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Abstract

Although large quantities of southern Africa bum every year, minimal information is available 

relating to the fire regimes of this area. This study develops a new, generic approach to change 

detection, applicable to the identification of land cover change from high temporal and moderate 

spatial resolution satellite data. Traditional change detection techniques have several key lim

itations which are identified and addressed in this work. In particular these approaches fail to 

account for directional effects in the remote sensing signal introduced by variations in the solar 

and sensing geometry, and are sensitive to underlying phenological changes in the surface as well 

as noise in the data due to cloud or atmospheric contamination.

This research develops a bi-directional, model-based change detection algorithm. An empir

ical temporal component is incorporated into a semi-empirical linear BRDF model. This may 

be fitted to a long time series of reflectance with less sensitivity to the presence of underlying 

phenological change. Outliers are identified based on an estimation of noise in the data and the 

calculation of uncertainty in the model parameters and are removed from the sequence. A “step 

function kernel” is incorporated into the formulation in order to detect explicitly sudden step-like 

changes in the surface reflectance induced by burning.

The change detection model is applied to the problem of locating and mapping fire affected 

areas from daily moderate spatial resolution satellite data, and an indicator of bum severity is 

introduced. Monthly burned area datasets for a 2400km by 1200km area of southern Africa de

tailing the day and severity of burning are created for a five year period (2000-2004). These 

data are analysed and the fire regimes of southern African ecosystems during this time are char

acterised. The results highlight the extent of the burning which is taking place within southern 

Africa, with between 27-32% of the study area burning during each of the five years of obser

vation. Higher fire frequencies are exhibited by savanna and grassland ecosystems, while more 

dense vegetation types such as shrublands and deciduous broadleaf forests bum less frequently. 

In addition the areas which bum more frequently do so with a greater severity, with a positive 

relationship identified between the frequency and the severity of burning.
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1.1 Global vegetation burning

The terrestrial surface is in a state of permanent flux with changes occurring due to both natural 

and anthropogenic causes and at a variety of spatial and temporal scales. The identification, 

analysis, and interpretation of the physical changes taking place to the Earth’s surface is not only 

of significance in the management of these areas, but is also a fundamental input to models of 

global climate and biogeochemical cycles (Coppin et a l 2004). The importance of monitoring, 

mapping and managing these changes has long been a priority of the scientific community with 

emphasis on the effects of land cover change on ecological processes and cycles as well as on 

Earth-atmosphere systems. Vegetation fires (both naturally and anthropogenically ignited) occur 

recurrently in a large proportion of the world’s major biomes and are a key driver in the dynamics 

of these. The complex feedbacks which exist between land cover modifications, biogeochemical 

cycling and climate change cannot be fully determined without a detailed understanding of the 

nature of these changes.

Vegetation fires emit a range of greenhouse gases and particulate matter which modify atmo

spheric composition and chemistry, and as such are increasingly recognised as a key contributor 

to global climate change (Scholes et a l 1996a, Lobert et a l 1999). It has been estimated that ap

proximately 38% of the tropospheric ozone, 39% of particulate organic carbon, 32% of carbon 

monoxide, and over 20% of the global hydrogen, nonmethane hydrocarbons, methyl chloride 

and nitrous oxides are produced annually by vegetation fires (Levine 1991). It is therefore hardly 

surprising that a large proportion of the global interannual variability in atmospheric carbon 

dioxide, carbon monoxide, methane and hydrogen between 1992 and 1999 has been attributed 

to biomass burning (Langenfelds et a l 2002). Smoke aerosols emitted during the combustion 

process are also of importance and have the potential to cause direct or indirect radiative forc

ing. Aerosols may have a direct impact on climate by reflecting incoming solar radiation, while 

indirect modifications arise from their ability to act as cloud condensation nuclei thereby affect

ing cloud formation and the amount of solar radiation reaching the Earth’s surface. Although 

aerosols emitted by biomass burning are generally considered to have a cooling effect in con

trast to the warming caused by greenhouse gases, assessments of the combined climatic impacts 

have proved to be problematic and controversial due to the uneven spatial distribution of the 

two effects (IPCC 2001). In addition a major uncertainty in the modelling of the climatic im



CHAPTER 1. INTRODUCTION 23

pact of aerosols currently arises from the lack of accurate information describing the emission 

of these (Tansey et al. 2004a). Vegetation fires are also thought to significantly alter the surface 

albedo thereby affecting the quantity of solar radiation received and reflected from the Earth’s 

surface. A relative decrease in the surface albedo of up to 25% has been identified over burned 

surfaces in Northern Hemisphere Africa due to the darkening of the surface due to the presence 

of charcoal and ash, increasing the capacity of these to absorb solar radiation (Govaerts et al. 

2002). Although the exact amplitude of fire-induced variations in the albedo cycle have yet to 

be quantified, is is suggested that these modifications may be sufficiently large to alter regional 

atmospheric circulations and associated rainfall patterns (ibid).

Changes in the global carbon cycle occur due to the release of fossil C 02 into the atmosphere, 

and through land cover transformations. In addition to the gaseous emissions produced directly 

through the combustion process the role of vegetation fires in the global carbon budget is now 

recognised and emphasis is currently placed on improving our understanding of the relationships 

between the global climate, biomass burning and the carbon cycle. It is estimated that 3.9 gi- 

gatons of carbon, the equivalent of over 70% of anthropogenic emissions from fossil fuels are 

released annually by global vegetation fires (Andreae 1991). Carbon is stored in vegetation and 

when this bums the carbon is released into the atmosphere. As a result biomass burning alters 

the role of vegetation from a carbon sink to a source thereby changing the distribution of carbon 

sources and sinks across the terrestrial surface. In the past, fires have typically been viewed as 

part of a ’steady state’ world where carbon loss due to combustion in one location is compen

sated for by accumulation of biomass in another (Crutzen and Andreae 1990). However the net 

strength of the terrestrial sink is highly variable from year to year as the carbon balance of terres

trial ecosystems responds strongly and rapidly to climate variability and interannual changes in 

fires (Bousquet et al. 2000, Van der Werf et a l 2004). In fire-dependent ecosystems such as the 

savannas of southern Africa the emissions of C 02 from fires has little impact on the long-term 

trend of atmospheric C 02 concentration as similar quantities are sequestered during the follow

ing years growth (Andreae 1991). In contrast to this short-term cycling of carbon, ecosystems 

with greater biomass such as forests and woodlands vegetation recovery is much slower after 

burning and as a result the quantities of C 02 emitted may alter atmospheric concentrations for 

decades (Hicke et al. 2003). Increases in vegetation fires are thus frequently cited as one of 

the consequences of global warming, and under current predictions of climate change these are
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likely to increase in frequency and severity in boreal forests resulting in the loss of up to a quarter 

of the carbon stored within these ecosystems (Kasischke et al. 1995).

Biomass burning is a key driver in global vegetation dynamics affecting ecosystem structure, 

function and composition. Burning has a direct impact on the vegetation with species adapted 

to fire more likely to survive than those which are less resistant. The timing, frequency and in

terval between recurrent fires will determine the plant species composition through selection in 

most ecosystems (Thonicke et al. 2001). While the distribution of the worlds major biomes are 

frequently considered to be climate dependent, the physiognomic characteristics of ecosystems 

which undergo frequent burning may not be determined by climate. Recent simulations using 

a Dynamic Vegetation Growth model indicate that in the absence of fire the grassland and sa

vanna ecosystems of Africa and South America have the climatic potential to form forests (Bond 

et al. 2004). Frequent fires convert areas of forest to savanna and grasslands by suppressing 

the regrowth of trees and favouring the development of shrubs and grasses. Conversely under a 

regime of infrequent fires or total fire suppression grass biomass decreases as tree cover increases 

resulting in lower fuel loads and less intense fires which subsequently cause less less damage to 

the trees. In the absence of fire and anthropogenic land cover modifications closed forests on the 

Earth’s surface would more than double. This suggests that vegetation fires may be a primary 

determinant of global biome distributions by promoting the development and maintaining the 

presence of flammable fire prone ecosystems where the climate can in fact support forests. Al

though the feedbacks between biomass burning and climate are not well constrained, simulations 

of a General Circulation Model have identified a positive feedback loop between fire frequency 

and climate whereby a reduction of tree cover results in a warmer and drier climate, accelerated 

fire frequencies and thus further tree loss which in turn contribute to an increase in temperature 

and a decrease in precipitation (Hoffmann et al. 2002).

1.1.1 The need for monitoring

The requirement for information relating to the occurrence of vegetation fires at both a regional 

and global scale has various motivations. These are primarily associated with (i) the loss of 

human lives, livelihood and property, (ii) ecosystem health and sustainability, and (iii) climate 

change.
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The effective management of vegetation fires as well as the sustainability of fire dependent 

ecosystems requires a sound understanding of the spatial and temporal distribution of burning. 

Detailed characterisations of global fire regimes are required to inform policy and are a pre

requisite in the formulation of appropriate ecosystem dependent management plans. A lack of 

information relating to the fire regime of an area may result in poorly conceived fire manage

ment strategies and the implementation of unsuitable policies of suppression or inappropriate 

prescribed fire regimes. Changes in an established fire regime may result in previously adapted 

plants no longer able to survive, while complete exclusion may result in a decrease in higher fre

quency less intense fires but an increase in less frequent but extremely destructive high severity 

fires (Thonicke et al. 2001, Bond et al. 2004). The alteration of fire regimes will therefore have 

implications for the conservation of ecosystem biodiversity and the maintenance of ecosystem 

health, structure and functioning. The mechanisms which influence fire regimes and the extent 

to which these are being altered by human activity are not well understood.

A great deal of uncertainty is currently also associated with the amount of biomass combusted 

globally and therefore the quantities and constituents of gases and aerosols emitted at regional 

to global scales (Levine 1991, Andrews and Queen 2001, Tansey et al. 2004a). Information 

relating to the occurrence of vegetation fires is required to understand and model the impact 

of biomass burning emissions on atmospheric chemistry and the radiative budget of the Earth. 

Although the links between the increasing levels of atmospheric carbon dioxide and global cli

mate change are well understood, anthropogenic peturbations to the global carbon budget as a 

result of biomass burning are not. An improved understanding of the contribution of vegetation 

fires to the dynamics of the global carbon cycle, and the extent to which this can be managed 

in order to stabilise atmospheric concentrations of greenhouse gases is required (Candell et al. 

2004). The fire regime of a region will determine both the quantity and type of gases emitted 

by biomass burning. Two aspects of this - the area and type of vegetation which bums annually 

- currently provide the greatest uncertainty in the calculation of gaseous and aerosol emissions 

due to burning (Tansey et al. 2004b).

Accurate and systematic information detailing the quantity of biomass burned and associated 

emissions released is needed not only to characterise present interactions between the carbon- 

climate system and to understand the processes which contribute to higher fire frequencies, but 

also to model the effect of changing and future climates on fire occurrence and intensity. Cur
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rently the vulnerability of the carbon-climate system to increasing fire frequencies and the future 

dynamics of the carbon cycle remain unclear. Feedbacks between a changing climate and fire 

frequency and intensity are not represented in climate change models as the interactions between 

climate and fire are not well understood. There is therefore a pressing need to incorporate fire 

information into global change scenarios, and to represent fire processes in global scale mod

elling of the vegetation-climate system (Hoffmann et al. 2002). However despite this need for 

information the occurrence and interannual variability of burning at both the regional and global 

scale is largely undocumented. There is currently a lack of coherent and consistent information 

describing the spatial and temporal distribution of vegetation fires and their characteristics. As 

a result, fire is typically under-appreciated as a global control of vegetation structure and biome 

distribution (Thonicke et al. 2001). In addition, this lack of consistent information has resulted 

in large variations in emissions calculations, with estimates of global carbon losses due to fire 

ranging from 1.5 to 5.0 Pg C yr1 (Seiler and Crutzen 1980, Crutzen and Andreae 1990, Hao 

and Liu 1994). There is therefore an urgent need to quantify and characterise the interannual 

variability of biomass burning in order to improve understanding of the processes and feedbacks 

involved.

1.1.2 Principal research programmes

The Global Observation of Forest Cover (GOFC) was developed in 1997 by the Committee on 

Earth Observation Satellites (CEOS). In 2000 GOFC became the first of five projects of the 

Global Terrestrial Observing System (GTOS), which is sponsored by the International Global 

Observing System (IGOS). In 2001 the GOFC was transformed into the Global Observation of 

Forest Cover and Global Observation of Landcover Dynamics (GOFC-GOLD) in order to in- 

corportate research into nonforested in addition to forested areas. The aim of GOFC-GOLD 

is to provide both space-based and in situ observations of forests as well as other vegetation 

types in order to achieve an accurate, reliable and quantitative understanding of the terrestrial 

carbon budget (GOFC-GOLD 2003). This is conducted through three primary themes of re

search; (i) forest cover change, (ii) forest biophysical processes, and (iii) forest fire monitoring. 

GOFC-GOLD-Fire is concerned with the third theme of this project and aims to demonstrate the 

operational utility of satellite observations of fire and to refine current capabilities in order to
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meet the needs of the fire community. Goals of this project include the development of fire early 

warning systems and improvement in the availability of multi-source fire data over the internet, 

the establishment of an operational network of fire validation sites and protocols, and the creation 

of a suite of emissions products (GOFC 2005).

Several large international research projects have been undertaken over the past fifteen years 

with the aim of characterising the emissions of gases and aerosols from vegetation fires. The 

Biomass Burning Experiments (BIBEX) were initiated in 1990 and conducted under the Interna

tional Global Atmospheric Chemistry (IGAC) programme, a core initiative of the International 

Geosphere and Biosphere Project (IGBP) launched with the aim of studying global change. The 

goal of BIBEX was to characterise and quantify global trace gas and aerosol emissions from 

vegetation fires (Andreae 1998). Observations from satellites and the space shuttle as well as 

measurements made during field campaigns in the Amazon basin had indicated high levels of tro

pospheric ozone and carbon monoxide annually over this region and the southern Atlantic Ocean 

between August and October. It was speculated that these observations might be explained by 

vegetation fires in Africa.

The Southern Tropical Atlantic Regional Experiment (STARE) was inititated as an air and 

ground based measurement programme in 1990 with the aim of investigating the source of trace 

gases over the Southern Atlantic and characterising their atmospheric transport. The project was 

formed as part of BIBEX and involved two components. The first, the TRansport and Atmo

spheric Chemistry near the Equator-Atlantic (TRACE-A) was designed to investigate the extent, 

characteristics and origin of the elevated levels of ozone over the South Atlantic through in situ 

measurements, and to assess the contribution of emissions from Africa and Brazil to the atmo

spheric composition above these regions. The second, the Southern African Fire/Atmosphere 

Research Initiative (SAFARI-92) was formed with the aim of investigating the emissions from 

African fires and their impact on atmospheric circulation as well as the ecological impact of 

burning on African savannas. The major achievements of this research was the identification 

of the main gases and aerosols produced as a a result of biomass burning in these ecosystems 

and an increased understanding of the contribution of these to the high levels of tropospheric 

ozone over the South Atlantic. Prior to STARE investigations into the complex interactions be

tween the ecology, chemistry and atmospheric emissions from southern African fires had not 

been performed. The results of these programmes are documented in Lindesay et al. (1996).
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Following on from the 1992 campaign SAFARI 2000 (the Southern African Regional Science 

Initiative) was designed to be a more comprehensive study into emissions processes in southern 

Africa, in order to improve understanding and prediction capabilities of the regional sensitivity 

to and effect on global change (Swap 2000). In particular the goal of the 2000 programme was 

to identify the key linkages between selected aspects of the southern African earth-atmosphere- 

human system. The main themes of the research were stated as; (i) terrestrial ecology, (ii) land 

use and land cover change, (iii) aerosols and trace gas chemistry and transport, (iv) surface radi

ation and (v) cloud characterization and radiative effects. To date this is the largest coordinated 

research effort into the characterisation of emissions from African savanna fires. As a result of 

the extensive surveys conducted in the savannas, grasslands and woodlands of southern Zambia 

and South Africa during these programmes an inventory of emission factors for savanna ecosys

tems now exist.

1.1.3 The role of remote sensing

Systematic monitoring of fires at regional to global scales is problematic due to the rapidity with 

which they occur and their unpredictable nature. Measurements from satellites provide the only 

feasible means of observing large portions of the Earth’s surface at a high temporal frequency 

and in a consistent manner. As such the detection of fires from space has received a great deal 

of attention over the past few decades. Global or near global datasets documenting the locations 

of “active fires” are available to the scientific community from mid-1996 to the present from the 

Along Track Scanning Radiometer (ATSR) (Arino et al. 1999), from 1998 to the present from 

the Tropical Rainfall Measuring Mission (TRMM) Visible and InfraRed Sectrometer (VIRS) 

(Giglio et al. 2003b), and from early 2000 to the present from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Giglio et a l 2003a). Although the availability of active fire data 

is an extremely valuable source of information documenting the occurrence of fires at a global 

scale over the last decade, this data only provides a brief snapshot of fires which are burning 

and unobscured by cloud at the time of the satellite overpass. It does not therefore provide the 

information required to quantify the area and type of vegetation which has burned.

In contrast to the near real time active fire information required by fire managers, the global 

change research community needs data detailing the location, spatial extent, intensity and fre
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quency of burning. While numerous studies have quantified the area burned from remote sensing 

data these have typically been performed over a limited temporal and spatial scale. This lack of 

information has resulted in the estimation of burned areas from ancillary information, indirectly 

from active fire data or extrapolated from these to larger spatial scales. Although recent efforts 

have been made to produce inventories of the total global area burned from satellite data, these 

have been performed over a limited temporal scale, for example of a single year (Simon et al. 

2004, Tansey et al. 2004b). They therefore do not contain sufficient temporal information with 

which to quantify the interannual variability of fire regimes. While all of the above datasets 

provide useful information relating to the occurrence of vegetation fires at a variety of spatial 

and temporal scales and estimations of burned areas have improved significantly through the use 

of remote sensing data, the availability of multiple years of daily moderate spatial resolution 

satellite data has yet to be fully exploited in a consistent and systematic manner.

1.2 Research objectives

The previous section has documented the need for fire monitoring at the regional and global 

scale. The shift from a natural to an anthropogenically driven fire regime is evident no more 

so than in the savannas, grasslands and woodlands of southern Africa. These are the most fre

quently burned biomes in the world and are considered to be most at variance with their climate 

potential. Past or future changes in the diversity and extent of these ecosystems cannot be fully 

understood without an understanding of their fire regimes (Bond and Keeley 2005). A great deal 

is still unknown about the spatial extent of burning in Africa, the type of vegetation which bums 

and the intemanual variabilities of these factors. While savanna fires are thought to be of little 

importance as a source of carbon dioxide, this is only the case if the ecosystem is in a stable state 

and the carbon released due to burning is replaced during the subsequent year via vegetation 

regrowth. All African savanna fires however produce a range of trace gases and aerosols with 

the quantity of carbon monoxide released annually due to burning estimated to be equivalent 

to 30% of the global industrial source (Hao et al. 1990). As discussed above, these fires are 

the primary cause of the pronounced annual peak in tropospheric ozone which extends across 

the Atlantic Ocean between Africa and South America during September and October (Fishman
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et al. 1991). It has been suggested that anthropogenic modifications to African fire regimes have 

resulted in emmissions from savanna fires up to three times greater than those predicted under 

natural scenarios (Hoffa et al. 1999). Emissions from these fires have significant consequences 

to atmospheric chemistry with emissions in a high fire year estimated to be double those in a low 

fire year (Barbosa et al. 1999). Despite this the interannual variability in the extent, season, and 

freqency of burning in southern Africa has yet to be quantified.

Locating and mapping areas of burning within southern African ecosystems provides a greater 

challenge than in more densely vegetated biomes such as the boreal forests of North America or 

Siberia, or the tropical forests of South East Asia and South America, due to the characteristtics 

of the fires which occur in these ecosystems. The majority of the biomass burning which occurs 

in southern hemisphere Africa is due to surface fires which bum through the herbaceous and un

derstorey layer with trees greater than 2-4m in height typically unaffected (Frost and Robertson 

1985). The change in the signal which is measured at the satellite sensor as a result of burning 

may therefore be subtle. As many of the species within these ecosystems are adapted to and in 

some cases stimulated by fire, post fire regrowth occurs rapidly. While crown fires in boreal or 

tropical forests typically leave a fire scar which may be detectable for several years after the fire, 

the fast recovery of southern African ecosystems means a detectable signal may only be present 

for as little as one to two weeks after burning (Trigg and Flasse 2000, Roy et al. 2005a). Cou

pled with the possibility of missing satellite observations due to cloud or smoke this necessitates 

the use of high temporal resolution satellite data. Current burned area detection methodologies 

do not fully exploit the availability or the information content of daily global data from satellite 

sensors such as MODIS. In addition they tend to be ecosystem dependent and unsuitable for 

application at large spatial scales. Although recent advances have been made in the characteri

sations of trace gas and aerosol emissions released by biomass burning and the effects of these 

on atmospheric composition, large uncertainties still exist. These are predominantly related to 

the spatial extent, the seasonality and the quantity of biomass which bums annually. Despite the 

frequency and extent of biomass burning and the focus of the various international experimental 

campaigns described above, adequate burned area data for southern Africa do not exist. There 

is therefore an urgent need for systematic and consistent information describing the occurrence 

and interannual variability of biomass burning within this region.

The principal aims of this research are defined in the context of the needs detailed above.



CHAPTERl. INTRODUCTION 31

These are stated as three objectives;

1. The development of an algorithm suitable for the detection of sudden surface change 

from daily moderate spatial resolution optical remote sensing data

2. The application of this methodology to the identification and delineation of burned 

areas in southern Africa on a daily basis for a five year period (2000-2004)

3. The characterisation and analysis of the fire regimes of southern African ecosystems 

from the data produced via Objectives 1 and 2 over the five annual fire seasons

These objectives are addressed as outlined in the following paragraphs.

1.3 Thesis plan

Objective 1 is defined within the context of a change detection problem. Chapter 2 is therefore 

concerned with a review of the methods typically used in the remote sensing of land cover change 

and the limitations of these traditional approaches. This is followed by a description of the 

approaches applied to the detection of active fires and the identification of burned areas from 

satellite data, and the operational fire-related remote sensing products currently available to the 

scientific community.

Chapter 3 provides a discussion of the causes and ecological impacts of fire within southern 

African ecosystems. This is followed by a characterisation of the diurnal, seasonal and interan

nual distribution of burning within this region through an analysis of MODIS daily active fire 

locations for the five year period 2000 to 2004. The spectral features of burned surfaces at active 

fire locations identified in the previous analysis are investigated and the change in the optical 

remote sensing signal which occurs due to burning as well as the duration of this is defined. Ob

jective 1 is met in Chapter 4 following the needs identified in the previous two chapters. Based 

on the requirements identified in Chapter 3 and the shortcomings of the traditional approaches 

to change detection described in Chapter 2, Chapter 4 develops a new, generic approach to the 

detection of surface change from high temporal resolution satellite data.

Chapter 5 is concerned with a description of the data sources used in the subsequent Chapters 

and the preprocessing of these. This is followed by the application of the generic change detec
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tion model developed in Chapter 4 to the detection and delineation of fire affected areas across 

southern Africa over five annual fire seasons (2000-2004). The separation of burned areas from 

areas which exhibit spectrally similar changes is dicussed, and the post-processing methods ap

plied to the datasets described. Objective 2 is thus met over the course of Chapter 5. In Chapter 

6 the burned area data is compared to two alternative burned area products as well as an active 

fire dataset currently available to the scientific community.

Chapter 7 fulfills Objective 3 through an analysis of the daily burned area results presented in 

Chapter 6. These data are used to characterise the fire regimes of savanna, grassland and forest 

ecosystems in southern Africa over five consecutive annual fire seasons during the period 2000 

to 2004. Chapter 8 provides conclusions of the research and the potential for further work.
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The preceeding chapter has discussed the need for information relating to the occurrence, 

timing and spatial extent of vegetation fires at regional to global scales, as well as the suitability of 

remote sensing data for this purpose. Due to the role of fire as an agent of land cover change, the 

detection of fire affected areas has typically been achieved through the analysis of multi-temporal 

remote sensing datasets using a change detection scheme. Over the past two decades numerous 

automated change detection procedures have been developed. The aim of this chapter is to 

provide a review of the methods which have been used in the detection of land surface change 

and their relative advantages and disadvantages, and the application of these to the detection of 

fire affected areas. This is followed by a discussion of the detection of active fires from Earth 

Observation (EO) data sources and an overview of the global and operational fire and burned 

area products currently available to the scientific community.

2.1 Multi-temporal change detection

Remote sensing change detection studies are based on the principle that areas of change within a 

multi-temporal co-registered dataset will be statistically different to those where the land surface 

has remained invariant over the time period of interest. Although a great variety of change 

detection methods and comparative studies of these exist in the literature, there is no general 

concensus as to the most suitable method for detecting a particular type of change. Techniques 

based on the analysis of multi-temporal and multi-spectral satellite data at a range of spatial 

resolutions have demonstrated potential as a means to detect, identify and monitor ecosystem 

changes irrespective of their cause (Coppin et a l 2004). The technique chosen for a particular 

study tends to depend on the analyst’s knowledge of and skill in handling remote sensing data, 

the type of data available, and the characteristics of the study area (Yuanbo et a l 2004). While all 

remote sensing data sources offer potentially useful information relating to the properties of the 

Earth’s surface, a handful have proved more popular than others in the detection of land cover 

change. While historically the Landsat series (MSS, TM and ETM+)1, SPOT Vegetation, and 

AVHRR sensors as well as aerial photographs have been the most common optical data sources, 

MODIS and ASTER are becoming increasingly important (Lu et a l 2004). The most appropriate

1A list o f acronyms used in the text can be found on page 18
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data source for a particular study will be determined by both the temporal and spatial scales of 

the change of interest, as well as the spectral nature of this change.

2.1.1 Image enhancement techniques

The simplest approach to digital change detection involves the comparison of the same area at 

two points in time, and encompasses the techniques of image differencing, regression, ratio- 

ing, transformation and change vector analysis. Common features of this category are (i) the 

enhancement of the change signal through the mathematical combination of multi-temporal im

ages, and (ii) the requirement for a threshold (or set of thresholds) to identify areas of change. 

Apart from the more complex approach of change vector analysis these techniques are all sim

ple to implement and the results are easy to interpret, but they only provide information relating 

to the magnitude of the change rather than complete matrices of change information (Lu et al. 

2004).

Image differencing and ratioing

The simple technique of image differencing involves the subtraction of pixel values for one image 

date from the corresponding pixel values at a subsequent image date. The resulting histogram 

will have values ranging from negative to positive with those clustered around zero represent

ing areas of no change, and those in the tails of the distribution representing areas which have 

changed between the two image dates (Jensen 1996). This technique has been popular due to 

its computational simplicity and ease of interpretation, and has been used frequently to identify 

areas of land cover and land use change (Pilon et al. 1988, Muchoney and Haack 1994, Sohl 

1999). A major drawback of the approach however is the difficulty in the determination of a 

suitable threshold value with which to separate changes of interest from background changes 

and noise. Fung and LeDrew (1988) have investigated the use of various accuracy indices in 

the determination of optimal threshold levels and recommend the Kappa coefficient of agree

ment based on an error matrix of image and reference data. In addition as the result of image 

differencing is solely an indication of the magnitude of change, it is not possible to interpret the 

changes as a function of their original spectral value (Yuan et al. 1999). Coppin and Bauer (1994) 

have thus suggested standardizing the difference algorithm in order to address this issue, thereby
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minimising the occurrence of different change events which exhibit similar change values.

Numerous data transformation techniques have been used to reduce the dimensionality of the 

data and to enhance the remote sensing change signal prior to the difference operation. The most 

frequently used of these techniques in change detection studies are band ratioing, vegetation 

indices, principal components analysis and the tasseled-cap transformation (Lunetta 1999).

Image transformation

The Principal Components Analysis (PCA) and Kauth Thomas or tasseled-cap transformation 

have been popular in remote sensing change detection studies as they reduce the redundancy 

within a multi-band dataset and emphasize different information in the derived components (Lu 

et al. 2004). The PCA exploits the variance within a dataset by rotating the axis to new orien

tations which are orthogonal to each other, and may be performed in one of two ways for the 

purpose of change detection: (i) on each image separately with image differencing subsequently 

applied to the corresponding components for each date, or (ii) to the entire dataset simultane

ously. When applied to a multi-temporal dataset the first two components tend to correspond 

to areas of no change and lower order components to changes in the land surface (Macleod and 

Congalton 1998, Pereira et al. 1997). However the interpretation of the various components and 

the changes which are represented often require prior knowledge of the dataset used and may 

need further analysis using techniques such as image differencing or ratioing and the definition 

of a suitable threshold level to extract change information (Yuan et al. 1999). The approach has 

been used to identify changes in forest cover (Jha and Unni 1994), forest defoliation (Muchoney 

and Haack 1994) and forest mortality (Collins and Woodcock 1995).

The tasseled-cap transformation was developed by Kauth and Thomas (1976) to monitor 

agricultural crops from Landsat imagery. The objective of the technique is the transformation 

of the original spectral channels into several discrete bands of information, each of which can 

be associated with a specific physical characteristic of the land surface. The output from the 

transformation is three vectors representing brightness, wetness and greenness. The brightness 

vector primarily identifies variation in soil reflectance, the greenness vector is an indication of the 

amount of green vegetation present within the scene, and the wetness vector is related to both the 

canopy and soil moisture. This transformation technique has been used successfully to monitor
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forest mortality (Collins and Woodcock 1995), identify changes in forest biomass (Coppin et al 

2001), and to locate areas of land-use change (Fung 1990, Seto et al. 2002). Studies which 

have performed comparisons between the PCA and tasseled-cap transfomations have generally 

found the tasseled-cap to be a more suitable change detection technique than the PCA (Fung and 

LeDrew 1987, Collins and Woodcock 1995, Rogan and Yool 2001). Fung and LeDrew (1987) 

note the importance of a thorough understanding of the study area prior to performing a PCA for 

the purpose of detecting land cover changes in order to avoid drawing false conclusions from the 

results. In contrast the occurrence of land cover and land use change is more easily interpreted 

from the tasseled-cap coefficients as these are independent of the image scenes (Collins and 

Woodcock 1994, Coppin et a l 2004, Lu et al. 2004). Disadvantages of this group of techniques 

in general include the lack of detailed change matrices, the need for thresholds to identify areas 

of change, and the difficulty in identifying and interpreting the change information from the 

transformed images (Lu et al. 2004).

Linear transformation techniques have almost exclusively been applied to high resolution 

remote sensing data for the detection and delineation of fire affected areas. While some au

thors have performed a PCA on multi-temporal datasets at their full spectral resolution (Richards 

1984) others have selected suitable bands prior to performing the transformation (Siljestrom and 

Moreno 1995). The order of the principal components which contain the majority of the infor

mation varies between studies, and is affected by the relative proportions of stable and changed 

areas in the datasets (Pereira et a l 1997). Thus in a study of bushfire damage in Australia 

Richards (1984) found that localised change was enhanced in the third and fourth principal com

ponents of a multi-temporal Landsat MSS timeseries, Garcia-Haro et a l (2001) have found that 

the third principal component of a multi-temporal Landsat TM dataset was best related to fire 

induced vegetation change in the Mediterranean. In contrast Salvador et a l (2000) discovered 

that the PCA did not group all bum pixels in a long time series of Landsat MSS data over the 

Mediterranean within a few components, and instead areas affected by fire appeared in almost 

all of the principal components.
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Band ratioing and vegetation indices

Selection of appropriate spectral bands prior to image differencing may highlight specific changes 

and provide insights into the nature of these changes. The normalization of the difference be

tween visible and near-infrared reflectances (the ‘NDVI’) is commonly used as an indicator of 

vegetation health and amount (Tucker 1979). The NDVI provides a measure of the ’greenness’ of 

vegetation, and is therefore commonly used as an indicator of change for vegetated surfaces. The 

approach typically involves the calculation of the NDVI for each image and changes in vegeta

tion cover which have taken place between the image dates can then be identified by subtracting 

the corresponding NDVI images. Various studies have demonstrated that land cover changes 

are easier to identify if vegetation indices are used to enhance the data prior to image differenc

ing (Rogan et al. 2002). Although numerous other multi-band combinations have been used to 

investigate land cover change, a comparison of seven vegetation indices has indicated that the 

NDVI difference images were the most successful at separating changes (Lyon 1998).

The calculation of the ratio of two image dates for each waveband on a pixel-by-pixel ba

sis (‘image ratioing’) has also been employed in identifying land use and land cover change 

(Prakash and Gupta 1998, Coppin et al. 2004). Areas which have not changed between the im

age acquisition dates will have ratio values of one, while areas of change will exhibit higher or 

lower values. A study by Nelson (1983) has found the difference of a Landsat MSS band 5 and 

7 ratio more successful in monitoring defoliation than single band differencing or ratioing, while 

a comparison of image differencing, ratioing and NDVI differencing in the detection of land-use 

changes from a multi-temporal Landsat TM dataset indicated no significant differences between 

the results of the three approaches (Prakash and Gupta 1998).

Vegetation indices involving combinations of wavebands which are sensitive to fire induced 

surface change have been popular in the detection of burned areas as they enhance the vege

tation signal while minimising atmospheric effects in the remote sensing signal as well as the 

contribution of the soil background (Huete and Jackson 1988). Traditionally the most commonly 

used in the identification of fire affected areas has been the NDVI. Until recently the AVHRR 

instrument on board the NOAA polar orbiting satellite has been the main source of moderate 

spatial resolution remote sensing data of the land surface. Its low cost long-term archive (since 

1978), high temporal resolution and global coverage have made it a more suitable data source
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for the detection of fire affected areas at a regional scale than other optical sensors. As a result 

numerous burned area studies have been conducted using AVHRR data, the majority of which 

have involved the analysis of multi-temporal NDVI images. These have typically involved the 

subtraction of pre and post-fire NDVI composites with the subsequent identification of a suitable 

threshold to locate areas of change. Burned areas have been identified successfully using this 

method in, for example, Alaskan boreal forest (Kasischke et al 1993, Kasischke and French 

1995), Canadian boreal forest (Li et a l 1997, Fraser et a l 2000a, Li et a l 2000a) and In

donesian tropical forests (Malingreau et a l 1985, Fuller and Fulk 2001). While the majority 

of studies have used AVHRR data from a single fire season, Kasischke and French (1995) have 

demonstrated a 20-30% increase in accuracy with the use of multi-year NDVI images.

Despite the widespread use of temporal NDVI composites or single date images for the iden

tification of burned areas there are certain limitations associated with this approach. A major 

problem with the use of vegetation index differencing approach at large spatial scales is that the 

thresholds required to identify burned pixels may be spatially and temporally variable (Kasischke 

and French 1995, Li et a l 2000b). An additional drawback in the use of NDVI differencing to 

locate burned pixels is that decreases will occur in the NDVI unrelated to fire, for example due 

to seasonal vegetation senescence, deforestation or harvesting, drought, cloud contamination or 

misregistration of multi-date images, all of which will contribute to large errors of commission 

(Li et al 2000b, Fuller and Fulk 2001). The use of the NDVI has been shown to be particularly 

problematic in the detection of burning within African savannas as fires typically occur after the 

senescence of vegetation and therefore the ndvi falls before a fire event (Eva and Lambin 1998a). 

Various studies have therefore investigated the feasibility of using alternate spectral indices to 

locate fire affected areas. Pereira (1999) has performed a comparative evaluation of the utility of 

several vegetation indices for mapping burned areas from AVHRR data. The results suggest that 

the NDVI is not a suitable indicator of burned vegetation in Mediterranean landscapes, and in

stead a new index (‘GEMI3’) is proposed. This is a modified version of the Global Environment 

Monitoring Index which is less sensitive to soil and atmospheric variations than the NDVI (Pinty 

and Verstraete 1992), with the shortwave infrared waveband replacing the red band thus making 

the index a more sensitive and improved discriminator of burned areas than either the NDVI or 

GEMI (Pereira 1999). The GEMI3 has also been used successfully to map burned areas at a 

continental scale from AVHRR data (Barbosa et al 1999). However an assessment of various
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spectral indices by Chuvieco et al. (2002) concludes that for the Mediterranean environment 

the Burned Area Index (BAI) based on red and near infrared spectral space and computed as 

the distance between each pixel and a reference spectral point, provides the highest burned area 

discrimination with AVHRR data.

The Vegetation (VGT) instrument onboard SPOT-4 has broadly similar characteristics to 

NOAA-AVHRR. With a spatial resolution of approximately 1.1km, a large swath width (2000km) 

resulting in a high temporal resolution with daily global coverage, and wavebands selected 

specifically for large scale vegetation monitoring, VGT data has been used frequently to map 

burned areas. In addition the inclusion of a middle infrared waveband (1.55-1.75um) not present 

on the earlier of the AVHRR sensors (pre NOAA-14) increases the utility of VGT data in burned 

area mapping studies. A study by Eastwood et al. (1998) has demonstrated that the differentia

tion between burned and unbumed vegetation may be achieved more accurately using the middle 

infrared waveband than either other individual wavebands or the NDVI, while research conducted 

by Fraser et al. (2000b) and Fraser and Li (2002) has exploited the sensitivity of this waveband to 

burning by formulating a ‘Short-Wave Vegetation Index’ (SWVI) which follows the form of the 

NDVI but replaces the red channel with the middle (shortwave) infrared VGT waveband. Results 

demonstrate that the magnitude of the change between pre bum and post bum surfaces in an area 

of Canadian boreal forest is greater using the SWVI than the NDVI. In addition the authors high

light the lower sensitivity of the middle infrared channel to smoke contamination as an additional 

advantage over the use of the conventional NDVI. Zhan et al. (2003) have followed a similar ap

proach using the red and shortwave infrared channels along with the NDVI and SWVI and a set 

of temporally varying thresholds to create monthly burned area maps for the boreal forests of 

the Russian Federation, while from an analysis of burned area spectral signatures for a region of 

Australian savanna Stroppiana et al. (2003) have found the Global Environmental Monitoring 

Index (GEMI) based on the red, near and middle infrared wavebands (Pinty and Verstraete 1992) 

to be the most appropriate index for the detection of burned areas. Silva et al. (2004) however 

have assessed the separability between burned vegetation and the unbumed background using 

the individual VGT wavebands (excluding the blue band) and three indices - an ‘Albedo Index’ 

calculated as the mean of the red, NIR and shortwave infrared reflectances, the NDVI and the 

SWVI - with the conclusion that only the NIR band allows for accurate discrimination of burned 

areas in all of the study sites, with the most suitable index varying between vegetation type and
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regions.

The Along Track Scanning Radiometer (ATSR) and ATSR-2 onboard the ERS-1 and ERS-2 

satellites have a similar spatial resolution (1km) to both the AVHRR and SPOT-VGT sensors as 

well as a spectral configuration suitable for burned area mapping (a shortwave infrared channel 

and two thermal infrared channels), although with a much narrower swath width (500km) they 

are less suitable for high temporal large scale mapping than either the AVHRR or SPOT-VGT. 

Eva and Lambin (1998a) and Eva et al. (1998) have successfully used ATSR imagery to map fire 

affected areas in Central Africa using a methodology which exploits the sharp fall in shortwave 

infrared reflectance and simultaneous rise in surface brightness temperature exhibited by recently 

burned surfaces. An advantage of this approach is that relative spectral changes are used to detect 

burned surfaces as opposed to absolute spectral values, thereby taking into account spatial and 

temporal variability and resulting in less confusion between burned areas and other cover types 

(Eva and Lambin 1998a).

Single or multi-band thresholding techniques have also been applied to moderate and higher 

spatial resolution optical data in the identification and delineation of fire affected areas. Vaquez 

et al (2001) have investigated the feasibility of using images from the medium spatial resolution 

(180m) Wide Field Sensor (WiFS) onboard the Indian Remote Sensing Satellite (IRS-1C) to map 

burned areas. Their methodology involved the analysis of pre bum and post bum NDVI images 

with results indicating the potential of the data for estimating burned areas at both regional and 

national scales. The Landsat series of sensors provide high resolution data, and several studies 

have investigated the use of vegetation indices with both Landsat MSS and TM data for map

ping burned areas. Jakubauskas et al. (1990) have used NDVI values in order to map burned 

areas and to investigate bum severity in a Michigan mixed forest, while Salvador et al. (2000) 

have produced burned area maps of Spain using a long (1975-1993) NDVI time series created 

from Landsat MSS data and Lopez and Caselles (1991) have performed an analysis of bispectral 

space using Landsat TM wavebands in an attempt to develop a vegetation index suitable for the 

detection of burned areas, on the basis of which they suggest an index following the form of the 

NDVI but substituting the red band for the shortwave infrared band.
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Image regression

The regression approach to change detection involves the establishment of a linear relationship 

between two images acquired on different dates. Pixel values may then be estimated for the later 

date image through the regression function, and changes are subsequently identified by subtract

ing these estimates from the earlier date image with areas of change exhibiting higher residuals 

than those which have remained stable between the two dates (Pereira et al. 1997). Although 

image regression has been used to detect land cover changes results have been only marginally 

better than those produced by image differencing techniques (Singh 1989, Ridd and Liu 1998). 

An advantage of the approach is the reduction of the impact of atmospheric, radiometric and 

environmental differences between the two images on the results (Lu et al. 2004). However as 

with the techniques described above the requirement of a change threshold is a major limitation 

of the method (Coppin et al. 2004).

Despite this drawback several studies have successfully applied the technique to the detection 

of burned areas. Fernandez et al. (1996) have performed a linear regression analysis of NDVI 

values calculated from AVHRR images acquired immediately before and after a forest fire event 

in Spain. The results have been compared to those produced by NDVI differencing, with the 

linear regression proving to be more successful of the two approaches. Koutsias and Karteris 

(1998) and Koutsias and Karteris (2000) have introduced a logistic regression approach to map 

burned areas in the Mediterranean from multi-temporal and single date Landsat TM data. In this 

case the logistic expression defines the probability of a pixel belonging to a bum (as opposed 

to unbumed) class. A model consisting of near infrared, middle infrared and visible wavebands 

was found to provide the best spectral separability for the detection of burned areas, and proved 

to be capable of mapping bums with an accuracy of 97.62%. This method was subsequently 

extended to include spatial information, with the probability of a pixel belonging to a bum class 

dependent on whether the neighbouring pixels also belong to the same class (Koutsias 2003). 

Logistic regression models have also been applied to moderate resolution data, with work by 

Fraser et al. (2002) locating burned areas at a continental scale and Silva et al. (2004) across 

several vegetation types from SPOT VGT data. Both of these studies have applied a multiple 

logistic regression model to the individual wavebands as well as to the NDVI and SWVI (Fraser 

et al. 2000b). Fraser et al. (2002) have also introduced a series of change metrics in order to
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account for seasonal phenological variations in the time series of reflectance, as well as three 

spatial tests which are applied to potential bum pixels in order to reduce errors of commission 

and increase the sensitivity of detection. A major drawback of this approach is the necessity of 

developing accurate regression functions for the specific wavebands prior to implementing the 

model (Lu et al. 2004), and different functions may be required to accurately identify changes 

over different ecosystem types and times of year. In addition the assumption of the approach is 

that a pixel location at time A is linearly related to the same location at time B, which implies that 

the majority of the pixels within the image have not changed significantly during the time interval 

between acquisitions (Vogelmann 1988, Coppin et al. 2004). Any variations in the reflectance 

signal between these two dates which are not related to the surface change of interest will thus 

decrease the accuracy of the method.

Change vector analysis

Change Vector Analysis (CVA) is a conceptual extension of image differencing, and has fre

quently been employed in change detection studies (Lu et al. 2004). The procedure is capable of 

processing the full dimensionality of a multi-spectral and multi-temporal dataset, and involves 

the calculation of the vector difference between subsequent time trajectories with the length of 

the vector representing the magnitude of the change and its direction the nature of the change 

(Lambin and Strahler 1994a). There are therefore two outputs from the algorithm - the direc

tion of the change vector and the multi-spectral change magnitude, both of which may be used 

to describe the characteristics of a particular change event. The direction of the change vector 

has been shown to be useful in the identifcation of different types of physical change, while the 

magnitude has proved to be useful for relative comparisons within and among different change 

categories (Johnson and Kasischke 1998). It is therefore particularly suited to situations where 

the land cover change and the associated spectral characteristics are not known in advance, the 

changes may have a high spectral variability, or information relating to both changes in land 

cover type and condition are required (Johnson and Kasischke 1998). In addition the ability to 

analyse all of the spectral information within a multi-temporal dataset concurrently as opposed 

to a single band at a time is a major advantage (Coppin et al. 2004). Johnson and Kasischke 

(1998) have demonstrated the usefulness of CVA in processing the full dimensionality of multi-
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spectral remote sensing datasets and in extracting and exploiting the components of change from 

the data. However the method suffers from similar problems to the image differencing and ratio

ing approach due to the use of thresholds to locate areas of change, sensitivity to misregistration 

of the data, and radiometric differences between the images (Yuan et a l 1999). Despite these 

drawbacks it has been used successfully to examine forest change (Cohen and Fiorella 1998) and 

to detect and identify seasonal and annual variations in landscape variables (Lambin and Strahler 

1994b, Lambin 1996). In addition a comparison of various change detection techniques includ

ing CVA, image differencing, vegetation index differencing and post-classification differencing 

has highlighted the success of CVA in particular for providing details relating to the nature of the 

change (Sohl 1999). Due to the capability of CVA in providing information relating to the type 

(in addition to the magnitude) of change as well as the maturity of this approach in comparison 

to other available change detection techniques, it is the primary method used in the creation of 

the MODIS land cover change product, designed to quantify progressive transformations as well 

as more instantaneous land cover conversions at a global scale (Strahler et a l 1999b).

The drawbacks of this method are similar to those for the image differencing approach de

scribed above. As with these methods CVA is sensitive to changes which are not related to land 

cover, such as changes in seasonality and ecosystem dynamics, changes in atmospheric condi

tions, and changes which are due to the solar and sensing geometry of the acquistions. In addition 

problems arise due to the difficulty in identifying the type of land cover change from the results, 

and in achieving consistent and accurate interpretation of the magnitude and direction of the 

change vector (Lambin and Ehrlich 1996).

2.1.2 Post-classification techniques

The post-classification approach to change detection involves the comparative analysis of in

dependently produced spectral classification results spanning the time period of interest (Singh 

1989). Although the need for radiometric calibration between the two dates is avoided as each 

image has been classified separately, the accuracy of the final change map is dependent on the 

quality of the individual classifications and is essentially a product of the accuracies of these 

(Lambin and Strahler 1994a). As errors in the original data due to misregistration as well as mis- 

classification are compounded, a study by Townshend et a l (1992) has identified a need for 0.2%
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pixel positional accuracy in order to avoid change detection errors of up to 10%, while Serra et al 

(2003) have found more than 30% of change information to be unreliable in the presence of a 

RMSE of 1 pixel in the original classifications. An additional disadvantage of the approach is 

the large amount of time and expertise required to create the classification products (Lu et al. 

2004). However an advantage of the post-classification approach is the capability of providing a 

matrix of the change information, as well as the reduction of the impact of atmospheric, sensor 

and environmental differences between multi-temporal images, and thus it still remains one of 

the more popular change detection methodologies (Coppin and Bauer 1994, Lu et al. 2004). Hall 

et al (1991) have performed a post-classification comparison of two Landsat TM images for the 

identification of five forest successional classes, while a comparison of six conventional change 

detection techniques by (Mas 1999) has found the post-classification comparison approach to 

be the most accurate for the detection of changes from multi-temporal Landsat MSS data, with 

the added advantage of providing an indication of the nature of the changes. Neural network 

classifiers have also proved to be successful and have been used to detect forest mortality from 

multi-date Landsat TM data with improved results over more conventional methods of change 

detection (Gopal and Woodcock 1996), while a comparison between conventional classification 

algorithms and a back-propogation neural network classifier by (Kushardono et a l 1995) has 

indicated higher accuracies with the latter.

As the detection and mapping of burned areas has typically been approached as a single 

feature extraction problem conventional image classification methodologies have not been ap

plied as widely as in other areas of change detection, and studies which exist in the literature 

have mainly focused on the use of these techniques with high resolution data (Pereira et al 

1997). Although the supervised approach has been more popular, unsupervised classification 

techniques have successfully been used to map burned areas from multi-temporal Landsat TM 

data using a minimum distance to means classifier (Jakubauskas et a l 1990) as well as with 

multi-temporal NDVI images and a maximum likelihood algorithm (Garcia-Haro et a l 2001). A 

supervised classification approach has been adopted by Patterson and Yool (1998) to map burned 

areas in Arizona from a single post-fire Landsat TM image using a minimum distance algorithm, 

and by Hudak and Brockett (2004) to identify areas of burned savanna in southern Africa from 

multi-date Landsat TM images using a parallelpiped classifier. Research conducted by Hudak 

and Brockett (2004) indicates higher accuracies when a principal components transformation is
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performed prior to the classification process, while Patterson and Yool (1998) have found that 

burned areas are mapped more accurately when the data is preprocessed using a Kauth Thomas 

transformation (Kauth and Thomas 1976) rather than a principal components transformation.

In recent years more complex automated classification procedures have been developed and 

applied to moderate resolution data in an attempt to separate burned areas from the surrounding 

vegetation over a larger spatial or more frequent temporal scale. A study by Gitas et al. (2004) 

has introduced a method to map a large fire in Spain incorporating contextual information into 

the classification procedure. The authors developed an object-based model using the spectral and 

spatial characteristics of the dataset which was successful at mapping the area burned, although 

it is suggested that further research is needed before the method can be considered robust ibid. 

Al-Rawi et al. (2001) have employed a supervised ART-II artifical neural network to detect areas 

of burning in Spain from a multi-temporal AVHRR dataset, while Brivio et al. (2003) have used 

a supervised classification strategy based on the hierarchical use of a Multi-Layer Perceptron 

neural network to create daily burned area maps of north Africa for a period of three months from 

SPOT VGT data. Stroppiana et a l (2003) have also used daily SPOT VGT images as well as ten 

day composites to successfully map burned areas of a woodland savanna ecosystem in Australia. 

The methodology involved a supervised classification scheme based on a homogenous univariate 

classification tree which successfully identified burned three area classes of varying severity, 

although the accuracy of the results was found to vary with vegetation type. A disadvantage of 

these methods however is the length of training time required and the sensitivity of the results to 

the amount and quality of the training data used (Lu et al. 2004).

2.1.3 Overview

While the respective advantages and disadvantages of each of the individual techniques have 

been discussed above, there are several major unifying limitations. Although these methods 

provide useful information detailing land cover change, their accuracy is limited by a range of 

complicating factors relating the surface state to the remote sensing signal (Roy et al. 2002). In 

particular image enhancement techniques are extremely sensitive to changes in seasonality and 

ecosystem dynamics which may have occurred between the dates of image acquisitions, to the 

extent that they have been shown to be unable to differentiate accurately between variations due
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to soil moisture, atmospheric conditions and vegetation phenology from those due to land cover 

change (Mas 1999). A second disadvantage is the need for a spatially and temporally specific 

change/no change threshold in order to identify areas of significant change. Although this latter 

point is not applicable to classification techniques and these are still sensitive to background 

changes and atmospheric conditions, the accuracy of the final change map will be a product of 

the individual classifications. In addition a great amount of time and expertise is required in the 

creation of accurate (supervised) classification products (Lu et al. 2004). While a number of 

the above techniques have nevertheless been successfully applied to the detection of land cover 

changes at a local scale and from high spatial resolution data, few have been applied successfully 

to moderate spatial resolution data at a global scale (Strahler et al. 1999b). The main reason for 

this is the problems of interpretation which arise from the application of these techniques over 

larger scales (Lambin and Ehrlich 1997).

2.1.4 Spectral mixture analysis

Subtle land cover changes as well as the physical nature of these changes may be identified from 

a multi-temporal dataset using spectral mixture analysis (SMA). The development of this tech

nique has been encouraged by the increased dimensionality of high spectral resolution data, and 

is based on the assumption that the remote sensing signal measured by a sensor for a particular 

location will be a linear mixture of the separate spectra of each of the individual components or 

‘endmembers’ within the scene (Coppin et al 2004). Spectral mixture analysis is the process 

of calculating the fraction of each of these endmembers. The first step involves determining the 

spectral response of the endmembers. The spectral characteristics may be extracted from training 

areas within the images or from spectral libraries collated from either field or laboratory mea

surements (Lu et al. 2004). The second step involves the formulation of the ‘mixture model’ 

which describes the contribution of each of the endmembers to the observed reflectance. In the 

case of a linear mixture model the reflectance from each pixel is considered to be a linear com

bination of the reflectances of the endmembers, weighted by their areal proportions. The pixel 

reflectances may then be inverted to determine the areal proportions of each of the endmembers 

within the scene.

The technique is particularly useful and more robust when applied to datasets where the
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number of useful wavebands is significantly higher than the number of endmembers of interest 

(Okin et al. 2001). Advantages of the approach include the capability of providing information 

at a subpixel level and thus relating to subtle changes in the surface, as well as the physical 

and quantitative nature of the individual fraction images which makes them well suited to stud

ies of surface change. Tompkins et al. (1997) emphasize however that all of the strengths of 

SMA are dependent on the accuracy of the definition of the endmembers, and inaccuracies in 

these will lead to incorrect and potentially meaningless fractional images. The selection of end

members has been investigated and is described in detail by Adams et al. (1995), Bateson and 

Curtiss (1996), and Tompkins et al. (1997). SMA has been used successfully in a variety of 

change detection studies including the identification of land cover change (Adams et al. 1995), 

in monitoring forest defoliation (Radeloff et al. 1999), and in mapping changes in vegetation 

cover (Rogan et al. 2002). Adams et al. (1995) have used four endmembers (green vegetation, 

non-photosynthetic vegetation, soil and shade) to investigate land cover changes in the Brazilian 

Amazon which proved to be a more successful approach than traditional classification methods, 

while Rogan et al. (2002) have used the same four endmembers to map land cover change in 

California with a higher degree of accuracy than that achieved with the tasseled-cap approach.

Despite the fact that SMA is the most commonly used technique in the analysis of remote 

sensing data at sub-pixel resolution, minimal studies have applied the approach to the detection 

of sub-pixel burned areas (Sa et al. 2003). Spectral unmixing techniques have, however, been 

applied to the identification of burned areas from an IRS LISS scene by Roan-Cuesta et al. 

(2003). Four endmembers were defined (charred vegetation, bare soil, green vegetation and 

shadow) in order to classify a forest fire in north-east Spain, with the method proving to be more 

successful than the use of NDVI images.

Although the major advantage of this approach lies in its capability to recover change sig

nals at much finer scales (Coppin et al. 2004) disadvantages include the need for the accurate 

identification (either manually or from a spectral library) of the endmembers, as well as the re

quirement for a much greater number of wavebands than endmembers. This latter point makes 

the technique more suitable for application to hyperspectral remote sensing data.
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2.1.5 Mapping fire affected areas at a global scale

Despite the large number of studies which have been carried out into the detection of burned areas 

at a regional or national scale, minimal attempts have been made to produce a method applica

ble to the global identification of burned areas. Various studies have successfully mapped fire- 

affected areas at a regional or ecosystem level including southern (Scholes et al. 1996b), western 

(Kennedy et al. 1994), and central African ecosystems (Eva and Lambin 1998a), Alaskan boreal 

forest (Kasischke and French 1995), Mediterranean forest (Pereira 1999), and South American 

tropical forest (Kaufman et al. 1990), while at a continental scale Barbosa et al. (1999) have 

mapped annual burned areas for the whole of Africa. Although the individual approaches used 

in these studies have proved successful at locating burned surfaces at these scales, it is appar

ent that the methods required to detect burned areas differ from one vegetation type to another 

(Gregoire et al. 2003). This is primarily due to the spatial and temporal variability of the spec

tral characteristics of fire affected areas and the complex and diverse nature exhibited by these 

surfaces (Pereira et al. 1997). The threshold approach for example which has been applied by 

many authors to AVHRR NDVI composites (Kasischke and French 1995, Fraser et al. 2000a, Li 

et al. 1997, Li et al. 2000b, Fuller and Fulk 2001) is problematic when used with multi-temporal 

datasets or to areas spanning different vegetation types due to the difficulty in determining of a 

suitable threshold. Not only may a different threshold be required for each vegetation type, but 

an appropriate threshold level may vary from image to image (Al-Rawi et al. 2001). Although 

methodologies have been investigated which avoid this problem - Fernandez et al. (1996) for 

example have developed a method whereby the threshold value is determined contextually - few 

of these have been tested on a global dataset. Due to issues such as these Pereira et al. (1997) 

have concluded that the development of a generic, optimal, context-independent methodology 

for detecting and mapping burned areas may prove problematic, and suggest that region-specific 

ecological knowledge may be required to complement a spectral dataset. Despite this a handful 

of studies do exist in the literature which have attempted to design a single algorithm capable of 

delineating burned areas on a global scale. Roy et al. (1999) have investigated a multi-temporal 

bum scar detection algorithm designed for global application which is presented as the basis for 

operational bum scar monitoring using AVHRR and MODIS imagery. The VI3 vegetation index 

which follows of the form of the NDVI with the reflective component of the middle infrared sub
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stituted for the red band, is applied to a temporal sequence of AVHRR data to produce a bum scar 

index change map, which is then classified into burned and unbumed pixels. A generic change 

detection algorithm designed for global application has also been presented by Roy et al. (2002), 

and is described in detail in Section 4.3. The methodology involves fitting a model of surface 

reflectance against a set of recent observations, in order to produce an expectation of subsequent 

measurements of reflectance. Large discrepancies between the observed and the modelled re

flectance are then attributed to surface change or “bad data” (i.e. noise, residual cloud, cloud 

shadow). Originally prototyped with AVHRR data (Roy and Lewis 2000), the model has sub

sequently been applied to daily MODIS imagery for an area of Southern Africa with promising 

results (Roy et al. 2002). The few global burned area datasets which do exist are described in 

detail in Section 2.4.2.

2.2 Limitations of traditional change detection techniques

The ability of the methods described above to separate areas which have been affected by fire 

from those which have not is highly dependent on the magnitude of the change in the signal 

which has occurred due to the change of interest (i.e. burning) in addition to the threshold level 

used (if required) to identify the change. The determination of a suitable threshold level is crit

ical to the accurate identification of change, but as this may vary spatially and temporally the 

identification of an appropriate level is not a simple matter. Areas of change selected via an 

interactively or statistically defined threshold will include external influences caused by varying 

atmospheric conditions, sun angles, soil moisture and phenological states in addition to the ac

tual changes of interest (Lu et al. 2004). Although more advanced techniques such as spectral 

mixture analysis or artifical neural networks do not require the definition of a threshold and pro

duce higher quality change information, the results are still highly dependent on the magnitude 

of the change in comparison to background “noise” in the data. A study by Stroppiana et al. 

(2002) has shown that between 60-70% of the variability in SPOT-VGT surface reflectance data 

is caused by geometrical effects, with only 30-40% of the variability actually due to changes in 

the vegetation. Attempts have typically been made to reduce such effects prior to the detection 

of changes through the use of temporal composites. While the most popular approach has been
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based on maximum NDVI values with the assumption that lower values of the NDVI will occur 

due to atmospheric effects, contamination from clouds and the soil background and variations 

due to sun and sensor positions. However problems with this approach occur as high NDVI 

values may be observed due to directional effects resulting in the preferential selection of off- 

nadir pixels (Lu et al. 2004). Other compositing procedures have been introduced such as the 

maximum surface temperature as clouds and cloud shadow will decrease the thermal infrared 

response (Cihlar et al. 1994, Roy 1997), or the use of maximum NDVI values followed by a 

minimum scan angle criteria (Cihlar 1994). Alternately the methods used have been dictated by 

the specific type of change which is being identified. Barbosa et al. (1998) have thus used a 

minimum albedo criteria in the detection of burned areas in order to preserve any information 

relating to the burned surfaces which will exhibit a low albedo.

Although compositing procedures may reduce the impact of external effects which are not 

directly related to the changes of interest, they do not remove them completely. The approach is 

therefore not ideal as the presence of these effects may mask the occurrence of low magnitude 

changes in the signal. This is demonstrated by Figure 2.1a which contains a temporal sequence 

of MODIS band 5 (1.23^m - 1.25/im) reflectances. The data corresponds to a single 500m pixel 

location from an area of northern Zimbabwe which has been flagged as containing an active fire 

on day 267 in the MODIS Thermal Anomalies product (see Section 2.3). The exact location of 

this pixel is documented as Site 2A in Table A.l and Figure A.l in Appendix A. This waveband 

(along with band 5) has been shown to exhibit higher sensitivity to fire induced surface change 

than the remaining five MODIS land surface reflectance wavebands (Roy et al. 2002, Trigg and 

Flasse 2000). The view zenith angle under which each observation is acquired is displayed in 

2.1b and the NDVI for the same sequence in Figure 2.1c.

Despite the decrease in reflectance which is evident in the temporal sequence on the day 

of the fire, the magnitude of this change is within the variance of the data prior to the bum 

due to directional effects. It is clear from the NDVI (Figure 2.1c) values for this pixel location 

that the identification of the fire induced land cover change would be extremely difficult due 

to the variations which are present in the data due to “background” effects. The presence of 

these effects in surface reflectance data will decrease the separability between land cover classes 

if they are not accounted for. This is demonstrated by Figures 2.3a and 2.3b which contains 

atmospherically corrected reflectance data extracted for an area of 5km by 20km at the two
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Figure 2.1: The effect of burning on MODIS band 5 reflectances and NDVI, Site 2A, Zimbabwe 
2001: The vertical line indicates the day of the MODIS active fire detection
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sites indicated in Figure 2.3c. Figure 2.3a displays MODIS band 1 (0.62-0.67/xra) and band 2 

(0.841-0.876//ra) 500m reflectances for the two sites, while Figure 2.3b contains the same data 

corrected for angular effects. These data have been extracted from the MODIS Core Validation 

(Mongu site, Zambia) 500m Surface Reflectance and Nadir Adjusted BRDF Reflectance products 

(NBAR) for the 4th of April 2001 (Strahler et al. 1999a). The Mongu site is located at -15.438° 

of latitude and 23.253° of longitude. The location of the image within the area of interest is 

displayed in Figure 2.2.
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Figure 2.3: Directional effects in MODIS 500m reflectances, Mongu (Zambia), 4th April 2001

Although from a visual examination of the NBAR image in the Figure 2.3c the two sites 
appear to be physically distinct, when directional effects are present in the data the distributions 
of the two classes in visible/near-inffared space overlap (Figure 2.3a) making it impossible to 

separate them based solely on this information. However once the data have been corrected
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for these effects (Figure 2.3a) the overlap is reduced enabling a classification of the two land- 

cover types based on their spectral characteristics to be achieved with a much higher degree of 

accuracy. In addition single band reflectances or vegetation indices which have been corrected 

for directional effects will have a clearer physical meaning than uncorrected temporally com

posited values thus allowing for a better quantitative description of the biosphere (Leroy and 

Hautecoeur 1999). While such variations have traditionally been viewed as a source of error and 

have typically been reduced through the use of composited data as described above, a handful of 

recent change detection studies have exploited the information contained in this domain indicat

ing substantially higher land cover classification accuracies with the incorporation of directional 

information (Abuelgasim et a l 1996, Barnsley et al. 1997). The incorporation of this infor

mation into the analysis adds an additional domain of information which has typically not been 

exploited in traditional approaches to change detection. As the spatial and temporal variability 

of the spectral response of burned areas is often extremely diverse and complex (Pereira et al. 

1997), failure to exploit all of the information available in the remote sensing signal will result 

in decreased change detection capabilities.

2.2.1 Issues implicit in multi-temporal studies

All change detection methodologies will be sensitive to variations present in the data which are 

not associated with the surfaces changes of interest (Roy et al. 2002). The precise registration 

of a multi-temporal dataset to a common spatial framework is a prerequisite for the accurate de

tection of land cover change on a pixel by pixel basis. Dai and Khorram (1998) demonstrate that 

a registration accuracy of at least one-fifth of a pixel is necessary in order to achieve a change 

detection error of less than 10%. With an increasing emphasis on the need for more reliable 

quantitative estimates of the Earth’s biophysical properties, considerable efforts have been made 

 ̂with the latest generation of sensors to address the need for accurate image registration (Town- 

shend et al. 1992, Wolfe et a l 1998). The operational geolocation goal of the MODIS Science 

Team is thus an accuracy of 0.1 pixels for the 1km wavebands which corresponds to 10% of a 

500m pixels (Nishihama et a l 1997). The utility of multi-temporal datasets in studies of change 

detection may also be reduced by atmospheric, environmental and radiometric differences, varia

tions in pixel size across the image swath, and the variations in the sensor and solar geometries at
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the time of data acquisition as discussed above (Roy 2000). While the impact of environmental 

effects have tended to be addressed through the use of anniversary date images, accurate atmo

spheric and radiometric correction and calibration of the images is required (Coppin et al. 2004). 

Problems such as the inaccurate detection of clouds and poor spectral calibration of the data are 

less prevalent however in data acquired by newer sensors such as MODIS than in comparable 

sensors such as the AVHRR (Roy et al. 2002). The position of the first seven MODIS reflective 

wavebands and their bandwidths have been chosen based on experience with the AVHRR and 

Landsat TM sensors in order to maximise radiometric precision and to avoid atmospheric ab

sorption, and as a result all of these seven wavebands are of potential use in the discrimination of 

land cover units and in the identification of land cover change (Townshend et al. 1991, Strahler 

etal. 1999b).

In any land cover change detection study utilising remote sensing data, a choice needs to be 

made between the use of high spatial but low temporal resolution data, or moderate/low spatial 

but high temporal resolution data. The most appropriate data source will be dictated by the 

nature of the change which is to be identified, the spatial and temporal scale of the study, and 

the availability of data. While changes may be detected more accurately from higher spatial 

resolution systems such as Landsat TM due to the lower heterogeneity of the surface at the 

single pixel scale (30m for Landsat TM), this is achieved at the expense of low revisit periods. 

Sixteen days will therefore elapse before the same location on the Earth’s surface is imaged 

again by the Landsat sensor. Combined with the possibility of cloud cover (or smoke/haze from 

fires) this low revisit period means that only a few good quality observations of the surface 

may be available over a period of several months. In contrast high temporal resolution sensors 

such as MODIS, AVHRR and SPOT VGT acquire near daily data at a global scale, but at a 

considerably lower spatial resolution. The first seven MODIS land surface reflectance bands are 

thus acquired at a resolution of 500m, while the spatial resolution of the AVHRR and SPOT VGT 

sensors are approximately 1km. The accurate identification of fire affected areas over large scales 

necessitates the use of high temporal resolution data due to the sudden and evolutionary nature 

of vegetation fires and the subsequent burned surface. While the “bum scar” produced by a fire 

may be identifiable within highly vegetated areas such as the boreal forests of Siberia for more 

than a year after the occurrence of a fire (Fraser and Li 2002), burned surfaces in southern Africa 

may exhibit a rapid post-fire recovery with an identifiable signal no longer present in as little as
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a month after burning (Trigg and Flasse 2000). This aspect of the fire regime is discussed further 

in Section 3.6.2. The most appropriate remote sensing data source for a particular problem thus 

requires a careful consideration of both the spatial and the temporal characteristics of the changes 

of interest.

2.3 The detection of active fires

Over the past decade a large number of studies have been conducted into the detection of active 

fires from satellite data, and this is therefore a very well developed research field. Although the 

majority of work has been conducted at a regional or ecosystem scale the methodologies devel

oped tend to be more widely applicable. All active fire detection algorithms are designed with 

the aim of separating those pixels in a dataset which contain active fires, from those that do not. 

The majority of methodologies have been designed for use with data from the Advanced Very 

High Resolution Radiometer (AVHRR). Until the launch of MODIS (Terra) in December 1999 

the AVHRR sensor was the most suitable for large scale fire detection due to its high temporal 

resolution providing near daily global coverage and long term archive (25 years) of data at a 

moderate spatial resolution of approximately 1km. In addition the spectral configuration of the 

sensor makes it suitable for monitoring various characteristics of fires. A key aspect of the in

strument is the location of the thermal infrared band (channel 3) between 3.55fim  and 3.93fim 

near the spectral maximum of radiative emissions for objects radiating at temperatures around 

800K, the temperature of burning grass. In comparison channels 4 (10.3fim — 11.3fim) and 5 

(11.5/im — 12.5iim) are located near the spectral maximum for average environmental tempera

tures (approximately 300K). The underlying basis of the majority of fire detection algorithms is 

thus the assumption that a pixel containing an active fire will receive much more radiant energy at 

channel 3 wavelengths than at either channels 4 or 5. Existing fire detection algorithms fall into 

two broad categories; fixed threshold and contextual techniques. The fixed threshold approach 

involves the definition of an absolute threshold to which the value of each pixel is compared in

dividually. In contrast a contextual algorithm defines a relative threshold through an examination 

of the statistics of neighbouring pixels. Contextual algorithms are the more recent technique and 

have been designed in an attempt to improve the accuracy of fire detection from remote sensing
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data in a global context as although fixed threshold algorithms produce acceptable localized re

sults, in general they have not been as successful in the analysis of large multi-regional datasets.

2.3.1 Fixed threshold algorithms

Traditional methods of fire detection are typically referred to as ‘fixed threshold’ algorithms 

as they employ an empirically defined threshold of, for example, AVHRR channel 3, to locate 

pixels which contain hotspots. The simplest approach is to assume that all saturated pixels in 

the thermal infrared channel contain fires. Saturation of the AVHRR sensor occurs at brightness 

temperatures of approximately 320 degrees Kelvin (K), and as this value is much higher than the 

temperatures of typical ground features the saturation of pixels is assumed to be an indication of 

the presence of fires (Cahoon et al. 1991, Kennedy et al. 1994). Thresholding AVHRR channel 3 

at this level however leads to a large number of false identifications due to sunglint effects and the 

presence of other highly reflective surfaces. Research has indicated that while a single channel 

3 threshold is sufficient to detect all fires within an AVHRR dataset, an additional threshold may 

be required to eliminate hot surfaces (Brustet et al 1991). Various methodologies have thus 

been suggested to address the problem of saturation of non-fire pixels in an attempt to reduce the 

number of false fire detections.

Kaufman et al. (1990) implement three tests to identify forest fires in Brazil from AVHRR 

data. The first test (Channel 3 > 316K) ensures that the pixel is hot. The second compares 

the difference between channel 3 and 4 to a pre-defined threshold, and the third (Channel 4 > 

250K) screens out clouds, as they may be highly reflective in channel 3 but will have a cooler 

temperature at channel 4 wavelengths. Li et al. (2000a) have also introduced three tests to 

eliminate false fires. The first examines the difference in brightness between AVHRR channels 

3 and 4 in order to identify any false fire pixels cased by a warm background such as bare soil 

which may emit enough heat to saturate channel 3. The second test involves an examination of 

channel 4 values in order to eliminate false fire identifications caused by highly reflective clouds. 

Finally the reflectance values of channel 2 are examined, as true fire pixels will have a low 

reflectance in channel 2 due to decreased biomass and the presence of ash (Kennedy et al. 1994). 

Randriambelo et al. (1998) have used a similar approach. A multi-channel (AVHRR channels 

3 and 4) algorithm is used to detect fires in south-eastern Africa and Madagascar. The method
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assigns thresholds to the channel 3 and channel 4 data through an analysis of the histograms 

for each channel. A fixed threshold of 320K was used in the analysis of savanna regions, while 

a lower threshold of 316K was used for areas with denser vegetation cover. The channel 4 

threshold is used to eliminate pixels which are contaminated by clouds or which contain warm 

surfaces (such as bare soil) as these will exhibit high reflectances. The values for the channel 

4 threshold are determined by an examination of the Normalised Difference Vegetation Index 

(NDVI). Low or negative values of the NDVI are likely to correspond to clouds or bare surfaces, 

and these are thus eliminated.

In contrast to methodologies which are based purely on thresholding the individual or some 

multi-band combination of the thermal wavebands, various alternative approaches have been 

suggested. Chuvieco and Martin (1994) for example, have performed an initial classification 

of the dataset with thresholds subsequently applied only to vegetated areas in an attempt to 

avoid confusion between fire pixels and bare soils, while Setzer and Pereira (1992) only identify 

saturated pixels as active fires if a smoke plume is also identified in AVHRR channel 1.

Another approach to deal with the problem of sensor saturation due to the presence of highly 

reflective surfaces has been the use of night time images. Langaas (1993) has successfully used 

night time AVHRR channel 3 data over an area of West Africa to locate and analyse the charac

teristics of fires. A modification of the Dozier model (Matson and Dozier 1981) which provides 

algorithms for calculating the size and temperature of sub-resolution hotspots is utilised in order 

to identify high temperature sources within the images. Cahoon et al. (1992)) have used Defense 

Mapping Satellite Program (DMSP) night time data to detect fires over the African continent. 

This data proved to be particularly useful for the detection of fires in areas where there are few 

city lights such as the African savanna. However, despite the advantages which it may provide, 

night time datasets have not been widely used in fire detection studies. This is because the night 

time satellite overpass does not coincide with the occurrence of maximum fire activity, as the 

majority of vegetation fires generally begin during the afternoon when the ground is drier and 

the wind stronger, and tend to be short-lived lasting only for a few hours (Kennedy et al. 1994). 

In addition fires which persist for several days typically exhibit a diurnal cycle whereby they 

bum strongly during the afternoon and die down at night (Belward et al. 1994).
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2.3.2 Contextual algorithms

In comparison to the fixed-threshold approach, contextual algorithms work by establishing a 

temperature difference threshold. This typically involves an examination of local backround 

information in order to set the levels dynamically. Thresholds are thus derived on a pixel-by- 

pixel basis from the values of pixels in a surrounding window. The method relies on the fact that 

high temperature sources produce a high middle-infrared signal but have little effect on longer 

infrared wavelengths. Studies by Flasse and Ceccato (1996) and Wooster et al. (1998) thus 

identify potential fire pixels where the middle-infrared and longwave-infrared signals appear 

widely divergent. This fire detection process consists of two stages. First, pixels which may 

contain a fire are identified using a simple threshold which is low enough to ensure that all 

potential fire pixels are retained, but high enough to reject the majority of pixels which are 

definitely not fires. A pixel will be flagged as a potential fire if T3 > 3 I lk  and (T3 - T4) > 8k, 

where T3 and T4 are AVHRR channel three and four values. In addition a threshold may be 

applied to the channel 4 values, in order to ensure that the pixel is free of clouds and water 

bodies, as these may result in high reflectance values and lead to the incorrect identification of 

a pixel as a potential fire (Stroppiana et al. 2000). The second stage is the confirmation of a 

hotspot as a fire. This is achieved by comparing the pixel with its neighbours through the use of 

statistical measures such as the mean and the standard deviation of the background temperature 

difference. An expanding window technique (a maximum window size is defined to ensure 

that the statistics collected are representative of the pixel’s background) is used to produce an 

acceptable set of background pixels, and potential fire pixels or pixels which contain clouds are 

not included within this. If the potential fire pixel is sufficiently different from its background, 

then it is classified as a fire. The criteria defined by Justice et al. (1996) require the value of a 

potential fire pixel to be at least two standard deviations greater than the mean background value 

in order to be classified as a definite fire pixel.

Following a contextual approach a fire pixel is thus identified by comparing the values of a 

potential hotspot with its neighbours and consequently confirming the presence of fire if the con

trast between the pixel and the background is large enough. This method has several advantages 

over traditional fixed threshold algorithms. The main difference is that the decision to define a 

pixel as a fire is made on a relative, rather than an absolute basis. As a result the algorithm can
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be applied to different areas or using data from a different season without requiring modification. 

For example forest fires in a cooler environment may not necessarily saturate AVHRR channel 3 

as they have a lower temperature than savanna fires. However they will still be detected on the 

basis of the contrast between the fire and the background. If a fixed threshold algorithm which 

would apply the same thresholds to the two environments were to be used, either the forest fires 

would not be detected, or if they were then a large number of ‘warm’ pixels in the savanna envi

ronment which did not contain fires would also be classified as fire pixels. The main advantages 

of contextual algorithms are thus their self-adaptive nature and applicability to a wide range of 

seasons and environments (Flasse and Ceccato 1996).

2.4 Global fire products

At the time of writing the only global operational active fire information available is the MODIS 

Thermal Anomalies product. This is described in detail in Section (2.4.1). However several in

ternational programmes have been initiated with the aim of providing information on fire activity 

at a global scale using satellite data. In particular global active fire datasets include the Inter

national Geosphere and Biosphere Program’s Global Fire Product, the Joint Research Centre’s 

World Fire Web, and the European Space Agency’s World Fire Atlas, and the Tropical Rainfall 

Measuring Mission’s Fire Product which has near-global coverage. However as the Global Fire 

Product is only available for the period April 1992 to December 1993 it will not be discussed 

further.

The World Fire Web

Produced by the Global Vegetation Monitoring unit (GVM) of the Joint Research Centre (JRC) 

the World Fire Web is a global active fire dataset for the period October 1996 to December 2001. 

The dataset is available daily at a spatial resolution of 0.5 by 0.5 of a degree. The locations 

of active fires have been determined from 1km by 1km spatial resolution AVHRR data using a 

contextual algorithm (Flasse and Ceccato 1996). However errors of both commission (caused by 

warm highly reflective surfaces) and omission (due to the presence of smoke and clouds) exist 

in the dataset with large fires often remaining undetected due to the contextual threshold levels
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used.

The World Fire Atlas

The World Fire Atlas produced by the European Space Agency (ESA) documents the global loca

tions of active fire detections between 1995 and June 2004 at the time of writing with processing 

ongoing, synthesized into monthly fire maps over this period. The dataset has been created using 

a fixed threshold algorithm applied to night-time data from the Along Track Scanning Radiome

ter (ATSR) and ATSR-2. Although the detection of hotspots from night-time results in lower 

errors of commision due to sun-glint or the presence of warm surfaces, the timing of the satellite 

overpass may not coincide with the peak of fire activity in certain ecosystems. In addition to the 

use of night-time data the orbital characteristics of the ERS satellites result in a night-time revisit 

period of between three and six days at the equator. Both of these factors can contribute to the 

underestimation of fires. In comparison an alternative problem with the use of ATSR and ATSR- 

2 data is the overlap of the ATSR and ATSR-2 frames which may result in multiple detections of 

the same fire. However the main limitation of the dataset is the underestimation of the number 

of fire pixels, and it is suggested that the algorithms employed in its creation should be used with 

caution in the detection of agricultural, savanna and small fires (Arino and Plummer 2000).

The TRMM VIRS Fire Product

This fire product has been compiled using data from the Visible and Infrared Scanner (VIRS) 

onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. Active fire detections are 

documented at a spatial resolution of 0.5 by 0.5 of a degree for the period January 1998 to August 

2004 at the time of writing, with processing ongoing. The sensor has a near-global geographical 

coverage spanning the latitudes 38 degrees South and 28 degrees North, with the same location 

observed once every two days. The product has been created using a contextual fire detection 

algorithm (Giglio et al. 1999). An evaluation of the results has indicated at least a moderate 

probability of detection for all of the test sites, with a higher probability of detection for fires 

occurring in non-forest land cover classes (Giglio et al. 2003b). Study sites which exhibited a 

high level of fire activity such as areas of woodland or forest within central Africa (the Central 

African Republic, Angola and Zambia) where the fire activity also occurred primarily within
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forest or woodland pixels demonstrated the lowest probabilities of detection by the algorithm 

(ibid).

2.4.1 The MODIS active fire product

The algorithms used to produce the MODIS active fire product are based on heritage algorithms 

developed to detect fires from AVHRR data. One of the major problems involved in the use of 

AVHRR imagery for fire detection is the saturation of channel 3, resulting in the false identifica

tion of fire pixels. In contrast, MODIS has two 4fim channels (bands 21 and 22) which saturate at 

temperatures of 500K and 335K respectively as well as an 11 fim channel which saturates at ap

proximately 400K, thereby offering unique fire detection capabilities (Justice et al. 2002). Four 

daily MODIS observations, two from Terra (10.30am and pm local equator crossing time) and 

two from Aqua (1.30pm and am local equator crossing time) are used to produce a suite of active 

fire products. The algorithm employed to detect fires is a hybrid approach combining both abso

lute and relative criteria, and as is the case with most satellite based fire detection methodologies 

it exploits the different responses of the middle-infrared and the longwave-infrared wavebands to 

the presence of fire (Kaufman et al. 2003). The data used in the current research is the “version 

4” MODIS product. This has been created using an updated post-launch algorithm which was 

introduced due to two particular problems in the initial results. The problems with the earlier 

version of the algorithm involved the detection of a large number of false fires over deserts and 

sparsely vegetated surfaces, while relatively small fires were frequently not identified (Giglio 

et al. 2003a).

The MODIS fire detection algorithm follows the same approach as the first and the majority 

of subsequent hotspot detection algorithms, exploiting the difference in the responses of the 

middle and long wave infrared wavebands to the presence of a hot subpixel target (Dozier 1981). 

The basis of the version 4 algorithm is the absolute increase in radiance at 4jam as well as 

the increase at this wavelength relative to the radiance measured at Wjim. In the following 

discussion T4 will refer to the 4fim channel, and Tn the 11 jj,m channel (MODIS bands 22 and 

31 respectively) and K  to degrees Kelvin. The version 4 algorithm involves four main processes. 

The first locates any potential fire pixels while the second involves a fixed threshold approach 

to identify larger or more intense fires. A background characterisation is then performed, and
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finally a contextual approach is used to locate any smaller fires.

The first step in the fire detection algorithm involves the identification of any potential fire 

pixels. For daytime data this is achieved through three tests. If the three conditions 

T4 > 310&

and

A T  > 10 K  

where

A T  = T4 — Tn

and

P(band2) 0-3
are not met then the pixel is automatically rejected as a non-fire pixel. For nighttime data no 

reflective test is performed and the threshold of the first test is reduced to 305 degrees Kelvin. 

Any pixels which pass these conditions are assumed to be potential fire pixels and are subjected 

to two further tests. An absolute threshold is used to identify pixels which are definite fires and 

therefore have a very low chance of being false alarms (Kaufman et al. 1998). The threshold 

level is therefore set high enough to ensure only unambiguous fire pixels are identified:

T4 > 360& (day)

T4 > 320k (night)

The third test is also performed on all the pixels which have passed the first test, irrespective of 

whether they have passed the absolute threshold test or not, and involves the characterisation of 

radiometric background signal of each potential fire pixel. This is achieved using all “usable” 

pixels within a window surrounding the potential fire observation as input. Usable pixels are 

defined as those which are land pixels, are cloudfree, and are not background fire pixels (Giglio 

et al 2003a). Background fire pixels are identified as those where:

T4 > 325k

and

A T  > 20K  

for daytime observations, and where:

T4 > 310A:

and

A T >  10 K
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for nighttime observations. If the potential fire pixel has a sufficient number of usable obser

vations (as least 25 percent of the window), various statistical measures are then computed as 

detailed in Table 2.1. The mean absolute deviation is used in preference to the standard deviation

Statistic Definition
t 4 respective mean of T4
6a mean absolute deviation of T4
T n respective mean of Tn
Sn mean absolute deviation of Tn
A T respective mean of A T
$AT mean absolute deviation of AT

Table 2.1: Fire related statistics: MODIS Thermal Anomalies product

as a measure of dispersion as it is more resistant to outliers, which may be present in the data due 

to undetected clouds, water or fires (Giglio et al. 1999, Giglio et al. 2003a). Pixels which pass 

the background characterisations are then subjected to a series of contextual tests. The aim of 

this process is to locate pixels which display T4 and A T  values which are sufficiently different 

from the values of the non-fire background, and thresholds are therefore determined from the 

variability of the background values. This is achieved through three tests;

1. A T> AT + 3.5<W
2. AT > AT 4- 6K

3. T4 > T 4. -f- 3 4̂

In the case of nighttime observations unambiguous fire detection is performed based on the in

formation collected so far. Nighttime fire pixels are identified as observations which pass the 

absolute threshold test or where the above three contextual tests are true. For daytime observa

tions the pixel is identified as a tentative fire if it passes the absolute threshold test or all of the 

three contextual conditions are met. For the pixel to be identified unambiguously as a fire it is 

subjected to a further three steps which are designed to eliminate false detections due to sun glint, 

hot desert surfaces or coastlines. For a description of the rejection criteria the reader is referred 

to Giglio et al. (2003a).
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Performance of the algorithm

Results from the global (i.e. over all biomes) validation of the version 4 MODIS fire detection 

algorithm indicate that under ideal daytime and nighttime conditions a flaming fire needs to be 

approximately 100 m 2 in order to have at least a 50 percent chance of detection, while smoldering 

fires typically need to be between 10 and 20 times larger to achieve the same probability of 

detection (Giglio et al. 2003a). The greatest source of error in the Version 4 product is the 

persistent false detection of fires along the banks of (as well as on islands within) some rivers, 

and improvements are thus necessary in the ancillary water mask used in the algorithm (ibid).

2.4.2 Global burned area products

At the time of writing no global burned area information is produced operationally. However 

several global burned area datasets have been created from remote sensing data sources.

The GLOBSCAR dataset

The GLOBal Bum SCAR (GLOBSCAR) project was initiated in 2001 under the European Space 

Agency’s Data User Programme, with the aim of producing monthly global burned area maps 

from daytime ATSR-2 imagery for the year 2000. This sensor was chosen in particular due to its 

high spectral resolution thermal and near infrared channels, both of which have been shown to 

be the most appropriate wavebands for the global detection of burned surfaces (Trigg and Flasse 

2000, Stroppiana et al. 2002). In addition the repeat cycle of the ERS-2 satellite which results 

in coverage at the equator at least once every three days, its equatorial crossing time of 10.30am, 

and moderate spatial resolution (1 by 1km) make it an appropriate data source for the detection 

of burned areas globally (Simon et al. 2004).

The methodology employed in the creation of the GLOBSCAR dataset consists of two algo

rithms which exploit the two main changes which occur to the remotely sensed signal as a result 

of burning. The first involves the decrease in near infrared reflectance which occurs due to the 

removal of vegetation as a result of burning independent of the vegetation type, while the second 

is dependent on the increase in temperature of a recently burned surface as a result of increased 

absorption of solar radiation, decreased evapotranspiration due to the loss of the vegetative cover,
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and the blanketing presence of ash and carbon constituents (Simon et al. 2004). The first algo

rithm (“K l”) is based on the geometrical characteristics of the bum pixels in bi-spectral (near and 

thermal infared) space (Piccolini and Arino 2000). Bum pixels are expected to move away from 

the distribution irrespective of the vegetation type or atmospheric conditions due to the higher 

brightness temperature and lower near infrared reflectance exhibited by burned surfaces. The Kl 

algorithm is applied to the data in fixed size windows as defined in Equation 2.1:

K l(i, j)  =  mean(NIR) — N I R  + 2 x T I R  — 2 x mean(TIR)  — variance(TIR) (2.1)

where TIR (thermal infrared), mean(TIR) and variance(TIR) are expressed in Kelvin, NIR (near 

infrared) and mean(NIR) are integer expressions of the actual percentages, and only ‘burnable’ 

pixels are used in the calculation of the mean and variance quantities. A 50km by 30km win

dow size has been chosen as these dimensions present a compromise between the need for a 

sufficiently homogenous land surface in terms of the cover type, and a sufficient number of 

observations to derive the mean quantities required by the algorithm (Simon et al. 2004). A 

problem with this approach is the requirement of a high degree of separability in the NIR-TIR 

spectral space, which is not always the case in particular in the presence of smaller bums and 

mixed pixels.

The second algorithm (“E l”) consists of a series of fixed threshold tests which were initially 

designed for the detection of burned areas within tropical savannas, involving information from

four ATSR-2 wavebands (Eva and Lambin 1998a). A pixel is identified as a bum if:

1. REDq.67 <10%

2. NDVR0.4

3. SWIRi.g <20%

4. NIRo.s <SWIR16

5. BTn >300K

Where RED, SWIR and NIR denote the reflectance in red, short wave and near infrared wave

bands respectively, and BT is the brightness temperature. In order to achieve acceptable global
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results and to minimise errors of commission the Kl and El algorithms cannot be used individ

ually, and therefore both have been used in the creation of the GLOBSCAR datasets with pixels 

only labelled as bums in the final output if they have been identified as potential bums by both 

algorithms. Although errors of commission occur with the Kl algorithm due to the presence of 

dark bare soil or mixed pixels, these are reduced considerably by the El thresholds. The main 

limitation of the El algorithm is confusion between water pixels and bum pixels in particular 

in the Okavango delta, but it is possible to avoid such errors through the use of a water mask 

(Fierens 2002). Thus when both algorithms are used although under-detection of burned pixels 

occurs frequently and is significant in some areas, for example croplands in Zimbabwe, errors of 

commission rarely occur and tend to be limited to isolated pixels (Simon et al 2004).

Validation of the results has indicated that inaccuracies in the geolocation of the data in 

conjunction with the coarse spatial resolution (1km by 1km) of the ATSR-2 data results in poor 

quantitative results at a local scale (in particular for smaller fires) which are not necessarily 

representative of the performance of the product at a global scale (Simon et al. 2004). The main 

limitation of the algorithms is the application of single threshold levels applied at global scale. 

The reason given for this is the lack of reliable land cover information at the time of creation 

of the product, and it is suggested that the problem of under-detection of bum pixels in certain 

ecosystems may be avoided through the application of modulated thresholds which would require 

the use of a detailed land cover map (ibid).

The GBA2000 dataset

The main aim of the Global Burnt Area 2000 (GBA2000) project was to provide reliable and 

quantitaive information relating to the magnitude and spatial distribution of biomass burning 

at a global scale. Co-ordinated by the Global Vegetation Monitoring unit (GVM) of the Joint 

Research Centre (JRC) a network approach involving national institutions from six countries and 

two international institutions has been used to develop and test a series of regional algorithms 

which may be applied to the problem of locating burned areas in moderate spatial resolution 

satellite data. The algorithms are applied to daily global data for the year 2000 acquired by the 

Vegetation (VGT) instrument onboard the SPOT4 satellite.

Under the assumption that a different methodology is required to identify burned areas in



CHAPTER 2. REMOTE SENSING CHANGE DETECTION 70

different climatic zones or ecosystem types, seven regional algorithms are used to create the 

final global product, with the algorithm used for a particular region dependent on the landcover 

characteristics of that region. This approach was followed in order to overcome problems which 

arise in the detection of burned surfaces due to phenology, varying snow cover and flooding 

(Gregoire et al. 2003). The burned area algorithm applied to the southern Africa region is based 

on a supervised classification trees approach. The classification trees are applied to monthly 

composites of VGT data, and a pixel is classified as a bum if it satisfies all of the conditions of 

any of the classification rules listed in Table 2.2. The variables used in the classification process

Rule Conditions
A N I R 2 <  256.5; A12N I R  > 51.5; A l2N I R  < 70.5; N D V I2 < 0.309
B N I R 2 < 256.5; A12N I R  > 51.5; A 12N I R  < 70.5
C N I R 2 < 256.5; N D V I2 < 0.198; A12N D W I  > 0.06; N D W I2 < -0.19
D N I R 2 > 256.5; N D V I2 > 0.198; N I R 2 < 272.5; A 12N I R  > 80.5; N D V I2 < 0.290
E N I R 2 >  256.5; N D V I2 > 0.198; N I R 2 > 272.5; N D V I2 < 0.231; A12N D W I  < 0.076; 

A 12N I R  >  69.5; R E D 2 < 213.5
F N I R 2 > 256.5; N D V I2 >° .198; NIR* > 272.5; N D V I2 < 0.231; A l2N D W I  <  0.076; 

N D W I2 < -0.212

Table 2.2: GBA2000 Classification mles {Source: Tansey et al. (2004b))

are the red, near infrared (NIR) and middle infrared (MIR) SPOT VGT bands. The NDVI and 

the Normalised Difference Water Index (NDWI, defined as (NIR-MIR)/(NIR+MIR)) are also 

computed. The A^ variable in Table 2.2 refers to variable^mei - variable^mej where times i and 

j  refer to the monthly composite images at time 1 and 2 respectively.

An initial accuracy assessment has been performed on the preliminary burned area maps 

over a limited area for four sites in south-eastern Africa (Gregoire et al. 2003). Linear regression 

anaylsis using high resolution (Landsat TM) data to identify burned areas has been performed, 

with r 2 coefficients of at least 0.88 for three of the sites. The r 2 coefficient for the fourth test 

site located in Mozambique is however only 0.4. Overall errors for sub-saharan Africa include 

false detections due to flooding of non-permanent water features and hot dark rocks. However it 

is suggested that compared to the magnitude of burning which is taking place in this region such 

false detections are not significant (Tansey et al. 2004b). More detailed statistics relating to the 

accuracy of the product are not available at the time of writing, although a validation protocol is
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in place to produce a statistically sound assessment of the results at a continental scale (Boschetti 
etal. 2004).
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2.5 Summary

This chapter has reviewed a range of change detection methods which are typically applied to the 

problem of identifying and monitoring ecosystem changes from remote sensing data. Particular 

reference has been made to the application of these to the detection and mapping of fire affected 

areas at a variety of spatial and temporal scales and within different ecosystem types. In addition 

the approaches used to detect active fires have been defined and the current production of global 

operational active fire datasets discussed. The detection of active fires from remote sensing 

data is a relatively mature field with sophisticated algorithms applied to a range of data sources 

for the production of global datasets as well as a general consensus as to the most appropriate 

algorithms for this purpose. In contrast a wide range of burned area mapping methodologies exist 

in the literature with no general agreement on the most appropriate method for a particular data 

source or study area, and no operational burned area product currently available to the scientific 

community. The majority of approaches have only been applied to a single study area or season 

with the methods used to separate areas of burning from areas of no-change dependent on the 

characteristics of the particular ecosystem and the time of year. In addition with the exception of 

the two global burned area products described in Section 2.4.2 which document the occurrence 

of burning on a monthly scale for a single year, and the algorithm of Roy et al. (2002) which 

is applied to daily data for a single month, none of the methodologies discussed above have 

been applied to the detection of fire affected areas at a high temporal resolution or over multiple 

fire seasons. Although the change detection studies reviewed above provide useful information, 

various limitations are associated with the approaches used. These are summarised as follows;

1. Thresholding The majority of the methods described above require the definition of a 

threshold with which to differentiate between the changes of interest and background variations. 

The determination of a suitable threshold level is critical to the accurate identification of signif

icant land cover change. Over large areas however the identification of an appropriate threshold 

may be difficult due to variations in the surface which are unrelated to the changes of interest, 

and variations imposed by the sensing system (Roy et al. 2002). In addition to the changes of 

interest, areas of change which have been identified via thresholding (whether interactively or 

statistically defined) will include external influences caused by variations in factors such as the
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phenological state of the vegetation, the atmospheric conditions, and the sensor and solar geom

etry under which the data was acquired. The presence of these factors may have a considerable 

impact on the accuracy of the change detection results.

2. Low frequency surface variations The change detection techniques described above gen

erally assume overall phenological conditions to be comparable, whether they are performed at 

a bi-temporal or a continuous time scale (Coppin et al. 2004). These methods tend to be very 

sensitive to changes in seasonality or ecosystem dynamics. Variations in the surface which occur 

over the time periods of the study but are unrelated to the changes of interest may complicate 

the identification of these. While the impact of such variations have traditionally been reduced 

through the use of anniversary date images, this approach is not possible in the detection of high 

temporal resolution changes which necessitate the need for data sensed frequently over long pe

riods. Although the impact of low frequency phenological variations on the detectability of the 

remote sensing change signal will be dependent on the magnitude of these in comparison to the 

magnitude of the changes which are to be identified, they constitute a peturbing factor in the iden

tification of significant surface change. The accurate identification of land cover changes from 

high temporal resolution remote sensing data will therefore be facilitated by the incorporation of 

these phenological variations into the change detection approach.

3. Atmospheric and directional effects The majority of the change detection techniques dis

cussed in Section 2.1 are extremely sensitive to noise in the data due to the presence of cloud or 

cloud shadows, atmospheric effects, and variations in solar angles and the geometry of the sensor 

(Coppin et al. 2004). While such effects have typically been addressed through temporal com

positing procedures involving, for example, the use of maximum NDVI values, this approach is 

not ideal. A major drawback is the subsequent data reduction associated with the compositing 

process, with the temporal frequency of observations essentially reduced to the length of the tem

poral compositing period. In addition the use of maximum value NDVI composites frequently 

fails to identify all cloud contaminated pixels (Lambin and Strahler 1994a), and have been shown 

to preferentially select off-nadir pixels (Cihlar 1994). The impact of directional effects on the 

remote sensing signal and the effects which these have on the identification of land cover change 

has been illustrated in Section 2.2. The presence of these effects or noise in the temporal se
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quence will significantly reduce the capability of the change detection algorithm to accurately 

identify the changes of interest.

In light of these three major limitations the current work aims to develop a generic change 

detection technique applicable to the detection of high temporal resolution surface change from 

moderate spatial resolution remote sensing data. The model addresses the drawbacks of tradi

tional approaches by;

1. Accounting for low frequency phenological surface change

2. Accounting for directional effects in the remote sensing signal

3. Identifying and removing noisy observations of reflectance

The following chapter investigates the occurrence of vegetation fires within southern African 

ecosystems and characterises their effects on the remote sensing signal. Based on these findings 

a further set of recommendations are defined for the application of the change detection algo

rithm to the specific problem of identifying and mapping fire affected areas in southern Africa. 

Following on from the limitations of traditional approaches defined above and the recommenda

tions made in Chapter 3 a new, generic approach to change detection which is applicable to the 

identification and delineation of fire affected areas is developed in Chapter 4.



Chapter 3

Fire characteristics of southern Africa

75
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3.1 Introduction

The previous chapter has introduced the field of remote sensing change detection with particular 

reference to the detection of burned areas and active fires. For any change detection study to 

be effective a thorough understanding of the nature of the change is required. The aim of this 

chapter is therefore to provide an overview of biomass burning in southern Africa. As the wider 

impact of fire and its effect on atmospheric constituents has been dealt with in Chapter 1, the 

aim of the discussion below is to provide a description of the effect of fire on the terrestrial 

components of southern African ecosystems. This is followed by a description of the study site 

and a characterisation of the fire regime of the area using a five year data set of daily active fire 

detections. The temporal and spatial distribution of fires over the five year period is described, 

and the spectral characteristics of burned surfaces within the study area investigated. Finally, 

based on this information a set of recommendations for an effective southern Africa burned area 

mapping algorithm are defined.

3.2 The role of fire in southern African ecosystems

Although a primary agent of disturbance, fire is integral to many African ecosystems with Africa 

frequently referred to as the “fire continent” due to the regular and widespread occurrence of veg

etation fires (Goldammer and Mutch 2001). Vegetation fires have occurred in Africa for millenia 

and their presence thus maintains habitats for species which are adapted to and have evolved 

with frequent burning, and as such the continued occurrence of fire is essential in maintaining 

the structure, composition, diversity and productivity of these ecosystems. Although in the ab

sence of burning these fire-dependent ecosystems have the climate potential to form forests, this 

transformation would result in a loss of species and decreased biodiversity (Bond et al 2004). 

Past and future changes in the extent and species composition of these ecosystems cannot be 

fully understood without an understanding of the ecology of fire (Bond and Keeley 2005).

The ignition sources of southern African vegetation fires are varied and range from lightning 

strikes to prescribed burning for agricultural or ecosystem management. A study at a site in 

South Africa over the period 1980 to 1992 suggests that lightning fires occurred most frequently 

between October and January when thunderstorms were most frequent, while anthropogenic fires
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mainly occurred between the months of June and September (Trollope 2000). Most of the rainfall 

in southern Africa occurs during convective lightning storms which may cause fires in the early 

part of the wet season when fuels are still dry enough to ignite and sustain a fire (Goldammer 

and Mutch 2001). Although lightning strikes may still be the primary cause of fire in areas 

where human ignition sources are not present this is generally no longer the case with lightning 

accounting for less than 10% of observed ignitions and humans now recognised as the main 

cause of southern African fires (Dwyer et al 1998, Goldammer and Mutch 2001).

As a land management tool fire is embedded in the culture of many African societies as it 

is the cheapest and easiest method with which to clear land and is therefore commonly used 

in agricultural areas to remove unwanted biomass, to prepare land for cultivation, to remove 

agricultural residues and to control bush encroachment (Frost 1999). It is also used to increase 

the fertility of nutrient deficient soils by releasing the nutrients sequestered in plant biomass, 

and in addition forms the main source of domestic energy for cooking and heating (Goldammer 

and Mutch 2001). Fire is frequently used as a wildlife management tool in southern Africa as 

burning stimulates the sprouting of plants thereby improving the forage quality and attracting 

ungulates, and is used for the same reasons by pastoralists in particular towards the end of the 

dry season when above ground plant biomass is at a minimum (Trollope 1982, Zavala and Holdo 

2005). The human driven shift in the fire regime of southern African ecosystems has resulted in 

an increase in the frequency as well as in the return rate of fires (Saamak 2001). Both of these 

aspects of the fire regime are characterised in Chapter 7. This shift in the periodicity of fires has 

resulted in a change in the vegetation composition of these ecosystems, to the extent that some 

authors suggest that African savannas are in fact fire-maintained sub-climax formations derived 

from repeated burning (Frost 1999, Goldammer and Mutch 2001, Bond et al. 2004). Southern 

Africa has an ideal fire climate comprising a wet season during which plant biomass increases 

and accumulates, and a dry season when the vegetation senesces and forms extremely flammable 

plant fuels (Trollope 2000). The majority of fires within this region are surface fires which are 

spread by fuels close to the ground such as dead leaf matter, grass and stem material. Surface 

fires feed selectively consuming plants in the herbaceous layer (where grass species dominate) 

with little effect on trees taller than 2-4m (Frost and Robertson 1985, Bond and Keeley 2005). 

The characteristics of vegetation fires (the intensity, frequency and spatial extent) are dependent 

on the following six factors and their interactions (Sousa 1984, Goldammer and Mutch 2001,
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Trollope and Trollope 2002);

1. Frequency and seasonality of ignition sources As discussed above fires are ignited both 

naturally and anthropogenically. The intensity and spatial extent of the fire will be dependent on 

the timing of the ignition in relation to the five factors described below.

2. Moisture content of the vegetation This factor is critical as it will determine the probability 

of ignition, the ability of the fuel to carry a fire, the quantity of fuel consumed and the rate of 

combustion. It will be dependent on the characteristics of the soil and the amount of precipitation 

received during the wet season.

3. The rate of fuel accumulation Soil type and water availability are major factors in deter

mining the rate of accumulation in southern African ecosystems. The amount of energy available 

for release during a fire is related to the quantity of fuel, with a positive feedback thus observed 

between fuel loads and fire intensity as fuel accumulation determines the quantity of biomass 

available for burning at any given time. The accumulation rate is controlled by the difference in 

the rate of production and the rate of decomposition of plant matter and the more fuel that has 

accumulated since the last bum, the more intense the fire will be.

4. Structural and chemical characteristics of the fuel These factors will also influence the 

intensity of the fire. High intensity crown fires are common in ecosystems where the surface to 

volume ratio of vegetation is large such as coniferous forests. In contrast savanna ecosystems 

where the fuel is distributed in widely-separated strata tend to bum with a lower intensity.

5. Heterogeneity of the landscape The spatial extent of vegetation fires is strongly influenced 

by the topography and spatial characteristics of the vegetation, as well as the presence of natural 

or artificial fire breaks.

6. Weather conditions at the time of the fire The climate will have an indirect influence on 

frequency and intensity of fires through its influence on the rate of accumulation of fuel loads. 

Factors such as precipitation, air temperature, humidity, wind speed and wind direction will
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affect the intensity of the fire, its size and the rate at which it spreads, with rapidly moving fires 

tending to consume less fuel and exhibiting lower intensities.

As all of these factors will vary both spatially and temporally, fire regimes may be extremely 

variable, as will be the effects of fire on the vegetation and the nature of the fire residues. A 

reciprocal relationship typically exists between the vegetation and fire where the condition of the 

vegetation affects the fire, and the interval between fires determines the composition, structure 

and quantity of living and dead fuels (Sousa 1984). Recurrent fires have the potential to influence 

the structure and the composition of vegetation, and the extent to which this happens will be 

dependent on factors such as the species composition of the vegetation, their sensitivity to fire and 

their capacity to recover afterwards, as well as the factors discussed above (Frost and Robertson 

1985). In addition while the initial impact of a fire may be an increase in soil nutrients via 

ash deposits, the post fire surface will be more sensitive to nutrient leaching and soil erosion 

(Menaut et al 1993). Although the extent of the destruction of a vegetation community will vary 

according to the timing of the fire in relation to the plant phenology and the six factors described 

above, the overall effect of fire is a reduction in the living and dead plant material. Fires which 

occur early in the dry season have a lower combustion efficiency due to the higher moisture 

content of the vegetation as the water vapour released from the burning fuel has a smothering 

effect on the fire (Hoffa et al. 1999). The negative effect of fuel moisture on fire intensity 

in an ecosystem in South Africa has been demonstrated by Trollope and Trollope (2002). In 

contrast fires which occur late in the dry season thus tend to be more intense and destructive than 

early dry season fires due to the lower fuel moisture content, higher air temperatures and wind 

speed (Desanker et al. 1995). In addition, the late dry season is a period of rapid growth and 

nutrient cycling by woody plants and fires will affect woody plants more than grasses which are 

usually dormant at this time (Frost 1999). The effect of frequent late dry season fires is thus an 

eventual transformation of woodland areas to savanna and grassland with only isolated stands 

of fire tolerant trees remaining (Desanker et al. 1995). The increase in grasses results in higher 

dry season fuel loads which results in more frequent and intense fires and the further suppression 

of woody plants (ibid). In contrast the complete absence of burning and to a lesser extent the 

occurrence of early dry season fires has been shown to encourage the growth of woody plants 

(Trapnell 1959, Trollope 2000).
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The fire regime of southern Africa is clearly highly complex and dependent on the interac

tions of a large number of factors. Although numerous studies exist which have investigated the 

occurrence of fire in this region, the majority of these have been performed over a short temporal 

period or limited spatial scale. As stated above the construction of an effective remote sensing 

change detection algorithm requires a detailed understanding of the temporal, spatial and spec

tral nature of the change which is to be identified. The remainder of this chapter is therefore 

dedicated to the characterisation of the occurrence of fire within the study area over the past five 

years in terms of these three variables.

3.3 The area of interest

The study area encompasses the region of southern Africa spanning -10.0 to -20.0 degrees of 

latitude and 10.15 to 31.92 degrees of longitude as detailed in Figure 3.1. This is an area of 

approximately 1200 by 2400km containing portions of Angola, Namibia, Botswana, Zambia, 

Zimbabwe, Zaire and Mozambique, which corresponds to the spatial extent of two neighbouring 

MODIS tiles. The locations of these within the global grid are horizontal 19 and 20 and vertical 

10 (“hl9vl0” and “h20vl0”). The MODIS sensor and the data products available from it are 

discussed in Chapter 5. The MODIS Land Cover Product has been used to identify the vegetation 

classes present within the study area. This product consists of a land cover classification of the 

globe at a spatial resolution of 1km. A full description of the product and the methodology used 

to create it can be found in Strahler et al. (1999b). The results of four different classification 

schemes are included in the Land Cover product along with an assessment of the quality of the 

classification. The schemes used are:

1. The International Geosphere-Biosphere Program classification - IGBP (Belward et al. 

1999)

2. The Univeristy of Maryland land cover classes - UMD (Hansen et al. 2000)

3. The Biogeochemical biome model classification - BGC (Running et al. 1994b)

4. The Leaf Area Index/fraction of Photosynthetically Active Radiation biome - LAI/fPAR 

(Myneni et al. 1997)
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Figure 3.1: The study area, shown in the red box: Adapted from ESRI (1999)
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The main difference between each of these is the number of categories into which the land sur

face is divided. The UMD scheme only contains one class of shrub and one class of savanna and 

only a single category combining grasses and cereal crops with no individual grassland class. 

The LAI/fPAR scheme does not include a savanna category and only a combined grasses/cereal 

class. As the vegetation type for the areas used in this study is expected to mainly consist of 

grassland, savannas and shrublands the IGBP classification was used in preference to the alterna

tive schemes. The IGBP approach encompasses seventeen land cover categories which include 

eleven categories of natural vegetation separated by life form (woody and herbaceous cover), 

three of developed and mosaic lands, and three classes of non-vegetated land (Strahler et al. 

1999b). These are detailed in Table 3.1. At the time of writing this product was only available

Natural Vegetation
Evergreen Needleleaf Forests
Evergreen Broadleaf Forests
Deciduous Needleleaf Forests
Deciduous Broadleaf Forests
Mixed Forests
Closed Shrublands
Open Shrublands
Woody Savannas
Savannas
Grasslands
Permanent Wetlands
Developed and Mosaic Lands
Croplands
Urban and Built-up Lands 
Cropland/Natural Vegetation Mosaics 
Non-Vegetated Lands 
Snow and Ice
Barren or Sparsely Vegetated 
Water Bodies

Table 3.1: IGBP Land Cover units

for 2000 and 2001. This was created from one year’s worth of data (10/15/00-10/15/01), ex

cluding June 2001 which is missing due to problems with the sensor during this period. The
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only other operational land cover products available for the region are the GLC2000 produced 

by the Global Vegetation Monitoring unit of the Joint Research Centre (Bartholome and Belward 

2005), and the International Geosphere Biosphere Programme’s global land cover classification 

(Townshend et al. 1994). The global GLC2000 maps have been produced using 14 months of 

daily 1km resolution SPOT VEGETATION data and cover the period from November 1999 to 

December 2000. The IGBP global land cover classification was produced from 12 months of 

lkm resolution AVHRR data and covers the period April 1992 to March 1993. The MODIS land 

cover classification thus provides the most recent global, satellite derived land cover information.

The MODIS land cover product for each of the two years has been produced using 365 days 

of MODIS surface reflectance data. The 2000 map covers the time period beginning on the 15th 

October 2000 and ending on the 15th October 2001, while the 2001 product covers the period 

between the 1st of January to the 31st December 2001. The difference in the temporal coverage 

of the input data used to create the two products is therefore only 77 days. Although the 2001 

product is available at version 004 and has thus been validated and is ready for use in scientific 

publications, the 2000 map is only a version 003 product and therefore the quality may not be 

optimal (NASA 2001). Due to the lower version of the 2000 product and the overlap in the time 

period of the input data for the 2000 and 2001 land cover maps, only the 2001 product will be 

used in the current research.

The vegetation classes present in the study area and the percentage of each are displayed in 

Table 3.2. Savannas, water, woody savannas and grasslands account for over 80 percent of the 

land surface within the area of interest. The five main vegetation classes across the entire study 

area will be used as individual case studies for the purpose of the current research. These are 

deciduous broadleaf forests, open shrublands, grasslands, woody savannas and savannas which 

(along with water) contribute to 92.9 percent of the total area. A detailed definition of each 

of these classes is provided in Table 3.3, and their spatial distribution is displayed in Figure 

3.2. There is a distinct north to south change in vegetation type over the area of interest. The 

majority of woody savannas and deciduous broadleaf forests are located in the north of the study 

site, giving way to savannas towards the southern half. Open shrublands and grasslands are 

predominantly located in the southwest along the coast, stretching further inland towards the 

south. A band of savanna vegetation interspersed with patches of woody savanna stretches across 

the southern half of the study area (Figure 3.2).
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IGBP Class Percent
cover

Water 11.4
Evergreen Needleleaf Forests 0.1
Evergreen Broadleaf Forests 3.6
Deciduous Broadleaf Forests 5.1
Mixed Forests 0.3
Closed Shrublands 0.8
Open Shrublands 6.1
Woody Savannas 22.7
Savannas 41.1
Grasslands 6.5
Permanent Wetlands 0.1
Croplands 0.3
Urban and Built-up Lands 0.2
Cropland/Natural Vegetation Mosaics 0.6
Barren or Sparsely Vegetated 1.6

Table 3.2: Land cover characteristics of the study area

Vegetation type IGBP description
Deciduous broadleaf 
forest

Lands dominated by woody vegetation with a percent 
cover greater than 60 percent. Height exceeds 
2m. An annual cycle of leaf-on and leaf-off periods

Open shrublands Lands with woody vegetation less than 2m tall with 
shrub canopy cover between 30 and 60 percent.
The forest cover height exceeds 2m

Grasslands Lands with herbaceous types of cover. Tree and shrub 
cover is less than 10 percent.

Woody savannas Lands with herbaceous and other understory systems 
with forest canopy cover between 30 and 60 percent. 
The forest cover height exceeds 2m

Savannas Lands with herbaceous and other understory systems 
with forest canopy cover between 10 and 30 percent. 
The forest cover height exceeds 2m

Table 3.3: Predominant vegetation types
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3.4 Fire characteristics of southern Africa

86

MODIS active fire detections for the period March 2000 to December 2004 have been used to 

perform an initial characterisation of the occurrence of fire within the study area. At the time of 

writing no global or southern African burned area data set exists for the past five years. The only 

burned area products available for the region are the GBA2000 (Gregoire et al. 2003) and the 

GLOBSCAR (Simon et al. 2004) data sets, both of which only document global burned areas for 

the year 2000. The spatial and temporal locations of active fires as detected by MODIS provide 

the only account of fire activity in the study area over the past five years, and as such form an 

important companion and test data set in the examination of burned areas in this region over this 

period.

3.4.1 Thermal Anomalies

The MODIS fire products were designed with the aim of providing a global time series of fire 

data to the global change research community as well as for assisting in the formulation of 

land management schemes (Justice et al. 2002). In particular the products are aimed at sup

porting the modelling of trace gas and particulate emissions from biomass burning, and are a 

response to the growing demand for spatially detailed fire information needed to parameterize 

and validate various regional and global models (Kaufman and Justice 1998). The algorithm 

uses MODIS channel 21 (3.929/xm-3.989^m) which saturates at nearly 500K, and channel 22 

(3.929/zra-3.989/xra) which saturates at 33IK. The identification of fires is based on their abso

lute detection if the fire produces enough heat, or their detection relative to the thermal emission 

of the surrounding pixels for smaller and/or cooler fires (Justice et al. 2002). A detailed descrip

tion of the methodology has been provided in Section 2.4.1. The product is freely available to 

the public at various levels:

• Level 2

• Level 2G

• Level 3 8-Day Composite

• Level 3 8-Day Summary



CHAPTER 3. FIRE CHARACTERISTICS OF SOUTHERN AFRICA 87

The Level 2 product is the most basic and is used to create all of the higher order fire data sets. 

It is produced from data acquired during approximately five minutes of MODIS sensing and is 

stored in the MODIS orbit geometry (see Section 5.2.2). The Level 2G product details the daily 

location of potential fire pixels, while the Level 3 8-day product has eight days of daily 1km 

gridded data packaged into a single file for convenience. The Level 3 summary product provides 

a composite of all 1km gridded fire pixels detected within each 8 day period. All of the data sets 

are produced using daytime and nighttime data sensed by both the MODIS Terra and MODIS 

Aqua instruments. As the aim of the current research is to characterise the fire regime of the study 

area in as much detail as possible the Level 3 8-day composite product is used as it details daily 

(day and night) detections. In addition using a gridded product greatly facilitates comparisons 

between different MODIS data products at the same location.

3.4.2 The temporal distribution of fire activity

The southern Africa bum season coincides with the annual dry season which occurs between 

May and October, although this may vary from year to year. The timing of fire activity is impor

tant for a variety of reasons. In southern African savannas, for example, fires which occur earlier 

in the year when the vegetation moisture is high will have a lower combustion efficiency than 

burning which occurs later in the dry season, thereby emitting fewer emission products of com

plete combustion and more products of incomplete combustion. Results from a study in Zambia 

suggest that in comparison to late dry season fires, those which occur earlier in the dry season 

will emit at least three times more CH4 and NMHC even though lower quantities of biomass are 

consumed (Hoffa et al. 1999). The implications of these results is that the vegetation moisture 

content at the time of the fire has the potential to alter the type and quantity of carbon emissions, 

and therefore Hoffa et al. (1999) have made the recommendation that the seasonal dynamics of 

fire regimes are included in global estimates of carbon flux. In addition the timing and intensity 

of the burning will determine the effect which it has on the vegetation and soil as well as on the 

rate of succession and regeneration of the vegetation, and is thus of importance in the manage

ment of these areas (Perez and Moreno 1998, Tansey et al. 2004b). The factors which determine 

the timing of the bum season are discussed in Section 3.2 and include meteorological conditions 

which affect the fuel loads available as well as the moisture content of these (Sousa 1984).
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The total number of pixels detected as containing an active fire and documented in the 
MODIS (Terra) daily 1km Thermal Anomalies product is shown in Figure 3.3a, with the number 
of fires detected per month displayed as a percentage of the total number detected over each year 
in Figure 3.3b. Although the active fire data do not provide a comprehensive description of fire 
activity as only fires which are burning at the time of the satellite overpass have the potential 
to be identified, it does provide an indication of the annual distribution of fire occurrence in the 
study area over the five year period. During each of the five years of observations the annual

Iw
o

(a) Total number o f fires detected (b) Number of fires as percent of total

Figure 3.3: Fires detected by Terra MODIS, 2000 - 2004

peak of fire activity occurs between the beginning of August and the end of September, with 
over 25% of the total number of fires detected occurring during a single month at the peak of the 
bum season. During each of these five years over 95% of the active fires detected during each 
year occur between the beginning of April and the end of November. There appears to be more 
consistency in the end point of the bum season with the total number of fires falling to below 
5% of the total after the end of October each year, than in the starting point, with a rise in fire 
detections to over 5% of the total occurring at some point between the beginning of May and the 

end of July.
Although many studies have characterised the temporal and spatial distribution of fires in 

Africa, the majority of these have tended to be at a continent scale and over a maximum of two
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fire seasons. Cahoon et al. (1992) have used nightime images from the Defense Meteorological 

Satellite Program (DMSP) for 1986 and 1987 for this purpose. The study shows very low fire 

activity in southern hemisphere Africa in April, with a rapid increase between March and June as 

drier conditions move south and eastwards. Fire is widespread in Angola, Zambia, southern Zaire 

and Zimbabwe by May. Between September and October fire frequency increases in eastern 

Africa and wanes in the western and interior nations, following the return of moist conditions to 

most of these areas during October. The same general trends were identified in a study by Dwyer 

et al (2000) which used daily daytime 1km AVHRR data for the period April 1992 to December 

1993. The onset of the fire season in southern hemisphere Africa was found to coincide with the 

onset of the dry season progressing from west to east with the peak of burning occurring between 

July and September. Following on from this information and the results contained in Figure 3.3, 

for the purpose of the current research the temporal extent of the bum season will be defined as 

beginning in April and ending in November.

The diurnal distribution of fire activity

The availability of data from MODIS Terra provides an insight into the temporal distribution of 

fire activity on a daily as well as an annual scale. The addition of MODIS Aqua fire detections 

(available from July 2002 onwards) to those from MODIS Terra allows an investigation to be 

performed into the diurnal nature of the fire activity during the annual fire season. This is possible 

due to the differences in the overpass time of the two satellites, with Terra crossing the equator 

twice daily at 10.30am and 10.30pm local time, and Aqua at 1.30pm and 1.30am local time. The 

number of fire pixels detected in the data acquired during the Terra and Aqua overpass over the 

two years that Aqua MODIS data have been available for the entire bum season at the time of 

writing are shown in Figure 3.4.

From the data contained in Figure 3.4 it is clear that for most months of the 2003 and 2004 

fire seasons the number of fire detections is much higher in the data collected by MODIS Aqua 

than in that collected by MODIS Terra during the earlier overpass. This suggests that there is a 

strong diurnal pattern to the fire activity within the study area, with a much higher number of fires 

occurring later in the day at the time of the Aqua overpass. Although the study of Cahoon et al. 

(1992) found that contrary to their expectations there was no strong diurnal cycle in the frequency
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(a) 2003 (b) 2004

Figure 3.4: Active fire detections from MODIS Aqua and Terra: Monthly totals

of African fires which they attributed to the fact that most fires were left to bum uncontrolled, 
the diumal nature of vegetation fires has been observed in several studies (Langaas 1993, Arino 
and Melinotte 1997, Justice et al. 2002). The typical form of the daily fire cycle is displayed in 
Figure 3.5 with a peak in activity observed in the afternoon. The data in Figure 3.5 express the 
diumal fire cycle as a probability density function (PDF) for data derived for the 1999-2001 fire 
season in Borneo using TRMM VIRS observations, fitted with a Gaussian + cubic polynomial 
(Giglio and Pinzon 2003). Although the data are for Southeast Asia, they are representative 
of the diumal burning cycle in most regions (ibid). The Equatorial overpass times of MODIS 
Terra and Aqua have been added for illustrative purposes. It has been suggested that this pattern 
of burning occurs due to several reasons which include the timing of human daily activity, the 
drying out of the ground and the decrease in vegetation moisture as the day progresses both of 
which encourage flaming, and the presence of stronger winds in the afternoon which result in the 
faster movement of the fires (Kennedy et al 1994, Arino and Melinotte 1997).

An examination of the daily MODIS observations for the five years suggests however that this 
diumal pattern in fire activity is not uniform across the annual bum season. This is evident from 
Figure 3.6 which displays the difference in the number of fires detected by MODIS Terra and 
MODIS Aqua each month as a percentage of the total detected each month. A greater proportion
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Figure 3.5: Typical diumal bum cycle, Adapted from: Giglio and Pinzon (2003)

of the total number of fires detected start later in the day at the peak of the fire season, with 64.4 

and 68 percent more fires detected in the afternoon during July 2003 and 2004. Later in the year 

towards the end of the fire season the proportion of fires detected in the afternoon decreases but is 

still substantially larger than the number of fires ocurring earlier in the day, with over 30 percent 

more fires detected by the Aqua overpass during October in both 2003 and 2004. The increase in 

the proportion of fires detected in the afternoon at the peak of the bum season may be due to the 

fact that fires which persist for several days have been shown to exhibit a diumal cycle as they 

tend to bum strongly during the afternoons and then die down at night (Belward et al 1994), as 

well as due to the drier and more favourable meteorological conditions (Kennedy et al. 1994).

The difference between the number of fires detected by MODIS Aqua and Terra for each of 

the five main cover types in the study area (see Tables 3.2 and 3.3) is displayed in Figure 3.7 

as a proportion of the total number of fires detected in each cover type each month. The pat

tern is very similar for both years between May and October, with a higher percentage of the 

total fires detected in deciduous broadleaf forest detected during the afternoon overpass, and the 

lowest proportions of afternoon burning occurring in grasslands or savannas for most months of 

the bum season. The two months at the tails of the fire season (April and November) exhibit 

much more variability in the proportional difference of fire occurrence within each vegetation 

class. In November 2003 a higher proportion of fires occurring in savanna, woody savanna and 

open shrubland are detected in the morning overpass, while in 2004 this is the case for detections
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Figure 3.6: The difference in the number of fires detected by Aqua and Terra as a proportion of 
the total
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Figure 3.7: The difference in the number of fires detected by Terra and Aqua as a proportion of 
the total detected in each cover type



CHAPTER 3. FIRE CHARACTERISTICS OF SOUTHERN AFRICA 94

within open shrubland and grassland classes. The reasons for these observations are unknown 

and it is difficult to speculate as to the possible causes due to the number of factors which influ

ence the timing of burning (see Section 3.2) and the subseqent complexity of the fire character

istics exhibited within a region or ecosystem type. A possible factor for the lower proportion of 

savanna and grassland fires detected later in the day however is the fire rate of spread. Due to the 

greater fuel loads available in deciduous broadleaf and woody savanna ecosystems for example, 

fires which occur within these ecosystems bum for longer increasing their chances of detection 

by the afternoon overpass, while fires which occur within grassland and savanna ecosystems tend 

to spread quickly and bum for a short period (Van der Werf et al. 2003). In addition classes with 

higher fuel loads such as deciduous broadleaf forests and woody savannas the vegetation will 

have a higher moisture content and therefore may be more likely to bum later in the day as this 

decreases, while this may be less significant for vegetation types such as savanna and grasslands.

The diumal pattern of fire activity described above and displayed in Figures 3.4, 3.5 and 3.6 

has implications for studies which have used satellite observed fire counts to scale between active 

fires and the area burned (Eva and Lambin 1998a, Pereira and Setzer 1996, Scholes et al. 1996a), 

as well as those which have used active fire detections to derive information such as aerosol dis

tribution (Ji and Stocker 2002). The relationship between MODIS (Terra and Aqua) fire counts 

and the area burned is investigated in Chapter 6 . Studies which have attempted to achieve the 

former have either found weak relationships between fire counts and burned areas, or alternately 

that this relationship varies temporally and spatially as a function of individual fire events or 

ecosystem type (Pereira and Setzer 1996, Scholes et al. 1996a). In addition to the recognition of 

the variable nature of the diumal fire activity over the annual fire season it is necessary to take 

into account the overpass time of the sensor. The study of Ji and Stocker (2002) for example 

has investigated the “seasonal, intraseasonal and interannual variability of global land fires and 

their effects on atmospheric aerosol distribution”, with the conclusion that vegetation fires in the 

tropics and sub-tropics exhibit significant intraseasonal oscillations. However as highlighted by 

Giglio and Pinzon (2003) the fire data used in this study has been acquired by the TRMM-VIRS 

satellite whose local overpass time drifts significantly each day, in order to allow for complete 

sampling of the diumal rainfall cycle. The fire information used by Ji and Stocker (2002) has 

been constructed from five day composites of TRMM data, without taking into account the diur

nal pattern of fire activity and the orbital shifts in the TRMM overpass time during the five days.
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As a result Giglio and Pinzon (2003) have shown that the intraseasonal oscillations identified by 

Ji and Stocker (2002) are an artefact of the compositing strategy used in the study, and suggest 

that these sampling induced periodicities may be averaged-out through the use of an appropriate 

latitude-dependent average interval based on the TRMM orbital characteristics.

Phenology of the vegetation

The phenological state of the vegetation at the time of burning will determine not only the fuel 

loads available, the moisture content of these and thus the severity of the fire, but it will also 

determine the ability of the vegetation to recover after the fire. Fire severity has been shown to 

impact the regeneration of the vegetation as well as the species abundance and composition of 

the post fire ecosystem (Wang and Kevin 2005). In particular fires which occur early in the dry 

season will be less destructive to savanna vegetation than fires which occur later in the dry season 

(Stromgaard 1992, Eva and Lambin 1998a). As discussed above the southern Africa fire season 

follows the onset of the dry season and is brought to a halt by the return of the rains (Cahoon et al 

1992). The phenology of the vegetation within the study area is investigated using the MODIS 

Enhanced Vegetation Index (EVI) product (Huete et al. 1999). The EVI is a vegetation index 

which has been formulated using isolines in red/near-infrared space which have been designed 

to approximate vegetation biophysical isolines derived from radiative transfer theory as well as 

observed biophysical relationships. The EVI is described in Equation 3.1;

E V I  = G X ---------  .... Pnir-Pred------------------------  ( 3

Pnir T  C i  X  Pred C 2 X  Pfrlue T  I*

where pnir, pred and pbiue are the near infrared, red and blue reflectances, C\ and C2 are atmo

sphere resistant correction coefficients in the red and blue waveband, L is a canopy background 

brightness correction factor, and G is a gain factor. The MODIS EVI product is available every 

16 days at a spatial resolution of 250m, 500m or 1km. The advantages of using this enhanced in

dex over the conventional NDVI include (i) reduction in atmospheric influences due to the use of 

the more atmosphere-sensitive blue band to correct the red band (ii) insensitivity to most canopy 

backgrounds through the use of factor L and (iii) sensitivity to high biomass regions (ibid).

In order to characterise the temporal profile of the vegetation growth and senescence during 

the annual bum season mean EVI profiles have been calculated across the area of interest for
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each of the five years of observation. The annual profiles for deciduous broadleaf forests and 
grasslands are displayed in Figure 3.8. These two cover types have been chosen to illustrate the 
phenological trends over the study area as they encompass the full range of variability. Of the 
five main vegetation classes (see Table 3.3) deciduous broadleaf forests exhibit the highest and 
greatest changes in EVI values each year, while grasslands vary the least and have the lowest 
mean EVI values. It is apparent from these data that the phenology of both types of vegetation

Year
2000 20B1 2002 2003 2004

_ g r a s s l a n d

B.45

0.2

0.15
0 1000 1800

Figure 3.8: Phenology of deciduous broadleaf forest and grasslands, 2000-2004

follow similar trends from year to year, with little variation in the miniminum and maximum 
EVI values or their seasonal distributions over the five year period. The growth cycle of the 
vegetation within the study area tends to reach a peak between December and January during 
each of the five years of observations. Over the following six to seven months the vegetation 
senesces and is at its driest between August and September each year. The relationship between 
vegetation senescence and the occurrence of fires is evident from Figure 3.9 which displays the 
total number of active fires detected each month over the five year period by the Terra satellite, 
as well as the mean EVI calculated over the study area. The temporal distribution of fires follows 
the vegetation growth cycle, with the peak of the fire season corresponding to the height of the 
dry season. This inverse relationship between the EVI and the number of fires detected is evident 
for each of the five years of observation.



CHAPTER 3. FIRE CHARACTERISTICS OF SOUTHERN AFRICA 97

Cumulative day of year 
0 180 360 540 720 900 1060 1260 1440 1620 1800

A c t iv e  f ire s
M e a n  E V I

250000

200000

*  150000

1000 0 0

sr.  non

24 30 36
Cumulative month

:  0.33 5

Figure 3.9: Mean EVI profile and MODIS Terra active fire detections, 2000-2004

3.4.3 The spatial distribution o f fire activity

A large proportion of the land surface within the study area is affected by fire each year. The 
percentage of pixels which are detected as containing an active fire during the past five years and 
the land area which this equates to (assuming the entire 1km by 1km pixel bums) is shown in 
Table 3.4. As the Aqua satellite was not launched until May 2002 the first annual bum season 
for which an entire MODIS Aqua data set is available is 2003. The figures in Table 3.4 indicate 
the total number of pixels detected as containing a hotspot at some point during each year - if a 
pixel bums more than once during the year, or is recorded as a fire in both the Terra and Aqua 
products it is only counted as a single fire event.

Year MODIS Terra MODIS Aqua and Terra
Percentage 
of total area

Land area 
(million ha)

Percentage 
of total area

Land area 
(million ha)

2000 8.9 22.6 N/A N/A
2001 8.4 21.3 N/A N/A
2002 8.6 22.0 N/A N/A
2003 8.6 22.0 31.1 79.4
2004 7.6 19.3 31.0 79.1

Table 3.4: Percent and area of land surface on fire
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In 2004, 31 percent of MODIS Terra and Aqua 1km pixels were detected as containing an 

active fire, which equates to an area of 79 million hectares. Although this is not an entirely 

accurate representation of the exact area affected by fire as the entire 1km2 area of a pixel detected 

as a hotspot might not necessarily bum and only fires which coincide with the timing of the 

satellite overpasses have the potential to be detected, it does provide some indication of the scale 

of burning which is taking place in this region.

A comparison of the location of MODIS Terra fire detections for each of the five years against 

the MODIS land cover classification indicates that the number of fires occurring in each of the 

five main vegetation types as a proportion of the total number of fires remains relatively constant 

from year to year. Table 3.5 contains the number of fire pixels detected in each of the five main 

vegetation classes present in the study area, as a percentage of the total number of pixels for each 

cover class. Fire activity is greatest in areas of savanna, with between 10.8 and 11.3 percent of 

savanna pixels detected as containing a fire each year, and lowest in areas of open shrubland.

Vegetation Type 2000 2001 2002 2003 2004
Savanna
Deciduous broadleaf forest 
Woody savanna 
Grassland 
Open shrubland

11.2
9.9
8.6
5.1
4.2

10.8
9.7
8.2
4.2
3.5

11.3
9.3 
8.1 
4.8
3.4

11.3
9.5 
8.4 
4.8
3.6

11.2
9.7 
8.2
4.7 
3.5

Table 3.5: Proportion of cover type detected as fire

Similar patterns of burning have been found by Dwyer et al. (2000) who investigated the 

global spatial and temporal distribution of active fires using twenty months (April 1992 to De

cember 1993) of 1km AVHRR data. Savanna fires were found to be predominant and accounted 

for the largest proportion of pixels containing fires. However when calculated as a percentage of 

the total vegetation cover, deciduous broadleaf forests exhibited the highest burning with 78% of 

the total fires identified occurring within this cover class in comparison to only 27% in savannas. 

The reasons for the greater proportion of active fires observed within deciduous forests during 

this study is unknown, but may be due to the lower quantities of this cover type within the current 

study area in comparison to the larger southern Africa region used in the Dwyer et al. (2000) 

study.
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3.5 The spectral characteristics of burned and unburned sur

faces

The aim of this section is to review the research relating to the spectral properties of fire affected 

surfaces in order to identify the nature of, to quantify, and to attempt to explain the spectral 

changes which occur as a result of the transition of the surface from pre-bum to post-bum con

ditions. This will be achieved through;

1. A review of the spectral response of burned surfaces as described in the literature

2. An examination of ground-based spectral data of pre-fire and post fire surfaces collected 

in the field

3. An examination of the effect of fire on the first seven MODIS land surface reflectance 

wavebands

The identification of an area within a remote sensing image which has been affected by fire 

relies on the assumption that the occurence of the fire has altered the radiometric properties of 

the surface in some way, and that this change has some degree of temporal persistence. Burned 

area mapping methodologies to date have almost exclusively exploited changes in the spectral 

response of the land surface as a means of identify burning (see Chapter 2). The magnitude and 

the persistence of any fire induced changes in the remote sensing signal (which will be referred to 

as the “bum signal”) will be dependent on the extent to which the properties of the surface have 

been altered by the fire. This in turn is a function of the characteristics of the fire itself as well as 

the vegetation type, and the condition of the vegetation prior to burning, and will therefore vary 

temporally as well as spatially. The occurrence of fire typically results in the alteration of the 

vegetation stmcture through the partial or total destruction of the vegetated layer, the deposition 

of charcoal and ash, and the exposure of the underlying soil surface. The nature of any residues 

left by the fire and the length of time for which they are present (which will be dependent on 

the post fire climatic conditions) will also determine the temporal persistence and the magnitude 

of any changes in the remote sensing signal. Although the post fire presence of char, a carbon 

residue of partially combusted vegetation and the most abundant post fire residue provides a large 

contrast with brighter unbumed vegetation, its presence may be shortlived as it may be removed
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rapidly by the wind exposing the underlying soil surface (Trigg and Flasse 2000, Govaerts et al. 
2002). An understanding of the spectral nature as well as the temporal persistence of the burn 
signal is necessary in order to select the most appropriate wavebands for the detection of fire 
affected areas from remotely sensed data.

3.5.1 Field-based spectral measurements

A ground-based spectral data set collected by Smith (2004) in an area of savanna within the 
current area of interest will be used as a companion example for the following discussion. The 
study site was located within the Chobe National Park in north-eastern Botswana, as indicated 
by the blue box in Figure 3.10.
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Figure 3.10: Location of the field study site (Smith 2004)

The data set was collected using a GER-3700 spectroradiometer to measure the reflectance from a 
series of burned and unbumed savanna surfaces. The characteristics of the GER-3700 instrument 
are detailed in Table 3.6 (GER 2000). The data were acquired by mounting the spectroradiometer
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on a tripod at a height of approximately 0.75m directly above the surface, with each individual 

spectra recorded consisting of a mean of eight measurements sampled over five seconds. The 

experimental plots were located specifically in areas where the individual surface components 

entirely filled the field of view of the instrument. Three such measurements were collected 

within each plot with a distance of a few centimetres between them in order to minimise the 

occurrence of small scale variations in the surface reflectance (ibid).

Sectral range 350nm to 2500nm
Channels 704
Bandwidth 1.5nm: 350nmto 1050nm 

6.5nm: 1050nm to 1900nm 
9.5nm: 1900nm to 2500nm

Field of view 3 degrees
Digitisation 16 bit
Radiometric calibration accuracy 400nm: 5% 

700nm: 4% 
lOOOnm: 5% 
2200nm: 7%

Spectral resolution 0.3nm: 350nm to 1050nm 
l.lnm: 1050nmto 1090nm 
1.6nm: 1090nmto2050

Table 3.6: Properties of the GER 3700 spectroradiometer (GER 2000)

Preprocessing of the measured radiance requires normalisation of the data using a spectralon 

reference panel which has a known reflectance at each waveband. The reflectance spectra were 

subsequently interpolated to lnm intervals and a mean of all measurements from each experi

mental plot calculated. These data are displayed in Figures 3.11a (unbumed classes) and 3.11b 

(burned and unbumed classes). The central wavelength of each of the first seven MODIS land 

surface reflectance wavebands are also shown for reference. The unbumed surfaces include Kala

hari sands, green vegetation, senesced grasses, senesced leaf litter, and woody debris, while the 

burned surfaces contained either white or black ash. It should be noted that measurements below 

0.35/nm are not reliable as this region lies outside the prescribed spectral range of the GER-3700, 

and an increase in sensor noise occurs between 1.4 -1.8fim  as well as at wavelengths longer than 

2.2nm  (Smith 2004).
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Figure 3.11: The spectral characteristics of savanna surfaces
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3.5.2 Fire induced spectral change

Visible wavelengths

The combustion of vegetation typically results in a decrease in reflectance at all wavebands in 

the visible portion of the electromagnetic spectrum (Stroppiana et a l 2002, Roy et al 2002). 

The spectra contained in Figures 3.11a and 3.11b indicate that at visible wavelengths the re

flectance from a post fire surface containing black ash is lower or of a similar magnitude to all of 

the pre-fire surfaces except green vegetation which exhibits a lower reflectance at red and green 

wavelengths, while a post-bum surface containing predominantly white ash demonstrates a sub

stantially elevated response in comparison to all of the measured pre-fire surfaces. The decrease 

in reflectance which is typically observed immediately after a fire has been explained by the 

presence of char and carbon residues which result in a darkening of the surface and a reduction 

in albedo (Eva and Lambin 1998b). Research however has indicated that visible wavebands tend 

to be much less sensitive to fire induced changes than infrared wavebands (Razafimpanilo et al. 

1995, Silva et al. 2004, Stroppiana et al. 2003), and in addition are much more sensitive to the 

presence of smoke and aerosols which are emitted by the fire (Miura et al. 1998). An examina

tion of the separability of 15000 MODIS 500m pixels across an area of southern Africa by Roy 

et al. (2002) has demonstrated that although burning reduces the mean reflectance of all of the 

first seven MODIS wavebands, at visible wavelengths the difference between the mean pre-fire 

and mean post fire reflectance values were small in comparison to their standard deviations.

The magnitude of the spectral change at all visible wavelengths is dependent on both the 

vegetation type and its condition prior to the fire. The reflectance of sensescent vegetation tends 

to be higher than that of green vegetation although this will vary with vegetation type, as demon

strated in Figures 3.11a and 3.1 lb. In southern Africa the peak of fire activity occurs at the height 

of the dry season, which is the point in the phenological cycle of herbaceous vegetation (such as 

grassland and savanna) where the above-ground plant sections are dead and dry (Govaerts et al. 

2002). The change from bright dry grass to darker burned surface typically results in a decrease 

in reflectance at all wavelengths in the range 0.25fim  to 4(im spectral range, which includes 

MODIS bands 1-7 (Govaerts et a l 2002, Stroppiana et a l 2003). In contrast the magnitude of 

the bum signal is smaller in forest and shrubland ecosystems where the above ground vegeta

tion is live and green with a lower reflectance in the red spectral region than that of dry grass.
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This is exhibited by the measured spectra displayed in Figure 3.11a, where the reflectance of dry 

grass is significantly lower than that of green vegetation in the red waveband (MODIS band 1). 

This results in a lower contrast between the pre-fire vegetative and the post fire charred surface 

(Govaerts et al 2002, Stroppiana et al. 2003).

Near to mid-infrared wavelengths

The occurrence of fire typically results in a decrease in surface reflectance at near-infrared to 

mid-infrared wavelengths (Zhan et al. 2003, Roy et al. 2005b). Although the presence of white 

ash (Figure 3.1 lb) suggests an increase in reflectance immediately after burning within all of the 

measured cover types, this is likely to be short-lived as the ash will be removed rapidly by me

teorological factors revealing charred remains of the vegetation and the underlying soil surface. 

The lower reflectance in this spectral region of the post-bum (black ash) surfaces measured in 

the field in comparison to all of the pre-bum surfaces is apparent in Figures 3.1 la and 3.1 lb. In 

the presence of green vegetation this decrease occurs at near to mid-infrared wavelengths due to 

the removal of the photosynthetically active material as the vegetation bums, as this is brighter 

than the post fire surface which in contrast exhibits low reflectance values due to the absorption 

of the radiation by char and ash (Eva and Lambin 1998a). In addition at this spectral range 

the reflectance of senescent vegetation is typically higher than that of green vegetation, and the 

reflectance of burned areas is generally lower than that of senescent vegetation (Figures 3.11a 

and 3.11b), resulting in a large change between a pre-fire surface containing dry vegetation and 

the subsequent post fire charred surface (Brustet et al. 1991, Pereira and Setzer 1993, Eva and 

Lambin 1998a).

The magnitude of the change at near-infrared to mid-infrared wavelengths will therefore be 

a function of both the condition of the vegetation prior to the fire as well as the vegetation 

type (Govaerts et al. 2002). Research indicates that in general the reflective portion of the 

infrared region of the electromagnetic spectrum provides the best separability between burned 

and unbumed vegetation (Koutsias and Karteris 1998, Trigg and Flasse 2000, Trigg and Flasse 

2001), and in particular for southern African savanna ecosystems MODIS wavebands in this 

spectral region (bands 2, 5 and 6) provide the highest separation between burned and unbumed 

pixels (Roy et al. 2002, Sa et al. 2003). An investigation into the spectral response of burned
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surfaces in south-eastern Africa, the Iberian Peninsula, and Siberia by Silva et a l (2004) has 

indicated that only the near-infrared decreases after burning in all land cover types, while the 

response at middle infrared (1.58/ira-1.74//ra) wavelengths in dependent on the land cover type. 

A decrease in the spectral response at middle infrared wavelengths was consistently observed 

over areas of grassland and cropland, while over forest and woodland areas the response was 

more variable and either decreased or increased immediately after the fire (ibid). Although a 

decrease in the signal might be expected immediately after the fire due to the strong absorption 

of middle infrared radiation by charcoal (Fraser and Li 2002), this response may be a function 

of the combustion completeness as well as the phenological state of the vegetation prior to the 

fire (Roy et al. 1999). If the vegetation is senescing at the time of the fire the combustion 

completeness will be high, resulting in large amounts of bum residue which will contribute to a 

significant decrease in reflectance at middle infrared wavelengths, whereas the burning of green 

vegetation will exhibit lower levels of combustion completeness and a rise in the middle infrared 

reflectance due to a decrease in the water content of the vegetation as a result of the fire (Silva 

et al. 2004).

Longwave-infrared wavelengths

Although MODIS band 7 (2.105(im - 2.155jim) reflectances have generally been found to de

crease as a result of fire (Trigg and Flasse 2000, Roy et al. 2002), the magnitude of the change 

which occurs at this spectral region is small and provides less discrimination between pre-fire 

and post fire surfaces than at shorter infrared wavelengths (Sa et al. 2003, Roy et al. 2005b). 

An examination of the measured spectra displayed in Figures 3.11a and 3.11b suggests that 

for senesced vegetation this occurs due to higher reflectance from post fire surfaces (black ash) 

at longer infrared wavelengths than at shorter infrared wavelengths, while conversely the re

flectance of dry vegetation is lower at longwave infrared than at near-infrared and mid-infrared 

wavelengths. These characteristics result in a spectral change of lower magnitude from pre-fire 

to post fire conditions at MODIS band 7 wavelengths in comparison to that which occurs within 

the spectral regions occupied by bands 2, 5 and 6. However the data displayed in Figures 3.11a 

and 3.11b indicate a different pattern for green vegetation, with a lower reflectance exhibited by 

this surface in contrast to that of the black ash. This would result in an increase in MODIS band 7
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reflectances due to the occurrence of fire in areas with photosynthetically active material. This is 

supported by a study of burned surfaces using Landsat TM data which demonstrated an increase 

in post fire reflectances at this spectral range, which the authors suggest is due to a decrease in the 

vegetation moisture content as a result of the fire (Pereira 1999). In addition a characterisation of 

the spectral evolution of post fire savanna surfaces using field spectroradiometery has shown that 

the direction and magnitude of the post-bum change is not only small but also extremely variable 

between 2.05fim  and 2.25(im, as although the reflectance at this wavelength decreases initially 

immediately after the occurrence of a fire it rises quickly and remains higher than pre-fire lev

els for several weeks (Trigg and Flasse 2000). Stroppiana et al. (2000) have also observed an 

increase in post fire savanna reflectances at 2.2/j,m compared to the surrounding unbumed vege

tation, however it is suggested that this is due to the removal of senesced plant material which has 

a low spectral response, and the exposure of the underlying soil surface which exhibits a higher 

reflectance in this spectral region.

3.5.3 Perturbing factors

For any change detection scheme to be effective, it is necessary to use wavebands which exhibit 

sensitivity to the changes of interest. While the change from pre-fire to post fire surface con

ditions may exhibit a distinct spectral response, this response may not necessarily be specific 

to biomass burning and other changes may be characterised by similar spectral changes. An 

understanding of the nature of these ‘perturbing factors’ which may confuse the bum signal is 

important as if they are not taken into account high errors of commission may occur due to the 

false detection of fire affected areas (Trigg and Flasse 2001).

Burned surfaces are characterised by the removal of the vegetative layer and the exposure of 

the underlying soil surface, resulting in a decrease in near to mid-infrared wavelengths. Similar 

changes may however occur due to vegetation senescence, harvesting or pests (Roy et al. 2005b). 

Events not associated with the removal or decrease in vegetation such as snow melt and flooding 

may also result in a decrease in reflectance in the near and middle infrared (MODIS bands 2,5 

and 6), thereby confusing the identification of fire induced change {ibid). Confusion may also 

arise between burned areas and water bodies or moist vegetation as all have low reflectance in the 

shortwave infrared (Pereira and Setzer 1993, Razafimpanilo et al. 1995, Eva and Lambin 1998a).
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In addition variations in the pre-fire surface due to factors such as differing photosynthetic states 

or types of vegetation within an area of interest may cause significant peturbations (Trigg et al 

2005). The success of a change detection algorithm will be influenced by the magnitude of the 

spectral change which occurs due to the changes of interest, and the wavebands used to identify 

this change. The effect of burning on the seven MODIS land surface reflectance wavebands is 

therefore investigated in the following paragraphs.

3.6 The MODIS burn signal

In order to quantify the magnitude of the changes which occur due to burning in each of the 

spectral regions occupied by the first seven MODIS land surface reflectance wavebands, the fire 

induced spectral change and the separability of the MODIS pre-fire and post fire spectral signal 

has been examined. This is necessary in order to determine the ability of each of the wavebands 

to discriminate between surfaces which have been affected by fire and those which have not, 

as a means of characterising the bum signal and to aid the selection of the most appropriate 

wavebands with which to identify burned areas. It is noted that while the reflective component of 

the middle infrared may provide useful information in the separation of burned from unbumed 

surfaces, this product is not used in the current study as it is still experimental (Peticolin and 

Vermote 2002).

The MODIS data set used for this purpose contains pre-fire and post fire reflectances for each 

of the land surface channels (bands 1-7). Data have been examined for the four days preceding 

the fire and the four days proceding the day of the fire as documented in the MODIS Thermal 

Anomalies product, with the observation closest to the day of the fire which is cloudfree and 

acquired with a view zenith angle of +/-100 selected. Although the exclusion of off nadir and 

cloudy pixels decreases the number of available samples by approximately 40%, this approach 

has been followed as the aim of this section is to identify the wavebands which will afford 

the highest separation between burned and unbumed areas. The inclusion of directional effects 

will decrease the bumed-unbumed separability of the data making it harder to identify the most 

suitable wavebands with which to detect bum type changes. This is demonstrated by the data 

displayed in Figure 3.12. Figure 3.12a shows the mean reflectance for a single pixel calculated
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from the daily reflectances for the seven days preceding (pre bum) and the seven days following 

(post bum) the occurrence of a fire as well as the standard deviations of these data, for each of 

the seven MODIS land surface reflectance wavebands. The difference between the mean burned 

and the mean unbumed reflectances is of a comparable magnitude to the standard deviations of 

the observations at all wavelengths, and thus the magnitude of the change from pre bum to post 

bum conditions is within the variance of the data prior to the fire event. Figure 3.12b shows 

the individual band 5 reflectances for the seven days either side of the fire as a function of the 

viewing zenith angle at which they were acquired. The effects which variations in the viewing 

angle have on the magnitude of the mid-infrared reflectances is clearly evident, and are of the 

same order of magnitude as the bum signal.

The data set used to investigate the bumed-unbumed separability consists of 5000 observa

tions selected at random and according to the criteria described above for the five main cover 

types for the 2001 bum season. The separability of the data are examined using the measure 

defined in Equation 3.2;

where ppost and ppre are the post bum and pre bum reflectances selected according to the criteria 

described above, and apost and apre are the standard deviation of these data. This measure (M) 

thus provides an indication of the magnitude of the change in reflectance which occurs at each 

band normalised by the standard deviation of the data and is used to quantify the bumed-unbumed 

separability of the data as it is essentially the same as the quantity which is used to locate fire 

induced spectral change in the change detection model introduced in Section 4.5. The mean 

values of M(A) for each vegetation type are displayed in Figure 3.13, and the standard deviations 

of the data in Figure 3.14. As discussed in Section 3.5 the burned and unbumed reflectances 

are expected to have a higher separability at near-infrared and mid-infrared wavelengths. This is 

exhibited by the data contained in Figure 3.13, with MODIS bands 2, 5 and 6 indicating higher 

bumed-unbumed separabilities for all five vegetation classes than the remaining four wavebands, 

although the separability values at bands 2, 5 and 6 are still low. The effect of burning is a 

decrease in reflectance for all classes and at all MODIS land surface reflectance wavebands.
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Figure 3.12: MODIS burned and unbumed reflectances
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The lowest separabilities (values of M  closest to zero) are demonstrated by areas of deciduous 

broadleaf forests and highest separabilities by areas of grassland and open shrubland for all three 

bum-sensitive wavebands (bands 2, 5 and 6). These data have implications for the detection 

of burned areas within deciduous broadleaf forests, and indicate that the magnitude of the fire 

induced surface changes within this cover type are small. The savanna data set exhibits higher 

burned and unbumed standard deviations at each waveband in comparison to the other vegetation 

classes (Figure 3.14), which suggests that the spectral response of the pre bum and post bum 

savanna surface is more variable than the other four cover types.

3.6.1 The proportional change in MODIS reflectances

In addition to the magnitude of the change in reflectance which has occurred due to burning, the 

proportional change is also of interest as this may be a more appropriate measure with which to 

separate areas which have been affected by fire from those which have not. The magnitude of the 

spectral change which occurs as a result of burning is expected to vary both spatially and tem

porally, as a function of the characteristics of the pre-fire surface as well as the nature of the fire 

(see Section 3.2). The intrinsic spectral variability of fire affected areas is primarily dependent 

on the photosynthetic state and type of the vegetation prior to burning (Pereira et al. 1999, Trigg 

and Flasse 2001). The spectral changes which occur as vegetation senesces are evident in the 

measured spectra displayed in Figure 3.1 lb (Section 3.5). It is clear from this data that the veg

etation type and the point in its growth cycle at which the fire occurs will determine the spectral 

contrast between the burned and unbumed surfaces (Trigg and Flasse 2001). The magnitude of 

the bum signal will also be dependent on the combustion completeness and the properties of any 

residues of the fire. Low severity fires will result in a more heteorogenous post fire surface and 

will therefore exhibit a bum signal of lower magnitude than areas of high severity fires which 

will have a high combustion completeness leaving a more uniform post fire surface. The nature 

of the combustion residues will also have an impact on the bum signal and fires of different lev

els of efficiency will produce combustion residues varying from dark coloured char and ash as a 

result of incomplete combustion, and white ash for more efficient combustion (Stronach and Mc- 

naughton 1989). These surfaces have variable reflectances which will determine the magnitude 

of the spectral change from pre-bum to post-bum conditions as demonstrated by the measured
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spectra in Figure 3.1 lb. In contrast to the magnitude of the spectral change which has occurred 
due to a fire, a measure describing the proportional change in reflectance will allow for variability 
in the pre-fire and post fire reflectance levels. Such a measure is defined in Equation 3.3 which 
takes into account the instrinsic variability of the bum signal by weighting the magnitude of the 
change in the reflectance due to fire by the pre-change reflectance level:

<Sp(A) =  (Ppoa‘ ~ Ppr̂  (3.3)
\  Ppre )

where ppre and ppo3t are the pre bum and post bum reflectances on the day before and the day 
after the change respectively. Figure 3.15 shows mean values of Sp(A) calculated from the same 
data set as used in Section 3.6. All cover types exhibit a proportional change in reflectance of at

0.89

; lands6

-8.19

9 6 72 3 41

Figure 3.15: Proportional changes in reflectance (Sp(A))

least -0.1 at MODIS bands 2, 5 and 6 which equates to a 10% decrease in reflectance as a result of 
burning. Similar to the separability data in Figure 3.13, deciduous broadleaf forests demonstrate 
the smallest proportional change in reflectance levels at these wavelengths in comparison to the 
other cover types. This is likely to be due to the fact that fires which occur within this vegetation 
type tend to bum only the understorey vegetation leaving the canopy components unaffected, 
thus having a relatively lower impact on the reflectance signal.
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3.6.2 The duration of the MODIS burn signal

It is not only the relative change in and magnitude of fire induced spectral change which is of 

importance in the identification of the most appropriate wavebands for the separation of burned 

and unbumed pixels, but the persistence of these changes in the remote sensing signal is also 

significant as not only will it influence the choice of wavebands, but it will determine the temporal 

sampling required in order to successfully identify the changes of interest. In particular high 

spatial resolution sensors such as the Landsat series which only revisit the same location once 

every sixteen days may not be suitable for the detection of sudden but short lived surface change.

Minimal work exists which characterises the temporal evolution and the duration of the bum 

signal in the spectral response of post fire surfaces, although several studies have investigated 

whether it is still possible to accurately separate burned from unbumed pixels at various temporal 

intervals after the occurrence of the fire. A study by Trigg and Flasse (2000) has examined 

the spectral-temporal response of burned savanna using in-situ spectroradiometry for a site in 

north-east Namibia. Results indicate that a significant signal exists in MODIS bands 2 and 5 

for at least 13 days after the fire, bands 1, 4 and 6 tend to be sensitive immediately after the 

bum and return to pre-fire levels within 7, 7 and 11 days respectively, while at longer infrared 

wavelengths the signal only becomes significant one day after the fire and rises thereafter. A 

similar pattern has been observed by Savage and Vermeulen (1983) for an area of grassland in 

southern Africa, where a significant decrease in reflectance occurred in the entire 0.3/j,m-3/j,m 

range after a fire. However four weeks after the date of the fire there was no significant difference 

between the reflectance of the burned surface and the surrounding unaffected vegetation. The 

bum signal is slightly more persistent in burned areas of woody savanna in central Africa. A 

study by Eva and Lambin (1998a) has shown that it is possible to separate fire affected areas from 

the surrounding woody savanna for up to 17 days after the fire at near and shortwave infrared 

wavelengths while after longer time periods confusion arises between senesced vegetation and 

the burned surfaces due to the removal of the ash deposits by the elements and the regrowth 

of the vegetation. In contrast an investigation of the temporal trend of reflectance for a post 

fire woody savanna surface in Northern Australia has demonstrated that while the near infrared 

reflectance remains lower than pre-fire levels for up to several weeks after the fire, reflectance 

in the middle infrared demonstrates a quick post fire recovery reducing the chances of detection
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only two weeks after the fire (Stroppiana et al. 2003). It is suggested that this may be due to 

the dispersal of the charcoal and ash by meteorological processes, resulting in exposure of the 

underlying soil surface and a middle infrared signal which is increasingly influenced by the soil 

signal and the presence of dry vegetation (Trigg and Flasse 2000, Stroppiana et al. 2003). The 

reflectance at near infrared wavelengths is less sensitive to such changes and is more dependent 

on the state of the vegetation which remains comparatively consistent for the weeks immediately 

after the fire, resulting in a longer persistence of the bum signal at this wavelength (Stroppiana 

et al. 2003). The persistence of bum surfaces in the MODIS spectral response over the area of 

interest has been examined using the separability measure described in Equation 3.2 as well as 

the proportional change in reflectance (Equation 3.3) at four temporal periods; 1 day after the fire, 

7 days after the fire, 14 days after the fire, and 21 days after the fire. As in the previous sections 

only cloudfree observations which have been acquired with a view zenith angle of +/-100 have 

been considered from the same data set as used above, with the occurrence of fire determined 

from the MODIS Thermal Anomalies product. The results for savanna pixels are displayed 

graphically in Figure 3.16, and the results for all of the vegetation classes are contained in Table 

3.7 and 3.8. Separability values of at least 0.2 have been highlighted in Table 3.7 for the purpose 

of the following discussion.

The values of M  contained in Table 3.7 and Figure 3.16a indicate that the separability of the 

burned and unbumed surfaces for all five vegetation types decreases markedly over time. While 

MODIS bands 2, 5 and 6 demonstrate the highest separabilities (>0.30) for most vegetation 

classes immediately after the occurrence of a fire, after a period of only seven days M  values 

of at least 0.30 are only observed over areas of burned grassland and open shmbland for these 

wavebands. After a period of 14 days although lower band 2, 5 and 6 reflectances in comparison 

to the pre-fire levels (as indicated by a positive value of M) are still evident over all vegetation 

types except for deciduous broadleaf forests, the separabilities are extremely low with M  values 

of less than 0.2 for all classes except grassland where M{band2)=0.2\ and M  (band5) =0.22. 

Thus in contrast to the studies discussed above where, for example, a significant signal was 

found to exist over burned savanna at MODIS bands 2 and 5 for at least 13 days after the fire 

(Trigg and Flasse 2000), for the areas examined while all vegetation classes except for deciduous 

broadleaf forests exhibit separabilities of at least 0.30 immediately after the fire at band 2, 5 and 

6 wavelengths, within 14 days after the fire the surface reflectance has returned to pre-fire levels
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Figure 3.16: Duration of the MODIS bum signal
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Vegetation Type Waveband Time after fire:
1 day 7 days 14 days 21 days

1 0.07 0.02 -0.06 -0.06
2 0.31 0.23 0.11 0.04
3 0.01 -0.04 -0.07 -0.07

Savanna 4 0.03 -0.02 -0.07 -0.08
5 0.35 0.21 0.18 0.08
6 0.34 0.18 0.13 0.02
7 0.02 -0.22 -0.21 -0.23
1 0.03 -0.06 -0.11 -0.09
2 0.25 0.07 -0.01 -0.10
3 0.01 -0.05 -0.06 -0.06

Deciduous broadleaf forest 4 0.01 -0.06 -0.10 -0.10
5 0.22 0.05 0.01 -0.01
6 0.26 0.01 -0.03 -0.05
7 0.05 -0.19 -0.22 -0.18
1 0.07 -0.03 -0.07 -0.07
2 0.32 0.13 0.08 0.01
3 0.02 -0.04 -0.06 -0.05

Woody savanna 4 0.03 -0.04 -0.07 -0.08
5 0.24 0.11 0.11 0.10
6 0.34 0.06 0.03 0.07
7 0.14 -0.12 -0.23 -0.20
1 0.13 0.13 0.06 -0.02
2 0.37 0.30 0.21 0.11
3 0.03 0.03 -0.01 -0.04

Grassland 4 0.08 0.07 0.02 -0.04
5 0.38 0.30 0.22 0.21
6 0.39 0.28 0.16 0.12
7 0.09 -0.06 -0.13 -0.17
1 0.10 0.19 0.02 0.01
2 0.36 0.31 0.15 0.13
3 0.02 0.04 -0.05 -0.03

Open shrubland 4 0.07 0.13 -0.01 -0.02
5 0.33 0.30 0.18 0.18
6 0.40 0.30 0.15 0.12
7 0.17 0.05 -0.12 -0.16

Table 3.7: Duration of the MODIS bum signal (M)
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Vegetation Type Waveband Time after fire:
1 day 7 days 14 days 21 days

1 -0.15 -0.12 0.04 0.05
2 -0.19 -0.11 -0.06 0.01
3 -0.12 0.15 0.08 0.10

Savanna 4 -0.11 0.01 0.06 0.08
5 -0.17 -0.12 -0.07 -0.01
6 -0.13 -0.07 -0.04 -0.01
7 -0.01 0.09 0.10 0.14
1 -0.03 0.06 0.11 0.13
2 -0.14 -0.05 0.00 0.09
3 -0.03 0.07 0.10 0.13

Deciduous broadleaf forest 4 -0.02 0.06 0.11 0.14
5 -0.15 -0.06 -0.02 0.04
6 -0.14 -0.02 0.02 0.05
7 -0.02 0.10 0.12 0.14
1 -0.11 0.04 0.09 0.08
2 -0.20 -0.07 -0.03 0.01
3 -0.07 0.05 0.11 0.10

Woody savanna 4 -0.07 0.04 0.09 0.11
5 -0.21 -0.09 -0.04 0.01
6 -0.17 -0.04 -0.01 -0.00
7 -0.05 0.07 0.12 0.08
1 -0.14 -0.19 -0.10 -0.03
2 -0.21 -0.23 -0.15 -0.08
3 -0.09 -0.14 -0.07 -0.03

Grassland 4 -0.12 -0.18 -0.09 -0.02
5 -0.22 -0.21 -0.12 -0.07
6 -0.17 -0.14 -0.09 -0.03
7 -0.04 0.02 0.05 0.11
1 -0.13 -0.18 -0.01 -0.03
2 -0.20 -0.22 -0.08 -0.07
3 -0.10 -0.13 0.02 -0.04

Open shrubland 4 -0.11 -0.16 0.00 -0.03
5 -0.21 -0.21 -0.08 -0.07
6 -0.19 -0.17 -0.07 -0.05
7 -0.08 -0.03 0.05 0.08

Table 3.8: Duration of the MODIS bum signal (Sp(band2))
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with very low separabilies indicated at this point. Although the separabilities are low the most 

persistent bum signal is observed at bands 2 and 5 for grassland pixels (Table 3.7) with M  values 

of at least 0.2 at 14 days. In contrast deciduous broadleaf forests and woody savannas show the 

highest recovery with the post fire signal hardly separable only 7 days after the fire. A similar 

pattern is observed in the proportional changes in reflectance which occur at MODIS bands 2, 

5 6 wavelengths. A decrease in reflectance of at least 10 % (a dp value of at least -0.1) occurs 

at these three wavelengths across all cover types immediately after the fire. These values have 

been highlighted in Table 3.8 for convenience. The fastest recovery of the signal to pre-fire 

levels is observed over deciduous broadleaf forests and woody savannas with only a 5, 6 and 2 % 

decrease in reflectance evident at band 2, 5 and 6 wavelengths over deciduous broadleaf forests 7 

days after the fire, and a change of 7, 9 and 4 % (dp values of -0.05, -0.06 and -0.02 respectively) 

over woody savannas. In contrast the most persistent signal is observed over grassland pixels, 

where an equivalent decrease in reflectance of 15, 12 and 9 % at bands 2, 5 and 6 is still evident 

14 days after the occurrence of the fire. The persistence of the signal over grassland areas is 

likely to be related to the vegetation type. Grassland ecosystems have tree and shmb cover of 

less than 10% (see Table 3.3). In contrast to deciduous broadleaf forests which have a canopy 

cover of at least 60% and open shrublands which have a canopy cover between 30 and 60%, the 

burned areas of grassland will be less obscured by canopy components and thus more visible to 

the satellite sensor.

The bum signal at MODIS band 7 wavelengths exhibits a similar pattern to that identified by 

Trigg and Flasse (2000) at a burned savanna site in Namibia where the signal at longer infrared 

wavelengths was only found to be significant one day after the fire and rose thereafter. The 

data contained in Table 3.8 and Figure 3.16 indicate that for all vegetation classes the signal 

is hardly separable one day after the fire, but becomes more separable as time progresses with 

increasingly higher reflectance levels (a negative M  value) observed within 7, 14 and 21 days 

after the occurrence of the fire. The proportional changes in reflectance which occur at band 

7 wavelengths are extremely variable immediately after the fire, with a 1% (Jp=-0.01) change 

occurring over savannas and an 8% change over open shrublands. Except for areas of open 

shrubland where a decrease in reflectance (a negative dp value) is still observed a week after the 

fire, band 7 reflectances rise within seven days after the fire with an increase of between 8 and 

14 % in the surface reflectance occurring up to 21 days after the fire.
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This chapter has provided an overview of vegetation fires in southern Africa. The causes and 

ecological effects of biomass burning within this region have been discussed and the study site 

introduced. In addition the occurrence of fire within the study area has been characterised in 

terms of the temporal and spatial distribution of fire activity, and the spectral characteristics of 

burned surfaces have been investigated. The significant findings of this work are summarised 

below.

1. Temporal distribution of fire activity The southern Africa fire season coincides with the 

dry season which usually encompasses the months of May to October, with 95 percent of the 

total number of active fires detected by MODIS over the area of interest occuring between the 

beginning of April and the end of November during the past five years. A comparison of the data 

acquired by the morning (equatorial crossing of 10.30am local time) and afternoon (equatorial 

crossing of 1.30pm local time) MODIS overpass suggests that the fire activity within this area 

has a strong diurnal pattern, with almost three times as many fires detected later in the day at the 

peak of the 2003 and 2004 fire season.

2. Spatial distribution of fire activity A large proportion of southern Africa bums every 

year with the fire activity moving from west to east as the bum season progresses. Fire activity 

is greatest in areas of savanna with between 10.8 and 11.3 percent of savanna pixels detected 

as containing a fire during the five annual fire seasons examined, and lowest in areas of open 

shrubland.

3. Spectral characteristics of burned surfaces With a few exceptions (Trigg and Flasse 2000, 

Sa et al. 2003, Stroppiana et al 2003) minimal field research has been performed describing the 

reflectance characteristics of fire affected surfaces, or the duration and temporal evolution of the 

bum signal. The vegetation classes in the area of interest tend to reach the peak of their growth 

cycle by the end June, and senesce during the following months until the onset of the rainy 

season, with the peak of fire activity occurring at the height of the dry season. An examination 

of the separability of pre-fire and post fire reflectances for each of the individual MODIS land
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surface wavebands over the bum season suggests that although the classes are extremely similar 

at all wavelengths, separation of burned and unbumed pixels may be achieved more effectively 

using near or middle infrared wavebands which exhibit a decrease in reflectance as a result of 

burning.

4. Duration of the bum signal The temporal persistence of the change in the remote sensing 

signal which occurs as a result of fire is of importance in the detection of fire affected areas as it 

will determine the temporal sampling required for a high detection probability. While bum scars 

in open shrubland and grassland ecosystems may be detectable up to 7 and 14 days respectively 

after the occurrence of a fire, for the remaining three classes within 7 days the surfaces exhibit 

very low bumed-unbumed separabilities, with deciduous broadleaf forests and woody savannas 

showing the fastest post fire recovery.

Detailed knowledge of the temporal and spatial variability of fires within the area of interest 

can greatly reduce the extent of satellite coverage required to determine and monitor the total area 

burned throughout the year (Cahoon et al. 1992). For the purpose of this Thesis, the temporal 

extent of the southern Africa fire season is defined as the eight months beginning with April and 

ending with November. In order for a change detection scheme to be effective it is necessary to 

use wavebands which are sensitive and as unique as possible to the changes of interest. The work 

presented above suggests that MODIS bands 2, 5 and 6 offer the greatest separability between 

burned and unbumed surfaces within the study area. However the separability of these surfaces 

are not uniform across the study area, with areas of deciduous broadleaf forests indicating sub

stantially smaller changes from pre-bum to post-bum conditions than the other cover types. This 

suggests that it will be significantly harder to detect areas of burning which have occurred within 

deciduous broadleaf forests due to the smaller magnitude of the fire induced change. The low 

magnitude of the fire induced spectral change which is observed immediately after the fire em

phasises further the need to exploit all of the information available and thus the importance of 

utilising directional information within the remote sensing signal in the detection of burned areas 

within these ecosystems. The persistence of these changes is also of significance with the results 

presented indicating that recovery of the burned surfaces may occur within as little as seven days 

after the fire. In order to ensure the maximum probability of detection of these burned areas it is
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therefore necessary to acquire images as near to the day of burning and with as high a revisit pe

riod as possible. Near-daily satellite acquisitions from high temporal resolution sensors provide 

the only feasible means of identifiying these changes.

Following on from these requirements and the shortcomings of traditional change detection 

techniques discussed in Chapter 2, a change detection scheme is presented in the next chapter 

which accounts for the directional information contained in the remote sensing signal, and which 

may be applied to the daily detection of burned surfaces from high temporal resolution satellite 

data.



Chapter 4

A new approach to change detection

122



CHAPTER 4. A NEW APPROACH TO CHANGE DETECTION 123

Chapters 2 and 3 have discussed the need for a burned area detection algorithm which ac

counts for directional effects in surface reflectance, and which is applicable to the high temporal 

resolution monitoring of burned surfaces. This chapter provides a description of the models and 

methods commonly used to describe the anisotropy of surface reflectance and its manifestation in 

remote sensing data. Following on from this a new generic approach to change detection which 

incorporates directional information is introduced and its application to burned area detection 

described.

4.1 Anisotropic surface reflectance

The Earth’s surface is not a Lambertian reflector, and therefore does not reflect light equally in all 

directions. The degree of anisotropy displayed by a particular surface is determined by both the 

optical and the physical nature of that surface. Although the angular distribution of reflectance 

will have a spectral dependence as the interaction between the downwelling radiation and the 

objects on the surface varies as a function of wavelength, the primary source of anisotropy is the 

three-dimensional character of the surface (Liang et al. 2000). The shape, size and spacing of 

objects will directly influence the scattering of radiation from the surface producing a distinctive 

pattern of shadows which will vary with viewing position. Over a plant canopy for example 

the remote sensing signal will depend mainly on the relative proportions of sunlit leaf and soil 

visible from a particular viewing angle. This will be determined by the size and orientation of 

the scatterers (the leaves) in the direction of the sun and the satellite. As a result research has 

indicated that it is possible to separate vegetation cover types based solely on the structural (as 

opposed to spectral) characteristics of the surface from the directional information contained 

within the remote sensing signal (Asner 2000).

The spectral reflectance from a land surface is not only dependent on the spectral and spatial 

properties of the surface, but will vary as a function of the angle at which it is illuminated and 

the angle at which it is viewed from (Nicodemus et al. 1977, Roujean et al. 1992, Wanner et al. 

1995). As measurements of reflectance from the earth’s surface may be acquired under very dif

ferent illumination and viewing angles, characterisation of this anisotropy is of importance in the 

understanding of earth surface properties. Directional effects may be apparent in remote sensing
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measurements from a variety of sources. Wide field of view sensors (for example AVHRR and 

MODIS) acquire data under very different viewing angles across an individual swath, resulting 

in angular variations in the data sensed at different locations within the single swath, as illus

trated in Figure 4. la. The Instantaneous Field Of View (IFOV) of MODIS is 110° at the satellite

Orbit A Orbit B

110°

<»

Tim e a

Time b

(C)

<_____ 2330km

Figure 4.1: Angular effects caused by sensor characteristics and orbital patterns

which results in viewing angles which range between 0° at nadir to 70° at the edges of a single 

image. In addition angular variations will be present in data acquired for the same location on 

the earths’ surface during different orbital passes as highlighted by the red area in Figure 4.1b. 

Similar effects will be present in data acquired by sensors such as POLDER (Polarisation and 

Directionality of Earth Reflectances) and MISR (Multiangle Imaging Spectra-Radiometer). An 

examination of daily vegetation indices calculated from POLDER data show variations in the 

range of 0.2-0.5 as a result of different viewing angles (Leroy and Hautecoeur 1999). The source 

of such effects is not limited to variations in the viewing geometry under which the data is ac

quired as the surface reflectance is also dependent on the position of the sun. Images sensed 

over the same area at a constant viewing angle but at different times of the day (for example by 

a geostationary sensor such as METEOSAT), or at different times of the year will be affected 

by variations in the angle of illumination as illustrated in Figure 4.1c. These effects make the 

comparison of temporal series of remote sensing data, or the analysis of data within a single wide 

swath problematic.

Until relatively recently the analysis of remotely sensed images has typically regarded the
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surface as a Lambertian reflector, ignoring directional affects. As discussed in Section 2.2 a 

common approach in change detection studies has been to use Maximum Value Composites 

(MVCs) in order to reduce the impact of these effects within a time series of images (Holben 

1986). The importance of taking directional effects into account when comparing surface re

flectance data acquired under varying illumination and viewing conditions is now generally ac

cepted, and algorithms designed to evaluate data from sensors such as MODIS, VEGETATION, 

MISR and POLDER increasingly correct for and in some cases actually exploit the angular ef

fects implicit in the data (Lucht and Roujean 2000a). The “Fourier-Adjusted, Solar-zenith angle 

corrected, Interpolated, Reconstructed” NDVI (FASIR-NDVI) dataset for example is a global 

vegetation datatset which has been corrected for effects within the data which are not related to 

actual changes in the vegetation (Sellers et a l 1994). The dataset has been constructed from 

17 years of global AVHRR observations with variations in the reflectance observations due to 

atmospheric and calibration effects and differing view and illumination geometries corrected for. 

With the launch of MODIS Terra at the end of 1999 an operational product which corrects for 

angular effects has been available to the scientific community, alongside the standard surface 

reflectance products (Justice et a l 1998, Schaaf et al. 2002). The importance of accounting 

for such effects prior to the use of a multi-temporal dataset for the purpose of detecting changes 

in the land surface has been described in Chapter 2. Directional effects within remote sensing 

data may be normalised to a standard viewing and illumination geometry allowing for compar

ison between measurements acquired under different viewing and illumination conditions. The 

following section discusses the ways in which this is typically achieved.

4.2 Models of the BRDF

The anisotropy of the surface may be modelled by the Bidirectional Reflectance Distribution 

Function (BRDF), which describes the dependence of surface spectral reflectance on the geom

etry at which the surface is illuminated and viewed from (Nicodemus et al. 1977). This function 

may be fitted using empirical or physical models with numbers of parameters ranging from a 

few to dozens (Liang et a l 2000). A third group of models referred to as “semi-empirical” also 

exist, which provide a compromise between an empirical and a purely physical approach. These
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three classes of model differ in (i) the detail with which the scattering of light within a scene is 

described (ii) the degree of a priori knowledge required about the landcover characteristics of 

the scene and (iii) the minimum number of observations needed to accurately derive the model 

parameters (Wanner et al. 1995).

4.2.1 Physically based models

Physical models of the BRDF are more complex than semi-empirical or empirical approaches 

as they attempt to realistically describe the reflectance from a vegetation canopy based on an 

abstraction of the canopy. The shape of the BRDF is described using a number of parameters 

related to the surface characteristics, such as the size, shape and distribution of elements within 

a vegetation canopy. An advantage of using a physically based model to describe the surface 

BRDF is thus that in comparison to a purely empirical approach, the model parameters will 

have some physical meaning. Models of the directional reflectance from vegetation typically 

trace the path of a photon as it interacts with the canopy and the individual canopy components, 

thereby explicitly describing the scattering of light within a scene. However as a description of 

all processes within a scene would be impossible, it is necessary to make certain assumptions and 

approximations relating to the physics of the scene. Despite these abstractions physical models 

are inherently more complex than empirical ones and contain a larger number of parameters and 

are thus more computationally expensive. They are however particularly useful for deriving sur

face variables such as the Leaf Area Index (LAI) from the remote sensing signal, which may 

subsequently be used to estimate parameters such as surface roughness or the fraction of pho- 

tosynthetically absorbed radiation which are of importance in modelling biogeochemical cycles 

(Kalluri et al. 2001). Although a wide range of canopy reflectance models applicable to a diverse 

range of cover types have been developed, physical models of canopy reflectance typically fall 

into one of four broad categories; geometric optics, radiative transfer, hybrids of the two, and 

numerical simulations (Goel 1989). A comprehensive review of these may be found in Goel and 

Thompson (2000),Chen and Leblanc (2000),Qin and Liang (2000) and Disney et al. (2000).

The first class uses geometric optics to describe the reflectance from vegetation as a function 

of the structural and spatial characteristics of the canopy (Li and Strahler 1985). Vegetation 

canopies are modelled as discrete three dimensional objects which are viewed and illuminated
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from different directions within the hemisphere. Geometrical models such as that of Li and 

Strahler (1985,1986,1992) represent the scene as a collection of geometric shapes (such as cones 

and cylinders) on a Lambertian surface. The geometry of a scene is then dependent on the size 

and density of these shapes, and the reflectance of the scene is modelled as a combination of four 

individual parameters, the sunlit and shadowed proportions of the objects in the scene and the 

ground when viewed and illuminated from a particular direction. This group of models has been 

applied successfully to sparse or moderately closed canopies (such as shrublands), row crops and 

bare soil surfaces.

The second category have typically been based on radiative transfer theory, and describe a 

vegetation canopy as a horizontally homogenous layer of absorbing and scattering particles with 

known optical properties. Radiative transfer models tend to be more appropriate for modelling 

dense and horizontally uniform canopies such as forests or crops (Nilson and Kuusk 1989, Kuusk 

1995). The majority of work in this area has modelled vegetation at the canopy level, although 

leaf level models such as PROSPECT (Jacquemoud and Baret 1990) do exist. The physical basis 

for canopy radiative transfer models is the treatment of the canopy as a turbid medium consist

ing of randomly distributed scatterers (e.g. leaves) in horizontal layers with specific orientations 

(Goel 1989). The model parameters are then the optical and structural properties of these indi

vidual scattering elements. The directional reflectance from the canopy may be calculated using 

numerical or analytical methods. Analytical solutions are typically achieved by either approxi

mating the canopy radiative transfer equation with a set of integro-differential equations which 

may then be solved for diffuse and specular fluxes travelling in the downward and upward di

rections, or by separating the canopy radiation into unscattered, single scattering and multiple 

scattering components (Qin and Liang 2000). In contrast to these numerical methods are more 

accurate but also more computationally expensive and many iterations may be required to reach 

an acceptable solution. The hybrid category combines aspects of both geometric optical and ra

diative transfer models, with geometric shapes representing the canopy in a turbid medium (Ni 

et al. 1999). Hybrid models are therefore more flexible than the other two approaches, but also 

more complex.

Computer simulation models are more complex than the approaches described above, and 

involve the specification of the position and dimensions of the canopy elements as well as their 

arrangement within the canopy. The interactions between the photons and the canopy are then
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simulated using, for example, Monte Carlo methods (Lewis and Muller 1992) or radiosity tech

niques (Borel et a l 1991). However although such models are useful in quantifying and inves

tigating the nature of the radiation regime within a canopy, they are computationally expensive 

and require a priori knowledge of the surface in order to set the model parameters to suitable 

limits prior to inversion.

4.2.2 Empirical models

In contrast to the physically based approaches described above, empirical models are formulated 

solely to describe mathematically the shape of the surface BRDF. Statistical coefficients are 

typically derived by fitting a polynomial function to the observed directional reflectances. An 

advantage of this approach is the lack of assumptions regarding the landcover type and therefore 

the model may be equally applicable to a homogenous or spatially discrete canopy. However 

this may also be a disadvantage as empirical models do not have any physical basis and the 

parameters which comprise the model are not measurable properties of the surface. Thus while 

models of this form are useful in accounting for angular effects, they do not provide us with any 

information relating to the biophysical nature of the scene (Cihlar et al. 1994).

An example of an empirical model is that of Walthall et a l (1985), which has subsequently 

been modified by Nilson and Kuusk (1989) to satisfy the reciprocity principle. Based on a set of 

polynomials the surface BRDF is described as;

P(9i, 9V, 4>) — /o(«? +  Ql) +  +  f20i9vCOS(j) +  / 3 (4.1)

where Qi,Qv,(f) refer to the illumination and viewing zenith angles, and the relative azimuth (the 

angle between the illumination and viewing azimuths) respectively. As the model is linear it may 

be inverted against a set of directional measurements of reflectance (p{9i,9v,(j))) using linear 

algebra to provide an estimate of the four parameters ( /n). Due to its simple linear and robust 

nature, this model may be inverted rapidly and has therefore been used extensively in the angular 

normalisation of multi angular remote sensing datasets (Huete et al 1999). Zhang et al (1998) 

have applied the modified version of the Walthall model to a global 10-day composite AVHRR 

dataset, with results indicating consistent nadir reflectance values ( /3) across different vegetation
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types. However a comparison between ten different BRDF models for the calculation of nadir 

reflectance as well as the spectral albedo by Privette et al. (1997) found the Walthall model to 

perform poorly in comparison to the semi-empirical alternatives. Due to the empirical nature of 

the model it is less suited to extrapolation to wider sampling conditions or to a reduced number 

of observations than those which follow a semi-empirical approach.

4.2.3 Semi-empirical models

The third class of models has developed out of the two described previously. In comparison to 

physical models the semi-empirical approach provides a simpler parameterisation of the BRDF, 

albeit still more complex than a purely empirical approach. As this class of models essentially 

provides an approximation to physical models of the BRDF they are mathematically simpler 

while at the same time their parameters retain some of their physical and more important char

acteristics (Wanner et a l 1995). Semi-empirical models thus offer a compromise as they require 

fewer observations than empirical models while in contrast to a purely physical approach they 

successfully model heterogeneity within a scene and do not require a priori knowledge of the 

surface characteristics. In addition they have fewer parameters than physical models and are 

therefore easier to implement.

Two types of semi-empirical models will be discussed, as both approaches are used in the 

current research. The first is the ’kernel-driven’ approach introduced by Roujean et al. (1992) 

and further developed by Wanner et al. (1995), which has been developed from an explicit 

consideration of the remote sensing inversion problem (Lucht and Roujean 2000b). The scene 

is represented as a linear combination BRDF shapes which are functions of illumination and 

viewing angles only. The model takes the form of Equation 4.2,

p (\, Oi, 9V, <t>) =  6<” ®  ( 4 '2 )
n

where p is the spectral reflectance and 9i: 9V and (f) represent the illumination and viewing zeniths 

and the relative azimuth. K n are the geometric expressions of BRDF shapes, and are typically 

referred to as ’kernels’. The model parameters ( /n) describe the relative contribution of each of 

the BRDF shapes to the overall reflectance of the scene. A great deal of flexibility is possible
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in defining appropriate kernels for the model, and various formulations of the volumetric (Kvol) 
and geometric (Kgeo) kernels have been developed (Roujean et al. 1992, Wanner et al. 1995). 
In the original implementation three kernels are used, each describing a different form of scat
tering to model the surface BRDF. These three types of scattering are described schematically 
in Figure 4.2 and are modelled using (i) an isotropic parameter (the nadir reflectance with nadir 
illumination - a constant typically set to unity) to describe isotropic scattering from the surface 
(Figure 4.2a) (ii) a volumetric kernel which provides a single scattering approximation to radia
tive transfer (Figure 4.2b) (iii) a geometric-optical term which accounts for shadowing effects 
(Figure 4.2c). It is assumed that the BRDF may be decomposed into the two types of scatter-

(a) (b) (c)

Figure 4.2: Isotropic,volumetric and geometric forms of vegetation scattering

ing described by the kernels, and that these are mutually exclusive and therefore do not overlap 
(Roujean et al 1992). Thus over a forest canopy, for example, while the reflectance from the 
crowns will typically be characterised by geometric scattering, volumetric contributions will be 
made by scattering within the canopy (Roujean et al. 1992). The isotropic term is included in or
der to compensate for the single scattering assumption as reflectance from an anisotropic surface 
will tend to become increasingly isotropic with higher order scattering. The model thus assumes 
that multiple scattering from the surface will have no directional dependence. Although more 
than three kernels may be used (Hu et al. 1997), it is generally accepted that the three kernels 
described above provide a sufficient description of most BRDF shapes of naturally occurring sur
faces (Lucht and Roujean 2000b). For the operational application of this model little difference
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is observed between the kernels within the same family, and the combination of RossThick and 

LiSparse has been found to best represent observed reflectances over a wide variety of surfaces 

(Schaaf et al. 2002). In this case the model takes the form of Equation 4.3.

p(A, Oi, 9V, 4>) =  f iSO(X) +  fvoi{X)Kvoi(0i, 9V, 0) +  / 5eo(A)if5eo(0i, 6>v, </>) (4.3)

The development of the semi-empirical approach described above has arisen out of the need 

for the operational normalisation of directional effects and generation of estimates of albedo 

from large datasets such as those acquired by the MODIS sensor (Lucht and Roujean 2000b). 

The properties of these models offer several advantages in the examination of large datasets. In 

particular it is noted that:

1. As the model is linear with respect to its parameters it may be inverted rapidly and analyt

ically

2. If adjacency effects over heterogenous areas are ignored the model can be assumed to scale 

linearly with area thereby accounting for spatial heterogeneity

3. No a priori knowledge of the surface is therefore required

4. There is some physical basis to the model parameters and they may therefore provide 

information relating to the biophysical characteristics of the surface

AMBRALS

The Algorithm for MODIS Bi-directional Reflectance Anisotropy of the Land Surface (AM

BRALS) is a model consisting of a collection of semi-empirical kernels which describe the an

gular reflectance for a variety of surface cover types, and are combined as described in Equation 

4.2 to form a linear BRDF model. AMBRALS was designed specifically for use with MODIS 

data, and is used operationally to produce the MODIS BRDF/Albedo product (Wanner et al. 

1997, Strahler et al. 1999a). The kernels used in the creation of this dataset are the RossThick 

and the LiSparse Reciprocal. These (along with an isotropic parameter) are inverted over 16 days 

of directional reflectances. A period of 16 days is used as this is the MODIS orbital repeat cycle.
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The volumetric kernel was developed by Roujean et a l (1992) and Wanner et a l (1995) 

from the work of Ross (1981) for optically thick canopies (i.e. with a Leaf Area Index greater 

than 1) as a first order approximation to radiative transfer for infinitesimal scatterers. The kernel 

takes the form of Equation 4.4:

_  (tt/2 — g) cos j  + sing) _  tt 
vo1 cos 9, + cos 9V 4

where 9i and 9V refer to the illumination and viewing zenith angles respectively, and f  is the 

scattering phase angle described as:

cos f  =  cos 9i cos 9V + sin 9{ sin 9V cos cf) (4.5)

The model assumes a single scattering approximation to radiative transfer, i.e. photons scattered 

more than once are ignored. In addition the scattering facets (leaves) are assumed to be randomly 

orientated, with equal leaf transmission and reflectance (Roujean et a l 1992).

The LiSparse is a geometric kernel developed by Wanner et a l (1995) from the geometric- 

optical BRDF model introduced by Li and Strahler (1992). It provides an approximation to 

protrusion and shadowing effects for an optically thin surface, and has subsequently been modi

fied for conditions of reciprocity as the original parameterisation was formulated for a fixed solar 

zenith angle (Lucht 1998, Strahler et a l 1999a). The canopy is represented as a collection of 

spheroids (the canopy) on sticks (the trunks), and is parameterised by the geometry of the canopy 

(the base to height and tree-height to crown-height ratios) and the brightness and arrangement of 

the protrusions. The kernel takes the form of Equation 4.6;

Kgeo =  0(9i, 9v,(j>) -  sec 9\ -  sec 9'v +  ^ (1 +  cos f ') sec 9[ sec 9'v (4.6)

where 9i and 9V refer to the illumination and viewing zenith angles respectively, and O is the 

proportion of shadows which overlap. This is defined as;

O  =  — (t — sint cos f) (sec -I- 9lv) (4.7)
7r
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The shape of the shadows is defined by the cosine of the parameter t;

h D  *T (tan #  tan $[ sin 0'V
cost =   --------------------- ----------

b sec 9\,+  sec (rv
(4.8)

which is a function of both h (the height of the spheroid) and the distance between the two centres 

of the shadows D, which in turn is a function of the illumination and viewing geometries.

The model is parameterised by the density of objects within the scene (the trees), the bright

ness of the crowns and the background, and the geometry of the objects (the relative crown 

height (h) and base to height ratio). The model assumes illuminated ground and illuminated 

crowns have the same brightness, and that areas of shadow are completely black. In addition in 

the Li Sparse formulation the mutual shadowing of objects is ignored. Both kernel formulations 

are displayed graphically in Figure 4.3. An asymmetric “bowl shape” is evident in both kernels,

sH
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Figure 4.3: Rossthick and LiSparse kernels for a solar zenith angle of 45°

with the volumetric kernel exhibiting an upward bowl, and the geometric kernel a downward 

bowl. The hotspot (the peak in reflectance in the backscatter direction) is not present in the Ross 

kernel as it is formulated for infinitesimal scatterers and the hotspot is therefore not described 

by the radiative transfer approximation. The hotspot is evident in the Li kernel however as it 

accounts implicitly for shadowing effects.
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The RossThick and LiSparse kernels are combined with an isotropic kernel which describes 

the reflectance from a surface under nadir viewing and illumination conditions and whose value 

is always unity. Under this angular geometry the BRDF kernels are expressed as;

K geo(0i =  0 , =  0) =  Kvol(Qi =  0 ,9V =  0) =  0 (4.9)

and therefore p(9i = 0 ,9V = 0) =  fiSQ. Although various other formulations of volumetric and 

geometric kernels have been defined, the combination of the two described above has been shown 

to describe sufficiently the scattering characteristics of a wide variety of land cover types (Lucht 

and Roujean 2000a, Schaaf et a l 2002), and several studies have identified these kernels as 

most suited to the operational MODIS BRDF/Albedo product (Wanner et al. 1995, Privette et al 

1997, Lucht et al 2000). As these two kernels are employed in the production of the MODIS 

BRDF/albedo product they have been tested extensively (Schaaf et a l 2002). In particular 

they have been shown to perform well under sparse angular sampling and when extrapolated 

to angular scenarios where sampling has not taken place, to perform consistently well over a 

wide range of surface covers, and to be relatively insensitive to the presence of noise in the data 

(Privette et al 1997, Lucht 1998, Lucht and Lewis 2000). However, the set of kernels used in 

this research is not of great importance as the interest lies in the ability of the model to accurately 

predict the reflectance values under similar angular scenarios, rather than in the behaviour of the 

individual model parameters.

MRPV

An alternative set of semi-empirical models describe the reflectance as a product of a collection 

of terms tn which determine the characteristics of the BRDF shape. These follow the form of 

Equation 4.10:

p(A,0i, ^ )  =  n ^ n ( ( M ^ ) ; / n(A)) (4.10)
n

where f n are the model parameters and the BRDF shape is described as a product of the tn terms. 

The underlying concept of such models is that the reflectance from a surface may be described
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by the determinants of the BRDF shape and their functioning in terms of the control they exert 

on particular aspects of the angular dependence of the reflectance and the multiplicative nature 

of these models results in a much wider representation of BRDF shapes than in additive models 

such as AMBRALS (Lucht and Roujean 2000a).

The original three parameter model of Rahman, Pinty and Verstraete (Rahman et al. 1993b, 

Rahman et a l 1993a) commonly referred to as RPV is a multiplicative model of the form de

scribed in Equation 4.10. The model is formulated from an explicit consideration of the shape of 

the BRDF which is defined as the product of three terms (i) the amplitude of the reflectance, (ii) 

the shape of the BRDF, and (iii) the relative amount of forward and backward scattering. How

ever as the third term contains a Henyey-Greenstein function the model is not linear with respect 

to its parameters. A modified version has been defined by Marchonik et al. (1998) for operational 

use in the MISR (Multiangle Imaging SpectroRadiometer) BRDF product, which approximates 

the Henyey-Greenstein function with an exponential function resulting in a semi-linear model 

(Lucht and Roujean 2000a). The model takes the form of Equation 4.11:

where 6iy 9V and <f) represent the illumination and viewing zenith and the relative azimuth angle, 

p0 is a brightness term, and f n are the model parameters. A logarithm of the model needs to be 

calculated in order to linearise it, after which it may be inverted analytically:

p (x , bu ev, 4>) =  poK ^ k ^ k I3 (4.11)

ln(p(A, Oi, 0V, (j>)) = Inpo +  filn K i  -I- f 2lnK 2 -F fzlnKz (4.12)

The functions K n are defined as follows:

Ki{X,9i,0v,k) =
cosk 19iCOsk 19v 

(cos9i +  cos9v) l~k
(4.13)
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K 2(9 ,0  = (e 'bmC°st) (4-14)

k 3(Po,g)  = i + \ - ^ (4.15)

where Ki is the Minnaert model which describes the basic shape of the BRDF as a function 

of the viewing and illumination geometry (Minnaert 1941), K 2 is the Henyey Greenstein phase 

function which controls the relative amount of forward and backward scattering (Henyey and 

Greenstein (1941) in Rahman et al. (1993a)), and K 3 is an approximation to the hotspot effect. 

At all spatial scales objects in a three dimensional scene will cast shadows resulting in a “hotspot” 

effect of emergence and occlusion as a function of the viewing and illumination geometry, which 

will result in a peak in reflectance in the retrosolar direction and a decrease in reflectance away 

from the direction of illumination (Lucht and Roujean 2000a). In the definition of K 3, when 

&i = Bv and fa =  <j>v (i.e. the hotspot), G — 0 and Ks reaches it maximum value, and thus the 

value of the total reflectance increases (Rahman et al. 1993b). The geometric factor G is defined 

in Equation 4.16.

The difference between the MRPV model and the AMBRALS type approach is essentially 

limited to the treatment of the hotspot. MRPV has more flexibility in fitting around this region 

than AMBRALS which has a fixed hotspot width. However as sensors such as MODIS do not 

sample extensively within this region this feature is of little practical importance in the current 

research. The two approaches have been shown to perform similarly, with only marginal dif

ferences in output (Lucht 1998, Lucht et al. 2000). Research indicates that the extrapolative 

and interpolative abilities of the two models are comparable (Lucht 1998), with both approaches 

displaying fitting errors of a similar order of magnitude (Zhang et a l 1998).

G — \/{tan2$i + tan29V — 2 (tan6i x tanOv x coscj>)} (4.16)
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4.2.4 Analytical inversion

Estimations of the BRDF may be produced by inverting semi-empirical models such as AM

BRALS and MRPV provided a sufficiently large set of multiangular reflectances is available to 

derive the model parameters. An advantage of using the additive or multiplicative linear or semi- 

linear combination of kernels defined above (Equations 4.3,4.11) to model the BRDF is that they 

provide an analytical solution that reduces to the inversion of a small matrix (Lucht and Roujean 

2000b). While such models have traditionally been inverted using angular measurements of re

flectance derived from satellite observations of the surface, the use of a priori information has 

recently received attention. This information may take the form of field measurements (Li et al 

2001) or general knowledge relating to the surface characteristics derived from both ground and 

spacebome measurements (Gao et al. 2003), and is applied when observations of the surface are 

noisy or acquired under poor angular sampling conditions which result in a limited number of 

good quality observations and low accuracies in model inversion. A priori knowledge has been 

used to (i) indicate when the retrieved kernel weights (or albedos) are outside expected bounds,

(ii) to smooth noisy data, and (iii) to product a posteriori estimates of unknown kernel weights 

under poor angular sampling scenarios (Li et al 2001, Susaki et al 2004). In the production 

of the MODIS BRDF/Albedo product if at least seven cloud-free observations of the surface are 

available during a 16 day period then a full inversion is attempted. However in the case of in

sufficient data, poor angular sampling or a poor model fit a ‘magnitude’ inversion is performed 

which exploits a priori knowledge (Schaaf et al 2002). This process is described in more detail 

in Section 4.5.2.

Semi-empirical linear kernel driven BRDF models are typically inverted using standard linear 

algebraic techniques. This requires an error function to be defined in order to minimise the differ

ences between the observations and the modelled reflectances. The method most commonly used 

is that of least squares, whereby the model parameters are determined by minimising the square 

of the errors between the modelled and the observed reflectances. The observed reflectances 

are assumed to have a Gaussian distribution with errors equally distributed between positive and 

and negative values. If the observations are unbiased the assumption is that any deviation of the 

modelled from the observed data is due either to noise in the measurements or an inability of 

the model to describe the observed BRDF (Lucht and Lewis 2000). The error function to be
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minimised has only a single minimum and is defined as:

n

^  ^ {Pi(observed) Pi(modelled) ) (4.17)

where i = l...n  is the index of observations and p(observed) and p(modelled) the observed and 

modelled reflectances. The partial derivatives of e2 are then calculated with respect to each of 

the model parameters in order to find the values for which e2 is a minimum. The model to be 

inverted may be written as:

where p are the modelled reflectances, n is the number of kernels (7Q), and are the weights to 

be determined (i.e. the model parameters). The values of the fa terms which minimise the error 

function (Equation 4.17) need to be found. Using matrix notation this can be stated as:

where p represents a vector containing the summed observed reflectances, M is the matrix con

taining the kernel product values and k is a vector containing the model parameters which we

by multiplying M by its transverse M7̂ producing a variance-covariance matrix of the model 

kernels. This is then inverted to give [MM71]-1. The parameter vector k can then be calculated 

by multiplying [MM7]-1 by the observations vector p.

4.2.5 Overview

The anisotropy of surface reflectivity and the methods typically used to normalise remote sensing 

data for these effects has been discussed in the preceding sections. Semi-empirical linear kernel 

driven BRDF models have proved a popular means to this end, and are the chosen approach for 

the operational production of the MODIS BRDF/Albedo product (Schaaf et al. 2002). Although 

the importance of accounting for angular effects in the remote sensing signal is increasingly

71

(4.18)
7 =  1

(4.19)

wish to solve for. A generic linear system such as that defined in Equation 4.19 may be solved
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acknowledged, change detection studies typically assign these effects to “noise” and attempt to 

reduce their impact rather than account for or exploit their information content. The remainder of 

this chapter is therefore concerned with the development of a new approach to change detection 

which explicitly accounts for directional effects in earth observation data using the linear and 

semi-linear kernel driven approaches discussed above.

4.3 A new approach to change detection

The primary aim of the work documented here is to derive a change detection algorithm which 

addresses the drawbacks of traditional approaches, and which may be applied to the identification 

of fire induced surface change from high temporal and moderate spatial resolution remote sensing 

data. Traditional remote sensing change detection techniques have been reviewed in Chapter 2. 

In light of the limitations identified with these, the change detection model developed in the 

following sections is formulated to;

1. Account for phenological changes in the surface

2. Account for directional effects in the remote sensing signal

3. Enable the identification and removal of noisy data within a time series

The research follows on from that of Roy and Lewis (2000) and Roy et al. (2002) who 

implemented a new, generic approach to change detection. This work was novel in its approach 

due to the incorporation of angular effects in the remote sensing signal into a change detection 

model of the surface. Coupled with the use of statistical measures (as opposed to the traditional 

approach of thresholding arbitrary signal levels) to identify change, the incorporation of a BRDF 

model was shown to provide an increased accuracy over previous methods in the detection of 

fire induced changes to the surface (Roy et al. 2002). Although the approach detailed in the 

subsequent sections follows on from the work of Roy et al. (2002) in particular through the 

incorporation of a BRDF model of the surface into the change detection model, the various 

modifications have resulted in a bum scar detection algorithm which is substantially different to 

the original version. The following section provides a description of the original model of Roy
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and Lewis (2000) and Roy et al. (2002) and the drawbacks associated with it. Leading on from 

this the change detection model is developed, and its implementation described.

The change detection algorithm of Roy and Lewis (2000) involved the inversion of a BRDF 

model against a time series of reflectance data, with the resulting model parameters used to pro

vide a prediction of reflectance under the viewing and illumination conditions of a subsequent 

observation or set of observations. This expectation of reflectance was then compared to the 

observed value with areas of potential surface change identified as large discrepancies between 

the observed and predicted values. The linear semi-empirical kernel driven approach of Roujean 

et al. (1992) was followed in order to model the angular variations in surface reflectance for rea

sons including the linearity of the model which allows for rapid analytical inversion, the implicit 

modelling of heterogeneity, and the ability to produce rapid predictions of uncertainty associ

ated with the estimates of the model parameters. Using a volumetric and a geometric kernel the 

model takes the form of Equation 4.3. The kernels used to account for geometric and volumet

ric contributions of surface scattering are a reciprocal version of the LiSparse geometric-optical 

kernel, and the RossThick volumetric kernel (Schaaf et al. 2002). As the BRDF model takes a 

linear form it is inverted analytically against a set of m observations of reflectance following the 

approach defined in Section 4.2.4. Under the assumption of a normal distribution of residuals a 

Z-score is then defined as a normalized measure relating to the probability of a new observation 

belonging to the same set as that used in the model inversion (Roy et al. 2002):

where p m o d e i ie d ( \  QhQv,<]>) is the modelled bidirectional reflectance, p 0b s e r v e d { \  Qv,<f>) is the 
measured reflectance and e is the error in model prediction as defined in Equation 4.17 and 5 is 

the mean error in a prediction of the bidirectional reflectance at the angles 0*, 9V, and </>, defined 

in Equation 4.21. The sign of the Z-score provides an indication of the direction in which the 

modelled reflectance diverges from the measured value.

Pmodelledi^i @vi 0 )  Pobservedi.^f $ ) (4.20)

(4.21)
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The term ^ is the ‘weight of determination’ of the model (Lucht and Lewis 2000) which is 

defined as:

— =  ut M -1 u (4.22)w

The weight of determination of the model parameters is a function of the angular sampling of 

the observed reflectances. This term is thus useful in determining the contribution of the angular 

sampling to the error associated with the model parameters (Lucht and Lewis 2000).

The model defined above represents a generic approach to detecting changes which have 

taken place on a vegetated surface. A linear semi-empirical model of the BRDF is inverted 

against a set of multiangular reflectances, and the parameters of the model are then inverted to 

predict the surface reflectance under the angular geometry of the next observation in the time 

series. In addition a Z-score in calculated as the magnitude of this is related to the probability of 

the next observation of reflectance not belonging to the same set as the previous observations used 

to calculate the model parameters, with the sign of the Z-score indicating whether the modelled 

value is higher or lower than the subsequent observation. If the absolute value of the Z-score 

for a pixel is greater than a specified threshold (\Z\ > Zthreshoid) then the pixel is identified as 

a potential change. Once a pixel has been identified as a potential change candidate, the next 

step in the algorithm is to separate temporary surface changes from persistent ones. Temporary 

changes may be caused by short term increases or decreases in soil moisture, the presence of 

undetected clouds or cloud shadows, or by artifacts in the data (Roy et al. 2002). In the original 

implementation of the model this is achieved through the use of a temporal consistency threshold. 

The algorithm is applied in fixed temporal increments through a time series of reflectance data, 

with the Z-score defined in Equation 4.20 calculated at each point. The pixel is then identified as 

a change candidate if it has a minimum number of observations (Npass) within an defined time 

period (Ndurati(m) which are above the value of the Zthreshoid, with the day of change selected as 

the one with the greatest \Z\ value. It is suggested that a suitable value of (i) Npass observations 

might be estimated from an examination of the frequency of the satellite overpass in addition to 

the presence of cloud cover; (ii) Nduration maY be derived empirically for a given Zthreshoid or 

may be based on field observations or spectral measurements of the duration of the bum signal;

(iii) Zthreshoid is chosen arbitrarily after an examination of the data (Roy et al. 2002).
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After a persistent change has been identified, it is necessary to determine the nature of the 

change. This is achieved by an examination of the magnitude and the difference in the sign 

between the modelled nadir reflectance calculated for the mean solar zenith angle of the 16 days 

prior to the day of change and after the day of change, in an attempt to differentiate between 

changes due to burning and changes as a result of factors other than the occurrence of fire. This 

is based on the assumption that different types of land cover change will vary spectrally. The 

relative change in nadir modelled reflectance is described in Equation 4.23.

X Pnadir(X) Pnadir (A)
OPnadir =  ---------------- = -------------------  ( 4 .2 .5 )

P nadir (A)

where p~adir(X) *s nadir reflectance calculated from the 16 days prior to the day of change, 

and Pnadir(x) *s nadir reflectance for the day after the change. Areas which have changed as 

a result of burning are expected to exhibit a decrease in reflectance (see Chapter 3), which will 

result in a negative value of 6pnadir . Changes due to other factors (e.g. cloud contamination) will 

result in an increase in reflectance, and thus will have a positive value of 5pna(nr.

The model described above was applied to a time series of approximately two months of 

band 5 (1.24jura) MODIS 500m surface reflectance data (Roy et al. 2002). Preliminary regional 

verification shows that the timing and location of larger areas of burning correspond to MODIS 

active fire detections, and a qualitative examination suggests that it is possible to track the spatial 

and temporal progression of burning from the model results.

Although the preliminary results indicate that the algorithm maps both the location and ap

proximate day of burning successfully at a regional scale (Roy et a l 2002), various issues are 

identified with the approach described. The primary aim of the research presented here is to 

refine this original algorithm in particular by addressing these problems in addition to the limi

tations identified in Chapter 2, through the development of a new approach to change detection. 

This model is introduced in the following section.
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4.4 Rationale
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The change detection algorithm of Roy et al. (2002) was introduced in the previous section. 

This original implementation of the model uses a sliding window approach to invert the semi- 

empirical kernel driven BRDF model of Wanner et al. (1995) over a temporal sequence of 

surface reflectance, and to provide a prediction of reflectance for a subsequent day in the time 

series. The BRDF of the surface is modelled from day T  — n (where T  is the day of the current 

observation and n is the size of the window) to day T, to provide a prediction of reflectance for 

the next observation (day T  +  1). The window is moved in daily increments through the data, 

providing a prediction of reflectance for each pixel (excluding the first n observations in the time 

period), based on the previous n observations. Following the criteria used in the production of 

the MODIS BRDF/Albedo product Roy et al. (2002) have used a window size of 16 days, with a 

minimum of seven cloud free observations required during this period to perform the inversion. 

The size of the window is an important factor as it will affect the accuracy with which the model 

predictions fit the observed reflectances. The wider the window size used the larger the number 

of samples available for inversion and therefore the more accurate the model predictions will be, 

while too small a window may result in large uncertainties in the model predictions.

A major assumption of this approach is that the surface state remains invariant over the time 

period of the window (n days). The validity of this assumption is dependent on various factors. 

The magnitude of any variations in the state of the land surface will be determined by the dy

namics of the vegetation which in turn will be a function of the vegetation type, as well as the 

meteorological conditions prior to as well as over the temporal sequence of the model inversion. 

If a short window size is used it may be reasonable to assume that the surface does remain static 

over this time period. However if there is persistent cloud in the data, it may be necessary to use a 

larger window size in order to have a sufficient number of cloud free observations (m) to perform 

the inversion. If the window size is too large the results may be smoothed and the probability of 

underlying change occurring increased, which will pose problems when trying to detect sudden 

changes in the data. Roy et al. (2002) have set the value of m  to be seven. Thus following this 

approach a minimum of seven cloud free observations are required over the sixteen day period 

in order to invert the model. While this criteria might be easily met in datasets collected over 

southern Africa during the bum season, it may prove to be problematic in studies of northern
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latitudes where the likelihood of persistent cloud in the data is greater. In a comparison of BRDF 

models for the angular normalisation of data collected over northern latitudes Latifovic et al. 

(2003) emphasize that even with the use of data acquired by multiple sensors and an enlarged 

temporal window, the routine acquisition of a sufficient number of cloud-free observations re

mains a serious challenge. In addition, the inherent presence of smoke, haze and aerosols over 

an area subjected to burning may reduce the number of cloud free or good quality observations, 

although the extent to which this occurs will be dependent on the intensity of the fire and the 

weather conditions at the time of burning. In this case a larger window size may be needed in 

order to provide a sufficient number of samples with which to accurately determine the model 

parameters and to reliably invert the model, and the validity of the assumption of a static surface 

may be questionable.

The following section describes the development of two temporal BRDF models which may 

be applied to a long time series of reflectance data, and which are used as a basis for a change 

detection scheme.

4.5 Temporal angular models of the surface

In order to model the angular variations in a temporal sequence of multi-angular remote sensing 

data, it is necessary to use a model which is applicable to the surface characteristics for the entire 

period of interest. As described above the approach typically used in the angular normalisation 

of remote sensing data or the retrieval of BRDF model parameters has been to apply the model 

over a short (e.g. 16 day) temporal window. Variations in the surface are considered unimportant 

over this period and are therefore not accounted for. The author is only aware of two studies in 

the literature which have described the development of a temporal angular model of the surface 

applicable to a long time series of data. Latifovic et al. (2003) have introduced a nonlinear 

temporal angular model (NTAM) which combines aspects of existing models and responds to 

seasonal changes in land cover properties. The NTAM consists of an angular component which 

follows the kernel driven approach of Roujean et al. (1992) to describe the geometric and volu

metric scattering from the surface, a hotspot expression (Chen and Cihlar 1997), and a temporal 

component which uses vegetation indices as a surrogate temporal measure. The model is de
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scribed in Equation 4.24:

Pi{@i, 6V, <!>■> A*) =  1 +  (ai +  (1 — A*) +  as(l — A*)2) x 9V, (f>)

+(d4 +  a^A* +  a^A2) x /2(0i, <£) x (1 +  a7e“^ 7r°8)

(4.24)

where f i  and / 2 refer to the geometric and volumetric components which are functions of the 

illumination and viewing geometries only (Roujean et al. 1992), the final term is the hotspot 

definition and

Ai =  (p2 — pi)/(p2 +  Pi) (visible waveband)

A2 =  P2 — Pi (near-infrared waveband) 

where pi is the visible waveband, and p2 the near infrared. The introduction of the A,• term al

lows for tracking of seasonal variations in the BRDF shapes, while the a* coeficients remain time 

invariant. The temporal variations in the geometric and volumetric parameters are supposed to 

be related to the amount of vegetation. In the model this is described by a polynomial function in 

the form of two vegetation indices, consisting of the NDVI for the visible wavebands and the dif

ference between the red and near-infrared for the near-infrared waveband. This model was tested 

along with the empirical modified Walthall (Walthall et al. 1985) model, the semi-empirical 

model of Roujean et al. (1992) and the Ross-Li geometric-optics model (Lucht and Roujean 

2000b), on a multi-angular dataset spanning an entire growing season. The highest overall r 2 

values were produced by the NTAM model, with less pronounced interannual variations in r 2 

demonstrated by this temporal model, while the linear models did not perform as well due to the 

changing target characteristics during the period of inversion (Latifovic et al. 2003).

Despite the improvement exhibited by the NTAM model over the non-temporal approaches 

its formulation is not ideal. The temporal components of this model are approximated by poly

nomials which are related to vegetation indices, in an attempt to account for variations in green 

leaf area during the growing season and the land cover dependent patterns of geometric and vol

umetric scattering components (Latifovic et al. 2003). Various problems are associated with the 

NDVI. These have been discussed in Section 2.1.1 and include its sensitivity to external peturba- 

tions such as variations in the soil background and atmospheric conditions. In addition it is not a 

good indicator of plant growth as it saturates at high levels of biomass. The ability of the NDVI



CHAPTER 4. A NEW APPROACH TO CHANGE DETECTION 146

to describe temporal variations in the surface is therefore likely to be spatially and temporally 

variable.

The second temporal BRDF model which has been introduced in the literature is that of 

Zhang et al. (1998) which is used to account for angular variations in a long time series of 

AVHRR data. The authors emphasize that although almost all models of the BRDF describe the 

reflectance from a surface purely as a function of the geometry at which the surface is illuminated 

at and viewed from thereby assuming that the target does not change significantly over the period 

of measurement, seasonal and annual variations in vegetation do occur and need to be taken into 

account when looking at long time series of data. In particular land cover types such as grasslands 

and deciduous forests (which together cover approximately 30 percent of the land surface of the 

current southern Africa study area) exhibit seasonality, and it is therefore necessary to account 

for these phenological variations (Kalluri et al. 1997). In order to achieve this Zhang et al. 

(1998) implement a temporal angular model using a Fourier series to approximate the temporal 

component of reflectance, and a modified version of the empirical Walthall model (Walthall et al. 

1985) to account for the angular component of surface reflectance. This temporal model of the 

surface BRDF is described in Equation 4.25:

p(A, Oi, 9V, 0, t) = “I" CL29v9iCos(j) +  a%

+ a ± co s^  +  a5 sin ^  +  a6 cos ^  +  a7 sin ^

(4.25)

where N  is the number of measurements in the time series, and t varies between 0 and N  - I. 

The model is tested on 4 years of AVHRR data in the form of 10-day NDVI Maximum Value 

Composites (MVC). In addition the time series was split into intervals of three months and the 

modified Wallthall model (Walthall et al. 1985) and the modified RPV model (Rahman et al. 

1993a) used to model the surface over this time period, as well as over the entire four years. 

The results from this study indicate that while for seasonally invariant land cover types such as 

the Sahara all three models perform equally well, in higher latitudes over areas of deciduous 

vegetation the temporal model performs better (Zhang et al. 1998). In addition for the full four 

year dataset the temporal model gives better results than both the modified Walthall or modified 

RPV models, as it accounts for phenological change over this period. Kalluri et al. (1997) have
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found however that errors in the reflectances modelled by the temporal model were higher in 

temperate regions of Asia, Europe and North America, as well as across the Sahel. These are 

attributed to the greater inter annual variations in surface conditions which occur in these areas.

While the two temporal models described above remove the requirement to partition a time 

series of reflectance data due to variations in the surface phenology, the temporal components 

used to represent the surface variations are not ideal. The latter algorithm has been formulated 

for application to at least a year’s worth of reflectance data in order to account for phenological 

variations over this period. In comparison the requirements of the current research are slightly 

different. Although one of the principal objectives is to account for low frequency changes in the 

surface over the time period of the observations, the motivation for doing this is the improved 

detection of land cover change. As these changes may occur at the same location more than once 

a year the temporal length of the observation period is unlikely to be greater than six months. The 

aim of the following section is therefore to develop a temporal angular model which is capable of 

accounting for phenological variations at this scale, and which therefore allows for the accurate 

detection of land cover changes which have occurred during this period.

4.5.1 A cubic function of time

The aim of this section is to introduce two temporal angular models of the surface which may 

be applied to long time periods (on the order of several months) of high temporal and moderate 

spatial resolution remote sensing data, for the purpose of detecting land cover change. The devel

opment of the temporal angular models has involved the incorporation of an empirical temporal 

model along with two different BRDF models of the surface. This is similar to the approach 

suggested by Zhang et al. (1998) and Latifovic et al. (2003) in so far as an empirical temporal 

model is coupled with an angular model of reflectance to produce a temporal BRDF model of the 

surface. However it is desirable to keep the number of nonlinear parameters in particular as well 

as the total number of model parameters to a minimum, thereby maintaining a simple and fast 

solution to inversion. This is of particular importance if the model is to be used with a spatially or 

temporally large dataset, or if it is intended for operational use. A four term temporal model has 

therefore been used to account for small scale phenological variations occurring on the surface 

over the period of the inversion, in the form of a cubic function of time. Two temporal BRDF
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models are developed through the incorporation of this empirical model along with an angular 

model of the surface reflectance. The first uses the semi-empirical kernel driven approach of 

Wanner et al. (1995) to model the BRDF, with the temporal model attached to the brightness 

(the isotropic) component of the BRDF kernels. In this additive case the temporal component 

takes the form of a cubic function of time with the BRDF modelled as:

p(A, f ) ,  C l ' )  =  f iso {A) + fisot (A ) t  + f i S 0 t 2 (A ) t 2 +  f i s o t s W t 3 +  f v o l { X ) K v o i +  f g e o { . X < )  K g e o

(4.26)

where t represents the relative location of each observation within the time series, (D, f2') rep

resent the viewing and illumination vectors respectively, K voi and K geo are the kernels which 

describe the scattering of reflectance from the surface, and the /  terms are the model parameters.

The second temporal approach utilises the modified RPV model of Rahman et al. (1993a) to 

describe the anisotropy of the surface. In this multiplicative case the temporal model takes the 

form of an exponentially transformed cubic, and the BRDF is modelled as:

lnp(A, S2, D') =  lnpo(X) 4- lnpo(X)t +  lnpo{X)t2 +  lnpo(X)t3 +  JilnKi  +  f 2lnK2 +  f^lnK^

(4.27)

As above t represents the relative location of each observation within the time series, (Q, f2') 

refer to the viewing and illumination vectors respectively, and f n are the model parameters. The 

angular components of both of these models are described in more detail in Section 4.2.3.

Each of the temporal BRDF models described in Equations 4.26 and 4.27 now consists of six 

parameters (per waveband), and explicitly account for temporal variations within the time period 

of the observations. As a result it is possible to invert the models over a much longer temporal 

sequence than traditional approaches. With the moving window approach typically used to invert 

BRDF models it is necessary to update the parameter values f v o i ( X )  and f g e 0 ( A) for each new 

observation of reflectance. In contrast, for the temporal BRDF model described in Equation 4.26 

only the three parameters f i s o t i t y t , f i s o t 2 { X ) t 2  and (A)t3 vary as a function of time while 

f v o i { X )  and f g e o ( A) remain constant. Similarly in the multiplicative case (Equation 4.27) only 

the three parameters po(X)t, po(X)t2, and po{X)t3 are allowed to vary as a function of time, while 

the remaining parameters / i ,  f 2  and fo are constant over the time period of the inversion. In
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comparison to the model of Roy et al  (2002) or the approach used in the creation of the MODIS 

BRDF/Albedo product (Strahler et al. 1999a) where three parameters per waveband are fitted 

to each sixteen day window, with either the additive temporal or multiplicative temporal BRDF 

model there are only six parameters for the entire temporal sequence.

Two examples are employed to demonstrate the performance of the two temporal models. 

The first corresponds to the temporal sequence for an individual pixel, and illustrates the per

formance of the temporal models in the presence of low frequency surface change, while the 

second highlights the effect of cloudy samples on the model behaviour. Figure 4.4 displays a 

temporal sequence of 100 days of near infrared reflectances and the results from three different 

BRDF models. The first is the semi-empirical linear kernel driven approach described in Equa

tion 4.3 which has been applied incrementally to the reflectance data using a 16 day window, 

with a minimum number of 7 cloud free samples required to perform the inversion. The second 

is the temporal version of this model defined in Equation 4.26 above and referred to as the “ad

ditive temporal” approach. The final model is the temporal angular version of the MRPV model 

introduced in Equation 4.27, and referred to as the “multiplicative temporal” approach.

Site 4A is located in western Zambia, as documented in Table A.l and Figure A.l in Ap

pendix A. Figure 4.4a displays the observed (MODIS band 2) reflectances and the values pre

dicted by the additive temporal model and the 16 day moving window approach, while Figure 

4.4b displays the observed and the multiplicative temporal as well as the 16 day moving window 

modelled reflectances. A phenological trend is clearly evident in the temporal sequence as cor

responding to the growth and senescence of the vegetation. While this change in the surface is 

modelled well by the two temporal BRDF models, it is apparent from the modelled reflectances 

in Figure 4.4 that problems arise with the 16 day moving window approach. Figure 4.4c displays 

a scatter plot of the observed and modelled reflectances for each of the three models. The r 2 val

ues calculated between the observed and modelled reflectances are high for the additive temporal 

and multiplicative temporal results (0.91 and 0.93 respectively), but demonstrate a poor fit for 

the 16 day moving window approach (r2 =  0.54).

The second temporal sequence is displayed in Figure 4.5. This corresponds to approximately 

three and a half months of daily MODIS 500m near infrared (band 2) reflectance data. The 

pixel is located in the Democratic Republic of the Congo (DCR) and is documented in Table A.l 

and Figure A.l in the Appendix A as Site 4B. Figure 4.5a displays the observed and modelled
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Figure 4.4: Observed and modelled reflectances, Zambia, Site 4A, January-May 2003
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reflectances using both the traditional 16 day window and the new additive temporal model, 

while Figure 4.5b displays the observed and modelled reflectances using both the 16 day moving 

window and the multiplicative temporal approach. All three datasets and the r2 values calculated 

between the observed and modelled reflectances are displayed in Figure 4.5c. The effect of 

missing samples due to cloudy data on the predictions of reflectance from the 16 day moving 

window model is clear in Figure 4.5. Due to fewer than the minimum number of samples required 

to perform an inversion (at least 7 cloud free observations during the 16 day period) a prediction 

has only been made on 69 out of the 100 days in the time series (this does not include the initial 

16). In contrast the minimum number of samples is set to be 25 for the temporal models, but as 

all days within the time series are used as input for each prediction a larger number of predictions 

are possible during the 100 day time period. While all three models fit the observed reflectances 

relatively well, the results of both temporal models are more accurate (r2=0.91 and r 2=0.86 for 

the additive and multiplicative temporal models respectively) than the 16 day moving window 

approach (r2=0.78). The presence and removal of noisy observations of reflectance are discussed 

further in Section 4.6. The two examples displayed in Figures 4.4 and 4.5 illustrate the advantage 

in using a temporal BRDF model to account for the angular component of the remote sensing 

signal in the presence of both phenological change and missing observations due to bad data.

4.5.2 Model assumptions

A major assumption of the temporal approach described in Equations 4.26 and 4.27 is that the 

BRDF parameters remain constant over the time period of the inversion. In the case of the ad

ditive model (Equation 4.26) only the isotropic coefficient is allowed to vary as a function of 

time, while the geometric and volumetric BRDF shape parameters remain constant over this pe

riod. It is thus assumed that while the magnitude of the brightness will vary, the shape of the 

BRDF (the volumetric and geometric contributions) will remain the same over the entire tem

poral period over which the inversion is performed. With the temporal version of the modified 

RPV model (Equation 4.26) the shape parameters are again assumed to be constant over this 

period. However as this model is multiplicative such an assumption has a different effect on the 

model behaviour. With the modified RPV model although the shape parameters will only have a 

single value over the period of the inversion the assumption is not that the overall BRDF shape
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remains constant. Instead as the model parameters are combined in a multiplicative manner the 

BRDF shape will scale with changes in brightness. This is extremely similar to the assumptions 

made in the MODIS BRDF/Albedo back-up algorithm. The primary MODIS BRDF/Albedo al

gorithm uses a semi-empirical kernel-driven approach to describe the surface BRDF and Albedo 

as detailed in Section 4.2.3. An operational requirement in the creation of this product is for 

a minimum of seven cloud free observations within a sixteen day period in order to perform a 

full BRDF retrieval. The data within a sixteen day window are initially evaluated to discard any 

outliers, the weights of determination (Lucht and Lewis 2000) are calculated to ascertain the 

confidence of the product, and additional checks are performed to ensure that the kernel weights 

and model parameters are positive (Schaaf et al. 2002). If the data do not pass all of these 

evaluations then a backup algorithm is used as an alternative to a full inversion with a “magni

tude inversion” approach followed instead. This involves the retrieval of the appropriate BRDF 

shape from a predetermined global BRDF database which has previously been derived for each 

MODIS pixel from the Olsen land cover map (Olson 1994). The 94 Olsen land cover types are 

converted into 24 BRDF appropriate land cover classes following the scheme of Strugnell and 

Lucht (2001) where an archetypal BRDF shape is associated a priori with a particular surface 

cover. A seasonal model is used in addition to the land cover information in order to account 

for seasonal anisotropic variability within the BRDF shapes. The assumption of this method is 

that the BRDFs associated with a particular surface cover will have broadly similar shapes with 

variations being merely a matter of degree (Schaaf et al. 2002). In order to determine the magni

tude of these variations the archetypal shapes are adjusted by a scaling factor which provides the 

best fit for all of the directional observations at each pixel, thereby allowing for realistic variation 

within each class (Strugnell and Lucht 2001). This method can be expressed as:

p = s x /  (4.28)

where the underlying BRDF shape ( /)  is a function of the three BRDF parameters (isotropic, 

volumetric and geomteric) which are a function of the illumination and viewing geometries of the 

surface only. The surface reflectance (p) is thus calculated by adjusting the BRDF shape with the 

actual observations through the determination of a scaling factor s, which can be calculated using 

a least squares approach (Gao et al. 2003). The current use of the land cover map and the seasonal
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model is only an interim solution until a sufficient number of stable high quality retrievals have 

been performed globally from MODIS data, and these will eventually be used instead. The 

magnitude inversion approach is employed as the MODIS BRDF/Albedo backup algorithm due 

to its reliability which has been demonstrated through its application to and rigorous testing on a 

global AVHRR dataset (Strugnell et al. 2001, Schaaf et al. 2002).

The assumption made with the multiplicative temporal model introduced in Equation 4.27 

relating to the temporal nature of the surface BRDF is similar to that associated with the mag

nitude inversion approach described above. For both the multiplicative temporal model and the 

MODIS back up algorithm it is assumed that the BRDF shape at a particular location will scale 

with changes in brightness. In contrast with the additive temporal model (Equation 4.26) the 

assumption is that while the overall brightness changes temporally, the shape of the BRDF does 

not. This is essentially the same so long as the magnitude of the change in brightness is not too 

great over the time period of interest. This is illustrated by Figure 4.6 which displays the varia

tion in brightness for a series of individual pixels. This is the nadir modelled reflectance (Q=0, 

fT=0) calculated as:

p( A, £7, Q') =  fisc +  f isott +  fisot2t2 +  fisot3,t3 (4.29)

where t is the day of the observation and f iso, f voi, and f geo are the additive temporal BRDF 

model parameters. The inversions have been performed for a sequence of observations of MODIS 

band 2 reflectance acquired over a period of 120 days at five pixel locations. Figure 4.6a contains 

the results for the first four months of the bum season (April to July), while Figure 4.6b contains 

the results for the last four months of the bum season (August to November). As these data are 

the nadir modelled reflectance the temporal variability is essentially caused by variations in the 

characteristics of the surface.

The general trend in the near infrared reflectance for each of the five main vegetation classes 

is a decrease in brightness over the first half of the bum season between the beginning of April 

and the end of July, while over the second half of the season (August to November) the surface 

exhibits a general increase in brightness, although the exact nature of the change is dependent on 

the vegetation type. This pattern in the near infrared reflectance is observed over all vegetation 

types as the vegetation becomes increasingly dry as the bum season progresses until the onset
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Figure 4.6: Variations in surface brightness
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MODIS wavebands. At MODIS bands 1, 3 and 4 the magnitude of the change is small (<0.15) 

for all classes, while at the remaining four MODIS land surface wavebands changes are more 

variable. Variations in MODIS band 2 reflectance are less than 0.15 for all vegetation types 

except deciduous broadleaf forests, where the magnitude of the change during the eight months 

is 0.25. For the remaining three MODIS wavebands (5,6 and 7) the greatest changes in brightness 

occurs for the grassland pixel with magnitudes of 0.26,0.33 and 0.31 respectively. The variations 

over the total eight month period are large for certain cover types (e.g. 0.33 at band 6 wavelengths 

for the grassland pixel) as this period (April to November) encompasses a large proportion of the 

phenological cycle of the vegetation (see Section 3.4.2). As the aim of the current research is the 

detection of land cover change due to burning, the temporal models will not be implemented over 

periods longer than four months. This is due to the characteristics of the fires observed within the 

area of interest and described in Section 3.4. Due to the length of the southern Africa fire season 

(approximately 8 months long) and the possibility of multiple fire events occurring at the same 

location during this time, for accurate identification of these the change detection model should 

not be implemented over periods greater than four months.

In addition to the magnitude of phenological changes in the vegetation which occur over the 

time period of the inversion, the validity of the assumptions associated with the two temporal 

models described in Equations 4.26 and 4.27 are dependent on the stability of the shape of the 

BRDF over the temporal sequence and thus the extent to which the occurrence of fire within 

the study area alters the properties of the surface. This is investigated through a comparison 

of the model parameters fitted over a temporal sequence of 16 days before the occurrence of 

a fire, and the 16 days after the fire. The additive and multiplicative models have been fitted 

without the temporal coefficients to 10000 pre-fire and post-fire sequences of reflectance selected 

at random across the study area for the 2003 fire season. The occurrence of burning has been 

determined from the MODIS active fire product. Scatter plots of the pre-fire and post-fire values 

for the three model parameters for MODIS band 2 wavelengths are displayed in Figure 4.8 for 

the additive model results, and Figure 4.9 for the multiplicative model results. While a general 

decrease in ‘brightness’ (the first model parameter in both the additive and multiplicative models) 

is evident in Figures 4.8a and 4.9b, the values of the remaining parameters are extremely variable. 

The changes in the model parameters from pre-bum to post-bum conditions are likely to vary 

depending on the nature of the fire induced surface change as well as the characteristics of the
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surface prior to the fire. The variability in the pre-bum and post-bum model parameters (Figures 

4.8 and 4.9) are likely to be a function of this, as well as the noise in the data and the accuracy of 

the model fit over the 16 day sequence.

A study by Trigg et al  (2005) has investigated the effects of burning on the anisotropy of two 

savanna surfaces at a study site in Namibia using field spectroradiometery. These results indicate 

that at a grassland site the occurrence of fire reduces the anisotropy of the surface in comparison 

to its pre-fire state, while in contrast at a shrubland site the effect of burning is to either increase 

or decrease the surface anisotropy. In addition while the burned grassland site is only weakly 

anisotropic, the reflectance from the burned shrubland is found to be considerably more so, and 

while the effect of the grassland fire is to change the shape of the BRDF from an ‘upward bowl’ 

shape (i.e. higher reflectance at high negative and high positive solar angles) to a flatter shape 

with extremely similar reflectance across the solar plane, the effect of the shrubland fire is to de

crease the magnitude of the reflectance more uniformly across all angles with the burned surface 

still exhibiting a slight upward bowl shape. This is thought to be due to the characteristics of the 

post-fire surface, as in contrast to the fire at the grassland site which burned most of the material 

present leaving a flat surface with low anisotropy, the fire at the shmbland site did not bum all 

of the vegetative material leaving a more structured surface due to the presence of charred stems 

(which cast shadows) resulting in greater surface anisotropy. The authors thus conclude that the 

anisotropy of burned vegetation may be expected to vary as a function of the fire intensity and 

combustion completeness as well as the timing of burning within the fire season (Trigg et al. 

2005).

In addition to the distributions of parameter values displayed in Figures 4.8 and 4.9 an exam

ination of the reflectance from a variety of pre-fire and post-fire surfaces suggests that the BRDF 

shape of the post-fire surface as well as the change in the BRDF shape as a result of the occurence 

of a fire is extremely variable. This is illustrated through a temporal sequence of MODIS band 2 

reflectances for two individual woody savanna pixels. The surface reflectance for the forty-five 

days before the detection of a fire as well as for the forty-five days after the fire is displayed as 

a function of the viewing zenith angle of each acquisition for the two pixel locations (Figures 

4.10, 4.11 and 4.12). A fire has occurred on day 169 at the first location and on day 197 at the 

second. The band 2 reflectances are also displayed as a function of the day of the observation 

in Figures 4.1 la and 4.1 lb. The occurrence of fire is clearly evident in both of these sequences
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(a) Parameter 1 (fieo)

(b) Parameter 2 (fvoi)

(c) Parameter 3 (fgeo)

Figure 4.8: Additive model: Parameter values at near-infrared wavelengths
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(a) Parameter 1 (po)

(b) Parameter 2 (k)

(c) Parameter 3 (6)

Figure 4.9: Multiplicative model: Parameter values at near-infrared wavelengths
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of reflectance. The variations in the solar zenith angles over the period of the acquisitions is 

displayed in Figures 4.12a and 4.12b. The difference between the pre-bum and post-bum sam

pling in the solar plane is minimal, and variations in the reflectance are therefore predominantly 

a function of the viewing geometry of the observations and the changes taking place on the sur

face over the period of the acquisitions. The two pixel locations are documented as “woody 

savanna” in the MODIS IGBP land cover classification (see Section 3.3). Their locations within 

the area of interest are documented as Sites 4C and 4D in Table A. 1 and Figure A. 1 in Appendix 

A. Site 4C is located in northern Zambia, and 4D in north-eastern Angola. The woody savanna 

vegetation class is defined as a land surface which supports herbaceous and other understorey 

systems with forest canopy cover between 30 and 60%, and forest cover height exceeding 2m 

(IGBP 1988). Both of the pre-bum temporal sequences of reflectance (Figures 4.1 la and 4.1 lb) 

exhibit a slightly asymmetric ‘upward bowl’ shape when plotted as a function of viewing zenith 

angle, although the shape of the BRDF of the second pixel is more pronounced than the first. 

This shape is typical of near infrared reflectances from a vegetation canopy as shadows tend to 

be less visible at larger view zenith angles resulting in a higher contribution of scattering from 

the vegetation. As is evident in Figure 4.10a the effect of fire at the first location is a reduction 

in the overall brightness of the surface. However the burning has not had a large impact on the 

surface anisotropy and the shape of the post-fire BRDF is extremely similar to that exhibited by 

the pre-fire surface. In contrast at the second location (Figure 4.10b) the occurrence of fire has 

a much larger impact on the anisotropy of the reflectance, with the post-fire surface exhibiting a 

much flatter shape than either the pre-fire BRDF or the post-fire BRDF at the first location. An 

examination of the temporal sequences plotted as a function of time (Figures 4.11a and 4.11b) 

indicate that the variance of the reflectance prior to the bum is much greater at the second lo

cation, and that the magnitude of the change from pre-fire to post-fire reflectance is also much 

greater at this location in comparison to the first. It is likely that this is due to factors such as 

the characteristics and condition of the vegetation prior to burning, as well as the combustion 

completeness and intensity of the fire (Trigg et al. 2005).

In the case of the first pixel as the occurrence of fire has a minimal effect on the shape of 

the BRDF and simply reduces the brightness of the surface by an order of magnitude, either of 

the temporal models described in Equations 4.26 and 4.27 are theoretically suited to modelling 

the changes in the surface. However in the second example, as the magnitude of the shape
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Figure 4.10: MODIS 500m band 2 reflectance as a function of view zenith angle
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Figure 4.11: Temporal sequence of MODIS 500m band 2 reflectance
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Figure 4.12: MODIS 500m band 2 reflectances: Sampling in the solar plane

of the BRDF decreases with decreasing reflectance (Figure 4.10b) the multiplicative empirical 

temporal BRDF model (Equation 4.26) may be more appropriate as the assumption with this 

approach is not that the actual shape of the BRDF remains constant over the time period of the 

inversion, but that it scales with changes in brightness. In contrast the assumption of the additive 

temporal model is that only the isotropic parameter and thus the overall level of reflectance will 

vary temporally while the actual shape of the BRDF will remain constant.

In reality however the choice of model makes little difference to the modelled reflectances. 

Figure 4.13 contains a scatterplot of model predicted values for the MODIS band 2 temporal 

sequences at both of the pixel locations using the multiplicative and the additive temporal models. 

The reflectance values modelled using the two different approaches are very similar although 

slightly more so at Site 4C (r2 =  0.97) than at Site 4D (r2 =  0.93). This suggests that either 

model is capable of predicting the surface reflectance accurately, although if the occurrence 

of fire has altered the shape of the BRDF as opposed to just the brightness of the surface the 

multiplicative model may be more appropriate. The difference in the predictions of reflectance 

from the two approaches is however extremely small. This is likely to be due to the fact that the 

overall magnitude of the brightness does not vary a great deal between pre-bum and post-bum 

conditions (approximately 0.1 in the above examples), and as a result both of the models are 

equally effective in characterising the angular variations in the surface reflectance. It should also
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product, and their cloud state is documented as “clear”. The pixel locations are documented 

as Sites 4E and 4F in Table A.l and Figure A.l in Appendix A. Site 4E is located in southern 
Angola, and 4F in eastern Angola.
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(a) Positive spike: Site 4E, southern Angola (b) Negative spike: Site 4F, eastern Angola

Figure 4.14: Isolated spikes in MODIS 500m band 2 reflectance

In the change detection model of Roy et al. (2002) isolated spikes such as these are not 

removed from the temporal sequence prior to inversion. An assumption implicit in this approach 

is the equal weighting of all observations, with all observations within the temporal window 

used to perform the inversion contributing equally to a subsequent prediction of reflectance, 

regardless of their quality. This assumption is only strictly valid if the expected variance for each 

observation is equal, which may not necessarily be the case. In particular the presence of isolated 

spikes in the data due to residual clouds, cloud shadow or ‘noise’ will invalidate this assumption. 

Although the change detection algorithm of Roy et al. (2002) does not identify such anomalies 

in the data as changes in the surface state due to the use of the temporal consistency threshold, 

they are not removed from the dataset and will therefore contribute to subsequent predictions of 

reflectance.
In order to identify and remove isolated bad data from the temporal sequence a Z-score has 

been defined. This is a probabilistic quantity related to the likelihood of a new observation 

belonging to the same set as that used in the model inversion, and is calculated after the first 

pass (and at every subsequent pass) of the model. Following the method of Roy et al. (2002)
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described in Section 4.3 this measure takes the form of Equation 4.30:

>y   Pobservedi^i  £2, ) — Ppredicted ( ^ 7  ^ 7  ^ ' )  , AZj ----------------------------—----------------------  (4.30)
£

where p0bserved{ î ^ 0  and Ppredictedi ,̂ ^7 are the observed and model predicted reflectance
respectively, and e is the error in the model prediction. This is defined as:

£ =  e J -  (4.31)V w

where e is the expectation of error in the data assuming a normal distribution of residuals, and is 

approximated from the residuals according to Equation 4.32:

^  ^Xpobserved j^7 ^ i i  P p r e d i c t e d 7 7 (4-32)
i = l

where m  refers to the number of observations in the sequence and m — 6 the degrees of freedom 

of the system. ^ in Equation 4.31 is the “weight of determination” or the noise amplification 

factor (Lucht and Lewis 2000) defined as:

— =  [u]t [M]_1[u] (4.33)
w

where [u] is a vector containing the model coefficients, T denotes the transpose operation and 

[M]-1 is the inverse matrix. The weights of determination of [u] are directly related to the 

standard deviation of the uncertainty or error associated with the model parameters themselves 

(Lucht 1998).

The corresponding Z-scores calculated for the two temporal sequences displayed in Figure 

4.14 are shown in Figure 4.15. Figure 4.16 contains the observed and model predicted values 

for the two pixels. The Z-score defined in Equation 4.30 has been calculated for these sequences 

(Figure 4.30) and these values have been filtered using a threshold of 1.5 to identify isolated 

spikes. Any observations with a Z-score greater than 1.5 or less than -1.5 have been removed 

from the sequence and therefore do not contribute to the subsequent predictions of reflectance.

In some situations and in particular towards the end of the bum season as cloud cover in-
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Figure 4.15: Filtering for outliers: Z-score values, additive model results
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Figure 4.16: Observed and modelled MODIS 500m band 2 reflectances: Additive model results
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creases over the area of interest, a higher number of observations tend to contain undetected 

cloud in comparison to the examples in Figure 4.14, both of which contain only a single large 

isolated outlier over the period of approximately 120 days. A single iteration is not always suffi

cient to detect and remove multiple outliers especially if neighbouring observations in a sequence 

are also noisy. Multiple iterations of the model are therefore performed with isolated outliers re

moved at each pass using the best knowledge of noise in the data and parameter estimation at 

each iteration. This is demonstrated for a single pixel inverted over approximately three and 

a half months (110 days) of daily MODIS 500m band 2 reflectances. The pixel is located in 

southern DCR and is documented in Table A.l and Figure A.l in Appendix A as Site 4G. The 

temporal sequence (day 1 corresponds to the 1st of August 2002) of observed and predicted 

reflectances using the additive temporal model are displayed in Figure 4.17. All of the observa

tions are documented as high quality and cloud-free in the MODIS Surface State product (see 

Section 5.2.4). Figure 4.17a displays the observed band 2 reflectances and the model predicted 

values after a single iteration. A \Z\ threshold of 1.5 has been used in all cases. Figure 4.17b 

displays the modelled values after a single and after two passes, while Figure 4.17c displays the 

modelled values after two and three iterations. The measured reflectances are also displayed in 

Figure 4.18 as a function of viewing zenith angle, and the ‘noisy’ observations which have been 

identified and removed during each subsequent model interation are highlighted. A single large 

positive outlier (day 94) which is likely to be an undetected cloud is identified and removed on 

the first pass (Figures 4.17a and 4.18a). Two more noisy observations are identified on days 

28 and 99 on the second pass, and one more (day 30) on the third pass (Figures 4.17b, 4.17c 

and 4.18b). No more observations with a \Z\ value greater than the threshold (\Z\ = 1.5) are 

identified with additional iterations. The necessity of identifying and removing outliers from the 

time series of observations prior to calculation of the model parameters and forward modelling 

of the reflectance is highlighted by the RMSE values displayed in Table 4.1. These correspond 

to the temporal sequence displayed in Figures 4.17 and 4.18 above. The unfiltered values are 

the RMSEs calculated between the observed and modelled reflectances with none of the outliers 

removed. In contrast the filtered values have been calculated from the observed and modelled re

flectances after three model interations and using a \Z\ threshold of 1.5. The removal of outliers 

allows for more accurate predictions of reflectance and consequently more robust detection of 

changes within the data. Three passes are generally sufficient to remove potential clouidentifds
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(a) Observed reflectances and predicted values (one pass)
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(c) Predicted reflectances after two and three passes

Figure 4.17:

 Predicted after two passes
  Predicted after three passes

The removal of noisy observations: Site 4G, Democratic Republic of the Congo
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(b) Observation removed after multiple passes

Figure 4.18: The removal of noisy observations of MODIS band 2 reflectances: Site 4G, Demo
cratic Republic of the Congo
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Unfiltered
RMSE

Filtered
RMSE

Band 1 0.018 0.004
Band 2 0.020 0.013
Band 3 0.017 0.002
Band 4 0.018 0.003
Band 5 0.021 0.016
Band 6 0.013 0.009
Band 7 0.013 0.009

Table 4.1: Effects of noisy data on model fitting: Additive model results

and ‘bad’ observations acquired during the bum season data over the area of interest, and all 

model runs conducted for the purpose of the current research have thus used three iterations and 

a \Z\ value of 1.5 to remove outliers from the temporal sequences of MODIS surface reflectance 

data.
The improved identification of noisy data which is enabled by the greater number of samples 

through the use of the temporal model is displayed in Figure 4.19. This contains the observed

—  Predicted
O IZI > 1 .5

0.35

u

£
9.23

9.2

9.15 89 100604020
Day of sequence

Figure 4.19: Observed and modelled MODIS band 2 reflectances: 16 day moving window (Site 
4G, Democratic Republic of the Congo)

and model predicted reflectances for the same pixel location and temporal sequence as displayed
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in Figures 4.17 and 4.18. Only the observations of reflectance for which a prediction have been 

made are included. As in approach of Roy et al. (2002) the reflectances in Figure 4.19 have been 

modelled using a sixteen day window, with a minimum of 7 observations required to perform an 

inversion over this time. During the 110 day temporal sequence 49 of the daily observations dur

ing this period have been labelled as containing cloud by the MODIS Surface State product. Only 

62 predictions have been made over this time period due to missing samples, and the effect of 

cloudy data on the 16 day moving window predictions in Figure 4.19 are clear. The observations 

which correspond to predictions with a Z-score greater than 1.5 and would therefore be identi

fied as outliers following the procedure described above have been highlighted in Figure 4.19. 

The large number of cloudy observations in the temporal sequence results in a higher RMSE in 

the predictions over a 16 day window due to a lower number of available samples during this 

time. This contributes to the higher Z-score values in comparison to those calculated using the 

temporal model, and subsequently the identification of a greater number of outliers in the se

quence. In comparison to the traditional 16 day moving window approach the longer temporal 

sequence over which the inversions are performed using the two temporal models allows for 

better estimation of noise within the data and uncertainty in the model parameters. This results 

in more efficient identification of outliers which in turn allows for more accurate predictions of 

reflectance and consequently more reliable detection of changes within the sequence.
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4.7 Detecting step changes

172

The model described in Section 4.5.1 fits a semi-empirical kernel driven BRDF model to a time 

series of multi-angular surface reflectance data, allowing for subtle variations in the surface state 

over the period of the temporal sequence. The next step in the development of a change detection 

algorithm needs to be the incorporation of a function to detect the changes of interest. In the 

change detection model of Roy et al  (2002) described in Section 4.3 this is performed through 

two main steps. The first involves the detection of potential change pixels and is achieved through 

the use of a statistical measure. The model predicted reflectance (inverted over a minimum of 

seven cloudfree observations from the previous sixteen days) is compared to the next observation 

of reflectance in the time series, and a Z-score is defined as a normalized measure related to the 

probablity of this new observation belonging to the same set as that used in the model inversion. 

The derivation of this measure is described in detail in Section 4.3. The magnitude of the Z-score 

is related to the probability of the subsequent observation not belonging to the same set as the 

previous observations, and its sign is related to the increase or decrease of the new observation 

relative to the model predicted value. If the sign of the Z-score indicates a change in the expected 

direction this measure is then thresholded to identify significant changes. An additional operation 

is included in order to separate temporary changes which may be due to factors such as short term 

changes in soil moisture or the presence of cloud shadow, from persistent ones. This involves an 

examination of the temporal consistency of the Z-score values, with persistent changes defined 

as those where a subsequent number of observations over a specified time period each have a 

Z-score with the same sign and a value above the threshold. The authors suggest that a suitable 

time period may be derived empirically for a given Z-score threshold, or may be based on field 

observations or spectral measurements of bum persistence. Once a persistent change has been 

identified, the second step in the change detection process involves the determination of the 

nature of the change. This is achieved through an examination of both the magnitude and the 

sign difference between the modelled nadir reflectance calculated before and after the date of the 

persistent change in order to differentiate between different types of surface change, following 

the concept that different types of change will have different trajectories in spectral space (Roy 

et al. 2002). This procedure is defined in more detail in Section 4.3 and Equation 4.23.

In contrast to the change detection approach described above a function has been incorporated
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Figure 4.20: Change in reflectance due to burning

into the temporal BRDF models in order to explicitly model for changes in the land surface thus 

reducing the reliance of the methodology on the incorporation of heuristics to identify change. 
The occurrence of a fire results in a sudden decrease in near-infrared and short-wave infrared 

reflectances (MODIS bands 2 and 5), as shown in the temporal sequence for a single MODIS 

500m surface reflectance pixel which was detected as containing an active fire on day 229 (Figure 
4.20). In order to model for this type of change a ‘step function kernel’ has been incorporated 
directly into the model. This is achieved through the introduction of an additional non-linear 

model:

a(\ , t)  = s( \)Hc{t) (4.34)

where a(A, t) represents the isotropic term (/*«,) in the case of the additive model, or the bright
ness term (po) in the case of the multiplicative model. The coefficient s(A) is the magnitude of 
the change, and Hc(t) is a heaviside function, represented graphically in Figure 4.21 with Time 

(t) along the x-axis and the value of the function along the y-axis.
The heaviside is a discontinous step function which is commonly used in signal process

ing to describe a signal that switches on at a specific time and stays on indefinitely. Defined
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Figure 4.21: The heaviside function 

mathematically in Equation 4.35:

0 :t  < c

Hc{t) = <0.5 : t = c

1 : t > c

the heaviside function is a switch that has a value of zero (i.e. is off) until t =  c at which point 
it takes on a value of one (i.e. is switched on), with the non-linear parameter c representing the 
time of the step change.

The change detection model now has eight parameters, with a(A) and s(A) effectively repre
senting the brightness or overall reflectance level before the change, and the magnitude (and thus 
direction) of the change respectively. The additive temporal model is defined in Equation 4.36 
and the multiplicative temporal model in Equation 4.37.

p( a, n, n') =  f i30(\) + f isot(\)t  +

f„oi(X)Kvol +  -I- fl(A,

(4 .36)
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lnp(A, £7, ft') =  lnpo(X) +  lnp0t(X)t +  lnp0t2(X)t2 +  lnp0t3(X)t3

P f i ln K i  +  / 2^ni 2̂ +  fslnK^  +  a{X,t)

(4.37)

The non-linear parameter c (Equation 4.34) represents the day in the temporal sequence at 

which the change occurs. For a generic change detection model the most appropriate value for 

c may be found by stepping through each possible value (each day within the time series), and 

examining the error in model fit with the value of c which gives the lowest error selected as the 

day on which the greatest step change has occurred. As c is wavelength independent if the best 

value for c is chosen by minimising the error in model fit the change detected will be the largest 

which occurrs over the period of the inversion across all wavebands. Therefore if the interest 

lies in detecting a particular type of change which is known to demonstrate a specific spectral 

response then there may be more appropriate ways of determining the best value of c. This is 

discussed in detail in Section 5.4.

As the additive temporal BRDF model is linear it may be inverted analytically. Although 

it is not inherently linear inversion of the multiplicative temporal BRDF model may also be 

achieved relatively simply requiring only a few iterations to reach a suitable initial estimate of the 

parameter p0. However, with the addition of the step function kernel (Equation 4.34) the temporal 

models now contain a non-linear parameter c which must therefore be inverted using non-linear 

methods. The method chosen to achieve this involves stepping through all possible values of 

parameter c (i.e. each day in the times series) while solving for the seven linear parameters using 

the method of least squares. In order to ensure sufficient samples for a robust determination of 

both a(A) and s(A) a buffer of at least 10 days is applied at the beginning and end of the time 

series over which the inversion is performed. This is discussed further in Section 5.5.

The operation of the two change detection models are displayed in Figure 4.22. The models 

have been applied to a sequence of MODIS band 2 reflectances for a 90 day period for a single 

pixel located in southern DCR and documented in Table A.l and Figure A.l (Appendix A) as 

Site 4H (Democratic Republic of the Congo). A fire has been identified by the MODIS active 

fire product in the middle of the sequence on day 0, which corresponds to the 23rd of July, 

2003. Figure 4.22a displays the additive and multiplicative model results, with the horizontal
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line indicating the day of the active fire detection. Parameter c, the day of the step change is 0 

for the additive and 1 for the multiplicative temporal model. The reflectances modelled using 

the 16 day moving window (additive) approach are displayed in Figure 4.22b for comparison. 

This particular location has been chosen to illustrate the operation of the models as it contains 

potential outliers in the first half of the sequence, and exhibits a phenological change in the 

surface during the second half of the sequence. The Z-scores for the 16 day moving window 

approach are displayed in Figure 4.22c, as a means of identifying the occurrence of burning 

within the time series (Roy et al. 2002). The two temporal models fit the reflectance well, 

with both identifying the occurrence of a step change within a day of the active fire detection. 

In contrast problems arise with the 16 day moving window approach due to the presence of 

| potentially noisy data in the first half of the sequence before the fire induced change, changes 

in the surface which occur towards the end of the time sequence but are unrelated to the change 

of interest as well as missing samples in the second half of the sequence due to cloud. As a 

result locating the day of burning is problematic. Z-scores above the threshold value occur on 

four days before the fire. Although these are all isolated occurrences and therefore following the 

| approach of Roy et al. (2002) would not be identified as bum candidates, towards the end of the 

sequence (days 29-33) a series of high Z-score values are evident (Figure 4.22c) which would
i

be identified as a bum event. Isolated outliers such as these are not removed prior to inversion 

in the change detection model of Roy et al. (2002) (see Section 4.3), although the presence of 

noisy data is addressed in a subsequent refinement (Roy et al. 2005b). Figure 4.23 displays the 

| Z-scores for the 16 day moving window approach calculated for the same sequence, but with all 

the observations which have been identified as outliers by either of the temporal models removed 

| prior to inversion. Despite the removal of noisy observations identifiying the correct day of bum 

is still problematic with the change still identified on day 29 of the sequence. The RMSE for 

I the additive temporal model which is minimised to locate the day of the step change (parameter 

I c) is displayed in Figure 4.24 for comparison. This provides a much clearer signal with which 

to identify the changes of interest than the Z-scores displayed in Figure 4.23. Although a local 

minima occurs in the rmse on day 21 , it is small compared to the minimum of the entire sequence 

| which corresponds to the day of the actual change (day 0 ).

I The detection of step changes is achieved move robustly through the use of the temporal 

! change detection models due to the longer time sequence and the greater number of samples over



Re
fle

cta
nc

e 
R

ef
le

ct
an

ce

CHAPTER 4. A  N E W  APPRO ACH  TO CH AN GE DETECTIO N 111

0.3 ---------1-------------------1-------------------1---------------

  Day of active fire detection
  O bserved  reflec tance

0 28 — Addttive temporal model
  Multiplicative temporal model

0 26

0 24

0 22

0.2

0.18

0.16

0 14

0.12 -40 -30 -20 -10 0 10 20 30 40
Day of sequence

(a) Additive and multiplicative temporal model: Observed and modelled re
flectance

0.3
Day of active fire detection 
Observed reflectance 
16 day moving window0.28

0 26

0.24

0 22

0.2

0.18

0.16

0.14

0 .1 2 30 400 10 
Day of sequence

20-10-30 -20

(b) 16 day moving window approach: Observed and modelled reflectance

4
Day of active firedetecif

3

2

1

-1

■2

-3

-4
20 30 40-10 0 10-30 -20

Day erf sequence

(c) Z-scores: 16 day moving window approach

Figure 4.22: Detecting step changes: Observed and modelled MODIS band 2 reflectances, June- 
September 2003, Site 4H, Democratic Republic of the Congo
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Figure 4.23: Identifying the day of change: Filtered Z-scores, 16 day moving window approach 
(Site 4H, Democratic Republic of the Congo)
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which the inversions are performed. This allows for improved estimation of the noise within the 

data which results in better identification of outliers, better estimation of the model parameters 

and subsequently more accurate predictions of reflectance. This is of particular importance in 

the presence of missing samples and phenological changes in the surface. As demonstrated in 

Figure 4.24 the use of a longer time sequence and the explicit detection of step changes provides 

a clearer change signal with which to identify the changes of interest.

4.8 Summary

This chapter has described the presence of directional effects in the remote sensing signal, and 

introduced the models which are commonly used to normalise the signal for these effects. Fol

lowing on from this a new generic approach to change detection applicable to the identification of 

sudden changes in the surface has been introduced. The model has been designed to address the 

shortcomings of traditional change detection techniques identified in Chapter 2 and is developed 

from the approach introduced by Roy et al. (2002). The model has been formulated to address 

three main issues;

1. Directional effects The directional effects present in remote sensing data in particular from 

wide field of view sensors such as the AVHRR and MODIS are typically ignored in the detec

tion of land cover change. The presence of these will significantly reduce the capability of any 

change detection algorithm to accurately identify the changes of interest. The change detection 

models introduced in Section 4.5 incorporate a BRDF model in order to account for directional 

effects in the remote sensing signal. This allows for the more accurate detection of subtle changes 

in the surface which may be of a similar magnitude to those induced by the solar and sensing 

geometry. In addition in comparison to compositing techniques which attempt to minimise direc

tional effects in the remote sensing signal, the incorporation of an angular model into the change 

detection scheme allows for the use of all as opposed to just near-nadir observations.

2. Low frequency surface change The change detection techniques reviewed in Section 2.1 

in general and the model of Roy et al  (2002) in particular ignore phenological variations and 

assume these to be comparable across the time period of the study. Any low frequency variations
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in the characteristics of the surface which occur over the temporal sequence will complicate the 

identification of the changes of interest. This issue is addressed in Section 4.5.1 through the 

introduction of two temporal angular models of the surface. Both of these models account for 

temporal variations in the surface state and may be fitted to considerably longer time periods than, 

for example, the moving window approach typically used to invert angular models of reflectance 

(Strahler et al. 1999a, Roy et al. 2002). The use of a longer time series facilitates more stable 

inversions (in particular in the presence of missing samples due to cloud) which are necessary 

when attempting to identify sudden and potentially low magnitude change within the data.

3. Noisy observations All change detection techniques will be sensitive to the presence of 

noisy observations within the time series. Under the current approach if outliers are not removed 

from the temporal sequence they will contribute to subsequent predictions of reflectance and will 

reduce the capability of the model to accurately identify the changes of interest. A filter is there

fore incorporated into the algorithm in order to detect isolated outliers based on an estimation 

of the noise within the data at each iteration of the model. The use of a temporal angular model 

of the surface allows for improved identification of outliers over a traditional 16 day moving 

window approach. The longer sequence of observations and thus the greater number of samples 

over which the inversion is performed enables better estimation of noise within the data. This 

subsequently allows for improved estimation of the model parameters and better predictions of 

reflectance which results in more accurate detection of land surface change.

The model presented in this chapter is a generic approach to change detection which is applied 

here to the problem of detecting sudden changes in the remote sensing signal through the incor

poration of a step function kernel. This allows for the explicit detection of step changes within 

the data, and may be tailored to a particular type of change based on the spectral characteristics of 

the changes of interest. The implementation of this model and its application to the identification 

and delineation of fire-affected areas from daily moderate resolution satellite data is described in 

the next chapter.
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The aim of this chapter is to introduce the data sources used and to describe the application of 

the change detection model introduced in the previous chapter to the detection of fire affected 

areas within the southern Africa region of interest over the five year study period. Fire is a 

dynamic process which can move rapidly across the land surface. The characterisation of the 

bum signal in Section 3.6 indicates that post fire surfaces within the study area recover quickly 

with chances of detection decreasing significantly after only seven days after the occurrence of 

a fire. In order to have the highest possible chance of detecting fire induced surface change it is 

therefore necessary to use daily or near daily data. The first section of this chapter introduces the 

high temporal resolution data available from the MODIS sensor, and the production of monthly 

change maps through the implementation of the change detection models developed in Chapter 4 

with daily MODIS 500m surface reflectances. The second half of the chapter discusses the post

processing steps applied to the results for the specfic purpose of detecting fire induced surface 

change.

5.2 The MODerate resolution Imaging Spectroradiometer

NASA’s Earth Observing System (EOS) incorporates a series of polar orbiting and low inclina

tion satellites. As part of this family the Terra and Aqua satellites were launched in December 

1999 and May 2002 respectively and form the second phase of NASA’s Earth Science Enterprise, 

with the first having focused on free-flying satellites and space shuttle missions as well as var

ious airborne and ground-based studies. The launch of Terra saw the start of the second phase, 

with the aim of providing observations of the key physical variables needed to advance our un

derstanding of the Earth as an integrated system. To this end twenty-four key measurements of 

the Earth’s processes (documented in Table 5.1) are collected by the various sensors on board 

to provide long term global observations of the land surface, biosphere, solid earth, atmosphere 

and oceans. The Moderate Resolution Imaging Spectroradiometer (MODIS) was launched on 

both the Terra and Aqua satellites with the aim of facilitating understanding of global dynamics 

and processes, through the provision of improved monitoring for the purpose of land, ocean and 

atmospheric research. The data collected by MODIS is designed to complement the spectral,
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spatial and temporal coverage of the other instruments on board. These include the Advanced 

Spacebome Thermal Emission and Reflectance Radiometer (ASTER, Yamagushi et al  (1998)), 

the Multi-angle Imaging SpectroRadiometer (MISR, Diner et al (1998)), and the Cloud and 

Earth’s Radiant Energy System (CERES, Wielicki et a l  (1998)).

EOS Measurements
Atmosphere Cloud properties 

Radiative Energy Fluxes 
Precipitation 
Troposheric Chemistry 
Stratospheric Chemistry 
Aerosol Properties 
Atmospheric Temperature 
Atmospheric Humidity 
Lightning

Solar Total Solar Irradiance 
Solar Spectral Irradiance

Land Land Cover and Land Use Change
Vegetation Dynamics
Surface Temperature
Fire occurrence
Volcanic Effects
Surface Wetness

Oceans Surface Temperature
Phytoplankton and Dissolved Organic Matter 
Surface Wind Fields 
Ocean Surface Topography

Cryosphere Land Ice 
Sea Ice 
Snow Cover

Table 5.1: EOS measurements

5.2.1 Sensor Characteristics

Both Terra and Aqua are in sun-synchronous near-polar circular orbits which result in a repeat 

cycle of approximately 16 days. Terra passes from north to south (‘descending’) with an equa

torial crossing of 10:30am local time, and Aqua is in ‘ascending’ node passing from south to
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north with an equatorial crossing of 1:30pm local time. A +/- 55 degree scanning pattern at a 

height of 705km results in a viewing swath width of 2330 km and global coverage every 1 to 

2 days. In terms of angular sampling the variation is thus primarily in the sensor zenith angle. 

Both satellites have a 16 day revisit period at the equator and the surface is therefore viewed 

from a different direction by each consecutive MODIS overpass during this repeat cycle. Data 

are recorded in 36 spectral bands between 0.405p,ra and 14.385/zra. The first two spectral bands 

(red and near-infrared wavelengths) are acquired at a nominal spatial resolution of 250m at nadir, 

the next five at 500m (bands 3-7) and the remaining 28 (bands 8-36) at 1000m. The first seven 

‘land surface reflectance’ wavebands which are recorded at a spatial resolution of 500m and used 

in the this study are detailed in Table 5.2. The components of the sensor designed for the purpose

Prim ary Use Band Bandwidth(nra) Resolution(m)
Land/Cloud/Aerosols 
Boundaries

1 620 - 670 250
2 841 - 876 250

Land/Cloud/Aerosols 
Properties

3 459 - 479 500
4 545 - 555 500
5 1230 - 1250 500
6 1628 - 1652 500
7 2105-2155 500

Table 5.2: MODIS land surface reflectance wavebands

of land imaging combine features of the AVHRR instrument and the Landsat Thematic Mapper, 

with the addition of middle and long-wave infrared wavebands. In addition spectral channels 

which facilitate improved atmospheric and cloud correction have been incorporated in order to 

remove the effects of the atmosphere on observations of the surface (Justice et al  1998)

5.2.2 Data Products from MODIS

There are 44 standard data products created from MODIS data, which have been designed with 

the aim of fulfilling the needs of the global change research community (Justice et al 1998). 

Each of these have been produced using peer reviewed algorithms developed by the MODIS 

Science team (Running et al  1994a). The standard data products incorporate a combination 

of surface state variables such as spectral reflectance, albedo and land temperature, as well a
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collection of higher order variables such as leaf area index (LAI), active fire locations and snow 

and ice cover, produced to meet the goals of NASA’s Earth Science Enterprise. The products 

are organised into five categories; (i) calibration, (ii) atmosphere, (iii) land, (iv) cryosphere, (v) 

ocean. As only the land products are of relevance to the current research the other four categories 

will not be discussed further. The MODIS land products are available at five different levels of 

processing. The raw instrument data are archived at their original resolution as level 0, with 

each of the subsequent levels containing increasingly refined data products. This methodology 

is followed inorder to enable efficient processing and reprocessing of MODIS land products, to 

support subsequent applications of the data, and to provide users with the original data along 

with subpixel geolocation information (Wolfe et al. 1998).

Level 1: MODIS level-la products contain reformatted and packaged raw instrument (level 

0) data at their original resolution. Quality information is added at this point, indicating missing 

or bad pixels. Level lb data are created by calibrating at aperture radiances generated from 

MODIS level-la sensor counts which are then geolocated to subpixel accuracy. Multiple onboard 

calibration systems are used in conjunction with vicarious calibrations techniques (i.e. using 

radiances of known targets) in order to ensure a high calibration accuracy. The emphasis on 

calibration is a direct response to the problems experienced with optical data from the AVHRR 

sensor due to the lack of onboard calibration systems (Justice et al. 1998).

Level 2: Level 2 products are derived from the Level 1 calibrated radiances and ancillary 

data and are stored in the original sensor sampling space. The smallest amount of data stored as 

Level 1 and Level 2 products is referred to as a ‘granule’, and corresponds to approximately five 

minutes of MODIS sensing covering approximately 2340 km by 2000 km. In addition Level-2 

gridded products (Level 2G) are available, generated from a single day of Level 2 data which are 

organised into an Earth-based grid. The Level 2 grids contain all observations which fall within 

each grid cell over a twenty-four hour period, thus storing multiple observations overlapping or 

intersecting each grid cell, which can then be used as input to higher level products in an accurate 

and robust manner (Wolfe et al. 1998).

Level 3: The gridded Level 3 products are stored as fixed, non-overlapping, earth located 

‘tiles’. There are 326 tiles which contain land (460 global tiles in total), each covering a geo

graphic area of 1200km by 1200km (Wolfe et al. 1998). These products are spatially resampled, 

geometrically corrected Level 2 data which may have been temporally composited and/or aver-
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aged in order to produce a single estimate of a geophysical variable for each grid location (Justice 

etal 1998).

All of the data used for the purpose of the current research are Level 3 gridded products 
which are available in a Sinusoidal projection. The projection parameters are contained in Table 

5.3. The tiles are 10 by 10 degrees at the equator, and the tile coordinate system starts at 0,0

Parameter Value Description
Sphere
Central Meridian 
False Easting 
False Northing

6371007.181
0.0
0.0
0.0

Radius of reference sphere (m)
Longitude of central meridian
False Easting in the same units as the sphere radius
False Northing in the same units as the sphere radius

Table 5.3: MODIS Sinusoidal projection parameters (Source: http://landweb.nascom.nasa.gov/) 

(horizontal and vertical tile numbers) in the upper left comer as indicated in Figure 5.1. Two

h — >

0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 2223 24 25 26 27 2829 30 31 32 33 34 35

16

17 1 1  1 1  1 I I  I I  1 1 1  1 1  1 1  1 1 1  I I  I I  1 1  1 1  1 1  1 1  1 1 1 1  1. . ]

Figure 5.1: MODIS Sinusoidal grid (Sowrce:http://nsidc.org/data/modis/landgrid.html)

land tiles (“hl9vl0” and “h20vl0”) have been selected and the spatial extent of these is detailed 

in Figure 3.10. Three of the MODIS Land Products are used as inputs to the change detection 

model introduced in the previous chapter. A description of each of these is provided below.

http://landweb.nascom.nasa.gov/
http://nsidc.org/data/modis/landgrid.html
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5.2.3 Surface Reflectance

The MODIS surface reflectance product consists of the first seven MODIS wavebands (see Ta

ble 5.2) computed from the Level lb radiances. An estimate of the surface spectral reflectance 

for each pixel for each band is documented as it would have been measured at ground level 

assuming no atmospheric scattering or absorption (Justice et al  1998). The reflectances are 

corrected for the effects of atmospheric gases, aerosols and thin cirrus clouds. This is achieved 

by atmospherically correcting the calibrated radiances for each of the land bands (bands 1-7). 

The MODIS atmospheric products (MOD04: aerosols, MOD05: water vapour, MOD07: ozone, 

MOD35: cloud mask) as well as ancillary data (a Digital Elevation Model and information on 

atmospheric pressure) are used as inputs to the atmospheric correction process (Vermote and Ver- 

meulen 1999b). The 6s radiative code (Vermote et al. 1997) is used to model the atmosphere, and 

the atmospheric point spread function (PSF) as well as atmosphere/BRDF coupling effects are 

accounted for. The surface reflectance product is used as input to several of the higher order land 

products including vegetation indices, land cover, thermal anomalies, and biophysical variables. 

Four Surface Reflectance products are available from MODIS at different spatial and temporal 

resolutions and with various levels of processing, ranging from atmospherically corrected Level 

IB data (Level 2), to an 8-day composite of the calibrated atmospherically corrected gridded 

data. The reflectance data used as input to the change detection algorithm is the daily Level 3 

gridded 500m bands 1-7 land surface reflectance product.

Atmospheric Correction

A challenge in the use of optical EO data for any study of the land surface is separating the 

contribution of the surface from the combined surface-atmosphere reflectance as measured by 

the sensor, and as a result the largest sources of error in time series data of the land surface 

are a result of the inaccurate calculation of this quantity (Vermote and Vermeulen 1999b). The 

explicit correction of atmospheric effects has frequently been avoided through the use of NDVI- 

type vegetation indices, or through compositing time series data sets as discussed in Chapter 2. 

The selection of the maximum value of a temporal composite of NDVI data reduces the impact 

of atmospheric effects, in particular the presence of subpixel clouds (Kaufman and Tanre 1992). 

The problems associated with the use of this compositing procedure are discussed in Section 2.2.
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Explicit correction of atmospheric effects has typically been achieved through the use of radia

tive transfer codes. However for accurate calculations these need to be applied in conjuction with 

measurements of aerosol optical depth recorded by ground-based sunphotometers (Vermote and 

Vermeulen 1999b). As it is not feasible to provide these measurements globally, an alternative 

methodology is required. The approach used by MODIS is to make these measurements at the 

satellite itself. This is achieved by the incorporation of 7 bands between 0.4Ifim  and 2.1 fim, in 

comparison to 2 bands of the AVHRR instrument, thus enabling the explicit derivation of aerosol 

optical depth and thereby allowing atmospheric correction for aerosol scattering and absorption 

at a global scale (Vermote and Vermeulen 1999b). In addition (i) smaller MODIS bandwidths 

minimize the need to correct for water vapour absorption, (ii) an increased spatial resolution of 

bands 1-2 (250m) compared to, for example the AVHRR (1.1km) leads to better detection of 

cloudy pixels and subpixel clouds, and (iii) the incorporation of a waveband at 1.38fim allows 

for the detection of thin cirrus clouds and stratospheric aerosols, all of which contribute to im

proved atmospheric correction and increased accuracy in measurements of surface reflectance 

(ibid). The atmospheric correction algorithm is applied to all daytime Level IB data which has 

been acquired at a solar zenith angle of less than 85° to generate the Surface Reflectance prod

ucts. A flow chart of the steps involved is displayed in Figure 5.2. The process requires inputs 

that describe the variable constituents that influence the signal measured at the top of the atmo

sphere, correct modelling of the atmospheric scattering and absorption, and correction for the 

atmospheric point spread function and coupling of the surface BRDF and atmosphere effects 

(Vermote and Vermeulen 1999a).

Geolocation Accuracy

Subpixel geolocation accuracy is necessary in order to perform studies of change detection and 

to accurately retrieve biophysical parameters of the land surface (Townshend et al. 1992). The 

MODIS land team therefore state an operational geolocation goal of an accuracy of 0.1 pixels at 

two standard deviations for the 1km bands (Justice et al. 1998). Geolocation is performed on

board using eight pieces of information: geodetic latitude and longitude (defined in the WGS84 

system), height above the earth, satellite zenith and azimuth angles, range to the satellite, and so

lar zenith and azimuth angles (ibid). Earth ellipsoid, spacecraft ephemeris and attitude data are
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used in conjuntion with knowledge of the sensor and satellite geometry and a 1km global digital 

elevation model in order to compute this information for each 1km spatial element (Nishihama 

et al. 1997). The 250m and 500m observations are then geolocated using a fixed offset relative 

to the 1km observations (Wolfe et al. 1998).

5.2.4 Surface State

The MODIS Surface State products provide information on the quality of the daily surface re

flectance observations. The aim of the product is to identify and flag suspect or poor quality 

observations before they are released to the public (Justice et al  1998). Errors in the data have 

a range of potential sources including; (i) inadequacies in the algorithms used to create the data, 

(ii) errors in the operational production, archiving and dissemination of the data, and (iii) errors 

caused by the satellite platform, the sensor, or in the transmission of the data. The Level 2 grid

ded Land Suface Reflectance State Quality Assurance product is created from the Level IB data 

by placing the quality assurance data for the corresponding observation into each relevant 1km 

grid cell. The information is stored as a 16-bit integer with a range of 0-57335. The informa

tion contained in each bit is displayed in Table 5.4. For the purpose of the current research the 

quality assurance of each pixel is examined prior to input into the change detection model and 

only pixels with the values displayed in Table 5.5 are accepted (a value of 1 indicates which bits 

have been set). Thus only land pixels which are free of cloud and cloud shadow are considered 

suitable.

5.2.5 Geolocation Angles

The MODIS geolocation Level 2 gridded dataset contains information on the solar illumination 

geometry and the geometry of the sensor at the time of image acquisition. This information is 

required in order to model the geometric relationship and the distance between the sensor, the 

area of the earth’s surface imaged by the sensor, and the sun (Nishihama et al. 1997). These data 

are then used to calibrate, atmospherically correct and geolocate the 1km MODIS observations. 

The geolocation datasets are thus used as input into various higher order products including the 

Surface Reflectance products described above. In order to model the directional component of 

surface reflectance using any of the models described in Section 4.2 information is required about
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Data Bit Description
0: Internal snow algorithm 1 - yes

0 - no
1-2: BRDF correction performed 00 - none

01 - Montana methodology
10 - Boston methodology

3: Snow ice flag 1 - yes
0 - no

4: Internal fire algorithm flag 1 - fire
0 - no fire

5: Internal cloud algorithm flag 1 - cloud
0 - no cloud

6-7: Cirrus detected 00 - none
01 - small
10 - average
11 - high

8-9: Aerosol quality 00 - climatology
01 - low
10 - average
11 - high

10-12: Land/water flag 000 - shallow ocean
001 - land
010 - coastlines and shorelines
011 - shallow inland water
100 - ephemeral water
101 - deep inland water
110 - continental/moderate ocean
111 - deep ocean

13: Cloud shadow 0 - no
1 - yes
1 - yes

14-15: Cloud state 00 - clear
01 - cloudy
10 - mixed
11 - not set, assumed clear

Table 5.4: MODIS Surface State product: Quality Assurance (QA) bits
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Bit Number Description Pixel Value
8 72 136 200 2056 2120 2184 2248

0 Internal snow algorithm 0 0 0 0 0 0 0 0
1 BRDF correction performed 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 Snow ice flag 0 0 0 0 0 0 0 0
4 Internal fire algorithm flag 0 0 0 0 1 1 1 1
5 Internal cloud algorithm flag 0 0 0 0 0 0 0 0
6 Cirrus detected 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 Aerosol quality 0 0 1 1 0 0 1 1
9 0 1 0 1 0 1 0 1
10 Land/water flag 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 1 1 1 1 1 1 1 1
13 Cloud shadow 0 0 0 0 0 0 0 0
14 Cloud state 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0

Table 5.5: MODIS Surface State product: Quality Assurance (QA) bits
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the illumination and sensor geometry for each observation of reflectance. This information is 

documented in the MODIS Geolocation Angles product in the following fields; (i) solar azimuth 

(ii) solar zenith (iii) sensor azimuth and (iv) sensor zenith. All of these data fields are input into 

the change detection model.
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5.3 Data preprocessing
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All data products derived from EOS missions are stored in the Hierarchical Data Format (HDF). 

Developed by the National Center for Supercomputing Applications (NSCA) HDF-EOS (an ex

tension of HDF-4) is a file format, an Application Programming Interface (API) and library 

which includes several important conventions for EOS data, including the placement of meta

data within the HDF file and the definition of compound data objects to represent satellite swaths 

as well as standard grid projections and point data structures (NASA Accessed: July 2005). The 

HDF has been found to be an extremely appropriate format for use with Earth observation data 

as it is self describing and portable across many computing systems, and has been designed 

explicitly for scientific use with predefined structures common to scientific data {ibid).

As discussed the examination of high temporal resolution surface changes such as those in

duced by fire requires daily images of surface reflectance. In order to account for the angular 

variations present in the surface reflectance data, information relating to the viewing and illumi

nation geometry of each data acquisition is also required. Finally, in order to locate the presence 

of cloud and cloud shadow and to determine the quality of the surface reflectance data informa

tion relating to the quality of each observation is also needed. These three fields of MODIS data 

are archived as individual products as described in Sections 5.2.3, 5.2.5 and 5.2.4 above, with 

each daily product stored as a separate HDF file. A study of changes which have taken place 

at a single location over a period of a year thus requires the storage and manipulation of 1095 

HDF files. While this in itself is not an excessively large number of files, the extraction of the 

information and its reformation into the required order does pose a problem.

In the original HDF format the data are stored band sequentially (BSQ) for each day as an 

array of 2400 by 2400 pixels for the 500m data, or an array of 1200 by 1200 pixels for the 

lkm products. In order to detect changes and to model the angular effects in the data using the 

change detection model described in the previous chapter the surface reflectance, surface state 

and geolocation information for each individual pixel is required as a temporal sequence. To 

extract this information for each pixel for a year it would be necessary to open all 1095 images 

at the same time. Under the Unix Solaris operating system however it is only possible to read a 

maximum of 256 files into memory at a single time, which would only allow for the extraction 

of data for a period of 85 days. The approach used is therefore to open each of the three files for
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each day in the time series, loop over each pixel within a single row extracting the seven fields of 

reflectance information (seven wavebands), the four fields of angular information (view zenith, 

view azimuth, solar zenith, solar azimuth) and the single field of surface state information, and to 

save this as a single Band Interleaved by Pixel (BIP) file. This re-ordered dataset is subsequently 

used as input to the change detection model.

All of the preprocessing as well as the change detection operations have been performed 

on each of the two MODIS tiles (“h l9v l0” and “h20vl0”) separately, with the final outputs 

mosaicked together to form a single result for the entire area. The processing has been performed 

on a cluster of 96 workstations running the Sun Grid Engine. For each of the processing and 

preprocessing steps the 2400 row 2400 column images are divided into 48 sections of 50 rows and 

2400 columns. Each of these are submitted to a different node on the cluster. The preprocessing 

and processing operation to produce the outputs for a single month for each 50 row by 2400 

column array of each MODIS tile takes approximately 6 hours.

5.4 Identifying fire induced surface change

The temporal BRDF algorithm described in Sections 4.5.1 and 4.7 is a generic approach to 

change detection which locates sudden changes within a temporal sequence of reflectance by 

minimising the global error (i.e. across all wavebands) in the model fit. The day of the step 

change is thus located as the point within the sequence which provides the lowest global rmse, 

irrespective of the type of change which has occurred. While this may be a suitable method to 

follow if the interest lies solely in identifying the greatest change which has occurred during 

the time series, there are various reasons why it may be more appropriate to follow an alternative 

approach. In particular locating parameter c (the day of the step) by minimising the global RMSE 

(i) incorporates no measure of the uncertainty in the prediction of a step on day c, (ii) provides 

no indication of the magnitude of the step and (iii) is not directly dependent on the spectral 

nature of the change. While the size, direction and spectral nature of the change may only be 

important if the aim is to identify specific types of surface change, the first point is important 

irrespective of the specificity of the model. However as the aim of the research documented here 

is the application of the model to the detection of fire induced surface change all three of these
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points are of importance. The first two are addressed by the definition of a measure related to the 

uncertainty in the prediction of a step as well as the magnitude (i.e. size and direction) of a step 

at a particular point in the time series of observations. A spectral filter is subsequently defined 

which may be applied to this measure in order to specifically identify bum-type changes in the 

surface reflectance. Both of these are described in the following sections.

5.4.1 Determining the day of the change

The global error in model fit does not provide a direct indication of the uncertainty associated 

with the prediction of a step at a particular point in the time series. As the confidence of predicting 

a step will decrease at the ends of the temporal sequence and as a function of the angular sampling 

associated with a particular set of observations, it is necessary to take this into account in order 

to robustly identify changes in the surface state. A measure is therefore proposed which provides 

an indication of the confidence of the prediction of a step at each point in the temporal sequence. 

The weight of determination (Lucht and Lewis 2000) is directly related to the error associated 

with the model parameters (see Equation 4.33) and provides an indication of the uncertainty in 

the predictions as a result of the angular and temporal sampling of a particular set of observations. 

The weight of determination for a single pixel is shown in Figure 5.3 for a period of 120 days. 

Although it is relatively stable over the central portion of the time series it increases sharply at 

the edges of the sequence indicating a higher degree of uncertainty in the predictions at the tails 

of the data. In order to incorporate this uncertainty into the determination of parameter c (the day 

of the step change) it is proposed that the magnitude of the step (model parameter s(A)) at each 

cloud free observation is weighted by the uncertainty in the prediction of a step as well as the 

noise in the data as an alternative approach to finding the best value of c. This measure is defined 

mathematically as:

" w  - (î W
where s(A) is the magnitude of the step, ^  is the weight of determination, and e(A) is the error 

in model fit (assumed to be an estimate of the noise in the data). The derivation of e(A) is
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Figure 5.3: Uncertainty in predictions of reflectance

described in Equation 4.32. The benefit of using a measure which incorporates information 

relating to the noise in the data as well as the uncertainty associated with the prediction of the 

model parameters is evident from the example displayed in Figures 5.4. Figure 5.4a contains a 

sequence of MODIS band 2 reflectances for a pixel which was flagged as containing an active fire 

in the MODIS Thermal Anomalies product on day 247 (the 4th September) 2003. The pixel is 

located within central Angola as documented as Site 5 A in Table A. 1 and Figure A. 1 in Appendix 

A. A clear step change occurs in the band 2 reflectances at this point. However when the model 

is inverted over this sequence and parameter c is determined by minimising the global error, the 

best fit value for c is day 316 where the minimum of the global error occurs. The global error 

in the model fit as well as the weight of determination for this temporal sequence are contained 

in Figure 5.4b. As in the example of Figure 5.3 the uncertainty increases towards the end of 

the time period resulting in a much larger uncertainty in the prediction of a step change on day 

316 than at earlier points in the sequence. This is likely to be due to its location in the temporal 

sequence, in conjunction with an increase in cloud cover towards the end of the bum season 

which has resulted in a higher number of missing observations towards the end of the dataset. 

Figure 5.4c contains the values of model parameter s(A) - the magnitude of the step change - at 

each cloud free observation within the temporal sequence over which the model is inverted. In
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comparison the measure (Af(A)) described in Equation 5.1 is displayed in Figure 5.4d. Weighting 

parameter s(A) by the uncertainty in prediction and the noise in the data reduces the impact of 
any predictions which have a high uncertainty. The global (i.e. across all wavebands) minimum 
of this measure now occurs on day 247 in agreement with the active fire detection.
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Figure 5.4: Locating the day of greatest change: Site 5A, central Angola
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5.4.2 A spectral filter

The incorporation of the measure of uncertainty described in the previous section into the change 

detection algorithm provides a robust approach to the detection of sudden changes within a tem

poral sequence of reflectance data. If however the aim is to identify specific types of surface 

change as is the case in the current research, this may be achieved more effectively by weight

ing the method used to determine the location of the change by an expectation of the spectral 

characteristics of the change. As discussed in Section 3.5 the greatest and most consistent fire 

induced spectral change occurs in MODIS bands 2, 5 and 6, with changes in the other four land 

surface reflectance wavebands being considerably smaller and/or more variable. The occurrence 

of a fire generally results in a sudden decrease in MODIS bands 2, 5 and 6 reflectances, with 

changes that occur in the other four bands dependent on factors such as the condition and type of 

the vegetation, the time since the fire, atmospheric properties at the time of the acquisition and 

the stability of the atmospheric correction (Roy et ah 2002). Figure 5.5 displays the magnitude 

of the step change weighted by the uncertainty in the prediction of a step and the noise in the 

data (Equation 5.1) for the pixel used as an example in the previous section (Section 5.4) which 

was detected as containing an active fire on day 247. From these results a large negative step 

(a decrease in reflectance) can clearly be identified in bands 2, 5 and 6 on the day of the active 

fire detection, with comparatively minimal changes occurring in the other four wavebands at this 

point.

This example is representative of the spectral response of the vegetation to fire induced 

changes in reflectance over the area of interest, and suggests that not all seven MODIS land 

surface wavebands are necessary to detect changes in the surface due to fire. The separation of 

fire induced change from changes due to other causes may be achieved more successfully based 

on some measure relating to the nature of the change observed in bands 2, 5 and 6 as opposed to 

a global measure across all seven wavebands. As changes which are not due to fire may cause 

changes in reflectance at a greater magnitude than the changes caused by burning, the incorpo

ration of wavebands which are insensitive to burning but which may be affected by other types 

of change may confuse the signal, resulting in a decrease in accuracy in the detection of fire 

induced change. In addition the fewer the number of wavebands used in the algorithm, the more 

computationally efficient it will be. As the changes which occur to bands 1 ,3 ,4  and 7 tend to be
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Figure 5.5: The prediction of a step change, Site 5A, central Angola

minimal and/or variable as a result of fire, it may not be necessary to incorporate them into the 
algorithm. However as types of surface change other than that caused by fire may result in sim- 
iliar changes to MODIS bands 2, 5 and 6 reflectances, it may be necessary to include additional 

wavebands as a check in order to eliminate changes of a similar spectral nature which are not a 

result of burning.
In particular problems have been identified in the data due to an increase in cloud cover which 

occurs over the area of interest towards the end of the bum season, resulting in a larger number of 

missing samples within the temporal sequence. The presence of noisy data and missing samples 
in conjuntion with an increasing magnitude in the underlying phenological change due to the 
onset of the rainy season may result in the occurrence of a step change in the time series of 
MODIS band 2, 5 and 6 reflectances with a similar magnitude to that caused by fire, even though 

a fire has not actually occurred. This is demonstrated through the example of a single pixel 
location which burned on day 246 (the 3rd September) 2003. The pixel is located in southern 
Angola (Site 5B, Table A. 1 and Figure A. 1 in Appendix A). Band 2 reflectances for this pixel 

are shown in Figure 5.6 for a period of 120 days.
The reflectance state is relatively stable over the period before the bum and during the fifty days 
or so after the fire. However towards the end of the time series the data becomes increasingly
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Figure 5.6: MODIS band 2 reflectances: Site 5B, southern Angola

variable with a larger number of ‘noisy’ observations. Although the method described in Section 
4.6 is successful in identifying and removing most of these as is evident from the filtered data in 
Figure 5.6, if the outliers are not isolated events they will not be removed. Figure 5.7 contains 
the values of M(A) for this pixel calculated over the 120 day period. The effect which the 
combination of bad data, missing samples and the increasing magnitude of underlying surface 
change has on the model predictions can clearly be seen in these results. Although the largest 
negative step in band 2 and band 5 occurs on day 246 (in agreement with the active fire detection), 
the day of the greatest step change (based on the global minimum of the measure M(A))) is 
identified as day 307. An examination of the values of M( A) contained in Figure 5.7 suggest that 
the surface change identified on this day is not only characterised by a decrease in bands 2, 5 and 
6 reflectances, but at this point all seven MODIS land surface wavebands exhibit a decrease in 
reflectance with a larger and more pronounced negative step occurring in bands 1, 3, 4 and 7 in 
comparison to bands 2 and 5. In this case it is clearly not sufficient to use only bands 2, 5 and 6 
to locate bum type changes in the surface. A spectral filter has therefore been defined in order to 
separate changes which occur due to fire from those that occur as a result of other causes. This 

involves the three conditions defined below:
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Figure 5.7: Step changes in reflectance (M(A)) Site 5B, southern Angola

1. M(bands) < 0 and M(band5) < 0

2- M (b a nd i )  >  M (bandl)  a n d  M ( f tond l)  >  M(bandh )

3. M(band7) > ^(bandtl) and M(ban<r?) > M(bands)

In order for a pixel to be identified as a potential bum, it must have a negative value of M(&and2) 
and M(bands) thus exhibiting a sudden decrease in reflectance in these two wavebands. MODIS 
bands 2 and 5 have been selected in preference to band 6 as the data presented in Chapter 3 as well 
as previous research has indicated that the changes which occur at band 6 wavelengths as a result 
of fire tend to be more dependent on the vegetation type and the time which has elapsed since 
the occurrence of the fire than those which occur at shorter infrared (bands 2 and 5) wavelengths 
(Trigg and Flasse 2000, Sa et al. 2003, Li et al. 2004, Roy et al. 2005b). In addition to the 
requirement for a negative change at bands 2 and 5 wavelengths, according to the criteria defined 
above the value of M  must be smaller in both bands 1 and 7 than the value of both M  (band2) and 
M(bands)- If these conditions are met then the temporal location of the bum is assigned to the 
day corresponding to the largest negative value of M(band2) or ^  (bands)- This filter is applied 
to the temporal sequence contained in Figures 5.6 and 5.7, with the value of M (A) set to zero if 
any of the three conditions are not met. The day of the change is then located as the point within
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the series at which the lowest filtered value (i.e. meeting the three conditions defined above) of 
M(band2) and M̂ banfo) occurs. The filtered results are contained in Figure 5.8 with the point of 
greatest change now identified as day 246 in agreement with the day of the active fire detection.
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Figure 5.8: Prediction of bum-type change (Site 5B, southern Angola)

5.5 The creation o f m onthly burned area datasets

The change detection model introduced in Section 4.5 has been applied to daily MODIS surface 
reflectance data for the eight months of the annual southern Africa fire season (April-November) 
over a five year period (2000-2004), with the aim of providing daily burned area information for 
this period. The bum information has been produced by inverting the model over a single month 
of daily observations of reflectance with a thirty day buffer at either end, as illustrated in Figure 
5.9. Thus for April 2000 for example 90 days of observations of reflectance (window A) for the 
time period beginning on the 2nd of March and ending on the 30th of May have formed the model 
input, with the model output consisting of a single inversion performed over this entire period 
for each pixel. However the observations contained within the 30 day buffer do not contribute 
to the identification of a step change, and thus the location of the greatest step change has only 
been identified within the month of interest (window B). The location of the greatest step change

i
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Figure 5.9: Temporal range of model inputs and outputs

has been identified using the statistical spectral measure described in Section 5.4, and is thus 

only based on the information contained in MODIS bands 1, 2, 5 and 7. The model output for 

each month is a band sequential image consisting of 34 layers including one for each of the 

seven model parameters plus the rmse of the model fit for each waveband, the day of the greatest 

change and the probability that a fire induced change has occurred on this day. The latter two 

data fields are waveband independent.

5.5.1 The selection of burn candidates

In order to to produce the final maps detailing the location of fire affected areas, it is necessary to 

examine the change candidates and decide upon a threshold which will separate pixels according 

to the magnitude and type of change which has occurred. Although a spectral filter (M) has 

been used to determine the probability of the occurrence of a bum-type change at each temporal 

location within the time series (Section 5.4.1), not all pixels which exhibit a negative step change 

at the day selected as the point of greatest change according to M  will have burned. A post

processing step is therefore necessary in order to threshold the change information and locate 

areas of high probability burning.
Three of the model outputs contain information relating directly to the occurrence of change
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at the surface. The nonlinear parameter c (Equation 4.35) is the day at which the change has 

occurred within the time series and is waveband independent. The coefficient 5(A) defined in 

Equation 4.34 is the magnitude of this change in reflectance at each waveband on day c, and 

the minimum of the measure M (X^and2),(band5)) defined in Equation 5.1 and used to locate the 

most appropriate value of c is also output from the model. Of these s(A) and M  provide an 

indication of the probability that a fire induced change has taken place on day c. An advantage 

of the measure M  is that it has been weighted by both the noise in the data and the uncertainty in 

the prediction of a step change at a particular point in the time series of observations. However 

as it has been defined to indicate the probability that a bum-type change has occurred at day c, 

surface changes which exhibit similar spectral characteristics as burned areas but at a smaller 

magnitude will also be included in the data and these will need to be identified and removed. 

The step change parameter s(A) is related to the characteristics of the observed reflectance and 

the magnitude of the change which has occurred on day c.

As the magnitude of the change (parameter s(A)) provides multispectral information relating 

to the change which has occurred at the surface, it can be used to eliminate changes which 

exhibit a decrease in bum sensitive wavebands (MODIS bands 2 and 5) but which are not due 

to fire. In the case of the multiplicative model due to the non-linear formulation parameter s(A) 

is not a direct measure of the magnitude of the change in the surface reflectance. The modelled 

reflectance for the multiplicative temporal change detection model takes the form of Equation 

5.2;

lnp(A, 12,12') =  lnpo(X) -f lnp0(X)t -f lnp0(X)t2 -I- lnpQ(X)t3 4- f i ln K i  -f f 2ln K 2

+ filnK \  +  f 2ln K 2 +  f^lnK^ +  s(A)

(5.2)

In order to determine the magnitude of the change which has occurred to the surface reflectance 

it is therefore necessary to calculate the inverse of lnp(X) for the day of the change and the 

day after the change. The actual magnitude of the step change can then be calculated as the 

difference between the forward modelled reflectance on the day of the change (c) and the day 

after the change (c +  1). Under nadir illumination and viewing conditions (f2 =  0,0 ' =  0) this is
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defined as:

Pdiffi^i Cl,Cl) = (/?(C+1) — P(c)) (5.3)

where p is the model predicted reflectance for waveband A on the day after the step change 

(c + 1) and the day of the step change (c). For the multiplicative temporal model the forward 

modelled reflectance on day t where t < c takes the form of Equation 5.4 for nadir viewing and 

illumination conditions:

po(A, n , Q')  =  e ( / i ~ + / < ' + / * 2 *2 + / > 3 ‘ 3 ) (5.4)

where f iS0 is the isotropic parameter and f tN are the cubic temporal coefficients. For t > c 

the multiplicative temporal model the forward modelled reflectance under nadir viewing and 

illumination conditions takes the form of Equation 5.5 where s(A) is the magnitude of the step 

change.

p0(A, a ,  fi') =  e ( A . o + / ‘ t + / ‘ 2 t 2 + / ‘ 3* 3 + s ) (5.5)

For the additive temporal model the reflectance level p(A, Cl, Cl') at day t under Cl =  0,f2' =  0 for 

t < c is defined as:

p(A, Cl, fV) =  f iSO +  f t t  +  f t2t2 +  f t 3̂ 3 (5.6)

And for t > c;

p(A, Cl, SY) =  f iSO +  f t t  +  f t2t 2 +  ft3t3 +  s (5.7)

Using the outputs from Equations 5.4 and 5.6 the magnitude of the change in surface reflectance 

under Cl = 0,fy =  0 is calculated following Equation 5.3.

As described in Section 3.6.1 the magnitude of fire induced changes in the surface reflectance 

are expected to vary both spatially and temporally as a function of the characteristics of the pre 

fire vegetation and the nature of the fire. The separation of areas which have been affected by fire
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from those which have not according to the magnitude of the change which has occurred may 

therefore require a spatially and temporally varying threshold level. In addition to the difficulty in 

the definition of such a threshold due to the inherent heterogeneity of the surface, its requirement 

would result in the loss of generality of the algorithm and thereby reduce its applicability to 

different ecosystems. In contrast a proportional measure such as that defined in Equation 3.3 

(Section 3.6.1) will allow for variations in the pre fire and post fire reflectance levels and provides 

an indication of the change which has occurred to the surface reflectance as a function of the 

reflectance level before the change. Following on from Equation 5.3 above, the proportional 

change in the modelled reflectances is calculated by weighting the magnitude of the change in 

the reflectance (pdiff in Equation 5.3) by the pre change reflectance level. This is defined as:

where p(c-i) is the reflectance on the day before the change as described in Equations 5.4 and 

5.6. A further processing step is thus added to the burned area detection process which involves;

1. forward modelling the reflectance for each model on the day before the change (Equations 

5.4 and 5.6) and the day after the change (Equations 5.5 and 5.7)

2. the calculation of the magnitude of the change in reflectance which has occurred between 

these two days (Equation 5.3)

3. the calculation of the proportional change in reflectance following Equation 5.8

While the proportional change in reflectance may be a more robust measure if calculated under 

the mean solar zenith angle for each month and the viewing zenith angle of the observation, as a 

post-processing step this would require a significant amount of computationally expensive data 

manipulation as these information fields are not contained in the model output. The proportional 

change in reflectance is therefore calculated under nadir viewing and illumination conditions for 

each pixel.

(5.8)
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5.5.2 The proportional change in reflectance

The MODIS Thermal Anomalies product documents the locations of high confidence active 

fire detections (see Section 3.4.1). Although errors of omission will be present in the data as 

the occurrence of fires may not coincide with the timing of the satellite overpass or may be 

precluded by the presence of smoke or cloud, this product has demonstrated minimal errors of 

commission for the southern Africa study area (Giglio et al. 2003a). While the original “version 

3” product contained frequent false detections over deserts and sparsely vegetated land surfaces, 

the algorithm employed in the replacement “version 4” product addresses these problems and 

under a small scale validation has been shown to have very low errors of commission (ibid). The 

locations of active fires as documented in the MODIS Thermal Anomalies version 4 product will 

be used to verify the change detection algorithms, and to assist in the determination of a suitable 

threshold level for the identification of fire-affected areas from the model results.

The distribution of the values of 8p(bandh) calculated using the additive temporal model 

parameters for each month of the annual bum season for each of the five years and across the en

tire study area are displayed in Figure 5.10. These data correspond to pixel locations which have 

been identified as containing an active fire during the particular month of interest, as documented 

in the MODIS Thermal Anomalies product. However as the spatial resolution of the active fire 

data is 1km by 1km only the single 500m by 500m model output pixel which exhibits the great

est absolute change of the four corresponding pixels is selected. This procedure is followed in 

order to reduce potential errors of commission as a flaming fire needs only to be approximately 

100m2 in order to have a 50 percent or greater chance of detection by the MODIS active fire 

algorithm (Giglio et al. 2003a). Therefore in the case of subpixel resolution fires not all four of 

the MODIS surface reflectance pixels which correspond to a single 1km active fire location will 

have burned. This selection process is described in Figure 5.11. The histogram values for the 

multiplicative model results are displayed in Figure 5.10 as a percentage of the total number of 

lkm active fire pixels detected each month which exhibit a negative step change for at least one 

of the four corresponding 500m resolution pixel locations. For the 2003 and 2004 annual fire 

seasons hotspot locations derived from MODIS Aqua data are used in addition to those detected 

by MODIS Terra.

A visual examination of the distribution of 8p(band'o) values at active fire locations (Figure
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Figure 5.10: The proportional change (5p) in band 5 reflectances at active fire locations
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5.10) suggests that for all years other than 2003 fires which occur during the tail months of the 

bum season generally exhibit more variable changes than those which are detected during the 

peak bum season months. The occurrence of fires at the start of the bum season (April) tend 

to result in a smaller proportional change in the surface reflectance than later in the year. It 

should also be noted that the number of fires which occur at the tails of the burn season (April 

and November) form only a very small percentage of the total number of fires detected over the 

entire fire season. In 2004 only 0.05 percent of the total number of active fires detected during 

the eight months of the fire season occurred in April, and 1.7 percent in November. The variable 

nature of the fire induced spectral change identified during these months in comparison to the 

peak bum season months may therefore be a function of the smaller sample size of the data in 

addition to the characteristics of the fire regime at this time.

The short-wave infrared waveband (MODIS band 5) has been chosen to illustrate the dis

tributions of the relative change in reflectance at active fire locations in Figure 5.10 as research 

has indicated that in southern African ecosystems this waveband (along with band 2) offers 

higher separabilities between burned and unbumed vegetation than other MODIS land surface 

reflectance wavebands (Trigg and Flasse 2001, Roy et al. 2002, Li et al. 2004). As described 

in Section 3.5 the occurrence of fire results in a decrease in reflectance at MODIS bands 2 and 

5 wavelengths, while the changes which occur at bands 1 and 7 tend to be more variable and 

of a smaller magnitude. The distribution of the relative change in the surface brightness (6p(X)) 

across bi-spectral space is displayed in Figure 5.12 for pixels which have been detected as con

taining an active fire in August 2004 and subjected to the procedure described in Figure 5.11.
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While the proportional change in bands 2 and 5 reflectance is typically very similar (Figure 5.12)
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Figure 5.12: Sp(band2) and Sp(bandb) at active fire locations

it tends to be slightly greater at band 5 than at band 2 wavelengths. However this is not always 

the case and changes in reflectance of a greater magnitude occasionally occur in the near infrared 

waveband at active fire locations. This difference in the proportional change in reflectance which 

occurs at MODIS bands 2 and 5 as a result of a fire is likely to be due to the characteristics and 

the condition of the vegetation at the time of burning. As demonstrated in Figure 3.1 lb (Sec

tion 3.5) the magnitude of the change which occurs at MODIS bands 2 and 5 will be affected 

by the level of senescence and thus the water content of the vegetation. At band 2 wavelengths 

a greater difference is evident between the measured spectra of a post-bum black ash surface 

and pre-bum green vegetation than at band 5 wavelengths, while in the case of dry vegetation 

the opposite is observed with a greater change in reflectance ocurring at band 5 rather than at 

band 2 wavelengths. Therefore in order to exploit all of the spectral information available as 

well as to exclude confusing spectral changes (see Section 5.5.3 below) the proportional change 

in reflectance at both bands 2 and 5 will be examined in order to locate pixels which have been 

affected by fire. In addition to the increase in potential change information provided by the incor

poration of band 2, the use of this waveband in conjunction to band 5 offers the further advantage 

of reducing the impact of a bad MODIS band 5 500m detector which results in missing scan lines 

every 10km (Roy et al. 2002).
The percentage of active fire detections each month which correspond to a decrease in re-
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flectance (a negative value of Sp) at band 2 and band 5 wavelengths following the method de

scribed in Figure 5.11 are shown in Table 5.6.

2000 2001 2002 2003 2004 2000 2001 2002 2003 2004
Apr 68.5 90.9 99.2 96.1 56.1 Apr 66.5 89.9 99.3 95.0 55.5
May 98.8 99.6 97.7 97.1 97.9 May 98.4 99.6 97.7 96.9 97.9
Jun 99.5 N/A 99.3 99.5 99.4 Jun 99.3 N/A 99.2 99.4 99.3
Jul 99.6 99.2 99.3 99.4 99.1 Jul 99.5 99.2 99.3 99.3 98.9
Aug 97.6 98.5 98.7 98.8 98.7 Aug 97.7 98.4 98.5 98.8 98.4
Sep 98.8 96.7 97.3 97.8 97.2 Sep 80.1 96.8 97.3 97.7 97.2
Oct 96.4 96.1 97.3 96.6 93.4 Oct 96.2 96.1 97.4 96.5 93.8
Nov 84.4 71.9 74.3 69.0 67.8 Nov 84.4 70.2 74.1 69.5 67.9

(a)Additive temporal model (b)Multiplicative temporal model

Table 5.6: Percentage of MODIS active fire detections which exhibit a proportional decrease in 
MODIS band 2 and band 5 reflectances

Two features of interest are immediately apparent in this data; (i)the results from the two models 

are extremely similar and (ii)a much lower percentage of active fire locations exhibit a decrease 

in band 2 and band 5 reflectance during the tail months of the fire season. Thus while over 95% 

of active fire locations exhibit a corresponding decrease in band 2 and 5 reflectances between 

May and October each year, this figure is much lower for November for each of the five years 

and for April 2000, 2001 and 2004. This feature is discussed further in the following paragraph. 

The agreement between the detection of an active fire and a proportional change in band 2 and 

band 5 reflectances below a particular threshold level for each month are displayed in Table 5.7 

as a percentage of the total number of pixels for the particular month which exhibit a decrease 

in reflectance at these wavelengths. As above (Table 5.6) the change information used in the 

analysis is the value of 6p(band2) and 5p(band5) for each pixel location across the entire study 

area, with the data subjected to the procedure described in Figure 5.11.

As discussed above the data contained in Table 5.6 and Table 5.7 indicate that the proportional 

changes in reflectance which occur at the corresponding 500m locations of active fire detections 

are generally of a much smaller magnitude at the tails of the southern Africa fire season, and 

tend to be more uniform during the months encompassing the peak of the fire season. This is 

likely to be due to the state of the vegetation and thus the characteristics of the fires which occur 

at the start and at the end of the annual fire season. The southern Africa fire season typically
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2000 2001 2002 2003 2004
Apr 51.1 71.1 86.7 65.3 48.3
May 73.6 74.9 77.7 65.0 68.3
Jun 76.7 N/A 74.0 66.9 67.9
Jul 80.9 79.6 76.1 69.6 67.9
Aug 76.1 74.0 71.8 67.9 68.2
Sep 75.1 73.8 71.0 66.9 69.0
Oct 76.1 75.9 69.9 69.5 66.6
Nov 72.9 71.7 71.6 59.5 68.2

Threshold: -0.1
(a)Additive temporal model

2000 2001 2002 2003 2004
Apr 37.2 47.8 69.6 47.3 27.7
May 55.5 57.8 61.9 46.9 49.6
Jun 60.7 N/A 57.8 47.4 50.5
Jul 64.7 64.7 60.0 51.7 50.9
Aug 59.7 59.0 56.6 50.8 50.6
Sep 57.8 60.1 55.6 49.9 53.2
Oct 61.0 61.2 51.7 49.7 50.4
Nov 55.4 48.8 51.5 40.8 50.3

Threshold: -0.15
(c)Additive temporal model

2000 2001 2002 2003 2004
Apr 23.4 33.3 55.0 35.2 16.6
May 40.0 43.6 45.7 32.5 35.3
Jun 46.0 N/A 42.5 32.8 36.6
Jul 49.3 50.9 45.4 37.2 37.1
Aug 43.7 45.7 43.6 36.1 36.7
Sep 42.8 47.6 42.0 36.0 40.1
Oct 46.6 47.0 38.8 35.8 38.0
Nov 40.0 31.9 34.2 29.6 35.5

Threshold: -0.2
(e)Additive temporal model

2000 2001 2002 2003 2004
Apr 57.9 73.0 91.7 69.2 51.9
May 77.5 78.6 79.9 67.4 68.4
Jun 80.8 N/A 77.8 71.4 71.1
Jul 84.7 82.7 79.4 73.5 70.7
Aug 80.2 78.3 75.4 71.0 70.5
Sep 58.4 78.0 75.7 70.4 72.3
Oct 80.7 82.5 81.3 74.9 74.7
Nov 81.3 77.9 82.6 73.2 80.6

Threshold: -0.1
(b)Multiplicative temporal model

2000 2001 2002 2003 2004
Apr 39.1 50.6 76.9 50.1 26.5
May 59.0 59.8 64.5 48.5 48.6
Jun 64.5 N/A 61.5 51.2 53.5
Jul 69.3 68.1 63.8 55.2 53.9
Aug 64.5 63.0 59.2 53.7 53.1
Sep 42.3 62.8 59.2 52.3 56.0
Oct 65.6 66.8 60.7 53.7 57.0
Nov 65.4 58.8 62.4 52.8 61.8

Threshold: -0.15
(d)Multiplicative temporal model

2000 2001 2002 2003 2004
Apr 27.1 44.9 61.1 35.8 15.3
May 42.3 44.3 48.7 33.3 33.5
Jun 49.2 N/A 46.5 35.5 38.8
Jul 54.1 53.4 49.6 39.8 38.9
Aug 48.3 49.2 46.0 38.9 38.9
Sep 29.9 49.5 45.2 37.7 42.7
Oct 50.8 52.1 44.4 38.5 43.5
Nov 48.3 41.2 44.0 36.3 45.1

Threshold: -0.2
(f)Multiplicative temporal model

Table 5.7: Percentage of MODIS active fire detections which exhibit a proportional decrease in 
MODIS band 2 and band 5 reflectances below a particular threshold value
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begins in April and follows the seasonal pattern of vegetation senescence starting at the end of 

the annual rainy season (Frost 1999). At the start of the fire season the vegetation is at the peak 

of its phenological cycle and is greener than at any other point during the fire season, as evident 

from the MODIS EVI data in Figure 3.8 (Section 3.4.2). Due to the higher water content of the 

vegetation at this point fires which do start are likely to be of a lower severity and the larger bums 

which are observed later in the year at the peak of the fire season are thus less likely to occur. 

Fires which are detected during April are therefore likely to be smaller and more fragmented than 

later in the year when the vegetation is drier and bums more easily. Consequently an explanation 

for the larger relative change in surface reflectance which occurs in April 2002 is that this may 

have been a dry year with the fire season starting earlier than in the other years. This is discussed 

further in Section 7.5. In 2002, 1.9 percent of the fires detected by MODIS Terra during the eight 

months of the annual fire season occurred in April, in comparison to 0.09, 0.05, 0.4 and 0.05 

percent in 2000, 2001, 2003 and 2004 respectively. The lower relative changes observed at active 

fire locations during November over the five year period are likely to have a similar cause. As 

precipitation increases and wet conditions typically return to most of the interior African regions 

south of the equator during October (Cahoon et al. 1992), the lower magnitude of the bum signal 

in November each year may be a result of the increased moisture content of the vegetation, and 

the decrease in the occurrence of larger fires commonly observed in the previous months. An 

additional factor which may explain the lower agreement between the active fire detections and 

the proportional changes in reflectance at the tails of the fire season is greater cloud cover over 

the study area during this time resulting in fewer clear high quality observations of the surface 

than during the height of the dry season. The disagreement between the potential bum candidates 

and the locations of active fire detections at the tails of the fire season are thus likely to be due 

to the different spatial resolutions of the two data sources, the state of the vegetation and the 

characteristics of the fires, as well as the greater cloud cover during these months.

An examination of the results contained in Table 5.7 indicates that higher proportional changes 

in reflectance are identified at active fire locations from the multiplicative in comparison to those 

produced using the additive model (Table 5.7b, 5.7d and 5.7e). Using a threshold of -0.1 (a 10% 

decrease in reflectance) allows for an agreement of over 75% between the multiplicative mod

elled results and active fire locations for most months, and an agreement of at least 65% between 

the additive modelled results and active fire locations for almost all months over the five year
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period. However thresholding either set of results at a level higher than -0.15 results in the incor

poration of a large number of pixels which are unlikely to have burned but exhibit changes of a 

similar magnitude due to other causes. Thus in April 2003 68.8% of the land surface within the 

study area exhibits a proportional decrease (using the multiplicative modelled results) in MODIS 

band 2 and 5 reflectances of at least -0.1, while for August 2003 this figure is 17.3%.

Although the lack of a comprehensive burned area dataset for the area of interest makes it 

impossible to determine whether a pixel is not a bum and therefore all pixels which exhibit a 

negative step change in conjunction with the spectral characteristics exhibited by fire affected 

areas may potentially have burned, using a threshold of -0.1 clearly results in high errors of 

commision in particular at the tails of the fire season. While reducing the threshold to a value 

of -0.15 (an equivalent decrease in reflectance of 15%) reduces the errors of commission, a 

decrease in the agreement between the active fire detections (Table 5.7c and 5.7d) also occurs. 

An examination of the locations of active fire pixels which exhibit a proportional change in band 

2 and band 5 reflectances above this threshold (i.e. are not potential bum candidates) suggests 

that this disagreement may largely be a function of the different spatial resolutions of the two 

data sources and the occurrence of subpixel (<lkm ) resolution fires.

Figure 5.14 contains two areas of 100km by 100km extracted from the additive modelled 

results for July 2003 which exhibit different patterns of burning. The location of these within the 

area of interest is displayed in Figure 5.13, and detailed in Table A.l in Appendix A.
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Figure 5.13: Sites 5C, 5D and MODIS Landcover Product
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The red pixels correspond to those where an active fire has been detected but 6p(band2) > 

-0.15 and/or 6p(band5) >  —0.15 at each of the corresponding 4 500m locations, and the black 

areas indicate pixels where Sp(band2) < -0.15 and Sp(bandb) <  -0.15 irrespective of whether 

in active fire has also been detected or not. A large proportion of active fire locations which are

(a) Site 5C (Angola) July 2003 (b) Site 5D (Angola) July 2003

Figure 5.14: Disagreement between 1km active fire locations and 500m potential burn candi
dates: red pixels indicate active fire detections which are not identified as bums; black areas 
indicate bum candidates

not identified as potential bums (i.e. exhibit proportional changes in reflectance smaller than the 

threshold) and are represented as the red pixels in both Figures 5.14a and 5.14b are located either 

between two bums, or along the perimeter of a bum. A higher agreement between the locations 

of active fire detections and potential bum candidates is apparent in Figure 5.14b where the 

bums tend to be larger than those in Figure 5.14a, where the burned areas are smaller and more 

fragmented. As a flaming fire only needs to be approximately 100m2 in order to have a 50 

percent or greater chance of detection by the MODIS active fire algorithm (Giglio et al  2003a) 

and the spatial resolution of this product is 1km, in the presence of small bums such as those 

displayed in Figure 5.14b it is likely that the size of the fires is overrepresented in the MODIS 

Thermal Anomalies product. The change which occurs in the MODIS band 2 and 5 reflectances 

due to burning will be dependent on the fraction of the 500m pixel which has burned. In the case
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of small fires the fraction of a 500m pixel which has burned may not be sufficient to produce a 

proportional change in reflectance of at least 15% (<Sp(A)=~0.15).

Under the assumption that a hotspot detected is actually a fire, the lower relative change in 

reflectance observed at many active fire locations may have several causes. In addition to the size 

of the fire discussed above, the quality of the observations on the days surrounding the occurrence 

of a fire will have an affect on the detection of a step change in the temporal sequence at this point 

as well as on the magnitude of the change identified. If there are missing observations on the days 

immediately after the fire due to the presence of smoke or cloud, the change in the reflectance 

from pre-bum to post-bum conditions may be of a smaller magnitude due to recovery of the 

post-fire surface.

A threshold level of -0.15 which corresponds to a 15 percent change in reflectance is therefore 

used to identify potential bum candidates, and several spectral constraints have been introduced 

in order to eliminate changes of a similar magnitude which are not due to fire. These are dis

cussed in the following Section.

5.5.3 Excluding confusing spectral change 

: Vegetation

I  Various peturbing factors (see Section 3.5.3) may exhibit similar spectral changes to those in- 

| duced by fire, resulting in confusion between areas which have been affected by fire and those 

; which have not (Trigg and Flasse 2001, Roy et a l  2005b). Previous research has indicated that 

I burning results in a decrease in near to middle infrared reflectances with MODIS bands 2 and 5 

providing the highest separabilities and band 1 and 7 affording low or variable discrimination be

tween burned and unbumed surfaces (Roy et al. 2002, Sa et a l  2003, Li et a l  2004). Although 

as demonstrated by Figure 5.12 the response of MODIS bands 2 and 5 to burning are extremely 

similar, the results for both bands are used in the determination of fire affected areas in an attempt 

to exclude reflectance changes which are due to variations in the vegetation moisture content. In

creases in plant water content which may occur, for example, due to leaf flushing caused by a 

< sudden rainfall event (Roy et a l  2005b) will reduce the reflectance at band 5 and 7 wavelengths 

\ but will have less of an impact at shorter infrared wavelengths (Zarco-Tejada et a l  2003). This 

is demonstrated by Figure 5.15 which contains reflectances modelled at a canopy level using



CHAPTERS, m o d e l  i m p l e m e n t a t i o n 219

JieKuusk canopy reflectance model (Kuusk 1996) for different values of leaf equivalent water 

[hickness (Cw) under nadir illumination and viewing conditions. Figure 5.15a refers to a sparse 
vegetation canopy and has been modelled using an LAI value of 2, while Figure 5.15b refers to a 

dense canopy modelled with an LAI value of 8. The spectral locations of MODIS bands 2, 5 and 
1 are indicated by the vertical lines. The effect of increasing the leaf water content is a decrease

! "  
•  a. 4

0 1 e.5

(a) Sparse vegetation (LAI = 2) (b) Dense vegetation (LAI = 8)

Figure 5.15: Canopy level reflectance modelled with different leaf equivalent water thickness 
using the Kuusk model (Kuusk 1996)

in MODIS bands 2, 5 and 7 reflectance for dense vegetation canopies, while for sparse canopies 
varying the moisture content has a minimal effect at band 2 wavelengths but results in a decrease 
in reflectance in MODIS bands 5 and 7. The larger impact of variations in the leaf water content 

on the reflectance from both canopies at MODIS band 7 and 5 wavelengths in comparison to the 
changes which occur at band 2 is clearly evident in Figure 5.15. The proportional changes in 
MODIS bands 2, 5 and 7 reflectances (6p) calculated for the data displayed in Figure 5.15 are 
contained in Table 5.8. These data suggest that using a band 5 proportional change threshold of 

-0.15 to identify potential bum candidates would result in the inclusion of the moisture induced 

changes described in Figure 5.15. Thus in order to reduce the possibility of identifying such 
changes as bums both MODIS band 2 and band 5 results are used, with potential bum candidates 
identified as those which exhibit a proportional change of -0.15 lower in band 2 and band 5. In 

addition the proportional decrease in reflectance at band 2 and band 5 wavelengths is required to
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MODIS Sparse Dense
waveband (LAI=2) (LAI=8)
2 -0.01 -0.03
5 -0.16 -0.38
7 -0.46 -0.77

Table 5.8: Proportional change (Sp) in canopy level reflectance due to varying leaf equivalent 
water thickness

be greater than the change at band 7 wavelengths. This criteria is defined as;

3P(band2) ^  $ P(band7) (5.9)

AND

8p(band§) 8 P(band7) (5.10)

Flooding

Confusion between burned areas and water bodies has been reported by several authors (Pereira 

and Setzer 1993, Razafimpanilo et al. 1995, Eva and Lambin 1998a). In the GBA2000 burned 

area product (see Section 2.4.2) for example, when the algorithms were applied outside the 

main period of fire activity flooding was found to be the most common cause of false detec

tions (Tansey et al. 2004a). The occurrence of flooding was thus one of the two main causes 

of comission errors (the other being hot bare surfaces) for the sub-Saharan region. This spectral 

confusion occurs as both water bodies and burned surfaces are characterised by low reflectances 

at near to middle infrared wavelengths. Although confusion does not arise between burned areas 

and areas of permanent water in the current research as the latter are identified in the MODIS QA 

product (Section 5.2.4) and flagged prior to input into the change detection model, flood events 

will still be present and may cause burned area detection errors.

The effect of flooding is a sudden large decrease in MODIS band 2, 5 and 7 reflectance, with 

a more variable response at band 1 wavelengths. These drops in reflectance are identified as a 

negative step change (M( A) and s(A)) and a large proportional decrease (8p(A)) in the band 2, 5 

and 7 modelled results, and thus constitute a perturbing factor in the spectral separation of burned
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andunbumed areas. Figure 5.17 illustrates values of 5p(band2) for an area of 150km x 100km 

extracted from the south of the study area and located to the north east of the Okavango Delta. 

The location of the site within the area of interest is displayed in Figure 5.16, and is documented 

in Table A. 1 in Appendix A as Site 5E.



I

D eciduous broadle afforest Open shrubland W oody savanna
Savanna § | |  Grassland m  Water/other

Figure 5.16: Site 5E and MODIS Landcover Product
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(a) Additive model results (b) Multiplicative model results

Figure 5.17: Proportional change in reflectance (6 p(band2)): Changes due to flooding, April 
2003: Site 5E, Botswana

The locations which exhibit a high proportional decrease in reflectance (the red pixels) cor

respond to a non-permanent water body which floods in April during each of the five years of 

ebservation. The magnitude of the change (M (A)) on the days surrounding the identified day of 

greatest change (day 99 - the 9th of April 2003) for a single pixel is displayed in Figure 5.18. 

The location corresponds to a red pixel extracted from the center of the water feature in Figure 

5.17a. The proportional changes in reflectance (6p\) at this pixel location are displayed in Table 

5.9. Although band 7 reflectances typically exhibit either a small proportional decrease or an

MODIS waveband
1 2 5 7

Additive -0.69 -0.97 -0.88 -0.74
Multiplicative -0.83 -0.90 -0.88 -0.93

Table 5.9: Proportional change in reflectance at a single pixel location due to flooding: 9th April
2003

increase of varying magnitude as a result of burning (see Section 3.6.1) this is not always the 

case and a large decrease in reflectance is sometimes observed at MODIS band 7 wavelengths as 

a result of burning.
Although pixels which exhibit comparably large decreases in band 7 reflectance tend to be 

located within the centre of a bum, fire induced decreases in MODIS band 7 reflectances are
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Figure 5.18: Magnitude of the change (M(band2)): Additive model results, site 5E, Botswana

occasionally identified over large homogenous areas of burning. An example of such a location 

is provided in Figure 5.20. This corresponds to an area of 25km by 50km in southern Angola 
which burned in July 2000, and is documented in Table A.l and Figure A.l in Appendix A as 

Site 5F. The geographical location of Site 5F is displayed in Figure 5.19.



D eciduous broad leaf forest fjjj| Open shrubland W oody savanna
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Figure 5.19: Site 5F and MODIS Landcover Product
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Figure 5.20 displays the proportional change in MODIS band 2 and 7 reflectances across the 

irea. Figure 5.21 displays the magnitude of the change (M( A)) at a single pixel location extracted

r •

60%

■v.*«

(a) MODIS band 2 (b) MODIS band 7

:igure 5.20: Proportional change in reflectance (£p(A)) due to burning, July 2000: Multiplicative 
uodel results: Site 5F, southern Angola

ram the centre of the burned in Figure 5.20. An active fire has been detected at this location on 

ieday on which the bum has been identified - day 197 (the 15th July 2000). The proportional 

:hanges in reflectances (5/>(A)) which correspond to this pixel are contained in Table 5.10.

_2"l90 192 194 196 198 290 202 204 286 208
Day of year

Figure 5.21: Magnitude of the change (M(band2): Additive model results, Site 6F (southern 
Angola)
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MODIS waveband
1 2 5 7

Additive -0.69 -0.66 -0.58 -0.37
Multiplicative -0.69 -0.67 -0.64 -0.43

Table 5.10: Proportional change in reflectance at a single pixel location due to burning: 15th July 
2000

It is evident from Figure 5.20 that a decrease in band 7 reflectance of a comparable magnitude 

to that observed in MODIS band 2 has occurred over a large number of pixels within this bum 

location. Elimination of areas of flooding based on the response of band 7 may thus also result in 

the removal of potential bum candidates. In order to reduce the possibility of excluding burned 

areas due to their spectral similarity with flood events, a flood mask is created from the daily 

data for each month of the annual fire season. Areas of flood candidates are identified using 

a threshold of Sp( A) =  —0.3. Any pixels which exhibit a proportional decrease in reflectance 

equivalent to 30% or greater (Sp <  —0.3) at band 2 and band 5 and band 7 wavelengths are 

flagged as potential flood pixels. The black areas in Figure 5.22 (which correspond to the location 

displayed in Figure 5.17) are pixels which meet this criteria and are therefore flagged as areas of 

high probability water induced surface change.

(a) Additive model results (b) Multiplicative model results

Figure 5.22: Changes due to flooding (black pixels), Site 5E (northern Botswana) April 2003
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Water boundary pixels

In addition to flood induced surface change confusion occasionally arises between pixels situated 

along the boundaries of water bodies. These are located and removed through the application 

of a conservative water test according to the method of Roy et al. (2005b). Following this 

approach any pixels with a MODIS band 7 reflectance of less than 0.04 and an NDVI value of 

less than 0.1 are removed. The NDVI test is used in conjunction to the band 7 reflectance as 

dense green vegetation may also exhibit a low band 7 reflectance (see Figure 3.11 Section 3.5.2) 

but in contrast to water will have a high NDVI value. Under the current modelling framework 

these criteria are implemented as;

P{band7){tt,n') < 0 .04  (5.11)

AND

{  P{band2) Tl ) — P{bandl) ^  \  q  ^  ^ 5  J 2 )

\ P(band2){^“> ^  )  "t" P(bandl)(S^i  ^ 0  /

where p(A, £2, f2') is calculated according to Equation 5.4 for the multiplicative model and Equa

tion 5.6 for the additive model for t = (c — 1) i.e. the day before the identified day of change. 

In addition in order to exploit all of the data available the criteria defined in Equation 5.12 is 

also applied using band 5. The behaviour of band 2 and band 5 is extremely similar for water, 

and thus the use of both bands increases the chances of identifying and removing water related 

change in the presence of bad or missing data or unmodelled noise in either band. Figure 5.23 

contains an example of a water boundary pixels which would be identified as a bum candidate 

in April 2003 but is removed according to the criteria defined above. The pixel corresponds to 

Site 5G (Table A.l and Figure A.l in Appendix A) and is located on the land/water interface of 

anon-permanent water feature. The proportional changes in reflectance which correspond to the 

temporal sequence contained in Figure 5.23 for the day of the change (day 116 - the 26th April 

2003) are -0.14, -0.46, -0.68 and 0.02 in bands 1, 2, 5 and 7 respectively. If not removed this 

pixel would therefore have been identified as a bum candidate in April 2003.
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Figure 5.23: Magnitude of the change (M(band2): Site 5G, central Angola

5.6 Summary

This chapter has described the data sources which have been used as inputs to the two temporal 

Jiange detection models developed in the previous chapter. The production of monthly datasets 

documenting daily changes at a spatial resolution of 500m for the five year period and over the 

’400 by 1200km area of interest requires an extremely large quantity of input data. The methods 
iich have been used to manipulate, preprocess and process this data have been described.

The two models introduced in the previous chapter represent a generic approach to the de
tection of sudden changes within a temporal sequence of reflectance data. The second half of 

this chapter has therefore been concerned with the adaptation of these to the specific problem 
of identifying pixels which been affected by fire. In addition as spectral changes of a similar 

nature to those exhibited by burned surfaces occur due to other causes other than burning the 

separation of these from the changes of interest has been discussed. The various post-processing 

steps implemented to deal with these confusing spectral changes have been described.
The monthly burned area datasets produced following the methods described in this and the 

previous chapter are presented in the following two chapters.
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The implementation of the change detection models and their application to the detection of 

fire affected areas has been described in the previous chapter. The lack of ground based burned 

area information over the area of interest at the time of writing has meant that validation of the 

burned areas has been limited to a comparison with two other independently produced burned 

area datasets as well as with the active fire information documented in the MODIS Thermal 

Anomalies product. The similarities and differences between these products are presented in this 

chapter.

6.1 MODIS 500m fire affected areas

Daily burned area information for the eight months of five annual fire seasons have been pro

cessed according to the steps described in Chapter 5. The outputs of the post processing steps 

are two fields of information for each 500m pixel location. The first is the proportional change in 

reflectance 5p(band2), and the second is the day of change. For illustrative purposes burned area 

results for August 2004 are displayed in Figure 6.2 for an area of approximately 225 by 125km 

located near the Angola/Namibia border (see Figure 6.1). This area is documented as Site 6A 

in Table A.l and Figure A.l in Appendix A. Figure 6.2a displays the Sp(band2) values at bum 

locations and Figure 6.2b displays the day of the change with day 214 corresponding to the 1st of 

August and day 244 the 31st of August 2004. The progression of burning on a day to day basis 

is evident in Figure 6.2b.

A higher resolution image is displayed in Figure 6.3 along with the 500m burned area results 

for visual purposes. In contrast to the data displayed in Figure 6.2, Figure 6.3 displays an area 

of approximately 26km by 30km located along the Zambia/Namibia border (Site 6B, Figure 6.1) 

which had burned by the 28th August 2001. A high resolution (30m) real colour composite 

(bands 3, 2, 1) Landsat ETM+ image of the area which was acquired on the 28th of August 2001 

is displayed in Figure 6.3a, while Figure 6.3b contains the MODIS 500m burned area results for 

the same location. A large area of burning which stretches from southern Zambia into northern 

Namibia is evident in both images.



Namibia

|  Deciduous broadleaf forest J Open shrubland Woody savanna
|  Savanna m  Grassland m  Water/other

Figure 6.1: Sites 6A, 6B and MODIS Landcover Product
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An analysis of the spatial and temporal distribution of burning over the five year period of 

observation as well as an interpretation of the fire regimes over this period are provided in Chapter 

7. The aim of the following sections is to compare the results to other sources of burned area and 

active fire information available for the area of interest and over the time period of the current 

study. Three sources of fire related information which document the occurrence of active fires 

and burned areas across different temporal and spatial scales will be used for this purpose;

1. Daily MODIS Thermal Anomalies, April 2000 to November 2004 (Giglio et al. 2003a)

2. Monthly SAFARI 2000 MODIS 500m burned areas, July 2000 (Roy 2005)

3. Monthly GBA2000 1km burned areas, April - November 2000 (Gregoire et al. 2003)

6.2 MODIS 1km Thermal Anomalies

A description of the MODIS Thermal Anomalies product is provided in Section 2.4.1. This 

section investigates the spatial and temporal agreement between MODIS active fire detections 

and the burned area results. The data used in the analysis are the daily 1km day and night active 

fire detections from MODIS Terra and Aqua (for the 2003 and 2004 fire seasons). The percentage 

of the active fire detections which are identified as burned each month over the five year period are 

shown in Table 6.1. These have been calculated following the procedure described in Figure 5.11. 

In addition a seven day overlap is used at the beginning and end of each month in order to allow 

for differences in the detections of active fires and burning due to missing data or cloud. Possible 

reasons for the low agreement between the locations of active fire detections and burned pixels 

have been discussed in Section 5.5.2. In particular the discrepancies are likely to be a function 

of the different spatial resolutions of the data. In addition the increase in cloud cover towards the 

end of the fire season each year results in a lower number of observations of the surface during 

these months. These will result in a greater likelihood of underdetection of burned areas due to 

an insufficient number of cloud free observations. It should also be noted that the number of 

fires detected at the tail months of the fire season constitute an extremely small proportion of the 

total fires detected over the entire season. In April 2004, for example, only 1932 1km fire pixels 

were detected over the area of interest by both MODIS Terra and Aqua. These correspond to
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60%
(a) Proportional change in band 5 reflectance: Site 6A, Angola/Namibia

(b) Day o f  change: Site 6 A, Angola/Namibia

Figure 6.2: Burned area information, August 2004: Multiplicative model results
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(a) Landsat ETM+ real colour composite image (bands 3 ,2 , 1) 28th August 2001, 
Site 6B, Zambia/Namibia

N am ib ia

(b) MODIS burned area results, August 2001, Site 6B, Zambia/Namibia 

Figure 6.3: An area of burning, August 2001
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2000 2001 2002 2003 2004
Apr 35.5 51.5 64.8 44.5 14.3
May 55.6 42.5 61.8 47.9 50.8
Jun 60.7 N/A 58.8 48.9 52.6
Jul 64.0 62.2 60.6 51.9 51.8
Aug 58.0 58.8 56.4 51.7 51.6
Sep 59.2 59.4 55.2 50.7 52.8
Oct 58.0 57.9 50.5 48.0 46.8
Nov 39.4 27.8 35.7 25.8 31.2

2000 2001 2002 2003 2004
Apr 30.6 36.0 66.2 43.2 12.8
May 54.5 48.6 62.0 46.6 48.4
Jun 60.7 N/A 59.6 50.2 53.4
Jul 65.4 61.9 62.3 52.7 52.1
Aug 59.0 58.5 56.7 52.9 53.4
Sep 59.1 59.6 56.5 51.0 54.4
Oct 58.4 58.0 54.3 49.6 49.0
Nov 35.6 25.0 19.5 26.7 32.3

(a)Additive temporal model (b)Multiplicative temporal model

Table 6.1: Percentage of MODIS (Aqua and Terra) 1km active fire locations identified as burned

less than 1 % of the total number of active fire pixels detected over the 8 months. The size of 

individual bum events is also much smaller during the tail months of the fire season, resulting in 

a greater disparity between the 1km active fire detections and the 500m bum pixels during this 

time. The smaller fire size in conjunction with the differing spatial resolutions of the datasets and 

the minimum requirements for the detection of an active fire are likely to contribute to the larger 

number of active fire locations which are not identified as bums during the start and end of the 

fire season. This is demonstrated through two small bum events displayed in Figure 6.5 which 

occurred in northern Angola in April 2003, and a third larger bum which occurred in northern 

Namibia in July 2003. The locations of these are documented in Table A.l and Figure A.l in 

Appendix A as Sites 6C-E. Their geographical position within the area of interest is displayed 

in Figure 6.4. Although both the active fire and the occurrence of burning has been identified at 

each of the three locations, there is clearly some spatial disagreement between the two datasets. 

At the first two sites (Figures 6.5a and 6.5b) where a smaller area has burned a large number of 

pixels are identified as active fires but not as burned areas (the red pixels). In both cases these are 

located on the edges of areas which have been identified as bums. At the third location a much 

larger area has burned, and the agreement between the locations of the active fire detections and 

bum pixels is greater. However a number of active fire pixels have not been identified as bums 

(the red pixels), and again these are generally contiguous to bum pixels. The disagreement at all 

three locations is likely to be a factor of the different spatial resolutions of the data as well as the
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minimum requirements for the detection of an active fire. A flaming fire needs only be 100m2 

in size in order to have a 50% or greater chance of detection by the MODIS Thermal Anomalies 

algorithm. This is equivalent to approximately one 50th of the surface area of a 500m pixel. 

Following the procedure described in Section 5.5.1 a pixel is only identified as a bum candidate 

if a decrease in reflectance of at least 15% occurs at band 2 and band 5 wavelengths. The change 

in reflectance due to burning at MODIS band 5 wavelengths has been shown to be a function of 

both the combustion completeness of the fire and the fraction of a pixel which bums (Roy and 

Landmann 2005). As the heterogeneity of the fire effects will be greater at the perimeter of the 

fire both of these factors will contribute to a smaller proportion of the 500m surface area of an 

individual pixel. The change signal identified at such locations may therefore be insufficient for 

the pixel to be labelled as a bum.
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Figure 6.5: Discrepancies between 1km active fire detections and 500m burned areas (additive 
model results), April 2003: black pixels = no bum or fire, red pixels = fire only, green = burn 
only, dark blue = fire and bum (Sites 6C and 6D, Angola)

Figure 6.6: Discrepancies between 1km active fire detections and 500m burned areas (additive 
model results), July 2003: black pixels = no bum or fire, red pixels = fire only, green = bum only, 
dark blue = fire and bum (Site 6E, Angola)

The agreement between the location of active fires and burned areas has been investigated 

within each cover type in order to determine whether there is a consistent discrepancy between 

the two within a particular ecosystem. The percentage agreement has been calculated over the 

eight months of each annual fire season. The data are displayed in Table 6.2 as annual totals.
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These data indicate that the agreement between the active fire detections and burned areas is 

lowest in deciduous broadleaf forests, and highest in grasslands. This is likely to be due to the 

characteristics of the vegetation and the nature of the fires which occur within these vegetation 

types. As described in Section 3.2 the majority of fires within southern African ecosystems are 

surface fires which bum through the herbaceous layer with little effect on established woody 

plants (Frost and Robertson 1985). The probability of detection of such fires will be lower in 

forested areas as the burned surface will be obscured by unbumed canopy components. The 

spatial extent of individual fires may also be smaller and the burned surface more heterogenous 

within ecosystems with a greater woody plant density due to the greater heterogeneity of the fuel 

load. While the fuel load in grasslands is relatively homogenous, in woodlands the woody and 

grass fuel components coexist with more restricted grass production in the more closed canopy 

woodlands (Scholes et al. 2002). Research by Van der Werf et al. (2003) has identified a decrease 

in MODIS 500m burned areas per TRMM active fire count with increasing percent tree cover 

over the African continent, which the authors suggest may be due to differences in the rate of fire 

spread or differing detection capabilities within the different vegetation types. As illustrated in 

Figure 6.5 smaller bum events may result in greater overestimation of the active fire product (or 

underestimation of the area burned) and consequently a lower agreement between the active fire 

and burned area information.

6.2.1 Scaling between active fire counts and the area burned

A review of active fire detection methodologies, products and limitations is provided in Section 

2.3. Although these data provide a useful information source detailing the location and occurence 

of fires, they do not provide spatially explicit information relating to the occurrence of burning. 

Active fire counts are not a good indicator of the area burned as the fires may not coincide with 

the timing of the satellite overpass, or their detection may be precluded due to the presence of 

cloud. These data are therefore not the appropriate product with which to make quantitative 

statements relating to biomass burning emissions (Hoelzemann et al. 2004). Despite the errors 

of omission which will inevitably be present in active fire counts, these have nevertheless been 

used as a surrogate for the area burned. Scaling factors have typically been calculated through a 

comparison with the limited burned area information available and applied to regional or global



CHAPTER 6. ANALYSIS OF RESULTS 241

Additive model results
2000 2001 2002 2003 2004

Deciduous broadleaf forest 
Open shrubland 
Woody savanna 
Savanna 
Grassland

48.3 
56.7 
59.1 
60.5
62.4

47.9
58.9 
56.4 
60.1
61.9

44.7
56.1 
56.4
60.1 
65.1

39.2
49.8
50.5 
53.4
57.6

38.8
50.6
50.6
54.7 
59.6

Multiplicative model results
2000 2001 2002 2003 2004

Deciduous broadleaf forest 
Open shrubland 
Woody savanna 
Savanna 
Grassland

49.8
54.5
59.6
60.9 
60.4

49.0 
54.8 
56.7
60.1 
56.5

47.2
56.5
57.4
60.9
65.7

41.6
49.4
51.4 
54.0
57.6

41.7 
50.6
51.8
55.5
59.5

Table 6.2: Percentage of MODIS (Terra and/or Aqua) 1km active fire locations identified as 
burned in each cover type

active fire counts in order to produce estimates of the total area burned. The relationship between 

TRMM active fire counts and burned areas has been derived using estimates of burned areas 

from MODIS data and ground based information for areas of Africa, Australia and Canada in 

order to quantify carbon emissions (Van der Werf et al. 2003). The relationship between the 

area burned and the fire counts was assumed to be a linear function of tree cover but was only 

found to hold in regions with a tree cover of less than 40%. Possible reasons for this have 

been discussed in the previous section, and include the characteristics of the fires which occur 

in forested areas as well as detection capabilities of both the fire counts and the area burned 

within these ecosystems. ATSR active fire counts have been used to estimate the relative pattern 

of biomass burning within the boreal forest of north America and Russia using burned area 

estimates produced from SPOT-VGT data and ground based regional fire statistics (Kasischke 

et al 2003). However no significant correlation was found between the active fire counts and the 

area burned in the north American study area, although a linear relationship was found to exist 

over the Russian and Canadian study areas. Variations in the overpass time of the ATSR satellite 

are suggested as a possible explanation for this discrepancy, leading the authors to conclude 

that scaling between fire counts and burned areas is not a simple linear transformation as the
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ATSR fire counts to do not represent an unbiased sample of fire activity. Biases which may be 

introduced if active fire counts are extrapolated to the area burned without detailed knowledge of 

the interannual as well as intraannual variabilities in the relationship betwen the two are described 

in Section 3.4.2.

The relationship between MODIS 1km active fire counts and 500m burned areas

No data exist quantifying the relationship between MODIS (Terra and/or Aqua) active fire de

tections and the area burned within different ecosystems or at different times of year. The repre- 

sentivity of the active fire counts as an indicator of the total area or the seasonal variations in the 

spatial extent of burning with southern Africa is unknown. The aim of the following paragraphs 

is to investigate the relationship between the daily MODIS 1km day and night active fire detec

tions and the daily 500m burned areas for the eight months of each annual fire season over the 

five year period.

The percentage of the total area burned which has been detected as an active fire each month 

is displayed in Table 6.3 for the multiplicative model results. As the results are extremely sim

ilar, those produced by the additive model are documented in Appendix B. For the years which 

MODIS Aqua fire detections are available in addition to MODIS Terra for the entire annual fire 

season (2003 and 2004) the agreement between the burned area totals and the active fire counts 

for each satellite are shown, as well as for the total detections. As no MODIS data is available 

between the 14th of June and the 3rd of July 2001 burned areas have not been processed for the 

month of June this year. It is immediately apparent from these data that the relationship between 

the number of active fires detected (by MODIS Terra and/or Aqua) and the area burned varies 

from year to year, and is not linear across the annual fire season. The percentage of the total 

area burned detected as an active fire by MODIS Terra is lowest at the start and end (April and 

November) of the fire season during each of the five years of observations. A greater proportion 

of the total area burned is detected during the peak of the fire season, but this varies annually be

tween the months of July and September. During these months the greatest percentage of burned 

areas detected as active fires by MODIS Terra is typically between 13-14%. The incorporation 

of MODIS Aqua data has a large impact on the relationship between the active fire counts and 

area burned, but again this is not uniform across the annual fire season with a much lower burned
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area per fire count observed at the beginning and end of each fire season. In addition differences 

between the number of fires detected by MODIS Aqua during the afternoon overpass and the 

number of fires detected by MODIS Terra during the morning overpass is greater at the peak of 

the fire season than at the tails. This further complicates the relationship between the active fire 

counts and the area burned. The possible reasons for and implications of this observation have 

been discussed in Section 3.4.2 and include variations in meteorological conditions which will 

influence the fire rate of spread and the likelihood of ignition, the sources of ignition and the 

condition of the vegetation over the course of the fire season. All of these factors will contribute 

to the observed seasonal variability in the diurnal nature of the fire activity within the area of 

interest.

2000
Terra

2001
Terra

2002
Terra

2003
Terra Aqua both

2004
Terra Aqua both

Apr 0.3 0.15 2.8 3.9 8.5 10.7 0.1 0.4 0.5
May 7.4 6.0 10.8 7.9 24.6 29.7 5.4 21.9 25.0
Jun 9.7 N/A 10.1 8.8 29.9 35.2 9.7 36.6 42.1
Jul 7.8 11.2 12.0 10.6 36.6 43.0 10.2 37.6 43.6
Aug 8.9 13.6 13.5 13.5 32.6 41.4 9.9 26.8 33.5
Sep 13.6 14.0 11.1 13.1 22.8 31.4 8.9 13.1 19.7
Oct 10.0 10.2 7.6 8.6 13.0 19.0 8.9 11.1 18.1
Nov 2.6 0.4 1.4 0.7 0.6 1.2 1.5 1.5 2.8
Total 9.3 11.1 10.5 10.6 26.6 33.4 8.9 23.7 29.6

Table 6.3: Percentage of 500m burned areas detected as active fires: Multiplicative model results

The relationship between the active fire counts and burned areas for each annual fire season 

has also been investigated as a function of vegetation type. These data are displayed as annual 

totals in Table 6.4 for the multiplicative model results. The monthly totals calculated for each 

vegetation type for both of the model results (additive and multiplicative) are contained in Table 

C.2, Appendix C. The data displayed in Table 6.4 indicate that the variations between the total 

area burned and the number of active fires detected within each cover type exhibit similar annual 

variations as the data displayed in Table 6.3. As discussed above the relationship between the 

two data sources is not uniform and varies annually as well as seasonally during each annual 

fire season. The inclusion of MODIS Aqua fire counts has a large impact on the percentage
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2000
Terra

2001
Terra

2002
Terra

2003
Terra Aqua Both

2004
Terra Aqua Both

Deciduous broadleaf 7.5 9.7 8.7 8.0 29.7 34.4 7.3 27.2 31.6
Open shrubland 8.5 9.2 8.9 8.7 21.3 27.1 8.2 19.3 25.1
Woody savanna 9.2 11.1 10.1 10.3 28.3 34.6 8.9 26.3 31.9
Savannas 9.9 11.9 11.2 11.6 26.0 33.6 9.4 22.2 28.7
Grasslands 9.0 10.1 11.1 10.3 22.4 29.4 9.0 20.4 26.9

Table 6.4: Percentage of 500m burned areas detected annually as active fires in each vegetation 
type: Multiplicative model results

of the total area burned identified as an active fire across all vegetation types. The agreement 

between the area burned and the active fire counts from MODIS Terra and Aqua within deciduous 

broadleaf forests is an interesting feature of these data. For each year the percentage of the total 

area burned detected as an active fire by MODIS Terra is lowest for areas of deciduous forests. 

However the opposite is true for the Aqua detections, with this cover type exhibiting the highest 

agreement between the area burned and the number of fire counts in comparison to all other 

vegetation types in both 2003 and 2004. The implications of this observation are that a higher 

! proportion of fires within deciduous broadleaf forests occur during the afternoon in comparison 

j to the other vegetation types. This results in a greater probability of detection by the afternoon 

(MODIS Aqua) satellite overpass.
In addition the higher agreement between the area burned and the total active fire counts (both 

I Aqua and Terra) in deciduous broadleaf forest in comparison to grasslands, for example, suggests 

| that the fires which occur within the former are of a smaller size than those which occur in the 

latter. The smaller the area which bums between each satellite overpass the higher the number of 

fire counts per area burned. As described above the burned area per fire count has been found to 

decrease with increasing tree cover over Africa by Van der Werf et al. (2003). It is suggested that 

this may be due to differences in the fire rate of spread with grassland fires spreading quickly 

and burning for a shorter period which results in a lower detection probability of the active 

fire and thus a higher burned area per fire count. In addition burning within deciduous forests 

may be obscured by the canopy, resulting in a lower burned area detection probabilty and an 

underestimation of the total area burned, which will contribute to a higher active fire count per 

area burned.
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Although previous studies have identified significant correlations between fire counts and 

the area burned (Pereira and Setzer 1996, Scholes et a l 1996a) the authors have noted that 

these relationships may be limited by the characteristics of the particular fire events examined. 

The data presented in the previous paragraphs emphasises the variable nature of the relationship 

between the total area burned and the MODIS active fire counts. The relationship between these 

two quantities varies both spatially and temporally. The accurate scaling between active fires 

and burned areas and the extrapolation from active fire detections to the area burned therefore 

requires sensor, vegetation and season specific calibration factors.

6.3 SAFARI 2000 MODIS 500m burned areas

The aim of this section is to compare the burned area results with those produced under the SA

FARI 2000 Dry Season campaign. The SAFARI 2000 project constitutes the first regional test 

for the prototype southern Africa 500m MODIS burned area product. These data have been cre

ated following the approach of Roy et a l (2002) which locates the 500m location and approx

imate day of burning using a change detection algorithm based on a bi-directional reflectance 

model-based expectation method, applied to MODIS band 5. This change detection algorithm is 

described in Section 4.3. The validation of the SAFARI 2000 burned area datasets is currently 

underway, although details are not yet available. The validation protocol involves the derivation 

of maps of the location and approximate day of burning through interpretations by members 

of the Southern Africa Fire Network (SAFNet) of multitemporal Landsat Enhanced Thematic 

Mapper data. A detailed description of the validation methods used can be found in Roy et al 

(2005a).

The SAFARI 2000 burned area data is available in the Lambert Azimuthal Equal Area pro

jection at a pixel size of 500m for the months of July and September 2000. Following the 

characteristics of the input data the monthly burned area information produced according to the 

methods described in the previous chapters is stored in a sinusoidal projection with a pixel size 

of 463.31m. In order to compare the results the burned area datasets have been reprojected from 

the MODIS Sinusoidal projection to the Lambert Azimuthal Equal Area projection with an out

put pixel size of 500m, for the area of overlap. To avoid confusion the Safari 2000 burned areas
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will be referred to as the “SK2”, and the current results as the “Southern Africa Burned Area” 

(SABA) dataset. Due to the unavailability of MODIS data between the 5th and the 19th of Au

gust 2000 a buffer size of only 13 days has been used in the creation of the September 2000 

SABA data (see Section 5.5). Due to this smaller sample size the burned area data for this month 

may be unreliable and are unrepresentative of the dataset as a whole. The subsequent comparison 

will therefore only be performed on the July 2000 burned areas.

6.3.1 Errors of omission

The SK2 dataset documents pixels which have burned between the 26th June and the 4th of 

August 2000. In order to allow for discrepancies between the two datasets due to the identified 

day of burning a four day buffer is applied at the beginning and end of the time series. SABA 

pixels which have been identified as burning between the 26th of June and the 4th of August are 

compared to SK2 pixels which have burned between the 30th of June and the 1st of August 2000. 

The number of 500m pixels identified as burned in both the SK2 and the SABA dataset and the 

percentage of the total SK2 burned area which this is equivalent to is documented in Table 6.5. 

These data indicate that approximately 70% of the SK2 burned areas are also documented as 

burned in the SABA dataset, while approximately 30% of the SK2 burned areas have not been 

identified as burned in the SABA dataset. Table 6.6 defines the criteria which have not been met

Additive model results Multiplicative model results
Pixel count Percentage Pixel count Percentage

387446 67.7 406083 70.8

Table 6.5: Number of pixels and percentage of SK2 burned areas also identified as burned by 
SABA

during the production of the SABA dataset at pixel locations documented as burned in the SK2 

but not is the SABA dataset. The first criteria (Table 6.6) indicates that approximately 5% of the 

pixels identified as burned by SK2 but have not been identified as burned in the SABA dataset 

have not been processed due to an insufficient number of good quality cloud free samples during 

the 91 days used in the production of the SABA data. Criteria two indicates the percentage of the 

errors or omission in the SABA dataset which are due to an insufficient bum signal identified in
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band 2. According to the change detection approach defined in Section 5.5.2, a pixel is identified 

as a potential bum candidate if a proportional decrease in reflectance (5p) of at least 15 %(Sp <= 

-0.15) occurs at band 2 and band 5 wavelengths. Criteria 3 indicates the percentage of the 

errors of omission in the SABA dataset which are due to a proportional decrease in band 2 of an 

insufficient magnitude (i.e. less than 15%) for the pixel to be labelled as a bum. Finally criteria 

4 indicates the percentage of the errors of omission which are due to an insufficient bum signal 

identified in band 2 and band 5.

Criteria (£/?(A)) Additive model Multiplicative model
1 not processed 7.7 7.2
2 b2 < =  -0.15 and b5 > -0.15 13.7 16.7
3 b2 > -0.15 and b5 < =  -0.15 5.0 4.5
3 b2 > -0.15 and b5 > -0.15 72.3 63.9

Table 6.6: Rejection criteria of pixels identified as bums in the SK2 but not the SABA dataset

It is evident from the data contained in Table 6.6 that a large proportion of the errors of omis

sion in the SABA dataset are due to the identification of an insufficient change signal. Following 

the procedure described in Section 5.5.2 above for the separation of areas which have been af

fected by fire from those which have not, pixels are only labelled as potential bum candidates in 

the SABA dataset if Sp(band2) and 5p(band5) are less than the threshold value which has been 

set to -0.15. The reasons for using both bands 2 and 5 are discussed in Section 5.5.2. In particular 

this criteria has been followed in an attempt to reduce potential confusion between changes in 

the surface reflectance at these wavelengths which are due to the effects of fire, from those which 

are due to changes in the conditions and characteristics of the vegetation (see Section 5.5.3). In 

contrast the SK2 dataset has been created following the method of Roy et al. (2002) described in 

Section 4.3. Under this approach bum candidates are identified as pixels which exhibit a decrease 

in MODIS band 5, and band 5 minus band 7 decreases due to burning. The response at MODIS 

band 2 wavelengths is therefore not considered. A subsequent refinement of this algorithm for 

global application however incorporates MODIS band 2 for similar reasons to those discussed in 

Section 5.5.3, with potential bum pixels identified as those where the difference between band 5 

and band 7 and the difference between band 2 and band 7 decreases (Roy 2005). Two reasons 

for the high error of omission of the SABA dataset when compared against the SK2 burned areas
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(Table 6.5) are therefore the exclusion of MODIS band 2 in the identification of the SK2 burned 
areas, and variations in the definition of the magnitude of the change in reflectance required for a 
pixel to be identified as a bum candidate. The latter point is discussed in the following paragraph.

A visual examination of the burned area data indicates a high spatial agreement between 
the location of fire affected areas in the two datasets. Discrepancies are apparent around the 
borders of individual bums, contributing to the low total agreement between the burn locations 
documented in Table 6.5. This is demonstrated by the two examples displayed in Figure 6.7. 
Each corresponds to an area of 45km by 60km (see Figure 6.8). Their geographical locations are

(a) Site 6F: south-western Zambia (b) Site 6G: western Angola

Figure 6.7: Discrepancies between SK2 500m burned areas and SABA (multiplicative model 
results): black pixels = bum in both, red pixels = bum in SK2 only, white pixels = no bum in 
SK2

displayed in Figure 6.8 and are detailed in Table A.l in Appendix A as Site 6F and 6G. A large 
homogenous area has burned at Site 6F (south-western Zambia) while in contrast several more 
patchy bums have occurred at Site 6G (western Angola) during July 2000. The pixel locations 
which have been identified as burned in the SK2 but not in the SABA dataset correspond to the 
red pixels in Figures 6.7. The locations of the areas of disagreement (the red pixels) suggest 
that the discrepancies are due to the definition of what constitutes a burned area in terms of the 
magnitude of the change in reflectance which has occurred due to burning. Research has shown 
that the decrease in MODIS band 5 reflectance which occurs due to burning is a linear function 
of both the combustion completeness of the fire and the fraction of the observation area burned
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(Roy and Landmann 2005). Pixels around the perimeters of fire affected areas are expected to 

exhibit lower decreases in reflectance due to both of these factors. The burned surface will exhibit 

greater heterogeneity around the perimeter and a lower proportion of the area within a 500m pixel 

may therefore have been affected by the fire at locations around the edge of a bum. In addition 

the intensity of the fire and thus combustion completeness will be lower at the perimeter of the 

burned area than at the centre. Following the approach described in Section 5.5.2 a 500m pixel 

is only identified as a potential bum candidate if it exhibits a proportional decrease in reflectance 

greater than 15% at both MODIS band 2 and band 5 wavelengths. Increasing the threshold of 

5p(A) to -0.1 (i.e. a proportional decrease in reflectance of 10%) reduces the error of omission 

due to criteria 3 (Table 6.6) by 37.8% in the case of the additive model results, and by 39.6% for 

the multiplicative model results. The effect of increasing this threshold and the reasons for using 

a value of -0.15 have been discussed in Section 5.5.2. In particular the use of a higher threshold 

results in greater errors of commission at the tails of the fire season with, for example, 68.8% of 

the land surface within the study area exhibiting a proportional decrease in MODIS band 2 and 

5 reflectances of 10% or greater in April 2003.
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The distribution of the SABA errors of omission within each of the main vegetation types 

across the area of interest are displayed in Table 6.7. These data are calculated as the percent

age of the total bums within each cover type identified by the SK2 algorithm which have not 

been mapped by the SABA approach. The errors of omission are distributed evenly across most 

cover types except for grasslands which exhibit a higher agreement between burned areas in the 

two datasets. The higher agreement in grasslands is unknown, but may be due to the greater 

probability of detection of burning within these ecosystems due to a clearer change signal in 

comparison to areas with greater tree cover. This has been discussed in Section 6.2 in reference 

to the detection of active fires.

Land cover Percentage
Deciduous broadleaf forest 31.0
Open shrubland 31.2
Woody savanna 27.2
Savanna 31.7
Grassland 23.7

Table 6.7: Percentage of SABA burned areas not identified as burned in SK2 as a function of 
vegetation type

6.3.2 Errors of commission

Although errors of omission are present within the SABA data a large number of pixels which 

have been identified as burned in this dataset are not present in the SK2 data. The number of 

pixels and the percentage of the total area burned in the SABA data which this corresponds to is 

displayed in Table 6.8. Only SK2 pixels with a value of 0 (i.e. no burning has been detected) have

Additive model results Multiplicative model results
Pixel count Percentage Pixel count Percentage

205775 23.8 275885 29.6

Table 6.8: Number of pixels and percentage of SABA burned areas not identified as burned in 
SK2

been considered in the comparison. In order to exclude discrepancies between the two dataset
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due to the day of burning at the beginning and end of the temporal sequence, a four day buffer 

is applied at the start and end of July. SK2 areas which have been identified as burning between 

the 26th of June and the 4th of August 2000 are thus compared to pixels which are documented 

as burning between the 30th of June and the 1st August in the SABA dataset. A total area of 

68971km2 (275885 500m pixels) which is identified as burned in the SABA multiplicative dataset 

is not present in the SK2 data. This is the equivalent of just under 30% of the total fire affected 

area documented in the SABA dataset. Two areas of 45km by 60km have been extracted from 

the burned area data and are displayed in Figure 6.10 for illustrative purposes. Their locations 

within the study area are displayed in Figure 6.9 and are also detailed in Table A.l in Appendix 

A as Sites 6H and 61. The black pixels correspond to burned areas documented in the SABA 

dataset, and the red pixels to those identified as burned in SABA but not in SK2. At the first 

site (6H) burning has taken place over smaller and less spatially contiguous areas, while at the 

second site (61) burning has occurred over larger areas. At both locations a large proportion of the 

burned areas which have not been identified in the SK2 data (the red pixels) are located around 

the perimeters of or adjacent to bum pixels. As discussed above reasons for these discrepancies 

may include factors such as the combustion completeness of the fire and the proportion of a pixel 

burned, as these will determine the magnitude of the change identified in the remote sensing 

signal. The threshold level used to separate areas of significant bum induced surface change 

from those where the effect of burning is considered minimal at an individual 500m pixel scale 

will also contribute to discrepancies in the location of the bum/nobum perimeter around an area 

of burning. Under the SABA approach a proportional change in reflectance of 15% or greater 

is required at MODIS band 2 and 5 for a 500m pixel to be labelled as burned. As discussed in 

Section 4.5 in contrast to the method of Roy et a l (2002) used in the production of the SK2 

burned areas, the temporal change detection models used to create the SABA dataset account for 

phenological variations in the surface thereby allowing for the improved detection of more subtle 

changes. An examination of the locations which are identified as bums in the SABA dataset but 

not the SK2 product exhibit large changes at band 5 wavelengths. This is demonstrated through 

two pixels which have been selected at random from the errors of commission. The locations of 

these are documented in Table A.l and Figure A.l in Appendix A as Sites 6J and 6K. Site 6J is 

located in central Zambia, and Site 6K in southern Zambia. Both pixels have been identified as 

burned in the SABA but not in the SK2 dataset. The MODIS band 5 reflectances and the model
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predicted values for July 2000 are displayed in Figures 6.11a and Figures 6.11c. Following 

the approach of Roy et al. (2002) the reflectances have been modelled using a 16 day moving 

window additive model (see Section 4.3). Burned areas in the SK2 dataset have been located by 

thresholding a Zscore time series, as described in Section 4.3. The corresponding Zscores for 

the two pixel locations are displayed in Figures 6.11b and 6.lid . For the first example a large 

negative Z-score is evident on the day of burning documented in the SABA dataset. The reasons 

why locations such as these have not been identified as bums in the SK2 product are unknown as 

they exhibit a clear change signal at MODIS band 5 wavelengths under a 16 day moving window 

BRDF inversion scheme.
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(a) Site 6H: northern Angola (b) Site 61: northern Angola

Figure 6.10: Discrepancies between SK2 500m burned areas and SABA (multiplicative model 
results): black pixels = bum in both, red pixels = bum in SABA only, white = no bum in SABA

At the second location (Site 6K) a large negative Zscore occurs on day 194, 9 days before 
the day of burning identified in the SABA dataset. This corresponds to an isolated decrease in 
the reflectance sequence (Figure 6.11c). This has been identified as an outlier in the temporal 
change detection approach (Section 4.5) used to create the SABA dataset and following this 
method has been removed from the sequence. In the change detection approach used to create 
the SK2 data although such outliers are not identified as bums due to the use of a temporal 
consistency threshold which excludes temporary changes they are not removed prior to model 
inversion and the authors note that the BRDF model inversion is insensitive to the inclusion of 
a single contaminated reflectance value (Roy et al. 2002). In scenarios such as that displayed 
in Figure 6.1 lc where the presence of a noisy observation is exacerbated by missing samples on 
the surrounding days, its inclusion clearly has an effect on the model predictions and therefore 
on the change signal (Figure 6.1 Id). When this is removed a large negative Zscore occurs on the 
day of burning documented in the SABA data (Figure 6. lid).

In addition to the errors of commission described above which are typically located on the 
perimeter of burned areas, several large and spatially homogenous fire affected areas identified 
in the SABA dataset are not documented in the SK2 product. This is demonstrated with an area 
of 100km by 160km extracted from the two datasets and displayed in Figure 6.13. The location
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Figure 6.11: SABA errors of commission: 500m bum pixels not identified by the SK2 product
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of this site within the area of interest is displayed in Figure 6.12 and detailed in Table A.l in 
Appendix A as Site 6L (northern Angola). The red pixels in Figure 6.13a indicate pixels which 
are documented as burned in the SABA dataset, but not the SK2 product. The identified day of 
burning for the SABA dataset is displayed in Figure 6.13b. From these data it appears that a 
large proportion of the burned areas which are not identified in the SK2 dataset have occurred 
towards the end of the time period. The distribution of the day of burning for all of the pixels 
within the area of interest which are documented as burned in the SABA but not in the SK2 
dataset are displayed in Figure 6.14. Approximately 27% of the SK2 unidentified burned areas 
have burned within the last four days of July (day 210-213). Due to the use of a four day buffer 
in the comparison of the two datasets locations identified as burned within the SABA dataset on, 
for example, the last day of July (day 213) have not been identified as burned within the SK2 
dataset during any of the previous 34 or the subsequent four days.



CHAPTER 6. ANALYSIS OF RESULTS 259

A large proportion of the burned areas documented in the SABA dataset for the temporal se
quence starting on the 30th June and ending on the 1st August which are not identified as burning 
in the SK2 dataset between the 26th June and the 4th of August have burned between the 29th 
of July and the 1st of August. This is confirmed by an examination of a false colour composite 
of MODIS surface reflectance bands 2, 1 and 4 for the 2nd of August 2000, displayed in Figure 
6.15b for the same location as that displayed in Figure 6.13. The red pixels correspond to ar
eas of dense vegetation and the dark/black pixels to the recently burned surfaces. In particular 
it is evident from Figure 6.15b that the large bum in the centre of the site which has not been 
identified as a bum in the SK2 dataset (the red pixels in Figure 6.15a) but is labelled as burning 
on or around the 1st August in the SABA dataset (Figure 6.13) has been burned by the 2nd of 
August. The greater underestimation of burning towards the end of the temporal sequence by the 
SK2 data suggests that this may be due to a systematic problem in the identification of the day 
of burning at the ends of the time series.

The spatial distribution of the errors of commission have also been investigated as a func
tion of land cover type. The number of unidentified SK2 bums within each vegetation type is 
displayed in Table 6.9 as a percentage of the total number of bum pixel identified by the SABA 
(multiplicative model) dataset within the particular cover type. The highest proportion of burned

Land cover Percentage
Deciduous broadleaf forest 31.3
Open shrubland 26.8
Woody savanna 25.3
Savanna 26.0
Grassland 23.2

Table 6.9: Percentage of SABA burned areas not identified as burned in SK2 as a function of 
vegetation type

areas which have not been identified by the SK2 methodology occur within deciduous broadleaf 
forests, and the lowest within grasslands. Preliminary validation of MODIS burned areas for 
2001 and 2002 have indicated that the SK2 approach is underestimating the regional area burned 
(Roy et al. 2005a). A similar pattern is exhibited in the errors of omission, with the high
est disagreement occurring within deciduous broadleaf forests and the lowest within grassland
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(a) Site 6L, northern Angola: black pixels = bum in  both, red pixels = bum in SABA 
only, white = no bum in SABA

182 213

(b) Site 6L, northern Angola.: Day of bum

Figure 6.13: Discrepancies between SABA (multiplicative model results) and SK2 500m burned 
areas
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Figure 6.14: Errors of commission: distribution of SABA day of bum

ecosystems. The causes of these disagreements are unknown, and possible reasons are discussed 
in Section 6.2.
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(a) Site 6L: black pixels = bum in both, red pixels = bum in SABA only, white = no 
bum in SABA

(b) Site 6L: False colour composite: MODIS bands 2 14, 2nd August 2000

Figure 6.15: Discrepancies between SABA (multiplicative model results) and SK2 500m burned 
areas, Site 6L (northern Angola)
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6.4 GBA2000 1km burned areas
263

The GBA2000 dataset is a global inventory of biomass burning for the year 2000 (Gregoire et al. 
2003, Tansey et al. 2004b). This product has been created from the SPOT VEGETATION SI 
lkm product using algorithms developed and calibrated at a regional scale. The methodology 
applied to the Africa region is described in Section 2.4.2. The data are available as monthly 
binary (bum/nobum) composites. The aim of the following paragraphs is to perform a compar
ison between the monthly burned areas of the GBA2000 and the monthly SABA data for the 
eight months (April to November) of the 2000 fire season. The GBA2000 data are stored in a 
geographic projection. The projection parameters have been adjusted manually and the data con
verted to the Lambert Azimuthal Equal Area projection with an output pixel size of lkm. In order 
to perform a comparison between the lkm GBA2000 burned areas and the 500m SABA data the 
latter have been aggregated to a resolution of lkm with an output pixel detailing the number of 
corresponding 500m bum pixels. The SABA pixel values at a spatial resolution of lkm thus vary 
between 0 where no bum has been identified in any of the corresponding four 500m pixels, and 
4 where each of the SABA 500m pixels and thus 100% of the lkm pixel has been identified as 
a bum pixel. This approach reduces positional errors and provides a more accurate burned area 
assessment for subsequent analysis (Korontzi et al. 2004). Although a validation protocol is 
in place for this product (Boschetti et al. 2004) the burned areas have yet to be systematically 
validated.

6.4.1 Errors of omission

The number of pixels identified as burned in both the GBA2000 and SABA datasets, and the 
percentage of the total GBA2000 burned area which this corresponds to is documented in Table 
6.10. The SABA datasets used in the analysis have included areas identified as burning on the 
last four days of the previous and the first four days of the subsequent month in order to account 
for variations in the day of burning due to missing and/or cloudy data.

A visual examination of the spatial distribution of pixels identified as burned in the GBA2000 
dataset but not in the SABA dataset over the eight months of the 2000 fire season indicate that 
a large proportion of the errors of omission at the beginning of the annual fire season may be



CHAPTER 6. ANALYSIS OF RESULTS 264

Month
Additive model results Multiplicative model results
Pixel count Percentage Pixel count Percentage

April 4032 67.2 5155 86.3
May 2774 35.2 3060 38.8
June 6670 14.9 6732 15.0
July 8944 9.3 8698 9.1
August 10113 13.6 8999 12.1
September 20103 25.7 21303 27.2
October 3380 14.2 3586 15.1
November 2004 45.4 2218 50.2

Table 6.10: Number of lkm pixels and percentage of GBA2000 burned areas not identified as 
burned in the SABA dataset

due to flood events which have been misclassified as areas of burning in the GBA2000 product. 
The causes of the spectral confusion which occurs between water and burned areas has been 
discussed in Section 5.5.3. During the first two as well as the last month of the southern Africa 
fire season a large number of the pixels identified as bums in the GBA2000 dataset have been 
flagged as areas of flooding in the SABA dataset. The same 150km by 100km location which 
flooded in April 2003 and has been used as an illustrative example in Figure 5.17 Section 5.5.3 
is displayed in Figure 6.17 for April 2000. The location of this area corresponds to Site 6M in 
Figure 6.16. The geographical location of the site is detailed in Table A.l in Appendix A. The 
black pixels in Figure 6.17a correspond to areas which are identified as bums in April 2000 in the 
GBA2000 product, while the black pixels in Figure 6.17b have been flagged as potential flood 
events in the SABA April 2000 data. An examination of MODIS 500m band 2 reflectances for 
this location confirms that this is a semi-permanent water feature and not an area of burning. 
Figure 6.18 displays a 190 by 216km portion of a MODIS band 2 image acquired over this area 
on the 29th of April 2000. The site is located to the northeast of the Okavango Delta, and streams 
flowing into and out of the water feature are apparent in the northwest, southeast and southwest 
comers. The contribution of areas of flooding to the total errors of omission contained in Table 
6.10 above are dispayed in Table 6.11 as a percentage of the total number of lkm pixels identified 

as burned in the GBA2000 but not in the SABA dataset.
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(a) Black pixels are identified as burned areas (b) Black pixels are flagged as flooding in the
in the GBA2000 SABA multiplicative model results

Figure 6.17: A semi-permanent water body identified as a bum in the GBA2000 product, Site 
6M, Zambia, April 2000

Figure 6.18: Semi-permanent water features, 29th April 2000, Site 6M (Zambia)

Higher errors of omission are expected to be present in the SABA dataset for the months
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Additive 
model results

Multiplicative 
model results

April 29.3 33.9
May 5.4 8.9
June 0.4 2.2
July 1.7 7.5
August 1.0 5.7
September 0.3 0.7
October 1.4 4.9
November 3.1 2.9

Table 6.11: Percentage of lkm GBA2000 burned areas identified water induced surface change

of August and September due to missing data, as MODIS was not operational between the 5th 
and the 19th of August 2000. Areas which burned between these dates will therefore not be 
documented in the SABA August 2000 dataset. As the day of burning is not calculated for the 
GBA2000 product it is not possible to exclude bums which have occurred during these days from 
the analysis. In addition as a 30 day time buffer is applied in the detection of burned areas in 
the SABA dataset (see Section 5.5) the results for September may be less reliable than for the 
other months due to the necessity of using a 13 day time buffer due to the missing data in August 
2000. It should also be noted that MODIS data sensed prior to November 2000 are noisier than 
later acquisitions due to a poorly performing MODIS detector (Guenther et al. 2002), which may 
result in higher errors of omissions in the SABA 2000 data in comparison to subsequent years.

A large proportion of the errors of omission which are not due to flooding have a distinct 
spatial distribution. These tend to be isolated pixels located in a band along the coast of Angola 
and Namibia which are identified as bums in the SK2 but not in the SABA dataset. This is 
demonstrated with an area of 22km by 16km for May 2000 which is located near the coast of 
Angola and displayed in Figure 6.20. The geographical location of this area is detailed in Table 

- A.l Appendix A as Site 6N. The location of the site within the area of interest is displayed in 
Figure 6.19. The red pixels have been identified as bums in May 2000 by the GBA2000 product, 
but not in the SABA dataset. An examination of the proportional changes in reflectance which 
has occurred at these 500m pixel locations in May 2000 indicates that the changes which have 
taken place are small. The distributions of the Sp(A) values for the red pixels in Figure 6.20
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are displayed in Figure 6.21a. These locations have not been identified as bums in the SABA 
dataset as they exhibit proportional decreases in MODIS band 2 and band 5 reflectances of less 
than 15%. The MODIS band 2 and band 5 reflectances for the pixel (Site 6P, Table A.l and 
Figure A.l in Appendix A) indicated by the X in Figure 6.20 are displayed in Figure 6.21b for 
May 2000. The day of change identified for this sequence is day 135 (the 14th of May), and the 
proportional change values are 0.013 -0.010 -0.009 and 0.003 for MODIS bands 1, 2, 5 and 7 
respectively. A proportional decrease in reflectance of 1% or less has been identified at MODIS 
band 2 and 5 wavelengths at this location, and the pixel has therefore not been labelled as a bum 
in the SABA dataset.
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Figure 6.20: SABA errors of omission: GBA2000 burned areas, Site 6N, western Angola, May 
2000

33

25

28

19

18

9

8 -0.,89 8

(a) Proportional change values: Multiplicative (b) MODIS band 2 and 5 reflectances
model results

Figure 6.21: SABA errors of omission: Site 6P, western Angola, May 2000

6.4.2 Errors of commission

Table 6.12 contains statistics describing the SABA errors of commission in relation to the GBA2000 

product. The number of lkm pixels and the percentage of the total burned area documented in 

the SABA dataset but not identified as burned in the GBA2000 data are detailed for the eight

Om, of
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Month
Additive model results Multiplicative model results
Pixel count Percentage Pixel count Percentage

April 70284 97.3 45816 98.3
May 64186 92.6 55946 92.1
June 131582 77.5 133067 77.7
July 194373 69.1 201089 69.7
August 291851 82.0 302744 82.3
September 250411 81.1 261173 82.1
October 253890 92.6 258864 92.8
November 132586 98.2 119000 98.2

Table 6.12: Number of pixels and the percentage of SABA burned areas not identified as burned 
by GBA2000

months of the 2000 fire season. Although the percentage of SABA burned areas which are not 
identified in the GBA2000 product are large, similar results were found during a comparison 
between the SAFARI 2000 MODIS 500m (SK2) burned areas and those documented by the 
GBA2000 for September 2000, with the MODIS product mapping a total burned area of ap
proximately 1.5 times greater across southern Africa than the GBA2000 product (Korontzi et al. 
2004). As neither of the products have been systematically validated the respective errors of 
omission and commission are unknown. The differences in the algorithms used to produce the 
burned areas may however provide a theoretical explanation for the disagreements. In contrast 
to the monthly compositing approach used in the creation of the GBA2000 product (see Section 
2.4.2) daily directional reflectances have been used to create the SK2 and SABA datasets. While 
the GBA2000 approach attempts to minimise the angular effects present in the daily reflectances 
through a minimum near-infrared compositing technique (Gregoire et al. 2003), the method used 
in the creation of the SABA and SK2 datasets accounts for these effects allowing for the identi
fication of subtle changes which are of a similar magnitude as the directional effects, and would

otherwise be masked by these.
The percentage of a lkm pixel (i.e. the number of corresponding 500m resolution pixels) 

documented as burned in the SABA dataset at the lkm GBA2000 locations which have not 
been identified as burned (i.e. those documented in Table 6.12) are displayed in Table 6.13 as 
a percentage of the total error of commission for each month. These data indicate that at the 
tail months of the fire season a large percentage of the errors of commission occur at locations
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Additive model results Multi] )licative model results
25% 50% 75% 100% 25% 50% 75% 100%

April 80.6 14.5 2.6 0.9 84.8 11.8 1.7 0.8
May 55.4 21.0 9.0 8.4 57.4 19.8 8.2 8.1
June 36.4 20.1 10.2 12.2 37.9 19.6 9.7 12.2
July 30.1 19.3 10.1 11.4 30.2 19.0 10.1 12.5
August 34.9 21.1 11.7 15.2 34.5 20.9 11.8 16.3
September 37.2 20.3 10.8 14.8 38.7 20.4 10.5 14.6
October 47.8 22.0 10.5 13.8 48.1 22.2 10.4 13.9
November 73.7 18.3 4.5 2.2 73.7 18.5 4.4 2.3

Table 6.13: Percentage of each lkm pixel identifed as burned in SABA but not in GBA2000

which contain subpixel (<lkm) bums. There are two possible explanations for this; (i) the 
overestimation of burning by the SABA algorithm, and/or (ii) the occurrence of smaller and less 
severe fires and the underestimation of burning by the GBA2000 during these months. Temporal 
variations in the severity of burning within the area of interest is discussed in the following 
chapter. An analysis of this variable indicates that fires which occur at the beginning and the 
end of the annual fire season are generally less severe than those which occur during the peak 
months. In addition due to the higher moisture content of the vegetation at this time as well as less 
favourable meteorological conditions fires will not spread as quickly resulting in smaller and less 
homogenous burned areas than those observed at the peak of the fire season. Generally higher 
spatial resolution sensors will detect burned areas more reliably than lower spatial resolution 
sensors, as increasing the fraction of a pixel which bums increases the fire induced reflectance 
change and consequently the likelihood of detection (Roy and Landmann 2005). The occurrence 
of smaller (in terms of their spatial extent) and less severe bums at the tails of the fire season may 
therefore be detected more reliably in the higher spatial resolution data. At the peak of the bum 
season (June-September) the errors of commission are less dependent on the percentage of a lkm 
pixel which has burned, with over 60% of lkm pixels not mapped as burned in the GBA2000 
product during these months identified as containing two or more SABA 500m bum pixels.

A visual examination of the errors of commission suggest that these are not predominantly 
caused by overestimation of burned areas in the SABA dataset. This is illustrated by an area of 
200 by 230km extracted from the northeast comer of the study area. This site is displayed in
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Figure 6.22 as Site 6Q and is also documented in Table A.l in Appendix A. Figure 6.23 displays 
the SABA lkm errors of commission. The corresponding 500m day of burning and proportional 
change in band 2 reflectances is displayed in Figure 6.24.

The errors of commission detailed in Table 6.12 have also been investigated as a function of 
vegetation type. The number of lkm pixels which are identified as burned in the SABA dataset 
but not in the GBA2000 product across each of the main vegetation types within the study area 
are displayed in Figure 6.25 as a percentage of the total number of SABA lkm bums within each 
cover type during the eight months of the annual fire season. These data indicate that a higher 
proportion of lkm SABA bum pixels which have not been mapped by the GBA2000 product 
are located within deciduous broadleaf forests. Conversely the lowest errors of commission are 
present over grasslands. The comparison of the SK2 burned areas for September 2000 against the 
GBA2000 product identified a smiliar trend, with the main difference between the two datasets 
associated with areas of higher percent tree cover (Korontzi et al 2004). Possible reasons 
for the greater underestimation of the GBA2000 product in woodlands and forests include the 
characteristics of the fires which occur in these ecosystems, the spatial resolution of the two 
products and different detection capabilities of the algorithms employed. In particular the use of 
higher spatial resolution data allows for more accurate detection of understorey burned surfaces 
which may be partially obscured by unbumed canopy components, as is often the case in the 
surface fire regimes of southern Africa.
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Figure 6.22: Site 6Q and MODIS Landcover Product
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Figure 6.23: Errors of commission: black pixels = bum in both SABA and GBA2000, red pixels 
= bum in SABA only (Site 6Q)
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(a) Day o f burning, September 2000

15% I  60%

(b) Proportional change in band 2 reflectances, September 2000 

Figure 6.24: SABA burned areas, Site 6Q, northern Zambia
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Figure 6.25: Distribution of S ABA/GBA2000 errors of commission within each land cover class
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6.5 Summary
278

This chapter has compared the burned area results produced using the methods described in the 
previous chapters to three other sources of fire-related information. Although the active fire data 
will be biased as it only documents fires which are active and unobscured by cloud or smoke 
at the time of the satellite overpass, it still provides a valuable information source. Few studies 
have characterised these biases due to a lack information quantifying burned areas over large 
regions and multiple years. Section 6.2.1 has investigated the relationship between daily MODIS 
Terra and Aqua 1km active fire detections and the 500m burned area dataset developed during 
the current research. The result of this analysis highlight the nonlinear nature of this relationship, 
with the active fire count per area burned varying both spatially and temporally. In addition the 
temporal variability of this relationship has a diurnal as well as a seasonal dependence. These 
diurnal, seasonal and interannual variations in the active fire count per area burned have impli
cations for studies that use spatially or temporally limited scaling factors to extrapolate between 
active fire detections and the area burned. In particular the exatrapolation from active fire counts 
to the area burned for the purpose of emissions calculations will introduce significant biases into 
the results if appropriate scaling factors are not applied.

The daily burned area dataset produced according to the methods described in the previous 
chapters has been compared to two additional sources of information. The SAFARI 2000 500m 
burned areas have been produced using the method of Roy et al. (2002) described in Section 
4.3. While approximately 30% of the areas documented as burned within the SAFARI 2000 June 
dataset have not been identified as burned using the method developed in this thesis, the converse 
is also true with approximately 30% of these not mapped by the method of Roy et al. (2002). In 
addition to differences in the algorithms and wavebands used in the creation of these two datasets 
these disagreements may in part be due to differences in the input data as well as positional 
errors. Comparisons of the results produced using different change detection techniques may 
be performed more accurately by applying the different methodologies to the same data source, 
thereby excluding omissional or commissional errors which may arise due to the data as opposed 

to the results.
The second source of burned area information used in the analysis presented in this chapter is 

the monthly GBA2000 1km product. In contrast to the SAFARI 2000 burned areas this product
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has been produced using a different source of moderate spatial resolution satellite data (SPOT- 
VGT as opposed to MODIS) and a very different change detection approach. Comparison of the 
two datasets indicates lower errors of omission than for the SAFARI 2000 burned areas, with a 
large proportion of these at the tail ends of the fire season occurring due to the misclassification 
of flood events as bums in the GBA2000 data. In contrast higher errors of commission are 
exhibited with over 60% of areas identified as burned according to the temporal BRDF model- 
based approach developed in this thesis not identified as burned in the GBA2000 product. This 
may be partially due to positional errors as well as differences in the spatial resolution of the 
two datasets. Although the contribution of commissional or omissional errors to the differences 
in these datasets are unknown as none of them have been systematically validated, the temporal 
change detection model developed in the previous chapters should theoretically provide a clearer 
definition of the remote sensing change signal. This is due to the incorporation of both the 
temporal and the angular model into the change detection approach. Both of these allow for the 
identification of subtle changes as well as better identification of these in the presence of missing 
or noisy data.

The burned area datasets developed in the previous chapters are analysed further in Chapter 
7. The daily burned area information for the five annual fire seasons is used to investigate the 
spatial and temporal variability in the area burned within the area of interest during this time.
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7.1 The fire regime
281

Fire is an essential ecological factor in southern African ecosystems. It can also be one of the 
major causes of ecosystem degradation (Ruiz-Gallardo et al. 2004). An understanding of the 
disturbance history of an area is thus of importance in the sustainable management of resources. 
The characterisation of a fire regime is indispensible to land management as it portrays important 
features of wildland fire, such as severity, intensity and pattern across a landscape, which serve 
as important reference for future treatment activities (Keane et al. 2003). In particular as the 
occurrence of fire is one of the only determinants of savanna ecosystems which can be easily 
manipulated, it is an important variable in the management of these areas (Frost and Robertson 
1985). Detailed information relating to the spatial and temporal characteristics (as well as the 
intensity and type) of fires within an ecosystem form important inputs to the fire management 
policy of a region. Fire suppression in ecosystems which are dependent on fire such as African 
savannas may result in previously adapted plants no longer adapted to the new regime (Thonicke 
et al. 2001). In addition while fire suppression policies have been shown to reduce the number 
of medium to large-scale fires the subsequent changes in the vegetation patterns have resulted in 
feedbacks to fire regimes with an increase in the occurrence of large-scale stand replacing fires 
due to higher fuel loads and changes in fuel arrangement (Stocks 1991, Brown et al. 1999). 
Fire suppression in ecosystems which are adapted to fire has also been shown to result in a 
decrease in biological diversity with a loss of up to 50% of plant species, with even greater 
species loss occurring when fire suppression leads to a complete biome switch such as from 
savanna to forest (Peterson and Reich 2001, Uys 2004). In contrast therefore prescribed burning 
is frequently used in southern Africa as a land management and fire prevention tool. Changes 
in the components of a fire regime such as the frequency of fires or their spatial patterning may 
however result in vegetation phases that comprise unstable landscape patterns which may not 
have enough time to equilibrate to these shifts (Brown et al. 1999). Although prescribed burning 
is a viable treatment alternative to reduce the potential for severe fires (Keane et al. 2001), its 
successful implementation clearly requires a thorough understanding of the fire regime of an 

ecosystem.
An understanding of the fire regime is not only of importance for the successful management 

of a region, as discussed in Section 1.1.1 detailed characterisation of the spatial and temporal dis-
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ftibution of fire is a prerequisite for understanding and monitoring carbon dynamics at a regional 
. to global scale. Due to the impact of fires on the structure and functioning of an ecosystem the 
fee regime of an area will determine the quantities of emissions released as a result of burning, 
gs well as the sequestration of carbon by the post-fire vegetation. The plant species composition 
within an ecosystem will be determined by both the timing of burning and the interval between 
recurrent fires. In semi-arid and arid grasslands for example the timing of burning will determine 
toe assemblage of C3 and C4 grasses while the time which elapses between successive fires will 
determine the invasion of woody plants (Bragg 1995). In addition within ecosystems with poor 
autrient stores such as African savanna, changes which occur to a fire regime may result in an 
overall loss of nutrients within the ecosystem (Thonicke et al 2001). Thus while under a stable 
ire regime (i.e. with steady fire frequency conditions) the majority of carbon released due to 
burning will return to the land via vegetation regrowth, a changing fire regime may have large 
impacts on the overall ecosystem dynamics and the ability of the vegetation to sequester carbon 
(Amiro 2001, Candell et al. 2004). A temporal trend of increasing combustion will generate a 
let source of carbon, while a decreasing combustion trend will cause a sink (Chen et al. 2000). 
Ike characterisation of present and past fire regimes is thus of importance in understanding the 
current interactions of the carbon-climate-human system as well as for future predictions under 
various global change scenarios.

The term fire regime is typically used to characterise the pattern of fires within an area as a 
function of time and space. Initially defined by Gill (1975) numerous definitions have subse
quently been put forward as to what constitutes a fire regime (Sousa 1984, Frost and Robertson 
1985, Christensen 1993). The original definition of Gill (1975) used four main components 
to describe a fire regime; fire intensity, spatial extent, frequency and seasonality. Christensen 
(1993) also includes predictability as a component of a fire regime, while the definition of Frost 
and Robertson (1985) incorporates the type of fire and Bond and Keeley (2005) include fuel con
sumption and patterns of fire spread. The factors which contribute to the fire regime of an area 
and the complex interactions between the elements of a fire regime are displayed in Figure 7.1. 
The aim of the following sections is to characterise the fire regime of the southern African study 
area as a function of both time and space using the outputs from the change detection models 
presented in the previous chapter, and to investigate the interactions between the elements of the 
fire regime highlighted (in red) in Figure 7.1 and the vegetated surface.



CHAPTER 7. CHARACTERISATION OF THE FIRE REGIME 283

CLIMATE FIRE
FREQUENCY

VEGETATION
CHANGE

N

SEASON BIOLOGICAL
EFFECTS

INTENSITY

RECOVERY

FIRE
RETURN
INTERVAL

FUEL LOAD EXTENT

Figure 7.1: The determinants and components of a fire regime. Adapted from Diaz-Delgado 
et al. (2004)

7.2 The fire frequency

The fire frequency describes how often an area bums and is defined as the number of events per 
unit time. It will have an affect not only on the characteristics of an ecosystem but will also deter
mine the quantities of gaseous and particulate emissions released due to burning. Diaz-Delgado 

et al (2004) describe fire frequency as one of the most important patterns characterising fire 
regimes irrespective of the ecosystem type, as it enables the identification of recurrent burning 
thereby assisting the formulation of appropriate management plans. Fire recurrence will deter
mine both the species diversity and composition within an ecosystem as it affects plant survival 

probability and thus determines the time available for plants to reach maturity (Diaz-Delgado 
et al. 2004). Single fires will generally have less of an effect on an ecosystem than a succes
sion of fires (Frost 1999), and under a changing fire regime with an increasing fire frequency 
plants will have less time to recover between subsequent tire events. In addition ecosystems 
which are affected by recurrent burning will be characterised by soils with a low nutrient status 
(Eva and Lambin 2000). The impact of fire frequency on soil carbon pools has been investi
gated at a savanna site in southern Africa, with areas of low frequency burning (every five years) 
exhibiting an increase in soil carbon accumulation ot approximately 10% while areas of high 
frequency (annual) burning exhibiting a decrease in carbon accumulation of approximately 10%
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(Bird et al. 2000). Higher frequency fires have also been shown to result in greater heterogene
ity of the landscape and a wider range in fire intensities due to the faster regrowth of the more 
flammable vegetation (Slocum et al. 2002). The effect of fire frequency on species diversity 
varies across ecosystems. Although theory suggests that species richness should be greatest at 
intermediate levels of disturbance, plant diversity has been shown to increase with fire frequency 
in the Scottish Highlands (Hobbs et al. 1984) but to decrease with increasing fire frequency in 
North American prairies (Collins et al. 1995). Few studies have however attempted to quantify 
the effect of fire frequency on species richness in southern African ecosystems, with variable 
results produced by those which have (Schwilk et al. 1997, Uys 2004).

As the frequency of fire occurrence is highly sensitive to meteorological conditions is it likely 
that it will change quickly under a changing climate (Hoffmann et al. 2002). Simulations of 
a Global Circulation Model (GCM) conducted by Hoffmann et al. (2002) identify a positive 
feedback loop with the clearance of tropical savannas resulting in a warmer and drier climate with 
accelerated fire frequencies and further loss of tree cover, with a complete clearance of savanna 
increasing fire frequency by up to 42%. Even under regimes where the majority of fires are 
started anthropogenically climate will still largely determine the fire frequency as meteorological 
conditions and the nature of the fuel load will influence the fire rate of spread and the total area 
burned (Barbosa et al. 1999, Hoffmann et al. 2002). An understanding of the fire frequency of 
an ecosystem is therefore not only of importance in the management of that ecosystem, but in 
predicting future climates and vegetation properties (Hoffmann et al. 2002). While fire regime 
models are typically used to evaluate the influence of a fire regime on ecosystem dynamics, such 
models require a definition of the fire frequency (as well as size distribution) as inputs (Li et al. 
1999). The robust application of fire regime models and their use in gaining an understanding 
of landscape dynamics is therefore dependent on the accurate characterisation of the spatial and 
temporal occurrence of burning within an ecosystem.

Measurements of fire frequency have typically followed one of two approaches; the analysis 
of point frequencies or area frequencies. The reconstruction of fire histories prior to the satellite 
era and the availability of spatially explicit data have involved the use of point frequency infor
mation. Point frequencies assess fire occurrence at single locations using data such as tree ring 
scars (Swetnam et al. 1990, Buechling and Baker 2004). In contrast area frequencies assess fire 
occurrence at a landscape scale through the use of spatially continuous data. Studies based on



CHAPTER 7. CHARACTERISATION OF THE FIRE REGIME 285

area frequencies have been performed using satellite data of burned areas (Diaz-Delgado et al. 
2004) or compilations (“fire atlases”) of mapped observations of past fires (Rollins et al. 2001).

Characterisations of the frequency of fire occurrence have been performed at a variety of 
spatial and temporal scales and across different ecosystem types. Measurements of historical 
fire frequencies (for the past 800 years) have been reconstructed from fire scarred trees and 
infered from forest stand ages in a pine forest in central Colorado (Brown et al. 1999), and using 
charcoal, pollen and peat macrofossil records for the last 1200 years for southern Patagonia 
(Huber and Markgraf 2003). Fire regimes and fire frequencies during the past decade have been 
determined using prescribed burning in the Everglades National Park in Florida (Slocum et al. 
2002), at an individual country level using various satellite data (AVHRR, Landsat and SPOT) 
over a four year (1989-92) period as well as globally from a years worth (April 1992 - March 
1993) of single source satellite data (Dwyer et al. 1999). An alternative approach has involved 
the inference of past fire events using fire frequency models. Diaz-Delgado et al. (2004) have 
applied three different fire frequency models using burned area maps of a region of north eastern 
Spain produced from remote sensing data as an ancillary data source for the period 1975-1993. 
The characterisation of the fire frequencies of the current study area is performed using the 
spatially explicit data described in the preceding chapters, with each 500m pixel considered as 
an individual bum/no-bum event.

7.2.1 Fire frequencies in southern Africa, 2000-2004

As daily burned area information is available the frequency of fire occurrence is investigated 
not only at the temporal resolution of a single fire season, but additionally within each of the 
five annual fire seasons. Table 7.1 contains the proportion of each cover type which bums at 
least once during each annual fire season. Pixels which have burned more than once correspond 
to areas where burning was identified on more than one date with a time interval of at least 7 
days in between the observations. This temporal constraint was implemented in order to exclude 
pixels which were labelled as bums in consecutive months due to the timing of burning. Thus in 
the case of a bum event beginning at a pixel location at the end of one month and continuing at 
the same location during the beginning of the next month and therefore documented in each of 
the monthly burned area maps, it will only be counted as a single event.



CHAPTER 7. CHARACTERISATION OF THE FIRE REGIME 286

2000 2001 2002 2003 2004
1 84.1 86.6 85.8 86.5 87.4
2 13.8 12.2 12.4 12.0 11.2
3 1.8 1.1 1.6 1.3 1.2

2000 2001 2002 2003 2004
1 84.7 87.2 86.7 86.8 87.1
2 13.8 11.9 11.9 12.2 12.0
3 1.4 0.8 1.1 0.9 0.9

(a)Additive temporal model (b)Multiplicative temporal model

Table 7.1: Percentage of total area burned which bum between one and three times during a 
single fire season

It is immediately apparent from the data displayed in Table 7.1 that a relatively large per
centage of areas which bum each year do so more than once during each annual fire season, with 
between approximately 12 and 15% of bum locations burning at least twice in a single annual fire 
season. The number of 500m pixels which this equates to is documented in Appendix D. The 
lowest number of multiple events has occurred in 2004, with a higher percentage of locations 
burning only once during the eight months of the 2004 bum season. The spatial distribution of 
burning and the relationship between the area burned and land cover type is investigated in Sec
tion 7.3. However as the purpose of this section is to characterise the frequency of burning, the 
percentage of each land cover type which bums more than once during any of the five annual bum 
seasons is documented in Table 7.2. Although croplands only account for 0.9% of the study area 
(see Section 3.3) they are included in Table 7.2 for interest as a substantially larger proportion of 
this cover type exhibits multiple bum events during a single fire season, in comparison to the five 
main cover types of the region. This is likely to be due to agricultural practices with land burned 
initially to prepare it for cultivation and subsequently to remove crop residues. Of the remaining 
five cover types which together constitute over 90% of the study area, the highest occurrence of 
multiple burning during a single fire season is exhibited by areas of woody savanna.

The fire frequency is defined here as the number of fire events which have occurred at each 
pixel location over the 5 year period, and is documented in Table 7.3 for the entire study area, 
and in Table 7.4 as a function of land cover type. As the results of the two models are typically 
very similar only the multiplicative model results are displayed. The results from the additive 
model can be found in Appendix E. Figure 7.2 shows the frequency of burning within each of the 
five main cover types over the five year period of observation. The results contained in Table 7.3 
indicate that while approximately 21% of the land surface within the study area has burned only
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Additive results 2000 2001 2002 2003 2004
Deciduous broadleaf 4.8 3.7 3.4 3.8 3.3
Open shrubland 2.3 2.0 2.0 1.8 1.9
Woody savanna 7.2 5.5 5.7 5.9 5.5
Savanna 4.3 3.3 3.9 3.3 3.1
Grassland 3.3 2.4 3.1 2.9 2.7
Cropland 8.5 6.3 9.6 6.2 6.3

Multiplicative results 2000 2001 2002 2003 2004
Deciduous broadleaf 4.8 3.6 3.3 4.0 4.2
Open shrubland 2.1 1.7 1.6 1.7 1.7
Woody savanna 7.3 5.3 5.4 6.0 5.8
Savanna 4.4 3.3 3.7 3.5 3.5
Grassland 2.7 1.9 2.6 2.7 2.5
Cropland 6.5 4.6 6.7 4.7 5.2

Table 7.2: Percentage of each land cover type which bums more than once in a single fire season

once between the beginning of April 2000 and the end of November 2004, approximately 40% 
has burned more than once during this five year period. In addition over 6% of the land surface 
(6.2% equates to an area of 131420 km2) has burned every year during the five year period of 
observation. These data (Table 7.4 and Figure 7.2) show that the distribution of fire frequencies

Frequency Additive Multiplicative
1 21.5 21.4
2 14.5 14.9
3 10.8 11.3
4 8.3 8.7
5 6.1 5.8

Table 7.3: Fire frequency across the study area: Percentage of land surface which bums between 
one and five times during the five year period

is not uniform across the different vegetation types. It is evident that a lower proportion of grass
lands and open shrublands are subjected to burning over the five year period in comparison to the 
remaining three cover types. In addition a higher proportion of these two ecosystems bum only 
once during the five year period in comparison to the other three vegetation types which exhibit a
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Figure 7.2: Fire frequency:Proportion of each cover type which bums more than once between 
2000-2004

higher frequency of burning. 1 his is discussed in more detail in Section 7.4 as a spatial aspect of 
the fire regime. In terms o f the  fire frequency, woody savannas exhibit the highest occurrence of 
recurrent burning with approximately 10% ot this cover class (and approximately 13% of all burn 
locations) burning each year during the five year period. In contrast open shrublands exhibit the 
lowest tire frequencies with less than 3% burning five times during the five years. The reason for 
the higher fire frequencies in  woody savannas is likely to be due to the vegetation composition 
within and the effect of tire on this ecosystem. Frequent low intensity tires can transform areas 
of woodland into open grassy savannas with only isolated fire-tolerant canopy trees and scattered 
understorey trees and shrubs, encouraging the regrowth of flammable vegetation and suppressing 
the regrowth of woody plants and preventing their recruitment into the canopy (Frost 1999). The 
higher lire frequency observed in woody savanna ecosystems may thus be a function of (i) the 
nature of the fire with frequent low intensity fires destroying only the herbaceous understorey 
layer, and (11) the fast recovery of the post-tire surface. Both of these will result in higher fuel 
loads available for burning each year. In contrast in grassland ecosystems, for example, even low 
intensity tires may be more destmctive to the vegetation than in ecosystems with a higher woody 
plant density. The latter tw o points are supported by the data presented in Table 3.8 Section 3.6.2 
descnbing the persistence o f  the MOD1S bum signal. It is evident from these data that areas of 
woody savanna exhibit a bum  signal of a considerably lower duration than areas of grassland,
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open shrubland or savanna. In addition within 7 days woody savanna ecosystems exhibit a faster 
recovery with reflectance levels closer to pre bum levels than the other cover classes, suggesting 
rapid regeneration of the vegetation and recovery of the post-fire surface. In contrast while a 
similar proportional change is observed in the MODIS (band 2) signal for grassland and woody 
savanna ecosystems immediately after the fire, in contrast to woody savannas a significant signal 
is still evident for grasslands 14 days after the fire, suggesting a higher level of destruction and a 
slower recovery of this ecosystem.

Land cover Frequency Proportion 
of total

Proportion 
of burns

1 26.5 37.7
Deciduous 2 16.9 26.0
broadleaf 3 11.0 17.6
forest 4 7.4 11.8

5 4.7 6.9
1 16.1 48.3
2 7.2 21.6

Open 3 4.6 13.9
Shrubland 4 3.3 9.8

5 2.4 6.4
1 22.1 30.0
2 16.3 23.4

Woody 3 12.5 18.3
Savanna 4 10.8 15.5

5 9.6 12.8
1 22.4 34.02
2 15.8 24.6

Savanna 3 12.1 19.2
4 00 00 14.2
5 5.3 8.0
1 16.3 40.8
2 8.6 21.4

Grassland 3 6.2 16.5
4 4.6 12.4
5 3.7 9.0

Table 7.4: Fire frequency across the study area: Percentage of each land cover type which bums 
between one and five times during the five year period: Multiplicative model results
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The spatial distribution of fire frequencies across the study area (calculated from the mul
tiplicative model results) is displayed in Figure 7.3. It is clear from Figure 7.3 that the areas 
which bum every year have a distinct spatial distribution, with a larger proportion of high fire 
frequency pixels in northern Angola and in central and north eastern Zambia. In contrast lower 
fire frequencies are evident in the Namibian, Botswanan and Zimbabwean portions of the area of 
interest. Two areas of 250km by 500km have been extracted from western and eastern Angola in 
order to demonstrate the level of detail and the spatial patterns of the fire frequency information. 
The locations of these are documented in Table A.l and Figure A.l in Appendix A as Site 7A 
and Site 7B. The red pixels thus represent areas which have a fire frequency of 5 and have burned 
during each of the five consecutive fire seasons. The spatial contiguity of the fire frequencies is 
emphasized and it is noted that no spatial operations have been performed in the creation of these 
results. Figure 7.5 displays the land cover classes for Sites 7A and 7B respectively, while Figure 
7.6 displays a digital elevation model (DEM) for the two locations. The elevation data has been 
collected by a Spacebome Imaging Radar (SIR-C) and dual X-band Synthetic Aperture Radar 
(X-SAR) as part of the Shuttle Radar Topography Mission (USGS 2006). The spatial resolution 
of the data is approximately 90m, with a vertical resolution of lm.

The areas of high frequency burning within the site displayed in Figure 7.4a form an interest
ing spatial pattern which is likely to be a function of the vegetation type and composition as well 
as the topography. The vegetation type within the area is predominantly open shmblands, woody 
savanna and broadleaf forest, with the areas which have not burned (black) or have only burned 
once during the five year period (dark blue) corresponding to forested areas. The vertical lines 
and the tendrils of high frequency burning evident in Figure 7.4a thus correspond to areas of less 
dense vegetation located between areas of higher density vegetation. A visual examination of 
the topography of this region suggests that the areas of higher frequency burning (and less dense 
vegetation) correspond to the areas of lower altitude. The second site (Figure 7.4b) exhibits an 
area of high frequency burning to the west and an area of low frequency burning to the east. The 
western portion of the site is predominantly woody savannas, savannas and grasslands, while the 
eastern section is dominated by broadleaf forests. The areas of low frequency burning located 
within the areas of high frequency burning in the western half of the area correspond to patches 
of broadleaf forest which are surrounded by grasslands and savannas. A visual examination of 
the topography of the areas with less dense vegetation and a higher frequency of burning within
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the western section of the region indicates that this area is both lower and flatter than the eastern 
half of the region.

The relationship between the fire frequency and vegetation type within the area of interest 
is investigated further through the characteristion of the fire return interval, which forms an 
additional component of the fire regime. This is discussed in the following section.
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(a) Site 7A (Angola)

Figure 7.4: (b) Site 7B (Angola): Fire frequency (2000-2004): Multiplicative model results
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(a) Site 7A (Angola)

Deciduous Broadleaf ■  Open shrubland
Woody savanna ■  Grassland
Savanna ■  Mixed forest/other

Figure 7.5: (b) Site 7B (Angola): Land cover
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(a) Site 7A (Angola): Topography
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(b) Site 7B (Angola): Topography 

Figure 7.6: Digital Elevation Model, (Source: USGS 2006)
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7.2.2 Fire return intervals

The fire return interval is related to the fire frequency and provides an indication of how often an 
area could bum, or the time expected before it will bum again. The impact of the frequency of 
burning on the structure, composition and dynamics of an ecosystem as well as on gaseous emis
sions due to burning is discussed in the previous section. In particular under a warming climate, 
changes in the fire return interval of a region can have a large effect on carbon sequestration, 
vegetation health and ecosystem sustainability (Kasischke et al. 1995). Minimal research exists 
characterising the recent fire frequency or fire return interval within southern African ecsystems. 
Although Barbosa et al. (1999) have mapped burned areas for the whole of Africa over three 
years during the period 1981-1991 this has been performed at a spatial resolution of 5km and 
over non-consecutive fire seasons. In contrast the GBA2000 product (Gregoire et al. 2003) doc
uments areas burned at a spatial resolution of 1km, but only for the year 2000. Investigations 
into the fire return intervals within southern African ecosystems have typically been performed 
across a limited spatial area using fire records (Van der Werf et al. 2004), or simulated at a re
gional scale using a fire model (Thonicke et al. 2001). Frost (1999) describes the return interval 
of southern African savanna fires as 2-3 years, but notes that there are almost no data to support 
this. The following section thus characterises the fire return intervals within the study area over 
the past five years, at a spatial resolution of approximately 500m.

The fire return interval (FRI) is defined here as the mean number of months between suc
cessive fire events during the five year (2000-2004) period. The mean FRI calculated across the 
entire land area within the region of interest as a proportion of the total number of bum pixels 
is displayed in Figure 7.7 with the vertical black lines corresponding to yearly intervals. Only 
locations with a mean FRI of less than 56 months (i.e. which have burned more than once during 
the five years) are shown. The fire frequency information presented in the previous section (Table 
7.3) indicated that approximately 40% of the land surface within the study area burned more than 
once during the past 5 years. The mean FRI across the study area (Figure 7.7) has four distinct 
peaks with fires recurring after 12, 24, 36 and 48 months, and two less distinct peaks at 16 and 18 
months. The distributions of the FRI becomes wider as the time which has elapsed between suc
cessive fires increases. The data suggest that the mean time interval between successive fires is 
extremely consistent across the study area, with areas which burned during each year of observa-
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Figure 7.7: Mean fire return intervals (2000-2004)

tion (a fire frequency of 5) exhibiting a mean return interval of exactly one year. The implication 
of this information is that the fire regime of the area has been stable over the past five years and 
has a high degree of spatial consistency, with most of the areas which burned every year doing so 
at the same time each year. Under the assumption that the fire regime within the area is largely 
athropogenically driven, then it may be that fires are started at a similar time each year for the 
same purpose, be it agricultural or for improving forage quality. As the fire frequency is highly 
sensitive to meteorological conditions which will determine the fuel loads available as well as 
their ignition potential, any interannual variations in climate would be expected to have an impact 
on the fire frequency and thus the FRI. The variability in FRIs within the Kruger National Park 
in South Africa between 1957 and 2002 have, for example, been shown to be strongly influenced 
by variations in the annual rainfall rather than by management approaches (Van der Werf et al. 
2004). The mean FRI results displayed in Figure 7.7 in particular for the locations which have 
a fire frequency of 5 indicate that in general over the five year period the locations which bum 
every year do so at the same time every year. This suggests that although small scale variations 
may have occurred during this time in general the fire conditions (i.e. climatic potential and 
condition and availability of fuel) have been similar each year.

The distribution of the FRIs as a function of land cover class is displayed in Figure 7.8 as a 
percentage of the total number of pixels within each cover type which have burned during the 
five years. Open shrublands have the most even distribution of FRIs. In contrast woody sa-



CHAPTER 7. CHARACTERISATION 298

8 4 0m"o
fe
w 30
03

!
I -

10 13 23 30 39 40 49 90

F±i'e return interval <nonths>

Figure 7.8: Mean fire return interval (2000-2004) as a function of land cover

vannas exhibit the most uneven distribution with a larger proportion of recurrent fires ocurring 

at 12 month intervals than the other cover types. The reasons for this will be similar to those 

provided above for the higher fire frequencies observed within woody savannas. In particular in 

surface-fire regimes such as the savanna and grassland ecosystems of southern Africa, the fire 

will consume plants located in the grass layer but not trees taller than 2-4m (Bond and Kee- 

ley 2005). The affected vegetation recovers quickly through sprouting and thus while frequent 

fires may reduce the height of the dominant plants they do not necessarily reduce canopy photo

synthesis (ibid). Fires are thus less destructive to ecosystems such as woody savannas than for 
example, grasslands, and the rate of recovery may therefore be faster. Alternately the higher FRIs 

observed in woody savannas may be due to land cover practices and the burning of the vegetation 

for cultivation. However in the absence of information relating to land cover practices in the area 

and over the time period of interest it is only possible to speculate as to the possible causes of 

the observed patterns in the frequency and time intervals between recurrent fires. As discussed 

the frequency of fire occurrence and the length of time which elapses between recurrent fires 

will be dependent on a variety of factors. In particular observed fire return intervals will be a 

result of interannual climatic variability, human influence and changes in vegetation dynamics 

over different time scales as well as the interactions of these (Thonicke et al. 2001).

deciduous broadleaf fo rest 
Moody savanna 
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grasslands -------
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7.3 The seasonality of burning
299

The season of burning is an important component of a fire regime as it will determine the effect 
of fires on the ecosystem as well as the ability of the ecosystem to recover. The effect of burning 
may be minimal to some plants while damaging the above ground components or completely 
destroying others. The level of destruction will depend not only on the intrinsic attributes of the 
plant species but also on their physiological state and the intensity and timing of the fires (Frost 
1999). The intensity of burning will vary as a function of fuel type, fuel load, moisture content 
and the atmospheric conditions at the time of the fire (Frost and Robertson 1985). The timing as 
well as the frequency of burning will thus influence the intensity and patchiness of fires, and con
sequently the structure and composition of the vegetation (Slocum et al. 2002). The interactions 
between the characteristics of the vegetation and the components of the fire regime are displayed 
in Figure 7.1. As described above, within semi-arid and arid environments such as much of 
southern Africa the season of burning (assuming sufficient precipitation) will determine the final 
assemblages of C3 and C4 grasses, while the length of the fire return interval will determine the 
invasion of woody plants with frequent fires suppressing regrowth and recruitment to the canopy 
(Bragg 1995). The timing of burning (as well as the fire return interval) will thus determine the 
plant species composition through selection (Thonicke et al. 2001). In general dry season fires in 
southern Africa will have a greater effect on woody plants than grasses as the majority of these 
are dormant at this point, with late dry season fires always more destructive than those which 
occur earlier in the dry season (Frost 1999). This is because the late dry season is a period of 
nutrient cycling and rapid growth for woody plants. Frequent late dry season fires will transform 
areas of woodland into open savanna with only isolated patches of fire tolerant canopy trees and 
scattered understorey trees and shrubs while early dry season burning or complete suppression 
of fires will encourage the recruitment and growth of woody plants (Frost 1999).

The characteristics and the behaviour of the fire will also vary depending on the timing of 
ignition. Fuel consumption as well as the percentage of total fuels consumed, fire intensity and 
heat per unit area, and the fire rate of spread have all been shown to be greater in dormant as 
opposed to growing season fires (Sparks et al. 2002). An understanding of the duration and 
timing of burning is thus not only of importance in ecosystem management, but is an important 
parameter in the determination of the amount of trace gases and aerosol particles emitted from
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vegetation fires (Dwyer et al. 2000). Fires which occur earlier in the dry season when the 
moisture content of the vegetation is greater will have a lower combustion completeness with a 
lower combustion efficiency in comparison to fires which occur later in the dry season (Hoffa 
et al 1999). The characterisation of the temporal distribution of fire activity at a global scale 
as well as across southern Africa has typically been one of the more researched components 
of the fire regime from satellite data. At a global scale however this has only been performed 
across a single fire season (Cahoon et al. 1992, Dwyer et al. 2000, Gregoire et al. 2003), at the 
African continental scale across three (non-consecutive) fire seasons (Barbosa et al. 1999), and 
in southern Africa for a single fire season (Roy et al. 2002). The following paragraphs provide 
a temporal characterisation of burning (aggregated from daily data) within southern Africa over 
the past five years.

7.3.1 The temporal distribution of burning within the study area

The total area burned each month as a percentage of the total area burned over the eight months 
of the annual fire season are displayed in Figure 7.9 for each of the five years of observation. 
It should be noted that these data do not provide an indication of the total area burned annu
ally which may vary considerably from year to year and is discussed in Section 7.4. The data 
displayed in Figure 7.9 are instead intended to provide a characterisation of the distribution of 
burning across each annual fire season as a proportion of the total area burned over the entire 
season. The timing of burning is similar from year to year with the greatest proportion of bum 
events identified in August every year except 2002. During this year the peak of burning occurred 
a month earlier. A higher proportion of bums also occur in April 2002 in comparison to the other 
four years, while conversely a lower proportion occur in November. These data therefore suggest 
that the bum season occurred earlier in 2002 in comparison to the other four years. The distribu
tion of bum events over each annual bum season has also been investigated as a function of land 
cover type. These results are contained in Table 7.5. The general pattern of burning is similar 
across all of the vegetation types with a relatively uniform temporal distribution from year to 
year, with the highest proportion of each cover type burning between July and August during 
each of the five years. It should be noted that the distributions for the 2001 fire season may be 
affected by the lack of data for June during this year. The earlier occurrence of fires in 2002 in
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Figure 7.9: Monthly area burned as a proportion of the annual total: multiplicative model results

contrast to the other four years described above is also evident across all vegetation types.
Variations in the timing of burning such as those observed during 2002 are likely to be due 

to a combination of factors including the meteorological conditions and in particular the timing 
of the previous wet season and thus the onset of the dry season. In addition as the fire regime 
of southern Africa is largely driven by anthropogenic ignition sources (see Section 3.2), the 

temporal distribution of burning each year will be largely influenced by human activity. An 
examination of the spatial distribution of burning in April 2002 indicates that a greater number 
of fires have occurred in the eastern section of the area of interest and in particular around and to 
the west of the Okavango Delta in comparison to the other four years.

The reasons for the greater extent of burning observed within this region in April 2002 are 
unknown, and are likely to be due to a combination of the factors described above. An exam
ination of the mean EVI data for the eastern portion of the study area for April 2000 to 2004 
indicates that while the interannual variability in mean EVI values is relatively consistent be
tween each vegetation type over the five year period, grasslands and open shrublands are much 
drier in April 2002 in comparison to the other years. Woody savannas and savannas also exhibit 
lower mean EVI values in April 2002 than in April during the other four years. An investigation 
into the impact of short-term rainfall fluctuations in sub-Saharan Africa on land cover change
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Figure 7.10: Eastern half of study area (MODIS tile “h20vl0”): Mean MODIS EVI, 6th April 
2000-2004

for the two year period October 2000 to 2002 has indicated that although the magnitude of land 
cover change during this time was significantly related to rainfall variability, the response of the 
vegetation to variations in precipitation was dependent on the phenology, morphology and phys
iology of the prevailing species (Vanacker et al. 2005). Grasslands and shrublands were found 
to be particulary sensitive to short-term rainfall fluctuations, with over a quarter of the variation 
in the magnitude of land cover change within these ecosystems explained by indices of rainfall 
variability, while in contrast the small changes observed in forest and woodland vegetation types 
were not found to be strongly associated with short-term rainfall variability. Reasons for these 
observations include the morphology and phenology of the plant species within each ecosystem. 
Species within grasslands and shrublands generally extract moisture from the upper soil layer 
through dense but shallow root systems, and their growth cycle is closely linked to instantaneous 
soil moisture availability (Vanacker et al 2005). In contrast tree growth is less sensitive to the 
frequency or duration of precipitation events due to their well-developed root systems which pen
etrate deeper and enable trees to hold a large amount of moisture which can be released gradually 
over time (Scanlon et al. 2002). The observed interannual variations in the temporal distribution 
of burning within the area of interest is therefore likely to be a complex interaction of factors 
including the frequency and duration of precipitation events during the previous wet season, the
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conditions and flammability of the vegetation, and the prevalence of ignition sources.
Regional scale studies have shown a north to south and as well as an eastward progression of 

fires across southern hemisphere Africa during the fire season (Cahoon et al 1992). A similar 
pattern is evident in the burned area results over the region of interest. Figure 7.11 displays the 
day of burning for all pixels identified as bum candidates during 2004. Values thus range from 
day 92 (1st April) to day 335 (30th November) 2004. A general north to south progression is 
evident in the day of burning, with locations in the north tending to bum earlier in the year than 
those in the south. The burning also advances eastward as the year progresses, with the eastern 
extent of the area of interest tending to bum later in the year than the western portion. The 
factors which determine the timing of burning and their interactions are displayed in Figure 7.1. 
In particular the seasonality of burning within southern Africa has been shown to be dependent 
on the levels of precipitation over the preceding two years (Van der Werf et al. 2004) and thus 
the grass fuel loads available (Trollope and Trollope 2004). The following paragraph discusses 
the relationship between the seasonality of burning and the time which elapses between recurrent 

fires.
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2000 2001 2002 2003 2004
Apr 1.7 3.5 5.6 1.5 4.2
May 1.8 1.4 2.7 2.5 6.7

Deciduous Jun 9.7 N/A 9.8 9.9 9.2
broadleaf Jul 25.9 27.5 32.2 28.2 23.3
forest Aug 33.0 39.0 29.2 30.1 33.7

Sep 15.0 14.1 10.7 13.4 15.5
Oct 10.3 10.2 8.3 12.2 5.8
Nov 2.5 4.4 1.5 2.2 1.5
Apr 3.0 5.7 13.9 3.4 3.7
May 2.8 3.8 6.4 4.5 3.8
Jun 8.7 N/A 11.7 10.9 10.7

Open Jul 16.6 19.4 22.0 18.8 17.9
shrubland Aug 23.3 22.1 16.7 24.6 25.2

Sep 20.2 22.5 13.6 14.4 22.2
Oct 20.3 17.8 14.2 13.7 8.3
Nov 5.1 8.7 1.5 9.7 8.3
Apr 2.0 3.4 7.5 2.0 2.8
May 4.6 3.3 6.9 5.6 6.7
Jun 14.4 N/A 16.9 15.5 16.0

Woody Jul 23.5 29.1 26.6 24.7 21.7
savanna Aug 24.5 26.4 19.5 24.7 25.8

Sep 17.2 20.4 12.6 15.5 18.5
Oct 10.8 12.9 8.6 9.1 6.0
Nov 2.9 4.5 1.3 2.9 2.5
Apr 2.1 2.6 13.0 2.3 1.7
May 3.4 2.8 8.8 5.8 3.5
Jun 10.5 N/A 12.7 11.8 10.3

Savanna Jul 17.4 20.3 23.1 18.8 16.7
Aug 25.5 26.4 17.6 30.5 30.8
Sep 20.7 22.5 14.4 15.5 24.1
Oct 15.1 18.0 8.6 10.4 8.2
Nov 5.2 7.4 1.9 4.9 4.7
Apr 2.2 4.2 8.8 2.8 2.1
May 2.7 3.4 6.6 4.8 2.9
Jun 9.6 N/A 16.9 16.9 14.5

Grassland Jul 18.6 24.5 27.0 19.6 17.2
Aug 25.8 16.9 17.7 27.9 26.6
Sep 19.6 20.5 12.7 12.2 22.4
Oct 15.9 23.2 9.2 9.3 5.9
Nov 5.5 7.3 1.2 6.5 8.2

Table 7.5: Percentage of total annual area burned within each cover type: Multiplicative model 
results
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The relationship between the timing and frequency of burning

As discused above the effect of burning on an ecosystem will be dependent (amongst other 
factors, see Figure 7.1) on the timing of the fire as this will not only determine the quantity and 
characteristics of the available fuel loads, but also the ability of the plants to regenerate after 
burning. The timing of burning is thus expected to have an effect on the frequency of burning 
and the time which elapses between recurrent fires. This is investigated through the calculation 
of the mean fire return interval (see Section 7.2.2) as a function of the initial month of burning 
during the five year period. Figure 7.12 contains these results for all grassland pixels within 
the area of interest. The results are displayed as the proportion of the total number of grassland 
pixels identified as burning more than once during the five year period of observation. As the 
results are very similar for each cover type only the data for grasslands are shown. The overall

Figure 7.12: Mean fire return intervals of savanna fires as a function of the timing of initial 
burning

trend in the results displayed in Figure 7.12 is a decreasing mean fire return interval as the 
month of initial burning increases. Pixels which bum in April for the first time during the five 
year period of observation (2000-2004) across the entire study area exhibit mean return interval 
peaks at approximately 14 and 27 months. In contrast those which bum initially in June exhibit 
peaks at approximately 12 and 25 months, while those which bum initially during August peak 
at approximately 10 and 22 months. Fire return intervals are lowest at locations which bum
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initially in November, with peaks at approximately 9 and 19 months. The implication of these 
results is that locations which bum later in the dry season have a shorter time interval between 
recurrent fires than those which bum earlier in the dry season. As discussed above the plant 
species composition within an ecosystem will be determined by both the timing of burning and 
the interval between recurrent fires. In grasslands the assemblage of C3 and C4 grasses will be 
determined by the timing of burning while the time which elapses between successive fires will 
determine the invasion of woody plants (Bragg 1995). Short fire return intervals will suppress the 
regrowth of woody plants, with frequent late dry season fires transforming areas of woodland into 
open grassy savannas with only isolated fire tolerant canopy trees and scattered understorey trees 
and shrubs (Frost 1999). In contrast early dry season burning favours the recruitment and the 
growth of woody plants (Trapnell (1959) in Frost (1999)). As grassland and savanna vegetation 
are more prone to widespread and frequent burning (Frost 1999) the results displayed in Figure 
7.12 can be explained by the positive relationship between the occurrence of late dry season fires 
and fire frequency. Fires which occur later in the dry season thus have a greater effect on the 
woody vegetation while encouraging the regrowth of more flammable vegetation, which in turn 
results in a landscape more prone to frequent fires thereby exhibiting shorter fire return intervals. 
Conversely fires which occur earlier in the dry season are less destructive to the vegetation and 
encourage the growth of woody plants resulting in longer intervals between recurrent fires. The 
relationship between the timing of burning and the destruction to the vegetation (i.e. the severity 
of burning) is discused further in Section 7.6.1.

7.4 The spatial extent of burning

The need for spatial and temporal information relating to the area burned has been discussed 
in Section 1.1.1. In particular quantifying the contribution of biomass burning to the global 
distribution of emissions of carbon into the atmosphere requires information relating to the area 
burned (Simon et al. 2004). The total area affected by fire is currently one of the parameters 
which provides the greatest uncertainty in the calculation of the quantity of biomass burned and 
the gases emitted at regional or global scales (Scholes et al. 1996a, Conard et al. 2002). In certain 
African countries (for example Angola and Namibia) annual estimates of the area burned at the
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country level are unknown (Tansey et al 2004b). Frost (1999) thus notes the lack of adequate 
data on the trends in the area burned annually in southern Africa. While various studies have 
since quantified the area burned at a continental or global scale, these have been performed at 
the scale of a single annual fire season (Gregoire et al. 2003, Simon et al. 2004) or across three 
(non-consecutive) fire seasons (Barbosa et al. 1999). The aim of the following paragraphs is 
therefore to quantify the total area burned within the area of interest over five annual fire seasons 
(2000-2004), as well as within each of the main vegetation types present within the study area.

7.5 Annual burned area totals

The total area burned each month across the entire area of interest is displayed in Table 7.6 for 
each year calculated from the multiplicative model results. The proportion of the land surface 
within the study area (i.e. excluding pixels identified as either water or permanent wetlands in 
the MODIS land cover product) which this equates to is documented in Table 7.7. The additive 
model results are contained in Appendix F. An examination of the results contained in Tables 7.6

2000 2001 2002 2003 2004
Apr 1.46 1.99 6.74 1.52 1.66
May 2.55 1.85 4.85 3.60 3.44
Jun 8.09 N/A 9.00 8.61 8.27
Jul 13.89 14.61 15.81 14.05 12.50
Aug 17.72 16.07 12.11 18.39 19.21
Sep 13.05 12.60 8.54 9.91 14.19
Oct 9.25 9.66 5.71 6.73 4.79
Nov 2.92 3.80 1.05 2.77 2.65
Total 68.93 60.58 63.81 65.58 66.71

Table 7.6: Total area burned (million hectares): Multiplicative model results

and 7.7 indicates that over the five year period of observation the largest area burned in 2000, and 
the smallest in 2001. The total area burned during each of these two years differs by 8.35 million 
hectares. This is likely to be due to the missing data for the month of June 2001. No burned 
area information has been processed for this period as MODIS data are unavailable between the 
14th of June and the 3rd of July. Excluding the 2001 fire season, at least 29% of the land surface
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2002. The peak of burning occurs in July 2002 and comparatively lower burned area totals 

are evident for the remainder of the 2002 bum season. In comparison peak burning occurs in 

August in each of the other four years. The reasons for these variations are unknown but may 

include the climatic conditions and in particular the levels of precipitation during the 2001/2002 

wet season. The relationship between rainfall and the magnitude of land cover change has been 

discussed in Section 7.3.1. In particular variations in the magnitude of land cover changes in 

sub-Saharan Africa have been shown to be significantly related to short-term rainfall fluctuations 

(Vanacker et a l 2005). The strength of this relationship is dependent on the vegetation type, with 

grassland and shrublands more sensitive to the timing, intensity and duration of rainfall events 

than forests or woodlands. The reasons for this are linked to the morphology of the prevailing 

plant species as discussed in Section 7.3.1. The temporal distribution of burning is thus likely to 

be related indirectly to variations in precipitation, which will determine the characteristics of the 

vegetation. Figure 7.14 displays interannual variations in mean MODIS EVI values for savanna 

pixels between the the end of each annual fire season and the start of the next. Day 275 (or 274 for
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Figure 7.14: Vegetation phenology (savannas), October to May: MODIS EVI

the non-leap years) corresponds to the 1st October, and day 488 (or 487) to the 1st of May. The 

period between October 2001 and May 2002 clearly exhibits a different trend, with the growth 

cycle of the vegetation appearing to occur earlier than during the other years. Vegetation growth
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peaks ealier (approximately day 335 - the 1st December 2001) and senescence begins earlier, 
with a decreasing trend in the mean EVI values occurring by day 400 (the 4th of February 2002). 
In comparison at the beginning of February in 2001, 2003 and 2004 the vegetation is not yet or 
is only just at the peak of its growth cycle. At the onset of the 2002 fire season (day 458) the 
vegetation is drier than at this point during any of the other years. The variations in the area 
burned and the temporal distribution of the burning in 2001 and 2002 in comparison to the other 
years of observation is thus likely to be due to the conditions of the vegetation at this point. The 
end of the annual fire season occurs due to the decrease in the fuel loads available and the onset 
of the rainy season. Conversely the beginning of the subsequent fire season follows the end of the 
rainy season and the associated increase in temperature and decrease in vegetation moisture. The 
longer duration of the 2001 fire season with considerably greater areas burned than, for example, 
November 2004, and the earlier start of the 2002 fire season is likely to be a result of interannual 
variations in precipitation, which determine the fuel loads available.

7.5.1 Burned area totals in each vegetation type

The total area of each of the five main vegetation types present within the study area which 
has burned during each of the annual fire seasons are contained in Table 7.8. The figures are 
displayed as 100,000 hectares. Thus in April 2000 435,700 hectares of deciduous broadleaf 
forest burned. The monthly totals as well as the additive model results are documented in Tables 
F to F.6 in Appendix F. The data displayed in Table 7.8 indicate that the total area burned within 
each cover type is relatively similar from year to year, with similar annual variations observed 
across all vegetation types. Although the total area of woody savannas and savannas burned each 
year is considerably larger than the other cover classes, this may be due to the larger quantities of 
this vegetation type within the study area. Table 7.9 contains the same data but as a percentage of 
each cover type in order to investigate the proportion of each vegetation class which bums each 
year. Figure 7.15 displays these data graphically at monthly intervals across the entire five year 
period in order to demonstrate the inter as well as intra annual variations.

The data contained in Tables 7.8 and 7.9 indicate that in comparison to the other vegetation 
types considerably lower proportions of grasslands and open shrublands bum every year. Thus 
while over 29% of deciduous broadleaf forests, woody savannas and savannas bum during each
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2000 2001 2002 2003 2004
Deciduous broadleaf forest 
Open shrubland  
Woody savanna 
Savanna 
Grassland

4.36
2.22
22.81
32.52
2.91

3.75
2.03
19.73
29.51
2.45

3.69
19.63
20.23
31.60
2.78

4.10
20.4
21.58
31.48
2.83

3.96
2.03 
21.07 
32.99
3.03

Table 7.8: Total area burned (million hectares): Multiplicative model results

2000 2001 2002 2003 2004
Deciduous broadleaf forest 
Open shrubland  
Woody savanna 
Savanna 
Grassland

34.34
14.72
40.68
32.04
18.24

29.54
13.50
35.18
29.08
15.37

29.03
13.04 
36.07 
31.14 
17.43

32.29
13.56
38.48
31.02
17.74

31.20
13.51 
37.58
32.51 
18.94

Table 7.9: Percentage of vegetation class which bums: Multiplicative model results

Month < 2000-200-4 >

Figure 7.15: Proportion of each vegetation type burned per month between April 2000 and 
November 2004: Multiplicative model results



CHAPTER 7. CHARACTERISATION OF THE FIRE REGIME 313

annual fire season, only 13-14% of open shrublands and 17-18% of grasslands typically do so. 

The reasons for this are unknown, but may be due to the characteristics of the vegetation as 

well as anthropogenic land cover practices within and around these cover types. As grasses are 

generally not sensitive to increasing levels of fire intensity and exhibit no significant differences 

in recovery with increasing levels of intensity (Trollope and Trollope 2002), the intensity and 

the severity of the fire (this is discussed further in Section 7.6.1) is unlikely to be a factor in 

the lower proportional burning within grassland ecosystems. A possible explanation is the lower 

quantities of available fuel loads within grassland and open shrubland ecosystems in comparison 

to those with a greater herbaceous and understorey canopy layer. Arid areas of southern hemi

sphere Africa may bum infrequently due to insufficient fuel loads available to carry a fire with 

several years of fuel accumulation (or an exceptionally wet growing season) required to generate 

sufficient fuel loads (Goldammer and Mutch 2001). Figure 7.16 displays MODIS EVI data for 

the five year period of interest. These data are the mean EVI values for each vegetation type cal

culated across the entire study area. The EVI data indicate that grasslands and open shrublands
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Figure 7.16: MODIS EVI profiles (January 2000 to November 2004). The vertical red and black 
lines indicate the start and end of the annual fire season respectively.

have the lowest values and thus lower biomass than deciduous broadleaf forests, woody savannas 

and savannas during each annual wet and dry season. While the EVI values for each vegetation 

type are low at the peak of the dry season, deciduous broadleaf forests and woody savannas in
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particular, and savannas to a lesser extent exhibit large increases in biomass over the course of 
the wet season, (i.e. the period between the end of the annual fire season and the start of the 
next). The lower EVI values may provide an explanation for the lower proportions of grass
lands and open shrublands burned during each annual fire season, as there may be insufficient 
fuel present to carry a fire. The lower fuel loads available in southern African grasslands may 
also be exacerbated by herbivory, reducing what little plant matter there is during the dry season 
even further. In contrast to forested and woodland areas grassland and open shrubland ecosys
tems may thus require multiple growing seasons after the occurrence of a fire before sufficient 
biomass has accumulated to fuel a subsequent fire event.
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j 7.6 The severity of burning

\ magnitude of an ecological disturbance consists of two components; (i) the intensity, which 
r provides a measure of the strength of the disturbing force, and (ii) the severity, which provides a 
| measure of the damage caused by the disturbing force (Sousa 1984). Although the two are often
I used interchangeably they are separate quantities. Fire severity is generally described broadly as
t
f the degree of ecosystem change as a result of burning and provides information on the spatial 

variation in the effects of fire on the landscape, while the intensity of a fire is typically defined as 
the rate of heat release over time, with the energy per length of fire front (the “fireline intensity”) 
increasingly used as a standard measure of fire intensity (Bond and Keeley 2005). The fireline 

< intensity will be a function of the fuel heat content, the quantity of fuel consumed and the fire 
! rate of spread (Diaz-Delgado et al. 2004). Although the intensity of a fire will often dictate 

its severity, depending on the measure used as an indicator of severity the two are not always 
well correlated (Neary et al. 1999). A consistent set of criteria for classifying levels of fire 
severity have yet to be defined and as a result a range of different measures have been used as 
indicators of fire severity (Ryan 2002). These include the depth of bum and the penetration of 

\ heat into the soil layers (Groot and Wein 2004), ash pH and soil microarthropod community 
(Henig-Sever et al. 2001), temperature residence time at the surface (Perez and Moreno 1998), 
and the degree of tree or aboveground mortality (Elliott et al. 1999, Miller and Yool 2002). Ryan
(2002) notes however that the use of ground-based processes as indicators of fire severity may 
not be suitable as in addition to excluding the aboveground dimensions of severity, soil heating is 
typically shallow even if surface fires are intense. Focussing on the above ground impacts of fire, 
the amount of biomass combusted can be used as an indicator of severity (Oertel et al. 2004).

The effects of fire on plants and soil will vary according to the intensity of the fire, which will 
in turn be determined by a variety of factors (Perez and Moreno 1998, Diaz-Delgado et al. 2004). 
The quantity of fuel available is one of the most important factors influencing fire behaviour as 
it will determine the total amount of heat energy available for release during a fire (Trollope and 
Trollope 2002). The moisture content of the fuel is also of importance as it will affect the ease of 
ignition as well as the rate of combustion and the quantity of fuel consumed. Fuel moisture has 
a negative relationship with fire intensity due to the smothering effect of water vaopur released 
during burning and the reduction in the quantity of oxygen in the proximity of burning, thereby
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decreasing the rate of combustion (Trollope and Trollope 2002). Fires which occur in the middle 
of the southern African wet season are thus cooler and more patchy than those which occur 
during the dry season (Frost and Robertson 1985). Fire severity will also vary with vegetation 
structure. Crown height and bark thickness will determine levels of bum severity as will the 
intrinsic attributes and physiological state of the plants (Frost and Robertson 1985, Ryan 2002). 
Meteorological conditions and in particular the air temperature and relative humidity at the time 
of burning are also of importance. The intensity and severity of a fire will thus be linked to 
both the seasonality and frequency of burning, as these will affect all of the factors described 
above (Frost and Robertson 1985). In theory, fire severity will be inversely correlated to the time 
between successive fires (the fire return interval), with high intensity stand destroying crown 
fires exhibiting longer intervals between successive fire events than lower intensity surface fires 
(Sousa 1984, Brown et al. 1999). This is due to the higher fuel loads which accumulate under 
longer fire return intervals and subsequently result in more intense fires.

The characterisation of levels of fire severity is a requirement in sustainable ecosystem man
agement. Severity is an important determinant of post-fire ecosystem development, with infor
mation relating to the severity of burning across a landscape as well as the heterogeneity of bum 
severity patterns within the perimeter of a fire of importance to land managers (Wagtendonk 
et al. 2004). While fires of low to medium severity may be beneficial for ecosystem stability and 
productivity high severity fires tend to have devastating ecological consequences (Oertel et al. 
2004). Information relating to the severity of vegetation fires within a region is not only of im
portance in understanding the spatial impact of fires on the landscape, but also in quantifying the 
relationship between climate and fire intensity and severity. Changes in fire severity (as well as 
in the fire return interval) can have a large impact on carbon sequestration and ecosystem health 
and sustainability (Kasischke et al. 1995). The factors which determine the intensity and severity 
of a fire are highly sensitive to meteorological conditions and are thus likely to respond quickly 
to any climate change (Hoffmann et al. 2002). The severity of a fire will influence the quantity 
and type of emissions released as a result of burning, and variations in fire severity are thus of 
importance in estimating emissions (Kasischke et al. 2005). Higher intensity (flaming) fires are 
more efficient and have a higher degree of combustion completeness and release more CO2 in 
comparison to less efficient (smoldering) fires which bum with a lower combustion completeness 
and release more CO (Ward et al. 1996). Research has shown that within sub-Saharan Africa
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areas of grasslands and/or open woodlands exhibit the highest CO2 emissions due to burning, 
while areas with a higher percent tree cover release more CO (Korontzi et al. 2004).

The recognition of the importance of fire intensity and the effects on different ecosystems 
has resulted in significant improvement in the use of fire as a management practice in African 
savannas and grasslands (Trollope and Trollope 2002). Few studies have however investigated 
levels of fire severity using remote sensing data, and those which have have done so over a limited 
temporal scale. Chafer et al. (2004) have used a single pre-fire and a single post-fire SPOT 
VEGETATION image to map fire severity in Australia based on NDVI differencing (see Section 
2.1.1). Cocke et al. (2005) have used a similar approach, classifying a single fire event in Arizona 
into four severity levels based on a Difference Normalized Bum Ratio, while Diaz-Delgado et al.
(2003) have used a longer time series consisting of eight Landsat TM images ranging from 13 
days to 1165 days after a single large fire in Spain. The approach involved the comparison of 
pre-fire and post-fire NDVI images to determine levels of severity. The evaluation of pre and 
post-fire Landsat Normalized Bum Ratio (NBR) images are used by land managers in the USA 
to assess landscape level fire severity. Calculated as the difference between the near and middle 
infrared wavebands (MODIS equivalent bands 2 and 7) divided by their sum, this approach 
forms a component of the Fire Effects Monitoring and Inventory System (FIREMON) (Lutes 
et al. 2004). The severity information is subsequently used to (i) identify areas which require 
rehabilitation or post-fire treatment (ii) to validate and improve fire spread models, (iii) to update 
fuel models and vegetation layers for fire growth models, and (iv) to examine vegetation change 
effects for wildlife concerns (ibid). The drawbacks associated with the use of NDVI images and 
NDVI differencing is discussed in Section 2.1.1. In addition it is noted that within the area of 
interest a consistent bum signal is not observed at MODIS band 1 or band 7 wavelengths. As 
discussed in Section 5.5.3 changes in the spectral signal due to burning vary in both magnitude 
and direction at MODIS band 1 and 7 wavelengths. Thus while a decrease in reflectance is 
consistently observed at MODIS bands 2 and 5 over burned areas, burning results in either (i) an 
increase, (ii) a decrease, or (iii) minimal change in MODIS band 1 and 7 reflectances. Indices 
which assume a consistent change signal in either of these wavebands may therefore not be 
suitable as indicators of bum severity within the southern Africa study area. In addition Roy 
andLandmann (2005) note that values of a ratio spectral index computed using MODIS bands 5 
and 7 decrease in a nonlinear manner with respect to either the combustion completeness of the
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fire or the fractional area burned. This observation implies that ratio-type spectral indices may be 
sensitive in a nonlinear manner to the size and combustion completeness of the fire, and therefore 
may exhibit variable capabilities as indicators of fire properties (Roy and Landmann 2005).

Recently “process-based” functions relating to the fire behaviour have been used as indica
tors of fire severity. Kaufman et al (1998) and Wooster et al (2003) have investigated the use of 
the Fire Radiative Power (FRP, calculated as the total integrated instantaneous radiative energy) 
as a measure of fire intensity and a proxy for the total fuel combusted when integrated over time, 
while Smith et al (2005) have used the duration of the fire, the maximum temperature attained 
and the integration of the fire temperature with time to determine fire severity. Despite these 
efforts coherent information relating to the spatial and temporal variations in fire characteristics 
such as intensity and severity remains limited, and the remote sensing of these variables is there
fore a noted goal in wildfire research (Smith et al 2005). The severity of burning is defined here 
as the degree of surface change which has occurred due to fire. The following subsections pro
vide a characterisation of the relative severity of burning across the study area over the five year 
period using the proportional change in surface reflectance to determine the degree of surface 
change which has taken place as a proxy for bum severity.

7.6.1 An indicator of bum severity

Fire induced changes in the remote sensing signal at near to mid-infrared wavelengths (MODIS 
bands 2 and 5) occur as a result of the combustion of the vegetated surface layer. The nature 
of these changes is described in Section 3.5. The proportional change in reflectance (6p(A) in 
Equation 3.3) at MODIS band 2 and 5 wavelengths provides a measure of the relative change 
which has taken place at each 500m pixel location due to burning. The magnitude of the change 
in reflectance due to burning at near infrared wavelengths has been shown to be dependent on (i) 
the proportion of a MODIS 500m pixel which has burned, and (ii) the combustion completeness 
of the fire (and hence the degree of damage to the vegetation) (Roy and Landmann 2005). In
creasing either (a) the fraction of a pixel which bums, or (b) the combustion completeness of the 
fire will result in a greater change in reflectance due to burning ibid. The proportional change in 
reflectance can therefore be used as an indicator of the degree of damage and thus a surrogate 
for bum severity. Higher severity bums are expected to exhibit a greater proportional decrease in
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MODIS band 2 and 5 reflectances than lower severity bums, due to the greater destruction of the 
vegetation. This is supported by the spatial nature of the proportional change values observed 
across fire affected areas. Figures 7.18a and 7.18c illustrate the spatial distribution of 6p(band5) 
values for two sites, each covering an area of approximately 100km by 100km. For comparative 
purposes the Normalised Bum Ratio (calculated as the difference between MODIS bands 2 and 7 
divided by their sum) is displayed in Figures 7.18b and 7.18d for the two regions. The NBR data 
been calculated from the band 2 and 7 forward modelled nadir reflectances (Equation 5.4). The 
two locations correspond to sites 7C and 7D (Figure 7.17). Their location is detailed in Table A. 1 
in Appendix A. A different pattern of burning is evident at each of the two locations with the first 
site containing fire affected areas of a smaller individual spatial extent but which exhibit a greater 
proportional decrease in reflectance than the second site where the spatial extent of burning is 
greater but the proportional decrease (and thus the degree of damage) is comparatively lower.
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Figure 7.17: Sites 7C, 7D and MODIS Landcover Product
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0 60%

(a) Site 7C (northern Angola) July 2004: pro
portional decrease in MODIS band 2

0 I 0.5

(b) Site 7C (northern Angola) July 2004: Nor
malised bum ratio

0 60%

(c) Site 7D (southern Angola) August 2004: 
proportional decrease in MODIS band 2

(d) Site 7D (southern Angola) August 2004: 
Normalised bum ratio

Figure 7.18: Spatial patterns o f burn severity at two locations: Multiplicative model results
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While the spatial patterns of high severity burning are generally comparable for the pro

portional decrease and the NBR data displayed in Figure 7.18, fewer areas of higher relative 

severity are identified in the NBR data for Site 7C (Figure 7.18b) in comparison to the propor

tional change results (Figure 7.18a). These areas correspond to pixels which exhibit a decrease 

in MODIS band 7 reflectance as a result of burning. The distribution of band 7 values for the two 

sitesare displayed in Figure 7.19. These data indicate that a greater proportion of the bum pixels 

are characterised by a decrease in MODIS band 7 reflectances at Site 7C. As the NBR works on

u

■ “
-m.4 •.3

Proportional cKan*« in r*floctonc*

Figure 7.19: Distribution of MODIS band 7 proportional changes in reflectance: Sites 7C and 
7D (northern and southern Angola)

the principal that the difference between band 2 and 7 reflectances decrease as a result of fire, the 

greater proportion of pixels which exhibit a decrease in band 7 reflectance at Site 7C explains the 
lower agreement between the two indicators of bum severity at this site. In situations where the 

band 7 reflectance decreases as well as the band 2 reflectance, this measure will not be a good 

indicator of bum severity. In particular as pixels which exhibit a decrease in band 7 reflectances 

as a result of burning also tend to exhibit a greater proportional decrease in MODIS bands 2 and 

5 than those with a smaller or a positive change in band 7 reflectance, it is possible that these 

locations correspond to areas of high severity burning. If this is the case then the saturation of 

the NBR under such circumstances makes it an unsuitable indicator of bum severity.
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The areas of high proportional change (the red pixels) at both sites (Figures 7.18a and 7.18c) 

are located within the boundaries of the fire affected areas and surrounded by areas of lower 
proportional change. This pattern of severity is expected as areas within the perimeter (and thus 

behind the firefront) of a fire will experience greater fire intensities and thus a higher severity 
of burning than locations on the perimeter of the fire. The proportional change values have 

been classified into three classes of bum severity (Table 7.10) in order to facilitate the following 

analysis. The classification of the two locations contained in Figure 7.18 into these three severity 
classes is displayed in Figure 7.20.

Severity class Proportional change Image key

Low severity < 25% ■

Moderate severity 25% to 50%
High severity >  50%

Table 7.10: Classification of bum severity based on the propotional change in MODIS band 5 
reflectances

The spatial distribution of (unclassified) bum severity (Sp(band5)) across the entire area of 
interest is displayed in Figure 7.21 for 2004, calculated from the multiplicative model results. 

Several areas of higher severity burning are evident during the 2004 fire season. In particular 

burning which has occurred in the northern section of Angola is of a higher severity than that 

which has occurred across the majority of the study area. Localised areas of higher severity 

burning are also evident in central Zambia, near the Botswana/Zambia border, and in southern 

Angola near the Angola/Namibia border. The relationship between the bum severity and (i) the 

land cover type, (ii) the time of year, and (iii) the fire frequency is discussed in the following 

subsections.
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(a) Site 7C (northern Angola) July 2004 (b) Site 7D (southern Angola) August 2004

Figure 7.20: Spatial patterns of bum severity at two locations
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Figure 7.21: Bum severity 2004
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The temporal distribution of burn severity

The factors which will determine the intensity of fires and the severity of burning have been dis

cussed above, and the relationship between the severity of burning and the various components 

of the fire regime as well as external factors is represented graphically in Figure 7.1. As all of 

these will vary over the course of a single fire season as well as from year to year temporal varia

tions in the severity of burning will occur. Figure 7.22a displays the mean proportional decrease 

v-r v'v/ in band 5 reflectances as a percentage change (a dp value of -0.15 is the equivalent of 

a 15% decrease in reflectance) calculated for each month across the entire area of interest from 

the multiplicative model results. A temporal pattern in the mean severity of burning is apparent 

in these data, with a uniform trend exhibited over each of the five years. The mean burn severity 

is lowest at the start of the fire season and increases over the subsequent months with highest 

severities observed in either July or October each year. After this point the severity of burning 

decreases with lower mean values observed towards the end of the fire season which are of a 

similar magnitude to those observed at the beginning of the annual lire season. As discussed in 

Section 3.4.2 the temporal distribution of fire activity follows the vegetation growth cycle, with 

the peak of the fire season corresponding to the height of the dry season. The data in Figure 

7.22a indicate that the most severe burns also occur during the peak months of the annual tire 

season. Figure 7.22b contains mean MODIS EVI profiles (see Section 3.4.2) calculated across 

the entire study area. The annual fire season is delimited by the vertical lines. The vegetation is 

at the lowest point in its growth cycle (and thus drier and more flammable) during the months 

which exhibit the highest bum severity, with vegetation sensecence at its peak during July and 

August in each of the five years. In addition the vegetation is at its greenest and healthiest at the 

start and end of the fire season (April and November), when the observed bum severity is lowest. 

The severity of burning is expected to exhibit an inverse relationship with the moisture content 

of the vegetation as the ease of ignition as well as the rate of combustion and the quantity of fuel 

consumed will be dependent on the plant water content. This will not only vary tempoially (as 

is evident in Figure 7.22) but also spatially with vegetation type and is investigated further in the 

following paragraph.

^
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Figure 7.22: Temporal distribution o f mean bum severity and MODIS EVI, 2000-2004
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Burn severity and land cover type

The mean bum severities for the main vegetation classes present within the study area for each 
month of the five annual bum seasons are displayed in Figure 7.23. It is immediately apparent 
from these data that the severity of burning within deciduous broadleaf forests and grasslands is 
very different to that observed over areas of savanna, woody savanna and open shrublands. For 
all years except 2000 the mean bum severity is lower in deciduous broadleaf forests than any of 
the other cover types during each of the eight fire season months. In addition the highest severity 
of burning within these forested areas occurs during August in each of the five years. In contrast 
the three cover types (savanna, woody savanna and open shrublands) which are characterised by 
lower woody plant densities and canopy cover than deciduous forests but greater tree densities 
and canopy cover than grasslands (see Table 3.3) exhibit a more uniform distribution of bum 
severities across each annual fire season, with higher severity bums typically observed between 
July and August each year. In contrast higher severity bums within grassland ecosystems occur 
earlier in the year, with the highest mean severities evident during June and July for all years 
except 2001. In addition the severity of burning observed over areas of grassland is considerably 
higher than the peak bum severities observed over the other cover classes.

Explanations for the variations in bum severity described above include the type of fires 
which typically occur within the study area as well as the characteristics of the different vege
tation types. In particular variations in the mean severity of burning observed for the different 
land cover classes is likely to be a function of the fire type. The majority of vegetation fires in 
southern African ecosystems are surface fires which bum through the herbaceous layer (Frost 
and Robertson 1985). The flame heights of these fires are generally low and plant matter above 
3-4m is not normally ignited (ibid). Within southern African savanna ecosystems the major
ity of the fuel load comprises surface fuels in the form of grasses, while in grasslands the fuel 
load is entirely grass (Trollope and Trollope 2002). Many of the woody species within biomes 
subjected to high frequency fires have insulating bark which protects them from fire (Frost and 
Robertson 1985). The higher severity of burning observed within grassland ecosystems is thus 
likely to be a result of the higher quantities of surface fuels available, and the lower heterogeneity 
of flammable vegetation in contrast to ecosystems with higher woody plant densities. Vegeta
tion types such as grasslands and open savannas which are spatially more homogenous are more
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Month

(a) 2000 (b) 2001
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(c) 2002 (d) 2003
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Figure 7.23: Mean severity of burning for each of the main vegetation types present in the study 
area
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prone to widespread and frequent burning than other vegetation types (Frost 1999). In woodlands 
and shrublands where there is generally a lower grass biome and more uneven distribution of fuel 
fires will be less intense and will bum more patchily (Frost and Robertson 1985). At a spatial 
resolution of 500m this will equate to a lower proportional change in the nature of the surface 
and less overall damage to the vegetation at the scale of a single pixel, and therefore lower bum 
severities.

The earlier occurrence of higher severity burning in grasslands in comparison to the other 
cover classes and in particular to deciduous broadleaf forests may be due to (i) the source of 
ignition, and/or (ii) the vegetation characteristics. In southern African grassland ecosystems the 
herbaceous vegetation is either dead (annual grasslands) or dormant during the dry season. The 
moisture content is therefore low and the plant material is flammable for most of the dry season. 
In contrast in deciduous broadleaf forests the moisture content of the herbaceous understorey 
plant material may be higher as it is protected by the tree cover, and it may take longer for suffi
ciently flammable surface fuel loads to aggregate. Grasses growing within a tree neighbourhood 
may have a higher moisture content and retain moisture levels for longer into the dry season 
(Vetaas 1992). The build up of surface fuel loads in these ecosystems is also dependent on the 
contribution of leaf litter from deciduous trees (Frost 1999) and the presence of sufficient ma
terial to fuel higher intensity surface fires will therefore be dependent on the phenology of the 
vegetation. The difference in the timing of the higher severity fires may also be a function of 
the sources of ignition. As discussed in Section 3.2 the majority of vegetation fires in southern 
Africa are of anthropogenic origin. Different vegetation types may be burned at different times of 
year following specific land cover practices. Areas with higher tree densities for example may be 
burned later in the dry season (August-September) in order to clear the land for cultivation ready 
for the onset of the rains. However no data are available describing the reasons for anthropogenic 

burning at the different times of year.
The bum severity data for the five annual fire seasons and across each vegetation type has 

been classified into three severity classes according to the criteria described in Table 7.10. The 
proportion of each severity class is displayed in Table 7.11 for the multiplicative model results. 
The additive model results are contained in Table G. 1, Appendix G. For all cover types except 
grasslands in 2002 and 2004 low severity bums account for over 50% of the total, while high 
severity bums account for less than 5% of all bums except for grasslands in both model results,
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Low Moderate High
2000 60.1 37.3 2.7
2001 61.0 36.8 2.2
2002 67.9 30.5 1.6
2003 65.1 33.0 1.9
2004 65.0 33.4 1.7

(a) Deciduous broadleaf forest

Low Moderate High
2000 57.1 39.7 3.2
2001 59.4 37.4 3.2
2002 61.1 36.1 2.8
2003 60.9 36.5 2.6
2004 54.3 43.2 2.5

(b) Open shrublands

Low Moderate High
2000 53.0 42.8 4.2
2001 52.6 42.9 4.5
2002 56.0 40.2 3.9
2003 54.2 41.8 4.1
2004 53.3 42.6 4.1

(c) Woody savannas

Low Moderate High
2000 57.4 40.0 2.6
2001 54.6 43.0 2.4
2002 57.9 40.2 1.9
2003 57.7 40.3 2.0
2004 51.3 46.5 2.3

(d) Savannas

Low Moderate High
2000 53.5 43.1 3.5
2001 54.6 39.3 6.1
2002 47.6 45.8 6.6
2003 50.6 43.5 5.9
2004 45.6 49.1 5.3

(e) Grasslands

Table 7.11: Proportion of low, moderate and high severity bums in each cover class between 
2000-2004: Multiplicative model results
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and woody savannas in the additive model results. Areas of deciduous broadleaf forest typically 
exhibit the lowest proportion of high severity bums and the highest proportion of low severity 
bums each year, with a general decrease in the proportion of high severity bums evident in the 
five year period. In contrast grasslands exhibit the highest proportions of high severity burn
ing each year, with the proportion of higher severity burning in this cover type increasing to a 
peak in 2002 and subsequently decreasing. The reasons for these temporal variations within and 
between each cover type are likely to be complex and varied. In particular as the majority of 
fires in this region are fuelled by grass the intensity (and thus typically the severity) of burning 
will vary considerably between seasons, landscape units and vegetation types. In particular in 
grassland ecosystems the fuel layer is relatively homogenous, while in ecosystems with higher 
woody plant density and tree cover such as woodlands the woody and grass fuel components 
coexist, with lower grass production in the more closed canopy woodlands (Scholes et al. 2002). 
As the majority of southern African fires are surface fires which are fueled by the grass biomass 
(Frost and Robertson 1985), higher severity of burning may be expected to be observed within 
ecosystems with a greater and more homogenous fuel layer. Additional factors which will con
tribute to the observed patterns in bum severity include the prevailing climatic conditions, the 
moisture content of the fuel, the rate of fuel accumulation over the previous wet season, and the 
time which has elapsed since the previous fire. This latter point is investigated in the following 
subsections.

Bum severity and fire frequency

Under ecological theories of natural disturbance an inverse relationship exists between the sever
ity of the disturbance and the disturbance frequency (Pickett and White 1985). In general the 
severity and intensity of fires are thought to be inversely related to fire frequency (Swetnam 
1993, Brown and Smith 2000), although considerable variability exists within this generalisation 
(Goldammer and Mutch 2001). This relationship has been shown to hold in Californian forests 
with fire severity tending to decrease as fire frequency increased (Miller and Urban 2003), while 
in the Giant Sequoia forests of north America high severity stand replacing fires were found 
to occur under low frequency fire regimes, while mixed severity fires occurred in forests with 
high frequency fire regimes (Swetnam 1993). Conversely in the closed canopy tropical forests
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of South America fire severity is believed to increase with frequency, with previously burned 
forests more likely to bum than unbumed forests, and second fires moving faster and burning 
more intensely than the initial fires (Cochrane et al. 1999). This pattern occurs as the first fire 
moves slowly along the ground consuming little besides the dry leaf litter and smaller trees and 
stems while the larger and thicker barked trees survive. Following the fire combustible fuels fall 
from the dead trees forming a flammable layer on the forest floor. Recurrent fires increasingly 
open the canopy causing fuel loads to rise substantially as highly combustible grasses and vines 
invade and the open canopy allows for greater solar heating and air movement to dry out the for
est fuels, resulting in previously burned forests more susceptible to intense fires under dry season 
weather conditions (Cochrane et al. 1999). Little research exists documenting the relationship 
between the frequency of fires and the severity of burning in southern African ecosystems. While 
several studies have investigated the intensity of experimental fires over a limited spatial scale 
(Trollope and Trollope 2002, Smith et al. 2005), no data are available describing the spatial or 
temporal variations in the observed severity of burning at a regional scale, or the impact of the 
frequency of fires on the severity of burning. The aim of the following paragraphs is therefore to 
characterise this relationship within the different vegetation types present in the southern Africa 
study area.

The mean severity of burning in each of the five vegetation types within the area of interest 
is displayed in Figure 7.24 as a function of the frequency of burning. Pixels with a frequency 
value of 5 have burned during each annual fire season in the five year period of observation, 
while those with a frequency value of 1 have only burned once during this time. The frequency 
of burning within the study area and the time between recurrent fires has been discussed in detail 
in Sections 7.2.1 and 7.2.2. A very clear pattern is evident in the data contained in Figure 7.24. 
For all vegetation types and for each year of observation locations with a higher frequency of 
burning exhibit a higher mean bum severity. A positive relationship thus exists bewteen the fire 
frequency and bum severity across all vegetation types within the study area. The reasons for this 
are likely to be due to factors which include the type of fire and the effect on the vegetation, the 
characteristics of the fuel loads and the regenerative power of the dominant plant species as well 
as the meteorological conditions between subsequent fires. These factors and their interactions 

are shown in Figure 7.1.
As discussed above the majority of vegetation fires in southern Africa are surface fires which
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(a) Deciduous broadleaf forest (b) Grasslands

(d) Savannas(c) Open shrublands

aeae 2M 1 2H 3  2W4

Mr

(e) Woody savannas

Figure 7.24: The relationship between the mean bum severity and fire frequency in each vegeta
tion type: Multiplicative model results
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bum through the herbaceous layer (Frost and Robertson 1985). The fuel load thus predominantly 
comprises grass biomass which varies inversely with tree cover (Goldammer and Mutch 2001, 
Langevelde et al. 2003). Surface fires typically have least effect on the grass layer, and the sur
vival of grass species is rarely affected by fire (Van de Vijver et al 1999). In addition grasses are 
generally not sensitive to increasing levels of fire intensity exhibiting no significant differences in 
recovery with increasing levels of intensity, because with surface fires the heat is released above 
ground level away from the growing points of grasses (Trollope and Trollope 2002). In contrast 
intense fires have been observed to cause a direct decline in the cover of woody biomass by either 
killing trees or reducing them to smaller size classes (Langevelde et al. 2003). The probability 
of tree mortality as a result of fire is a function of both the stem height and the fire intensity, 
with surface fires not normally intense enough to kill African savanna trees but typically affect
ing their size (Trollope 1982, Van der Werf et al. 2004). The effect of fires in southern African 
ecosystems is typically therefore the reduction of the woody biomass which indirectly stimu
lates grass growth (Langevelde et al. 2003). It would follow that this results in an increase in 
the fuel load (grass biomass) and the occurrence of fires which are more intense (and thus more 
damaging to the vegetation i.e. are more severe), which leads to an increased decline in woody 
biomass. An analysis of fire occurrence in the subtropical savannas of the Everglades National 
Park between 1995 and 2000 suggests that frequent fires result in an increase in patchiness and 
a wider range of intensites, with higher intensities appearing to result from the regrowth of more 
flammable vegetation (Slocum et al. 2002).

Vegetation changes in savanna ecosystems have been modelled by Langevelde et al. (2003) 
using a model of tree-grass dynamics. Under the assumption of no negative effects of fire on grass 
growth, the relationship between fire frequency and levels of grass and woody biomass are dis
played in Figure 7.25. Increasing the fire frequency has a negative effect on woody biomass, with 
woody biomass highest under fire frequency regimes of 5 years and lowest under annual burning 
conditions. Conversely higher fire frequencies result in increased grass biomass with highest 

- levels occurring with annual burning. The existence of alternate (grass and woody biomass) sta
ble states will thus depend critically on the relationship between the fuel load (grass biomass) 
and the fire intensity (Langevelde et al. 2003). Unstable equilibria may arise when events such 
as drought reduce the grass biomass below a break point value (the dashed line) where there is 
insufficient fuel to carry a fire, allowing bush encroachment to occur (ibid). These data (Figure
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Figure 7.25: Changes in woody and grass biomass with levels of fire frequency. Solid lines indi
cate stable equilibria, dashed lines unstable equilibria, and arrows the direction of development. 
Source: Langevelde et al. (2003)

7.25) support the theory that grass biomass is maintained by frequent fires while fire regimes 
with a short fire return interval will result in an increase in the grass biomass.

The increase in burn severity with increasing fire frequency observed across all vegetation 
types (Figure 7.24) is thus likely to be due to the effects of burning on the grass and woody 
biomass discussed above. Burning results in an increase in grass biomass and a reduction in 
woody biomass below a certain height (less than 2-4m (Bond and Keeley 2005)), which in turn 
contributes to more intense fires due to the higher fuel load (grass biomass) available, which are 
subsequently more damaging to the woody biomass. A positive feedback thus exists between 
the frequency of fire and the fuel load. High frequency fires maintain the grass biomass pre
venting tree and bush encroachment, which result in higher fuel loads available for the next fire 
event. Increasing grass production is shown to negatively influence tree density by making it 
more difficult for seedlings to establish, and by effectively increasing the fire intensity and there
fore reducing the opportunities for woody vegetation to develop into fire-resistant size classes 
(Higgins et al. 2000). Conversely under a regime of infrequent fires woody biomass increases 
and grass biomass decreases reducing the quantity of flammable vegetation and thus the intensity 
of fires and the resultant damage to the vegetation. This would explain the lower mean severity 
of burning observed under lower frequency fire events. It should be noted however that this re
lationship will only hold if the fires are surface fires with fuel loads comprising grass biomass. 
Crown fires are only thought to occur in southern Africa under extreme atmospheric conditions 
characterised by high temperatures, low humidities and strong winds (Trollope 2000). Should a



CHAPTER 1. CHARACTERISATION OF THE FIRE REGIME 337

crown fire occur fuel loads in the form of the woody biomass will be high, resulting in greater fire 
intensities and greater damage (and thus a higher bum severity) to the vegetation. Although high 
intensity stand destroying crown fires are generally expected to exhibit longer intervals between 
successive fire events than lower intensity surface fires (Sousa 1984, Brown et al 1999), this 
may not be the case in southern African ecosystems as the replacement of the woody biomass 
with herbaceous vegetation may actually result in an increase in fire frequency.

Under the assumption of steady climatic conditions over the five years of observations, the 
implications of the results displayed in Figure 7.24 are that the fuel load of southern African 
fires is (i) maintained, and (ii) increased under a regime of frequent burning. A positive feedback 
thus exists between the frequency of burning and the accumulation of combustible material, and 
subsequently the severity of burning.

7.7 Summary

Little quantitative information exists describing the fire regimes of southern African ecosystems 
at a regional or multi-annual scale. While the spatial and temporal distribution of burning across 
this region has been mapped at a spatial resolution of 1km for a single year (Gregoire et al. 2003) 
and over three non-consecutive fire seasons at a spatial resolution of 5km (Barbosa et al. 1999) 
no data exist describing the interannual variability in fire frequencies or characteristics across 
multiple fire seasons. This chapter has investigated the occurrence of biomass burning within 
the area of interest over over five consecutive annual fire seasons and at a spatial resolution of 
500m. The fire regimes within the area of interest have been characterised in terms of four main 
variables. The main findings are summarized below.

1. Frequency The frequency of fire occurrence within the area of interest has been documented 
for the past five annual fire seasons (April 2000 to November 2004). During this time approx
imately 40% of the land surface has burned, with 6% (an area of approximately 131,420km2) 
burning during each of the five annual fire seasons. Higher fire frequencies are identified in sa
vanna and grassland ecosystems, with shrublands and deciduous broadleaf forests burning less 
frequently. Fire return intervals indicate that locations which bum every year do so at the same 
time each year. These areas also have a distinct spatial pattern and are predominantly located in
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the northern section of Angola, southern Zaire and northern Zambia, as well as in a belt along 
the Namibia/Angola/Botswana borders.

2. Seasonality The majority of burning occurrs between April and November each year. The 
general pattern of burning is similar across all vegetation types with the greatest proportion of 
bum events identified in either July or August in each of the five years. A general north to south 
progression is evident in the timing of burning every year with areas in the north of the region 
burning earlier in the year than those in the south. In addition the fires spread eastward over the 
course of each annual fire season. The timing of burning has an effect on the time which elapses 
between recurrent fires, with areas which bum initially at the beginning of the fire season during 
the five years exhibiting longer time intervals between subsequent bum events than those which 
bum later in the year.

3. Spatial extent Between 21% and 32% of the study area has burned during each of the five 
years of observation. This equates to an area of approximately 610,000 to 690,000km2. The 
distribution of burning within each of the main vegetation types is similar from year to year, with 
a much larger proportion of deciduous broadleaf forests, woody savannas and savannas burning 
each year in comparison to shrublands and grasslands. Thus in 2004 for example while 38, 33 
and 32% of woody savannas, savannas and deciduous broadleaf forests burned over the course 
of the annual fire season only 19 and 14% of grasslands and shrublands did so.

3. Severity The severity of burning exhibits a distinct temporal pattern, with a higher mean 
severity of burning identified across all vegetation types during the peak months (June to Septem
ber) of each annual fire season. The mean bum severity is lowest at the start of the fire season and 
increases over the subsequent months. Areas which bum at the end of the annual fire season do 
so with a severity of a similar magnitude to the start. Fires which occur in deciduous broadleaf 
forests bum tend to result in lower severity bums. The fires which cause greatest damage to 
these ecosystems occur in August each year. In contrast grassland fires are much more severe 
with the most damaging fires occurring earlier each year (June to July). A positive relationship is 
identified between the fire frequency and the severity of burning irrespective of vegetation type, 
with areas which bum every year doing so with a higher severity than those which bum less
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frequently.
The characteristics of the fire regimes within the area of interest are determined by a complex 

interaction between human activity, changes in vegetation dynamics and interannual variability 
in climate. The temporal distribution as well as the severity of burning follows the vegetation 
growth cycle with the largest area and most severe burning occurring when the fuel layer has 
senesced. Distinct patterns of recurrent fire activity are evident within the area of interest, with 
the same locations burning each year. The vegetation recovers quickly after the passage of fire, 
with the frequency of burning exhibiting a positive relationship with bum severity. The more 
frequent the fires, the greater the severity of burning. These data support the theory that the grass 
biomass is maintained by recurrent fires, and these fire-prone ecosystems of southern Africa are 
dependent on the frequent occurrence of burning.



Chapter 8 

Conclusions
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The focus of this study has been the development of a new, generic approach to change 
detection applicable to high temporal and moderate spatial resolution satellite data. This has 
been applied to the problem of locating and delineating daily burned areas at a regional scale 
over a five year period. Conclusions specific to each section of the study have been presented in 
the summaries at the end of each chapter. The aim of this chapter is to draw the main conclusions 
from the work presented in the previous chapters in terms of the objectives of the research stated 
in Chapter 1.

8.1 Summary of work

Chapter 2 has provided a review of the methods traditionally applied to the detection of land cover 
change from remote sensing data. The limitations of these are discussed and the requirements for 
a change detection model are defined in terms of the major shortcomings of these approaches. 
Three key issues are identified. These are stated as the need to (i) account for angular variations 
in the remote sensing signal, (ii) account for phenological variations in the surface, and (iii) iden
tify and remove noisy observations from the temporal sequence. Chapter 3 provides a discussion 
of the causes and ecological impacts of fire within southern African ecosystems. The diurnal, 
seasonal and interannual distribution of burning are characterised through an analysis of daily 
MODIS active fire detections over a five year period, and the spectral features of burned surfaces 
and their temporal persistence in the remote sensing signal are investigated. These findings en
able the definition of a further set of requirements for the application of a change detection model 
to the identification of fire affected areas. Chapter 4 reviews the approaches typically used to cor
rect remote sensing data for directional effects. Following on from this a new, generic approach 
to the detection of land surface change from high temporal and moderate spatial resolution data 

is introduced.
The second half of the study is concerned with the application of the change detection model 

to the identification of burned surfaces, and the analysis of the results. Chapter 5 introduces the 
data sources used and the pre-processing steps applied to these. The adaptation of the model to 
the explicit detection of sudden changes in the surface is described, and a set of post-processing 
steps developed in order to separate burned areas from those which exhibit similar spectral
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changes. Following the methods introduced in Chapters 4 and 5 daily burned area datasets for 
five annual fire seasons (2000-2004) are produced. These are compared to three other sources of 
active fire and burned area information in Chapter 6. Finally a characterisation of the fire regime 
within the area of interest over the five year period is provided in Chapter 7 based on an analysis 
of the burned area results.

8.2 Aims of the study

The principal objectives of the research were stated in Chapter 1 as;

1. The development of an algorithm suitable for the detection of sudden surface change 
from daily moderate spatial resolution optical remote sensing data

2. The application of this methodology to the identification and delineation of burned 
areas in southern Africa on a daily basis for a five year period (2000-2004)

3. The characterisation and analysis of the fire regimes of southern African ecosystems 
from the data produced via Objectives 1 and 2 over the five annual fire seasons

The following sections assess the accomplishment of these objectives in this Thesis. A discussion 
of the key issues associated with each is provided, and conclusions are drawn.

8.2.1 Objective 1: A change detection model

A review of the literature (Chapter 2) has highlighted three main limitations associated with the 
methods traditionally applied to the detection of land cover change from optical remote sensing 
data sources. The first involves the presence of directional effects in the remote sensing sig
nal. These are of particular importance in data acquired by wide field of view sensors such as 
the AVHRR, MODIS and SPOT-VGT, and may introduce variations in reflectance of a similar 
magnitude to that caused by the changes which are to be identified. If these angular effects are 
not accounted for they have the potential to mask the changes of interest, reducing the accuracy 
with which these may be detected. Change detection studies have typically either ignored, or at
tempted to minimise these effects through the use of temporal compositing techniques designed
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to select near-nadir observations with reduced cloud and atmospheric contamination. This ap
proach is not ideal as the reduction of the dataset to include only near-nadir observations results 
in a considerably smaller sample size. This decrease in samples has implications for the detec
tion of changes which exhibit low temporal persistence in the remote sensing signal. In addition 
some compositing criteria have been shown to preferentially select off nadir observations due to 
directional effects rather than reduced atmospheric or cloud contamination.

The second limitation is concerned with the temporal dynamics of the surface during the time 
period of the investigation. Change detection studies generally assume the overall phenological 
conditions to be comparable over the temporal extent of the study. While anniversary date images 
are typically used to minimise these effects, the identification of sudden and short lived changes 
in the surface requires high temporal resolution data over long time periods. Low frequency 
variations in the surface which occur during this time will complicate the identification of the 
changes of interest. If they are not accounted for these variations will decrease the accuracy with 
which land cover changes may be identified.

Temporal variations in the characteritistics of the surface may also have implications for the 
first issue stated above. Models which account for the angular component of the remote sensing 
signal reviewed in Chapter 4 are typically inverted over a short temporal window. Directional 
observations acquired over a 16 day period with a requirement for a minimum of 7 cloud free 
samples during this time are generally used to provide a prediction of reflectance under a sub
sequent angular scenario, with the assumption that the surface remains static over this temporal 
period (Strahler et al. 1999a, Roy et al. 2002). The presence of missing samples in a time se
ries of remote sensing data due to cloud or atmospheric effects may necessitate the inversion of 
the BRDF model over a longer time period. This will invalidate the model assumption of static 
surface properties which control the BRDF over this time.

The third issue associated with the detection of land cover changes identified in Chapter 2 is 
the presence of atmospheric and cloud effects in the remote sensing data. All change detection 
techniques will be sensitive to noise in the data resulting from cloud or cloud shadows and at
mospheric contamination. The presence of these will significantly reduce the capability of the 
change detection algorithm to accurately identify the changes of interest, and as with the issues 
highlighted above may result in the inaccurate identification of change events.

Objective 1 has been met through the development of a change detection model which ad
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dresses the three key issues identified above. The model accounts for the directional effects 
present within moderate spatial and high temporal resolution optical remote sensing data, through 
the inversion of a BRDF model. The second issue is addressed through the incorporation of an 
empirical temporal model along with the angular model. This accounts for low frequency vari
ations in the surface, allowing for the application of the temporal BRDF model to much longer 
time periods than the traditional “static” 16 day moving window approach. Sudden changes in 
the surface are identified explicitly using a “step function kernel”. This statistical framework al
lows for the calculation of uncertainty in the model parameters under different angular sampling 
scenarios, as well as the estimation of noise within the observations. Noisy data are identified 
through the definition of a Zscore which is related to the probability of a prediction of reflectance 
belonging to the same set as that used in the model inversion. These are removed from the time 
series and therefore do not contribute to subsequent predictions. The use of the BRDF model ac
counts for angular variations in the remote sensing signal, while the temporal model accounts for 
phenological changes and facilitates the inversion of the angular model over longer time periods. 
In conjunction with the statistical identification and removal of outliers this results in a clearer 
change signal and thus the improved detection of surface change.

8.2.2 Objective 2: Mapping fire affected areas

The successful implementation of a change detection model requires a detailed understanding 
of the nature of the change to be identified. This is achieved in Chapter 3 through an analysis 
of (i) the spatial and temporal distribution of fire activity, and (ii) the spectral characteristics of 
burned surfaces within the southern Africa study region. Following on from this a set of criteria 
for the identification of fire affected areas from remote sensing data sources are defined, and the 
change detection model developed under Objective 1 is adapted to the problem of locating and

delineating burned areas.
The spatial and temporal distribution of fire activity has been determined through the analy

sis of daily active fire detections from the MODIS sensor over the five year period from January 
2000 to December 2004. Fires are identified within each of the main vegetation types across 
the study area during this time, with over 99% of the annual fire activity each year occuring 
betwen the months of April and November. The pattern of burning follows the phenology of
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the vegetation with the peak of the annual fire season corresponding to the point at which the 
vegetation is dryest. The locations of active fires have been used to characterise the spectral na
ture of the burned surfaces as well as their post-fire evolution. Although only near-nadir (+/-100) 
observations (which reduces the number of observations by approximately 40%) have been used 
in the analysis, the pre-bum and post-bum surfaces are statistically similar and their separability 
is very low. MODIS bands 2, 5 and 6 provide the highest separabilities between burned and 
un-bumed surfaces while the changes observed at the remaining 4 wavelengths tend to be small 
and variable. The burned surfaces exhibit a fast recovery with a bum signal detectable in certain 
ecosystems (deciduous broadleaf forests and woody savannas) for only seven days after the fire. 
These findings reinforced the need to address the issues identified under Objective 1 in order 
to increase the detectability of potentially low magnitude changes in the remote sensing signal. 
The persistence of these changes is also of significance and indicates that recovery of the burned 
surfaces may occur rapidly after the fire. In order to ensure the maximum probability of detec
tion of these burned areas it is clearly necessary to acquire images as near to the day of burning 
and with as high a revisit period as possible. Near-daily satellite acquisitions from high temporal 
resolution sensors provide the only feasible means of identifiying these changes.

With a consideration of these characteristics, Objective 2 is met through the application of 
the temporal change detection models developed under Objective 1 to daily, moderate (500m) 
spatial resolution satellite data for a five year period. The southern Africa fire season is defined 
as the eight months from the beginning of April until the end of November each year, as this 
encompasses over 99% of the fires detected annually. The fast recovery of the post-fire surface 
in addition to the possibility of missing observations due to cloud or smoke necessitates the use of 
daily data for the accurate detection of fire-induced surface change. The literature reviewed and 
the analysis performed in Chapter 3 indicate that MODIS band 2 and 5 reflectances provide the 
highest separabilities between pre-bum and post-bum surfaces. The temporal change detection 
models were therefore applied to temporal sequences of these two wavebands. In addition as 
changes due to causes other than burning may results in similar spectral changes bands 1 and 
7 were used in order to exclude confusing spectral change. From an analysis of the results it 
was clear that changes other than burning were identified through the minimum band 2/band 5 
criteria described in Chapter 5. Several post-processing steps were therefore introduced inorder 
to meet Objective 2. These involved (i) the calculation of a proportional change measure, (ii)
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thresholding this to identify significant change, and (iii) the identification and removal of water 
induced surface change. The results of these steps are monthly datasets documenting the daily 
occurrence of burning at a spatial resolution of 500m for five annual fire seasons.

8.2.3 Objective 3: Analysis of the fire regime of southern Africa

The datasets produced under Objective 2 contain a wealth of information describing the occur
rence of burning within southern Africa at a variety of scales. The third objective of the research 
was therefore to analyse this data and to perform a characterisation of the fire regime within 
the study area and over the time period of interest. This has been achieved indirectly through a 
comparison with other sources of fire-related information in Chapter 6, and directly through the 
analysis and interpretation of the burned areas in Chapter 7.

Due to the lack of ground based validation data the burned areas have been compared to 
three independent sources of fire-related information. These are; (i) daily 1km day and night 
active fire detections from MODIS Terra and Aqua, (ii) SAFARI 2000 500m burned areas for 
July 2000 (Roy 2005), and (iii) GBA2000 1km monthly burned areas, April to November 2000 
(Gregoire et al. 2003). Similarities and differences are apparent in all three of these sources 
and are likely to be due to differences in the spatial resolutions and characteristics of the input 
data in addition to the algorithms used in their creation. While the reasons for the disagreements 
have been investigated in Chapter 6 the relative errors of omission and comission are unknown 
as none of the burned area datasets have been systematically validated and the active fire counts 
only provide a snapshot of the fire activity.

Chapter 7 is more directly concerned with fulfilling Objective 3. This chapter has involved 
the characterisation of fire regimes within southern African ecosystems from the data produced 
via Objectives 1 and 2. Four key aspects relating to the occurrence of fires within the study 
area have been analysed; (i) frequency, (ii) seasonality, (iii) spatial extent, (iv) severity. The 
characterisation of these provide a detailed description of the fire regimes within southern African 
ecosystems over the past five years. The patterns identified within each of these aspects of the 
fire regime have been interpreted by drawing on information contained within the literature as 
well as through an examination of additional data sources.
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This study has made a number of contributions to both the field of remote sensing change de
tection and the fire ecology of southern Africa. These can be separated into two themes. The 
first constitutes the bulk of the experimental work and involves the development of the change 
detection model. The second is concerned with the analysis of the fire affected areas and the 
characterisation and interpretation of the southern African fire regime.

The temporal BRDF model developed in this study allows for the normalisation of the angular 
effects within remote sensing data over long time periods. BRDF models are typically inverted 
over time periods of two weeks to a month under the assumption that the properties which con
trol the surface BRDF remain static over this period. In the presence of missing samples or noisy 
data due to cloud or atmospheric effects, there may be an insufficient number of samples over 
which to perform a reliable inversion. The incorporation of the temporal component allows for 
the inversion of the BRDF model over much greater time periods than the “static” version. The 
application of the BRDF models to longer time periods enables better estimation of noise within 
the data due to the greater number of samples. This subsequently allows for the improved iden
tification of noisy observations within the time series and the removal of these results in better 
estimation of model parameters and improved predictions of reflectance. Temporal sequences of 
reflectance which have been corrected for angular effects and noisy observations are required by 
the scientific community for the retrieval of vegetation structural attributes such as the leaf area 
index, to calculate biophysical variables such as vegetation indices, and in climatology studies to 
derive the land surface albedo (Strahler et al. 1999a). The temporal BRDF model developed in 
this study therefore has potential uses beyond the detection of land cover change.

The model developed in this study constitutes a generic approach to the detection of land 
cover change. Sudden changes in the characteristics of the surface are modelled through the 
incorporation of a “step function kernel” along with the temporal BRDF model. The detection 
of the day on which the change occurs (parameter c) has been adapted to identify bum-type 
changes in reflectance through the definition of a spectral filter. The criteria used to locate the 
most appropriate value of c may be defined according to the changes of interest. Identifying c 
based on the global error in the model fit, for example, will locate the greatest change which 
has occurred across all wavebands. The model may therefore be applied to the detection of
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surface changes caused by factors other than fire. The results presented in Section 5.5.3 (Chapter 
5) indicate that the change detection model may be applied to the problem of identifying flood 
events based on the sudden decrease in near to middle infrared reflectances which occur.

The burned area datasets created in the first half of the study and the analysis of these per
formed in the second half has produced a wealth of information relating to fire regimes of south
ern Africa over the past five years. Spatially explicit burned area information for southern Africa 
is currently only available at a spatial resolution of 500m for July and September 2000 (Roy 
2005), at a resolution of 1km for the year 2000 (Gregoire et al. 2003), and at a resolution of 5km 
for three fire seasons between 1989 and 1991 (Barbosa et al. 1999). This study has developed 
daily burned area information at a spatial resolution of 500m for the eight months of five consec
utive fire seasons. The effective management of vegetation fires as well as the sustainability of 
fire dependent ecosystems requires a sound understanding of the spatial and temporal distribution 
of burning. Appropriate land management schemes cannot be conceived without a consideration 
of the fire ecology of an ecosystem. Due to the lack of spatially explicit and multi-annual burned 
area information, little is known about the characteristics and variations of fire regimes across 
southern Africa. The effects of climate change on the fire regimes of these ecosystems and the 
determination of the feedbacks involved cannot be determined without a detailed knowledge of 
the fire ecology of these. The analysis and characterisation of the fire regime within the area of 
interest at an interannual as well as intraannual scale provides valuable information relating to 
the fire ecology of these ecosystems. Variations in the spatial and temporal distribution of burn
ing within different ecosystems has been quantified, areas subjected to annual burning identified, 
and the severity of burning investigated. A novel indicator for bum severity has been introduced 
and used to characterise the temporal and spatial variability of this, as well as the relationship 

between the severity and the frequency of burning.
The fire regime of a region will determine both the quantity and type of gases emitted by 

biomass burning. Detailed burned area information is therefore of importance in the accurate 
modelling of biomass burning emissions and in the creation of emissions inventories. The area 
and type of vegetation which bums annually currently provide the greatest uncertainty in the 
calculation of gaseous and aerosol emissions due to burning (Tansey et al. 2004b). The spatial 
and temporal variability of biomass burning has therefore typically been excluded from models 
of emission inventories due to the lack of systematic and consistent burned area information
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(Schaaf et al. 2002). The burned area datasets produced in this study constitute an important 
characterisation of the distribution and temporal variability of burning within southern African 
ecosystems, while the change detection model provides a rigorous modelling framework for the 
identification of burning on a daily basis at regional to global scales.

8.4 Further Research

The work documented in this thesis has developed a new, generic approach to change detection 
which in this case has been applied to the problem of locating and delineating fire affected areas, 
and the creation of a five year dataset documenting the daily occurrence of burning within the 
study area. Although the data has been compared to three other independently produced active 
fire and burned area datasets, it requires further validation. The validation of spatially and tem
porally large datasets will always be problematic, and is especially so due to the nature of the 
changes of interest. Consequently there is little heritage for fire-product validation, and none of 
the burned area datasets currently available to the scientific community have been systematically 
or consistently validated (Roy et al. 2005a). Protocols are however in place for the valida
tion of the SAFARI 2000 and GBA2000 burned area products used in the analysis in Chapter 6 
(Boschetti et al. 2004, Roy et al. 2005a). In particular the protocol developed for the validation 
of the SAFARI 2000 burned areas has involved the interpretation of (11) high spatial resolution 
Landsat images to derive maps of the location and approximate date of burning, which have sub
sequently been verified with ground based information. Should this dataset be made available to 
the scientific community it will greatly facilitiate and be extremely valuable in the validation of 

other fire-related products.
The change detection approach developed in this study is based on the inversion of a temporal 

BRDF model, under the assumption that fire induced changes in the overall “brightness” of the 
surface are not too great. While the validity of this assumption is dependent on the characteristics 
of the pre-fire surface and the extent to which the structure of the vegetation has been altered by 
the fire, the algorithm has been shown to model the burned surfaces within the area of interest 
with sufficient accuracy to enable the identification of step changes in reflectance. The applica
tion of the model to different ecosystems however requires further investigation. The suitability
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of the methods developed to the identification of burning within different vegetation types and 
under different fire regimes (for example crown as opposed to surface fires) will be dependent on 
the nature of the pre-fire and post-fire surfaces, and the changes which occur in the shape of the 
surface BRDF as a result of burning. In addition the applicability of the model to different types 
of surface change is a path for future investigation. Although the model developed constitutes a 
generic approach to change detection which may be adapted to the nature of the changes which 
are to be identified, its applicability to surface changes other than those induced by burning has 
yet to be investigated.

The analysis of the burned area results has enabled the characterisation of the fire regimes of 
southern African ecosystem over the last five years. While this has provided information which 
was previously lacking, the interpretation of the trends identified would inevitably benefit from 
further analysis and in particular the integration with additional data sources. An understanding 
of the mechanisms which determine the positive relationship between the severity and frequency 
of burning identified in Chapter 7 would, for example, be improved through an analysis of data 
describing the productivity of these ecosystems after the occurence of fire. Parameters related 
to ecosystem processes such as the Net Primary Productivity (NPP) available globally every 8 
days as a 1km MODIS product may provide useful information in the interpretation of this rela
tionship. In addition an understanding of the determinants of the temporal variability of burning 
identified in Chapter 7 would greatly benefit from the analysis of climate data, in particular pre
cipitation rates over the five year period. Short term rainfall variability has been shown to account 
for a large proportion of the interannual variability in land cover changes within southern African 
ecosystems (Vanacker et al. 2005).

Finally, the aspects of the fire regime characterised in Chapter 7 constitute useful inputs to 
large scale ecological models. As fires play an essential role in determining the global distribu
tion of vegetation they are being increasingly represented in models of global vegetation dynam
ics. Although numerous fire models have been developed for various applications at a variety of 
spatial and temporal scales, they require a definition of the frequency of fire occurrence and the 
time which elapses between subsequent fires. The quantification of the frequency of burning and 
the fire return interval within southern African ecosystems is thus a useful input to such models.

In conclusion, this study has developed a new, generic approach to the detection of changes 
from high temporal and moderate spatial resolution satellite data. The model accounts for angu
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lar effects present in the remote sensing signal and incorporates a temporal model of the surface. 
As such it may be applied to longer time series than traditional approaches and provides a “clean” 
time series of reflectance for use in a further analysis. While the potential applications of this 
model are wide, in the context of this study it has been applied specifically to the problem of 
locating and delineating fire affected areas. The burned area datasets constitute a source of infor
mation previously unavailable which have potential application to a wide range of environmental 
monitoring problems.
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Site Row Column Number 
of rows

Number 
of columns

Latitude (degrees, 
minutes, seconds)

Longitude (degrees, 
minutes, seconds)

2A 1499 4704 1 1 30° 49’ 36.83” E 16° 14’ 30” S
4A 869 2918 1 1 22° 47’ 59.86” E 13° 36’ 60” S
4B 772 4447 1 1 29° 18’ 35.91” E 13° 12’ 45” S
4C 781 3409 1 1 24° 52’ 0.92” E 13° 14’ 60” S
4D 397 2695 1 1 21° 40’ 35.38” E 11° 38’ 60” S
4E 1533 1576 1 1 17° 16’ 7.03” E 16° 22’ 60” S
4F 1000 2346 1 1 20° 23’ 43.15” E 14° 9’ 30” S
4G 235 3045 1 1 23° 6’ 39.50” E 10° 58’ 30” S
4H 232 3145 1 1 23° 32’ 3.86” E 10° 57’ 45” S
5A 1238 1712 1 1 17° 45’ 5.05” E 15° 9’ 15” S
5B 1678 1570 1 1 17° 17’ 19.74” E 16° 59’ 30” S
5C 450 1500 200 200 16° 36’ 36.63” 11° 10’ 15”
5D 640 1520 200 200 16° 44’ 28.65” 22° 39’ 45”
5E 1760 3110 340 200 24° 3’ 2.87” E 17° 19’ 45” S
5F 1695 815 100 50 14° 0’ 47.15” E 17° 3’ 30” S
5G 1361 1198 1 1 15° 33’ 44.16” E 15° 39’ 60” S
6A 1525 1530 250 450 17° 3’ 57.33” E 16° 20’ 60” S
6B 1821 2993 60 52 23° 36’ 3.08” E 17° 33’ 45” S
6C 38 2550 1 1 20° 55’ 41.93” E 10° 8’ 60” S
6D 668 2350 1 1 20° 17’ 56.76” E 12° 46’ 30” S
6E 1588 2126 1 1 19° 40’ 50.07” E 16° 36’ 45” S
6F 1747 3028 90 120 23° 41’ 9.27” E 17° 16’ 30” S
6G 995 957 90 120 14° 25’ 31.62” E 14° 8’ 30” S
6H 730 1450 90 120 16° 28’ 0.91” E 13° 2’ 15” S
61 110 990 90 120 14° 21’ 51.20” E 10° 27’ 15” S
6J 713 4733 1 1 30° 29’ 57.56” E 12° 57’ 60” S
6K 1836 3405 1 1 25° 22’ 41.51” E 17° 38’ 45” S
6L 360 2400 200 350 20° 24’ 36.81” E 11° 29’ 45” S
6M 815 1545 110 150 16° 53’ 51.85” E 13° 23’ 30” S
6N 774 615 33 45 12° 54’ 20.76” E 13° 13’ 45” S
6P 790 622 1 1 12° 56’ 19.79” E 13° 17’ 15” S
6Q 15 2000 200 230 18° 37’ 13.08” E 10° 3’ 30” S
7A 570 1370 500 1000 16° 4’ 57.09” E 12° 22’ 15” S
7B 275 2450 500 1000 16° 4’ 57.09” E 11° 8’ 30” S
7C 400 2680 100 100 21° 36’ 49.15” E 11° 39’ 45” S
7D 1570 1750 100 100 18° 2’ 19.10” E 16° 32’ 15” S

Table A.l: Pixel locations referred to in the text: Sites which are of a greater spatial extent than a 
single pixel are indexed by the upper left row and column, while the latitude and longitude refer 
to the centre of the pixel. Each site is indexed by the chapter number in which it appears.
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Appendix B

Active fires and burned areas

Additive model results
2000
Terra

2001
Terra

2002
Terra

2003
Terra Aqua both

2004
Terra Aqua both

Apr 0.3 0.1 1.7 2.4 5.5 6.7 0.1 0.4 0.4
May 6.9 5.1 10.5 7.7 24.3 29.2 5.0 20.6 23.5
Jun 9.8 N/A 10.0 8.8 29.8 35.1 9.5 35.6 41.0
Jul 7.8 11.1 11.9 10.5 36.3 42.7 10.1 36.8 42.7
Aug 8.9 13.0 13.3 13.3 31.8 40.4 9.6 25.5 32.0
Sep 13.8 14.0 11.6 12.9 22.4 31.0 8.9 13.1 19.7
Oct 10.1 10.3 8.2 8.9 13.2 19.4 9.9 12.2 19.9
Nov 2.8 0.41 2.2 0.09 0.8 1.7 2.1 2.1 3.9
Total 9.2 10.6 9.9 10.5 26.3 33.1 8.9 23.6 29.5

Table B.l: Percentage of 500m burned areas detected as active fires: Additive model results
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2000
Terra

2001
Terra

2002
Terra

2003
Terra Aqua both

2004
Terra Aqua both

Deciduous broadleaf forest
Apr 0.0 0.1 0.8 1.0 2.9 3.4 0.0 0.1 0.1
May 7.1 4.5 8.0 6.1 23.2 27.0 3.5 15.8 17.9
Jun 9.1 N/A 8.5 7.5 32.5 36.7 8.3 38.0 42.5
Jul 7.3 10.6 10.6 8.9 40.8 45.8 9.1 41.0 45.9
Aug 8.0 12.3 12.1 10.3 37.4 43.3 9.6 34.0 39.8
Sep 10.2 10.7 6.8 9.8 22.9 29.3 6.0 9.9 14.5
Oct 3.4 4.6 2.2 2.7 6.6 8.4 3.7 5.8 8.8
Nov 0.9 0.2 0.4 0.5 0.6 1.0 1.2 1.7 2.8
Open shrublands
Apr 0.0 0.1 2.5 2.4 3.8 4.9 0.0 0.1 0.2
May 5.2 2.2 9.3 7.0 18.7 22.9 3.4 12.2 14.5
Jun 10.4 N/A 9.1 7.3 26.4 31.2 8.5 29.8 35.5
Jul 7.0 10.3 10.9 9.4 30.5 36.8 9.0 31.6 37.5
Aug 8.1 11.6 11.2 11.9 28.1 36.2 8.0 21.3 27.1
Sep 12.0 11.7 8.6 10.6 19.23 26.3 8.8 13.1 19.8
Oct 8. 8.6 6.0 6.7 10.3 15.3 8.6 9.1 16.2
Nov 8.7 0.5 2.2 1.1 0.9 1.7 2.0 1.2 2.9
Woody savannas
Apr 0.34 0.1 1.7 1.5 5.2 6.0 0.1 0.4 0.5
May 9.0 6.1 9.3 7.5 24.4 29.1 5.1 22.7 25.4
Jun 10.6 N/A 9.7 9.1 32.0 37.4 9.9 37.9 43.1
Jul 7.9 11.6 10.9 10.1 37.5 43.5 10.2 38.1 43.9
Aug 8.1 12.6 12.9 11.9 32.9 40.4 9.3 27.5 33.6
Sep 14.4 14.5 11.2 13.9 24.5 33.2 9.5 14.2 20.9
Oct 8.5 8.5 8.0 8.2 12.4 17.8 8.7 10.4 17.3
Nov 0.9 0.3 1.0 0.6 0.6 1.1 1.8 1.9 3.4
Savannas
Apr 0.2 0.1 1.3 2.7 6.3 7.7 0.2 0.4 0.5
May 5.9 5.2 11.5 8.2 25.5 30.9 6.1 22.4 25.9
Jun 9.1 N/A 10.7 8.9 28.1 33.5 9.6 34.3 40.0
Jul 7.9 11.0 13.0 11.6 36.0 43.2 10.5 36.2 42.5
Aug 9.7 13.9 14.3 14.9 31.2 41.0 9.9 23.5 30.5
Sep 14.7 14.7 13.1 13.4 22.1 31.1 9.1 13.0 19.8
Oct 12.6 12.5 10.4 11.1 15.8 23.5 11.3 14.4 23.1
Nov 2.3 0.5 3.3 0.9 0.8 1.7 2.2 2.4 4.3
Grasslands
Apr 0.1 0.1 6.4 4.1 4.3 6.8 0.1 0.4 0.5
May 3.6 3.2 10.5 7.3 19.0 24.0 2.9 12.8 14.5
Jun 9.1 N/A 8.5 8.2 28.4 33.9 7.6 31.9 36.6
Jul 7.4 10.3 13.1 10.1 28.1 34.8 9.5 30.5 36.9
Aug 9.0 11.1 11.8 14.0 26.1 35.5 9.9 21.2 28.1
Sep 9.5 11.2 11.4 9.7 16.7 23.6 9.2 12.5 19.5
Oct 10.2 12.2 5.5 9.1 14.1 20.7 12.8 12.2 22.7
Nov 12.4 0.7 2.9 0.6 0.5 1.07 1.8 1.6 3.2

Table C.l: Percentage of 500m burned areas detected as active fires: Additive model results
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2000
Terra

2001
Terra

2002
Terra

2003
Terra Aqua Both

2004
Terra Aqua Both

Apr 0.0 0.1 1.3 1.5 4.5 5.3 0.0 0.1 0.1
May 6.8 4.9 8.3 6.0 22.3 26.1 2.3 11.6 13.0

Deciduous Jun 8.8 N/A 8.2 7.2 32.0 36.2 8.4 38.7 43.1
Broadleaf Jul 7.4 10.4 10.2 8.7 40.4 45.2 8.9 41.1 46.0
Forest Aug 8.0 12.5 12.2 10.3 37.7 43.6 9.6 34.6 40.4

Sep 10.0 10.3 6.4 9.6 22.4 28.7 5.5 9.4 13.6
Oct 3.5 5.0 2.5 2.9 7.2 9.1 3.4 5.6 8.3
Nov 1.0 0.2 0.3 0.5 0.5 0.9 0.9 0.9 1.7
Apr 0.0 0.1 3.7 4.7 7.1 9.4 0 0.2 0.2
May 6.7 3.5 10.7 8.0 20.7 25.7 4.5 15.5 18.6
Jun 9.9 N/A 9.8 7.7 28.3 33.2 9.1 31.6 37.8

Open Jul 7.2 10.7 11.4 9.6 31.3 37.8 9.3 33.1 39.3
shrublands Aug 8.3 12.2 11.6 12.1 28.9 37.1 8.4 22.7 28.7

Sep 11.8 11.3 8.1 10.9 19.7 26.8 9.0 13.3 20.2
Oct 7.6 8.4 5.5 5.7 9.0 13.2 8.3 9.0 15.8
Nov 7.4 0.5 2.3 0.6 0.4 0.1 2.3 1.2 3.3
Apr 0.5 0.1 2.8 2.5 7.8 9.3 0.1 0.4 0.5
May 9.2 6.9 9.4 7.7 24.9 29.6 5.5 24.3 27.3
Jun 10.5 N/A 9.7 9.1 32.0 37.3 10.1 38.7 44.0

Woody Jul 8.1 11.7 10.8 10.0 37.6 43.6 10.3 38.9 44.6
savannas Aug 8.1 13.2 13.1 12.1 33.6 41.1 9.6 28.6 34.9

Sep 14.2 14.3 10.8 13.9 24.7 33.5 9.1 13.7 20.2
Oct 8.4 8.3 7.7 8.2 12.4 17.9 7.8 9.2 15.4
Nov 1.0 0.3 0.7 0.5 0.5 0.9 1.3 1.4 2.6
Apr 0.3 0.1 2.4 4.3 9.5 11.8 0.2 0.6 0.7
May 6.2 5.4 11.7 8.2 25.2 30.6 6.9 25.2 29.3
Jun 9.1 N/A 10.8 8.8 30.0 33.4 9.7 35.0 40.7

Savannas Jul 7.8 11.2 13.2 11.7 36.3 43.5 10.6 36.9 43.2
Aug 9.5 14.5 14.4 15.3 31.9 42.0 10.3 24.8 32.0
Sep 14.5 14.8 12.4 13.6 22.6 31.8 9.3 13.3 20.3
Oct 12.4 12.1 9.3 10.7 15.2 22.8 10.2 13.0 21.0
Nov 2.4 0.4 1.8 0.7 0.6 1.2 1.5 1.6 2.9
Apr 0.2 0.1 9.6 8.4 8.6 13.5 0.1 0.8 0.9
May 5.4 5.9 11.9 8.4 20.0 25.7 4.1 17.6 19.9
Jun 9.5 N/A 9.0 8.5 29.2 34.8 8.2 34.0 39.1

Grasslands Jul 7.4 10.6 13.7 10.6 29.6 36.5 10.0 31.8 38.4
Aug 9.0 12.1 12.4 14.8 27.4 37.3 10.5 22.7 30.0
Sep 10.1 11.2 11.3 10.1 17.2 24.3 9.8 12.9 20.4
Oct 10.4 11.8 5.3 8.2 12.5 18.4 11.6 11.3 20.8
Nov 10.6 0.6 1.7 0.4 0.3 0.6 1.2 1.4 2.5

Table C.2: Percentage of 500m burned areas detected as active fires: Multiplicative model results
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Number of burn pixels

Frequency 2000 2001 2002 2003 2004
1 2633239 2460266 2565300 2543889 2585172
2 431723 390623 371253 352369 331861
3 57049 36319 46974 38980 35789

(a)Additive temporal model
2000 2001 2002 2003 2004

1 2719132 2462568 2581935 2652820 2707261
2 443177 336553 355108 371424 372260
3 45678 22650 32494 28529 26859

(b)Multiplicative temporal model

Table D. 1: Number of pixels identified as burning between one and three times during a single 
fire season
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Land cover Frequency Proportion of total 
of total

Proportion of burns 
of bums

1 26.4 39.9
Deciduous 2 18.18 25.4
broadleaf 3 12.3 16.6
forest 4 8.2 11.1

5 4.8 7.0
1 116.2 48.0
2 7.2 21.5

Open 3 4.6 13.6
Shrubland 4 3.3 9.7

5 2.1 7.2
1 22.0 31.0
2 17.1 22.9

Woody 3 13.3 17.5
Savanna 4 11.3 15.1

5 9.3 13.5
1 22.3 34.8
2 16.1 24.5

Savanna 3 112.6 18.8
4 9.3 13.7
5 5.2 8.2
1 15.7 41.4
2 8.3 21.7

Grassland 3 6.3 15.7
4 4.8 11.7
5 3.5 9.5

Table E.l: Fire frequency across the study area: Percentage of each land cover type which bums 
between one and five times during the five year period: Additive model results
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Burned area totals

2000 2001 2002 2003 2004
Apr 2.32 3.47 11.60 2.61 2.34
May 2.93 2.38 4.96 4.04 4.01
Jun 7.94 N/A 8.07 7.87 7.65
Jul 12.82 14.16 14.21 13.47 12.56
Aug 16.62 15.51 11.36 17.29 18.82
Sep 12.57 11.84 8.28 9.72 12.08
Oct 8.867 9.48 4.31 6.28 4.32
Nov 3.13 3.83 1.38 1.83 1.72
Total 67.19 60.67 64.19 63.11 63.48

Table F.l: Total area burned (million hectares): Additive model results
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APPENDIXF. BURNED AREA TOTALS

2000 2001 2002 2003 2004
Apr 1.06 1.59 5.30 1.19 1.07
May 1.34 1.09 2.27 1.85 1.83
Jun 3.62 N/A 3.69 3.59 3.49
Jul 5.85 6.46 6.49 6.15 5.73
Aug 7.59 7.08 5.19 7.90 8.59
Sep 5.74 5.40 3.78 4.44 5.51
Oct 4.05 4.33 1.99 2.87 1.97
Nov 1.47 1.75 0.6 0.83 0.78
Total 30.72 27.70 29.3 28.82 28.97

Table F.2: Percentage of the total land area which has burned: Additive model results
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2000 2001 2002 2003 2004
Apr 0.96 1.90 3.61 1.08 1.73
May 0.85 0.59 1.10 1.11 1.88

Deciduous Jun 3.79 0 2.95 3.33 3.13
broadleaf Jul 9.65 9.23 9.76 10.26 8.80
forest Aug 13.85 13.33 9.70 11.21 12.13

Sep 5.92 4.90 3.75 5.35 4.934
Oct 5.16 4.04 2.71 4.94 1.97
Nov 1.4 2.18 0.87 0.78 0.35

Total 41.58 36.17 34.45 38.06 34.92
Apr 1.10 1.98 4.17 1.45 1.46
May 0.88 1.32 1.38 1.16 1.14
Jun 2.00 N/A 2.14 2.19 2.11

Open Jul 3.48 3.85 4.02 3.74 3.70
shrubland Aug 4.97 4.52 3.06 4.81 5.00

Sep 4.39 4.60 2.66 2.88 4.27
Oct 4.22 3.86 1.85 2.34 1.44
Nov 1.43 1.64 0.77 1.08 1.21

Total 22.47 21.77 20.05 19.65 20.33
Apr 7.09 12.01 25.84 r  7.62 7.97
May 11.47 8.29 15.37 13.85 16.80
Jun 32.06 0 30.69 30.43 30.83

Woody Jul 49.51 54.98 48.83 50.92 46.02
savanna Aug 53.57 49.42 36.98 49.53 51.14

Sep 36.68 37.62 24.64 32.85 33.44
Oct 23.93 24.24 13.98 18.63 11.00
Nov 7.12 9.74 3.91 4.62 3.22

Total 221.43 196.3 200.24 208.45 200.42
Apr 10.93 13.63 72.30 11.82 7.93
May 12.22 9.48 26.73 19.62 14.51
Jun 33.81 0 35.89 33.86 31.55

Savanna Jul 52.66 59.29 65.89 57.24 55.46
Aug 75.85 76.05 52.31 90.87 102.70
Sep 66.33 61.94 44.26 47.87 67.03
Oct 45.70 51.33 19.39 30.23 24.99
Nov 17.41 20.60 6.53 9.74 9.97

Total 314.91 292.32 323.3 301.25 314.14
Apr 1.37 2.18 3.73 1.70 1.62
May 1.39 1.76 1.90 1.69 1.39
Jun 2.67 N/A 4.34 4.41 4.22

Grassland Jul 5.27 5.56 6.83 5.61 5.28
Aug 7.05 4.45 4.80 7.59 7.89
Sep 5.98 5.16 3.58 3.40 6.14
Oct 4.23 6.00 1.61 2.46 1.68
Nov 2.20 1.57 0.70 1.03 1.67

Total 35.12 31.07 32.03 32.46 34.83

Table F.3: Total area burned (100000 hectares): Additive model results
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2000 2001 2002 2003 2004
Apr 0.73 1.31 2.05 0.63 1.67
May 0.80 0.52 0.99 1.03 2.64

Deciduous Jun 4.24 N/A 3.63 4.04 3.64
broadleaf Jul 11.29 10.31 11.83 11.54 9.24
forest Aug 14.40 14.60 10.76 12.33 13.32

Sep 6.52 5.28 3.95 5.48 6.14
Oct 4.49 3.81 3.07 4.99 2.31
Nov 1.10 1.63 0.57 0.91 0.61

Total 43.57 37.46 36.85 40.95 39.57
Apr 0.66 1.17 2.73 0.70 0.76
May 0.63 0.77 1.26 0.91 0.77
Jun 1.93 N/A 2.29 2.22 2.17

Open Jul 3.68 3.93 4.32 3.84 3.63
shrubland Aug 5.152 4.49 3.28 5.02 5.11

Sep 4.48 4.59 2.68 2.93 4.52
Oct 4.50 3.622 2.78 2.81 1.68
Nov L 1.12 1.76 0.29 1.97

.
1.69

Total 22.15 20.33 19.63 20.4 20.33
Apr 4.58 6.71 15.14 4.37 5.94
May 10.50 6.61 14.02 12.07 14.02
Jun 32.95 N/A 34.27 33.46 33.69

Woody Jul 53.71 57.43 53.90 53.21 45.75
savanna Aug 55.78 52.10 39.41 53.34 54.39

Sep 39.24 40.21 25.58 33.43 39.04
Oct 24.63 25.39 17.32 19.61 12.67
Nov 6.69 8.83063 2.63 6.29 5.19

Total 228.08 197.28 202.27 215.78 210.69
Apr 6.81 7.77 41.00 7.389 5.56
May 10.93 8.26 27.74 18.34 11.69
Jun 34.04 N/A 40.22 37.14 34.09

Savanna Jul 56.68 59.79 73.02 59.15 54.93
Aug 82.95 77.80 55.56 95.87 101.61
Sep 67.52 66.48 45.42 48.66 79.49
Oct 49.22 53.23 27.13 32.79 26.93
Nov 17.03 21.77 5.95 15.48 15.57

Total 325.18 295.1 316.04 314.82 329.87
Apr 0.65 1.04 2.45 0.79 0.64
May 0.80 0.85 1.83 1.36 0.89
Jun 2.78 N/A 4.70 4.77 4.39

Savanna Jul 5.41 6.01 7.50 5.556 5.19
Aug 7.52 4.14 4.91 7.89 8.06
Sep 5.72 5.02 3.54 3.47 6.78
Oct 4.63 5.69 2.57 2.620 1.79
Nov 1.60 1.79 0.32 1.85 2.49

Total 29.11 24.54 27.82 28.31 30.23

Table F.4: Total area burned (100000 hectares): Multiplicative model results
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2000 2001 2002 2003 2004
Apr 0.76 1.49 2.85 0.86 1.36
May 0.67 0.47 0.86 0.87 1.48

Deciduous Jun 2.99 N/A 2.33 2.63 2.47
broadleaf Jul 7.62 7.28 7.70 8.09 6.94
forest Aug 10.93 10.51 7.6 8.84 9.56

Sep 4.67 3.87 2.96 4.22 3.89
Oct 4.07 3.19 2.13 3.90 1.56
Nov 1.10 1.72 0.69 0.61 0.28

Total 32.81 28.53 27.12 30.02 27.54
Apr 0.73 1.32 2.77 0.96 0.97
May 0.59 0.88 0.92 0.77 0.76
Jun 1.33 N/A 1.42 1.45 1.40

Open Jul 2.31 2.56 2.67 2.48 2.46
shrubland Aug 3.30 3.01 2.03 3.19 3.33

Sep 2.92 3.06 1.77 1.91 2.84
Oct 2.81 2.57 1.23 1.56 0.96
Nov 0.95 1.09 0.51 0.71 0.80

Total 14.94 14.49 13.32 13.03 13.52
Apr 1.26 2.14 4.61 1.36 1.42
May 2.05 1.48 2.74 2.47 3.00
Jun 5.72 0 5.47 5.43 5.50

Woody Jul 8.83 9.81 8.71 9.08 8.21
savanna Aug 9.55 8.81 6.59 8.83 9.12

Sep 6.54 6.71 4.39 5.86 5.96
Nov 4.27 4.32 2.49 3.32 1.96
Oct 1.27 1.74 0.70 0.82 0.57

Total 39.49^ 35.01 35.71 37.17 35.74
Apr 1.08 1.34 7.12 1.16 0.78
May 1.20 0.93 2.63 1.93 1.43
Jun 3.33 N/A 3.54 3.34 3.11

Savanna Jul 5.19 5.84 6.49 5.64 5.47
Aug 7.47 7.49 5.15 8.95 10.12
Sep 6.54 6.10 4.36 4.72 6.61
Oct 4.50 5.06 1.91 3.00 2.46
Nov 1.72 2.03 0.64 1.00 0.98

Total 31.03 28.81 31.86 29.68 30.96
Apr 0.86 1.37 2.34 1.06 1.02
May 0.87 1.10 1.19 1.06 0.87
Jun 1.67 N/A 2.72 2.76 2.65

Grassland Jul 3.30 3.48 4.28 3.51 3.30
Aug 4.41 2.79 3.01 4.76 4.94
Sep 3.74 3.23 2.24 2.13 3.85
Oct 2.65 3.75 1.01 1.54 1.05
Nov 1.38 0.98 0.44 0.64 1.05

Total 18.88 16.7 17.23 17.46 18.73

Table F.5: Percentage of vegetation class which has burned: Multiplicative model results
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2000 2001 2002 2003 2004
Apr 0.56 1.04 1.61 0.49 1.32
May 0.63 0.41 0.78 0.81 2.08

Deciduous Jun 3.34 N/A 2.86 3.19 2.87
broadleaf Jul 8.90 8.13 9.33 9.10 7.28
forest Aug 11.35 11.51 8.48 9.72 10.51

Sep 5.15 4.17 3.11 4.32 4.84
Oct 3.54 3.00 2.42 3.94 1.82
Nov 0.87 1.28 0.44 0.72 L 0.48

Total 34.34 29.54 29.03 32.29 31.20
Apr 0.44 0.78 1.82 0.47 0.51
May 0.42 0.51 0.84 0.61 0.51
Jun 1.28 N/A 1.52 1.48 1.44

Open Jul 2.45 2.61 2.87 2.55 2.41
shrubland Aug 3.42 2.98 2.18 3.34 3.40

Sep 2.97 3.04 1.78 1.95 3.00
Oct 2.99 2.42 1.85 1.86 1.12
Nov 0.75 1.17 0.19 1.31 1.13

Total 14.72 13.50 13.04 13.56 13.51
Apr 0.82 1.20 2.70 0.78 1.06
May 1.87 1.18 2.50 2.15 2.50
Jun 5.88 N/A 6.11 5.97 6.01

Woody Jul 9.58 10.24 9.61 9.49 8.16
savanna Aug 9.95 9.29 7.03 9.51 9.70

Sep 7.00 7.17 4.56 5.96 6.96
Oct 4.39 4.53 3.09 3.50 2.26
Nov 1.19 1.57 0.47 1.12 0.93

Total 40.68 35.18 36.07 38.48 37.58
Apr 0.67 0.77 4.04 0.73 0.55
May 1.08 0.81 2.73 1.81 1.15
Jun 3.35 N/A 3.96 3.66 3.36

Savanna Jul 5.59 5.89 7.20 5.83 5.41
Aug 8.17 7.67 5.48 9.45 10.01
Sep 6.65 6.55 4.48 4.79 7.83
Oct 4.85 5.25 2.67 3.23 2.65
Nov 1.68 2.15 0.59 1.53 1.53

Total 32.04 29.08 31.14 31.02 32.51
Apr 0.41 0.65 1.54 0.50 0.40
May 0.50 0.53 1.14 0.85 0.56
Jun 1.74 0 2.94 2.99 2.76

Grassland Jul 3.39 3.77 4.70 3.48 3.25
Aug 4.71 2.60 3.08 4.94 5.05
Sep 3.58 3.14 2.22 2.17 4.24
Oct 2.90 3.56 1.61 1.64 1.12
Nov 1.00 1.12 0.20 1.16 1.56

Total 18.24 15.37 17.43 17.74 18.94

Table F.6: Percentage of vegetation class which has burned: Multiplicative model results
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Low Moderate High
2000 r 6i.o 36.1 2.9
2001 61.0 36.0 3.1
2002 67.7 30.3 2.0
2003 64.4 33.2 2.4
2004 63.7 34.0 2.3

(a)Deciduous broadleaf forest

Low Moderate High
2000 56.5 38.9 4.6
2001 58.6 36.8 4.6
2002 61.1 34.8 4.1
2003 58.6 37.2 4.1
2004 53.7 42.2 4.1

(b)Open shrublands

Low Moderate High
2000 53.3 41.9 4.8
2001 53.2 41.4 5.4
2002 56.4 38.9 4.7
2003 53.9 41.1 5.0
2004 52.8 42.0 5.2

(c)Woody savannas

Low Moderate High
2000 56.0 38.7 3.3
2001 55.7 41.1 3.2
2002 61.1 36.5 2.4
2003 59.0 38.2 2.7
2004 52.7 44.3 3.0

(d)Savannas

Low Moderate High
2000 52.7 42.3 5.1
2001 54.2 38.2 7.6
2002 49.0 42.2 00 00

2003 50.6 40.9 8.5
2004 46.4 46.1 7.4

(e)Grasslands

Table G. 1: Proportion of low, moderate and high severity bums in each cover class between 
2000-2004: Additive model results



Appendix B

Active fires and burned areas

Additive model results
2000
Terra

2001
Terra

2002
Terra

2003
Terra Aqua both

2004
Terra Aqua both

Apr 0.3 0.1 1.7 2.4 5.5 6.7 0.1 0.4 0.4
May 6.9 5.1 10.5 7.7 24.3 29.2 5.0 20.6 23.5
Jun 9.8 N/A 10.0 8.8 29.8 35.1 9.5 35.6 41.0
Jul 7.8 11.1 11.9 10.5 36.3 42.7 10.1 36.8 42.7
Aug 8.9 13.0 13.3 13.3 31.8 40.4 9.6 25.5 32.0
Sep 13.8 14.0 11.6 12.9 22.4 31.0 8.9 13.1 19.7
Oct 10.1 10.3 8.2 8.9 13.2 19.4 9.9 12.2 19.9
Nov 2.8 0.41 2.2 0.09 0.8 1.7 2.1 2.1 3.9
Total 9.2 10.6 9.9 10.5 26.3^ 33.1 8.9 23.6 29.5

Table B.l: Percentage of 500m burned areas detected as active fires: Additive model results
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2000
Terra

2001
Terra

2002
Terra

2003
Terra Aqua both

2004
Terra Aqua both

Deciduous broadleaf forest
Apr 0.0 0.1 0.8 1.0 2.9 3.4 0.0 0.1 0.1
May 7.1 4.5 8.0 6.1 23.2 27.0 3.5 15.8 17.9
Jun 9.1 N/A 8.5 7.5 32.5 36.7 8.3 38.0 42.5
Jul 7.3 10.6 10.6 8.9 40.8 45.8 9.1 41.0 45.9
Aug 8.0 12.3 12.1 10.3 37.4 43.3 9.6 34.0 39.8
Sep 10.2 10.7 6.8 9.8 22.9 29.3 6.0 9.9 14.5
Oct 3.4 4.6 2.2 2.7 6.6 8.4 3.7 5.8 8.8
Nov 0.9 0.2 0.4 0.5 0.6 1.0 1.2 1.7 2.8
Open shrublands
Apr 0.0 0.1 2.5 2.4 3.8 4.9 0.0 0.1 0.2
May 5.2 2.2 9.3 7.0 18.7 22.9 3.4 12.2 14.5
Jun 10.4 N/A 9.1 7.3 26.4 31.2 8.5 29.8 35.5
Jul 7.0 10.3 10.9 9.4 30.5 36.8 9.0 31.6 37.5
Aug 8.1 11.6 11.2 11.9 28.1 36.2 8.0 21.3 27.1
Sep 12.0 11.7 8.6 10.6 19.23 26.3 8.8 13.1 19.8
Oct 8. 8.6 6.0 6.7 10.3 15.3 8.6 9.1 16.2
Nov 8.7 0.5 2.2 1.1 0.9 1.7 2.0 1.2 2.9
Woody savannas
Apr 0.34 0.1 1.7 1.5 5.2 6.0 0.1 0.4 0.5
May 9.0 6.1 9.3 7.5 24.4 29.1 5.1 22.7 25.4
Jun 10.6 N/A 9.7 9.1 32.0 37.4 9.9 37.9 43.1
Jul 7.9 11.6 10.9 10.1 37.5 43.5 10.2 38.1 43.9
Aug 8.1 12.6 12.9 11.9 32.9 40.4 9.3 27.5 33.6
Sep 14.4 14.5 11.2 13.9 24.5 33.2 9.5 14.2 20.9
Oct 8.5 8.5 8.0 8.2 12.4 17.8 8.7 10.4 17.3
Nov 0.9 0.3 1.0 0.6 0.6 1.1 1.8 1.9 3.4
Savannas
Apr 0.2 0.1 1.3 2.7 6.3 7.7 0.2 0.4 0.5
May 5.9 5.2 11.5 8.2 25.5 30.9 6.1 22.4 25.9
Jun 9.1 N/A 10.7 8.9 28.1 33.5 9.6 34.3 40.0
Jul 7.9 11.0 13.0 11.6 36.0 43.2 10.5 36.2 42.5
Aug 9.7 13.9 14.3 14.9 31.2 41.0 9.9 23.5 30.5
Sep 14.7 14.7 13.1 13.4 22.1 31.1 9.1 13.0 19.8
Oct 12.6 12.5 10.4 11.1 15.8 23.5 11.3 14.4 23.1
Nov 2.3 0.5 3.3 0.9 0.8 1.7 2.2 2.4 4.3
Grasslands
Apr 0.1 0.1 6.4 4.1 4.3 6.8 0.1 0.4 0.5
May 3.6 3.2 10.5 7.3 19.0 24.0 2.9 12.8 14.5
Jun 9.1 N/A 8.5 8.2 28.4 33.9 7.6 31.9 36.6
Jul 7.4 10.3 13.1 10.1 28.1 34.8 9.5 30.5 36.9
Aug 9.0 11.1 11.8 14.0 26.1 35.5 9.9 21.2 28.1
Sep 9.5 11.2 11.4 9.7 16.7 23.6 9.2 12.5 19.5
Oct 10.2 12.2 5.5 9.1 14.1 20.7 12.8 12.2 22.7
Nov 12.4 0.7 2.9 0.6 0.5 1.07 1.8 1.6 3.2

Table C.l: Percentage of 500m burned areas detected as active fires: Additive model results
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2000
Terra

2001
Terra

2002
Terra

2003
Terra Aqua Both

2004
Terra Aqua Both

Apr ~0~.0 0.1 1.3 1.5 4.5 5.3 0.0 0.1 0.1
May 6.8 4.9 8.3 6.0 22.3 26.1 2.3 11.6 13.0

Deciduous Jun 8.8 N/A 8.2 7.2 32.0 36.2 8.4 38.7 43.1
Broadleaf Jul 7.4 10.4 10.2 8.7 40.4 45.2 8.9 41.1 46.0
Forest Aug 8.0 12.5 12.2 10.3 37.7 43.6 9.6 34.6 40.4

Sep 10.0 10.3 6.4 9.6 22.4 28.7 5.5 9.4 13.6
Oct 3.5 5.0 2.5 2.9 7.2 9.1 3.4 5.6 8.3
Nov 1.0 0.2 0.3 0.5 0.5 0.9 0.9 0.9 1.7
Apr 0.0 0.1 3.7 4.7 7.1 9.4 0 0.2 0.2
May 6.7 3.5 10.7 8.0 20.7 25.7 4.5 15.5 18.6
Jun 9.9 N/A 9.8 7.7 28.3 33.2 9.1 31.6 37.8

Open Jul 7.2 10.7 11.4 9.6 31.3 37.8 9.3 33.1 39.3
shrublands Aug 8.3 12.2 11.6 12.1 28.9 37.1 8.4 22.7 28.7

Sep 11.8 11.3 8.1 10.9 19.7 26.8 9.0 13.3 20.2
Oct 7.6 8.4 5.5 5.7 9.0 13.2 8.3 9.0 15.8
Nov 7.4 0.5 2.3 0.6 0.4 0.1 2.3 1.2 3.3
Apr 0.5 0.1 2.8 2.5 7.8 9.3 0.1 0.4 0.5
May 9.2 6.9 9.4 7.7 24.9 29.6 5.5 24.3 27.3
Jun 10.5 N/A 9.7 9.1 32.0 37.3 10.1 38.7 44.0

Woody Jul 8.1 11.7 10.8 10.0 37.6 43.6 10.3 38.9 44.6
savannas Aug 8.1 13.2 13.1 12.1 33.6 41.1 9.6 28.6 34.9

Sep 14.2 14.3 10.8 13.9 24.7 33.5 9.1 13.7 20.2
Oct 8.4 8.3 7.7 8.2 12.4 17.9 7.8 9.2 15.4
Nov 1.0 0.3 0.7 0.5 0.5 0.9 1.3 1.4 2.6
Apr 0.3 0.1 2.4 4.3 1 9.5 11.8 0.2 0.6 0.7
May 6.2 5.4 11.7 8.2 25.2 30.6 6.9 25.2 29.3
Jun 9.1 N/A 10.8 8.8 30.0 33.4 9.7 35.0 40.7

Savannas Jul 7.8 11.2 13.2 11.7 36.3 43.5 10.6 36.9 43.2
Aug 9.5 14.5 14.4 15.3 31.9 42.0 10.3 24.8 32.0
Sep 14.5 14.8 12.4 13.6 22.6 31.8 9.3 13.3 20.3
Oct 12.4 12.1 9.3 10.7 15.2 22.8 10.2 13.0 21.0
Nov 2.4 0.4 1.8 0.7 0.6 1.2 1.5 1.6 2.9
Apr 0.2 0.1 9.6 8.4 8.6 13.5 0.1 0.8 0.9
May 5.4 5.9 11.9 8.4 20.0 25.7 4.1 17.6 19.9
Jun 9.5 N/A 9.0 8.5 29.2 34.8 8.2 34.0 39.1

Grasslands Jul 7.4 10.6 13.7 10.6 29.6 36.5 10.0 31.8 38.4
Aug 9.0 12.1 12.4 14.8 27.4 37.3 10.5 22.7 30.0
Sep 10.1 11.2 11.3 10.1 17.2 24.3 9.8 12.9 20.4
Oct 10.4 11.8 5.3 8.2 12.5 18.4 11.6 11.3 20.8
Nov 10.6 0.6 1.7 0.4 0.3 0.6 1.2 1.4 2.5

Table C.2: Percentage of 500m burned areas detected as active fires: Multiplicative model results
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Number of burn pixels

Frequency 2000 2001 L 2002 2003 2004
1 2633239 2460266 2565300 2543889 2585172
2 431723 390623 371253 352369 331861
3 57049 36319 46974 38980 35789

(a)Additive temporal model
2000 2001 2002 2003 2004

1 2719132 2462568 2581935 2652820 2707261
2 443177 336553 355108 371424 372260
3 45678 22650 32494 28529 26859

(b)Multiplicative temporal model

Table D.l: Number of pixels identified as burning between one and three times during a single 
fire season
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Land cover Frequency Proportion of total 
of total

Proportion of burns 
of bums

1 26.4 39.9
Deciduous 2 18.18 25.4
broadleaf 3 12.3 16.6
forest 4 8.2 11.1

5 4.8 7.0
1 116.2 48.0
2 7.2 21.5

Open 3 4.6 13.6
Shrubland 4 3.3 9.7

5 2.1 7.2
1 22.0 31.0
2 17.1 22.9

Woody 3 13.3 17.5
Savanna 4 11.3 15.1

5 9.3 13.5
1 22.3 34.8
2 16.1 24.5

Savanna 3 112.6 18.8
4 9.3 13.7
5 5.2 8.2
1 15.7 41.4
2 8.3 21.7

Grassland 3 6.3 15.7
4 4.8 11.7
5 3.5 9.5

Table E.l: Fire frequency across the study area: Percentage of each land cover type which bums 
between one and five times during the five year period: Additive model results



Appendix F

Burned area totals

2000 2001 2002 2003 2004
Apr 2.32 3.47 11.60 2.61 2.34
May 2.93 2.38 4.96 4.04 4.01
Jun 7.94 N/A 8.07 7.87 7.65
Jul 12.82 14.16 14.21 13.47 12.56
Aug 16.62 15.51 11.36 17.29 18.82
Sep 12.57 11.84 8.28 9.72 12.08
Oct 8.867 9.48 4.31 6.28 4.32
Nov 3.13 3.83 1.38 1.83 1.72
Total 67.19 60.67 64.19 63.11 63.48

Table F.l: Total area burned (million hectares): Additive model results
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2000 2001 2002 2003 2004
Apr 1.06 1.59 5.30 1.19 1.07
May 1.34 1.09 2.27 1.85 1.83
Jun 3.62 N/A 3.69 3.59 3.49
Jul 5.85 6.46 6.49 6.15 5.73
Aug 7.59 7.08 5.19 7.90 8.59
Sep 5.74 5.40 3.78 4.44 5.51
Oct 4.05 4.33 1.99 2.87 1.97
Nov 1.47 1.75 0.6 0.83 0.78
Total 30.72 27.70 29.3 28.82 28.97

Table F.2: Percentage of the total land area which has burned: Additive model results
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2000 2001 2002 2003 2004
Apr 0.96 1.90 3.61 1.08 1.73
May 0.85 0.59 1.10 1.11 1.88

Deciduous Jun 3.79 0 2.95 3.33 3.13
broadleaf Jul 9.65 9.23 9.76 10.26 8.80
forest Aug 13.85 13.33 9.70 11.21 12.13

Sep 5.92 4.90 3.75 5.35 4.934
Oct 5.16 4.04 2.71 4.94 1.97
Nov 1.4 2.18 0.87 0.78 0.35

Total 41.58 36.17 34.45 38.06 34.92
Apr 1.10 1.98 4.17 1.45 1.46
May 0.88 1.32 1.38 1.16 1.14
Jun 2.00 N/A 2.14 2.19 2.11

Open Jul 3.48 3.85 4.02 3.74 3.70
shrubland Aug 4.97 4.52 3.06 4.81 5.00

Sep 4.39 4.60 2.66 2.88 4.27
Oct 4.22 3.86 1.85 2.34 1.44
Nov 1.43 1.64 0.77 1.08 1.21

Total 22.47 21.77 20.05 19.65 20.33
Apr 7.09 12.01 25.84 7.62 7.97
May 11.47 8.29 15.37 13.85 16.80
Jun 32.06 0 30.69 30.43 30.83

Woody Jul 49.51 54.98 48.83 50.92 46.02
savanna Aug 53.57 49.42 36.98 49.53 51.14

Sep 36.68 37.62 24.64 32.85 33.44
Oct 23.93 24.24 13.98 18.63 11.00
Nov 7.12 9.74 3.91 4.62 3.22

Total 221.43 196.3 200.24 208.45 200.42
Apr 10.93 13.63 72.30 11.82 7.93
May 12.22 9.48 26.73 19.62 14.51
Jun 33.81 0 35.89 33.86 31.55

Savanna Jul 52.66 59.29 65.89 57.24 55.46
Aug 75.85 76.05 52.31 90.87 102.70
Sep 66.33 61.94 44.26 47.87 67.03
Oct 45.70 51.33 19.39 30.23 24.99
Nov 17.41 20.60 6.53 9.74 9.97

Total 314.91 292.32 323.3 301.25 314.14
Apr 1.37 2.18 3.73 1.70 1.62
May 1.39 1.76 1.90 1.69 1.39
Jun 2.67 N/A 4.34 4.41 4.22

Grassland Jul 5.27 5.56 6.83 5.61 5.28
Aug 7.05 4.45 4.80 7.59 7.89
Sep 5.98 5.16 3.58 3.40 6.14
Oct 4.23 6.00 1.61 2.46 1.68
Nov 2.20 1.57 0.70 1.03 1.67

Total 35.12 31.07 32.03 32.46 34.83

Table F.3: Total area burned (100000 hectares): Additive model results
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2000 2001 2002 2003 2004
Apr 0.73 1.31 2.05 0.63 1.67
May 0.80 0.52 0.99 1.03 2.64

Deciduous Jun 4.24 N/A 3.63 4.04 3.64
broadleaf Jul 11.29 10.31 11.83 11.54 9.24
forest Aug 14.40 14.60 10.76 12.33 13.32

Sep 6.52 5.28 3.95 5.48 6.14
Oct 4.49 3.81 3.07 4.99 2.31
Nov 1.10 1.63 0.57 0.91 0.61

Total 43.57 37.46 36.85 40.95 39.57
Apr 0.66 1.17 2.73 0.70 0.76
May 0.63 0.77 1.26 0.91 0.77
Jun 1.93 N/A 2.29 2.22 2.17

Open Jul 3.68 3.93 4.32 3.84 3.63
shrubland Aug 5.152 4.49 3.28 5.02 5.11

Sep 4.48 4.59 2.68 2.93 4.52
Oct 4.50 3.622 2.78 2.81 1.68
Nov 1.12 1.76 0.29 1.97 1.69

Total 22.15 20.33 19.63 20.4 20.33
Apr 4.58 6.71 15.14 4.37 5.94
May 10.50 6.61 14.02 12.07 14.02
Jun 32.95 N/A 34.27 33.46 33.69

Woody Jul 53.71 57.43 53.90 53.21 45.75
savanna Aug 55.78 52.10 39.41 53.34 54.39

Sep 39.24 40.21 25.58 33.43 39.04
Oct 24.63 25.39 17.32 19.61 12.67
Nov 6.69 8.83063 2.63 6.29 5.19

Total 228.08 197.28 202.27 215.78 210.69
Apr 6.81 7.77 41.00 7.389 5.56
May 10.93 8.26 27.74 18.34 11.69
Jun 34.04 N/A 40.22 37.14 34.09

Savanna Jul 56.68 59.79 73.02 59.15 54.93
Aug 82.95 77.80 55.56 95.87 101.61
Sep 67.52 66.48 45.42 48.66 79.49
Oct 49.22 53.23 27.13 32.79 26.93
Nov 17.03 21.77 5.95 15.48 15.57

Total 325.18 295.1 316.04 314.82 329.87
Apr 0.65 1.04 2.45 0.79 0.64
May 0.80 0.85 1.83 1.36 0.89
Jun 2.78 N/A 4.70 4.77 4.39

Savanna Jul 5.41 6.01 7.50 5.556 5.19
Aug 7.52 4.14 4.91 7.89 8.06
Sep 5.72 5.02 3.54 3.47 6.78
Oct 4.63 5.69 2.57 2.620 1.79
Nov 1.60 1.79 0.32 1.85 2.49

Total 29.11 24.54 27.82 28.31 30.23

Table F.4: Total area burned (100000 hectares): Multiplicative model results
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2000 2001 2002 2003 2004
Apr 0.76 1.49 2.85 0.86 1.36
May 0.67 0.47 0.86 0.87 1.48

Deciduous Jun 2.99 N/A 2.33 2.63 2.47
broadleaf Jul 7.62 7.28 7.70 8.09 6.94
forest Aug 10.93 10.51 7.6 8.84 9.56

Sep 4.67 3.87 2.96 4.22 3.89
Oct 4.07 3.19 2.13 3.90 1.56
Nov 1.10 1.72 0.69 0.61 0.28

Total 32.81 28.53 27.12 30.02 27.54
Apr 0.73 1.32 2.77 0.96 0.97
May 0.59 0.88 0.92 0.77 0.76
Jun 1.33 N/A 1.42 1.45 1.40

Open Jul 2.31 2.56 2.67 2.48 2.46
shrubland Aug 3.30 3.01 2.03 3.19 3.33

Sep 2.92 3.06 1.77 1.91 2.84
Oct 2.81 2.57 1.23 1.56 0.96
Nov 0.95 1.09 0.51 0.71 0.80

Total 14.94 14.49 13.32 13.03 13.52
Apr 1.26 2.14 4.61 1.36 1.42
May 2.05 1.48 2.74 2.47 3.00
Jun 5.72 0 5.47 5.43 5.50

Woody Jul 8.83 9.81 8.71 9.08 8.21
savanna Aug 9.55 8.81 6.59 8.83 9.12

Sep 6.54 6.71 4.39 5.86 5.96
Nov 4.27 4.32 2.49 3.32 1.96
Oct 1.27 1.74 0.70 0.82 0.57

Total 39.49 35.01 35.71 37.17 35.74
Apr 1.08 1.34 7.12 1.16 0.78
May 1.20 0.93 2.63 1.93 1.43
Jun 3.33 N/A 3.54 3.34 3.11

Savanna Jul 5.19 5.84 6.49 5.64 5.47
Aug 7.47 7.49 5.15 8.95 10.12
Sep 6.54 6.10 4.36 4.72 6.61
Oct 4.50 5.06 1.91 3.00 2.46
Nov 1.72 2.03 0.64 1.00 0.98

Total 31.03 28.81 31.86 29.68 30.96
Apr 0.86 1.37 2.34 1.06 1.02
May 0.87 1.10 1.19 1.06 0.87
Jun 1.67 N/A 2.72 2.76 2.65

Grassland Jul 3.30 3.48 4.28 3.51 3.30
Aug 4.41 2.79 3.01 4.76 4.94
Sep 3.74 3.23 2.24 2.13 3.85
Oct 2.65 3.75 1.01 1.54 1.05
Nov 1.38 0.98 0.44 0.64 1.05

Total 18.88 16.7 17.23 17.46 18.73

Table F.5: Percentage of vegetation class which has burned: Multiplicative model results
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2000 2001 2002 2003 2004
Apr r  0.56 1.04 1.61 0.49 1.32
May 0.63 0.41 0.78 0.81 2.08

Deciduous Jun 3.34 N/A 2.86 3.19 2.87
broadleaf Jul 8.90 8.13 9.33 9.10 7.28
forest Aug 11.35 11.51 8.48 9.72 10.51

Sep 5.15 4.17 3.11 4.32 4.84
Oct 3.54 3.00 2.42 3.94 1.82
Nov 0.87 1.28 0.44 0.72 0.48

Total 34.34 29.54 29.03 32.29 31.20
Apr 0.44 0.78 1.82 0.47 0.51
May 0.42 0.51 0.84 0.61 0.51
Jun 1.28 N/A 1.52 1.48 1.44

Open Jul 2.45 2.61 2.87 2.55 2.41
shrubland Aug 3.42 2.98 2.18 3.34 3.40

Sep 2.97 3.04 1.78 1.95 3.00
Oct 2.99 2.42 1.85 1.86 1.12
Nov 0.75 1.17 0.19 1.31 1.13

Total 14.72 13.50 13.04 13.56 13.51
Apr 0.82 1.20 2.70 0.78 1.06
May 1.87 1.18 2.50 2.15 2.50
Jun 5.88 N/A 6.11 5.97 6.01

Woody Jul 9.58 10.24 9.61 9.49 8.16
savanna Aug 9.95 9.29 7.03 9.51 9.70

Sep 7.00 7.17 4.56 5.96 6.96
Oct 4.39 4.53 3.09 3.50 2.26
Nov 1.19 1.57 0.47 1.12 0.93

Total 40.68 35.18 36.07 38.48 37.58
Apr 0.67 0.77 4.04 0.73 0.55
May 1.08 0.81 2.73 1.81 1.15
Jun 3.35 N/A 3.96 3.66 3.36

Savanna Jul 5.59 5.89 7.20 5.83 5.41
Aug 8.17 7.67 5.48 9.45 10.01
Sep 6.65 6.55 4.48 4.79 7.83
Oct 4.85 5.25 2.67 3.23 2.65
Nov 1.68 2.15 0.59 1.53 1.53

Total 32.04 29.08 31.14 31.02 32.51
Apr 0.41 0.65 1.54 0.50 0.40
May 0.50 0.53 1.14 0.85 0.56
Jun 1.74 0 2.94 2.99 2.76

Grassland Jul 3.39 3.77 4.70 3.48 3.25
Aug 4.71 2.60 3.08 4.94 5.05
Sep 3.58 3.14 2.22 2.17 4.24
Oct 2.90 3.56 1.61 1.64 1.12
Nov 1.00 1.12 0.20 1.16 1.56

Total 18.24 15.37 17.43 17.74 18.94

Table F.6: Percentage of vegetation class which has burned: Multiplicative model results
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Low Moderate High
2000 61.0 36.1 2.9
2001 61.0 36.0 3.1
2002 67.7 30.3 2.0
2003 64.4 33.2 2.4
2004 63.7 34.0 2.3

(a)Deciduous broadleaf forest

Low Moderate High
2000 56.5 38.9 4.6
2001 58.6 36.8 4.6
2002 61.1 34.8 4.1
2003 58.6 37.2 4.1
2004 53.7 42.2 4.1

(b)Open shrublands

Low Moderate High
2000 53.3 41.9 4.8
2001 53.2 41.4 5.4
2002 56.4 38.9 4.7
2003 53.9 41.1 5.0
2004 52.8 42.0 5.2

(c)Woody savannas

Low Moderate High
2000 56.0 38.7 3.3
2001 55.7 41.1 3.2
2002 61.1 36.5 2.4
2003 59.0 38.2 2.7
2004 52.7 44.3 3.0

(d)Savannas

Low Moderate High
2000 52.7 42.3 5.1
2001 54.2 38.2 7.6
2002 49.0 42.2 8.8
2003 50.6 40.9 8.5
2004 46.4 j 46.1 7.4

(e)Grasslands

Table G. 1: Proportion of low, moderate and high severity bums in each cover class between 
2000-2004: Additive model results


