1,3,5 receive limiting SPE payoffs
of no more than % and players 2,4 receive limiting SPE payotfs of at least % Indeed,
it can be shown that the limiting SPE pavotts of player ¢ in F(Ls. A, ¢) in the limit
d — 1 are [0, %] for i = 1,3,5 and [§,1] for i = 2,4. The proof of this is omitted as

it is very lengthy and does not add much to the discussion of this model.

5.3 Discussion

Section 5.3.1 introduces and discusses the concept of instantly adaptive exchange,
a feature of many perfect information models of bargaining. including those of this
chapter, which limits their potential usefulness in modelling bargaining in large
networks. Section 5.3.2 attempts to interpret the multiple solutions that have been

found for Ls under the bargaining modecls of this chapter and discusses possible

1 Other possible initial propositions of player 3 are also considered in the full proof of the existence

of this SPE.



resolutions to this problem.

Five player line networks with unit cakes are often under discussion in this sec-
tion. Throughout the players in these networks are numbered according to the
definition of L5 from section 3.1.3, not the alternative definitions of the form Ls(p)

used in section 5.1.2.

5.3.1 Instantly Adaptive Exchange

Once bilateral exchange networks with more than 3 players are considered. the pos-
sibility is introduced that more than onc exchange occurs. This section describes a
difficulty of modelling this within the framework of a perfect information game. The
problem is that such games do not seem able to capture time lag in the transmission
of information about the formation of exchanges. I use the term instantly adaptive
ezchange to describe a situation in which exchanges all form in different periods
of the game and the identity or the terms of the exchanges that form in SPE are
highly sensitive to the structure of the active network in the period at which the
exchange forms. In such a situation players must be able to instantly adapt their
behaviours to take account of the reduced network of active players that remains.
It is also necessary that any opportunities for forward commitinent do not override
this adaptation. This definition of instantly adaptive exchange is somewhat vaguel?,
However, the most important feature is that it precludes a situation in which two
exchanges in a bargaining network form based on the same knowledge of active net-
work structure. Such an outcome seems a likely feature of bargaining situations in
large networks where exchanges may form near-simultaneously in distant parts of

the network. A consequence of instantly adaptive exchange is that the order of play

12 For example, any game can be expressed in an equivalent form (i.e. strategic form) in which
players all simultaneously choose a strategy in the first period and this decides the outcome. In
this case all exchanges form in the first period. To avoid this problem the phrase ‘under some
representation of the game’ could be added to the definition above. The resulting definition would

be hard to apply in practice.
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becomes crucial in deciding the SPE outcome. This section discusses these points.

Consider an extension of the telephoning game of section 4.3 in which any bar-
gaining network can be used and there is a rule choosing a new proposer following
an exchange. The structure of any subgame of this model in which a demand must
be made depends entirely on the active network remaining and which player is the
proposer'3. This model can clearly only support instantly adaptive exchange. For
models based on the market bargaining game there is some scope for avoiding in-
stantly adaptive exchange. The structure of subganes in these models also often
depends on the most recent demands of some players. In other words, multilateral
demands allow an element of forward commitment. However, such a demand must
still be accepted by a responder who is fully informed of the ciurent active network
structure. Whether this mechanism can avoid instantly adaptive exchange must be
resolved by SPE analysis.

Instantly adaptive exchange is crucial in generating many of the solutions of this
chapter. For example, consider the SPE described in lemnma 5.2 for the exogenous
ordering model on network Ls. As discussed in section 5.1.2. on her first turn player !4
3 accepts the demand of either player 2 or 4. The playver that is not accepted faces
a 2 player bargaining situation in which their SPE payoff is at most dnn. It is this
payoff which drives the initial interaction between players 2 3 and 4. Also there are
many examples in the arguments of sections 5.4.6 and 5.4.7 where player 1 3 or 5
accepts a demand because otherwise they would be left as the outlying player of 3
remaining active players and thus receive a SPE payoft close to zero.

In a bargaining network of many players, it is intuitively likely that some ex-

B3More formally, any two subgames in which the active network and proposing player are the
same could be said to be equivalent up to discounting. as defined in section 5.4.1. Lemma 5.3 of
that section then proves that these subgames have the same SPE structure. To use the definition
of equivalence up to discounting would require analogues of some terins defined for the exogenous

and endogenous models to be defined for the telephoning model under discussion, but this is not

complicated.
14Recall that the players are numbered as in L; here. not Ls(p) as in leimma 5.2.
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changes may form ‘as-if simultaneously’. That is. players can form an exchange
without realising that an exchange in a distant part of the network formed very re-
cently. This may be because it is physically impossible due to the distances involved,
or simply because the players cannot pay attention to all aspects of the situation at
once. In any case, this behaviour is not possible under instantly adaptive exchange.

It is not obvious that instantly adaptive exchange has a significant effect on
the outcome of an exchange in a large bargaining network. For example consider a
bipartite unit cake network (as defined in section 3.1.3) in which each player has an
exchange opportunity with all players on the other side and both sides contain a large
number of players. Intuitively, the effect of any removing any one exchange is very
small. However for a more sparsely connected network intuitively the formation of
a single exchange can have a significant effect at least on a few players. For example
a player’s position can be significantly strengthened by the removal of a neighbour’s
only alternative partner.

An important consequence of instantly adaptive exchange develops from its rela-
tion with perfect information. A common feature of perfect information bargaining
models is that players who exchange in SPE do so without incurring delay. That
is, their first action is either to accept a demand or to make a demand that is later
accepted. In this case the structure of the subnetwork of active players at any period
in the game is highly influenced by the order of play. This can have a large influence
on the solution through instantly adaptive exchange. This is especially true for the
last few players to exchange. For example in a unit cake network there is a wide
difference between being left in an active subnetwork which is a 3 player line and
one with 2 players.

One method of avoiding instantly adaptive exchange is to use a model allowing
simultaneous actions so that more than one exchange can form in a period of the

game!®. The model of Corominas-Bosch in section 4.5 does this while retaining

15 his should be done so that it naturally represents simultaneous bargaining rather than com-
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some of the flavour of the alternating offers game. Alternatively, chapter 6 offers an
extension of the Nash demand game to general bilateral exchange networks. This
model abstracts away much of the detail of bargaining and produces games in which
players all take a single simple action simultaneously. Another method to avoid
instantly adaptive exchange is to use models with more complex specifications of
imperfect information. However these demand more complicated solution concepts
such as sequential equilibrium (see e.g. Myserson [52]). which make them unlikely
to be amenable to analysis.

Instantly adaptive exchange seems more realistic in situations containing features
such as a small number of players, fast transfer of information about the formation
of exchanges to all bargainers, a slow pace of bargaining, or a tean of people in each
bargaining position (on the grounds that teamns will be able to keep track of more
information than individuals). A possible example is finins competing for a small
number of contracts. A situation lacking these features is a busy marketplace. Given
their small size, there is a case that instantly adaptive exchange is more relevant for
the networks discussed in this chapter. Thus the comments of this section mainly
raise concerns about modelling large networks using games of perfect information.

Finally, note that the design of computer based laboratory experiments may
often influence whether play can match instantly adaptive exchange. For example
if the computer program allows subjects to act at any time and gives them full
information about exchanges then this may make it unlikely for subjects to exchange
without being aware of all information about prior exchanges. On the other hand
if subjects must take simultaneous actions or are given limited information about
other exchanges then this possibility may often occur. Therefore experimental results
should not be used to infer results about the conditions in which instantly adaptive

exchange takes place unless this source of possible bias has been taken into account.

pressing non-simultaneous actions into a single period by use of complicated strategies, as in the

example of footnote 12 of this chapter.
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5.3.2 Multiple Solutions

This section begins with an interpretation of the results in this chapter demonstrat-
ing the existence of multiple solutions for Ls. The wider question of whether the
problem of multiple solutions for this network can be resolved using these models or
other methods is then addressed.

The SPE for the exogenous ordering model described in lemma 5.2 can be inter-
preted as follows. Players 2 and 4 cooperate so that plavers 1 and 5 are both faced
with the threat that their only neighbour will exchange with player 3 if they do not
meet his terms. In the SPE described in lemmma 5.1 if. say, player 2 attempted to
make a similar threat by demanding more than 7. then player 4 would undercut this
demand and exchange with player 3, leaving player 2 a payoff of slightly less than n
from the resulting alternating offers game with player 1. In this case players 2 and
4 compete rather than cooperate and this drives down their payoffs.

For a solution of the exogenous ordering model to describe a stable outcome in
an ongoing bargaining process, it must be the case that tlie corresponding ordering
remains constant. In an actual bargaining process this seems unrealistic. For ex-
ample the exogenous factors determining order might change very easily. Also the
players have strong incentives to alter their position in the ordering. For example
given the ordering of lemma 5.1, player 3 would wish to act before players 1 and 5
to produce the ordering of lemma 5.2. This raises the possibility that a model with
an endogenous order of play might select among the multiple solutions mentioned.

However, the endogenous ordering model on L; can support solutions with simi-
lar interpretations to those of the exogenous ordering game. Section 5.2.4 states that
in a game in which player 3 is the first proposer, she can attain a limiting SPE payoff
of % or 0. A crucial difference between behaviour in these SPEs that generates this
difference in payoff for player 3 occurs in a subgame in which player 4 is proposer
for the first time. Player 4 can exchange immediately with either player 3 or 5 and

is indifferent between these choices. If player 4 undercuts player 2 to exchange with

126



player 3 then player 2 is left in an alternating offers game with player 1 and receives
a poor SPE payoff. If player 4 instead exchanges with player 5 then a player 2 is
left at the centre of a three player subnetwork of active players and receives a high
SPE payoff. The former case can be interpreted as plaver 4 choosing to compete
with player 2 to exchange with player 3, whereas the latter case can be interpreted
as player 4 instead cooperating with player 2. Thus this model does not resolve the
tension between cooperation and competition!©.

This interpretation of the multiple SPE outcomes in L suggests that for both
models the existence of SPE outcomes with large qualitative differences in payoffs
is likely to be robust to many variations in the cakes'”. Recall that the model of
Corominas Bosch described in section 4.5 can also support limiting SPE payoffs in
the range [% 1] for players 2 and 4 in Ls. This is interesting because it suggests
that the existence of multiple solutions may not be driven by instantly adaptive
exchange.

The results of section 5.2.4 show that the endogenous ordering model supports
a near-unique SPE outcome for the network L,. However it seems unlikely that
the models of this chapter can support such SPE behaviour for sufficiently large
networks. This is a consequence of instantly adaptive exchange. As argued in
section 5.3.1, under instantly adaptive exchange the order of play has a large effect
on the order of exchange. If an order of exchange is possible in SPE leaving a
connected component sufficiently similar to Ls, then the arguments earlier in this
section suggest that this has a wide range of SPE outcomes. This possibility could
easily cause a wide range of multiple SPE payoffs in many other positions in the
network.

The existence of a certain kind of diversity in bargaining outcomes for large

181ndeed the full characterisation of the SPEs of this model mientioned at the end of section 5.2.4

shows that these extremes can be used to generate a wide range of intermediate SPE outcomes.
" The proofs for the exogenous ordering game offer scope for adaptation to settings with other

cakes. That of the endogenous ordering game is too complicated to easily allow this.
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networks is natural. Since there are exogenous or random factors determining which
players get to act first and exchanges are formed by local decisions, there appears
to be no mechanism to enforce the appearance of the same global pattern of which
exchanges form. Also, since players are only interested in their payoff upon exchange
they can thus be indifferent between some alternatives which have a significant effect
on the future order of play. As described above, this provides a mechanism?® for
generating multiple SPE outcomes in the endogenous ordering model on Ls. These
arguments suggest that multiple solutions are not necessarily unrealistic, especially
for large networks. However, the results for Ly in this chapter allow only a very weak
characterisation of possible solutions!?. The allowed solutions are not necessarily all
of equal relevance. For example, the experimental results on Ly in section 2.7 are
sharper. One possible resolution is to use an evolutionary approach: construct a
dynamic model of behaviour in a bargaining situation repeated over time. Chapter
6 outlines such an approach.

It could be argued that for particular networks certain exogenous orders of play
based on the structure of the network are more natural than other orderings. An
example is for play in a line network to begin at one end and move along the line
towards the other end. However, it is not clear that the ease of stating this order
corresponds to a natural order of play. Also this network structure vanishes, or at
least becomes less clear, if other negligibly small exchange opportunities are added,
so this is not a robust resolution.

Another possible resolution is to endogenise the ordering by introducing a ‘pre-
bargaining’ game which decides it. However, the wide difference in solutions sup-
ported by different orderings for L; means that the pre-bargaining game must itself
effectively solve a substantial bargaining problem. Furthermore it seems nore nat-

ural to allow players to make ordering decisions as part of the bargaining process

¥Note that instantly adaptive exchange also plays a major role in this mechanism.

19That is, corollary 5.6, which states that players 1 3 and 5 receive payoffs of no more than %

whereas player 2 and 4 receive payoffs of no less than %
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rather than committing themselves beforehand.

5.4 Appendix: Proofs

Section 5.4.1 introduces some definitions and notation for use in this appendix.
These involve concepts which are easy to deal with in an ad-hoc manner in the
proofs in chapter 4. Section 5.4.2 contains various supporting lemmas for both the
exogenous and endogenous ordering models which are used throughout the remaining
material. Section 5.4.3 proves the lemmas of section 5.1.2 on the exogenous ordering
model. Sections 5.4.4 — 5.4.7 prove the results of section 5.2.4 on the endogenous

ordering model.

5.4.1 Definitions
Relative Payoffs

In each of the bargaining models of this chapter, all pre-proposal subgames have
a similar structure. Players’ roles may change (e.g. the players who are proposer
and responder change), as may various other propertics of the game (e.g. the set
of active players or the set of demands which have been made and not yet refused).
One particular such property is the values of the delays which players have already
incurred. The following definition allows for comparisons between subgames without
having to take these delays into account.

Consider a bargaining game G generated by either of the bargaining models of
this chapter from the network N = (P, E,K) and discount factors (d;)icp. Let h be
a terminal or infinite history of G and h’ be a subhistory of h. The relative payoff

to player i in h with respect to h’ is®

mi(hih') = 5;T"('l/)7r1(/z)

20Recall that the expression on the right hand side of this formula has already been used in the

proofs of lemmas 4.1 and 4.6.
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Let J be the subgame generated by h’. Then the relative payoff to player ¢ from h

with respect to J is
(R T) = mi(h|h)

Note that m;(h|h’) is occasionally referred to simply as ‘the relative payoff to
player ¢ in A’ when there is no confusion about the value of h’. Also. observe that

for terminal h:

mi(hlh') = 67 W7 g ()

That is, m;(h|h") is the share player i receives from the history i discounted by only
the delay that has been incurred after the subhistory /.

Suppose that H is a subgame of G and J is subgame of H. Define 7;(J|H) and
m;(J|H) as the supremum and infinum of the set of relative payoffs with respect to
H to player ¢ in any SPE of the subgame J . Define 7;(H) and 7. (H) as shorthand
for #;(H|H) and 7 (H|H). Recall that for the bargaining models considered in this
chapter, corollary 3.1 can be used to prove that the existence of a SPE of G which

implies the existence of a SPE of 7. Thus these definitions are well-defined.

Equivalence up to Discounting

Suppose bargaining games G' and G? are generated by bargaining models of this
chapter from networks with player sets P! and P? using discount factors Al =
(61);epr and A% = (67),;cp2. Two subgames Al and A? of G and G? respectively

are equivalent up to discounting if the following conditions are met:

1. There is a bijection ¢ from the set of active players of A! to the set of active

players of A2
2. If player i is active in A! then &} = 53(1‘)'

3. There is a bijection b from the set of infinite histories?! of A! to that of A2.

21Tis definition is made from the formal definition of a game of section 3.4.1, not the informal

version including terminal histories.
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4. For n =1 or 2, define ¥" as the minimal value such that there exists an infinite
history = of A™ such that some player has a non-singleton action set in A"
following history?2 Az (or let 4 = 0 if no such value exists). Then the
following condition must hold for any infinite history = of A! and ¢t € N. If
player i has a non-singleton action set following history A1z in A' then

player ¢(i) has a non-singleton action set following history A, .2b(z) in A%

5. For any infinite history z of A and active player i of A the payoff functions of

A! and A?, 7! and 72 satisfy
) (x]AY) = 72, (b(x)] A7) (5.1)

This relation is intended to capture situations where two subgames have the
same structure apart from the delays active players have already incurred. Rela-
tively few conditions are needed for this definition because under the definition of
a game introduced in section 3.4.1, most properties of a gamne are defined from its
set of infinite histories. Condition 4 essentially means that?? players’ action sets are
conserved under the bijection b. This ensures that players do not ‘swap’ their action
sets while retaining their payoffs. The first lemma of the next section shows that two

subgames which are equivalent up to discounting have the same SPE structure?*.

22Recall the definition from section 3.4.1 that A,z represents the initial subsequence of z up and

including period t.
23The length of this condition is due to the possibility that the set of infinite histories of one game

is obtained by appending a fixed finite sequence to the start of cach infinite history of the other
game. This could easily occur if the games A' and A? are constructed by the method described in

section 3.4.2 for representing subgames.
24This fact was essentially used in the proof of lemma 4.1 on the alternating offers game. For that

game any two pre-proposal subgames (as defined in the proof) are equivalent up to discounting.

The similarity of their SPE structures allows the recursive naturc of the proof.

131



5.4.2 Preliminary Lemmas

Lemma 5.3. Suppose subgames A' and A? are equivalent up to discounting, e!
is a SPE of A' and b is the bijection described in condition 3 of the definition
of equivalence up to discounting. Then a SPE of A%. ¢, can be constructed as
follows. Let v' and v* be as defined in condition 4 of equivalence up to discounting.
Suppose el specifies that following history Apq1x an action is made producing history
Atty141Y, then e? specifies that following history Ar4420(1) the action made produces
history Ayyy2416(y)-

Proof. Given any strategy profile f! of A!, let O(f1) be the strategy profile of A2
constructed from f! by the method described in the statement of this lemma. Recall

the definition of « from section 3.4.1. Then given a infinite history z of A! and t € N:

ba(ft, z,1)) = a(8(f1), b(x), t +1° ="

Let ¢ be the bijection described in condition 2 of the definition of equivalence up

to discounting. Expanding equation (5.1) gives:
™ (z) = 51’:'_87"3(1')(0(17))

where ¢ is the initial delay?® for player i in subgame A' and s is the initial delay for
player ¢(i) in subgame A%

Substituting these two relations into equation (3.1) and noting that 6 is a bi-
jection between the sets of strategy profiles for A! and A? shows that if the SPE

conditions hold for e! in A! they also hold for e? in A% O

The remaining lemmas establish some results which are common for both the
exogenous and endogenous ordering models. Recall that these models are repre-
sented by X and F respectively. Note that these results also hold for many similar

bargaining models. For example it is easy to extend most“” of them to the market

bargaining game.

25Strictly speaking, the delay for player 4 in the finite history generating this subgame.

26The exception is corollary 5.6 which is particular to the network Ls.
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Lemma 5.4. Let G be a bargaining game on a network N = (P.E. K i) generated
by the bargaining model Q = X or F. Suppose G, is u pre-proposal subgame of G
with proposer b and ezactly 3 active players {a,b.c} such that {ab.bc} C E. and
ac ¢ E. Then m,(Gy) = T, (Gy) = 1.

Proof. Suppose player b makes a multilateral demand of ¢, < 1 in G,. Note that if
Q = F then there is a choice between multilateral and unilateral demands and if
(2 = X then only multilateral demands are allowed. Let H be the resulting subgame.
'H is a post-proposal subgame with responder a or ¢. Should the responder accept,
then they receive a share of 1 — o, > 0. Should they refuse the other of players
a and ¢ becomes the responder. If this new responder accepts then they receive a
share of 1 — o, > 0. Suppose that there exists a SPE of H in which players a and
¢ both refuse. Then players a and ¢ both receive a non-zero SPE payoft. This is a
non-feasible outcome, so it must be the case that in any SPE of H oy is accepted by
player a or c.

By corollary 3.1, G, has a SPE. Suppose that m,(G,) = p < 1. Select p <p’ < L.
Then the previous paragraph shows that following a multilateral demand of p’, player
b receives a relative payoff with respect to G, of more than p in any SPE, which is

a contradiction. ]

Notes:

1. This lemma is independent of the choice of discount factors.

2. This lemma can be extended to the case of non-unit cakes. Observe that if
player b makes a multilateral demand which carns players ¢ and ¢ non-zero
payoffs should they accept it, then the same argument can be used to show that
it is accepted in SPE. Hence player b earns at least as much as the maximum

demand which is feasible to both players a and c.

3. This lemma can also be extended to all cases where a.b and ¢ are active players,

{ab,bc} C E and there are no other exchange opportunities for players a and
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c with active players. Observe that if player b makes a multilateral demand to
a and c of o, < 1 then the argument that player « and ¢ cannot both refuse
remains valid. Thus in this case player b earns at least as much as if a, b and

c were the only active players.

4. Tt is straightforward to use this lemma to deduce the unique SPE payoff in
any subgame with 3 active players in a line formation. This task is done for

the bargaining model F' in corollary 5.9 below.

The following lemma places an upper bound on the SPE payoff of an isolated
player, in the sense that they have a single neighbour, for the case where the isolated
player has a unit exchange cake. The proof is based on the method of proof used

for the alternating offers game in lemma 4.1.

Lemma 5.5. Consider a network N = (P, E,K) and players p,q € P such that
pq € E, KP4 = Kyt and px & E for any other x € P. Let G be a bargaining game
on a network N generated by the bargaining model (} = X or F' and discount factors
such that 6, = 6g = 0 € (0,1). Let G; be a pre-proposal subgame of G with proposer

i. Then m,(Gy) > 7 and Ty(G,) < 7 where 7 = 5.

Note that equation (5.3) in the following proof is stronger than is necessary. This
is to facilitate the proof of corollary 5.6.
Proof. Let P, be the set of all pre-proposal subgames of G with proposer z. Define

Xz = sup 7z(H)

He P
= inf
Xe T wep, (1)
The following relations hold?":
Xq >1- 5>_(p (5.2)
Y < max gy":(éxu) for any x € P (5.3)

ylryeE

2"Recall V is an infix maximum operator.
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where g¥* is an extension of f¥® onto R taking the value zero when fY¥* is not

defined.

Equation (5.2):

Fix H € P,. In H, player g is active so player p must also be. Let A be the
quantity on the right hand side of the inequality. In the case Q = X. suppose
player ¢ demands o, < A. In the case () = F. supposc player ¢ demands o, < A
unilaterally to player p. In either case, let H’ be the resulting subgame. Consider
a subgame H" of H’ in which player p is the responder and the demand of o, from
player g is available. If player p accepts then she earns a relative payoff with respect
to H' of more than dY,. By definition, this is more that her supremum SPE relative
payoff from refusing. So in any SPE of H’, the demand o4 is accepted by some
player.

Equation (5.3):

Let B be the quantity on the right hand side of this equation. Fix H € P,.
Suppose that there exists a SPE e of H such that player x receives a relative payoft
with respect to H of more than B. As this value is non-zero, player = must exchange
with some neighbour y under e. Then under e, player y receives a relative payoff
with respect to H of less than (5&y. Since y exchanges under e, its play involves
some post-proposal subgame with responder y. Let H' be the first such subgame.
Suppose player y refuses in this subgame. Then her SPE payoff with respect to
H is at least 62<_y. This is higher than the SPE relative payoff under e which is a
contradiction.

Combining equations (5.2) and (5.3) gives:
X, Z 1-46(1- o‘&q)
Solving this gives X, > fi. Substituting this into equation (5.3) yields )"{,, <n 0O

Corollary 5.6. For N = Ls, G; as described in the previous lemma satisfies:

7;(G;)) > fori=2 or 4, and 7;(G;) <@ fori=1,3 or5.
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Proof. For i # 3, the results follow by direct application of the lemma. The case

. = 3 follows by substituting the results for i = 2 and i = 4 into equation (5.3). O

The final lemma of this section describes situations in which a player is guaran-

teed to accept a demand in SPE play.

Lemma 5.7. Let G be a bargaining game on a network N = (P, E, K ;1) generated
by the bargaining model Q = X or F. Let H be a post-proposal subgame of G with
responder r. If the most recent demand of any neighbour of r is no more than (less
_than) 1 — 6, in ‘H then in some (any) SPE of H the action of r is to accept the

demand of a neighbour whose most recent demand is lowest.

Proof. By corollary 3.1, a SPE of H exists. Let H’ be the subgame which results if
player r refuses in H. The maximuin share player r can achieve in H’ is 1. Since
player r incurs a delay of 1 by refusing in H, the maximum relative payoff with
respect to H that r can achieve in H’ is 4,. Hence if the most recent demand of a
neighbour of r is A < 1—4, in H, then there is a SPE of H in which player r accepts
a lowest most recent demand. If A < 1 — ¢, then this action is taken in any SPE of

H. O

5.4.3 The Exogenous Ordering Model on L;

Lemma 5.1. For each i € P fix n; € (0,1). For e > 0, let A = (d;)icp where
8 =nt. Then X(Ls5(31524), A) has a unique limiting SPE payoff in the limit e — 0

in which players 1 and 2 receive payoff 1 and the others rcceive zero.

Proof. Let X; be a pre-proposal subgame of X (L5(31524),A) with proposer 1 in
which all players are active and the most recent demands of players 4 and 5, if
any, are o4 > 1 — 02 and o5 > 1 — 2. Let X3 be a post-proposal subgame of X
with responder 3 such that all players are active. Let o and o2 be the most recent
demands of players 1 and 2 respectively in this subgame. Let X4 be the subgame

resulting from refusal in X’3.
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Suppose player 3 makes a demand of zero in X5. Consider a SPE e of the resulting
subgame. In the case that e specifies that player 5 on her next turn as responder
accepts the most recent demand of player 1 then player 3 receives payoff zero. In the
case that e does not specify this then by lemma 5.7 in this SPE player 1 accepts a
demand on his next turn as proposer. Whichever player he accepts, player 3 receives
payoff zero.

Suppose player 3 makes a demand o3 > 0 in Xj. Let Ay be the resulting subgame.
The following argument shows that players 4 and 5 receive non-zero SPE payoffs in
X4 and thus player 3 must receive a SPE payoff of zero by feasability constraints.
Suppose in X4 player 4 refuses and demands 4. Let the resulting subgame be X',
Suppose in X5 player 5 refuses and demands less than min[l — d,.03]. Then by
lemma 5.7, player 1 accepts this demand. So mg5(AX5) > d5min[l — d2,03]. Now
suppose 04 < 05 min[l — 8;,1 — d2.03]. Then 7my(X5) > 1 — 04 > 1 — 75(X5), so the
exchange 15 must form in SPE of X5. By lemma 5.7. when SPE play of X5 reaches
player 2 with such a value of o4, player 2 must accept a demand in SPE. Since the
exchange 15 forms in any SPE, it must be the case that player 2 accepts the demand
of player 4. Hence player 4 is guaranteed a non-zero SPE payoff in X4. Note that
if player 4 accepts in Xy, then a demand of less than min[l — 2, 03] still guarantees
player 5 a non-zero SPE payoff (this can be seen using lemma 5.4).

The above shows that if o1 < 1 in X3 then player 3 accepts in any SPE. Suppose
player 1 makes a demand o3 < 1in &. Let &5 be the resulting subgame. In the case
that players 4 and 5 have already made demands this is a post-proposal subgame
with responder 2. If player 2 refuses and make a demand of o2 < 1 then in any SPE
player 3 accepts the demand o and player 2 is left at the centre of a 3 player line of
active players. Hence by lemma 5.4 the demand o2 of player 2 is accepted in SPE.
This yields player 2 a payoff of d; relative to X3, so his SPE action in Xy cannot be
to accept one of the demands o4 or o5. Hence in any SPE of &5 a game of the forn

X is reached and therefore the demand oy of player 1 is accepted. This proves that
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the SPE demand and relative payoff of player 1 in X, must be 1.
Let Y, be the post-proposal subgame resulting from player 1 making a demand
of 1in &;. Let V3 be the post-proposal subgame of X} resulting from players 1 and

2 making the demands 1 and 5. Consider the case
oy < A=minfl — d5(1 — 1), 1 — d5(1 — da). L — 85(1 — 32)]

It is shown below that in any SPE of Y5 player 4 accepts the demand of o5. So in
any SPE of & player 1 earns relative payoff 1 and the relative payoff of player 2 is
bounded below by A which tends to 1 in the limit € — (). as required.

Consider a SPE of Y3 in which player 3 accepts. Player 4 must accept the
demand o3 in this SPE otherwise player 5 is guaranteed a non-zero payoff in SPE
giving player 4 a payoff of zero. Consider a SPE of Y5 in which players 3 and 4 refuse
but player 5 accepts (The possibility that player 3 refuses in a SPE of Y3 cannot be
ruled out since player 2 may have made a non-SPE demand.). Since g9 < 1, player 5
must accept the demand of player 2 rather than player 1. Player 4 therefore receives
a SPE payoff of zero. However this is a contradiction as she refused the demand o9
earlier in the play of this SPE.

Finally, consider a SPE e of Y3 in which players 3 4 and 5 refuse. Then under
e player 4 must receive a payoff of at least 1 — o2 > d;(1 — d2) relative to V3 and
player 5 must receive a payoff of at least 1 — g2 > 5(1 — 01) V d5(1 — d2) relative to
Y;. Therefore e cannot specify that in Vs player 4 or 5 makes a demand of less than
or equal to 1 — 83 or 1 — d5 respectively since if these demands were accepted they
would contradict the payoff bounds just stated and in SPE players 1 and 2 would
only refuse such demands if they could receive equal or higher payoffs, also breaking
the bounds mentioned. Also, the play of e must reach a post-proposal subgame )
with responder 1 in which all players are active. Let Y1 be the subgame resulting
from a refusal in ). It has just been shown that Y] is equivalent up to discounting
to X;. Thus by the argument above and lemma 5.3, in anyv SPE of Y| player 1 makes

the demand 1 and it is accepted. Thus under e the relative payoff of player 1in V3 is
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at least ;. Since player 5 refuses at least once under e. her share must be more than
1 — ;. Thus it cannot be the case that the exchange 15 forms and it is infeasible
for players 4 and 5 to both receive non-zero payoffs. This is a contradiction as both

refused the demand o9 earlier in the play of this SPE. O

Lemma 5.2. Let As = (6;)iep such that 6; = & for all i. Then X(L5(41325), As)

has two SPE outcomes, (1—-n,n,1—n,n,0) and (0.71,1—n.i, 1 —n) where n = 1:{—6

Proof. Let Wi = X(L5(41325), As). Consider a post-proposal subgame Us of W,
in which player 3 is the responder for the first time and the most recent demands
of players 1 and 2 are less than 1. Suppose there is a SPE of U3 in which player 3
refuses. In this SPE, players 3 4 and 5 all have a chance to accept a non-zero offer,
and hence must all have non-zero payoffs. This is infeasible. Thus in any SPE of U
player 3 accepts the highest initial offer.

By lemma 5.5, any initial demand by player 1 of oy < n in W, is accepted.
Suppose player 1 makes a demand of o > 7o in W,. Let the resulting subgaine
be W,. Suppose player 2 makes a demand oo < 1 in W,. Then in SPE player 3
accepts whichever of demands o1 and o9 is lower and in the case g1 = oy there are
SPEs in which either is accepted by player 3. Supposc o2 > o7. Then player 3
accepts o1 in SPE. Let the resulting subgame be W5. This a post-proposal subgame
with responder player 5. If player 5 refuses in W; then the resulting subgame is
essentially an alternating offers between players 2 and 5 so the SPE payoff of player
5is 67 > 1 — 0y. Thus player 2 receives a SPE payoff of only 6(1 —n) < oy in Ws.

Hence the SPE payoff of player 2 in W» is o1. In the case o1 > 7, it must also
be the case that in any SPE of Ws player 2 demands o and player 3 accepts this
demand (from player 2 rather than player 1). Consider the resulting post-proposal
subgame with responder 4, Wy. If player 4 refuses then the resulting subgame is
essentially an alternating offers game between players 4 and 1 so the SPE payoff of

player 4 is 672 > 1 — o1. Thus in any SPE of W player 4 refuses. By lemina 5.3 and
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corollary 4.2 again, the payoff to player 1 in this SPE must be 1 — 7.
Hence in any SPE of W, players 1 and 2 demand # and these demands are

accepted. There are two SPEs depending on whom player 3 exchanges with. O

5.4.4 The Endogenous Ordering Model on 3 Player Networks
Conditions of Theorem 4.3

Recall that the conditions of theoremn 4.3 are as follows. Let N be a 3 player ring
network with insatiable cakes in the sense of definition 3.7 and an empty core. For
i€ Pfixn; € (0,1) and let A = (9;);ep where d, = 7t for ¢ > 0. Recall from corollary
4.5 that the limiting SPE payoff to M = A[Peroral(N A\ ase — 0is (0, 02,0) where
(01,02,03) are the components of the unique von Neumann-Morgenstern triple of
N.

This section shows that under the conditions of theorem 4.3, F = F(N,A,1)
either has a limiting SPE outcome of (o;,09,0) or a limiting SPE outcome of
(01,0,03), or both. The proof below proceeds by applyving various cases of the
proof of theorem 4.3.

Suppose player 1 makes an initial multilateral demand of Ay < oy in F. Then
the responder accepts this demand in any SPE of the resulting subgame. This can
be proved by the argument in the proof of theorem 4.3 for subgame A of that proof.
Suppose player 1 makes an initial multilateral demand of Ay > o1 in F. In any
SPE of the resulting subgame the responder r receives a payoff of at least 4,0, by
the argument of theorem 4.3 for subgame B of that proof. Suppose player 1 makes
an initial unilateral demand in F. Let the resulting subgame be F’. Suppose the
responder r in F’ refuses and demands A, < o, multilaterally. Then in any SPE of
the resulting subgame this is accepted by the argument in the proof of theorem 4.3
for subgame A of that proof. Thus in any SPE of 7 " plaver r receives a payoff of at
least ¢4,.0;.

Therefore in any SPE of F the payoff of player 1is in the interval [0, f2Y(8909)V
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f3Y(8303)). In the limit € — 0, both bounds tend to o1 so this is the unique limiting
SPE payoff to player 1 in F. Also, in any SPE of F the payoff of the first responder r
is at least 0, 0,. Therefore in any limiting SPE payoff of F. o; is the unique limiting
SPE payoff to the player i # 1 who receives a non-zero payoff. A higher limiting

payoff would result in an infeasible SPE payoff for all sutficiently small €.

Conditions of Lemma 4.6

This section describes the limiting SPE outcomes of G = F(N,A,1) under the
conditions of lemma 4.6.

Recall that the conditions of lemma 4.6 are as follows. Suppose N is a 3 player
ring network such that K2 = K"t and the core of N contains an element ¢ =
(c1,¢2.0). For each ¢ € P fix 1, € (0,1). For e > 0, let A = (d1.d2.04) where
d; = nf. Recall from lemma 4.6 that the unique limiting SPE outcome of M =

Mpersonal(N7 A in the limit € — 0 is (¢. 1 — ¢, 0) where?®

o= fA10) v ([1 = £220)] Ay

ny = lim

For a subgame H of G define a restricted subgame petfect equilibrium (RSPE)
as a SPE e such that player € {1,2} never makes the proposition [f3%(0), (3)] if
e is played in H. The following argument shows that an RSPE of G exists and the
limiting RSPE payoff of player 1 as § — 1 is ¢. It also shows that if ¢ > f3!(0) then
player 2 receives a limiting RSPE payoff as § — 1 of 1 — 0. In the case ¢ = f31(0) a
RSPE may exist in which player 1 exchanges with player 3. It is not shown whether
this occurs or not.

Recall equation (4.7) from the proof of lemma 4.6

1— £220) = f>40) (5.4)

28Recall that A and V are respectively infix maximum and minimum operators.
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Let (4, j) be (1,2) or (2,1). Let B, be the set of pre-proposal subgames of G with
proposer ¢ such that V; = (.

For B € B;, let P;(B) be the set of relative payoffs with respect to B to player
i in any RSPE of B. Let II, = UBeB, P;(B). Let x; = supIl; and X, = infIl. It
is shown at the end of this section that a RSPE of G exists so that these quantities
are well defined.

It is shown below that the following relations hold:

i S PO VL=, )] (5.5)

X, Z (L= O] A{£240) v [T =41} (5.6)
Combining these relations are taking the limit § — 1 yields

Xi=x, = O V([ = 0] An]
where n; = %. This is sufficient to support the characterisation of RSPE out-
comes made above.

Equation (5.5):

Let A be the quantity on the right hand side of the equation. Fix D € B;.
Suppose there is an RSPE e of D in which player i receives a relative payoff with
respect to D of more than A. Then it must be the case that the exchange 12 forms.
Hence in the play of D under e a post-proposal subgame must be reached with
responder j. Let D’ be the first such subgaime.

In D/, if V; does not contain 3 then player j can refuse and earn a relative payoff
with respect to D of at least J; X, in any SPE of the resulting subgame. In D', if
V; contains 3 and j then it must be the case that the most recent demand of player
i is no more than f3%(0). Then player j can earn a payoff of at least f*/(0) by
accepting this demand (by equation (5.4)). In either of these cases player i receives
a relative payoff with respect to D of less than A.

The remaining case is that in D’ the value of Vi is (3). Since j is the responder

in 7', it must also be the case that V3 = (j). It must also be the case that the most
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recent demand of player 7 is less than f%3(0), otherwise e would not be a RSPE?. If
player j accepts the demand of player 3 in D’ then the exchange 73 forms. If player
j refuses the demand of player 3 in D’ then player 3 is guaranteed a non-zero payoft
so the exchange 12 cannot form. Thus no RSPE of the form described for e can
exist.

Equation (5.6):

Let B be the quantity on the right hand side of the equation. Fix £ € B,.

Consider the case B < f3%(0). Suppose in £ player ¢ makes the proposition
[0i,(3,7)] where o; < B. Let & be the resulting subgame. By equation (5.4),
1 —0; > f39(0). Thus in any SPE of £’ if a post-proposal subgame with responder
Jj is reached then the exchange 12 forms. However if a post-proposal subgame with
responder 3 is reached then player 3 exchanges. Hence it must be the case that one
of players 3 or j accepts the demand o;.

Consider the case B < 1 — d;%;. Suppose in £ player ¢ makes the proposition
[0:,(j)] where o; < B. Then 1—0; > f3J(0) so player j does not accept the demand
of player 3 in any SPE of the resulting subgame, £’. Also 1 — o, > J;x; so given
that an RSPE of £’ exists, there exists an RSPE in which player 7 accepts.

RSPE existence:

Finally, the existence of a RSPE for G is demonstrated. Consider any SPE e of
G. Consider any subgame Gz of G such that player 3 must take an action for the
first time. Let e(G3) be the SPE of G3 induced by e. If player 3 receives a non-zero
payoff in this SPE then let €'(G3) = e(G3). Otherwise it must be the case that player
3 can receive only zero by accepting a demand in G3. Let ¢/(Gs) be the SPE ¢(G3)
modified so that player 3 accepts a demand of zero in G3. This is also a SPE.

Consider the following strategy profile f of G. In any pre—proposal subgame of

G with proposer i in which player 3 has never made an action, player 7 makes the

2The failure of this part of the proof if ¢ is a SPE but not a RSPE generates the class of SPEs

sketched in section 5.2.4 which are interpreted there as not robust.
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proposition [n;, (5)]. In any post-proposal subgame of G with responder ¢ in which
player 3 has never made an action, player i accepts the best demand which yields a
payoff of at least dn; or, if no such demand exist, refuses all demands. In any other
subgame, play is according to the corresponding value of ¢’ (Gs). If f is a SPE then
it is also a RSPE.

If f is not a SPE, it must be the case that some plaver k = 1 or 2 prefers to
make a demand of f%3(0) to player 3. Let &’ be the player 1 or 2 other than k. The
following strategy profile g of G then forms a RSPE and it can be checked that it also
forms a SPE. Let A\x = f3%(0). Let Ay = 1 — §;A\r. In any pre-proposal subgame
of G with proposer k in which player 3 has never made an action, player k makes
the proposition [Ag, (3,%’)]. In any pre-proposal subgame of G with proposer A&’ in
which player 3 has never made an action, player &’ makes the proposition {Ay/, (k)].
In any post-proposal subgame of G with responder i = 1 or 2 in which player 3 has
never made an action, player ¢ accepts the best demand which yields a payoff of at
least 6); or, if no such demand exist, refuses all demands. In any other subgame,

play is according to the corresponding value of €’(Gs).

5.4.5 The Endogenous Ordering Model on Ly

This section is on the SPE behaviour of gaines of the form A; = F(Lyg, As.10).

It proves that for i = 2 or 3, the limiting SPE payoffs of A; as § — 1 are
(0,%,%,0) and (%%, %, %) For ¢ = 1 or 4 the latter is the unique limiting SPE
payoff. The proof is as follows.

Let S; be the set of all subgames of A; and S = (J; S;. Let B; be the set of
pre-proposal subgames in S such that all players are active, the proposer is j, and
for z € {2,3} either V,, = (@ or the most recent demand of player x is at least n. For
B € Bj, let P;(B) be the set of relative payoffs with respect to B to player j in any
SPE of B. Let II; = Upep, F5(B). Let x; = sup IT; and x, = infIl;. By corrolary

3.1 a SPE of A; exists for each i, so these quantities are well defined. By lemma 5.5,
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X157, X, 27, xg =7 and X4 < 7 (recall that 7 = )-

Consider C» € Bs. Suppose x2 > . Consider a SPE ¢ of C, in which player 2
receives a relative payoff with respect to Cy of xo — ¢ > i, Since X, = 7. it must
be the case that the exchange 12 forms in the play of e. Thus in the play of € a
post-proposal subgame C; must be reached with responder 1. Let o9 be the most
recent demand of player 2 in this subgaine. In the case that oy < Y3 — €, player 1
receives a share of more than 1 — (x2 — ¢€) in ¢ which contradicts the relative payotf
with respect to Ca of player 2 in e.

So it must be the case that g2 > x9 — ¢. Suppose player 1 refuses in C; and
demands o7 < 1 — dx2. Let C| be the resulting subgame. In the play of e in Cf
player 3 does not accept the demand oy since X5 = 1. Thus the play of ¢ reaches
a post-proposal subgame of C] with responder 2, Dj. in which the demand oy is
available. The following shows that player 2 accepts the demand oy in Dy under e.

case 1)

Suppose exchange 34 has taken place in Dy. Then Ds is essentially an alternating
offers game. Under e player 2 accepts in D since o1 < il.

case ii)

Suppose the responder in C] is player 3 or 4 and the most recent proposition of
player 3 in Dy is [03, (2)]. Let D3 be the subgame of C} in which player 3 made this
proposition. By refusing in Dy player 2 cuters a game D), € By. The relative SPE
payoff of player 2 in D} with respect to D; is at most dX». Thus under e player 2
accepts the lowest demand in Ds. If this is o3 then player 3 receives a relative payoft
with respect to D3 of less than 1. Note that D3 € B3 so this contradicts Xy > 7.

case ii)

Suppose the most recent proposition of player 3 in Dy is multilatgral. Let D3 be
the subgame in which it was made. Note that D3 € Bs. The most recent demand
of player 3 in Dy must be more than 7i. Otherwise under ¢ at least one of players 2

or 4 would accept this by lemma 5.5, contradicting x, = n. Thus by the argument
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in case ii), under e player 2 accepts the demand o1 in Dsy.

case i)

Suppose the responder in Cj is player 2 and either the most recent proposition
of player 3 in Dy is [03, (2)] or player 3 has made no propositious in Ds. It is proved
below that (73‘ > 1—0dx2. Thus by the argument in case ii) under e player 2 accepts
the demand o; in Cj.

The claim in case iv) can be proved as follows. Let D3 be the subgame of
Cy in which player 3 made her most recent proposition relative to C]. Suppose
03 < 1 —dx2. Then by the argument in case ii), under e in C] player 2 accepts
the lowest demand. Hence in C; under e player 1 must either accept or make a
demand which is accepted, as the alternative is to receive payoff zero. This results
in a subgame which is essentially an altcrnating offers gaine between players 3 and
4. So under e player 3 receives relative payoff dn with respect to D3. But D3 € By
so this contradicts X5 > n.

It has been shown that player 1 earns a realtive payoff with respect to Cq of at
least 6(1 — dx2) in any SPE of Cy. It must therefore be the case that x» — € <
1—-0(1 —dx2). If x2 > i this is a contradiction for sufficiently small e.

This proves that x2 = x, = 7. Similarly. x3 = x, = 7. It follows that in any
game D € B, if player 1 demands o, < 7 it is accepted in SPE. Hence ¥, = X,
Similarly x4 = X, The limiting payoff vectors described above are the only ones
compatible with these values. To prove that both can be supported it is sufficient

to note that in any game D € B; for i € P there is a SPE in which any unilateral

demand of 71 is accepted.

5.4.6 Supporting Lemmas

This section contains various lemmas which are necessary to prove the results on
the endogenous ordering model for the network Ls contained in section 5.4.7. The

game A; = F(Ls, As,3) is of particular interest in that section. Thus the lemmas
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of this section often refer to this game in their statements. However. many of them
can be generalised to other settings.

Note that appeals to the symmetry of L; are often used. That is, the numbering
of players in any result can be reversed so that i — 6 — i. The proofs then hold if
the same transformation of player numbering is used.

The first lemma is on constructing a SPE of a game A from SPEs of its immediate
subgames. It states that if the supremum payoff to the player who must act in A in
these subgame SPEs is attainable in one subgame SPE then A has a SPE in which
the subgame SPEs are played®®. The long statement of the lemma is necessary to
define ‘the player who must act in A’; the game could begin with several periods in
which all action sets are singletons. This could easily occur for a game A which is

constructed by the method described in section 3.4.2 for representing subgames.

Lemma 5.8. Given a game of perfect information, A. lct Z be the set of its subgames
which are generated by finite histories such that only one action is made from a non-
singleton action set. Let i be the player who has this non-singleton action set. Let
E be a function mapping each Z € Z to a SPE of Z. Let mi(E(Z)) be the payoff to
player i when E(Z) is played in Z.
There exists a SPE of A in which E(Z) is played in Z for all Z € Z if and only
if the following condition holds for some Y € Z:
m(E(Y)) = sup m(E(Z)) (5.7)
Proof. If (5.7) holds then a SPE satisfying the required conditions is as follows. In
A player i takes the action which induces Y. In any Z € Z the SPE E(Z2) is played.
If (5.7) does not hold then suppose f is a SPE of A in which for any Z € Z the SPE

30 An example of when the condition fails is in the ultimatum game. In this game player 1 must
make a demand in z € [0, 1], then player 2 may cither accept or refuse. On acceptance the payoffs
to 1 and 2 are z and 1 — z respectively. On refusal they are both zero. Let Z(x) be the subgame
in which the demand z has been made. Then ACCEPT is a SPE of Z(zx) for x < 1 and REFUSE

is a SPE of Z(1). But there is no SPE of the overall game consistent with these.
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E(Z) is played. Then player i can choose an action in A inducing a subgame in Z

in which he receives a higher payoff under f than his SPE payoft. O

The following lemma is a corollary to lemma 5.4 summarising some particularly

useful cases.

Corollary 5.9. Consider a subgame B of As such that the set of active players is
{a,a +1,a+2}. Let (4,5) = (a,a +2) or (a + 2.a). In the case that B is a pre-
proposal subgame with proposer i or a post-proposal subgame with responder a + 1.
then in any SPE of B, player i receives a rclative payoff with respect to B of no more
than 1 — 9. In the case that B is a post-proposal subgame with proposer j then there

is a SPE of B in which player i receives a payoff of zero.

Proof. Suppose B is a post-proposal subgaine with responder a + 1. Should player
a+ 1 refuse in B then in any S’PE she attains a relative payoff with respect to B of
by lemma 5.4. Thus in any SPE of B, player ¢ receives a relative payoff with respect
to B of no more than 1 — 4.

Suppose B is a pre-proposal subgamme with proposer i. In any SPE of B, either
the exchange (a + 1, 7) forms and player i receives payoft zero, or a post-proposal
subgame with responder a + 1 is reached and the previous case gives the desired
result.

Suppose B is a post-proposal subgame with responder j. Let the most recent
demand of player a + 1 be A. In the case that A < 1. player j is guaranteed a
non-zero SPE payoff in B and so player ¢ must receive payoff zero in any SPE. In the
case that A = 1 suppose there exists a SPE e of B in which player ¢ receives payoft
o1. Then player j receives payoff zero. Alter the strategy profile e so that player j

accepts in B. This is also a SPE and has the required property. ‘ O

Lemma 5.10. Consider a pre-proposal subgame C of Ay with proposer 2. Suppose
there exists a SPE e of C with the following property. Should player 2 make any

action in C other than a unilateral demand to player 1 then he receives a relative
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payoff with respect to C of no more than M > n under ¢. In this case there also
exists a SPE f of C in which player 2 receives a payoff with respect to C of no more

than M.

Proof. Suppose m5(C) =1 > M. Cousider a SPE « of C in which player 2 receives a
relative payoft with respect to C of m = [ + € for some ¢ > 0. Construct a SPE b of
C using lemma 5.8 and the following SPEs of each subgame resulting from an action
of player 2 in C. If the initial action of player 2 in C is not a unilateral demand to
player 1 then play proceeds as in e. Let m’ =1 — §(1 — dn). If in C player 2 makes
a unilateral demand to player 1 of m/ or less then player 1 accepts. If in C player
2 makes a unilateral demand to player 1 of more than m’ then player 1 refuses and
makes a unilateral demand of 1 — dmn to player 2 who accepts. To show that this is
SPE behaviour it is sufficient to use lemina 5.8 and the following fact. Let C4 be the
subgame that results from a unilateral demand of player 2 in C followed by a refusal
and demand by player 1 and a refusal by player 2. This subgame is equivalent up
to discounting to C. So by application of lemnma 5.3 there is a SPE of C} in which
player 2 receives a relative payoff with respect to C) of m.

Note that in the SPE b player 2 can receive a payoff of no more than max[m’, M|.
For € sufficiently small, m’ < [ so by contradiction. it must be the case that 7,(C) <
M. For M > # it is possible to construct a SPE of the form required for f by the
method above, taking m = M + € for e sufficiently small.

For M = 7 a SPE of the form required for f can by applying lemma 5.8 and the
following SPE behaviour for each subgame of C following an action of player 2. If
the initial action of player 2 in C is not a unilateral demand to player 1 then play
proceeds as in e. If in C player 2 makes a unilateral demand to player 1 of 7 or
less then player 1 accepts. If in C player 2 makes a unilateral demand to player 1 of
oy > 7 then player 1 refuses and makes a demand of 1 —JdA where A = n+ € for some
€(A) > 0 such that §(1 —d0A) > 1 — oo. Player 2 accepts in the resulting subgame.

In the case that player 2 instead refuses a SPE is played in the resulting subgame
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C; which gives player 2 a relative payoff of no more than i + %e. Such a SPE exists
since C3 is equivalent up to discounting to C and m(C) < n. Application of lemma

5.8 shows that this is SPE behaviour. O

Lemma 5.11. Consider a game D which is a pre-proposal subgame of As in which
player 1 is the proposer and Vo = (. There is a SPE of D in which player 1 makes

a demand to player 2 and it is accepted.

Proof. In the case that, in D, V3 contains 2, let o4 be the most recent demand of
player 2. Otherwise let o3 = 1.

Suppose player 1 makes a demand o in D. Let Da(oy) be the resulting subgame.
Suppose player 2 then refuses. Let D)(o1) be the resulting subgame. Note that for
any o1, Dj(0y) is equivalent up to discounting to D5(0).

Applying lemma 5.3, there is a strategy profile ¢ which is a SPE of Dj(oy) for all
o1. Let Ay be the payoff of player 2 in D/} (0) under e¢. Define a strategy profile f(oy)
of Dy(01) as follows. Should the subgame Dj(01) be reached, play is according to e.
In Dy, player 2 accepts a lowest demand if it is no more than 1 — dA9 and otherwise
refuses. In the case that o7 = g3 < d)a, player 2 accepts the demand of player 1.

The demand profile f(o1) is a SPE of D2(01). Applying lemma 5.8, there is a
SPE, ¢, of D in which player 1 makes the demand min[o3. (1 —dAz)] and following a
demand o of player 1, the SPE f(o1) is played. The SPE g satisfies the requirements

of the lemma. 4

Corollary 5.12. Consider a game & which is a post-proposal subgame of As in
which player 1 is the responder and Vy = (1). There is o SPE of € in which player 1
either accepts the demand of player 2 or refuses and makes a demand which player

2 accepts.

Proof. Let £ be the subgame of £ in which player 1 refuses. By lemma 5.11. there is

a SPE e of £ in which player 1 makes a demand which player 2 accepts. By lemma
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5.8, there is a SPE f of £ in which e is played should £ be reached. The SPE must

satisfy the conditions of the corollary. O

Lemma 5.13. Consider a post-proposal subgame Fs of As with proposer 8 such
that the current value of Vi is (3.1) and the most recent demand of player 2 is
02 <1—3+62. There exists an SPE of Fy in which player 3 accepts the demand

of player 2 or 4.

Proof. Let F3 be the subgame resulting from a refusal by player 3 in Fj. It is shown
that following any action by player 3 in F3 there is a SPE of the resulting subgaimne
in which player 3 receives a relative payoff with respect to F} of no more than 1—4.
By lemma 5.8 there is therefore a SPE of F3 in which player 3 accepts the lowest
available demand.

case i

Suppose in F} player 3 makes a proposition [o3,(2)] or [03,(2,4)]. Let Fy be
the resulting post-proposal subgame with respounder 1. By corollary 5.12 there is a
SPE of F} in which player 1 accepts the demand of player 2 or refuses and makes a
demand to player 2 which is accepted. By corollary 5.9 in any SPE of the resulting
subgame player 3 receives a relative payoff with respect to Fj5 of no more than 1—4.

case i

Suppose in F4 player 3 makes a proposition [o3, (4,2)]. In the case that 03 < 1-¢
then by lemma 5.7 it must be the case that in any SPE either this demand is accepted
or player 3 does not exchange.

Suppose o3 > 1 — . Following the proposition of player 3 mentioned, there are
two possibilities in SPE play. The first is that the exchange 45 forms and there
results a post-proposal subgame with responder 1 and active players 1 2 3. By
corollary 5.9 player 3 receives SPE payoff zero in this case. The second possibility
is that SPE results in a post-proposal subgame G4 with responder 4.

Suppose in G4 player 4 refuses and makes the proposition [1,(3,5)]. Let Gy be

the resulting post-proposal subgame with responder 1. By corollary 5.12 there is a
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SPE of G; in which player 1 accepts the demand of player 2 or refuses and makes
a demand to player 2 which is accepted. By corollary 5.9 there exists a SPE of the
resulting subgame in which player 3 receives payoff zero and, by lemma 5.4, player
4 receives a relative payoff with respect to G4 of §. A SPE of G4 in which player 3
receives payoft zero can thus be constructed using lemma 5.8.

case il

Suppose in F3 player 3 makes a proposition [o3. (4)]. In the case that oy < 1 —4
then by lemma 5.7 it must be the case that in any SPE either this demand is
accepted or the exchange 45 forms and player 3 is the proposer in a 3 player active
subnetwork. In the latter case, by lemma 5.9 player 3 receives a SPE payoff relative
to F3 of no more than 1 — .

Suppose o3 > 1 — 4. Following the proposition of player 3 mentioned, there are
two possibilities in SPE play. The first is that the exchange 45 forms and there
results a post-proposal subgame with responder 1 and active players 1 2 3. By
corollary 5.9 player 3 receives SPE payoff zero in this case. The second possibility
is that SPE results in a post-proposal subgame H4 with responder 4.

Suppose in H4 player 4 refuses and makes the proposition [1,(3,5)]. Let H3 be
the resulting subgame. Should player 3 refuse in H3 and make a proposal then a
post-proposal subgame H with responder 1 or 5 is reached. By corollary 5.12 and
symmetry there is a SPE of H in which the responder either accepts or refuses and
makes a demand to their neighbour which is accepted. By corollary 5.9 there is a
SPE of the resulting subgame in which player 3 receives payoff zero. A SPE e of H3
in which player 3 receives payoff zero can thus be constructed using lemma 5.8. If
player 3 does not already do so, alter e so that she accepts the demand of player 4 in
Hs. This is also a SPE. In this SPE player 4 receives a relative payoft with respect
to Hy of 1 — &. Hence a SPE of H4 in which player 3 receives pay;)ff zero can be

constructed by lemma 5.8. O

Lemma 5.14. Consider a pre-proposal subgame J2 of Az with proposer 2 such that
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Vi=Vs=Vs =0 and Vy =0 or (3). Then there is a SPE of J5 in which player 2

receives a relative payoff with respect to Jo of no more than 1 — & + 2.

Proof. Suppose there exists a SPE ¢ of J in which player 2 receives a relative payoft
with respect to J2 of more than 1 — § + §2. The following argument constructs a
SPE f of J5 from e which satisfies the claim of the lemma.

Suppose that the initial proposition of player 2 in J, under e is a unilateral
demand to player 1. Should player 1 refuse in the resulting subgame and make a
unilateral demand of o7 < 1—¢ then it is accepted in any SPE by lenina 5.7. Hence
player 1 receives a relative payoff with respect to J» of at least 1 — § under e and
therefore player 2 cannot achieve the payoff claimed.

Suppose e specifies that the initial proposition of player 2 in J» is 02, (1, 3)] for
some o3. Let J; be the resulting subgame. Suppose player 1 refuses in J; and makes
the proposition [0, (2)] wilex'e o1 < 1 —946. Let J3 be the resulting subgame. By
lemma 5.7, in any SPE of J3 player 2 accepts a lowest demand in any post-proposal
subgame of 73 in which he is responder and oy is available. In 73, if player 3 makes a
proposition of (03, (4)] where o3 < 1—0 then it is accepted in any SPE by lemma 5.7.
Hence in J3 under e the exchange 23 does not form and player 1 receives a relative
payoff with respect to J3 of o1. Hence m,(Jy) > 1 — é which is a contradiction.

The remaining case is that the initial propostion of player 2 is {73.(3,1)] or
[02, (3)] for some 3. Let K3 be the resulting subgame. Should player 3 refuse in K3
and make a proposition of [o3, (4)] where o3 < 1 — 4§ then it is accepted in any SPE
by lemma 5.7. Thus m5(K3) > 1 — ¢ and the exchange 23 cannot form in e.

Let L3 be the last pre-proposal subgame of K3 with proposer 3 which is reached
in the play of e before player 1 acts. Suppose e specifies that player 3 makes a
multilateral demand of o3 < 1—46 in £3. By lemma 5.7, under e player 2 or 4 accepts
a demand in any resulting post-proposal subgaine in which they are responder. Thus
under e player 3 receives a relative payoff with respect to J3 of o3 or zero. However

this is a contradiction as m3(K3) > 1 - 4.
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Suppose e specifies that player 3 makes a proposition of [o3,(2)] in L3 where
03 <1—4. Let £y be the resulting subgame. Then by lemma 5.7 in SPE player 2
must accept a demand when he is next proposer. Since the exchange 12 forms, it
must be the case that in £, under e player 1 either accepts the demand of player 2
or makes a demand which is accepted by player 2. In the resulting subgame under
e player 3 receives a relative payoff with respect to Jo of no more than 1 — § by
corollary 5.9. Construct a new strategy profile f by altering e such that player 3
makes the proposition [1 — §,(4)] in K3 and player 4 accepts this proposal. This
must also be a SPE. If the case at the start of this paragraph does not apply, let
f=e

Under f, a post-proposal subgame of J5 is reached with proposer 1 such that
the most recent demand of player 3 is at least 1 — 4. Suppose player 1 refuses in J»
and demands o3 < 1 — 4. Then by lemma 5.7, player 2 accepts. Thus f satisfies the

conditions of the lemma. O

The following lemma describes some conditions in which a proposer cannot re-

ceive a positive payoff.

Lemma 5.15. Under either of the following conditions on a pre-proposal subgame

M of Ay, the proposer receives payoff zero in any SPE.
1) M has proposer 3, V, contains 1 and Vy contains 5.

2) M has proposer 1, Vo contains 3, Vi contains § and if Vg contains & then the

most recent demand of player 4 is 1.

Proof. In case 1) let (i,7,k) = (3,1.5). In casc 2) let (i,j.k) = (1.3,5). Suppose
there is a SPE e of M in which player i receives a non-zero payoff. Thle exchange ir
must form for = = 2 or 4. Consider the first proposition [o;, V] made by player i in
the play of e such that V; contains z. It must be the case that g; > 0. otherwise player

~ would receive a share of 1 in e. Let M, be the first post-proposal subgame of M
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under e with responder u where u is the neighbour of x other than i. Suppose in M,
player u refuses and makes a proposition |o,, (z)] where 0 < o, < min[o;. (1 - J)].
By lemma 5.7 player = accepts this under e. Thus player u receives a non-zero payoff
from e in M,. This finishes the proof for the case 1).

For case 2) it has been shown that player 3 receives a non-zero payoff in M
under e. Thus if V4 contains 3 in M then player 3 must refuse at least once under
e. Suppose the exchange 34 forms in e. Consider the first proposition [A3. V3] made
by player 3 in the play of e such that Vi contains 4. It must be the case that
A3 > 0, otherwise player 4 would receive a share of 1 in e contradicting the non-zero
payoff of player 3. Let M5 be the first post-proposal subgame in the play of e with
responder 5. Suppose in M player 5 refuses and makes a proposition [As5, (4)] where
0 < As < min[A3,1—4¢]. By lemma 5.7 player 4 accepts this in e. Thus the exchange
34 cannot form in e. Instead the exchange 23 must form and player 1 receives payoff

zero which is the required contradiction. O

The following lemma shows that an SPE of a subgame P of A3 in which player
1 has no offer on the table is still valid if the game is altered so that player 1 has an

offer of n on the table.

Lemma 5.16. Let P and Q be subgames of A3z satisfying the following conditions.
Either both are pre-proposal subgames with responder i > 1 or both are post-proposal
subgames with responder i > 1. All players are active in both. For j > 1, V; has the
same value in both subgames. For j > 1 such that V; # 0, the most recent demand
of player j in both subgames is the same. In P, V; = 0. In Q, V; = (2) and the
most recent demand of player 1 is n.

Let e be a SPE of P. There is an SPE €' of Q such that following any sequence

of actions in Q which is also permissable in P the action specified by e is taken.

Proof. The construction at the end of the statement of the lemma can be extended

to produce a strategy profile ¢’ of Q by describing the actions specified following all
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sequences of actions not permissable in P. Construct e’ by letting these actions be
the same as in any fixed SPE f of P.

Let R be any subgame of Q. In the case that R is produced by a sequence of
actions not permissable in P then a player cannot profitably deviate from e’ because
this would imply that f was not a SPE. Cousider the case that R is produced by a
sequence of actions which is permissable in P. A player cannot profitably deviate
from ¢’ to a strategy producing a sequence of actions permissable in P because this
would imply that e was not a SPE. The only other possible deviation is for player 2
to use a strategy producing acceptance of the demand of 7 of player 1. Let S be a
post-proposal subgame of R in which player 2 is responder and has this option. By
lemma 5.5, under €’ player 2 receives a relative payoff of at least dii in S. So the
deviation described does not increase the payoft of player 2. Thus e’ is a SPE of Q.

as required. ‘ O

5.4.7 The Endogenous Ordering Model on L;

In this section it is shown that A3 = F(Ls,As,3) has multiple SPE payoffs. In
particular in it is proved that there exist SPEs of A3 in which player 3 receives

payoffs . and v = 1 — § + 62 — &% respectively.

Low payoff equilibrium

Suppose player 3 makes an initial unilateral demand of o3 < v in As. Lemma 5.14
and symmetry shows that there exists a SPE of the resulting subgame in which
the responder accepts this demand. It is shown that following any other initial
proposition in Ajg there is a SPE of the resulting subgame in which player 3 earns a
payoff of no more than ~. The result then follows by lemma 5.8.

Suppose player 3 makes an initial demand o3 > v unilaterally in A43. Without
loss of generality suppose the responder is player 2. Let As be the resulting subgame.

By lemma 5.14 there is a SPE f of As in which player 2 receives a SPE payoff of

156



no more than 1 — § + §2. Alter this SPE so that in A5 player 2 refuses and makes
the proposition [1 —§ + 62, (3, 1)]. Let Bj be the resulting subgame. By lemma 5.13
there is a SPE e of B3 in which player 3 accepts. Further alter f by specifying that
e is played in B3. This results in a SPE of Ay in which player 3 earns a payoff of
§—08% < .

Suppose player 3 makes an initial demand o3 < v multilaterally in As. Then in
any SPE of the resulting subgame either this demand is accepted or both of players
2 and 4 receive payoffs of at least 1 — o3. In either case player 3 receives a payoff of
no more than o3.

Suppose player 3 makes an initial demand o3 > v multilaterally in A3. Note
that thus o3 > 1 — . Without loss of generality suppose that the initial proposition
is [03,(2,4)]. Let Cy be the resulting post-proposal subgame with responder 2.
Suppose player 2 refuses and makes the proposition [1, (3,1)]. Let C4 be the resulting
post-proposal subgame with responder 4. Suppose player 4 refuses and makes the
proposition [1, (5,3)]. Let Cs be the resulting post-proposal subgame with responder
5. By lemma 5.15 (and symmetry), if player 5 refuses in Cs then she receives payoff
zero in any SPE. Thus there is a SPE of Cs in which player 5 accepts. Let C3 be the
resulting subgame. There is a SPE of C3 in which player 3 receives a SPE payoff of
zero by corollary 5.9. Thus by lemma 5.8, there is a SPE of C3 in which player 3
accepts. Thus there is a SPE of C2 in which player 2 receives payoff § and player 3

receives payoff zero.

High payoff equilibrium

Suppose player 3 makes an initial proposition of [72,(2,4)] in Aj. Let Dy be the
resulting post-proposal subgame with responder 2. Let D), be the gubgame that
results if player 2 then refuses. It is shown that following any action of player 2
in D) other than a unilateral demand to player 1, there is a SPE of the resulting

subgame in which player 2 receives a relative payoff with respect to D), of no more
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than 7. Lemmas 5.8 and 5.10 then show that there is a SPE of Dy in which player
2 accepts.

Suppose in Dy player 2 makes the proposition [02.(3)] or [o9, (3.1)] where gy < i
Let Dy be the resulting post-proposal subgame with responder 4. In any SPE of D,
player 3 must receive a payoff of at least 1 — oy as she can accept the demand of
player 2. By lemma 5.5, player 4 is guaranteed a payoff of at least 71 in any SPE of
Dy4. Thus it must be the case that the exchanges 23 and 45 formn in any SPE. Hence
in any SPE of Dy player 2 can receive a relative payoff with respect to D} of at most
09.

Suppose in Dy player 2 makes the proposition [o2, (1,3)]. Let Mj be the resulting
subgame. If oo < 71 then in any SPE of M player 1 accepts by lemia 5.5. Otherwise
suppose player 1 refuses and demands 7. By lemma 5.16 there is a SPE of the
resulting subgame M4 which produces the same sequence of actions as the SPE
described below for either £; andF; (depending on the value of o9). Both result
in the exchange 34 forming before player 2 acts. There is a SPE of the resulting
subgame with active players 1 and 2 in which player 2 accepts the demand n. Thus
by lemma 5.8 there is a SPE of M, in which player 2 accepts the demand 7. Hence
there is a SPE of M in which player 1 takes the action described above since player
1 cannot receive a higher SPE payoft by lemma 5.5. In this SPE player 2 receives
payoff o7 relative to D5, as required.

Suppose player 2 makes the proposition [0z, (3)] in Dj where 1 — § + §* < o03.
Let £ be the resulting post-proposal subgame with responder 4. By lemma 5.14
(and symmetry) there is a SPE f of £, in which player 4 receives a SPE payoff of no
more than 6(1 — § + 62). Alter this strategy profile so that in &4 player 4 refuses and
makes the proposition [1 —§+62,(3,5)]. Let £ be the resulting subgame. By lemma
5.13 there is a SPE e of £ in which player 3 accepts. Further alter f by specifying
that e is played in £. Thus under f a pre-proposal subgame of &4 is reached with

proposer 2 and only other active player 1. The payoff to player 2 under f relative
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to D4 is thus 7 as required.

Suppose player 2 makes the proposition [02.(3)] in D) where i < 09 < 1 -3+ 062
Let F4 be the resulting subgame and F 1 be the subgame resulting from refusal by
player 4. Suppose player 4 makes a proposition of l04.(3,5)] in F} for any o4. Let
F3 be the resulting post-proposal subgame with responder 3. By lemma 5.13, there
is a SPE of F3 in which player 3 accepts. The remainder of the argument for this
case can be done in tandem with the next case.

Suppose player 2 makes the proposition [0, (3,1)] in D} where i1 < 0. Let Gy
be the resulting subgame and G} be the subgame resulting from refusal by player
4. Suppose player 4 makes a propostion of [04,(3,5)] in G} for any o4. Let G3 be
the resulting post-proposal subgame with responder 3. Should player 3 refuse in Gy
then by lemma 5.15, player 3 receives zero payoff in any SPE. Thus there is a SPE
of G3 in which player 3 accepts.

The above arguments show if player 4 makes a proposition of [02.(3.1)] in F}
and G} then there is a SPE in which it is accepted by player 3. The resulting game
is essentially an alternating offers game between player 1 and 2. Hence in any SPE
of this subgame player 2 receives a relative payoff with respect to D)} of no more
than n

Let H/, be F; or Gj. It is shown below that following any action of player 4 in H}
other than a unilateral demand to player 5, there is an SPE of the resulting subgame
in which player 4 receives a payoff of no more than o relative to Hj. Application of
lemmas 5.8 and 5.10 then shows that there is a SPE of H4 in which player 4 refuses
and makes the proposition described above, and player 2 receives a relative payoff
with respect to D) of no more than 71, as required.

Suppose player 4 makes a proposition [o4, (3,5)] in H} for any value of 04. Let H
be the resulting subgame. By the arguments above, there is a SPE of .this subgame
in which player 3 accepts the lowest demand available. Thus in the case that o4 < 73

there is a SPE in which the demand o is accepted. In the case that o4 > oy there is
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a SPE in which player 3 accepts the demand of player 2, as required. The resulting
subgame is essentially an alternating offers game between players 4 and 5. Hence in
any SPE of this subgame player 4 receives a relative payoff with respect to HY of no
more than 72, as required.

Suppose in ‘Hj player 4 makes a proposition of [oy4, (3)] for any o4. Let J3 be
the resulting post-proposal subgame with responder 3. In the case that V, = (3.1)
in J3 then lemma 5.13 can be applied, and the arguments made above for H3 hold.
For the case that V5 = (3) in J3, let JJ be the subgame generated if player 3 refuses
in J3. Observe that J3 is equivalent up to discounting to Ajz. Recall the low payoff
equilibrium found above for Aj. By lemna 5.3 there is a SPE of J3 in which player
3 makes a demand to player 2 and it is accepted. In the resulting alternating offers
game with player 5, player 4 receives a SPE relative payoft with respect to ‘H/, of no
more than 71, as required.

Suppose player 4 makes the proposition [0y, (5,3)] in H/;. Let Ky be the resulting
post-proposal subgame with responder 5. In the case g4 < g9, player 5 is guaranteed
a share of 04 in any SPE of K5 and thus player 4 receives a relative payoff with respect
to H} of no more than o in any SPE of Ks5, as required. Suppose o4 > 0». In case
that V2 = (3,1) in K5 and oy <1-9 + 62, suppose player 5 refuses in 5 and makes
the unilateral demand 7 to player 4. In some SPE of the resulting subgame, player 3
accepts the demand of player 2 by lemina 5.13 and player 4 accepts in the remaining
alternating offers game with player 5. Thus there is a SPE of K5 in which player 4
receives a relative payoff with respect to ") of no more than n as required. In the
case where instead oo > 1 — § + 6°. suppose player 5 refuses in K5 and demands
o5 such that 1 — 04 < d05 < 1 — o0y, Let Ky be the resulting subgawme. [f player 3
refuses then player 4 is guaranteed a share of 1 —o5 > 1— 0~ 1(1—oy4) in SPE. If the
exchange 34 forms in such a SPE then player 3 receives a payoff of less than 1 — 04
relative to 3. As this is worse than accepting the offer of player 2, the exchange 34

does not form in any SPE of K3. Note that o5 < 1 — 4, so this demand is accepted
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by player 4 in SPE of K3. Hence player 5 earns a relative payoff of at least 1 — g9 in
any SPE of K5 and player 4 receive a relative pavoff of no more than o, as required.

Consider the case that V, = (3) in K5. Suppose player 5 refuses in s and makes
a unilateral demand of n to player 4. Let £ be the resulting subgame and let £ be
the subgame that results if player 3 then refuses. By lemma 5.16 there is a SPE of
L4 which produces the same sequence of actions as the low payoff equilibrium of Ay
described above. Thus by lemma 5.8 there is a SPE of L3 in which player 3 either
accepts the demand of player 2 or refuses and makes a demand to player 2 which
is accepted, and in the resulting subgame player 4 accepts the demand of player 5.
The latter action is SPE as in this subgame ouly players 4 and 5 are active. This
shows that player 5 is guaranteed a relative payoff of 7t in Ky so player 4 receives

only 67, as required.
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Chapter 6

Simulation: Background and

Overview

One approach to modelling' bargaining situations is through the framework of evo-
lutionary game theory, as briefly described in section 3.3.5. This requires an under-
lying game with relatively simple strategy sets. Evolutionary game theorv models
based on the Nash demand game have enjoyed much recent success. This game,
originally proposed by Nash in [53], models 2 player bargaining. Both players must
simultaneously name a demand. If this demand pair lies within the utility cake
then each player receives a payoff equal to their demand. Otherwise both receive
nothing. In contrast to the alternating offers game, this approach abstracts away
most of the details of the bargaining process. In particular, strategies are simply
demand values. The Nash demand game supports all Pareto optimal outcomes with
strict (pure strategy) Nash equilibria, so there is a significant equilibriuun selection
problem. However, the simple strategy structure of the game makes it amenable to
evolutionary methods, providing a potential method of equilibrium selection.

This chapter gives an overview of an evolutionary model based on an extension
of the Nash demand game to general bilateral exchange networks with a view to

implementing the model as a computer simulation. The relation of this model to
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the literature on similar models is also discussed. Chapter 7 explores the details
of the evolutionary model, and chapter 8 presents the simulation results. Many
unrealistic assumptions are introduced in the evolutionary model, so these results
are not intended to be used as quantitative predictions. Instead they are viewed as
providing a useful qualitative tool to investigate evolutionary pressures which may
determine the outcome of bargaining.

Section 6.1 reviews the literature on similar evolutionarv models. Such models
can often be represented mathematically as Markov processes, so a summary of
relevant material on this topic is included. Section 6.2 gives an overview of the
proposed evolutionary model of bargaining. Section 6.3 describes how this model

can be represented by a Markov process.

6.1 Literature Review

A general introduction to the approach of evolutionary game theory is given in sec-
tion 3.3.5. Section 6.1.1 gives a description of the features of some evolutionary
models relevant to this chapter. These models can be represented mathematically
as perturbed discrete Markov processes. Section 6.1.2 briefly defines these and sum-
marizes some relevant results. Section 6.1.3 describes some particular evolutionary

models of bargaining based on the Nash demand game.

6.1.1 General Features

A pioneering evolutionary model is that of Kandori Mailath and Rob (KMR) [37].
Their approach produces a more tractable model than previous siilar work (e.g.
see Foster and Young [26] and Fudenberg and Harris [28]). The KMR model is a
dynamic model for a 2 x 2 symimetric game (as defined in section 3.3.2). The game is

played by members of a single large population. Irefer to these members as agents!.

1KMR refer to the members of this population as ‘players’. The main part of this chapter is

H - ‘Nlaver’ [ r113Q
concerned with games which are not symmetric. Thus I reserve term ‘player’ to distinguish between
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The model is a discrete time model with time values in N*. I refer to each time value
as representing a round of the model. In a given round each agent has a fixed pure
strategy of the underlying game. In each round all agents are repeatedly matched
to play the game in pairs using their fixed strategies. Agents’ strategies in the next
round depend on the payoffs received. I refer to the particular method that agents
use to update their strategies as their learning rule. Whenever an agent updates
their strategy, they have a small probability € > 0 of mutating to either strategy
with equal probability rather than using their learning rule.

KMR study the case where the underlying symmetric game has two strict Nash
equilibria in which both players play the same strategy. Under the particular learning
rules they consider, based on agents being more likely to update to the strategy with
better average payoff, the model has two stable patterns of behaviour in the case
€ = 0. These are the two population states in which all agents play the same
strategy. However, in the case € > 0, mutations occasionally disrupt the stability of
these states; if enough agents mutate then the population can eventually settle in
the other state. This enables selection between the two pure Nash cquilibria. KMR
prove that in most cases the probability that in the long-run the population is at
one of these states? tends to 1 in the limit ¢ — 0. The exception is that for correctly
balanced payoff values in the underlying game, this probability tends to % for both
states. The meaning of this ‘probability in the long-run’ is made precise in section
6.1.2 below.

The framework described above has been generalized by many researchers and
is the basis of the evolutionary model used in this chapter. The main differences
are that the model used here has multiple populations of agents, uses an underlying
game with more than 2 players which is not symmetric. and matches only one agent
from each population to play this game in each round. A model similar to that

of KMR investigating asyminetric games by using multiple populations is given in

player positions in games.
2That corresponding to the ‘risk-dominant’ Nash equilibrium.
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Binmore et al [9] and discussed below in section 6.1.3. Some other extensions to
the KMR model in the literature include looking at large but finite populations
(e.g. Seymour [61]), studying methods of agent matching that rely on structured
populations (e.g. Ellis [24]), the effect of state-specific mutation rates (e.g. Blume
(14]), or populations which are heterogeneous in either preferences (c.g. Young [76))
or learning rules (e.g. Matros [47]).

The attraction of models using the KMR framework is that they enable progress
to be made on selection between strict Nash equilibria such as those found in the
Nash demand game. Methods to study equilibrium selection are discussed in section
6.1.2 below. As mentioned above these are ‘long-run’ selections. The reason for this
is that mutation events large enough to move the population between stable states
occur rarely. This raises the question of whether the timescale for which these long-
run predictions are accurate is relevant to the setting being modelled. It is difficult
to answer this question in general as many factors specific to the setting may affect
this timescale. For example, mechanisms to reduce the long-run timescale could be
provided by correlated mutations, matching based on structured populations (e.g.
Ellis [24]) or noisy learning (e.g. Binmore and Samuelson (7]). The question of
whether the long-run timescale is relevant for the model of this chapter is discussed
in section 9.2 of the conclusion.

The remainder of this subsection briefly discusses some of the relevant features
of the KMR model. The assumption of a large population of agents who interact
repeatedly is natural for many biological® and social settings. Examples are landlords
and tenants choosing contracts or two populations representing predator and prey
each containing various subpopulations with different behaviours. The use of large
populations does not seemn so reasonable for an underlying game with a large number

of players. This case is discussed in section 7.2.4. In a large population, the random

3For biological models the ‘learning rule’ should be replaced with rules modelling the rates of

birth and death of agents based on their payoffs. See Sevmour [61] for example.
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matching process has the advantage that repeated matchings between agents are rare
so that issues such as repeated gaine effects? can be neglected. Another advantage
is that some variables in the model can be approximated by expected values. For
example, KMR mention a setting where agents are matched a large number of times
in each round and their average payoffs, used by the learning rules, are approximated
by their expected payoffs. Another example is in the proof that the ‘aspiration and
imitation’ model, an evolutionary model using the framework described above, can
be approximated over finite time periods by deterministic equations. This model
and the proof are given in section 3.1 of Samnuelson [57].

Mutation plays the crucial role of introducing noise into the model which can
occasionally disrupt patterns of play based on pure Nash equilibria. This specifica-
tion of noise has the advantage of being introduced at an agent level, and produces
a more tractable model than some alternatives such as Foster and Young [26]. Some
possible alternative specifications of noise are mentioned in section 7.2.0.

The use of short-sighted learning rules in evolutionary models is discussed in
section 3.3.5. KMR argue that they are especially relevant when the model displays
what they refer to as inertia. This is the case where the rate at which agents change
their strategies is slow compared to how often they play the game. Thus the expected
payoff of a strategy changes only slowly and a good short-sighted choice of strategy

also does well in the near future.

4 See proposition 10.2 of Muthoo [51] for an illustration of how a repeated 2 player bargaining

games can support a wide array of SPE outcomes.
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6.1.2 Perturbed Discrete Markov Processes

A discrete Markov process is a family of random variables X, with the same finite

or countable state space Z for time values t € N with the property

P(Xt41 = 21Xy = 2) =P(X,41 = 2|
X, = z, X,y = 21 Xi_o = zi_a. .. .)V:,{_l.lf,_.z

:Pzz’(t)

for some values P,./(t) such that >, P,,/(t) = 1 for each z and ¢. The value of
X, is referred to as the state of the system at time t. The values P../(t) are called
transition probabilities. In the case that P,/ is constant over t the process is called
time homogeneous. The Markov processes discussed in this thesis are discrete, time
homogeneous and have finite state spaces.

A state 2’ € Z is accessible from = € Z if there is a positive probability of the

state changing from = to 2z’ in a finite number of transitions. This is defined® to

include the case z = z/. A state = € Z is said to communicate with 2z’ € Z if
they are accessible from each other. This is an equivalence relation and partitions
the state space into equivalence classes referred to as communication classes. A
recurrent class of Z is a communication class such that no state outside the class is
accessible from any state inside it. It is straightforward that every Markov process
with a finite set of states has at least one recurrent class®. States not contained in

a recurrent class are called transient. A Markov process with exactly one recurrent

class containing all states is referred to as erreducible.

5This material can be presented slightly differently and sometimes *accessible’ is defined so that

it does not always cover the case z = z’. The presentation used in this section is based on section

3.3 of Young [78]. \
5 Otherwise there is always a positive probability of leaving a communication class. Since there

can be only a finite number of communication classes, there must be a positive probability of leaving

one and returning to it. But this implies the existence of states vutside this communication class

which communicate with its elements.
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Assume Z is finite and index its elements as {z1,29... .. zn}. Let u be a proba-
bility distribution over Z. The probability distribution in the following time period
is given by pP where P is the n x n matrix (P;,z;) and p is written as a row vector.

A stationary distribution satisfies

= uP (6.1)
An important case is where
AQ:y for z # 2/
zz! =
1-A4+2Q,, forz=7z

and )_, Q. = 1. That is, X is the probability that a trausition occurs in any time
period and Q.. is the conditional probability that the state changes from 2 to 2’
given that a transition occurs. Then P = (1= A)T+A\Q where T is an identity matrix

and @ is the n X n matrix (Q;,.,). Under these conditions, equation (6.1) becomes

H=pQ (6.2)

This shows that stationary distributions depend only on the conditional transition
probabilities to other states given that a transition takes place.

It is a well known result’ that any Markov process with a unique recurrent class
has a unique stationary distribution p*. Furthermore p* describes the time-average
asymptotic behaviour of the process independently of the initial state ug i.e.

. =N o o5
All_l};cj\;;ﬂop~# (6.3)

For each state z € Z let N. be the set of integers n > 0 such that there is
a positive probability of the state moving from = to z in exactly n periods. An
aperiodic recurrent class (" is one in which the greatest common divisor of N, is 1
for all z € C. It can be shown that the greatest common divisor of IV, is the same

for any z € C so ‘any’ can be substituted for ‘all’ in the previous definition. If a

7A reference for proofs of the results on Markov processes in this section is Chung [20].
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Markov process has a unique aperiodic recurrent class then the result of equation

(6.3) can be strengthened to the following ergodicity result:
[1_1}1310 po Pt = p* (6.4)

That is, p* describes the long-run expected state of the process independently of
the initial state.

The ergodic distribution p* can be found by solving (6.1) directly. but the com-
putational cost of this is often prohibitive for a large state space. Kandori Mailath
and Rob in [37] present the following alternative method®. Recall the definition of
a directed tree from section 3.2. A tree rooted at 2 € Z is a directed tree with
vertices Z and root z. Given a directed tree T, let P(T) denote the the product of
the transition probabilities Py, for all directed edges (xz,y) of T. Let v(z) = 3. P(T)
where the sum is taken over all trees rooted at x. The Markov chain tree theorem
states that for an irreducible Markov process v(z) is proportional to pf. That is

)
* ZyeZ ’L‘(y)

A proof of the Markov chain tree theorem is given in Young [78] (lemma 3.1). Note
that this theorem can easily be applied to Markov processes which are not irreducible
but contain a unique recurrent class by removing the transient states from the state
space, as it is straightforward to prove that transient states receive zero weight in
the stationary distribution.

The following methods apply for perturbed Markov processes. See section 3.4
of Young [78] for a general definition of these. For the purpose of this thesis, it
suffices to note that this definition encompasses Markov processes whose transition
probabilities involve a possibility € of mutation as described in the framework of
section 6.1.1 and such that for all ¢ > 0 there is a unique recurrent class. The

Markov process in the case € = 0 is called the unperturbed process.

8This method is a discrete version of techniques given in Friedlin and Wentzell [27].
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For a perturbed Markov process, taking the low mutation limit of the stationary
distribution, lim,._,o u*, allows a simplification of the tree analysis. A state is said to
be stochastically stable if it receives positive probability in this limiting distribution.
Given any two states z, 2z’ € Z, define the one-step resistance from z to z' to be
the minimum number of mutations needed to move from z to 2z’ in a single round.
If no such transition is possible define the one-step resistance to be oo. Define the
resistance of a directed tree to be the sumn of the one-step resistances. A minimal
tree is a directed tree with minimum resistance. The Markov chain tree theorem
implies that a state is stochastically stable if and only if it is the root of a minimal
tree. A proof of this result is contained in Young [77] (it is theorem 4 of this paper).
The idea behind this result is that as € tends to 0, mutations become extremely rare,
so the probability of moving between two states depends principally on how many
mutations it involves. A survey of methods which further refine this technique is
contained in Binmore et al [9]. Section 7.6 proves a theorem on the evolutionary

model of this chapter based on these tree methods.

6.1.3 Evolutionary Models of Bargaining

Young ([76] and chapter 8 of [78]) applies the methods of the previous section to
a model of the Nash demand game. Young’'s model has two populations; one for
each player in the game. In each round a single pair of agents are matched to play
the Nash demand game once. Agents use their learning rules to choose strategies
immediately prior to playing the underlying game, and this choice is determined by
play in the n most recent rounds. Hence the fixed demands of the agents become
irrelevant and the state of the system can be given by the outcome of the n most
recent rounds. Young uses a learning rule in which agents play a best reply to the
mixed strategy given by the frequencies of demands in a random s;dmple of m of
the n most recent rounds. The value of m depends on which population the agent

belongs to. Young proves that under some mild conditions, the stochastically stable
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states of the model correspond to an asymmetric Nash bargaining solution with
bargaining powers corresponding to the values of ™ for each population.

Binmore, Samuelson and Young in [9] present another model based on the KMR
framework and apply it to the Nash demand game and some closely related variant
games. This model also has a population for each player position. Both these
populations contain M agents. The paper studies two dynamics which are based
on learning involving agents switching to a best reply to the mixed strategy profile
given by the frequencies of strategies amongst the agents of the other population®.

The two dynamics are interpreted as representing the same process under differ-
ent assumptions about limits on M and e and the occurrence of mutations. Consider
a process in which in every round every agent updates to the best reply mentioned
above with probability X if they do not mutate. The first model of [9], stochastic
best response dynamics, applies the usual model of mutation to this process and
investigates the behaviour in the limiting case € — 0. The second model, deter-
ministic best response dynamics, can be interpreted as representing the case where
there is a probability A in each round of a ‘mutation event’. If this occurs then each
agent has a probability € of mutating in that round. The deteministic best response
dynamics capture the limiting case where the limits are taken in the order of A — 0
then M — oo and finally € — 0. That is, mutations occur very infrequently but
many may appear in the same round, and in between such rounds the dynamics fol-
low a deterministic path. Thus after each mutation event the dynamics reach some
recurrent class of the unperturbed dynamics with probability 1 before any more mu-
tations occur. Thus setup simplifies the analysis of the case by tree methods. Under
an ordinary mutation scheme, a least resistant path between recurrent classes might
take a complicated form involving a burst of mutations, followed by learning, then

more mutations!®.

9Note that under these learning rules it is not necessary for the agents to be matched to play

the game each round.
A concrete example of this is given in footnote 11 of 19]
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Binmore et al prove that both these dynamics support the symmetric Nash
bargaining solution for the Nash demand game. However for the contract game
the stochastic dynamics support the Kalai-Smorodinsky solution of [36] (discussed
briefly in section 4.1). This game is a modification of the Nash bargaining game
in which the players receive payoff zero unless their demand pair lies on the Pareto
boundary of their utility cake. In the latter case players receive payoffs equal to
their demand. The deterministic dynamics support the symmetric Nash bargaining
solution for the contract game. This result shows that the relative values of M and
e may qualitatively influence the behaviour of an evolutionary bargaining model in

the KMR framework.

6.2 An Overview of the Evolutionary Model

This section presents the 1’£1z1in algorithin for the evolutionary model of bargaining
proposed in this chapter. Outlines of the various steps are sketched here and are
discussed in chapter 7. The details of the steps are completed in section 7.5.

A bilateral exchange network N = (P.E.K) is under investigation. For each
i € P there is a population A* which is a set of agents. Each population is assumed
to contain the same number of agents, M. Each agent in A* is endowed with an
individual state composed of a demand in D; and an informational state in I;. The
demand set D; is a finite set of non-negative reals. Let D = (D;);ep. The form of
the set I; varies and is discussed below. It is always a ﬁnite’set. An initial individual
state for each agent must be given!!.

There is an underlying game N (N.D), defined shortly. with player set P and

strategy set D; for player i. The evolutionary model is as follows.

"In the computer implementation it suffices to give the number of agents in each initial state for

each population. See the discussion on the computer representation of the aggregate state of the

model in section 6.3.
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Algorithm (Main loop).

1. Randomly sample an agent from each population using a uniform probability

distribution. These are referred to as the active agents.

2. Call a subroutine to play N with the demands of the active agents. Assign

the realised payoffs of the game to the active agents!2.

3. For each active agent in turn, call the updating subroutine to determine their

new individual state.
4. Alter the population state accordingly.
5. Return to step 1.

An execution of steps 1 to 5 is referred to as a round. The number of rounds
performed measures how much time has been simulated by the model. On the other
hand the length of time spent by a computer program running the simulation is
referred to as the run-time. When an agent is referred to as active it is usually with
reference to a particular round.

The game N (N, D) is the following extension of the Nash demand game. Let
d = (d;);ep be a strategy profile. This is also referred to as a demand profile. Let
['(d) be the set of all maximal consistent outcomes of N given d. These are defined
shortly. A uniform random distribution is used to choose an element of this set.
Players’ payoffs are given by their shares in this outcome. Note that in the terms of
section 3.3, NV is a game in which all player make an action in the first period and
then a random move decides the payoffs. The algorithm outlined above could also
be used with other underlying gamnes.

Recall that definition 3.8 defines a feasible outcome of a network N. Such an
outcome gives a share for each player and a set of realised exchanges. These must

satisfy various feasibility constraints generated from the network N.

2These payoffs are used in the updating subroutine.
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Definition 6.1. A consistent outcome of N = (P, E .K) given demand profile d =
(di)iep is a feasible outcome such that condition 1) below holds. If condition ii) also

holds then it is called a mazimal consistent outcome
i) If player 7 is involved in a realised exchange then their share equals d;.
ii) If (di,d;j) € K then at least one of i and j is involved in a realised exchange.

The second condition means that in a consistent outcome it is not possible that
two neighbouring players do not exchange but have a demand pair which lies in
the corresponding utility cake. Given a consistent outcome which is not maximal,
realised exchanges can be added until a maximal consistent outcome is generated.

Agents use learning rules to update their demands. As discussed in section 3.3.5,
these are relatively simple shortsighted hewristic rules. It is assumed that learning
rules are deterministic'® and all agents use the same learning rule. The role of
agents’ informational states is to provide the only additional input for learning rules
beyond the demands and payoffs of the active agents. An informational state might
encapsulate information that the agent has learned from recent play (e.g. the average
of the realised payoffs for each demand), or it could contain information about the
agent’s recent play (e.g. average payoff received) which other agents sometimes
observe. Thus the specifications of I; and the updating subroutine depend upon
which learning rule is used.

There is assumed to be a possibility of mutation. Upon updating in step 3, there
is a probability e that an agent may switch to a random demand rather than using
their learning rule. The random demand is chosen by a uniform distribution on the
corresponding demand set. The updating subroutine must describe this possibility
as well as the learning rule and the details of how the informational state is updated.

Note that some learning rules!? do not depend on the payoffs agents receive. In

13This restriction is not essential. It is made because it simplifies some later exposition and

because in practice only deterministic learning rules were used in the course of this research.

“For example, the sampled best reply learning rule described in section 7.1.2.
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this case, step 2 of the algorithm can be removed to reduce the computational cost.
For the results of the model to be based on the underlying game. such learning rules
must use A directly.

For the lewrning rules considered below. either I, is a singleton - if agents use
only the most recent realised payoffs and demands of active agents to update their
demands - or I; = D; U {0} and an agent’s individual state represents their most
recent payoff!®. An example of the latter case is if the learning rule involves sampling
another agent and deciding whether to imitate them based on their most recent

payoff.

6.3 The Model as a Markov Process

The evolutionary model of the previous section can be described as a discrete time
homogeneous Markov procéss. The time value correspouds to the number of rounds
played. A state of the model can be represented by a specification of the individual
state of each agent. The state of the model is often referred to below as the aggregate
state to differentiate it from the individual state of an agent.

Note that at no point in the model does the identity of an agent play a part, only
the population to which they belong and their individual state. This suggests an
alternative representation of aggregate state. In a given round, each population can
be partitioned into subpopulations which are homogeneous with respect to agents’
individual states. The vector of sizes of each of these subpopulations acts as a
representation of aggregate state. The aggregate state space in this case is the set
of all such vectors which conserve the initial total population sizes.

The latter representation is used in the computer implementation of the model,

as it makes less demands on storage!C. However, the former representation is used

1511 a variation where agents update their strategies before plaving the one-shot game. [, = {0, 1}
can serve this purpose. 0 can represent a most recent payoff of zero and 1 can represent most recent

payoff equal to the agent’s demand.
161 the case where M is small compared to the number of possible individual states in a typical
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for the remainder of this chapter. Arguments expressed using this representation are
easier to follow. This is due to the fact that agents are given individual identities. It
is thus straightforward to refer to a particular agent. such as one which mutates, over
several following rounds. These references could easily be translated to accommodate
the other representation of aggregate state but would be much less concise.

Under either representation of aggregate state. the transition probabilities can be
calculated directly from the description of the model. This completes the definition
of a Markov process. In a slight abuse of terminology, for the remainder of this
chapter I sometimes refer to features of the model when I strictly mean features of

this Markov process.

Definition 6.2. A state is said to support demand d; for population A" if there
exists an agent in that population with that demand. A state s is said to support
a demand profile (d;);ep if for all i € P it supports d; for population A'. A set of

states S is said to support a demand profile d if some state s € S supports d.

Given an aggregate state, a vector giving the number of agents in each population
playing each demand can be calculated. Such a vector is referred to as the aggregate

demand state.

Lemma 6.1. The following conditions are sufficient for the Markov process just

defined to have a unique aperiodic recurrent class.

1. ¢e>0

9. There exists an n such that the following is true. If at least n rounds have been
played then the learning rule selects a new informational state dependent only
on the demands and payoffs of the active agents and the aggregate demand

state in the most recent n rounds

population, the former representation might become more efficient. However. for the simulations of
?

chapter 8 this is not the case.
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Condition 2 effectively limits the informational content of informational states

to events in the most recent n rounds!’.

Proof. Fix N, D, € > 0, a demand profile d of A/ (N, D) and a learning rule satisfying
condition 2. Choose some n as described in condition 2.

Let 7 be a possible payoff profile of (N, D) given demand profile d. Let 8, € I,
be the informational state chosen by the learning rule for an agent in population A*
if for the previous n rounds: the sampled demand profile is d, the resulting payoff
profile is m and for all j € P the demand of every agent in population A7 is d;.

Let 5o be any aggregate state. In any round there is a positive probability that
the active agent in population A* mutates to demand d;. Assume this takes place for
all 4 € P throughout the following description. Each round there is an active agent
from some population A' who does not use demand d; until no more such agents
exist. Then n further rounds take place. In each following round the realised payoff
profile is 7 and there is an active agent from some population A" who does not have
informational state ;. This results in the state s in which for all : € P the agents
in population A* have demand d; and informational state ;.

The preceding description is constructed to have positive probability. Thus s
is accessible from any choice of sg, so no more than one recurrent class can exist.
From state s there is a positive probability that in the following round all sampled
agents mutate so that their demands are unchanged and the realised payoff is 7.
The resulting state must be s. Hence the greatest common divisor of Ny is 1 as

required. 0

An example of where condition 2 fails is in an implementation of fictitious play '8,

17An alternative would be to require that each agent has been active at least n times and the
learning rule selects a new informational state depending on the demands and pavoffs of the active
agents and the aggregate demand state in the most recent n rounds in which the updating agent

was active. The proof for this case is similar.
BFictitious play is a learning rule in which a mixed strategy for each population 4, is constructed

from the relative frequencies with which each action has been played over all preceding rounds.
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In this case, informational states must contain information on the entire past history.
Another example is if an agent’s informational state depends in part on their initial
informational state. In this case, initial informational states can effectively classify
the agents into different types which cannot be changed by learning,.

Note that for the case where an informational state represents the most recent
payoff, there usually also exist some transient states. For example. an aggregate state
in which all agents have an informational state representing receiving the maximum
payoff is not accessible from any other state, except in some trivial networks. as
it would require all active agents in the previous round to receive their maximum
payoff. This is why some results of section 6.1.2 are quoted for Markov processes

with a unique recurrent class, rather than for irreducible processes.

Agents then update to best replies to the resulting mixed strategy profile. See chapter 2 of Fudenberg

and Tirole [29] for example.
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Chapter 7

Simulation: Details

The chapter explores the details of the steps of the evolutionary model defined in
chapter 6. Section 7.1 discusses various learning rules which agents may cmploy in
the model and proposes several candidates for use. Section 7.2 explains the reasons
for the modelling choices made, and discusses various alternatives. Section 7.3 con-
tains predictions of the behaviour of the model under the candidate learning rules.
Predictions of general behaviour are developed based on the preceding discussion of
the candidate learning rules and the material of chapter 6. There is also discussion
of a theorem predicting the outcome for some positions in unit cake networks under
certain learning rules. Section 7.4 deveclops methods of reporting the results of the
simulation based on the predictions of general behaviour. Section 7.5 completes the
description of the model by giving details of various steps. paying particular atten-
tion to how these steps are implemented in a computer simulation. Finally. section

7.6 is an appendix which states and proves the theorem mentioned above.

7.1 Learning Rules

Sections 7.1.1 — 7.1.3 describe various classes of learning rules adapted from both

the sociology and economic theory literatures. The theoretical results from chapter
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6 are used to predict their behaviour in the model and assess their likely usefulness.
Three learning rules are identified as candidates for use in simulation: imitate better,
proportional imitation and sampled best reply. Some variations on these are also
defined. Various predictions of the behaviour of the model under the learning rules
are made in this section. These are summarized and developed further in section
7.3.1.

Note that a major criterion for selection of learning rules for use in computer
simulation is that they must be reasonably computationally efficient. The Markov
process structure of the evolutionary model of chapter 6 means that a large number
of rounds must be used to gain an insight into its behaviour. In this situation. every
part of the main loop described in section 6.2 is used a large number of times. Slow
subroutines can therefore have a large effect on the computational speed and reduce
the maximum size of networks which can be studied in a reasonable runtime. In
particular, this means that learning rules must typically be based on information
gathered from a few agents rather than on information aggregated from all agents!.

Recall that one aim of this thesis is to find a method which is capable of in-
vestigating reasonably large networks. This means that memory limits become an
issue?. Recall from section 6.3 that the computer implementation stores the state of
the model as a vector of sizes of subpopulations which are homogeneous in individual
state. It is important that the informational state space remains relatively small to

prevent the number of subpopulations from becoming too large for large networks.

7.1.1 Imitative Learning Rules

Imitative learning rules operate by agents sampling others in the same population

and sometimes switching to their demands. A simple candidate imitative learning

1Some aggregated information is readily available. such as the number of agents in each individual

state. However this alone is typically not enough for a learning rule.
®These are mainly the limits imposed on the size of arrays by the programming language rather

than the available system memory.
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rule is imitate better. Under this rule an updating agent samples another in the
same population with a uniform probability distribution and switches if the sampled
agent has a higher most recent payoft. A variation is for the agent to switch with a
probability proportional to the payoff advantage of the sampled agent. or probability
zero if the sampled agent has a worse payoff. This vields a proportional imitation
learning rule®. A family of such rules exist depending on the factor of proportionality
used. The factor of proportionality must be selected such that the probability of
switching demand is no more than 1. These two simple imitative learning rules are
used in many simulations of the next chapter. For both, the informational state of
an agent represents their most recent payoff and so I, = D; U {0}.

The following variations of these rules are also sometimes used. These are called
imitate better and proportional imitation with sample size n. Under these the up-
dating agent samples n agents from the same population with a uniform probability
distribution and without replacement?. For each demand d of a sampled agent. the
average most recent payoff of agents in the sample playing d, a(d). is calculated.
A demand d* maximising a(d) is chosen using a uniform distribution on all such
demands. The learning rule now proceeds as if the demand d* and payoft a(d*) had
been sampled by an agent using the ordinary imitate better or proportional imita-
tion rule. This learning rule allows the updating agent to base their new demand
on an imperfectly observed picture of the state of their whole population. As n
increases the observation of the state becomes more accurate.

Some other possible variations of these rules include introducing a rule to decide
whether to update at all (e.g. only if payoff falls below an aspiratiou level). using a
different rule to decide whether to switch the the observed demand, or increasing the
amount of information observed on sampled players (e.g. the most recent n pavoffs

could be observed).

3 As proposed by Schlag [58]. v .
4Sampling is without replacement to minimise the computational cost. For a large population

this is a good approximation of sampling with replacement.
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The remainder of this section discusses the behaviour of the model under the
imitate better and proportional imitation rules. and to some extent under any imita-
tive learning rule. Consider the unperturbed model under an imitative learning rule.
In this model, new demands cannot be introduced into populations. Consider an
aggregate demand state such that every population is demand homogeneous. The
set of all aggregate states corresponding to this aggregate demand state must con-
tain a recurrent class. Under the imitate better and proportional imitation learning
rules agents never imitate others with equal payoffs. Thus there may also be re-
current classes in which some populations contain agents playing different demands
but all receiving payoft zero. This result can be sumimarized as follows. Every B set

contains a recurrent class.

Definition 7.1. An B set is a maximal set S of states such that for each i € P one

of the following conditions holds.
i) All agents in A" have the same demand in all states of S.

ii) If the game NV (N, D) is played using any demand profile supported® by S then

player i receives an expected payoff of zero.

An example of a B set in which condition ii) holds for a population is the fol-
lowing. Let N be a 3 player line network in which K£!'? is a 2-unit cake and K% is a
unit cake. There exists a B set in which all agents in population 1 make demand %
3
5

all agents in population 2 make demand 3 and agents in population 3 make various

demands and receive payoff zero.

It is shown® in lemma 7.4 of the appendix to this chapter that for imitate better
and proportional imitation there are no recurrent classes of the unperturbed model

which are not contained in B sets. A sketch of the argument is given here as it is

5Recall the definition of support from definition 6.2.
5Tn order to apply the lemma to get the result described it is also necessary to observe that. in

the notation of appendix 7.6, any B € B is a subset of a B set.
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persuasive for many other imitative learning rules. although a complete proof may
be not be straightforward. In the unperturbed model. for populations other than
A® there is a positive probability of the same agents becoming active each round
and not changing their demands due to not sampling better alternatives (e.g. they
might sample themselves). Thus there is a positive probability that every agent in
populatjon A' becomes active in turn and makes a similar sample of the population.
If they all sample an agent a in population A* with highest payoff. then there is a
positive probability that every agent with a lower pavoft will switch to the demand
of agent a. A feature of the underlving game is that any agent receiving the same
payoff as agent a must already be playing the same demand, unless the payoff of
agent a is zero. If this process is repeated. a state in a B set is eventually reached.

The following argument suggests that under imitate better or proportional imi-
tation in the long term the model is more likely to select B sets supporting demand
profiles which are plausibie as rational solutions of the underlying ganie such as strict
Nash equilibria. Consider a state in a recurrent class of the unperturbed model. This
state must lie in a B set. For a population A* such that condition i) of definition 7.1
holds, there is a positive probability that a state can be reached without mutation
in which every agent in that population has the same most recent payoff. Then it
requires only a single agent in population A’ to mutate to a different demand and
receive a higher payoff for the state to leave this recurrent class of the unperturbed
model. However this argument can also be applied to some B sets which support
a unique demand profile which is a strict Nash equilibriumn if there are multiple
realisable payoffs to this profile. For example, in a network with an odd number of
players one must always be excluded from exchange. Nonetheless this argument is
useful in proving the prediction of theorem 7.3 in the appendix.

The multiple strict Nash equilibria of A for a 2 player network all have unique
realisable payoffs. Define the outward resistance of a recurrent class of the unper-

turbed model to be the minimuin number of mutations required for the state to reach
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another recurrent class of the unperturbed model. For the 2 player case, it is easy to
see that recurrent classes of the unperturbed model within B sets supporting demand
profiles which are strict Nash equilibria all have outward resistance of more than 1.
The following argument shows that in fact all such recurrent classes have outward
resistance of 2. Suppose an agent in each population mmutates, their new demands
form a different strict Nash equilibrium, and in the next round these agents become
active again. One mutant agent must earn a higher payoff than the non-mutants
in the same population. There is thus a positive probability that this mutant is
imitated by all the non-mutants. It seems plausible from the above argument that
under these learning rules selection between the multiple strict Nash equilibria of
a 2 player network may not be possible by the resistance arguments described in
section 6.1.2 alone. To make any progress theoretically it may be necessary to apply
the Markov chain tree theorem directly.

Note that imitate better” relies only on the ordinal properties of demands. Given
a path between two states, if all demands involved in the path are relabelled so that
ordinal relations are preserved then the resulting path has the same probability.
Thus is seems likely that the results for this network under the imitate better learning
rule are not robust® to the choice of D. Since demand sets are an exogenously chosen
part of the model this raises the possibility that there are many valid choices and
so the solution is indeterminate. However, in a bargaining situation players can
typically attach a great number of nuances and conditions to their offers, effectively
allowing an interval of utility values to be attained. This suggests using evenly

spaced demand sets? across the range of players’ feasible demands and taking the

"These comments do not apply for imitate better with larger sample sizes. For these learning

rules, the averaging of payoffs means that cardinal properties are also used.
8That is, the results depend only on the ordinal structure of the outcomes of the game N. Note
k)

that this is not equivalent to the results being dependent on the ordinal structure of the utility

cake. As mentioned in section 3.1.2 this would imply an indeterminate solution.
YRecall that von Neumann-Morgenstern utilities are used. These are unique up to positive affine

transformations so ‘evenly spaced’ demand sets are well defined.
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limit as the space between demands tends to zero. However. it may be possible
to make a case for other choices of demand set to be more reasonable. A possible
example in a two player bargaining situation are demand sets such that the Pareto
optimal outcomes of A are evenly spaced!?. Thus results that are dependent on
the choice of D are hard to defend. Proportional imitation also involves cardinal
properties of demands and so may be more robust.

Imitate better makes robust predictions in other networks. Theorem 7.3 in the
appendix proves that under certain conditions, some positions in unit cake networks
receive payoffs of approximately 1 and 0 in any stochastically stable state for both
imitate better and proportional imitation. A short version of this result is given in
section 7.3 below. A prediction of this form can be interpreted as especially powerful
since it involves only mechanisms based on the ordinal properties of the payotfs. This

is a reason to pursue simulations using imitate better.

7.1.2 Best Reply Learning Rules

This class of learning rules groups together all those which involve changing to a
best reply. As described in section 6.1.3, the best reply dynamics used in Binmore
et al [9] proved to be a powerful selection mechanism in the 2 player Nash demand
game. One motivation for the use of best reply learning rules here is to see whether
similar results hold. The best reply dynamics of [9] involved using a best reply
to the aggregate mixed strategy given by the frequency of strategies in the other
population. This is computationally costly as it involves calculating the expected

payoff of many pure strategy demand profiles and taking an appropriate weighted

10An argument that this is a reasonable choice of demand sets is as follows. The only serious
candidates for recurrent classes of the unperturbed model which are stable for ¢ > 0 are those
contained in B sets supporting strict Nash equilibria. Therefore the results of the model are likely
to depend only on the ordinal structure of these outcomes. [f they are unevenly spaced. this biases

the outcome.



sum!!. For use in the model of chapter 6. an alternative best reply rule is sought
based on taking the best reply to a sinaller sample of demands.

In the sampled best reply learning rule with sample size m. the updating agent
samples m agents from each other population with replacement 2. A mixed strategy
is constructed for each other population from the relative demand frequencies in
these samples. The updating agent then chooses a new demand which is a best
reply to these mixed strategies. The minimum demand which is a best reply is
selected. In this learning rule informational states are not required, so each set of
informational states is taken to be a singleton.

Many alternative best reply learning rules exist. One source of variation is what
information is used to construct the strategies to which a best reply is taken. Some
choices are to use a mixed strategy profile for each population given by the relative
frequencies of agents’ demands in: the most recent 1 rounds played, the most recent
m rounds in which the updating agent was active, the entire history (i.e. fictitious
play), a random sample of m of the most recent mo rounds. or the entire population.
One example of another possible variation in a best reply learning rule is that agents
could use a rule to decide whether to change demand at all.

A simple alternative best reply learning rule to sampled best reply is one in
which active agents update to best replies given the demands played by the other
active agents. The following example illustrates that the model under this rule can
exhibit problematic behaviour. Consider a two player unit cake network. Choose
demand sets such that Dy = {1 — 2|z € Dy}. Select some x; € Dy and let z5 =

1—1z; € Dy. Let 61(t) and 62(¢) be the number of agents in populations 1 and 2

"0One possible method is to calculate and store the expected payoff of every pure strategy de-
mand profile at the start of the simulation. Alternative code using this method still proved to be

prohibitively slow for large networks and also ran into memory limitation problems.

12Sampling is with replacement to minimise computational costs. For this learning rule. the
values of m used in practice are 1 and 2 so there should be little difference between sampling with

and without replacement.
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playing demands x; and x5 at the start of round ¢. Let ay and ay be the active
agents in a particular round. In the unperturbed model if exactly one agent aq or ay
plays the corresponding demand 2:; or x, then in the next round one of 67 and 65 is
reduced by 1 and the other is increased by 1. Otherwise both are unchanged. Thus
61(t) + 62(t) is constant. Since this property of the aggregate state is conserved. the
learning rule can only have very weak selective power. The problem is that demand
updating occurs bilaterally; a; € A! updates based on ay € A? if and only if s € A?
updates based on a1 € A'. Sampled best reply avoids this relationship.

All best reply learning rules must deal with the case where more than one best
reply exists. From the point of view of ease of iinplementation in o computer sim-
ulation two appealing methods are to give all best replies an equal chance or to
make a decision based on a lexicographic ordering. As mentioned above, the latter
is used in the sampled best reply rule: the minimum demand which is a best reply
is selected..

B sets, as defined in definition 7.1, are simpler for a sampled best reply learning
rule than for imitative learning rule since they no longer need cope with multiple
informational states. A recurrent class of the unperturbed model contained in a
B set must be contained in one in which condition i) of definition 7.1 holds for all
populations. That is, it must be contained in a B set in which all populations are
demand homogeneous. Such a B set contains only a single state. In a B set for
which condition ii) holds for a population, agents in that population have multiple
best replies and there is a positive probability that they all update to the minimal
best reply. A B set which supports a strict Nash equilibrium and in which condition
i) of definition 7.1 holds for all populations is a recurrent class of the unperturbed
model. Clearly a B set which does not support a Nash equilibrivan cannot contain
a recurrent class of the unperturbed model.

It is not obvious that all recurrent classes of the unperturbed model are subsets of

B sets. For example, this could not be the case it an underlying game were used with
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no pure Nash equilibria. However. it is possible to show that from anyv state there
is a positive probability in the unperturbed process of reaching a state s in which
every population is almost demand homogeneous using an argument similar to that
described for imitative learning rules in section 7.1.1'3. Let d be the demand profile
which almost all agents play according to in state s. It can be shown that from s
there is a positive probability that almost all agents in any single population now
update to a best reply to d. while the agents in the other populations do not change
their demands. For some networks this method shows that a demand homogeneous
state supporting a strict Nash equilibriuum can be reached with positive probability !°.
For the general case this conclusion is not so straightforward. However, it shows that
any recurrent class of the unperturbed model which is not contained in a B set would
be very large, and is therefore intuitively unlikely to be very stable.

For the model under sammpled best reply on a 2 player network, it is possible
for the state to move between two B sets supporting different strict Nash equilibria
with a single mutation. An informal description of how such a move may occur is
as follows. An agent in population A’ mutates to new demand a. Every agent in
the other population, J* in turn becomes active. samples this mutant m times and
switches to a best reply, 4. Meanwhile, the mutant does not become active and thus

does not change demand. Once population A/ has become demand homogeneous.

13The argument is as follows. Fix an agent from each population. Label this set of agents C.
Suppose over the following rounds every other agent becomes active. and samples only the agents

in C. Then all agents outside C update to the same demand.
14Suppose all but one agent in each population play according to a strict Nash equilibrium e.

Let the set of such agents be C. There is a positive probability that from this state all agents in
C become active and sample agents outside C. In the resulting state all populations are demand

homogeneous, and only demand profile e is supported.
B For example, consider Lz and suppose D1 = D3 = {1l — |z € D,}. It has been shown that

there is a positive probability of reaching a state in which almost all agents use a demand profile
(z,y,z) where y < 1. There is then a positive probability of reaching a state in which all agents
? b . > -

play according to the strict Nash equilibrium (1 —y.¢. 1 ~y).
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its agents continue sampling the mutant and so do not change demand again. In
population A* every non-mutant agent in turn switches to a best reply to 3. In the
case that « is the unique best reply to ;3 this completes the argument. The remaining
details of the more general case are of little interest here. It can be shownl!® that
the preceding argument implies that every strict Nash equilibrium is supported by a
stochastically stable state. Sampled best reply is therefore not guaranteed to provide
a clear prediction for this network. and it is an interesting setting for the simulation.

Best reply rules are fundamentally more abstract than those of sections 7.1.1
and 7.1.3. The detail of how agents adapt to the outcomes of the underlying game
are abstracted away into a procedurc of ‘taking the best reply’ without a description
of how this is performed. Indeed in most best reply rules it is not even necessary
for agents to play A in the siinulation: only the updating subroutine is required.
This introduces a conceptual problem of how a best reply is arrived at. For agents
to compute it directly requires a lot of information. Firstly, knowledge of other
agents’ demands is required!”. This may not be easy to acquire from agents in
distant network positions. Secondly, knowledge about the utility cakes and hence
the preferences of other players is required. If agents learn the best reply by trial and
error methods, then this prompts the question of what the details of these methods
are and whether they can be implemented directly as learning rules. Nonetheless,
best reply rules are pursued in simulation to find out whether they offer a means of
equilibrium selection.

The main problem of using best reply learning rules is the computational cost.

Finding a best reply requires finding the expected payoff of each possible demand.

16The techniques of section 7.6 can be used to prove this. Counsider a minimal tree T on Z with
root z which does not correspond to a strict Nash equilibrium. The argument in the main text
shows that there is a path @ of resistance zero (in ) from z to a state = which corresponds to a

strict Nash equilibrium. Delete the edges of all states in @ from T. and add the edges of . The

H syt >y - , i 5, 3 : -~%*
resulting graph T is clearly a tree rooted at z7. Since the resistance of any outward edge (rom z

is non-zero, this new tree has a lower resistance. This produces the required contradiction.
k)

171h some circumstances a best reply may be independent of some players’ demands.
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Performing these calculations every round is a significant processing cost, especially
if the best reply to a mixed strategy protile must be found. Costs are likely to rise
quickly with the number of players, as this increases the time required to calculate
the expected payoft under one demand profile. One option to reduce this cost is to
cache!® the results of these calculations. This seems especially useful if the state
spends most of its time in or near B scts. as a sinall set of the best reply calculations
will then be repeated very often. However, the processing costs during transits

between B sets could still be large.

7.1.3 Learning Rules Independent of Other Agents

There are a lot of possibilities for learning rules where the updating agent’s new indi-
vidual state depends only on their payoft and current individual state. The principal
example I have in mind for this class is the following heuristic which is widely used
in the sociology literature!?. When possible, agents who are excluded from exchange
lower their demands, and agents who are included raise their demands. Unlike the
learning rules considered above. this directly exploits the structure of the bargaining
game??; lower demands are more likely to be included.

This heuristic could be adapted to a learning rule for the model described in
chapter 6 as follows. An agent who receives a positive payoff updates their demand
to the next highest in their demand set, or leaves it unchanged if no higher demand
exists. An agent who receives payoff of zero updates their demand to the next lowest
in their demand set, or leaves it unchanged if no lower demand exists. Under this
learning rule all sets of informational states are singletons. Unlike the other learning

rules considered so far, under this learning rule the unperturbed model does not

B That is, store the results of a fixed number of the most recently performed best reply calculations

to reuse if they are required again.
» " Jdev ot . =1
YFor example it is a ‘scope condition’ for the theory of Markovsky et al [45].
2074 seems reasonable that learning rules specially adapted to social exchange exist. given how

commonly such situations arise.
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possess recurrent classes contained in B sets. except in some trivial networks. This
is because in any demand profile supported by such a recurrent class. all agents who
exchange in any outcome would have to receive their maxiimnum payotf. which is not
possible.

Instead a recurrent class of the unperturbed model would allow considerable
variations of aggregate demand state. Such recurrent classes do not provide a mech-
anism to directly select between the multiple strict Nash equilibria of the underlving
game N in the low € limit as the previous learning rules do?!. Without the predic-
tion that the state is usually at a B set. there is no simple mechanism to hand for
summarizing the state of the model. Thus interpreting the data from such a model
is a considerable task and it may be often be hard to make a case that the model
supports any particular demand profile as a solution. This learning rule is not used
due to these difficulties.

Nonetheless, this learning rule may sometimes make reasonably clear predictions
of behaviour. For example consider the network Lj. In a round where an exchange
forms, the demand of one agent in population A! or 4% is increased and the demand
of another in the other population is decrcased. unless these agents already make
maximal or minimal demands respectively. In a round where no exchanges form, the
demands of two agents in these populations are decreased unless already minimal.
Thus there appears to be considerable downward pressure on the average demand
in these two populations and it seems likely that the model provides support for a
solution in which player 2 receives most of the available payoff.

A slightly modified version of this learning rule. as used by Bonacich in [15].
does allow recurrent classes of the unperturbed model contained in B sets. The
modification made to the learning rule is that agents who exchange leave their

demands unaltered. However, now any state in which all agents exchange forms a

21ndeed, it is not obvious that the mutation mechanism plays a significant role in the model

under this learning rule.
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recurrent class of the unperturbed model. Also from most of these classes many
single mutations can result in another recuwrrent class of the unperturbed model
being reached. This appears to leave little scope for evolutionary pressure to select
a solution with much precision. Also. since recurrent classes of the unperturbed
model can exist which are not contained in B sets. the problem of interpreting the
data applies to this case also.

The learning rules discussed in this section illustrate the problem with using
this class of learning rules in the model of chapter 6. The choice of learning rule
prescribes too closely which demands could be stable, independently of the structure
of the network. The only options which avoid this are to allow cither no stable
demands or a very wide range of stable demands. Either choice does not appear to

allow a precise solution and may result in difficulty in interpreting the data.

7.2 Modelling Choices

There are many reasonable alternatives to various features of the evolutionary model
outlined in section 6.2. This section discusses the theoretical reasons for the mod-
elling choices made and highlights approaches which seem to be valid alternatives
or extensions. Sections 7.2.1 — 7.2.3 discuss variations in the underlying game N
whereas sections 7.2.4 and 7.2.5 discuss variations to the evolutionary process. The

final section, section 7.2.6, contains miscellaneous variations of both types.

7.2.1 Matching Rules

The matching rule is the part of the underlying game that determines which ex-
changes form given a demand profile d. Tu A the matching rule used is to choose
from the set of all maximal consistent outcomes?*, I'(d). using a uniform probability

distribution.

22Recall definition 6.1 of consistent and maximal consistent outcomes.
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A simple possible alteration is to select from a different set. One alternative is
the set I''(d) of all Pareto optimal consistent outcomes. That is. those consistent
outcomes given d whose share vectors are Pareto optimal. Observe that I’ (d) C
['(d). To illustrate that I''(d) # I'(d) consider the demand vector d = (z.1 -
z,z,1—x) for network Ly. Then I'(d) contains an outcome with share vector (0.1 —
z,z,0) but I'(d) does not. An interpretation of these alternatives is that using I
represents a local matching procedure. while using IV represents a procedure which
allows participants to propose alternative global matching arrangements until none
can suggest an improvement. Under this interpretation, I’ seems more relevant,
especially for larger networks.

Another possible alteration is to adjust the probabilities by which an element of
I' is chosen. For example, this could be done by defining a specific local matching
procedure. In the model of chapter 6. equal probabilities have been assigned to each
element of I'(d) for simplicity.

Another alternative matching rule is to require players to specify a unique target
for their demand. That is, players must make directed demands. In this case, a
pair of neighbouring players exchange if they have selected each other as bargaining
partners and their demands lie in the corresponding utility cake. This is perhaps
the simplest endogenised matching process. Such a process can avoid the necessity
of choosing between multiple realisable outcomes?3.

As an example of the limitations of directed demands, consider the 3 player ring
network with unit cakes, R3. The following argument shows, informally, that under
the three candidate matching rules of section 7.1, the unperturbed model cannot
support a recurrent class corresponding to a solution in which all 3 exchanges some-
times form. If such a recurrent class existed. it must contain a state in which all

populations contain agents who direct demands to both other populations. Under

3 3 cribad in sections H.1.2 ¢ 5.2. S SONS he
2 Also note that many of the solutions described in sections 5.1.2 and 5.2.4 on extensions of the

alternating offers game rely on players directing their offers correctly. so it seems unlikely that they

can be captured using the game N.
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imitate better or proportional imitation. this arrangement is unstable for the fol-
lowing reason. In any realised outcome one player does not exchange and receives
payoff zero. There is a positive probability this happens in tuwrn to all but one agent
of a population and they all imitate the remaining agent. Under the sampled best
reply learning rule there is a positive probability that a state is reached in which all
populations are almost demand homogencous. as described in section 7.1.2. Under
the demand profile which most agents play according to in this state, one player
must receive payoff zero. Furthermore, any strategy of this player is a best reply.
Under most rules for choosing between best replies, this allows new demand val-
ues to be introduced to this population. Thus the recurrent class must represent a
broader range of possibilities than simply the solution mentioned.

In this example the model cannot capture stable bargaining behaviour in which
a small number of multiple outcomes are possible??. However such behaviour does
seem a likely possibility, especially as it is supported by the market bargaining game
(see theorem 4.3). The problem is that the evolutionary model and learning rules
under consideration cannot easily support stable behaviour involving more than
one strategy in each population?®. Such behaviour requires agents to be roughly
indifferent between these strategies. However, since agents update their behaviour
based on only a relatively small sample of randomly chosen other agents this all_ows
small random variations in the numbers of agent plaving each strategy. This can
easily destabilize the behaviour. The advantage of an exogenous matching rule

is that it allows multiple outcomes of the game based on strategy homogeneous

populations. This is not to say that a matching rule with some endogenous feature

24For some networks it can capture such behaviour. Consider the network Ly for example and
the sampled best reply learning rule. Suppose min D = min D3 = 6 and max D2 =1 — 9. There is
i ich all agents i lations A' and A* make th

a recurrent class of the unperturbed model in which all agents in populations an make the

demand § to player 2 and all agents in population A% make the demand 1 — 4. with some agents in

this population directing their demand to either neighbour.
251y is often difficult for evolutionary models to support solutions to games involving mixed
7

strategies. See proposition 5.14 of Weibull [70] for example.
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may not be useful. Sections 9.1.3 and 9.3 of the conclusion take up this point.

7.2.2 Payoff Rules

The payoff rule is the part of the underlying game that decides what payoffs two
players receive conditional on exchanging with cach other. In N the payvoff rule
used is simply to award players their demands. The matching rule ensures that this
produces a feasible outcome.

One variation is to use a split surplus rule. Suppose neighbouring players 2 and
y make demands d; and d, and exchange with each other. A split surplus rule
specifies that if (d;,dy) is not on the Parcto boundary of k¥ then they receive

some payoffs (Az,A,) € K% such that A\, > d,. A, > d, with strict inequality in

y
at least one of these relations. If the demand pair is on the Pareto boundary then
both players receive their demand. Under a split surplus rule. changing to a lower
demand effectively offers potential exchange partners a higher payoff. There are
many possible split surplus rules. One example is used in the ‘cushioned demand
game’ of Binmore et al [9] in which (A,. A,) = 6(d,, f*Y(d;)) — (1 — 0)(f¥*(dy).dy)
for some fixed parameter 6 € [0,1]. It would be an interesting extension to the sim-
ulations carried out in chapter 8 to investigate whether a split surplus rule produces
qualitatively different results.

The ‘contract game’ of Binmore et al [9] employs another payoff rule. This
two player bargaining game gives both players payoff zero for any demand pair
which is not Pareto optimal. Pareto optimal demand pairs vield payoffs equal to
the demands, as usual. The contract game is thus a coordination game in which
players must propose the same ‘contract’ to receive any payoff. If this payoff rule
were used in A then it would allow players to propose contracts between which they
are indifferent to multiple neighbours. As mentioned in section 6.1.3, the contract
game supports the Kalai-Sinorodinsky bargaining solution in some models of [9].

illustrating the qualitative effect that an alternative pavoff rule can produce. This
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rule is unattractive for simulation purposes in the evolutionary model of this chapter
under imitative learning rule. This is because it would be much more difficult for
the state to move between the recurrent classes of the unperturbed model, since any
unilaterally deviating player receives a pavoff of zero. However, simulation with the

sampled best reply learning rule may be possible.

7.2.3 Stochastic Payoffs

The fact that a demand profile can sometimes produce multiple realised pavotfs is a
source of stochasticity in the model described in section 6.2. For example, suppose
the demand profile (x,1—x, ) is plaved in A on the network Lz. The payoff profiles
(z,1-x,0) and (0,1 —x, x) can both be realised. Under imitative learning rules this
can lead to some recurrent classes of the unperturbed model having low outgoing
resistances. For example, iﬁ the network Ly under the imitate better learning rule.
one of players 1 and 3 receives payoff zero in any realised outcome of . In a B set
it is possible for all agents in one of the corresponding populations to receive payoff
zero if the same payoff profile is repeatedly realised. These agents will then imitate
any demand which receives a positive payvoff. Thus it is sometimes possible for a
single mutation to be imitated by an entire population. This argument is a crucial
part of the proof of theorem 7.3.

An alternative is to use expected payoffs in the model. eliminating this stochastic
element. This feature is used in the KMR miodel described in section 6.1.1. Expected
payoffs can be seen as representing a situation in which active agents play the game
for an infinite number of times so that their average payoff equals the expectation or
a situation where agents can calculate their expected payofts. The latter case seemns
to involve an unreasonably heavy informational requirement on agents. A model
which preserves some stochastic element in payoffs seems more natural. However, it
would be interesting to see whether using expected payofts has any qualitative effect

on results as an extension to the simulations of chapter 8.
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In the common case where agents’ informational states represent their most re-
cent payoffs, there is a practical reason for concentrating on the case of stochastic
payoffs: using expected payoffs increases the size of the set of individual informa-
tional states. This increase can be problematic in larger networks where it represents

a significant increase in memory requirements.

7.2.4 Multi-Agent Populations

A central assumption of the model of chapter 6 is that for each player position in the
network there is a large population of agents, and samples of one agent from each
population are repeatedly taken to play the underlying game . For small networks
this might reasonably model a situation under which a few classes of individuals
repeatedly interact with one another on similar terms (e.g. landlords and tenants.
employers and several classes of employees). However, large networks instead mainly
capture specific social or economic networks of individuals. In a large network it
is hard to imagine a situation where agents repeatedly play in one position of a
fixed network with the other positions filled by randomly chosen agents from the
other populations which differ each time the game is played. It seems much more
likely that bargaining situations faced by agents repeatedly will. at least in the short
term, have fixed agents in the other positions. So it would be more natural to have
a model with a single agent associated with each network position. However, note
that one interpretation of the model of section 6.2 is that each population represents
a mixed strategy for a single agent at the corresponding position. Learning rules
then represent a process by whicli the agents make small changes to their mixed
strategy each round.

Even if not interpreted as a literal description of a bargaining situation. multi-
agent populations can still provide a uscful tool for qualitatively exploring evolu-
tionary pressures. This is because. as argued in section 7.1, under the 3 candidate

learning rules of that section the model spends most of its time near to B sets and
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B sets matching rationally plausible demand profiles are likely to be selected most
often. This suggests that the results of a simulation on the model of this chapter
will be relatively easy to interpret, as discussed in more depth in section 7.3. It also
allows theoretical results such as that of section 7.6.

Models involving only single agents in cach position offer a starting point for
alternative methods?. Without pursuing these methods it is not obvious whether
they allows the interpretation of simulation results as easily. Also such methods must
avoid solutions which are over-depeudent on repeated game interactions between

agents®” and thus do not capture the influcnce of network positions.

7.2.5 Single Agent Updating

In the outline of the model in section 6.2, in each round a single agent from ecach
population becomes active. These agents play the underlying game and have a
chance to update their demand. I refer to such a scheme as single agent updating.
In contrast, in many models discussed in scction 7.1, such as the KMR odel. in
each round all agents are matched to play the game and then have a chance to
update. I refer to such a scheme as all agent updating.

The principal reason that the model uses single agent updating is computational
efficiency. For example, consider the case where in each round samples of one agent
from each population must be repeatedly drawn without replacement until no agents
remain. Using selection without replacement repeatedly would significantly slow the
simulation. The fastest option appears to be single agent updating.

An advantage of single agent updating is that it allows some opportunities for the
state to move easily between recurrent classes of the unperturbed model which do not

exist for all agent updating. This may allow interesting features of the bargaining

%See Tesfatsion [67) for a model of bargaining in networks which uses a single agent in each
position of the network. This paper uses different assumptions about what outcomes are available

from bargaining to those used here.
2See footnote 4 of chapter 6.
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situation to be found from simulations with shorter runtimes. In a learning rule
which involves agents sampling others in the same population, under single agent
updating it is possible for a mutant to be sampled many times before it faces the
possibility of updating to another strategy. Thus it is easier for mutants to gain
a foothold in populations. Even in learning rules in which agents can only affect
others by being selected to play the game and update, the fact the some agents may
be more frequently selected than others may well aliow rapid change. This feature
could be interpreted as allowing short-term variations in the learning rate of agents,

which seems realistic.

7.2.6 Miscellaneous

A possible variation to the model is for agents to use a learning rule to choose a
demand before the underlying game is played. This has more of a flavour of social
learning; agents make decisions when faced with a problem, rather than deciding
upon a fixed strategy in advance. Under the candidate learning rules, the behaviour
in the case where the state of the model is near a B set except for a few mutants
seems likely to be little different under this variation. Thus it does not seems that
this variation would produce any qualitative differences to the long-run behaviour.
Another alternative is to use Young’s model of [76] described in section 6.1.3.
This uses singe agent updating, but does not require large populations. Instead
learning rules act on the most recent m plays of the underlying game for some fixed
m. This requires a considerable assumption of public information. The case of
restricted information embodied by the model in this chapter seems more general.
The underlying game could easily be extended to bargaining situations other
than bilateral exchange networks. For example, the case of a 3 player bargaining
situation in which players can split a payoff of one unit if they alllagree is quite
straightforward. However, the general case of multiplayer bargaining is compli-

cated, as the number of possible outcomes given a particular demand profile can
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beg(;me very large. For this case, the approach of assigning equal probabilities to
any ma.ximal\ consistent outcome seems too ad-hoc to be natural and also becomes
computa;:ionally cumbersome.

In the description given in section 6.2, noise is introduced to the model at an
agent level by using a probability e of mutating whenever they update their demands.
This is a typical feature of models in the literature and has the advantage of being
straightforward to implement in a computer program. Also it is uniform in the

28, Many other possible

sense that mutation probabilities are state independent
specifications of noise exist. Non-uniform features could be introduced into the
specification of whether an agent mutates, such as payoff dependence (e.g. agents
witﬁ high payoffs are less likely to mutate), or correlated mutation probabilities.
Also, the probability distribution by which the demands of mutants are chosen could
be changed. For example small changes in demand could be made most likely. Other
sources of noise in the model could also be introduced. For example, information
could be observed noisily, utility cakes could vary slightly each round (e.g. as in the
smoothed Nash demand game of Nash [53]), learning could be noisy in the sense of
Binmore and Samuelson (7], or realised payoffs could have a small random variation.

An alternative to using a finite demand set is to allow any demand in an interval.
This goes beyond the discrete framework of the theory in section 6.1.2. Also note

that a computer simulation would not allow a truly infinite demand set due to the

restrictions of floating point arithmetic.

28However, it may not be uniform in another sense. If agent a € A* mutates then there is an
equal chance that it mutates to each strategy in D;. Recall D; is meant to model an interval of
demands. If the elements of D; are not evenly spaced then the mutation probabilities will not be
evenly distributed in this interval. However,. in most simulations of chapter 8 the elements of D;
are reasonably evenly spaced so this effect is ignored. The exceptions are some simulations which

are mainly used to point out that certain results are not robust to the choice of D;.
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7.3 Predictions

This section makes predictions of the behaviour of the model of chapter 6 under the
candidate learning rules discussed above. One motivation for this is that it allows
the development of useful methods of reporting simulation results, as described in

section 7.4.

7.3.1 General Behaviour

This section begins by summarizing the material of sections 6.1.2 and 7.1 on the
predicted general behaviour of the model for the three candidate learning rules.
Informal arguments are then presented to make the case that for relatively large
values of e the general behaviour is similar to that for the limiting case of ¢ — 0.
In particular, it is predicted that the aggregate state may still spend most of its
time near B sets and occasionally be driven by mutations to move between them.
Furthermore it is argued that the pattern of recurrent classes of the unperturbed
model visited most often by the state has some degree of robustness to the choice of
€. This is crucial for simulation results to reveal much about the general behaviour
of the model.

Under the conditions of lemma 6.1 the model has a unique aperiodic recurrent
class. The first condition is simply € > 0 and the second is fulfilled by the 3 candidate
learning rules outlined in section 7.1. Section 6.1.2 includes a result that this is a
sufficient condition for the model to have a unique stationary probability distribution
over its aggregate states which gives both the expected and time average state in
the limit ¢ — oo, independent of initial state. This stationary distribution can be
found by a simulation from any starting state of sufficiently long runtime. Of cowrse,
depending on the parameter values, the runtime required may be impractically large.

Another result described in section 6.1.2 shows that in the limit ¢ — 0, all
of the weight of this distribution is placed on states referred to as stochastically

stable which must lie in recurrent classes of the unperturbed process. Furthermore,
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the number of mutations required for the state to move between these recurrent
classes decides which classes contain stochastically stable states. For the candidate
learning rules proposed in section 7.1, it is predicted?” that these recurrent classes
are contained in B sets as defined in definition 7.1. These are sets of states such
that each population either is demand homogeneous across the whole set or contains
only agents who receive payoff zero given any demand profile supported by the set.

The set of stochastically stable states can be used as a selection mechanism be-
tween the multiple Nash equilibria of the underlying game in the long-run. However,
reducing e towards zero is not a practical method to generate predictions from a sim-
ulation. This is because it also increases the expected number of rounds spent at
each recurrent class of the unperturbed model. In a simulation of reasonable run-
time, it is quite possible that one such class is reached and the system then remains
there3?. Furthermore, the limiting case of low € represents a case in which agents
experiment or are subject to mistakes or other exogenous factors at a much slower
rate than they learn. This may not be the most realistic or interesting case.

However, if a relatively large value of e is used then the formal details of the
arguments above describing the behaviour of the model begin to break down. For
example note that the expected number of mutants in a population of size M is
eM. Thus for eM > 1, the state is expected to be outside the recurrent classes of
the unperturbed model for the majority of rounds. The extreme case is that for
sufficiently large € the model becomes mainly driven by mutations and the weight
of the stationary distribution is likely to be spread widely so that a precise long-run
prediction cannot be made.

The 3 candidate learning rules outlined in section 7.1 provide a mechanism to

29This prediction is proved for imitate better and proportional imitation, but not for sampled

best reply.
30 An an alternative simulation aim in this setting would be to find the recurrént class of the un-

perturbed model that is most commonly reached first. However this does not necessarily correspond

to stochastic stability.
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stabilize many recurrent classes of the unperturbed process contained in B sets even
for relatively large values of eM. TFirst observe that in a B set, populations for
which condition i) of definition 7.1 holds but condition ii) does not are demand
homogeneous and receive non-zero payofts. Let C' be a B set with the following
property for all such populations A'. If a single agent a € A* mutates and becomes
active again in the following round, then there is a significant probability that the
agent will update their demand back to its pre-mutation value. A B set which
does not satisfy this property is unlikely to receive much weight3! in the stationary
distribution for any value of e. Now consider a state where only a small number
of mutants in a population whose agents receive non-zero payoffs in C deviate from
their demand in C. Call an agent whose demand matches that specified in C a
conformist. There is a significant probability that when non-conformists become
active all other active agents are conformists and the non-conformist updates to
the conformist demand for the corresponding population. Thus there is a high
probability that the non-conformists die out faster than their demands are spread.

There are some cases in which this argument seems especially strong. The first
is when imitative learning rules are used. In this case, from many B sets non-
conformists must first secure a high payoff by playing the underlying game against
other non-conformists before they can be imitated by conformists. A second case is
when the learning rule requires samples of more than one agent to be taken and the
new demand is based on the frequencies of demands in these samples. An example
is the sampled best reply learning rule with sample size greater than 1. In this case,
from many B sets conformists must typically sample more than one non-conformist
to switch demands. Also note that in either of these cases, a large value of M aids
stabilization. To summarize, near many B sets there is a significant probability that

a low number of mutations die out even for relatively large values of e.

31Except in the case where no B sets satisly this property. This seems unlikely given that strict

Nash equilibria satisfy this property and the underlying games in the model typically possess many.
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The conclusion of the argument in the previous paragraph can be characterised
as follows. A recurrent class of the unperturbed model lies in a basin of attraction
which in turn lies within a basin of likely attraction. For some of these recurrent
classes, the ‘centres’ of these basins of likely attraction are stable in the short-run
even for relatively large values of € and contain the state of the model most of the
time. Movements of the aggregate state between these centres will be relatively ’
rare, so the model acts roughly like a Markov chain with some B sets as states
and probabilities of moving between them as transition probabilities. I refer to a
movement of the state between two B scts as a transit. The stationary distribution
of the system is now determined by the trausit probabilities. In fact, as shown by
equation (6.2), it is the transit probabilities conditional on any transit occurring
that determine the stationary distribution.

This raises the issue of whether there is much similarity between these conditional
transit probabilities for different values of €. For example, if two transit probabilities
were €2 + €3 and 107%? + €3, there would be little similarity in general. For these
transit probabilities to exist, it seems necessary for 3 mutations to allow an alter-
native mechanism of transit between sowme pair of B sets, rather than just making
the 2 mutation mechanism more likely due to higher chance of meetings between
mutants. Furthermore, due to the low probability of 3 mutants being selected to
interact in some sequence of events, the new mechanism must be much more prob-
able. This argument generalises to other numbers of mutations. If the conditional
transit probabilities arve similar for different values of € then the behaviour of the
model for relatively high values of € gives a rough indication of the results for all
values. However, the best that can reasonably be hoped for is qualitative similarity.
As mentioned above, as € becomes larger. the results will become less precise until
the system is mainly driven by mutation and learning has almost no influence.

The qualitative behaviour of the model may also vary depending on M. As

discussed in section 6.1.3 the order in which the limits € — 0 and M — oo are taken



can have a qualitative effect on the behaviour of evolutionary models of this sort.
Informally speaking, large values of A/ mean that the law of large numbers causes
the effect of the stochastic components of the model to act closer the deterministic
approximation given by their expected values. This alters the relative probability
of transits between B sets.

One consequence of this behaviowr for large values of M is that the expected
time between transits is greater. As alrecady noted, in a state close to a B set, a
small number of non-conformists are likely to die out. To gain a sustainable foothold
in the population, they must enjoy several lucky conversions from non-conformists.
For large M the number of such conversions required is much larger and hence much
less likely. Also note that since transits between B sets are driven by mutations, the

expected time between transits is clearly decreasing in e.

7.3.2 Specific Predictions

The experimental data of section 2.7 and the theoretical results of chapters 4 and
5 on models based on the alternating offers game all produce specific predictions
for the outcome of bargaining in particular networks. These are summarized and
compared to the results of the simulation in the conclusion, chapter 9.

Section 7.1 predicts that recurrent classes of the unperturbed model containing
stochastically stable states correspond to ‘rationally plausible’ demand profiles for
any of the candidate learning rules, in a sense described there. In particular; for
the sampled best reply learning rule, recurrent classes of the unperturbed model
contained in B sets must correspond to Nash equilibrium profiles. It is not clear
whether much selection between strict Nash equilibria takes place in a 2 player
network under this learning rule. Investigating this setting is a key first task for
the simulation. One prediction that is made for this setting is that the results of

imitate better are predicted to depend ouly on the ordinal structure of the possible

outcomes of N.
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Note that the main asymmetries in the treatment of populations in the model
under the 3 candidate learning rules arise from the choice of network. Many of
the networks used in chapter 8 have symmetrical positions. Thus if the simulations
for these networks support unique solutions then these are predicted to also be
symmetric. Also, note that the model under these learning rules does not provide a
natural mechanism for asymmetries corresponding to the ‘bargaining powers’ of the
asymmetric Nash bargaining solution of section 4.1. Note that asymmetries can also
arise from the choice of demand sets. Since this is an exogenous modelling choice
that does not appear to correspond to a feature of the bargaining situation, I do not
consider this to be a ‘natural mechanism’ for causing asymnetries.

It is possible to make some stroug theoretical predictions for the behaviour of
the model. Theorem 7.3 is such a prediction. The full statement is lengthy and is
in appendix 7.6, the bulk of which contains the proof. The remainder of this section
contains a brief overview.

The result is for unit cake networks. Certain conditions are given under which
subsets of players can be labelled as W aud S, corresponding to weak and strong
network positions. Theorem 7.3 applies to the model under the imitate better or
proportional imitation learning rules and certain restrictions on D. These restric-
tions include min D; \ {0} = ¢ if 7 is « W player and max D; = 1 -4 if 7 is a S player
for some value of § > 0. The theorem states that in any stochastically stable state
all agents in populations corresponding to S players make demand 1 — ¢ and those
in populations corresponding to W players make demand ¢.

Definition 7.3 gives the conditions for the W and S labelling. It is necessary that
every neighbour of a W player is a S player. at least one W player does not exchange
in any feasible outcome of N, and that in any feasible outcome of N if an S player
does not exchange then at least one of her neighbours must also not exchange and be
a W player. The full definition requires a stronger version of the second condition.

An example of this definition is for networks Lz and Ls. In both, odd numbered
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players can be labelled as W and even nuinbered players as S. However for longer
odd length lines, no players can be labelled as either W or S.

A brief sketch of the proof is as follows. Consider a state not of the form claimed
to be stochastically stable. In any round of the model an agent in a W population
(i.e. one corresponding to a W player) does not exchange in the realised outcome of
the underlying game. This allows a positive probability that over several rounds all
agents in a W population receive payoft zero by exclusion from exchange and switch
to the demand of a single mutant playing demand & and receive a positive payoff.
In a network as described there is always a positive probability that a demand of &
by a W player is accepted. It can be shown that this process can take place in each
W population in turn. If all agents in W populations make the demand § then S
populations can similarly be colonized by single mutants making the demand 1 — 6.
However, from a state of the form claiined to be stochastically stable at least two
mutants are required to colonize a W or S population; a single mutant cannot earn
a higher payoff than non-mutants. The proof is completed from these observations
by the use of the minimal tree techniques of section 6.1.2.

In the simulations of the following chapter on unit cake networks, every demand
set typically includes the demand 1. so theorem 7.3 does not apply. As discussed
in section 7.6.4, it is difficult to extend the theorem to this case. However, this
section also discusses reasons why the result is intuitively very likely to hold in this

setting3?.

7.4 Methods of Result Reporting

This section uses the predictions of the previous section to describe methods of
reporting the data produced by a computer simulation implementing this model.

As described in section 7.3.1, the model under investigation has a unique stationary

32gimulations which are not included in chapter 8 show that excluding the demand 1 from demand

sets makes no apparent qualitative difference to results.

207



probability distribution over states which gives both the expected and time average
state of the system in the limit t — oc. independent of initial state. This suggests
result reporting by recording the time average distribution. This is impractical as
there are too many states for the data to be interpreted easily. Furthermore this
approach does not make it obvious to a user how often transits between B sets take
place. This information is very useful because it allows the user to decide quickly
whether the current simulation permits enough transits in a reasonable run-time to
provide results characteristic of the stationary distribution.

Instead the simulation uses a method of reporting based on B sets. It keeps track
of roughly which B set the state of the model is closest to. The word roughly is used
because it seems very laborious and unnecessary to keep track of the details of a
population for which condition ii) of definition 7.1 holds (i.e. a population in which
all agents receive payoff zero). Thus the actual information tracked is equivalent to
any demand profile supported by the B set: a player who receives payoff zero under
this profile represents a population for which condition ii) of the definition holds.

Recall that it is predicted that the agpgregate state is usually near B sets and
rarely moves between them. This means that any rough method of finding a de-
mand profile supported by the closest B sct should succeed most of the time. The
computer implementation uses the method of finding the modal demand in each pop-
ulation. The program reports to the user when the modal demand profile changes.
It also records the total number of rounds that each demand profile has been modal
and converts this into a proportion of the total rounds played. This gives a rough
indication of how strongly B sets are sclected by the stationary distribution®.

The average number of rounds between changes of modal demand, p, is also

33The proportions for modal demand profiles which are the same except for the demands of
players who receive payoff zero could be aggregated to reconstruct B sets. For the simulations of
chapter 8 this did not turn out to be necessary. There were almost no cases in which two or more
demand profiles representing the same B set were hoth modal for a significant fraction of all rounds.

The exceptions are in section 8.4 and are easy to interpret without making this aggregation.
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recorded. This gives a very rough measure of how quickly the simulation explores
the possible B sets. Low values of p may suggest that B sets are unstable and muta-
tions are too common to reveal much about the typical structure of the stationary
distribution. High values of p may suggest that the B sets are too stable and the sta-
tionary distribution will only be revealed by the simulation over a prohibitively long
run-time. It is difficult to record p precisely due to the problewn of over-reporting. A
single transit between B sets may involve the modal demand profile changing many
times; usually repeated changes between the origin and destination sets. Also, in
large networks there are more opportunities for transits between B sets to take
place®?, so straightforward comparison between p values for different networks may
not be revealing,.

A possible pitfall of this method is that it may be possible to partition the
B sets into several components such that transits between components are very
unlikely relative to transits within components. The method of reporting proposed
may only find the stationary distribution restricted to one of these components and
ignore the others. This feature seems intuitively unlikely for the underlying game
used here. Furthermore, if any plausible demand profile is absent from the list of
most commonly modal demand profiles in a simulation run then it can be checked
whether it has ever been modal. If not then another simulation can be run in which
this demand profile is initially modal to test whether it is contained in a separate
cdmponent of B sets to those investigated by the previous simulation. For the small
networks used in chapter 8 this method did not find any separate components of
the form described. However, for large networks this methiod may not suffice as it

is hard to enumerate all possible plausible demand profiles®.

34For example, in a particular B set for each pair of players who exchange there is an opportunity

of a transit to a B set in which the terms of their exchange are slightly different.
35 Another possible test is run many simulations starting from randomly generated states uni-

formly distributed across the state space to deterniine whether the results are robust to this choice.

The initial state used in the simulations of chapter 8 all agents make the minimal demand and, in
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The simulation che also records x, a measure of how close the state of the process
typically is to a B set. It is roughly defined as the average over all agents of the
proportion of rounds in which an agent‘had the demand corresponding to the closest
B set. However, agents are not counted wlen their population satisfies condition
ii) of definition 7.1 in the closest B set of the current round. A full definition of x
is given by equation (7.1) below. The value of x in a simulation with ¢ = 1 gives
a baseline value for the case where agents update their demands at random, which
can be a useful comparison.

A possible extension is to record a similar measure to y every L rounds. and
plot a histogram of the distribution of these x; values. This would hopefully reveal
a large region where x 1 is high and the state is close to a B set, and a small region
where xp takes variable values and a transit between B sets is taking place. This
would reveal how close the state is to B set when it is not in transit and also how
much time the process spends in transit.

The run-time and number of rounds that have taken place are also recorded.
From these the simulation code calculates «, the average number of rounds performed
per unit of run-time. This is a measure of the speed of the simulation®. It is a
rough measure as the run-time can be affected by external factors such as other
processes running on the computer network. Indeed. in practice the measure of

runtime generated by FORTRAN seemed to be incorrect by an order of magnitude.

Statistics involving run-time thus only seem useful as relative measures.

the case I; = D; U {0}, have the informational state of 0 corresponding to a most recent payoff of
zero. This provides some degree of random behaviour early in the model, but it is conceivable that
if multiple components of B sets of the form described above exist then this initial state could be

biased towards one particular component.
36The internal setup of the code (e.g. details of caching) is kept constant over the simulations of

chapter 8 and so does not aftect the value of ~.
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7.5 Details of the Model

This section completes the description of the model begun in section 6.2 by describing
the details of the steps in the main algorithm given there. Particular attention is
paid to the implementation of the model as a computer simulation. Thus the steps
are described as algorithms.

Section 7.5.1 describes the subroutine which plays the underlying game N. An
especially important part of this game is finding the different possible sets of re-
alised exchanges. Section 7.5.2 gives an algorithm for this step. Sections 7.5.3 and
7.5.4 describe the updating subroutines for the candidate learning rules described in
section 7.1. Section 7.5.5 describes how the result reporting described in section 7.4
is performed. Finally section 7.5.6 discusses the parameters which can be adjusted
by the user in the computer implementation.

The computer implementation is written in FORTRAN 95 and compiled using
the NAGware {95 compiler. This language was chosen due to its inbuilt operations

for handling arrays. The code itself is available on request from the author®’.

7.5.1 The Underlying Game

The algorithm of this section requires the following definition.

Definition 7.2. A subgraph (V, K’) of (V.K) is a consistent subgraph of (V,K)
if no vertex of (V, K’) has degree greater than 1. A mazimal consistent subgraph
(V,K") of (V, K) is one such that the following property holds. If ab € K then there

exists some x € V such that either ax € K’ or br € K'.
The following algorithm implements the game N:
Algorithm (N subroutine).

Input: A network (P, E,K) and a demand vector d = (di)iep

3TNote that the version at the time of writing is not very user {riendly!
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Output: A payoff vector 7 = (m;);cp
1. Determine the set J(d) = {ab € E | (d,.d,) € K}.

2. Call a subroutine to determine the set S of all maximal consistent subgraphs

of (P, J).
3. Select (P, X) from S using a uniform probability distribution.
4. For all ab € X let n, = d, and 7, = d,.
5. Assign all remaining players payoff zero.

Recall definition 6.1 of a maximal cousistent outcome. It is straightforward
from this and definition 7.2 that an outcome is a maximal consistent outcome of
N = (P, E,K) given d if and only if its exchanges are a maximal consistent subgraph
of (P,J(d)), exchanging players receive shares equal to their demands and non-
exchanging players receive shares of zero. Thus the above algorithi does implement
the game N as claimed.

For each exchange ab € F, the computer implementation of the model stores the
following representation of K. One player in each exchange is selected. Suppose
a is that player in the exchange ab. For cach z, € D, a value representing f%%(z,)
is stored. In step 1, determining whether (d,.dy) € K% is true is done by testing
whether the condition dp > f*°(d,) holds3®.

Note that this algorithm can easily be modified to give the expected payoff of
each player. This is required later to calculate best veplies. All that must be changed
is to remove step 3, perform steps 4 and 5 for cach (P, X) € S, and take the average

of the resulting payoft vectors.

38The step proved to be very problematic in practice. Tryving to set the recorded value of I (x,)
equal to a particular demand value in Dy often resulted in a slightly different value being recorded
due to floating point errors. This led to demand pairs being incorrectly found infeasible. This

problem was resolved by treating differences helow a certain threshold as equality.
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One simulation in chapter 8 involves granting players outside options. To enable
this, some players are given an extra action in their demand set. representing accept-
ing their outside option, and the following modifications are made to this algorithin.
In step 1, the definition of J is extended so that ab ¢ .J if the action of player a or
b is to accept the outside option. In step 5. a player whose action is to accept their

outside option receives a corresponding fixed payoff.

7.5.2 The Calculation of all Maximal Consistent Subgraphs

The following algorithm is highly recursive. This is manifested in the fact that it
repeatedly calls part of itself as a subroutine. The instruction “end subroutine”
should be read as referring to the most recently called subroutine. In a computer
implementation of this algorithm it is important that care is paid to not confusing
variables from different levels of recursion. The global variables have only one value
at any point in the subroutine. The subroutine level variable v takes a different
value for every level of the subroutine; the value defined in the current level of the
subroutine must always be used. Fortunately, much of this can be taken care of by “

the FORTRAN attribute RECURSIVE.
Algorithm (Subroutine to find maximal consistent subgraphs).
Input: A graph (V.,E).

Output: The set S of all E/ C E such that (V, E’) is a maximal consistent

subgraph of (V, E).
Global variables: A set of edges C, and a vector =z = (z;);ev such that z; €
{0,1}.

Subroutine level variable: A vertex v.

Notation: Let Q(C,z) ={a€V | z, =0 and ax ¢ C for all x € P}.



L.Let C=0,S=0,and z;, = 0 for all i € V. Go to step 2 as a subroutine and

terminate the algorithm on return.

[N}

. If Q(C, 2) is empty, add C to S and end subroutine.

3. A vertex v € Q(C, z) is picked by an unspecified deterministic method.

4. Loop over all w in Q(C, z) neighbouring v.
5. Add vw to C.

6. Go to 2 as a subroutine.

7. Remove vw from C.

8. End of loop.

9. If z; = 0 for all « neighbouring v in (V. E) then:

10. Set z, = 1.
11. Go to 2 as a subroutine.
12. Set z, = 0.

13. End of if statement.

14. End subroutine.

It is not necessary to use a deterministic method to choose v in step 3. This
requirement is given simply because a deterministic method is used in the computer
implementation (the value of v with lowest index is selected) and because it makes

an argument later in this section slightly simpler.
Lemma 7.1. The output of the above algorithm is as described.

This is easy to see fromn the following sketch of how the algorithm operates.

Suppose C? is an edge set such that no player occurs in more than one edge. Suppose
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z% is a value of vector z such that if 2y € (! then zy = 2z = 0. Then calling step
2 as a subroutine finds all maximal consistent subgraphs containing edges C such
that any player for which 20 = 1 does not exchange. This is done as follows. The
set Q(C,2") contains all players which are neither involved in an exchange in €'Y
nor specified as not exchanging by =%, If Q(C".z") = § then CV is already the edge
set of a maximal consistent subgraph. Otherwise a vertex © € Q(C. 2%) is selected.
In turn, the algorithm tries adding vw to C'V for each w € Q(CY, z°) neighbouring
v, and changing the value of 20 to represent © not exchanging, unless v already has
a neighbour w who is not exchanging. TFor cach of these cases, the algorithin finds

all maximal consistent subgraphs by calling step 2 as a subroutine.

Proof of lemma 7.1. Suppose S is the output of the algorithm and E’ € S. If an
edge ab can be added to C in step 5 then it must be the case that a,b € Q(C, z).
So no vertex may occur in more than one edge of E/. A vertex a does not occur
in any edge of E’ if and only if z, = 1 when C is added to S. Therefore given two
neighbouring elements of (V, E), step 9 ensures that at least one must occur in an
edge of E'. Hence (V, E’) is a maximal consistent subgraph of (V. E).

Now suppose (V, E’) is any maximal consistent subgraph of (V, E). Define a
history of the algorithin as a description of what instructions have been performed.
Let HO be the initial history of the algorithm. A sequence of histories is now defined
inductively. Assume H™ has been defined as a history in which the algorithm is at
the start of step 2. Let C™ and z" be the corresponding values of C' and z. Let
v, be the first value of v chosen following H": if no such vertex exists the sequence
terminates. Define w, such that v,w, € E’ or. if no such element exists, let w, = 0.
In the case w, # 0, it is shown below (a) that there exists a history in which
C = " U{vwy}, zi = 2! for all © € V and the algorithm is at the start of step
2. In the case w; = 0, it is shown below (b) that there exists a history in which
C=C" 2z, =1, z; =z for all i # v, aud the algorithm is at the start of step

2. In either case, let H™*! be the described history. This proves that there exists a
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history in which C = E’, Q = () and the algorithm is at the start of step 2. In this
history C is added to the output S as required.

It remains to prove claims (a) and (b). By construction. C" = {vpwy | k < n}
and if z; = 1 then 2 = v, for some k& < n. Suppose w, # 0. Since (V. E') is a
maximal consistent subgraph of (V. E), w, € Q(C",2"). Inspecting steps 4-8 shows
that this proves (a). Suppose w, = 0. Then v, is not a member of any edge in E’.
Consider any v,z € E. Since (V, E’) is a maximal consistent subgraph of (V. E). x
must be a member of some edge in E’. Hence =z = 0. Inspecting steps 9-13 shows

T

that this proves (b). O

Note also that no set of edges E’ is added to S twice. Let (H°, H,..., H™) and
(I:I 0, H Lo H ) be two sequences of histories as defined in the proof which result
in E’ be added to F. Define corresponding values of v;, w;, #; and @; as in the proof.
Suppose H™ = H™. Th61139 Un = Up. It must be the case that w,, = 10, otherwise
the edge sets added to S are different. By definition H' = HY, so it follows by
induction that H™ = H™,

This fact is useful in implementing the above algorithm as code, because it is
not necessary to check for repeated cutries to S. Any repeated entries would have

to be found before a uniform random selection from the elements of S were made,

as is required in the algorithm for V.

7.5.3 The Updating Subroutine for Sampled Best Reply

Recall that this learning rule does not use informational states. Hence the informa-

tional state space is a singleton and it is only necessary to compute a new demand.
Algorithm (Sampled best reply updating subroutine).

Parameters: Number of agents to sample, m, demand sets, D, and mutation

rate e.

39This is where the deterministic choice ol v in step 3 is required.



Input: The aggregate state of the model and the index i of the population A

containing the updating agent.

Output: A new demand.

1. Sample a random number p € [0,1] with uniform distribution. If 4 < ¢ a
mutation occurs. In this case choose a new demand from D; using a uniform

probability distribution and terminate the algorithm.

2. Sample the demands of m agents from each population other than A* without

replacement using a uniform probability distribution.

3. Count the values n: the frequency of demand z in the sample from population

Al
4. Loop through all values of d™" = (d;);cpy; such that '/zflj > () forall j € P\ i

. For each d; € D, calculate m;(d,.d™"); the expected payoff to player i

from demand d; given the demands of d~* for all other players.
6. Calculate p(d;,d™*) = mi(d;, d™") HjeP\_i n{lj.
7. End loop
8. For each d; € D;, calculate ¢(di) = 5_ 4. p(di.d™").

9. Let T = argmaxg ¢ p, ¢(d;). Let the new demand be minT.

Expected payoffs are calculated in step 5 by a modification of the algorithin
in section 7.5.1. The details of the modifications required are mentioned in that
section. Finally note that in the computer implementation of this algorithm, the

results of steps 3-9 are cached to improve performance.

217



7.5.4 The Updating Subroutines for Imitate Better and Propor-

tional Imitation

Recall that under these learning rules an agent’s informational state is their most

recent payoff. Thus a new informational state and a new demand must be specified.
Algorithm (Imitate better/proportional imitation updating subroutine).
Parameters: Demand sets, D, and mutation rate e.

Input: The aggregate state of the system, the realised payoff of the updating

agent, p, and the index, 7, of the population A* containing it .
Output: A new individual state for thie agent.

Parameters: Number of agents to sample, m, and (for proportional imitation

only) a factor of proportionality, A.

1. Let the new informational state be p.

2. Sample a random number g € [0,1] with uniform distribution. If p < € a
mutation occurs. In this case choose a new demand from D; using a uniform

probability distribution and terminate the algorithm.

3. Sample the demands and most recent payoffs of m agents from A’ without

replacement using a uniform probability distribution.

4. Calculate the average most recent payoff a(d) carned for each demand d in the
sample. Let S be the set of demands achieving the maximum value of a(d).

Let ¢ be this value and let d = min 5.

5. IMITATE BETTER: If ¢ > p then let d be the new demand. Otherwise leave

the demand unchanged.
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PROPORTIONAL IMITIATION: If ¢ > p then let d be the new demand with

probability* \(¢q — p). Otherwise leave the demand unchanged.

7.5.5 Reporting

This section first describes what is reported to the user and then discusses the parts
of the implementation which involve some minor complications. Various types of
reporting are used. The most straightforward but also most cumbersome method
is to display the entire current aggregate state as stored by the computer program.
That is, to display for each population the number of agents in each individual state
in the current round. Typically, this display is only useful when the simulation is
displaying unexpected behaviour. Otherwise it is set to appear very rarely as a check
that the state of the simulation is as surmised from other more concise reporting
methods.

At regular intervals the program display the values of x. p and ~ as defined in
section 7.4, as well as the number of rounds played and total run-time so far. This-
allows the user to follow the general behaviour of the model. The calculation of x
is discussed shortly.

The main methods of reporting used involve tracking the modal demnand profile
as described in section 7.4. The user is notified when this changes and told the
identity of the new modal demand profile. Also the code roughly*! calculates the

number of rounds that each demand profile is modal. These values are periodically

40The program specifies that in the case where this value is more than 1 probability 1 is used.

However, in chapter 8 A and D are chosen so that this case never occurs.
41 For large networks the total number of demand profiles is too large to do this precisely. Instead,

this data is stored for a large fixed number of demand profiles. When the modal demand profile is
not in this list, it is added in place of the profile with the lowest total number of rounds. Under
the assumption that most of the time is spent near a relatively small number (.>f B sets this method
should not be problematic. It is possible to check the accuracy of this method by calculating the
difference between the sum of rounds in all these stored records and the total number of rounds

played. In all the simulations of chapter 8 this difference was negligible.
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reported to the usei', as well as the corresponding proportions of the total number
of rounds played.

As mentioned in section 7.4, this method is over-sensitive. The modal demand
may change several times during a transit between B sets and reporting each of these
is not useful. Instead the program reports to the user whenever a modal demand
changes and there are no more changes in modal demand for a fixed number of
rounds, given by a user chosen program parmuneter.

The value of x, roughly defined in section 7.4, is calculated as follows. Let 6,(t)
be the proportion of agents in population A" playing the modal demand in round
t. Define ¢;(t) to equal 0 in the case that player i receives an expected payoff of
zero from the modal demand profile and 1 otherwise. The former case is meant to
capture rounds such that in the closest B set condition ii) of definition 7.1 holds for
population A*. This may occasionally fail during transits between B sets, but since
these are predicted to be rare, it should have little effect on the calculated value of

x. This is given by:
X(t) = ZieP Z,s»g/, pi(s)bi(s)
Z}'.E P ngt Q’),‘,(S)

The code stores the current values of the suns of the numerator and denominator.

(7.1)

The calculation of x becomes problematic when the denominator becomes so large
that adding extra terms does not change its floating point representation. From then
on, floating point errors inflate the value of x(t). This occurred in a few simulations
of the following chapter, especially in networks with a large numbers of players. The
values of x given for these networks are taken for values of ¢ before this problem

occurs.

7.5.6 Parameters

Various parameters set by the user define a particular run of the simulation program.

Two major choices are which updating subroutine is used in step 3 of the main



algorithm and the choice of game rules i.e. the payoff and matching rules?. An
initialisation file is used to contain the remaining parameters. These include the
probability of mutation, €, the total nunber of rounds to be performed and the
initial state of the model. This file also includes the parameters controlling reporting
to the user, parameters describing the availability and values of outside options, and
the parameters used in the various learning rules, such as the number of demands
to sample. Details of the bilateral exchange network under investigation are defined
here as well. The definition of the players and edges is straightforward. As mentioned
in section 7.5.1, utility cakes are described as follows. For each exchange ab € F one
player is specified. Suppose it is player a. The utility cake for the exchange ab is
defined by giving f*?(d,) for all d, € D,.

Networks with simple (e.g. unit) cakes are straightforward to define directly.
For more complicated- networks there is an initialisation routine in which the user
need only specify a set of interpolation points on the outer boundary*3 of each cake
and the demand sets D. The routine defines the cake for an exchange ab by taking -
the demand set of one player, say player a. and finding the image of each demand
in D, under f*® assuming that the outer boundary of the cake is piecewise linear
and passes through all the interpolation points. Using piecewise linear interpolation
is not particularly restrictive as the outer boundary of any cake in this computer
implementation is represented by a finite number of discrete points. However, it

would be straightforward to alter the type of interpolation used.

7.6 Appendix: Theorem 7.3 and Proof

7.6.1 Statement of Theorem 7.3

Fix a network with unit cakes N = (P, E, K it)-

420nly trial runs were done varying the game rules and these are not included in chapter 8.

43Gee definition 3.6.
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Definition 7.3. A SW labelling on N is a function [ : P — {S.W,0} such that:

i) Let Pw = {p|i(p) = W}. For any P’ C Py . let H be the set of consistent
subgraphs® (P, F) of (P, E) satisfying the following property. Every p € P’ is
either included in an edge of F or all of their neighbours are. Then for every
(P,F) € H there exists some p € Py \ P’ who is not included in any edge of
F.

ii) Any p € P such that {(p) = W has at least one neighbour, and any neighbour

g of p satisfies I(q) = S.

ili) Consider any consistent subgraph (P, F') of (P. E). Let C be the set of players
who are not involved in any edge in F. If there exists p € (' such that I(p) = S

then there exists ¢ € C such that {(¢) = W and pg € E.

If in at least one SW labelling [ on NV, [(p) = S then p is called a S player. A W
player is similarly defined. These labels correspond to ‘strong’ and ‘weak’ positions.
The sense in which this is meant is made clear by theorem 7.3 below. Note that
a population A? of the evolutionary model is sometimes referred to as a S or W

population when i is respectively a S or W player.
Lemma 7.2. A player cannot be both a W and S player of N.

Proof. Suppose such a player p existed. Let [ and I’ be SW labellings on N such
that [(p) = W and !'(p) = S. Let Fy = ). Construct a sequence of edge sets by the
following inductive step. Let F,11 = F,, U {qz} where gz € E\ Fy,, l(g) = W and
q # p. If no such gz exists then terminate the sequence and let Hy be the final edge
set produced. Construct another sequence of edge sets by the following inductive
step. Let H,y1 = H, U {gz} where gz € E\ H, and I'(q) = S. If no such ¢z exists
then terminate the sequence aud let H be tlie final edge set producéd.

The graph (P, H) is a consistent subgraph of (P,E). By construction, every

player in {g € P | l(q) = W} \ {p} is either included in an edge of H or all their

44Gee definition 7.2.



neighbours are. Thus by condition i), p is not included in any edge of H. Thus by

condition iii) there exists some pz € E\ H which is a contradiction. a

Fix finite demand sets D and 0 < § < 1 such that min D, \ {0} = § for any W
player w and max Dy = 1 — § for any S player s. Let the learning rule be either the
imitate better or a proportional imitation rule. Choose any population size M > 1.
The choice of N, D, e, M and a learning rule fully defines the model of section 6.2

and a corresponding Markov process S, as described in section 6.1.2.

Theorem 7.3. In all stochastically stable states of the perturbed Markov process
just described, agents in population p make demand 0 if p is a W player and 1 - §

if pis a S player.

Sections 7.6.2 and 7.6.3 prove this result. Recall that a brief sketch is given
in section 7.3.2. The proof is based on the minimal tree techniques mentioned in
section 6.1.2. See Binmore et al [9] for further discussion of these methods. Section
7.6.4 discusses extensions to the result.

7.6.2 Notation and Supporting Lemmas

The proof of theorem 7.3 is complicated by the fact that unlike in [9], the recurrent
classes of the unperturbed process are not singleton sets. Instead the sets described

by the following definitions are required.

Definition 7.4. Let B* be the set of quadruples (Q,Q'.d, E) which satisfy the

following conditions
i) Q and Q' are a disjoint partition of I.
ii) f = (fi)icq where fi € D;

iii) G = (G;)ieqr where G; C D;, and |G,| > 1
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iv) Given any demand profile d = (di)iep where d; = f; for i € Q and d; € G; for
i € Q', then for i € Q', the only realisable payoffs to player i in N(N, D) from

demand profile d is zero.

Definition 7.5. For (Q,Q’, f,G) € B*, let B(Q,Q’. f,G) be the set of states of S,

where:
1) For i € Q, all agents in population A’ make demand f,.
2) For i € ', all agents in population A’ make a demand in G,.
3) For i € Q" and g € Gy, some agent in population A? makes the demand g.

4) For any i € P, the informational statc of any agent in population A* is one
of the realisable payoffs to player i of some demand profile d as described in

condition iv) of definition 7.4.

Let B be the collection of all sets as defined in definition 7.5. Note that the sets
of B are disjoint. Let B be the union of all elements of B. The sets in B are similar to
the B sets of definition 7.1, but are finer as that definition did not have restrictions
on informational state.

Note that Sy is the process corresponding to the unperturbed model. Let Z be
the set of states of Sp. Note that Z is also the set of states of S, for any €. Let I" be
the set of pairs (z,2’) € Z? such that there is a positive probability of a transition

from z to 2’ in any S. with € > 0. Then @ = (Z,T') is a directed graph.

Lemma 7.4. Any B € B contains a recurrent class of So and every recurrent class

of Sy is a subset of some B € B.

Proof. Fix some (Q,Q’,f,G) € B*. Consider a state z € B = B(Q,Q’, f,G).
Suppose there is a positive probability of a transition to z' € Z in Sy. To prove the
first part of the lemma it is sufficient to show that z' € B. New demands cannot

enter the populations in the unperturbed dynamics. Hence conditions 1) and 2) of
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definition 7.5 continue to hold in z’. Consider i € Q’. In a round of play from state z,
the active agent in A?, a;, samples an agent with informational state corresponding
to payoff zero and hence does not imitate her. Thus condition 3) continues to hold in
z'. Condition 4) holds by the definition of how the informational states are updated
(i.e. step 1 of the algorithm of section 7.5.4).

To prove the second part of the lemma. it is sufficient to additionally show that
for any state z € Z, there is an accessible’® state b € B. Thus it is sufficient to
consider the case z € B. Suppose only condition 4) is violated in z. Then there is a
positive probability that every agent in turn becomes active, samples themselves and
does not change demand. The resulting statc must lic in B as required. So suppose
a condition other that 4) is violated in z. Then there must exist some ¢ € P such
that the state z supports*® more than one strategy for A" and at least one agent in
A has non-zero informational state.

Let J be set of all realisable payoffs to player i in N (N, D) from any strategy
profile supported by state z. Let j = max.J. Note that j > 0 and that in N'(V, D)
a payoff of j can only be achieved by making a demand of j.

By definition of J, there is a positive probability in .Sj that in a round of play from
state z the active agent in population A*, «. receives payoff j, samples themselves
and so does not switch demand from j. Let such a resulting state be y.

The following has positive probability from state y in Sy. Each agent b € A'\ {a}
in turn becomes active and samples agent «. If the realised payoff of b is less than j
then the active agent switches to the demand j of agent a. If the realised payoff of b
is 7 then the active agent samples themselves aud so does not switch demand from
7. This process results in a state p(z) in which every agent in A? plays demand j.

As mentioned above, once all agents in a population play a single demand, no
other demand enters this population in the unperturbed dynamics. The state p(z)

has at least one more such population than z. Hence there must be some state p™(z)

45This term is defined in section 6.1.2.
46This term is defined in definition 6.2.
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such that the transformation p cannot be performed. This state satisfies conditions
1 - 3 of definition 7.5. There is a positive probability that from p"(z) every agent
becomes active, samples themselves and does not change demand. The resulting

state b must also satisfy condition 4 and thus b € B as required. O

This result still holds under altered learning rules in which updating agents may
not sample themselves but the proof is lengthier. It is necessary to require all agents
to become active immediately after state z so that their informational state lies in
J. Following this, the agent a cannot sample an agent with a payoff greater than j
and so does not switch demand.

Note that for Q' # ), the set B(Q,Q’. f.G) contains many recurrent classes of
Sp. This is because for i € Q', agents in population A* receive payoff zero and
sample other agents with payoff zero and hence never switch demand. Thus any two
states in B(Q,Q’, f,G) sﬁch that population A* is different are not accessible from
each other.

Recall from section 6.1.2 that given z,:’ € Z, the one-step resistance of the
transition from z to 2/, 7,5, is the minimum number of mutations required for the
state to change from z to 2’ in one round in S, with € > 0. If this transition has
probability 0 then the one-step resistance is defined as oo.

Given a path?” a = (@i)o<i<n(a) 11t 2, the resistance of « is defined as

n{a)—-1

'I‘(O{) = Z Tovong

1=0

Recall that the resistance, 7(7"). of a directed tree 7" on Z is the sum of the one-step
resistances associated with its edges. Also recall that a minimal tree is a directed
tree on Z with minimum resistance. A version of the Markov chain tree theorem

mentioned in section 6.1.2 can now be stated for the model described in this section.

Lemma 7.5. A state z € Z is stochastically stable in the process S¢ if and only if

there is a minimal tree rooted at z.

47This term is defined in section 3.2.
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Proof. See theorem 4 of Young [77]. O

Lemma 7.6. For any z € Z there exists a path in §) of resistance 0 from z to some

Z' in a recurrent class of S.

Proof. Suppose there exists z € Z for which no such path in Q exists. Then no
element of a recurrent class of Sy can be accessible from z. Let Z’ be the states in Z
which are accessible from z. Clearly for any + € Z’ then no y € Z' can be accessible
from z. Thus it is possible to construct a discrete Markov process on Z’ such that
the probability of transition between z,z’ € Z’ is the same as in Sy. There exists
a recurrent class A of Z’ by the argument of footuote 6 of chapter 6. Clearly in Sy
any r € A must communicate?® with every +/ € 4 and no y ¢ A is accessible from
xz. Thus A is a recurrent class of Sy and any a € A is accessible from z, which is a

contradiction. _ |

Lemma 7.7. If z is a stochastically stable state of S¢ then z is in a recurrent class

Of S().

Proof. Suppose there exists a stochastically stable z for which this claim fails. By
theorem 7.5, there exists a minimal tree T rooted at z. By lemmas 7.4 and 7.6 there
must exist a path a = (ai)o<i<n(a) in 2 such that 2z = z, z,(q) € B and r(a) = 0.

Let Ty = T. A sequence of directed graphs is now defined iteratively. Let T;
be the directed graph generated from T;_; by deleting the outgoing edge of z;_4
and adding a new edge z;_1z;. Note that r(T;) < »(T) since r,,_,;, = 0. Let A be
minimal such that z, € B. Note this is well defined since z, € B. Let T’ = T,,.

Let ¢ be the unique longest path in 77 from z. By construction it must be of the
form

qg = (207213227"';:/\ :tOstlthe"'s{'n——lstn - Zk7"')

where (o, t1,t2, ..., t,) are the first terms of the unique longest path in 7' from 2,

48This relation is defined in section 6.1.2.
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and t, is the first element in this path of the form z; where i < A. Such an element
exists since T is a tree rooted at zg,

By construction, z) € B but z;, € B. By the definition of a recurrent class, there
must be some transition t,£,4+1 with a positive resistance for u < n. Delete the edge
tutus1 from T' and denote the resulting graph T”. Then r(T") < r(T).

Consider any w € Z. The unique longest path in T” from w follows the path in
T from w until a state z; is reached for i < A. Such a state is reached as T is a tree
rooted at z5. The path then continues by following the path ¢ constructed above
until it terminates at ¢,,. Hence T" is a tree rooted at some state other than z. This

contradicts the assumption that 7" is a minimal tree. O
Let U be the subset of B* such that @ contains all S and W players, and

1—-46 for S player i
fi=

) for W player ¢
Let V = B*\ U. Let U and V be the sets of all recurrent classes of Sy in
UB(Q,Q’, f,G) where the union is taken across all (Q,Q’, f,G) in U and V re-
spectively. Let W = U UV be the set of all recurrent classes of So. Let U, V and W
be the respective unions of the states in these classes.

Note that for any W € W there exists a unique B € B such that W C B. This

follows by lemma 7.4 and the fact that the elements of B are disjoint. Thus the

following is well-defined:

Definition 7.6. For W e W, let B = B(Q, ', f.G) be the unique B € B such that
W C B. Define (W) = >, p ti(1V) where:

1 for W or S player 1 € Q'
fi for W player € Q)

6, (W) = <
1 — fi for S player i € Q)

0 otherwise

\
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7.6.3 Main Lemmas

The following lemma describes how certain ‘skeleton trees’ on Z in which not all

states have outward edges can represent directed trees on Z.

Lemma 7.8. Suppose the directed graph H = (Z, F) satisfies the following proper-

ties:

i) There exists some z* € W such that cvery state with an outward edge in H

has a unique path in H terminating at x*.

it) Each W € W contains either z* or at least onc state w with an outward edge

mn H.

Then there exists a tree T on Z rooted at 2* such that +(T) = r(G).

Note that condition i) implies that 2* has no outward edge in H. Hence, all
that is required to prove this is to show that it is possible to add outward edges to
all other states without creating any cycles. Note that the condition z* € W is not

necessary for this result, but simplifies the proof slightly.

Proof. Let W* be the recurrent class of Sy containing z*. Let W' = W\ {W*}.
For any W € W', let A(W) be an element of W with an outward edge in H. Let
A(W*) = z*.

Let Hy = H and Fy = F. A sequence of directed graphs on Z all of which
support H as a subgraph can be coustructed from Hy by the following iterative
step. Choose some z € W \ {z*} which does not have an outward edge in H;. Let
W € W be such that x € W. By the definition of a recurrent class of Sy, there
exists a path ¢ = (¢)o<i<n(e) in § of resistance zero from z to /\(W) Let j be
minimal such that ¢; has an outward edge in H,. This is well defined since A(W)
has an outward edge in H and thus also in H;. Let Fipy = F;U{¢idit1 | i < j},

and H; 41 = (Z, F,+1). Observe that this inductive step preserves the two properties
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described in the lemma and the property that H is a subgraph. Also observe that
7(H;y1) = v(H;). Let J be the final directed graph produced by this process.

A further sequence of directed graphs on Z all of which support J as a subgraph
can be constructed from Jy = J by the following inductive step. Choose some
z € Z\ {z*} which does not have an outward edge in J;. By lemma 7.6 there exists
a path ¢ = (¢i)o<i<n(e) in 2 of resistance zero from z to some z' € W. Let j be
minimal such that ¢; has an outward edge in J;. This is well defined since z’ has
an outward edge in J and thus J;. Add the edges {o;0i41 | i < j} to the edge set of
Ji to generate J; 4. The final directed graph produced by this process satisfies the

properties described for T. O

Lemma 7.9. Given W €V, there exists a path ¢ = (¢i)o<i<n(g) i §2 of resistance
1 such that ¢ € W and ¢4y € W' for some W € W satisfying 6(W') < 6(W).
Any path ¢ = (@i)oéign(¢) in §) such that oo € U, ¢,y € V and r(¢) < M

requires mutations in at least one W and onc S population.

Proof. Part I:

Suppose z € W where W € V. Let B = B(Q, Q. f.G) be the unique B € B such
that W C B. It will be shown that from state z the model can generate a sequence
of states requiring only a single mutation resulting in a state in W’ € W such that
B(W') < O(W). A description of such a sequence is referred to in this proof as a
performance of the model.

The following facts will be useful. If a 1 player demands § in N (N, D) and has
any neighbours, then there is a realisable outcome in which that player receives a
positive payoff49. In a round of Sy, for each population there is a positive probability
that the active agent in that population does not change their demand, as they may
sample themselves. In each of the performances described below, it is‘ assumed that
the event just described takes place in every round for every population other than

At

49 This would no longer be the case if the demand | were added to the demand set of S players.
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Since z € V, at least one of the following possibilities must be true in the state

1) There exists a W or S player i € Q.
2) There exists a W player i € Q such that f; > 4.
3) There exists a S player i € Q such that f, < 1 — 4.

In the case that 1) holds then the required perforinance is as follows. An agent
a € A" mutates to demand 6. In the following round a becomes active again and
receives a non-zero payoff. In the following rounds, every other agent in A’ becomes
active, receives payoff zero, samples agent a and switches to demand 6.

In the case that 3) holds but 1) and 2) do not then the required performance
is as follows. An agent a € A* mutates to demand 1 — §. In the following round a
becomes active again, receives payoff 1 — ¢, and does not switch demand. Note that
all agents in W populations have demand ¢ in this round so it is possible for agent
a to receive payoff 1 — §. In the following rounds, every other agent in A* becomes
active, samples agent a and switches to demand 1 — 4.

The remaining case is that 2) holds but 1) does not. Let C be the set of W
players i such that f; = §. Given a demand profile such that players in " demand
8, the demand of each player in C is feasible to all their neighbours. Hence in any
maximal consistent outcome of N (N.D) from this demand profile, each player in
C either exchanges or all their neighbours exchange. Thus by condition i) of a SW
labelling, some W player not in ' must be excluded from exchange in any such
outcome. Let 7 be such a player who is excluded in one such outcome. Let e be a
demand profile supported by z. The required performance is as follows. An agent
a € A* mutates to demand 4. In the following round « becomes active égain, receives
a non-zero payoff, and does not switch demaud. In the following rounds, every other
agent in A’ becomes active and the demand profile of active agents is e. Each rounds

the active agent in population A’ receives pavoff zero. samples agent a, and switches
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to demand 6.

Part II:

Suppose there exists a path ¢ = (@i)o<i<n(e) in € such that ¢ € U and () €V,
7(¢) < M which is a counterexample to the second claim.

Suppose the path ¢ requires no mutations in population A7 and in ¢q all agents
in A’ have the demand f;. Then in all states @;. all agents in A7 have the demand
fj since no new demands are added by mutation and active agents who sample an
agent with the same demand cannot switch demand.

Consider the case that in ¢ no mutations are required in S populations. Then
in all states ¢; all agents in S populations demand | — 4. Thus by condition ii) of
an SW labelling, in any state ¢; any agent in a W population who makes a demand
greater than ¢ receives a payoff of zero. Thus no agent in a W population switches
to any demand other than § except by mutation. Since less than M mutations are
required in ¢, some agent in each W population must have demand ¢ in state ¢, (4.
Thus it cannot be the case that ¢,4) € V as assumed.

Consider the case that in ¢ no mutations occur in W populations. Then in all
states ¢; all agents in W populations demand ¢. Thus by condition iii) of an SW
labelling, in any state ¢; any agent in a S population who makes the demand 1 — 0
receives a payoff of 1 —J. Thus no such agent switches demand except by mutation.
Since less than A mutations are required in ¢, somne agent in each S population
must have demand 1 — § in state ¢,). Thus it cannot be the case that ¢,y € V

as assumed. 0

The following lemma can now be proved. Theoremn 7.3 follows by application of

lemma 7.5.
Lemma 7.10. Any minimal tree on Z is rooted in an element of U.

A sketch of the proof is as follows. The proof is by contradiction. By lemma 7.7,

the only other possible case is that there exists a minimal tree T on Z rooted in an
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element of V. A ‘skeleton tree’ A is constructed from T by removing edges which
do not lie on any path in T between recurrent classes of Sj.

The following iterative step is then performed. The root of the current skeleton
tree lies in V. By lemma 7.9 a path p in € of resistance 1 exists from this root to an
element of a recurrent class of Sy, . with a lower ¢ value than that containing the
root. This path is added to the current skeleton tree, erasing any old outward edges
of elements of this path. Some element of f € W is found with an edge leading out
of W. This edge is deleted and a path in 2 fromn f to the end of p is added, again
erasing old outward edges. This path is chosen to have resistance zero. Such a path
exists as W is a recurrent class of Sy.

This iterative step produces a new skeleton tree on Z and with resistance of at
most r7(T") and whose root lies in a recurrent class of Sy with a lower 6 value than
the corresponding @ value in the previous skeleton tree. Eventually a skeleton tree
B is reached such that. there exists a path ¢ iu Q) of resistance 1 fromn its root b* to
an element u € U. This concludes part I of the proof.

There must be a path p in B from u € U to b* € V. A segment of this path from
an element of U to an element of V containing no other elements of W is considered.
By lemma, 7.9 this has resistance of at lcast 2. The vertex corresponding to state in
this segment from which the second mutation is required is labelled «. The part of
the path ¢ up until it reaches an element of the segment of p mentioned prior to a
is added to B, erasing old outward edges, to produce a directed graph C.

This graph satisfies 7(C) < 7(T) + 1 and has a unique cycle including « and
b*. The cycle is broken by adding to C' a path in Q of resistance zero from « to an
element w* of a recurrent class W* of Sy, crasing old outward edges. Such a path
exists by lemma 7.6. Let the resulting directed graph be C’. Note that C has been
constructed so that there is a path from every recurrent class to . Hence in C there
exists an element of W* with an outward edge leading outside W*. A path in Q of

resistance zero from this element to w” is added to €7, erasing old outward edges. It
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is shown that the resistance of the resulting graph is no more than »(T) — 1 and that
it satisfies the conditions of lemma 7.8. This allows the construction of a minimal
tree on Z with resistance less than r(7), producing the desired contradiction.

The following operation is used repeatedly in the proof.

Definition 7.7. Let X = (Z,F) be a directed graph. Let ¢ = (¢:)o<i<n(s) be a
path in 2. Then X @ ¢ = (Z, F") where F” is constructed as follows. Delete from

F all outward edges of elements of ¢ and name the remaining set F’. Let
F'"=F U{{(¢i,0i41) | 0 <i<n(o)}

Proof of lemma 7.10. Suppose the claim is false. Then by lemma 7.7 there exists a
minimal tree T rooted at some a* € V.

Part I of the proof constructs a directed graph B = (Z, H) satisfying the prop-
erties of lemma 7.8. The value of z* in that lemma is taken by a state labelled b*
satisfying b* € V. The graph B satisfies 7(B) < r(T'). Also, there exists a path
in  of resistance 1 from b* to some u € Y. Part II proves the lemma from these -
facts. Note that many of the symbols used in the notation of part I are reused with
different meanings in part IL

Part I

First, some notation is defined. For z € Z let p® = (pf)o<i<n(p=) be the unique
path in T from state z to a*. By lemma 7.9 for any w € W such that W € V, there
exists a path in Q of resistance 1 from w to an element of W’ where W' € W and
B(W') < O(W). Let ¢¥ = (¢ )o<i<n(¢w) denote such a path.

Let Ay be the directed graph (Z,%). Counstruct a sequence of directed subgraphs
of T by the following inductive step. Choose some W € W such that no w € W has
an outward edge in Ag. If no such W exists then terminate the sequence. Choose
any w € W. Let A be minimal such that either p§ has an outward edge in Ay or
X = n(p?). Define Ay from Ap by adding the edges of (p¥)o<i<a.

Let A be the final graph in this sequence. Since A is a subgraph of T, r(A) <
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r(T).

Let By = A and by = a*. Suppose that directed graph By on Z and b, € Z
satisfy the properties i) by € V, ii) b, has no outward edge in By, iii) from every
z € Z with an outward edge in By there is a unique path in By to by, and iv) every
W € W either contains by or a vertex with an outward edge in Bj.. Construct By

as follows. For less cluttered notation, let b = by, and ¢ = Let X be the

iy
set in W containing c. Select some d € X with an outward edge in Bj to a vertex
d ¢ X. Such an edge must exist by the properties iii) and iv) above and the fact
b ¢ X. Note that the transition dd’ must have one-step resistance of at least one
since X is a recurrent class of Sy. By definition of a recurrent class there exists a
path in Q, ¥ = (¥i)o<i<n(y) Of resistance zero from d to ¢. Let Byyy = (Br ®¢®) D1p.
Note that in this operation, adding the edges of ¥ and v increases the resistance by
1, and removing the outward edge of d reduces the resistance by at least 1. Hence
r(Bi+1) < 7(Bk).

It is now shown that in Biyy every z € Z with an outward edge has a unique
path in Biy1 to c. In the case that z is an element of #", the required path in By,
is made up of the elements of ¢* from z ouwards. In the case that z is an element
of 1, the required path in By is made up of the elements of ¢ from z until an
element 2’ of ¢ is reached, followed by the clements of the path ¢° from z’ to ¢ in
By1. The remaining case is that z has an outward edge in By. In this case there is
a path ( in By from z to b. The required path in By, is made up of the elements
of ¢ until an element z’ of ¥ or @ is reached. followed by the elements of the path
in By, from 2’ to c

Note that any vertex with an outward edge in Bj, other than ¢ has an outward
edge in Bjyi. This shows that By and bpyy = ¢ satisfy properties ii), iii) and iv)
above. It also shows that if By, satisfies property ii) of lemma 7.8 then so does Bjy4
with z* = c.

This construction can be used to generate a scquence of directed graphs By, on Z



and vertices b,. Let W be the element of W containing by.. By construction (W)
is strictly decreasing in k. Thus for some k*. b;- € U and the sequence terminates.
The graph Bj~_; and the vertices by~_; and by have the properties described above
for the graph B and vertices b* and w.

Part IT

Let p = (Pi)ogign(p) be the unique path in B from u to b*. Let A be minimal
such that py € V. This is well defined since b* € V. Let M be maximal such that
A < Xand py € Y. By lemma 7.9, the path (p;) wv<i<x has resistance of at least two.
Let a; € [X', A) be minimal such that the transition p,, p* +1 has one-step resistance
of at least 1. If the one-step resistance of this transition is at least 2 then let ¢ = a;.
Otherwise, let a be minimal in (a;, A) such that the transition p,p,+1 has one-step
resistance of at least 1. Let o = p,.

Recall that there exists a path in Q of resistance 1 from b* to u. Let ¢ =
(#i)o<i<n(g) be such a path. Let b be minimal such that ¢, = p; for some i < a.
This is well defined since b* = pyg.

Define C as equal to B ® (¢;)o<i<p except that ¢, has an outward edge to the
same vertex as in B. Note that »(C) < r(B)+ 1 < r(T) + 1. Also any state
z € Z\ {a} with an outward edge in " has a unique path in C to a, as follows. Fix
c such that ¢, = p.. If 2 = p; for some a > i > ¢ then the required path is given by
the elements of p from p; to «. If z = ¢; for some i < b then the required path is
given by the elements of ¢ from ¢; to ¢, followed by the elements of the path in C
from ¢, = p to . The remaining case is that > has an outward edge in B. In this
case there is a path ¢ in B from z to b*. The required path starts with the elements
of ¢ up to the first element 2’ such that 2=, withi<bor 2 =p;, witha>i>c
The remaining element are those of the path in C' from 2’ to «.

By lemma 7.6 there exists a path ¥ in ) of resistance zero from a to some
w* € W. Let W* € W be the set such that w* € W*. Select some 8 € W* with an

outward edge in C to 3’ such that the transition 38" has a one-step resistance of at
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least 1. Some such 8 must exist for the following reason. If W* does not contain b*
then W* contains a element with an outward cdge in B since B satisfies condition
ii) of lemma 7.8 (with 2* = b*). Therefore this element also has an outward edge
in C. If W* does contain b* then observe that b* has an outward edge in C. In
either case, there is therefore a path in C from an element of W* to «. Since «
lies outside the recurrent class W* of the unperturbed dynamics Sg, this path must
have positive resistance.

By definition of a recurrent class there exists a path y in € of resistance zero
from 38 to w*. Let D = (C ® ) & x.

It is now shown that any state z with an outward edge in D has a unique path
in D to w*. If z is in x then the required path is given by the elements of x from z
to w*. If z is in ¢ then the required path starts with the elements of ¥ from z to the
first 2’ equal to or follqwirlg zin ¢ which is also in y. The remaining elements are
those of the path in D from =’ to w*. The remaining case is that z has an outward
edge in C and there is a path ¢ in C from =z to «. The required path in D is made

/

up of the elements of ¢ until an element =’ of ¢ or x is reached, followed by the

" must exist since v

elements of the path in D from z’ to w*. Such an element z
begins at a.

Note that with the exception of w*, all states with an outward edge in B have
an outward edge in D. Thus D satisfies the second property of lemma 7.8 with w*
taking the role of *. Observe that in the construction of D from ' no edges which
have been added correspond to transitions witl positive one-step resistances. Also,
the outward edges of a and /3 have been deleted. both corresponding to transitions
of positive one-step resistance. In the case that a = J then it must be the case that
a = a; (see the first paragraph of part II) and the outward edge of a corresponds
to a transition with one-step resistance of at least 2. Thus 7(D) < R(C) — 2 <

r(T) — 1 and by lemma 7.8 a minimal tree exists with resistance r(T) — 1 which is

a contradiction. 00
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7.6.4 Other Conditions

This subsection briefly discusses whether theorcin 7.3 holds under slightly different
conditions.

Suppose demand 1 were included in the demand sets for S players. This creates
some difficulties in the proof. If all the neighbours of a W player ¢ make the demand
1 then i receives payoff zero whatever demand they make. This hinders the proof of
lemma 7.9 (see footnote 49 of this chapter). However, it seem very likely that the
result of the theorem also holds for this case. Observe that no agent ever switches
to demand zero under the imitate better or proportional imitation learning rules
except by mutation. Thus it must be very rare for demand zero to be made in the
long run and so agents making demand 1 usually receive payoff zero.

Under the imitate better or proportional hmitation learning rules, it is possible
that the updating agent in any round may sample themselves and thus does not
switch demand. The proof of lemma 7.9 velies heavily on this property. Under
modifications of the imitate better and proportional imitation learning rules in which -

agents only sample others, the result still holds under the condition:
M > max |D;|
=

Two modifications to the proof of lemnma 7.9 are required. Recall that the proof
concentrates on agents in one particular population, A*. The first modification
is that in the performances described in the proof agents in any population A7
where j # i only become active if there is another agent with the same demand in
population A7. The condition on M above ensures that there are always at least 2
agents in any population with the same demand. The second modification is that
the active agent in population AJ where j # i always samples another agent with
the same demand and hence does not changed demand.

Note that the proof of theorem 7.3 does not apply for the sampled best reply

learning rule with sample size m. For examnple. consider the network L3 and consider
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a state z such that the only supported demand profile is (6. 1—6,§). Suppose an agent
in population A2 mutates to a demand oo < 1 —4. There is a positive probability in
the unperturbed process that in the following rounds each agent in populations A*
and A3 in turn sample this mutant and switch to demand 1 — o5 if ﬁ;(l —gy) > 0.
If the demand sets contain sufficiently sinall demands then this will be true. During
this process the mutant agent in population 4? does not become active again. Now
there is a positive probability that every nou-mutant agent in A2 in turn becomes
active and samples agents in populations A! and A% with demands 1 — o9, while
the active agents in populations A' and A% continue to sample the mutant agent in
population A2. Thus it is possible for the state to move from z to another recurrent

class of the unperturbed process with only a single mutation. Thus lemma 7.9 does

not hold.
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Chapter 8

Simulation: Results

This chapter contains the results of the simulations using the evolutionary model
described in chapters 6 and 7. The aims of the simulations are based on the general

aims outlined in chapter 1. In terms of simulation, the three points become:

a) Run simulations using all candidate learning rules on sinall networks to check
whether they produce results consistent with experiment and satisfy other -

reasonable properties.
b) Run simulations on large networks and characterise the general outcomes.
c) Attempt to find relationships between network parameters and outcomes.

In practice, this section concentrates on aim a). However, aim c) is reflected in the
fact that the focus in this section is on the cffect of network structure, rather than
the effects of varying the parameters and rules of the model. other than the learning
rule.

The networks investigated fall into three overlapping categories. The first cate-
gory is those networks for which experimental data and theoretical predictions exist,
allowing a comparison with the results of the simulation as part of aim a). The sec-
ond category is line networks with unit cakes. These provide a simple setting to

investigate the effects of increasing the size of a network as part of aim b). The
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third category is networks which produce particularly striking simulation results.
These include the two 4 player ring networks of sections 8.8 and 8.9.

Section 8.1 investigates which values of M and e are appropriate to use in the
simulation. Sections 8.2 to 8.11 each study one network by simulation. Each of
these sections begins with a discussion of the motivation for the choice of network.
A results subsection follows, describing several simulations under various learning
rules and containing the relevant data. The results are stunmarized and discussed
in a final subsection. General conclusions are postponed to the conclusion, chapter
9.

For each simulation, the values of M and e used are selected to illustrate in-
teresting features of the simulation results. The initial state of each simulation is
as follows. All agents initially have the lowest available demnand. In the case that
I = D; U {0} all agents have an initial informational state of 0, corresponding to
a most recent payoff of zero. The other case is that I; is a singleton and there is
only one possible choice of initial informational state. The motivation for this initial _
state is simply to avoid starting in a recurrent class of the unperturbed dynamics
which is stable in the perturbed dynanics.

Each results subsection begins by referring to an inital table (or tables) giving
details of the setup of each simulation, including the values of M and €, the number
of rounds used, the learning rules and associated parameters, and other relevant
information for the particular network. Note that in this and other results tables,
the names of learning rules are usually written as initials. Thus imitate better is
IB, proportional imitation is PI and sampled best reply is SBR. This initial table
1

also includes the final values of the statistics® y. p and v as defined in sections 7.4

and 7.5.5 to 2 significant figures. Finally. this table includes a ‘minimum proportion

1Recall that  is, roughly speaking, the average over all agents of the proportion of rounds in
which a given agent had the demand corresponding to the closest B set. p is the average number of

rounds between changes of modal demand. and v is the average number of rounds performed per

unit of run-time.

241



displayed’ row, the use of which is described shortly.

The main results comprise a table for each simulation which lists the most com-
mon modal demand profiles and the proportion of all rounds in which each was
modal. The demand profiles displayed are those which were modal for a proportion
of rounds of at least the ‘minimum proportion displayed’ value. The proportions
are given to 3 significant figures, as there are sometimes interesting profiles which
are modal for a proportion of rounds which can only be shown by this level of preci-
sion. Sometimes it is also useful to give the ordinal positions of each demand in the
corresponding demand set. These are included in brackets after the demand values.
As discussed in section 7.3.1, this list is expected to give a rough indication of the
stationary distribution of the model. Results are ouly given for a single run of the
simulation. This is because in practice, as predicted in section 7.3.1, there was little

significant difference in results in different runs of the same simulations.

8.1 General Properties and Choice of Parameters

This section investigates the values of x and p as A and e vary for different learning
rules. These indicate how stable the B sets of the model are. Also investigated is
p/7; the average run time per modal demand change. The aim is to find values of M
and € representing a middle ground between over-stable cases where an impractical
run-time is required to build up a reasonable picture of the stationary state, and
under-stable cases where the structure of the stationary state is eroded by mutation.

These questions are explored in a 2 player network to minimise the required
run-time. The results are used to provide a rough indication of which values of A
and e provide interesting results for other networks. The simulations of this section
use Dy = Dy = {0,0.1,0.2,. .., 1}. The number of rounds played in each simulation
is 2 x 10%. The statistics in all the tables are given to 2 significant figures.

Table 8.1 is for the case of € = 1. This produces a model entirely driven by

mutation. The results provide a baseline for comparison with the other tables of
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this section. The value of « is also included in this table as it can serve as a baseline

for all other values of v in this chapter.

.M 20 40 60 100 200
X 0.21 0.17 0.15 0.14 0.13
P 5.6 8.1 10 13 19

p/v | 31x1075 [ 43x107° | 54 x 107> | 7.5 x107% | 1.2 x 1074
~y 1.8 x 10° | 1.9x10° | 1.9x 10° | 1.8 x10° | 1.6 x 10°

“able 8.1: Statistics for e = 1

Tables 8.2 — 8.5 are for the learning rules imitate better. proportional imitation
with factor of proportionality 1, and sampled best reply with sample sizes 1 and 2.
Note that starred values of p in these tables indicate that a modal demand profile

was quickly reached which did not change for the rest of the simulation.

M| e X iz 78

20 10.15]082| 1.2x10" | 75x 107!
20 | 0.19 | 0.72 | 4.8 x 10? | 2.9 x 1072
20 | 0.23 | 0.54 | 6.5x 10" |38 x 1073
40 1 0.19 | 0.74 | 3.5 x 10* 2.0

40 | 0.23 | 0.58 | 4.6 x 10? | 2.5 x 1072
40 1 0.27 1 038 | 6.1 x 10! | 3.4x 1073
60 | 0.19 | 0.68 | 3.8 x 10" * 2.1

60 | 0.23 1055 | 3.9x10% | 21x107!

60 1 027 1035 | 1.0x 10% |57 x 1074

Table 8.2: Statistics for IB

These results illustrate that there are a wide range of values of M and € for which

the values of x and p are significantly different to their values in the case ¢ = 1. This
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M| e X 17 P/~

20 | 0.04 | 0.88 | 5.0 x 10? 2.9

20 [ 0.08 | 0.68 | 5.2 x10? | 3.0 x 102
20 | 0.12 | 043 | 6.5 x 10" | 4.0x 1073
40 | 0.04 | 0.88 | 7.1 x 101 * 4.1

40 | 0.08 | 0.71 | 8.1 x10° | 45 x 107!
40 | 0.12 | 041 | 14 x10? |83 x 1073
60 | 0.08 | 0.66 | 1.9 x 10! 1.1

60 | 0.12 | 0.37 | 2.6 x 10? | 1.5 x 1072
60 | 0.16 | 024 | 7.4 x 10! |47 x1073

Table 8.3: Statistics for PI

M € X 1 Pl

20 | 107% | 1.00 | 4.0 x 103 | 6.1 x 1072
20 | 1072 { 0.98 | 5.6 x 10° |88 x1073
20 {1072 0.85| 58 x 10! |1.0x1073
100 | 10741 0.98 | 2.2 x10% |33 x 1072
100 | 1073 [ 0.92 | 6.6 x10% | 1.1 x107?
100 | 1072 | 0.57 | 84 x 10" | 14x 1073
200 | 1074 | 0.96 | 1.5 x 103 * | 2.5 x 1072
200 | 1073 | 0.82 | 4.6 x 10 | 7.5 x 1073
200 | 1072 | 046 | 1.3 x 10 |22 x 1073

Table 8.4: Statistics for SBR with sample size
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M| e X p p/n

20 10.021098 | 3.2x10% |1.0x10"!
20 [ 0.06 | 0.89 | 2.6 x 10° | 1.0 x 1072
201 0.1 {077} 7.8 x 10" |6.1x1073
40 | 0.02 | 0.99 | 7.1 x 10! * 1.7

40 [ 0.06 [ 091 | 45x10% |[1.2x 107!
40 | 0.1 | 080 | 4.6x10% |21 x1072
60 | 0.06 | 0.85 | 4.4 x 10 * 1.1

60| 0.1 | 075 2.1 x10% |81 x 1072
60 | 0.14 | 0.63 | 3.2x 10% |23 x 1072

Table 8.5: Statistics for SBR with sample size 2

provides some support for the prediction of section 7.3.1 that the state is usually
near a B set even for relatively large values of . However note that, except under
sampled best reply, it does not seem possible to have a value of y above 0.9 and a~
value of p sufficiently low for much to be revealed about the stationary distribution
in a reasonable runtime. This suggests that it is rare for the state to be inside a B
set for the typical values of A and ¢ used in this section.

Also, as predicted in section 7.3.1, the value of p is decreasing in € and increasing
in M, and the value of x is decreasing in e. Under imitate better the value of x
appears to be increasing in A/. TFor the other learning rules there appears to be
a more complicated relationship which cannot be characterised given the limited
results available. Also note that rate of change of p with € seems independent of the
value of M. Thus the range of values of ¢ for which interesting behaviour can be
found is of roughly the same size for any valuc of A7.

The values of M used in the simulations of the remainder of this chapter are
near the lower end of the ranges used in this section. This is to allow a lower

value of € to be used, and, for imitate better. to minimise the value of x. These
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features should result in the state staying closcr to B sets, and provide the resulting
stationary distribution with some degree of protection from being too driven by

mutation rather than the probabilities of transits between B sets.

8.2 The 2 Player Unit Cake Network

This section is on the simplest bilateral exchange network: the 2 player unit cake
network. Recall that section 7.1.1 contains o prediction that the results for the
imitate better learning rule are sensitive to the choice of D. To test this prediction
and the robustness of the other learning rules to variations in D, for each learning
rule two simulations are carried out in which two choices of D are used. In the first,
B, demands are evenly spaced: B} = By = {0.0.1.0.2....,1}. The second, C, uses

very unevenly spaced demands:

C; = {0,0.01,0.02,0.03.0.04,0.05,0.15,0.2,0.5,0.7, 1}

Co={1—-zlzeC}

Results

Tables 8.6 and 8.7 give the details of the simulations of this section. Recall that
m is the sample size of a learning rule. Notc that the factor of proportionality for
the proportional imitation learning rule is 1. Tables 8.8 - 8.15 contain the data.
Recall that in the latter tables, the figures in brackets after demands are the ordinal

positions of the demands in the corresponding demand sets.

Summary and Discussion

For all of the learning rules used lere. these results are evidence in favour of the
prediction of section 7.3.1 that the model concentrates on strict Nash equilibrium

outcomes. Note that this prediction was made under the assumption of low e. Thus



Table 8.8 2.9 8.10 8.11
Learning rule IB IB [B,m=12 PI
Demand sets B ¢ B B

M 25 25 35 25
€ 0.21 0.21 0.23 0.08
p 33x10° 118 x 10t | 1.2x10% | 1.0x 103
% 0.56 0.56 0.69 0.59
5 84 x10% | 3.4 x 10| 6.7x10° | 1.8 x 10?
Rounds played 5x 10° | 5 x 109 5 x 108 5 x 108
Minimum proportion displayed 0.01 0.01 0.01 0.01
Table 8.6: Guide to the simulations of section 8.2 (1)
Table 8.12 8.13 8.14 8.15

Learning rule PI SBR, SBR, SBR,

m =1 m =2 m =

Demand sets C B B C

M 25 100 50 50
€ 0.1 0.001 0.1 0.15
p 2.9 x 102 | 45 x 107 | 9.4 x 10 | 1.5 x 103
X 0.60 0.94 0.67 0.76
v 6.3 x 10* | 5.9 x 10" | 2.3 x 10* | 2.6 x 10
Rounds played 5 x 100 107 107 107
Minimum proportion displayed 0.01 0.01 0.001 0.001

Table 8.7: Guide to the simulations of section 8.2 (2)
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Table 8.10: IB on a 2 player unit cake network results with demands C and sample

size 12

Modal strategy
1 2 Proportion
0.5 0.5 0.665
0.4 0.6 0.147
0.6 0.4 0.134
Others 0.054

Table 8.8: IB on a 2 player unit cake network with demands B

Modal strategy
1 2 Proportion
0.05 (6) | 0.95 (6) 0.674
0.15 (7) | 0.85 (5) 0.144
0.04 (5) | 0.96 (7) 0.133
Others 0.049

Table 8.9: IB on a 2 player unit cake network with demands C

Modal strategy
1 2 Proportion
0.5(9) | 0.5(3) 0.541
0.2 (8) | 0.4 (4) 0.235
0.15 (7) | 0.8 (4) 0.101
0.15 (7) | 0.85 (5) 0.099
Others 0.024
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Modal strategy
1 2 Proportion

0.5 0.5 .812

0.4 0.6 0.110

0.6 0.4 0.028

0.4 0.5 0.025

0.5 0.4 0.018
Others 0.007

Table 8.11: PI on a 2 player unit cake network with demands B

Modal strategy

1 2 Proportion

0.5 (9) | 0.5 (3) 0.314

0.15 (7) | 0.8 (4) | 0.021

(

0.2 (8) | 0.8(4) | 0.115
(
(

0.5(9) |0.8(4) | 0018

Others 0.032

Table 8.12: PI on a 2 player unit cake network with demands C
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Modal strategy

1 2 Time

0.2 0.8 0.185
0.3 0.7 0.138
0.6 0.4 0.117
0.9 0.1 0.113
0.4 0.6 0.099

0.7 0.3 0.092
0.5 0.5 0.084
0.1 0.9 0.082
0.8 0.2 0.075

Others 0.015

Table 8.13: SBR on a 2 player unit cake network with demands B and sample size 1

Modal strategy
1 2 Proportion
0.5 0.5 0.614
0.6 0.4 0.191
0.4 0.6 0.181
0.4 0.5 0.004
0.5 0.4 0.004
0.7 0.3 0.001
Others 0.005

Table 8.14: SBR on a 2 player unit cake network with demands B and sample size 2



Modal strategy
1 2 Proportion
0.5 0.5 0.985
0.7 0.3 0.007
0.5 0.3 0.006
Others 0.002

Table 8.15: SBR on a 2 player unit cake network with demands C and sample size 2

the experimental results provide some evidence that the qualitative features of the
model are robust to variations in € as predicted of section 7.3.1.

The demand profile (0.5,0.5) receives strong support under all learning rules.
However, as predicted in section 7.1.1. the results of the imitate better learning
rule are highly sensitive to the choice of D. This makes it problematic to use the
results of this learning rule, as discussed in scction 7.1.1. Nonetheless, the results
do concentrate on a small number of outcoines: those close to the median of the”
Pareto optimal outcomes of the game if they are ordered according to the payoff
to either player?. This suggests that if demand sets are evenly spaced then the
model under this learning rule might support a bargaining solution for the 2 player
problem in which the outcome is halfway along the outer boundary® of the utility
cake. However, more simulations would be required to test this hypothesis.

Imitate better with a larger sample size is more robust to the choice of D.
However, the sample size needs to be quite large: the simulation above required a
sample size of 12 from a total population of 35. Simulations with sample sizes close
to 1 have very similar results to those with samnple size 1. These results are not

included as they exhibit no novel features. This learning rule is not used often in

2This is well defined since for the choices of D made in this section. the Pareto optimal outcomes

of the game are of the form (a,1 — a).
JRecall definition 3.6.
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the remainder of this chapter as it becomes verv computationally expensive in larger
networks.

The results for sampled best response lcarning rule with sample size 1 show
that it only selects very weakly, or perhaps cven not at all, between strict Nash
equilibrium outcomes. A possible explanation for this is that in states close to B
sets there is no mechanism for a cardinal comparison of the utilities to be gained
from playing a demand against a mutant and a non-mutant. Suppose all mutant
agents have a superior payoff. Then an updating agent switches away from the B
set demand if and only if they sample a mutant. Thus the probability of a transit
cannot involve utility comparisons and most transits between strict Nash equilibria
have roughly equal probability. With a larger sample sizes, updating agents will
sample both mutants and non-mutants more often than they sample only mutants.
Averaging calculations then allow cardinal utility effects. |

The proportional imitation learning rule supports the solution (0.5,0.5) for both
the evenly spaced demand sets of B and the very uuevenly spaced sets of C'. In
the latter case there is also some support for (0.2,0.8). This may be because the
demands vary by only one ordinal position from the main solution and are closer
to the median demands, echoing the support of imitate better for median demands.
A possible explanation for the success of non-Parcto optimal strategy profiles such
as (0.15,0.8) is that the probability of agents with positive payoffs increasing their
demands to Pareto optimal demands is often low. A possible explanation for the
success of non-feasible strategy profiles sucli as (0.5,0.8) is that these occur when
multiple demands coexist in populations during the transit between B sets. For
example consider a state whichi supports only the demands 0.2 and 0.5 in population
Al and only the demands 0.5 and 0.8 in population A?. As agents are more likely to
switch to demands earning higher payoffs, the demand pair (0.5,0.8) could become
modal for some rounds even though it is not a feasible pair. This explanation would

mean that the apparent success of such profiles is only due to the method of reporting
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used?.

8.3 A 2 Player non-Unit Cake Network

This section investigates the behaviour of the simulation for a particular 2 player
network whose utility cake is defined by a non-linear boundary function. The cake
is chosen to investigate whether the axiom of independence of irrelevant alternatives
used in the axiomatic definition of the Nash bargaining solution (see definition 4.2)
holds. The cake chosen is a subset of the unit cake containing the point (0.5,0.5).
If the axiom holds, the solution should be (0.5.0.5). The cake is defined by the

boundary function

] 0.8 - 0.6 for 2 < 0.5
) =
1—x—10(x - 0.5)* fora >0.5
1
0 1

Figure 8.1: f12(z) for section 8.3

This is a concave function over [0,1]. Oune reason for its choice is that it is

asymmetric.

4A possible alternative is as follows. Rather that count the number of rounds on which each
demand profile is modal, count the total contribution to y on rounds in which each demand profile

is modal. This puts a lower weight on those rounds in which the state is far from a B set.
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In each simulation of this section. the demand sets are Dy ={0,0.05,0.1,...,0.7}
and Dy = {f1?(d)|d € D;}. Note that in this section, a demand pair is Pareto
optimal if their ordinal positions in these sets. given in brackets in the results tables,

sum to 16.

Results

Tables 8.16 and 8.17 give the details of the simulations of this section. Recall that
m is the sample size of a learning rule. Note that the factor of proportionality for

the proportional imitation learning 1ule is 1. Tables 8.18 -~ 8.22 contain the data.

Table 8.18 8.19 8.20
Learning rule B IB PI
M 25 35 35
€ (.19 0.08 0.08
P 1.2 x 10 | 1.2 x 10% | 7.6 x 102
X 0.60 0.93 0.71
v 1.4 x 101 | 4.3 x 10* | 1.4 x 10*
Rounds played 5x 10 | 2x10% | 2x 108
Minimum proportion displayed 0.001 0.001 0.005

Table 8.16: Guide to the simulations of section 8.3 (1)

Summary and Discussion

Each of these simulations again concentrates on a few demand profiles. Except
under imitate better, these all are close to the outcome (0.5,0.5). Imitate better
again selected the median outcome (in the sense described in section 8.2).
However, the profiles which were most comnonly modal under the imitate better
and sampled best reply learning rules with saple sizes 12 and 2 respectively were

not (0.5,0.5). In the profiles which were most commonly modal for these learning
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Table 8.21 8.22
Learning rule SBR.m=2 | SBR,m=5
M 35 35
€ 0.08 0.08
p 6.6 x 102 3.6 x 102
X 0.64 0.63
v 1.5 x 103 1.6 x 103
Rounds played 2 x 108 2 x 109
Minimum proportion displayed 0.005 0.005

Table 8.17: Guide to the simulations of section 8.3 (2)

Modal strategy
1 2 Proportion

0.35 (8) | 0.59 (8) 0.534
0.4 (9) 0.56 (7) 0.231
0.3 (7) 0.62 (9) 0.163
0.45 (10) | 0.53 (6) 0.033
0.25 (6) | 0.65 (10) 0.026
0.35 (8) | 0.56 (7) 0.002
0.3 (7) 0.59 (8) 0.002
Others 0.009

Table 8.18: IB on a 2 player non-unit cake network
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Modal strategy

1 2 Proportion

0.4 (9) | 056 (7)| 0597
0.45 (10) | 0.53 (6) |  0.346
0.4 (9) |053(G6)| 0.016
0.5 (11) | 0.5 (5) 0.016
0.35 (8) | 0.59 (8) |  0.005
0.45 (10) | 0.5 (5) 0.001
0.6 (13) | 0.3 (3) 0.001

Others 0.018

Table 8.19: IB on a 2 player non-unit cake network with sample size 12

Modal strategy

1 2 Proportion

0.5 (11) | 0.5 (5) 0.681
0.45 (10) | 0.53 (6) 0.173
0.45 (10) | 0.5 (5) 0.094
0.4 (9) | 0.56 (7) 0.021
0.4 (9) | 0.5(5) 0.009

0.4 (9) | 0.53 (6) 0.007

Others 0.015

Table 8.20: PI on a 2 player non-unit cake network



Modal strategy

1 2 Proportion
0.45 (10) | 0.53 (6) 0.686
0.4 (9) |0.56 (7) 0.266
0.4 (9) | 0.53 (6) 0.021
0.35 (8) | 0.59 (8) 0.005
Others 0.022

Table 8.21: SBR on a 2 player non-unit cake network with sample size 2

Modal strategy

1 2 Proportion
0.5 (11) 0.5 (5) 0.680
0.45 (10) | 0.53 (6) 0.235
0.55 (12) | 0.425 (4) 0.035
0.4 (9) 0.56 (7) 0.025
0.45 (10) | 0.5 (5) 0.014
Others 0.011

o
(3]
3

Table 8.22: SBR on a 2 player non-unit c¢ake network with sami)le size b




rules, player 2 received a payoff of slightly more than 0.5. However, increasing the
sample size of sampled best reply to 5 did vield a most common modal demand
profile of (0.5.0.5).

This indicates that the outcome of these learning rules is not completely robust
to variations in the utility cakes which are irrelevant under the axioms of the Nash
bargaining solution. However, robustness does appear to increase with the sample
size of each learning rule.

With the exception of the imitate better learuing rule, the results of this and the
previous section certainly do not contradict the Nash bargaining solution. However,
further simulations or theoretical results would be required before concluding that

they offer strong support for this solution.

8.4 A 2 Player Unit Cake Network with an Outside Op-
tion

This section investigates the effects of introducing an outside option for player 2 into
a 2 player unit cake network. The details of how the simulation code implements this
are given in section 7.5.1. The motivation for this investigation is to discover whether
direct outside options have the same effect as the indirect outside options implicit in
the possibility of exchanging with another player in networks of more than 2 players.

In all the simulations of the section, both demand sets are {0,0.05,0.1,...,1}.

Results

Tables 8.23 and 8.24 give the details of the simulations of this section. Recall that
m is the sample size of a learning rule. The ‘proportion cxercised’ row .gives the
proportion of all rounds in which the outside outside is cxercised. Note that the
factor of proportionality for the proportional imitation learning rule is 1. Also, note

that a table of data is not given for the simulation corresponding to the entry of



table 8.24 with no table number. Such a table would not have been informative
because in this simulation no individual strategy profile was modal for more than
0.1 of all rounds and the most common modal demand profiles all involved player 2
taking the outside option. Note that the unusually low value of p in the simulation
of table 8.26 is probably a consequence of behaviour in population A! being mainly
driven by random mutations since the outside option is taken so often by agents in

population 2. Tables 8.25 — 8.29 coutain the data.

Table 8.25 8.26 8.27
Outside option 0.-11 0.6 0.41
Learning rule B 3 PI
M 25 25 25
€ 0.21 0.21 0.07
Proportion exercised 0.05 0.33 0.16
p 9.6 x 10° 56 3.0 x 10?
X 0.50 0.49 0.54
v 9.5 x 10 | 8.4 x 10® | 8.6 x 103
Rounds played 5x 10° | 5x10% | 5x 109
Minimum proportion displayed 0.01 0.02 0.01

Table 8.23: Guide to the simulations of section 8.4 (1)

Summary and Discussion

Section 4.2.1 mentions a variation of the alternating offers game incorporating out-
side options. For a unit cake network with equal discount factors the game predicts
that an outside option of less than 5 leaves the outcome unchange_d from the game
without outside options: both players receive a payoft of 5. For an outside option of
more than % it predicts that an exchange forms and player 2 receives a payoft equal

to the value of the outside option. Note that cqual discount factors seem appro-



Table n/a 8.28 8.29
Outside option 0.6 0.41 0.6
Learning rule P1 SBR,mn =2} SBR, m=2
M 25 100 100
€ 0.07 0.1 0.1
Proportion exercised 0.82 0.12 0.33
p 1.1 x 10° 1.6 x 102
X 0.64 0.57
v 6.3 x 103 4.4 x 103
Rounds played 5 x 108 5 x 100 5 x 109
Minimum proportion displayed J_ 0.001 0.001 J

Table 8.24: Guide to the simulations of section 8.4 (2)

Modal strategy B
1 2 Proportion
0.45 0.55 0.306
0.5 0.5 0.297
0.4 0.6 0.150
0.35 0.65 0.046
0.45 0.5 0.011
0.4 0.55 0.010
Others 0.180

Table 8.25: IB on a 2 player unit cake network with outside option 0.41



Modal strategy

1 2 Proportion
0.3 0.7 0.108
0.3 option exercised 0.065

0.25 | option exercised 0.062

0.35 | option exercised 0.060
- 0.2 | option exercised 0.056
0.15 | option exercised 0.053

0.005 | option exercised 0.044
0.1 option exercised ().044
0.25 0.75 0.041
0.4 | option exercised 0.029

0.45 | option exercised 0.021

0.3 0.65 0.020

Others 0.397

Table 8.26: IB on a 2 player unit cake nctwork with outside option 0.6



Modal strategy

1 2 Proportion
0.45 0.55 0.289
0.4 0.6 (.180
0.5 0.5 0.136
0.4 0.55 (0.049
0.45 0.5 (0.042
0.45 | option exercised 0.036
0.5 | option exercised 0.034
0.4 | option exercised 0.025
0.35 0.65 .024
0.55 | option exercised 0.021
0.35 | option exercised 0.016
0.35 0.6 .016
0.6 | option exercised 0.015
04 0.5 0.010

Others 0.107
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Table 8.28: SBR on a 2 player unit cake network with outside option 0.41 and sanple

size 2

Table 8.29: SBR on a 2 player unit cake network with outside option 0.6 and sample

size 2

Modal strategy

1 2 Proportion

0.55 0.45 0.858
0.5 0.5 0.114
0.45 0.55 0.015
0.5 0.4 1.005
0.4 0.6 0.001
0.55 | option exercised 0.001

Others 0.006

Modal strategy

1 2 Proportion
0.35 0.65 0.839
0.35 | option exercised 0.160

Others 0.001




priate as in the simulation there are no asynunetries between the two populations
corresponding to non-equal discount factors.

Most of the results of this section differ from this prediction. For imitate better
and proportional imitation, an outside option of less than % increases the typical
payoff of agents in population 2. This is similar to some experimental results, such
as those of Binmore et al [10]. It is intuitively plausible that the existence of an out-
side option strengthens the bargaining position of player 2. justifying this increased
payoff. However, I do not have a candidate mechanism explaining how this takes
place in the model.

For sampled best reply with sample size 2. the same outside option reduces the
typical payoff of agents in population 2! This is 4 counter-intuitive result. However,
note that in the most common modal demand profile the demand played by agents
in population 2 is only one ordinal position lower than 0.5. so there is a possibility
that for finer demand sets agents in population 2 receive payoffs very close to 0.5.

Under imitate better an outside option of more than % is exercised quite often.
When it is not exercised, the typical payoft of agents in population 2 is above that of
the outside option under imitate better. Under proportional imitation the outside
option is exercised in the majority of rounds.

Under sampled best reply with sample size 2. an outside option of more than

is exercised occasionally and the results conceutrate on an outcome where player

D=

2 exchanges and receives slightly more than the outside option. This is the only
simulation of this section that matches the alternating offers prediction.

An explanation for the tendency of playcr 2 to accept the outside option of
0.6 under imitative learning rules is that the cvolutionary model does not capture
‘sensible’ behaviour of agents in the face of this outside option. For example consider
a state where all agents in population 2 accept the outside option. The ‘sensible’
response of agents in population 1 is to make low demands in an attempt to make

exchanging more attractive than taking the outside option to agents in population
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2. However under imitative learning rules, all demands of agent 1 receive payoff
zero, so there is no evolutionary pressure to make any response at all. On the other
hand, if agents in population 2 were exchanging with a third population and making
a demand feasible to population 1. then a low demand by an agent in population
1 would occasionally receive a non-zero payoff. providing cvolutionary pressure to
reduce demands. Thus in this case. this direct outside option setting does not seem

to correspond well to the indirect outside options sometimes available in networks.

8.5 The 3 Player Line Network with Unit Cakes

This section is on the network Lj. The expected outcome here is that player 2
receives a high payoff. In particular, theorem 7.3 proves that the outcome of the
evolutionary model in the limit € — 0 under the imitative learning rules considered
here and a few other assumptions is that player 2 receives the maximum possible
payoff. One motivation for simulations on this network is to determine how well
this prediction holds for general values of e. This prediction is also supported by )
the market bargaining game of section 4.4. In all simulations of this section, each

player has the demand set® {0,0.05,0.1.... 1}.

Results

Tables 8.30 and 8.31 give the details of the simulations of this section. Recall that
m is the sample size of a learning rule. Note that the factor of proportionality for

the proportional imitation learning rule is 1. Tables 8.32 - 8.36 contain the data.

Summary and Discussion

The strong prediction that player 2 receives the payoft 0.95 is only unambiguously

supported by the sampled best reply rule with sample size 1. In other simulations

5Note that the inclusion of the demand | means the couditions of theorem 7.3 do not hold.

However, other simulations without this demand produce very similar results.
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Table 8.32 8.33 8.34
Learning rule 3 B PI
A 15 30 40
€ 0.14 0.19 0.06
P 5.8 x 107 | 2.7 x 10% | 5.9 x 102
X 0.6Y 0.54 0.61
v 7.1 x 10° | 6.9 x 10° | 6.4 x 103
Rounds played 2 x 1Y 2 x 108 2 x 108
Minimum proportion displayed 0.002 0.02 0.02

Table 8.30: Guide to the simulations of section 8.5 (1)

Table 8.35 8.36
Learning rule SBR,m=1)SBR, m=2

A 50 40

€ 0.2 0.12

p 3.8 x 10? 5.0 x 102
X 0.51 0.71
o 2.0 x 103 6.0 x 102
Rounds played 2 x 108 108
Minimum proportion displayed (.001 0.01

Table 8.31: Guide to the simulations of section 8.5 (2)



Modal strategy
1 2 3 Proportion

0.05 0.95 0.05 0.905
0.15 0.85 0.15 0.017
0.1 09 0.1 0.004
0.05 0.95 0.05 0.002
0.1 09 0.05 0.002
0.05 095 0.1 0.002

Others 0.068

Table 8.32: IB on L3 (1)

Modal strategy
1 2 3 Proportion
0.1 09 0.1 0.473
0.15 085 0.15 0.317
02 08 02 0.055
0.05 095 0.05 0.043
Others 0.112

Table 8.33: 1B on L3 (2)
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Modal strategy

1 2 3 Proportion

0.3 { 0.7 | 0.3 (.533
0.35 | 0.65 | 0.35 0.171
04 | 0.6 | 04 0.064
025 0.7 | 0.3 0.041
0.3 {065} 0.35 0.036
03 | 0.7 1025 0.035

Others 0.120

Table 8.34: PIL on Ly

Modal strategy

1 2 3 Proportion

0.05 | 0.95 | 0.05 |  0.979
0.1 [ 095005 0003
0.05 | 0.95 ] 0.1 0.003 |
0.1 | 09|01 0.002
0.15 | 0.95 | 0.05 |  0.001

Others 0.012

Table 8.35: SBR on L3 with sample size 1



Modal strategy

1 2 3 Proportion

0.2 | 0.8 | 0.2 0.842
0.25 | 0.75 1 0.25 0.108
0.15 | 0.85 | 0.15 0.012
0.35 | 0.65 | 0.35 0.016

Others 0.022

Table 8.36: SBR ou L3 with sample size 2

which are not recorded here. this solution is found to be robust to variations in the
parameters Al and e. The imitate better learning rule provides some support for
the same prediction but this solution is not robust to Al and e.

Where the strong prediction is not supported, the simulations instead support
an outcome in which player 2 makes a demand of between (0.9 and 0.7 and plavers
1 and 3 make equal demands for the remainder of the unit of payoff. In some cases
a single such demand profile is modal most of the time, in others the time is shared
between several similar profiles.

The fact that all learning rules support qualitatively similar solutions suggest
that the evolutionary mechanism driving this outcome is simpler than in the 2
piayer case. Even sampled best reply with sample size 1 has some predictive power
in contrast to the 2 player case. The faét that imitate better and proportional
imitation have qualitatively similar results for Ly suggests that the evolutionary
mechanism mentioned does not depend on cardinal payoff comparisons.

The results for imitative learning rules are qualitatively similar to the prediction
of theorem 7.3 but exhibit some differences. This gives sowe support to the predic-
tion of section 7.3.1 that qualitative results arc robust to small variations in e. The
prediction that M and e can affect the exact outcome sclected is also supported,

as illustrated by the difference between the results of tables 8.32 and 8.33. Further
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simulations, whose results are not recorded here. show that the most commonly
modal demand profile also varies depending on the choice of M but the qualitative
outcome is robust. This is reflected in the fact that differcut values of M are used
in combination with different values of € to illustrate different possible outcomes.
Note that the typical demand difference between the central and outlying agents
is smaller for proportional imitation than for imitate better. A possible explanation
for this is that since probabilities of imitating demands are lower under proportional
imitation, the evolutionary pressure on agents in populations 1 and 3 to undercut
each other, captured by theorem 7.3. is weaker. However it is not obvious what

other evolutionary force countervails this.

8.6 A 3 Player Ring Network

This section investigates a 3 player ring network. As discussed in section 4.4, under
certain conditions such networks have a unique von Neumann-Morgenstern triple
containing three outcomes and the market bargaining game of that section sup-
ports all of these outcomes as possible results of bargaining. The interpretation
of the solution to the market bargaining game of that section is that one of these
outcomes occurs. The network of this section is constructed so that it supports a
von Neumann-Morgenstern triple whose outcomes are all those in which two players
receive payoff 0.5.

The outer boundary of each cake is constructed from two line segments from the
point (0.5,0.5) to points on each axis. From definition 4.3 it can be seen that such a
network supports the required von Newmann-Morgenstern triple. Fach cake can be
described completely by giving the points at which its boundary function intercepts
the axes. These are as follows: for K2 (0,1.3) and (0.8,0). for £23 (0,1) and (1,0).
and for 3! (0,0.65) and (1.6,0). Recall that a point (z.y) € K™ is written so that
z is the payoff to player a and y that to player b.

The demand sets are given by D, = {0,0.1.0.2.... . M,} where M; is the max-
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plny’gl' 1

- ‘
player 3 player 2

Figure 8.2: The network under investigation in section 8.6

imum feasible payoff to ¢ in any cake. For these cakes M) = 0.8, My = 1.3 and
Mj = 1.6. This allows for easy presentation of the results.

It can be argued that this choice of D does not produce outcomes of the game
evenly spread along the Pareto boundaries of the cakes and that this factor poten-
tially biases the resulj:s. However, for networks of more than 2 players, such an even
spread does not seem easy to achieve, except in the most syimetric cases (e.g. unit
cakes). The fact that the outcomes are not spread evenly can be viewed as a small
test of robustness.

Note that % is neither the median demand of Dy or Ds nor the payoff either
player receives in the symmetric Nash bargaining solution" in two player bargaining
on K2 or K31, This feature is chosen to prevent the model concentrating on the

demand 0.5 for these reasons.

SFor these cakes, whichever player receives a payofl of > | in an intercept with an axis receives
a payoff of %3: in the symmetric Nash bargaining solution of that cake for the following reason. By
the scale independence and symmetry axioms. this is the player’s Nash bargaining solution payoff
in a cake whose outer boundary is formed by extending the line segment between this intercept and
(0.5,0.5). By the axiom of the independence of irrelevant alternatives. the Nash bargaining solution

is the same for the cake constructed in the main text.



Results

Tables 8.37 and 8.38 give the details of the simulations of this section. Recall that m
is the sample size of a learning rule. Note that the factor of proportionality for the
proportional imitation learning rule is § the reciprocal of the maximum demand.
Note that a relatively small number of rounds are played in the simulation of table
8.41 as the value of v is low. The large value of p is in the same simulation is
probably simply due to the perturbations caused by the large value of € rather than

illustrating common transits between B sets. Tables 8.39 - 8.41 contain the data.

Table 3.39 | 8.40
Learning rule B PI
M 50 50
€ 0.21 0.05
p 3.8 x 107 | 2.6 x 10°
X 0.52 0.51
v 9.8 x 10* | 1.0 x 104
Rounds played 5 x 109 5 x 109
Minimum proportion displayed 0.001 0.001

Table 8.37: Guide to the simulations of section 8.6 (1)

Summary and Discussion

All the learning rules discussed here provide very strong support for the demand
profile (0.5,0.5,0.5), matching the prediction of the market bargaining game. Other
simulations, not included here, show that this support is robust to changes in M
and e. Indeed, the reason that such a large value of € is chosen for the simulation

of table 8.42 is that for smaller values no other demand profiles were modal for a

significant proportion of rounds.
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Table 8.41 8.41
Learning rule SBR.m=1|SBR, m=2
M 25 20
€ 0.2 0.38
p 2.6 x 107 91
X 0.53 0.53
v G.4x 103 6.4 x 102
Rounds played 5 x 109 5 x 10°
Minimum proportion displayed 0.001 (.01

Table 8.38: Guide to the simulations of section 8.6 (2)

Modal strategy
1 { 2 3 Proportion
05105 0.5 0.995
05105 04 0.002
l Others 0.003

Table 8.39: IB on « 3 plaver ring network

Modal strategy
1 2 3 Proportion

051051 05 0.950

0.5105] 04 .022

05104 05 0.012

04|05 05 0.005

05105 03 0.001
Othiers 0.010

Table 8.40: PI on a 3 plaver ring network
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Modal strategy
1 2 3 Feasbile exchanges | Proportion
05105 0.5 12.23.31 (0.983
05105 07 12 0.005
05105 09 12 (.004
0.5 08| 0.5 31 0.002
Others ().006

Table 8.41: SBR on a 3 player ring nctwork with sample size 1

Modal strategy
1 2 3 Feasible exclianges | Proportion
051051 0.5 12.23.31 1.955
04]05| 0.5 12.23.31 0.020
Others 0.025

Table 8.42: SBR on a 3 player ring nctwork with sample size 2



I do not have a candidate mechanism which explains such strong support for
this outcome. It seems unlikely that minimal tree analysis such as that used in
section 7.6 can be used. In 3 player ring networks at least one agent is excluded
from exchange given any demand profile. Under imitative learning rules these agents
may imitate any demand with a positive pavofl. It can easily be shown that every
recurrent class of the unperturbed model thus has outward resistance of 1, so the

resistance based arguments of minimal tree analysis seem to have little power.

8.7 A 4 Player Line Network with Unit Cakes

This section is on the network L,. One motivation for studying this network is that
the experimental data of section 2.7 indicates that players 2 and 3 do better than
players 1 and 4, but the alternating offers approach did not capture this result, as
shown in section 5.2.4 where the payoff vectors (%, 5 % %) and (0, % é 0) are offered

as the only ‘plausible’ limiting solutions of a model on this network.

Results

Table 8.43 gives the details of the simulations of this scction. Recall that m is
the sample size of a learning rule. Note that the factor of proportionality for the
proportional imitation learning rule is 1. In the simulation of table 8.45 the demand

sets were:

Dy = D3 = {0,0.01,0.04,0.09.0.14.0.2,0.3,0.4.0.5,0.75. 1}

Dy =Dy={1—-x|ae D}
In all the other simulations of this section. all demand sets were {0,0.05.0.1,...,1}.
Note that a relatively number of rounds were played in the simulation of table 8.47
as the final value of v was so low. Tables 8.44 - 8.47 contain the data. Recall that
in the latter tables, the figures in brackets after demands are the ordinal positions

of the demands in the corresponding demand scts.
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Table 3.44 | 8.45 8.46 8.47
Learning rule 1B | B | PI SBR, in =2

M 25 25 25 50
€ 0.18 0.18 0.18 0.12

p 2.5 x 10° | 5.2 x 102 | 4.0 x 102 | 4.4 x 10?
X 0.61 0.65 0.62 0.78

~ 5.0 x 10% | 1.Ox 10" | 18 x 103 | 2.2 x 10?

Rounds played 2x 109 | 2x10% | 2x 108 5 x 10°
Minimum proportion displayed 0.02 0.01 0.02 0.01

Table 8.43: Guide to the simulations of section 8.7

Modal strategy
1 2 3 4 Proportion
0.35 ] 0.65 | 0.65 | 0.35 0.164
0.35 [ 0.65 | 0.6 | 04 0.143
0.4 | 0.6 | 0.65 | 0.35 0.131
0.35 1065 | 0.7 | 0.3 0.084
0.3 | 0.7 | 0.65 0.3 0.078
0.35 | 0.65 | 0.55 | 0.45 0.069
0.4 0.6 0.6 0.4 0.043
03] 07 |07 |03 0.037
0.4 0.6 0.7 0.3 0.031
0.45 | 0.55 | 0.65 | 0.35 0.022
Others 0.198 ]
Table 8.44: IB on L, with evenly spaced demand




Modal strategy

1 2 3 4 Proportion

0.09 (4) | 0.91 (8 0.

|

) ) ) | 0.310

0.14 (5) | 0.86 (7) Jlo7 o) | 0243

0.14 (5) | 0.86 (7) | 0.4 (8) | 0.6 (4) |  0.232
) )

0.09 (4) | 0.91 (8) | 0.4 (8) | 0.6 (4) | 0.127

0.14 (5) | 0.86 (7) | 0.5 (9) | 0.5 (3) 0.026

0.09 (4) | 0.91 (8) | 0.2 (6) | 1.3 () 0.020

Others (.042

Table 8.45: IB on L, with unevenly spaced demands

Modal strategy

1 2 3 4 Proportion

0.45 | 0.55 | 0.55 | 0.45 0.220
04 | 06 | 06 | 04 0.167
04 | 06 | 0.55 | 045 0.165
0.35 | 0.65 | 0.55 | 0.45 0.031
0.45 055 | 0.6 | 0.4 0.067
0.35 10651 06 | 04 0.040

0.4 | 0.55 | 0.55 | 0.45 0.027

0.4 | 0.6 |0.55] 04 0.021

Others 0.262

Table 8.46: Pl on Ly



Modal strategy

1 2 3 4 Proportion

05105 | 05 | 05 0.799
0.45 | 0.55 | 0.45 | 0.55 0.053
045055 | 0.5 | 05 0.032

0.55 | 0.45 | 0.55 | 0.45 0.015

Others 0.028

Table 8.47: SBR ou L, with sample size 2

Summary and Discussion

Both imitative rules provide support for the experimental observation of the central
players receiving an advantage. The similarity of these results to the outside option
results of section 8.4 is discussed in section 9.2.4 of the conclusion. The imitate
better rule provides stronger support for the experiimental observation, but again
fails to be robust to choice of D, as in the 2 plaver case. Simulations for the other
learning rules, which are not recorded here. showed they did not suffer from these
robustness problems. The sampled best veply rule supported the demand profile of
(0.5,0.5,0.5,0.5).

The results for proportional imitation show only a small advantage for players 2
and 3. In the most commonly modal demand profile they receive a payoff only one
ordinal position higher than 0.5. This suggests the possibility that for finer demand
sets the advantage is still only that of one ordinal position. and so tends to zero
as the demand set size becomes larger. Simulations with finer demand sets show
this to be incorrect. These results are not included as for such demand sets a very
large number of demand profiles are modal for a significant number of rounds so the

results are hard to display using the reporting methods of this chapter.



8.8 A 4 Player Ring Network

This section presents a 4 player ring network which can support a demand profile
in which all pairs of demands of neighbouring players lie on the Pareto boundary of
the corresponding cakes. This is similar to a von Neumann-Morgenstern triple. The
cakes of this network are defined by the boundary functions f12 = f23 = f34 =
41 = 1(7-10z) (see figure 8.3). The outcome mentioned is (0.5.0.5,0.5,0.5). Note
that this does not coincide with the Nash bargaining solution in any single utility
cake. The Nash bargaining solution in the cake K7 is (

rd . . .
-55)- In all simulations of

xI=1

this section, all demand sets are {0,0.05.1..... 1.75}.

plaver 1

player 4 ‘ — “=player 2

player 3

Figure 8.3: The network under investigation in section 8.8

Results

Table 8.48 gives the details of the simulations of this section. Recall that mn is
the sample size of a learning rule. Note that the factor of proportionality for the
proportional imitation learning rule is 1: the reciprocal of the maximum demand.
A relatively low number of rounds were played in the simulation of table 8.51 since
the corresponding value of v was so low. Tables 8.49 ~ 8.51 contain the data. In all

the demand profiles of these tables. all exchanges are feasible.
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Table 3.9 &.50 8.51
Learning rule 1B Pl SBR, mn =2
M 35 40 20

€ 0.23 0.035 0.28
p 28 x 102 1 1.1 x 10?2 | 3.6 x 102
X 0.55 0.60 0.58
~ 2.7 x 103 ] 1.5 x 10? 85

Rounds played

Minimum proportion displayced

2 x 1YY

0.005

2 x 108

0.01

2.5 x 10°

0.001

Table 8.48: Guide to the simulations of section 8.8

Modal strategy
1 2 3 4 Proportion

0.5 0.5 0.5 0.5 0.897
0.5 0.5 0.5 | 045 0.011
0.5 1045 ) 0.5 0.5 0.008
0.5 0.5 | 0.45 | 0.5 0.008
0.45 1 0.5 0.5 0.5 0.006

Others 0.070

Table 8.49: IB on a 4 plaver ring network
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Modal strategy

1 2 3 4 Proportion

0.5 1 05 | 05 | 05 0.693
0.5 | 05 | 0.5 | 045 0.057

0.5 05 1045 ) 0.5 0.055
0.45 | 0.5 0.5 0.5 0.051
0.5 1045 0.5 0.5 0.043

Others 0.101

Table 8.50: PI on a 4 plaver ring network

I

Modal strategy |

1 2 3 4 Proportion

05|05 05 | 05 0.979
05]05]| 05 | 04 0.001
04105} 05 | 05 0.001
0.5(05]045}| 0.5 0.001
0.51057] 0.5 | 045 0.001

Others } 0.017

Table 8.51: SBR on a 4 player ring uetwork witli sample size 2



Summary and Discussion

All the simulations of this section provide strong support for the von Neumann-
Morgenstern like demand profile (0.5,0.5.0.5.0.5). However. as for results of the 3
player ring network, I do not have a candidate mechanism to explain this outcome.
For this case, it might be possible to use minimal tree analysis. as not all outcomes

of the network involve a player being excluded fromn exchange.

8.9 A Second 4 Player Ring Network

This section presents a 4 player ring network which can support an outcome outside
the core. The cakes of this network are defincd by the boundary functions f'? =
f34 = —23—(1 —x), f23 = f4 = %(3 — 4ux) (see figure 8.4). In all simmulations of this
chapter all demand sets are {0,0.1,0.2,....1.5}.

playver 1

/

player 4 - K player 2

plaver 3

Figure 8.4: The network uuder investigation in section 8.9

Results

Table 8.52 gives the details of the simulations of this scction. Recall that i is

the sample size of a learning rule. Note that the factor of proportionality for the
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proportional imitation learning rule is =; the reciprocal of the maximum demand.
A relatively low number of rounds were plaved in the simulation of table 8.55 since
the corresponding value of v was so low. Note that in the same simulation, although
the value of p was very low, in practice most changes of modal demand only lasted
for a short number of rounds before returning to the most commonly modal denand

profile. Tables 8.53 — 8.55 contain the data.

Table 8.53 8.54 8.55
Learning rule 1B PI SBR, m =2
M 40 40 40
€ 0.06 0.04 0.075
p 3.1 % 10% | 6.2 x 10 25
X 0.68 0.62 0.69
oy 2.8 x 10% | 2.7 x 103 | 2.4 x 102
Rounds played 2 x 108 5 x 108 5 x 10°
Minimum proportion displayed 0.05 0.02 0.01

Table 8.52: Guide to the simulations of scction 8.9

Modal strategy
1 2 3 4 Feasible exchanges | Proportion
06 | 0.6 | 0.6 | 0.6 12,34 0.502
0.6 | 0.6 |0.55 | 0.65 12,34 0.073
0.55 | 0.65 | 0.6 | 0.6 12.34 0.072
06 | 0.6 | 0.5 | 0.75 12.34 0.068
Others . 0.285

Table 8.53: IB on a 4 plaver ring network
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Modal strategy
1 2 3 4 Feasible exchanges | Proportion

0.5 | 0.75 ] 0.5 0.75 12.34 0.260
06 { 04 |0.7|0.45 12,23.34.41 0.112
0.6 1045 ] 0.6 0.45 12,23.34.41 0.084
0.7 1045 06| 04 12,23.34.41 0.067
0.5 [ 075 04| 0.9 12.34 0.052
0.6 | 0.5 | 0.5 0.45 12,2:3.34 41 0.025
0.45 | 0.8 | 0.5 |0.75 12.34 0.021

Others 0.379

‘Table 8.54: PI on a 4 plaver ring network

Modal strategy i

1 2 3 4 Feasible oxchanges | Proportion

06 04 107} 04 12,23.34,41 0.419

0.7 04 |07 04 12,23.34,41 0.251

0.6 04 | 071045 12.23.34.41 0.197

0.7 1045 |06 | 04 12,23.34.41 0.070

0.6 | 0.45 | 0.6 | 0.45 12.23.34,41 0.034
Others | 0.029

Table 8.55: SBR on a 4 player ring network with sample size 2
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Summary and Discussion

Table 8.56 contains all strategy profiles which are modal for at least 0.1 of all rounds
in any of the simulation of this section. The demand of player 7 is given in the colunn

headed o;. The four columns on the right illustrate whethier these demand profiles

lie in the core. A non-core profile satisfies f*'"'(0;) < g,41 or f41(o4) < 01.
o1 | o2 | a3 | ag | fPaa) | [ (a) | f2e2) | fPH(o3)
06 06 |06 0.6 0.3 0.6 0.3 0.6
051075705075 0 V.75 0 0.75
06| 04 | 0.7 |0.45 0.6 0.6 0.7 0.45
06| 04 107] 04 0.7 0.6 0.7 0.45
0.7 04 107} 04 0.7 0.45 0.7 0.45
061{ 04 {07045 0.6 0.0 0.7 0.45

Table 8.56: Illustration of whether most comimon demand profiles lie in the core

This demonstrates that sampled best reply with sample size 2 and proportional
imitation offer some support for demand profiles corresponding to non-core solutions
to this network. However imitate better selects a demand profile which corresponds
to a core solution. Proportional imitation also offer some support to a different such
demand profile.

An explanation for non-core profiles receiving significant weight in these models
is the matching rule. For example suppose deniand profile o is played, all exchanges
are feasible and f23(o2) < o3 but f%!(oy) —~ o7 If player 2 raises his demand
slightly then there are two maximal consistent outconies, with corresponding sets of
exchanges {34} and {23,14}. Player 2 gains iu the second case, but this is offset by
the possibility of exclusion from exchange in the first case, so that player 2 does not

wish to change his demand.

The significance of support for non-core solutions and this explanation for their



occurrence is discussed further in section 9.1.3.

8.10 The 5 Player Line Network with Unit Cakes

This section is on the network Ljz. Several ditferent predictions for the outcome
of this network have been made in the coursc of this thesis. Theorem 7.3 proves
that the outcome of the evolutionary model nuder imitate better or proportional
imitation in the limit € — 0 and under a few other assumptions is that players 2
and 4 receive the maximum possible payoff. One motivation for simulations on this
network is to determine how well this prediction holds for relatively large values of
e. On the other hand, the models based on the alternating offers game of chapters
4 and 5 allow a wide range of solutions. An interesting question is whether the
evolutionary model selects any of these solutions and how robust this selection is to
the values of M and e. In all simulations of this section, each player has demand

set” {0,0.05,0.1,...,1}.

Results

Tables 8.57 and 8.58 give the details of the simulations of this section. Recall that
m is the sample size of a learning rule. Note that the factor of proportionality for

the proportional imitation learning rule is 1. Tables 8.59 — 8.64 contain the data.

Summary and Discussion

The prediction of theorem 7.3 of a demand profile of (0.05,0.95,0.05,0.95,0.05) does
not hold in general. The only simulation for which it ’does hold uses imitate better,
and even under this learning rule, the result is not robust to variations in € and Af.

Imitate better is the only learning rule to strongly select a single demand profile.

For proportional imitation in particular, a large munber of profiles are modal for

"Note that the inclusion of the demand 1 means the conditions of theorem 7.3 do not hold.

However, other simulations without this demand produce very similar results.
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Table 8.59 8.60 8.61
Learning rule 13 IB PI
M 15 40 15
€ 0.09 0.18 0.04
p 3.1 <10% | 6.1 x 10% | 2.4 x 10?
X 0.85 0.72 0.70
~ 4.1 % 10% | 42 x10% | 3.6 x 10®
Rounds played 2x 10 | 2x10% | 2x10%
Minimum proportion displayed 0.01 0.01 0.02

Table 8.57: Guide to the simulations of section 8.10 (1)

Table 8.62 8.63 8.64
Learning rule PI SBR,m=1|SBR,m=2
M 75 40 20
€ 0.09 0.002 0.0025
p 1.8 x 107 | 1.5 x 10? 6.7 x 102
X 0.41 0.97 0.84
v 54 x 10% | 7.3 x10° 2.8 x 103
Rounds played 2 x 10° 2 x 109 2 x 10°
Minimum proportion displayed 0.02 0.05 0.02

Table 8.58: Guide to the simulations of section 8.10 (2)
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Modal strategy

1 2 3 4

e

Proportion

0.05 1 0.95 | 0.05 | 0.95 | 0.05 0.929

0.15 1 0.85 | 0.15 | 0.9 0.1 0.022
0.05 1095 0.1 0.9 0.1 0.020
Others 0.029

Table 8.59: 1B on L; (1)

Modal strategy

1 2 3 4 ) Proportion

0.25 { 0.75 |1 0.256 | 0.75 | 0.25 0.661
02 | 08 | 02| 08 | 0.2 0.208
0.25 1 0.75 |1 0.25 | 0.8 | 0.2 0.033
0.2 | 0.8 [0.25 | 0.75 | 0.2 0.029

0.25 ] 0.75 |1 0.25 | 0.85 | 0.15 | 0.010

Others 0.059

Table 8.60: IB for Ly (2)




Modal strategy

1 2 3 4 ) Proportion
0.35 | 0.65 | 0.35 | 0.65 | 0.35 0.250
0.35 ] 0.65 | 0.35 | 0.6 | V4 0.067
0351065 03 | 0.7 | 0.3 0.060
04 | 0.6 1035 0.65 | 0.35 0.057
0.35 | 0.65 | 0.35 | 0.65 | 0.3 0.040
0.3 | 0.650.35 | 0.65 ] 0.35 0.032
04 { 06 | 04 | 06 | 04 0.032
0.35 { 0.65 | 0.35 | 0.7 | 0.3 0.028
0.35 ] 0.65| 0.3 | 0.65 | 0.35 0.025
03 | 07 | 0.3 10651 0.35 0.021

Others 0.388

Table 8.61: Pl ou L5 (1)
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Modal strategy

1 2 3 4 ) Proportion

04 { 06 { 04 | 06 | 04 0.115
0.45 { 0.55 | 0.45 | 0.55 | .45 0.106
0.4 | 0.55 | 0.45 | 0.55 | 0.45 0.069
0.45 | 0.55 ] 0.45 | 0.55 | 0.4 0.066
0.4 ] 055]0.45] 0.55 | 0.4 0.037
035| 06 | 0.4 | 06 | 04 0.036
045055 | 04 { 0.6 | 0.4 0.033
04 | 0.6 | 04 | 0.6 | 0.35 0.033
0.4 [055] 04 § 06 | 04 0.028

Others 0.477

Table 8.62: Pl ou Ly (2)

Modal strategy

1 2 3 4 ) Proportion

0.15 | 0.85 | 0.15 | 0.85 | 0.15 | 0.212
0.2 | 08 | 02| 08 | 02 0.100
0.2 | 0.8 |0.15]085|0.15] 0.085

0.15 | 0.85 | 0.15 | 0.9 | 0.1 0.057
01109 |01]09 |01 0054
0.2 | 08|02 |075]025] 0.051

0.25 1 0.75 | 0.25 | 0.75 | 0.25 | 0.050

Others 0.391

Table 8.63: SBR on L5 with sample size 1
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Modal strategy

1 2 3 4 5 Proportion

03|07 ]03] 07|03 0.495
0.35 [ 0.65 | 0.35 | 0.65 | 0.35 |  0.213
03 | 0.7 1035065035 0043
0.35 | 0.65 | 0.35 | 0.7 | 0.3 0.043
0.35 | 0.65 | 0.35 | 0.6 | 0.4 0.039
0.35 065 | 0.3 | 0.7 | 0.3 0.028
0.35 | 0.65 | 0.4 | 0.6 | 0.1 0.025
03 | 07 | 03 1065 u35| 0023
0.35 | 0.65 | 0.35 | 0.75 | 025 | 0.021

Others 0.070

Table 8.64: SBR on Ly with sample size 2

a significant proportion of rounds. Most of the demand profiles selected are of the
form (1—-z,z,1-z,2,1—z) withz > % and the others differ only slightly. The value
of z is variable, depending on the choice of ¢ and M. However, for each learning
rule it is generally lower than the payoff player 2 receives in the simulations on Lj.
Note that again the sampled best reply rule with sample size one does have some

predictive power, in contrast to the 2 player case.

8.11 The 7 Player Line Network with Unit Cakes

This section is on the network L-. In contrast to Ly and Ls, theorem 7.3 does
not apply to here. A motivation for study is to investigate whether the patterns
observed for Ls and Lg hold or break down. More generally, this is an opportunity to
investigate whether any qualitative differences arc revealed as network size increases.

In all simulations of this section, each player has demand set {0,0.05,0.1,...,1}.
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Results

Table 8.65 gives the details of the simulations of this section. Recall that m is
the sample size of a learning rule. Note that the factor of proportionality for the

proportional imitation learning rule is 1. Tables 8.66 — 8.68 contain the data.

Table 8.66 8.67 8.68
Learning rule 1B PI SBR. m =2
A 15 15 20
€ 0.09 0.04 0.025
p 46 x 10° [ 1.5 x 102 | 3.2 x 102
X 0.83 0.73 0.98
v 2.6 x 10% | 24 x 103 | 4.3 x 10?
Rounds played 2x 108 | 2x 108 107
Minimum proportion displayed 0.01 0.015 0.01

Table 8.65: Guide to the simmulations of section 8.11

Summary and Discussion

The results of these simulations follow several patterns of Ly and Ls. In the most
commonly modal demand profiles, even numbered players make demands above 0.5
and odd number players make demands below (.5. The typical demand difference
between even and odd players is smaller than for Lj and Ls. Imitate better yields
the highest payoff difference. However, unlike L an,d L5, I could not find a choice of
parameters A/ and e which selected a demand profile in which even players played
the demand 0.95. Demand profiles are less strongly selected than for Ly and Ls,
and indeed most other networks investigated in this chapter. in the sense that more
profiles are modal for a significant proportion of rounds. This was especially pro-

nounced for proportional imitation where no demand profile is modal for more thau



Modal strategy

1 2 3 4 5 ) 7 | Proportion

0.1 0.9 {0.151085 | 0.15 | 0.9 | 0.1 0.560
03 | 07 |03 |07 ] 03 108]|02 0.097
0.1 09 | 01 | 09 ] 0.1 |09 }0.1 0.089
0.1 09 | 02 ] 08 ] 020802 0.081
0.1 09 | 02 | 08 |02 0901 0.051
0.15 1085 ]0.15 085 |0.15 109 |0.1 0.025
0.1 109 1015710851 0.1 {09 0.1 0.020
0.1 0.9 | 0.1 08 ]0.15709 101 0.014
0.35 { 0.65 | 0.35 | 0.65 | 0.35 | 0.8 | 0.2 0.012

Others 0.051

Table 8.66: IB on Ly

0.1 of all rounds!

In any maximal consistent subgraph of L. as defined in definition 7.2, players 2
and 6 are included in an edge. However there arc subgraphs in which player 4 is not.
This suggests that player 4 is in a weaker bargaining position than players 2 and
6 and must make more concessions to his neighbours. Nonetheless, the simulations
show that the even numbered players usually make equal demands. Only under
imitate better is it apparent that there is a slight tendency for player 4 to demand
less than the others®.

Finally, note that the value of p tends to decrdase as network size increase. In

particular, note that for each simulation on L7 in this section there is a simulation

8(iven the fact that under proportional imitation a very large number of demand profiles are
modal for a significant proportion of rounds. it is not possible to rule out the existence of a slight

tendency for player 4 to demand less. This suggests that additional methods of reporting should

be used.
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Modal strategy

1 2 3 4 5 0 7 Proportion
04 | 06 ;04 |06 7|04 ] 06104 0.064
0.35 | 0.65 | 0.35 | 0.65 | 0.35 | 1.G5 | 0.35 0.035
04 | 06 | 04 | 06 }0.35] 065|035 0.032
0.35 [ 0.65 1035 0.6 | 04 | UG | 04 0.029
04 [ 0.6 | 04 | 06 | 04 | 006 |0.35 0.021
0.4 | 0.6 § 0.4 |0.55 | 045 ] 0.65 | 0.35 0.016
03 | 0.7 | 0.3 | 0.65]0.35 | 0.65 {0.35 0.016
04 | 06 | 04 | 055 04 | 006 | 04 0.015
03 ({07 |04 ] 06| 04706 04 0.015
0.35 | 0.65 | 0.35 | 0.6 | 0.35 | 0.65 | 0.35 0.015
04 | 06 | 0.4 | 06 | 04 | 0651035 0.015
0.351065| 04 | 06 | 04 | 0.6 | 0.4 0.015

Others 0.611

Table 8.67: PI on L+




Modal strategy
1 2 3 4 5} 6 7 | Proportion

04]06]04(061]04]06704 0.517
0570570505705/ 05]0.5 0.155
05]05,05(05}05]06]|04 0.103
04)06[04(06(0407]0.3 0.051
0410604105104 ]06104 0.019
03]07]041]106]04106]04 0.015
0604050510505 ;0.5 0.015
06[104106(041061]0.06104 0.010

Others 0.115

on Lg in section 8.11 using the same learning rule and values of M and e. For each
simulation in this section, the corresponding simulation in section 8.11 has a smaller
value of p. This suggests that a lower value of € may be required for larger networks.
On the other hand, a possible interpretation is that in a larger network, there is
roughly the same possibility of a transit occuring in cach realised exchange and
more transits take place simply because there are more realised exchanges. There
may be networks where transits occurring in any exchauge rarely affect the whole
state of the model and thus a lower value of p may not indicate faster convergence

to the stationary distribution of the model. So lower values of p in larger networks

do not necessarily indicate that e should be reduced.

Table 8.68: SBR on L7 with sample size 2




Chapter 9

Summary and Conclusions

Section 9.1 discusses the suitability of the various models discussed in this thesis to
the task of modelling bargaining in bilateral exchange networks. Section 9.2 sum-
marizes the solutions of these models which have been found for various networks.
These results are also compared with each other and the experimental data and
theoretical predictions of the sociology literature. The final section, 9.3, consid-
ers possible extensions to this research. Recall that the notation used to refer to

networks, such as L,, is defined in section 3.1.3.

9.1 The Suitability of the Proposed Models

Section 9.1.1 collects the various desirable properties of a bargaining model which
have been mentioned throughout the thesis. Scctions 9.1.2 and 9.1.3 discuss how
well the proposed models based on the alternating offers and Nash demand games

respectively meet these properties.



9.1.1 Desiderata
Consistency with Existing Solutions and Experimental Evidence

The bargaining models in this thesis are extensions of models for bargaining between
2 players. Heunce for the special case of a 2 plaver network. the solutions of these
new models should be consistent with at least some parts of the existing analysis in
the literature. The same is true for other special cases for which analyses already
exist e.g. 3 player ring networks.

The results should also be reasonably cousistent with experimental results un-
der appropriate conditions. Sometimes differciices between the assumptions made
in a model and the design of an experiment may mean that they capture differ-
ent situations. So direct comparison with experimental results under inappropriate

conditions is not useful.

Robustness

The details of a bargaining structure will be imprecisely known to an investigator.
Also, they are subject to exogenous perturbations. For exanple there may be varia-
tions in the quality of exchange items or in the preferences of bargainers. For these
reasons, bargaining solution concepts should be reasonably robust to small changes
in the details of networks and other information on the bargaining situation, other-
wise they have little predictive power. An important example of this requirement is
used in section 4.4.4 where it is argued that adding empty exchange opportunities
should not affect the outcome of a 2 player bargaining situation. After all, a bar-
gainer is always likely to have all sorts of uu]n‘uﬁtable alternatives to engaging in

bargaining, and it should be possible to neglect the details of these.
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Low Computational Cost

This point applies to computer based models. The computational costs involved
in using these models should be practical. This is of particular iimportance in con-
structing models that can be extended to large networks which is one of the aims

mentioned in chapter 1.

Selection of Solutions

Simple bargaining models often support an extreinely wide array of solutions. Ex-
amples are the Nash demand game and the alternating offers game without time
preferences!. It is crucial that a model selects the ‘interesting’ solutions from these.
This is of course a subjective decision, but it can also be partly guided by experi-
mental data. For example, the experiments of the sociology literature described in
section 2.7 often concentrate on a narrow range ol possible outcomes?. This strongly
suggests that some selection beyond that mentioned for the simple bargaining mod-
els is appropriate. Experimental data also exists on two player bargaining which
supports similar conclusions for these cases (e.g. Binmore et al [6] and [10]).

In section 3.3.5 the argument is made that cvolutionary methods are not cur-
rently available for extensions of the alternating offers game and there is no firmn
intuitive basis to pick an equilibrium refinement. In the absence of such methods
of equilibrium selection, it is desirable for bargaining games to have a unique SPE
(or at least a set with little variation in outcouic). Multiple solutions can then be
represented in a bargaining model by exogenising part of the structure which selects
between outcomes, as in the market bargaining game of section 4.4.

On the other hand, evolutionary simulations. such as those of chapter 8, entail

lgor brief discussions of these models see the introduction to chapter 6 and section 4.2.1 respec-

tively.
21t is possible to dispute whether this evidence is suflicient. The outcomes may recur simply

because the subjects have all been picked from a society which enforces one bargaining convention

of many possibilities.



a degree of vagueness in their results due to their stochastic nature and may often
place weight on several outcomes. Here a judgenent must bhe made on whether the
weight is spread across too many solutions for the results to be useful. For example,
it is straightforward that this is the case for the results of table 8.13 which place

approximately equal weight on all Pareto optimal outcomes.

Instantly Adaptive Exchange

It seems intuitively likely that in a bargaining situation of sufficient complexity
players sometimes form an exchange without realising that an exchange in a distant
part of the network formed very recently. As discussed in section 5.3.1, perfect
information models of bargaining seem poorly adapted to capture this possibility.
Instead whenever one exchange forms, the remaining plavers typically are able to
instantly adapt their behaviours to take account of the reduced network of bargaining
opportunities. This property is referred to as instantly adaptive exchange and is
discussed in more depth in section 5.3.1. It is desirable that a bargaining model

should allow the possibility of exchange which avoids this property.

Realism, Tractability and Concision

These three properties are obviously desirable. They are grouped together since
there are trade-offs between achieving them in a bargaining model. Literal realisimn
is often sacrificed to tractability and concision in constructing any mathematical
model. Examples of features whose literal realisin is doubttul in this thesis include
the use of multilateral demands. as discussed in scction 4.4.5. and insisting on perfect
information. It is more important that the modecl should capture realistic behaviour
rather than include all its details. It is this interpretation of ‘realism’ that is a
desirable feature of a bargaining model. Some exammples are that players should be
treated reasonably symmetrically except for the differences due to network position

and that the level of commitment available to plavers should be judged correctly.



A particularly important instance of realismi which shiould not be sacrificed is
that solutions should not depend on unrealistic limitations that a model places on
players’ actions. This is because players would not voluntarily submit to bargaining
conventions which any of them have a unilateral incentive to break®. This condition

is based on the argument of Binmore in [3] wentioned in section 4.4.1.

9.1.2 Models Based on the Alternating Offers Game

Chapters 4 and 5 discuss various extensions to the alternating offers game. For the
purpose of tractability, all of them retain the feature of perfect information, with the
exception of the model of Corominas-Bosch described in section 4.5, As discussed
in section 3.3.4, the natural solution concept for perfect information models is SPE.
When such models are applied to networks of more than 3 players, the solutions
suffer from the limitations associated with instautly adaptive exchange described in
section 5.3.1. This problem is put aside as it may often not apply to small networks,
and the proposed models are considered in terms of the remainder of the desiderata.
Most important is the consideration that for these models to have much predictive
power a unique SPE is required (or at least a set of SPE pavoffs with little variation).

Section 4.3 introduces the telephoning model of Binmore [3]. Section 4.4.5 uses
an argument of Binmore [3] which states that plavers would wish to unilaterally
break the bilateral bargaining convention of this model and that it therefore does
not describe the main case of bargaining. This arguiment also applies to the bilateral
bargaining models of Calvé-Armgenol [16, 17. 18] discussed in section 4.5; indeed
the papers proposing these models make explicitly assume a setting in which only
bilateral bargaining is possible’.

Section 4.4 discusses the market bargaining game of Binmore [3], which is a

3This could be interpreted as an informal evolutionary stability criterion on the bargaining rules.

4 Another reason for not pursuing the bilateral bargaining approach is that these models already
deal with general bilateral exchange networks. although they have the limitation that bargaining

stops after the first exchange.
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model of bargaining for 3 player ring networks. It is argued that public delays
do not allow the model to provide consistency with the 2 plaver solution. and a
modification involving personal delays is proposed. Otherwise. the model meets the
desiderata quite well and is the basis of the novel models in chapter 5.

Some other bargaining models from the literature are discussed in section 4.5.
The unilateral demand exogenous order models of Binmore [3] allow non-bilateral
bargaining, but it is argued that to also treat the players symmetrically, and thus
provide consistency with the 2 player case, requires a very complicated order of play.
This seems both unrealistic and difficult to generalise. The model of Corominas-
Bosch [23] is not pursued mainly because it scems difficult to generalise to non-
bipartite networks. Also it supports multiple SPEs for the network 5 player line
network L.

Chapter 5 proposes two novel extensions of the market bargaining game which
can be used on any bilateral exchange network. The first, the exogenous ordering
model, is a straightforward extension of the market bargaining game. It requires an
exogenously specified ordering over the players which deteriines the order of play.
Lemmas 5.1 and 5.2 illustrate that for the casc of the line network Ls, different
choices of ordering can permit widely differing SPE outcomes. This does not give
the model much predictive power. An interpretation is that too much structure has
been exogenised including features crucial to selecting the solution. Furthermore, it
appears that the model is not easily tractable as there are a large number of possible
choices of exogenous ordering”® and there is no obvious general method of solution.

The second model of chapter 5, the endogenous ordering model, attempts to re-
solve these difficulties by endogenising the order of play. As discussed in section 5.2.1,
this appears to necessitate the introduction of rules which approach the acceptable

boundaries of realism and concision. Also, in scction 5.2.4 it is demonstrated that

5Indeed, there are some for which I could not solve the resulting bargaining game. See footnote

5 of chapter 5.
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this model can support multiple SPE outcomes for L; with large qualitative differ-
ences. Furthermore, the proof of this theorem is lengthy. indicating that tractability
of this model for more general networks is problematic.

To conclude, in addition to the problems of instantly adaptive exchange, it ap-
pears that the approach of extending the alternating offers game supports too wide
a range of solutions and produces models whicli are not easily tractable. These

problems are likely to increase for larger networks.

9.1.3 Evolutionary Models based on the Nash Demand Game

Chapter 6 introduces a bargaining model for general bilateral exchange networks
based on the Nash demand game in which strategies are simply demand values. The
simple strategy space of this game means that it is casy to use it as the basis of an
evolutionary model which can be implemented as a computer based simulation. The
following is a brief recap of the evolutionary modecl defined i chapter 6. A population
of M agents is associated with each network position. Each agent is given an initial
demand value. In each round of play, an agent from each population is selected at
random. These agents then play the bargaining game and change their demands
using simple learning rules based on their payofts and sonme other information about
the state of the model. Which extra information is used is specific to the learning
rule. There is also a small probability € > 0 that agents mutate to a random demand
rather than use their learning rule. In order that this modecl inay be implemented as
a computer simulation, the strategy space of the underlving game is discretised by
nominating a finite demand set for each player in the network under investigation.
Section 7.1 proposes 3 simple candidate learning rules for use in the model: im-
itate better, proportional imitation and sampled best replv. Imitate better involves
updating agents sampling another agent from the same population. If the most re-
cent payoff of the sampled agent is higher than that of the updating agent then the

updating agent switches to the demand of the sampled agent. Under proportional
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imitation the probability of this switch is proportional to the payoff difference. Vari-
ations on these learning rules with larger sample sizes are also proposed. Sampled
best reply with sample size m involves the updating agent sampling m agents from
each other population. A mixed strategy for each population is constructed from the
frequencies with which demands occur in the corresponding sample. The updating
agent switches to a demand which is a best reply to these mixed strategies. For each
of these learning rules, in particular sanpled best veply. large sample sizes increase
the computational cost.

Standard results of Markov chain theory are used to show that under a wide class
of learning rules there is a unique stationary distribution over the possible states of
the model, and that this corresponds to the expected state of the model in the long
term, independently of the initial state. Furthermore, it is argued in section 7.1 that
for the 3 candidate learning rules most of the weight of this stationary distribution
is placed close to B sets. These are sets of states in which some populations are
demand-homogeneous and the other populations correspoud to players who receive
payoff zero from any demand profile supported by the set of states. If the stationary
distribution places most of its weight on a few B sets then the model effectively
selects a bargaining solution. As e increases. this solution becomes more driven by
mutation until it has little connection to the bargaining situation. However, it is
argued in section 7.3.1 that for small €. the qualitative features of the solution are
likely to -be relatively robust to variations in .

The stationary distribution can be investigated by simulation. As discussed in
section 7.4, it is sufficient for the simulation to keep track of which demand profile
is closest to the state of the model in each round. Chapter 8 presents data from
simulations by listing the proportion of rounds that the most common demand
profiles are modal.

This evolutionary model has several unrealistic features. One, discussed in sec-

tion 7.2.4, is that it seems unnatural to have a population of agents associated with

303



each player position, as the main application is to social networks. However. the
Markov chain results just mentioned show that this setting may often permit se-
lection of solutions by simulation. In terms of the desiderata, there is a trade-off
between tractability and realisin.

The results of section 8.2 show that the results of the imitate better learning
rule are not robust to the choice of demand sets used in the game. As discussed
in section 7.1.1 this is not necessarily a reason to dismiss it. However it is not
a convenient feature for simulation. Considerable effort must be put into showing
that any solution it supports is robust to various "reasonable” choices of demand sets.
Some possible choices are demand sets which are cvenly spaced, or demand sets such
that the Pareto optimal outcomes of the game lic evenly spaced along the Pareto
boundary. Also, selecting demand sets satistving certain ‘reasonable’ properties iay
become a difficult task for larger networks in whichi the demand sets of oune player
can be used in several cakes.

Simulations detailed in section 8.2 show that the other candidate learning rules
are reasonably robust to the choice of demand sets. In particular, this includes imi-
tate better with a sufficiently large samnple size. However this learning rule becomes
too computationally costly to use for larger networks.

The sampled best reply updating rule with sample size 1 is rejected due to its
behaviour for 2 player networks. It does not select between strict Nash equilibria of
the underlying game, instead placing roughly equal weight on each. This fails the
‘selection of solutions’ item of the desiderata especially as these results do not match
those of experimental studies of 2 player bargaining (an example is Binmore et al
[6]). In these experiments bargaining outcomes in which one player takes almost all
of the available cake are almost never observed.

For 2 and 3 player networks, the learning rules proportional imitation and sam-
pled best reply with sample size 2 usually match some theoretical and experimental

solutions of the corresponding situations. An exception is that sampled best reply

304



with sample size 2 produces an unusual outcomnie for a 2 plaver network with an out-
side option; table 8.28 shows that an outside option can sometimes reduce a plaver’s
average payoff. Proportional imitation has the particularly attractive feature of di-
rectly describing the process by which agents update their demands based on the
outcomes of the underlying gaine. In contrast. sampled hest response requires an
undescribed mechanism to generate the best response.

Many of the simulations detailed in chapter 8 with the learning rules just men-
tioned do concentrate on solutions which are generally in accord with the desiderata.
However two problems emerge. As network size increases. the proportions of rounds
in which demand profiles are modal are typically spread much more evenly across
demand profiles. This is especially pronounced for the proportional imitation learn-
ing rule; in table 8.67 no demaud profile is modal for more than 0.07 of all rounds!
It is possible that the weight given by these proportions is still concentrated close to
a small number of demand profiles but spread thinly between many profiles nearby
to these. To investigate this possibility it would be necessary to use other methods
of interpreting the data. One simple method would be to find for each population
the proportion of rounds for which cach demand is modal.

The second problem is much more serious. The siinulations of section 8.9 are on
a particular four player ring network. For proportional imitation and sampled best
reply with sample size 2, these simulations spend a significant proportion of rounds
with non-core modal demand profiles. In this situation two neighbouring players
have a feasible exchange with each other which would improve both their payofts,
but they cannot unilaterally raise their demands to take advantage of it because
this causes a risk of exclusion. I interpret this as revealing that the underlying
game places unrealistic limitatious on strategies and allows artificial solutions to be
supported by the evolutionary model. Either of the neighbouring players mentioned

would like to be able to make an offer to the other. It seeins reasonable that a player
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can undertake this option while bargaining as usual with their other neighbour®.
Such an option would allow the non-core outcome to be easily destabilized.

Altering the underlying game to allow such options does not seem a straight-
forward task. For example, section 7.2.1 discusses the limitations of using directed
demands. Also, it would be hard to prove when cnough options had been added
to prevent artificial solutions being supported. Note that increasing the size of the
set of strategies and the complexity of the underiving game is likely to increase the
computational cost of simnulation.

Another possible resolution of this problem is to adjust the probabilities of the
outcomes of the matching rule as discussed in section 7.2.1. This might destabilize
the particular non-core solution described. However it does not appear obvious that
this prevents the problem occurring for other networks.

In conclusion, the simulation performs well for many small networks. However,
simulations reveal that the extension of the Nash demand gaine used as an underlying
game does not allow players options they would realistically use in bargaining and the
simulation thus sometimes supports unrealistic solutions. In addition, the precision
of the simulation results may be decreasing with network size, in the sense that the
most commonly modal demand profiles are modal for a smaller proportion of rounds.
which would be problematic for investigating large networks. There is certainly scope
for attemping to resolve both these problewms by altering the evolutionary model and

the method of reporting results.

9.2 A Comparison of all Results and Predictions

This section summarizes and compares the results and predictions about bargaining

outcomes contained in this thesis. These comprise theoretical solutions of bargain-

6 Ag discussed in section 4.1 in bargaining situations in which making such an offer does interfere
with other bargaining opportunities, then there may well bhe bargaining situations in which non-core

solutions are reasonable.
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ing models, data from the experiments summarized in section 2.7, data from the
simulations of chapter 8, and the predictions of the sociology literature of section
2.5. Section 9.2.1 discusses the extent to which the experimental and siiulation re-
sults are comparable. Sections 9.2.2 ~ 9.2.6 each compare the results found for one
particular network. Section 9.2.7 collates other miscellancous results. Section 9.2.8
discusses relations between the results of this thesis and the theoretical predictions

of the sociology literature.

9.2.1 Time Scales and Comparability

A general issue is whether the experiinental and simulation data investigate com-
parable time-scales. After all, the experiments contain a maximum of 60 rounds,
whereas the simulations are run for at least 10° rounds.

This raises the possibly that the experiments capturc outcomes which would not
be stable over a number of rounds representing the typical timescale in which social
exchange takes place. Indeed, most of the sociological experiments do not directly
investigate whether their solutions vary over time. On the other hand. there is also
the possibility that the simulation data investigates too long a timescale. Over the
long run, the network may change as players find new exchange opportunities and
the values of exchanges alter. So behaviour in a constant network over too long a
timescale may be irrelevant.

There are several reasons why the timescales wlich the results of simulation and
experiment represent may not be as far apart as is it appears simply from the munber
of rounds. The fact that only one agent per population updates their individual state
in each round of the simulation means that a round corresponds to less time than in
the experimental setting. As discussed in section 6.1.1, there are many variations to
evolutionary models of the sort discussed in chapter 6 which increase the speed at
which the stationary distribution becomes relevant and furthermore often increase

the realism of the model. Also, the learning rules used in the simulation may be
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far more simplistic than the behaviour of actual bargainers. It is possible that
more sophisticated learning rules, perhaps especially adapted for use in bargaining
situations, could guide participants into reaching stable outcomes more quickly.
Even if the long term nature of the simulation results means that they cannot
be achieved in a timescale appropriate for application to social exchange, they may
still be of some use in indicating the evolutionary pressures that exist. For example.
the simulation results for the 3 player ring network in section 8.6 are very strong
and suggest that one particular solution is selected even in the short run. On the
other hand, the simulation results for the two plaver unit cake network in section
8.2 suggest that the only outcome which is stable in the long run is an equal split.
However, over shorter timescales near-equal splits may also be stable with weak
evolutionary pressures present encouraging an cventual shift to the equal split.
Finally, note that since experiments have a single agent at each position rather
than a population, the structure of the evolutionary process — many stable solutions
in the short run, some of which are selected in the long run — may not carry over.
The agreement between repeated experiments in sociology papers seems to support
this”. Without this property, it is possible that there mayv not be a major qualita-
tive difference between short and long run solutions of the experiments, so the low

number of rounds may not be important.

9.2.2 2 Player Networks

The alternating offers game supports a unique SPE in the 2 player situation. As
discussed in section 4.2.1, this matches the asymmetric Nash bargaining solution,
as defined axiomatically in section 4.1, with the hargaining powers determined by
players’ discount factors.

The simulation results of chapter 8 support a unique outcome for all learning

7 An alternative explanation is that agents are taken froni the same society which use one specific

convention of play.
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rules other than sampled best reply with sample size one. Also. for all these learning
rules other than imitate better with sample size onc. the solution (0.5.0.5) for the
unit utility cake Ky, is conserved for a utility cake which is a subset of K i and
also contains (0.5,0.5). This is evidence that the axiom of independence of irrelevant
alternatives may hold under these learning rules. This offers some support for the
symmetric Nash bargaining solution since the other axioms hold by the design of
the model®.

However, the simulations with an outside option for one player contained in
section 8.4 provide some odd results. In particular a simulation for sampled best
reply with sample size 2 illustrates a situation in which possessing an outside option
worsens a player’s payoff! These results certainly do not match the predictions of

the alternating offers game with outside options mentioned in section 4.2.1.

9.2.3 3 Player Networks

The market bargaining game is a model for 3 plaver ring networks and possesses
a unique limiting SPE outcome as the delay between demands tends to zero. The
results fall into two cases, depending upon whether a von Neumann-Morgenstern
triple of outcomes, described in definition 4.3, exists. In the case of existence the
unique triple gives all 3 possible outcomes. However, which of these outcomes is
selected depends upon the exogenously chosen order in which the players act.

The simulations of section 8.6 investigate a 3 plaver ring network in which a
von Neumann-Morgenstern triple exists. They provide very strong support for the

corresponding outcome under all learning rules for at least some parameter choices.

8 An exception is that scale independence does not hold for the proportional imitation learning
rule. Indeed, this learning rule is not even always well detined under rescaling of utilities, as this
may sometimes produce a probability of switching demand of more than 1. A possible resolution
of this problem is to make the factor of proportionality for population A e(iual to the reciprocal
of the maximum feasible demand that plaver ¢ can receive in anv wtility cake. In this case scale

independence would hold for proportional imitation.
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However, I do not have a candidate mechianisim which explains such strong support
for this outcome. As discussed in section 8.6. it scems unlikely that the minimal
tree analysis described in section 6.1.2 can be applied to this case directly.

A 3 player network in which a von Neumann-Morgenstern triple does not exist
is L3. This case can be represented in the market bargaining game by 3 player ring
network in which two cakes are unit cakes and the third contains only the utility
pair (0,0). The payoff vector associated with the limiting outcome of the market
bargaining game in this case is (0,1.0). The generalisationus of the market bargaining
game considered in chapter 5 support the same limiting solution for Ly (see lemma
5.4). For the evolutionary model. theorem 7.3 supports this solution for imitate
better and proportional imitation under various asswmptions. Other bargaining

) of section

models support a different solution. For example the telephoning game*
4.3 can support limiting SPEs which are equal to the solution if a particular outlying
player were removed!?.

Section 4.4.5 argues that the crucial feature generating the qualitative difference
between the SPE outcomes of the telephoning and market bargaining gaines is that
in the telephoning game ouly bilateral bargaining is allowed. whereas the market bar-
gaining game allows players to break this convention. The existence of this feature is
not investigated by the simulations and experimnents'. The rules of the underlying
game of the evolutionary model of chapter 6 implicitly allow non-bilateral bargain-

ing. Similarly, the sociology experiments are computer based, and so pre-specify

9These solutions are also supported by most other models with unilateral demands.
19That is, the solution to the alternating offers gaime on a unit cake between players 1 and 2 or

player 2 and 3, with the same discount factors as uscd in the original situation. This is a result of

Binmore (3].
111t is not obvious whether this feature holds as much importance in a evolutionary setting. For

example, consider an evolutionary model for the network Lys based on an underlying bargaining
game using only bilateral bargaining. There still appears to be pressure on players 1 and 3 to
undercut each other’s demands in order to increase their chance of exchanging with player 2 in

future rounds.
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the rules governing the bargaining interactions hetween subjects. Thus typically
subjects do not have a choice of whether to bargain bilaterally or not'? and these
results do not allow conclusions to be drawn about whether bargainers choose to
use bilateral bargaining.

The theoretical predictions above for this network can be compared with data
from simulations and experiments. Note that in these cases the players are treated
symmetrically so the appropriate version of the telephoning game is one in which
all discount factors are equal and so two players inake an equal split in SPE. The
data supports outcomes in between the extremes of this outcome and the outcome
with payoffs (0, 1,0) mentioned above. Typically player 2 receives 0.5 < x < 1 and
players 1 and 3 have an equal chance of receiving 1 —z. In the simulations the value
of z varies from 0.7 to 0.95. The value of = is shown to be sensitive to variations in
M and e. Section 2.7 only contains data from two experiments on this network and
the corresponding values of x are 0.67 and 0.83. Iu conclusion, the arguments of the
market bargaining game and theorem 7.3 appear to have some validity, but there
seem to also be countervailing evolutionary forces preventing player 2 from reaching

payoff 1.

9.2.4 The 4 Player Line Network

The only theoretical result produced for this network is that described in section
5.2.4. This gives two limiting outcomes for the case of equal discount factors with
limiting payoffs (3, 5. 3.4) and (0, 5. 5.0). Eliminating the non-core solution leaves a
unique prediction. Data from both simulations and experiments supports outcomes
with payoff vectors of the form (1 — z, 2, 2.1 — ) with 0.55 < z < 0.66. The
simulation data provides some evidence that these payofts are long-term features

of the bargaining situation and do not simply occur in experiments because only a

12 A< noted in section 2.7, it is not always clear what the underlying rules of experiments are, so

it is sometimes hard to infer whether they allow non-bilatcral bargaining.
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short number of rounds are run. However note that simulation with another learning

rule supported the outcome with payvoff vector (4. 1.4 1)

L
212:32)

If the payoff vector (% % % %) were the result of the current bargaining con-
vention then player 2 would be indifferent about cxchanging with plavers 1 and 3.
Intuitively, there is therefore an incentive for playver 1 to offer player 2 more to guar-
antee exchange. However, this thesis does not provide any grounds for a theoretical
argument to capture this intuition.

Note that the payoffs typically received by position 2 or 3 in a simulation or
experiment on this network are similar to sowme simulation results detailed in section
8.4 for a player in a 2 player unit cake network with an outside option of less than
1

%. This suggests that the mechanisi providing plavers 2 or 3 with a payott above 5

is based on the outside options they provide eacli other.

9.2.5 The 5 Player Line Network

The two models of chapter 5 both support a wide range of SPEs for this network.
It is shown (corollary 5.6) that in any SPE the payoff of player ¢ lies in an interval
I;. These are Iy = I3 = I = [0, ] and I, = I, = [5.1]. Furthermore. in sections
5.1.2 and 5.2.4 SPEs for both models are shown illustrating that some player ¢ may
receive a payoff at either bound of I;.

Experimental and simulation data are within these bounds, but do not seem to
make a clear prediction. Simulatious give payotfs in the range [0.65,0.85] to even
numbered players, whereas experiments have the range [0.55,0.88]. Note also that
simulation results are sensitive to the choice of purameters M and e.

These results show that this network gives plavers 2 and 4 an advantage but the
size of advantage is sensitive to details of the bargaining situation. However, they
do not indicate what the relevant details might he.

Theorem 7.3 predicts the solution (0,1.0,1.0). The lack of other support for

this solution suggests that the limiting case of low mutation for which this theorem
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applies does not represent the general case!s.

9.2.6 4 Player Ring Networks

The simulation results of section 8.8 support a vou Neumann-Morgenstern triple like
solution for a particular four player ring network. That is. cach player is guaranteed
a particular utility level and may achieve this by exchanging with either neighbour.
However, as for the von Neumanu-Morgenstern solution for 3 player ring networks.
no theoretical mechanism is proposed to explain tlic strong support for this outcome

in simulations.

9.2.7 Miscellaneous

Section 7.3.1 predicts that the state of the cvolutionary model of chapter 6 under
the candidate learning rules of scction 7.1 spends most of its time near B sets even
for relatively large values of e. The simulation results of section 8.1 provide some
support for this hypothesis. Section 7.3.1 also contains the prediction that the
qualitative results of the model are relatively robust to the choice of . The results
of chapter 8 show this is often correct. Some results, such as those for the 3 player
ring network of section 8.6 are very robust to tlic choice of €. In other networks,
such as odd length unit cake line networks. the results are sensitive to the choice of
¢ and M but the same qualitative features are always present.

Theorem 7.3 predicts that certain positions in unit cake networks receive pay-
offs of 0 or 1. For the networks L3 and L. it predicts that even numbered players
receive payoff 1 and odd number players receive, pavoff 0. This matches the qualita-
tive features of the simulation and experimental results, but predicts more extreme

payoff values. The theorem gives the behaviour of the evolutionary model under

13Recall that the prediction of theorenm 7.3 ouly applics in the long term. .However. it does not
seem possible to explain the discrepancy by interpreting all the other results as short terni solutions.
The simulation data shows that solutions with more extreme payoft values than those most often

selected are sometimes reached but are less stable.
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the limit € — 0 and certain other conditions. It is not surprising that the sharpness
of its results do not hold for the relatively large values of ¢ used in the simulation.
However, the experimental results also only support the qualitative results of this
theorem rather than the extreme payoff values. This suggests that the evolutionary
pressures embodied in theorem 7.3 do not fully capture behaviour in the correspond-
ing bargaining situations. Other forces exist which prevent extreme pavoffs being
reached.

Lemma 5.5 predicts that players with onlv onc neighbowr in a unit cake network
with uniform discount factors receive limiting pavoffs of 1o more than % This

14

intuitively obvious™* result is also supported by experimental and simulation results.

9.2.8 The Theoretical Predictions of the Sociology Literature

The results of theorem 7.3 liave some similaritics to the ‘strong power’ predictions
of NET outlined in sections 2.5.1 and 2.5.2. I'or example. many of the heuristics
summarizing the properties of strong power in section 2.5.2 hold under theorem 7.3,
if “low strong-power position” and ~high strong-power position” are interpreted as
S players and W players respectively!®. However the GPI formula of section 2.5.1
identifies many more positions as strong power than theorem 7.3. For example the
GPI formula predicts strong power in all odd length line networks, whereas theorem
7.3 only applies to L3 and Ls.
Section 2.5.2 contains the following quote fromn Markovsky et al [44]:

“strong power structures exhibit a ‘ratcheting” process whereby actors in struc-

14T his situation can be thought of as a 2 player bargaining situation in which one player has

outside options.
15 «“Weak or equal power positions” should be interpreted as those players which are neither S or

W players. “Breaks” should be interpreted as exchanges which are never realised. Heuristic iii) is
stronger than the result of the theoreni. This heuristic predicts that adding an exchange between
two weak positions destroys the strong power structure. Under theorem 7.3. some players may

remain S or W players in this case.
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turally disadvantaged positions serially outbid one another...”

That section also notes that in [44]. thie threat of exclusion is claimed to be
the driving force behind strong power effects. These comments could also serve
as an interpretation of the proof of 7.3. The sketch in 7.3.2 describes how the
proof is driven by a process in which agents in \W populations are excluded and
imitate successful low demands. This creates the conditions for agents in other
W populations to be excluded and switch to low demands. This is effectively a
mechanism where different positions undercut cachi other and their demands ave
driven down.

The other results of this thesis do not correspond as closely to sociological the-
ories. For example NET predicts "maxinnun diffcrentiation™ of payofts for cases of
strong power. In the context of unit cake networks this means that players in somne
positions receive payoffs of 0 and 1. The models based on the alternating offers
games of chapters 4 and 5 predict a unique solution with maximun differentiation
for the network L3'® but not for other networks for which NET predicts maximum
differentiation, such as L;. In the experimental and simulation results of section
2.7 and chapter 8 maximun differentiation is rarcly observed. In particular. typical
payoffs are often less extreme for larger networks!'™. No support is found for the
GPI formula or the weak power theories of NET. Also, no support is found for de-

gree dependence of section 2.5.3 but there has becn little investigation of settings in

16 Ag noted in section 5.4.2, lemma 5.4. which supports this prediction for Ls. can be extended to
other situations where a player has unit cake exchange opportunities with at least two neighbours
who have no alternative exchange opportunities. This prediction and lemma 5.4 itself are the
only cases in chapter 5 where models based on the alterniiing offers game unambiguously predict

maximum differentiation (i.e. the prediction does not depend on exogenous structure).
17 An exception is in the “strong4” network of section 2.7. The positions with extreme payvoffs

in this network match the situation described in footnote 16 of this chapter. This suggests that in
some networks the stable bargaining outcome is the same as if some exchange relations are removed

and the network is decomposed into several connected components. and it is only in the larger

components that payoffs are less extreme.
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which it might occur.

9.3 Future Research

The difficulties summarized in section 9.1.2 mean that it does not seem fruitful to
pursue modelling bargaining in networks using perfect information extensions of the
alternating offers game. However the evolutionary model suggests many possibilities
for future research. There are two main directions. The first is to further investigate
properties of the model for simple nctworks in which the problems associated with
non-core solutions discussed in section 9.1.3 scem unlikely to arise. The second is to
attempt to alter the model so that it overcomes these problemns and can be applied
to large networks.

There are many small networks other than those considered in chapter 8 on
which it would be interesting to perforimn simulations, such as the stem network of
section 2.7. Other subjects which can be investigated by simulation include the
degree dependence hypothesis of section 2.5.3. whether results are robust to small
variations in utility cakes, and whether a property similar to the axiom of indepen-
dence of irrelevant alternatives holds for general networks. If this last property held
then it would suffice to study networks whose cakes have lincar boundary functions,
simplifying the analysis of general networks. Also. there are many interesting vari-
ations which could be made to the model. For example the underlying gaime could
be altered to model a bargaining problem in which 3 players must split one utility
cake. Many other possible variations are given in section 7.2.

It may be possible to obtain theoretical results on the evolutionary model of
chapter 6 in addition to theorem 7.3. For example, consider a 2 player bargaining
network under the proportional imitation learning rule. In the limit ¢ — 0, the
state of the model spends most of its time at B sets Corrospond-ing to strict Nash
equilibria. It is shown in section 7.1.1 that a trausit between such sets requires only

two mutations. Thus to find the first term in asvimptotic expansions in € of each
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transit probability it suffices to investigate transits where only two mutations occur.
During such a transit each population supports only two demands. which may allow
approximate or numerical calculations to succeed. This case is of particular interest
as it may explain the outside option results of scction 8.4 which have implications
for network results, as discussed in section 9.2.4.

One method of altering the model to avoid the non-core solution discussed above
is to alter the underlying game. As discussed in section 9.1.3 in seems necessary to
alter the matching rule, probably by endogenising part of it. Another approach is
to alter the evolutionary model. For example a model placing a single agent at cach
network position seems more realistic and may niake non-core solutions less stable.
Some methods for constructing such models are mentioned in Tesfatsion [67].

Finally, relaxing the restrictions placed on bargaining outcomes in section 3.1.1
could enable other approaches to be more successtul. For example if cach player
could participate in two exchanges, then it would be easier to adapt the model
of Corominas-Bosch [23] from section 4.5 to genceral networks, as follows. Rounds
alternate between those in which everyoune simultaneously makes a demand and
those in which everyone simultaneously makes an acceptance decision. A player is
allowed to exchange once by being accepted and once by accepting. Altering these
restrictions would mean that the experimental results of section 2.7 could not be
used. However the results could still be interpreted as modelling social exchange.
As discussed in section 2.4, restricting cach plaver to a single exchange is only
introduced in the first place on grounds of experimental expediency and simplicity

rather than on conceptual grounds.
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