
REFERENCE ONLY

2809662288

UNIVERSITY OF LONDON THESIS

Degree \ V \ ^ Year 2 .0 0 ^ Name of Author i ^ ' C V c ^ fzk
7

COPYRIGHT
This is a thesis accepted for a Higher Degree of the University of London. It is an
unpublished typescript and the copyright is held by the author. All persons
consulting this thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author
and that no quotation from it or information derived from it may be published without
the prior written consent of the author.

LOANS
Theses may not be lent to individuals, but the Senate House Library may lend a
copy to approved libraries within the United Kingdom, for consultation solely on the
premises of those libraries. Application should be made to: Inter-Library Loans,
Senate House Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written
permission from the Senate House Library. Enquiries should be addressed to the
Theses Section of the Library. Regulations concerning reproduction vary according
to the date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the
author. (The Senate House Library will provide addresses where possible).

B. 1962-1974. In many cases the author has agreed to permit copying upon
completion of a Copyright Declaration.

C. 1975-1988. Most theses may be copied upon completion of a Copyright
Declaration.

D. 1989 onwards. Most theses may be copied.

This thesis comes within category D.

i \X This copy has been deposited in the Library of Va C L—
This copy has been deposited in the Senate House Library,
Senate House, Malet Street, London WC1E 7HU.

Design and Integrity of Deterministic System Architectures

Design and Integrity of

Deterministic System Architectures

Richard Bartlett Smith

Centre for Systems Engineering

Mullard Space Science Laboratory

University College London

This thesis is submitted in accordance with the Regulations for

the degree of Doctor of Philosophy in the University of London

October 2007

RB Smith Page 1 of 262 Issue Final

UMI Number: U592429

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U592429
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Design and Integrity of Deterministic System Architectures

Declaration

This thesis has been written and compiled by the author and is submitted in

accordance with the Regulations for the degree of Doctor of Philosophy in the

University of London.

Richard B Smith:

RB Smith Page 2 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

ABSTRACT

Architectures represented by system construction ‘building block’ components and

interrelationships provide the structural form. This thesis addresses processes,

procedures and methods that support system design synthesis and specifically the

determination of the integrity of candidate architectural structures. Particular emphasis is

given to the structural representation of system architectures, their consistency and

functional quantification. It is a design imperative that a hierarchically decomposed

structure maintains compatibility and consistency between the functional and realisation

solutions.

Complex systems are normally simplified by the use of hierarchical decomposition so

that lower level components are precisely defined and simpler than higher-level

components. To enable such systems to be reconstructed from their components, the

hierarchical construction must provide vertical intra-relationship consistency, horizontal
interrelationship consistency, and inter-component functional consistency.

Firstly, a modified process design model is proposed that incorporates the generic

structural representation of system architectures.

Secondly, a system architecture design knowledge domain is proposed that enables

viewpoint evaluations to be aggregated into a coherent set of domains that are both

necessary and sufficient to determine the integrity of system architectures.

Thirdly, four methods of structural analysis are proposed to assure the integrity of the

architecture. The first enables the structural compatibility between the ‘building blocks’

that provide the emergent functional properties and implementation solution properties to

be determined. The second enables the compatibility of the functional causality structure

and the implementation causality structure to be determined. The third method provides

a graphical representation of architectural structures. The fourth method uses the

graphical form of structural representation to provide a technique that enables

quantitative estimation of performance estimates of emergent properties for large scale

or complex architectural structures.

These methods have been combined into a procedure of formal design. This is a design

process that, if rigorously executed, meets the requirements for reconstructability.

Keywords. Systems Engineering; System Design; Design synthesis; Architectural

structures: Architectural integrity.

RB Smith Page 3 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Dedication

To those who wish to work smarter, not harder.’

Acknowledgements

To the supervisors Professors Kenneth Hambleton, David Kirkpatrick and Alan Smith,

and Dr. Michael Ernes at University College London, whose support and advice has

been essential to enable me to carry out this programme.

To Professor Ludwig Finklestein at City University for providing the introduction to the

analysis of measurement system designs. To Professor Robin Whitty at South Bank

University for providing the introduction to graph theory. With respect to the use of

Mathematica, to Professor P. Mclver, School of Mathematical Science at Loughborough

University for advice on the program construction of rule based mathematical

procedures, and to general advice provided by the support helpline at Wolfram Research

Inc.

To the Directors and colleagues of the Avionic Systems Division, Platform Solutions,

BAE SYSTEMS pic for their sponsorship and support during the preparation of this

thesis. Of special note is the support from Gordon Belcher for his encouragement to write

this thesis, to Fred Mackley and Bob Wilkinson for making it financially possible, to

Stephen Taylor for his clarity of review and coaching in abstract algebra, mathematics

and modelling, and to Martin Field for his encouragement and guidance to enable it to be

completed. Also to Debbie Kemp, Christine Hobbs and Stuart Earl for assistance with

typographical presentation.

To my wife, Maggie, whose constant support and encouragement has enabled me to

complete this programme.

The author.

Contact email address is seymr.smith@btinternet.com.

RB Smith Page 4 of 262 Issue Final

mailto:seymr.smith@btinternet.com

Design and Integrity of Deterministic System Architectures

Table of Contents

1 SYSTEMS ENGINEERING...26
1.1 Background..26
1.2 Systems Architecting... 32
1.3 Design Integrity... 35
2 SYSTEMS MOVEMENT - CAPABILITY REVIEW... 37
2.1 Introduction..37
2.2 Aerospace and Defence..42
2.3 Automotive.. 43
2.4 Petro-chemical and allied Process Industries... 44
2.5 Utilities...44
2.6 Transportation Logistics..45
2.7 Mass Transportation.. 45
2.8 Telecommunications... 45
2.9 Informatics..45
2.10 Computer based systems..45
2.11 Organisational and Management systems.. 46
2.12 Design Environments.. 48
2.13 General Systems Theory...49
2.14 Modelling and Simulation.. 51
2.14.1 Models of Technology Components..52
2.14.2 Models of particular phenomena...53
2.14.3 Models of computing arrangements..53
2.14.4 Models of Processes... 53
2.14.5 Models of Soft Systems... 53
2.14.6 Models for System Architecting...53
3 SYSTEMS ENGINEERING PROCESS MODELS.. 59
3.1 Review of Current Standards.. 59
3.1.1 Introduction..59
3.1.2 DOD MIL-STD-499, A and B..59
3.1.3 ISO 15288..61
3.1.4 DOD C4ISR Architecture Framework.. 61
3.2 Integration of Process Models with System Design Models............................62
3.3 System Modelling as a Process...63
3.4 Structural Representation of System Designs.. 65
3.4.1 Causality Representation.. 65
3.4.2 Family T rees..65
3.4.3 Block Diagrams..65
3.4.4 Signal flow Diagrams..66
3.4.5 Network Analysis..66
3.4.6 Analogue Computing Diagrams...66
3.4.7 Reliability Networks..67
3.4.8 Software Program Flow Diagrams... 67
3.4.9 Behaviour Diagrams...67
3.4.10 Transportation and Production Flow Process diagrams..................................67
3.4.11 Object Oriented Design... 68
3.4.12 The N Squared (N2) Chart... 68
3.4.13 Design Matrix Construct.. 70
3.4.14 Design Structure Matrix..71

RB Smith Page 5 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

4 QUANTITATIVE DETERMINATION OF SYSTEM FUNCTIONALITY............ 72
4.1 Relationship to Laws of Physical, Chemical and Informatic Sciences............ 72
4.2 Networks, Causality Diagrams, and Matrices..72
4.3 Network Modelling..73
4.4 Two-port Analysis...74
4.5 Analysis of Composite Dynamical Systems.. 76
4.6 Energy as a Common Unit for Engineering Sciences..................................... 77
4.7 Multi-port Systems Analysis.. 77
4.8 Bond Graphs with Discipline Capability Extensions.. 80
5 SYSTEM DESIGN..81
5.1 Introduction to Systems Architecting..81
5.2 The Complexity Problem... 82
5.3 The Context of System Design as an Activity... 84
5.4 Design Integrity..87
5.5 Estimation of Integrity during Design Synthesis...90
5.6 System Complexity and Simplification Strategies... 93
5.7 Hierarchical Decomposition and System Reconstruction................................ 95
5.8 Design Synthesis..97
5.9 Outline of Proposed Solution Structure..101
6 DESIGN SYNTHESIS AS A STRUCTURED PROCESS.............................. 104
6.1 Process Schema Description...104
6.2 Design Process Integration..106
6.3 Design Process Structure...113
6.4 Integration of Process Model with DSM... 117
7 SYSTEM KNOWLEDGE AND ITS DECOMPOSITION................................. 120
7.1 On Sensor Design and System Design... 120
7.2 System Design Domain Decomposition... 120
8 TRACEABILITY ANALYSIS.. 125
8.1 System Partitioning and Decomposition..125
8.2 Evaluation of Multilayered Structures.. 127
8.2.1 Generation of Dependency Matrix Equation..127
8.2.2 Example of Use of the Construction.. 128
8.2.3 Conclusion... 130
8.3 Evaluation of Functional and Implementation Causality Consistency 130
8.3.1 Generation of Causality Network Model.. 130
8.3.2 Description of Analysis Procedure Model.. 131
8.3.3 Example of Use...132
9 ARCHITECTURAL STRUCTURES AND FUNCTIONAL ANALYSIS............135
9.1 Architectural Structures as Graphs.. 135
9.2 Functional Decomposition..136
9.3 Computer Mechanisation of Analysis Methods..137
9.4 Method of Functional Quantification.. 137
9.5 Construction of the System Adjacency Matrix and Graph............................. 138
9.6 Determination of Number of Paths between each Node................................140
9.7 Determination of Direct Product/Sum Node-to-Node Expressions................ 141
9.8 Demonstration of Capacity Determination... 144
9.9 Demonstration of Functional Determination... 146
9.10 Functional Determination of Interconnectivity Relationships......................... 147
9.11 Mechanisation of Functional Insertion... 152
9.11.1 Demonstration of Insertion of a polynomial function......................................152
9.11.2 Demonstration using a matrix function with single rule of association 155
9.11.3 Demonstration using a matrix function with combined Multiply and Plus

rules of association..155

RB Smith Page 6 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

9.11.4 Summary..156
10 EVALUATION OF ARCHITECTURAL STRUCTURES.................................159
10.1 Architectural Knowledge..159
10.2 Context of Domain Knowledge..160
10.3 Domain Activity Population..161
10.4 Summary of Procedure to Determine the Functional Structure of each

Domain.. 167
10.5 Proposed Procedure for Structured System Design.....................................169
10.6 Demonstration of Architectural Analysis Techniques....................................172

11 CONCLUSIONS.. 176
11.1 Review of Proposed Analytical Method.. 176
11.2 Review of Proposed Embodiment Methodology... 178
11.3 Implications for the Integrity of System Designs... 179
11.4 Level of Achievement.. 180
11.5 Limitations to Use.. 183
12 RECOMMENDATIONS FOR FUTURE WORK.. 185
12.1 Data Capture... 185
12.2 Use of Graph Theory and associated Mathematical Fields...........................185
12.3 Use of Standard models of Functional Combination.....................................185
12.4 Extensions to the Type Definition and Population of the Direct Product 186
12.5 Generation of Algebra of System Design.. 186
12.6 Integration with Design Structure Matrix Methods and Procedures.............. 187
12.7 Optimisation Extensions..187

RB Smith Page 7 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

List of Appendices

APPENDIX 1 - DESIGN PROCEDURE EVALUATION EXAMPLE.................................... 188
A1.1 DESCRIPTION OF EVALUATION EXAMPLE (ATTACK HELICOPTER)... 188
A1.2 OPERATIONAL REQUIREMENTS - FAILURE MANAGEMENT

PERSPECTIVE...190
A1.3 DECOMPOSITION OF THE ATTACK HELICOPTER SYSTEM.................. 193
A1.4 EVALUATION OF SYSTEM INSTALLATION IMPLEMENTATION.............. 196
A1.4.1 PHYSICAL INSTALLATION..196
A1.4.2 ELECTRICAL INSTALLATION..196
A1.4.3 ANALYSIS OF ALIGNMENT OF FUNCTIONAL AND INSTALLATION

ARCHITECTURES... 197
A1.5 EVALUATION OF COMPATIBILITY OF FUNCTIONAL AND

IMPLEMENTATION CAUSALITY ARCHITECTURES...............................202
A1.5.1 FUNCTIONAL CAUSALITY DETERMINATION..202
A1.5.2 DESCRIPTION OF SYSTEM IMPLEMENTATION.......................................205
A1.5.3 COMPATIBILITY OF IDEAL SYSTEM AND IMPLEMENTATION SYSTEM

ARRANGEMENT... 207
A1.6 FUNCTIONAL ANALYSIS...208
A1.6.1 GENERATION OF THE N SQUARED FORM..208
A1.6.2 ARCHITECTURE OVERVIEW... 210
A1.6.3 SYSTEM COMPOSITION...211
A1.6.4 CAPACITY ANALYSIS..217
A1.6.5 INTERCONNECTIVITY ANALYSIS.. 223
A1.6.6 FUNCTIONAL ANALYSIS...227
ADDENDUM TO APPENDIX 1 - INTRODUCTION TO HELICOPTER FLIGHT SAFETY 234
AA1.1 AVOID CURVE...234
AA1.2 MINIMUM POWER SPEED...234
AA1.3 MINIMUM SAFETY HEIGHT...234
AA1.4 MINIMUM AUTOROTATION HEIGHT.. 234
AA1.5 MINIMUM OBSTACLE VISUAL REFERENCE REGION............................. 234
AA1.6 OPERATION FLIGHT ENVELOPE SEGMENTATION................................ 235
AA1.7 PILOTING MODES... 236
APPENDIX 2 BACKGROUND MATHEMATICS...238
A2.1 ABSTRACT ALGEBRA...238
A2.2 GRAPH THEORY.. 239
A2.3 DYNAMICAL SYSTEMS...243
A2.4 STATE SPACE REPRESENTATION OF COMBINATIONS OF DYNAMIC

SYSTEMS...246
A2.5 CONCLUSION.. 247

RB Smith Page 8 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

APPENDIX 3 BOND GRAPHS.. 248
A3.1 COMPONENT MODELS FOR BOND GRAPHS... 248
A3.2 EXTENSION OF APPLICABILITY OF BOND GRAPH AND PSEUDO

BOND GRAPH CAPABILITY..250
A3.3 COMPONENT REPRESENTATION FOR INTRA-DOMAIN ANALYSIS.....250
APPENDIX 4 - REFERENCES... 253
APPENDIX 5 - ABBREVIATIONS.. 259
APPENDIX6 -GLOSSARY... 261

RB Smith Page 9 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

List of Figures

Figure 1 - System Engineering V Diagram Process Model (P1).. 16
Figure 2 - Schematic of the MIL-STD 499 Architecting Process Model depicting the role

of Design Synthesis (D22).. 18
Figure 3 - Architecture Design Domain Decomposition (D1)... 22
Figure 4 - A System Architecture in the form of a Directed Graph (D2).................................23
Figure 5 - Schematic of Architecture Structure Analysis (D3)... 25
Figure 6 - Schematic of System Design (P2)...60
Figure 7 - Schematic of Modelling Process (D7)..63
Figure 8 - Various Types of N Squared Matrix System Constructs (D23)..............................69
Figure 9 - Schematic of Two-Port Network Component (D6).. 75
Figure 10 - Schematic of Bond Graph Representation (D7).. 78
Figure 11 - Complexity illustrated by number of Requirements Objects needed to define

a System (P15).. 83
Figure 12 - The ‘V’ Diagram showing step-wise verification and validation (P22)................. 88
Figure 13 - Schematic of the MIL-STD 499 Process Model enhanced to show

relationship with the System Architecture and technology Specialisms
(D22)...91

Figure 14 - Hierarchical Decomposition showing aggregation dependency relationships
(P17)...96

Figure 15 - Hierarchical Decomposition showing interrelationships (P18).............................96
Figure 16 - Schematic showing structural impact of Matching Functional and

Implementation Solutions (P16)..98
Figure 17 - Adjacency Matrix Form of System Implementation Construction....................... 98
Figure 18 - Schematic of ‘House of System Design’ (P3)... 105
Figure 19 - Integration of system knowledge with design and process to achieve a viable

solution space (P4)... 106
Figure 20 - Generic Structure of Machine System Design Process (P5)............................108
Figure 21 - The ‘V’ Diagram showing verification and validation (P22)...............................110
Figure 22 - Illustration showing Integration of Design Analysis with the ‘V’ Diagram

Process Model (P21).. 111
Figure 23 - Integration of Machine System Design Process with Generic Process Model

(P7)... 112
Figure 24 - Process Model Integration (P8)...114
Figure 25 - Integration of the Machine System Object with the HSD Design Process (P9) 115
Figure 26 - Integration of User Solution Viewpoint, the Machine Solution and its

Components (P10)... 115
Figure 27 - Machine System Design Process Structure (P11).. 116
Figure 28 - Process Structure showing machine and embodiment design flows (P12)...... 117
Figure 29 - Use of Matrices in Concert to support a Systems Engineering Process (P13). 118
Figure 30 - Integration of Product Composition Matrix with Machine System Process

Model (P14)...119
Figure 31 - Schematic of Design Domain Integration (P19).. 121
Figure 32 - Composition of System Design Knowledge (D1).. 121
Figure 33 - Pictorial Definition of Generic System Domain Allocations (D4)........................122
Figure 34 - Schematic of System Architecture (D8)..128
Figure 35 - Functionality Dependency Matrix Equation for generic Command and Control

System.. 129
Figure 36 - Workstation Dependency Matrix.. 129
Figure 37 - Design Matrix Equation for Command and Control System with sensor pre

processors...129
Figure 38 - Generic Causality Block Diagram Construction (D9).. 131
Figure 39 - Exemplar Functional Causality Network (D10)..132
Figure 40 - Schematic Block Diagram of Exemplar System (D11)...................................... 138
Figure 41 - Construction of System Adjacency Matrix and Graph (M1)............................... 139

RB Smith Page 10 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Figure 42 - Matrices showing number of paths between each node (M2)...........................140
Figure 43 - Computation of node-to-node functionality with two, three and four step

functionality (M3)...142
Figure 44 - Computation of path-to-path functionality with two, three and four step

functionality (M4)...143
Figure 45 - Graph with arbitrary edge capacity values and with highlight of capacity

capability between A and C (M5)..145
Figure 46 - Example of analysis of series across variable ‘voltage’ functions (M6)........... 146
Figure 47 - Example showing Functionality of Interconnectivity Path Structures - with

Feed forward Interconnections only (M7)...148
Figure 48a - Example showing Functionality of Interconnectivity Path Structures - with

All Interconnections enabled and insertion of Attenuation Function (M8a).. 150
Figure 48b Example Showing Functionality of Interconnectivity Path Structures with all

Interconnections enabled and Insertion of Series/Parallel Impedance
Functions (M8b).. 151

Figure 49 - Example of Decomposition of a Direct Product with insertion of a polynomial
function (M9)... 153

Figure 50 - Example of Decomposition of Direct Product with insertion of a Matrix
Function with Plus rule of association (M10).. 154

Figure 51 - Example of Decomposition of Direct Product with insertion of a Matrix
Function with combined Times and Plus rules of association; Part a (M11) 157

Figure 52 - Example of Decomposition of Direct Product with insertion of a Matrix
Function with combined Times and Plus rules of association; Part b (M11) 158

Figure 53 - Schematic Showing Relationship between System Design Knowledge
Repository and the ‘ility’ Domains (P20)... 161

Figure 54 - Schematic of Attack Helicopter Avionic System (D20).....................................189
Figure 55 - Functionality required to present imagery to Pilot (D21)..................................191
Figure 56 - Hierarchical Decomposition of System into Components (D12)........................193
Figure 57 - Schematic of System Architecture (D8)...197
Figure 58 - Schematic of Ideal Mechanical and Electrical Installation Arrangement (D13). 198
Figure 59 - Schematic of Real Mechanical and Electrical Installation Arrangement (D14). 199
Figure 60 - Functional Structure of Avionic System Computing Structure (D15)................ 203
Figure 61 - Typical Computational Causality Structure for Avionic Command and Control

System..204
Figure 62 - Implementation Arrangement of Mission Computer (D16)................................205
Figure 63 - Functional Causality Structure with Implementation Resources (D17)............. 206
Figure 64 Layout of N Squared Matrix for system with three hierarchical tiers................... 209
Figure 65 - System Architecture Connectivity (Helo Msr).. 210
Figure 66- Graphical Representation of System Composition Viewpoint (Helo Mr1a) 212
Figure 67 - Extract of Number of Graphs for System Composition Viewpoint (Helo Mr1a). 212
Figure 68- Number of n-step paths that link the Structure Vertex to other vertices, shown

in ascending order (Helo Mr1a)..213
Figure 69 - System with Composition Functionality using Variable x with Plus Rule of

Association; 2 steps. Columns 1-13 (Helo Mr1a)... 214
Figure 70 - System with Composition Functionality using Variable x with Plus Rule of

Association; 2 steps. Columns 14-24 (Helo Mr1a).......................................215
Figure 71 - System with Composition Functionality using Variable x with Plus Rule of

Association; 2 steps.. 216
Figure 72 - Graph showing capacity structure (Helo Mr2w).. 218
Figure 73 - Adjacency matrix with arbitrary capacity capabilities between each

component (Helo Mr2w)... 219
Figure 74 - Graph diagram of System Structure shown with capacity (arbitrary values) of

each link (Helo Mr2w)... 220
Figure 75 - Electrical power distribution system (Helo Mr2e).. 221
Figure 76 - Power Distribution System Function matrix showing 2 step dependency

paths; Columns 9-12 only of 34 (Helo Mr2e)... 222

RB Smith Page 11 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Figure 77 - Avionic Bus System Interconnectivity Structure (Helo Mr3)...............................223
Figure 78 - Two step functionality relationships; Part Matrix only - lower left quadrant (18-

34, and 1-17 of 34,34) (Helo Mr3)..225
Figure 79 - Functionality of Avionic Bus to Communications system for 3-step path

combinations (Helo Mr3)..226
Figure 80 - Structure of Functional Domain...229
Figure 81 - Graph of Functional Domain...230
Figure 82 - Path Structures for one and two step constructions, columns 12, 13 and 14

only...231
Figure 83 - Mission to Right Hand Pilot Function shown in Matrix Element mm{1,13} in

Transfer Function (A Type) Form and transformed to Admittance (Y Type)
Form..232

Figure 84 - Insertion of 2-Port Component Symbols and Values. Generation of Transfer
Function From Mission to Right Hand Side Pilot.. 233

Figure 85a - Schematic of City of Koenigsberg and Bridges over the River Pregel (D18).. 240
Figure 85b - Map of Koenigsberg shown as a Graph... 241
Figure 87 - Transfer Function Block Diagram of Systems Connected in Series and

Parallel (D19)... 246

RB Smith Page 12 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

List of Tables

Table 1 - Chronology of Development of Systems Engineering Capability - Applications
Domains..41

Table 2 - The Capability of the IDEF Family of Design Modelling Languages [65]............... 55
Table 3 - System Design Model Diagrams supported by the UML and the unified

process..56
Table 4 - SysML Diagram Types with Extensions to UML 2 highlighted with an * [68]......... 57
Table 5 Integrated Systems Design Environment Core Specifications.................................58
Table 6 Mapping MIL 499B to DOD Architecture Framework.. 62
Table 7 - Classification of Mathematical Representation and Ease of Analytical Solution.... 64
Table 8 - Generic Components with Electrical and Mechanical Equivalence........................ 77
Table 9 - Table of Bond Graph Components for various Disciplines [92].............................. 79
Table 10 - Typical Information items held in a Configuration Control System...................... 82
Table 11 - Integration of Process, Design Definition and Knowledge Acquisition................113
Table 12 - Decomposition Model for Large Scale Systems... 125
Table 13 - Resource Table 1 ..133
Table 14 - Resource Table 2 ..134
Table 15 - Table of Machine System Design Domain Analysis Requirements....................164
Table 16 - Type Description of Methods of Analysis..165
Table 17 - List of Disciplines...165
Table 18 - Types of expression, data population and binary combination...........................171
Table 19 - Construction of Mathematica Notebooks for Viewpoint Analysis........................174
Table 20 - System Nomenclature.. 195
Table 21 - Decomposition of Top-level System of Family Tree... 208
Table 22 - Decomposition of Aircraft Level of Family Tree.. 208
Table 23 - Decomposition of Avionic System Family Tree.. 208
Table 24 - List of Excel and Mathematica programs to support analysis of Attack

Helicopter Exemplar... 209
Table 25 - Typical Segmentation of a Helicopter Flight Envelope.......................................235
Table 26 - Operational and Piloting Modes for a Typical Helicopter....................................236
Table 27 - Hazard Control Piloting Information Requirements.. 237
Table 28 - Proposed Bond and Pseudo Bond Graph Generic and Discipline Equivalence

Components..249
Table 29 - Component Representation for Intra-domain Analysis.......................................252

RB Smith Page 13 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

List of Programs in Main Body of the Thesis

Mathematica Notebooks

Name Description

ThesisMI Determination of Number of Paths between each Node.

ThesisM2 Matrices showing number of paths between each node

ThesisM3 Computation of node-to-node functionality with two, three and
four step functionality

ThesisM4 Computation of path-to-path functionality with two, three and
four step functionality

ThesisM5 Graph with arbitrary edge capacity values and with highlight of
capacity capability between A and C

ThesisM6 Example of analysis of series function path structure with
insertion of ‘across’ variable functions

ThesisM7 Example showing Functionality of Interconnectivity Path
Structures - with feed forward Interconnections only combined
with insertion of attenuation functions.

ThesisM8a Example showing Functionality of Path Structure combined
with insertion of attenuation functions.

ThesisM8b Example showing Functionality of Path Structure with insertion
of combined series/parallel impedance network

ThesisM9 Example of Decomposition of a Direct Product expression with
insertion of a polynomial function

ThesisMI 0 Example of Decomposition of a Direct Sum expression with
insertion of a matrix function

ThesisM11 Example of Decomposition of Direct Product and Sum
combination expression with insertion of a matrix function

RB Smith Page 14 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

List of Programs in Appendix 1 of the Thesis

Excel spreadsheets

Name Description

Helo N2 rsm Top down Management structure interrelationships

Helo N2 rs Overall system structure interrelationships

Helo N2 r1 Composition domain interrelationships

Helo N2 r2w Flow Capacity domain interrelationships

Helo N2 r2e Load capacity domain interrelationships

Helo N2 r3 Interconnectivity domain interrelationships

Helo N2 r4a Functional domain interrelationships

Mathematica Notebooks

Name Description

Examplel Demonstration of functional decomposition of path structure

Example2 Demonstration of flow capacity analysis

Helo Mrsm Top down Management structure

Helo Mrs Overall system structure

Helo Mr1a Composition domain analysis

Helo Mr2w Flow Capacity domain analysis

Helo Mr2e Electrical distribution capacity domain analysis

Helo Mr3 Interconnectivity domain analysis

Helo Mr4a Functional domain analysis

RB Smith Page 15 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Executive Summary

The discipline of Systems Engineering is concerned with entities that involve interaction

and cooperation between constituent components. The discipline gained initial

recognition in the World War 2 era, and since then it has attracted considerable support

primarily as the means of tackling large-scale problems.

The V Model is the preferred structure of that part of the Systems Engineering Process

model that addresses the design and integration phases of an overall system lifecycle.

One form of its representation, see Buede, 2000, [65], is shown schematically in Figure

1. The left hand side is concerned with the creation of the design solution and its capture

in the form of engineering drawings; the right hand side is concerned with the realisation

of the solution from component manufacture, through integration and to system

validation.

SE Vee

Kxpa'kl Pcifulmance
Specifications into Ct

“Design-to" J-pecificatioos
ard C l Verification Plan

System s E n g in e e r in g /

Design /
Engineering /

D o c lop System
Performance Specification

and System
Validation Plan

Understand User
Requirements. Develop

S v s ic m Concept and
Validation Plan

Figure 1 - System Engineering V Diagram Process Model (P1)

RB Smith Page 16 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Since the mid 90s there has been a proliferation of models that use the ‘V’ Model as the

generic construction to generate variations that suit particular communities or
applications. This can readily be seen by a casual review of the articles published in the

journal of ‘Systems Engineering’ published jointly by INCOSE and Wiley. Further,
tremendous strides have been made by the CALS/STEP/AP 233 programmes to provide

a neutral data exchange design environment for engineering drawings and multi-media

data products. Currently a framework that enables a wide range of specialist design tools

to cooperate via neutral data exchange is at an advanced stage of development.

The core of the basic systems engineering process model is defined by the tripartite

relationships between a system’s Requirements, its Functional definition and allocation,
and the Synthesis of its implementation that provides the stated needs and functionality;

this has been termed the ‘RFS Model’ by the author. The model was originally generated

for MIL-STD 499 and has been perpetuated within the ISO 15288 specification. The

model works well when there is an intimate relationship between the functions that form

the required system and the functionality of the components used for their

implementation. As systems have become more complex the relationships between the

system functionality and the functionality of the components used for realisation has

become diffuse and, in some cases, obscure. The term ‘system architecture’ has been

adopted by practitioners to describe the entity created by the RFS process that provides

the required emergent properties; System Architecting is the name given to the process

by which the Architecture is defined and the practitioners who create and define the

Architecture are called Architects.

Traditionally, system engineering practitioners have tailored the model to integrate with

particular applications and localised engineering support environments. A consequence

of the growth of globalisation and global design teams is the need to engage system

engineering design communities in a common approach. Like many other large-scale

industrial corporations, GEC-Marconi generated a guide that described best practice for

use in all its business units. By way of illustration, Figure 2 [94] shows an instantiation of

the process model. As the size of problems tackled by systems engineering design

teams had grown the authors realised that the process by which the ‘Functional Concept’
and the ‘Implementation Concept’ become an ‘Architecture’ was substantially undefined.

The term Design Synthesis has been incorporated into the diagram to represent the

activity that determines the architecture. It is called an activity so that its means of

delivery can include processes, procedures and methods.

RB Smith Page 17 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

i i

Functional Concept

System Building
Blocks

Implementation
Concept

Performance
Analysis

Design Primitive
Library

Requirements
Capture

System Architecture
Concept

Design Synthesis

Specialism
Type ‘N+1’

Specialism
Type ‘N+2’

Specialism Type ‘N’
E.g. Mechanical Technology

Electrical Technology
Electronics
Software

Etc.

Figure 2 - Schematic of the MIL-STD 499 Architecting Process Model depicting the
role of Design Synthesis (D22)

RB Smith Page 18 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The central contribution demanded of all systems architects is to understand the

performance attributes required by the sponsor, determine the functionality that will

provide the attributes, and match the required functionality to implementation

functionality. The role of the architect is to integrate and blend technologies and

components into an implementation or realisation solution that generates the required

functionality.

While it is recognised that architecting is both an art and a science, in fulfilling this role

the architect has the responsibility to ensure that the design solution as captured in the

design drawings presented prior to manufacture will provide the desired functionality.
This means that the emergent properties must be capable of being estimated from the

design data. Consequently, the activities, methods, procedures and processes pertinent

to the generation of the estimates are all required to be instantiated within the left hand

side of the ‘V’ process model.

To the best of the author’s knowledge, all ‘how to do it’ systems engineering models

describe data flow ‘input-output’ processes or activities and there is a continuing lack of

procedures and methods to support architectural evaluation. As one of the authors of the

of the original GEC-Marconi guide, the author realised that there was a dearth of

information as to specific procedures and methods pertinent to system synthesis

processes that could be invoked to support the activities described within the process

models.

Systems consist of interrelated components, many of which transcend traditional single

discipline boundaries. Where a system component contributes to a single matching

aspect of system functionality, and/or the component itself is derived from a single

discipline, mature design techniques exist. However, where system functionality results

from the combined effect of a number of components, where components contribute to a

number of aspects of system functionality, or where the components themselves are

composed of a number of disciplines, the same cannot be presumed.

System integrity is concerned with the unity and wholeness of the design in relation to its

intended purpose. Clearly, the integrity of the architecture is of prime concern to all
stakeholders and, for all non-trivial systems, it cannot be taken for granted. Its

determination is complicated because of the interconnectivity between components and

the multi-functional nature of these interrelationships. Therefore, a means of formal

evaluation is required that encompasses the multi-functional and multi-disciplinary nature

of modern designs.

RB Smith Page 19 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Despite the maturity of systems design processes, the author asserts that the methods

associated with architectural analysis that are typically available to the system architect
have not been developed to support the complexity of modern systems. The

consequence is that the emergent properties of non-trivial systems are, in general, only

partially/selectively predicted during the design process. Therefore, many significant

emergent properties, in terms of acceptance compliance, only become apparent during

the later stages of integration and commissioning. Such properties put unwanted risk into

the acceptance process, have the potential to result in programme schedule extensions

and substantial additional costs if corrective action is required, and cause user
dissatisfaction.

The motivation for this thesis is to establish and describe some methods that mitigate the

likelihood of such undesirable properties not being identified during the design process

by:

• Asserting that structural integrity evaluation should be instantiated within the

system design process model, and

• Generating analytical methods that provide quantitative estimates of the system’s

emergent properties during the design process and, by implication, identification

of undesirable emergent properties.

Within this thesis the author justifies the assertion that the processes, procedures and

methods described herein, enhance the knowledge pertinent to the structural integrity of

system architectures.

RB Smith Page 20 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The key concepts are introduced in five stages: -

o Machine system design process - an overall process is proposed that is centred
around use of structural integrity evaluation.

o System evaluation coherence - a necessary and sufficient set of viewpoint
domains of the structural integrity of an architecture is proposed to provide

confidence in the completeness and coherence of the architecture.

o Traceability methods - methods of analysis are proposed that allow assessment of
the impact on architectural structural integrity arising from realisation constraints.

o Architectural structure representation - a means of representation of architectural

structures is proposed to further support functional analysis.

o Functionality expression - a method of functional population is proposed enabling

node-to-node functional analysis that is inclusive of functionality arising from the

disparate disciplines and technology bases that modem systems typically employ.

These techniques enhance the ability of the system architect to estimate emergent

properties throughout the design process. Examples are used to illustrate the viability of
the approach.

Firstly, a description of a Machine System Design Process is proposed. It extends the

widely accepted Requirements, Functional Decomposition and Solution Synthesis model
of the engineering design process to ensure that full structural analysis of the

architecture is instantiated within the design process. This assures that the structural

composition of a system and its evaluation, held in tacit knowledge form, is formalised in

the design definition.

Secondly, the coherency of system viewpoint evaluations is addressed. Viewpoint

Analysis is a technique in common use that enables system architects to evaluate a

system design from a specific perspective. It is a means of simplification by taking a

single subject focus for evaluation; that facilitates quantification by identifying consistent

component function models and metrication. Usually, viewpoints are selected for
analysis according to perceived need, or interest or subject knowledge, and the number
of viewpoints analysed for any particular application will vary according to, for example,

perceived risks as well as budgetary constraints. The result is that while a qualitative

appreciation of the totality and coherence of the number of viewpoints for a particular

application may exist, the adequacy of the scope and consistency of quantitative

coverage is rarely considered.

To provide a coherent basis for viewpoint population, it is proposed that the integrity of a

system design can be determined by thorough consideration of the architecture in four

RB Smith Page 21 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

domains of interest, viz. composition, capacity, messenger and functional behaviour,
each of which has special significance to system architects. This is shown in Figure 3.

System Design
Knowledge

Composition MessengerCapacity Functional
Behaviour

D ifi
Repository

Figure 3 - Architecture Design Domain Decomposition (D1)

Note. The system structure and attributes of each building block are stored in the data

repository.

The method determines that a system design is complete when its:

• structural arrangement is consistent: Composition.

• capability to meet the boundary condition performance requirements is ascertained:

Capacity.

• interfaces have been constructed to provide the required connectivity and

information transfer: Messenger.

• combined behavioural functionality between all nodes in all the architectural
connections has been determined: Functional Behaviour.

Therefore, the hypothesis is that the scope of the proposed methods meets the

sufficiency criteria for system architectural constructions.

RB Smith Page 22 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

While this decomposition instantiates coherency into viewpoint selection and

aggregation, the problem of complexity remains. This is addressed during the design

phase by further decomposition. Throughout this process the architect is obliged to verify

the design by matching the desired functionality of each building block to the functionality

provided by its realisation solution. This is further complicated by the fact that the current

scope of technology capability is such that the range of realisation options that occupy

the viable design space for the system of interest is substantial.

Thirdly, therefore, to enable the traceability between functional building blocks and

realisation components to be determined, two methods of analysis are described:

hierarchical traceability and causal consistency. The first method uses Boolean matrices

to evaluate hierarchical decomposition consistency, and the second uses a causality

network to match functional dependency and realisation component compatibility. Both

methods identify inconsistencies between the functional and realisation architectures.

Fourthly, in order to provide the architect with a generic means of representing

architectural structures, it is proposed that these be created and held in the form of
graphs. Directed Graphs consist of nodes and edges, wherein each edge is defined as

being unidirectional. It is proposed that architectural structures be modelled using

Directed Graphs consisting of nodes and paths, wherein each node is a building block

and each edge a labelled path.

Directed Graphs may be analysed using Linear Algebra. Matrix representation and

analysis techniques enable the paths from any ‘source’ to ‘sink’ node to be determined.

The Directed Graph form of an arbitrary system architecture is shown in Figure 4.

Figure 4 - A System Architecture in the form of a Directed Graph (D2)
The labelled path constructs are in the form of algebraic Direct Products/Sums; i.e. of the

form a o b or a + b, where a, b are functional components and ‘ o, + ‘ are types of binary

association.

c
2 4

RB Smith Page 23 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

This enables a means of source-to-sink functional analysis to be carried out based on

the decomposition of the labelled path structures into functional components and

association relationships.

Fifthly, a method of functional population is proposed that enables the functionality of a

source-to-sink path structure to be evaluated. To do this, models of each building block

and path component need to be constructed. In addition, their rules of association need

to be defined.

To demonstrate the capability of the method, various forms of model representation are

used in the examples. Of particular interest is the use of network-based models as they

provide a comprehensive and readily accessible technique of multi-disciplinary analysis.

For example, Two-port models are based on linear algebra constructions that provide

equivalence between electrical and mechanical component forms.

While the purpose of decomposition is simplification, the clear intention is that the

collection of components so created can be integrated to form an entity that is indeed the

desired system. Reconstruction is the complement of decomposition. Reconstructability

is the term that describes the attributes of the system components relevant to their
integration into a coherent entity.

The methods of traceability, and functional population combined together meet the

requirements for reconstructability. Therefore, the thesis includes a proposal for a formal

design method. This is shown as a process diagram in Figure 5 and the thesis includes a

proposal for an algebra of system design.

RB Smith Page 24 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Architecture Concept Application Knowledge

Determine Structure

Assess Decomposition
Consistency and

Traceability

Engineering Science
KnowledgeDomain Decomposition

Support
Mathematics Path Determination

 1Z___
Functional

Decomposition
Engineering Design

Analysis Techniques 1Z____
Functional Analysis

Assess ‘source-to-sink’
path performance

No Yes

Compliance with
Requirements? Accept Design

Figure 5 - Schematic of Architecture Structure Analysis (D3)
In summary, this thesis is concerned with procedures and methods required to support

Design Synthesis. It proposes a structured method and analytical procedures pertinent to

the justification of architectural concepts. Consequently, the systems architect is

provided with both a means of decomposition that encompasses the requirements for

completeness and the means of full functional analysis.

RB Smith Page 25 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

1 SYSTEMS ENGINEERING

1.1 Background

Systems are collections of interacting components that together produce characteristics

not achievable by any single component alone. They produce added value, normally

economic, and provide utility.

As systems are built with ever increasing value, more and more disciplines and

stakeholders and interested parties come into play. Components are tied to other

components of quite different types, often with interrelationships that are ill defined, and

uncertain. As more and more functions are incorporated, not only does the number of

elements increase, but also the number of interrelationships increases still more. From a

purely practical point of view, architects and engineers cannot be experts in everything; it

is humanly impractical.

Systems Architecting, as described by Eberhardt Rechtin in his paper, The Foundations

of System Architecting’, 1994, [1], is purpose driven by clients who need to satisfy stated

functional requirements and achieve perceived goals. The role of the architect is to

provide a solution based on all technologies relevant to that solution. Initially the

architecture is in abstract form, later in real form to realise its intended utility. It is likely

that both client and architect will involve many discipline experts to enable the

requirements and means of mechanisation to be rationalised. The architect controls the

architectural definition and facilitates the integration of the disciplines and stakeholders to

provide a rounded and mature solution.

Architecting is an iterative process that results in the creation of an architecture that both

client and provider jointly agree, in realistic terms, satisfies both the purpose and the

solution mechanism; the ‘what’ is satisfied by the ‘how’. An architecture is an object in

abstract form. Its formulation provides the basis of the agreement between the client and

the design authority as to the structure of the solution mechanism. Heuristics, familiarity

of similar applications and knowledge of science and technology all play a significant role

in the formulation of the architecture. Once the architecture in its abstract form is

maturely acceptable to both client and architect, the solution and use of the solution are

refined in detail, so that the implementation solution can be provided to the client for

integration with operations and support, to obtain the utility benefits of the asset.

While heuristics play a very important role in the initial creation of the architecture,

modelling is a capability used by both client and architect to quantitatively estimate the

properties of the solution. Models are derived from the architecture and support its

refinement.

RB Smith Page 26 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

These models provide estimates of quantitative performance and support the articulation

of the various disciplines used to create the real solution; Computer Aided Systems and

Software Engineering (CASE), Computer Aided Engineering (CAE) and Computer Aided

Design and Manufacture (CAD/CAM) all fulfil a role to capture and effect the design, and

estimate the attributes, behaviour and performance of the solution. Clients expect

solutions to provide high economic availability, combined with minimum costs of support.
Modelling provides the architect with the means of assessing the impact of variation both

for the solution itself and for its operational context.

The process of certification and acceptance is designed to ensure that the real solution

provides the required emergent properties. Clients are satisfied when their evaluation of
the real solution confirms that their requirements are met. In practice the complexity of

many systems means that the evaluation process identifies many emergent properties

that were not anticipated by either the client or the architect. In such cases it is

imperative that such attributes are evaluated in the context of the original architecture; if

not, the value of such attributes is indeterminate, with the consequence that certification

and acceptance are jeopardised. Further, post acceptance modifications that cannot be

evaluated in the context of the original architectural concept, put the system re
certification at risk.

RB Smith Page 27 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Robert Frosch, in the following extract from his famous address in 1964, [2a], just prior to

his appointment as NASA Administrator, expressed the central concern about the need

to match art and science.

The fundamental difficulty is that we have all become so entranced with

technique that we think entirely in terms of procedures, systems, milestone

charts, PERT diagrams, reliability systems, configuration management,

maintainability groups and their minor paper tools of the “system engineer” and

manager. We have forgotten that someone must be in control and must exercise

personal management, knowledge and understanding to create a system. As a

result, we have developments that follow all the rules, but fail.

As we are now behaving, we are using up our best people filling out

documentation for their superiors to read, and most of the time nobody is running

the store.

We have lost sight of the fact that engineering is an art, not a technique; a

technique is a tool. From time to time, I am briefed on the results of a systems

analysis or systems engineering job in a way that prompts me to ask the

questions: “That’s fine but is it a good system? Do you like it? Is it harmonious? Is

it an elegant solution to the real problem? For an answer I usually get a blank

stare and a facial suggestion that I have just said something really obscene.’

Questions of the form ‘Is the solution good?’, ‘Is the solution elegant?’, ‘Is the solution

harmonious?’ are subjective. Consequently, the architect has great difficulty in

formulating relevant responses.

RB Smith Page 28 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A more objective approach has been provided by Churchman in The Design of Inquiring

Systems’ ,1971, [3] by addressing the concepts of ‘wholeness, soundness and virtue’.
More explicitly he provides a set of nine necessary conditions, stated as follows, that

enable something that is called a system, S, to be conceived as an entity.

1. S is teleological.

2. S has a measure of performance.

3. There exists a client whose interests (values) are served by S in such a manner
that the higher the measure of performance, the better the interests are served,

and more generally, the client is the standard of the measure of performance.

4. S has teleological components that produce the measure of performance of S.

5. S has an environment (defined either teleologically or ateleologically), which also

co-produces the measure of performance of S.

6. There exists a decision maker who - via his resources - can produce changes in

the measures of performance of S’s components and hence changes in the

measure of performance of S.

7. There exists a designer, who conceptualises the nature of S in such a manner

that the designer’s concepts potentially produce actions in the decision maker,

and hence changes in the measures of S’s components, and hence changes in

the measure of performance of S.

8. The designer’s intention is to change S so as to maximise S’s value to the client.

9. S is stable with respect to the designer, in the sense that there is a built-in

guarantee that the designer’s intentions are realisable.

The author interprets the use of the word ‘teleological’ to mean that S is complex,

purposeful and created by a designer. These conditions imply that the client and

designer join together to reconcile an acceptable measure of performance with a

realisable concept solution; the role of the decision maker is to provide the resources to

enable S to fulfil its intended purpose.

Since these words were written the language has changed but the fundamental message

is as clear today as it was then.

Now systems are considered to be complex and by implication more difficult to design

and performance models more difficult to construct. Nevertheless, we have the benefit
that most, if not all, disciplines have developed their capabilities. Further, performance

models do not need to be confined to the quantitative domain as the use of language can

RB Smith Page 29 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

be no less disciplined than numeric information. For example, in recent years process

capability has developed a language of attributes to characterise maturity. These

attributes can be compared with an internationally agreed set of best practices scaled as

Capability Levels. The technique was developed by Carnegie Mellon University Software

Institute and is known as CMM/CMMI, [4].

The term System Architect has replaced that of Designer and measures of performance

are as much about specific capabilities expressed with specialist vocabulary as well as

measures confined to numeric expression. Churchman placed the responsibility on the

shoulders of the client for utility values, the decision maker for resources and the

designer for the solution. The duty of care to debate explicit performance in relation to

concept solutions and resources has not changed.

To explain the design problem, the term architecture may be likened to a building

wherein the space is delineated for use as a home that provides security, physical

comfort, personal sustainability, a place of social engagement and a place for personal

fulfilment. The space is provided by the layout and its structure. The structure depends

on a wide range of engineering and science disciplines both to create the space and

ensure that it is safe to use throughout its lifetime, including its tolerance to

environmental and other long-term risk factors. Behaviour may be likened to how people

interface with the space, layout and services, so that it becomes a home in which each

area may be associated with some aspect of domestic activity e.g. working, eating,

sleeping, playing, and performance may be associated with, for example, the roles

fulfilled by specific functions (e.g. living rooms together with sustainability rooms, kitchen,
bathroom, utility etc, and environmental management systems). The quality of living may

be likened to process attributes, for example, for interpersonal behaviour or self
actualisation activities, or to the ‘ilities’ in terms of, for example, the reliability, availability,

and maintainability, and the aesthetic characteristics of the home.

Similarly, systems engineers recognise that architecting is both an art and a science; the

art of the architect is to apply imaginative skill and knowledge to create the form of a

mechanism that will provide the clients functionality requirements; the science of
architecting is to quantify the composition, behaviour and performance of the solution.

The architectural concept is the basis of the solution mechanism and its use. It has an

all-pervasive influence on the engineering, operational and environmental infrastructure

that supports the solution throughout its lifetime.

Consequently the System Architect needs to be able to show the appropriateness of the

solution in terms of its architectural attributes; in a way similar to how an architect of a

building demonstrates its aesthetic, functional and structural qualities. In addition, the

RB Smith Page 30 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

system architect needs to be able to justify the quality of the design solution especially in

relation to its integrity and robustness.

Designers describe the holistic characteristics or ‘wholeness’ properties of a design

solution by reference to its ‘integrity’. There are many manifestations of holistic

properties, for example, functional compatibility, interconnectivity, data flow, information

flow, strength, capacity, ‘ility’ compatibility, tolerance to variation, compliance.

Engineers use the term ‘robustness’ to describe the strength characteristics of a design

solution. In particular, it refers to the ability of a design to sustain its performance whilst

being subjected to variation; these variations include both internal and external

parameters. Typically, the robustness of each design function is evaluated under
conditions of normal operations, abnormal operations and failure mode conditions.

Both terms have a lot in common. For example, the strength of a pin joined frame

depends on both the arrangement of forces as well as the properties of each strut. What

is important is the deflection of the assembly under load; it is not possible to differentiate

between the integrity of the arrangement and the robustness of the arrangement without

a great deal of refinement. Therefore, to avoid any ambiguity within this thesis the word

integrity will be used to describe the collective meaning of both integrity and robustness.

To determine the integrity of the solution the Architect needs to have a description of the

structure of the system architecture that will support its population with the design

definition that provides the capability values of the solution, namely:-

• How the solution works as a machine to provide the required attributes.

• Quantitative evidence that describes the qualities of the architectural solution.

• Quantitative evidence that justifies the integrity and robustness of the solution.

This thesis is an attempt to propose and elucidate a generic means of determining the

integrity of candidate architectural solutions.

RB Smith Page 31 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

1.2 Systems Architecting

Systems architecting is defined by Maier and Rechtin, 2002, [5] as: -

The art and science of designing and building systems (erecting buildings)’

It is a slight adaption of the definition in Webster II, [6]. This compares with the definition

of architecture and architect found in English sources.

The art and science of designing and superintending the construction of

systems (erection of buildings) and similar structures.’

‘A person qualified to design systems (buildings) and to supervise their

construction (erection).’

(Note. Words in italics have been substituted by the author to make them generic

objects.)

Appendix C of Maier and Rechtin, [5], is entitled ‘On defining architecture and other

terms’. It contains definitions from five different sources. Key words include: -

art, science, concept, style, process, environment, evolution, value,

specification, designing, construction, building, cost, risk, components,

connections, structure, interrelationships, organisation, execution.

The English view implies that both ‘architecture’ and ‘architect’ have the responsibility as

the controlling mind for what is produced; the original Greek definition defined architect

as the ‘Director of Works’. The process of architecting uses both qualitative and

quantitative approaches to design decision-making. It acknowledges that it is both an art

and a science.

Specific forms of architecture are recognised; buildings, marine vehicles, computers,

communication networks. Other forms of definition are used by different industries; e.g.

Chief Designer for aircraft, Engineer for civil construction works. Designer, a person who

devises and executes designs, as for works of art, clothes, machines etc. where design

is defined as ‘to work out the structure or form of something; a coherent or purposeful
pattern, as opposed to chaos’. In abstract form, a design may be described

mathematically as a multi-optimum inverse problem.

RB Smith Page 32 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

It is acknowledged that many product types involve the formal identification of the

architect’s role with specifically allocated tasks. As a management structure, it solves

many coordination problems, as there is ‘someone’ who will use their best skill and

judgement to set critical parameters. Once set, these enable progressive refinement of

most other implementation and characterisation parameters.

The role of the system architect is to create a solution that provides the required

functionality and performance, that is robust, that meets ‘ility’ (e.g. produce-ability,
reliability, maintainability, availability) expectations, and is cost effective. The architect

has to have a concept of the machine that will meet all these expectations.

With respect to the role of systems architect we must recognise that the modern day

architect is quite different from that during the post war period. Then the role was

concerned with the ability of technology to provide the functionality and performance, and

the feasibility of specification compliance was central to business and commercial
considerations. Architects from that era had the benefit that functional design was

intimately related to the functionality of the components used for implementation. Now,
the functionality of applications is described in abstract terms that bear little relationship

to the functionality of the technology being used for their implementation. In addition, the

ability of technology to provide the requisite performance is taken for granted. The

current trend is to define needs in the form of a capability requirement. The emphasis is

to describe needs and functionality with considerable precision, and the

comprehensiveness and stability of the Statement of Requirements become factors

central to business and commercial risk.

Therefore, the modem architect carries the somewhat daunting responsibility of ensuring

that this ‘top down’ mentality is fully reconciled with ‘bottom up’ reality. The role of the

architect or the architecting process is to create a collection of ‘things’ that, when put
together, provide useful properties that are uniquely generated by the collection in

unison. Therefore, it is implicit within all these definitions that:

the system must work as intended,

it shall provide the emergent properties required by the sponsor, and

it shall not provide emergent properties that are undesirable and not wanted by

the sponsor.

In general, a system is defined as a structure that embodies lower level components in a

relationship.

RB Smith Page 33 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The structure has emergent properties that provide performance characteristics based

on the operational characteristics of the sub-systems in the context of their
environments. However, this research programme is intended to support engineers

responsible for and involved in the design and supply of complex products. It is

concerned with the class of systems that are generally called ‘hard’ systems. The term

‘hard’ is a colloquial term used to differentiate between ‘soft’ systems (i.e. human activity

centred systems, as defined by Checkland et al, 1999, [7], and traditional rule-based

(unconscious) applied technology systems.

Even though these terms are in common use by practitioners and academics, many

system engineers (including the author) do not agree with the implied separation of type

as many applications have both ‘hard’ and ‘soft’ attributes. From a design perspective,
the more important issue is to be able to create a formal structure of the system of

interest, whether it has human centred activities or not. Therefore, the author proposes

the following definition to clarify the focus of interest for this thesis, as follows.

‘A system is defined as a structure, which embodies sub-systems in a formal
relationship, which has emergent properties that provide the user with only the

required and tolerable set of functional performance characteristics.’

Consequently, the principal assumption is that all the properties of the system and its

constituent parts are formally definable in a structured relationship. Therefore, it is

entirely reasonable to expect that the architect is able to predict the emergent properties

of the system and assess their conformance with the intended requirements (formal or

informal).

System architectures are formed from a union of requirements, functionality, technology

and implementation. Throughout this thesis, the term Design Synthesis is used to define

the activity that provides the union.

RB Smith Page 34 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

1.3 Design Integrity

The terms integrity and robustness are used by engineers to address that part of the

design process domain that is concerned with the dependability of the solution in relation

to both internal and external parameter variation. The words integrity and robustness are

often used interchangeably, even though integrity generally refers to the ‘joined upness’

characteristics of the solution, and robustness refers to the capacity characteristics of the

solution, particularly with respect to its strength when subject to load variation.

Its application takes many forms, for example:

basic strength or capacity to fulfil the role

inter-connection compatibility

functional consistency

measurement and metrication consistency

variational tolerance (to external or internal characteristics or stimuli)

static and dynamic stability

failure tolerance

Most integrity evaluations are associated with particular functional viewpoints wherein

each viewpoint must be defined with consistent functional components and metrication.

System architectures add complexity because of multi-functional interconnectivity.

This study is particularly concerned with design synthesis activities that enable the

content and integrity of the emergent properties from the architectural solution to be

estimated. These estimates include the capability and functionality of its constituent

components in the context of their interrelationships in the system structure, and their
operational characteristics in the intended environment.

The rationale for this focus is that experience demonstrates that many systems fail

acceptance compliance at initial offering. The common reason is that many ‘unwanted’

emergent properties that require correction are identified during the evaluation phases.

The Pugh Model described in Total Design’ 1990, [8], states that “there are no

alternatives to meticulous and thorough approach to Product Design Specification (PDS)

preparation in a competitive world”.

It seems as though there is a universal assumption that the architectural structure is held

in someone’s head or it is knowledge held in common by a select group and that
progressive refinement of its component parts will ensure that the integrity of the

structure is maintained. So, either ‘it’ is simple - for example a child’s scooter - or ‘it’ is so

RB Smith Page 35 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

complex - for example a car - that the integrity of the design emerges from a multiplicity

of lower level decisions.

The implication is that someone, somewhere, somehow, is able to comprehend the

totality of knowledge to compile a competent PDS for each target application. The reality

is that the sheer size of many systems makes this impractical.

RB Smith Page 36 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

2 SYSTEMS MOVEMENT - CAPABILITY REVIEW

2.1 Introduction

During the last century, a consequence of our increasingly complex organisational and

technological capabilities has been the need to provide coherent means to address

multidisciplinary problems. Many problems cannot be addressed in the context of a

single discipline and now many multidisciplinary combinations have become specific

specialisms in their own right; exemplars include biophysics, chemical engineering and

informatics.

It is generally recognised that specific attention to the solution of large-scale engineering

developments in a structured manner emanated from the World War II period. The

primary examples are those associated with defence systems associated with

sea/ground-to-air and air-to-air operations. Such solutions involved a mixture of

capabilities and the task of the system engineering team was to understand the

operational needs and integrate technologies, skills and resources towards a common

goal.

The growth in scale of product programmes has been paralleled by the growth in the size

and capability of both public and private institutions. These have come to be regarded as

systems and it is no coincidence that the definition of Systems Engineering, in the ‘Guide

to the Practice of Systems Engineering’, INCOSE Handbook, 2006 v3, [9], encompasses

both, as follows: -

“Systems Engineering is an interdisciplinary approach and means to enable the

realisation of successful systems. It focuses on defining customer needs and

required functionality early in the development cycle, documenting requirements,

and then proceeding with design synthesis and system validation while

considering the complete problem. Systems Engineering considers both the

business and technical needs of all customers with the goal of providing a quality

product that meets the user needs.”

The English Dictionary [10] defines system engineering as:-

“The branch of engineering based on systems analysis and information theory

concerned with the design of systems.”,

where a system is: -

“A group or combination of interrelated, interdependent, or interacting elements

forming a collective entity; a methodical or coordinated assemblage of parts,

facts, concepts etc.”

RB Smith Page 37 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

While many advocates promote systems engineering as a distinct discipline, practitioners

as a collective body are highly eclectic in terms of picking the best from many disciplines

and cloaking them with the ‘systems engineering’ attribute. The result is that the

definition of the domain has supported inclusiveness rather than specialisation. Many

attempts have been made to delineate core disciplines that are regarded as being

essential components of the discipline. Nevertheless, to date, this has eluded the

systems engineering professional community. The best that has been achieved is a

delineation of the skills required by practitioners who describe themselves as systems

engineers.

Nevertheless, the body of knowledge that practitioners are able to draw from is

considerable. The sources of knowledge include operations research, industrial

engineering, systems analysis, systems dynamics, systems thinking/soft systems

methodology, project management, control theory, and many aspects of specialist
engineering disciplines; see e.g. ‘Confronting an Identity Crisis - How to Brand Systems

Engineering’, Ernes, Smith and Cowper, 2005, [11].

This analysis does not specifically identify the contribution made by applications

specialists although the breadth of the domain is exemplified by the fact that the article

identifies seventeen professional societies that could identify systems engineering as a

core competence.

The sources that now form the body of knowledge available to the systems engineer
stem from, at least, the following domains.

Applications engineering

Defence and aerospace engineering

Automotive engineering

Chemical processes

Transportation logistics

Utilities

Mass Transportation

Telecommunications and Informatics

Computer based systems engineering

Organisational and management systems

Design environments

Modelling and Simulation

RB Smith Page 38 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Sciences
Physical, chemical, biological
Human

Mathematics
Computing

Operations research

Systems theory

Each domain develops a holistic approach that is rationalised and supported by

reductionism processes, methods and procedures; see Klir, 1991, [12a].

Domain Development Perspectives 50s 60s 70s 80s 90s 00s

Defence and
Aerospace

Technology integration * *

Total cost of ownership * *

Project/programme process
standardisation

* *

Interoperability (international) *

Automotive Quality/RAM;
(reliability/availability/maintainabili
ty)

* *

Simultaneous engineering * *

Automatic assembly * *

Concurrent engineering *

Petro-chemical
processes

Measurement and
instrumentation.
Automation systems.

* * * * it

Multi-variable control analysis. * * * it

Mass and heat balance
optimisation.
Plant component modelling.

* it

Utilities Energy and supply optimisation * it it

RB Smith Page 39 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Domain Development Perspectives 50s 60s 70s 80s 90s 00s

Transportation
Logistics

Route optimisation. Markov
chains and queuing theory.

* * ft *

Supply chain optimisation ft *

Mass
Transportation
(esp. rail)

Signalling systems * ft ft

Operational management ft ★

Telecommunicati
ons

Networks * ft ft *

Data packaging and routing * ft ft *

Messenging protocols ft ft *

Informatics Video conferencing ft *

Virtual office *

Virtual workplace interactions *

Computer based
systems

Software engineering (including
configuration control and change
management)

ft ft

Computing structure ft ft

Networks ft *

Informatics ★

Organisational
and
Management

Industrial research; work study * * *

Operations research * ♦ * ft

System analysis * * ft

Soft systems methodology ft ft

Project/process/organisational
management

ft ft ft

RB Smith Page 40 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Domain Development Perspectives 50s 60s 70s 80s 90s 00s

Design
environments

Speciality analysis * * *

ILS; CALS, LSA ★ * *

CAD/CAM * * *

CASE * *

Design discipline automation ★ ★

Integrated design environments.
STEP; ISO 10303; AP 233

* ♦

Modelling and
simulation

Technology speciality analysis * *

Integrated process and realisation
Analysis

* * *

Computing simulation * *

Behavioural analysis * * *

System simulation * *

General System
Theory

Cybernetics * * * *

Control and automata theory * * ★ ♦

Optimisation * * *

Self regulating (genetic) systems * *

Al/Neural networks * * *

Fuzzy logic * * ★

Interconnected structures * * *

Table 1 - Chronology of Development of Systems Engineering Capability -
Applications Domains

Table 1 has been compiled by the author to show the chronology of the major subject

areas that have dominated the development of each domain since the middle of the last

century.

RB Smith Page 41 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The author has sought to highlight those aspects that have contributed to the wider

development of system engineering capability. In addition, it illustrates the eclectic nature

and provenance of the knowledge base that is available to current practitioners.

However, the reader should appreciate that it does not purport to provide a definitive

historical record of the existence of the domain or its specific contribution to the

knowledge base.

2.2 Aerospace and Defence

The general-purpose engineering process structure was defined by Goode and Machol,

1957 [13], in the 1950s as consisting of the following main stages: -

Initiation

Organisation

Preliminary Design

Principal Design

Prototype Construction

Test, Training and Evaluation

The process was dominated by design techniques associated with the use and analysis

of technology, particularly those associated with control engineering.

At a Cal Tech conference, see Miles 1971, [14], the structure had evolved to the

following.

Goal definition or problem statement

Objectives and criteria development

Systems synthesis

Systems analysis

Systems selection

Systems implementation

The MIL-STD-499 ‘Systems Engineering Management’ [15] was first published in 1969

(MIL-STD-499 A/B followed in 1974) and was adopted for general use by most defence

acquisition programmes and became the standard used by most contractors.

The emphasis then progressively changed technology application to operational
application. In 1981 the term ‘life cycle engineering’ was introduced into systems thinking

(See e.g. Blanchard, 1992, [16]) and the emphasis moved on to the issues surrounding

the deployment and in-service logistical support of large-scale complex systems. Whole

life cost became an important focus for comparison of competing solutions.

RB Smith Page 42 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Various new publications were produced by the DOD, including the ‘Systems

Engineering Management Guide’, 1986, [17], and MIL-STD-499 version C was published

in 2005. However, it was recognised that considerable benefits could be derived by using

the generic principles to major non-defence orientated programmes. So work began to

compile documents that were of generic application.

Consequently, these were followed by the EIA/ANSI Interim Standard 632, the IEEE

1220, the Systems Engineering Handbook by NASA, 1995, [18], and the INCOSE

Systems Engineering Handbook, 2002, [9]. Finally, international accord was achieved

with the publication of ‘Systems Engineering - Systems Lifecycle Processes’ (ISO

15288) in November 2002 [19].

The most recent thrust has been dominated, as usual, by the USA Defence Agenda, by

interoperability issues and the need for collaborative force defence capabilities. The

result is the ‘Architecture Framework’, [20] formally issued in 2002.

In summary, the emphasis of the discipline has moved forward in stages that reflected

the complexity of the design task as perceived at that time. In chronological order, the

focus of interest may be summarised as follows, approximately in decades since the

1950s.

50s Applied Technology

60s Appropriateness of solution concept

70s In-service affordability

80s Network systems and Lifecycle management

90s Interoperability

It can be seen that the historical record has reflected the challenges imposed by the

growth in size and complexity of the design tasks tackled by the aerospace and defence

communities.

2.3 Automotive

This industry concentrated on automatic assembly and in-service reliability. Many

techniques were developed in Japan. These particularly addressed the poor quality of
manufactured products in the immediate post war period. Quality techniques included the

tolerance compatibility methods developed by Taguchi, 1987, [21], and the need to

formalise the design of human-centred components. This came to be known as Quality

Function Deployment, e.g. Cohen, 1995, [22], a structured approach to support the

design of components to meet driver and passenger preferences; in effect applying a soft
systems approach to requirements definition.

RB Smith Page 43 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The term simultaneous engineering was coined to describe the use of multi-disciplinary

design teams. This complemented the traditional ‘over the fence’ design process

management organisations, whereby each part of the design was completed in stage

sequence with little reference to the preceding or subsequent stages. Although the result
from each stage was correct at a detailed level, the overall result from the integration of

all stages of design was the emergence of incompatible attributes, e.g. Hartley, 1991

[23].

The Simultaneous Engineering process, more correctly, renamed as Concurrent

Engineering, ensured that at each stage of design all stakeholders were involved in the

decision making process so that their different needs were reconciled at the point of

decision-making. This ensured that all stakeholders were satisfied with the emergent
properties of the finished item. These techniques were instantiated into all stages of the

lifecycle, activity planning, product design, process design, production and post purchase

support. The result was an enviable reputation for reliability that transformed the image

of the ‘Made in Japan’ label. Now the technique has been applied to many other fields to

refine aspects of utility in a structured manner. Nevertheless, the reader should

appreciate that the technique becomes increasingly difficult to apply when the available

solution space diminishes in relation to growth in variety of different objectives,

viewpoints or disciplines that must be considered.

2.4 Petro-chemical and allied Process Industries

These industries concentrated on the development of measurement instruments and

control components. They have a long pedigree of commercially focused developments.

Control systems have been based on single input/single output schemes. However, as

plant components became more integrated e.g. heat exchangers and distillation

columns, many problems of non-linear and multi-variable control needed to be solved.
The state space concepts provided the means of analysis. Computer control replaced

single loop control with consequential enhancement of overall plant control and

management capabilities.

2.5 Utilities

The developments in these industries, including that of nuclear power, have been closely

aligned with those associated with petro-chemicals. Particular emphasis has been placed

on optimisation techniques, and plant and infrastructure status data management

systems.

RB Smith Page 44 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

2.6 Transportation Logistics

Although transport routing problems have been long-standing (e.g. shipping logistics),
the development of retail supermarkets, global product sourcing and fast moving

consumer markets provided the impetus for major development during the last two

decades. Developments in the use of Markov chains and queuing systems have been

particularly relevant.

Communications technology combined with computer-based systems enabled very

comprehensive logistical control systems to be developed.

2.7 Mass Transportation

These industries have made extensive use of the capabilities in telecommunications and

informatics to develop data collection, signalling and traffic management systems. These

parallel the characteristics of Command, Control, Communications and Intelligence (C3I)
systems developed in the defence industries.

2.8 Telecommunications

The expansion of telecommunications capability has paralleled the developments in

computer-based technologies. This enabled the development of state transition methods

for data package switching techniques, and messenging protocols were developed for

use in, for example, automatic teller machines and mobile communicators.

2.9 Informatics
The extensive developments in image processing enabled basic video conferencing

facilities to be developed in the 80s. The World Wide Web (WWW) has enabled virtual

networking to be accessible to both home based and professional users. Originally

confined to text based message transfers, the capability now includes single and video

imagery, and audio products. The virtual office concept, originally confined to single

person transactions, is being developed to include various forms of work place combined

with multiple person interaction. The development of virtual systems is arguably one of

the most demanding challenges for the current generation of system architects.

2.10 Computer based systems

Over the last 30 years, the development of digital systems has resulted in the dominant
need for both industry and academe to invest in computer science and software

engineering processes, methods, procedures and tools. By the beginning of the 80s it
had become clear that informally structured software packages had inadequate reliability

and unwanted emergent characteristics. Corrective action processes had become

unsustainable and uneconomic.

RB Smith Page 45 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Structured methods were developed, e.g. Yourdon, 1979, [24], and these are now

accepted as the norm. Since then it has been possible to undertake large-scale

programmes without undue risk, when supported by sensitive management and semi

automated design environments.

These have been developed to include, for example, module specification and

construction, algorithm evaluation, object code generation, behaviour simulation, target

code performance evaluation using emulators combined with configuration control and

change management systems.

Research into software robustness provided various design constructions that provide

reliability at module level. See e.g. Dijkstra et al. 1972, [25], and Hoare, 1985, [26],

Further analysis methods, namely data flow analysis, static and dynamic analysis and

theorem proving techniques, enabled reliability to be built into the development
processes, see e.g. Le Carre, 1979, [27].

Recent developments have been associated with the need to define the requirements in

detail. To ensure operational compatibility between software products, precise definitions

of interface and functionality are required. To ensure that the dependability of ‘systems of

systems’ for safety related applications is achieved, precise definitions of interface and

functionality are required.

2.11 Organisational and Management systems

The foundations of scientific management can be traced back to what came to be known

as industrial engineering. The specialisation of manufacturing activities into narrowly

defined tasks became known as ‘Fordism’. The repetitive nature of the work resulted in

loss of morale and personal esteem and consequentially loss of productivity. The social

impact of specialisation and efficiency was investigated by F. W. Taylor (see The

Principles of Scientific Management, 1911 and 1947, [28]). He devised methods that
maximised the efficiency of manual tasks in steel-works and bricklaying.

Such methods became known as time and motion studies. The application of these and

similar scientific principles to the management of complex systems became known as

Operations Research.

Many theories of the ‘firm’ were invented. However, these concentrated on the social

aspects of team working until Stafford Beer et al, 1979 and 1983, [29a, 29b] attempted to

apply the scientific method to operations management. They applied the ideas of
cybernetics to the need to manage change throughout an organization in an uncertain

environment and formulated neurocybemetic organisational and operational models of
the enterprise.

RB Smith Page 46 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The advent of the Cold War and the need for nuclear weapons superiority resulted in the

initiation of the nuclear submarine programme. The programme management team,

sponsored by the US Navy, developed the Programme Evaluation and Review

Technique (PERT), 1957, [30], and the programme became an iconic model for the

management of complex programmes.

Since then the technique has been the foundation of programme planning techniques

throughout the world. Many enhancements have been incorporated and flexibility of use

has been enhanced alongside the growth in availability of computer power and corporate

IT environments. Now fully integrated planning, organisation, resource, logistics and

budgetary control systems are available to most corporations.

All these approaches and methods were goal oriented in some way. However, the

fundamental review of systems carried out by Peter Checkland et al at Lancaster came

to the conclusion that the performance criteria for many systems was obscure. Studies of
such loosely defined systems became known as Systems Thinking. Systems thinking, as

defined by Checkland et al, 1999, [7], is an epistemology which, when applied to human

activity, is based upon the four basic ideas: emergence, hierarchy, communication and

control. When applied to natural or designed systems the crucial characteristic is of

emergent properties of the whole.

Checkland also defines the hard systems methodology for tackling real world problems in

which the objective or end goal is taken for granted. Whereas soft systems methodology

is used for tackling real world problems in which the ‘known to be desirable’ end goals

cannot be taken for granted. Viewpoint analysis of such systems has become known as

Soft Systems Engineering.

These definitions cannot be complete. Firstly, it excludes abstract system constructions

associated with generic behaviours and secondly, one only has to review, for example,

an air traffic control system, to see that the difference between hard and soft subsystems

is blurred, if not ambiguous. Clearly, the rules to prevent collisions and such like are well

defined. However, there are many human centred aspects associated with the comfort

and stress of traffic controllers and their organisation and management structures will be

viewpoint dependent and, in some cases, only loosely defined.

Nevertheless, the techniques have been shown to be useful and the current definition of

systems engineering enables an inclusive approach to be taken so that the operational

and human aspects of any system can be addressed in a manner that enables full and

appropriate integration with real (i.e. physical, chemical and biological sciences) world

aspects.

RB Smith Page 47 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

2.12 Design Environments

Designers have always needed to be able express their ideas in a form that is

understandable by others. Many forms of construction aid have been developed

especially in the form of documents, drawings, models, prototypes and templates.

In engineering the design definition is captured in what is known as, for example, the

‘Material Record Inventory’ (MRI). It provides the definitive statement of the design in

relation to its intended application. It is used by all who have a need to know about the

system, how it works, how made, how to maintain, repair and dispose. Ultimately, it is the

knowledge base that underpins any defect review proceedings.

The growth in scale and complexity of systems has resulted in a corresponding growth in

the assets that form the substance of the MRI. Paper based and physical item supported

MRIs reached such complexity that these too resulted in asset systems with their own

weaknesses of ambiguity, sustainability and cost effectiveness.

The DODs Continuous Acquisition and Logistics Support (CALS) initiative, 1993, [31a,
31b], was an important enabler in terms of electronic drawing standardisation and

documentation production for both production and logistics support activities. Its initial
focus was to transfer support related engineering and operational instructions from

paper-based environments to electronic media based environments. Interleaf became

the dominant package for documentation production and change management, now

overtaken by the use of Microsoft Office products.

Engineering drawings were transferred to electronic form using STEP (the Standard for

Product Data Exchange, ISO 10303, [32]) and the development of the Express language.

Substantial investment into CAD, CAM and Integrated Manufacturing systems using wire

frame model techniques has led to seamless transfer of design to machine centre. The

treatise on the design of mechanical components by Pahl and Beitz, 1977, [33], provided

a detailed exposition of standard design.

Considerable output by researchers like Ishii and Kusiak have resulted in improved front

end Man Machine Interface (MMI) for mechanical part design. Design For Manufacture

(DFM) capability has developed for automated production and assembly. However, the

work is limited in that it only addresses physical properties.

The processes and procedures of change management and configuration control are

intrinsic to a reliable MRI. The development of software engineering support processes

has been an important enabler of providing semi-automatic environments for library tools

that record design definition problems, causality, impact, correction and embodiment.

RB Smith Page 48 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The complexity of information now carried in large-scale systems and the impact of

globalisation and virtual team working has been supported by the ‘Systems Engineering

Data Repository and Exchange System’ (SEDRES, [32]), programmes to develop ISO

10303; AP 233. This standardises the definition of the information object to facilitate

multi-media electronic data exchange.

A typical construction of a neutral system-engineering repository based on AP 233

integrates specific tools that encompass the following domains: -

• Requirements Analysis

• Requirements Baseline Validation

• Functional Analysis

• Functional Verification

• Synthesis

• Physical Verification

(Courtesy of JFE Johnson, SEIC, BAE Systems pic.)

2.13 General Systems Theory

The term system is defined as “a group or combination of interrelated, interdependent, or

interconnecting elements forming a collective entity; a methodical or coordinated

assemblage of parts, facts, concepts etc. (See Collins Millennium Dictionary, [10]).

The mathematical representation of this definition is as follows.
S = (T, R) (Equation 2.1

Where ... S is the system

T is a set of components (things)

R is a set of relationships on T (system hood; connectivity)

Its simplicity however belies the richness of the field. There have been many attempts to

develop generic system models. Exemplars include contributions from researchers like L

Von Bertalanffy, ‘General Systems Theory; Foundations, Developments, Applications’,
1952, [34], W R Ashby, ‘General Systems Theory as a new discipline’, (General Systems

Yearbook, 1964, [35]), R C Conant ‘Laws of Information which govern systems’, 1976,

[36]), J W Forrester ‘Principles of Systems’, 1968, [37]), and L A Zadeh ‘Outline of a new

approach to the analysis for complex systems and decision processes’, (IEE Trans. On

Systems, Management and Cybernetics, SMC-1(1); [38]). G J Klir addressed the

problem of structure and component connectivity in ‘An Approach to General Systems

Theory’, 1969, [39]. These are just a few examples of the large numbers of contributions

that have been made to the field.

RB Smith Page 49 of 262 Issue Final

(Design and integrity of Deterministic System Architectures

Later G J Klir brought together the main ideas that now form the basis of current systems

science in his book ‘Facets of System Science’, 1991, [12a]).

Von Bertalanffy addressed the problem of natural systems wherein the quantities

associated with some parts are related to other parts also with associated quantities. He

established principles of progressive differentiation, output/input dependency and

prediction.

Ashby addressed the problem of state determined systems (especially for continuous

systems) and ‘black box’ identification. Zadeh developed, with others, the state space

approach.

Mesarovic formulated a formal mathematical construction of systems which he described

in the ‘Mathematical Theory of General Systems’ 1972, [40].

He provided an algebraic foundation theory that addressed structure, closure,

associativity, cardinality, sets, functionality, state objects and state space, as well as

goal-seeking systems and multi-level systems. Wymore addressed the issues of time-

based systems, both continuous and discrete. (See ‘A Mathematical Theory of Systems

engineering: The Elements’, A. W. Wymore, Wiley 1967, [41]).

The invention of graph theory was attributed to Euler in 1736, See Biggs et al, 1986,

[42a]. Then, in the twentieth century, the interest in connectivity relationships provided

the motivation to develop graph theory further. Harary, Norman and Cartwright

consolidated the mathematics associated with ‘structure’ into what is known as the

theory of directed graphs [42b]. Initial applications were used to structure sociological,

psychological and genetic problems. Current applications include physical science and

engineering, communication systems, artificial intelligence, and international finance; see

Beineke, 1997, [43].

Klir reviewed various approaches for modelling systems, especially those concerned with

reconstructability, and developed the General Systems Problem Solver (GSPS), see e.g.

1969, [39], The GSPS differentiated between types with universal structure and coupling

(UC), and state transition (ST) structures. He then used these concepts to address

discrete, combined discrete and continuous, probabalistic and time varying systems.
Although it was genetically a single layered approach, no guidance was provided on its

application to multi-layered structures.

Mathematical system theory developed in a similar time frame mainly in automata theory

and graph theory.

In the immediate post World War 2 (WW2) period, the main focus of attention was

component integration driven by the control and automation community.

RB Smith Page 50 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The process of reductionism enabled the development of techniques for component

representation and system networks. Block diagrams and signal flow theory became the

main stay of the control discipline; see e.g. ‘Control Systems Analysis’, Truxall, McGraw

Hill; [44a, 44b]. Simulation techniques were based on the need to solve differential
equations and component functionality was modelled in terms of their physical science

properties; (See e.g. ‘Engineering Systems Analysis’, A. G. J. MacFarlane, 1964, [45]). In

1961 Paynter proposed that component models be based on energy transfer
relationships; (See ‘Analysis and Design of Engineering Systems’, H.M. Paynter, 1961,

[46]). These became known as Bond Graphs; see e.g. ‘Analysis and Simulation of multi-

port systems’, D.C. Kamopp and R.C Rosenberg, 1968, [47]).

Studies that investigated the relationships between computational systems and human

interaction were initiated by Norbert Wiener and von Neumann in 1944. These studies

developed the discipline of Cybernetics; see Wiener, 1948, [48] and W R Ashby, 1956,

[48a].

Measurement and Instrumentation science was developed by R.D. Watts, P. H.
Sydenham, and L. Finklestein; see The Elements of Design; The Design method’, 1966,
[49], and ‘Measurement and Instrumentation Science - an analytical review1, L

Finklestein, 1994, [50]. They addressed the highly interactive issues associated with

measurement and the design of measurement instruments.

Automata theory and the concept of the state space, state transition transformed our

view of control engineering from a SISO (single input single output) capability to a full

multivariable MIMO (multiple input multiple output) capability. See e.g. Topics in

Mathematical System Theory’, Kalman, Falb, and Arbib, 1969, [51]. These were followed

by the development of mathematical optimisation methods; for the use of variational

calculus, see M R Hestenes, 1966, [52]; for the use of the Wiener-Hopf Equation, see

e.g. 1960, [53]; for the use of Pontryagin’s Maximum Principle, see 1962, [54]; for the

use of Linear Programming, see 1962, [55a,55b]; and for the use of Bellman’s Dynamic

Programming, see 1962, [56].

2.14 Modelling and Simulation

It is almost impossible to be a practitioner in the systems field without reference to some

form of model. Traditionally, modelling has been used to produce some form of prototype

of the product or component that enables some aspect of performance to be evaluated.

When the model is defined mathematically, the form and functionality can be simulated.

Such models enable the form, behaviour and performance of the final product to be

evaluated. In addition, models that represent the functional structure pertinent to a

specific viewpoint can be constructed.

RB Smith Page 51 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

What counts in all cases is the validity of the predictions produced by the model for the

purpose intended, consequently, all models need to be subject to both verification and

validation processes.

2.14.1 Models of Technology Components

Models are used to describe the components and interactions within a system of interest.
Science, technology and component based models have been developed to support

integration and standardisation.

The development of servo-mechanisms and control theory was accompanied by

advancements in the use of graphic techniques to construct models of servo

components. Macfarlane developed generic component models that met the need for
analytical consistency in dynamic simulation; see e.g. ‘Engineering System Analysis’, A.

G. J. MacFarlane, 1964, [45], and ‘Dynamical System Models’, A. G. J. MacFarlane,

1970, [57].

Interest in process automation created interest in the development of models for
measurement systems. For example, Finklestein and Watts commented about
measurement, as follows, (See ‘Measurement as a systematic study’, 1969 [58]).

... Measurement involves the establishment or maintenance of functional relations

among physical variables...Measuring instruments are generally built up by

interconnecting simpler components...Measurement is concerned with systems

and the functional relations maintained by them...It follows that the language and

methodology of system science can be usefully employed in the study of measuring

methods and techniques...

....Measurement is concerned with systems and the functional relations maintained

by them...Systems and their elements are described by equations relating their

inputs and outputs. For linear systems the conventional language of transfer
functions and transfer function matrices is thus available to express system

relationships, while for more general systems it is possible to use the concepts of
state and state space. Block diagrams and signal flow graphs offer a powerful way

of visualising relationships....

In the electrical/electronic field, considerable advancement has taken place in digital

device design, production, test and verification. Particular emphasis has been given to

VLSI, the development of VHDL, tools for ‘systems on a chip’ and integrated

workstations (e.g. Mentor Graphics) for the electronic engineering discipline.

RB Smith Page 52 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

2.14.2 Models of particular phenomena

Many problem specific models have been developed to facilitate performance analysis of
interacting components. The growth in availability of high computational power has

enabled large scale simulations to be produced. However, as the complexity of both hard

and soft systems has grown, the need to integrate many simulations into a consistent

single entity has arisen. Current methodologies are concerned with the validation and

verification of large scale simulations produced from a ‘patchwork’ of simulation

components.

2.14.3 Models of computing arrangements

Models based on representations of the input-output functionality and control of the

system components enable overall behaviour and performance to be estimated. Models

that represent the precise internal construction of its system components in functional
terms enable the design to be verified. In each case the algorithmic representation of

each component and its interrelationships is crucial to the utility of the model.

2.14.4 Models of Processes

Systems that are formed from the interaction of many components include transportation,

production and automation processes. Such models have a wide range of theoretical

techniques to exploit, including, for example, conservation of mass and/or energy,
queuing (Markov), control (control), stochastic (decision theory), games (von Neumann),

genetic, neural network, etc. constructions.

2.14.5 Models of Soft Systems

There are many forms of human interaction input and response interface, both by

individuals and groups. These soft system models are usually associated with a

particular viewpoint. They range from simple input/display evaluation, to communication

and control centre operations, institutional behaviours, combat effectiveness including

gaming to evaluate tactical effectiveness.

2.14.6 Models for System Architecting

In the systems engineering field, the search for an effective architectural modelling

technique and language is only partially complete. The concepts from automata theory

and computer science have been used to formulate various potential solutions.

During the decade that spanned 1990 Wayne Wymore and others attempted to formalise

the DOD design process model into an executable form using constructions based on

algebraic set theoretic and state transition methods: See ‘Model Based Systems

engineering’, A Wayne Wymore, 1993, [59]. The problem facing the system designer
was extremely well defined in terms of the need to understand the operational need and

RB Smith Page 53 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

provide a technologically viable, verifiably compliant and cost effective solution.

However, the syntax that embodied the DOD process model in abstract algebra form has

resulted in a language form that obscures the definition of the actual design problem.
Consequently, it is difficult to comprehend.

The development of model based specifications continued and Cohen, Harwood and

Jackson developed a usable form of Pascal like pseudo code that is described in The

Specification of Complex Systems’, by B. Cohen, WT Harwood, and Ml Jackson, 1986,

[60]. This followed industry practice whereby the problem of ambiguity inherent within the

general use of English language for specifications was overcome by the use of

algorithmic constructions to define requirements in a precise manner. For example, the

Vienna Development Method (VDM) is based on formal specification and syntax, 1990,

[61]. It has very strict typing and data structures, and is useful for model-based systems.

In parallel, the computer science community has progressively developed methods that
describe the interactions and behaviour of computer based systems. All such solutions in

general use have adopted a graphical means of problem description.

Languages, e.g. MASCOT, see Jackson and Simpson, 1975, [62], were developed for
applications that involve a wide range of operator options. These involve the definition,

management and validity of data pools.

Computing system design environments that incorporate state transition methods of
description and evaluation have been developed; see e.g. ‘State Mate’, 1987, [63]. These

enable precise evaluation of computing structures to be made.

In the systems engineering field, work associated with behavioural modelling of system

architectures, sponsored by TRW, resulted in a method called Requirements Driven

Design (RDD). This was supported by a tool called ‘RDD-100’, from ‘Ascent Logic’; see

1990, [64]. It was developed by Mack Alford and based on the simple concept that any

design could be represented by a two dimensional network of parallel or serially

dependent functional design elements. The design elements could be event or resource

dependent, making it suitable for rapid prototyping of computer based machine systems.
Despite the initial enthusiasm by the systems engineering community, sponsorship

waned and development momentum was lost.

One functional modelling technique that has gained wide acceptance is IDEFO. Its

semantics enable functional definition, feed forward, feed back and control. This

emanated from the Integrated Computer-Aided Manufacturing (ICAM) programme

sponsored by the U.S. Air Force. The acronym represents ICAM Definition and ‘0’

RB Smith Page 54 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

represents the first technique generated by the programme. The full complement of IDEF

models is shown in Table 2.

IDEF Family Capability Description

IDEFO Provides functional or process model

IDEF1 Provides information needed to support functions in a model.

IDEF1X Data model using relational theory with an entity-relationship technique.

IDEF2 Provides a dynamic model.

IDEF3 Provides both process and object state transition model.

Table 2 - The Capability of the IDEF Family of Design Modelling Languages [65]

During the 70s the telecommunications industry, and Ericsson AB particularly, needed to

address the design of software for networks of computers.

The emergence of systems consisting of networks of computers came to be known as

large scale ‘software intensive programmes’. Ericsson tackled the problem of monolithic

complexity by basing their designs on decomposing large blocks into smaller, more

understandable, blocks. Ericsson devised a means of using these blocks by defining a

series of ‘traffic cases’. This gave them the means of describing all the blocks and how

they fitted together. Also, many of these programs relied on event-response programs

that involved human interactions and sequential functional processing. This resulted in

the development of the ‘actor1 and the message sequencing syntax now defined in the

Specification and Description Language (SDL).

SDL is a design language that is specifically for reactive, discrete systems. There are

many forms of such systems, including, for example, vending machines. Reactive means

that behaviour is characterised by responses to external stimuli pertinent to its operating

environment. It is not designed for continuous systems, the implication being that the

response is immediate and simple e.g. delivery of a bottle of drink or food package. SDL

is not suitable for systems with responses that result in complex functions, e.g. an

automatic motion control system, that responds to continuous perturbation.

SDL-92, see e.g. 1994, [66], has been adopted by the International Telecommunications

Union (ITU), a specialist agency of the United Nations, and is maintained by them. It is

widely used in the telecommunications industry for the design of public switching

systems and telecommunication systems. It supports the generation of specifications,

RB Smith Page 55 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

designs, implementations in the form of automatic code generation, and documentation.

Also, it is used to support other specifications for signalling and network functions.

Although the idea of 0 0 (Object Orientation) for software design had been promoted for
some years, it had received little support from the embedded software design community

as it failed to address the structural implications of real time execution.

However, in 1994 Grady Booch, Ivar Jacobson and James Rumbaugh combined the OO

viewpoint with the Rational Unified Process to create UML, the Unified Modelling

Language.
This was primarily developed as a software modelling and development environment that

had clear semantics and syntax. It provides a means of both static and dynamic design

and evaluation in visual diagrammatic form.

The principal diagrams are shown in Table 3.

Static Model Dynamic Model

Class diagram Object diagram

Component diagram Use case diagram

Deployment diagram Sequence diagram

Statechart diagram

Activity diagram

Table 3 - System Design Model Diagrams supported by the UML and the unified
process.

(See J Arlow and I Neustadt, 2002, [67])

RB Smith Page 56 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

These activities have been hosted by the OOG (the Object Orientation Group) and a

large measure of success is due to their ethos and commitment to create a truly

international standard. In 1989 the OOG was reformed into what is now the Object
Management Group (OMG), [68]. In 1997 the OMG accepted the UML as its preferred

OO modelling language and UML now stands as the preferred industry standard. The

specification for UML 2 achieved certification in October 2004.

Although the systems engineering community identified the potential that both UML1 and

UML2 provided a means of modelling a limited range of design applications, practitioners

appreciated that the specification did not include constructions for structural
decomposition. Therefore, a range of extensions has been developed to support,
amongst other matters, the use of the idea of a class of objects in conjunction with a

group of objects that relate to a partitioned group in the context of a decomposition

arrangement, as shown in Table 4.

The full specification for the SysML was adopted by the OMG in July 2006.

SysML Diaj3ram Types
Structure Model Requirements Diagram* Behaviour Diagram

Structure Diagram Behaviour Diagram

Block Definition Diagram* Activity Diagram*
Internal Block Diagram* Sequence Diagram
Package Diagram State Machine Diagram
Parametric Diagram* Use Case Diagram

Table 4 - SysML Diagram Types with Extensions to UML 2 highlighted with an *
[68]

(Courtesy the OMG SysML Official Web Site; http://www.omgsysml.org)

Initially IDEFO and UML were adopted by the manufacturing and software communities

respectively. These enabled formal structures of interactive, time based processes to be

constructed and evaluated. So systems architects now have a design language

specifically developed to support systems engineering as a discipline in its own right.

The development of a fully integrated design support environment for systems

engineering is still some way off. Nevertheless the systems engineering community now

has the three core items, a design language, a process and a means of data exchange

defined as internationally recognised standards. These will facilitate the integration of

current best practice discipline specific support tools, thereby creating a component

necessary to support the trend for the globalisation of design capability.

RB Smith Page 57 of 262 Issue Final

http://www.omgsysml.org

Design and Integrity of Deterministic System Architectures

Systems Design Environment Core Specifications

Designation Description

SysML Specification language for systems modelling

DODAF/MODAF Defines views of specific system engineering processes

AP233 (STEP ISO 10303) Defines a neutral file format for the exchange of complex
engineering structures.

Table 5 Integrated Systems Design Environment Core Specifications
(Courtesy Eurostep Group AB. 2006, [69].)

RB Smith Page 58 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

3 SYSTEMS ENGINEERING PROCESS MODELS

3.1 Review of Current Standards

3.1.1 Introduction

There are numerous documents that describe the systems engineering design process,
see e.g. Kossiakoff and Sweet, 2003, [70] and Stevens et al, 1998, [71]. Many

companies, together with industry, professional and national organisations have

sponsored work with the primary objective of creating an internationally recognised code

of best practice. Some documents have had a somewhat shorter life than would be

expected from the quality of the material. Nevertheless the need to obtain a process

description with international recognition has been the predominant motivation.
Consequently the individual works have been absorbed by the working parties

empowered to achieve specifications with international credibility.

In summary, just three specifications dominate current operations. The workhorse of the

industry has been MIL-STD 499 A/B. It has dominated the aerospace industry for over

twenty years and has had a profound influence on the formation of all interim and current
specifications. Even though formal support for its maintenance has been withdrawn, its

utility continues through its support for many legacy programmes. The efforts of many

specification generation groups were eventually recognised by the International
Standards Organisation. Now the ISO 15288 standard [19], formally issued in 2002, is

being established as the international benchmark for both commercial and defence

undertakings, and the Architecture Framework generated for the US Department of
Defence [20] is becoming established as the process that underpins the largest multi

national defence programmes.

3.1.2 DOD MIL-STD-499, A and B.

Arguably, MIL STD 499 A/B is the most well known specification as it has dominated the

aerospace industry since 1970. It describes a process that supports the design activity

from a top-down perspective. It assumes a ‘V’ Diagram, for example see Buede, 2000,

[65], form of product development process and describes a staged process that leads

from concept generation to atomic level product definition.

The concept that forms the design model is based on intimate relationships between the

three core components of need, functional solution and realisation solution; formally

these are called Requirements, Functional Decomposition and Solution Synthesis. A

schematic of this ‘RFS’ design process model extracted from the Specification is shown

in Figure 6.

RB Smith Page 59 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The arrowed lines that link the ‘boxes’ together show that the basic model of ‘R’ to ‘F’ to

‘S’ is supported by reconciliation processes between ‘F’ and ‘R’, and ‘S’ and ‘R’. The

intention is to ensure that both the functional solution and the realisation solution are

intimately related to the defined requirements. Many practitioners also assume that the

model should include a reconciliation process between the realisation solution and

functional solution; clearly, it is imperative that the functionality of the realisation solution

should match the functional decomposition as closely as practical.

Requirements Analysis
A nalyse missions and Environments
Identify functional requirem ents
Define perform ance and design constraints

Synthesis
Transform architecture
Define/select realisation options
Define physical (realisation) interfaces
Select Product/Process solutions

Functional Analysis
Decom pose to lower level functions
Allocate perform ance and limiting

requirem ents to all functional levels
Define functional interfaces
Define functional architecture

Figure 6 - Schematic of System Design (P2)

The Specification describes in detail what is required to be achieved, in the form of
output objectives. However, there is little guidance as to how these objectives are to be

achieved. In fact, the literature is substantially deficient in terms of providing procedures

and methods that show how the processes are to be supported. In making this assertion

the author is well aware that there are rich knowledge bases concerning a number of

techniques used by system and software engineers. These include, for example,
requirements management, viewpoint analysis, behavioural modelling, object-orientated

design, configuration control, to name but a few.

RB Smith Page 60 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

3.1.3 IS0 15288

The international standard was finally published in November 2002. It consolidated the

work of many organisations including NASA, the IEEE and INCOSE. Similarly, the

processes are described in detail however there is no guidance as to how the objectives

are to be achieved.

The route to publication of the International Standard was complex. In summary, the

P1220 model was developed in the mid 1990’s. It attempted to refine the processes

identified by the MIL-499 Model. The model made good sense in that it highlighted some

of the useful techniques e.g. FMECA, to support the justification of the proposed solution.

However, its prescriptive tone and lack of generality meant that it did not have the

widespread support of the system engineering community. The European Space Agency

(ESA) published its Standard [72] in 1991; the revised edition was published in 2004.

Then INCOSE took on the task of generating a Handbook and offered it as a Standard

for general use. For a brief period, the Society of Automotive Engineers (SAE) took

responsibility for its publication. Finally, the ISO agreed to sponsor the generation and

publication of the international standard. Now it is a document that embodies multi
national best practice.

However, in the opinion of the author, the simplicity of use embodied in the style of the

early standards has been obscured by the descriptive comprehensiveness of the current

version. Consequently, modern practitioners need to have substantial knowledge of
practical engineering processes to be able to interpret its advice for use in real design

environments.

3.1.4 DOD C4ISR Architecture Framework.

The C4ISR (Command, Control, Communications, Computers, Intelligence, Surveillance,

Reconnaissance) model enhanced the basic MIL-499 Model to encompass the very

large scale systems associated with integrated defence capabilities, and particularly

those associated with C4ISR systems of systems concepts. It replaces the generic

concepts of Requirements, Functions and Synthesis with Operations, Systems and

Technical Standards; these are combined in the context of a detailed lifecycle process

model.

The two models are compatible and can coexist. The rationale for the DODAF construct

is that it has been developed to facilitate international cooperation during development
and operational use.

RB Smith Page 61 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Recent deployments of multi-national peacekeeping forces have highlighted the problem

of systems interoperability. In general, equipment from each participating nation is not
compatible, thereby creating many deployment and operational constraints. Therefore,
future equipment procurement planning includes interoperability as a major goal. This

standard supports this goal by incorporating a detailed exposition of the work items to be

completed and delivered at each phase of the lifecycle.

The mapping is shown in Table 6.

MIL 499B System Engineering
Model

DOD Architecture Framework

Requirements; detailed expressions of
specific needs.

Operational viewpoint; identifies and
structures all stakeholder preferences.

Functional Decomposition and
Assessment including quantitative
estimates of behaviour and
performance.

System viewpoint; through the use of
components and touching points.

Solution Synthesis and Reconciliation,
in terms of the specific
implementation.

Technology viewpoint; especially via
Standards.

Table 6 Mapping MIL 499B to DOD Architecture Framework

3.2 Integration of Process Models with System Design Models

All these models have been concerned with lifecycle process issues. The advantage of

this is that they provide the system engineering community with a common approach to

all phases of a system/product lifecycle. Convergence to a common approach, especially

by global design teams, will facilitate, over time, cooperation between islands of

expertise/resource/capability to enable them to work in harmony towards a common

objective. Nevertheless, we have to recognise that the growth in the knowledge base

means that ‘one size does not fit all’ and that the process solution for any particular
programme must be appropriate.

Current industry practice is to interpret each of these process models as complete

replacements for what has gone before with scant attention to prior knowledge. However,

that is erroneous thinking. Capability has been built over many years and the historical
record is that these models were developed in response to enable each new scope of
complexity to be addressed, each one building on the capability of what went before. For

RB Smith Page 62 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

example, the best way to use the Architecture Framework is in combination with MIL-

STD-499B, or another specification that is pertinent to lower level design.

Nevertheless, the author asserts that the issue of a model of system design is

outstanding. The issues that are largely missing from the knowledge base stem from

management difficulties associated with the complexities in product design and the

associated structural evaluation of the architecture.

3.3 System Modelling as a Process

To estimate the emergent properties of a system, systems architects, whether as

individuals or as a team, have a mental model of the system that is used as the

reference for the design definition and its evaluation. Engineering modelling is primarily

used to predict the performance of equipment and set design parameters. The modelling

process is outlined in Figure 7.

Obtain system
data

Iterate model
construction, data
and performance

Establish modelling criteria

Evaluate validity and
acceptability of results

Manipulate equations and
select appropriate subset

Determine values of unknown
attributes

Assemble equations
representing system

mechanisms

Figure 7 - Schematic of Modelling Process (D7)
(Courtesy of Electronic Associates Ltd. See ‘Modelling of Dynamical Systems’,

Vol. 1. ed H. Nicholson, 1980, [73])

RB Smith Page 63 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Type Linear Non-linear
Number of
independent
variables

One Several Many One Several Many

Form
Algebraic Trivial Easy Impractical Very

difficult
Very
difficult

Impossible

Ordinary
differential
equations

Easy Difficult Impractical Very
difficult

Impossible Impossible

Partial
differential
equations

Difficult Impractical Impossible Impossible Impossible Impossible

Table 7 - Classification of Mathematical Representation and Ease of Analytical
Solution

(see Franks [73a])

However, mathematics has a limited capability to solve equations, as summarised in

Table 7. Further, for equations to be soluble they must be constructed to address the

issues of linearity, boundary values, whether the functions are implicit or explicit, and the

issue of sufficiency and redundancy; e.g. number of equations = number of independent

variables.

To enable these constraints to be met, many techniques are used to assemble the

equations for the model. Typically, model components are constructed from an

understanding of the generic science, technology, process, from interpretation of
experimental data, or by attribute representation. Then the construction of the model is

evaluated to determine solubility. Principal amongst these is the use of linearised

equations, often combined with the use of high-speed/high-resolution iteration, so that a

particular part of the operational space can be evaluated. The full operational space is

typically evaluated by progressing the data constants and variable coefficients of the

model across the full operational space of the application.

RB Smith Page 64 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

3.4 Structural Representation of System Designs

3.4.1 Causality Representation

There are many forms of functional relationship description. As a result of their simplicity

of use, the predominant form of representation is the causality network. There are many

forms of causality diagram.

The most common in use by systems engineers is the block diagram, reliability

engineers use reliability network diagrams, and programme managers use the PERT

diagram to name but a few. From a practical point of view it is straightforward to reduce

such networks to a common form and analyse their characteristics.

3.4.2 Family Trees

This is the simplest form of decomposition. It shows the relationships as a hierarchy in

the sense of progressive containment. Their construction is usually based on the idea of

space occupancy. However, it has a very wide range of use to show groups of

components in various contexts, including those that illustrate the contents of commercial
undertakings.

For many applications, the issue of component interaction is not relevant. However, the

lack of component interaction information means that the form of construction should not

qualify as an acceptable form of system representation. Nevertheless, its widespread

use means that users need to be aware of the implications associated with the simplicity

of the representation.

3.4.3 Block Diagrams

The ‘Block Diagram’ is in common use by systems engineers and in particular those with

their roots in control engineering; early references include Systems Engineering by

Goode and Machol [13]. It was used for both functional and architectural representations.

For example, the advice provided by Goode and Machol is that the Equipment Diagram

must complement the Functional Block Diagram so that the allocation of functions to the

proposed physical solution is defined unambiguously.

These describe the system as functional blocks that are linked by information flow

connections. The relationships are shown by the use of the concept of causation.

Normally they appear in the form of input-output relationships. They complement the

‘Family Tree’ construction in that the functional interconnectivity is stated independently

of hierarchical position. From a practical point of view, their pictorial form of presentation

makes them easy to assimilate and they are accompanied by various means of algebraic

manipulation whereby the decomposition may be varied, while the end-to-end

functionality is retained.

RB Smith Page 65 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Originally, the connections were unidirectional and corresponded to input-output

relationships. In more modern versions, and particularly associated with digital systems,

these connections may be unidirectional or bidirectional.

3.4.4 Signal flow Diagrams

These diagrams, which were originated by Mason, 1953, [74], came into the inventory in

the mid 1950s, and used to complement and enhance the basic Block Diagram

technique by describing the signal flows between functions in a structured manner.

Formally, they could be represented as graphs and an algebra was developed that
enabled full quantitative treatment.

3.4.5 Network Analysis

In addition to the notion of function and signal, equivalence relationships between

mechanical, hydraulic and electric systems were established. The study of dynamic

systems enabled different forms of relationship diagrams to be developed.

Generic forms of components, e.g. resistance, capacitance, etc. appear in many

contexts. In electrical engineering a consistent form of component representation, based

on KirchofFs Laws, enabled network analysis techniques to be developed, enabling, for

example, complex filters to be modelled.

Further, diagrams that used energy as the controlling variable provide a direct means of

having a unified approach to the analysis of mixed technology solutions. For example, a

graphical method based on energy and information flow has been developed. Such

models are called Bond Graphs as the technique enables models of individual

components to be ‘bonded’ together to form complex system networks that enable

performance and dynamics of, for example, mechatronic systems to be modelled.

3.4.6 Analogue Computing Diagrams

This is a specific form of representation to solve differential equations associated with the

computation of dynamic behaviour and performance. These diagrams are in the form of

block diagrams in which the function blocks are connected by summing junctions and the

function blocks refer to specific mathematical operations, usually addition, subtraction

and integration. Originally associated with analogue computing, the range of specified

diagrammatic functions has been extended as the capability of both analogue computing

and digital computing based simulation languages has expanded.

RB Smith Page 66 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

3.4.7 Reliability Networks

These describe the system in terms of functional dependency, and are used to estimate

the reliability and availability of complex systems, see e.g. Billinton and Allan, 1983, [75].

They characterise complex systems failure mode dependency in series and parallel
network constructions with uni-directional connections. Such networks have the

considerable benefit that they are capable of graphical representation and analytical
treatment.

3.4.8 Software Program Flow Diagrams

Many are in the form of process and data flow diagrams. The simplest programme flow

chart uses process function blocks with unidirectional connections showing the

computational flow combined with True/False decision blocks to control the direction of

the computational flow. Various techniques for structured programming were developed.

Yourdan enhanced the methods to address issues of complexity [24], Jackson [62]

developed MASCOT to address the use of data pools, and Hatley and Pirbhai proposed

the schema for real-time systems that enhances the basic DFD with a control structure;

(See ‘Strategies for Real-Time System Specification, 1988, [76]).

3.4.9 Behaviour Diagrams

There are many forms or representation that enable the time dimension to be

incorporated. Many problems involve systems that depend on descriptions of existential

states and their delineation. Some form of finite state machine description is used to

describe behaviour or flow and various forms of state transition and message sequence

diagrams were created. Typical examples include models of Turing machines, state

transition diagrams for logical processes, and computing structure diagrams.

3.4.10 Transportation and Production Fiow Process diagrams

There are many similarities with problems that involve the flow of materials or goods.

Transportation systems are mainly concerned with routing optimisation associated with

the logistical movement of goods and commodities. Production engineers are concerned

with the processing of materials, components and assemblies. Just-in-time systems

(kanban) are concerned with the minimisation of stock holdings.

RB Smith Page 67 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Production engineers have used matrix methods to represent material flows through

machining centre systems. More recently, techniques have been developed to support

the use of the Design Structure Matrix for various types of industrial design problem.

3.4.11 Object Oriented Design

Object orientated design is (currently) the most advanced method of system model
representation available to system engineers. The Universal Meta Language (UML)

provides a syntax for describing both the causal structure of a system and its behaviour.

However, it is not prescriptive in the sense that system structures or architectures need

to be defined in a particular manner. Syntax checks are limited to input-output
consistency. However checks between, for example, partitioning and functionality

continue to be illusive.

3.4.12 The N Squared (N2) Chart

Systems engineers have used the N2 Chart method, proposed by Lano, 1979, [77], to

describe relationships between system components or state transition behaviour. This

form of system decomposition enhances the understanding of the relationships between

system components. It is used in conjunction with a hierarchical (‘Family Tree’)

decomposition. The components are placed on the diagonal of a square matrix and the

interrelationships are described in the off-diagonal elements, whereby the rows represent

outputs and the columns inputs.

Various types of construction are shown in Figure 8, where sub-systems are designated

A, B, C, D.

RB Smith Page 68 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A 7 ? 7

7 B 7 7

? ? C 7

7 ? 7 D

A 4 i 1

0 B 1 I

0 0 c i

0 0 0 D

aj N Squared Matrix of a I anuly Iree b) N Squared Matrix of a I eed I ocward Cascade

A if 0 0

t B A 0

0 c I

0 0 f D

C) N Squ4r«d Matrix o f & S m pV Connected Structure d) N Squared Matrix of a MuHiphr Connected Structure

Figure 8 - Various Types of N Squared Matrix System Constructs (D23)

a) Fam ily T ree with no interrelationship data.

b) System with only Feed-forw ard Causality Structure.

c) System with only adjacent interrelationships.

d) System with multiply-interconnected Sub-system s.

It can be seen that the construction enables all types of system arrangem ent to be

described in formal m anner. Further, the construction has the considerable merit that it

enables all the relations at any level of the ‘Family T re e ’ decomposition to be shown.

This property m eans that the construction is of special relevance to this thesis.

Various methods of analysis have been described, for exam ple see ‘A Practical

Introduction to Formal m ethods’ by J C Boarder, 1994, [78].

RB Smith Page 69 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

More recently, some work has been done to produce methods by which the total number

of interfaces may be minimised; see ‘A Method for System Interface Reduction Using N2
Charts’ by Becker, Ben-Asher and Ackerman, [79]. Yet despite the value of such

techniques an internal meeting of BAE Systems pic system engineering specialists

showed that their application appears to be sporadic and limited to specifically minded

individuals, 2004, [80].

3.4.13 Design Matrix Construct

The generic problem of an axiomatic approach to design was addressed by Nam P Suh

in the early 1980’s and published in his book The Principles of Design’, 1990, [81].

This form shows the relationships between functionality and the design primitives

actually selected by the designer; e.g. volume is derived from a set of length primitives.

The design equation is stated as {FR} = A.{DP}, where FR is the vector of functional

requirements, DP is the vector of design parameters that enable the functional attributes

to be generated and ‘A’ is the relationship matrix that links the DRs to the FRs; A is

called the Design Matrix and FR and DP are column matrices. The parameters of the A

are expected to be partial differentials of the type (6F/5D), effectively a sensitivity

function. The design matrix A is not required to be square, thereby enabling FRs to be

constructed from many DPs. It is not just a relationship matrix. It can be analysed in its

own right, especially in terms of diagonal dominance, population and clustering of the

relationships.

In addition to providing the basic construction of the Design Equation, Suh proposed the

fundamental axioms of design. In The Principles of Design’ it is postulated that there are

just two axioms, the Independence Axiom and the Information Axiom.

In summary, Suh et al, stated that design consisted of two axioms and seven corollaries

as follows.

Axioms.

• The independence axiom: Optimal design always maintains independence of FRs.

• The information axiom: The best design is a functionally uncoupled design that has

minimum information content.

RB Smith Page 70 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Corollaries.

• Corollary 1: Decouple coupled FRs or provide independent FRs by using separate

parts.

• Corollary 2: Minimise the number of FRs and Constraints.

• Corollary 3: Integrate design features into a single part if multiple FRs can be

independently satisfied.

• Corollary 4: Use standardised/interchangeable parts.

• Corollary 5: Use symmetrical shapes/arrangements where possible.

• Corollary 6: Specify the largest tolerance in stating FRs.

• Corollary 7: Seek an uncoupled design that requires less information than coupled

designs need to satisfy FRs.

Somewhat controversially, they proposed that the optimal system is one that maintains

independence of the functions; alternatively, the best design is a functionally uncoupled

design that has the minimum information content.

3.4.14 Design Structure Matrix

The production-engineering specialists at MIT created the Design Structure Matrix to

represent product production process planning. This enabled cluster analysis to enable

the best process schedule to be determined, see Pimmler and Eppinger, 1994, [82a].

Of particular interest to this thesis is the potential utility of the design equation and the

design matrix [A] with respect the determination of implementation traceability though

hierarchical decomposition, see Guenov and Barker, 2005, [83].

RB Smith Page 71 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

4 QUANTITATIVE DETERMINATION OF SYSTEM FUNCTIONALITY

4.1 Relationship to Laws of Physical, Chemical and Informatic Sciences

The SI is made up of three classes of units; base units, derived units and supplementary

units. The base units are the metre, the kilogram, the second, the ampere, the Kelvin, the

candela and the mole. All Derived units are formed from the base units and the

Supplementary units are the radian and steradian, [84].

To enable systems architects to compare and contrast the performance of solution

options a common variable and unit of measurement is required. Many scientists have

addressed the problem of comparability and energy has become the unit of choice. Even

so, there are many different units in which it is measured. However, the Quantity of Heat

equation, the Electron Volt (eV), Einstein’s equation (E = me2), Planck’s equation (E =

hv) and Boltzmann’s equation (E=kT) provide a means of enumerating equivalence.

4.2 Networks, Causality Diagrams, and Matrices

Quantitative systems engineering has many historical associations with the methods

developed for dynamical systems. Typical analyses cover the real and complex domains

and propositional calculus underpins computer systems analysis.

Causality diagrams provide a means of representation to show the system functions and

the flow of information between each function. Diagrammatic representation is both easy

and intuitively understandable. Many partially automated design environments make

extensive use of tools based on functional causality. A key feature of all forms of

instantiation is that they all have a common property; that is they are unidirectional. This

means that the associated connectivity matrix forms have upper triangular form. Such

matrices have special properties, for example, their eigen values are zero.

Although many block diagram representations incorporate both forward and reverse flow

interfaces, analysis methods that support bi-directional structures must incorporate

specific means to determine behaviour; e.g. state transition.

For the system architect the uni-directional constraint has profound implications. To

describe the principle those familiar with PERT diagrams know that partial completion of

an event cannot be addressed by ‘feedback’ to an earlier event. For example, many

activities are part of a process and managers need to view maturity of completion in

relation to the performance consequences of many lower level activities.

When a performance deficiency is identified in some activities and corrective action

demands that they are repeated, the model should enable recursive action, but PERT

cannot model such activities. System Function Flow diagrams also have this feature,

RB Smith Page 72 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

although it is recognised that many workarounds are employed; e.g. state transition or

feedback control system analysis.

While the value of function flow diagrams is not in doubt, the architect must appreciate

that these represent one viewpoint from the many that the architect must take into

account.

To enable the structural description to support recursive relationships, the matrix based

N Squared model shows the ‘feed-forward’ relationships in the upper triangular part of a

square matrix and the ‘feed-back’ relationships in the lower triangular part of the square

matrix.

There are many applications that require recursion effects; these include, for example,

• Mechanical structures e.g. leaf springs, trusses, heat engines.

• Chemical Plant components e.g. reflux processes, distillation columns, heat

exchange systems.

• Power electrical components, e.g. generators/motors, power regulators,
distribution systems.

• Communications networks, e.g. message-response information exchange

protocols.

Formally, a network is a directed graph and the duality between graphs and linear

algebra has a very important impact on system descriptions. It is a straightforward matter
to represent the connectivity of a network in the form of a square matrix, whereby the

system components are allocated to the diagonal cells and the off-diagonal cells

describe the interface or relationship between the components. This form has the distinct

advantage that it enables all the ‘building block’-to-‘building block’ component

relationships to be identified, allowing the properties of the network to be evaluated by

analysis of its matrix form.

Further, it should be noted that the representation has been used to decompose both

functional relationships and state relationships.

4.3 Network Modelling

To enable the systems architect to estimate quantitatively end-to-end performance,
system modelling must provide a multi-disciplinary consistent set of component models

and a set of algebraic rules for model construction.

Networks are a more generic form of causality constructions. Formally, a network is a

directed graph and the relationship between graph theory and linear algebra is both

RB Smith Page 73 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

precise and comprehensive. It is a straightforward matter to represent the connectivity of

a network using unidirectional links in the form of a matrix and its properties can be

evaluated by analysis of its matrix form.

The designer annotates each connection with the intended functionality, usually in

algebraic form. It has the advantage over the Block Diagram form that the internal

relationships in a node may be represented. Another advantage is that the pictorial

representation is more compact than that of the Block Diagram form. This facilitates the

algebraic manipulation of more complex functionality.

Evans and van Dixhoom summarised the historical development of network modelling

techniques in ‘Physical Structure in Systems Theory - Network Approaches to

Engineering and Economics’, edited by J.J van Dixhoom and F.J. Evans, 1974, [85].

The search for a generic form of cross discipline model can be traced back to Maxwell,

when he postulated that force and voltage could be treated as being analogous. The

philosophical approach to a unified system was based on two basic types of variable,

through and across; see ‘A New Analogy between Mechanical and Electrical Systems’,

F A. Firestone, Journal of Acoustics Society A, 4, pages 249-267, 1933, [86a]. Through

variables can all be measured at a single point e.g. force, current, fluid flow, heat flow,

mass flow, whereas across variables must be measured by a difference e.g. velocity,

voltage, pressure, temperature and concentration.

4.4 Two-port Analysis

In electrical engineering the problem of Two (2)-Port (four terminal input-output
component models) network synthesis was tackled, for example, by Vaulot, 1927, [86a],

Streckerand Feldtkeller, 1929, [87], and Pipes, 1940, [88].

Electrical circuit analysis is carried out by the application of Kirchoffs Laws. The methods

used include direct use of equations, lumped component and signal flow theory.

Representations of more complex networks need to be constructed by synthesis

techniques based on the use of 2-Port representation for each component whereby

generic network components can be represented in matrix form.

S R Deards provided the following description of 2-Port Network analysis; see 1966, [89].

In electrical network synthesis a typical 2-Port construction is shown in Figure 9, as

follows.

RB Smith Page 74 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Input Current Output Curert

InputNfoltage
Linear Time

Invariant 2-Port
Output \Adtage

Figure 9 - Schematic of Two-Port Network Component (D6)

Each component is represented by a matrix. For example, an impedance model is of the

form:-

Z l l Z l2

Z21 Z22

Where Zn is the import impedance (outport open), Z2i is the forward transfer impedance

(outport open), Z12 is the (minus) reverse transfer impedance (inport open), and Z22 is the

(minus) outport impedance (inport open).

There are six forms of 2-Port network component. To enable models of complex

networks to be synthesized, the impedance form is not the most convenient. Models of

networks constructed in the form of series and parallel components can be synthesised

by using the A type, the transfer function matrix form, for series components whereby the

component matrices are multiplied together (i.e. Aix A2x) and the Y type, the

admittance function matrix form, for parallel components whereby the component

matrices are summed together (i.e. Y1 + Y2 + ...).

RB Smith Page 75 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Standard forms have been created for generic components. For example series

impedance, shunt admittance, transformer, gyrator, amplifier etc. Importantly the A form

of representation is fully defined for generic components. Further, these generic

components have consistent analogues across the range of electrical and mechanical
components.

4.5 Analysis of Composite Dynamical Systems

The automatic control discipline provided considerable momentum to the creation of

models that provide cross discipline consistency. Integrated constructions based on the

conservation of work, energy, and power have been developed; see MacFarlane, [45]

and Paynter, [46], to provide a unified approach for composite systems involving

mechanical, fluid, thermal and electrical components.

Many fundamental physical properties (e.g. force, momentum, charge, current, entropy)

are interpreted as spatially intensive variables since their measurement at any given

point in space only involves that single point in space. These are often termed ‘through

variables’ (pervariables) as they are propagated through interconnected components.

Also, variables (e.g. displacement, temperature, voltage) are interpreted as spatial

extensive variables since their measurement involves two points in space. These are

termed ‘across variables’ (transvariables) as they require two points to effect their

measurement.

Each component can be considered as representing a relationship between pairs of

measurement points. In all cases one measurement is of a transvariable and the other is

of a pervariable.

Models of connected components can be derived from generic components; stores,

couplers, converters and dissipators; perstorage elements that store are represented in

mechanical engineering and electrical engineering as inertia or inductance respectively,

and transtorage elements as springs or capacitance respectively. Dissipators are

represented as restrictors and resistors. Converters and couplers are represented as

transformers or gyrators.

RB Smith Page 76 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The following table demonstrates the discipline equivalence for various 2-Port models.

Discipline Across
variable

Through
variable

Resistance Inertial Capacitance

Generalised
component

A B Resistance
b/a

Inertia, J=
a /(db / dt)

Capacitance

J(1 / a)b.dt
Mechanical
(linear)

Force Velocity Friction Mass Spring constant

Mechanical
(rotational)

Torque Angular velocity Friction Moment of
Inertia

Spring constant

Hydraulic Pressure Flow Restriction Mass Compressibility
Pneumatic Pressure Flow Restriction Mass Compressibility
Thermal Temperature Heat flow Thermal

conductivity
N/A Thermal

capacitance
Electrical Voltage Current Impedance Inductance Capacitance

Table 8 - Generic Components with Electrical and Mechanical Equivalence.
(See ‘Modelling of Dynamical Systems’, Vol. 1, ed H. Nicholson, 1980, [73])

4.6 Energy as a Common Unit for Engineering Sciences

Most systems engineers work with technologies that encompass (at least) the following

domains:

Properties of matter, mechanics, gravitation, relativity, hydromechanics,

thermodynamics, acoustics, electro-statics, electro-magnetics, optics, quantum

mechanics, radiation, radioactivity, information processing.

MacFarlane expressed the view that ‘the spectacular success of the concept of energy in

unifying the description of physical phenomena has made it one of the most fundamental

in scientific work’; see [45]. Nevertheless many systems engineers can (and do) work in

environments dominated by the other sciences including chemical, biological, human and

economics.

4.7 Multi-port Systems Analysis

Paynter adopted the notion of the energy port previously introduced by Wheeler in

‘Measuring the Efficiency of a Superheterodyne Converter by the input impedance circle

diagram’, H. A. Wheeler and D. Dettinger, Wheeler Monograph No. 9, 1949, [90], It was

postulated that energy transfer was not restricted to two wire circuits and that consistent

representation could be established by multi-port reticulation in a given region of space.

Components are bonded together to preserve energy flow.

RB Smith Page 77 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A Bond graph portrays the system in terms of power bonds, connecting the elements of

the physical system to power exchange junction structures. It provides a more general

capability as, for example, three-port gate valves may be properly modelled; something

that is not possible with 2-Port representation, see [47].

Symbolic representation of each bond is provided by a line with a half arrow to show

positive power flow and annotated with effort and flow (e.g. pressure and flow rate),

corresponding to the ideas of across and through. An example of the representation is

shown in Figure 10.

/
R

P1 + P2 = P3
L + U = i,

Figure 10 - Schematic of Bond Graph Representation (D7)

In 1968 Kamopp formulated the concept of the multi-port power conservation transform;

‘Power Conserving Transformations: Physical Interpretations and applications using

Bond Graphs’, D. Kamopp, Journal Franklin Institute No. 288, 1969, [91].

Each component is modelled in terms of effort and flow and

Table 9 shows the equivalence of physical system variables for a range of disciplines.

RB Smith Page 78 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Discipline Effort Flow State Variable

Mechanical Force Velocity Displacement

Torque Angular velocity Angular displacement

Electrical Voltage Current Charge

Magnetic Magneto motive
force

Magnetic flux Magnetic flux

Hydraulic/
acoustic

Pressure Volumetric rate of
change

Volume

Thermal Temperature Entropy change rate Entropy

Material Chemical potential Mole flow rate Mole number

Chemical Enthalpy Mass flow rate Mole number

Table 9 - Table of Bond Graph Components for various Disciplines [92].
(See ‘About Bond Graphs’, www.bondgraphs.com. A. K. Sumantaray, 2001,

High Tech Consultants.)

As the functionality of components in many engineering disciplines can be represented

by state variable descriptions, the table also provides the normal physical variable

associated with each discipline.

All Bond Graphs can be constructed from three generic types of elements; 1-port, 2-port

and 3-port. There are four 1-port elements; Resistance, Inertance, Capacitance and

Source; all dissipate energy.

There are two 2-Port elements; Transformer (effort to effort) and Gyrator (effort to flow);

both conserve energy. There are two 3-Port elements; Junction Type 0 and junction

Type 1. Junction Type 0 is common effort and Type 1 is common flow; both conserve

energy: (See ‘System Dynamics. Modelling and Simulation of Mechatronic Systems’, 4th

Edition, D.C Karnopp, D.L. Margolis, R.C. Rosenberg, 2006, [93]).

RB Smith Page 79 of 262 Issue Final

http://www.bondgraphs.com

Design and Integrity of Deterministic System Architectures

4.8 Bond Graphs with Discipline Capability Extensions

Formal relationships for Bond Graph elements have been established for the:

• Translational and Rotational Mechanical Systems Domain

• Hydraulic and Pneumatic Systems Domain

• Electrical and Magnetic Systems Domain

• Thermodynamic Systems Domain

• Substance and Chemical Systems Domain.

To enable the Bond Graph methodology to be fully inclusive the term pseudo Bond

Graph enables its methods to be applied to technology domains that have pseudo

energy variables.

Further, for the technique to be fully useful to Systems Design, component relationships

need to be established for, at least the:

• Optical Systems Domain

• Radiation Domain

• Radioactivity Domain

• Informatic Systems Science Domain.

• Transportation Logistics Domain

• Institutional Activity Domain.

The author generated a set of additional generic components and state variables to enable

the utility of pseudo Bond Graph constructions to be extended to multi-disciplinary

systems. As these examples require validation they have been included only for

information at Appendix 3.

RB Smith Page 80 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

5 SYSTEM DESIGN

5.1 Introduction to Systems Architecting

A useful starting point is to state in terms that are meaningful to those responsible for
systems design what is meant by systems architecting. The generally accepted

definitions have already been stated in Section 1.2, System Architecting. They all imply

or state that systems engineering and architecting involve components, of whatever type,
that cooperate to achieve some purpose.

To ensure that the reader appreciates that this thesis is concerned with the exploitation

of science-based technologies, the author’s ‘best estimate’ is to define the role that

systems architects fulfil as follows.

‘System architecting is the application of the science associated with the

study of collections of co-operating objects as mechanisms and their

instantiation within the science and technology disciplines.’

Systems architects need to have a means of instantiating these ‘collections of objects’
into structures. The word collection implies some form of boundary within which

collections may be confined. Of course interaction with other collections may occur by

having relationships between many boundaries. Within each boundary the set of

components may be fully or partially connected.

To achieve point performance compliance the author asserts that most system designers

regard the system of interest as being entirely quantifiable. Normally, this means that the

systems are deterministic constructions. That is not to say that probabilistic or stochastic

behaviours are excluded; clearly, components that interact to generate outcomes that
are described in statistical terms are within the context of this assessment.

To enable the behaviour and performance of a collection of objects to be determined,

systems engineers impose a structure onto the collections pertinent to the application.

The best word to describe such structures is ‘arrangement’. Such arrangements may be

addressed as architectures, however not all architectures imply ‘arrangement’ as, for

example, a state transition diagram or a functional sequence block diagram are often

described as ‘architectural’ diagrams, or more strictly as ‘behaviour’ diagrams.

The task of the system designer is to ensure that the design provides only those

characteristics valued by the customer.

To achieve this objective in an economic manner the designer must strive to establish

that the proposed design complies with this objective prior to build. In another way, the

RB Smith Page 81 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

designer must understand the architectural arrangement, its behaviour, its technology

instantiation and performance of the proposed solution.

5.2 The Complexity Problem

The fundamental difficulty faced by system architects can readily be appreciated from

Reconstructability Analysis. A seminal paper published by Klir in 1986, [94], showed that

a system may be simplified by being decomposed into sub-systems. Klir states that “A

system with n variables has 2n sub-systems and there are 2E2n system structures that
can be formed from these sub-systems.” He goes on to say that that even when

redundant structures are excluded the number of potential sub-systems grows rapidly

e.g. for n = 6, nearly eight million potential structures can be formed, amply

demonstrating the difficulty of the problem faced by system architects.

By way of practical illustration, the size of a system can be characterised in terms of the

number of information items held to support its configuration control. A configuration

control system is likely to address, at least, the items shown in Table 10, as follows,

independently of size or scale of the application.

Needs definition Build Standard

Science/technology solution basis Embodiment Standard

Functional solution Manufacture and supply

Implementation solution Supportability

Design Standard Disposability

Table 10 - Typical Information items held in a Configuration Control System

The size of the knowledge base required to support such a configuration control system

is primarily related to the number of Requirement Objects that are needed to define the

overall system of interest at Acceptance. When applied to a hierarchy of systems the

growth profile appears to be logarithmic.

RB Smith Page 82 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Needs Science/ BB Solution Design Build Embodiment
Definition Technology Component Standard Standard Standard

Solution

-106

Urit
Design

Knowiedege

Scope
of one
person

Sub-assembly
Capacity

of one person

Platform

Sub-system

System of systems

1

Figure 11 - Complexity illustrated by number of Requirements Objects needed to
define a System (P15)

As the complexity increases each domain of configuration control must be individually

recorded and m anaged. As a rough estimate, each level adds an order of magnitude (i.e.

decade) of information objects; say from one hundred at the lowest level to say over one

million objects for very large systems. This is illustrated in Figure 11.

It shows that at the lowest level of complexity a single person is able to hold all aspects

of configuration control in his head (perhaps supported by a simple record of needs, build

and deployed standards). As the size/com plexity/scope of the system increases, the

scope of knowledge-based activities that an individual can address competently

diminishes. As the num ber of contributors increases, the interpersonal activity required

for design coordination grows with a consequential reduction in the scope that each

person is able to address.

Consequently, system complexity is at the root of all systems problems, and the

multiplicity of system engineering process models and analytical techniques are

associated with simplification. For exam ple, a practical guide to the implementation of a

process model that supports the ‘V M odel’ structure has been provided by Stevens,

Brooks et al [71], and Flood and Carson, 1988, [95] have sum marised various

approaches to complexity m anagem ent techniques.

RB Smith Page 83 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A sound simplification strategy should minimise the loss of relevant information. At some

stage, each designer has to balance the residual complexity of the system components

in relation to further loss of systems level information. Consequently, the management of

design knowledge becomes an increasingly difficult and important activity.

Although there is a wide range of individual capabilities for design practitioners, it is very

apparent that most individuals are not able to comprehend fully the totality of design

knowledge, except for the most straightforward products. Teams work by networking

between individuals who have specialised knowledge; it is expected that the team

constitution enables the totality to be comprehensively represented. In practice this

works for small teams, especially where the team members are co-located and have the

benefit of direct interpersonal communications. However, as applications become larger
and more complex, team sizes grow and interpersonal communications become diffuse

and sporadic. Consequently, design decisions become increasingly based on incomplete

or ambiguous information, with an inevitable growth in error rate.

5.3 The Context of System Design as an Activity

In the current business environment, management groups make increasing demands for

greater understanding of all stakeholders’ needs. The result is that specifications now

include more detailed definitions or descriptions of needs in terms of point performance

objects. The hypothesis is that the enhanced detail removes ambiguity from the

customer interface and will thereby lead to point-by-point compliance; the commercial

stance is that if it is not specified, then any such emergent property is acceptable. While

the need is to compile unambiguous and reconciled definitions of user needs, the

extensive use of vernacular language places heavy demands on those writing such

statements in terms of their lexical and grammatical capabilities. The result is that

Requirements Management is emerging as a discipline in its own right; however,

significant difficulties remain as a consequence of the poor lexical skills of most technical

authors combined with a lack of knowledge of most initiating authors as to the availability

of cost effective realisable solutions.

Customers rely on suppliers’ expertise, as Design Authorities, to ensure that solutions

exist that are indeed ‘fit for purpose’ and have the full weight of law to support such

positions. So the system architect has to estimate the emergent properties of the

proposed solution; in the end he/she will be judged not only on their ability to produce

‘compliance’ with the stated requirements, but must also ensure that the solution is

indeed ‘fit for purpose’.

RB Smith Page 84 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Each generation of engineers has focused on the problems of the day. Each has made

its contribution to capability enhancement, with each enhancement built upon the

knowledge contributed by previous generations.

Designers should be able to rely on the wealth of knowledge that exists to provide well-

proven means of determination. In summary, today’s practitioners have the benefit of

what is now a comprehensive and refined knowledge base.

In the late 1980s the lack of a common approach to systems engineering was recognised

in the USA by the major aerospace companies. A joint meeting, sponsored by Boeing, in

1990 in Seattle led to the founding of the NCOSE (National Council of Systems

Engineers) organisation. The vision was to create a forum to facilitate the determination

and communication of best practice and it is organised by territory into Chapters.

Practitioners in the UK shared the enthusiasm, and the first international Chapter was

founded in the UK in September 1994. Since then NCOSE has become the I NCOSE

(International Council of Systems Engineers) with a worldwide following.

In addition to the international efforts to define a best practice common approach, many

companies developed their own systems engineering guides. These tailored best

international practice into the practical context of each company. Despite the proliferation

of process models the process of design is not well understood. A common characteristic

is that the models refer to or imply a process or indicate responsibility. The role of

discipline specialists is recognised. However, the level of recognition rarely goes beyond

an organisational chart that acknowledges a relationship between the system

engineering community and the communities of discipline specialists. They do not refer

to the sciences or technologies that underpin these relationships. This omission means

that, in the author’s experience, there is a tendency amongst managers and practitioners

to focus on the process issues, without proper regard for the enabling sciences and

technologies.

These models all assume that the design is created somehow, presumably by someone.

For large-scale systems or complex products it is recognised that no individual has the

personal mental capacity to ‘know5 how all the components work together to fulfil the

desired characteristics. Team members simply cooperate in a pragmatic way to produce

useful entities. In doing so, they develop a collective knowledge of what the system of

interest is supposed to do and how it does it. The term ‘concurrent engineering’ is used

to describe a process whereby design decisions are taken collectively by a team of

relevant stakeholders and discipline experts. The motivation is to balance both the

breadth and depth of knowledge required for competent decision-making.

RB Smith Page 85 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

However, a great deal of it is in the form of tacit knowledge, with the consequence that

customer desires for evolutionary enhancement are incompatible with current business

preferences for personal contracting employment regimes. The competence of the

method relies on the means by which team members identify and communicate with

each other. Therefore, the utility of the method is limited to projects that can be tackled

by interactive communications between members.

In 1994 the author compiled a technical memorandum [96], as a private submission to

GEC-Marconi management, that outlined the problem and provided a potential solution

framework. At that time practical considerations meant that these or other potential

solution routes could not be refined and, since then, the author’s contention is that little

work has been done to address the deficiency.

The author is not alone in the assertion that the issue of system design needs to be

addressed by the systems engineering community. For example, the authors of ‘System

Design is an NP-Complete Problem’, Chapman, Rozenblit and Bahill, 2001 [97],

concluded that “There is a need for theory in the field of System Design”. Also Korn

observed in ‘A Problem of Identity of Systems Engineering’, (See INCOSE (UK)

Symposium, 1997, pp 73-83, [98]), that:-

“Currently systems science appears to be directed towards problem solving in

organisations but without reference to general problem solving methods. It

operates mostly in terms of descriptive, rather vaguely defined theoretical

constructs and models which are difficult to relate to observations. As such, it

operates at a meta-physical level, fragmented and remote from well established

branches of knowledge.”

Further, Tony Shell, in ‘System Implementation and Behavioural Modelling; A Systems

Theoretic Approach’ Systems Engineering, Vol. 4, No. 1, 2001, [99], pointed to the

existence of a substantial knowledge base of mathematical systems theory that has the

potential to support quantitative system design.

Consequently, it would be natural to expect that the analytical techniques that underpin

design integrity and robustness would have been developed alongside the growth in

process capability. However, the situation is that, in relation to the growth of system size,

little work has been done to develop methods and procedures for the analysis of large-

scale system arrangements. Therefore, considerable reliance continues to be placed on

the personal capabilities of the designer to ‘integrate’ various representations to produce

a holistic view of the system design.

RB Smith Page 86 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The result is that there is a substantial gap between the process definition and the

procedures and methods required to achieve competent definition of the overall design of
collections of components that form a system entity. All too often, the phrase ‘design’ is

left to the imagination of the supplier as to what is demanded and the evidence that

should be provided to achieve compliance.

5.4 Design Integrity

Systems architects are required to ensure that the: -

1. Solution solves the problem as perceived by the customer.

2. The problem as specified has been solved in the correct way.

Design integrity is a general term used by engineers to describe the collection of

information that provides the justification to confirm that the architect has provided the

right solution in the right way. It includes evidence gained by inspection, analysis,
demonstration and test.

Although the principle of the scientific method is grounded in observation of the facts,

many fully engineered applications do not have the luxury of certification through the

provision of performance observation. The general public has both an ethical and legal

right (c.f. The Health and Safety at Work etc. Act, 1974, and associated legislation) to

expect that any item that they use will not have an adverse impact on their lives.

All designers involved in safety related applications e.g. utilities and services,
transportation, built environment, pharmaceuticals, medical techniques, places of work,

etc. have to address fitness for purpose; for an exposition of product safety matters see

Abbott 1987, [100]. Many designs cannot be tested or evaluated as advocated by the

scientific method; for example the extreme performance and behaviour attributes of
aircraft ‘fly-by-wire’ systems cannot be evaluated by test, as the risk to people and

property is unacceptable. In such circumstances great reliance must be attributed to

evidence that is based on analysis.

To enable the systems architect to present such information the design process must
support a rigorous process of analysis throughout the design phases. The ‘V’ Diagram,
shown in Figure 12 is an extract from a GEC-Marconi engineering guide, 1996, [101],

and depicts the need for a formal relationship between each process component that

both verifies and validates the design.

The quality of workmanship for the design verification processes throughout the ‘left
hand side’ of the ‘V’ Diagram has a substantial impact on the subsequent outcome of the

programme.

RB Smith Page 87 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

With the current availability of state-of-the-art technological knowledge and m eans of

calculation, supported by computational power where required, there is little room for

excuse that som e undesirable em ergent property is in som e sense unpredictable.

Personal m anagem ent experience by the author supports the view that all

troubleshooting activities during reconstruction (the right hand side of the ‘V ’ Diagram)

occur from a deficiency in the scope and quality of analysis that had been carried out

during the design phases.

Opoanral

Vi

Li,vttrafSEni t
sram

V ̂ ***
sAsrfeoi""
DeMm

k r
te j r a ie r ts

SUBSYSTEM
SPEGFK>HON

Sifesy&m
le-Ag

/
Subsi<*m

BUlDtC H OCX
s p e o f io h o n

BriftnqHo*
feapi

R U fcigB tak
UiiM if

\ /
BdfnqHock

M*g0ta*
CDmrisaimq

Figure 12 - The ‘V’ Diagram showing step-wise verification and validation (P22)

Engineers are trained to carry out functional analysis of design attributes. The scope of

analytical capability is primarily organised by specialism, initially by type, e.g. civil,

m echanical, electrical, electronic, acoustic, optical, informatic, communications, etc.

RB Smith Page 88 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Each specialism has a full range of analytical techniques to address problems of

common interest; many are refined to enable specific in-depth analysis of particular
aspects.

The essential question is why does this requirement for rigorous analysis not apply to

system architects? Of course, most system architects would refute such a view,

although, when pushed, most would state that they have taken a particular viewpoint.

Inevitably, that is likely to be strongly correlated with their personal knowledge of
particular technology domains. Ignorance is bliss, but this will not do for an architect.

Conscientious architects recognise their own limitations and engage competent

specialists for the domains of interest. The system architect then fulfils the role of

Chairman. Nevertheless, a jumble of domain specialisms is not an architecture; we may

have the pieces of a jigsaw on the table but we cannot appreciate the picture.

Architects of buildings produce scale models combined with supporting data to describe

and support a design concept. Clearly, such techniques are appropriate to describe the

use of physical space.

Applications that involve items that are readily identified, enable viewpoint structures to

be constructed around them. The architecture of many systems is dominated by

familiarity of similar applications. For example, well formed products e.g. a ship, train,

aircraft, bicycle, etc all provide a structural basis for simplification and consolidation.

Each type of product has enabled the important aspects from a design point of view to be

described in familiar and efficient language.

Systems engineers deal with abstract concepts, and for many applications, the multi

disciplinary nature of systems architecting makes it very difficult to identify a dominant

viewpoint from which all other viewpoints can be anchored. For example, while the role,

of an air traffic control system is that of information processing, its informatic structure of

information flow is only one aspect of the complete system. Similarly, unmanned aircraft

systems need to be described in many ways; e.g. informatic, aerodynamic,
communications, command and control, and the operational demands of deployment that

include launch and recovery. No one viewpoint can be said to be the architecture. All are

required to provide a comprehensive description of such a system.

RB Smith Page 89 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

5.5 Estimation of integrity during Design Synthesis

An essential part of GST, termed systems methodology, is concerned with problem

solving. Since the mid 90s many models have been generated to provide process

constructions for particular applications. This can readily be seen by a casual review of

the articles published in the Journal of ‘Systems Engineering’ published jointly by

INCOSE and Wiley.

Nevertheless, to the best of the author’s knowledge, all ‘how to do it’ systems

engineering models describe data flow ‘input-output’ processes or activities and there is

a continuing lack of procedures and methods to support architectural evaluation.

The developing capability of systems engineering is exemplified by the process structure

shown in Figure 13.

The baseline structure is the MIL-STD 499B Model (See Figure 13) that was generated

in the operational context that architects were dealing with designs in which there was

very close association between the functional definition and the functionality of the

implementation components (e.g. analogue computing technology). However, this

paradigm was changed fundamentally by the development of computer based systems

technology. This technology enables the separation of functional and implementation

solutions.

The emphasis of the 90s to establish an internationally acceptable process definition

resulted in the compilation of bespoke engineering process definitions that tailored

international best practice to models pertinent to the engineering infrastructures of

private corporations. The commitment to adopt ‘best practice’ was supported by the

introduction of Capability Maturity Assessment and accreditation.

In common with many corporations, GEC-Marconi sponsored a group of specialist

systems engineers, including the author, to compile a best practice ‘Guide to Systems

Engineering’ to tailor best practice system engineering to the context of the GEC-Marconi
engineering infrastructure, see [101]. Its authors realised that there was a dearth of

information as to specific procedures and methods that could be invoked to support the

activities described within the process models. The problem is that somehow the

‘Functional Concept’ and the ‘Implementation Concept’ become an ‘Architecture’, in

which their embodiment is assumed to be deliverable by the architect.

The developing capability of systems engineering is exemplified by the process structure

shown in Figure 13. The drawing is an extract from [101], and the reader should note

that it includes a process component entitled ‘Design Synthesis’.

RB Smith Page 90 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Therefore, the M IL -S T D 499B Model was enhanced, by the authors, to show that an

activity designated ‘Design Synthesis’ needed to be included to link the concepts of

functional solution and implementation solution to a common architectural definition that

enabled the full range of technology specialisms to be integrated into a common solution.

\ r

Implementation
Concept

System Building
Blocks

Performance
Analysis

Requirements
Capture

Design Primitive
Library

Functional Concept

System Architecture
Concept

Design Synthesis

Specialism
Type ‘N +T

Specialism
Type ‘N+2’

Specialism Type ‘N’
E.g. Mechanical Technology

Electrical Technology
Electronics
Software

Etc.

Figure 13 - Schematic of the MIL-STD 499 Process Model enhanced to show
relationship with the System Architecture and technology Specialisms (D22)

Note. Because of its pivotal role, m any traditionally trained system designers would

normally expect the System Architecture Concept to be described within the System

Specification or the System s Engineering M anagem ent Plan.

RB Smith Page 91 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The role of the Design Synthesis activity is to address the integrity of the union of the

requirements, the functionality, its implementation and technologies that together provide

the system architecture.Integrity is concerned with the ability of a design to work

successfully (acceptably) in the context of its implementation, its operational environment
and its support environment.

Its multi-functional nature means that each discipline uses a variety of techniques to

establish the integrity of a design. Examples include the assessment of strength to load

variation, mechanical copy size variation by Taguchi [21] and functional performance

tolerance as a consequence of parameter variation, see Spence and Soin, 1988, [102],
software robustness using data flow, information flow and function flow techniques,

reliability and failure mode tolerance by the use of FMECA (Failure Mode Evaluation and

Criticality Analysis), hazard analysis (as used for safety risk and consequential loss

assessment), and many others.

The reader should note two points.

1. Firstly, all these techniques presume that a competent and comprehensive

expression of the design structure of the item of interest exists, whether it is a

component, a product - small or large, or a process; systems engineers define this

as the architecture.

2. Secondly, while the author acknowledges that the list of evaluation techniques is

not complete, the list does not include any techniques that are specific to evaluate

the integrity of architectures. In making this statement the author is well aware that

all the techniques are generic in the sense of not being discipline specific.

Nevertheless, to be effective, they all require specific interpretation appropriate to

the application and dominant discipline.

The problem is that architects do not have a defined set of objectives or a process

framework within which to evaluate architectural integrity. Conscientious architects

provide personal best efforts evaluations, both quantitative and qualitative, to describe

and support the adoption of particular architectural solutions. Further, for large-scale

problems, architects provide management with tailored best practice advice as to the

scope of determination that should be undertaken for specific applications.

RB Smith Page 92 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Sadly, too many budget holders constrain the scope and quality of such determinations

with the potential result that important emergent properties are not predicted during

design formation. This frustrates the presentation of the qualities of the solution, and

increases the scale of corrective action activities during the latter phases of integration

and evaluation. Usually, the result is loss of customer confidence, schedule delays and

increased programme cost.

Consequently, it is the contention of the author that a proper understanding of the

‘Design Synthesis’ activity has not been developed. Further, there continues to be a

dearth of procedures and methods pertinent to structural appraisal of system

architectures.

5.6 System Complexity and Simplification Strategies

The complexity of systems has occupied the best exponents of systems theorists,
analysts, engineers and managers over many years.

Studies are characterised by views of: -

• System knowledge.

• Complexity theory.

• Simplification strategies.

As a consequence of the all-encompassing view of systems engineering that it includes

objective systems with conscious behaviour and unconscious rule-based automata, and

organisational systems that include systems management structures and processes, the

size of the knowledge domain is dauntingly large. Even when the sub-set of the domain

is limited to just that of rule-based objective systems, the size of its knowledge base is

substantial.

Systems engineers concerned with ‘unconscious’ rule-based systems define complexity

as the number of objects of information that are required to define the system of interest.

This is misleading as the complexity of a rule-based entity is concerned with both the

number of objects and their interconnectivity; even more complexity is added when

considerations of behaviour and timing are included.

All studies of system knowledge and complexity have concluded that complete

determination of system characteristics is not practical except for systems with

comparatively few variables.

RB Smith Page 93 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Bremermann commented in 1962, [103], that problems involving large numbers of

possibilities would not be solved by sheer processing capability; we must use our

creativity and ingenuity to find tractable solutions to specific problems.

The principal simplification strategies available from GST, described by Klir in ‘Facets of
System Science’, Chapter 9, [12c], employ elimination of variables, aggregation of

variables into composite groups and decomposition into lower level (more

understandable) components. Clearly, the intention of all reduction approaches is to

maintain the required functionality; therefore, these processes must satisfy

reconstructability criteria.

Systems architects make extensive use of all simplification strategies. Simplification

either requires that the level of reduction produces specifications that are limited to a

specific level of definition; alternatively specifications must be reduced to a level at which

the uncertainty in the outcome is acceptable.

The additional variables reduce uncertainty; therefore, having the minimum number of

variables required to achieve the required level of uncertainty optimises the system

definition.

One instantiation of this process is to decompose the system into interconnected objects.

The complexity is then determined by the number of variables consolidated into each

object and the interconnectivity between objects for each variable. The system

engineering community describe this as partitioning and decomposition; it is the primary

means of simplification.

System designers use the discipline of partitioning to enable the requirements to be

provided from a structured set of cooperating objects or ‘building blocks’. The choice of

the set of building blocks and their structural relationships is critical to the achievement of
the required emergent properties without introducing a whole set of undesirable (or

unacceptable) characteristics.

Partitioning is the principal contribution of the system architect; if it is done well the

system is likely to meets its performance objectives, it is likely not to have any nasty or
unacceptable characteristics, and the programme will be easy to manage. Poor

partitioning leads to increased management difficulty (and cost), and an increase in the

generation of unwanted or unacceptable behaviour characteristics.

RB Smith Page 94 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Partitioning creates relationships between the set of component objects that form the

overall system. As the number of objects is increased to ‘simplify’ the role of each design

object the number of internal variables required to provide the required functionality also

increases.

The task then faced by the architect is to understand the functionality of groups of

objects. The emergent functionality then needs to be compared with the desired

functionality, then any unwanted emergent properties need to be eliminated/mitigated.

It is surprising that, given the importance of the complexity issue, there is a dearth of

work and results available to the practitioner as to systematic methods that can be

applied to design problems to provide minimum complexity. Also the lack of openness by

‘architects’ to justify their design proposition hinders the compilation of design basis data,

which would be useful to both reviewers and educators.

5.7 Hierarchical Decomposition and System Reconstruction

While hierarchical decomposition is a ‘common sense’ concept that is superficially easy

to apply, the decomposition of a non-trivial structure requires rules of decomposition to

be established.

Robert Rosen in ‘Complexity as a system property’, (Int. Journal of General Systems,

Vol. 3, pp 227-232, 1977; [104]), identified two features that must be exhibited by a

successful analysis of a complex system into sub-systems: -

1) The sub-systems must be simpler than the system from which they were extracted.

2) The sub-systems must allow the properties of interest in the original system to be

reconstructed from the properties of the sub-systems.

There is a further rule, derived from empirical use by practitioners. The level of

decomposition is determined by the ability of the design team to specify the role and

functionality of a sub-system component in precise and unambiguous terms. The

intention is to remove uncertainty from the definition of the component so that it becomes

entirely a deterministic and a rule based entity.

There is a clear implication that the system of interest can be reconstructed from its

hierarchical decomposition. The reconstructability aspects of hierarchical analysis was

investigated by many including Scholz in The Architecture of Hierarchy’, (Kybernetics, Vol.

11, pp 175-181, 1982; [105]).

RB Smith Page 95 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Scholz defined three types of hierarchy; -

• Type 1 for intra-systemic relations.

• Type 2 for inter-systemic relations.

• Type 3 for Functional hierarchy.

These are shown schem atically in Figure 14 and Figure 15.

Figure 14 - Hierarchical Decomposition showing aggregation dependency
relationships (P17)

& &

^1>.... ^ ^ ------<1> <2 ̂ <2)t)

Figure 15 - Hierarchical Decomposition showing interrelationships (P18)

RB Smith Page 96 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The interpretation of Type 1 is that the vertical lines mean subdivision in the sense that

the attribute relationships between lower level components can be aggregated into

higher-level components.

The interpretation of Type 2 is that the vertical lines mean interaction between lower-

level and higher-level components. The horizontal lines mean interaction between

components from the same hierarchical level.

The interpretation of Type 3 is that the functional composition of both horizontal and

vertical interactions must be consistent; both Type 1 and Type 2 hierarchies can fulfil

Type 3 functions.

When the functional structure includes both the intra-systemic and inter-systemic

hierarchies, then such systems are viable, efficient and reliable. Of particular importance,

and difficulty, is the horizontal interaction between different sub-groups of partially

decomposed components. The horizontal interactivity requirement implies that analytical

consistency must be maintained at each level of decomposition. This requirement

creates special difficulty for large-scale systems that involve multiple disciplines.

The analysis techniques, described in Sections 8 and 9, that have been incorporated into

the Machine System Design Process, correspond to the determination of hierarchical

consistency, the determination of causality consistency between components and the

determination of inter-nodal functionality respectively. Therefore, machine systems

analysed in this way should also be viable, efficient and reliable.

Further, the GST community has shown that all living systems can be constructed from

these three types; they define a ‘cyborg’ as a system that has both cybernetic and

organisational properties: (See ‘Cyborgs and Space’, by M.E. Clynes and N.S. Kline,

Astronautics 5, 26-27, 74-76, 1960; [106]). Consequently, since all engineered systems

have a purpose, these too can be constructed from these three types thereby fulfilling the

conditions of both necessity and sufficiency.

5.8 Design Synthesis

Synthesis is the process of matching the functional solution to the realisation solution.

The problem of the number of interrelationship variables needed to match the functional

model to the realisation model is illustrated in Figure 16. It shows both an ideal matched

implementation structure and one in which the functional allocation is driven by

realisation imperatives.

To introduce the reader to the use of matrices to represent system architectural

structures, Figure 17 shows the Adjacency Matrix for each system construction.

RB Smith Page 97 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

An Adjacency Matrix is a form of the N 2 Matrix in which the system com ponents are

allocated to the diagonal elem ents and their interrelationships are represented by the

{T rue(1)/Fa lse(0)} designation in the off-diagonal elem ents. The interrelationships are

unidirectional; for exam ple the relationship ‘A -> B ’ is shown by ‘1’ in elem ent (1, 2), and

the relationship ‘C -> B’ is shown by T in elem ent (3, 2).

Matched Structure Mixed Structure

Functional
Structure

Realisation
Structure

C,D

Building Blocks

Figure 16 - Schematic showing structural impact of Matching Functional and
Implementation Solutions (P16)

A 1 1 0 O' ~A 1 1 1 r
0 B 1 1 0 0 B 1 1 i
0 0 c 0 1 9 0 1 C 1 i
0 0 0 D 1 0 1 1 D i
0 0 0 0 E 0 1 1 1 E

Figure 17 - Adjacency Matrix Form of System Implementation Construction

RB Smith Page 98 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The construct enables a complete definition of the system to be described. In the

example, the adjacency matrices show that the interface complexity has increased as a

result of the use of building blocks with mismatched functionality.

Consequently, the simplification introduced through the use of fewer building blocks has

resulted in a substantial increase in interconnectivity and complexity of the realisation

structure.

The principal means of addressing the complexity issue is through the expansion of

process models, focus on the detailed specification of Requirements and the extensive

use of hierarchies to decompose problems into manageable units. However, the

apparently insatiable demand for greater capability has created unprecedented levels of
complexity.

To enable solutions to be provided, it has been imperative to pursue simplification

strategies. It is natural to break down large tasks into groups of smaller tasks. Large-

scale systems are decomposed into sub-systems and these are further decomposed to

components. The process is repeated until some acceptable ‘atomic’ level of definition

has been achieved, where acceptable means understandable and unambiguous. Such

decompositions are carried out as a result of political and business influences that reflect

ownership as well as pragmatic considerations based on engineering or technological

factors.

Clearly, each technology and science discipline has many methods and techniques that
enable functionality, behaviour and performance to be quantified. The performance of

each component as a separate entity can be quantified. A system creates additional

‘added value’ functionality by linking components together. A functional requirement that

needs components to interact, means that components must be linked together.

The simplest means to create functional integration is to add links on the principal of the

shortest route. This leads to spaghetti like architectures that generate emergent

properties that are neither anticipated nor desirable. Strict compliance with the specified

needs becomes progressively unobtainable. Multi-layered architectures present great
challenges and, to the best of the author’s knowledge, there are no techniques that
address the quantification of emergent properties of multilayered system constructions.

RB Smith Page 99 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

5.9 Problem Solving Context

The purpose of this study has been to develop methods for estimating emergent

properties of system architectures, both desired and unwanted.

Systems engineers who tackle large-scale problems are forced by complexity

considerations to use partitioning and decomposition strategies to make the problem

understandable and tractable.

Consequently, the internal complexity of the solution expands in relation to both the

number of layers used to provide hierarchical decomposition and the number of units that
are partitioned at each layer to ‘simplify’ the specification of each unit. While most

practitioners are comfortable with vertical decomposition, the problem of layering

consistency potentially means that extra non-intuitive layers need to be included in one

sub-group to provide analytical consistency with another sub-group. Further, the multi

functional constitution of a system means that many technology disciplines and therefore

functional viewpoints must be evaluated.

With the exception of very simple systems, experience shows that systems architects

cannot be presumed to be competent in all the disciplines involved in a system design.
The idea of a universal ‘all knowing’ designer is untenable.

As has been stated previously, the process models require both functional and solution

synthesis definitions to be created; however there is no overarching advice as to how this

is to be achieved. So, the fundamental question is by what means does the architect

understand the qualitative and quantitative construction of the ‘machine system’?

The role of the individual system engineer or system engineering group responsible for

the architecture of an application is that the individual or group in concert needs to have

the ability to blend a variety of disciplines and technologies into a coherent and fully

reconciled entity. This means that the conversion of the set of functions that populate the

systems function space into functions in real space should be both inclusive of and un

biased in terms of the total science base. Therefore, any definition of a set of system

functional structure vectors must be orthogonal to the set of science base disciplines.

The first problem for the systems engineer is to define the set of real spaces that are

both necessary and sufficient to enable the design to have steady-state robustness. The

second problem is to extend the set of real spaces into their functional context and their

state space context to determine both static and dynamic robustness.

RB Smith Page 100 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Most engineers specialise in one or just a few technologies. Each technology has its own

‘short cut’ means of analysis for frequently repeated calculations. While professional
guidance directs that a systems engineer must be competent in more than one major

discipline, it is a daunting task for any individual to achieve substantial multi-disciplinary

capability. This is reflected in the uneasy alliance between systems engineering and

specialist communities.

Nevertheless, such boundaries have no value when full quantitative analysis is required.

Consequently, in order for any supporting analytical techniques to be useful to the

architect, such techniques must be inclusively compatible with all major technology

disciplines and each design domain must be analytic across the full range of science

base disciplines.

It is the role of the unit architect/designer to state the vector space in which the

relationships are defined. Usually each designer adopts a narrow field of view with the

result that recognition of cross-functional relationships depends on his personal skill and

knowledge.

This is very unsatisfactory for complex, interactive designs that are created by mixed

ability teams, as the ‘worst’ designer determines the qualities of the product’s emergent

properties.

The key feature of system robustness is the integrity of the multi-functional structure.

Further, robustness is as much concerned with the completeness of the interfaces as

well as functional and tolerance compatibility. A link not identified during the design stage

may do immense damage when its effects on integrated system performance become

visible. Corrective action is likely to be costly and sometimes only partially practicable.

It is critically important to the quality of analysis to meet tests of completeness,

sufficiency and necessity. The variables must match throughout the decomposed and

partitioned structure, and the functional relationships must be consistent in terms of the

technology/science base that is used for implementation.

5.10 Outline of Proposed Solution Structure

A schema of machine system design is proposed in this thesis that provides a more

formal design synthesis process that facilitates evaluation of the architectural structure.
In addition, this thesis describes how this schema can be integrated within the ‘V’ Model

product development process model.

RB Smith Page 101 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

To address the issue of the multiplicity of viewpoints, it is proposed to structure the

functionality of a system in terms of four generic constituents:

• its general arrangement,

• its ultimate performance,

• its interconnectivity, and

• its interconnected functionality.

Each constituent is referred to as a domain. This proposal does not limit the ultimate

number of viewpoints that the architect may need to consider. However, it does provide a

structure to control and manage the objective and utility of each viewpoint in a coherent
framework.

Descriptions of large systems make use of hierarchical decomposition to atomise

functional definition. The impact of such decomposition is to obscure the relationship

between a function and the platform used for its delivery. Such obscuration means that

sometimes functions will be delivered by multiple platform components and sometimes

multiple functions will be delivered by single platform components.

Therefore, the designer needs a method, or methods, that track the relationships

between the functional structure and the implementation structure. To address the issue

of function to implementation matching, an extension of the ‘Design Matrix’ is proposed.

To address the issue of causality an extension of the ‘reliability network’ is proposed.

These two methods together provide the designer with information that shows the match

between the functionality structure and the implementation structure to establish both

hierarchical and causality integrity. The designer will then accept the quality of match or

modify it until it is acceptable.

To enable architects to have a structural determination of the design that encompasses

the range of disciplines and functionality used by systems architects, it is proposed that
system structures be represented by graphs. Specifically it is proposed that the

architecture be represented as a functional structure that consists of functional objects

and interrelationships. The implication is that the functional structure will take

precedence over the implementation structure and, therefore, the implementation

structure will be aligned to the functional structure. This proposed construction provides a

generic means of architectural structure representation.

To enable the emergent properties to be quantitatively estimated from the system graph,

each component of the graph is then provided with a label that is linked to an expression

of its functionality. Transposing the labelled graph form into matrix form enables the

RB Smith Page 102 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

functionality structure of all source-to-sink paths to be determined in the form of direct

product/sum expressions. Replacement of the function labels in the direct product/sum

expressions by their associated functions enables the source-to-sink functions to be

determined and quantitatively populated. Evaluation of these functional expressions

provides the architect with estimates of the emergent properties.

In summary, it is proposed that the Design Synthesis activity be supported by five

methods: -

• A design process.

• A set of domain viewpoints pertinent to the knowledge aggregated for an

architectural design solution.

• Means of determination of traceability consistency through hierarchical

decomposition.

• Structural representation of system architectures.

• Determination of functional construction and quantification.

RB Smith Page 103 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

6 DESIGN SYNTHESIS AS A STRUCTURED PROCESS

6.1 Process Schema Description

With respect to terminology, to remove the ambiguity invoked by the use of term ‘system’
the term ‘machine system’ is used by the author in this thesis to refer to the solution

object when seen as a mechanism. Further, the reader should note that it is common

practice for practitioners to use the term ‘Building Blocks’ (BBs) to refer to 'assemblies’ of
components or modules; the term has a connotation of completeness in the sense that

its functionality and interfaces are well defined to facilitate integration with other BBs. Its

use enables designers to use the word components in the context of lower level or

atomic items that constitute ‘assemblies’. Building block components may include human

engineering roles provided the human centred functionality can be expressed in rational

terms.

All ‘hard’ systems solutions are machine system concepts that are constructed from the

technology components that the architect has at his disposal. That means that the

architect has a duty of care to choose building blocks that have the attributes that are

appropriate to all the stakeholders’ skills, facilities and resources.

To address the requirement to instantiate a process component for structural analysis

within the normal systems engineering process model, the author proposes a schema for

Machine System Design. It is designed to address the need to overtly incorporate

architectural structure at the heart of design. It is based on the MIL 499B model and is

compatible with the Architecture Framework Model proposed by the DOD.

The author has devised a pictorial means of representing the schema, as shown in

Figure 18. The author has named the concept The House of System Design ’ as the

schematic model looks like an outline of a simple two-up, two-down dwelling.

RB Smith Page 104 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

System Boundary

Compliance Requirements

Functional/AnalysisState transttionAdynamics

Ultimate perfbmu
Structural analy: lysical Synthesis

Note. Architecture Framework Definitions

1

Figure 18 - Schematic of ‘House of System Design’ (P3)

(Note. Figure 18 is presented with clockwise interpretation to align with the Spiral Model

of sytem design).

System decomposition and reconstruction are usually portrayed on the vertical axis, so

the north-pointing apex of the arrow shape represents the fully constructed system, and

progressive decomposition expands north to south. The roof space consists of the

boundary that delineates the system of interest. The outline in the form of an upper floor

provides the ‘room s’ for the Requirem ents definition and its com plem ent that supports

the Acceptance Criteria and the Com pliance Matrix. The middle floor provides the

‘room s’ for Functional Decomposition and its com plem ent Behavioural and State

transition/dynamics Perform ance Analysis. The lower floor provides the rooms for

System Synthesis and its com plem ent that is entitled ‘Structural Analysis and Ultimate

Perform ance Analysis’. The arrow depicts the process sequence of the model. The left

hand side is concerned with design decomposition. It starts at Requirem ents, and is

followed by Functional decomposition and Physical Synthesis. The right hand side is

concerned with reconstruction and validation. It starts with Structural analysis, and the

determination of Ultimate perform ance, it is followed by the determination of behaviour

and then dynam ic performance. These processes lead to and enable com pliance

assessm ent in the context of the system boundary.

RB Smith Page 105 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

6.2 Design Process Integration

The design activity is not something that exists in isolation. W hile som e ‘blue sky’

research activity m ay in the past have led simultaneously to product instantiation the

current business and com mercial methodology assum es that research continues until a

maturity level of, for exam ple, Technology Readiness Level (TR L) Level 4: (See

Docum ent DoD 5 00 0 .2 -R and Carnegie Mellon University report C M U /S E I-2 00 2 -S R -02 7 ,

[107]) is achieved. This m eans that a new science or technology aspect has been

developed to the extent that its viability has been prototyped and dem onstrated. At that

stage, the relevant knowledge base has sufficient substance to enable the exploitation

risks to be profiled in a business and commercial context.

M ainstream design (i.e. T R L level 5 and subsequent levels) is then a series of activities

that fit the knowledge base to the needs of the application in the context of an

exploitation process; such processes are the m eans by which all those involved in the

enterprise cooperate to achieve a common goal.

This integration of scientific and technological knowledge, the context of the design

application and a process infrastructure to identify a viable solution space is shown

schem atically in Figure 19 as the intersection of Knowledge, Design and Process.

Process

Knowledge Design

Viable Solution Space

Figure 19 - Integration of system knowledge with design and process to achieve a
viable solution space (P4)

W ayne W ym ore, in his book ‘Model Based System s Engineering’, (S ee Para graph 1.13,

C R C Press LLC, 1993, [108]) described the search for solution space viability in the form

of m any cotyledons (i.e. a single leaf in a seed bearing plant) that form a solution

structure.

RB Smith Page 106 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The idea is that the design space of a particular aspect of the system design is

represented by one leaf and that the ultimate design would eventually flower from the

intimate overall structure formed by all these leaves together.

Independently of the reader’s empathy with this description, all system architects know

that there are many aspects that need to be considered to enable a fully reconciled

solution space to be identified.

A dictionary definition [9] of a machine is that it is “an assembly of interconnected

components arranged to transmit or modify a force in order to perform a useful function”.
Similarly, a mechanism is “a system or structure of moving parts that performs some

(machine) function”.

The design process links the user to the proposed machine solution. Although there may

be a large number of individual requirements, usually, a few have a dominant influence

on the choice of architecture and sub-system definition.

For example, a typical short list of top-level requirements for a weapon system

associated with mission profile, deployment logistics, number of operator roles, number
of workstations, sensors, fault tolerance, safety etc. set the basic arrangement in place.

Then detailed elicitation and analysis of requirements leads into functional definition and

allocation to the major sub-systems. The synthesis task is to generate a verified physical

design that will fulfil the requirements. Ideally, this means that it provides only the

demanded functionality.

Practical considerations mean that implementation solutions provide the demanded

properties together with a set of other properties that result from the physical means of

implementation. Invariably, there are many candidate solutions that have the potential to

provide the demanded functionality. However, there are only a few physical solutions that

have additional functionality of a form that generates a fully acceptable set of emergent

properties.

RB Smith Page 107 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The problem of complexity associated with new product design is addressed by

instantiating a top-down design process with a process of progressive refinement. This

latter process is delineated into a stepwise sequence to coincide with program m e review

milestones; viz. concept definition, machine system structure, product definition and

‘atom ic’ build definition. Then the new product design process is integrated with the

m anagem ent and engineering infrastructure required to support the program m e, as

illustrated in generic form in F ig u re 2 0 .

RFS
ReconciliationMachine

Design
Resource

ManagementConcept

RFS
Reconciliation

Machine
SystemRFS

Reconciliation
RFS

Reconciliation

Product
RFS

Reconciliation

1

Figure 20 - Generic Structure of Machine System Design Process (P5)

RB Smith Page 108 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The proposed process is a stepwise embodiment of the core process described in MIL-
STD 499B wherein each stage involves a reconciliation of the Requirements (R), the

Functional solution (F), and the Realisation solution (S). These core stages also provide

the structure that addresses the definition and justification of the machine solution and

that of the resources and logistics required to achieve the end goal.

The scientific method is based on the principle of theory validation by observation and

testing, see e.g. Davis, 1965, [109]. Engineers employ the principle to ensure that

designs support the community as intended [100]. All those involved in, for example,
aircraft design appreciate that all fare-paying passengers expect to travel without harm,

or fear of harm; for example, automatic landing is a key operational capability especially

for adverse weather conditions. The engineer provides evidence that the capability is

safe; aviation regulatory practice is to ensure that the aggregate risk of substantial

damage or injury associated with a landing event is typically less than one event in one

million. The problem for the engineer is the provision of evidence. Clearly, exhaustive

testing would be impractical as well as unacceptable. Therefore, the design process

incorporates means of collecting evidence that shows by ‘inspection, testing,

demonstration or analysis’ that the risk of hazard is acceptable to the regulatory

authorities. The compilation of evidence is referred to as verification and validation. A

version of the V model process is shown diagrammatically in Figure 21. This version

highlights the different roles of verification and validation. It has been said that

verification is to show that ‘the defined problem has been solved correctly’ and that

‘validation shows that the correct problem has been solved’.

RB Smith Page 109 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

sir s i«

L x 1 t
S |r**n

SIJB SYSim
sji <» k>i»on

sutsrdan

t
IHIIIXNT. H (XX
SPE<YIQM10N

- t
Ueapi

\
B d taq
It

4 n

^ BuktagHtot*
C tn m s a m i

Figure 21 - The ‘V’ Diagram showing verification and validation (P22)
(Courtesy BAE Systems; [101])

A fully verified solution is a physical solution that is robust and produces a fully

acceptable set of em ergent properties. The em ergent properties are predicted from

knowledge of the technology, the design of the candidate solutions, and tolerance to both

normal and extrem e values of the system stimuli and operating environment.

The ability to m ake cross discipline comparisons in quantitative term s is a fundam ental

pre-requisite for the systems engineer. It does not m atter if it is part of a new system

design, or a change to an existing design, or validation for perform ance declaration. The

issue that has to be addressed is that of compatibility.

Therefore, the design synthesis activity is required to include those tasks that are

necessary to predict the em ergent properties of candidate m achine solutions and assess

them for acceptability in relation to the dem anded functionality. Clearly, the better the

knowledge of the technology, the design and the environment, the better is the integrity

of the verification evidence. Here, integrity m eans that the scope of the evidence

provided m eets tests of coverage, breadth and depth, com prehensiveness of hazard

review, and analytical com petence.

The role of design analysis is to estim ate the em ergent properties of candidate solutions.

To enable these estim ates to be produced the analysis role must be integrated with the

process model. This is illustrated in Figure 22.

RB Smith Page 110 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Tasks

Di
In service‘V ’ Model

Programme
Phases Trials and Acceptance

IntegrationSystem Design
Unit Design Manufacture

Atomic Design Programme
ProcessesSystem

Design

System Architecting
System Analysis

Discipline Analysis
Technology Analysis

Science Foundation

Programme Management
Processes

Procedures
Methods

Figure 22 - Illustration showing Integration of Design Analysis with the ‘V’ Diagram
Process Model (P21)

Figure 23 shows how engineers cooperate to design com plex products by the application

of progressive refinement. The design process ensures that the design definition is

progressively refined through its structural, behavioural and quality (ility) attributes.

Functionality definition is accom panied by partitioning, thereby creating the structural

arrangem ent. Since, in practice, the physical em bodim ent of the realised end product is

substantially defined by the nature of the application, partitioning is usually a key input to

functionality definition.

RB Smith Page 111 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Require

rr
Boundary I f

Technology
Engineering

S ta tiS
Operations
iFmttonsI

Logistics Products& Touching

Performance
Limits

. a o is , O Concep
Solution

regressive
Maturity

Building
l a Structural j
p T ArrangementlInstallations Partitionmg

Relations

Fund InnalBehaviour,
Dynamics &
Performance
I Analysis

Behaviour
Dynamics

Energy Flow
Function

Data Flow
SoluteFunctional

Determine’
Realisation & Packaging Realisation

Allocations
Product

Definition
Detailed
Design

FailureNloaSand LSI Testability QualityTitles & Tolerance & Robustness '/iSnN\jntegrit̂

Figure 23 - Integration of Machine System Design Process with Generic Process
Model (P7)

Table 11 sum m arises the structure of the design process. It shows how the lifecycle

process is applied to generate a fully justified design. This process dem ands that, as the

design is progressively refined, it is supported by a knowledge base that shows how/why

design param eters have been chosen/determined.

The left hand column simply sum marises the R FS model. The second column shows

how progressive maturity is achieved. Most lifecycle models invoke the ‘top down’

approach from Concept through to the atomic level that is defined in the build drawings.

In doing so, the focus of design is progressively refined in terms of its structure, its

behavioural characteristics, and then its quality and sensitivity param eters to ensure that

all stakeholder needs are complied with.

The centre right column shows how the design processes are supported by analysis. The

right hand column shows the ‘chilled’ knowledge that is used by the design team to

support further design activitiese; composition, capacity, m essenger, function. These are

justified in Section 7.

RB Smith Page 112 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Generic
processes

Design Phase Analytical Focus Consolidated
Knowledge

Requirements Concept Building Block Structure
and interconnectivity.

Structural
Arrangement.

Functionality
identification and
allocation

Machine
System

Functional allocation.
Interface informatic
content.
Modal behaviour.

Ultimate performance
capability.

Realisation
Synthesis

Product Quantified functionality. Solution dynamics and
performance.

Build (atomic) Quality (‘ilities’). Build design.
Robustness.

Table 11 - Integration of Process, Design Definition and Knowledge Acquisition

6.3 Design Process Structure

A prerequisite of any design methodology is that it provides a structure within which the

components of analysis can be identified and their roles put in the context of an overall

analytical framework. Therefore, the functional complexity of current applications still
needs to be flowed back into the provision of a robust and cost effective integration of

technology components into a machine solution.

Also, the reader should note that commercial practices, in general, require strict
adherence to the principal of First Article Configuration Inspection (FACI) for compliance

acceptance. Therefore, the methodology needs to provide a structure that enables the

traditional goals of form, fit and function compliance to be determined.

Figure 24 shows how the definition of needs from an operational perspective is

instantiated, via the machine system, into system components that are fully qualified for
their intended role.

RB Smith Page 113 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

System of Interest As the user wants Start here!

Operational
Perspective

System
Perspective

Technical
Perspective DOD AF

Machine System
m

Realisation
Arrangement

Functional
Arrangement

Requirements

ISO 15288
(MIL 499)

Article
Design Fit Function Form

designer provides it 1Finish here! As the

Figure 24 - Process Model Integration (P8)

The machine system definition is, of course, the goal of all the process activity. This goal

is met by an object that is an arrangement of components, usually from a library of

known assets. It is this object that has to be integrated with the process. Figure 25 is a

schematic that depicts the machine concept in relation to the HSD process model,

including its supporting asset library.

RB Smith Page 114 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

System of Interest

RequirementsMatchCompliance

Behavioural J / --- \
Assessment V— /

Functional Decomposition
and Allocation

Machine System T "
Concept y

Structural
Assessment < 5 5 f

Realisation
Solution Population

Design Parameter Selection

Figure 25 - Integration of the Machine System Object with the HSD Design Process
(P9)

The design process for the machine system needs to integrate three perspectives; the

operational viewpoint, the machine viewpoint and the components to be employed.

Figure 26 provides a pictorial representation of the integration of these viewpoints.

System
Design

Views ^0- ^
^(kurT) ^ ^

— Tfc—i 'O —i |Interfaces|

Machine Architecture

Machine
Design

| Structure j
|Behavioufj

1 j= i r Quality

Component
Design

Building Blocks

Library x T o c r
o o o I
o o o J

Figure 26 - Integration of User Solution Viewpoint, the Machine Solution and its
Components (P10)

RB Smith Page 115 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Note. This schem atic uses the term System Design to describe the viewpoint of the

solution as seen by the customer; it includes the operational view, the logistical view and

the technology view.

The architect has to decom pose the functionality of the system and reconstitute it in real

terms by matching the functions to the capabilities of the components. The intimate

relationships between the required system functionality and the Building Blocks (BBs)

that realise that functionality in the form of a machine is depicted in Figure 27.

System of Interest

Design
Components

R Functional

“ o
e Hardware

Building
Blocks Containing system

Design Certification
Boundary

Machine System
Solution

{The ‘Machine’]

Software

Unit 1

Unit 2

System

Embodiment

Figure 27 - Machine System Design Process Structure (P11)

W hen the group of BBs required to produce the required system functionality has been

determ ined, their aggregation and integration into deliverable entities is addressed. In

effect, functionality matching and em bodim ent can be regarded as two separate aspects

of design. The separation of the two viewpoints is em phasised in Figure 28.

RB Smith Page 116 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

System of Interest

Design Building
RlnnlfC

Functional Design Certification
Boundary

Machine System
Solution

. ‘The ‘Machine’̂
Hardware

Machine Design Flow

Software

LRU1 System

Containing system

R
e
u
s
e

L

b

a

y

© LRU2 Packa9ing

Figure 28 - Process Structure showing machine and embodiment design flows
(P12)

Matrices can be used to provide a compact m eans of representing the structure of a

system. They are very useful as linear algebra based techniques are very powerful and

the educational support provided to the m athem atical and science based curricula is

widespread. Further, the system engineering community is readily fam iliar with matrix-

based techniques for system decomposition representation and analysis.

R J Lano proposed the use of matrix constructs in the form of ‘N2 C harts ’ to describe the

functional decomposition of system structures [11]. More recently the Design Structure

Matrix has been developed, by Pim m ler and Eppinger at the Industrial Process

Developm ent Group at M IT [82a], or see the Design Structure Matrix W eb Site,

(www .dsm web.org/index/) [82b] to provide an insight into the internal structure of

systems. They have shown that four different types of data can be represented and

analysed using D SM methods: these are com ponent based, team based, activity based

and param eter based forms, see 1994, [110]. Therefore, it provides a very useful adjunct

to system process models.

W hile it has been shown that the N Squared Matrix is a com pact description of an

integrated system, it has limited usefulness, as the sub-system interrelationships are in

fact sets of multidimensional relationships. Normally its use is limited to a simplistic

pictorial way of describing functional relationships, but the notion of functionality is not

described except in the most general terms.

6.4 Integration of Process Model with DSM

RB Smith Page 117 of 262 Issue Final

http://www.dsmweb.org/index/

Design and Integrity of Deterministic System Architectures

To enable complex systems to be addressed, designers have used various extensions of

the N Squared form that enable multiple relationships to be evaluated. For exam ple, the

BAE Systems pic System s Engineering Interest Group at the SE IC , Loughborough

University, has developed multi-page constructions of the N Squared concept to address

the relationships betw een system components and relationships with design processes.

A schem atic of such a construction is shown in Figure 29. It shows a pictorial fram ework

that links together a range of matrix-based data sets that can be used to describe and

analyse the structure of a system from many viewpoints. The ‘Product Composition

M atrix’ is used throughout to link the various viewpoint data sets to its com ponents and

interrelationships. T h e left hand side shows the viewpoints associated with functional,

realisation and justification design data; the right hand side shows the viewpoints

pertinent to program m e m anagem ent.

Engineering
Project

Managers

Systems
Engineers

Machine System (Registry

Functional
instantiation

Tasks

Real
Emb

Methods/
Specialisms

Analysis/
Justification

Resources/
ScheduleEycle Phases

1

Figure 29 - Use of Matrices in Concert to support a Systems Engineering Process
(P13)

T he complete range of viewpoints for any application can be organised in term s of a

System Framework. W hile the construction of each Fram ework is particular to the

specific needs of the application, they have a common attribute in that the interfaces

between each viewpoint provide a com prehensive channel of information transfer.

Therefore, w herever possible, the format and content of such interfaces should be

standardised. These constructions provide considerable economic benefits as they

enable piecewise developm ent of the range of viewpoints required for the target

application.

RB Smith Page 118 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The knowledge held in the Product Composition Matrix will change and be refined as the

design progresses through each stage and each phase of the developm ent lifecycle. The

multi-matrix schem atic from Figure 29 is used in Figure 30 as an icon to represent the

design knowledge data set. Figure 30 shows how the Product Composition Matrix data

set can be integrated with each stage of the Machine System Design Process so that the

data held is progressively enhanced throughout the design process.

KUR
.Performance. Concept

Phase A

Structure/ Machine
SystemInstallation

Phase B

FunctionalPackaging Product

Phase C

Build
Drawings

Detailed
DesignCompliance Build

Phase D

1

Figure 30 - Integration of Product Composition Matrix with Machine System
Process Model (P14)

RB Smith Page 119 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

7 SYSTEM KNOWLEDGE AND ITS DECOMPOSITION

7.1 On Sensor Design and System Design

Sensor technology is an essential part of any application that interfaces with the physical

world. Sensor design has become a discipline in its own right because of the

complexities involved in creating a device that has characteristics that are sensitive to

the parameter of interest, measurement without interference or modification of the

parameter of interest, and transformation of the measured variable onto a low cost

measured value carrier. Because of the highly interactive cross-domain nature of sensor

design, during the 1970s researchers, (e.g. See Finklestein, 1974, [111]), in the

measurement field tackled the problem from a generic point of view.

One of their conclusions was that a measurement system can be fully described by five

characteristics; physical size, power flow, signal/data flow, information flow and overall
knowledge. In one sense, the design of a sensor transducer is an application of system

engineering at a ‘micro’ level.

7.2 System Design Domain Decomposition

To enable large scale ‘macro’ systems to be addressed it is proposed that these basic

ideas be transposed into four System Domains with corresponding attributes of

Composition, Capacity, Messenger, Functional Behaviour. These combine to define the

overall Knowledge of the system design. To clarify what is meant by the phrase ‘System

Design Knowledge’ its scope is intended to include the information required to analyse its

attributes and produce at least one copy.

RB Smith Page 120 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The hypothesis is illustrated in Figure 31.

Process
Messenger

Viable Solution Space

Functional
Behaviour

Design

Capacity

Knowledge

Composition

Figure 31 - Schematic of Design Domain Integration (P19)

The composition of system design knowledge is illustrated as follows.

Functional
Behaviour

Composition MessengerCapacity

Data
Repository

System Design
Knowledge

Figure 32 - Composition of System Design Knowledge (D1)

(Note. In order to facilitate analysis the system attributes the Data Repository is shown

as a supporting com ponent.)

W hen applied to a system construction the generic form of domain allocation is shown in

Figure 33.

RB Smith Page 121 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

System Composition

Containing
System

System
BoundarySystem of

Interest

Capacity

Capacity CapacityCapacity

FunctionalFunctional
Behaviour Behaviour

Messenger Messenger Messenger

Capacity

CapacityCapacity
MessengerMessenger

Functional
Behaviour

Figure 33 - Pictorial Definition of Generic System Domain Allocations (D4)

This is not simply a one to one shift; primarily it is a change from a single variable

viewpoint to sets of viewpoint variables thereby enabling very large-scale systems to be

described in structured form.

RB Smith Page 122 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The hypothesis is then that each domain is analytic across the full range of science base

disciplines.

Composition This domain describes the arrangement, configuration,

structure, physical size, and physical and material properties of

the system building blocks.

Capacity

Messenger

Functionai Behaviour

Design Knowledge

This domain describes the quantitative characteristics of the

system building blocks in terms of their absolute limits to carry

out their roles in the defined arrangement to enable boundary

performance limits to be evaluated. It describes, for example,

material, or strength, or energy properties, or a system’s ability

to transport, or the informatic capacity of an IT system, or the

activity ability of an institutional organisation.

This domain describes the information parameters that are

exchanged between the building blocks of the system

arrangement; they constitute the links between the

components. They are the signals/data elements that carry

information between sub-systems and other systems.

Examples are force, temperature, pressure, audio intensity,

luminance, electronic signal characteristics, voltage, variables

etc. In an informatic system they are the message and data

components transferred between functional blocks. In an

institutional organisation system they are data or resources

that are exchanged between activity centres.

This domain describes the functionality and behaviour of the

system arrangement in terms of its performance, state space,
state transition and dynamical capabilities.

This domain incorporates the information concerned with the

system’s top-level purpose, performance, functionality and

behaviour. It includes all the design information required for its

justification and realisation; i.e. to make a copy.

RB Smith Page 123 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A critical characteristic of each system domain is that it is associated with the science

base including the set of fundamental constants and derived units; for example co
ordinates to measure occupancy, the capacity to do work, measurable parameters etc.

The intuitive conclusion is that the four domains of Composition, Capacity, Messenger

and Functional Behaviour fulfil the requirements of both necessity and sufficiency to

enable the Knowledge domain for a system of interest to be fully defined, analysed and

justified.

(Note. This study is limited to the physical and chemical science domains as a result of
the author’s lack of knowledge of organic systems and the biological design domain.
Nevertheless, there appears to be no reason why the proposed construction should not

be applicable; the main areas of weakness are likely to arise because of the dynamic

and inherent hierarchic nature of biological systems. However, the energy and

information theoretic base should prevail).

RB Smith Page 124 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

8 TRACEABILITY ANALYSIS

8.1 System Partitioning and Decomposition

System Engineers design systems in terms of output/performance requirements, building

blocks and their characteristics, and solution design space. When dealing with a large-

scale design problem it is necessary, in general, to have a layered approach to design

definition. A four level model in general use, see e.g. DOD 178B [112], is shown in Table

12 as follows.

Level Description

1 Top level description
2 Functions, components, architecture; machine and

state transition structures
3 Component definition; as functions and interfaces
4 Common component definitions

Table 12 - Decomposition Model for Large Scale Systems
The complexity of modern systems (i.e. the brain full problem) forces many systems

engineers and most engineers from single disciplines to operate at a single level of

design. Most design decisions are forced rapidly down through the user specification and

requirements layers to levels, especially 3 and 4, where they know enough about the

input, the functionality and the output characteristics to actually carry out the design. It is

natural - it is their opportunity to make a personal contribution after all the training and

hard experience they have obtained. What is difficult, is to have the perception and

sensitivity to appreciate the constraints or performance objectives imposed or implied as

a consequence of the decomposition and partitioning activities. In the ‘good old analogue

days’ real estate partitioning and territorial ownership was a guiding design principle for

the system engineer. It also had the considerable virtue in that it provided a natural frame

of reference for management. Importantly, the functional group boundaries were closely

matched to the physical boundaries. (Anecdotal comments show that the requirements

specification for a bicycle encompasses some eight thousand objects if the term bicycle

is not used; clearly, it is much easier to use the term ‘bicycle’ than the formal
specification, as the arrangement is familiar and the specifications can focus on the

overall performance and behaviour of the assembly, and of its constituent parts).

Products from a mainstream civil or mechanical engineering have used and still use

physical space as a natural way of partitioning. Similarly, electrical engineering uses

connection nodes to control partitioning naturally.

RB Smith Page 125 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

However, digital technology has provided the means for creating functionality that is not

associated with its physical form. In effect, the benefit of digital technology has also

created the need for a positively structured approach to partitioning.

Also, computer technology has enabled very large systems-of-systems to be constructed

wherein their architectures are dominated by functionality and information transfer

considerations.

It is easy for the novice to say that we have requirements, followed by functional
analysis, followed by a synthesis process that turns functions into physical entities; see

MIL STD 499B. However, multi-layered decomposition is required for complex systems.

As stated in the ‘NASA Systems Engineering Handbook’ [18], good economic practice

requires that architectural components are aligned with sub-contract components.
Nevertheless, many business and partnership relationships cause this good practice rule

to be violated. One cause of such practice is that at the business proposal stage of a

product lifecycle much of the information regarding requirements and functionality is

simply not available. Nevertheless, good systems engineers are able to invent

product/system architectures that are definable in implementation terms to a level that

supports the proper compilation of cost data for competitive bidding combined with

profitable business outcome. Such success is achieved not just from the notion of
similarity with existing products with minor changes; radical and completely novel

designs are created.

The proposed graphical construction is based on a two dimensional view of the

architecture. Therefore, to enable the proposed graphical construction to be applied

correctly, the hierarchical decomposition matrix needs to be evaluated. Firstly, the

integrity of the decomposition needs to be analysed to ensure that the architecture

construct at each layer of decomposition is compatible with the architecture construct at

its next highest level of decomposition. This simple rule enables the integrity of the

overall top to bottom architecture to be maintained.

Two methods of evaluation are proposed: The first checks the integrity of hierarchical
decomposition and the second checks that the realisation construction matches the

functional construction; (c.f. Scholtz criteria).

RB Smith Page 126 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

8.2.1

8.2 Evaluation of Multilayered Structures

Generation of Dependency Matrix Equation

As stated in Section 6.1, to enable systems engineers to design complex systems they

work with the concept of ‘Building Blocks’. Building blocks are conceptual, they are not
necessarily just physical entities. They have real meaning in terms of the system

architecture and they are precisely definable; usually they consist of groups of functions.

So the first step in applying the ‘Principles of Design’ [81] is to substitute ‘Building Block’
for ‘Design Parameter’ giving {FR} = [A]{BB}.

The next step is to provide the bridge from ‘Building Blocks’ to ‘Codified Products’. Each

codified product is in effect a sub-assembly of some sort, essential to the implementation

solution; it may not be of much use in its own right, nevertheless it is properly defined. It
is bounded and will consist of one or more realisable components, sub-assemblies or
technology products. Applying the Design Equation yields {BB} = [B]{CP}.

While this gives us a mechanism for linking system performance to building blocks to

codified embodiment product in structural terms, we still need to address the relationship

between each technology product and the design levers that apply that technology.
Performance requirements associated with environments or support services are

generally specified in the form of compatibility statements rather than in absolute

measures. For the system engineer these translate into design space occupancy

concerns. Applying the Design Equation yields {CP} = [C]{EP}.

So now we have the set of three system equations relating system performance to

building blocks, its technology products and to its environmental design space.

The general view is that the design matrices A, B, C are populated with sensitivity or

partial differential coefficients. However, this is not the only useful information that can be

used to populate them. In many circumstances, it is sufficient for the system engineer to

appreciate whether a relationship exists or not between one element and another. These

matrices can be viewed in the form of connectivity statements by simply populating them

with a 1 or a 0 representing a link or no link. Clearly, for analysis they form Boolean

Algebra expressions.

{FR} = [A]{BB}

{FR} = [A][B]{CP}

{FR} = [A][B][C]{DS} Equation 8.1

RB Smith Page 127 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

For the purposes of representation the Boolean form will be written as A’,B’,C’ giving the

connectivity set of equations as follows.
{FR} = [A’]{BB}

{FR} = [A’][B’]{CP}
{FR} = [A’][B’][C’]{DS} Equation 8.2

For the system engineer concerned about completeness of design a construct showing

the relationships that have been built up through the system architecture as a result of
design decisions taken at technology product level is invaluable.

8.2.2 Example of Use of the Construction

To demonstrate the construction, a simplified form of a helicopter based Command and

Control system is used. The architecture is reduced to a generic form, whereby data is
collected from multiple sensors and is multiplexed via duplex mission processing centres

to duplex workstation displays. The multiplex bus provides full electrical isolation

between the sensors and the workstations. Clearly, the intention is to ensure full

mechanical and electrical isolation between the individual sensors, the mission

processors and the display systems. A block diagram of the system arrangement is

shown in Figure 34.

Sensor System 1 Sensor System 2

Detector (D)
Processor (P)

Bus Interface (B)

Detector (D)
Processor (P)

Bus Interface (B)

Bus Interlace (I)
Processor (C)
Display (M)

Bus Interface (I)
Processor (C)
Display (M)

Workstation 1 Workstation 2

Figure 34 - Schematic of System Architecture (D8)

The dependency construction is shown by Equation 8.3. The functionality provided by

each workstation display, F1 and F2, is generated by workstations, W1 and W2, with

data input from sensors S1 and S2.

RB Smith Page 128 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

" F l “

F2

0

0

1 0 1 1
0 1 1 1
0 0 1 0

0 0 0 1

~W\

W2

SI

S2_

Equation 8.3

Figure 35 - Functionality Dependency Matrix Equation for generic Command and
Control System

For the purposes of demonstrating the impact of changes to the implementation, the

sensors are modified so that they are formed from two units, e.g. a detector followed by a

pre-processor, i.e. D1, P1, D2, P2. The revised dependency construction is then as

follows.
Firstly,

Figure 36 shows the matrix equation for the dependency construction between the

workstations and the sensors.

~W\

W2

P\
Equation 8.4.

P2

D\

D2

~W\ "1 0 1 1 1 f

W2 0 1 1 1 1 1

SI 0 0 1 0 1 0

S2 0 0 0 1 0 1

Figure 36 - Workstation Dependency Matrix

Secondly, substitution of the right hand side of the revised Workstation Dependency

equation into Equation 8.5 followed by Boolean multiplication yields the Functional
Dependency Matrix Equation as follows.

~W\

W2

P\

P2

D\

D2

~Fl~ "1 0 1 1 1 1"

F 2 0 1 1 1 1 1

0 0 0 1 0 1 0

0 0 0 0 1 0 1

Equation 8.5

Figure 37 - Design Matrix Equation for Command and Control System with sensor
pre-processors

RB Smith Page 129 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

It can be seen, by inspection, that the functionality of each workstation is generated by

each associated workstation and by the joint combination of each sensor with its pre
processor.

8.2.3 Conclusion

This shows that a matrix construction that allocates the system’s partitioning

relationships associated with each layer of decomposition to its matrix elements, can be

combined in the form of a matrix equation that enables the overall construction of the

relationships to be tracked. When used in the context of a desired solution and an

implemented solution the ‘difference’ matrix shows the changes to the desired solution

that have been introduced by the specific construction of the implementation solution.

The ‘Principles of Design’ enunciated by the MIT Team can therefore be extended into

the system design domain so that system building blocks and design space allocations

can be defined and set into a formal structure. Thus, the technique may be used to

enhance the use of the N Squared form of causality architecture by enabling the

relationships between the functional and physical allocations to be explored.

8.3 Evaluation of Functional and Implementation Causality Consistency

8.3.1 Generation of Causality Network Model

A very important aspect of the RFS process model is the relationship between the

functional decomposition of the system and the resources that are used to ‘deliver’ each

functional component. The system designer needs to have an intimate understanding of

these relationships and the means of determination and analysis. The analysis of
complex system arrangements is based on having an understanding of topology and this

section addresses some methods that are used to relate functional and physical
decompositions.

Traditional system design methods have relied heavily on the use of ‘block diagrams’

constructed on the basis of causality. Typical constructs show the functionality of the

system based (often loosely) on a ‘left to right ‘ view of information flow. Frequently these

diagrams are enhanced with multiple tiers of information. It is normal practice to

associate an implementation layer with the functionality representation to provide

visibility of the physical resource that will ‘deliver’ that functionality. A typical form of
construction is shown in Figure 38.

RB Smith Page 130 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

F3

C3

C2 F5

F9

F7

Figure 38 - Generic Causality Block Diagram Construction (D9)

The diagram shows a functional arrangement (F1,...,F9) allocated to a physical

arrangement (C1,..,C3).

8.3.2 Description of Analysis Procedure Model

Reliability engineers have made extensive use of causality networks to describe system

arrangements so that reliability and availability attributes can be determined. This section

describes an extension to this form of analysis to enable complex functionality

arrangements to be assessed in terms of the resources that are employed to realize

each component of functionality.

RB Smith Page 131 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The analysis procedure is as follows:

i) Describe the functional causality in the forms of a causality network: (Fm

components).

ii) Annotate the network with the resources that are required to support the ‘delivery’

of each functional component: (Dn components).

iii) Form the Boolean expression from the functional components that provide the

‘start’ to finish’ functional expression. (F = f(Fm)).

iv) Replace the functional components (Fm) with the set of resources (Dn) that are used

to support the ‘delivery’ of each function: (D = f(Dn)).

v) Reduce and analyse the implementation expression as required to determine the

dependency attributes.

8.3.3 Example of Use.

An arbitrary system network is shown in the following diagram.

A F -9

-9 F1

9 F2

F3

F4 9 F5

D4

F6

D6

F7

D7

D3

Figure 39 - Exemplar Functional Causality Network (D10)

RB Smith Page 132 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The system functionality is described by seven components (F1,..., F7) each of which

has a set of resources (D 1 , D7) that enable the function to be delivered.

The Functionality expression is:

F ab = (F1 +F2+F3)(F4.F5+F6)(F7) Equation 8.6

The resources required to deliver each function are shown in the following table.

Resource Type

D1 R1
D2 R2
D3 R3
D4 R4
D5 R5
D6 R5
D7 R6

Table 13 - Resource Table 1

The realisation structure expression is determined by substitution of the Resources into

their corresponding Functions, and is shown in Equation 8.7, as follows.

D a b = (R1+R2+R3)(1+R4)(R5.R6) Equation 8.7

This simple example shows that the system has serial dependency on R5 as well as R6,

a result that is easy to see by inspection.

To demonstrate the impact of a different realisation structure, the example is modified so

that the same functional construction is implemented with a more complex arrangement

of the resources required to deliver each function. The modified resource allocation is

shown in the following table.

RB Smith Page 133 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Resource Type

D1 R1

D2 R2

D3 R3

D4 R3 and R4

D5 R3

D6 R3 and R4

D7 R3

Table 14 - Resource Table 2
The realisation structure is then shown as follows.

Dab = (R1+R2+R3).(R3.R4.R3+R3.R4)(R3).
Dab = (R1+R2).[(R3.R4)+(R3.R4)].

Dab = (1+R1+R2).(R3.R4).
Equation 8.8

Clearly, the system decomposes to dependency on R3 and R4.

For complex systems where the dependency is not intuitive, the method enables formal

evaluation and verification of the compatibility between the ideal and the implementation

causality architectures.

RB Smith Page 134 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

9 ARCHITECTURAL STRUCTURES AND FUNCTIONAL ANALYSIS

9.1 Architectural Structures as Graphs

A Directed Graph (Digraph) consists of nodes and unidirectional interconnections

(edges). A digraph is a net with no loops or parallel lines; it is an irreflexive relation. The

order of the system is the number of nodes; the size of the system is the number of

edges. From a system design perspective the main interest is in the relationships

between the nodes of the system.

The duality between graphs and matrices has a very important impact on system

descriptions. Formally, a network is a directed graph and it is a straightforward matter to

represent the connectivity of a network in the form of a matrix. The properties of the

network can be evaluated by analysis of its matrix form.

To enable the reachability within a system to be determined the adjacency matrix must
be defined. For any digraph its adjacency matrix is a square matrix in Boolean form with

one row and one column for each node. For the adjacency matrix A, and any pair of

nodes at [i,i; j.j], the entry is ay = 1 if line v^2 is in D, while ay = 0 if v^2 is not in D.

A key theorem is that, for an adjacency matrix A and the non-negative integer k, the ij-

entry ay of Ak is the number of ij-paths of length k in D. Also, the maximum number of

unique paths is determined when the value of k equals the rank of the matrix D; that is

the order of the graph. The adjacency matrix provides a means of determining many

properties. For example, the ‘true’ entries may be labelled so that the construction of the

path structure between source and sink can be observed. These constructions combine

the labels in the form of Cartesian Sum and Cartesian Product expressions.

Graph theory includes the notion of colourisation. This enables each vertex to be

annotated with a ‘colour’. The graph can then be decomposed in terms of cut sets for

each colour. Importantly a system graph with coloured cut sets can be evaluated by

‘subtracting’ the cut set of each colour to produce a residue graph. The use of different

colours for different cut sets with repeated ‘subtraction’ enables the final residue, if any,

to be identified. This has potential application for domain decomposition and viewpoint

identification.

Further, the problem of determining the transportation flow or capacity of a network

occurs in many contexts. Each edge is assigned with a flow or capacity and the network

can be analysed to determine the overall flow or capacity of the network e.g. maximum,

integer, multi-node supply and demand matching.

RB Smith Page 135 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

9.2 Functional Decomposition

The proposed labelled path structure method has its roots in abstract algebra that

considers relations, functions, partial orders and induction. Graph theory enables the

path structure between any source and sink to be determined with each path typically

involving many steps. The technique of labelling each path enables the functional

components involved in any path to be identified. Path analysis generates the functional

combination of labels in any path in the form of a direct product.

As already introduced in Section 3.4.12, systems with bidirectional (feedback)

relationships are conveniently described in the form of a matrix, whereby the system

components are allocated to the diagonal cells and the off-diagonal cells describe the

interface or relationship between the components. To ensure that all relationships are

described in unidirectional form, the upper triangular part of the matrix is used to

describe the feed-forward relationships and the lower triangular part the feed-back

relationships.

To enable the functionality of each path to be uniquely defined the author determined

that each path be identified by a label, wherein each label may be linked to a functional

definition of the building block components in each sub-system. Then, using the labels as

variables, the source-to-sink relationships between functional components can be

generated as an expression.

Using arbitrary labels a, b, c, d, these expressions are in the form ((a o b) + (c o d)).

This means that the overall function f(a, b, c, d) is the intersection of the functions

represented by the function containing the function represented by label ‘a’ in union with

the function represented by label ‘b’, and the function containing the function represented

by label ‘c’ in union with the function represented by label ‘d’.

When the rules of union and intersection are not defined, the general form of this

expression is known as a Cartesian Product/Sum. However, as pointed out by S G J

Taylor [113], when the functions and their rules of binary combination are defined as a

consistent coordinate system (c.f. Abelian), the expression is known as a Direct

Product/Sum.

Therefore, when these expressions are Abelian, the functionality of the system for each

defined coordinate system is shown by the expressions of ordered combinations of

labels formed from each element of the An matrix.

Then an estimate of system performance between any source and sink node is obtained

by substitution of the functions represented by the labels and their rules of binary

association into each expression.

RB Smith Page 136 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

9.3 Computer Mechanisation of Analysis Methods

The complexity of designs that are of central interest to this thesis means that computer

based computation is required to determine quantitative performance attributes. While

Fortran and other similar scientific languages could be programmed to host the analysis,

both ‘Maple’ and ‘Mathematica’ have the high level functionality required to compute the

algebraic expressions, construct the graphs, as well as the normal methods of applied

mathematics employed by engineers. The author* has constructed programs in both

Maple and Mathematica to demonstrate the core methods of functional analysis. For the

purposes of this thesis, the author has adopted Mathematica [114], as the preferred

platform. Therefore, the demonstration of the analysis procedure is displayed using

Mathematica Notebook extracts.

*Note. To enable the author to generate these programs advice has been obtained from

the support help line from Wolfram Research Inc., and Prof. P Mclver at Loughborough

University. The specific contribution by Prof. Mclver was to construct various

Mathematica program rules associated with the manipulation of the direct product/sum

expressions.

9.4 Method of Functional Quantification

The method consists of four steps; -

• Firstly, the structure of the system architecture is transposed into the form of a

labelled adjacency matrix.

• Secondly, the stepwise path structure is determined in the form of a Direct

Product/Sum expression.

• Thirdly, the labels are substituted with their functions and the logical rules of

association are substituted with real rules of association.

• Fourthly, the functions are populated with the system data and evaluated.

The method is demonstrated using a system architecture of arbitrary structure.

RB Smith Page 137 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Containing
System; D

A; f(x) B; f(y) C; f(z)

Figure 40 - Schematic Block Diagram of Exemplar System (D11)

The structure of the arbitrary exemplar system is shown in Figure 40. The components

are represented by A, B and C with functionality labels x, y, z, and the labelled paths that

link the components together are represented by a, b, c, d, e and g. The Containing

System is designated D and ‘g’ is the interconnection path to the containing system.

The N2 matrix for the exemplar system in D is shown in Equation 9.1, as follows.

SD

A a c 0

e B b 0

0 d C g
0 0 0 D

Equation 9.1

9.5 Construction of the System Adjacency Matrix and Graph

The first step in the analysis procedure is to construct the system Graph.

The system matrix is shown in Equation 9.1 and is repeated in Figure 41. Also the

corresponding System Adjacency Matrix and System Graph is shown in Figure 41.

The program, ThesisMI, modifies the System Matrix as follows.

To construct the adjacency matrix the labels have been substituted with ‘1’ to represent

‘True’ relationship between the nodes; otherwise ‘0’ is used to represent ‘False’, meaning

that there is no relationship. The nodes, A, B, C have been substituted with ‘O’ to show

RB Smith Page 138 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

that there are no internal relationships of the form A->A, B->B, C->C that are of

relevance. The system graph is a directed graph and it can be seen that there is a

unidirectional link between A, C and that the links between A, B and B, C are

bidirectional, corresponding to the matrix.

Insertbitmap

Ih£3i3M l
Systex M a trix

A a c 0
e E fc 0
G d C 1
G G 0 2'

Adjacency M a trix
0 1 1 G
1 G 1 G
0 1 G 1
G G G G

Sy3tex Sraph

Figure 41 - Construction of System Adjacency Matrix and Graph (M1)

RB Smith Page 139 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

9.6 Determination of Number of Paths between each Node

Figure 42 shows the computation of the number of paths that link pairs of nodes. The

two-step matrix shows the paths of length two, and the three-step matrix shows the paths

of length three; for example, it can be seen by observation that there are two paths

between nodes A and C, each of three steps. For a matrix of rank 4, the maximum

number of steps between any source and sink nodes is four; therefore two, three and

four step determination is sufficient to evaluate all potential source-to-sink paths.

The3i3M2
Sy3te3c. M atrix

A a c 0
e E fc 0
0 d C 1
0 0 0 j

Adjacency x a tr ix
0 1 1 G
1 0 1 G
G 1 0 1
0 G G G

Path S tructure M atrix - 2 3tep3
1 1 1 1
G 2 1 1
1 0 1 0
G G G G

Path S tructure M atrix - 3 3tep3
1 2 2 1
2 1 2 1
G 2 1 1
G G G G

Path S tructure M atrix - 4 3tep3
2 3 3 2
1 4 3 2
2 1 2 1
0 G G G

Figure 42 - Matrices showing number of paths between each node (M2)

RB Smith Page 140 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

9.7 Determination of Direct Product/Sum Node-to-Node Expressions

The systems architect needs to be able to analyse the end-to-end functionality in two

ways. Firstly, to analyse the source-to-sink functionality on the assumption that the

interconnectivity relationships transfer information between functional blocks without

modification or constraint. Secondly, to analyse the interconnectivity relationships on the

assumption that each function block simply outputs all information received without

modification, in effect, a transfer function of unity.

Therefore, two forms of analysis are required:

• Firstly, to derive the node-to-node relationship expressions on the assumption

that the transmissivity between the nodes is unity (True) or null (False).

• Secondly, to derive the path-to-path relationship expressions for their

interconnectivity on the assumption that the nodes have unity transmissivity.

To determine the node-to-node expressions of functional labels, the convention that has

been assumed is that each function will be applied at the output of the function block. It is

also assumed that the same function applies to all ‘True’ path links in each row.

Therefore, the adjacency matrix for the node-to-node expressions is shown in Equation

9.2.

A n n -

0 X X 0

y 0 y 0
0 z 0 z
0 0 0 0

Equation 9.2

The adjacency matrix for the path-to-path expressions of functional labels is shown in

Equation 9.3.

A Dp -

0 a c 0
e 0 b 0
0 d 0 g
0 0 0 0

Equation 9.3

With respect to node-to-node functionality, the two, three and four step functionality is

shown in Figure 43. With respect to path-to-path functionality, the two, three and four

step functionality is shown in Figure 44.

RB Smith Page 141 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

IhesisM3
Systex Matrix
A a c 0
e B b 0
0 d C 1

Labelled Function Matrix
x 1 1 0

0 1 z 1
n n n r>

Labelled Function Substitution Matrix
n X X Q

4 0 4 n

n z Q z
5 n Q n

Label led Function Str
xy x z xy x z
n xy - y z x y y z
y 2 n y z n

n Q n

Labelled Function Str
x y z x x y - y 2

xy* . r t* 4 z x y z
n z x y - y z

Labelled

n

Function Str

x y z x y z
x y z

x y z
r.

X 4 - x* y* - x y z - x y* z x - x z - x* y z - x x y - y z - x z x y - y z X - X y - x* y - x1 y* - x y z - x* y z - x y* z X z - x y z - x1
y - x y* - y* z - x y* z xy - y z - x y z - x y - y z * y - X y - x y! - y* z - x y* z - x y x y - y z y 2 - x y z - y
y z - x y* z - y* z* z - x y z* - z x y - y z y 2 - X y z - x y* z - y* z* z - y z* - x y z
n n r, 0

■ x y z l

I - y Z

Labelled Function from A to C - All Steps
x - x y - x* y - x* yl - x y z - x* y z - x y* z

Figure 43 - Computation of node-to-node functionality with two, three and four step functionality (M3)

RB Smith Page 142 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

IhesisM4
Systex Matrix
A a c 0
e E t 0
0 d C g

Labelled Function Matrix
a c

e 0 b 0
0 d 0 g

Labelled Function Structure Matrix - 2 steps
a e c d a b c g

b d - a e ce bg
d e b d

Labelled Function Structure Matrix - 3 steps
c d e a b d - a e b c d - a c e a b g
b d e - a e * c d e b * d - a b e c e g
0 d b d - a e c d e b d g
0 0 0 0

Labelled Function Structure Matrix - All Steps

a e - a b d e - c d e - a t et a - c d - a c d e - a b d - a e -cd b d - a e
e - b d e - s e 1- cde* b d - a e - c d e - b d - a e *
d e - b d * e - a d e 1 d - c d* e - d b d - a e

a b - c - a b * d - b c d - a * b e - a c e - c l de a b g - c g - b c d g - a c e g
b - b * d - a b e - c e - b c d e - ce b d - a e b g - c e g - b b d - a e g
b d - b * d * - a b d e - c d e g - b d g - c d e g

Labelled Function frox A to C - All Steps
a b - c - a b !d-f c c d - a !b e - a c e - c ! de

Figure 44 - Computation of path-to-path functionality with two, three and four step functionality (M4)

RB Smith Page 143 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

It is important to note that the expressions are in the form of a Boolean Product of the

function labels. Therefore, the expression for the relationship between A and C shown as

x + xy + x2y+ x2/ + xyz + x2yz + xy2z

should be understood as

x || x & y || x & y & z.

(Note. Functions of the form x2 & y2 are x & y; x || y means x or y.)

9.8 Demonstration of Capacity Determination

The graph with values of path transportation capacities in terms of arbitrary ‘weight’

values attached to each edge is shown in Figure 45. Also shown is a graph that

highlights the cut set of capacity limited paths from A to C.

RB Smith Page 144 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The3i3M5
Systex Matrix
A a c 0
e E b 0
0 d C 1
0 0 0 2

Sraph with Edge Keights

- Sraphics -
Sraph with Cut Set

- Sraphics -

Figure 45 - Graph with arbitrary edge capacity values and with highlight of
capacity capability between A and C (M5)

RB Smith Page 145 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

9.9 Demonstration of Functional Determination

To demonstrate the functional composition of the system, each node is allocated a

function, x, y, z, and the node-to-node interrelationships are shown as True/False. Then

powers of the adjacency matrix generate the functional construction of each node-to-

node path.

To demonstrate the functional substitution of expressions showing the functional

composition, a simple example that assumes that the ANDed path functions are

combined using the PLUS rule of association, and that there is a single through variable

(e.g. current) so that the function labels, A, B, C, are substituted by three across

variables (e.g. voltage), shown as V1, V2, V3. . The result is shown in Figure 46.
TheaisMg
Sy3tem M a trix

A a c G
e E b G
G d D 1
G 0 G 2'

Labelled Function M atrix
X 1 0 0
0 1 0
0 0 z 1
o 0 0 0

Labelled Function S u b s titu tio n M a trix
0 X 0 0
n 0 J 0-
0 0 0 z
0 0 0 n

Log ica l Domain Labelled Function S tructu re M atrix - A l l Eaths
ij X x y x y z
0 0 j y z
0 0 0 z
0 0 0 0

Real Domain Labelled Function S tructu re M a trix - A l l Eath3
G x x - y x - y - z
G G y y - z
G G G z
G G G G

Real Function S u b s titu tio n M a trix
G VI VI - V2 VI - V2 - V3
G G V2 V2 - V3
G G G V3
G G G G

Function fo r A to C Eath
VI - V2 - V3

Example of analysis of series across variable ‘voltage’ functions (M6)

Page 146 of 262 Issue Final

Figure 46 -

RB Smith

Design and Integrity of Deterministic System Architectures

It can readily be seen that elements {1,2} and {2,3} and {3,4} show the across variable

voltage function between nodes A, B and B, C and C, D as V1, V2, V3 respectively, and

that element {1,4} is their sum from A to D.

Each step of the computation process is shown, as follows.

1. The ‘Labelled Function Matrix’ shows that there are three functions x, y, z in series.

2. The ‘Labelled Function Substitution Matrix’ shows the functions x, y, z in their

corresponding adjacency elements.

3. The ‘Logical Domain Labelled Function Matrix’ shows the expressions for all the

paths in logical domain form, meaning ‘x & y & z’ etc.

4. The ‘Real Domain Labelled Function Matrix’ shows the expressions for all paths

with real domain rules of association; i.e. with the '&’ rule replaced by the ‘sum’ rule

of association.

5. The ‘Real Function Substitution Matrix’ shows the substitution of the function labels

x, y, z with the across variable ‘voltage’ functions V1, V2 and V3.

The computation process shows that there are three distinct steps to quantify the

functionality in real terms. These are: -

1. Compute the path structures in the Logical Domain.

2. Substitute the rules of association relevant to the Real Domain of interest.

3. Substitute the function labels with the actual functions for quantification.

9.10 Functional Determination of Interconnectivity Relationships

The method of analysis to determine the functionality of the inter-node interconnectivity is

very similar to that used to determine the node-to-node functionality. To demonstrate the

functional composition of the interrelationships in the system, each path is labelled as a,

b, c, d, e, and f as before. For simplicity of demonstration, only the feed-forward paths a,

b are enabled. Then, assuming that each path is a simple first order attenuation function,

where ‘s’ is the Laplace operator and k, I, m, p, q, r are arbitrary constants, the node-to-

node attenuation functions are calculated. The result is shown in Figure 47.

RB Smith Page 147 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The3i3M'
Systez Matrix
A a c 0

B b 0

n

Labelled Interccnnectivity Matrix
0 a 0 G
0 G b 0

Labelled Interccnnectivity Path Structure - Twc Steps
G Q a b G
G 0 G b g

Labelled Interccnnectivity Path Structure - Three Steps
0 0 0 a b g
0 G 0 G
0 0 G G
G 0 0 G

Labelled Interccnnectivity Path Structure - Four Step3
0 G G G
n n n n

Labelled Interccnnectivity Path Structure - All Steps
0 a a b a b g

b b gG G
G G G
n ft n

Labels Substituted with Attenuation Function where ’ 3 ’ i3 the Laplace operator
7 ItXl —

P+J

0 E

G 0
n n

k 1 k 1 m

1
9

(P+O (9 * 0 0 + 0
1 m

(9+0 0+0

Series Attenuation Function frcz A to D - All Step3
I f l i

p - 3 g - 3 r - 3

Figure 47 - Example showing Functionality of Interconnectivity Path Structures -
with Feed forward Interconnections only (M7)

RB Smith Page 148 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

It can be seen that the path structure between ‘A’ and the ‘Containing System’ is a&b&g.

Since the functionality is that of series attenuation functions, the rule of association for

AND is ‘Multiply’. Then, with the label substitution rule of a->k/(s+p), b->l/(s+q), and f-

>m/(s+r), the end-to-end attenuation function is: -

(klm)/[(s+p)(s+q)(s+r)]

A more complex example is shown in Figure 48a. Here all the interconnection paths are

enabled. The attenuation functions are first order, ‘s’ is the Laplace operator and

j,k,l,m,n,p,q,r are arbitrary constants. The rules of association are that AND means

Multiply and OR means Plus.

RB Smith Page 149 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

ThesisM8a
System Matrix
A a c Q
e E fc G
0 d 2 g

Labelled Interccnnectivity Matrix
Q a G G
e 0 b G
Q d 0 1
0 0 0 G

Labelled Interccnnectivity Path Structure - Two Step3
a e 0 a b G
0 t d - a e G b
d e G
n n

fc d 0
n n

Labelled Interccnnectivity rath Structure - Three Step3
G a b d - a e 0 a fc
ae-fcde G fcd-afce 0
G f c d - a d e G fcd
G G G G

Labelled Interccnnectivity Path Structure - Fcur Step3
ae-afcde G afcd-afce G

fcd-ae-afcde G fcd-afce
ade-fcde G
n n

fcd-afcde G
n n

Lafc'ds Substituted with Fir3t Order Attenuaticn Functicn - Three Steps
£ 3 l n _____________ 3 9 n j l

(k +j) (u+i) (p+s) (k + i) (r+ s) (k + j) (nvfi)
1 n q 1 n

(k + j) (r + j) (kh-j) (p+J) (r + j)

n

n

(kh-5) <k+j) (kh-j) (r + j)

1 it 1 it
(p + i) (k + i) (p f i) (r + i) (H M - J) (p f j)

Series Attenuaticn Functicn frcm A tc E - Three Step3
] 1 n j q

k - 3 m - s p - 3 k - s r - 3

Figure 48a - Example showing Functionality of Interconnectivity Path Structures
with All Interconnections enabled and insertion of Attenuation Function (M8a)

It can be seen that the attenuation function between nodes A, B combines the

attenuation function of two routes. In summary, each element can be reviewed in relation

to the example system and the node-to-node attenuation functions can be checked by

inspection.

The use of the same path structure for different functionality is illustrated, as follows in

Figure 48b, by replacement of the attenuation function with an impedance function. The

reader is reminded that Kirchoffs Law states that impedances in series are combined by

addition, and that impedances in parallel are combined by addition of their admittances.

RB Smith Page 150 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

ThesisMSb
System Matrix
A a c 0
e B b 0
0 d 2 3
G 0 0 I

Labelled Interccnnectivity Matrix
o a 0 G
e 0 b o
o d 0 1
o 0 Q o

Labelled Interccnnectivity rath Structure - Tvc Steps
a e Q ab 0

0 b d - a e 0 b
d e 0 b d 0
n n 0 0

Labelled Interccnnectivity Path Structure - Three Step3
0 a b d - a e O ab
a e - b d e 0 b d - a b e 0
G b d - a d e G bd
G 0 G 0

Labelled Interccnnectivity Path Structure - Fcur Steps
a e - a b d e G a b d - a b e G
G b d - a e - a b d e G b d - a b e
a d e - b d e 0 b d - a b d e G
0 G G G

Labels Substituted with Ccmbined Series and Parallel Impedance Functicn - Three Step3
l x n

Z1+Z2+Z3 ZL+Z4
1 l 3 l l

ZL+Z4 Z2+Z3+Z4 Z2+Z3 ZI+Z2+Z4

0 l l
Z2+Z3 Z1+Z3+Z4

0 0 0

Series Impedance frcm A tc L - Three Step3
2 1 - 22

Series Imp-e dance
1

frcm A tc E - Three Steps

l l
Z1+Z2+Z3 Z1+Z4

Figure 48b Example Showing Functionality of Interconnectivity Path Structures
with all Interconnections enabled and Insertion of Series/Parallel Impedance

Functions (M8b)
For example, it can be seen that the three step path impedance between nodes A,D is:

Z1 +Z2

and that between nodes A, B is:

[(Z1 +Z2+Z3)(Z1 +Z4)]/(2Z1 +Z2+Z3+Z4).

RB Smith Page 151 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

9.11 Mechanisation of Functional Insertion

Each function label can be linked to a variety of functions and, to be analytic, the

functional models of each component type must be consistent and the rules for

combining functional models must be clear and unambiguous. Further, the types of

functional models will typically include integers, quotients, real numbers, inequalities,

complex numbers, polynomials, rational functions and matrices. The relationships will

typically include the laws of association, distribution and commutation. Further, both

metrication and variable consistency are required for quantitative analysis.

9.11.1 Demonstration of Insertion of a polynomial function

For this example a polynomial is inserted into each label. The polynomial example is a

simple ‘straight line’ form for each function with ‘multiply’ as the rule of association. The

result is shown in Figure 49.

RB Smith Page 152 of 262 Issue Final

Design and Integrity of Deterministic System Architectures
ThesiaMF
Matrix Shewing Labelled Fath Structure

o a b e b a c a b d f o
o 0 o c d h d c g
n e ri c e f h d e f 0
o n 0 0 0 5
0 o 0 h 0 gh
o n 0 0 o o

Matrix Shewing Labelled Fatha replaced by first erder pclyncxial expreaaicn; Ccluxna 1 and 2 only:

0 ■; ak - bk ek - ax x - bx ek x - bk ex x - bn ex x* [•
0 0
0 [ek-exx[
0 0
0 0
0 0

Matrix Shewing Labelled Fatha replaced by first erder pclyncxial expreaaicn; Ccluxna 3 and 4 only:

•[ak ck - ax ck x - ak cx x - ax cx x* [•
■[ck - dk hk - cx x - dx hk x - dk hx x - dx hx x* [■
•[ck ek - f k hk - cx ek x - ck ex x - fx hk x - f k hx x - cx ex x* - fx hx x* [•
n
•[hk - hxx-
0

Matrix Shewing Labelled Fatha replaced by first erder pclyncxial expreaaicn; Ccluxna 5 and 6 only:

0
[ck gk - cx gk x - ck gx x - cx gx x* [
n
[gk - gx x[•
; gk hk - gx hk x - gk hx x - gx hx x* [
0

[ak dk - bk f k - ax dk x - ak dx x - bx f k x - bk fx x - ax dx x1 - bx fx x*[■
[dk - dxx;
‘ dk ek - f k - dx ek x - dk ex x - fx x - dx ex x1[
0
o
o

■[bk - bx x[
0
o
n
0
n

Figure 49 - Example of Decomposition of a Direct Product with insertion of a polynomial function (M9)

RB Smith Page 153 of 262 Issue Final

TheaiaMlj
Matrix Showing Labelled rath Structure

: - b . e t a.c a. d - b . 3 C
i c - d . h d c . g
0 c. e - 3. h 3 - d. e C

Design and Integrity of Deterministic System Architectures

g.h

Matrix o3 Labelled fath Structure with Add Rule cl Raaociation applied
: a - c - e t a.c a - b - d - 3 0

1 1 0 c - d - h d c. g
i e : c - e - 3 - h d - e - 3 0

: 1 j 3 C g
1 0 j h 0 g.h

Matrix ahowing Labelled Fatha replaced by 1x2 generic matncea; Sciumma 1,2,3

- ;;al-blel-b2e3, a2-ble2-b2e4;, >3 - b3 el - bi e3, ai-b3e2-biei;; ; ;bl, c2;, ;b3, bi'

>1, e2;, ;e3, ei; ;

Matrix ahowing Labelled Fatha replaced by 2x2 generic matricea; Soiumm 4
' 'al cl - a2 c3, al c2 - a2 c4' , ;a3 cl - a4 c3, a3 c2 - a4 ci; ‘
; ;cl - dl hi - d2 h3, c2 - dl h2 - d2 hi; , ,c3 - d3 h.1 - di h3, C4 - d3 h2 - d4 b.4;;
; ;cl el - c2 e3 - *1 hi - 32 h.3, cl e2 - c2 e4 - 31 h2 - 32 hi; , ;c3 el - ci e3 - 33 hi - 34 h.3, c3 e2 - c4 e4 - 33 hi -34 hi; ;

;;hi, hi;, ;h3, hi;;

Matrix ahcwing Labelled Fatha replaced by 2x2 generic matricea; Sciumma 5, (

; ;al dl - ai d3 - bl 31 - bi 33, al d2 - ai d4 - bl 32 - bi 34; >3 dl - ai d3 - b3 31 -bi 33, a3 d2 - ai di - b3 32 -bi 34; ;
; ;di, d2;, ;d3, di;; ;;clgl-c2g3, olg2-c2gi;, ;c3 gl - ci g3, c3g2-cigi; ;
; dl el - di e3 - 31, di e2 - d2 ei - 32; , ;d3 el - di e3 - 33, d3 e2 - di ei - 34; ;

; 3»:;
; ;gi hi - g2 h3, gl h2 - g2 hi;, ; g3 hi - gi h3, g3 h2 - gi hi; ;

Matrix ahcwing generic matrix elcmenta populated with two port network admittance ccmpcnenta; Sclumna 1,2 and 3 cnly
3 ; ;i, 2R;, ;ia, 2 - ;Ra;; ; ;i, c;, ;ca, i; ;1 0 0
? ; ;i, r ;, ;c, i;; o2 0 0

Matrix ahowing generic matrix elementa populated with two port network admittance ccmpcnenta; Sclumna 4,5 and € cnly

;;i, i r ., ;o, i;; ; . 2 - ;rs, r; , ;3 2 a, 2 ;; 0
;;2, r ;, ; 2 s a, 2.; : :i, o;, ;2a, 1 ;; : :i, 2 r ; , c, 1 ::
; ;2, 2 r;, ;2 : a, 2 ;; ; 2 , r; , ;22a, 2 - 2 R 3 ;;

’ ' 1 R'
; ;i, c;, ;c a, 1 ;;

n
: ;i -2Ra, fv . ^ a , 1 ;;

Figure 50 - Example of Decomposition of Direct Product with insertion of a Matrix Function with Plus rule of association (M10)

RB Smith Page 154 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

9.11.2 Demonstration using a matrix function with single rule of
association

The matrix example is based on components each with a simple 2x2 form for each

function with ‘Plus’ as the rule of association.

This example also demonstrates the use of the 2-port Network Model form to generate a

source-to-sink transfer function. The network example is an RC network consisting of a

mixture of series resistance and parallel capacitance components.

The matrix form of the Type A (Transfer Function) form of function as a 2-Port
component is: -

Vin / Vout - lout / Vin

Iin / Vout Iin / lout
, where V is voltage and I is current.

Therefore, the A Form matrix of a series resistance is

a parallel capacitance is

1 R

0 1
, and the A Form matrix of

1 0
sC 1

These are incorporated into the program by associating each function label with its

associated Type A form of matrix. The path structure provides the actual construction of

the network. The reciprocal of the transfer function of each path is determined by

inspection of the {1,1} element of the source-to-sink matrix. The results are shown in

Figure 50.

It can be seen by inspection that the output matrix at Row 3, Column 4, {3,4}, is

2 2R~\
, and that the transfer function (i.e. VoutA/in as a voltage gain) between {3,3}

2 Cs 2 J

and {4,4} is >4 = 0.5.

9.11.3 Demonstration using a matrix function with combined Multiply and
Plus rules of association

It can be seen that the normal form of the path structure matrix is for the labelled path

structure expression to be a combination of AND (i.e. multiply) and OR (i.e. add) rules of

association.

The pictorial view of the demonstration is that the functionality of the system structure is

similar to a network that consists of a mixture of series and parallel resistance

RB Smith Page 155 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

components. This is required as network theory requires that the A Form is required for

series combination of components and that the admittance Form is required for parallel

combinations. This means that the process of computation must be constructed as

follows.

1. Replace the function labels with the A Form [{a11, a12}, {a21, a22}] of the

resistance components.

2. For those parts of the labelled expressions that are Direct Products multiply the A

Form of the components together.

3. Then transform the result into a 2x2 matrix in Type Y form (Admittance function)

using the transform:

[{a22/a12, -detA/a12), {1/a12, -a11/a12}].

4. The result will be an expression that is in the form of a Direct Sum of 2x2

matrices.Then complete the computation by summing the admittance form

matrices.

5. The admittance form(Y) can then be transformed to the A Form so that the

outport open transfer function (i.e. 1/a11), is easily accessible using the

transform:

[{-y22/y21, 1/y21}, {-detY/y21, y11/y21}].

This calculation is demonstrated in Figure 51 and Figure 52. Figure 51 shows the

admittance function of the element (1,2} and Figure 52 shows the transfer function for the

pair of nodes A to F.

9.11.4 Summary

These program fragments demonstrate the method by which the functional population of

the direct product expressions can be determined. This demonstrates that the method

provides the system architect with the means of quantitatively determining the

functionality between any source-to-sink of the defined architecture. The only constraint

is the ability of the architectural team to generate and populate the model with quantified

expressions of functionality. This is not meant to be a trite comment as the author

appreciates that the task of component modelling is a complex task in its own right.

Note. To enable the result to be presented in an A3 format both programs show the

calculation for only paths of length one and two steps. However, the programs can be

used to calculate paths of higher step length by simple modification of the matrix power

instruction.

RB Smith Page 156 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

IhesisMll
System Matrix
o a b o 0 o
o 0 o c d n
o e o n X1 o
o 0 o 0 0 g
o n o h 0 o
o o o o o o

Matrix Shewing Labelled Path Structure
0 a-b.e b a.c - b. c e - f h -a.d.h-b.d.e.h a.d-b.f-b.d.e a.c.g- a d - b f .g.h-b.c.e.g-b.d.e.g.h
0 0 O c - d . h d c.g-d.g.h
0 e 0 c.e-f.h-d.e.h f-d.e c.e.g-f.g.h-d.e.g.h
0 0 0 0 0 g
0 0 0 h 0 g.h
0 0 0 0 0 0

2-Pcrt Network Form shewing Matrix Admittance Functicn cf Element 1,2
ii _ b2 ci+b4e4 it i3-ili4 _ (h i zl+bi c3) (bl ci+bg c4)-(bl cl+b£ c3) (b3 ci+b4 e4)
it ~ blei+bie4 ii ~ blei+bi
_1________ 1 il -bl el-bi c3
ii ~ bl ci+bi ?4 ii bl ei+bi e4

Figure 51 - Example of Decomposition of Direct Product with insertion of a Matrix Function with combined Times and Plus rules
of association; Part a (Mi 1)

RB Smith Page 157 of 262 Issue Final

Design and Integrity of Deterministic System Architectures
2-Fcrt Network Fora ahcwing Source to Sink Fath Adaittancea in Matrix Fora

13 13
n 0 I 1K £ R 1 6 R 1 1£R £ R+£ R* 1£ R £ R+£ R* 1 3 R 3 R 1
n 0 j _3 3 | JL _ L 1 13 1 13 £ 1 4 4 |

0 0
n n

0 0
0 0

£ R

0 0
0 0

R
J.
R

0 0
n n

2 R

0 0
n n

1£ R
3

£ R
3

£ R
4

3 R
4

3 R

0 0
0 0
JL
R
_1
R

0 0
n n

£ R+£ R*
3

£ R
3

£ R
4

3 R
4

3 R

1£ R £ R+£ R* 3 R
_1
R
_1
R
3

£ R
3

£ R

o
n

3 R

3
£ R
3

£ R

47
(OR
47

(OR
5

(R
5

(R
11

1£R
11

1£R
0.
R
_1
R
1
£ R
1
£ R

0 0
0 0

4R+£ R*
1

4 Rf £ R*
5

(R I
5 I

(R
_ 11

1£R I

_ 11 I
1£R

1
£ R
1

£ R

47
(OR
47

(OR

4R+£ R*
£

4Rf£ R*

Adaittance Matrix of All Fatha Structure from Node A to Node F
A Fora Matrix of All Fatha frca A to F

154+47 R (OR (£+R)
1£4+47R 1£4+47R

(154+47 R)* (l£4+47 R) (£14+47 R) ^
_1 3(00R*(£+R)* 3(00 R* (£+R)* J 15if47 r

l£4f47R l£4+47 R

Tranafer Functicn of All Fatha A tc F
124 - 47 R
154 - 47 R

Figure 52 - Example of Decomposition of Direct Product with insertion of a Matrix Function with combined Times and Plus rules
of association; Part b (M11)

RB Smith Page 158 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

10 EVALUATION OF ARCHITECTURAL STRUCTURES

10.1 Architectural Knowledge

The decomposition of the system viewpoints into the domains of Composition, Capacity,

Messenger and Functional behaviour was introduced in Section 7. Further, the means of

analysis for functional matching and source-to-sink functional evaluation was described

in Section 9.

These domains have been chosen to focus the attention of the architect to the key

review questions:

• What is its construction as a machine; how does it work?

• What is its ultimate performance?

• What is the role and impact of the system interconnections?

• What is its functional behaviour?

Clearly, each question invokes a range of viewpoints for consideration. Experience

shows that a peer group review will identify many ways of looking at the solution; some

will be simple while others will be complex. Further, a key aspect of the review process is

to educate the review group so that they understand what the design solution offers.

A well-known example as to the importance of viewpoint selection is associated with the

motion of our planetary system. While the Greek astronomer, Rolemy, had correctly

established that the earth was round, he taught that the earth was at the centre of the

universe. While the scheme had some success, later measurements showed that the

complications that had to be introduced to make the model work, invoked inconsistent

behaviour. These were resolved by the work of Copernicus and Galileo over one

thousand years later.

System architects face the same problem. If the architect is unable to ensure that the

review group understands the machine structure, the review will become overly complex

and the risk of misunderstanding increase unnecessarily. More importantly, decision
making groups that do not appreciate the basic structure of the machine will be prone to

erroneous decision-making. The adverse impact of such ignorance is witnessed all too

frequently!

RB Smith Page 159 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Clearly, it should be understood that the architect should understand the machine system

structure. However, modern engineering environments that focus on detail tend to

obscure essential structural characteristics of machines. The volume growth of such

detail information is at the heart of the comments by Robert Frosch [2a]. Further, as

many major programmes take many years to achieve ‘first of class’ acceptance and may

be in-service for some decades, it is characteristic that the intentions of the architectural
team get lost in the mists of time. It has long been apparent that the obscuration of the

tacit knowledge held in common by the primary design team as the team disperses after

the development programme is complete, leads to substantial difficulties for change

implementation and certification during the operational phase of the programme.

Consequently, a part of the motivation for this thesis is to propose methods that will

enhance the information available to those engineers whose role it is to sustain or modify

system performance during the operational phase of the programme; that is, in effect, to

support evolutionary development.

While no specific claims can be made as to the number of viewpoints that an architect

may need to consider, it is imperative that the type and aggregation of the overall

number of viewpoints that are generated are evaluated as a group in terms of the value

added to the design knowledge of the overall properties of the machine system. This is in

addition to the justification of their existence in relation to the evaluation of specific

atomic requirements. A Framework component for the evaluation of viewpoints as a

group is described in the next section.

10.2 Context of Domain Knowledge

The author has postulated (q.v Section 7) that the decomposition of system design

knowledge into the four domains fulfils the conditions of both necessity and sufficiency to

define the design of a system. Specifically it provides a structure to position and

aggregate all viewpoint analyses; the intention is to prompt the architect into defining

each viewpoint so that the point performance requirements for the set of key questions

can be answered for each viewpoint and that sufficient viewpoints are chosen to

determine all the point performance requirements. Further, it should be appreciated that

the system Design Knowledge Domain is just part of the total information held in the

System Repository.

It is important to understand that the System Design Knowledge Domain provides the

data to support many viewpoint evaluations, both qualitative and quantitative. For

example, Figure 53 is a pictorial representation of the interrelationships that link design

data to ‘ility’ evaluations. It shows that System Design Knowledge data that is specific to

RB Smith Page 160 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

the design of the system as a m achine ‘flows’ to the ‘ility’ domains including

produceability, supportability and disposability. The results from ‘ility’ domain evaluations

then feed back to the System Design Knowledge domain wherein the the design of the

System as a m echanism m ay be adjusted to provide enhanced compliance with ‘ility’

perform ance objectives.

Design Data
Flow

Supportability Disposability

System Design

Knowledge

Domain

Producability

.

Ility’ Design
Requirements

Flow

1

Figure 53 - Schematic Showing Relationship between System Design Knowledge
Repository and the ‘ility’ Domains (P20)

The implication is that the integrity of the Design Knowledge Domain must be

impeccable; if not, the results and interpretation of ‘ility’ and other viewpoint

determ inations will be erroneous. The information held in these four domains must then

be both sufficient and necessary to define the core design.

In the context of the D O D A F model the system Design Knowledge Domain is part of the

Technology Sector, and it is this that supports the other domains including the Logistical

and Operational Sectors. To facilitate the organisation of information for large projects,

typically, the system information repository is held in a formal structure or Fram ework.

This Design Knowledge Dom ain can form the Fram ework Com ponent assigned for the

architectural structure and its functional construction.

10.3 Domain Activity Population

To answer the key questions, posed at the beginning of this chapter, the author has

compiled exem plar sets of technology information that must be determ ined in order to

describe the m achine system.

RB Smith Page 161 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Architectural Domain Determination

Domain Activity Technique Analysis Type Analysis Support

Design Data
Repository

Hierarchical decomposition
with consistent traceability
of functional and realisation
building blocks.

Define lists of building blocks and
interconnection attributes including
component, interface, design,
composition, substance and physical
properties definition.

Database support.

Composition Define arrangement of
architecture construction
with building blocks and
interrelation links.

Determine building blocks and
interconnection attributes including
component, interface, design,
composition, substance and physical
properties definition.

1, 5 Define architecture in the form of a
labelled graph. Compile adjacency matrix
of system construction.

Implementation allocation
analysis with functional and
realisation building blocks.

Determine hierarchical allocation
compatibility.

2 Use extension to ‘Design Matrix’, F=AD
with matrix manipulation with Boolean
logic.

Functional and Implementation
Causality Compatibility using
networks with functional and
realisation building blocks.

3 Use extension to network analysis using
matrix manipulation with Boolean logic.

Partition efficiency N2 form with type coded interfaces
with matrix cluster analysis.

4 Use matrix cluster analysis including link
type coding, see e.g. [74].

Connectivity completeness Data flow model Use System Design Tool of choice.

RB Smith Page 162 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Architectural Domain Determination

Domain Activity Technique Analysis Type Analysis Support

Capacity Analysis of capacity of
arrangement by linking
capacity of each building
block ‘source-to-sink’ path
structure of the system
arrangement.

Determine ‘source-to-sink’ paths.
Create source-to-sink capacity
structure of each path from capacity
of each building block and
messenger link.

Decompose path algebra to real
functions. Then analyse function
disciplines (See
Table 20) as required.

6a Populate function labels in system
adjacency matrix with capacity functions.

Use Graph Theory for transport flow
capacity analysis, using ‘units’ of capacity

Use graph theory with function labels
populated with capacity functions; these
may include polynomial and matrix forms
for algebraic and calculus function forms.

Messenger Evaluate links, as ICDs,
between building blocks in
terms of information,
message and platform layer
analysis, including
technology typing.

Analysis of information, message
coding and delivery technology.
Deterministic and stationary/non-
stationary parameter, message and
signal processing.

6b Populate function labels in system
adjacency matrix with information transfer
functions.

Use graph theory with function labels
populated with information transfer
functions; these may include polynomial
and matrix forms for algebraic and
calculus function forms.

Note. All functions must have consistent
units and dimensions.

RB Smith Page 163 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Architectural Domain Determination

Domain Activity Technique Analysis Type Analysis Support

Functional
Behaviour

Analyse behavioural
functionality of arrangement
by linking state space
functionality of each
building block ‘source-to-
sink’ path structure of the
system arrangement.

Determine source-to-sink paths.
Create ‘source-to-sink’ functional
structure of each path from
behavioural functionality of each
building block.

Decompose path algebra to real
functions. Then analyse function
disciplines (See

Table 20) as required.

6c Populate function labels in system
adjacency matrix with building block
functional behaviour functions.

Use graph theory with function labels
populated with functional behaviour
functions; these may include polynomial
and matrix forms for algebraic and
calculus function forms.

Note. All functions must have consistent
units and dimensions.

Table 15 - Table of Machine System Design Domain Analysis Requirements

RB Smith Page 164 of 262 Issue Final

Legend

Design and Integrity of Deterministic System Architectures

Type Reference Description
1 Hierarchical structure
2 Functional and Implementation resource compatibility

analysis.
3 Functional and implementation resource causality

compatibility analysis.
4 Architecture construction efficiency analysis, see e.g.

cluster analysis [74].
5 Define labelled graph structure and form system structure

adjacency matrix. Compute direct product/sum
expressions for source-to-sink viewpoint of interest path
structures.

6 a, b, c. Populate expressions with rules of binary association.
Populate function labels with actual functional
expressions; a-> capacity functions, b-> information
transfer functions, c-> functional behaviour functions.

Table 16 - Type Description of Methods of Analysis

Occupancy. Displacement Thermodynamic Radiation capacity. Informatic capacity.
capacity. capacity.

Transportation capacity.Physical properties. EM capacity.
Gravitational Electrical capacity.

Molar capacity. capacity. Optical capacity. Institutional activity
Magnetic capacity.

Radioactivity
capacity.

Hydraulic/pneumatic
capacity. capacity.

RB Smith

Table 17 - List of Disciplines

Page 165 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Table 15 shows the four design domains each with its main design analysis techniques

that are described in this thesis, together with the type of analysis required for

quantification. The List of Disciplines, shown in Table 17, provides the cross reference by

Type allocation of Physical Science Disciplines to the analysis methods described in

Sections 8 and 9.

Population of the analysis requirements described in Table 15 places heavy reliance on

modelling and simulation. Their capability was introduced in Section 2 and it can be seen

that each discipline has evolved preferred methods and techniques of analysis. To

support the means of functional population described in Section 9 it is imperative that

each function type is accompanied by consistent rules of association. Two such

methods, i.e. Linear Two-port Networks and Bond Graph constructions, that enable

complex systems to be synthesised from its constituent components, were described in

Section 4.

The investigation of Linear Two-port capability confirmed the completeness and maturity

of the technique. To demonstrate the determination of source-to-sink functional

behaviour, each label was allocated a generic 2x2 matrix form. Then the path

functionality was determined by the series or parallel combination of these 2x2 matrices.

A demonstration of this capability is show in Figure 51 and Figure 52.

The investigation into Bond Graph capability showed that the full range of technology

domains that are pertinent to systems engineers, has not been established. The author

has included suggested forms of pseudo Bond constructions that discipline experts could

refine in Appendix 3. Taken together they provide a more comprehensive range of

consistent component models across the full range of science disciplines than can be

tackled by the linear Two-port methodology. Therefore, the Design Analysis Table shows

the list of technologies for which functional viewpoints are in common use by systems

architects, all of which have the potential to be matched with a corresponding Bond and

Pseudo Bond component models.

While the author’s investigations did not result in the identification and validation of a

complete set of component models, the consistent use of the standard state space form

with generic manipulations for series and parallel combinations will enable the end-to-

end functional performance to be determined. The basic construction of such

combinations is also shown in Appendix 3.

However, the reader should note that the author’s investigations into sources of expertise

that included the UK, Europe and the USA failed to identify any source of expertise to

validate the proposed constructions and provide some guidance as to the methods that

RB Smith Page 166 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

are employed to combine component models. Consequently, the author concluded, with

regret, that the maturity of information implied that it was not practical to pursue at this

time or generate a demonstration of the construction for this thesis.

Consequently, the examples in this thesis have been confined to the use of Two-Port

Network Analysis as it has a well defined set of consistent component models and

means of association for both series and parallel combinations.

10.4 Summary of Procedure to Determine the Functional Structure of
each Domain

The proposed method implies that there is a single unique architectural structure for any

application; clearly, there cannot be competing architectures for a particular application.

However, there can be subset architectures to represent specific parts of the system.

The rationale for the four design domains (See Section 7.2) is to ensure complete

coverage of the design while minimising their functional overlap. While it is necessary

that each domain is competently evaluated, the overall depth profile of evaluation for

each domain will be at the discretion of the architect’s view of complexity; it is recognised

that it will be necessary for some specific evaluations to be carried out with considerable

depth.

The steps involved in the procedure are summarised as follows.

1) Define system components and interconnection paths.

2) Define architectural structural with Building Blocks and interconnections.

3) Create N2 matrix for system architecture; allocate function labels. (Use Excel)

4) Determine implementation structure; define implementation components.

5) Analyse integrity of hierarchical decomposition; match and reconcile functional
and implementation resource structures. (Use Design Matrix with True/False

relationship coding).

6) Analyse integrity of causality structure; match and reconcile functional and

implementation resource structures. (Use logical network form with functional and

implementation resource components.)

7) Determine efficiency of architecture structure; (e.g. use binary coding to type

code interface definitions; use cluster analysis to determine efficiency). Modify

architectural structure definition as appropriate.

8) Create sub-set N2 matrix for each domain from system architecture. Assess

viewpoints required to be incorporated within by each domain.

9) Derive function labelled Adjacency Matrix for each domain.

RB Smith Page 167 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

10) Determine structural integrity of each domain. Use True/False Boolean

representation of component-to-component links. Refine structural integrity so

that it is consistent and complete.

11) For the Composition domain, allocate constitution type functionality to each

component. Analyse source-to-sink path structure as direct product expressions

of function labels. Decompose direct product/sum expressions by replacing labels

and association with viewpoint functions and rules of association. Assess source-

to-sink Structural functionality.

12) For the Capacity domain, allocate Capacity type functionality to each component.

Analyse source-to-sink path structure as direct product expressions of function

labels. Decompose direct product/sum expressions by replacing labels and

association with viewpoint functions and rules of association. Assess source-to-

sink capacity capability, for both normal range and maximum and minimum

conditions.

13) For the Messenger domain, allocate Messenger type functionality to each

interrelationship component. Analyse source-to-sink path structure as direct

product expressions of function labels. Decompose direct product/sum

expressions by replacing labels and association with viewpoint functions and

rules of association. Assess source-to-sink functionality of information transfer

structure.

14) For the Functional Behaviour domain, allocate behavioural functionality to each

component. Analyse source-to-sink path structure as direct product/sum

expressions of function labels. Decompose direct product expressions by

replacing labels and association with viewpoint functions and rules of association.

Assess source-to-sink performance, behaviour and dynamics.

15) Evaluate emergent properties of each domain by comparison with the emergent

properties required by the specification.

16) Modify system design to ensure compatibility of estimated emergent properties

with required emergent properties.

RB Smith Page 168 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

10.5 Proposed Procedure for Structured System Design

The proposed labelled path structure method has its roots in abstract algebra that

considers relations, functions, partial orders and induction. Graph theory enables the

path structure between any source and sink nodes to be determined with each path

typically involving many steps. The technique of labelling each path enables the

functional components involved in any path to be identified. Path analysis generates the

functional combination of labels in any path in the form of a direct product.

As explained by S J G Taylor [113], Cartesian Products produce ordered n-tuples in

which there are not necessarily any implied functions relating the entities thereof. A

Direct Product/Sum is of the form a ° b / a + b where each part of the product/sum is

required to have the algebraic terms and the binary rules of composition e.g. association,

distribution and commutation, defined as part of a coordinate system. Further, the

coordinate system for a Direct Product/Sum encompasses the notion that operations can

be applied independently to the 'coordinates' applicable to each individual term.

In general, the 'coordinates' can themselves be any well-defined algebraic structure.

They do not have to be linear, numeric, commutable, well-ordered, or anything else; they

could be, for example, lists, logical expressions, polynomials, inequalities, real or

complex functions, matrices, or graphs.

Nevertheless, to be useful, the interrelationships between the entities need to preserve

the structure in some sense; they need to be isomorphic. Therefore, they need to be

specifically defined as part of the space structure spanned by the set of 'coordinates' -

for example, as inner (dot) products are for metric spaces.

This means that the scope of analysis encompassed by the methodology includes all

architectural viewpoints for which a consistent set of coordinates and algebraic rules of

composition can be defined. For example, these include soft systems, management

structures, and process structures. Consequently, the potential capability of the method

is substantial.

Clearly, the range of applications that will be able to be addressed is not fully perceivable

at this stage of its development. Therefore, the author does not consider it practical to

provide a full description of the total capability provided by the proposed method in this

thesis.

Nevertheless, to elucidate the capability encompassed by the method three types of

analytical capability are described as follows.

RB Smith Page 169 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

i) Data sets associated with non-analytic functions.

Typical members of this category are character strings, lists and labelled objects.

Relationships are simply formed from data manipulation operations including, for

example, merge, partition and rank. It enables data or knowledge objects to be

organised in some way so that an observer is able to identify patterns, or

segregated types of knowledge of interest.

ii) Functions that are formalised in terms of logical, propositional calculus or Boolean

algebra.

Typical members of this category include sets of numeric or character strings with

defined value of meaning that can be manipulated according to defined logical

rules. These rules are normally associated with binary relations for rules of union

and intersection, and true and false propositions. These can be applied to sets that

form groups, fields or rings. The functionality includes classical logic, propositional

logic, first order languages including those associated with computational structures

and time based sequential logical constructions.

iii) Functions that are formalised with integers, quotients, real and complex numbers.

The members of this category are defined by these number systems, the

metrication of value and their associated algebraic rules, typically those of identity,

association, distribution and commutation. The most common relationships are

those of addition and multiplication. The functions are analytic and their capability

includes those of equivalence, inequality, linear algebra and calculus.

The following table shows various types of expression together with data population

options and means of association. Each type of expression has an associated coordinate

system (or set of algebraic rules) that can be adopted to enable the quantitative

implications of the binary combination of variables to be determined.

RB Smith Page 170 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Type
Ref.

Type of
Expression

Data Population Type of Association,
Distribution and Commutation

1 Sets/Lists Characters, integers, quotients,
real numbers, complex
numbers

Count, merge, union, combine,
partition, rank.

2 Logical
structures

Characters, integers. True, false, union, intersection,
Boolean algebra.

3 Propositional
logic

Sets, characters, integers,
quotients, real numbers,
complex numbers.

True, false, union, intersection,
Boolean algebra, first order
predicate calculus.

4 Algebraic -
inequality

Variables with integers,
quotients, real numbers,
complex numbers.

+,-,x, +,<,>,=

5 Polynomials Variables with integers,
quotients, real numbers,
complex numbers.

+,-,x, +,<,>,=

6 Matrices Variables with integers,
quotients, real numbers,
complex numbers.

+ - x -*-<> =i iyvi i i i

7 Rational
Functions -
linear and
non-linear

Variables with integers,
quotients, real numbers,
complex numbers.

+ ,-,X , -5- ,< ,> ,=

8 Differential
calculus

Variables with integers,
quotients, real numbers,
complex numbers.

+ ,-,X , + ,< ,> ,=

Table 18 - Types of expression, data population and binary combination

The previous sections of this thesis show that a procedure for Structured System Design

can be established that is based on the following rules.

• The system architecture consists of Building Blocks and Relationships.

• The architectural structure is defined in the form of a labelled directed graph, from

an Adjacency Matrix.

• The functional structure and the implementation structure are reconciled to ensure

compatibility.

• The architectural structure is evaluated to determine its effectiveness and

efficiency.

RB Smith Page 171 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

• The set of viewpoints for each domain of the architectural structure to be analysed

is defined.

• The set of functions for each label is defined, together with their through variables,

coefficients, metrication standard and data sets.

• The rules of binary association for each functional viewpoint are defined.

• For each domain, the step wise through variable connectivity is determined in the

form of direct product expressions of labels: 2-steps, 3-steps, 4-steps,... ->

True/False.

• For each domain viewpoint, the labels are replaced with the viewpoint functions

and the expression reformed using their rules of association.

• For each domain viewpoint, the expressions for 2-step, 3-step, 4-step, etc.

paths are formed, the coefficients are populated with data and the expressions are

solved for the defined variables. The variable values so determined constitute the

emergent properties of the architecture for that domain viewpoint.

• The estimated emergent properties so determined are compared with the desired

properties so that out of range divergences will be highlighted.

In summary, the construction enables complex implementation structures to be intimately

related to functionality so that, for any functionality network, the attributes imposed by the

implementation can be determined. Once the integrity of the system structure has been

confirmed, the overall performance and robustness of the design can be estimated.

10.6 Demonstration of Architectural Analysis Techniques

To ensure that the proposed analytical techniques are practical to use for the

assessment of a real life-sized application, the author devised an evaluation model

based on an outline of a command and control system installed in an attack helicopter.

The description and evaluation of this model is shown in APPENDIX 1.

The description of the system provides the reader with an insight as to the issues that
must be taken into account by the architect of such a system. In particular, the reader

should appreciate that requirements to ensure adequate flight safety have a substantial

impact on the form and capabilities demanded of the implementation solution.

The evaluation demonstrates the functional analysis use of each of the methods of
analysis; hierarchical implementation traceability, causality dependency and source-to-

sink node functional performance.

For the purposes of this thesis, functional insertion is limited to various types of generic

functional expressions. The primary reason is that the results of specific analysis are not

RB Smith Page 172 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

relevant to this thesis. In addition, very substantial systems engineering resources,

probably involving many person-years of work by design specialists, are required to

provide analyses that contribute value to engineering design, and are well beyond the

singular personal capacity of the author.

The programs generated by the author for this thesis demonstrate the following

properties:

• The generation of the architectural structure of each viewpoint and presentation in

graphical form.

• The determination of the source-to-sink node labelled path expressions for

functionally consistent viewpoints.

• The insertion of the rules of association for various functional viewpoints.

• The insertion of generic types of algebraic functional expression.

• The computation of source-to-sink functionality.

The rank of the N Squared matrix for this system exemplar is 34. As the size of this

exemplar is similar to that produced by the author professionally for various aerospace

systems, the reader is able to have confidence that the techniques and programs can be

used for real sized practical applications.

With respect to the computation of source-to-sink functional performance, Excel

programs were designed to support the generation of the N-Squared definition of the

system, and the formation of the labelled adjacency matrix. Then Mathematica program

notebooks were created to generate the directed graphs that describe the structure of

the overall system and its decomposition into the four domains. The structure of each

architectural viewpoint is shown diagrammatically, and the source-to-sink path structures

using the functional labels are computed in the form of logical expressions. The

programs also transpose these direct product/sum expressions by substitution of the

rules of association pertinent to the type of function being processed together with the

function associated with each label, and compute the source-to-sink functionality

between each pair of nodes. Some data constants are inserted into selected functions to

demonstrate that full quantification results can be obtained.

The form of each Notebook program is shown in Table 19.

RB Smith Page 173 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

_________ Viewpoint Analysis Program Description__________

Data file input from Excel spreadsheet._______________________
Construction of the system structure graph.____________________
Generation of source-to-sink path structures.___________________
Transpose of rules of association.___________________________
Insertion of functions._____________________________________
Substitution of values for coefficients and variables._____________
Computation of functional expressions and performance estimates.

Table 19 - Construction of Mathematics Notebooks for Viewpoint Analysis

These programs have been designed to present the computing structure in a readable

form; they have not been optimised in terms of programming expertise or efficiency. This

has been done in order that potential users can use these programs as the starting point

for tools that will support other applications of interest.

The author has constructed the system by the use of engineering judgement based on

personal design experience of similar applications. The implication is that the design

viewpoints proposed for formal analysis are based, in general, on the personal expertise

of the architect.

The system matrix includes both ‘hard’ connected and ‘function’ connected relationships.

The distinction is not necessarily obvious as can be appreciated by, for example,
whether a radio link or a relationship with the atmosphere are seen as a ‘hard’ or

‘function’ connected relationships.

Human centred systems are sometimes classified as soft systems, however cockpit

arrangements are designed to ensure that aircrew can fulfil their roles. Consequently

human interaction interfaces also need to be included; often these are quantified in

functional terms by the use of human engineering techniques. The architect must also

take these into account. Consequently, as can be seen from Figure 65 [Helo Msr], the

overall system matrix is very complex.

To enable the system to be analysed it was decomposed into its four domains:

composition, capacity, interconnectivity and functionality. Each domain was represented

by exemplar viewpoints based on the author’s experience of real applications. Then

programs were created for each viewpoint that enable its structure to be shown in

graphical form, and pair-wise node to node quantitative analysis to be completed.

Each program has the generic structure shown in Table 8. Each program can be

modified to reflect a particular viewpoint and functionality, and host the values that

RB Smith Page 174 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

enable quantification (See Note 1). The demonstrations include examples of the use of

particular rules of association and algebraic forms of functional representation.

The results shown in the Appendix demonstrate the computation of the source-to-sink

functionality for a variety of path structures with simple, polynomial and matrix forms of

functional expressions.

The author found that it was sensible to control the number of steps taken for each path

structure computation. The author also found that, from experience, paths of two and

three steps, even and odd, provided substantial insight into the functional structure of

each viewpoint. Paths of higher step length were evaluated. However, many of these

‘long path’ evaluations make use of ‘short path’ relationships; in effect a path structure

first identified with ‘m’ steps then reoccurs with ‘m + n’ steps, where ‘m + n’ < rank of the

adjacency matrix. Consequently, the author concluded that short path length evaluations

provide valuable insight into the attributes of the architectural structure.

Nevertheless, as a key objective of this thesis was to provide a method that identified

obscure pair wise relationships, there is a continuing need to find long path relationships.

While the method enables this to be done, as the calculation involves taking powers of
matrices An, where n may be any integer between one and the rank of the system

matrix, each matrix element may be a very complex function. In such cases, the analyst

will need to refine the form of the display and analysis of such functions to ensure

comprehension.

The demonstration confirmed that the analytical methods proposed in this thesis can be

applied to real system applications, particularly those of substantial complexity.

Readers may be interested to note that the Mathematica kernel computed the results of

all demonstrations within a few seconds on the author’s 1.7 GHz PC using Mathematica

Version 5.2.

(Note 1. The evaluation of the test model has been directed at demonstration of the use

of design techniques for the purposes of this thesis. Therefore, all performance results

are arbitrary, and are not representative of real life performance attributes.)

RB Smith Page 175 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

11 CONCLUSIONS

11.1 Review of Proposed Analytical Method

The objective of this study programme has been to identify means of representation and

analysis of system architectures that have the comprehensiveness to substantiate a

claim of design robustness.

The mathematical representation of a system definition is as follows.

S = (T, R) Equation 11.1

Where ... S is the system of interest
T is a set of components (things)

R is a set of relationships on T (system hood; connectivity)

Systems are structures consisting of building block components and their
interrelationships. To enable system architects to obtain a comprehensive understanding

of the system properties, the representation must enable all relations to be captured,

identified and evaluated in a structured manner.

The primary method of complex system simplification is by the use of hierarchical

decomposition, whereby each lower layer of decomposition is simpler than its

immediately higher layer. This results in a commensurate increase in the number of

relationships required to describe the system connectivity. While decomposition enables

relevant stakeholders to focus on individual components and individual relationships, the

problem of reconstruction becomes increasingly complex. The GST community showed

that reconstruction is achieved when attribute aggregation, and functional

interrelationship integrity has been established. Consequently, system architects need to

have practical methods that enable systems of interest to be analysed accordingly.

As an aid to complexity reduction, it is proposed to represent complex architectures in

four domains pertinent to system architects, viz, structure, capacity, informatic

relationships (‘messenger’), and interconnected functionality. The boundary assumptions

for each domain ensure that each domain is distinct from each other and can be

analysed independently; ideal cross boundary links are used by each domain to enable

the functionality of the domain of interest to be evaluated without interference from the

functionality of its associated domains.

RB Smith Page 176 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

These four domains together are sufficient to provide complete coverage of the design

space required to be analysed to establish robustness of the complete system.

The author proposes that the N Squared form of construction provides a means of

comprehensive description of system architectures, as it enables components and their

interrelationships to be described in a structured form. When this form of decomposition

is combined with abstract and linear algebra analysis, the architect has a formidable

capability to evaluate the robustness of the design. Therefore, to achieve the primary

objectives of this study the author investigated the use of abstract and linear algebra

techniques to estimate the emergent properties of complex system structures.

To address the reconstructability requirements, three methods of analysis have been

developed:

1. To describe and analyse the relationships between emergent properties and design

structure, with specific consideration of the relationships between the structural

allocation of functional building blocks and the implementation building blocks.

Firstly, the method enables the construction of the emergent functionality from the

design components to be determined. Secondly, the method enables the

compatibility of the ideal and actual realisation allocations to be determined.

2. To describe and analyse the causal relationship between ideal causal flow

structures and implementation building block causal flow structures. The method

enables the functional and realisation structures to be compared.

3. i) To represent system architectures in graphical form as directed graphs, and

demonstrate that graphical analysis can be used to support various kinds of

quantitative analysis.

ii) The use of labelled paths has enabled the interconnectivity to be described in

the form of direct product expressions. These expressions have been

decomposed and populated with quantifiable expressions that represent

meaningful viewpoints of capability. The decomposition of these expressions

to show quantified variable analysis has been demonstrated.

RB Smith Page 177 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

These three methods support the reconstructability requirements of intra-component

compatibility, inter-component compatibility and functional integrity. Further, this thesis

describes a process that enables structural analysis to be incorporated into the well-
established ‘V’ Model of development.

11.2 Review of Proposed Embodiment Methodology

The traditional system engineering process model is based on the interaction of
Requirements, Functionality and Realisation. While the need for Realisation to match

Functionality and the Requirements has been a fundamental tenet of the design process,

the complexity of scope, solution feasibility, technological scope and management

structures involved in modem large scale applications have resulted in obscuration of the

relationships particularly between functional construction and realisation.

This thesis commences with a review of process methods. It postulates that despite the

development of enhanced process models, the means of matching functionality to

realisation has not been developed to cater for the loss of ‘one to one’ matching.

Inadequacies in solutions to match needs have prompted substantial interest in

operational considerations. Modern process definitions have emphasised the behavioural
aspects both from an operational perspective and from solution state transition

characteristics. The consequence is that prediction of behaviour and ultimate

performance estimation as provided by the realisation design, has become obscured.

The ‘House of System Design’ model has been proposed by the author to reassert the

need for architectural structure and ultimate performance competence.

Personal experience has highlighted the need for a design team to achieve a mature

architectural construction and confidence in the estimated ultimate performance

capability for both the ideal and implementation solution concepts, prior to further

development and refinement of the system solution building blocks. For example, as a

design reviewer, the author would expect substantial confidence in these aspects before

the level of achievement at the System Design Review milestone would be acceptable.

RB Smith Page 178 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Therefore, it is expected that these analytical methods would be incorporated into the

design process from an early stage in the overall design process. The methods of

assessment for decomposition, causality determination and functionality are all designed

to populate the knowledge base for the specific applications so that the architect is able

to support with confidence design statements that assert that the proposed solution is fit

for purpose.

11.3 Implications for the Integrity of System Designs

System architects make extensive use of causality diagrams. Many instantiations have

associated techniques that facilitate quantitative analysis of behaviour and performance.

The author appreciates that causality diagrams provide great insight into the

performance and behaviour of many applications, and that many practising architects

have the knowledge and capability to add sufficient value to ensure integrity. In addition,

many tools exist that populate semi-automated design environments that enable many

aspects associated with feedback and recursive properties to be determined.

Nevertheless, their intrinsic inability to cater for feedback (recursive) relationships is a

profound limitation to their value in terms of the determination of structural and emergent

properties of the system in its entirety. Therefore, the author contends that such methods

fall well short of providing a comprehensive means of property determination.

The methods described herein provide the architect with information that has a

substantive impact on the architect’s understanding of the system structure. Complexity

is a primary determinant of design cost and the role of any architect is to ensure that

there is proper balance between the complexity of each building block and the

complexity generated by creating more interconnectivity as a consequence of further

building block decomposition into simpler functional entities.

While formal quantitative optimisation of architectural constructs is not part of this study,

all system architects have a duty of care to optimise the structure in qualitative terms.
Although the analytical methods enable precise determination of the architectural

interconnectivity and functionality, it is intuitively obvious to any system architect that
unfettered inclusion of building-block-to-building-block links is not to be encouraged.

Therefore, at a practical level, system architects will assess the Functional Specification

of each building block with respect to its complexity and consistency, together with its

ICD (the Interface Connectivity Definition) document with respect to the number of

interconnections, the complexity of each connection and its relevance to the architecture.

The role of the architect is to ensure that each separate connection has a proper role and

that its required attributes can be defined in straightforward terms.

RB Smith Page 179 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

During the 1980s the software engineering community learned that spaghetti-like module

interconnectivity led to unreliable designs; that is designs of indefinable or indiscernible

emergent properties. Rules for module size and interconnectivity were defined. Dijkstra

[25] provided formal methods that showed that robust constructions could be produced if

each module had a single information flow entry point. Later, formal rules for termination,

data flow and information flow led to robust implementation of properly defined

requirements.

It is proposed that system architects need to create similar rules and clearly the work of

the software engineering community provides them with a very good start. Perhaps the

use of building blocks with single data and information entry points would help reduce

complexity. Complexity will also be reduced by the use of building blocks that have been

subjected to a process of precise functional checking and functional termination

determination; both will help to ensure that ‘rubbish’ is not transmitted to other building

blocks. There are many such rules of engineering design discipline that will improve the

reliability of architectures.

11.4 Level of Achievement

The methods described in this thesis have been derived by the author to provide a

structured means of implementing intuitive design methods that he used during his

career as a system designer. Based on personal experience, the author believes that all

successful architects work with a mental structure of how the system works as a

deterministic machine system. These methods enable architects to elucidate

architectural structures in a formal setting. The graphical form facilitates peer and

specialist review processes. The functional analysis capability is limited only by the

capability of the architect to represent functions in a form supported by algebraic rules of

combination, (e.g. intersection, symmetry and association). Therefore it is postulated that

an architect has the means of demonstrating the completeness of a design.

Each of the methods can be used independently of the others. Each provides valuable

insight into the architectural structure. Nevertheless the architect requires a methodology

that satisfies both necessity and sufficiency criteria to establish design robustness.

Taken together the methods address the relationships between the ideal and

implementation solutions in terms of decomposition, causality and functionality.

The author is unable to prove formally that the three methods together provide design

sufficiency. Nevertheless, the three methods address the sufficiency requirements for the

reconstruction of a system that has been subject to hierarchical decomposition,

specifically:

RB Smith Page 180 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

• The extensions to the Design Matrix provide both a formal description of the
decomposition and a means to ensure that the functional and implementation

solutions are compatible.

• The causality network provides a formal description of the inter-functional

relationships and a means to ensure that the functional and implementation

solutions are compatible.

• The labelled direct product provides a complete description of all internal linkages

and each label can be provided with functionality expressions for any viewpoint that

is required to be addressed by the architect.

Research into viewpoint analysis is ongoing. However, many specialists have considered

the quantitative question as to ‘How many viewpoints need to be addressed?’ without
conclusion. With respect to a qualitative approach, a good architect will be able to

determine a set of viewpoints that should be analysed; every architect has to exercise

judgement as to the number and type of viewpoints that constitute a sufficient set for

justification of any particular design application.

With respect to a quantitative approach to be provided by an architect, the assessment of

Bond Graph and Pseudo Bond Graph capability has shown that it is possible to provide

consistent component models for a wide range of disciplines. The sixteen disciplines,

shown in Table 17, identified by the author encompass the field of applications that the

author considers to be sufficient for the systems based on physical, chemical and

informatic technologies.

The study has shown that there is considerable untapped potential for gaining

quantitative insight into system architectures by combining abstract algebra, graph

theory, linear algebra and functional analysis into a coherent methodology. It is

envisaged that an algebra for architectural analysis can be developed. This study

proposes a generic set of rules, written in English, which can be transposed into

propositional calculus form using algebraic notation. The rules can then be refined as

required.

The specific forms demonstrated include that of polynomial expression, 2-Port network

analysis and the use of the Laplace transform for dynamic system analysis.

State variable methods using the standard form of expression can also be used to

populate the function expressions. Investigations identified two constructions that enable

state variable functions expressed in standard form to be combined for series and

parallel functional constructions. However, although the principle of such state space

based computations is already well established, the investigations showed that there is a

RB Smith Page 181 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

lack of generic Pseudo-Bond Graph component constructions. As these generic

constructions need to be algebraically consistent to enable the end-to-end functionality to

be constructed, and the consisted form was not identifiable, the author did not

demonstrate the use of these constructions.

With respect to data capture, the thesis shows that the construction of the system N

Squared Matrix in Excel is straightforward. The hierarchical decomposition was

‘flattened’ into a 2x2 matrix with rank equal to the sum of the ranks of the matrices that

represent each layer. Associated spreadsheets were then programmed to generate the

Adjacency Form required for path connectivity analysis. For the purposes of the

demonstration herein, all path connections through each building block were enabled.

For real systems however, not all connections will pass through each building block. The

method has the potential to block functional interconnection. This can be mechanised by

using an on/off data element that is associated with the function labels that modifies the

adjacency matrix accordingly.

With respect to mechanisation of the analytical methods the author has used both Maple

and Mathematica to effect the construction of the directed graphs and provide functional

decomposition of end-to-end labelled paths. The use of rule based programming in

Mathematica enables the manipulation of the terms of the direct product, particularly the

interpretation of the association rule. These instructions in the form of rules enable the

function expressions to be transformed into further, and generally more complex,

functionality. Therefore, non-linear and multivariable analysis can be accomplished for

identified path structures.

It is recognised that further difficulties of functional expression generation are associated

with real time and timeline based systems. The computer-based systems specialists

have developed many design support environments that simulate time line based

applications and product solutions. There is no specific constraint to the incorporation of

such results into direct product expressions; all that is required is specific cross-

reference to the path combinations and routes that have been analysed.

Clearly, it may not be practical or economic to compile analytic expressions for all
functions of interest. Nevertheless, the engineering management processes of identifying

and honing down the number of expressions that require qualitative review provides

added value as to the reduction of the risk of non-performance or non-compliance.

RB Smith Page 182 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

11.5 Limitations to Use

With respect to the utility of the proposals, it must be acknowledged that for centuries

large-scale problems have been addressed by the use of hierarchical decomposition and

reconstruction. To date, no limitations of the generic methods has been identified.

However, the author recognises that the generation of architectural node and

interrelationship functions in mathematical form may be beyond the capability of many

systems engineers. Consequently, it is likely that practical considerations associated with

functional representation and analysis will limit full explotation of the generic method.

Sadly, there are many examples of projects, from mainly anecdotal reports, that have

used hierarchical decomposition techniques and run into trouble. Invariably, these

troublesome applications have been the result of incompetent use of the generic method,

particularly where practical considerations have imposed limitations on the quality of the

formation of the decomposition hierarchy and content. The author is of the opinion that

these limitations occur from lack of knowledge of the application, superficial

consideration of the decomposition items, inadequate consideration of decomposition

items in relation to reconstructability, and, sadly, ignorance.

All experience points to the fact that deterministic mechanisms are fully determinable. In

making these assertions the author is aware that the determination of relevant

component functionality is neither easy nor sometimes practicable. Component models

tend to be of the ‘black box’ form; that is they provide representative behaviour and

performance. While most component models are based on the underlying science or on

experimental data, they are not necessarily complete. Therefore, during system

integration, unpredicted system properties become apparent. Some architects argue that
all human centred activities should be excluded from system design, simply because of

the perceived difficulty of modelling human centric behaviour.

The author is of the opinion that this is erroneous thinking as there are many successful

models of human behaviour and response. These include, for example, aircraft pilots,

ships helmsmen, air traffic controllers, and many human centred transactional
information response work places.

A part of the responsibilities to be discharged by the architect is to understand the

limitations of the component models used to predict emergent properties. Then, either
further data is sought to remove ambiguity or uncertainty, or the integration process will

be designed to support specific investigations to determine the actual outcome. For

example, flight test or ship sea trials provide a regime to establish actual behaviour and

performance.

RB Smith Page 183 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The scope of the approach presented in this thesis is necessarily limited by the ability of

the architect to generate component models in the form suitable for functional analysis.

Sometimes functionality may be described in English as a role or activity, or perhaps in

abstract algebra form using set theory. This detracts from the ability of the method to

provide source-to-sink quantitative estimates of performance. Nevertheless, the author

has found that useful information may be obtained about the structure of the system,

particularly when the functionality is described using sets.

With respect to the computational aspects of the methods developed herein, the impact

of the scale of architecture structure descriptions induced by hierarchical decomposition

of large scale systems has been addressed by creating ‘flat’ matrices with rank equal to

the sum of the rank of the matrix of the structure at each level of decomposition. While

this method results in matrices of large rank, the analysis tools (Excel and Mathematica)

and computational power used to demonstrate the techniques developed herein,
demonstrate that the methods are of practical use for large-scale system structures. The

Excel column limit of 250 will restrict the size of flattened data entry matrices. However,

this is unlikely to constitute a constraint for systems of practical size. Mathematica has

sparse matrix functions that enable it to handle very large matrix based constructions.

Also, since the author’s programs using version 5.2 have an execution runtime of a few

seconds, it is unlikely that the computational capacity of Mathematica will present a

practical constraint.

RB Smith Page 184 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

12 RECOMMENDATIONS FOR FUTURE WORK

12.1 Data Capture

Data input to Excel spreadsheets to create the N Squared form and associated

adjacency matrices has been presented in a straightforward form. However, the method

will facilitate more complex analysis of path structures by modifying the adjacency matrix

to include/exclude interrelationships. This can be mechanised by having an on/off key

data input element for each building block that switches the building block relationships

appropriately. Then the spreadsheet can be programmed to modify the adjacency matrix

accordingly.

12.2 Use of Graph Theory and associated Mathematical Fields

With respect to graph theory, the thesis has shown that robust identification of path

structures is practical, that unique labels can be attached to each path and that the

functional structure associated with any path structure can be determined. Nevertheless,

the thesis has not explored the scope of graph theory and its associated mathematical
fields that could be used by systems architects to gain further insight into the

characteristics of the structure. With respect to graph theory itself, for example, the use

of cut-sets and colouration will aid evaluation of the construction, compatibility and

consistency of viewpoints. In addition, there are substantial bodies of knowledge related

to graph theory [43], for example, logic, linear algebra, geometry topology, networks and

computing, all of which have potential for use in the context of architectural analysis.

While the author would not expect architects, in general, to be able to exploit directly the

capability, various analysis techniques could be incorporated into evaluation tools that

could be applied directly by architects.

12.3 Use of Standard models of Functional Combination

With respect to functional population the thesis has shown that logical, polynomial and

matrix forms can be used to characterise and quantify the functionality of path structures.

Network analysis is based on the generation of flow/impedance component models in

conjunction with the general application of Kirchoffs Law. Two-Port analysis has been

included as the method shows that functionalities of individual building blocks can be

combined to provide path structure quantification. This demonstrates that standard forms

of functional representation with specific rules of association and combination enable

interconnectivity functionality determination.

State space representation was included in the expectation that its standard form and

means of combination for series and parallel constructions could provide a means of

RB Smith Page 185 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

calculating end-to-end dynamic behaviour and performance. The thesis shows that the

algebraic construction of such combinations is well understood. Nevertheless, the author

concluded that, while the inclusion of such program fragments would add to the range of

methods available to system architects, the development and inclusions of such

constructions did not add to the essential level of achievement that is the main objective

of this study. Also, the author concluded that the generation of Mathematica program

fragments for such constructions was not trivial and that such constructions should be

generated by experienced state variable method practitioners.

Bond Graph representation was included in the expectation that it would provide a ready

means of standard component modelling and the means of algebraic association and

combination to enable end-to-end determination of capacity and performance.

However, investigations to date show that the development of across and through

variables is incomplete for many functionalities that the systems architect is likely to

encounter, e.g. computer based systems components. In addition, component models in

matrix form to facilitate model building need to be developed.

Furthermore, investigations to date show that while state variable constructions for Bond

Graph models is mature, the specific problem of combining models of models, especially

in matrix form does not appear to have been addressed by the research community.

12.4 Extensions to the Type Definition and Population of the Direct
Product

The functional domain of the Direct Product is by definition not specific. All that is

required is that the rules of type standardisation for each domain of interest enable

functional combination. This implies that there is substantial scope for the development
of domain components for technological and management domains. Such domains

might include, for example, project management based tasks, support pipeline

constructions, or operational scenarios. It is envisaged that many forms of component

library components could be developed in a similar way that cell libraries have been

developed for CAE/CASE/CAD/CAM systems.

12.5 Generation of Algebra of System Design

It is proposed that a specific algebra for the decomposition and quantitative

determination of the direct product be developed.

RB Smith Page 186 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

12.6 Integration with Design Structure Matrix Methods and Procedures

Current interest into the use and development of DSM capability has focused on the

development of product and work breakdown structures and schedules, especially for

multi-layered complex systems and programmes, e.g. see www.adeptmanagement.com.

In addition, for example, a construction, that combines the DSM with the Design Matrix

has been proposed by Guenov and Barker, [115].

However, all these methods have yet to address the issue of quantitative population, and

it is suggested that the DSM has the capability to host the method of functional analysis

described in this thesis.

12.7 Optimisation Extensions

It is recognised that, as the method formalises the structure of system architectures, the

constructions have the potential to support formal optimisation determination. For

example, structural optimisation by interface type cluster analysis has been shown to be

practical; see Ref. 2. This implies that there is substantial scope for optimisation methods

to be developed. The author advises that while such studies will produce interesting

results, the reality of architecting is that considerations of interactivity involve many

domains including programme management and business capability factors. The

consequence is that optimisation is likely to remain a human centred activity.

RB Smith Page 187 of 262 Issue Final

http://www.adeptmanagement.com

Design and Integrity of Deterministic System Architectures

APPENDIX 1 - DESIGN PROCEDURE EVALUATION EXAMPLE

A1.1 Description of Evaluation Example (Attack Helicopter)

The exemplar for this research programme is that of an avionic systems design for a

tandem cockpit configuration attack helicopter. The tandem configuration is that normally

used for attack helicopters. Civil helicopters normally use a side-by-side configuration

and this has the considerable benefit that both pilots can see and reach many of the

controls and displays in the central section of the overall cockpit layout; it also facilitates

natural communication and interaction. The tandem arrangement enables improved

aerodynamic performance and provides a spatial allocation for fitting auxiliary wings (or

lifting surfaces) and the carriage of external stores. The disadvantage is that both pilots

operate in self-contained environments with the implication that all interactive tasks must

be addressed and facilitated within the design of the avionic system.

Such helicopters are required to operate in both day and night all weather conditions.

The two forms of flight mode are Visual Meteorological Conditions (VMC) and Instrument

Meteorological Conditions (IMC) and the corresponding piloting modes are Visual Flight
Rules (VFR) and Instrument Flight Rules (IFR).

When visibility from the cockpit is greater than 1000 feet altitude and one nautical mile, it

is presumed that the aircraft can be flown without the aid of flight or navigation

instruments. When visibility from the cockpit is less than either 1000 feet altitude or less

than one nautical mile it is then presumed that the aircraft cannot be flown without the aid

of flight or navigation instruments.

It is a principal of air-worthiness that in any situation the aircraft may continue to be flown

safely following any single fault. Therefore, the cockpit control and display systems are

configured to ensure that the pilot is able to maintain safe flight in the event of failure.

To achieve this the set of Reversionary Instruments provides the minimum information

required to enable the aircraft to be flown and operated safely in the following conditions.

These assume that basic navigation aids are available, and that the minimum visibility

requirements enable a safe approach and landing to a recovery location to be effected;

i.e. minimum cloud base of 150 feet and visibility of greater than 500 metres.

RB Smith Page 188 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Front Cockpit GroupRear Cockpit Group

Reversionary
Instruments 2

Reversionary
Instruments 1 NVGNVG

Head Down
Displays

Head Down
Displays

Intercom
Helmet Helmet

Cockpit
Interface Unit

Cockpit
Interface Unit

Warning
Sensor SuiteSwitch Switch

Video Bus
Video Mux

(helmet)
Video Mux

(cockpit HDD)
Video Mux

(cockpit HDD)
Video Mux

(helmet)

Symbol
Generator
(helmet)

Symbol
Generator

(cockpit HDD)

Symbol
Generator

(cockpit HDD)

Symbol
Generator
(helmet)

Piloting FLIR

Kernel/
Mode Control

Kernel/
Mode Control

Mission
Computer 2Avionic

Bus Controller
Mission

Computer 1
Avionic

Bus Controller PSUPSU

Powerplant
Interface Unit

Emergency
Comms ADCINS/GPSComms Rad Alt

Duplex
Avionic Bus

RB Smith
Figure 54 - Schematic of Attack Helicopter Avionic System (D20)

Page 189 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The Primary Instrument System is the set of integrated multi-function displays and

avionic systems normally available to each pilot to enable the aircraft to meet its mission

objectives including return/recovery to its designated operational base in IMC.

A schematic of the avionic system suite is shown in Figure 54.

A1.2 Operational Requirements - Failure Management Perspective

The single fault survival principle of airworthiness applies to all aspects of operations and

the equipment required to ‘move, fly and fight’ the aircraft. For a day/night all weather

capability the normal configuration for an attack helicopter is a twin cockpit two-crew

tandem configuration. The two cockpits correspond to the roles of mission management
and platform control. Normally the commander carries out the mission tasks - the ‘fight’

role, while the pilot flies the aircraft - the ‘move and flight’ role. However, the mission

commander must be able to take full control of the aircraft from an un-attentive hands-off
situation (normally specified as 5 seconds after the fault before intervention is allowed).

Alternatively, the mission commander may view his own displays and use the intercom to

provide the pilot with the flying cue information needed by the pilot to control the aircraft.

The Visual Piloting System is the group of sensor systems that provide information to

each pilot to provide enhanced visual images of the cockpits field of view. This normally

includes the following sensors.

Type 1 - Monocular piloting Forward Looking Infra-Red (FLIR) Camera system.

Type 1 - Monocular Low level Light TV (LLTV) (visual band).

Type 2 - Monocular targeting FLIR.

Type 2 - Stereoscopic Night Vision Goggles (NVG).

Type 1 sensors are those normally used to support piloting in limited visibility conditions;

Type 2 sensors provide additional information particularly in the event of failure.

To enable these sensors to aid the pilot, the functional structure required to present the

imagery in a form suitable to support piloting tasks is shown in Figure 55.

RB Smith Page 190 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Start Baseline

Sensor Sensor SuiteSensor

PL Pilot

Pilots
ControllersPCT

BUS Avionic Bus

tactical
ComputationMIC

Symbol
ComputationSG

Display
GenerationVM

Pilot’s Helmet
DisplayHD

End Baseline

Figure 55 - Functionality required to present imagery to Pilot (D21)

The principle method of operation is for the pilot to scan continuously the piloting

information displays and determine the validity of the information by consistency

checking. In the event that erroneous data cues are suspected the pilot will give

preference to the values shown on the reversionary instruments and make a request to

the commander via the intercom for crosscheck data from the rear cockpit displays. On

receiving the crosscheck data from the commander the pilot will determine which of the

data displays is incorrect. This process is supported by the Continuous Built In Test (C-

BIT) facilities incorporated into the individual displays and their associated sensors and

processors. It is expected that the C-BIT coverage capability in each sub-system

exceeds 90% of all potential output faults.

RB Smith Page 191 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

In order to maintain basic control of the aircraft under any conditions, it is necessary that

the pilot has immediate visibility of attitude and heading displays. For power plant related

data however, it is considered that it is sufficient for either crewmember to be able to see

the displays and use the intercom to provide the pilot with the required parameter

information.

For the attitude cues the low level (i.e. Height < minimum safety altitude) piloting

requirements in IMC conditions require that the pilot has normal instrument data

(attitudes, height, speed, torque) together with the FLIR generated vision system.

Therefore in the event of failure of either the primary flight instrument data or primary

PVIS information sets, then the flight mode will have to be aborted and the aircraft

recovered to a safe operation condition. Further in the event of complete failure (i.e. both

primary and secondary instrument or vision systems) then a safety critical condition will

arise. Even in this condition though, as a result of the correlation between pitch attitude

and speed with collective lever, and roll attitude and slip ball with compass heading, it is

expected that, unless major un-commanded aircraft manoeuvres occur, the pilot will be

able to maintain adequate control for a land as soon as practical’ decision.

At night, the night vision goggles provide sufficient VMC equivalent performance to

enable the aircraft to be flown safely in the event of failure of the main piloting vision

system. However, the night vision goggles do not provide an effective reversionary

capability during daylight as a result of luminous saturation of the photo tubes.

Therefore, it is a condition for safe flight that during either daylight or at night using the

night vision goggles, the aircraft is clear of cloud and the pilot or commander is clear of

ground with sufficient range to enable a recovery manoeuvre to be executed in

accordance with minimum obstacle clearance reference region requirements.

For the navigation cues, the primary method of recovery from a navigation system failure

in IMC is to use air traffic control to provide sufficient steering data so that a safe

recovery may be effected by using only the basic heading, height, speed and elapsed

time data from the reversionary instruments. Therefore, it is a condition of safe operation

that the external communication system and the IFF/SSR Transponder have sufficient

capability to interface with the air traffic control systems emergency position finding

facilities.

RB Smith Page 192 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A1.3 Decomposition of the Attack Helicopter System

In order to ensure that the analysis is in the desired context the system is decomposed

into a three level hierarchy as follows.

Operational Context

Aircraft Platform

Avionic System

The family tree of the system is shown in Figure 56.
AH Mission

System

Training

Camera
Left

Utilities
Left

Avionic
System

Utilities
Right

Pilots Controller
Left

Laser Obstacle
Detector System

Camera
Right

Support

Avionic Bus A

Pilots Controller
Right

Environment

Structure Pilot
Left

Mission Computer
Left

Aircraft

Avionic

Night
Vision

Mission Computer
Right

Powerplant Cockpit Pilot
Right

Inertial Navigation
System

Helmet
Left

Tracker
left

T racker
right

Reversionary
Instalments

Digital Terrain
Electronic
Database

Air Data
System

Night
Vision

Helmet
Right

Reversionary
Instruments

Undercarriage

Operational
Concept

Comms

Figure 56 - Hierarchical Decomposition of System into Components (D12)

RB Smith Page 193 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Nomenclature Table -

System Level

Code Description

M Mission Planning

C Operational Concept/Aircraft

T Training

S Support

E Environment

Aircraft Level

Code Description

ST Structure

UC Undercarriage

PW Powerplant

UTL Utilities left

UTR Utilities right

CP Cockpit

PLL Pilot left

PLR Pilot right

AV Avionic system

Avionic system

Code Description

COMS Communications System

ADS Air data System

DTED Digital terrain database

INS Inertial navigation

LOD Laser obstacle detector

CAML Camera left

RB Smith Page 194 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Avionic system

Code Description

CAMR Camera right

PCTL Pilots controller left

PCTR Pilots controller right

BUSA Avionic Bus A

BUSB Avionic Bus B

MICL Mission Computer left

MICR Mission Computer right

HELL Helmet left

HELR Helmet right

TRKL T racker left

TRKR Tracker right

NVGL Night Vision Goggles left

NVGR Night Vision Goggles right

RISL Reversionary instruments left

RISR Reversionary instruments right

Table 20 - System Nomenclature

RB Smith Page 195 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A1.4 Evaluation of System Installation Implementation

A1.4.1 Physical Installation

The normal arrangement is as follows: -

The sensors are positioned to obtain the best measurement accuracy for the

specific aircraft. For example the FLIR may be adjacent to the cockpit windshields

(without encroaching on visual geometry), although modern machine rotor heads

now incorporate a sensor platform.

The mission computers and supporting electronic units are housed in avionic

equipment racks. At least two racks are provided so that duplicate installation

redundancy is obtained wherever required.

Units that are specific to the human interface with the crew are installed in the

cockpit(s). The configuration selected for this study is that of a two-crew tandem

arrangement; therefore there are two separate cockpit installations.

A1.4.2 Electrical Installation

The normal arrangement is for power to be provided as 28 Volt dc, as follows:-

The power electrical system is normally based on two separate bus bar systems

each with its own combined generator-rectifier unit. In addition, an Essential

Equipment bus system is provided that is connected to both generators together
with a battery-charger unit that will provide electrical power for up to about 20

minutes in the event of dual generator failure.

Distribution segregation is maintained for the two racks and sets of avionic

equipment. However, essential units will be powered from the essential bus as

appropriate.

RB Smith Page 196 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A1.4.3 Analysis of Alignment of Functional and Installation Architectures

The generic form of the system arrangement is shown in Figure 57.

Sensor System 1 Sensor System 2

Bus Interface (I)
Processor (C)

Display (M)

Detector (D)
Processor(P)

Bus Interface (B)

Detector (D)
Processor (P)

Bus Interface (B)

Bus Interface (I)
Processor (C)

Display (M)

Workstation 1 Workstation 2

Figure 57 - Schematic of System Architecture (D8)

To demonstrate the use of the Dependency Matrix construction, a simplified form of the

system installation in the helicopter is used.

To obtain the highest availability from the installation arrangement, the requirement is to

ensure full mechanical and electrical isolation between the individual sensors, the

mission processors and the display systems.

However, in the real arrangement, even though the sensors are ‘smart’, some signal

processing associated with each sensor has been physically located within the mission

computers. Then electrical power is supplied to the sensor units from individually isolated

star points, and separate star points are used to support each avionic equipment rack.

The ideal and realistic mechanical and electrical installations are shown in Figure 58 and

Figure 59 respectively.

RB Smith Page 197 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Rack 1

Rack 2;
Detector(D)

Processor(P)
Bus Interface(B)

Rack 3

Rack 4;
Bus Interface(i)

Processor(C)
Display(M)

Mechanical Installation

Electrics 3

Electrics 2;
Detector(D)

Processor(P)
Bus Interface(B)

Electrics 4;
Bus Interface(l)

Processor(C)
Display(M)

Electrics 1

Electrical Installation

Figure 58 - Schematic of Ideal Mechanical and Electrical Installation Arrangement
(D13)

RB Smith Page 198 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Rack 1 Rack 2
(Detector)

Rack 3

Rack 4
(Processor)

(Bus Interface)
(Bus Interface)

(Processor)
(Display)

Real Mechanical Installation

Electrics 2
(Detector)Electrics 1

Electrics 3

Electrics 4
(Processor)

(Bus Interface)
(Bus Interface)

(Processor)
(Display)

Real Electrical Installation

Figure 59 - Schematic of Real Mechanical and Electrical Installation Arrangement
(D14)

The intuitive engineering implication is that the signal processing building blocks

associated with each sensor are intrinsically connected to the mission computer in which

they are installed. The potential practical impact is that electrical noise and additional

earth loops will impact the quality of both analogue and digital signals, effectively

reducing the signal to noise ratio (and the detection sensitivity) of the system.

RB Smith Page 199 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The objective of the construction is that the dependency analysis should show up the

additional (unwanted) functionality that is inherent within the real arrangement. Building

block and design space connectivity is the aspect of interest. Therefore, the matrices

have been constructed on the basis of connectivity; 1 means a connection and 0 means

no connection.

Using the Boolean form of the Design Matrix construct the A’ and B’ matrices are

constructed as follows.

(Note. For the general case of two matrices A (m rows, p columns), B (p rows, n

columns) each element Cij of the matrix product AB (m rows, n columns) is the sum of

k=1 to p of the Boolean product A* x Bkj for i = 1 to m and j = 1 to n.)

"Fl"
F 2

= A’ =
0
0

~W 1"
W2

S\

S2

B’ = Equation A1.1

1 0 1 1
0 1 1 1

0 0 1 0

0 0 0 1

D\

P\

C l

M l

D2

P2

C2

M 2

The Building Block/Design Space characteristic matrix C|’ shows the ideal relationships

as follows.

W1 depends on R1, R2, R3, E1, E2, E3

W2 depends on R1, R2, R4, E1, E2, E4

51 depends on R1, E1

52 depends on R2, E2

1 1 1 1 1 1 0 0
1 1 0 0 1 1 1 1
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0

RB Smith Page 200 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Therefore

C,’ =

1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1

~Rl~

R2

R3

R4

El

E2

E3

E4

Equation A1.2

Therefore

1 1 1 0 1 1 1 0
1 1 0 1 1 1 0 1

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

Similarly CR’ shows that the real relationships are:-

W1 depends on R1, R2, R3, R4, E1, E2, E3, E4

W2 depends on R1, R2, R3, R4, E1, E2, E3, E4

51 depends on R1, R3, E1, E3

52 depends on R2, R4, E2, E4

Rl

R2

R3

R4

E\

E l

E3

E4

; Equation A1.3

Therefore

C r ’ -

"1 0 0 0 1 0 0 0" ~Rl~

0 0 1 0 0 0 1 0 R2

0 0 1 0 0 0 1 0 R3

0 0 1 0 0 0 1 0 R4

0 1 0 0 0 1 0 0 El

0 0 0 1 0 0 0 1 E2

0 0 0 1 0 0 0 1 E3

0 0 0 1 0 0 0 1 JE4_

Equation A1.4

RB Smith Page 201 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Therefore

{FRr} = [/)'] [ZJ'j [cs'] =

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

R\

R2

R3

R4

E\

E2

E3

E4

Equation A1.5

Therefore

{FR,} - { F R r } =

0 0 1 0 0 0 1

0 0 1 0 0 0 1

0 0 1 0 0 0 1
0 0 0 1 0 0 0 1

Equation A1.6

Rl

R2

R3

R4

E\

E2

E3

E4

Subtraction of the ideal and real matrix products identifies the additional or missing

relationships generated by the real design. The construction clearly shows that by re

locating the sensor co-processors P1, P2 into racks R3, R4 the characteristics of the

workstations now have dependencies which reflect the change in racking and their

connection to the source of electrical power. The construction also shows the change in

the dependencies on the sensors themselves.

A1.5 Evaluation of Compatibility of Functional and Implementation
Causality Architectures

A1.5.1 Functional Causality Determination

To demonstrate the use of the resource enhanced causality network to determine the

compatibility of the functional and implementation architectures, a generic form of the

computing structure in the Command and Control system has been derived.

To achieve all weather flight capability with low altitude combat effectiveness, the

information must be provided to the pilot in an ‘eyes out’ mode. The generic form is for

sensor data to be refined, transported, combined with other data and portrayed on each

pilots helmet display.

RB Smith Page 202 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The functional construction of the computing structure is shown in Figure 60.

Start Baseline

SensorSensor Sensors

PLRPLL Pilots

Pilots
Controllers PCTRPCTL

CAD 1

Avionic Bus BUSBBUSA

MICL MICR

SGRSGL

002

DisptajT
Generation VMRVML

HDRHDL

End Baseline

Figure 60 - Functional Structure of Avionic System Computing Structure (D15)

For the Command and Control System information set to be healthy the availability logic

for a typical sensor to display causality structure is shown in Figure 61.

(Note. A detailed description of the information required for safe flight is provided in the

Addendum to Appendix 1.)

RB Smith Page 203 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Sensor:
AND

Command:
AND

Pilots Controller
AND

Avionic Bus:
AND

Tactical Analysis
AND

Sym Gen:
AND

Video mix:
AND

Display:

(Generic)

(PLL or PLR)

(PCTL or PCTR)

(BUSA or BUSB)
(MICL ->MICR monitor/changeover healthy)

(MICL or MICR)

(SGL or SGR)

(HDL or HDR)

(V MLorVMR)
(MICL->MICR) monitor/changeover healthy)

Figure 61 - Typical Computational Causality Structure for Avionic Command and
Control System

Note. In this construction the Symbol Generators, the Video Multiplexor and the Display

are generic functional components.

This logic shows that the functional construction is based on a duplex arrangement with

lane changeover options for both the avionic bus and the output to the video

multiplexers. The design intention is to provide single fault failure survival capability to

facilitate low-level, low visibility flight safety.

The functional causality equation is derived as follows;

H = (S1 + S2)&(PCTL + PCTR)&(BUSA + BUSB)&(BCO)&
(MICL + MICR)&(SGL + SGR)&(MCO)&(VML + VMR)&(HDL + HDR)

Equation A1.7

where H defines system health, and BCO and MCO refer to the Avionic Bus and

Mission Computer monitor/changeover logic switch, respectively.

RB Smith Page 204 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A1.5.2 Description of System Implementation

In order to minimise the num ber of installed items in the vehicle the current approach to

implementation is to integrate as much functionality into single units as is possible; a

philosophy that is very well supported by the progressive miniaturisation of digital

electronics.

Therefore, the design of modern mission computers has many features that are shared

by general-purpose computers; these include multiplexed input/output, a common digital

highway that links all computation processors, non-specific processors and separate

graphics processing. A schem atic of the main implementation features of a modern

mission com puter is shown in Figure 62.

Multi-functional
Power

Regulator

Display
Management
Computation

Tactical Analysis
Computation

Weapon Systems
Management
Computation

Common Digital Highway
Avionic Bus
Controller

Video
Multiplexor

Helmet Dispay

Graphics
Processor Helmet

General Purpose
Interfaces

And
Multiplexor

Video
Multiplexor
Head Down
Multifunction

Display

Graphic
Processor

Figure 62 - Implementation Arrangement of Mission Computer (D16)

It is apparent that the internal arrangem ent implies substantial interdependency between

all of its internal sub-units.

RB Smith Page 205 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

PCTL

Start Baseline

BUSA

Sensor

Pilots

Pilots
Controllers

Avionic Bus

Tactical
Computation

Symbol
Computation

Display
Generation

Pilot’s Helmet
Display

PCTR

MC1&2

BUSB

MICR

MC1&2

End Baseline

Figure 63 - Functional Causality Structure with Implementation Resources (D17)

RB Smith Page 206 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A1.5.3 Compatibility of Ideal System and Implementation System

Arrangement

To demonstrate the impact of the implementation arrangement of the functional causality

structure, Figure 63 shows each functional component linked to its implementation

resource.

The causality equation, Equation A1.7, is then modified by substituting each function with

its matching implementation resource to yield Equation A1.8, as follows.

H = (S + S)&(PCTL + PCTR)&(MC1 + MC2)&(BCO)&

(MC1 + MC2)&(MC1 + MC2)&(MCO)&(MC1 + MC2)&(H1 + H2)

Equation A1.8

(Note. The pilots are presumed to be logically True in this expression.)

The equation is in logical form and is simplified to yield Equation A1.9.

H = S&(PCTL + PCTR)&(MC1 + MC2)&(BCO)&(MCO)&(H1 + H2)

Equation A1.9

It can be seen that the implementation has modified the causality in terms of

• A single sensor.

• Separate pilot’s inceptors.

• Joint mission computers.

• Separate pilot’s helmet displays.

• Common components to provide avionic bus and mission computer automatic

health monitoring and changeover to improve system availability in the event of

failure.

The overall system availability can be determined by substituting probability values for

the ‘health’ of each component.

RB Smith Page 207 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A1.6 Functional Analysis

A1.6.1 Generation of the N Squared Form

The overall system has a three-tiered hierarchy, so the construction should consist of

three matrices, one for each layer. The matrix for each layer contains its sub-system

components laid out on the diagonal.

The order in which the sub-systems for each layer are allocated in each diagonal is

discretionary and, in this case, the order has been chosen from the perspective of

causality, left to right.

M 0 0 0 0

0 T 0 0 0
0 0 C 0 0

0 0 0 S 0
0 0 0 0 E

Table 21 - Decomposition of Top-level System of Family Tree
ST 0 0 0 0 3 0 0
0 uc 0 0 0 3 0 0
0 0 PW 0 0 3 0 0
0 0 0 UTL 0 3 0 0
0 0 0 0 UTR 3 0 0
0 0 0 0 0 CP 0 0
0 0 0 0 0 3 PLL 0
0 0 0 0 0 3 0 PLR

Table 22 - Decomposition of Aircraft Level of Family Tree
COMS 0

0 ADS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 DTED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 INS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 LOD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 CAML 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 CAMR 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 PCTL 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 PCTR 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 BUSA 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 BUSB 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 MICL 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 MICR 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 HELL 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 HELR 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TRKL 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TRKR 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NVGL 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NVGR 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RISL 0
0 RISR

Table 23 - Decomposition of Avionic System Family Tree

Clearly, there are relationships between sub-system components at different levels; for

example, that of physical environment affects system components at all three levels. So

the three matrices are related so that they form a tensor of Rank 3.

RB Smith Page 208 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

This is not easy to analyse so a matrix of Rank 2, as shown in Figure 64, is used

constructed from the nine matrices needed to ensure that all potential relationships are

represented.

1,1 1,2 1,3

2,1 2 ,2 2,3

3,1 3,2 3,3

Figure 64 Layout of N Squared Matrix for system with three hierarchical tiers

Domain Excel Reference Mathematica Reference

System Helo N2 Msr Helo Msr

Composition Helo N2 Mr1, Helo Mr1a

Capacity Helo N2 Mr2e, Mr2w Helo Mr2e, Helo Mr2w

Message Helo N2 Mr3 Helo Mr3

Behaviour Helo N2 Mr4a Helo Mr4a

Table 24 - List of Excel and Mathematica programs to support analysis of Attack
Helicopter Exemplar

For each domain, its architectural structure in matrix form is created in Excel Sheet 1.
The sub-systems are shown on the diagonal and the off-diagonal elements are

annotated with a True (1) to show that a structural relationship exists between two sub

systems. The associate matrix, shown in Excel Sheet 2, shows the adjacency matrix with

the diagonal elements replaced with the functional label in each sub-system that defines

its structural functionality. To enable the labelled adjacency matrix to be input to

Mathematica for analysis it is stored in Tab Delineated form. Then Mathematica is

programmed to input this form for analysis.

The analysis program for each domain has been constructed to show:

1. The links within the structural arrangement.

2. The functionality of the paths up to 3 steps.

The directed graphs show the edges that link the sub-systems; two are shown, the

second rotated by 90 degrees to show the sub-systems obscured by the graph drawing

program.

RB Smith Page 209 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The graphs clearly show the structural connectivity through the arrangem ent. It can be

seen that, by inspection of the graph, up to five steps of connectivity m ay be involved in

any path.

The functionality of the system is shown by the substitution of the f ‘n’ functions that

describe the structural functionality of each sub-system component. Therefore, the

overall functionality of the interconnected system is dem onstrated by taking the sum of

the functionality of one to five steps to show the composite ‘end-to-end’ transfer function.

Numerical substitution of functional expressions and arbitrary values com pletes the

dem onstration of enum eration for each domain.

A1.6.2 Architecture Overview

The relationships between the components have been determ ined from experience of

such system s and been captured into an N Squared Matrix held in an Excel spreadsheet

(Helo N2 Msr). T h e spreadsheet has been program m ed so that it autom atically compiles

the system functional matrix for input to M athem atica for analysis.

The system interconnectivity is shown in the form of a directed graph in Figure 65.

Figure 65 - System Architecture Connectivity (Helo Msr)

The M athem atica programs have been written so that the system connectivity is

presented as directed graphs. These connectivity diagram s have been constructed so

RB Smith Page 210 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

that they present the system components (nodes) equally spaced around the rim of a

circle. Then each arrowed line depicts the existence of a functional relationship between

the designated nodes; each line represents a unidirectional ‘from-to’ information transfer
relationship with the arrow head drawn at the ‘to’ end of the line.

This diagram shows the combined connectivity of all the viewpoints based on functional

relationships that must be addressed by the design team; these include hardwired

building block interconnections, functional relationships with the physical environment

and relationships with the operational and support infrastructure.

The complexity of the system is immediately apparent. Further, the actual complexity is

even greater as many of the connections are multivariable.

Clearly, the architect is able to review these interconnections in a qualitative manner.
This has the benefit of providing a structured description and means of review of the

interconnections that need to be evaluated by the design team. However, the complexity

that is apparent implies that substantial partitioning is required in order to identify the

connectivity associated with different viewpoints. Therefore, the next step is to address

the system structure in terms of the attributes of composition, capacity, messenger and

functionality.

A1.6.3 System Composition

A sub-set of the system has been compiled by the author, that represents

interrelationships that are dependent on materials or substances.

It has been captured into Excel ‘Helo N2 Mr1 ’ and imported into Mathematica Program

‘Helo Mr1a’ from which the following assessment has been generated.

The composition structure is shown in Figure 66.

RB Smith Page 211 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Figure 66- Graphical Representation of System Composition Viewpoint (Helo Mr1a)

This representation provides the architect with an uncluttered picture of the systems

material interconnectivity. The interconnectivity relationships show where each pair of

nodes are joined by a hard mechanical link. This partition makes it easy to assimilate.
However, it belies the actual complexity of the construction.

The complexity is revealed by consideration of the number of distinct graphs that may be

derived from the viewpoint.

N u m b e r o f G r a p h s
3

2 1 8
1 5 4 0 9 4 4

1 7 9 3 3 5 9 1 9 2 8 4 8

3 4 1 2 6 0 4 3 1 9 5 2 9 7 2 5 8 0 3 5 2

Figure 67 - Extract of Number of Graphs for System Composition Viewpoint (Helo
Mr1a)

The extract shows the number of 2, 4, 6, 8, 10 step graphs that can be obtained. The

growth in the perceived complexity is apparent.

RB Smith Page 212 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

N u m b e r o f P a t h s f r o m H e l o S t r u c t u r e V e r t e x - 1 s t e p
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 }

N u m b e r o f P a t h s f r o m H e l o S t r u c t u r e V e r t e x - 2 s t e p s
{ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 3 , 1 5 }

N u m b e r o f P a t h s f r o m H e l o S t r u c t u r e V e r t e x - 3 s t e p s
{ 1 , 1 , 3 , 3 , 4 , 4 , 4 , 4 , 1 0 , 1 5 , 1 5 , 1 5 , 1 5 , 1 5 , 1 5 , 1 5 , 1 5 , 1 7 , 1 7 , 1 7 , 1 8 , 1 8 , 1 8 , 2 4 }

N u m b e r o f P a t h s f r o m H e l o S t r u c t u r e V e r t e x - 4 s t e p s
{ 1 , 1 , 4 , 4 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , 2 4 , 2 4 , 2 7 , 2 7 , 2 8 , 2 8 , 2 9 , 2 9 , 3 4 , 3 4 , 3 4 , 4 4 , 8 6 , 2 4 9 }

N u m b e r o f P a t h s f r o m H e l o S t r u c t u r e V e r t e x - 5 s t e p s
{ 4 , 4 , 3 0 , 3 0 , 8 6 , 8 6 , 1 1 5 , 1 1 5 , 1 1 8 , 1 1 8 , 2 4 9 , 2 4 9 , 2 4 9 , 2 4 9 , 2 4 9 , 2 4 9 , 2 4 9 , 2 4 9 , 2 9 3 , 2 9 3 , 3 0 3 , 3 3 5 , 3 3 5 , 3 3 5 ,

3 6 6 , 5 1 3 }

N u m b e r o f P a t h s f r o m H e l o S t r u c t u r e V e r t e x - 6 s t e p s

{ 3 0 , 3 0 , 1 2 2 , 1 2 2 , 3 6 6 , 3 6 6 , 3 6 6 , 3 6 6 , 3 6 6 , 3 6 6 , 3 6 6 , 3 6 6 , 5 1 3 , 5 1 3 , 6 3 1 , 6 3 1 , 6 5 8 , 6 5 8 , 6 6 9 , 6 6 9 , 8 7 9 , 8 7 9 , 8 7

9 , 9 5 2 , 2 0 0 9 , 4 3 9 9 }

Figure 68- Number of n-step paths that link the Structure Vertex to other vertices, shown in ascending order (Helo Mr1a)

RB Smith Page 213 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Columns 1^13

M 3 3 3 3 3 3 3 3 3 3 3 3
0 T 3 3 0 3 3 3 3 3 3 3 3
0 0 C 0 3 0 3 3 3 3 3 3 3
3 0 3 s 0 3 3 3 3 3 3 3 3
Q 0 0 0 E 3 3 0 0 0 3 3 3
0 3 0 3 0 {ST - 30 x } 3 {4 x } {2 x ; \ 2 X ; ; 6 X ; ■ 2 x ; ■;2 x ;
3 0 0 3 0 0 {UC * 2 X ; (2 X ; {2 X } {2 x } ■ 2 x } 3 3
0 0 3 3 X ; {2 x ; { PW - 6 X ; ' 2 x } {2 x } ;2 x ; 3 3
3 0 0 3 3 {2 x } •'2 X ; {2 X ; { U T I - 4 x } x ; •2 X ; 3 0
3 3 3 3 0 { 2 X ;• { 2 X } { 2 x ; ; 4 x ; ■;UTR - 4 x } : 2 x ; 3 3
0 3 3 3 0 { 6 x } (2 x } ■ 2 x ; {2 x ;• { 2 x] {CP - 2 3 X ; {2 x { ; 2 x ;
3 0 0 3 3 ;2 x } 3 0 3 3 {2 X ; { P L L - 6 x } { 2 X {
3 3 3 3 0 {2 x ; 3 3 3 3 2 x ;• { 2 x ; {PLR

3 0 3 3 {2 x } ■2 X ; {2 x ; {2 x } { 2 x ; ■2 x { {2 x { ■2 x {
0 0 D 3 0 3 •:2 x ; { 2 x ; {2 x } { 2 x ;■ ; 2 X } 3 3
3 3 0 3 0 3 3 3 3 3 3 3

3 3 3 3 3 •2 x { {2 X ; ' 2 x ; ■'2 x {2 x { 3 3
o 3 0 3 0 3 •2 x } { 2 X ; ' 2 x ; ; 2 x ; • 2 x } 3 3
0 3 3 3 3 3 {2 x } ■2 X } ■2 x ; ■2 X } ■2 x ; 3 3
o 0 3 3 0 3 {2 x] (2 X ; {2 x } ' 2 x] : 2 x ; 3 3

0 3 3 3 3 { 2 X ; 3 3 3 {2 X } {2 x { : 2 x ;
3 D 3 3 3 { 2 X } 3 3 3 3 { 2 X ; { 2 x } (2 x {
0 3 0 3 3 3 3 u1 3 3 0 3 3

0 0 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 : 2 x ; ; 2 x } {2 x ;• ; 2 x ; ; 2 x } 3 3

0 >j 0 3 3 3 \2 x } { 2 x ; {2 x } {2 X ; ' 2 x { 3 3
0 3 3 3 3 3 3 3 3 3 • 2 x ; 3 3
3 3 0 3 3 3 3 3 3 3 ; 2 x ; 3 3

3 w1 3 3 0 { 2 x { 3 3 3 3 3 ; 2 x { ; 2 x {
3 3 3 3 3 { 2 X ; 3 3 3 3 3 {2 x { {2 x {
3 3 0 3 0 3 3 3 3 3 3 ■2 x { 3
0 0 3 3 r t 3 3 J 3 3 3 3 {2 x {
0 0 3 3 0 { 2 x } ' 2 x { {2 x } {2 x ; {2 x ; •;2 x ; ; 2 x ; \ 2 x {
0 3 3 3 J { 2 x ; ■2 x } {2 x ■; 2 x ;• •;2 x ; ; 2 x ; .2 X { ' 2 X ;

Figure 69 - System with Composition Functionality using Variable x with Plus Rule of Association; 2 steps. Columns 1-13 (Helo
Mr1a)

RB Smith Page 214 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Columns 14^24

3 3 3 3 3 3 3 3 3 3 3
0 3 3 0 3 3 3 3 j 3 3
3 3 3 0 0 3 3 0 3 3

0 0 3 3 3 3 3 3 3 3
3 3 0 0 3 3 q 0 j 3

2 x } 0 3 0 3 3 3 { 2 x { x } 3 3
2 x } {2 X ; 3 { 2 x } { 2 x } {2 X } {2 X ; 3 3 3
2 x] ; 2 x } 0 { 2 x } { 2 x { {2 X ; {2 x { o Q 3 3
2 x } ; 2 X } 3 { 2 X ; {2 x } {2 X ; {2 X ; 3 D 3 3
2 x } ; 2 x } 3 ■2 x ; { 2 x { ; 2 x] {2 x } 3 3 3 3
2 x] ; 2 x } 0 { 2 x { { 2 x { {2 X } {2 X ; { 2 x { { 2 x } 3 3
2 x } 0 0 0 3 3 3 { 2 x ;■ \ 2 x } 0 3
2 x . 3 3 0 0 3 3 {2 X ; ■2 X ; 3 3
c c m s - 4 x ;• ; 2 x } 0 ' 2 x { { 2 x { {2 X ; {2 X ; { 2 x { ; 2 X ; 3 3
2 x } {AES - 2 x } 3 {2 X ; {2 x ; ■:2 x ; ■; 2 x ; 0 3 3

0 3 DTEE 0 3 3 3 3 3 3 3

{2 x { {2 x . 0 { I N S - 2 x { { 2 x {2 X ; {2 X; 3 3 3 3
' 2 x { {2 X ; 3 {2 X ; { LCD - 2 x } {2 X ; {2 X } 3 Q 3 3
\2 x } [2 x } 3 { 2 x { {2 x {■ { CAML - 2 x } { 2 x } 3 0 3 3
[2 x { ; 2 x ; 3 { 2 x { {2 X ; ; 2 x ; ; c a m r - 2 x ; 3 3 3 3
•: 2 x ;■ 0 3 w1 3 3 3 { PCTL - 4 x { ■2 x ; 3 3
; 2 x } 3 3 Q 3 3 3 (2 x ;■ { PCTR * 4 x } 3 3

3 w1 0 0 3 3 3 3 3 BUSA 3
3 3 0 0 3 3 3 3 0 3 BUSB
\ 2 x ;• { 2 x ;■ 3 {2 X ; { 2 x { (2 X ; {2 X ; Q 3 3

\ 2 x } ■2 x { 3 • 2 x } {2 x ; { 2 x { {2 X ; 3 3 3
D 0 3 3 3 3 3 { 2 x { Q 3 3
3 0 3 0 3 3 3 3 {2 X ; 3 3
{ 2 x } 0 3 3 3 w’ w1 { 2 x { \2 X} 3 3

; 2 x { 3 3 3 3 3 3 {2 x { ■2 X ; 3 3
3 3 3 o1 3 3 3 3 Q 3 3

0 0 0 0 3 3 3 3 J 3 3
{4 x } ; 2 x } 3 • 2 x ; { 2 x { ■; 2 x ; ■; 2 x ; : 2 x ;• { 2 x } 3 3

■'4 X ; {2 X ; 3 ■;2 x ;• ; 2 x ; {2 x { "2 x ' • 2 x '■ ' 2 x ' 0 3

Figure 70 - System with Composition Functionality using Variable x with Plus Rule of Association; 2 steps. Columns 14-24 (Helo
Mria)

RB Smith Page 215 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Columns 2 5-34

3 3 3 3 3 3 3 2- 3
3 3 3 3 3 3 3 0 •j
3 3 3 3 3 3 3 3
3 3 0 3 3 3 3 3 3
0 3 3 3 3 3 3 3 3
3 0 3 3 (2 x } {2 x } 3 0 2 x }
*2 X ; \ 2 x 3 3 0 3 o 3 2 X ;
(2 x] ■; 2 X ;■ 3 3 3 3 3 0 2 X ;

2 X ; ■ 2 x;- 3 3 3 3 3 0 2 X }
{2 X \2 x } 3 3 3 3 3 0 2 X }
\ i x ; {2 x } {2 x { {2 X ; 3 3 3 0 2 X ;
3 3 3 3 { 2 X ; {2 x } { 2 x } 0 2 X]
0 3 3 3 {2 X; ;2 x ; 3 ■2 x ; 2 X ;
\ 2 x ■ 2 X ; 3 3 {2 X ; {2 x } 3 3 4 X }
■ 2 x ; {2 x } 3 3 3 3 3 3 2 X }
3 3 3 3 3 3 3 0 3
■*2 x } "2 X ; 3 3 3 3 <“\ 0 2 X ;
{ 2 X ; ■; 2 x ;• 3 3 3 3 3 0 2 x }
' 2 x } ;2 x } 3 3 3 3 3 3 2 X ;

;2 x { [2 X ; 3 3 3 3 3 0 2 X ;
3 3 {2 x { 3 {2 X ; {2 x } 3 0 2 X ;
3 3 3 ;2 x } ■2 x { {2 X ; 3 0 2 X ;
3 3 3 3 3 3 3 0 0
3 0 3 3 3 3 3 3 3
■;m i c l ' 2 x } ; 2 x } 3 3 3 3 3 0 2 X }

{ 2 x } { M I C R - 2 x { 3 3 3 3 3 2 x }
3 3 { H E L L - 4 x { 3 3 u1 3 3 3
3 3 3 { H E L R - 4 x } 3 3 3 3 3
j 3 3 3 { T R R L - 2 x } ■2 x } 3 3 2 x }
3 3 3 3 ■ 2 x ; { T R K R - 2 x { 3 3 2 X ;

0 3 3 3 3 3 { N V G L * 2 x ij 3
j 3 3 3 3 3 3 { N V G R - 2 x } 3
{ 2 X ; { 2 X ; 3 3 ■: 2 x ;■ •'.2 x } 3 3 R I S L

2 X ; { 2 X ; 3 3 ' 2 x ’• • 2 x ' 3 3 4 X '

3
2 x'
2 x

2 x

2 x

2 x

2 x

2 x

2 x

4 x

2 x

2 x

2 x

2 x

2 x

2 x

2 x
D
0
■2 X ;

' 2 x }3
3
; 2 x;
■2 x

{ 4 x }

■’ R I S R • 4 x '

Figure 71 - System with Composition Functionality using Variable x with Plus Rule of Association; 2 steps.
Columns 25-34 (Helo Mria)

RB Smith Page 216 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A different viewpoint is generated by consideration of the number of graphs that emanate

from a single vertex. For the purposes of demonstration the Vertex entitled “Structure” is

used as the source vertex. Figure 68 shows the number of n-step graphs, up to 6 steps,
that exist between the Structure node and other vertices in the system. Again, the growth

in complexity is apparent.

To determine the functionality between any source and sink node, recall that each vertex

has been provided with a function label. Also assume that each function has a common

variable x. Then, assuming that the rule of functional association is Plus, Figure 69,
Figure 70 and Figure 71 show, in matrix form, the internode functionality for all two step

relationships in the composition domain.

For example, the function that links nodes 6 (Structure) and 8 (Powerplant) is 4x, where

x is the variable of composition. Also of interest is the fact that most nodes have a path

structure that feeds back to themselves.

A1.6.4 Capacity Analysis

Graph algebra provides the system architect with the capability to determine the overall

capacity between two components. This type of analysis is normally described as the

transportation or flow problem.

The electrical power capacity structure for the helicopter system has been determined,

captured into the N Squared matrix and populated with arbitrary power capacity ‘flow

capability weights’ to demonstrate the method.

RB Smith Page 217 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

RB Smith

Figure 72 - Graph showing capacity structure (Helo Mr2w)

Page 218 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The capacities of the component links are shown as weights in the following matrix.

RB Smith

zz X X * X X X = X DC X X = - = X X X X X X X X X X X X X X X X X X zc

X X X DC X DO X X X X X X X X X X X X X X X X BC X X X X X X X X X X zc

= X X DC » X X X X DC X X X X X X X X X X X = X X X X X X X X X X zc

x =C - = X =' X X ■x X X X X X X X X X X X X = BC X * X X X X X =- = zz zc

zz X X DC X =' X X X X X X DC- X X- X X X X X X X X = == X = X X X BC == zz zc

x X X DC X X X X X X X X OO X X X X- X X X X X X = X X X X' X X X BC X

x X X DC X X X X X X X X X X X X X X X X X X X BC X X X X X X X X X zc

x X X -DC DC X X X X X X X X ■X X X X X X X 1 zz BC X X X X X X X = ■zz zc

x X X DC X X DO X X X X X X X X X X X X X 3 4 zc BC X X X X “ X X X ZZ X

X X X DC X X DD X X X X 30 =0 X X X X X X X 5 6 BC X X X X X X X BC X X zc

SB X X DO X » X X - X DC- X X X X X- X X X X X ■BO ■zz X X X X X X X X X ■zz -zc

ZZ X X DO X X X DC- -X X X X X X X X X X X X X BO zz X X X X X X X X X zz zc

X X X X X =' DC X X X X X X X X X X X X X X BC * X X X X X X X X X z z zc

* X X X X =■ X X X X = =■ X X 7 X X X X X X zc BC X X X X X X X X X zz zc

BC X X =0 X DO X X DC X X X X 0 X X X X X X 9 1 0 zo X X X X X X X X X X X

BC X X X X X X X X DC- X -X -DC- X X X X X X X 1 1 1 2 zc X X X X X X X X X X cr

BC X =0 X X 00 X X X DC- X X X X X X X X X X 1 3 1 4 X X X X X X X X X X X zc

BC X DO 00 X X X 00 X X DC DO -X X X X X X X X 1 5 1 6 X X =C X X X X X X X X X

BC X * X X X X X DO X X X X X X X X X X X 1 7 1 2 X X =C X X X X X X X X BC

BC X 3D X DC X X 00- X X 30 X 30 X X X X X X X 1 9 2 0 X X X X X X » X X X X sc

X X DO X DC X X 2 1 2 2 2 3 X X X X 2 4 2 5 2 € 2 7 2 8 2 9 X 3 0 3 1 3 2 X X X X X X DC X X BC

X X DC X X X X 3 3 3 4 3 5 DO X X X 3 € 3 ” 3 8 3 9 4 0 4 1 X BC 4 2 4 3 X X X X X X X X X ■zc

X X DD 00 X X X X -DO ■30 -X X X X X X X X X X 4 4 4 5 BC X 4 6 X 4 7 X X X X X ■zz zc

X X DO X X =0 X X DO X X X DO X X X- X X X X 4 8 4 9 X X X 5 0 X 5 1 X' X X = X BC

X X DC- X DC 00- X X X X DC- X X X X X X X X X X re 5 2 X X X X X X X X X X zc

X' X DO DC DO DC X X X X X X X X X X X X X X X BC' X 5 3 X X X =* X X X zz zc

X X DO DC X X X X X DO X X X X X X X X X X X BC 5 4 X X X X X X X X X ZZ BC

X X = X K X X X X X DO X X X- X X X X X X X BC X 5 5 X X = X =0 X X X X BC

X = DC. X DC X X X X X DO- X X X X X X X X X X BC X X X X X X X BC X x r

X X DC X X X X- DO DO -DC X X X X X X- X X X X X X X X X X BC " X BC' X X BC

X X DC =■ » X X DD -X X X X X X X X X X X X X BC X X X - X X X X X X X BC

=C bc 00 X X- X X- ■X X X X X X X X X X X X DO BC X = X X X X X' X' = X X BC

W == DC- DO X X » ■00 X X X X X X X X X X X X X =C = =■ X' » X BC' X X X X BC

IC OO 00 X 00 00 00 x — X 00 x 00 x 00 X 00 00 00 00 zz “ X X X X X zc- X ' X X BC' BC

Figure 73 - Adjacency matrix with arbitrary capacity capabilities between each component (Helo Mr2w)
Page 219 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

utl r *

#

RISI

RISL

#

+ !" R

TRKR
#

Figure 74 - Graph diagram of System Structure shown with capacity (arbitrary
values) of each link (Helo Mr2w)

The analysis shows the paths that link the Helmet (28) to the Power System (8) are as

follows.
{{{8,21}, 1},{{8,22}, 2},{{21,24}, 1},{{22,24}, 2},{{24,28}, 3}}

Each link has its associated power capacity and it can be seen that the limiting capacity

is determined by link (8,21) with capacity 1 unit and link (8,22) with capacity 2 units.

Capacity is, of course, not just concerned with ‘transportation’ like constants. Many forms

require each component to be expressed in functional multivariable form.

RB Smith Page 220 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

To demonstrate this viewpoint capacity is expressed in the form of a single polynomial

variable and, for the purposes of demonstration, a simple linear form is used.

The structure of the electrical power distribution system shown in Figure 75.

Figure 75 - Electrical power distribution system (Helo Mr2e)

Each system component has been allocated a unique arbitrary function that
describes its power function. Figure 76 demonstrates the analysis of the N Squared

Matrix for the system.

RB Smith Page 221 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Mr2e, Crluxns 9-12

al" x - a20 x;
CTTL - al" x - 10
al7 x - 9 al9 x -
al" x - a20 x'

ft ft
ft

0
ft

0 ft ft
ft ft ft
ft ft n
Q ft 0

ale x - a2Q x - a23 x - a24 x - a26 x - a2" x - a23 x - a29 x - a34 x - a42 :
a20 x - a23 x - a24 x - a26 x - a27 x - a25 x - a29 x - a34 x'

al" x - a20 x;
al" x - 9 alS x - a2Q x - a23 x - a24 x - a26 x - a2~ x - a2S x - a29 x - a35 x}
UTR - al" x - 10 al9 x- a20 x - a23 x -a24 x - a26 x - a2" x -a2£ x - a29 x - a35 x- a43 :
al7 x - a20 x'

;2 al7 x - ale x -
;al7 x - alS x;
;al7 x - al9 x;-
'CP - al7 x - al2 x - al9 x - 3 a20 x'-

n 0 > 1 8 x - al? x - 2 a23 x; 0
ft

ft
ftl

> 1 8 x - al? x - 2 a24 x;
ft

o
ft

ft ft >1S x - al? x - 2 a26 x ’ ft
- >18 x - al? x - 2 a27 x; 0ft ft >12 x - al? x - 2 a22 x; ft

ft 0 > 1 8 x - al? x - 2 a2? x] 0
> 3 0 x - a34 x; ft n n
0 >31 x - a35 x. n ft
ft ft ft ft
0 ft ft ft

ft
n > 1 2 x - a34 x; ft
0 > 1 9 x - a35 x} ft

c ft ft
£ ft ft o
o ft n ft
ft 0 0 0
ft ft ft ft
ft o ft
ft ft >12 x - a42 x; ft
ft ft > 1 9 x - a43 x; n

Figure 76 - Power Distribution System Function matrix showing 2 step dependency paths; Columns 9-12 only of 34 (Helo
Mr2e)

RB Smith Page 222 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The relationship between the Utility Bus Systems left and right are in element (10,1). The

functional decomposition shows the summation of the 2 step paths that link the two bus

systems is as follows.
" E x p r e s s i o n b e t w e e n U t i l i t y (LHS) Bus a n d U t l i t y (RHS) B u s ;

E l e m e n t 1 0 , 9 (1 0 , 1) "

{ a l 7 x + 9 a l 9 x + a 2 0 x + a 2 3 x + a 2 4 x +

a 2 6 x + a 2 7 x + a 2 8 x + a 2 9 x + a 3 4 x }

i.e. (a17 +9 a19 +a20 +a23+a24 +a26 +a27 +a28 +a29 +a34)x

It shows that the impedance function coefficient ‘a19’ combines with nine other
impedance coefficients to enable the voltage distribution to be calculated for any current

load (x).

A1.6.5 Interconnectivity Analysis

The data-bus interconnectivity structure has been determined and captured in the form of
an N Squared Matrix held in Excel spreadsheet ‘Helo N2 Mr3’.

The graphical form is shown in Figure 77.

. • • • •• •
• “ • ’

Figure 77 - Avionic Bus System Interconnectivity Structure (Helo Mr3)

RB Smith Page 223 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

It is assumed that the functionality of interconnectivity is not related to the functionality of
each element; in effect each component has transfer function of 1.

To demonstrate the functionality relationships a part of the two step path matrix is shown

in Figure 78.

To demonstrate the integrated functionality of the interconnected system the functionality

of each link is described by an arbitrary (a.x + b) type polynomial where x is a system

variable. Each link has unique a, b coefficients and the connectivity between the Laser
Obstacle Detector and the Bus System for 3-step path combinations are shown in Figure

79.

The functionality analysis also shows that only odd lengths of path steps produce any

relationships.

This example demonstrates the capability of the method to provide the overall
functionality between pairs of nodes for a function that can be represented by a

polynomial. The example does not attribute any engineering value to the polynomial.

However, in this context the author suggests that it might represent bus traffic.

RB Smith Page 224 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Interconnectivity Matrix with three steps and polynomial functional insertion; lower left quadrant

o o o o o o o A o o A o o f 327 f 332 - f 327 f 333 f 32" f332 - f327 f333 0 f 327 f332 - f327 f333
o o o A o o o A A o o 0 o f328 f332 - f323 f333 f328 f332 - f323 f333 o f 328 f332 - f328 f333
Q n o n o o A A o 0 o o o f329 f332 - f329 f333 f 329 f332 - f 329 f 333 o f 329 f332 - f329 f333
0 o o A A A o o o o A 0 o f330 f332 - f330 f333 f330 f332 - f 330 f333 0 f330 f332 - f330 f 333
o o A o A o A A o 0 A A o f331 f332 - f331 f333 f 331 f332 - f331 f333 A f 331 f 332 - f331 f333
n o o A A o o o A A o o A o A f 32€ f332 0

o o o A A o o o o A A A A A A f32€ f333 0

o o o A A 0 A o 0 A A o o o o 0 Q

o o o A A A o o A o o A A 0 A A o

o o o A o A o o o o o A o o A A A

o o o A A A A A A A A A A A A A A

o o o A A A A A o o A A o A A A 0

0 o o o o o o o o o o o A o o o A

o 0 o A o o o A o A A o o A A A o

o o A A A o A 0 A A A A A A o A o

o n n A o o o o o 0 o A o o o o o

o A o A A A A A A A A A A A A A A

Figure 78 - Two step functionality relationships; Part Matrix only - lower left quadrant (18-34, and 1-17 of 34,34) (Helo Mr3)

RB Smith Page 225 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Single Element Interconnectivity Function with three steps and polynomial functional insertion; Ncdea BUS A to LOB -> Element '23,1?' only
'fc23 b32£ - fc24 b32£ - b26 b32£ - b2~ b32£ - fc2S b32* - b29 b32* - b30 b32£ -b23 b32 b33 - b24 b32 b33 - b26 b32 b33 - b2" b32 b33 - b2: b32 b33 * b29 b32 b33 - b30 c32 b33 - 2 a32 b23 b32 x - a33 c23 b32 x - 2 a32 fc24 b32 x - a33 b24 b32 x - 2 a32 b26 b3;
a33 b2€ b32 x- 2 a32 b2~ b32 x - a33 b 2 " b 3 2 x - 2 a32 b2S b32 x - a33b28 b32 x - 2 a32 b29 b32 x - a33 b29 b32 x - 2 a32 c30 c32 x - a33b3G b32 x - a23 b32* x- a24 b32* x - a26b32£ x - a2"b32£ x - a2E b32£ x - a29b32£ x - a3C b32£ x - a32b23 b33 x -
a32 b24 fc33 x - a32 b26b33 x - a32 b27 b33 x - a32 b2S b33 x - a32 b29b33 x - a32b3Q b33 x - a 2 3 fc32b33 x - a24 b-32 b33 x - a26b32 b33 x- a27 b32 b33 x - a2£ fc32 b33 x -a29b32 b33 x - a30 b32 b33 x - a32£b23 x£ - a32 a33 b23 x£ -a32£ b24 x£ -
a32 a33 b24 x£ - a32£ b2€ x£ - a32 a33 b2€ x£ - a32£ b27 x£ - a32 a33 b27 x£ - a32l b2S x* - a32 a33 b2E x£ - a32£ b29 x£ - a32 a33 b29 x£ - a32£ b3Q x£ - a32 a33 b3Q x£ - 2 a23 a32 b32 x£ - 2 a24 a32 b32 x£ - 2 a26 a32 b32 x£ - 2 a27 a32 b32 x£ -
2 a25 a32 b32 x£ - 2 a29 a32 b32 x£ - 2 a30 a32b32 x£ - a23 a33 b32 x£ - a24 a33 b32 x£ - a26 a33 b32 x£ - a2~ a33 b32 x£ -a2£ a33 b32 x£ - a29 a33 b32 x£ - a30 a33 b32 x£ - a23 a32 b33 x£ - a24 a32 b33 x£ - a26 a32b33 x£ - a27 a32 b33 x£ - a26 a32 b33 x
a29 a32 b33 x£ - a30 a32 b33 x£ - a23 a32£ x3 - a24 a32£ x3 - a26 a32£ x3 - a2~ a32£ x3 - a28 a32£ x3 - a29 a32£ x3 - a30 a32£ x3 * a23 a32 a33 x3 - a24 a32 a33 x3 - a26 a32 a33 x3 - a27 a32 a33 x 3 - a2S a32 a33 x3 - a29 a32 a33 x3 - a30 a32 a33 x3;

Figure 79 - Functionality of Avionic Bus to Communications system for 3-step path combinations (Helo Mr3)

RB Smith Page 226 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A1.6.6 Functional Analysis

Having established the system structure, its capacity and its interconnectivity, the next

and final task is to assess its functionality.

The functional structure has been determined n the form of an N Squared Matrix held in

an Excel spreadsheet (Ref. Helo N2 Mr4a), and imported into Mathematica Notebook

Helo Mr4a. This is shown in adjacency matrix form in Figure 80. Its graphical description

is shown in Figure 81.

One of the most useful means of system analysis is the use of matrix based network

analysis, and Two-port analysis is just one such technique.

The technique describes each component as a 2x2 matrix each with unique and

application specific coefficients. There is a variety of generic component forms, including,
for example, series impedance, shunt impedance, transformer, coupled inductance. To

enable each type of component to be combined in series (tandem), in parallel or with

hybrid connectivity, three different forms of representation for each component, or groups

of components, are required to maintain analytical consistency. These types are called

transfer function, admittance and hybrid. Each type has a form of transform that enables

its type to be transformed into the other types.

To enable complex networks to be analysed the components need to be grouped

according to whether they are connected in series, in parallel or in a hybrid form.

In the example that follows, each function is a 2-port network component that is either a

series or shunt impedance; in fact a series resistance or a shunt capacitance. Therefore,
the labelled direct product/sum expression in the form ((a o b) + (c o d)) means:

((‘a’ in series with ‘b’) in parallel with (‘c’ in series with ‘d’)).

This means that, firstly the components need to be in A Type, then grouped as

a.b = m and c.d = n terms of products, where m,n are arbitrary matrices,

then m,n need to be transformed to Y form m’,n’ and then summed as (m’+n’) to form the

Y Form of the overall network (q.v. section 9.11.3).

To demonstrate the technique, the resistance and capacitance components are assumed

to be identical and represented by the symbols R and C, and s is the Laplace operator.

The relationships for a one and two path construction has been calculated and Figure

82 shows columns 12,13,and 14 of the 34 column matrix.

RB Smith Page 227 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Each function is represented by a 2x2 matrix using the designation a1,a2,a3,a4;

b1,b2,b3,b4,... etc. Figure 82 shows Column 13 of the matrix. Then Figure 83 shows the

Element (1,13) that demonstrates the construction of the 2x2 matrix of the one and two

path structure between the Cockpit Subsystem and the Operational Mission.

Then the symbols R, C and s are inserted into the 2x2 matrix elements and the transfer

function calculated, as shown in Figure 84. With arbitrary values of R = 1, and C = 1, the

transfer function reduces to 2/(2 + s).

Note. Practical considerations of this A4 based compilation constrain the functionality

that can be shown; please see referenced programs for complete analysis.

RB Smith Page 228 of 262 Issue Final

Design and Integrity of Determii

£410a 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 f411a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 f412a 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 f413a 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 f414a 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 f415a 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 f416a 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 f417a 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 f418a 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 £419a 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 f420a 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 f421a 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 f422a 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 f423a 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 £424a 0 0
0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 f425a 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 £42!
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 o 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 80 - Structure of

RB Smith Page 229

Design and Integrity of Deterministic System Architectures

RI3L ^

Figure 81 - Graph of Functional Domain

RB Smith Page 230 of 262 Issue Final

Design and Integrity of Determin

Path Structures; One and Two steps only; Column 12,13 and 14 only

f 410a
0
0
0
0
0
0
0
0
0
f420a
f 410a
f422a
f 423a
0
0
0
n
0
0
0
o
o
o
f 423a
f423a
f 43€a
0
n
0
f440a
f 422a
f442a
f422a

- f410a f 422a

- f 420a f 422a
f421a - f 420a f421a - f421a f422a - f421a f423a - f421a f440a
- f410a f 422a - f420a f422a- f422a f423a
- f 422a f 423a

f 434a
f 435a
f440a

f441a

f 443a

f410a - f410a f421a
n
0
n

0
0
n
o
o
f420a - f420a f421a
f 421a - f 410a f 421a - f420a f 4
f410a f422a - f420a f422a - f4
f 423a - f421a f423a
0
0
0
o
0
o
o
o
o
o
f 423a f 434a
f423a f 435a
0
f437a f441a
n
n
f421a f 440a
f441a
f421a f442a
f443a

Figure 82 - Path Structures for one and two step

RB Smith Page 231 <

Design and Integrity of Determin

Mission to Pilot Function shewn in Matrix Element m m {l,13}in Admittance Form
m o a* _ <410*3 <421*2+<410*4<421*4 <410*2 <410 *3-<410*1 <410*4 _ (f *10*2 < 421*l+< 410 *4 <421*3) (<410*1 < 42J
<410*2 ~ <410*1 <421*2+< 410 *2 <421*4 <410*2

1 1 <410*1 -<410*1<421*1-<410*2 <421*3
< 410 it f 410 al < 421*2+< 410 *2 < 421*4 < 410 *2 < 410 *1 < 421*2+< 410 *2 < 421*4

Mission to Pilot Function shown in Matrix Element m m [lf13} in A Form
<410*1* <421*2+<410*2* <421*3+< 410*1 <410*2 (<421*l+< 421*4)

< 410 *2+< 410 *1 < 421*2+< 410 *2 < 421*4

<410*1(2 <410*3 <421*2+<410*4 (-l+<421*1+<421*2 <421*3+<421*4-<421*1 <421*4))+<410*2 (2 <410*4 <421*3+<410*3 (.L+<4
<410*2+<410al <421*2+<410*2 <421*4

Figure 83 - Mission to Right Hand Pilot Function shown in Matrix Element mm{1,13} in

RB Smith Page 232

Design and Integrity of Deterministic System Architectures

Mission no Filoo Fur.ooion shown in Maorix Eleaieno am; 1,13' \.n shown with coefficients of ohe 2-Fcro Fcrrnr. for series rcsioance and shu.no oapacioance ccnpcnenos, R and
£ BfC B* s B

1 IE £ |
2 s 1

Mission oo Filoo Funcoicr. shown in Maorix Eleaieno am
£+•* l

1 * * I1 S 1 1
Mission oo Filoo Funcoion shown Transfer Funcoicn

Figure 84 - Insertion of 2-Port Component Symbols and Values. Generation of Transfer Function From Mission to Right Hand Side
Pilot

RB Smith Page 233 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

ADDENDUM TO APPENDIX 1 - INTRODUCTION TO HELICOPTER FLIGHT SAFETY

A helicopter is a type of aircraft that is capable of hovering at zero ground speed as well

as normal translational flight over ground. This is achieved by the use of vertical thrust

with a power that exceeds the aircraft’s weight combined with normally powered wing

borne flight, when the power required to sustain flight is a fraction of the aircraft’s weight.

To ensure safe flight many types of hazard that have the potential to lead to a severe

safety related condition need to be addressed. Therefore, to understand the rationale for

the system configurations and the appraisal of the analysis results, it is useful for the

reader to understand certain issues that pertain to safe flight of a helicopter. The major

flight regimes are described as follows.

AA1.1 Avoid Curve

This is the boundary of the region of the operational flight envelope within which in the

event of loss of power, insufficient altitude clearance exists below the aircraft to enable

the rotorcraft either to make a safe autorotation landing or to attain sustainable flying

speed in level flight.

AA1.2 Minimum Power Speed

This is the speed, in knots, at which the rotorcraft flies in sustainable level flight at sea

level ISA conditions with minimum engine power.

AA1.3 Minimum Safety Height

This is defined as 1000 feet above the highest terrain obstacle within a radius of 5

nautical miles of the aircraft.

AA1.4 Minimum Autorotation Height

This is the minimum height above a proposed landing site for the pilot to establish and

control the aircraft to a safe landing from the decision point to make a safe a autorotation

landing.

AA1.5 Minimum Obstacle Visual Reference Region

This is the region within which it is necessary for the pilot to see any terrain features or

obstacles in order to execute avoidance manoeuvres without the aid of the NVS This is

typically a minimum of 400 feet altitude and 500 metres range.

RB Smith Page 234 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

AA1.6 Operation Flight Envelope Segmentation

As a consequence of the versatility of a helicopter for both powered and aerodynamic

flight in relation to the techniques for hazard survival, helicopter flight envelopes are

segmented as shown in the following table.

Band Range Description

Altitude (feet)

1 0-150 This is the band for minimum visibility required for taxiing, take-off,
low level flight and landing (including autorotation).

2 150-400 This band covers the altitude range in which it is highly undesirable
to combine with flight speeds that are lower than that required to
sustain equivalent wing borne flight.

3 400 - Ceiling This is for all standard mission flight profiles and segmented by
minimum safety altitudes required to comply with ATC flight rules.

Speed (knots)

1 0-40 This covers the speed below the transition speed, the speeds within
the avoid curve and hovering in and out of ground effect.

2 40-70 This covers the range between minimum flight speeds for sustained
equivalent wing borne flight above the avoid curve and the minimum
power speed.

3 70 to VNE This covers the range of speeds for normal flight operations.

Table 25 - Typical Segmentation of a Helicopter Flight Envelope

RB Smith Page 235 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

AA1.7 Piloting Modes

Assuming that the minimum visibility for authorised flight is based on obstacle clearance

with 400 feet minimum cloud base and 500 metres range, then three piloting modes are

required to provide day night all weather operations.

1. VMC

2. IMC assisted with external visual reference information to provide minimum

obstacle clearance.

3. IMC without any external visual reference information.

Therefore, the operational modes are as shown in Table 26.

Mode Operational Description Piloting Mode

1A Standard Flight in
Controlled Airspace

a)VMC
b) IMC without VMC equivalent external visual
references.

1B Standard Flight not in
Controlled Airspace

a)VMC
b) IMC without VMC equivalent external visual
references.

2 Hover and Low
speed/altitude manoeuvring.

a)VMC
b) IMC with minimum VMC equivalent external visual
references.

3 Nap of the earth. a)VMC
b) IMC with minimum VMC equivalent external visual
references.

4A Low speed out of ground
effect manoeuvring in
Controlled Airspace.

a)VMC
b) IMC without VMC equivalent external visual
references.

4B Low speed out of ground
effect manoeuvring not in
Controlled Airspace.

a)VMC
b) IMC without VMC equivalent external visual
references.

Table 26 - Operational and Piloting Modes for a Typical Helicopter

Note 1. The effects of day and night operations are included within the definitions of

piloting modes.

Note 2. IMC manoeuvring operations without the use of visual references of the ground

below for the hover and NOE modes are not safe.

Note 3. The effects of environmental conditions need to be included in the selection of

the piloting mode.

Note 4. For flying at altitudes above 400 feet and below the minimum safety altitude in

IMC it is a condition that either the pilot or commander must be able to see

RB Smith Page 236 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

the ground with VMC equivalent performance assisted as required by NVG or
other piloting vision system.

The minimum information requirements for the pilot to deal satisfactorily with various

hazards are shown in the following table.

Ref. Hazard Relevant Piloting Parameter;
Measured

Relevant Piloting Parameter;
Inferred

A Loss of attitude
control.

Pitch attitude
Roll attitude
Heading
Height
Speed (IAS)
Torque
Vertical Speed

Yaw rate

B Loss of spatial
position.
Loss of geographical
position.

Pitch attitude
Roll attitude
Heading
Height
Speed (IAS)
Torque
Position
Height (Baro)
Speed (IAS)
Heading
Track
Map (hand held)

Ground Speed

Height error
Heading error
Track error
Ground speed

C Loss of power. Height
Speed (IAS)
Torque
Engine rpm
Engine PTIT
Rotor rpm

Yaw rate
Roll rate
Height rate
Pitch attitude
Roll attitude

D Loss of terrain or
Obstruction
clearance.

Pitch attitude
Roll attitude
Heading
(Height)
Speed (IAS)
Map (hand held)

Tip path plane
Ground slope
Inceptor positions
Terrain / obstruction data

E Collisions: -
other aircraft
foreign
objects
birds
obstacles

Ext & Int Comms
Int Comms
Ext & Int Comms
Internal Comms

Manoeuvre limits
Engine response
Safe escape route

F Disorientation. Artificial Horizon
Heading
Height
Speed (IAS)
Vertical Speed

State recognition

Table 27 - Hazard Control Piloting Information Requirements

RB Smith Page 237 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

APPENDIX 2 BACKGROUND MATHEMATICS

A2.1 Abstract Algebra

The following analysis techniques are based on some basic principles of abstract

algebra. Many textbooks elucidate the required mathematical principles and the following

axiomatic definitions are taken from ‘Algebra’, J.W. Archibald, 1970, [115].

A Set is defined by the following axioms.

Axiom 1.

i) Reflexive property of inclusion; S <z S for all S.

ii) Transitive property; If Si c= S2 and S2 ci S3 then Si c S3.

Axiom 2.

i) Reflexive property of equality of sets; S = S for all S.

ii) Symmetric property; If Si = S2 then S2 = Si

iii) Transitive property; If Si = S2and S2 = S3 then Si = S3 .

Axiom 3.

i) Idempotent property of intersection; S n S = S for all S.

ii) Symmetric property; Si n S2 = S2 n Si for all Si, S2.

iii) Associative property; Si n (S2 n S3) = (Si n S2) n S3 for all Si, S2, S3.

Axiom 4.

i) Idempotent property of union; S u S = S for all S.

ii) Symmetric property; Si u S2 = S2 u Si for all Si, S2.

iii) Associative property; Si u (S2 u S3) = (Si u S2) u S3 for all Si, S2, S3.

Axiom 5.

Let S be a non-empty set. A binary relation R from S to S i.e. a subset of S x S is an

equivalence relation on S when:

i) Reflexive property; xRx for every x in S.

ii) Symmetric property; whenever xRy then yRx.

iii) Transitive property; whenever xRy and yRz then xRz.

RB Smith Page 238 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A Group is defined as follows.

A system (G, o) consisting of a non-empty set G and a law of binary composition o is a

Group when

i) G is closed under o

ii) o is associative

iii) o has a left identity e

iv) Every a in G has a left inverse a1 with respect to e.

When two sets A, B are defined as {a, b} and {c, d}, the Cartesian Product, A x B = {(x,

y): x £ A and y £ B} is the set of all ordered pairs {(a, c), (a, d), (b, c), (b, d)}. Each

component represents a function. So each ordered pair represents the functions that

must be combined to determine the functionality of the pair; see ‘Introduction to Set

Theory and Topology’, K. Kuratowski, 1972, [116]. The component functions in each set

may be combined by the operations of Union, Intersection or Difference.

Two elements commute when:

1. (a + b) + c = a + (b + c),

2. a + b = b + a,

3. a + 0 = a, and

4. a + (-a) = 0.

The system is Abelian when its binary operation is commutative.

A Group G is called a Direct Product of proper sub-groups Hi.-.-Hn when:

i) Every x in G has a representation x = h1,...,hn with hi in Hi,..., hn in Hn.

ii) This representation is unique.

iii) Every element in Hi commutes with every element in Hj when #j.

Then G = Hi x H2 x ... x Hn, the order of the factors being immaterial.

This also applies to the direct sum G=H1 + H2 + ...+ Hn.

A2.2 Graph Theory

The origins of graph theory are typically traced to a paper written by Leonhard Euler in

1736 for the Imperial Academy of Science at St. Petersburg; see ‘Graph Theory 1736-

1936’, N. L. Biggs, E. K. Lloyd, R. J. Wilson, Oxford, 1976, [42a].

The problem concerned the city of Koenigsberg. The river Pregel flows through the city

and at one point it separates into two branches that surround an island. To enable the

RB Smith Page 239 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

population to have easy access to all four parts of the city the river is spanned by seven

bridges. Th e problem was to devise a route whereby a traveller would reach each part of

the city by crossing each bridge only once.

Figure 85a - Schematic of City of Koenigsberg and Bridges over the River Pregel
(D18)

A schem atic of Koenigsberg with the island of Kneiphof is shown in Figure 85a. Euler’s

paper considered the problem by allocating four letters, A, B, C, D, that represented the

four parts of the city and represented the bridges by the letters a ,.... , g.

Firstly, Euler abstracted the problem into a form of graph as shown in Figure 85b.

RB Smith Page 240 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

o
d

eo o
3 o I

Figure 85b - Map of Koenigsberg shown as a Graph

Secondly, he represented a movement from A to B to C by the sequence ABC. The

num ber of potential routes could then be determ ined by consideration of sequences of

letters. To be successful a sequence of one plus the num ber of bridges is required.

Therefore, a sequence of eight letters is required to consist of pairings equal to the

num ber of bridges used. So AB is required twice, AC is required twice and AD, BD, CD

m ust each occur once. Therefore, ‘A ’ must occur three times and ‘B ’, ‘C ’ and ‘D ’ must

occur twice; this is clearly impossible in an eight-letter sequence.

Therefore, it is not possible to find such a route. He derived a rule that says that for an

odd num ber of bridges the num ber of times a territory can be accessed must equal ‘half

of one plus the number of bridges’.

For an even number of bridges the num ber of times a territory can be accessed is equal

to half the number of bridges if not starting from A, and one plus half the num ber of

bridges if starting from A.

Th e theory of directed graphs (digraphs) is based on four primitives and four axioms, as

outlined by Harary et al, [42b],

Th e primitives are:

P 1 : A set V of elements called ‘vertices or nodes’.

P2: A set X of elem ents called ‘directed lines’.

P3: A function f whose domain is X and whose range is contained within V.

P4: A function s whose domain is X and whose range is contained within V.

RB Smith Page 241 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A1: The set V is non-empty and finite.

A2: The set X is finite.

A3: No two distinct lines are parallel.

A4: There are no loops.

The types of relationships are described as follows:

A walk is the sequence of one or more and zero or more edges.

A path is a walk in which each node is distinct; i.e. there are no repeated nodes.

A trail is a walk in which each edge is distinct. A circuit is a closed trail.

A cycle is a circuit in which all the nodes are distinct.

To enable these relationships to be determined the idea of connectedness is used. Each

pair of nodes is:

Weakly connected if there is a semi-path between them.

Unilaterally connected if there is a path between them.

Strongly connected if there is a path in both directions.

The structure of the graph can be evaluated in terms of the trees and distance,

connectivity and colourings, see ‘Introduction to Graph Theory’, D. B. West, 2001, [42c].

RB Smith Page 242 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A2.3 Dynamical Systems

Since the underlying assumption that a machine system is some form of automata, the

foundations of modern systems dynamics are summarised by the following axioms:

(See Topics in Mathematical System Theory’, R E Kalman, P.L Falb, M.A.Arbib, 1969,

McGraw Hill. [51].

1) There is a given time set T, a state set X, a set of input values U, a set of

acceptable input functions Q = {oo: T -» U}, a set of output values Y, and a set of

output functions T = {y : T ->■ Y}.

2) T is an ordered subset of reals.

3) The input space Q satisfies the following conditions:

a) Q is not empty.

b) An input segment co(t1, t2) is oosQ restricted to (t1 , t2) n T. If oo, oo'eQ and t1 <t2<t3

there is an co"eQ such that co"(ti, t2) = oo^, t2). and oo"(t2> t3). = co'(t2, t3).

4) There is a state transition function c p : T x T x X x Q - > X whose value is the state

x(t) = (p(t; x,x,co)eX resulting at time teT from the initial state x = x(x)eX at initial time

tsT under the action of the input coeQ where op has the following properties:

a) <p is defined for all t>x but not necessarily for all t<x.

b) cp(t; x,x,oo) = X for all teT, xsX, ooeQ.

c) For any t1<t2<t3 we have cp(t3; x1,x,oo) = op(t3; x2,x cp(t2; x1,x,co),co) for all xsX,

ooeQ.

d) If oo, oo'eQ and oo(x,t). = co'(x,t) then cp(t; x.x.oo) = cp(t; x,x,oo').

5) There is a readout map r| : T x X -► Y which defines the output y(t) = rj(t, x(t))

where the map (x,t) -> Y given by o -> r|(a,(p(a; x,x,co)), aoo(x,t) is an output

segment, that is the restriction y(x,t) of some yeT to (x,t).

A system is constant (time invariant) if its response to a given input segment (in a given

state) is independent of the time interval in which the trial takes place.

RB Smith Page 243 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

This is defined as follows:

A dynamical system Z is constant iff:

1) T is a additive group (usually of reals)

2) Q is closed under the shift operator Zx: c o co' defined by co'(t) = co(t+x) for all x, tsT

3) (p(t; x.x.co) = cp(t+s; x+s,x,Zsco) for all seT

4) The map r|(t, .): X Y is independent of t.

A dynamical system Z is continuous iff T = reals; Z is discrete time iff T = integers.

A dynamical system Z is finite dimensional iff X is a finite dimensional linear space; Z is

finite state iff X is a finite set. Z is finite iff X, U and Y are finite sets and, in addition, Z is

constant and discrete time. Thus dim Z A dim X.

A dynamical system Z is linear iff:

1) X, U, Q, Y and T are vector spaces (over a given arbitrary field K).

2) The map cp(t; x,.,.): X x Q X is K linear for all t and x.

3) The map r|(t, .): X -> Y is K linear for all t.

A dynamical system is smooth iff:

1) T = R the real numbers.

2) X and Q are topological spaces.

3) The transition map has the property that defines a continuous map.

A dynamical system Z in the input/output sense is a composite mathematical concept

defined as follows:

There are given sets T, U, Q, Y and T satisfying all the properties required by Definition 1

There is given a set indexing a family of functions

3 = {fa- T x Q -> Y, aeA}:

wherein each member of 3 is written explicitly as f a (t, to) = y(t) which is the output

resulting at time t from the input c o under the experiment a.

RB Smith Page 244 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Each f a is called an input/output function and has the following properties:

1) Direction of time. There is a map i : A T such that f a (t, co) is defined for all

t> i(a) .

2) Causality. Let x, t — g T and x̂ t. If co, cof£ 0 and co(rt) = co^t) then f a (t, co) = f a (t, co')

for all a such that x = i(a).

If S is a smooth dynamical system then assume that;

1) T = R, X and U are normed spaces.

2) Q is the normed space of continuous functions T U with ||co || = sup(t = e T)

l|u(t)||.

3) cp(.; x.x.co) g C1(T -> X) for each x,x, and co and the map T x X x Q - > X given by

(x,x,co) cp(dot)(t; x.x.co) is continuous for each t with respect to the product

topology.

Then the transition function cp of I is a solution of the differential equation dx/dt =

/(t,x,7ctco) where the operator 7it is a map Q -> U given by co -> u(t) = co(t).

For dynamical systems that are finite dimensional, linear and smooth and as the state

space must be a vector space with X = Rn. Then the transition function must be linear on

X x Q then

cp(t; x,x,co) = cp(t; x,x,0) + cp(t; x,0,co)
= 0 (t , x) x + 0 (t , x) co

The linear map x -» 3>(t, x) x defined by the first term is the transition map of S.

As £ is smooth then T = R and cp satisfies the differential equation

(d/dt) cp(t; x,x,co) = / (t, cp((t; x,x,co), u(t))

Then the functions F : T -> {n x n matrices} and G : T -> {n x m matrices} can be

introduced as follows:

/(t,x,u(t)) = F(t)x + G(t)u(t)
Y = /(t,x,u(t))

where cp satisfies the differential equation dx/dt = F(t)x + G(t)u(t) and the transition

matrix O satisfies the differential equation (d/dt) 0(t, x) = F(t) 0(t, x).

Further, since ti is linear on X then y(t) = r|(t,x(t),u(t)) = H(t)x(t) + J(t)u(t)

Therefore, every continuous time finite dimensional linear smooth dynamical system I

obeys these relationships.

RB Smith Page 245 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

A2.4 State Space representation of Combinations of Dynamic Systems

Block diagram s of dynamical systems are usually represented in transfer function form.

Sub-system s can be connected together in series or parallel as shown in Figure 86.

U(1) Gi(s) G2(S)I m

Systems in Series

Y (2)SUMU(1)

Systems in Parallel

Figure 86 - Transfer Function Block Diagram of Systems Connected in Series and
Parallel (D19)

If the two system s have the sam e dimensions and inputs so that

yi(s) = Gi(s).Uj(s), where i = 1,2,

the transfer function of systems in series and parallel are respectively

y2(s) = Gj(s). G2(s). Uj(s), and
y2(s) = [Gj(s) + G2(s)]. Uj(s).

T h e normal form of the state equations are as follows:

sx = Ax + Bu
y = Cx + Du

w here s is the Laplace differential operator, A, B, C, D are the system matrices, u is

the input matrix, x is the system state matrix and y is the output matrix.

The standard form of the system equation is:

si - A B
- C D

/ \ x

\ ~ u y - y .

RB Smith Page 246 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

The transfer function G(s) can be represented in state variable form as follows:

G(s) = C (sl-A)'1 B + D

Two systems are designated as Pi =
.sZ-Al b V ' s i - A2 52"

and P2 =
, - c i D l , - C 2 D2j

\ (x\]
f 0 1

x2 0

- u2 0

Systems in series are combined as follows:

f 0 A\ 0 B\
A2 0 B2 0

0 -C \ - I D\

x- C 2 0 D2 0

To reduce this to the least order the internal decoupling zeroes must be found; see ‘State

Space and Multivariable Theory’, H H Rosenbrock, 1970, [117].

When systems are combined in parallel, since ^ = u2 = u and yi + y2 = y, the system

matrix is as follows:

B\

B2
C2 D\ + D2

A2.5 Conclusion

The behaviour of subsystems can be represented in state variable form and can be

combined as a union (x) or intersection (+).

A\ 0

0 A2

- C l -C 2

\ ' x \ '
f 0l

x2 - 0

J K U ; v T y

RB Smith Page 247 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

APPENDIX 3 BOND GRAPHS

A3.1 Component Models for Bond Graphs

To enable the Bond Graph methodology to be applied to all systems engineering

domains of interest, the following extension to generic parameter definition is proposed.

Relationship with Optical systems Domain

It is proposed that the across and through variables correspond to solid angle and

luminous flux.

Relationships with Electro-magnetic Radiation Domain

It is proposed that the across and through variables correspond to electric field and

current.

Relationship with Radioactivity Domain

The unit of activity is based on the number of disintegrations per second; Curie or

Rutherford.

The unit of radiation is the Roentgen and the Rad is the unit of absorbed radiation.

It is proposed that the across and through variables correspond to half life and radiation

intensity.

Relationship with Information Science Domain

As part of his work on communication systems, Norbert Wiener, in ‘Cybernetics’ [48]

deduced the fact that information could be represented by a binary code and Shannon,

1948, [118], defined the number of bits required to represent information in terms of its

uncertainty as:

I = log2(1/p) where p is the probability of the information event.

The energetic capacity of an information system is known as its information entropy. Suh

addressed the information content of design, [81]. He defined the probability of success

in a measurement as the Acceptable Range/Actual Range; tolerance/range.

Relationship with Transportation Logistics Domain

It is proposed that the across and through variables correspond to volume flow and unit

type.

RB Smith Page 248 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Ref. Discipline Across variable Through variable Resistance Inertance Capacitance

1 Occupancy Length Metric space unit N/A N/A N/A
2a Mechanical

(linear)
Displacement Force Friction Mass Spring constant

2b Mechanical
(rotational)

Angular
displacement

Torque Friction Moment of Inertia Spring constant

3a Mechanical dynamic
(linear)

Force Velocity Friction Mass Spring constant

3b Mechanical dynamic
(rotational)

Torque Angular velocity Friction Moment of Inertia Spring constant

4 Hydraulic Pressure Volumetric rate of
change

Restriction Mass Compressibility

5 Pneumatic/
Acoustic

Pressure Volumetric rate of
change

Restriction Mass Compressibility

6 Electrical Voltage Current Impedance Inductance Capacitance
7 Magnetic Magneto motive

force
Magnetic flux Impedance Inductance Capacitance

8 Optical Field Current Absorber/ spectrum
filter

Path delay N/A (pump/
Intensifier)

9 EM Solid angle Luminous flux Impedance Inductance Capacitance
10 Radioactivity Radiation

intensity
Dose rate Absorber <> Half life

11 Thermal Temperature Entropy change rate Thermal
conductivity

N/A Thermal capacitance

12 Material Chemical
potential

Mole flow rate Absorber <> <>

13 Chemical Enthalpy Mass flow rate Absorber <> <>

14 Computing Information rate
(baud rate)

Memory Rate restriction Delay Storage/ memory

15 Transportation Logistics Item/asset flow Unit type Transaction rate
restriction

Delay Storage

16 Institutional Activity Activity/Task flow Unit type Transaction rate
restriction

Delay Storage

Table 28 - Proposed Bond and Pseudo Bond Graph Generic and Discipline Equivalence Components.

RB Smith Page 249 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Relationship with Institutional Activity Domain

It is proposed that the across and through variables correspond to volume flow and unit

type.

A3.2 Extension of Applicability of Bond Graph and pseudo Bond Graph

Capability

The proposed additional generic components and state variables, that enable the utility

of pseudo Bond Graph constructions to be extended to multi-disciplinary systems, are

shown in Table 28.

A3.3 Component Representation for Intra-Domain Analysis

To enable sub-system representations to be combined using the terms of the Direct

Product in the sense of union or intersection, the representation needs to assess series

and parallel component combinations.

The following Table has been generated to consolidate sub-system representation using

across and through variables for both capacity and behavioural analysis.

RB Smith Page 250 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Ref.
Discipline Across

Variable
Through
Variable

Capacity Behaviour

A b Parameter Series Parallel State variable Series Parallel
1 Occupancy Length Metric space unit

2a Mechanical
Strength

Displacement Force Work
W = a x b

W t > W 2 ... W-,+- W 2
+-...

Displacement D = I d n
n = 1,..,N

D = di ^d2

2b Angular
displacement

Torque Work
W = a x b

\N, > W 2 ... W i+ - W 2
+-...

Angular
displacement

D = Z d n
n = 1,..,N

D = di ^d2

3a Mechanical motion Force Velocity Energy
E = a x b

e , * e 2 ... Ei+- E2 +- Displacement D = I d n
n = 1 ,N

D = di £d2

3b Torque Angular velocity Displacemen
t

D = I d „
n = 1....N

D = di
^d2. ..

Angular
displacement

D = I d n
n = 1....N

D = d! ^d2

4 Hydraulic Pressure Volumetric rate of
change

Work
W = a x b

\N: ^ W 2 ... W ,+ - W 2
+-...

Pressure P = Pi *p 2 ... P = I Pn,
n = 1,..,N

5 Pneumatic/Acoustic Pressure Volumetric rate of
change

Energy
E = a x b

Ei £ E2 ... E-I+- E2 +- Intensity S = Si ^s2 ... S = I Sn,
n = 1,..,N

6 Electrical Voltage Current Energy
E = a x b

Ei £ E2 ... E i+- E2 +- Charge Q = qi £q2 ... Q = X qn. n
= 1....N

7 Magnetic Magneto
motive force

Magnetic flux Energy
E = a x b

e ^ e 2 ... Ei+- E2 +- Magnetic flux M = rm <m2 M = I mn,
n = 1,..,N

8 EM/RF Field Current Energy
E = a x b

E ^ E a . . . Ei+- E2 +- Field strength M = rm ^m2 M = I mn,
n = 1,..,N

9 Optical Solid angle Luminous flux Energy
E = a x b

e ^ e 2 ... Ei+- E2 + - Intensity I = i-i ^ i2 ... I = I in, n =
I I ■. N

10 Radioactivity Half life Radiation
intensity

Dose
R = a x b

R i ^ R2 ... R i+- R2 + - Intensity R = n < r2 ... R = X rn,
n = 1,..,N

RB Smith Page 251 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Ref.
Discipline Across

Variable
Through
Variable

Capacity Behaviour

A b Parameter Series Parallel State variable Series Parallel

11 Thermal Temperature Entropy change
rate

Heat
H = a x b

Hi £ H2 ... H1+- H2 +- Entropy R = r1 ̂r2... R = I rn,
n = 1....N

12 Material Chemical
potential

Mole flow rate Energy
E = a x b

e1> e2... E1+- E2 +- Mole number R = r, s r2... R = I r„.
n= 1 ,..,N

13 Chemical Enthalpy Mass flow rate Energy
E = a x b

e1> e2... Ei+- E2 +- Mole number R = ri <> r2... R = I rn,
n= 1,..,N

14 Informatic Information
rate (baud
rate)

Memory C = a x b Inequality IC
max/min

C = a x b T ransfer
function
(dC/dt)

IC

15 Transportation
logistics

Item/asset
flow
(units/sec)

Item/asset type T = a x b Inequality IT
max/min

T = a x b T ransfer
function
(dT/dt)

IT

16 Activity/information Activity/Task
flow
(Units/sec)

Activity/Task type A = a x b Inequality IA
max/min

A = a x b Transfer
function
(dA/dt)

IA

Table 29 - Component Representation for Intra-domain Analysis

RB Smith Page 252 of 262 Issue Final

Design and Integrity of Deterr

APPENDIX 4 -

Ref. Author Title Section/P

1 E Rechtin The Foundations of Systems Architecting

2a RA Frosch A Classic Look at Systems Engineering Introduction

2b FT Hoban and WM Lawbaugh
Editors

Readings in Systems Engineering

3 C W Churchman The Design of Enquiring Systems

4 Capability Maturity Model Integration

5 M. W. Maier and E. Rechtin The Art of Systems Architecting; 2nd Edition

6 The Riverside University Dictionary,

7 P Checkland et al Systems Thinking, Systems Practice

8 S Pugh Total Design

9 Systems Engineering Handbook Versions 2 and 3

10 English Dictionary - Millenium Edition

11 M Ernes, A Smith and D
Cowper

Confronting an Identity Crisis - How to Brand
Systems Engineering

12a G.J.KIir Facets of Systems Science Chapter 2

12b G.J.KIir Facets of Systems Science Chapter 4

12c G.J.KIir Facets of Systems Science Chapter 9

13 H.H.Goode and R.E Machol Systems Engineering: An Introduction to the Design
of Large Scale Systems

14 R F Miles Systems Concepts; Lectures on Contemporary
Approaches to Systems

15 Systems Engineering Management

16 BS Blanchard Logistics Engineering and Management Continuous Acquis
Supprt

17 Systems Engineering Management Guide

18 NASA Systems Engineering Handbook

19 Joint Technical Committee,
JTC 1

Systems Engineering - System Lifecycle Processes

RB Smith Page 2!

Design and Integrity of Deteri

Ref. Author Title Section/P

20 Architecture Framework

21 G Taguchi 1. System of Experimental Design Edited by D
Clausing 2. Introduction to Quality Engineering

22 L Cohen Quality Function Deployment

23 J Hartley Simultaneous Engineering
24 E Yourdon Structured Design Fundamentals of a Discipline of

Computer Program and Systems Design

25 O-J Dahl, EW Dijkstra and
CAR Hoare

Structured Programming Section 1

26 CAR Hoare Communicating Sequential Processes

27 B Carre Graphs and Networks

28 FW Taylor The Principles of Scientific Management On the Art of Cuttir

29a S Beer The Heart of the Enterprise

29b H G Dallenbach, J A George
and D C McNickle

Introduction to Operations Research Techniques

30 Programme Evaluation and Review Technique

31a
Automated Interchange of Technical Information

31b CALS Implementation Guide
32 Systems Engineering Data Exchange System

33 G Pahl and W Beitz Engineering Design: a Systematic Approach

34 L von Bertalanffy General Systems Theory, Foundations,
Developments, Applications

35 W R Ashby General Systems Theory as a New Discipline 3,1-6

36 R C Conant Laws of Information which Govern Systems On Systems, Mans
Cybernetics pp 24(

37 J W Forrester Principles of Systems

38 L A Zadeh Outline of a new Approach to the Analysis for
Complex Systems and Decision Processes

On Systems, Mans
Cybernetics

39 G J Klir An Approach to General Systems Theory

40 M D Mesarovic Mathematical Theory of General Systems Pp35-40

RB Smith Page 2

Design and Integrity of Deter

Ref. Author Title Section/F

41 A W Wymore A Mathematical Theory of Systems Engineering

42a N L Biggs, E K Lloyd, R J
Wilson

Graph Theory, 1736-1936

42b F Harary, RZ Norman, D
Cartright

Structural Models; An Introduction to the Theory of
Directed Graphs

42c D B West Introduction to Graph Theory 2nd Edition
43 L W Beineke, R J Wilson Graph Connections

44a WR Evans Graphical Analysis of Control Systems Control Systems S
Truxal

44b J G Truxal Control System Synthesis

45 A G J MacFarlane Engineering Systems Analysis

46 H M Paynter Analysis and Design of Engineering Systems

47 D C Karnopp and R C
Rosenberg

Analysis and Simulation of Multi-port systems

48 N Wiener Cybernetics

48a W R Ashby An Introduction to Cybernetics

49 R D Watts The Elements of Design; The Design Method

50 L Finklestein Measurement and Instrumentation Science: an
analytical review

Vol 14 Pp 3-14

51 R E Kalman, P L Falb and M A
Arbib

Topics in Mathematical System Theory

52 M R Hestenes Calculus of Variations and Optimal Control Theory

53 N Wiener - H Hopf Wiener-Hopf Equation See The Statistica
Communication b)

54 L S Pontryagin, V G
Boltyanskii, R V Gamkreligze,
E F Mishenko

The Mathematical Theory of Optimal Processes

55a G Hadley Linear Programming

55b B S Gottfried, J Weisman Introduction to Optimisation Theory

56 R Bellman The Theory of Dynamic Programming Dynamic Program
the Travelling Salt

57 A G J MacFarlane Dynamical System Models

RB Smith Page 2

Design and Integrity of Deter

Ref. Author Title Section/F

58 L Finklestein and R D Watts Measurement as a Systematic Study Pp 101-105

59 A W Wymore Model based Systems Engineering

60 B Cohen, W T Harwood and M
I Jackson

The Specification of Complex Systems

61 C Jones Systematic Software Development using VDM

62 K Jackson, H Simpson MASCOT; A Modular Approach to Software
Construction, Operation and Test

See Flow based P
Chapter 17.

63 D Harel, A Pnueli, JP Schmidt,
R Sherman

On the Formal Semantics of State Charts State Mate

64 M Alford Requirements Driven Design RDD-100

65 D M Buede The Engineering Design of Systems; Models and
Methods

Chapter 1.

66 A Olsen, B Moeller-Pederson,
R Reed, JRW Smith

Systems Engineering Using SDL-92

67 J Arlow and I Neustadt UML and the Unified Process

68 The Object Management Group SysML

69 DODAF/AP233 Integration of DODAF with STEP

70 A Kossiakoff, W N Sweet Systems Engineering Principles and Practice

71 R Stevens, P Brook, K
Jackson, S Arnold

Systems engineering; Coping with Complexity

72 Systems Engineering

73 H Nicholson (Editor) Modelling of Dynamic Systems Vol 1

73a R G E Franks Modelling and Simulation in Chemical Engineering

74 S J Mason Feedback Theory; Some properties of Signal Flow
Graphs

75 R Billinton, R N Allan Reliability Evaluation of Engineering Systems

76 D J Hatley, I A Pirbhai Strategies for Real-time System Specification

77 R J Lano N2 charts and Interface Analysis TRW Series on Sc

78 J C Boarder A Practical Introduction to Informal Methods Software Engineei
Education. Editors
Ross, G Staples, (

RB Smith Page 2

Design and Integrity of Deter

Ref. Author Title Section/I

79 0 Becker, J Ben-Asher, I
Ackerman

A Method for System Interface Reduction Using N2
Charts

80 DSM Interest Group internal meeting notes.

81 NPSuh The Principles of Design

82a T U Pimmler, S D Eppinger Design Structure Matrix

82b Design Structure Matrix

83 M D Guenov, S G Barker Application of Axiomatic Design Structure Matrix to
the Decomposition of Engineering Systems

pp. 29-40
84 G W C Kaye and T H Laby Tables of Physical and Chemical Constants 16th Edition

85 F J Evans and J J van Dixhorn
(Editors)

Physical Structure in Systems Theory - Network
Approaches to Engineering and Economics

Towards More Ph
Systems Theory

86 F A Firestone A New Analogy between Electrical and Mechanical
Systems

A 4 pp 249-267

86a M Vaulot Sur les Constantes d'un Quadripole Passif Vol 22. p 493

87 F Strecker and R Feldtkeller Grundlagen der Theorie des Allgemeinen Vierpols Vol 6 p. 93

88 L A Pipes The Matrix Theory of Four-terminal Networks p. 370

89 S R Deards The Matrix Theory of Linear two-port Networks ES451 SRD MJW

90 H A Wheeler and D Dettinger Measuring the Efficiency of a Superheterodyne
Converter by the Input impedance circle diagram

91 D Karnopp Power Conserving Transformations: Physical
Interpretations and Applications using Bond Graphs

Vol 288 Pp 175-2(

92 AK Sumantaray Editor About Bond Graphs - The System Modelling World

93 D C Karnopp, D L Margolis
and R C Rosenberg

System Dynamics. Modelling and Simulation of
Mechatronic Systems

94 G J Klir Reconstructability Analysis: An offspring of Ashby's
Constraint Analysis

95 R L Flood, E R Carson Dealing with Complexity

96 RB Smith System Design Environments

97 W L Chapman, J Rozenblit and
A T Bahill

System Design is an NP-Complete Problem

RB Smith Page S

Design and Integrity of Detei

Ref. Author Title Section/

98 Korn Problem of Identity of Systems Engineering pp 73-83

99 A D Shell System Implementation and Behavioural Modelling:
A Systems Theoretic Approach

Vol 4 No 1

100 H Abbott Safer by Design

101 Lifecycle Engineering Management; A Guide to
Systems Engineering.

102 R Spence and R S Soin Tolerance Design of Electronic Circuits

103 H J Bremermann Facets of Systems Science. Edited by GJ Klir Chapter 8

104 R Rosen Complexity as a System Property Vol 3, pp. 227-232

105 C Scholz The Architecture of Hierarchy Vol 11, pp 175-18

106 M E Clynes and N S Kline Cyborgs and Space Pp 26-27, 7-76

107 Technology Readiness Level

108 A Wayne Wymore Model Based Systems Engineering Paragraph 1.13

109 J T Davis The Scientific Method

110 T U Pimmler, S D Eppinger Design Theory and Methodology Integration Analys
Decompositions

111 L Finklestein Fundamental Concepts of Measurement IMEKOVI, Vol.1

112 Software Considerations in Airborne Systems and
Equipment Certification

113 S G J Taylor Technical Memorandum

114 S Wolfram Mathematica Version 5

115 J W Archibald Algebra 4th Edition

116 K Kuratowski Introduction to Set Theory and Topology

117 H H Rosenbrock State-space and Multivariable Theory

118 C E Shannon A Mathematical Theory of Communication

RB Smith Page 2

Design and Integrity of Deterministic System Architectures

APPENDIX 5 - ABBREVIATIONS

Abbreviation Description

AP 233 STEP Application Protocol for the neutral exchange of systems
engineering data

BBs Building Blocks
BCO/MCO Avionic Bus and Mission Computer Changeover
C3I Command, Control, Communication and Intelligence
C4ISR Command, Control, Communication, Computer, Intelligence,

Surveillance, and Reconnaissance
CAD/CAM Computer Aided Design and Manufacture
Cal Tech California Institute of Technology
CALS Continuous Acquisition and Logistics Support
CALS/STEP-
AP233

Computer Aided Acquisition and Life-cycle Support/
Standard for Exchange of Electronic Product Data

CAE Computer Aided Engineering
CASE Computer Aided Systems and Software Engineering
C-BIT Continuous built-in Test
CMM/CMMI Capability Maturity Model/

Capability Maturity Model Integration
CMU Carnegie Melon University
CP Codified Products
CRC Cyclic Redundancy Check
DFD Data Flow Diagram
DOD United States Department of Defense
DODAF Department of Defense Architecture Framework
DSM Design Structure Matrix
EIA/ANSI Equipment Industries Association/

American National Standards Institute
ESA European Space Agency
FACI First Article Configuration Inspection
FUR Forward Looking Infrared
FMECA Failure Mode Evaluation and Criticality Analysis
FR Functional Requirement
GST General systems Theory
HSD High Speed Data
IAS Indicated Air speed
ICAM Integrated Computer Aided Manufacturing
ICD Interface Connectivity Defintion
IDEF ICAM Definition Languages
IDEFO ICAM Definition Language Type 0
IEEE Institute of Electrical and Electronic Engineers
IFF/SSR Identification Friend or Foe/

Secondary Surveillance Radar
IFR Instrument Flight Rules
ILS Integrated Logistics Support/

Instrument Landing System
IMC Instrument Meteorological Conditions

RB Smith Page 259 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

INCOSE International Council of Systems Engineers
ISO International Standards Organisation
ITU International Telecommunications Union
LLTV Low Level light TV
LSA Lifecycle Systems Analysis
MASCOT Modular Approach to Software Construction, Operation and Test
MIMO Multiple Input Multiple Output
MIT Massachusetts Institute of Technology
MMI Man Machine Interface
MODAF Ministry of Defense Architecture Framework
MRI Material Record Inventory
NCOSE National Council of Systems engineers
NOE Nap of the Earth
NVG Night vision Goggles
OMG Object Management Group
OO Object Orientation
OOG Object Orientation Group
PDS Post Design Services
PERT Programme Evaluation and Review technique
PTIT Engine power turbine inlet temperature
PVIS Pilot’s visual instrumentation system
RDD Requirement Driven Design, by Ascent Logic
RFS Requirements, Functional definition and allocation, and Synthesis

of implementation
SAE Society of Automotive Engineers
SDL Systems Design Language
SE V Systems Engineering V Process Model Diagram
SEDRES Systems Engineering Data Repository and Exchange
SEIC Systems Engineering Innovation Centre, Loughborough University
SI Systeme Internationale; International System of Units
SISO Single Input Single Output
SMC Systems Management and Cybernetics
ST State Transition structure
STEP ISO Standard for Product data Exchange
SysML Systems Engineering Meta language
TRL Technology Readiness Level
TRW TRW Automotive Inc. (Thompson Products Inc. with Ramo-

Wooldrige)
UC Universal structure and Coupling
UML Universal Meta Language
VFR Visual Flight Rules
VHDL VSIC Hardware Description Language
VLSI Very Large scale integration
VMC Visual Meteorological Conditions
VNE Speed of sustainable normal wing borne flight
WWW World Wide Web

RB Smith Page 260 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

APPENDIX 6 - GLOSSARY

Systems Engineering has developed its specialist terminology and many publications

include comprehensive glossaries: for example Kossiakoff and Sweet [70], Maier and

Rechtin [5], Buede [65], Stevens et al [71], and the INCOSE Systems Engineering

Handbook [8].

Therefore, this glossary is confined to those terms that are specific to system design.

Vocabulary of System Design

Systems
Engineering
Framework

A Framework is a decomposition of the products, disciplines and processes
pertinent to the the total lifecycle of the system application. While the
constituents of a Framework will be tailored to suit each particular application,
all such Frameworks must ensure that the information and data flows between
its members must be comprehensive, sufficient and consistent.

Design structure A system/sub-system is a collection of components with defined form, fit and
functionality that are organised into a structure which, when embodied into its
system/sub-system application environment, has emergent properties that
provide the user with only the required and tolerable set of functional
performance characteristics.

Design space Each system, sub-system or component shall have its design space defined.
Design space may consist of one or more design domains. It defines the fit
boundary of Building Blocks.

Design space is the fit boundary of the objective function(s) within the design
space.

The form of a system, sub-system or component is the design domain which
best characterises its principal dimension.

The fit of a sub-system or components defines all the relationships (interfaces)
it has with other sub-systems or components or design spaces or domains.

RB Smith Page 261 of 262 Issue Final

Design and Integrity of Deterministic System Architectures

Components A functional component is a quantitatively defined entity together with its rules
of association, which may be mutable or immutable. Functions shall be defined
with single mode dimensions. If more than one dimension is required then a
separate function shall be defined for each dimensional entity.

A Building Block is an implementation component with mature and stable
design, and shall be described and assessed in terms of its form, fit and
function. Note, mechanical systems use the equivalent concepts of space
(relationship), energy and signal (interface). A Building Block may consist of
one or more Building Blocks.

Architectures The structure of a system is called its architecture. The architecture expresses
the interconnections of the arrangement of the systems functional components
(building bocks) functions and their dependencies.

A functional architecture is a coherent structure of scientifically quantified
entities that together provide the required operational characteristics and
performance.

An implementation architecture is a coherent structure of realisable machine
entities which together generate the mutable functional entities of the functional
architecture to enable its operational characteristics and performance
requirements to be achieved.

A connectivity network describes the relationship between the components
(building blocks) of the system in terms of information flow.

Libraries A Function Block library is a reference collection of defined functional
elements. Each element is in the form of a quantitative expression describing
its function and its input - output relationships.

An Implementation Block/Component library is a reference collection of the
building blocks used to generate the mutable functional entities.

The Primitive library is a reference collection of unique and indivisible elements
each of which provides a unique technology or expertise as a building block
component.

RB Smith Page 262 of 262 Issue Final

