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Abstract

In this thesis, the novelty of using machine learning to identify the low-RMSD struc

tures in decoy discrimination in protein tertiary structure prediction is investigated. 

More specifically, neural networks are used to learn to recognize low-RMSD struc

tures, using native protein structures as positive training examples, and simulated 

decoy structures as negative training examples. Simulated decoy structures are derived 

by reversing the sequences of native structures in the set of positive training examples, 

and threading the reversed sequences back to the native structures.

Various input features, extracted from these native and simulated decoy structures, 

are used as inputs to the neural networks. These input features are the identities of 

residue pairs, the separation between the residues along the sequence, the pairwise dis

tance and the relative solvent accessibilities of the residues. Various neural networks 

are created depending on the amount of input features used. The neural networks are 

tested against the in-house pairwise potentials of mean force method, as well as against 

a K-Nearest Neighbours algorithm.

The second novel idea of this thesis is to use evolutionary information in the decoy 

discrimination process. Evolutionary information, in the form of PSI-BLAST profiles, 

is used as inputs to the neural networks.

Results have shown that the best performing neural network is the one that uses in

put information comprising of PSI-BLAST profiles of residue pairs, pairwise distance 

and the relative solvent accessibilities of the residues. This neural network is the best 

among all methods tested, including the pairwise potentials method, in discriminating 

the native structures.
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Therefore this thesis has demonstrated the feasibility of using machine learning, more 

specifically neural networks, in the problem of decoy discrimination. More signifi

cantly, evolutionary information in the form of PSI-BLAST profiles has been success

fully used to further improve decoy discrimination, particularly in the discrimination 

of native structures.
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Chapter 1

Literature Review

This chapter gives an overview of the field of protein structure prediction. A short 

introduction of protein structures is first given, followed by a review of the progress of 

secondary structure prediction. A survey of tertiary structure prediction then follows. 

Examples of uses of machine learning in protein structure prediction are also discussed, 

followed by a short introduction to neural networks.

1.1 Introduction to Protein Structures
A protein is made up of a sequence of amino acids, of which there are 20 different 

types. Amino acids differ only in their side chains. These side chains also give the 

corresponding amino acids different properties. Amino acids such as phenylalanine, 

methionine, alanine, valine, leucine, isoleucine, and proline are hydrophobic; Aspar

tic acid, glutamic acid, arginine, and lysine are charged; serine, cysteine, tyrosine, 

threonine, asparagine, glutamine, histidine, and tryptophan are polar [1]. Additional 

classifications of amino acids are aromatic or aliphatic, large or small. Aromatic amino 

acids have rings in their side chains; aliphatic amino acids do not have rings in their 

side chains.

There are 3 main categories of proteins, namely globular, membrane and fibrous. 

Globular proteins exist in the aqueous environment. As the surrounding environment 

is water, globular proteins have cores consisting of mainly hydrophobic residues and 

surfaces consisting of hydrophilic residues. The structures of globular proteins are ex
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perimentally easier to determine, and hence they are the most represented in the PDB 

database. Membrane proteins exist in lipid environments and have different chemical 

and structural properties from that of globular proteins. Fibrous proteins are elongated 

and consist of repetitive amino acid sequences. Because of the differing properties and 

characteristics of the 3 categories of proteins, it is apparent that the protein structure 

prediction problem is treated separately for each of these categories. Here, this thesis 

is concerned with the structure prediction of globular proteins.

The backbone of two adjacent amino acids interacts to form a peptide bond between 

the carboxyl group of the first amino acid and the amino group of the second amino 

acid, releasing a molecule of water in the process. The resulting amino acids are known 

as residues. The amino group of the first amino acid and the carboxyl group of the 

last amino acid in the polypeptide do not form peptide bonds and are known as the 

N-terminus and C-terminus respectively.

Each protein has its specific function within the cell. There are several types of protein 

functions. Proteins are involved in signaling, structure, transport, storage, and gene 

regulation. Almost all enzymes are proteins. In order to perform specialized and com

plex functions within an organism, proteins sometimes bind with other macromolecules 

such as carbohydrates, lipids and nucleic acids to form glycoproteins, lipoproteins, and 

nucleoproteins respectively. Apart from that, the presence of ligands in the form of 

metal atoms bound to certain portions of folded polypeptide chains give the protein 

added reactivity in performing its intended function. For example, iron is found in the 

oxygen-binding protein, hemoglobin. Some folded polypeptides also have embedded 

water molecules within their internal structures.

The 3D structure of a protein often gives clues about its function. Although it is 

by no means a simple one-to-one mapping between 3D structure and function, local 

structure similarities between proteins can suggest a similar function between them. 

For example, the zinc-finger motif, which consists of two anti-parallel beta strands 

and an alpha helix, is commonly found in DNA-binding gene-regulating proteins [2]. 

The helix-tum-helix (HTH) is also a structural motif commonly used in DNA binding
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proteins [3].

Information about protein structure is often described in terms of a hierarchy of four 

levels, namely primary structure, secondary structure, tertiary structure and quaternary 

structure. The primary structure is the amino acid sequence of the entire polypeptide 

chain. The secondary structure is the local fold of a segment of the polypeptide chain, 

which falls into 3 common categories, namely helix, strand and coil. The alpha helix 

and the beta strand are the two types of basic secondary structural elements that can be 

found to occur repetitively in protein structures; the coil is a irregular structural element 

that occur between the alpha helices and beta strands. The tertiary structure is the 3D 

structure of the polypeptide chain which is made up of ensembles of secondary struc

tural elements, and the quaternary structure of a multi-chain protein is the composite 

of the tertiary structures of the various polypeptide chains in the protein. The native 

fold of a protein refers to the structural state of a protein that enables it to perform its 

function.

Figure 1.1 shows the cartoon drawings of tertiary structures of an all-helical pro

tein and a beta-sheet protein. Beta strands in a protein can form hydrogen bonds with 

each other, forming beta sheets, with parallel beta sheets formed with strands pointing 

in the same direction, and anti-parallel beta sheets formed with strands pointing in the 

opposite direction. In cartoon drawings of proteins, beta strands are represented as 

arrows (parallel beta sheets would have arrows in the same direction), and loops are 

represented as strings, as illustrated in Figure 1.1. Figure 1.2 shows the quaternary 

structure of a hemoglobin molecule, formed by similar tertiary structures shown in 4 

different colours.

Supersecondary structures are commonly occurring motifs of secondary structures 

that occur adjacent to one another. One example of a supersecondary structure is the
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Figure 1.1: Helical protein and beta-sheet protein

Figure 1.2: Quaternary structure o f a hemoglobin molecule
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beta hairpin, which consists of two adjacent antiparallel beta strands joined by a loop. 

Supersecondary structures can be composed of alpha helices, beta strands or a combi

nation of both. In fact, supersecondary structures are so common in proteins that they 

are used as part of a basis for classifying proteins into protein families in the SCOP 

database.

A domain is a section of the polypeptide chain that has a stable fold independent 

of the rest of the chain. The section of polypeptide chain that defines a domain is not 

necessarily contiguous. Domains can also be units of evolution and function. The 

presence of domains in proteins adds an extra dimension of consideration in the prob

lem of tertiary structure prediction. There has been recent work in domain boundary 

prediction [4] as part of protein structure prediction.

In globular proteins, sometimes a particular region within the polypeptide chain adopts 

many different conformational states instead of just one stable conformation. Such 

regions only become stable when the protein begins to perform its function. There

fore X-ray crystallography cannot determine the structures of these states when the 

proteins are crystallized. Such regions are known as disordered regions. The exact 

3D conformations of disordered regions in proteins are therefore unknown, and this 

is an important factor to bear in mind when performing the prediction of structures of 

globular proteins. Recently, the prediction of disordered regions in proteins has been 

successful [5].

It is widely assumed, and most certainly rightly so, that the amino acid sequence 

of a protein alone is sufficient to define the entire tertiary structure of the protein [6]. 

There have been numerous efforts to predict the secondary and tertiary structures of a 

given protein. In the application of knowledge-based techniques to the structure pre

diction problem, other information besides the amino acid sequence has proven useful. 

Examples of such information include the multiple sequence alignment of a protein 

with other members of its protein family and sequence profiles, correlated mutations 

between amino acids, and environmental characteristics such as solvent accessibility.
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1.2 Secondary Structure Prediction

Secondary structure prediction has been attempted since the late 1950s [7]. It can serve 

as a useful intermediate step to predicting the tertiary structure of a sequence because 

information about the predicted secondary structure states of the residues of a sequence 

can be used as input to the tertiary structure prediction process. Secondary structure 

prediction is also a greatly simplified problem because it is essentially the prediction 

of 3 possible states of each residue in the sequence, as opposed to tertiary structure 

prediction, which has to predict 3D coordinates.

1.2.1 Definition of secondary structure

The secondary structure of a subsequence forms during the folding process because it 

is energetically favorable for that particular region of the sequence to adopt such a local 

conformation. Electronegative and electropositive atoms belonging to C=0 and N-H 

groups respectively in the backbone chain interact with each other to form hydrogen 

bonds.

The helix and the strand are two types of local conformations that can exist in protein 

structures, whenever there is regularity in the formation of hydrogen bonds between 

C=0 and N-H groups along the polypeptide chain. A helix forms when the C=0 group 

hydrogen-bonds with an N-H group 3, 4 or 5 positions away along the backbone chain. 

A strand forms when two sections in the polypeptide chain, which can be far apart 

along the sequence, form hydrogen bonds between the participating C=0 and N-H 

groups from each section in an extended conformation. Irregular conformations do 

form between residues, and these are loosely regarded as loop conformations, which 

also include, in rare cases, residues that do not form any hydrogen bonds.
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1.2.2 Secondary structure assignment programs

Intuitively, it is possible to visually inspect and assign, say the helix state to a set of 

consecutive residues. However an objective assignment of a conformation to each 

and every residue in the sequence is necessary to avoid ambiguity when it comes to 

providing ‘answers’ to secondary structure prediction.

The Define Secondary Structure of Proteins (DSSP) program [8] gives a systematic 

and unambiguous definition of these secondary structural elements in terms of the 

presence and location of hydrogen bonds between C=0 and N-H groups in the protein 

sequence. A hydrogen bond is assigned when the net electrostatic force between the 

C=0 and N-H group is below -0.5kcal/mol. DSSP defines 2 elementary conformations, 

namely the n-tum, n=3,4,5 (T), and the bridge (B), depending on the locations of the 2 

interacting C=0 and N-H groups within the sequence. Helices are built from 2 or more 

consecutive n-tums, and these can be the a  helix where n=4 (H), 3io helix where n=3 

(G) and n helix where n=5 (I). Bridges can be parallel or anti-parallel, depending on 

the direction of the 2 participating subsequences. Continuous stretches of bridges form 

/3-strands (E) and 1 or more /3-strands form /3-sheets (also E). Bends (S) are regions 

with high angles exceeding 70 degrees. Finally, the state refers to a residue of low 

curvature not in hydrogen-bonded structure.

Other methods for objective assignment of secondary structural state exist, such as 

STRIDE [9] and DEFINE [10]. The purpose of STRIDE is to model the expert 

knowledge of the authors of PDB files in terms of secondary structure assignment. It 

assumes that, barring obvious errors and the usage of DSSP, the authors of PDB files 

use their expertise to correctly assign secondary structural information to the protein 

whose structure they have just solved. STRIDE operates on the assumption that hy

drogen bonds alone are insufficient criteria for assigning secondary structural states 

to residues. It defines a formula that incorporates torsion angle and hydrogen bond 

information, and the parameters of this formula are empirically fitted to match those 

in the PDB database. According to the authors of STRIDE, one drawback of DSSP is 

that it tends to split a long helix into 2 given missing hydrogen bonds in the middle 

in spite of its completely acceptable geometry. STRIDE can overcome this because it
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takes torsion angles into account.
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DEFINE attempts to identify structural motifs by examining distance matrices ob

tained using the C a backbone coordinates and comparing these Ca distances with 

distances in idealized secondary structure segments. DEFINE also describes super

secondary structural elements. Overall, STRIDE and DSSP are more popular when it 

comes to secondary structure assignment, with DSSP the more widely used of the two.

In recent years, new methods such as XTLSSTR [11] and KAKSI [12] have been 

developed for secondary structure assignment. XTLSSTR uses additional informa

tion in the form of angles derived from amide-amide interactions to classify secondary 

structural state, while KAKSI is similar to STRIDE in that it uses the information found 

in correctly annotated PDB files to derive a set of characteristic values of Ca distances 

and <£, ip dihedral angles to assign secondary structural state. A niche detection method 

for specifically detecting tt helices exist in the form of SECSTR [13].

Despite these new methods, DSSP is still treated as the de facto standard today, with 

many X-ray crystallographers using the DSSP program to assign secondary structure 

to the 3D coordinates of a recently solved protein structure.

While the DSSP definitions of 8 types of secondary structural state are unambigu

ous and used for exact assignment of state to training datasets of sequences, most 

prediction techniques are content to deal with only 3 distinct types, namely helices, 

strands and loops, apart from Baldi’s SSPro8 [14] which strives to predict all 8 possible 

DSSP states. This leads to the issue of the reduction of 8 DSSP states to 3 states, 

prior to the actual usage of the prediction method and the training, if required, of the 

prediction method. Of course, if DSSP is not used and the secondary structural states 

found in the PDB files are taken to represent the correct assignments, there is no need 

for any reduction method whatsoever. However if DSSP is used as the standard means 

for assignment, then the reduction issue is relevant. One 8-to-3 state reduction method 

is to assign G and H to the helix state, B and E to the sheet state, and all others to 

the loop state. The PSIPRED prediction method [15] uses such a reduction method.
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Another reduction method is to assign H to the helix state, E to the sheet state, and all 

others to the loop state.

Different reduction methods can yield different levels of accuracy (Section 1.2.3 gives 

a detailed discussion on the accuracy measures used). For example, short helices 

are generally harder to be correctly predicted by most secondary structure prediction 

methods [16], and 3io helical residues (DSSP state G) are frequently found in short 

helices. Therefore, an assignment of G to the loop state makes the prediction method 

more quantitatively accurate, but has little practical use in providing constraints for the 

eventual modelling of the 3D structure of the protein sequence. A study performed 

by Barton and co-workers [17] has demonstrated that the effect of different 8-to-3 

reduction methods on the Q3 accuracy (defined in Equation 1.1 in Section 1.2.3) of 

some secondary structural prediction methods is about 3%. Therefore, it is important 

to note that when comparing different secondary structure prediction techniques, it is 

essential to ensure, whenever DSSP is used, that the same 8-to-3 reduction method has 

been applied for all methods.

1.2.3 Evaluation criteria for secondary structure prediction
With the issues of the definition of secondary structural states laid out above, the eval

uation of the accuracies of secondary structure prediction is now discussed. The most 

common accuracy measure is the Q3 score, as shown in Equation 1.1, where the set S 

consists of 3 elements, namely the helix (H), strand (E), and loop (L).

« .  =  T 5 i 5 >  S  = { H , E , L }15, . „1 1 t £ S
( 1 . 1 )

T P
Q' = TP,  + FN,  ’ t € S  ° ' 2)

The Q3 score is the average of each Q* (/=helix, strand, loop), where Q*, as shown in 

Equation 1.2, is defined as the fraction of the number of residues in state i correctly 

predicted. The number of helices, strands and loops in the database (testing datasets) 

are frequently not evenly distributed with loops usually comprising of a greater per-
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centage than the other two. This can result in a high QL score, when a large number of 

loop residues are correctly predicted, which increases the overall Q3 accuracy. There

fore, such a Q3 accuracy can falsely increase the user’s confidence in the particular 

prediction method, because in general, users would be more interested in the correct 

predictions of helices and strands. This problem can be circumvented by reporting the 

individual Q* scores along with the Q3 score for any secondary structure prediction 

method.

Leading secondary structure prediction methods have Q3 scores of about 75% to 80%, 

depending on the compositions and size of the test datasets. However the Q3 score does 

not tell the whole story regarding the accuracy of secondary structure prediction meth

ods. Because the Q3 score focuses on per-residue accuracy, it neglects to evaluate the 

overall picture of how predicted secondary structure elements are correctly positioned 

across the sequence. For example, a spurious prediction of helix-dominated myglobin 

to be 100% helical would yield a very high Q3 accuracy, but is not very useful in aiding 

the understanding of the overall topology of myglobin.

In 1994, Rost and co-workers [18, 19] came up with another accuracy measure for 

secondary structure prediction, which is known as the Segment Overlap Measure 

(SOV). SOV* for each state i (i=helix, strand, loop) measures the extent the predicted 

segment of state i is identical to the experimentally observed measure. The SOV3 score 

is the average of all SOV1. It is recommended by Rost that both the Q3 and SOV3 

scores are used for secondary structure evaluation.

Now that the definitions of secondary structure and how predictions can be accurately 

measured are described, the next section describes the methods available in secondary 

structure prediction.
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1.2.4 Secondary Structure Prediction Methods

Since the 1950s, there have been attempts to predict the secondary structure from 

sequence alone. Burkhard Rost gave an excellent review of secondary structure predic

tion methods in [16]. In the paper, he described the various factors that contribute to 

the increase in performance of secondary structure prediction methods over the years. 

These factors consist of the usage of evolutionary information from multiple sequence 

alignments, powerful sequence alignments tools that make these alignments possible, 

and the increase in size of sequence databases that contribute to the power of the mul

tiple sequence alignment methods.

In the late 1950s, the first secondary structure prediction method [7] attempted to 

correlate the content of certain amino acids with the contents of a-helices. This soon 

paved the way for other methods to make use of single sequence information for build

ing classifers to assign secondary structure states for each residue in a sequence. In 

1974, Chou and Fasman [20] used a qualitative method, in the form of rules, to try and 

predict secondary structure. Another popular method then, GOR [21,22], is based on 

information theory and Bayesian statistics. These secondary structure prediction meth

ods use amino acid propensities along the sequence to predict the secondary structure 

state of a central residue. Such usage of local information restricts the Q3 accuracy to 

around 60%.

The breakthrough of accuracies to 70% and above is achieved through the usage of 

multiple sequence information. With multiple sequence alignments, it is possible to 

obtain information regarding the mutability of residues at all positions in a sequence. 

Such position-specific profiles, as they are called, give vital information about the evo

lutionary relationships, such as conserved regions, in the protein family to which the 

sequence belongs.

Zvelebil and co-workers are among the first to have incorporated multiple sequence 

alignment information into their secondary structure prediction method [23]. However, 

the landmark PHD secondary structure prediction method [24] is the first that achieved 

a Q3 accuracy of above 70%. The PHD method uses evolutionary information as input
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to a two-stage neural network. PSIPRED [15] uses PSI-BLAST profiles, intermediate 

outputs of PSI-BLAST [25], as inputs to a two-stage neural network. In PSIPRED, the 

importance of filtering low complexity and transmembrane proteins from the sequence 

database when generating sequence profiles to ensure that the PSI-BLAST profiles 

obtained are as noise-free as possible was demonstrated. In CASP3 in 1998, PSIPRED 

was ranked top in the secondary structure prediction category, achieving average Q3 

and SOV3 scores of 73.4% and 71.9% respectively [26].

Another competitive secondary structure prediction method that uses evolutionary 

information is SAM-T99 [27], a Hidden Markov Model (HMM) method that con

structs protein family profiles. Another HMM method is Christopher Bystroff and 

David Baker’s HMMSTR [28], which is in principle a method for predicting 3D struc

ture, but interestingly has the side effect of generating competitive secondary structure 

predictions as well. Apart from PHD and PSIPRED, another neural network method 

exists in the form of SSPro [14]. SSPro uses a recurrent neural network architecture, 

while PHD and PSIPRED use two-stage feedforward architectures. The second stage 

of the feedforward architectures of PHD and PSIPRED is to allow the neural network 

to learn the correlation of the secondary structure propensities of consecutive residues 

in the sequence, and SSPro achieves such a correlation with the recurrent network 

architecture instead. In CASP4, SSPro was among the top 10 in terms of SOV when 

compared with other automated secondary structure prediction servers but the simpler 

architecture of PSIPRED proved better in performance [29].

HMMs and neural networks are typical useful machine learning methods that can be 

found in the solutions of several bioinformatics prediction problems, such as gene find

ing and in this case, secondary structure prediction. Other machine learning methods 

that have been used in secondary structure prediction are discriminant analysis [30], 

nearest neighbours [31], linear discriminant functions [32], and support vector ma

chines [33].

The usage of evolutionary information in the form of multiple sequence alignments 

has undoubtedly increased the accuracy of secondary structure prediction. However,
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it is worthwhile noting that the increased sensitivity of sequence search tools such 

as PSI-BLAST and the increase in size of the sequence databases play their part in 

ensuring multiple sequence alignments can provide relevant evolutionary information 

for the development of secondary structure prediction methods [34].

With the large number of purportedly highly accurate secondary structure prediction 

methods, it can be difficult to select the best method. It is worth pointing out that the 

reported accuracies of published prediction methods are dependent on the test datasets 

used. Rost [16] made the important comment that the test dataset for novel secondary 

structure prediction methods should be as large as possible, in order to be more reflec

tive of the capability of the method. A secondary structure prediction method should 

also undergo proper cross validation, with care taken to ensure that the training and test 

datasets share no homologous sequences.

The CASP experiments (up to and including CASP5) perform the role of effective 

comparison between various secondary structure prediction methods. While CASP re

sults are indicative of the performances of various prediction methods, they come only 

once every 2 years and it would be desirable for an automated service that exists to 

compare secondary structure predictions on a regular basis. Fortunately, such a service 

exists in the form of EVA [35], which is an automated secondary structure assess

ment server that attempts to evaluate the performances of several secondary structure 

prediction servers. (EVA actually does more; it evaluates comparative modelling and 

contact prediction techniques as well). This implies EVA can only evaluate prediction 

techniques that are automated in the form of servers. EVA sends the sequences of 

recently solved protein structures to several secondary structure prediction servers, col

lects the results, and then compares and presents these prediction results online. It also 

uses the following 8-to-3 reduction technique: HGI to the helix state, EB to the sheet 

state, and the others to the loop state. Some of the participating prediction servers are 

PSIPRED [36], PHD [24], JPred [17], and SSPro [14]. Apart from JPred, which uses 

a consensus based approach, these methods make use of machine learning that learns 

from input features such as evolutionary information. There is often little difference 

between the better methods in terms of Q3 and SOV3 accuracies, as evaluated by EVA.
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The field of secondary structure prediction has reached a level of maturity where 

consistent Q3 and SOV3 accuracies of beyond 80% are arguably difficult to achieve. 

One possible reason is that the formation of secondary structure of a sequence segment 

is in part due to long-range interactions within the protein sequence and these are ex

tremely difficult to take into account. It is therefore improbable that 100% in Q3 and 

SOV3 accuracies can be attained. In fact, the CASP community has reached a decision 

during the CASP5 meeting to drop the evaluation of secondary structure prediction 

techniques for future CASPs, starting from CASP6.

The present challenge regarding secondary structure is less of improving the accuracy 

of prediction techniques; rather it is more of how secondary structure prediction tech

niques can aid in constructing the 3D fold of a target protein sequence. For instance, 

given a particular secondary structure prediction result, the question of how secondary 

structural elements can pack together in a compact manner is not still wholly solved in 

protein structure prediction. Here, it is worth mentioning that specialist methods such 

as the prediction of /3-tums, developed by Adrian Shepherd and co-workers [37], and 

Raghava and co-workers [38], could be an useful intermediate step when used together 

with secondary structure prediction, for the prediction of 3D structure. However the 

use of such specialist prediction methods is currently not very widespread in tertiary 

structure prediction.

1.3 Tertiary Structure Prediction
The ultimate goal of protein structure prediction is to predict the 3D fold from sequence 

information alone. With that goal in mind, secondary structure prediction methods can 

provide useful clues on the local topology of the protein, and such local topology in

formation can help guide the actual prediction of the tertiary structure.

Accurate high resolution computational predictions of structures help provide low 

cost alternatives to experimental means of obtaining the 3D crystal structure of pro
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teins. Such predictions can also guide experimental efforts in deciding which proteins 

to crystallize in a bid to cover all possible folds of the protein structure universe. The 

unravelling of the 3D folds of protein domains is by itself also a means to an end, which 

is to understand the biological functions and roles of proteins, and how they interact 

with one another to the benefit or detriment of organisms.

Here, it is important to state that the ensuing review of methods involving tertiary 

structure prediction pertains only to globular proteins. The prediction of the structures 

of membrane proteins have additional challenges such as topology prediction, and have 

much smaller amounts of data to work with. The context of this thesis also pertains 

only to globular proteins.

1.3.1 Introduction

In the following sections, the term ‘target’ sequence is used to refer to the sequence 

whose structure is to be predicted.

The most obvious approach when trying to model the 3D structure of a target se

quence is to look for close homologues of the target sequence and then use the 3D 

structures of these homologues as templates for modelling the target structure. This 

approach is known as comparative modelling, and works well for target sequences 

whose close homologues can easily be found from the structure databases [39—44]. 

The process of using templates to model the 3D structure of the target sequence is 

however non-trivial [45] and the issues faced in the comparative modelling approach 

will be discussed in later sections.

The success of comparative modelling relies on the ability of sequence similarity 

search tools e.g. PSI-BLAST [25] to identify close homologues. Sometimes, for a 

target sequence, there are similar folds that may exist in the structure databases that 

cannot be identified by sequence similarity search tools. This is because the sequences 

of these folds have low percentage sequence identity to the target sequence, which
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is beyond the sensitivity of state-of-the-art sequence search tools. Such similar folds 

may also have emerged due to convergent evolution and have no common evolutionary 

origin. In such cases, the extent to which sequences are compatible to folds can be 

evaluated using the fold recognition approach [46-^49]. Fold recognition, or threading, 

encompasses the evaluation of the degree of fit of a sequence to a library of existing 

folds using energy functions, and the subsequent selection of the fold that yields the 

lowest energy.

When the structure of the target sequence is indeed a new fold that has never been 

documented in existing structure databases, template-free approaches are necessary to 

construct a close approximation to that of the native structure. The earliest methods 

in template-free approaches used physics-based energy functions (see below for fur

ther discussion) for computational protein folding. These are known as the ab initio 

approaches, where the term ab initio implies the use of first principles of the laws of 

physics.

In CASP, the template-free approaches belong to the New Fold category. This category 

used to be referred to as the ab initio approach but subsequently renamed because later 

template-free approaches encompass the use of statistical knowledge derived from ex

isting structure databases and hence the New Fold category does not consist exclusively 

of true ab initio methods anymore.

New Fold methods consist of lattice based methods [50-52] and fragment assembly 

methods [53-55]. Both types of methods require a guiding energy function to score the 

conformation of folds produced by simulations. There are in turn two broad categories 

of energy functions, namely the physics-based energy functions and the statistical en

ergy functions [56]. Physics-based energy functions use energy functions based on the 

laws of physics and chemistry. Examples of physics-based energy functions include 

OPLS force fields [57] and AMBER force fields [58], and solvent models such as the 

Generalized Bom Solvent Model [57]. Statistical energy functions make use of the ex

isting structure database to derive useful discriminatory energy functions. Examples of 

statistical energy functions include pairwise potentials of mean force [53,59], Bayesian
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scoring functions [54] and atomic environmental potentials [60].
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Lattice based methods are the earlier methods that use 3D lattices to represent the 

conformational space of a target protein. Monte Carlo simulations are run, with a scor

ing energy function. Levitt [52] and Skolnick [50,61] used statistical energy functions 

to guide the conformational search within the lattice model, while Scheraga used a 

physics-based energy function to score the conformations [51].

Fragment assembly methods involve the assembly of 3D fragments of short peptide 

sequences chosen from a library of fragments, guided by an energy function [53-55]. 

The conformation space of the 3D fold of the target space is huge and because the 

guiding energy function used for fragment assembly is not perfect, it makes sense 

to generate large numbers of candidate 3D folds for the approximation of the native 

structure. These candidate folds are frequently referred to as decoys.

Frequently, the constructed fold with the lowest energy is chosen as the best approx

imation to the native structure. In this thesis, a novel decoy discrimination method, 

using machine learning and more specifically neural networks, is developed as a step 

towards solving the challenge of selecting the best fold.

The 3 different approaches of tertiary structure prediction, namely comparative mod

elling, fold recognition and New Fold, frequently do not exist in isolation. The process 

of predicting the structure of a target sequence often involves more than one approach. 

For example, the construction of loops in comparative modelling targets require the ap

plication of New Fold methods. Some New Fold methods [62] involve the perturbation 

of a starting 3D fold obtained from fold recognition.

In subsequent sections, issues detailing the challenges of each approach are discussed. 

Major advances in the field of tertiary structure prediction have been achieved with 

CASP experiments, such as the assessment of prediction quality of candidate models. 

The next section therefore outlines the role of CASP in the advancement of the field of 

tertiary structure prediction.
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1.3.2 The role of CASP

It is impossible to give a review of tertiary structure prediction without mentioning 

CASP [63-68]. The Critical Assessment of Techniques for Protein Structure Predic

tion (CASP) experiment takes place every 2 years, the most recent experiment being 

CASP7. The first CASP meeting was organized by John Moult [63] in 1994, and 

subsequent CASP meetings took place every two years. A Protein Structure Prediction 

Center [69] exists for the purpose of conducting the CASP experiments.

In CASP, structures of newly solved proteins are solicited from structural biologi

cal groups, who temporarily withheld their structures from the public so that blind 

predictions of these proteins could be performed by the structural prediction commu

nity. The sequences of these structures are then sent to registered prediction groups 

over a period of time. Prediction groups can either be automated servers or human 

prediction groups. In the case of the former, the prediction results are to be sent back to 

the CASP organizers within 48 hours. After the prediction season is over, the assessors 

of CASP then analyze the results and a meeting convenes for the participants to discuss 

these results a few months later.

CASP has played a vital role in advancing the field of protein structure prediction 

in a number of ways.

•  Firstly, CASP provides the opportunity for the blind prediction of protein struc

tures. This ensures that there is no possibility of prediction groups inadvertently 

using the information of the target structures to derive their predictions, and 

hence provides a stringent test for all structure prediction methods in the field.

•  CASP creates a level playing field for all structure prediction methods by provid

ing a common set of test proteins and this ensures that the performance of each 

method is critically reviewed in an unbiased manner, where the identities of the 

prediction groups that submitted the models are withheld from the assessors.
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CASP also helps to advance the field of structure comparison and model assess

ment because there is a need to effectively rank different prediction models. The 

Root-Mean-Square deviation (RMSD), defined in Equation 1.3 on page 44 and 

to be discussed in Section 1.3.3.1, has been found to be inadequate in awarding 

credit to models which have highly similar predicted local substructures to the 

corresponding substructures in the native structure (low local RMSD), but have 

significantly different orientations between the substructures themselves which 

can result in a high global RMSD. The GDT-TS measure [70] and the Hubbard 

plot [71 ] are innovative measures that are borne out of the need to provide criti

cal, accurate and comprehensive tools for the purpose of assessment of prediction 

models in the CASP experiments.

CASP also provides a platform for automated servers to compete against the best 

human prediction groups. While the best automated servers still lag behind the 

best human prediction groups, the advancement in the performance of automated 

prediction servers is important, given that the amount of genome sequences con

tinue to grow in the sequence databanks and that the only reasonable way to 

predict the structures of newly sequenced genomes in a fast and efficient man

ner is through the use of automated servers. In addition, automated servers can 

be used by people, such as biologists, who are not necessarily experts in protein 

structure prediction.

Over the past few CASPs, there have been new sub problems introduced, such as 

prediction of disordered regions, domain boundary prediction and contact map 

prediction. CASP allows for such research problems to be analyzed and tested in 

a manner that has been reaping benefits in mainstream 3D structure prediction.

CASP has also inspired a server-only equivalent experiment in the form of 

CAFASP [72]. The development of meta-servers such as 3D-Jury [73], protein 

structure prediction servers which perform a consensus prediction by using pre

diction results from other fully automated servers, provide an extra dimension to 

the field in terms of providing better performance, although the aspect of credit 

assignment to high performing meta-servers, especially in a CASP-like scenario, 

is somewhat contentious and debatable.
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•  Finally, there is a basis of the comparison of the progress of protein structure 

prediction in CASP over the past decade [74], which helps to highlight the chal

lenges in the field in a clear manner, which can only be beneficial to the research 

groups that are working on the protein structure problem.

All in all, the field of protein structure prediction has benefitted immensely from the 

CASP experiments. The next section describes the various methods of structure as

sessment in protein tertiary structure prediction.

1.3.3 Structure Comparison
Structure comparison between two different protein structures can be performed in two 

different contexts. The first type is known as the structural superposition of two dis

parate structures, where the alignments of the two protein sequences of these structures 

are known. The second type consists of the structural alignment of two structures in the 

absence of sequence alignment information. The latter type of structure comparison is 

obviously harder than the first.

1.3.3.1 Structure Superposition

Structural superposition is performed in a sequence dependent manner, where two 

structures are aligned with several matching residue pairs, one residue from each 

structure, acting as anchor points. Frequently, the anchor points extend to the entire 

sequence which is shared by both structures, when one structure aims to be the pre

diction of the other in the context of protein tertiary structure prediction. Structure 

superposition is an applied mathematical problem of aligning both structures, given the 

anchor points of various residue pairs, so that the lowest quantity of a measure, such as 

the Root-Mean-Square deviation (RMSD) shown in Equation 1.3, is yielded.

RM SD( x ,y )

where x  andy are the n x 3 matrices that describe the 3D coordinates of the two struc-
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tures, each of n residues long, that are to be superposed with each other.
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The purpose of structural superposition is to assess how close one structure is to 

another. In cases where the sequences of both structures are not 100% identical but 

are still highly similar, structural superposition is useful in comparing these structural 

homologues, for purposes of gaining insightful knowledge that can be inferred from the 

degree of similarity of these two structures. One example may be the identification of 

common residues that have clefts of similar shapes that may give clues to the biological 

functions of one of the structures.

In such cases, the measure of closeness often used is the RMSD in Equation 1.3, 

and optimal algorithms exist that can align both structures such that they yield the 

lowest possible RMSD. The lowest RMSD obtained after the optimal superposition of 

two structures can then reflect the extent of structural similarity between the structures.

In the context of protein tertiary structure prediction where one structure is the tar

get model and the other a predicted model, the RMSD serves as a good gauge for 

comparing the quality of the predicted model. A model with low RMSD, say < 1.5 A, 

can be regarded as an excellent prediction, while a model with high RMSD, say 6 A, is 

obviously of lesser quality [75].

In the running of the CASP experiments, however, the assessors had realized that 

the simple RMSD measure is not enough to give enough credit to some prediction 

models. For example, an erroneous orientation in the connecting loop of an otherwise 

excellent prediction model will give it a high RMSD, without doing justice to the other 

parts of the model which are correctly predicted. The inevitable competitive nature of 

the CASP experiments, even though it is meant to be a cooperative experiment, also 

places a demand on clear-cut ranking performance measures that can be assigned to 

the prediction models submitted by participating prediction groups.

To deal with the problems above, the GDT-TS measure [70] was devised, and it has 

served well in subsequent CASPs. The GDT-TS measure is described as follows:
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•  The aim is to find a superposition between two structures that has the largest set 

of not necessarily contiguous residues with an RMSD below a certain threshold.

•  Several thresholds can be tried, e.g. 2A, 4A, 6A, 8A etc.

•  For each threshold, an iterative procedure is run to obtain superpositions from 

a starting set of subset of residues until the subset remains unchanged from the 

previous iteration.

•  The number of residues in the subsets obtained for different thresholds is aver

aged in CASP to provide a mean score for quantifying the quality of each pre

dicted structure.

In CASP, different thresholds are used to capture different degrees of the qualities of 

different models. A large threshold is suitable for differentiating models in the Tem

plate Free category, while a small threshold of 1A is useful for discerning Comparative 

Modelling prediction models. However GDT-TS is still imperfect, and most CASP 

prediction models are examined by eye to determine their quality. GDT-TS is also less 

useful in discerning prediction models generated using template free modelling be

cause these models tend to have higher RMSDs and therefore the difference in quality 

between substructures of these models may not be reflected in the GDT-TS scores.

The RMS-coverage graph [71], or Hubbard plot, is also a useful tool for gauging 

the prediction quality of various models. The Hubbard plot shows the lowest RMSD 

for a particular subset of not necessarily contiguous residues of each prediction model, 

where the subset of residues range from 1 to the number of residues in the sequence, 

and the better the quality of the prediction model, the larger the subset of residues for 

a given RMSD threshold. This allows the CASP assessors to immediately identify 

the better quality prediction models of a given target, as well as to identify interesting 

predictions that perform extremely well for a subset of residues, but not as well for the 

entire set of residues.

Other researchers have also devised structure assessment measures such as the TM- 

score [76] and the MaxSub score [77] to determine the quality of prediction models
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in protein tertiary structure prediction. The MaxSub program is an automated method 

which aims to obtain the superposition with the largest subset of not necessarily con

tiguous Ca atoms under a specified distance cutoff (e.g. 3.5A) and produces a similar 

normalized score that sum up the quality of a predicted model. Yang Zhang and co- 

workers [76] proposed the TM-score which produces a normalized score that describes 

the quality of a predicted model and which is not dependent on the length of the protein.

1.3.3.2 Structure Alignment

Structure alignment, in the absence of sequence alignment information, is performed 

in a sequence-independent manner. Structure alignment allows for the classification 

of unknown folds into fold classes, and also allows for the comparison of the folds of 

unknown proteins to proteins of known function in the context of functional prediction. 

In the context of CASP, structural alignment also allows for the search of the best 

template from the set of known PDB structures during the assessment of Comparative 

Modelling and Fold Recognition targets.

Common structure alignment tools which assume no sequence dependence are CE [78], 

SSAP [79], VAST [80] and DALI [81]. Some of these tools are used for the assessment 

of Fold Recognition prediction models in CASP.

In the next few sections, the issues regarding the common approaches used in ter

tiary structure prediction are presented and discussed.

1.3.4 Structure Prediction Issues

In more recent CASP experiments including the most recent CASP7, target sequences 

are not preassigned to the Comparative Modelling, Fold Recognition and Template 

Free categories when they are made available to prediction groups. Instead the pre

diction groups would have to adopt whatever they deem to be the best methodology 

in predicting the structure of the target sequence, be it fragment assembly or template 

modelling.
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Therefore, many of the leading prediction groups in CASP6 adopt comprehensive 

processes that allow them to first identify possible templates using either fold recog

nition methods or searches on the structure databases, and in the event of failing to 

find a template for the target sequence, to adopt template free approaches for mod

elling the target structure. Successful prediction groups such as Jones-UCL [82] and 

Skolnick-Zhang [62] have in-house methods that cater to template modelling as well as 

template-free modelling, while some groups such as VENCLOVAS [83] focus solely 

on performing well in one category.

Based on the quality of the prediction models submitted for each target sequence, the 

CASP assessors would then classify each target into an appropriate category, for the 

purpose of comparison between the quality of the models and the subsequent deriva

tion of conclusions of the state-of-the-art for that category. Comparative Modelling 

(CM) targets have been further classified into ‘easy’ and ‘hard’ subcategories, where 

templates of ‘easy’ CM targets can be found using BLAST and templates of ‘hard’ 

CM targets can only be found using PSI-BLAST. Fold Recognition (FR) targets have 

also been subclassified into FR/H and FR/A categories. The FR/H category describes 

those targets that are evolutionarily related to their templates, while the FR/A category 

consists of the targets whose templates are not clearly related by evolution (analogous 

folds) and thus harder to detect. The classifications however are not to be treated as 

mutually exclusive categories because in truth, there is very little difference between 

CM and FR/H categories and between the FR/A and New Fold (NF) categories.

The following sections describe some of the issues facing the 3 different main cat

egories in CASP.

1.3.4.1 Comparative Modelling

This section highlights some of the issues that are associated with comparative mod

elling approaches. As mentioned in Section 1.3.1, comparative modelling methods 

make use of structural templates as starting points for the derivation of the prediction 

model.
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The steps of comparative modelling are as follows:

•  Template recognition and sequence alignment

•  Modelling of the structurally conserved regions

•  Modelling of the structurally divergent regions

•  Modelling of side-chains

•  Refinement of model

Template recognition is typically performed by running a PSI-BLAST search with the 

target sequence on the structure database. For each target, single templates or multiple 

templates can be selected as starting points to model the target structure. Irregardless of 

the number of templates used, correct alignment of the target sequence to the template 

sequences is crucial in producing accurate prediction models. This is because a correct 

target sequence alignment to the structural template is the basis for the correct transfer 

of backbone information from the template to the prediction model.

Multiple template information can be utilized in ways that would improve beneficial 

over single template information. VENCLOVAS, one of the best performing groups 

in the Comparative Modelling (CM) category in CASP6, successfully used multiple 

template information for modelling CM targets [83]. According to Venclovas, the rel

atively easy CM targets benefit more from using multiple templates than for the harder 

CM targets. The key to their successful approach in CASP6 relies on their focus in 

getting the correct alignments by using a consensus approach to assess the reliability 

of sequence structure alignments.

For the modelling of the backbone of the target protein, the MODELLER tool [84] 

is widely used by prediction groups in CASP. MODELLER allows for the homologous 

regions of the target protein when given the sequence to template alignment, as well as 

the modelling of loops that are not covered by the templates. An alternative homology 

modelling tool is NEST from the Jackal protein structure modelling package [85].
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For the modelling of side chains, the SCRWL program [86] has proven to be an 

effective tool and is also widely used by CASP prediction groups.

Refinement of the model is necessary to bring the model closer to the target structure, 

and is highlighted as one of the future areas of improvement in comparative modelling. 

In truth, the need for model refinement is not only restricted to CM targets, but extends 

to prediction models from the fold recognition and template free approaches too. In the 

context of comparative modelling, it has been highlighted by the assessors of CASP 

that models remain closer to to their templates than the target structures in terms of 

RMSD [43], and this bottleneck remains as one of the main challenges for future CASP 

prediction groups in the comparative modelling category.

1.3.4.2 Fold Recognition

In CASP, fold recognition targets are defined as protein domains whose templates 

cannot be found from PSI-BLAST but are present in the structure databases. Because 

of such a definition, what qualified as fold recognition targets in CASP 10 years ago 

are comparative modelling targets now. This is due to an increase in the sensitivity 

of sequence similarity search tools e.g. PSI-BLAST, as well as an increase in size of 

the structure and sequence databases. Both fold recognition methods and comparative 

modelling methods seek to identify templates for the modelling of the target sequence, 

differing only in the search methodology.

Unlike the comparative modelling approach where the main steps of sequence searches 

and template alignment do not differ much between the various comparative modelling 

methods, there is more room for diversity in the methodologies of fold recognition 

techniques. The principal aim is to select the best sequence-to-structure fit from a 

set of candidate folds. Energy functions of different types, profile-profile comparison 

methods, and neural networks are some of the methodologies that can be used in a 

fold recognition method. Some of the more established methods, to name a few, are 

mGenTHREADER [36,87], 3D-PSSM [88] and FFAS [89]. These fully automated
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fold recognition methods also have the capabilities for full scale genome annotation, 

which aims to bridge the gap between the number of sequences with unknown struc

tures and the number of sequences with known protein structures in newly sequenced 

genomes.

A competitive fold recognition method has the following features, namely

•  It must have a up-to-date fold library with which the target sequence is to be 

evaluated against.

•  It is fully automated, if it is to be used for genome annotation.

•  Sequence profile information is used in some way, depending on the method, for 

the scoring of candidate folds.

In CASP6, credit is given to prediction groups separately for the FR/H and FR/A 

targets. For the FR/H group, meta-servers did well, and this is made possible by the 

automated nature of several leading fold recognition methods which meta-servers can 

easily make use of. David Baker and co-workers did well for the FR/A targets, which 

fall into the realm of template free modelling, and this will be discussed in Section 

1.3.4.3.

Besides CASP, there was LiveBench [90], which was an experiment that tested the 

performance of automated fold recognition servers, including meta-servers, using 

newly released PDB entries. The LiveBench experiment complemented CASP in the 

sense that it provided a platform for fold recognition servers to measure their per

formance against one another in the period between the CASP experiments. The 

performance measure used by LiveBench is the MaxSub score [77]. In LiveBench-8, 

the last LiveBench experiment whose results were published, the meta-servers gener

ally performed better than the non meta-servers. LiveBench served as an useful testbed 

for research groups who have developed new fold recognition techniques and would 

want to see how their new techniques perform against other published methods.

In CAFASP4, a new category known as the Model Quality Assessment Programs
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(MQAP) is introduced, that aims to assess the quality of models generated by fold 

recognition methods. MQAP methods are a logical extension to the process of fold 

recognition, where candidate folds have already been selected, and what remains is 

a further assessment of which of the candidate folds might be the best. Some of the 

MQAP methods in existence are MODCHECK [91], ProQ [92], Victor/FRST [93] and 

Sol vex [94].

The MQAP methods, in principle, can be extended to evaluate candidate folds, or 

decoy structures, produced by template free modelling methods. The difference be

tween evaluating models produced by fold recognition methods and evaluating models 

produced by template free modelling methods is that the latter models are likely to be 

less ‘protein-like’ with steric clashes and therefore effective MQAP methods would 

have to incorporate appropriate checks during the assessment of such models.

The next section describes the advances and issues in the template free category of 

protein structure prediction.

1.3.4.3 Template-Free Modelling

In CASP, template free modelling, also known as de novo structure prediction, applies 

to New Fold (NF) targets where no template exists in the structure databases. FR/A 

targets, whose structures have no common evolutionary origin to their templates, are 

also considered in the assessment of prediction models in the New Fold category. As 

mentioned in Section 1.3.1, template free methods can consist of fragment assembly 

methods and lattice-based methods.

For the past few CASP experiments, David Baker and co-workers have set the stan

dards in the template free category. Their non-automated Rosetta method [95] has 

consistently distinguished itself from the rest of the methods. In CASP6, the latest ver

sion of the fragment assembly method FRAGFOLD [82] from Jones-UCL group has 

also proved competitive in the NF category. TASSER [62], an automated server that 

uses a combined approach of lattice models, fold recognition and fragment assembly
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The later generation of fragment assembly methods have proven to be a more suc

cessful approach than the older lattice-based methods. A competitive fragment-based 

template free method has the following features, namely

•  It must have a representative set of fragments that can be used to build candidate 

structures.

•  It has an effective guiding energy function that builds the candidate structures 

from the fragments.

•  It should sample as wide a conformational space as possible during the fragment 

assembly process.

•  It performs clustering to select the most representative structure

The fragment assembly process is repeated to yield large numbers of structures for 

each target protein, so as to sample as wide a conformational space as possible and 

therefore increase the chances of building a near native structure. These large number 

of candidate structures are often known as decoys. Decoy selection is the next step, 

and this is typically done using MQAP methods as well as clustering [96,97].

Recent advancements in template-free modelling, apart from the design of effective 

energy functions, also focussed on the increase of the conformational sampling of 

structure space, as well as the high resolution refinement of low resolution near-native 

decoys [95,98]. It has been suggested by Baker and co-workers [98] that high perfor

mance computing is important for carrying out a vast conformational search to identify 

the most promising near-native low resolution decoy structures, which are then sub

jected to high resolution refinement protocols to bring these decoy structures closer to 

the native structure.

In this thesis, a novel means of using machine learning to perform decoy selection, 

also known as decoy discrimination, is proposed. More specifically, neural networks 

are used to learn a decoy discrimination function by using positive and negative training
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examples in the form of native structures and simulated decoy structures respectively in 

the training process. Chapter 2 describes the basic methodology and Chapter 3 extends 

the methodology by using sequence profile information in the decoy discrimination 

process.

The next section gives an overview of machine learning approaches that have been 

used in protein structure prediction.

1.4 Machine Learning in Protein Structure Prediction
A variety of machine learning algorithms has been used in various fields in bioin

formatics, such as biological sequence analysis, microarray data analysis and protein 

structure prediction. In this section, the discussion is focused on machine learning 

techniques used for protein structure prediction.

In protein structure prediction, there are the problems of secondary structure pre

diction and tertiary structure prediction. Secondary structure prediction is a simplified 

lD-representation of the problem of predicting 3D structure from sequence; instead of 

predicting the coordinates, a state (of either helix, strand or coil) is assigned to each 

residue in the sequence. Protein secondary structure prediction is a field that has prob

ably seen all kind of techniques being applied to it, not least machine learning. The 

earliest techniques use information theory [21,22]. Nearest neighbour methods [31], 

inductive logic programming [99], neural networks [14, 15,24] and support vector 

machines [100] have also been attempted in secondary structure prediction. Of these, 

methods that performed best use neural networks. Section 1.2 had given a review of 

secondary structure prediction.

Protein tertiary structure prediction has also seen its share of machine learning tools 

being applied to it, commonly Hidden Markov Models (HMMs) and neural networks. 

It is more difficult to rephrase the tertiary structure prediction problem into one in 

which a machine learning tool can be applied to. A general prediction problem needs
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output labels to assign to positive and negative training (and test) examples, and this 

can be difficult when the goal is to predict the 3D coordinates of a structure. Nev

ertheless, for fold recognition, neural networks have been applied successfully, as in 

GenTHREADER [36]. Contact map prediction can be viewed as a 2D variant of 3D 

structure prediction. Prediction of protein contacts, introduced in CASP2 in 1996, has 

also been attempted using various machine learning algorithms such as neural net

works [101,102].

Some other prediction problems that are related to protein structure prediction is the 

prediction of solvent accessibility. Solvent accessibility is a property of residues in the 

protein sequence that indicates the extent of exposure to the solvent. Neural networks 

have also been applied to the prediction of solvent accessibility [103]. Another type of 

prediction problem is the assignment of domain boundaries in protein sequences. Neu

ral networks have been used to predict domain boundaries from sequence information 

alone [104,105].

There are other structural related areas such as protein-protein interactions and func

tional prediction of protein sequence that have also seen the application of machine 

learning techniques. The field of systems biology involves the modelling of biological 

entities, large and small, and machine learning tools may play a role in this area along 

with mathematical modelling.

The next section gives an introduction to neural networks, since it is used in this 

thesis.

1.5 Introduction to Neural Networks

This section gives a short introduction to neural networks. A description of neural 

networks is first given, followed by a discussion of the applications of neural networks 

in areas of biological research.
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1.5.1 Background
The motivation of using artificial neural networks in a computational paradigm [106], 

or simply neural networks as they are called, comes from the biological neural net

works that function in the brain. Biological neural networks are built of complex webs 

of interconnected neurons. For example, the human brain is made up of a complex 

dense network of about 1011 neurons. Each biological neuron is inhibited or excited 

via connections to other neurons. Together, the complex network of neurons in the hu

man brain can process information, such as facial recognition, in order of milliseconds. 

Such a powerful biological paradigm of processing information motivates computer 

scientists to design corresponding parallel computational architectures, in the form of 

artificial neural networks, for purposes of pattern recognition and distributed process

ing tasks.

Neural networks have been used successfully in several domains, such as credit card 

fraud detection, autonomous vehicle steering, and handwriting recognition. Figure 1.3 

shows a simple feedforward neural network architecture. In Figure 1.3, there is a set of

Inputs O utputs

Hidden layer

Figure 1.3: A typical neural network architecture

input neurons, followed by a hidden layer of neurons, and output neurons. The output 

neurons represent the target values which the neural network application are trying 

to predict, and the input neurons represent feature information associated with the 

corresponding target values. The hidden layer of neurons is inaccessible to the neural 

network user, and represents the internal architecture of the network. There are sets of
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connections between the neurons in the different layers. Each of these connections has 

an associated weight value that signifies the inhibition or excitation of that particular 

connection.

Each of the neurons in the hidden and output layers has a transfer function that is 

a linear or nonlinear function of the various weights and the values of the preceding 

neurons associated with the corresponding weights. The transfer functions of the neu

rons in the same layer are typically identifical, although this is not strictly necessary. 

There are no transfer functions associated with the input neurons. Figure 1.4 shows the 

sigmoidal transfer function of a neuron.

x O -  1

,w0

w1

g =  '5 2  WiXi
i=0

Figure 1.4: Sigmoidal Transfer function of a neuron

In Figure 1.4, x0 is the bias which allows the neural network to find a solution in 

weight space that does not go through the origin. In the neuron in Figure 1.4, the sum 

of the product of the various weights and inputs is calculated before being fed into a 

sigmoidal function which constrains the output value to range between 0 and 1. Such a 

sigmoidal transfer function is frequently used in various neural network applications.
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1.5.2 Neural Network Training

Before a neural network can be of use, it has to undergo a learning or training phase 

where it learns the association of input patterns and their corresponding target outputs. 

An error function is usually defined as a function of the output values of the network. 

Effectively, during training, the neural network is undergoing the process of adjustment 

of the weight values of all its connections, so as to minimize the error function. A com

mon training algorithm for the weights of the neural networks is the backpropagation 

algorithm [106].

An important aspect of neural network training is generalization [107]. Generalization 

refers to the ability of the neural network to perform classification or prediction tasks 

well on previously unseen data. Both the choice of training patterns and the length 

of time for training affect the ability of the neural network to generalize. A separate 

validation dataset can be used to evaluate the error of the network during each training 

step so as to be able to improve the generalization by restricting the length of time 

used for training. Typically, training stops when the error evaluated on the validation 

dataset starts to increase. It is also vital that the patterns between the training dataset, 

validation dataset and test dataset be dissimilar to one another. Dissimilarity is context 

dependent, and in the case of protein structures, the patterns in each dataset should be 

non-homologous to patterns in the other two datasets. A neural network model that is 

unable to generalize well has effectively learnt the noise patterns in the training data.

One common problem of neural network training is that the process of the search 

of the optimal solution in the high dimensional weight space can get stuck in local 

minima. Nevertheless, neural networks are still popular due to their simplicity of use 

and ability to obtain reasonable solutions to practical problems.
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1.5.3 Areas of Biological Research
Neural networks have been used as prediction algorithms in several areas of biological 

research, such as protein secondary structure prediction. Qian and Sejnowski [108] are 

the first to attempt secondary structure prediction using neural networks. They used a 

two-layer neural network for secondary structure prediction and a second network for 

filtering the outputs of the first neural network. Subsequently, Rost and Sander used 

evolutionary information derived from multiple sequence alignments in their landmark 

PHD secondary structure prediction [109]. Later algorithms, such as PSIPRED [15] 

and SSPro8 [14], also use neural networks.

Apart from secondary structure prediction, neural networks have also been used 

in other aspects of protein structure prediction, such as the prediction of contact 

maps [101, 102, 110], solvent accessibility values [103], protein domain bound

aries [104,105], local propensities of secondary structure such as beta-tums [37,38], 

and fold recognition [36].

Besides the prediction of protein structures, neural networks have also been used 

in other areas of biological research, such as the detection of codons in DNA se

quences [111], classification problems in microarray data experiments [112], as well 

as modelling of genetic regulatory networks [113].

1.5.4 Use of Neural Networks in this Thesis
In this thesis, the Neural Network Toolbox of Matlab 7 [114] is used to implement the 

neural networks for training and testing. Section 1.6 describes the research problem of 

decoy discrimination that is to be tackled in this thesis.

Table 1.1 shows the list of neural network training algorithms provided by Matlab, 

and which are used in the implementation of the neural networks. Further details of 

how these algorithms are used in the implementation would be discussed in Section 

2.3.4. The training and test data used in conjunction with neural networks would also 

be discussed in Section 2.3.1.
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No. Matlab name Description

1 traingd normal gradient descent

2 traingdm gradient descent with momentum

3 traingda gradient descent with adaptive learning rate

4 traingdx gradient descent with momentum and adaptive learning rate

5 trainscg conjugate gradient descent

6 trainbfg quasi-Newton method

7 trainlm Levenberg-Marquardt method

Table 1.1: List of network training algorithms

1.6 Decoy Discrimination Using Machine Learning
In this thesis, I propose a machine learning approach to the decoy discrimination 

problem in the context of template free prediction methods. More specifically, neu

ral networks are used for the decoy discrimination problem. Chapter 2 presents an 

approach by which neural networks are used for decoy discrimination, and describes 

the different input features that are used for the neural networks, the network training 

issues involved, and how decoy training examples are derived. Publicly available decoy 

datasets are used for testing.

Chapter 3 expands on the ideas in Chapter 2 by using evolutionary information as 

additional inputs to the neural network methods for decoy discrimination. Here, there 

are two novel aspects in such an usage of evolutionary information for decoy dis

crimination. First, the idea of using evolutionary information in decoy discrimination 

with current energy functions has not been exploited until very recently when Lin and 

co-workers [115] used binary profiles with pairwise potentials of mean force for decoy 

discrimination. Secondly, the use of evolutionary information, combined with machine 

learning, for the purpose of decoy discrimination has never been attempted before, and 

in Chapter 3, such an approach is shown to be successful in discriminating the native
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1.7 Organization of this Thesis
Chapter 1 gives a brief literature survey of the field of protein secondary and tertiary 

structure prediction.

Chapter 2 introduces the novel method of using machine learning, more specifically 

neural networks, for the decoy discrimination problem. The way in which the decoy 

discrimination problem is represented as a machine learning problem is discussed. 

Various input features to the neural networks are experimented. This chapter also dis

cusses the results of testing on publicly available decoy datasets, and compares it with 

the pairwise potentials of mean force method.

Chapter 3 is an extension of the methods developed in Chapter 2. The novel idea 

of using evolutionary information in decoy discrimination is presented. This chapter 

details on how sequence profiles can be used in the context of neural networks to im

prove the decoy discrimination process.

Chapter 4 gives the conclusions of this thesis, and suggests some future extensions 

to the ideas presented in this thesis.



Chapter 2

Discrimination of Decoys

This chapter describes the first part of the work in this thesis. Here the importance 

of decoy discrimination in the context of New Fold methods is described. The novel 

hypothesis of using neural networks to try and discriminate native structures from 

non-native structures, using simulated decoy distributions and differing amounts of 

information (as input features) such as pairwise distances and solvent accessibility, is 

presented. This hypothesis is then tested on various publicly available decoy datasets, 

and the results are compared to those obtained by using the pairwise potentials of mean 

force method.

2.1 Overview of Decoy Discrimination
The methodology used for tertiary structure prediction of a target sequence, in cases 

where 3D folds similar to the tertiary structure cannot be found in existing protein 

structure databases, is known as the template-free approach, and is referred to as the 

New Fold category in CASP experiments. In New Fold methods, there are no existing 

templates that can serve as starting points for approximating the structure of the target 

sequence. Effective template search methods such as multiple sequence alignment and 

structural alignment tools are therefore not directly applicable in New Fold methods.

In the absence of guiding templates, fragment assembly methods in the New Fold cat

egory typically approximate the 3D structure of a target sequence by joining together 

preselected short peptide fragments of varying lengths. Some fragment assembly meth
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ods that have seen CASP participation are ROSETTA [54] and FRAGFOLD [116]. The 

ROSETTA method uses Bayesian scoring energy functions as the guiding energy func

tion; the FRAGFOLD method uses pairwise potentials of mean force to guide fragment 

assembly.

2.1.1 The Need for Decoy Discrimination
In the above mentioned fragment assembly methods, thousands of candidate models 

(referred to as decoys) are generated. These candidate models are produced in large 

numbers so as to increase the chances of producing a model that most closely resem

bles the actual native structure. By closest resemblance, it is meant that the decoy has 

a very low global RMSD (Equation 1.3 on page 44) to that of the native structure. A 

value of zero RMSD to native is highly implausible for any decoy generation methods, 

and any decoy with <  1A RMSD to native can be treated as a very good prediction of 

the native structure.

The reason why so many decoys are generated as candidates, as opposed to the possi

bility of generating just one candidate structure, is because the energy functions used 

in the assembly process are imperfect. Therefore thousands of models are generated 

to cover as widely as possible the conformational sample space of the 3D model of 

a protein structure. The natural consequence is that an extra step is then required to 

select the most plausible (lowest RMSD to native) model from the thousands of decoys.

Therefore two issues exist in the development of a New Fold fragment assembly 

method. Firstly, a decoy generation method must exist that chums out reasonable 

candidate models in large numbers. Reasonable models are taken to mean models that 

fulfil basic requirements such as the avoidance of steric clashes between neighbouring 

atoms, and are compact etc. David Baker and colleagues outlined 4 requirements for a 

good decoy dataset for testing decoy discrimination methods [117]. These are

•  A good quality decoy set should contain conformations for a wide variety of 

different proteins to avoid over-fitting.

•  It should contain conformations close to the native structure.
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•  It should contain conformations that exist near the minima of a decoy discrimi

nation function so that the function can pick them out.

•  If the method used to generate the decoy dataset does not make use of information 

from the native structure, it can be used directly for protein structure prediction.

Secondly, the selection or discrimination process involves selecting the best 

model(s). It is this second process that is the focus of this chapter.

2.1.2 Selecting the Best Near-Native Decoys
A generated set of candidate decoy structures has varying RMSDs to the native struc

ture, and the challenge is to select the lowest RMSD structure, or the top 5 lowest 

RMSD structures in the context of CASP participation, to represent as the best pre

diction of the native structure. Of course, since CASP is a blind experiment where 

the native structure is not known beforehand, it is impossible to calculate the RMSD 

during the prediction process, and therefore some form of estimate is required for the 

selection of a structure with the lowest perceived RMSD. The estimation is performed 

by the decoy discrimination methods.

A good decoy discrimination method should, in increasing order of importance, be 

able to

•  rank the native structure as the top model, or at least among the top few models, 

among the decoy structures.

•  associate higher scores (or lower energies) with decoy models of better quality.

•  select, in the context of CASP participation, a decoy model of substantially good 

quality from among the decoy models to represent as the blind prediction of the 

target sequence.

The ranking of the native structure by a decoy discrimination method, while important, 

is not an essential step of blind protein structure prediction since the native structure is 

unknown and cannot be evaluated.
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For the last 2 considerations, the definition of ‘model of good quality’ is not restricted 

to the global RMSD, since models of low local RMSDs can possibly be good qual

ity models too. In this thesis, structural quality measures such as the TM-score [76], 

GDT-TS [70] and MaxSub [77] are used to judge and quantify the quality of decoy 

models. All 3 measures, scaled between 0 and 1 inclusive, associate higher values to 

better quality models.

In this thesis, the proposed machine learning decoy discrimination methods are com

pared to the in-house tried and tested pairwise potentials of mean force method. The 

pairwise potentials method has been competitive in the New Fold category for the past 

few CASP experiments [53,82,116,118] and hence provides a stringent comparison 

for the proposed machine learning methods.

The measures used in this thesis for benchmarking the performances of the proposed 

machine learning methods against that of the pairwise potentials method are the

•  Z score, which measures how many standard deviations the score of the native 

structure, produced by any decoy discrimination method, deviates from the av

erage scores of all the decoy models, including the native. This measures the 

strength of the rank of the native structure, relative to the ranks of all the models 

considered.

•  enrichment factor [117] in Equation 2.6 on page 103, which in the presence of 

the knowledge of the native structure (and hence knowledge of the RMSDs of 

the various decoy models), measures the extent to which a decoy discrimination 

method associates high scoring decoys with low RMSD structures.

•  statistical comparison of the ability to select a high quality model as the best 

prediction, using the one-tailed Wilcoxon sign rank test [119] and the various 

structural quality measures.

•  statistical comparison of the ability to rank high scores (low energies) with high 

quality models, using the one-tailed Wilcoxon sign-rank test [119], Spearman 

rank correlation coefficient and the various structural quality measures.
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The above tests are performed on publicly available decoy datasets, such as the Tsai 

decoy dataset [117] and the Decoys ‘R’ Us suite of decoy datasets [120,121].

The average Z scores and enrichment factors of the decoy datasets provide quanti

tative information on how well each method discriminates the native structure from a 

set of decoys, as well as how well it associates high scores with high quality models. 

The statistical tests provide a quantitative way to tell, at 5% significance level, if the 

proposed machine learning methods are better than the pairwise potentials method in 

terms of top model selection and the relative ranking of the decoy models by a typical 

decoy discrimination method.

2.1.3 Current Decoy Discrimination Methods

To make the informed guess of choosing the lowest global RMSD decoy in the ab

sence of native structural information, several methods exist. One way is to use energy 

functions to evaluate the quality of the various decoy models. Here it is useful to dif

ferentiate between energy functions that are used for fragment assembly, and for decoy 

discrimination. If an energy function is used to build the decoy models as well as to 

discriminate the near-native decoy models from the non near-native ones, the energy 

function would not be very discerning in discriminating near-native decoys.

In this thesis, the proposed machine learning decoy discrimination method is bench- 

marked against the pairwise potentials of mean force method. The following subsection 

thereby gives an overview of the various approaches used in energy functions for the 

evaluation of decoy models.

2.1.3.1 Energy functions

Discriminatory energy functions can be divided into two categories, statistical and 

physics-based. Physics-based energy functions include OPLS force fields [57] and 

AMBER force fields [58], and solvent models such as the Generalized Bom Solvent 

Model [57], while statistical energy functions include pairwise potentials of mean



2.1. Overview o f Decoy Discrimination 67

force [49,59], Bayesian scoring functions [54], atomic environmental potentials [60]. 

Physics-based energy functions are derived from the analysis of the fundamental phys

ical forces of interactions between atoms, while statistical energy functions are param

eterized from a set of experimental protein structures. In this section, the discussion is 

restricted to statistical energy functions and its various approaches.

Tanaka and Scheraga [122] are the first to suggest the idea of deriving pairwise fre

quencies of residues as interaction parameters for predicting protein structure. The 

pairwise frequencies were extracted from a set of native protein structures. Miyazawa 

and co-workers then included solvent terms in the estimation of interresidue contact 

energies of native structures [123]. Sippl [59] and others [49] obtained distributions 

of distances between interresidue contacts, and used a Boltzmann equation to derive 

net pairwise potentials of mean force. Different definitions of pairwise distance be

tween interresidue contacts have been tried, e.g. Ca-Ca, C/3-C/3, N-Ca, N-C/3, with 

the ones involving C/3 atoms more successful than those involving Ca atoms. This 

is because the propensities of pairwise distance involving C/3-atoms incorporate the 

additional information of the directionality of the side chains of the contacting residues.

The distance-dependent parameters in the pairwise potentials of mean force assumes 

that the frequencies of each type of residue pair is independent of other types of pairs, 

and this was pointed out by Dill and co-workers [124]. Nevertheless, the pairwise po

tentials of mean force method has been used successfully in the past CASP experiments 

in the New Fold category [53,82,116,118] and is shown in Equation 2.9 in Section 

2 .3 .8 . 1.

Other distance-dependent statistical energy functions include the use of conditional 

probability [125], Bayesian scoring functions [54] and the use of different reference 

states in the Boltzmann equation [126]. Recent work by Thirumalai and co-workers 

also include statistical potentials that takes into account of the orientation-dependency 

in side chains [127]. Besides the extraction of distance propensities from the structure 

databases, there is also the related approach of characterizing of residue environments 

from native structures [46, 128]. This led to the development of environmental po
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tentials which use the propensity of different residual environments to evaluate decoy 

structures [60,129].

The recent increase in the size of the structure databases has led to an improvement 

in the accuracies of these knowledge-based statistical energy functions because there 

is a much larger sample of native structures with which to fit the parameters of these 

statistical functions.

In this thesis, the proposed machine learning method is compared to the pairwise 

potentials of mean force in terms of various benchmarking measures presented in Sec

tion 2.1.2. As mentioned in Section 1.6, one of the goals in this thesis is to evaluate the 

feasibility of including evolutionary information in the decoy discrimination process, 

in the context of the proposed machine learning method. For the pairwise potentials 

method, the parameterization of interresidue distances along with all possible values of 

position-specific profiles is deemed to require too large a sample space for the current 

amount of data in the structure databases. The proposed method in this thesis hopes to 

circumvent this parameterization problem of using evolutionary information by using 

the machine learning approach instead.

Other approaches of decoy discrimination have also involved the use of contact maps 

for representing 3D protein structures (native and decoys), and the subsequent problem 

of discrimination of decoys from native structures has been reduced to a 2D problem 

of distinguishing decoy contact maps from native contact maps [130]. This is an inter

esting approach but suffers from the added complexity of parameter fitting during the 

conversion of 3D to 2D representation.

One effective way of performing the selection of the best model from the thousands 

of decoys is through clustering [96,97]. Clustering involves calculating the RMSD of 

each decoy against all other decoys, and identifying the decoy with the most number of 

neighbours within a cutoff RMSD threshold, e.g. 4A. This decoy, or an averaged struc

ture of its most populated cluster, is then taken as the representative model. Clustering 

has worked well for New Fold methods in past CASP experiments.
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2.1.4 Proposed Method of Decoy Discrimination

In this chapter, a novel method for decoy discrimination using machine learning is pro

posed. More specifically, supervised learning is performed using neural networks for 

the decoy discrimination problem. In a typical supervised learning problem, there are 

positive and negative training examples. In the decoy discrimination problem, positive 

training examples are in the form of native structures, and negative training examples 

are in the form of decoy structures, or more specifically simulated decoy structures 

(Section 2.2.1). The challenge here is to formulate the decoy discrimination problem 

into one that is suitable for encoding 3D structures as inputs into a neural network. 

This is described in detail below.

Given a large number of native structures, for given values of sequence separation 

k between 2 types of residues where k is defined as the number of residues apart along 

the protein sequence between 2 particular residues, the two types of residues form a 

particular distribution of distances. This distribution of distances formed by residues 

in native structures, for a given sequence separation k, is not a new idea and has been 

used to derive classical potentials of mean force [59] and used in threading [49]. For 

ease of discussion, this distribution is referred as the Native Residue Pair distribution 

of Distances (NRPD).

For each particular sequence separation k, there exists a distribution of distances of 

each type of residue pair. Taking k to range from values of 4 to 22 and treating k > 

22 as one distribution, and taking into account 400 possible residue pairs, there are 

altogether 20 x 400 = 8000 distance distributions. The reason for the selection of this 

particular range of k is for the purpose of straightforward comparison with pairwise 

potentials of mean force during benchmarking. In some methods using the pairwise 

potentials of mean force [36,116], a short range sequence separation is defined as 4 < 

k <  10, a medium range sequence separation is defined as 11 < k < 22, and a long 

range sequence separation is defined as k > 22.
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In this proposed decoy discrimination method, for practical reasons o f not being able to 

consider all possible values o f k, distributions for separations k >  22 have been lumped 

together as one distribution. Separations o f 1 <  k <  3 are also ignored.

Figure 2.1 shows one such distribution o f an Alanine pair at sequence separation k=4.  

Figure A .l in Appendix A shows the distributions o f different types of residue pairs at 

the sequence separation k=6. The proteins used to derive these plots is shown in Table 

D. l .  In Figure A. l ,  the different types include hydrophobic residue pairs (ALA-ALA, 

PRO-PRO), similarly charged residue pairs (ASP-GLU, ARG-LYS), opposite charged 

residue pairs (ASP-LYS, ARG-ASP) and polar residue pairs (SER-SER, THR-THR). 

In most o f these figures, a peak at about 11A at separation k=6 can be seen. This peak is 

due to the formation of the regular a  helix formation which fixes the distances between 

the C/3 atoms o f the helical residues to about 11A at k=6.

One way of looking at the NRPD distributions is to consider the 2D distance map

ALA-ALA at separation k=4
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Figure 2.1: Histograms o f native pairwise distances o f ALA-ALA at k=4
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Figure 2.2: 2D Distance Map Representation of a Structure

representation o f a native structure, as shown in Figure 2.2. A 2D distance map is a 

symmetric L x L  matrix o f distance values, where L is the length of the protein se

quence. Each ( i j )  entry contains the distance between residue i and residue j ,  where 1 

<  i j  <  L. The actual definition o f pairwise distance is taken to be the distance between 

the corresponding C/3 atoms o f the residues involved (See Section 2.3.3 for further 

details on the definition of distance). The sequence separation between the residue po

sitions is thus k = \ i - j \ .  Each entry in the distance map can be viewed as a sample point 

from a particular NRPD distribution of residue pair i and j  at a particular separation k. 

O f course, due to the physical constraints in a real protein structure, the distance entries 

are not independent o f one another. But in this hypothesis, it is convenient to assume 

independence of distance map entries, as in the case o f Sippl’s pairwise potentials of  

mean force [59] and its applications in fold recognition [49].

Next it is assumed that decoy structures have an equivalent residue pair distance 

distribution (DRPD) that is different from NRPD for each o f the 8000 native distance 

distributions. Effectively, the DRPD represent distributions o f non-native decoy struc

tures.

Figures B .l and B.2 are enhanced plots o f Figure A. l ,  with the additional decoy 

distributions (DRPDs) alongside the NRPDs. These decoy distributions are obtained 

from the proposed sequence reversal method o f simulating decoy structures from na

tive structures (See Section 2.2.1 for more details on the sequence reversal method).
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It can be seen that the helical tendencies of the pairwise residues (to form a distance 

of 1 lA) in decoy histograms in Figure B.l is falsely lower than the native histograms 

for the ALA-ALA plot. However, in the PRO-PRO plot, it can be seen that the decoy 

histogram of the proline pair has a falsely high peak at 11 A. These various decoy 

histograms provide the negative training examples for the distribution of residue pairs 

at separation k=6. Other similar examples can be observed in the rest of the plots in 

Figures B.l and B.2.

Assuming that all 8000 NRPDs and corresponding DRPDs have been derived us

ing a set of decoys, the ‘goodness’ of each decoy can then be judged in the following 

manner. The distance map of each decoy is first calculated. Each of the entries in 

the distance map is treated as sample points from a distance distribution of pairwise 

residues at particular values of k. It is then of interest which of the distance distri

butions, NRPD or DRPD, is more likely to have generated each sample point. For 

example, if a particular sample point (ALA, THR, k=6) has a value of 10.375 A, it is 

interesting to see whether the ALA-THR k=6 NRPD is more likely than the ALA-THR 

k=6 DRPD to have generated this sample point.

One possible manner of comparision is to use a lookup table with likelihood val

ues calculated from histograms generated from both NRPD and DRPD. However this 

method is oversimplistic because distance values are continuous and histograms are 

essentially summaries of binned distances. Furthermore it is essential to assign a single 

score to each entry of the distance map, for the purpose of reflecting the likelihood 

of the distance sample point to have come from either NRPD or DRPD. A high score 

would indicate that it is more likely to have been sampled from NRPD, and a low score 

would indicate otherwise. Because the assignment of a single score to each distance 

map entry is required for a predictive essence, a single ‘distribution’ that takes into 

account both NRPD and DRPD distributions for all 8000 types of residue pair distance 

distributions needs to be derived.

The following section gives a detailed description of the method implementing this 

hypothesis, and answers the question of how scoring is performed, and how a DRPD is
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2.2 Description of Method
It is assumed that there are differences in the distributions of pairwise interactions of 

residues in the decoy structures (DRPD), to that of the distribution of pairwise inter

actions of residues in the native structures (NRPD). For each type of residue pair and 

sequence separation k, both the NRPD and DRPD distributions have to be combined 

in a manner whereby a single likelihood score can be assigned to each entry of the 

distance map of the decoy structure concerned. This is achieved using neural networks 

and is further discussed in Section 2.2.2. For now, a means of estimation of the decoy 

residue pair distance distributions (DRPD) is required.

In order to have a DRPD, a decoy dataset for the derivation of the distributions of 

distances is needed. However, good decoy datasets are hard to come by, and they 

are also typically generated for a very small dataset of protein domains. This poses a 

problem because a large diverse dataset of native structures is needed to form a NRPD, 

and correspondingly a DRPD. Using currently available decoy datasets (produced by 

other research labs) for derivation of decoy distance distributions also render the decoy 

datasets unavailable for testing.

2.2.1 Decoy Simulation of Native Sequences

One way to get a large and unbiased decoy dataset is to create a generic decoy rep

resentation for each native protein structure. In this way, the experiments carried out 

are not in any way constrained by the lack of available decoy structures for native 

proteins. A generic decoy representation of a native sequence also does not have any 

dependence on any decoy generation method. However, the disadvantage remains as 

to whether a particular generic form of decoy representation is representative of actual 

decoys generated by New Fold prediction methods.



2.2 . D escription  o f  M eth od  74

Two methods o f simulating generic decoys for each native sequence are used. The 

first method is to take the sequence o f a native structure, reverse the sequence and then 

thread it onto the structure. This is known as the ‘sequence reversal’ method. The 

second method is to take the distance map o f each native structure, and add a small 

random deviate to each of the entries in the map. This is known as the ‘perturbed 

distance map’ method. These methods are further elaborated in Section 2.3.1.2.

Figure 2.3 shows a binned distribution o f distances of Alanine-Alanine (ALA-ALA) 

residue pairs o f both the domains of native protein structures and simulated generic 

decoys, using both the sequence reversal and the perturbed distance map method. It can 

be seen that both decoy distributions o f ALA-ALA has a lower peak at 6.5 A, compared 

to that of the native distribution.

Figures B .l and B.2, previously mentioned in Section 2.1.4, show more residue pair 

distance plots o f reversed sequence decoy distributions (DRPDs) at separation k=6.

ALA-ALA at separation k=4

Native
Reversed
Perturbed

160

140

120

§ 100

2 6 8 10 
Pairwise Distances in 0.5A bins

184 12 14 16

Figure 2.3: Histograms o f native and simulated decoy pairwise distances of ALA-ALA  

at k=4
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2.2.2 Machine Learning Framework

Now that a simulated decoy dataset has been selected, the focus is on how best to use 

both the NRPD and DRPD in some sort of machine learning method that it can be 

applied to each candidate decoy structure, for the goal of selecting/rejecting it on the 

grounds of similarity, or the lack of it, to the native structure.

Here the approach described in Section 2.1.4 is reiterated. For each decoy that is 

to be judged, its distance map is examined. If each entry of the map is treated as 

sample points from a particular distribution, it can either come from NRPD or DRPD. 

A single score between 0 and 1 is to be assigned to each entry in the distance map, 

and that score would describe the likelihood of the entry coming from NRPD. A score 

closer to 1 would indicate that there is a higher likelihood of the distance entry being 

drawn from NRPD than from DRPD. Here, it should be taken note that this is not refer

ring to the actual probability of it being drawn from NRPD. Rather, it is the likelihood 

that the distance sample point is being drawn from NRPD.

To achieve this paradigm of a single score describing such a likelihood, a single 

functional approximation that represents an average of the NRPD and DRPD distribu

tions is needed. This function does not describe the probability of an occurrence of a 

distance point. It is a function that describes the likelihood of a distance point being 

sampled from NRPD rather than DRPD. To implement this paradigm, all entries of 

distance maps of native structures are regarded as positive training examples with la

bels 7  ’ while all entries of distance maps of simulated decoys are considered negative 

training examples with labels 'O’. In this thesis, the term ‘negative’ is used to refer to 

non native-like structures.

Each decoy from a set of thousands of decoys has to be scored individually, to judge 

if it is a near-native structure or not. To implement this new paradigm of decoy dis

crimination, a likelihood measure needs to be developed which takes into account both 

the NRPD and DRPD distributions of a given pairwise residue contact at a particular 

sequence separation k, say for ALA-ALA at k=4.
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Figure 2.4: Machine Learning Framework

A machine learning framework is used, as shown in Figure 2.4, where the training 

data comes from the set of native and simulated decoy structures, where NRPD and 

DRPD is modelled from respectively. In order to use these 2 distributions (NRPD, 

DRPD) in a predictive manner, all input instances from native structures are assigned 

the output label of ‘7 ’, and all input instances from simulated decoy structures are as

signed the output label of ‘0 ’. All input instances are in the form of (/?/, R2, k, d) where 

each pair of residues has a sequence separation k > 4, and has a pairwise distance d 

calculated from the coordinates of the structure. In a distance map representation, d 

would be the entry of the distance map with features (Rl, R2, k). The positive and 

negative training vectors would therefore come from each entry in each distance map 

where k > 4.

The ‘Testing Dataset of Decoys’ in Figure 2.4 are ‘real’ decoys generated by some 

fragment assembly method, e.g. FRAGFOLD. Each decoy structure is decomposed 

into a number of test vectors in the form of {Rl, R2, k, d) where k > 4. The vectors are 

then used as inputs to the function produced by the ‘Machine Learning Method’ and 

an output score will indicate the likelihood of each vector. The output scores of all test 

vectors of the decoy structure are then averaged and this mean score will give a measure 

for the entire decoy structure of how native-like it is. Hopefully low RMSD decoys are 

among the high scoring decoys evaluated by the function, as shown in Figure 2.4.
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A neural network is used to represent the ‘Machine Learning Method’, one for each 

separation value k and one for k > 22, to derive these likelihood scores. In this work, 

the strategy of using neural networks for decoy discrimination, using native structures 

as positive training examples and simulated decoy structures as negative training ex

amples, is to present to the networks sufficient examples of features of correct and 

erroneous protein structures in the hope that they can learn to pick out native or near

native structures, based on these features, from a set of decoys.

The ‘Machine Learning Method’ is divided into 20 neural networks, one for each 

k between 4 and 22 inclusive and one for k > 22, for performance reasons. Each input 

value to each network then consists of a vector (Rl, R2, d). The output of the net

work is either 7  ’ or ‘0 ’, depending on whether the vector comes from a native protein 

structure (output label 7  ’) or decoy protein structure (output label ‘0 ’). Because there 

are two ways of representing the decoy distributions (namely the sequence reversal 

method and the perturbed distance map method), there would be a separate set of 

neural networks for each decoy simulation method. After training, the neural network 

would yield a curve that is averaged over the training instances, as shown in Figure 

2.5, which summarizes the likelihood that an input vector (Rl, R2, d) comes from a 

native structure. The sequence reversal method is used in Figure 2.5 for the generation 

of decoy structures.

Appendix C shows more of these plots for each of the native and decoy histogram 

plots in Appendix B. These plots would be discussed further in the next section (Sec

tion 2.2.3).

The method of the neural network training is such that a number of native training 

instances, in the form of (Rl, R2, d), with outputs 7  ’ and a number of decoy training 

instances, in similar form, with outputs ‘0 ’ are presented to the network. The values of 

d presented are floating point numbers, and are not binned. (Figures 2.1, 2.3 and 2.5 

have the distance values rounded in 0.5A bins solely for display purposes). It is hoped
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ALA-ALA at separation k-4
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Figure 2.5: Network outputs averaged over native and decoy distance distributions for 

ALA-ALA at k=4

that at the end of training, the output o f the network, which has a range of between 0 

and 1 inclusive, will indicate the likelihood to which a new input instance belongs to 

a near-native decoy structure. Theoretically, the higher the value of the likelihood, the 

more likely the instance is to come from a near-native decoy structure. Table 2.1 shows 

some examples of the training instances fed into a k=4  neural network. Section 2.3.4  

discusses the neural network training issues involved.

2.2.3 Interpretation of Network Output

A total of 20 neural networks, one for each sequence separation 4 <  k <  22 and one for 

k >  22, are each trained with thousands o f positive and negative training examples. For 

each network of a particular separation k, these positive and negative training examples 

are taken from a subset of SCOP domains, as described in detail in Section 2.3.1. Ef

fectively these training examples are the distance map entries of a particular sequence 

separation k in the form of (RJ, R2, d ). The output labels would be 7 ’s and 'O's for 

maps belonging to native protein structures and simulated decoy structures respectively.

Such a method of neural network training is unlike conventional neural networks
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Protein Type Residue 1 Residue2 Separation Distance Output Label

la32 Native ALA SER 4 4.765 1

la32 Native TRP GLY 4 6.367 1

la32 Native THR TYR 4 8.894 1

la32 Decoy PHE TYR 4 7.894 0

la32 Decoy LEU ILE 4 9.664 0

la32 Decoy MET LEU 4 10.032 0

Table 2.1: Example o f k- 4  training input instances and their output labels

used in pattern recognition problems. In a typical handwriting recognition problem, 

the neural network is presented with input instances o f positive and negative training 

examples of the letter ‘A ’ in vector form, complete with labels 7  's and ‘0 ’s. A proper 

training dataset in such pattern recognition problems should not be inconsistent, which 

means that the training dataset should not have identical input instances with different 

labels.

In the approach discussed here, similar input instances can have different labels. 

In truth, it is probably difficult to have two input instances with identical values of  

floating-point distances because the input vector (R l ,  R2, d)  has continuous values for 

d. However the idea is that in neural network training, near-similar input instances 

with opposite labels would be presented to the gradient descent algorithm. It is the 

functional depiction o f the larger quantity o f input instances o f a particular class (say, 

native with output label 7 ’) ‘winning’ against the smaller quantity of input instances 

of the other class (decoy) that the neural network is expected to achieve, instead of  

the usual nonlinear functional approximation over a high dimensional input space in 

the case o f the handwriting recognition application. In a general sense, for the decoy 

discrimination method described here, it is still functional approximation using neural 

networks, albeit an adaptation for the specific problem o f decoy discrimination.

As an illustration, in Figure 2 . 5 ,  distances between 6 . 2 5 A  to 6 . 7 5 A  are grouped in
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the 6.5A bin. Strictly speaking, the distances presented to the neural network are not 

binned; they are binned in this case for the purpose of convenience of visual presen

tation. For the k=4 neural network using the sequence reversal method, there are 142 

and 75 positive and negative training instances respectively. The averaged network 

output for ALA-ALA at k=4 has a value of about 0.59 at d=6.5A. This means that a 

distance entry with the value of 6.5A would have a likelihood score of 0.59 (> 0.5), 

which suggests that it is more likely to be from a near-native decoy structure. In the 

same figure, for d= \4k, the magenta bar (decoy histogram) is higher than the cyan bar 

(native histogram). This means that the number of negative training examples exceed 

the number of positive training examples for d= \4k. The network output is about 0.385 

for this particular distance of 14A, which suggests that they are more likely to have 

come from a non near-native decoy.

In Appendix C, plots from the k=6 neural network show the extent to which the 

network is combining the frequencies of the native and decoy histograms of residue 

pairs into a single score. The topology of the network is shown in Figure 2.14. Figures

C.l and C.2 show 8 out of 400 possible residue pairs whose native and decoy his

tograms have been averaged by the k=6 neural network. Positive and negative training 

examples used by the network in the form of (R l , R2, d, k=6) are extracted from the 

training dataset (See Section 2.3.1 for details on the training dataset).

The network output at a particular distance d tries to reflect the ratio of the native 

to decoy histograms. For example, for the ALA-ALA plot in Figure C.l, there is a 

peak of 11A where the number of positive training examples is about twice that of the 

negative training examples. The lower peak of about 4A is due to the fact that there 

are no negative examples at 4A. Recall that the network uses continuous values in the 

training examples as illustrated in the ‘Distance ’ column in Table 2.1, and not binned 

frequencies as shown in the plots. Binned frequencies are used in the plots for display 

purposes only.

In each of these 8 plots, it can be seen that the line plot has higher peaks in dis

tance bins where there are more positive examples than negative examples and vice
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versa. In general, the network plots are smoother than the ratio of the native to decoy 

histograms because they represent the function of the training examples of ALL 400 

residue pairs and hence the line plot of each residue pair does not closely reflect the 

different ratios of the number of positive to negative examples in each distance bin.

Here it is important to take note that the network output is NOT a probability of 

an entry in the distance map coming from the distributions of NRPD or DRPD. Rather 

it is the likelihood (taking values between 0 and 1 inclusive) that the distance is being 

derived from the distributions of NRPD. Likelihood values of 0.5 or greater indicate 

that the NRPD distribution is more likely, and suggest that that distance is more likely 

to have come from a near-native decoy. However that only pertains to one entry. All 

entries need to be considered when the whole decoy structure is being judged to be 

near-native or not.

At this point, it is worthwhile to reiterate that one single network of a particular se

quence separation k is responsible for achieving the likes of averaged network outputs 

shown in Figures C.l and C.2 for all 400 types of residue pairs. Each network, for a 

particular sequence separation k, effectively encodes the behaviour of how a particular 

distance is likely to score for each possible residue pair. With this approach, the novelty 

is that evolutionary information in the form of multiple sequence alignment profiles 

can be included into the machine learning method of decoy discrimination proposed in 

this thesis (Chapter 3).

Figure 2.6 shows the general architecture of the proposed neural network method 

of decoy discrimination. Each structure, native or decoy, is decomposed into subsets 

of input data to each of the 20 neural networks representing each separation value k 

(or k > 22). The subsequent result matrices can then be combined into a single score, 

and it is then desired that the native structure has the highest score among the decoy 

structures.
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Figure 2.6: Proposed neural network method o f decoy discrimination

2 .3  M a t e r i a l s  a n d  M e t h o d s

This section illustrates how the training and test datasets are obtained, discusses the 

neural network training issues involved, and describes the testing framework used for 

the proposed decoy discrimination method.

2.3.1 Training, Validation and Test Datasets

A large and diverse dataset of protein domains is required for training, validation and 

testing. The subset of proteins reserved for training is used to derive the representation 

o f the native distance distributions and the simulation of the decoy distributions. The 

validation subset is necessary in the context o f neural network training, and the remain

ing subset is used for preliminary testing. In this work, this dataset is obtained from 

the SCOP database [131] and subsequently partitioned into 3 parts. The initial unparti

tioned dataset is referred to as the ‘initial dataset’ in the remainder o f this section.

The proteins in the initial dataset are chosen to be structurally non-homologous to 

one another. This means that no two pairs o f protein domains in the initial dataset is 

structurally similar, in the context o f SCOP’s classification method. This is done to 

facilitate the partitioning of the validation and test datasets from the initial dataset. If all 

pairs o f protein domains are non-homologous, there is no cause for worry o f hom olo
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gous proteins existing between the training and validation/test datasets when randomly 

assigning proteins to the validation/test datasets during the partitioning process.

To create such a initial dataset, the SCOP domain database (vl.65, December 2003) is 

used. One domain from each superfamily of SCOP classes ‘a ’ to ‘d ’ is selected. There 

are altogether 1095 superfamilies in these 4 SCOP classes. For each superfamily, the 

first domain is chosen that is an X-ray structure, has a resolution of 2A or better, and is 

not part of a protein whose domain has already been selected. Because many sparsely- 

populated superfamilies have no domains whose criteria are met, many superfamilies 

do not contribute to the initial dataset and the number of this initial set of domains is 

740.

However, 28 proteins in this initial set of domains share the same superfamily with at 

least one of the proteins in the decoy datasets, namely the Baker dataset and the Decoys 

‘R’ Us suite of decoys (See Section 2.3.2 for more details on the decoy datasets used 

for testing). Therefore these 28 proteins are excluded from the initial dataset. Further

more, 265 proteins from this initial set (after the 28 proteins have been excluded) have 

less than 10 alignments in the multiple sequence alignments after PSI-BLAST [25] is 

run, and these are excluded from the training dataset. Strictly speaking, there is no 

need to exclude these 265 proteins from the training dataset when training with single 

sequences (without evolutionary information). However to facilitate the comparision 

of results obtained from single sequence information to results obtained from the in

clusion of evolutionary information during benchmarking, it would be more precise if 

the set of training data is being kept constant. The final set of protein domains, after 

both exclusion steps, has 475 proteins.

This final dataset of 475 protein domains is then divided into 3 parts, namely 60% 

for the training dataset, 20% for validation and 20% for preliminary testing. Tables

D.l, D.2 and D.3 show the training set of 285 protein domains, the validation set of 

95 protein domains and preliminary test data of 95 protein domains respectively. All 

3 datasets have mixtures of secondary structural classes, as shown in Table 2.2. From 

Table 2.2, it can be seen that the a{3 proteins are about twice the number of a-only
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Dataset
Number of proteins

All a-only /3-only af3

Training 285 58 (20.4%) 59 (20.7%) 168 (58.9%)

Validation 95 18(19.0%) 25 (26.3%) 52 (54.7%)

Preliminary Test 95 22 (23.2%) 17(17.9%) 56 (58.9 %)

Table 2.2: Structural compositions of the training, validation and preliminary test 

datasets

and /?-only proteins because the a/3 class in Table 2.2 consists of proteins from SCOP 

classes *c’ and ‘d \  while the a-only and /3-only proteins come from SCOP classes ‘a ’ 

and ‘b ’ respectively.

Here two types of testing are performed. The first level consists of preliminary testing, 

where the decoy proteins are simulated by randomizing the 95 sequences in the pre

liminary test dataset. The acid test is the second type of testing, where ‘real’ decoys 

are the ones generated by some fragment assembly methods. Any future references to 

the term ‘test dataset’ refers to this second type of testing.

The training dataset is used to train 20 neural networks, one for each sequence separa

tion k from 4 to 22 inclusive, and one for k > 22. Each generic decoy representation 

(sequence reversal method and perturbed distance map method) has its own training 

done independently of the other representation.

2.3.1.1 Preliminary Test Dataset

The preliminary test dataset in Table D.3 consists of 95 proteins of different structural 

compositions, as shown in Table 2.2. The purpose of the preliminary test dataset is 

to simulate random structures, that is, structures with their residues randomly shuffled 

along the sequence. The aim is to provide a first level test to see if the neural networks 

of both types of simulated negative training examples, namely the sequence reversal 

and perturbed distance methods, can successfully distinguish the native structure from
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random structures.

For each of the 95 proteins, 50 random structures are created by shuffling the se

quence and then superposing the randomly shuffled sequence to the 3D structure. The 

neural networks are then used to test, as described later in Section 2.3.7, to see if the 

native structure has the highest likelihood among all the random structures. The Z 

score (Equation 2.5 on page 102) is also used to measure the extent to which the native 

structure is recognized. Section 2.4.1 shows the results of the discrimination of the 95 

native structures in this preliminary test dataset.

2.3.1.2 Simulated Decoy Datasets

The training dataset for NRPD are the native protein domains taken from SCOP. The 

DRPD needs to be approximated by creating generic decoy structures. There are two 

ways to do this.

In the sequence reversal method, decoys are modelled by using native structures with 

their sequences reversed. This renders most of the side chain atoms meaningless, apart 

from C/3 atoms. In fact, the distance between residues is defined as the distance be

tween corresponding C/3 atoms (Section 2.3.3). For non-glycine residues occupying 

glycine positions after the reversal of sequence, virtual C/3 atom positions are calcu

lated according to Equation 2.3.

The sequence reversal method is a reasonable first approximation to near-native de

coys compared to structures with purely random sequences because some information 

regarding sequence order and neighbourhood compositions of residues are retained in 

the reversed sequence. Here it should be pointed out that even though certain protein 

domains in the training dataset have domain boundaries (as shown in Table D .l) and 

do not span the entire polypeptide chain, the reversal of sequence is done on the entire 

polypeptide chain, and the final ‘reversed’ decoy sequence is then extracted using the 

original domain boundaries. This is to ensure that the original chunk of 3D structure is 

retained, with only the identity of the sequence modified.
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In the perturbed distance map method, the distance map of each native structure is 

perturbed by adding a random distance component to each distance map entry. A 

Gaussian distribution of mean /i=0A and standard deviation o=lA  is applied to each 

entry in the distance map. The final distance map may or may not belong to a realistic 

protein structural model whose 3D coordinates can be derived from the 2D coordinates 

in the map. But such a representation can be viewed as simulating decoy models with 

steric clashes.

In Figure 2.5, it can be seen that there are no training examples, positive or nega

tive, for distances below 3.5A. Here, pseudo negative training examples with distance 

values from OA to 3.5 A in steps of 0.5 A are included for each residue pair. The purpose 

is to allow the neural network to classify the output values of these ‘impossible’ (due 

to steric clashes) distance values to belong to the negative class. The same is repeated 

for the upper ‘impossible’ distance values from the largest native distance value diargest 

to diarg€St+5OA, in steps of 0.5A, for each residue pair.

2.3.2 Decoy Datasets for Testing
Decoy discrimination methods require decoy datasets for testing. In this thesis, the 

well-known Tsai decoy dataset [117] from David Baker’s laboratory and the Decoys 

‘R’ Us suite of decoys [120,121] are used for testing the effectiveness of this decoy 

discrimination method. Table 2.3 shows the decoy datasets in the Decoys ‘R’ Us suite. 

All these decoy datasets are freely available for download from the web. Each decoy 

dataset consists of a native protein structure and its corresponding set of decoy struc

tures, which are generated according to the author’s unique decoy generation method. 

The number of proteins listed in Table 2.3 may not correspond to that in the web

site [121] because some proteins in the datasets are already obsolete.
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No. Name of decoy set Number of 

proteins

Average number of 

decoys per set

Reference

1 4state_reduced 6 665 [132]

2 lattice_ssfit 8 2000 [133]

3 fisa 4 1432 [54]

4 fisa_casp3 4 1432 [54]

5 lmds 10 439 [133]

6 lmds_v2 10 439 [133]

7 semfold 6 12900 [134]

Table 2.3: Decoys ‘R’ Us suite of decoys

Decoy Dataset
Number of proteins

All ck-only /3-only a(3 Others

4state_reduced 6 3 (50%) 0 (0%) 1 (16.7%) 2 (33.3%)

lattice _ssfit 8 3 (37.5%) 0 (0%) 4 (50%) 1 (12.5%)

fisa 4 4(100%) 0 (0%) 0 (0%) 0 (0%)

fisa_casp3 4 4(100%) 0 (0%) 0 (0%) 0 (0%)

lmds 10 3 (30%) 1 (10%) 2 (20%) 4 (40%)

lmds_v2 10 2 (20%) 1 (10%) 3 (30%) 4 (40%)

semfold 6 4 (66.7%) 0 (0%) 2 (33.3%) 0 (0%)

Table 2.4: Structural compositions of Decoys ‘R’ Us suite of decoys

Table 2.4 show the structural compositions of the decoy datasets. Proteins of SCOP 

classes V  and ‘b ’ are classified in the a-only and /3-only columns respectively, while 

proteins belonging to SCOP classes ‘c ’ and (d ’ are considered as ct/3. The ‘Others' 

column refers to small proteins (SCOP class ‘g ’) and peptides (SCOP class ‘j ’).
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Protein Class Number of Decoys Protein Class Number of Decoys

la32 a 1400 lmzm a 1442

lail a 1399 lore aft 1399

lbq9 p 1400 Ipgx aft 1399

lcc5 a 1399 iptq a/3 1399

lcei a 1400 lr69 a 1399

lcsp 0 1399 ltif aft 1399

lctf ot(3 1453 ltuc ft 1400

Idol a/3 1400 lutg a 1399

lhyp a 1400 lvcc aft 1400

llfb a 1399 lvif ft 1399

lmsi ft 1399 5pti ft 1399

Table 2.5: Baker decoy dataset of 22 proteins

The Baker decoy dataset consists of 22 X-ray protein structures, and each protein has 

a set of about 1400 decoys. It is used by Jerry Tsai and colleagues for testing vari

ous physical energy functions. Only the X-ray structures of the original dataset are 

included. Table 2.5 shows the list of protein domains and the number of decoys for 

each domain. One advantage of using the Baker decoy dataset is that it has several 

proteins of different secondary structural compositions, namely a-only, ft-only and aft 

structures. The quality of the decoys in the Baker dataset is also higher than most of 

the decoy datasets in the Decoy ‘R’ Us suite, in the sense that they are more native-like 

and hence harder to discriminate from native structures.

2.3.2.1 Description of the Decoy Datasets

The 4state_reduced decoy dataset was created by Britt Park and Michael Levitt in 

1996 [132]. For 8 small proteins of between 54 and 76 residues long, several thousand 

decoys are generated from near-native models of the native structures by the exhaus

tive enumeration of 10 residues with the four different states of ((f), ip) in a dihedral 

angle model. These 10 residues are made up of 5 consecutive residue-pairs, and are
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positioned between secondary structure elements of the near-native model. The en

semble size is narrowed down by discarding models with radii of gyration higher than 

a specified threshold and removing conformations which have inter-residue contacts of 

< 3.5A greater than a specified number. These decoys are native-like because they are 

generated from near-native models, and the enumeration of conformations takes place 

mainly in the loop residues.

The Tsai decoy set, fisa and fisa_casp3 decoy datasets are generated by David Baker 

and co-workers [54]. The method consists of a simulated annealing procedure to as

semble native-like conformations using a variety of fragments. The fragment set is 

obtained from unrelated structures with similar local sequences, and the conformations 

are assessed using Bayesian scoring functions. The Tsai decoy dataset is of higher 

quality than the rest, due to the fact that the decoys undergo an extensive minimization 

procedure where each decoy structure is perturbed slightly and assessed to see if the 

perturbation yields lower energies.

The lattice_ssfit decoy dataset was created by Yu Xia, Ram Samudrala and co-workers 

in 2000 [135]. The method consists of complete enumerations of conformations using 

a simple tetrahedral lattice model, where a subset of conformations is selected for 

all-atom model generation using predicted secondary structure information. A subset 

of these all-atom generated models is then evaluated using a knowledge-based atomic 

level energy function.

The semfold decoy dataset was generated by Ram Samudrala and Michael Levitt 

in 2002 [134], using 6 ab initio targets that are predicted to have helical content. For 

each protein, decoys are generated starting from an all-atom conformation with ide

alized torsion angles for helices and extended default values for non-helical residues. 

New conformations are generated by iteratively perturbing the existing conformation 

of an arbitrary single residue. Trajectories are generated using a Monte Carlo algorithm 

with simulated annealing, and a genetic algorithm for search. The conformations are 

then evaluated using a variety of energy functions.
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The lmds and lmds_v2 decoy datasets were created by Keasar Chen and Michael 

Levitt [136]. The authors proposed that since a global optimization of an energy 

function that approximates the actual free energy landscape is difficult to obtain, one 

possible method to generate decoy datasets that include a near-native structure is to 

obtain good representations of the space of all local minima in the energy landscape of 

protein folding. These local minima are assumed to contain the native structure as well. 

To reduce the search space for all local minima, an existing energy function [137] is 

modified to represent broad regions of local minima. An iterative procedure of decoy 

generation and parameter fitting of the modified energy function is also used.

2.3.2.2 Quality of the Decoy Datasets

This section shows the quality of the various decoy datasets, in terms of the distribution 

of the RMSDs of the decoys of individual proteins. This is important because the per

formance of decoy discrimination methods depends on the quality of the decoy dataset. 

For instance, a decoy dataset with a high percentage of decoys with high RMSDs would 

be easier for most decoy discrimination methods to discriminate the corresponding na

tive structure, while a better decoy discrimination method can identify native proteins 

than other methods when tested on a decoy dataset with many low RMSD decoys.

Table 2.6 shows the RMSDs of all the decoys of the various proteins for each dataset 

at 5%, 25%, 50%, 75% and 95% percentiles. It can be seen that the decoys in each 

dataset have widely varying RMSDs. From Table 2.6, it can also be seen that the Baker 

decoy dataset has the highest quality in terms of the number of low RMSD decoys. 

The Baker decoy dataset, being the second largest dataset, has a RMSD of 3.818A 

at 5% percentile. This means that it has about 1500 decoys with RMSDs of 3.818A 

or lower. It can be seen that the Baker decoy dataset has a higher proportion of low 

RMSD decoys, compared to other smaller datasets such as lattice_ssfit.
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Decoy Dataset Total Number
Percentile

5% 25% 50% (Mean) 75% 95%

Bakerdecoy 30860 3.818 6.290 8.595 10.503 12.413

4state .reduced 3996 2.033 4.031 5.398 6.441 7.530

lattice _ssfit 16000 7.177 8.787 9.186 10.930 12.818

fisa 2000 3.728 4.847 7.359 10.098 12.139

fisa_casp3 5991 6.886 9.7253 11.606 13.454 17.177

lmds 4336 3.563 5.280 7.795 9.631 11.423

lmds_v2 1200 4.086 6.210 8.679 11.022 13.256

semfold 78214 6.852 9.400 10.707 11.680 13.032

Table 2.6: RMSD distributions of all decoy datasets

Figures 2.7 and 2.8 show the RMSD distributions of set of decoys of each of the 22 

proteins in the Baker dataset, grouped into classes of secondary structure compositions. 

The group of a-only proteins is separated into 2 plots for purposes of clarity.

Figure 2.9 shows the RMSD distributions of the 4state.reduced and lattice_ssfit decoy 

datasets, while Figure 2.10 shows the RMSD distributions of the fisa and fisa_casp3 

decoy datasets.

Figures 2.11 and 2.12 show the RMSD distributions of the lmds and lmds_v2 decoy 

datasets respectively. There are 10 proteins in each of the lmds and lmds_v2 datasets. 

For the sake of clarity, two plots are shown for each of these figures. Figure 2.13 shows 

the RMSD distributions of the semfold decoy dataset.

2.3.3 Definition of Pairwise Distance

The pairwise distance between two residues is taken as the distance between the cor

responding C/3 atoms. In the case of glycine, the C/3 atom is approximated from the 

associated Ca, N and C coordinates values) using the following equation as used 

in [132]. Two unit vectors x  andy are defined below.
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RMSD distributions ot alpha-only proteins in the Baker decoy dataset
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Figure 2.7: RMSD distributions o f a-only proteins in the Baker decoy dataset

RMSD distributions ol beta-only and alpna-beta proteins in the Baker decoy dataset
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Figure 2.8: RMSD distributions of /3-only and a/3 proteins in the Baker decoy dataset
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RMSD attributions of proteins in the 4state reduced (left plot) and iattice_ssm (right plot) decoy datasets
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Figure 2.9: RMSD distributions of the 4state.reduced and lattice_ssfit decoy datasets

RMSD distributions of proteins in the fisa (left plot) and ftsa_casp3 (right plot) decoy datasets
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Figure 2.10: RMSD distributions of the fisa and fisa_casp3 decoy datasets
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RMSD distributions ot proteins in the lmds decoy dataset
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Figure 2.11: RMSD distributions of the lmds decoy dataset

RMSD distributions of proteins in the Imds_v2 decoy dataset
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Figure 2.12: RMSD distributions of the lmds_v2 decoy dataset
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RMSD distributions of proteins m me semfold decoy dataset
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Figure 2.13: RMSD distributions of the semfold decoy dataset 
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The position of the C/3 atom, r$ is then calculated using the following equation, where 

/ is the distance of the C/3 atom from the Ca atom and set to 1.53A while 9 is set to

37.6 degrees.

r$ =  IcosOk +  IsinOy (2.3)

This approximation of C/3 atoms in glycine residues is performed on the training, vali

dation, preliminary test, as well as the decoy test datasets.

2.3.4 Neural Network Training Issues

A machine learning method is proposed that outputs a score, when presented with a 

pair of residues {R l,  R 2), sequence separation k and distance d, indicating the extent to 

which residues R l  and R2, at sequence separation k and d  A apart, belongs to a native

structure. Averaged over all possible residue pairs in the sequence over all possible
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values of k, it is hoped that the mean score would be a likelihood measure, indicating 

how near-native the decoy structure is.

This machine learning method is implemented in the form of a neural network. The 

inputs of the neural network would be a particular pair of residues (Rl, R2), sequence 

separation k and distance d. For performance reasons, each integer value k ranging 

from 4 to 22 inclusive, and one for k > 22, is divided into 20 different neural networks 

representing each value of k.

The training dataset is taken from Table D.l. Each of the 20 networks has its own 

set of training data, in the form of positive and negative training examples. Positive 

training examples are taken from the pairwise distances of native protein structures. 

In the sequence reversal method, negative training examples are taken from native 

structures with their sequences reversed. In the perturbed distance method, the native 

pairwise distances have a random deviate added (Section 2.3.1.2 describes the details 

for both methods). For the k > 22 network, only 1 out of every 100 (positive and 

negative) training examples are used during neural network training due to the lack of 

sufficient memory resources.

Figure 2.14 shows the neural network topology. A two-layer feedforward neural 

network is used. The first layer comprises of 41 neurons, with 20 neurons for each 

residue. These 40 neurons take the binary value ‘O’ or 7 ',  to indicate the presence 

or absence of a residue type. Only 1 of the 20 neurons for each residue can take the 

value of 7 ’ for each training example. For example, the vector [1 0 0 ... 0] represent 

an Alanine residue. The 41s* neuron represents the distance between the two residues, 

and accepts a floating point number.

Each of the 41 neurons in the input layer is connected to all the neurons in the hidden 

layer. The W1 weight matrix is of size 41 x N# where N H is the number of neurons 

in the hidden layer. Several transfer functions are experimented for the first layer (see 

Table 2.7), while the transfer function in the second layer is the typical linear function. 

In Figure 2.14, f(s,W l) and g(f,W2) indicate the transfer functions in the input and
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hidden layers respectively, while W1 and W2 are the 41 x Nh  input weight matrix and 

N// x 1 hidden weight matrix respectively, and s refers to the input examples. The 1 

x Nh input bias vector b l and the 1 x 1 hidden bias vector b2 are also shown in the 

diagram.

Bias Bias 1

f(s,W 1)
First , 
Residue \
(20 neurons)

Input
Examples

g(f,W2)

output o

Second
Residue
(20 neurons)

W1 W2

Distance 
(1 neuron)

Output LayerInput Layer Hidden Layer

Figure 2.14: Neural Network Topology

2.3.4.1 Training Procedure

As mentioned in Section 1.5.4, the Neural Network Toolbox of Matlab 7 [114] is used 

for the training and testing of the various neural networks. The toolbox is useful be

cause it has standard functions for creating and designing neural networks, performing 

error minimization and batch training. There is also provision for the use of validation 

data to prevent overfitting (Section 2.3.4.2).

For each network of a particular separation k (4 < k < 22, k > 22), the entire set 

of positive and negative training examples of 400 residue pairs is shown to the net

work, which then calculates the total error of the training examples, using the transfer 

functions of both layers. In neural network terminology, this is the batch mode of 

training. The error function used is the Mean Square Error (MSE), which is shown in
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Equation 2.4,

e D  — q  — ° d )2 (2.4)
d £ D

where eo is the total error of the training examples after the iteration, D is the set of 

training examples, td is the output label of the training example d, and od is the network 

output for example d.

The error function is then evaluated on the validation dataset. The training process is 

terminated when the error on the validation dataset starts to increase, compared to that 

of the previous iteration. If not, a gradient descent algorithm is then used to calculate 

the adjustments to the weight matrices W2 and then W l, in that order. This constitutes 

one training iteration. Subsequent training iterations repeat the error calculation and 

weight updating process until the MSE decreases below a predefined threshold of 0.01 

or when the training ends due to an increase in the error on the validation dataset. In 

practice, due to the formulation of this decoy discrimination method where conflicting 

labels of the training examples prevent the MSE from becoming too small, the training 

always terminates due to the increase in error on the validation dataset.

The following sections describe the validation dataset, and investigate the different 

transfer functions used in training a typical neural network.

2.3.4.2 Validation Dataset

A validation dataset (Table D.2) is used during the training of each neural network. 

It consists of 95 proteins of different structural classes, as shown in Table 2.2. The 

validation dataset is used to prevent the network from overfitting the training data. In 

theory, overfitting should not occur because the number of training examples for each 

neural network (in the order of 100 000) far exceeds that of the number of hidden units 

(in the order of 10). But the validation dataset is still used nonetheless.
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No. Matlab name Description

1 tansig sigmoid transfer function (Figure 2.15 A)

2 radbas radial basis transfer function (Figure 2.15B)

3 tribas triangular radial basis transfer function (Figure 2.15C)

Table 2.1: List of transfer functions

Like the training dataset, the validation dataset is in the form of (Rl, R2, d) for each 

sequence separation k, where 4 < k < 22, or k > 22.

2.3.4.3 Transfer Functions of Neural Network

Several transfer functions are experimented for the first layer of the feedforward neural 

network. Table 2.7 shows a list of transfer functions. The k=4 and k=5 networks are 

used to empirically select which transfer function can yield the lowest MSE. The se

lected transfer function is then used in all the 20 neural networks. Here, the sequence 

reversal method is selected to provide the negative training examples for this simple 

benchmarking test. The Levenberg-Marquardt algorithm is chosen as the training algo

rithm for all 3 transfer functions (Section 2.3.4.5).

Various transfer functions
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Figure 2.15: Different transfer functions used for benchmarking of the k=4 network



2.3. M aterials and M ethods 100

2.3.4.4 Transfer Function Benchmarking Results

Figure 2.16 shows the results o f the MSEs achieved by the 3 transfer functions listed 

in Table 2.7. The errors are obtained either after 100 training iterations or after early 

stopping of the training process due to an increase in error on the validation dataset, as 

described in Section 2.3.4.2.

MSEs of the k=4 network with different transfer functions
0.23
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MSEs of the k=5 network with different transfer functions
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Figure 2.16: MSEs of the k - 4  and k=5 networks o f the various transfer functions in 

Table 2.7

The error performance yielded by the sigmoid transfer (tansig) function over various 

number of hidden units is unstable, even though it occasionally yields the lowest error 

among the 3 different transfer functions. The reason for its instability could be due 

to the fact that it is ill-fitted to model the natural shape of the output function, which 

is that of a bell shape, as shown in Figure 2.5. The triangular radial basis functions 

(tribas) and the radial basis function (radbas) are much more stable in terms of the 

error performance over various hidden units. Here, the radial basis function (radbas) is 

chosen because of its smooth interpolation nature.
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2.3.4.5 Neural Network Training Algorithms

Several neural network training algorithms are experimented for searching in the high 

dimensional weight space for the weight vector that yields the lowest error. Table 1.1 

shows the various network training algorithms tried with the k=4  neural network. The 

learning rate o f all the algorithms is set to 0.1.

Figure 2.17 shows the results o f the MSEs achieved by the various network train

ing algorithms listed in Table 1.1 for the k - 4  neural network. The errors are obtained 

either after 300 training iterations or after early stopping of the training process due to 

an increase in error on the validation dataset. The number of training iterations is set to 

300. In practice, all the network training algorithms in Table 1.1, apart from traingdm, 

experience early stopping for this simple benchmark.

MSEs of the k=4 network with different network training algorithms

traingd
traingdm
traingda
traingdx
trainscg
trainbfg
trainlm

0.25

in

0.2

0.15
4 6 8 10 

Number of hidden units of the k=4 network
12 1614

Figure 2.17: Different network training algorithms used for benchmarking o f the k - 4  

network

It can be seen from Figure 2.17 that the Levenberg-Marquardt algorithm (trainlm) 

yields the lowest MSE across all numbers o f hidden units and is also the most stable
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algorithm. Therefore this algorithm is selected for the rest of the neural networks.

2.3.4.6 Number of Hidden Units

For each of the 20 neural networks, the number of hidden units is varied from 4 to 16 

inclusive. The maximum number of hidden units attempted is 16 due to the limitation 

of memory resources. For each k, the network with a particular number of hidden units 

that yield the lowest MSE (Equation 2.4 on page 98) is chosen.

2.3.5 Test Measures
Unlike usual pattern recognition problems where the test dataset consists of clear labels 

(whether a character is an ‘A ’ or not), one way to evaluate how well the proposed decoy 

discrimination method performs on ‘real’ decoy datasets is to see how well the native 

structures fare among the decoys in the scoring/discriminating function. The Z score is 

frequently used in this aspect.

ry * 5 native Sm eanZscore = --------    (2.5)

where S native  is the score of the native structure produced by the proposed decoy dis

crimination method, Smean is the mean score across all decoys, including the native 

structure, and is the standard deviation.

For each test protein, there exists a set of decoy structures with varying RMSDs. 

In a CASP scenario, the native structure is unknown. In a way, the Z score can only be 

calculated in the aftermath of CASP when the native structure, once it is known to all, 

is ranked to see how it fares in a particular decoy discrimination function.

Therefore another way to benchmark a decoy discrimination method is the enrich

ment measure. Here the focus is on assessing if the decoy discrimination method 

succeeds in identifying the lowest RMSD near-native structures. The enrichment fac

tor, introduced by David Baker [117], is the proportion of low RMSD decoys in a low
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energy subset of the decoy population, over the total number of low RMSD decoys in 

the entire decoy population. In the current context, the term ‘low energy’ would be 

replaced by ‘high likelihood’.

To quantify this, David Baker uses 15% as the thresholds for the cutoff for both the 

low RMSD decoy subset and the low energy subset. In Equation 2.6, the enrichment is 

defined as the intersections of both the subsets divided by what might be expected for 

an uniform distribution of low-energy decoys as well as for low RMSD decoys. Values 

greater than one suggest that the decoy discrimination method has an enrichment over 

a uniform distribution [117].

enrichment = Ml5% 0  Rl5% (2 6)
x 15% x N  ( ’

where M i5% is the list of decoys with the top 15% highest scores as identified by the 

decoy discrimination method, R i5% is the list of decoys with the top 15% of lowest 

RMSDs, and N  is the total number of decoy models.

Both the enrichment factor and the native Z score are used for testing both the proposed 

machine learning decoy discrimination method and the pairwise potentials method, for 

the sake of comparison between the two, on the various decoy datasets.

2.3.6 Statistical Tests

The Z score and the enrichment measure provide information on how well the proposed 

machine learning method, as well as the pairwise potentials method, can discriminate 

the native structure, and associate low RMSD decoys with high scoring decoys. Here, 

several statistical tests are proposed to evaluate if the proposed machine learning 

method is better than the pairwise potentials method in three different ways.

There are altogether 70 sets of decoys from the 8 different decoy datasets, and hence 

this constitute a sample size of 70 for the statistical tests. Each test is repeated for the 

various different structural similarity measures. The three different tests are the
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•  top model selection, where the one-tailed Wilcoxon sign-rank test is used to reject 

or not reject the null hypothesis that the median of the distribution of the differ

ences in the structural similarity scores (TM-score, GDT-TS and MaxSub) of the 

top structure selected from the 70 sets of decoys by the two different methods 

is zero. The alternative hypothesis, being a one-tailed test, is that the median of 

the differences in the similarity scores produced by the machine learning method 

and the pairwise potentials method is higher than zero.

•  ranking of all the decoy models to that of the structural similarity scores (TM- 

score, GDT-TS and MaxSub) for each of the 70 samples, where the Spearman 

correlation coefficient is used to calculate the rank correlation. The one-tailed 

Wilcoxon sign-rank test is used to reject or not reject the null hypothesis that the 

median of the distribution of the differences in the Spearman correlation coeffi

cients produced by both methods is zero.

•  ROC analysis, where in a machine learning essence, the various decoy models 

in all the 70 sets of decoys are dichotomized into ‘true’ and ‘false’ data, and the 

ROC curves of the various decoy discrimination methods are plotted against one 

another.

The following sections describe the various tests in detail.

2.3.6.1 Wilcoxon sign-rank test on top model selection 

The Wilcoxon sign-rank test is used here for gauging the ability of two different de

coy discrimination methods for selecting a high quality structure as its highest ranked 

model from a set of decoys. The ‘structure of high quality’ is quantified by each of the 

3 different structural similarity measures, namely the TM-score, GDT-TS and Max

Sub. Hence the Wilcoxon sign-rank test is to be performed for each of the 3 structural 

similarity measures.

The one-tailed Wilcoxon sign-rank test is used to reject/not reject the null hypothesis 

that the median of the distribution of the differences between the structural similarity 

scores of the top ranked model produced by the machine learning method and the
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pairwise potentials method is zero.

The null and alternative hypotheses are as follows:

H q : M a - b  =  0

H a ■ M a- b > 0 (2.7)

where M* is the median of the distribution of random variable X, where A and B are 

the random variables describing the structural similarity scores of the 70 samples for 

the proposed machine learning decoy discrimination method and the pairwise poten

tials method respectively. A significance level of 5% is used.

In this statistical test, the one-tailed test is performed because it is of interest to see 

if there is added value for using the proposed decoy discrimination method in place 

of the pairwise potentials method for top model selection, and not the other way around.

In later sections and the following chapter, variants of the neural networks are pro

posed, with additional features, and for each such variant, the Wilcoxon sign-rank test 

is carried out for each of the variants, as well as for each structural similarity measure.

2.3.6.2 Wilcoxon sign-rank test on Spearman correlation coefficients 

For each of the 70 sets of decoys from all the decoy datasets, the Spearman rank 

correlation coefficient is calculated between the output scores of a particular decoy 

discrimination method and the structural similarity scores of the decoys in that set. 

This is performed for each decoy discrimination method, and each structural similarity 

measure (TM-score, GDT-TS, MaxSub).

Here, the one-tailed Wilcoxon sign-rank test is again used to reject/not reject the null 

hypothesis that the median of the distribution of the differences between the Spearman 

rank correlation coefficients produced by the machine learning method and the pair

wise potentials method is zero.
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The null and alternative hypotheses are as follows:

106

Ho : M a - b =  0

H a • M a - b >  0 (2 .8)

where M* is the median of the distribution of random variable X, where A and B are 

the random variables describing the Spearman correlation coefficients of the 70 sam

ples for the proposed machine learning decoy discrimination method and the pairwise 

potentials method respectively. A significance level of 5% is used.

2.3.6.3 ROC analysis

Strictly speaking, this is not a statistical test, but a classifier test. The various decoy 

models in all the 70 sets of decoys are dichotomized into ‘true’ and ‘false’ data. There 

are altogether 142625 decoy models in the 70 sets of decoys from the 8 decoy datasets.

The purpose of the ROC analysis is to investigate how well the proposed decoy dis

crimination methods assign lower output scores to poorer quality models, and higher 

output scores to higher quality models. Here, the definition of ‘quality’ includes the 

RMSD, which measures the extent of global similarity to the native structure, and TM- 

score, GDT-TS, and MaxSub, structural similarity measures which take into account 

the local similarity of a decoy model to the native structure.

In a way, the ROC analysis complements the benchmarking measures of Z score 

and enrichment score. While the Z score and enrichment focus on the native structure 

and low RMSD structures respectively, the ROC analysis investigates how well a decoy 

discrimination method performs across the entire range of quality of models.

One set of thresholds for the dichotomy is 6A, 0.4, 0.25 and 0.3 for RMSD, TM- 

score, GDT-TS and MaxSub respectively. Another set of more stringent thresholds is 

chosen to investigate how the ROC curves vary for differing thresholds. The second set 

of thresholds for the dichotomy is 4A, 0.5,0.35 and 0.4 for RMSD, TM-score, GDT-TS 

and MaxSub respectively. Such thresholds may be somewhat arbitrary, but the purpose
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of this test is to get an idea of how well the different decoy discrimination methods can 

assign the decoy models into the two classes. Hence there is a need to select particular 

thresholds for the similarity measures.

In summary, the ROC analysis allows for the assessment of how well various de

coy discrimination methods assign models of high quality to the ‘true positive’ class 

for each structural similarity measure, while keeping the fraction of ‘false positives’ to 

a minimum.

2.3.7 Testing a Decoy Structure

The distance map (as shown in Figure 2.2) of a structure, be it native or decoy, is first 

generated. Ignoring the lower half of the symmetric distance map, each of these entries 

in the top half of the map is represented in vector form (Rl, R2, k, d), where R1 and 

R2 are the residues, k is the sequence separation between the two residues and d is the 

distance apart. For each distance entry, the neural network of the particular k is then 

selected (distance entries with k less than 4 are left out). Each distance entry is in the 

vector form (R l , R2, d). The vector (Rl, R2, d) is then put through the neural network 

and the output score is obtained for that distance entry. This output score then goes into 

a results matrix, as shown in Figure 2.18, which shows a typical results matrix for any 

given structure. The diagonals marked ‘X ’ and T ’ indicate the scores obtained from 

neural networks of separations k=4 and k=5 respectively.

2.3.7.1 Different ways of combining Neural Network Results

After the network output scores are assigned to each distance map entry, the scores are 

combined. Each structure has a corresponding combined score. It is hoped that the 

native structure would have the highest combined score. Scores of different separation 

ranges can be combined to see how well the neural networks of different sequence 

separation ranges differ in discriminative power.
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Figure 2.18: Results Matrix o f a Structure

No. Name of combination Range of k

1 Short Range (S) 4 < k < \ 0

2 Short+Medium Range (SM) 4 <  k <  22

3 Short+Medium+Long Range (SML) 4 <  k <  22, k >  22

Table 2.8: Different ways o f combining scores from the various neural networks

There are altogether 220- 1=1048575 ways to combine 20 different types o f scores. 

These 20 types refer to each k where k ranges from 4 to 22 inclusive, and k >  22. Here, 

3 levels o f combinations are chosen. These are shown in Table 2.8.

A short range sequence separation (S) is defined as 4 <  k <  10, a short and medium 

range sequence separation (SM) is defined as 4 <  k <  22, and a short, medium and long 

sequence separation range (SML) is defined as k >  4. For each results matrix (Figure 

2.18), the scores o f all entries in the distance map for each particular range o f sequence 

separation (S, SM, SML) are averaged to produce a single score that represents the 

likelihood score that describes whether the structure of the results matrix is near-native 

or not. This is performed for all decoys, as well as the native structure.

The results o f these 3 ways o f sequence separation combination can then be evaluated 

using the Z score (Equation 2.5 on page 102) and the enrichment measure (Equation

2.6 on page 103).
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2.3.8 Benchmarking Measures
In this section, 2 methods are described, for the purpose of benchmarking the proposed 

decoy discrimination method. The first method is the pairwise potentials of mean 

force [59]. The pairwise potentials of mean force method has already proven to be an 

effective energy function in fold recognition methods such as mGenTHREADER [36] 

and ab initio fragment assembly methods such as FRAGFOLD [116]. It can also serve 

as an energy function for the evaluation of candidate decoy structures. Section 2.3.8.1 

gives details on the calculations of the pairwise potentials.

The second method is the K-Nearest Neighbours (K-NN) algorithm. In most ma

chine learning problems, it is useful to compare the results of any proposed machine 

learning algorithm with that obtained from a simple K-NN classifier. In this thesis, the 

K-NN method is formulated in the context of the decoy discrimination problem.

2.3.8.1 Using Pairwise Potentials Of Mean Force

The pairwise potentials of mean force, used in mGenTHREADER and FRAGFOLD, 

can also be used for decoy discimination, as in the case of the MQAP method MOD- 

CHECK [91]. Here, it is used as a means of providing a benchmark for the proposed 

neural network method.

Equation 2.9 shows how the net potential of a residue pair ab, with sequence sepa

ration k and distance interval s, is calculated. The distance is taken between C/3-C/3 

atoms of the residue pair. In the case of glycine, an approximate C/3 position is calcu

lated.

f a b f
A E f  =  R T ln [  1 -I- m ab<j\ — R T ln [ \  -I- . ] (2.9)

Jk{s)

The term mab is the number of pairs ab observed with sequence separation k, a  is the 

weight given to each observation and is set to 0.02, f k(s) is the frequency of occurrence
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of all residue pairs at topological level k and separation distance s,/fca6(s) is the equiv

alent frequency of occurrence of residue pair ab and RT is taken to be 0.582 kcal/mol.

Equation 2.9, shown on page 109, is derived for all 400 types of residue pairs for 

each separation k, where 4 < k < 22, as well as for long range potentials, where k > 

22.

For each decoy (and native) structure of a protein, the energy of the structure is calcu

lated according to Equation 2.10.

E(Structure) = EE A E f  (2.10)
k ab£R

where R is the set of pairwise residues in the structure which are separated by k residues 

in the sequence. Here, instead of calculating the pairwise potentials based on the train

ing dataset, the in-house pairwise potentials method is used. This is done so that a 

stringent comparison of the proposed machine learning method can be done against 

the pairwise potentials method since the latter has proved competitive in the last few 

CASP experiments.

After the energy of each structure is calculated, the Z score of the native structure 

can be derived. The native structure is expected to have the lowest energy, and hence 

the lower the Z score the better. For purposes of effective comparison to that of the 

proposed neural network method, the signs of the Z scores obtained by the pairwise 

potentials method are inverted.

2.3.8.2 K-Nearest Neighbours Algorithm

The K-Nearest Neighbours (K-NN) algorithm is a common machine learning classifier 

that takes a particular test example and assigns to it the class where the majority of the 

K nearest training data points belong to. The K-NN method can be used in the context 

of the proposed decoy discrimination method.
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The training data used for classifying test data is the same as that used for training 

of the neural networks. For each separation k, there exists 400 sets of training data 

with both types of labels ‘7’s and ‘O’s (for each type of residue pair) which the K-NN 

classifier can be applied to, depending on the particular test data point. For each decoy 

(and native) structure, there exists a set of test data points in the form of (Rl, R2, d) for 

each separation k. Each of these test data points (with a particular distance d) is then 

used to select the K nearest neighbours in the training set of (Rl, R2) where the train

ing data points are of the class label ‘7 ’ or ‘0 ’. The distance measure used to classify 

‘nearest’ is that of the standard Euclidean distance. In the benchmarking of methods 

in this thesis, the K-NN method is restricted to use the distance measure only, even as 

more input features, such as solvent accessibilities, are added in later sections. The 

number of neighbours used in the benchmarking is 10 and 100. Instead of assigning an 

absolute ‘7 'o r  ‘0 ’ to the test data point, the ratio of the number of training data points 

with labels ‘7 's to the number of training data points with labels ‘0 ’s is taken.

As an example, Figure 2.19 shows a test data point marked ‘X ’ of say, an Alanine- 

Leucine pair. The number of nearest neighbours is 10 in this example. The 10 nearest 

neighbours in the training set of all Alanine-Leucine data obtained from native struc

tures and simulated decoy structures are selected, and the ratio of the number of labels 

‘7 ’ (indicated by the white circles) to the number of labels ‘0 ’ (indicated by the black 

circles) is calculated. In this case, the test data point is assigned the value of 0.6, 

since there are 6 ‘7’s and 4 ‘0 ’s. In this case, the Euclidean distance of the points is 

1-dimensional and hence the graphical representation in Figure 2.19 is that of a straight 

line.

 o o oomm <am o-------------

Figure 2.19: An example of the K-Nearest Neighbours Algorithm

Figure 2.20 shows a results matrix of a candidate structure, which is similar to that in 

Figure 2.18, obtained by applying the K-NN algorithm. The figure shows the values of 

each individual test data point along the k -4 and k=5 diagonal assigned by the K-NN
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algorithm.
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Figure 2.20: A typical K-NN results matrix

Similarly to the neural network method, the values in the K-NN results matrix can 

be combined in 3 ways, namely the short range (S) combinations of separation (4 <  

k <  10), the short and medium range (SM) combination (4 <  k <  22), and the short, 

medium and long range (SML) combination (k >  4). This is done for the sake of 

comparison to that o f the neural network method.

2 .4  R e s u l t s
In this section, the results of testing are presented and discussed. The ensemble of  

trained neural networks are tested on a simulated test decoy dataset (Table D.3), as 

well as on the Baker decoy dataset and the Decoys ‘R’ Us suite of decoy datasets.

This section shows the

•  results o f testing on the preliminary test dataset, which demonstrates the viability 

of the approach of using neural networks for decoy discrimination.

•  results from a single k=4  neural network o f the l r 6 9  protein of the Baker decoy 

dataset, which illustrates the plausibility o f the neural network approach to decoy
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•  results of different combinations of sequence separations of the lr69 protein of 

the Baker decoy dataset.

•  results of different combinations of sequence separations on all the decoy 

datasets.

•  Z scores of the neural network method, K-Nearest Neighbours and the pairwise 

potentials method on the Baker decoy dataset, which is useful since the Baker 

dataset has a number of proteins of different secondary structural classes.

•  Z scores and enrichment of the neural network method, K-Nearest Neighbours 

and the pairwise potentials method on all decoy datasets.

The statistical tests are deferred to Section 2.5.5 where the results of variants of the 

neural network methods with additional input features, along with this neural network 

method with inputs of pairwise distance only, are presented and discussed.

2.4.1 Testing of Preliminary Test Dataset
Firstly, the preliminary test dataset is used to find out how well the neural networks 

work in discriminating native structures from ‘random’ decoys. Random decoys are 

generated by randomizing the residues along the sequence and then threading it to the 

structure, as described in Section 2.3.1.1. Each native structure has 50 ‘random’ de

coys, and the likelihood of each of the structures is assessed using the neural networks. 

The native structures are expected to come out tops.

The comparison of native structures versus random decoys are benchmarked using 

the sequence reversal method and the perturbed distance method (as described in Sec

tion 2.3.1.2), and the results are shown in Tables 2.9.

In Table 2.9, the results are presented in terms of the number of native structures 

that have been correctly identified as the one with the highest rank by the decoy dis

crimination method. The average Z score (Equation 2.5 on page 102) for the 95 test
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Simulated Decoy Method S Combination SM Combination

Sequence reversal 91 (3.851) 90 (3.969)

Perturbed distance 82 (3.393) 86 (3.505)

Table 2.9: Number of native structures with the highest rank (and Z scores) among the 

random decoys

proteins is also given in parentheses. The sequence reversal method performs slightly 

better than the perturbed distance method, in terms of the number of native structures 

identified as the ones with the highest score among the ‘random’ decoys, and in terms 

of the average Z scores of the native structures. Both the short range (S) and short 

and medium range (SM) combinations of sequence separations perform better for the 

sequence reversal method than that of the perturbed distance method, in terms of both 

the Z score and the number of native structures that are ranked the highest.

Therefore, the sequence reversal method is selected for the acid test, namely the bench

marking of the decoy datasets, as well as for subsequent enhancements to the neural 

network method.

2.4.2 Testing of Baker Dataset
The preliminary tests may yield good results for ‘random’ decoys, but it remains to be 

seen how well this proposed decoy discrimination method performs on ‘real’ decoy test 

datasets. For each protein in the Baker decoy dataset as listed in Table 2.5, the native 

structure and its corresponding decoy structures are tested according to the procedure 

listed in Section 2.3.7.

For the Baker decoy dataset, and for other subsequent decoy datasets in Decoys ‘R’ 

Us, the neural network method is evaluated against the K-Nearest Neighbours method 

(K-NN) and the pairwise potentials of mean force method, using the Z score (Equation 

2.5 on page 102) and the enrichment measure (Equation 2.6 on page 103). Because the 

Baker decoy dataset has proteins with different secondary structural classes (Table 2.5),



2.4. R esults 115

it is possible to see how different classes o f proteins perform with the neural network, 

K-Nearest Neighbours and pairwise potentials methods in the Baker decoy dataset.

First, the following section investigates the k=4 network output of a particular pro

tein, Jr69 and its set o f decoys.

2.4.2.1 k=4 Neural Network Result of the Jr69 protein

Figure 2.21 shows the distribution of the mean of the scores obtained for separation 

k=4  (mean of the scores along the ‘X ’ diagonal in Figure 2.18) for all structures (native 

and decoys) o f protein lr69. The native structure is marked with an arrow. Figure 2.22 

shows the scatter plot o f the RMSD of the decoys versus the mean of the k=4  scores 

for all the structures. The native structure, with an RMSD o f zero, is marked with an 

arrow. Here it is important to point that the distribution of the mean of the k=4 scores 

pertains only to a subset o f residue pairs in each native or decoy structure, while the 

RMSD distribution is over the entire structure, that is, the calculation o f the RMSD is 

performed globally over the entire decoy structure, and not just a fragment o f it.
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Mean neural network scores tor separation k»4

Figure 2.21: Mean neural network scores for separation k=4 for structures o f protein 

Jr69

Additional plots of the distributions of the mean scores of k=4 for the rest of the

Mean neural network scores for native and decoy structures of 1 r69 for separation k«4

Native
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Scatter Plot of RMSD vs m ean  NN sco res  (separation k -4 ) for native and decoy structures of 1 r69

N ative
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0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56
M ean neural network sco res  for separation  k=4

Figure 2.22: Scatter plot of RMSD vs mean NN scores for k- 4  for structures of protein 

1 r69

proteins in the Baker decoy dataset (Table 2.5) is found in Figures E .l to E.4 in Ap

pendix E. While it can be seen from Figure 2.21 that the native protein structure has a 

high mean score for k=4, not all o f these proteins rank their native structures as well as 

the Jr69  protein.

Appendix F shows the distributions o f the various separations from 4 <  k <  22, 

and k >  22, for protein lr6 9 . For the Jr69  protein, it can be seen from Figures F.l to 

F.5 that the smaller individual sequence separations (k <  10) give higher mean scores 

to the native protein structure.

While the mean of the k=4 scores demonstrates some discimination of the native 

structures, it is assumed that the mean o f the scores from the different neural networks 

of various separations k can be combined to give better performance in terms of the 

discrimination of native structures. This is discussed in the next section.
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2.4.2.2 Results of different combinations of various separations k

Figures 2.23, 2.24 and 2.25 show the histograms of distributions of neural network

scores with the combination S (4 <  k <  10), SM (4 <  k <  22), and SML (k >  4)

respectively.

Mean neofaJ netwoik scores tor native and decoy structures of 1r69 lor the S combination

Native

0.505 0.51 0.515 0.52
Mean neural network scores for the S combination

Figure 2.23: Mean neural network scores for separations 4 <  k <  10 (S combination) 

for structures of protein lr 6 9

It can be seen from Figures 2.23 to 2.25 that the short range sequence separation, the S 

combination, ranks the native structure o f the l r 6 9  protein highest among the decoys, 

and would most likely give a higher Z score to the native structure compared to the 

SM and SML combination. The SML combination appears to be the worst o f the 3 

combinations.

Figure 2.26 shows the average Z scores o f proteins in different structural classes in 

the Baker decoy dataset for the 3 combinations (S, SM, SML), as well as for the single 

k=4  results. The first group of histograms in Figure 2.26 is obtained by averaging the 

Z scores for all the 22 proteins in the Baker dataset in Table 2.5. The a-only, /3-only 

and a/3 classes have 9, 6 and 7 proteins respectively.

It can be seen in Figure 2.26 that the SM and SML combinations give poor Z scores 

across all types of structural classes, with the SML combination the worse of the two.
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Mean neural network scores tor native ana decoy structures ot 1 r69 tor the SM combination 
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Figure 2.24: Mean neural network scores for separations 4 <  k <  22 (SM combination) 

for structures o f protein lr 6 9

Mean neural network scores for native and decoy structures ot 1 r69 for the SML combination 
2501— --------------- 1------------------- 1------------------- 1--------------------,-------------------- ,---------------

Native

Mean neural network scores tor the SML combination

Figure 2.25: Mean neural network scores for separations k >  4 (SML combination) for 

structures of protein lr6 9
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Figure 2.26: Z scores produced by the k=4, S, SM and SML combinations o f sequence 

separations o f the proposed neural network method on the different secondary structural 

classes o f the Baker decoy dataset

The S combination performs comparatively to that o f the single k=4 mean network 

result; it is slightly better for /?-only proteins, while worse off for a-only proteins. As 

shown in the first group of histograms in Figure 2.26, the average Z score o f the S 

combination of network results (4 <  k <  10) is slightly lower than that o f the single 

k=4 network results.

Figure 2.27 is essentially an extension o f Figure 2.26. It shows the Z scores for 

the Baker dataset and the decoy datasets in Decoys ‘R’ Us suite, as well as all the 

combined decoy datasets, averaged across all the proteins in each dataset. The number 

of native proteins in each decoy dataset is indicated by the bracketed number.

In Figure 2.27, for the combined datasets, the S combination yields the highest Z 

score, followed by the k=4, SM and SML combination. Considering each decoy 

dataset, the S combination gives higher Z scores than SM and SML combinations for 

all but one decoy datasets, the odd one out being the semfold dataset where the SM 

combination is higher than that o f the S combination. Apart from the fisa, fisa_casp3

all p ro te in s a lp h a  only b e ta  only
P ro tein  C la s s

a lp h a - b e ta  only
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and Baker datasets, the S combination performs better, in terms of Z score, than that of 

the single k=4 network.

Therefore, it seems that the S combination appears to yield the best results for the 

various decoy datasets in terms of Z score. In the next section, the results of the short 

range (S) combination of the proposed neural network decoy discrimination method 

are benchmarked against the pairwise potentials method, as well as the K-Nearest 

Neighbours (K-NN) method.

2.4.3 Comparison of NN scores with other benchmarked methods

In this section, the short range (S) combination (4 < k < 10) of neural network scores 

for the Baker decoy dataset is compared to the short range combinations of the pair

wise potentials method and the K nearest neighbours method (K-NN). The name given 

to this neural network method is NN-dist, where ‘dist’ stands for distance-only in

formation. Two values of K for the K-NN method are used, namely 10 and 100, as 

mentioned in Section 2.3.8.2. The Z scores of pairwise potentials have the magnitude 

signs inverted for effective comparison as mentioned in Section 2.3.8.1; hence the 

lowest energy structure produced by the pairwise potentials method would have the 

highest Z score. Similarly to Figure 2.26, Figure 2.28 shows the comparison across 

proteins of different structural classes in the Baker dataset for these different methods.

From Figure 2.28, the NN-dist method has a Z score, averaged over all proteins, lower 

than that of the pairwise potentials and K-NN (K=10) method. The pairwise poten

tials method does extremely well for all classes of proteins, and is easily the best 

method. The K-NN method, with K=10, outperforms the NN method slightly, while 

its K=100 counterpart has a similar performance to the NN-dist method for all proteins.

Figure 2.29 shows the Z scores for all the decoy datasets, including a combination 

of all datasets. It can be seen that the NN-dist method is comparable to the K-NN 

methods (K=10, 100) for the combined datasets of 70 decoy sets, while the pairwise 

potentials method does best. Looking at the average Z scores of the individual decoy
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Figure 2.27: Z scores produced by the k=4, S, SM and SML combinations of sequence separations of the proposed neural network method on

the different individual decoy datasets, including the combination of all the individual datasets K)



2.4. Results 122

■ ■  neural network (NN)
H K - N N  (K=10)
I I K-NN (K=100)
■ ■  Pairwise potentials (PP)

all proteins alpha only beta only alpha-beta
Protein Class

Figure 2.28: Z scores produced by the S combination o f the proposed neural network 

method, the K-Nearest Neighbours methods (K=10, K=100), and the pairwise poten

tials method on the different secondary structural classes o f the Baker decoy dataset
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datasets, the NN-dist method performs better than the K-NN method (K=10) for 4 

out of the 8 decoy datasets, namely the 4state_reduced, lattice _ssfit, lmds and lmds_v2 

datasets, and it does better than the K-NN method (K=100) for all but 3 decoy datasets, 

which are the 4state_reduced, lattice_ssfit and semfold datasets. The pairwise potentials 

method has the highest Z scores for the decoy datasets, with the NN-dist method having 

a comparable Z score to the pairwise potentials method in the lmds_v2 dataset.

Relating the Z scores in Figure 2.29 to the qualities of the decoy datasets in Table 

2.6, it can be seen that for the two lowest quality decoy datasets, namely lattice_ssfit 

and fisa_casp3 where the 5% percentile RMSDs lie at about 7A, the pairwise poten

tials method significantly outperforms the rest of the methods. The pairwise potentials 

method also performs well for the high quality Baker decoy dataset and the small 

4state_reduced dataset.

Figure 2.30 shows the enrichment (15% x 15%) of the various methods on the decoy 

datasets. It can be seen that the pairwise potentials method has the highest enrich

ment score overall for the combined decoy datasets, while the NN-dist method has 

an enrichment score marginally higher than the K-Nearest Neighbours methods. For 

the individual decoy datasets, the pairwise potentials method is the best for all but 

two decoy datasets, namely the lattice_ssfit and lmds datasets. In these two cases, the 

NN-dist method has the highest enrichment score by a small margin.

In general, the NN-dist network method is comparable to the K nearest neighbours 

method (K=10, K=100) in discriminating the native structure from the decoys (Z 

score) and associating structures with high scores to low RMSD structures (enrich

ment), while the tried and tested pairwise potentials method outperforms the proposed 

NN-dist method in terms of overall Z score and enrichment factor.

In a bid to improve the decoy disrimination process, the next section investigates 

the inclusion of additional input features, in the form of solvent accessibility values of 

the residue pairs.
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Figure 2.30: Enrichment scores (15% x 15%) produced by the S combination of the NN-dist method, the K-Nearest Neighbours methods (K=10,

K=100) and the pairwise potentials method on the different individual decoy datasets, including the combination of all the individual datasets



2.5. Including Solvent Accessibility Information 126

2.5 Including Solvent Accessibility Information
In this section, it is hypothesized that additional input features can improve previous 

decoy discrimination results, in terms of the Z score and enrichment measure, which 

are presented in Section 2.4. The proposed additional features are the solvent accessi

bility values of the two residues that form the pairwise distance.

The following sections first give the definition of solvent accessibility, and then de

scribes the methodology of including the proposed additional input information in the 

neural network training process. Results of the neural networks with the enhanced 

input features on the various decoy datasets are then presented and discussed.

2.5.1 Definition of Solvent Accessibility

Solvent accessibility is a property of a residue that indicates its level of exposure to the 

solvent water molecules. The solvent accessibility of a residue is defined, according 

to Sander [8], as the average number of water molecules in contact with each residue. 

The average number of water molecules is estimated using Equation 2.11 in [8].

n r Area Area
W = ----------------------------------------j  & ~TrT ( 2 - H )

V (water molecule) 3 10

where Area refers to the area of the residue exposed to the solvent, and one water 

molecule is assumed to have a volume of 30A3. The estimated surface area of 1 water 

molecule that can be in contact with the residue is thus 30 3 ~  9.65 «  10. The ratio 

is then taken as the average number of water molecules in contact with the residue. 

Residues buried within the core of the protein have low solvent accessibility values, 

while residues on the surface of the protein have high solvent accessibility values be

cause they experience greater degrees of exposure with the water molecules.

For the additional input features, the relative solvent accessibility of a residue is used 

instead of its absolute value. Absolute values of solvent accessibility of residues in a
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Residue Maximum Solv Acc Residue Maximum Solv Acc

ALA (A) 106 MET (M) 188

ASX (B) 160 ASN (N) 157

CYS (C) 135 PRO (P) 136

ASP (D) 163 GLN (Q) 198

GLU (E) 194 ARG (R) 248

PHE (F) 197 SER (S) 130

GLY (G) 84 THR(T) 142

HIS (H) 184 VAL(V) 142

ILE(I) 169 TRP (W) 227

LYS (K) 205 TYR(Y) 222

LEU (L) 164 GLX (Z) 196

Table 2.10: Maximum solvent accessibility values of the 20 residue types

structure are calculated using the DSSP program [8]. The absolute solvent accessibility 

of each residue is then normalized by dividing by the maximum possible value of sol

vent accessibility for that residue type (Equation 2.12). The maximum possible solvent 

accessibility of each residue type X is defined as the maximum exposure surface area 

of residue X in an extended tripeptide Gly-X-Gly [138]. The 20 residues have differ

ent sizes, and hence different maximum exposable surface areas to the solvent. Table 

2.10 shows the maximum values of the absolute solvent accessibility of each residue 

type [139]. The relative solvent accessibility value of a residue would have the value 

between 0 and 1 inclusive.

, absolute solvent accessibilityrelative solvent accessibility = ----------------- -----------------——  (2.12)
maximum solvent accessibility

In Table 2.10, the maximum solvent accessibility values of residue types ASX and 

GLX are given for the sake of completeness. It can be seen that these values are the 

average of ASN and ASP, and GLU and GLN respectively. In practice, the residue 

identities ASX and GLX are never encountered in the structures of the training data



2.5. Including Solvent Accessibility Information 128

(Table D.l) and decoy test datasets.

2.5.2 Incorporating Additional Inputs in Neural Networks

The additional input information extends the machine learning framework, as previ

ously described in Section 2.2.2. The paradigm of using the neural network output as a 

likelihood score for assessing the native-like property of a particular structure, and the 

subsequent ways of combinations of these scores in the results matrix of each decoy 

(and native) structure, are also used here. The paradigm of using 20 different neural 

networks for each sequence separation k for 4 <  k <  22, and one for separations k > 

22 is retained.

Figure 2.31 shows the enhanced neural network topology, with the inclusion of rel

ative solvent accessibility information, in addition to the pairwise distance and the 

residue identities. This new paradigm of using relative solvent accessibility informa

tion is referred to as the NN-solvpaimdist method. It is interesting to see how the 

neural networks perform without the distance information, and hence the NN-solvpair 

method in Figure 2.32, which only uses the residue identities and the relative solvent 

accessibility information, is also included for purposes of benchmarking.

The sequence reversal method, as described in Section 2.3.1.2, is used to derive the 

simulated decoy training dataset. When the residues in the sequence swap positions 

in the 3D structure, the 3D coordinates of the atoms remain unchanged. Hence the 

absolute solvent accessibilities of each residue position remains constant, while the 

relative solvent accessibilities of the residues in the reversed sequence that occupy new 

positions have changed.

Figure 2.33 shows, in the context of the NN-solvpaimdist method, the distribution 

of the positive training input vectors (representing the native structures) and negative 

training input vectors (representing the simulated decoy structures) for an Alanine- 

Alanine residue pair at separation k=4.
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Figure 2.31: Enhanced Neural Network Topology, with relative solvent accessibility 

information and distance (NN-solvpaimdist method)
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Figure 2.32: Enhanced Neural Network Topology, with relative solvent accessibility 

information only (NN-solvpair method)
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Scatter plot of ALA-ALA native and simulated decoy training instances at k=4
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Figure 2.33: Distribution of input training instances, with additional solvent accessibil

ity information, o f ALA-ALA at k=4

It can be seen from Figure 2.33 that in the k=4  distribution o f input vectors (d , r s l , rs2) 

o f Alanine-Alanine residues, where d  is the pairwise distance and r s l ,  rs2  are the rela

tive solvent accessibilities o f the residues, a larger concentration of the native instances 

are near the relative solvent accessibility value o f 0 (due to the hydrophobic nature 

o f Alanine), while the simulated decoy instances are more widely scattered across the 

entire relative solvent accessibility scales. Appendix G shows additional distributions 

of several types o f residue pairs at separation k=6.

Each neural network of a particular separation k is therefore responsible for mini

mizing the error o f the training data, across the likes o f Figure 2.33 for all 400 possible 

residue pairs.

Positive instances representing the native training data are labelled 7 ’s, and nega

tive instances representing the simulated decoy training data are labelled ‘0 ’s during
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the training o f the neural network. Because several positive and negative instances 

o f the training data are close in 3D space, the function that the neural network learns 

would not have a zero error. After the training process, the neural network o f a particu

lar separation k would have achieved a non-linear function that would be used to assign 

test vectors. A validation dataset is used to prevent overfitting.

The test vectors are derived from decoy structures, as well as the native structure. 

Figure 2.34 shows an input feature map that is derived from each structure, where each 

diagonal pertains to a particular separation k = [/ - i|. For the NN-solvpaimdist method, 

the set o f input vectors {a^} along each diagonal, where = (R1 R2 d rsl rs2), are 

then fed into the appropriate neural network, where a score is derived indicating the 

likelihood o f the test vector being part o f a native structure. Figure 2.35 shows such a 

results matrix. For the NN-solvpair method, the set o f input vectors {a^ } along each 

diagonal would be = (R1 R2 rsl rs2).

1 2  3 ... ... L

Figure 2.34: Input vector feature map

The scores in the results matrix in Figure 2.35 for each structure are then combined in 

three possible ways, namely the short range (S) combination (4 <  k <  10), the short 

and medium range (SM) combination (4 <  k <  22), and the short, medium and long 

range (SML) combination (k >  4). These combined scores are then compared with the 

results in Section 2.4.
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1 2  3 ... ... L

1 - 0.79 0.56 0.48

2 - 0.49 0.65

3 - 0.33

L -

Figure 2.35: Results matrix o f each structure

The next section shows a summary o f the variants o f the proposed neural network 

discrimination methods.

2.5.3 Summary of Variants of the Neural Network Method

Table 2.11 shows a summary of the different input features o f the proposed decoy dis

crimination method using neural networks. The NN-solvpaimdist method uses residue 

identities, pairwise distance and relative solvent accessibilities of the residues as input, 

while the NN-solvpair method uses residue identities and the relative solvent accessi

bilities o f the residues as input.

2.5.4 Materials and Methods

This section describes the training and testing methodology that are used with the 

additional input features. Most o f the details in the methodology are similar to that in 

Section 2.3.



Name Input Features No of networks Network input size

NN-dist Residue pair identities and Distance 20 41

NN-solvpair Residue pair identities, and Relative Solvent Accessibilities 20 42

NN-solvpaimdist Residue pair identities, Distance and Relative Solvent Accessibilities 20 43

Table 2.11: A Summary of the Training Paradigms Used for Decoy Discrimination
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2.5.4.1 Training and Validation Datasets

The training and validation datasets are the same, as in Tables D.l and D.2. Negative 

instances of training data for the simulated decoys are generated using the sequence 

reversal method, as described in Section 2.3.1.2. The perturbed distance method is not 

used in this case because there are no structures available for the derivation of solvent 

accessibilities. The training data would naturally have two extra values, namely the 

relative solvent accessibilities of the residues, as shown in Table 2.12.

The absolute solvent accessibility values of the training data are obtained from the 

DSSP program [8] and normalized using Equation 2.12 on page 127. Those residues 

to which DSSP could not assign any solvent accessibility values, possibly due to in

complete atom information, are discarded from the training data. Solvent accessibility 

values of the residues in the simulated decoy structures with reversed sequences are 

also obtained using DSSP, and normalized accordingly. The relative solvent acces

sibility values in the reversed sequence are capped at the maximum value of 1, for 

those residues with calculated values >  1. This could occur after the sequence reversal 

process, when small residues like glycine assume residual positions of high absolute 

solvent accessibility previously occupied by a large surface residue.

The preliminary test dataset is not used for the testing of this enhanced neural net

work method because it was primarily for the purpose of testing the viability of the 

two simulated decoy methods, namely the sequence reversal method and the perturbed 

distance method. Section 2.4.1 has already shown that the sequence reversal method 

is better than the perturbed distance method in terms of recognizing native structures 

from random structures. Hence this test is not repeated here.

2.5.4.2 Neural Network Training Issues

This section describes the neural network training issues of the NN-solvpaimdist and 

NN-solvpair methods. Figure 2.31 and 2.32 show the neural network topologies of the 

NN-solvpaimdist and NN-solvpair methods respectively. Both figures are similar to



Protein Type Residuel Residue2 Separation Distance Relative Solv. Acc. 

of Residuel

Relative Solv. Acc. 

of Residue2

Output Label

la32 Native ALA SER 4 4.765 0.131 0.566 1

la32 Native TRP GLY 4 6.367 0.988 0.591 1

la32 Native THR TYR 4 8.894 0.724 0.145 1

la32 Decoy PHE TYR 4 7.894 0.655 0.197 0

la32 Decoy LEU ILE 4 9.664 0.677 0.016 0

la32 Decoy MET LEU 4 10.032 0.840 0.309 0

Table 2.12: Example of k -4 training input instances (with relative solvent accessibilities) and their output labels
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that of Figure 2.14, except for the input neurons that represent the solvent accessibility 

values. Table 2.12 shows an example of the training input instances that are presented 

to the NN-solvpaimdist method.

The error function used in both NN-solvpaimdist and NN-solvpair methods is the 

same as that in Equation 2.4 shown on page 98. The transfer function used for the hid

den layer is the radial basis function, and the Levenberg-Marquardt training algorithm 

is again used to minimize the error function. The validation dataset in Table D.2 is 

used for early stopping.

2.5.4.3 Decoy Datasets and Test Measures

The test decoy datasets are the same ones that are used in Chapter 2. These are the 

Baker decoy dataset and the Decoys ‘R’ Us suite in Tables 2.5 and 2.3 respectively. 

Similarly, in order to obtain the solvent accessibility values of the residues, all the de

coy and native structures of each protein in each dataset are put through the DSSP [8] 

program.

Benchmarking measures used to quantify the effectiveness of the decoy discrimi

nation method with additional input features are, as previously used, the Z score and 

the enrichment measure. The results of the newly proposed NN-solvpaimdist and NN- 

solvpair methods would be compared to that of the NN-dist method, as well as to that 

of the pairwise potentials and K-Nearest Neighbours methods.

The statistical tests mentioned in Section 2.3.6 are applied to the various methods. 

These tests include the top model selection using the Wilcoxon sign-rank tests, the 

ranking of Spearman correlation coefficients using the Wilcoxon sign-rank tests, and 

the ROC analysis. The results of these tests would be presented in the following Sec

tion 2.5.5.
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2.5.5 Results
In this section, the results of both the NN-solvpaimdist and NN-solvpair methods are 

presented, with comparisons to those of the NN-dist method.

This section shows the

•  results of different combinations of sequence separations on all the decoy 

datasets, for the NN-solvpaimdist and NN-solvpair methods. This is similar to 

the results of the NN-dist method which is presented in Section 2.42.2.

•  Z scores of the NN-solvpaimdist and NN-solvpair methods, K-Nearest Neigh

bours and the pairwise potentials method on the Baker decoy dataset, which is 

useful since the Baker dataset has a number of proteins of different secondary 

structural classes.

•  Z scores and enrichment of the NN-dist, NN-solvpair and NN-solvpaimdist 

methods, K-Nearest Neighbours and the pairwise potentials method on all de

coy datasets.

• results of the Wilcoxon sign-rank tests for the top model selection

• results of the Wilcoxon sign-rank tests for the Spearman correlation coefficients

• results of ROC analysis

2.5.5.1 Comparison of Results Using Different Combinations 

In this section, the results of the different combinations of the NN-solvpaimdist and 

NN-solvpair methods are presented. Figures 2.36 and 2.37 show the Z scores of the 

different ways of combining the results of the different neural networks of separation k 

on the Baker decoy dataset for the NN-solvpaimdist and NN-solvpair methods respec

tively.

There are two interesting observations that can be noted of the NN-solvpaimdist 

method on the Baker decoy dataset from Figure 2.36. Firstly, the Z scores of k=4, 

S, SM and SML combinations of the NN-solvpaimdist method on the various struc

tural classes of proteins from the Baker decoy dataset are all positive, in contrast to
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Figure 2.36: Z scores produced by the k=4, S, SM and SML combinations o f se

quence separations of the NN-solvpairndist method on the different secondary struc

tural classes o f the Baker decoy dataset
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Figure 2.37: Z scores produced by the k=4, S, SM and SML combinations o f sequence 

separations of the NN-solvpair method on the different secondary structural classes of  

the Baker decoy dataset
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the negative SM, SML Z scores from Figure 2.26. The same can almost be said o f the 

NN-solvpair method in Figure 2.37, except that the S and SM combinations for the 

a-only protein class yield negative Z scores.

While the SM and SML combinations o f neural network outputs perform poorly 

for the NN-dist method in Figure 2.26, the SM and SML combinations are actually 

comparable to that of k=4 and the S combination in both the NN-solvpairndist and 

NN-solvpair methods. Further evidence o f this can be seen in other decoy datasets in 

Figure 2.42, where the tests are performed on the Decoys ‘R’ Us suite o f decoys.

The second observation is that the lc=4 neural network score performs best across 

the entire set o f proteins. It especially does best in the a-only class, which is not 

surprising because the helical information of a protein can mostly be captured in the 

information belonging to pairwise residues o f sequence separation k -4 .  However, the 

other combination of scores do perform better in the rest o f the decoy datasets for the 

NN-solvpaimdist and NN-solvpair methods, as shown in Figures 2.42 and 2.43.

Figures 2.38 to 2.41 show a comparison of the three methods, NN-dist, NN- 

solvpaimdist and NN-solvpair, over the S, SM and SML ways o f network score 

combinations for the different classes o f proteins in the Baker decoy dataset. Fig

ures 2.38 to 2.41 are essentially graphical rearrangements o f the Z scores for the 3 NN  

methods shown in Figure 2.26, Figure 2.36 and Figure 2.37.

It can be seen from Figure 2.38 that for all proteins in the Baker decoy dataset, the 

NN-solvpaimdist method performs best, and the performance is rather consistent over 

all types o f combinations o f network scores. The NN-solvpaimdist method is also the 

best method of the 3 NN methods for the /3-only proteins and the a(3 proteins in the 

Baker decoy dataset as shown in Figures 2.40 and 2.41 respectively. This suggests that 

the additional input features o f solvent accessibilities contribute positively to decoy 

discrimination.
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Figure 2.38: Z scores produced by the NN-solvpairndist, NN-solvpair and NN-dist 

methods on all the proteins in the Baker decoy dataset across the different k=4, S, SM 
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Figure 2.39: Z scores produced by the NN-solvpairndist, NN-solvpair and NN-dist 

methods on a-only proteins in the Baker decoy dataset across the different k - 4, S, SM 

and SML combinations
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Figure 2.40: Z scores produced by the NN-solvpaimdist, NN-solvpair and NN-dist 

methods on /3-only proteins in the Baker decoy dataset across the different k=4, S, SM 

and SML combinations
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Figure 2.41: Z scores produced by the NN-solvpairndist, NN-solvpair and NN-dist 

methods on o(3 proteins in the Baker decoy dataset across the different k=4, S, SM and 

SML combinations
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It is interesting to note from Figure 2.39 that for a-only proteins in the Baker de

coy dataset, the NN-dist method, with the k=4 and S combination, is the highest. This 

suggests that the short-range distance information alone may be the most discrimina

tive for a-only proteins.

Figure 2.42 extends the comparison of different ways of combination to the Decoys 

kR’ Us suite of decoys for the NN-solvpaimdist method. It can be seen from Figure 

2.42 that for the combined datasets, there is little difference between the k=4, S, SM 

and SML combinations of sequence separations in terms of the Z score.

Preliminary comparisons to the NN-dist plot in Figure 2.27 suggest that the NN- 

solvpaimdist method yields better Z scores for all the combinations of sequence sepa

rations, including the single k=4, S, SM and SML combination. Section 2.5.5.2 would 

present detailed graphical plots of the comparison between all methods, including the 

pairwise potentials and the K-Nearest Neighbours methods. Like the earlier observa

tions on the Baker decoy dataset, it is observed that the SM and SML combinations are 

comparable to that of the S combination. The k=4 single mean score does not do as 

well as the other combinations for the fisa, lmds and lmds_v2 decoy datasets.

Figure 2.43 shows the results of the Z scores of the NN-solvpair method on the various 

decoy datasets. Similarly, it can be observed that the different network score combi

nations are comparable in performance for the various decoy datasets, including the 

combined dataset of 70 decoy sets.

Since the Z scores of the k=4, S, SM and SML combinations on the Baker decoy dataset 

are comparable with one another for both the NN-solvpaimdist and NN-solvpair meth

ods, the S combination is chosen for further benchmarking purposes in the next section. 

This is to facilitate an effective comparison with the results of the NN-dist methods, 

which is most effective when using the S combination, as discussed in Section 2.4.2.2.
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Figure 2.42: Z scores produced by the k=4, S, SM and SML combinations of sequence separations of the NN-solvpairndist method on the

different individual decoy datasets, including the combination of all the individual datasets
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2.5.5.2 Comparison of Results Across All Methods 

In this section, the results o f the NN-solvpairndist and NN-solvpair methods are bench- 

marked against those o f the NN-dist method, the pairwise potentials method and 

K-Nearest Neighbours (K=10 and K=100) method. Figure 2.44 shows the detailed 

comparison of the various methods on the Baker decoy dataset, using the S combina

tion.

■ ^ 1  NN-solvpairndist 
B i  NN-solvpair 

NN-dist 
I I K-NN (K=10)
l ~  1 K-NN (K=100)

Pairwise potentials (PP)

all proteins alpha only beta only alpha-beta
Protein Class

Figure 2.44: Z scores produced by the S combination of the NN-solvpaimdist, NN- 

solvpair, NN-dist methods, the K-Nearest Neighbours methods (K=10, K=100) and the 

pairwise potentials method on the different secondary structural classes o f the Baker 

decoy dataset

It can be seen from Figure 2.44 that for the S combination, the NN-solvpaimdist and 

NN-solvpair methods do not perform well for a-only proteins in the Baker decoy 

dataset, compared to the rest of the methods. The reverse is true for proteins where 

the NN-solvpairndist and NN-solvpair methods have higher Z scores than the NN-dist 

method and the K-Nearest Neighbours methods. In all cases, the pairwise potentials 

method has the highest Z score and it is interesting to note that the NN-solvpairndist
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method has a Z score which is only marginally lower than that of the pairwise poten

tials method for a/3 proteins.

On average, across all proteins, the pairwise potentials method has the highest Z 

score. The NN-solvpairndist method performs slightly better than the NN-dist method, 

while the K-Nearest Neighbours method (K=10) has a overall Z score which is slightly 

higher than the NN-solvpairndist method.

Figure 2.45 shows the Z scores for the S combination of all decoy datasets for the 

various methods. For the combined datasets, the pairwise potentials method has the 

highest Z score, while the NN-solvpairndist method has the second highest Z score.

Unlike Figure 2.29, the pairwise potentials method in Figure 2.45 does not have 

the highest Z score for every dataset. For the fisa, lmds and semfold datasets, the 

NN-solvpaimdist method has the highest Z score instead. The NN-solvpaimdist 

method also has the second highest Z score after the pairwise potentials method in 

the 4state_reduced, latticejssfit and fisa_casp3 datasets. This suggests that the NN- 

solvpaimdist method shows some promise in matching the performance of the pairwise 

potentials method, if it can be further augmented with additional information.

In all but one case (lmds_v2), the NN-solvpairndist method has a higher Z score than 

the NN-dist method. The NN-solvpair method also performs better than the NN-dist 

method in all but two cases, namely the Baker decoy dataset and lmds_v2. The NN- 

solvpaimdist method always has higher Z scores than the NN-solvpair method, which 

suggests that the additional distance information of the NN-solvpairndist method con

tributes to the discrimination of native structures.

One notable case is the fisa decoy dataset, where all other methods, except the NN- 

solvpaimdist and NN-solvpair and the pairwise potentials methods, have negative Z 

scores. It appears that the NN-solvpairndist method does not do as well as the pairwise 

potentials method in the case o f fisa_casp3, which is an a-only dataset. Having said
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that, the pairwise potentials method does not necessarily have the best Z scores for all 

a-only datasets, like in the case of the fisa decoy dataset where the NN-solvpaimdist 

method is the best (See Table 2.4 for the compositions of Decoys ‘R’ Us datasets).

For all but 2 decoy datasets (Baker and lmds_v2), the 2 K-NN methods have lower 

Z scores than the NN-solvpaimdist method, although they are comparable to the NN- 

dist method in terms of Z score. Here it is worth reiterating that the definition of 

distance in the K-Nearest Neighbours method is restricted to the pairwise distance in

formation only, as mentioned in Section 2.3.8.2. Potentially, the K-NN methods can be 

extended to include solvent accessibility information, by defining Euclidean distance 

measures that incorporate the new information. However, it is decided here that the 

focus is more on benchmarking against the pairwise potentials method.

Figure 2.46 shows the enrichment scores of the S combination across all decoy datasets 

for the different methods. For the combined datasets, the pairwise potentials method 

has the highest enrichment score, while the NN-solvpaimdist method is comparable 

to the rest of the other methods. For most of the decoy datasets, there is no clear 

outstanding method which produces a distinctly high enrichment score, apart from the 

pairwise potentials method in the Baker, 4state-reduced and fisa_casp3 datasets.

It also seems that there is no significant improvement of the enrichment score (15% 

x 15%) for the NN-solvpaimdist method over the NN-dist method. In fact, the NN- 

dist method has higher enrichment scores than the NN-solvpaimdist and NN-solvpair 

methods in 4 out of 8 decoy datasets, namely 4state-reduced, lattice_ssfit, lmds and 

semfold. In the fisa dataset, the NN-dist method has a higher enrichment score than 

the NN-solvpaimdist method, but performs similarly to the NN-solvpair method. All 

in all, in the combined dataset, the NN-solvpaimdist method and NN-dist method have 

similar enrichment scores.

This suggests that while the extra solvent accessibility information used in the NN- 

solvpaimdist method yields a noticeable increase in the Z score in the discrimination 

of native structures in Figure 2.45, it does not seem to increase the enrichment, which
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measures the extent of association of low RMSD structures with high network output 

scores.

The following statistical analysis focuses on comparing the neural network methods 

against the pairwise potentials methods, and hence the poorly performing K-Nearest 

Neighbours methods are left out in subsequent analysis.

2.5.6 Results of Wilcoxon Sign-Rank Tests on Top Model Selection

In this section, the results of the one-tailed Wilcoxon sign-rank test on top model 

selection are presented. As described in Section 2.3.6.1, the null hypothesis is that 

the median is zero for the distribution of the differences in the structural similarity 

score (TM-score, GDT-TS or MaxSub) of the highest ranked model produced by the 

proposed decoy discrimination method (NN-dist, NN-solvpair or NN-solvpaimdist) 

and the pairwise potentials method. The network scores produced by the NN-dist, 

NN-solvpair and NN-solvpaimdist methods are of the S combination.

Tables 2.13, 2.14 and 2.15 show the P-values obtained from the Wilcoxon sign-rank 

tests with the structural similarity measures defined as TM-score, GDT-TS and Max

Sub respectively.

Each of these tables shows the P-values obtained from the comparison of NN-dist, NN- 

solvpair and NN-solvpaimdist methods with the pairwise potentials method. For the 

sake of comparison with an existing MQAP method, the in-house MODCHECK [91] 

MQAP method is also used for hypothesis testing to see if the proposed neural network 

methods can outperform the competitive MODCHECK MQAP method in top model 

selection.

Each of these comparisons of a proposed neural network method with either the pair

wise potentials method or MODCHECK is done for all decoy datasets, including the 

entire combined decoy datasets (all), and secondary structural classes of the combined
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It can be seen from Tables 2.13 to 2.15 that there is no P-value < 0.05. This means that 

the null hypotheses for each of the structural similarity measures cannot be rejected at 

5% significance level. This in turn means that the hypotheses that the median of the 

distribution of the differences in the structural similarity scores of the highest ranked 

model produced by each of the proposed neural network methods, and the pairwise 

potentials method (and MODCHECK) is zero cannot be rejected at 5% significance 

level.

The significance level is then relaxed to 10% to see if there are any P-values < 0.10, 

and the results are

•  NN-solvpaimdist and pairwise potentials, lmds_v2 decoy dataset, TM-score, P- 

value = 0.0820

• NN-solvpaimdist and pairwise potentials, combined (all) dataset, MaxSub, P- 

value = 0.0773

• NN-solvpair and pairwise potentials, a(3 dataset, GDT-TS, P-value = 0.0989

• NN-dist and MODCHECK, combined (all) dataset, MaxSub, P-value = 0.0685

In Figure 2.46, the NN-solvpaimdist method has a higher enrichment score than the 

pairwise potentials method for the lmds_v2 dataset. Hence the first result is perhaps 

not too surprising. There is no evidence in the enrichment plots for the rest of the 3 

observations, and the low P-values are probably due to chance.

Table 2.16 shows the results of the one-tailed Wilcoxon sign-rank test between the 

NN-solvpaimdist method, and the other two NN-solvpair and NN-dist methods, at a



Decoy Dataset
NN-dist NN-solvpair NN-solvpairndist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.9375 0.9375 0.9531 0.8438 0.9531 0.8125

bakerdecoys 0.4228 0.4612 0.4935 0.4806 0.4164 0.4935

fisa_casp3 0.9375 0.9375 0.8125 0.5625 0.9375 0.8125

fisa 0.8750 0.6875 0.6875 0.5000 0.6875 0.5000

lattice_ssfit 0.9922 0.8438 0.8125 0.5000 0.8516 0.5000

lmds 0.5771 0.1162 0.8623 0.7539 0.7842 0.4609

lmds_v2 0.7842 0.9678 0.1250 0.7148 0.0820 0.1797

semfold 0.2188 0.5000 0.9688 0.9375 0.9688 0.9062

all 0.9855 0.9484 0.9621 0.8836 0.9550 0.2441

ch/3 0.7270 0.2344 0.8120 0.2730 0.2344 0.3586

a-only 0.9624 0.8459 0.9912 0.8374 0.9951 0.2981

/?-only 0.7695 0.9922 0.5781 0.8750 0.5781 0.8750

Table 2.13: Top Model Selection : P-values of one-tailed Wilcoxon sign-rank test between the NN-dist, NN-solvpair, NN-solvpaimdist methods

and Pairwise Potentials and MODCHECK, with TM-score as the structural similarity measure
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Decoy Dataset
NN-dist NN-solvpair NN-solvpairndist

PP MODCHECK PP MODCHECK PP MODCHECK

4statej-educed 0.8750 0.8438 0.9688 0.9062 0.9688 0.8750

bakerdecoys 0.2633 0.6334 0.5065 0.8390 0.6334 0.8943

fisa_casp3 0.9375 0.8750 0.8750 0.4375 0.9375 0.4375

fisa 0.8125 0.6875 0.6875 0.5625 0.6875 0.5625

lattice_ssfit 0.9883 0.7266 0.5938 0.2383 0.5312 0.1914

lmds 0.1611 0.1611 0.9033 0.9199 0.8623 0.7842

lmds_v2 0.5771 0.9033 0.1504 0.3262 0.1016 0.2129

semfold 0.5781 0.6562 0.9844 0.9375 0.9844 0.9375

all 0.8897 0.9187 0.9682 0.9657 0.9692 0.9350

a/3 0.7895 0.9080 0.0989 0.2344 0.1671 0.4046

a-only 0.8599 0.7834 0.9917 0.9082 0.9978 0.8891

/3-only 0.7266 0.9922 0.6797 0.9453 0.6797 0.9453

Table 2.14: Top Model Selection : P-values of one-tailed Wilcoxon sign-rank test between the NN-dist, NN-solvpair, NN-solvpairndist methods

and Pairwise Potentials and MODCHECK, with GDT-TS as the structural similarity measure
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Decoy Dataset
NN-dist NN-solvpair NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.8750 0.8438 0.9688 0.8438 0.9688 0.8750

bakerdecoys 0.4164 0.4935 0.4516 0.4101 0.4677 0.4228

fisa_casp3 0.9375 0.9375 0.8125 0.6875 0.8750 0.7500

fisa 0.8750 0.8125 0.6875 0.4375 0.6875 0.4375

lattice_ssfit 0.9844 0.3359 0.8906 0.2734 0.8906 0.2734

lmds 0.6152 0.2480 0.9033 0.8389 0.6875 0.5391

lmds_v2 0.5000 0.8125 0.2852 0.2852 0.1797 0.2852

semfold 0.3125 0.5000 0.8438 0.7812 0.3438 0.5000

all 0.9844 0.0685 0.9669 0.2806 0.0773 0.4261

a(3 0.2866 0.4308 0.1918 0.1880 0.1572 0.2163

a-only 0.9921 0.9422 0.9917 0.3688 0.9966 0.4011

j3-only 0.6289 0.9727 0.4219 0.8750 0.4219 0.8750

Table 2.15: Top Model Selection : P-values of one-tailed Wilcoxon sign-rank test between the NN-dist, NN-solvpair, NN-solvpairndist methods

and Pairwise Potentials and MODCHECK, with MaxSub as the structural similarity measure
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Decoy Dataset

NN-solvpairndist

NN-solvpair NN-dist

TM-score GDT-TS MaxSub TM-score GDT-TS MaxSub

4state_reduced 0.2500 0.2500 0.5000 0.6562 0.6562 0.6562

bakerdecoys 0.5000 0.5000 0.4062 0.2850 0.6456 0.1652

fisa_casp3 0.9375 0.9375 0.6875 0.0625 0.1875 0.1250

fisa 0.5000 0.5000 0.5000 0.4375 0.4375 0.3125

lattice_ssfit 0.5000 0.5000 0.5000 0.2734 0.1562 0.5781

lmds 0.5000 0.2500 0.2500 0.9473 0.9814 0.8516

lmds_v2 0.2500 0.5000 0.5000 0.0186 0.0801 0.1250

semfold 0.5000 0.5000 0.2500 0.8438 0.9219 0.5000

all 0.1586 0.1803 0.1494 0.2685 0.6340 0.2219

a/3 0.4727 0.4219 0.2852 0.1236 0.1161 0.1531

a-only 0.3823 0.4492 0.5000 0.2916 0.8505 0.4527

(3-only 0.5000 0.5000 0.5000 0.0547 0.1250 0.0391

Table 2.16: Top Model Selection : P-values of one-tailed Wilcoxon sign-rank test between the NN-solvpairndist method and the NN-dist, 

NN-solvpair methods
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5% significance level.

The results are

• NN-solvpairndist and NN-dist, lmds_v2 dataset, TM-score, P-value = 0.0186

•  NN-solvpairndist and NN-dist, /3-only dataset, MaxSub, P-value = 0.0391

For the NN-solvpaimdist and NN-solvpair methods, the null hypothesis that the me

dian of the distribution of the differences in structural similarity scores produced by 

both methods is zero cannot be rejected at 5% significance level.

For the NN-solvpaimdist and NN-dist methods, the null hypothesis can be rejected 

on two cases, as shown above.

2.5.7 Results of Wilcoxon Sign-Rank Tests on Spearman correla

tion coefficients
In this section, the results of the one-tailed Wilcoxon sign-rank test on the matched 

pairs of Spearman correlation coefficients produced by various pairs of decoy discrim

ination methods are presented. As described in Section 2.3.6.2, the null hypothesis is 

that the median is zero for the distribution of the differences in the Spearman correla

tion coefficients between a structural similarity score (TM-score, GDT-TS or MaxSub) 

and the output scores produced by the proposed decoy discrimination method (NN- 

dist, NN-solvpair or NN-solvpaimdist) and the output scores produced by the pairwise 

potentials method. The network scores produced by the NN-dist, NN-solvpair and 

NN-solvpaimdist methods are of the S combination.

Again, as in Section 2.5.6, the in-house MODCHECK method is also used for hy

pothesis testing to see if the proposed neural network methods can outperform the 

competitive MODCHECK MQAP method in terms of the ranking of the models.

Tables 2.17, 2.18 and 2.19 show the P-values obtained from the Wilcoxon sign-rank 

tests with the structural similarity measures defined as TM-score, GDT-TS and Max-
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Sub respectively.
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Tables 2.17, 2.18 and 2.19 show the P-values obtained from the one-tailed Wilcoxon 

sign-rank test with the structural similarity measures defined as TM-score, GDT-TS 

and MaxSub respectively.

Each of these tables shows the P-values obtained from the comparison of NN-dist, NN- 

solvpair and NN-solvpaimdist methods with the pairwise potentials method. For the 

sake of comparison with an existing MQAP method, the in-house MODCHECK [91] 

MQAP method is also used in place of the pairwise potentials for hypothesis testing. 

Each of these comparisons of a proposed neural network method with either the pair

wise potentials method or MODCHECK is done for all decoy datasets, including the 

entire combined decoy datasets (all), and secondary structural classes of the combined 

datasets (a-only, /3-only, a/?).

It can be seen from Tables 2.17 to 2.19 that there is no P-value <  0.05. This means 

that for all cases, the null hypotheses for each of the structural similarity measures 

cannot be rejected at 5% significance level. This in turn means that the hypotheses that 

the median of the distribution of the differences in Spearman correlation coefficients 

produced by each of the proposed neural network methods, and the pairwise potentials 

method (and MODCHECK) is zero cannot be rejected at 5% significance level.

To put it simply, the proposed methods are not better in ranking the models according 

to their structural similarity to the native structure (as defined by TM-score, GDT-TS 

and MaxSub) than either the pairwise potentials method or MODCHECK, when tested



Decoy Dataset
NN-dist NN-solvpair NN-solvpairndist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.9219 0.5000 0.9844 0.9844 0.9844 0.9844

bakerdecoys 0.9858 0.9890 0.9922 0.9880 0.8883 0.9001

fisa_casp3 0.9375 0.9375 0.6875 0.6875 0.8125 0.8750

fisa 0.9375 0.8750 0.8125 0.8750 0.8750 0.9375

lattice_ssfit 0.9805 0.9805 0.5273 0.6797 0.3203 0.5781

lmds 0.8623 0.5000 0.9980 0.9971 0.9863 0.9902

lmds_v2 0.9473 0.9033 0.6875 0.8838 0.7217 0.8623

semfold 0.9844 0.9844 0.9688 0.9844 0.9844 0.9844

all 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

a/3 0.9995 0.9995 0.9977 0.9996 0.9875 0.9907

a-only 0.9999 0.9957 0.9997 0.9991 0.9996 0.9991

/3-only 0.9727 0.9961 0.8086 0.9961 0.7695 0.9961

Table 2.17: Spearman correlation coefficient : P-values of one-tailed Wilcoxon sign-rank test between the NN-dist, NN-solvpair, NN-

solvpaimdist methods and Pairwise Potentials and MODCHECK, with TM-score as the structural similarity measure
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Decoy Dataset
NN-dist NN-solvpair NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.7812 0.5000 0.9844 0.9844 0.9844 0.9844

bakerdecoys 0.9935 0.9915 0.9992 0.9992 0.9907 0.9804

fisa_casp3 0.9375 0.9375 0.8125 0.8125 0.8750 0.8125

fisa 0.9375 0.8750 0.8125 0.8750 0.8750 0.9375

lattice_ssfit 0.9805 0.9805 0.5000 0.7266 0.2734 0.7266

lmds 0.6152 0.4229 0.9951 0.9971 0.9902 0.9863

lmds_v2 0.8838 0.8623 0.5771 0.7842 0.7217 0.7842

semfold 0.9844 0.9844 0.9844 0.9844 0.9844 0.9844

all 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000

a(3 0.9989 0.9989 0.9988 0.9997 0.9960 0.9931

a-only 0.9998 0.9907 1.0000 0.9999 1.0000 0.9999

P-only 0.9258 0.9961 0.8438 0.9961 0.4219 0.9961

Table 2.18: Spearman correlation coefficient : P-values of one-tailed Wilcoxon sign-rank test between the NN-dist, NN-solvpair, NN-

solvpairndist methods and Pairwise Potentials and MODCHECK, with GDT-TS as the structural similarity measure
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Decoy Dataset
NN-dist NN-solvpair NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.9531 0.5000 0.9844 0.9844 0.9844 0.9844

bakerdecoys 0.9922 0.9922 0.9890 0.9899 0.9302 0.9057

fisa_casp3 0.9375 0.9375 0.8125 0.6875 0.8125 0.6875

fisa 0.9375 0.8125 0.8125 0.8750 0.8750 0.9375

lattice_ssfit 0.6289 0.5000 0.9023 0.9727 0.6797 0.8086

lmds 0.5000 0.3477 0.9902 0.9814 0.9814 0.9756

lmds_v2 0.6875 0.6875 0.4229 0.5771 0.4609 0.5391

semfold 0.9844 0.9688 0.9844 0.9844 0.9844 0.9844

all 1.0000 0.9989 1.0000 1.0000 0.9999 0.9999

ajd 0.9907 0.9886 0.9938 0.9964 0.9535 0.9458

a-only 0.9985 0.9658 0.9993 0.9975 0.9990 0.9971

/3-only 0.9883 0.9961 0.8086 0.9961 0.8086 0.9961

Table 2.19: Spearman correlation coefficient : P-values of one-tailed Wilcoxon sign-rank test between the NN-dist, NN-solvpair, NN-

solvpairndist methods and Pairwise Potentials and MODCHECK, with MaxSub as the structural similarity measure
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Decoy Dataset

NN-solvpaimdist

NN-solvpair NN-dist

TM-score GDT-TS MaxSub TM-score GDT-TS MaxSub

4state-reduced 0.0312 0.0312 0.0312 0.9688 0.9688 0.9688

bakerdecoys 0.0001 0.0001 0.0006 0.0889 0.2132 0.0999

fisa_casp3 0.3125 0.5000 0.3125 0.0625 0.0625 0.0625

fisa 0.9375 0.9375 0.9375 0.1875 0.1875 0.1875

lattice_ssfit 0.0195 0.0742 0.0117 0.0117 0.0273 0.6289

lmds 0.0322 0.0137 0.0010 0.8838 0.9346 0.8838

lmds_v2 0.4609 0.5391 0.5771 0.5000 0.5000 0.5771

semfold 0.0781 0.1562 0.0781 0.2812 0.5000 0.4219

all 4.2e-5 9.4e-5 8.3e-6 0.2208 0.4246 0.5869

a(3 0.0004 0.0007 0.0001 0.0727 0.1753 0.1851

a-only 0.0682 0.0540 0.0357 0.3052 0.4532 0.4377

/3-only 0.0977 0.0742 0.1250 0.3711 0.4219 0.3203

Table 2.20: Spearman correlation coefficient : P-values of one-tailed Wilcoxon sign-rank test between the NN-solvpairndist method and the 

NN-dist, NN-solvpair methods

O n

2.5. 
Including 

Solvent Accessibility 
Inform

ation



2.5. Including S o lven t A cce ss ib ility  Information 162

0.9

0.7

0.6

8
N N -dist0.4

0.3
NN-solvpairndist 

Pairwise Potentials0.2
— MODCHECK

0.1 random

0.30.2 0.4 0 .5
1 -  specificity

0.6 0.7 0.8 0.9

Figure 2.47: ROC plots o f the NN-dist, NN-solvpair, NN-solvpaimdist methods, Pair

wise Potentials and MODCHECK using RMSD <  6A as the threshold for ‘true data’ 

on all decoy datasets

with a one-tailed Wilcoxon sign-rank test at 5% significance level.

The NN-solvpaimdist method is then subjected to the same W ilcoxon sign-rank test to 

see if it is better than either the NN-solvpair method or NN-dist method in ranking the 

decoy models. Table 2.20 shows the P-values obtained from the one-tailed test.

It can be seen from Table 2.20 that in many cases, the NN-solvpaimdist method 

produces higher Spearman correlation coefficients than the NN-solvpair method. In 

contrast, there are only two cases in the statistical tests where the NN-solvpaimdist 

method produces higher Spearman correlation coefficients than the NN-dist method. 

This leads to the conclusion that solvent accessibility information alone, in the context 

of the proposed neural networks method, is not enough to rank good quality decoy 

models. It appears that pairwise distance information is vital in ranking the decoys 

according to their quality.
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Figure 2.48: ROC plots of the NN-dist, NN-solvpair, NN-solvpairndist methods, Pair

wise Potentials and MODCHECK using RMSD <  4A as the threshold for ‘true data’ 

on all decoy datasets
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Figure 2.49: ROC plots of the NN-dist, NN-solvpair, NN-solvpaimdist methods, Pair

wise Potentials and MODCHECK using TM-score > 0.4 as the threshold for ‘true

data’ on all decoy datasets
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Figure 2.50: ROC plots of the NN-dist, NN-solvpair, NN-solvpaimdist methods, Pair

wise Potentials and MODCHECK using TM-score >  0.5 as the threshold for ‘true 

data’ on all decoy datasets

NN-dist 

NN-solvpair 

NN-solvpairndist 

Pairwise Potentials 

MODCHECK 

random

j ___________ i___________ i___________ i___________ i___________i___________
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 .8  0.9 1

1 -  specificity

Figure 2.51: ROC plots of the NN-dist, NN-solvpair, NN-solvpairndist methods, Pair

wise Potentials and MODCHECK using GDT-TS score > 0.25 as the threshold for

‘true data’ on all decoy datasets
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Figure 2.52: ROC plots o f the NN-dist, NN-solvpair, NN-solvpaimdist methods, Pair

wise Potentials and MODCHECK using GDT-TS score > 0.35 as the threshold for 

‘true data’ on all decoy datasets
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Figure 2.53: ROC plots of the NN-dist, NN-solvpair, NN-solvpairndist methods, Pair

wise Potentials and MODCHECK using MaxSub score > 0.3 as the threshold for ‘true

data’ on all decoy datasets
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Figure 2.54: ROC plots of the NN-dist, NN-solvpair, NN-solvpaimdist methods, Pair

wise Potentials and MODCHECK using MaxSub score >  0.4 as the threshold for ‘true 

data’ on all decoy datasets

2.5.8 Results of ROC Analysis

This section investigates how the various neural network decoy discrimination meth

ods, including the pairwise potentials method and MODCHECK, can classify the decoy 

models, if the available decoy models are dichotomized into ‘true’ and ‘false’ classes. 

The ROC curves are drawn for each structural similarity measure, as shown in Figures 

2.47 to 2.54.

As mentioned in Section 2 . 3 . 6 . 3 ,  there are two sets of thresholds for the dichotomy. 

The first set is 6A, 0 . 4 ,  0 . 2 5  and 0 . 3  for RMSD, TM-score, GDT-TS and MaxSub 

respectively; the second set is 4 A ,  0 . 5 ,  0 . 3 5  and 0 . 4  for RMSD, TM-score, GDT-TS 

and MaxSub respectively. There are altogether 1 4 2 6 2 5  models in the 7 0  decoy sets 

from the 8 decoy datasets. All the models whose corresponding structural similarity 

measures are below the threshold are considered ‘false’ models, and vice versa.

Figures 2.47 and 2.48 show the ROC plots for RMSD <  6A and RMSD <  4A as

the thresholds for ‘true data’ respectively.
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Figures 2.49 and 2.50 show the ROC plots for TM-score > 0.4 and TM-score > 

0.5 as the thresholds for ‘true data’ respectively.

Figures 2.51 and 2.52 show the ROC plots for GDT-TS > 0.25 and GDT-TS > 0.35 as 

the thresholds for ‘true data’ respectively.

Figures 2.53 and 2.54 show the ROC plots for MaxSub > 0.3 and MaxSub > 0.4 

as the thresholds for ‘true data’ respectively.

In all figures, the NN-dist method, perhaps somewhat surprisingly, has the highest 

values of specificities (lowest values of (1-specificity)) for sensitivities of < 0.85-0.95, 

when compared to all other methods. This means that for sensitivities of up to 0.85 

to 0.95, the fraction of false positives to ‘false’ data is the lowest for the NN-dist 

method. In all figures, it can be seen, across all structural similarity measures, that the 

NN-solvpair, NN-solvpaimdist and the pairwise potentials method have comparable 

ROC plots, while the MODCHECK method appears to perform among the worst of all 

methods.

In general, the area under the ROC curve of the NN-dist method is the largest of 

all the methods for all figures. This suggests that the NN-dist method is better than 

all other methods, including the pairwise potentials method, in binary classification 

of decoy structures. The same results are obtained for RMSD as well as TM-score, 

GDT-TS and MaxSub. This is somewhat surprising because the NN-solvpaimdist 

method and the pairwise potentials method perform better than the NN-dist method 

for the discrimination of the native structure (Z score) in Figure 2.45. While the NN- 

solvpaimdist method and NN-dist method have similar overall enrichment scores, the 

pairwise potentials method outperforms the NN-dist method for the enrichment score, 

as shown in Figure 2.46.

To investigate this observation further, 3D plots of the structural similarity scores 

against the outputs of the NN-dist, NN-solvpaimdist, and pairwise potentials methods
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are shown in Figures 2.55 to 2.57.

Figures 2.55, 2.56 and 2.57 show the 3D plots of the RMSDs of the decoy struc

tures against output scores of the NN-dist, NN-solvpaimdist and pairwise potentials 

method respectively. In all 3 figures, one dashed line at 4A dichotomizes each plot into 

‘true’ and ‘false’ data, and another dashed line is the varying threshold that yields the 

ROC curve across the range of sensitivities/specificities.

The arrows in each plot indicates the region of false positives, where decoy models 

have high RMSD (‘false’ data) but are assigned high network scores or low energies 

(‘positive’ assignment) by the decoy discrimination method. Here, it appears from 

the distributions that the NN-solvpaimdist method in Figure 2.56 yields comparatively 

higher percentage of false positives than the NN-dist method in Figure 2.55 at approx

imately median thresholds.

It is interesting to note that the enrichment score in Equation 2.6 on page 103, which 

captures the top 15% of low RMSD decoys with high network scores or low energies, 

focuses only on the ratio of the number of ‘true positives’ identified by the decoy dis

crimination method to that of a uniform distribution. The enrichment score therefore 

does not measure the quantity of false positives, and hence the high false positive trends 

of the NN-solvpaimdist method and pairwise potentials method can only be seen from 

ROC plots.

While the 3D plots in Figures 2.55 to 2.57 can explain the smaller areas of the NN- 

solvpaimdist method in the ROC curves in Figures 2.47 to 2.54, it is perhaps worth 

noting that in the context of structure prediction experiments such as CASP, the em

phasis is to identify the top few ‘true positive’ models as probable predictions, and 

hence the issue of large numbers of false positives assigned by a decoy discrimination 

method is, while relevant, perhaps not very crucial.

In conclusion, the ROC analysis provides another perspective of the performance of the 

proposed decoy discrimination methods, apart from the Z score and the enrichment.
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RMSD
Network output sco re

Figure 2.55: 3D plots of the RMSDs of the 142625 decoy structures versus the corre

sponding S combination of output scores produced by the NN-dist method

While the pairwise potentials method and the NN-solvpaimdist method outperforms 

the NN-dist method in terms of the discrimination of native structure, they also gener

ate higher percentages of false positives for a wide range of sensitivities, as shown in 

Figures 2.47 to 2.54.

2 .6  S u m m a r y

This chapter introduces a novel decoy discrimination method using neural networks, 

which is referred to as the NN-dist method. The neural networks are trained on a set 

of data that includes native pairwise distances, and non native pairwise distances. The 

non native pairwise distances are simulated using native structures with their sequences 

reversed. 19 neural networks are trained on datasets, each representing a particular se

quence separation value k, where 4 < k < 22, and one network represents the sequence 

separation range k > 22.

The proposed decoy discrimination method is tested on different publicly available 

decoy datasets, namely the Baker decoy dataset and the Decoy ‘R’ Us suite of decoys. 

Different ways of combining the results of the neural networks are attempted, and it is 

found that the short range combination of network results (4 < k < 10) is the best for
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RMSD

Network output sco re

Figure 2.56: 3D plots of the RMSDs of the 142625 decoy structures versus the corre

sponding S combination of output scores produced by the NN-solvpaimdist method

RMSD

Energy

Figure 2.57: 3D plots of the RMSDs of the 142625 decoy structures versus the corre

sponding S combination of output scores produced by the pairwise potentials method



the NN-dist method.
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The proposed methods are benchmarked against the pairwise potentials of mean force 

method, as well as the K-Nearest Neighbours method, where K is taken to be 10 

and 100. The in-house tried and tested pairwise potentials method, which has proven 

competitive for the past few CASP experiments, is used for benchmarking so that a 

stringent test can be provided for the proposed neural network methods.

The benchmarking tests include the

• Z score, for measuring how many standard deviations the score of the native 

structure is away from the mean score of all decoys.

• enrichment, for the degree to which the method can associate low RMSD decoys 

with high output scores.

• top model selection using the Wilcoxon sign-rank test between each proposed 

machine learning method and the pairwise potentials method.

• ranking of the decoy models with Spearman rank correlation coefficient, which 

also uses the Wilcoxon sign-rank test between each proposed machine learning 

method and the pairwise potentials method.

•  ROC analysis

Section 2.5.2 expands on the NN-dist method by introducing additional input features 

in the form of relative solvent accessibilities of the residue pairs. Two methods, NN- 

solvpair and NN-solvpaimdist, are created; the former replacing the pairwise distance 

with the relative solvent accessibility values, the latter includes both types of informa

tion. For these 2 new methods, the training and validation datasets, the decoy datasets 

used, training algorithms and test measures remain the same as that in the NN-dist 

method.

The pairwise potentials method yields the highest Z score for the combined datasets, 

followed by the NN-solvpaimdist method. While the pairwise potentials method has
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the highest Z score for 4 out of 8 decoy datasets, as shown in Figure 2.45, the NN- 

solvpaimdist method shows some promise by having the highest Z score for 3 decoy 

datasets.

The NN-solvpaimdist method has higher Z scores compared to the original NN-dist 

method for all but 1 decoy datasets, as shown in Figure 2.45, for the S combination 

of network scores. This suggests that as far as the discrimination of the native struc

ture from a set of decoys is concerned, the additional input features of relative solvent 

accessibilities are useful, in the context of the neural network method of decoy discrim

ination. In Figure 2.44, results have also suggested that the NN-solvpaimdist method 

works well with a/3 proteins.

The NN-solvpaimdist method outperforms the NN-solvpair method, in terms of Z 

score, for all decoy datasets, as shown in Figure 2.45. This suggests that the additional 

pairwise distance information, which is the difference between the two methods, does 

help in the discrimination of native structures from a set of decoys.

The K-Nearest Neighbours methods and the NN-dist method have the lowest Z scores 

in the combined dataset, as well as in the individual decoy datasets. For the NN- 

solvpaimdist and NN-solvpair methods, the Z scores derived from the SM and SML 

combinations of the NN-solvpaimdist method are comparable to that of the S combi

nation, as shown in Figures 2.42 and 2.43.

For the enrichment measure, that is the association of high scores to low RMSD 

structures, the pairwise potentials method has the highest enrichment score among 

all the methods. The NN-solvpaimdist method shows no marked improvement over 

that of the NN-dist method, as shown in Figure 2.46. The difference between the 

NN-solvpaimdist and NN-solvpair methods is also small, as shown in Figure 2.46, 

suggesting that the additional distance information has little effect on the association 

of low RMSD models to high scores.

The conclusion of the one-tailed Wilcoxon sign-rank tests involving the top model
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selection shows that at 5% significance level, there is no evidence to reject the hypoth

esis that the proposed neural networks (NN-dist, NN-solvpair, NN-solvpaimdist) can 

perform better model selection than the pairwise potentials method. Different structural 

similarity scores, TM-score, GDT-TS and MaxSub, are used in the testing.

The same conclusion can be reached of the Wilcoxon sign-rank tests involving the 

Spearman correlation coefficients. At 5% significance level, there is no evidence to 

reject the hypothesis that the proposed neural networks (NN-dist, NN-solvpair, NN- 

solvpaimdist) can rank the decoys better than the pairwise potentials method. Different 

structural similarity scores, TM-score, GDT-TS and MaxSub, are also used for the 

hypothesis.

The ROC analysis dichotomizes all the decoy models in the datasets into ‘true’ and 

‘false’ classes. The ROC curves show that the pairwise potentials method performs 

similarly to the NN-solvpair and NN-solvpaimdist methods. For all structural similar

ity measures, the NN-dist method has a lower false positive rate than the rest of the 

methods, for a wide range of sensitivities of up to 0.85-0.95, when the NN-dist method 

starts to have higher false positive rates than the other neural networks and pairwise 

potentials method.

It turns out that while the NN-solvpaimdist and pairwise potentials method yield 

higher Z scores than the NN-dist method, they also yield higher false positive rates for 

a wide range of true positive rates. This is not reflected in the enrichment score, which 

only focus on the ratio of true positives to that of a uniform distribution. Hence, the 

ROC curves provide another informative perspective to the performance of a decoy 

discrimination method.

2.7 Conclusion
In this chapter, the proposed decoy discrimination methods, using neural networks and 

a variety of input features, are compared with the tried and tested pairwise potentials
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method using a number of benchmarking measures.
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While the various statistical tests show no improvement in the proposed neural net

work methods over the tried and tested pairwise potentials method in terms of top 

model selection and model ranking, the high Z scores of the NN-solvpaimdist method 

is encouraging, and hence further work can be done on these methods, through the 

additional use of evolutionary information, in the next chapter in a bid to improve the 

performance in the various benchmarking measures.

To summarize, the most promising of the neural networks is the NN-solvpaimdist 

method, which

• has the second highest Z score for the discrimination of native structures, after 

the pairwise potentials method.

• has the second highest enrichment score, for the association of low RMSD struc

tures with high output scores, after the pairwise potentials method.

• has comparative false positive rates to the pairwise potentials method for all 

ranges of sensitivities.

Here it is worth mentioning that the basic NN-dist method performs the best in ROC 

analysis, by yielding highest levels of specificities, compared to other methods, for a 

wide range of sensitivities. However, in the context of blind structure prediction exper

iments such as CASP, the emphasis is not on getting the most number of true negatives 

right, but on the top few best predictions.

It is shown in this chapter that the proposed paradigm of using neural networks for 

decoy discrimination yields a level of performance that is not as good as the pairwise 

potentials method, but is nevertheless encouraging and potentially of better perfor

mance if it can be further enhanced with additional information. In the next chapter, 

it is hypothesized that additional evolutionary information used in the proposed neural 

network method can yield equal or better performance, as measured by the various 

benchmarks, when compared to that of the pairwise potentials method.



Chapter 3

Using Evolutionary Information in 

Decoy Discrimination

3.1 Introduction
Chapter 2 attempts to build a decoy discrimination method involving native and decoy 

distributions of pairwise residues, using the input information of identities of pairwise 

residues, the physical distance between them and/or the relative solvent accessibilities 

of both residues. It is shown that the additional input information of the relative sol

vent accessibility values increases the performance, in the context of the Z score, of 

discriminating native structures from decoy structures.

In this chapter, it is proposed that evolutionary information be included in the decoy 

discrimination. Evolutionary information in the form of multiple sequence alignments 

and derived profiles have been used in several secondary structure prediction methods 

successfully for the increase of the Q3 accuracy (Section 1.2.4). Here, the idea of using 

evolutionary information is suggested for increasing the performance of the neural- 

network based decoy discrimination method.

Hence, a novel method is proposed for the inclusion of evolutionary information in 

the context of the neural network methodology used so far. In this method, the neural 

networks are trained on sequence profiles, instead of the residue identities. In Figures 

2.14, 2.31 and 2.32, the neural network topologies are selected in such a way that there 

are 20 inputs per residue, and an additional 1 to 3 inputs depending on the feature of
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interest (pairwise distance and/or relative solvent accessibilities). The 2 input vectors 

of size 20x1 each in Figures 2.14, 2.31 and 2.32 are for single residue identities, with 

only 1 out of 20 neurons switched on for each training example during neural network 

training. Such an input topology is deliberately selected with the eventuality of training 

evolutionary profiles in mind.

In this proposed method, the input vectors would take in sequence profiles of the 

residue positions, instead of the residue identities. These profiles are calculated from 

multiple sequence alignments of the original sequence. The input features of pairwise 

distance and/or relative solvent accessbilities are retained. This method is labelled 

as the sequence profile method. There are 3 possible configurations of the sequence 

profile method, namely the topologies with the input feature of pairwise distance only, 

relative solvent accessibilities only, and a combination of both the pairwise distance 

and the relative solvent accessibilities.

Another way of using multiple sequence alignment information is to obtain the ho

mologous sequences of the test protein, apply them to the various neural network 

methods, and then average the network scores obtained, in a bid to improve the bench

marking measures. This idea is not new and was used by Reva and co-workers [140] 

to improve the Z scores of the native structures among alternative conformations with 

the averaging of energies of homologous sequences in gapless threading.

In this averaging method, homologues of the target sequence are first obtained, and 

then these sequence homologues are threaded onto each and every structure in the 

decoy set, including the native structure. For example, if the lhyp protein of the Baker 

decoy dataset has 4 homologous sequences, these 4 sequences are threaded onto each 

of the 1400+1 decoy and native structures. The next step is to evaluate the likelihood 

of each decoy structure using the trained neural networks in the previous chapter. For 

each structure, the scores obtained for all homologous sequences, including the orig

inal sequence, are averaged to produce a mean score that describes the ‘native-like’ 

property of that particular structure. The usual Z score and enrichment can then be 

applied to these mean scores.
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For the sake of convenience, this particular method of using multiple sequence in

formation is referred to as the homologue threading method. The motivation of the 

homologue threading method is to reduce the noise of the neural-network based decoy 

discrimination method by applying it to more sequences, instead of just one sequence, 

and then averaging the scores obtained. This is done under the assumption that the 

close homologues adopt similar 3D folds to that of the original sequence. The previ

ous neural networks used for the homologue threading method are the ones shown in 

Figures 2.14, 2.32 and 2.31, namely NN-dist, NN-solvpair and NN-solvpaimdist, as 

previously mentioned in Table 2.11.

Table 3.1 shows a summary of the additional variants to the neural-network based 

decoy discrimination method developed in the previous chapter for both the homo

logue threading and sequence profile methods.

3.2 Materials and Methods

This section describes the procedures and methods used in both the homologue thread

ing and sequence profile methods. The training dataset (Table D.l) and test dataset of 

decoys (Tables 2.5 and 2.3) remain the same, although the training dataset applies to 

only the sequence profile method.

The next section describes the use of PSI-BLAST [25] in deriving both the set of 

sequence homologues and the profiles for use in the homologue threading and se

quence profile methods respectively. The following sections after that describe the 

algorithms peculiar to both the homologue threading and sequence profile methods.



No. Variant Type Previous Network Used No. of input neurons Name for this Variant Training Required

1 Homologue Threading (HT) NN-dist 41 HT-NN-dist No

2 Homologue Threading (HT) NN-solvpair 42 HT-NN-solvpair No

3 Homologue Threading (HT) NN-solvpaimdist 43 HT-NN- sol vpaimdi st No

4 Sequence Profile (SP) None 41 SP-NN-dist Yes

5 Sequence Profile (SP) None 42 SP-NN-solvpair Yes

6 Sequence Profile (SP) None 43 SP-NN-solvpaimdist Yes

Table 3.1: A Summary of the Methods Used for the Inclusion of Evolutionary Information for Decoy Discrimination
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3.2.1 Evolutionary Information
The multiple sequence alignment of a target sequence allows homologous sequences to 

be aligned in such a way that provides useful information about the conserved residues 

in certain positions in a family of sequences. Homologous sequences are sequences 

that are evolutionarily related. Figure 3.1 shows an example of a multiple sequence 

alignment.

Target Sequence . . . .  A A K .................................  F
. . . .  A L D ..................................C
.. . .  C A M .................................. G

•

. . . .  T A N .................................. W

Column N

Figure 3.1: An Example of a Multiple Sequence Alignment

In this work, PSI-BLAST [25] is used to identify homologous sequences of a target 

protein from the sequence databases. This is done for each sequence from the train

ing dataset (Table D.l). The homologous sequences used in the homologue threading 

methods are taken from the top 10 PSI-BLAST hits of each target sequence.

PSI-BLAST also produces position-specific profiles as intermediate outputs, which 

encode useful information about the conserved residues in each position of the target 

sequence. These PSI-BLAST profiles are then used for the training of the sequence 

profile methods. Such use of PSI-BLAST profiles have been successfully demonstrated 

in the PSIPRED secondary structure prediction server [15].

For neural network training in the sequence profile method, two column vectors of 

size 20x1 each, representing the two residue positions of sequence separation k apart, 

serve as inputs, along with the pairwise distance and/or relative solvent accessibility 

values. Each of the 20 elements of these column vectors is normalized to values be

tween 0 and 1 according to Equation 3.1.
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f {x)  = 1/(1 +  e~x) (3.1)

For each sequence in the training dataset, 3 PSI-BLAST iterations are run. The pa

rameters used in PSI-BLAST are 0.001 for the initial and subsequent E-values, and 

the sequence database used is UniRef50, release 6.7. In the UniRef50 dataset, all the 

sequences are at most 50% similar in terms of sequence identity, and this helps to 

prevent homologous sequences from being used together for the generation of pro

files. Although some of the sequences in the UniRef50 dataset may, possibly due to 

convergent evolution, still be structural homologues with one another even though the 

sequences are nonhomologous, such commonality has little negative effect on the mul

tiple sequence alignments in terms of possible overrepresentation of protein families in 

the alignments.

The next two sections describe the homologue threading method and the sequence 

profile method.

3.2.2 Homologue Threading Method
The decoy datasets used are the Baker decoy set (Table 2.5) and the Decoys ‘R’ Us 

suite (Table 2.3), excluding the semfold dataset. The semfold dataset is excluded be

cause it has about 11000 decoy structures per sequence (Table 2.4) and the threading 

of 10 homologues per sequence for such a large amount of decoy structures is compu

tationally too demanding.

Figure 3.2 shows the homologue threading method.

The steps of the homologue threading method are detailed below as follows:

• For each sequence in the decoy dataset, PSI-BLAST is run for 3 iterations and 

the top 10 sequence homologues with the smallest E-values are threaded onto
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Decoy 1
homologues

with 10 homologues

Decoy N
with 10 threaded homologues

Sequence PSI-BLA ST

Combination of networks Combination o f networksCombination o f  networks
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(20 networks)

N N -solvpair 
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NN-solvpaimdist 
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Sequence
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for each decoy 
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and original sequence
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Figure 3.2: Homologue Threading Diagram

each decoy structure in the decoy dataset. The number of decoys for each dataset 

is shown in Tables 2.5 and 2.3 respectively.

During threading, each homologous sequence is first aligned with the original 

sequence, and gaps in the alignments which do not map to the 3D structure of the 

original sequence are removed. This is done for each set of decoy structures of 

the original sequence.

For example, the lattice_ssfit decoy dataset has 8 target proteins, and 2000 decoy 

structures per target protein. 4 out of 8 of these target proteins have sequence 

homologues. Therefore, for each of these 4 proteins, there would be a total of 

1 Ox (2000+1) = 20010 structures for testing, including the native structure. These 

structures of each of the 4 target sequences would be evaluated by the 3 types of 

neural networks developed in the previous chapter, namely NN-dist, NN-solvpair 

and NN-solvpairndist, as shown in Figure 3.2. The DSSP program is run for each 

threaded structure for obtaining the solvent accessibilities of the residues.

For each type of neural network method (NN-dist, NN-solvpair, NN- 

solvpairndist), there are 20 networks, one for each sequence separation k (4 

< k < 22, k > 22), that are to be tested on each threaded decoy structure. In
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the previous chapter, the results from the 20 neural networks are combined in 3 

ways, namely the S combination (4 <  k <  10), the SM combination (4 <  k < 

22) and the SML combination (k > 4). The same combinations are used here 

to combine the results of the different neural networks of each threaded decoy 

structure.

•  For each decoy structure, the scores of its original sequence and the sequence 

homologues that are threaded onto it are averaged for each combination (S, SM, 

SML). The Z score of the native structure and the enrichment can be calculated 

accordingly.

•  The paradigms of averaging the results of the threaded sequence homologues and 

the results of the original sequence using the previous neural networks NN-dist, 

NN-solvpair and NN-solvpaimdist are referred to as the HT-NN-dist, HT-NN- 

solvpair and HT-NN-solvpaimdist methods respectively.

As mentioned earlier, the homologue threading method, with its 3 subtypes (HT-NN- 

dist, HT-NN-solvpair, HT-NN-solvpaimdist), aims to increase the Z scores of the 

native structure and the enrichment measure by applying the various neural network 

methods (NN-dist, NN-solvpair, NN-solvpaimdist) to close sequence homologues of 

the original sequence. It is hoped that the homologue threading method can reduce the 

noise inherent in the neural networks when only the original sequence is tested with 

the various decoy (and native) structures. In the case of original sequences without any 

sequence homologues identified from PSI-BLAST, the Z score and enrichment would 

remain the same for that sequence.

3.2.3 Sequence Profile Method
Unlike the homologue threading method, the sequence profile method does not use the 

previous neural network methods (such as NN-dist) as described in Chapter 3. Instead 

new sets of networks are trained with sequence profiles in place of residue identities, 

for different combinations of input features, namely pairwise distance between the 

residues, relative solvent accessibilities of both residues or a combination of both pair-
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Figure 3.3 shows the topology of the neural network that performs training o f sequence 

profiles with the input feature o f pairwise distance. In terms of network architecture, 

Figure 3.3 is identical to Figure 2.14. The difference between the two lies in the nature 

of the input examples, where profiles being fed into the input layer in place o f residue 

identities for Figure 3.3. This variant o f the neural-network based decoy discrimination 

method is referred to as SP-NN-dist. Corresponding architectures of SP-NN-solvpair 

(relative solvent accessibilities) and SP-NN-solvpaimdist (relative solvent accessibili

ties and pairwise distance) are not shown because the architectures are identical to that 

of Figures 2.32 and 2.31 respectively. Table 3.2 shows a summary of the new sequence 

profile methods.

Bias 1- Bias 1

f(s,Wl)
Profile of
First
Residue
(2 0  neurons)

Input
Examples

output o

Profile of
Second
Residue
(20  neurons)

W1 W2

Distance
(1 neuron)

Output LayerInput Layer Hidden Layer

Figure 3.3: Neural Network Topology (SP-NN-dist)

The training dataset for the SP-NN-dist, SP-NN-solvpair and SP-NN-solvpairndist 

methods is shown in Table D. 1. All o f the 285 proteins in the training dataset in Table



Name No. of input neurons No. of networks Description of input

SP-NN-dist 41 20 Profiles of residue pair, and distance

SP-NN-solvpair 42 20 Profiles of residue pair, and relative solvent accessibilities

SP-NN-solvpairndist 43 20 Profiles of residue pair, distance and relative solvent accessibilities

Table 3.2: A Summary of the Sequence Profile Methods
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Protein T^pe Profile of Residue 1 Profile of Residue2 Separation Distance Output Label

la32 Native [1.00 0.12 0.95 ... 0.12 0.02 0.05] [0.12 0.02 0.50 ... 0.05 0.01 1.00] 4 4.765 1

la32 Native [0.27 0.02 0.27 .. 0.73 0.88 0.01] [0.05 0.02 0.95 ... 0.12 0 0.02] 4 6.367 1

la32 Native [0.88 0.27 0.95 .. 0.05 0.02 1.00] [0.01 0.88 0.50 ... 0.73 0.05 0.01] 4 8.894 1

la32 Decoy [1.00 0 0.50... 0.02 0.02 1.00] [0.50 0.50 0.99 ... 0.01 0.73 0.27] 4 7.894 0

la32 Decoy [0.73 0.88 0.05 .. 0.05 0.01 1.00] [0 0.27 0.88... 0.50 0.01 0.99] 4 9.664 0

la32 Decoy [0.73 0.73 0.12 .. 0.05 0.02 0.88] [0.05 0.73 0.73 ... 0.27 0 0] 4 10.032 0

Table 3.3: Example of SP-NN-dist k=4 training input instances and their output labels

3.2. 
M

aterials and 
M

ethods 
185



3.2. M ateria ls and M eth o d s 186

D.l have multiple sequence alignments as identified by PSI-BLAST, and therefore 

the number of proteins in the training dataset for the methods trained on evolutionary 

information and that for the methods trained on residue identities are the same.

The creation of the negative examples for neural network training is done by reversing 

the sequences, as described in Section 2.3.1.2. During the reversal of the sequence 

when residues in the structure swap positions, the profile of each residue is swapped 

together with the residue. Each residue and its profile would occupy a new position in 

the 3D structure when the sequence is reversed. However, the relative solvent accessi

bilities of these swapped residues in the structure would be altered due to the difference 

in identities of the residues occupying the new positions, as mentioned in Section 2.5.2.

For each of the 3 methods in Table 3.2, there are 20 neural networks that are trained, 

one for each sequence separation k where 4 <  k < 22, and one for k > 22. PSI-BLAST 

profiles are scaled according to Equation 3.1 on page 180 before being used as inputs 

to the neural networks. Table 3.3 shows examples of inputs to the SP-NN-dist neural 

network of separation k=4. The neural network training algorithms and parameters 

used in the sequence profile methods are the same as that described in Section 2.3.4.1. 

The Matlab neural network toolbox is used for training; the MSE is used as the error 

of each network, the transfer function used is the radial basis function (radbas) and the 

gradient descent algorithm used is the Levenberg-Marquardt algorithm. The validation 

dataset in Table D.2 is used to prevent overfitting. All 95 proteins in the validation 

dataset have multiple sequence alignments as well.

It is hoped that neural networks trained with evolutionary information in the form of 

profiles of residue pairs, along with the usual information of pairwise distance between 

the residues, relative solvent accessibilities or a combination of both, can discriminate 

near-native structures from non near-native structures more effectively than that using 

residue identities.
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3.2.4 Differences in the homologue threading methods and se

quence profile methods
In Section 3.2.2 and 3.2.3, the homologue threading methods and sequence profile 

methods are introduced as possible ways of including evolutionary information in the 

proposed decoy discrimination methods. This section elaborates on the differences in 

the additional information provided by both types of methods.

The homologue threading methods seek to reduce the noise in the proposed neural 

network methods by averaging the network scores produced on the top 10 homologous 

sequences, as well as that of the original target sequence. The assumption is that the 

close homologues adopt similar 3D folds to that of the original sequence. The addi

tional information lies in the extra network scores of the homologues, which can help 

reduce noise, through averaging, that may be present in the derivation of the network 

score of the original sequence.

On the other hand, the sequence profile methods are trained with PSI-BLAST pro

files of residue pairs and their associated features of pairwise distance and/or relative 

solvent accessibilities. The profiles of residue pairs provide additional information of

•  the extent of conservation of each residue in its position. For example, the neu

ral networks can implicitly learn that an alanine residue of low relative solvent 

accessibility at a particular position in the sequence is usually conserved, with 

plausible mutations to similar residue types such as leucine.

•  more importantly, the association of such extent of conservation of two residues 

in their respective positions with each other. For example, a pair of cysteine 

residues forming a disulphide bridge can be recognized by the neural networks as 

such when their positions are highly conserved. Another example is the contact 

propensities between salt bridges, which are the bonds between the positively- 

charged and negatively-charged residues in a protein. Pairs of PSI-BLAST pro

files can effectively encode the presence of such salt bridges with high conserva

tion scores for positively-charged residues in the first position, and high conserva

tion scores for negatively-charged residues in the second position. More interest-
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ingly, for a salt bridge, the conservation scores for negatively-charged residues 

in the first position can be high as well, provided the conservation scores for 

positively-charged residues in the second position are high too. This can be a re

sult of mutational events in homologous sequences with the positive and negative 

charged residues swapping positions, while maintaining the functionality of the 

salt bridge. Therefore pairs of PSI-BLAST profiles, as training input into a neural 

network, can effectively encode such information that signifies the presence of 

salt bridges. Hence, the neural networks can learn, with the usage of PSI-BLAST 

profiles, to recognize the presence of salt bridges in native or low-RMSD decoy 

structures.

Such additional information might, in theory, enable sequence profile methods to per

form better than the homologue threading methods.

3.3 Results
This section shows the results of both the homologue threading and sequence profile 

methods. The statistical tests outlined in Section 2.3.6 are also repeated and presented 

in this section. The results are organized as follows:

• a discussion on the number of homologues used in the homologue threading 

methods.

• effect of different combinations of sequence separations for the sequence profile 

methods.

• Z scores and enrichments for both the homologue threading methods and the 

sequence profile methods.

• results of the Wilcoxon sign-rank test for top model selection.

• results of the Wilcoxon sign-rank test for Spearman correlation coefficient.

results of ROC analysis
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3.3.1 Number of Homologues Used in Homologue Threading 

Methods
In this section, the number of homologues used for each dataset for the homo

logue threading methods, HT-NN-dist, HT-NN-solvpair and HT-NN-solvpaimdist, are 

shown. Table 3.4 shows the number of homologues used in the various decoy datasets.

In Table 3.4, for each decoy dataset, the number of proteins with at least 10 homo

logues found from the sequence database is shown. In some decoy datasets, some of 

the proteins have less than 10 homologues. In such cases, all the sequence homologues 

are used for the homologue threading method. Three proteins in the Baker dataset, 

lmsi, lutg and lpgx have less than 10 homologues with 5, 7 and 9 respectively.

For the fisa, lmds and lmds_v2 datasets, there are 1, 2 and 3 proteins respectively 

with less than 10 homologues.

As mentioned in Section 3.2.2, the semfold decoy dataset is omitted due to the ex

cessive computational demands required of its approximately 11000 decoy structures 

for each of the 10 sequence homologues per protein.

The Z scores and enrichment measures of the various homologue threading meth

ods (HT-NN-dist, HT-NN-solvpair, HT-NN-solvpaimdist) on all the decoy datasets 

would be presented and discussed together with the SP-NN methods in Section 3.3.3.

The next section will first present the results of the S, SM and SML combinations 

of the Z scores of the SP-NN methods on only the Baker decoy dataset. Because the 

Baker decoy dataset has a larger number of proteins than the rest of the decoy datasets, 

is of better quality, and has proteins of different secondary structural categories, it is 

informative to see how well the different SP-NN methods perform with each type of 

category.



Decoy Dataset
Number of proteins

Total with no homologues with >10 homologues with <10 homologues

bakerdecoy 22 5 14 3

4state_reduced 6 0 6 0

lattice _ssfit 8 1 7 0

fisa 4 0 3 1

fisa_casp3 4 1 3 0

lmds 10 1 7 2

lmds_v2 10 0 7 3

Table 3.4: Number of homologues produced by PSI-BLAST for the native proteins in the various decoy datasets for the homologue threading 

methods

3.3. 
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3.3.2 Comparisons of Different Combinations for the Sequence 

Profile Methods

In this section, the results o f the different combinations o f the SP-NN-dist, SP-NN- 

solvpair and SP-NN-solvpaimdist methods are presented. The line o f discussion in 

this section is similar to that in Section 2.5.5.1. Figures 3.4, 3.5 and 3.6 show the Z 

scores of the different ways o f combining the results on the Baker decoy dataset for the 

SP-NN-dist, SP-NN-solvpair and SP-NN-solvpaimdist methods respectively.

It can be seen from Figure 3.4 that the S combination of the SP-NN-dist method

1.8 

1.6 

1.4 

1.2

£ 1 
o  o  at

N 0.8 

0.6 

0 .4  

0.2 

0

Figure 3.4: Z scores produced by the k=4, S, SM and SML combinations o f sequence 

separations o f the SP-NN-dist method on the different secondary structural classes of 

the Baker decoy dataset

generally has higher Z scores than the SM and SML combinations for all classes of  

proteins, except for the a-only class o f proteins. To compare the Z scores obtained by 

the NN-dist method in Figure 2.26 with those obtained by the SP-NN-dist method in 

Figure 3.4, Figure 3.7 shows the two figures combined into a single chart.
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I SML
I I SM  - 
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From Figure 3.7, it can be seen that for the /3-only and a(3 classes of proteins, the
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Figure 3.5: Z scores produced by the k=4, S, SM and SML combinations of sequence 

separations of the SP-NN-solvpair method on the different secondary structural classes 

of the Baker decoy dataset
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Figure 3.6: Z scores produced by the k=4, S, SM and SML combinations of sequence 

separations of the SP-NN-solvpaimdist method on the different secondary structural 

classes of the Baker decoy dataset
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S combination produces the highest Z-score for both the SP-NN-dist and NN-dist 

methods. The k=4 Z scores are highest for the combined class of proteins and the 

a-only class for both methods. The SM and SML combinations have universally lower 

Z scores than the k=4 and S combinations across all classes for both methods, apart 

from the SML combination of the SP-NN-dist method for the a-only class.

In contrast, the performances of the different combinations are comparable for both the 

SP-NN-solvpair and SP-NN-solvpaimdist methods, as shown in Figures 3.5 and 3.6 

respectively.

Figures 3.8 to 3.11 show a comparison of the three sequence profile methods, 

SP-NN-dist, SP-NN-solvpair and SP-NN-solvpaimdist, over the different classes of 

proteins in the Baker decoy dataset over the S, SM and SML ways of network score 

combination. Figures 3.8 to 3.11 are essentially graphical rearrangements of the Z 

scores for the 3 SP-NN methods shown in Figures 3.4 to 3.6.

It can be seen from Figure 3.8 that for all proteins, the SP-NN-solvpaimdist method 

has the highest Z score among the 3 sequence profile methods. The SP-NN-solvpair 

method performs marginally poorer than the SP-NN-solvpaimdist method.

The best performance of the SP-NN-solvpaimdist method is consistent throughout 

all types of secondary structural classes for all types of combinations, as shown in 

Figures 3.9 to 3.11. This suggests that the usage of profile information, together with 

the pairwise distance and relative solvent accessibility information, can help to discim- 

inate native structures better than either of the pairwise distance or solvent accessibility 

features.

Figures 3.12, 3.13 and 3.14 extend the comparison of the different ways of network 

score combination to the Decoys ‘R’ Us suite of decoys for the SP-NN-dist, SP-NN- 

solvpair and SP-NN-solvpaimdist methods respectively.
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Figure 3.7: Z scores produced by the k=4, S, SM and SML combinations of sequence separations of both the SP-NN-dist and NN-dist methods

on the different secondary structural classes of the Baker decoy dataset
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Figure 3.8: Z scores produced by the SP-NN-solvpaimdist, SP-NN-solvpair and SP- 

NN-dist methods on all the proteins in the Baker decoy dataset across the different k=4, 

S, SM and SML combinations
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Figure 3.9: Z scores produced by the SP-NN-solvpairndist, SP-NN-solvpair and SP- 

NN-dist methods on a-only proteins in the Baker decoy dataset across the different 

k=4, S, SM and SML combinations
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Figure 3.10: Z scores produced by the SP-NN-solvpaimdist, SP-NN-solvpair and SP- 

NN-dist methods on (3-only proteins in the Baker decoy dataset across the different 

k=4, S, SM and SML combinations
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Figure 3.11: Z scores produced by the SP-NN-solvpaimdist, SP-NN-solvpair and SP- 

NN-dist methods on a/3 proteins in the Baker decoy dataset across the different k=4, S, 

SM and SML combinations
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Figure 3.12: Z scores produced by the k=4, S, SM and SML combinations of sequence separations of the SP-NN-dist method on the different

individual decoy datasets, including the combination of all the individual datasets
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Figure 3.13: Z scores produced by the k=4, S, SM and SML combinations of sequence separations of the SP-NN-solvpair method on the different

individual decoy datasets, including the combination of all the individual datasets
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Figure 3.14: Z scores produced by the k=4, S, SM and SML combinations of sequence separations of the SP-NN-solvpaimdist method on the

different individual decoy datasets, including the combination of all the individual datasets

vo
VO

3.3. 
R

esults



3.3. R esu lts 20 0

For the SP-NN-dist method in Figure 3.12, the Z scores for most o f the decoy 

datasets differ across the various combinations. For the SP-NN-solvpair and SP-NN- 

solvpaimdist methods in Figures 3.13 and 3.14, the Z scores are much more consistent 

across the different combinations for each decoy dataset. These observations are sim i

lar to those drawn from the performance o f the various SP-NN methods on the different 

secondary structural classes o f proteins in the Baker decoy dataset in Figures 3.4 to 3.6.

The next section compares the performance o f the sequence profile methods and ho- 

mologue threading methods with that o f the basic neural network methods developed 

in the previous chapter.

3.3.3 Comparison of Results Across All Methods

In this section, the results o f the sequence profile (SP) methods and homologue thread

ing (HT) methods are benchmarked against those o f the basic neural network methods 

developed in the previous chapter, namely NN-dist, NN-solvpair and NN-solvpairndist 

methods, and the pairwise potentials method. The K-Nearest Neighbours methods are 

left out in this analysis because they are not very competitive. Altogether, there are 9 

variants of neural networks methods and the pairwise potentials method that are to be 

compared against one another.

Figure 3.15 shows the Z scores of the various methods on the different secondary 

structural classes of proteins in the Baker decoy dataset, using the S combination.

It can be seen from Figure 3.15 that overall, for all proteins, the SP-NN-solvpaimdist 

method has the highest Z score among all methods, including the pairwise potentials 

method. The best performance o f the SP-NN-solvpairndist method is also repeated 

for /3-only proteins and a/3 proteins. The SP-NN-solvpair method is a close second 

in these cases. However, for a-only proteins in the Baker decoy dataset, the pairwise 

potentials method is still the best, as in the case o f Figure 2.44 where only the 3 basic 

NN methods are being compared.
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Figure 3.15: Z scores produced by the S combination o f the sequence profile (SP) meth

ods, the homologue threading (HT) methods, the basic NN-solvpaimdist, NN-solvpair, 

NN-dist methods, and the pairwise potentials method on the different secondary struc

tural classes of the Baker decoy dataset

For the various secondary structural classes o f proteins in the Baker decoy dataset 

in Figure 3.15, the performance o f the homologue threading methods, HT-NN-dist, 

HT-NN-solvpair and HT-NN-solvpaimdist methods, show a modest increase in the Z 

score over the basic neural network counterparts, with the exception of HT-NN-dist 

in the (3-only class. Figure 3.16 show the Z scores for the S combination o f sequence 

separations across all decoy datasets for all 9 NN  methods and the pairwise potentials 

method.

Figure 3.17 shows the enrichment scores o f the S combination for all the meth

ods, including the pairwise potentials method, on the decoy datasets.

It can be seen from Figure 3.16 that the SP-NN-solvpairndist method has the highest 

Z score compared to the rest o f the methods, including the pairwise potentials method 

for the combined decoy dataset o f 70 sets. Apart from the lattice_ssfit dataset where the 

pairwise potentials method has the highest Z score, the SP-NN-solvpairndist method

3420
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Figure 3.16: Z scores produced by the S combination of the sequence profile (SP) methods, the homologue threading (HT) methods, the basic

NN-solvpairndist, NN-solvpair, NN-dist methods, and the pairwise potentials method on the different individual decoy datasets, including the

combination of all the individual datasets
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Figure 3.17: Enrichment scores produced by the S combination of the sequence profile (SP) methods, the homologue threading (HT) methods, the

basic NN-solvpairndist, NN-solvpair, NN-dist methods, and the pairwise potentials method on the different individual decoy datasets, including

the combination of all the individual datasets
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has the highest Z scores for all the other decoy datasets. Having said that, it can be seen 

from Table 2.6 that the lattice_ssfit dataset consists of large numbers of high RMSD 

decoys. This suggests that the pairwise potentials method still has a slightly higher 

discriminatory power in terms of Z score over lower quality decoy datasets, compared 

to the SP-NN-solvpaimdist method.

In Figure 3.17, for the SP-NN-solvpaimdist method, the performance on the enrich

ment measure for the S combination is less pronounced than that of the Z score. Apart 

from the lmds decoy dataset, the SP-NN-solvpaimdist method ranks best in the Baker 

decoy dataset, 4state_reduced, fisa, and fisa_casp3 datasets, and ranks second in the 

lmds_v2 dataset. In the overall combined dataset, the SP-NN-solvpaimdist method has 

the highest enrichment score, and the pairwise potentials method is a close second best.

For the HT-NN-dist, HT-NN-solvpair and HT-NN-solvpaimdist methods, apart from 

the 4state_reduced dataset, it can be seen that the averaging of sequence homologues 

do yield a slight increase of Z score for each HT-NN method over its corresponding 

basic NN counterpart method. This suggests that a modest increase in the performance 

of the discrimination of native structures can be achieved using averaging the scores of 

sequence homologues that are threaded to each structure in the decoy dataset.

For the enrichment score, the HT-NN methods show little improvement over the basic 

counterpart methods. All the 3 homologue threading methods show improvements over 

the basic NN methods in only 3 datasets, namely the Baker dataset, 4state.reduced and 

the lattice_ssfit datasets.

One conclusion that can be drawn so far is that the SP-NN-solvpaimdist method, 

which uses profile information in conjunction with pairwise distance and relative sol

vent accessibility information of residue pairs, has the best performance in terms of the 

discrimination of native structures for all decoy datasets (Z score) among the various 

neural network methods and the pairwise potentials method. In terms of selecting the 

low RMSD decoys (enrichment score), it slightly outperforms the rest of the methods 

for a number of decoy datasets.
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3.3.4 Results of Wilcoxon sign-rank tests for top model selection
In this section, the Wilcoxon sign-rank tests are performed for each of the homo

logue threading (HT) and sequence profile (SP) methods against the pairwise poten

tials method, as well as the MODCHECK MQAP method. As in Section 2.3.6.1, 

three different structural similarity measures are used. The significance level used is 

5%. The network scores averaged by the HT-NN-dist, HT-NN-solvpair and HT-NN- 

solvpaimdist methods are of the S combination.

For a given decoy discrimination method and a given structural similarity measure, 

the null hypothesis states that the median of the distribution of the differences between 

the structural similarity scores of the top ranked model produced by this particular 

method and the top ranked model produced by the pairwise potentials method is zero.

For the homologue threading methods, the semfold dataset is not applicable for the 

analysis. Hence, the combined datasets of all proteins, a-only proteins, /?-only pro

teins, and a(3 proteins do not contain semfold decoy sets. The methods that are com

pared against the homologue threading methods therefore have their analysis repeated 

without the decoy sets that belong to the semfold dataset, for the sake of effective 

comparison.

The following subsections separate the discussion of the P-values obtained for the 

homologue threading methods from those obtained for the sequence profile methods.

3.3.4.1 P-values of the top model selection test for the Homologue

Threading Methods 

Tables 3.5, 3.6 and 3.7 show the P-values obtained from the one-tailed Wilcoxon 

sign-rank test for the comparison of the HT-NN-dist, HT-NN-solvpair and HT-NN- 

solvpaimdist methods, with the pairwise potentials method and MODCHECK, with 

the structural similarity measures defined as TM-score, GDT-TS and MaxSub respec
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tively.

It can be seen from Tables 3.5 to 3.7 that all the P-values are >  0.05, except for

•  HT-NN-dist and pairwise potentials, lmds dataset, GDT-TS, P-value = 0.0137 

Relaxing the significance level to 10%, the following cases are observed:

•  HT-NN-dist and pairwise potentials, lmds dataset, TM-score, P-value = 0.0527

•  HT-NN-dist and MODCHECK, lmds dataset, TM-score, P-value = 0.0801

•  HT-NN-dist and MODCHECK, lmds dataset, GDT-TS, P-value = 0.0967

•  HT-NN-dist and MODCHECK, lmds dataset, MaxSub, P-value = 0.0801

It can be seen that all cases are observed with the HT-NN-dist method for the lmds 

dataset.

Table 3.8 shows the P-values of the one-tailed Wilcoxon test for the comparison of the 

HT-NN-dist, HT-NN-solvpair and HT-NN-solvpaimdist methods with the correspond

ing basic NN counterparts.

At 5% significance level, there are no instances in Table 3.8 where the null hypothesis 

can be rejected. At 10% significance level, the null hypothesis can be rejected for the 

following cases:

• HT-NN-solvpaimdist and NN-solvpairndist, lmds_v2 dataset, GDT-TS, P-value 

= 0.0781



Decoy Dataset
HT-NN-dist HT-NN-solvpair HT-NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.8438 0.8906 0.9688 0.7812 0.9219 0.8438

bakerdecoys 0.6811 0.3666 0.3851 0.4419 0.3189 0.2325

fisa_casp3 0.9375 0.9375 0.9375 0.6875 0.9375 0.6875

fisa 0.9375 0.6875 0.8125 0.5000 0.9375 0.5000

lattice_ssfit 0.9961 0.9258 0.9609 0.8125 0.9609 0.8516

lmds 0.0527 0.0801 0.9814 0.9473 0.8623 0.8389

lmds_v2 0.2852 0.7871 0.6328 0.7148 0.5000 0.7148

all (less semfold) 0.9715 0.9340 0.9941 0.9465 0.9813 0.8776

a/3 (less semfold) 0.7069 0.8371 0.6792 0.8495 0.3208 0.4794

a-only (less semfold) 0.9918 0.8306 0.9992 0.9211 0.9994 0.2463

/3-only (less semfold) 0.5781 0.9453 0.3711 0.4219 0.4219 0.8086

Table 3.5: Top Model Selection: P-values of one-tailed Wilcoxon sign-rank test between the HT-NN-dist, HT-NN-solvpair, HT-NN-solvpaimdist

methods and Pairwise Potentials and MODCHECK, with TM-score as the structural similarity measure
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Decoy Dataset
HT-NN-dist HT-NN-solvpair HT-NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.8438 0.8438 0.9688 0.7812 0.9531 0.8438

bakerdecoys 0.3306 0.6456 0.2325 0.7260 0.3544 0.6926

fisa_casp3 0.8750 0.6875 0.9375 0.6875 0.9375 0.4375

fisa 0.9375 0.8125 0.8750 0.5000 0.9375 0.5000

lattice_ssfit 0.9961 0.9609 0.8438 0.5000 0.8750 0.5938

lmds 0.0137 0.0967 0.9756 0.9814 0.8838 0.8838

lmds_v2 0.1016 0.5898 0.1504 0.6328 0.6328 0.8203

all (less semfold) 0.7930 0.8379 0.9788 0.9649 0.9770 0.9544

a/3 (less semfold) 0.5283 0.9262 0.5000 0.8103 0.2346 0.5000

a-only (less semfold) 0.9207 0.3163 0.9982 0.9129 0.9993 0.8467

/3-only (less semfold) 0.5273 0.9453 0.4219 0.6797 0.5000 0.8438

Table 3.6: Top Model Selection : P-values of one-tailed Wilcoxon sign-rank test between the HT-NN-dist, HT-NN-solvpair, HT-NN-solvpaimdist

methods and Pairwise Potentials and MODCHECK, with GDT-TS as the structural similarity measure

3.3. 
Results 
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Decoy Dataset
HT-NN-dist HT-NN-solvpair HT-NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.8438 0.8438 0.9688 0.7812 0.9688 0.8438

bakerdecoys 0.5553 0.4419 0.2633 0.4419 0.3306 0.3131

fisa_casp3 0.9375 0.9375 0.8750 0.6875 0.8750 0.5625

fisa 0.9375 0.8750 0.8125 0.3750 0.6875 0.5000

lattice_ssfit 0.9805 0.8008 0.9023 0.5000 0.9023 0.4688

lmds 0.2158 0.0801 0.9902 0.9756 0.9199 0.8125

lmds_v2 0.3262 0.5449 0.4102 0.5898 0.6738 0.8203

all (less semfold) 0.9742 0.8998 0.9903 0.9080 0.9843 0.1479

otj3 (less semfold) 0.4906 0.3880 0.3782 0.1629 0.2190 0.4794

a-only (less semfold) 0.9982 0.9275 0.9978 0.8621 0.9996 0.2059

/3-only (less semfold) 0.4219 0.9023 0.2734 0.4219 0.3594 0.8086

Table 3.7: Top Model Selection : P-values of one-tailed Wilcoxon sign-rank test between the HT-NN-dist, HT-NN-solvpair, HT-NN-solvpaimdist

methods and Pairwise Potentials and MODCHECK, with MaxSub as the structural similarity measure
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Decoy Dataset

HT-NN-dist HT-NN-solvpair HT-NN-solvpaimdist

NN-dist NN-solvpair NN-solvpairndist

TM-score GDT-TS MaxSub TM-score GDT-TS MaxSub TM-score GDT-TS MaxSub

4state_reduced 0.1250 0.1250 0.3750 0.1562 0.1562 0.0938 0.3125 0.1875 0.1250

bakerdecoys 0.1219 0.2939 0.3424 0.4020 0.3046 0.5000 0.1388 0.1276 0.3177

fisa_casp3 0.2500 0.5000 0.2500 0.7500 0.7500 0.5000 0.5000 0.5000 0.5000

fisa 0.5000 0.5000 0.7500 0.3750 0.5000 0.3750 0.5000 0.4375 0.3125

lattice_ssfit 0.7109 0.8906 0.7188 0.4062 0.6562 0.4062 0.5938 0.8125 0.5000

lmds 0.2188 0.1562 0.1562 0.2812 0.5000 0.1562 0.7109 0.4688 0.8516

lmds_v2 0.1094 0.1094 0.2188 0.2344 0.2891 0.4219 0.9219 0.0781 0.1094

all (less semfold) 0.2742 0.3532 0.4054 0.4173 0.4506 0.4397 0.4217 0.4708 0.4626

af! (less semfold) 0.4229 0.2783 0.3672 0.1602 0.1602 0.1826 0.4492 0.4829 0.3823

a-only (less semfold) 0.4529 0.3096 0.2770 0.4840 0.4361 0.3437 0.4203 0.2730 0.3096

/3-only (less semfold) 0.3125 0.3125 0.2188 0.2344 0.0547 0.5938 0.1484 0.0547 0.7188

Table 3.8: Top Model Selection: P-values of one-tailed Wilcoxon sign-rank test between the HT-NN-dist, HT-NN-solvpair, HT-NN-solvpaimdist

methods and the corresponding basic NN methods
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•  HT-NN-solvpaimdist and NN-solvpairndist, /3-only dataset, GDT-TS, P-value = 

0.0547

•  HT-NN-solvpair and NN-solvpair, 4state_reduced dataset, MaxSub, P-value = 

0.0938

•  HT-NN-solvpair and NN-solvpair, /9-only dataset, GDT-TS, P-value = 0.0547

The HT-NN-solvpaimdist and HT-NN-solvpair methods show improvement in top 

model selection for some cases over the NN-solvpairndist and NN-solvpair methods 

respectively. For the GDT-TS structural similarity measure, the improvement can be 

noticed in the /3-only dataset. The HT-NN-dist method shows no instances of improve

ment in top model selection over the corresponding NN-dist method, even at 10% 

significance level.

The next section shows the P-values from the one-tailed Wilcoxon sign-rank test 

for the sequence profile methods.

3.3.4.2 P-values of the top model selection test for the Sequence Profile 

Methods

Tables 3.9, 3.10 and 3.11 show the P-values obtained from the one-tailed Wilcoxon 

sign-rank test for the comparison of the SP-NN-dist, SP-NN-solvpair and SP-NN- 

solvpaimdist methods, with the pairwise potentials method and MODCHECK, with 

the structural similarity measures defined as TM-score, GDT-TS and MaxSub respec

tively.

It can be seen from Tables 3.9 to 3.11 that all the P-values are >  0.05. Relaxing 

the significance level to 10%, the following cases are observed:

• SP-NN-solvpaimdist and pairwise potentials, Baker dataset, TM-score, P-value 

= 0.0838

•  SP-NN-solvpaimdist and pairwise potentials, Baker dataset, MaxSub, P-value = 

0.0789
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•  SP-NN-solvpair and pairwise potentials, Baker dataset, MaxSub, P-value = 

0.0743

•  SP-NN-solvpair and MODCHECK, lattice_ssfit dataset, MaxSub, P-value = 

0.0781

• SP-NN-solvpaimdist and MODCHECK, lattice_ssfit dataset, MaxSub, P-value = 

0.0781

For the Baker decoy dataset, the null hypothesis can be rejected for the TM-score and 

MaxSub structural similarity scores when comparing the SP-NN-solvpaimdist method 

with the pairwise potentials method. This means that, at a 10% significance level, the 

SP-NN-solvpaimdist method can select better top models (TM-score, MaxSub) than 

the pairwise potentials method for the Baker decoy dataset.

Table 3.12 shows the P-values of the one-tailed Wilcoxon test for the comparison of the 

SP-NN-dist, SP-NN-solvpair and SP-NN-solvpaimdist methods with the correspond

ing basic NN counterparts.

From Table 3.12, at a 5% significance level, the null hypothesis can be rejected for the 

following:

• SP-NN-solvpaimdist and NN-solvpairndist, Baker dataset, TM-score, P-value = 

0.0366

• SP-NN-solvpaimdist and NN-solvpairndist, Baker dataset, GDT-TS, P-value = 

0.0337

•  SP-NN-solvpair and NN-solvpair, Baker dataset, TM-score, P-value = 0.0430

• SP-NN-solvpair and NN-solvpair, Baker dataset, GDT-TS, P-value = 0.0430



Decoy Dataset
SP-NN-dist SP-NN-solvpair SP-NN-solvpairndist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.5000 0.4219 0.5781 0.5000 0.5781 0.5000

bakerdecoys 0.9423 0.9385 0.1057 0.1457 0.0838 0.1246

fisa_casp3 0.5000 0.5000 0.5625 0.5000 0.5625 0.5000

fisa 0.9375 0.6875 0.6875 0.5000 0.9375 0.8125

lattice_ssfit 0.9805 0.7695 0.6289 0.2344 0.6797 0.2344

lmds 0.9971 0.8838 0.9805 0.8496 0.8838 0.7217

lmds_v2 0.5449 0.8389 0.6328 0.8750 0.8125 0.9346

semfold 0.9688 0.9844 0.7812 0.8438 0.9844 0.9844

all 0.9998 0.9912 0.7512 0.6289 0.8612 0.7171

a(3 0.9902 0.9955 0.7777 0.9263 0.9164 0.9690

a-only 0.9991 0.9318 0.8111 0.5043 0.8364 0.5043

/3-only 0.7266 0.9727 0.3203 0.6797 0.3203 0.6797

Table 3.9: Top Model Selection : P-values of one-tailed Wilcoxon sign-rank test between the SP-NN-dist, SP-NN-solvpair, SP-NN-solvpaimdist

methods and Pairwise Potentials and MODCHECK, with TM-score as the structural similarity measure
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Decoy Dataset
SP-NN-dist SP-NN-solvpair SP-NN-solvpairndist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.5000 0.4219 0.6562 0.5000 0.6562 0.5000

bakerdecoys 0.9211 0.9690 0.1313 0.3189 0.1057 0.2529

fisa_casp3 0.6250 0.5000 0.5625 0.3125 0.5625 0.3125

fisa 0.9375 0.8125 0.6875 0.5000 0.9375 0.5625

lattice_ssfit 0.9453 0.7695 0.5000 0.1094 0.5781 0.2891

lmds 0.9932 0.8838 0.9629 0.8984 0.8838 0.7217

lmds_v2 0.1016 0.6152 0.4551 0.8203 0.7217 0.9033

semfold 0.9219 0.9219 0.7188 0.8438 0.9844 0.9688

all 0.9979 0.9824 0.6442 0.7009 0.7861 0.7551

ap 0.9779 0.9931 0.7895 0.9505 0.9498 0.9781

a-only 0.9987 0.9194 0.8550 0.4612 0.8680 0.4102

/3-only 0.7266 0.9609 0.2852 0.8086 0.2852 0.8086

Table 3.10: Top Model Selection: P-values of one-tailed Wilcoxon sign-rank test between the SP-NN-dist, SP-NN-solvpair, SP-NN-solvpaimdist

methods and Pairwise Potentials and MODCHECK, with GDT-TS as the structural similarity measure
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Decoy Dataset
SP-NN-dist SP-NN-solvpair SP-NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.5000 0.4219 0.7188 0.5000 0.7188 0.5000

bakerdecoys 0.8543 0.8304 0.0743 0.1445 0.0789 0.1293

fisa_casp3 0.6250 0.6875 0.5000 0.5000 0.5000 0.5000

fisa 0.9375 0.8750 0.6875 0.5625 0.8125 0.6875

lattice_ssfit 0.9609 0.5000 0.4727 0.0781 0.5273 0.0781

lmds 0.9902 0.8838 0.9727 0.8203 0.9199 0.6523

lmds_v2 0.4102 0.8203 0.4551 0.8203 0.7539 0.9033

semfold 0.8906 0.9688 0.5000 0.5781 0.7188 0.8438

all 0.9991 0.9570 0.3661 0.4441 0.7267 0.5237

a/3 0.8784 0.9046 0.5160 0.8010 0.8341 0.8521

a-only 0.9996 0.9687 0.7474 0.3663 0.7217 0.3326

/3-only 0.5781 0.9023 0.1562 0.6289 0.1562 0.6289

Table 3.11: Top Model Selection: P-values of one-tailed Wilcoxon sign-rank test between the SP-NN-dist, SP-NN-solvpair, SP-NN-solvpaimdist

methods and Pairwise Potentials and MODCHECK, with MaxSub as the structural similarity measure
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Decoy Dataset

SP-NN-dist SP-NN-solvpair SP-NN-solvpaimdist

NN-dist NN-solvpair NN-solvpairndist

TM-score GDT-TS MaxSub TM-score GDT-TS MaxSub TM-score GDT-TS MaxSub

4state_reduced 0.1562 0.1562 0.1562 0.0938 0.0938 0.0938 0.1562 0.1562 0.1562

bakerdecoys 0.8474 0.8743 0.6553 0.0430 0.0430 0.0727 0.0366 0.0337 0.0502

fisa_casp3 0.0625 0.0625 0.0625 0.5625 0.5625 0.3125 0.5000 0.5000 0.5000

fisa 0.5000 0.6250 0.6250 0.5000 0.5000 0.5000 0.6250 0.5000 0.6250

lattice_ssfit 0.3711 0.7266 0.5000 0.1875 0.5312 0.0781 0.1914 0.7266 0.1562

lmds 0.9863 0.9941 0.9512 0.7695 0.3711 0.6289 0.7871 0.2852 0.8496

lmds_v2 0.2158 0.2783 0.5449 0.2891 0.3438 0.4219 0.9180 0.8984 0.8203

semfold 0.8906 0.9219 0.9219 0.3125 0.3125 0.1875 0.9375 0.5000 0.8438

all 0.7256 0.8031 0.6942 0.0651 0.0258 0.0370 0.2048 0.0926 0.1966

a/3 0.2877 0.5740 0.8428 0.1906 0.8863 0.2507 0.9781 0.9886 0.9560

a-only 0.8408 0.8895 0.7858 0.0614 0.0185 0.0432 0.0438 0.0115 0.0490

/3-only 0.3438 0.6562 0.0781 0.1562 0.1562 0.6289 0.1562 0.1562 0.6289

Table 3.12: Top Model Selection: P-values of one-tailed Wilcoxon sign-rank test between the SP-NN-dist, SP-NN-solvpair, SP-NN-solvpaimdist

methods and the corresponding basic NN methods
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•  SP-NN-solvpair and NN-solvpair, all proteins, GDT-TS, P-value = 0.0258

•  SP-NN-solvpair and NN-solvpair, all proteins, MaxSub, P-value = 0.0370

•  SP-NN-solvpaimdist and NN-solvpairndist, a-only proteins, TM-score, P-value 

= 0.0438

• SP-NN-solvpaimdist and NN-solvpairndist, a-only proteins, GDT-TS, P-value = 

0.0115

•  SP-NN-solvpaimdist and NN-solvpairndist, a-only proteins, MaxSub, P-value = 

0.0490

• SP-NN-solvpair and NN-solvpair, a-only proteins, GDT-TS, P-value = 0.0185

•  SP-NN-solvpair and NN-solvpair, a-only proteins, MaxSub, P-value = 0.0432

The additional evolutionary information in the SP-NN-solvpaimdist and SP-NN- 

solvpair methods seems to help select top ranked models of a higher quality for the 

Baker decoy dataset, as well as a-only proteins. The SP-NN-dist method shows no 

improvement in top model selection over the NN-dist method at a 5% significance 

level.

3.3.5 Results of Wilcoxon Sign-Rank Tests on Spearman correla

tion coefficients
In this section, the results of the one-tailed Wilcoxon sign-rank test on the matched 

pairs of Spearman correlation coefficients produced by the homologue threading meth

ods and the sequence profile methods are presented.

As described in Section 2.3.6.2, the null hypothesis is that the median is zero for 

the distribution of the differences in the Spearman correlation coefficients produced by 

the proposed neural network decoy discrimination method and the Spearman correla

tion coefficients produced by the pairwise potentials method (or MODCHECK). The 

Spearman rank correlation coefficients are calculated between the structural similarity



3.3. Results 218

scores (TM-score, GDT-TS or MaxSub) of the decoys and the output scores of the 

decoys assigned by a decoy discrimination method.

The network output scores produced by the SP-NN-dist, SP-NN-solvpair and SP- 

NN-solvpaimdist methods, as well as those averaged by the homologue threading 

methods, are of the S combination.

For the homologue threading methods, the semfold dataset is not applicable for the 

analysis. Hence, the combined datasets of all proteins, a-only proteins, /3-only pro

teins, and ct/3 proteins do not contain semfold decoy sets. The methods that are com

pared against the homologue threading methods therefore have their analysis repeated 

without the decoy sets that belong to the semfold dataset, for the sake of effective 

comparison.

The following subsections separate the discussion of the P-values obtained for the 

homologue threading methods from those obtained for the sequence profile methods.

3.3.5.1 P-values of the Spearman correlation coefficients for the Ho

mologue Threading Methods 

Tables 3.13, 3.14 and 3.15 show the P-values obtained from the one-tailed Wilcoxon 

sign-rank test for the comparison of the HT-NN-dist, HT-NN-solvpair and HT-NN- 

solvpaimdist methods, with the pairwise potentials method and MODCHECK, with 

the Spearman correlation coefficients of the output scores of the method, and the struc

tural similarity measures, which are the TM-score, GDT-TS and MaxSub respectively.

It can be seen from Tables 3.13 to 3.15 that all the P-values are >  0.05. Therefore 

the various null hypotheses are not rejected. This implies that there is no improvement 

in model ranking for the homologue threading methods, when compared to the pairwise 

potentials methods or the MODCHECK method.



Decoy Dataset
HT-NN-dist HT-NN-solvpair HT-NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state .reduced 0.5000 0.1562 0.9844 0.9844 0.9844 0.9844

bakerdecoys 0.9690 0.9752 0.5709 0.5452 0.1774 0.1313

fisa_casp3 0.9375 0.9375 0.8125 0.8125 0.8125 0.8750

fisa 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750

lattice_ssfit 0.9258 0.9453 0.6289 0.8086 0.5781 0.8086

lmds 0.8389 0.5000 0.9990 0.9951 0.8838 0.9199

lmds_v2 0.9033 0.8125 0.5000 0.6523 0.5000 0.7217

all (less semfold) 0.9999 0.9976 0.9974 0.9986 0.9742 0.9661

a(3 (less semfold) 0.9968 0.9916 0.8952 0.9187 0.6563 0.6735

a-only (less semfold) 0.9964 0.9392 0.9935 0.9762 0.9916 0.9691

/?-only (less semfold) 0.9609 0.9961 0.5781 0.9258 0.5273 0.4219

Table 3.13: Spearman correlation coefficient : P-values of one-tailed Wilcoxon sign-rank test between the HT-NN-dist, HT-NN-solvpair, HT-

NN-solvpaimdist methods and Pairwise Potentials and MODCHECK, with TM-score as the structural similarity measure
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Decoy Dataset
HT-NN-dist HT-NN-solvpair HT-NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state-reduced 0.5000 0.1562 0.9844 0.9844 0.9844 0.9844

bakerdecoys 0.9771 0.9642 0.8226 0.2961 0.5581 0.2039

fisa_casp3 0.9375 0.9375 0.6875 0.5625 0.8750 0.5625

fisa 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750

lattice_ssfit 0.9609 0.9453 0.7695 0.9023 0.7266 0.9023

lmds 0.6875 0.3848 0.9990 0.9951 0.9346 0.9473

lmds_v2 0.8125 0.8623 0.5771 0.7217 0.5391 0.7842

all (less semfold) 0.9997 0.9948 0.9997 0.9997 0.9957 0.9902

a/3 (less semfold) 0.9926 0.9877 0.9692 0.9488 0.8094 0.8220

a-only (less semfold) 0.9926 0.8906 0.9983 0.9905 0.9983 0.9847

/3-only (less semfold) 0.9453 0.9961 0.5000 0.9023 0.5273 0.5273

Table 3.14: Spearman correlation coefficient : P-values of one-tailed Wilcoxon sign-rank test between the HT-NN-dist, HT-NN-solvpair, HT-

NN-solvpaimdist methods and Pairwise Potentials and MODCHECK, with GDT-TS as the structural similarity measure
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Decoy Dataset
HT-NN-dist HT-NN-solvpair HT-NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state .reduced 0.5000 0.1094 0.9844 0.9844 0.9844 0.9844

bakerdecoys 0.9788 0.9833 0.6576 0.6576 0.2850 0.2039

fisa_casp3 0.9375 0.9375 0.6875 0.5625 0.6875 0.5000

fisa 0.9375 0.9375 0.8750 0.8750 0.8750 0.8750

lattice_ssfit 0.3711 0.5781 0.8438 0.9023 0.7695 0.9023

lmds 0.3848 0.2158 0.9756 0.9756 0.8125 0.7842

lmds_v2 0.6523 0.6875 0.3477 0.2158 0.2783 0.3125

all (less semfold) 0.9935 0.9742 0.9925 0.9917 0.9285 0.8804

afl (less semfold) 0.9488 0.9187 0.8341 0.8220 0.5094 0.5283

a-only (less semfold) 0.9640 0.1752 0.9899 0.9674 0.9847 0.9365

/?-only (less semfold) 0.9961 0.9961 0.5781 0.9023 0.4219 0.6289

Table 3.15: Spearman correlation coefficient : P-values of one-tailed Wilcoxon sign-rank test between the HT-NN-dist, HT-NN-solvpair, HT-

NN-solvpairndist methods and Pairwise Potentials and MODCHECK, with MaxSub as the structural similarity measure

3.3. 
Results 

221



3.3. Results 2 2 2

Table 3.16 shows the P-values of the one-tailed Wilcoxon test, where the model ranking 

ability of the homologue threading methods are compared to that of the corresponding 

basic neural network counterparts.

It can be seen that, at a 5% significance level, the null hypothesis can be rejected 

for

•  HT-NN-dist and NN-dist, 4state_reduced dataset, all similarity measures

•  HT-NN-solvpaimdist and NN-solvpairndist, Baker dataset, all similarity mea

sures

•  HT-NN-solvpair and NN-solvpair, Baker dataset, all similarity measures

•  HT-NN-dist and NN-dist, all proteins, all similarity measures

•  HT-NN-solvpair and NN-solvpair, all proteins, TM-score and MaxSub

•  HT-NN-solvpaimdist and NN-solvpairndist, all proteins, all similarity measures

•  HT-NN-solvpaimdist and NN-solvpairndist, /3-only proteins, all similarity mea

sures

• HT-NN-solvpaimdist and NN-solvpaimdist, lmds dataset, GDT-TS and MaxSub

•  HT-NN-solvpair and NN-solvpair, lmds dataset, MaxSub

• HT-NN-solvpaimdist and NN-solvpaimdist, a-only dataset, GDT-TS

All in all, at 5% significance level, the homologue threading methods can rank models 

better than their basic NN counterparts in the combined dataset, and in several other 

individual datasets.



Decoy Dataset

HT-NN-dist HT-NN-solvpair HT-NN-solvpaimdist

NN-dist NN-solvpair NN-solvpaimdist

TM-score GDT-TS MaxSub TM-score GDT-TS MaxSub TM-score GDT-TS MaxSub

4state .reduced 0.0156 0.0156 0.0156 0.2812 0.2812 0.2812 0.2188 0.2812 0.2812

bakerdecoys 0.3265 0.1906 0.3437 0.0028 0.0028 0.0065 0.0015 0.0007 0.0028

fisa_casp3 0.1250 0.1250 0.2500 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

fisa 0.4375 0.4375 0.4375 0.8125 0.8125 0.6875 0.6875 0.6875 0.6875

lattice_ssfit 0.4062 0.4688 0.2891 0.5938 0.7656 0.7656 0.7109 0.8125 0.7656

lmds 0.2852 0.2852 0.1016 0.1797 0.1797 0.0488 0.0645 0.0488 0.0371

lmds_v2 0.3477 0.5000 0.5000 0.2461 0.3477 0.1875 0.1377 0.2461 0.1611

all (less semfold) 0.0141 0.0173 0.0094 0.0315 0.0688 0.0215 0.0072 0.0117 0.0055

aP (less semfold) 0.3574 0.4516 0.3804 0.1206 0.1479 0.1083 0.0969 0.0969 0.0969

a-only (less semfold) 0.0766 0.0172 0.0580 0.2839 0.3985 0.4319 0.2648 0.3446 0.3767

/?-only (less semfold) 0.5938 0.5938 0.4062 0.1094 0.0781 0.0781 0.0391 0.0234 0.0391

Table 3.16: Spearman correlation coefficient : P-values of one-tailed Wilcoxon sign-rank test between the HT-NN-dist, HT-NN-solvpair, HT-

NN-solvpairndist methods and the corresponding basic NN methods
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3.3.5.2 P-values of the Spearman correlation coefficients for the Se

quence Profile Methods 

Tables 3.17, 3.18 and 3.19 show the P-values obtained from the one-tailed Wilcoxon 

sign-rank test for the comparison of the SP-NN-dist, SP-NN-solvpair and SP-NN- 

solvpaimdist methods, with the pairwise potentials method and MODCHECK, with 

the Spearman correlation coefficients of the output scores of the method, and the struc

tural similarity measures, which are the TM-score, GDT-TS and MaxSub respectively.

It can be seen from Tables 3.17 to 3.19 that all the P-values are >  0.05 except for 

the following cases.

•  SP-NN-solvpaimdist and pairwise potentials, Baker dataset, TM-score, P-value 

= 0.0412

•  SP-NN-solvpaimdist and MODCHECK, Baker dataset, TM-score, P-value = 

0.0333

•  SP-NN-solvpaimdist and MODCHECK, Baker dataset, GDT-TS, P-value = 

0.0473

The SP-NN-solvpaimdist, which has the highest Z score among all the methods as 

shown in Figure 3.16, appears to perform model ranking in the Baker dataset better 

than the pairwise potentials/MODCHECK method for the TM-score/GDT-TS score, as 

shown in the above cases.

Table 3.20 shows the P-values of the one-tailed Wilcoxon test for the comparison of the 

SP-NN-dist, SP-NN-solvpair and SP-NN-solvpaimdist methods with the correspond

ing basic NN counterparts.



Decoy Dataset
SP-NN-dist SP-NN-solvpair SP-NN -sol vpairndist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.6562 0.5781 0.7812 0.2188 0.5000 0.2188

bakerdecoys 0.8883 0.8820 0.1313 0.0838 0.0412 0.0333

fisa_casp3 0.9375 0.9375 0.4375 0.4375 0.4375 0.4375

fisa 0.6875 0.6875 0.3125 0.1250 0.4375 0.3125

lattice_ssfit 0.9453 0.9023 0.1914 0.2734 0.1250 0.2734

lmds 0.8838 0.6523 0.9678 0.9678 0.9346 0.8838

lmds_v2 0.9199 0.9033 0.6152 0.7539 0.6523 0.8125

semfold 0.9844 0.9844 0.9219 0.9219 0.9219 0.8906

all 0.9999 0.9980 0.6095 0.4662 0.4131 0.2440

a{3 0.9817 0.9323 0.8341 0.8764 0.6994 0.7724

a-only 1.0000 0.9989 0.4223 0.2653 0.4070 0.2653

p -only 0.4219 0.6289 0.4727 0.5781 0.2734 0.3711

Table 3.17: Spearman correlation coefficient: P-values of one-tailed Wilcoxon sign-rank test between the SP-NN-dist, SP-NN-solvpair, SP-NN-

solvpaimdist methods and Pairwise Potentials and MODCHECK, with TM-score as the structural similarity measure

3.3. 
Results 

225



Decoy Dataset
SP-NN-dist SP-NN-solvpair SP-NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state_reduced 0.5781 0.5781 0.7188 0.2188 0.5000 0.2188

bakerdecoys 0.8883 0.8052 0.2325 0.1948 0.0789 0.0473

fisa_casp3 0.9375 0.8750 0.4375 0.3125 0.4375 0.3125

fisa 0.6875 0.6875 0.3125 0.1250 0.3125 0.1875

lattice_ssfit 0.8750 0.9609 0.2734 0.4219 0.2734 0.4219

lmds 0.7842 0.4609 0.9580 0.9580 0.9473 0.9033

lmds_v2 0.8125 0.8838 0.6523 0.7842 0.6523 0.7539

semfold 0.9844 0.9688 0.9688 0.9219 0.9688 0.9219

all 0.9991 0.9892 0.8351 0.3682 0.6362 0.3928

a(3 0.9690 0.9105 0.9273 0.8978 0.8341 0.7943

a-only 0.9999 0.9896 0.8163 0.3548 0.8111 0.3476

/3-only 0.3203 0.5781 0.3711 0.7266 0.2734 0.3203

Table 3.18: Spearman correlation coefficient: P-values of one-tailed Wilcoxon sign-rank test between the SP-NN-dist, SP-NN-solvpair, SP-NN-

solvpairndist methods and Pairwise Potentials and MODCHECK, with GDT-TS as the structural similarity measure
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Decoy Dataset
SP-NN-dist SP-NN-solvpair SP-NN-solvpaimdist

PP MODCHECK PP MODCHECK PP MODCHECK

4state-reduced 0.7188 0.5781 0.7812 0.2812 0.7188 0.2188

bakerdecoys 0.9302 0.9162 0.2325 0.1610 0.1117 0.0506

fisa_casp3 0.9375 0.9375 0.4375 0.3125 0.4375 0.3125

fisa 0.6875 0.6875 0.3125 0.1250 0.3125 0.1875

lattice_ssfit 0.4727 0.5000 0.4219 0.4219 0.2734 0.2734

lmds 0.2461 0.5000 0.9580 0.9756 0.9033 0.8389

lmds_v2 0.8125 0.8389 0.5000 0.5771 0.4229 0.5391

semfold 0.9844 0.9844 0.9531 0.8906 0.9219 0.8906

all 0.9984 0.9897 0.7467 0.4778 0.5477 0.1693

a(3 0.8247 0.7609 0.8686 0.7835 0.5886 0.5886

a-only 0.9999 0.9975 0.6879 0.2783 0.6452 0.2166

P-only 0.5000 0.6797 0.4727 0.7695 0.3711 0.4219

Table 3.19: Spearman correlation coefficient: P-values of one-tailed Wilcoxon sign-rank test between the SP-NN-dist, SP-NN-solvpair, SP-NN-

solvpairndist methods and Pairwise Potentials and MODCHECK, with MaxSub as the structural similarity measure
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Decoy Dataset

SP-NN-dist SP-NN-solvpair SP-NN-solvpaimdist

NN-dist NN-solvpair NN-solvpaimdist

TM-score GDT-TS MaxSub TM-score GDT-TS MaxSub TM-score GDT-TS MaxSub

4state_reduced 0.5781 0.5781 0.5781 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156

bakerdecoys 0.2961 0.2529 0.2961 0.0003 0.0001 0.0008 0.0010 0.0004 0.0017

fisa_casp3 0.3125 0.1875 0.4375 0.1250 0.1250 0.1250 0.0625 0.0625 0.0625

fisa 0.0625 0.0625 0.0625 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250

lattice_ssfit 0.2305 0.2305 0.3711 0.0977 0.2305 0.0547 0.1250 0.2305 0.0977

lmds 0.5771 0.8389 0.7217 0.0967 0.0527 0.1377 0.5000 0.3477 0.4229

lmds_v2 0.7217 0.6875 0.7217 0.4229 0.7217 0.4609 0.3848 0.4609 0.4609

semfold 0.0781 0.1094 0.0781 0.0781 0.0781 0.0469 0.2812 0.1562 0.1562

all 0.1090 0.1157 0.1508 1.9e-7 2.5e-7 3.9e-7 6.4e-6 4.3e-6 6.6e-6

a,0 0.0727 0.1567 0.0584 0.0062 0.0032 0.0029 0.0261 0.0200 0.0337

a-only 0.5853 0.5234 0.8412 0.0001 0.0001 0.0010 0.0018 0.0008 0.0020

/3-only 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0273 0.0195 0.0273

Table 3.20: Spearman correlation coefficient: P-values of one-tailed Wilcoxon sign-rank test between the SP-NN-dist, SP-NN-solvpair, SP-NN-

solvpairndist methods and the corresponding basic NN methods
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It can be seen that for all proteins, a(3 proteins, a-only proteins and /3-only proteins, the 

SP-NN-solvpair and SP-NN-solvpaimdist methods can rank the decoy models better 

than the NN-solvpair and NN-solvpaimdist methods, at a 5% level of significance. The 

same is true of the individual Baker and 4state.reduced datasets. This suggests that 

the extra evolutionary information in these methods has added value in the ranking of 

decoy models, in the context of the proposed neural network methodology of decoy 

discrimination. For the SP-NN-dist method, the extra evolutionary information helps 

only in the /3-only class of proteins.

3.3.6 Results of ROC Analysis

This section investigates how the various neural network decoy discrimination meth

ods, including the pairwise potentials method and MODCHECK, can classify the decoy 

models, if the available decoy models are dichotomized into ‘true’ and ‘false’ classes. 

The ROC curves are drawn for each structural similarity measure, as shown in Figures 

3.18 to 3.25.

As mentioned in Section 2.3.6.3, there are two sets of thresholds for the dichotomy. 

The first set is 6A, 0.4, 0.25 and 0.3 for RMSD, TM-score, GDT-TS and MaxSub 

respectively; the second set is 4A, 0.5, 0.35 and 0.4 for RMSD, TM-score, GDT-TS 

and MaxSub respectively. There are altogether 64405 models in the 64 decoy sets from 

the 7 decoy datasets, with the semfold dataset excluded for the sake of effective com

parison with the homologue threading methods. All the models whose corresponding 

structural similarity measures are below the threshold are considered ‘false’ models, 

and vice versa.

Figures 3.18 and 3.19 show the ROC plots for RMSD < 6A and RMSD < 

4A as the thresholds for ‘true data’ respectively.

Figures 3.20 and 3.21 show the ROC plots for TM-score > 0.4 and TM-score >

0.5 as the thresholds for ‘true data’ respectively.
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Figure 3.18: ROC plots of the NN-dist, NN-solvpair, NN-solvpaimdist methods, the 

homologue threading (HT) methods, the sequence profile (SP) methods, Pairwise Po

tentials and MODCHECK using RMSD <  6A as the threshold for ‘true data’ on all 

decoy datasets
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Figure 3.19: ROC plots of the NN-dist, NN-solvpair, NN-solvpaimdist methods, the 

homologue threading (HT) methods, the sequence profile (SP) methods, Pairwise Po

tentials and MODCHECK using RMSD <  4A as the threshold for ‘true data’ on all 

decoy datasets
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Figure 3.20: ROC plots o f the NN-dist, NN-solvpair, NN-solvpaimdist methods, the 

homologue threading (HT) methods, the sequence profile (SP) methods, Pairwise Po

tentials and MODCHECK using TM-score > 0.4 as the threshold for ‘true data’ on all 

decoy datasets
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Figure 3.21: ROC plots o f the NN-dist, NN-solvpair, NN-solvpaimdist methods, the 

homologue threading (HT) methods, the sequence profile (SP) methods, Pairwise Po

tentials and MODCHECK using TM-score >  0.5 as the threshold for ‘true data’ on all 

decoy datasets
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Figure 3.22: ROC plots of the NN-dist, NN-solvpair, NN-solvpaimdist methods, the 

homologue threading (HT) methods, the sequence profile (SP) methods, Pairwise Po

tentials and MODCHECK using GDT-TS >  0.25 as the threshold for ‘true data’ on all 

decoy datasets
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Figure 3.23: ROC plots o f the NN-dist, NN-solvpair, NN-solvpairndist methods, the 

homologue threading (HT) methods, the sequence profile (SP) methods, Pairwise Po

tentials and MODCHECK using GDT-TS >  0.35 as the threshold for ‘true data’ on all 

decoy datasets
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Figure 3.24: ROC plots of the NN-dist, NN-solvpair, NN-solvpaimdist methods, the 

homologue threading (HT) methods, the sequence profile (SP) methods, Pairwise Po

tentials and MODCHECK using MaxSub >  0.3 as the threshold for ‘true data’ on all 

decoy datasets
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Figure 3.25: ROC plots of the NN-dist, NN-solvpair, NN-solvpaimdist methods, the 

homologue threading (HT) methods, the sequence profile (SP) methods, Pairwise Po

tentials and MODCHECK using MaxSub > 0.4 as the threshold for ‘true data’ on all 

decoy datasets
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Figures 3.22 and 3.23 show the ROC plots for GDT-TS > 0.25 and GDT-TS > 0.35 as 

the thresholds for ‘true data’ respectively.

Figures 3.24 and 3.25 show the ROC plots for MaxSub > 0.3 and MaxSub >  0.4 

as the thresholds for ‘true data’ respectively.

From Figures 3.18 to 3.25, it can be seen in all of the ROC plots, except the one 

with TM-score >  0.5, that the method with the largest area under the curve is still the 

NN-dist method. As described in Section 2.5.8, for these ROC plots, it seems that 

the NN-dist method, while having poorer Z scores and enrichment scores, generates 

lower false positive rates for a wide range of sensitivities. There is little difference in 

the performance of the ROC plots between the other methods, including the pairwise 

potentials method, across the various structural similarity measures.

One interesting observation is that the SP-NN-dist method performs worse than the 

NN-dist method in terms of the area under the ROC curve for all thresholds, except 

GDT-TS >  0.25 and MaxSub >  0.3 where the curves are similar. This seems to suggest 

that for the NN-dist method, the additional evolutionary information did not improve 

the sensitivity/specificity tradeoff of the method.

In Figure 3.21, where the threshold is TM-score >  0.5, it can be seen that the SP-NN- 

solvpaimdist and SP-NN-solvpair methods have the best ROC curves. This suggests 

that the SP-NN-solvpaimdist method, while having the best overall Z scores and en

richment, also has the lowest false positive rates for a wide range of sensitivities when 

a stringent TM-score threshold of 0.5 is used to dichotomize the decoys into ‘true’ and 

‘false’ classes.

3.4 Summary
In this chapter, additional input information in the form of multiple sequence infor

mation have been added to the NN-dist, NN-solvpair and NN-solvpaimdist methods
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developed in the previous chapter. The new methods developed to accommodate mul

tiple sequence information can be classified into two types of variants, namely the 

homologue threading (HT) methods and the sequence profile (SP) methods.

The homologue threading (HT) methods select the top 10 sequence homologues from 

the results of a PSI-BLAST search for each protein. For each decoy dataset, each 

of these homologues is then threaded to every decoy structure, including the native 

structure. The network scores evaluated on each structure from these 10 homologues, 

together with the original sequence, are then averaged to yield a mean score for each 

structure in the decoy dataset. The homologue threading methods consist of HT-NN- 

dist, HT-NN-solvpair and HT-NN-solvpaimdist methods.

The sequence profile (SP) methods consist of using PSI-BLAST profiles as inputs, 

for both training and testing. This is possible because the design of the NN-dist, 

NN-solvpair and NN-solvpaimdist neural networks have 2 20x 1 vectors for sequence 

identities, and could readily accommodate PSI-BLAST profiles. In fact, the designs of 

the basic NN methods are done with the eventuality of including PSI-BLAST profile 

information in mind. The sequence profile methods are SP-NN-dist, SP-NN-solvpair 

and SP-NN-solvpaimdist.

The benchmarking tests, as mentioned in Section 2.6, include

•  Z score, for measuring how many standard deviations the score of the native 

structure is away from the mean score of all decoys.

•  enrichment, for the degree to which the method can associate low RMSD decoys 

with high output scores.

•  top model selection using the Wilcoxon sign-rank test between each proposed 

machine learning method and the pairwise potentials method.

•  ranking of the decoy models with Spearman rank correlation coefficient, which 

also uses the Wilcoxon sign-rank test between each proposed machine learning 

method and the pairwise potentials method.
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•  ROC analysis

In the statistical tests, the competitive MODCHECK MQAP method is also tested 

against the homologue threading and sequence profile methods. This is done to see if 

the neural network methods can outperform the MODCHECK method in both the top 

model selection and the ranking of models.

The homologue threading methods have a modest success in terms of the Z score 

and enrichment over the basic NN methods. It is therefore suggested that some noise 

can be reduced by using the homologue threading methods, but not by much.

It turns out that the SP-NN-solvpaimdist method is the most promising of the ad

ditional methods developed in this chapter. Firstly, it outperforms all other methods, 

including the in-house tried and tested pairwise potentials method, in terms of the 

discrimination of native structure from a set of decoys. This is highlighted in the per

formance of the Z score in Figure 3.16. From Figure 3.17, the SP-NN-solvpaimdist 

method also has the highest enrichment score among all other methods although the 

increase over the other methods is much less pronounced than that of the Z score.

For the top model selection using the one-tailed Wilcoxon sign-rank test, the null 

hypothesis is that the median is zero in the distribution of the differences in the struc

tural similarity scores of the top ranked model produced by the particular NN method 

and the top ranked model produced by the pairwise potentials method.

It turns out that at a 5% significance level, apart from one isolated case, there is 

no evidence to reject the null hypothesis that the median of the distribution of differ

ences between the structural similarity scores of the top ranked models produced by the 

homologue threading methods and those produced by the pairwise potentials method 

(and MODCHECK) is zero. In other words, this means that the homologue threading 

methods show no improvement over the pairwise potentials method or MODCHECK in 

terms of top model selection. The same could be said of the sequence profile methods 

as well. At a 5% significance level, the hypothesis that there is no difference between 

the sequence profile methods and the pairwise potentials method (and MODCHECK)
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in the structural similarity scores of their top ranked models cannot be rejected. The 

conclusions are the same across the three structural similarity measures for both types 

of methods.

The top model selection test is also performed between the homologue threading 

methods and the corresponding basic NN methods. It turns out that at a 5% signifi

cance level, there is no improvement in top model selection between the homologue 

threading methods and the corresponding basic NN method.

The top model selection test is also performed between the sequence profile methods 

and the corresponding basic NN methods. At a 5% significance level, for the a-only 

dataset, the SP-NN-solvpaimdist method outperforms the NN-solvpaimdist method in 

top model selection for all the structural similarity measures. The null hypothesis is 

also rejected in some other cases as shown in Table 3.12. This demonstrates that evolu

tionary information is useful in improving the selection of the top model, as measured 

by any of the structural similarity measures, in the context of the NN-solvpaimdist 

method.

The decoy models are also ranked with the outputs of various methods using the 

Spearman rank correlation coefficient. The one-tailed Wilcoxon sign-rank test is again 

used here to test the null hypothesis that there is no difference in the distributions of 

the difference in Spearman rank correlation coefficients produced by the particular 

neural network method and the pairwise potentials method (or MODCHECK). A 5% 

significance level is used.

At 5% significance level, there is no evidence to reject the above null hypothesis 

for the homologue threading methods. This means that there is no improvement for the 

homologue threading methods over the pairwise potentials method and MODCHECK 

in terms of the ranking of the decoy models measured using Spearman rank correlation 

coefficient. The same could be said of the sequence profile methods, although there are 

isolated cases of the hypothesis being rejected at a 5% significance level for the Baker
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decoy dataset with the SP-NN-solvpaimdist method as shown in Tables 3.17 and 3.18.

For the comparison of the homologue threading methods with the corresponding basic 

NN methods in the ranking of models, there are many instances of the null hypothesis 

being rejected, as shown in Table 3.16. For the dataset of all proteins, almost all com

binations of the homologue threading methods and the structural similarity measures 

used reject the null hypothesis at the 5% significance level. The HT-NN-solvpair and 

HT-NN-solvpaimdist methods also have P-values lower than 0.05 in the Baker dataset 

for all structural similarity measures.

For the comparison of the sequence profile methods with the corresponding basic 

NN methods, the SP-NN-solvpaimdist and SP-NN-solvpair methods consistently out

perform their basic NN counterparts in the ranking of models in the dataset of all 

proteins, the a-only dataset, /3-only dataset, a/3 datasets. The increase in performance 

is also found in the individual 4state_reduced and Baker decoy datasets. Therefore, in 

the context of the NN-solvpair and NN-solvpaimdist methods, additional evolutionary 

information does help in the ranking of decoy models.

In the ROC analysis, decoy models are dichotomized into ‘true’ and ‘false’ classes, de

pending on the structural similarity measure and its threshold. The performances of the 

ROC curves of the neural network methods, including the homologue threading and se

quence profile methods, are similar to that of the pairwise potentials and MODCHECK 

methods, except for the NN-dist method which yields lower false positive rates for a 

wide range of sensitivities for different structural similarity measures and thresholds. 

One notable case is that of the TM-score with a threshold of 0.5 in Figure 3.21, where 

the SP-NN-solvpaimdist method yields the lowest false positive rate among all other 

methods for a wide range of sensitivities.
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3.5 Conclusion
The best method developed in this chapter is the SP-NN-solvpaimdist method. Al

though the Wilcoxon sign-rank tests show no improvement in top model selection 

and model ranking over the tried and tested pairwise potentials method, the SP-NN- 

solvpaimdist method has higher Z scores and enrichment over the pairwise potentials 

method. In other words, it has the best performance in the discrimination of native 

structures, and also the association of low RMSD decoys to high network scores.

It is also shown that in the context of the neural network methodology, the use of 

evolutionary information can substantially increase the model ranking, top model se

lection and discrimination of native structures among a set of decoys.

To summarize, it is demonstrated in this chapter that the hypothesis of using neu

ral networks with evolutionary information for decoy discrimination, in comparison 

with the pairwise potentials method, does work. The best neural network, the SP-NN- 

solvpaimdist method, has

•  the highest Z score, for the discrimination of native structures.

•  the highest enrichment score, for the association of low RMSD structures with 

high output scores.

•  in the case of TM-score >  0.5 for definition of ‘true’ data, the lowest false posi

tive rates for a wide range of sensitivities.

when compared to other neural network methods, and the pairwise potentials method.

The next chapter will summarize the findings of this thesis and outlines the future 

work that can be undertaken on top of the current work.



Chapter 4

Conclusion

4.1 Summary and Conclusions of Work
This thesis consists of two main ideas, namely

•  the novel idea of using machine learning for the decoy discrimination problem.

•  the novel idea of using evolutionary information, in a machine learning context, 

to improve the decoy discrimination process.

The problem of decoy discrimination has to be represented in a suitable form for the 

application of machine learning. In this thesis, neural networks are used, and the input 

features to the neural networks are represented as pairwise residues along the protein 

sequence, the sequence separation between the two residues, the pairwise distance and 

the relative solvent accessibilities of the two residues.

Positive and negative training examples are required in any machine learning prob

lem, and in this case, native structures are used as positive training examples. Negative 

training examples are simulated by decoy structures which are created from native 

structures using the sequence reversal method. In the sequence reversal method, the se

quence of each native structure in the set of positive examples is reversed and threaded 

back onto the native structure. As demonstrated by the results obtained, the sequence 

reversal method seems to be a reasonable approximation of decoy structures, for the 

purpose of providing the set of negative training examples to the neural networks.

Depending on the amount of input information used, various types of neural net
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works are trained, and tested on publicly available decoy datasets, namely the Tsai 

decoy dataset from David Baker's laboratory and the Decoys ‘R’ Us suite of decoy 

datasets. The Z score is used to measure the extent of which the native structure can be 

discriminated from its set of decoys, while the enrichment measure is used to measure 

the correlation of high network scores to low RMSD decoys. The methods developed 

are tested against the pairwise potentials of mean force, as well as a K Nearest Neigh

bours algorithm.

The inclusion of evolutionary profile information as inputs to the neural networks 

helps to improve the decoy discrimination process, in terms of the Z scores and enrich

ment measure.

The best neural network method (SP-NN-solvpaimdist) has input features compris

ing of the position-specific sequence profile information of residue pairs, together with 

the relative solvent accessibility of the residues and the pairwise distance between these 

residues. The SP-NN-solvpaimdist method

•  is the best among all the methods tested in discriminating native structures from 

the corresponding set of decoy structures, as demonstrated by the highest Z 

scores it has in all the decoy datasets in Figure 3.16.

•  is the best in approximately half of the decoy datasets tested for the enrichment 

in Figure 3.17.

•  shows no improvement over the pairwise potentials method in top model selec

tion, at a 5% significance level in a one-tailed Wilcoxon sign-rank test.

•  shows no improvement over the pairwise potentials method in the ranking of 

models, at a 5% significance level in a one-tailed Wilcoxon sign-rank test.

•  has the lowest false positive rates for a wide range of sensitivities, when the decoy 

models are dichotomized into ‘true’ and ‘false’ classes using a TM-score >  0.5 

for ‘true’ data.

The conclusion is that the idea of applying machine learning for the decoy discrimina

tion problem, in context of using neural networks and the proposed way of representing
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the required training examples, is indeed feasible, as demonstrated in this thesis. Fur

thermore, decoy discrimination, in particular the identification of the native structure, 

can be greatly improved by using evolutionary information in the form of PSI-BLAST 

profiles.

The best neural network method is also shown to perform better than the tried and 

tested pairwise potentials method in the discrimination of native structures. This par

ticular paradigm of using neural networks for decoy discrimination can be expanded to 

use more high-resolution decoy models, in place of the sequence reversal method, to 

provide further discriminatory power now that the basic paradigm has been shown to 

be feasible.

4.2 Future Work
The following points are proposed to be viable extensions to the work presented in this 

thesis.

•  For a start, it would be interesting to further benchmark the most effective 

method, SP-NN-solvpaimdist, against energy functions using all-atom potentials 

for decoy discrimination. Of course, this can only be performed against high 

quality decoy datasets where there are full mainchain atoms in the backbones for 

all decoy structures.

•  It might also be worthwhile to compare the SP-NN-solvpaimdist method against 

other MQAP methods, besides MODCHECK [91], which have been used for the 

evaluation of fold recognition models, even though the neural network methods 

are originally developed for New Fold candidate models in mind.

•  In Section 3.2.4, it is mentioned that the sequence profile methods can, in theory, 

learn to recognize native features such as salt bridges and disulphide bridges in 

native structures. It would certainly be interesting to further examine the extent 

to which the network scores produced by the SP-NN-solvpaimdist method, the 

best of the sequence profile methods, correlate with the presence of such features.
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•  It might be possible to extend this machine learning paradigm to involve the dis

crimination of decoys of better (<  lA) resolution from native structures. The 

reversed sequence paradigm of providing negative training examples works rea

sonably well for presently available decoy datasets, but is limited in the discrimi

nation of native structures from high resolution decoys (< 1 A). A suitable model 

for the negative training examples could be MODELLER [84] outputs.

•  Since the SP-NN-solvpaimdist method is the most effective method in discrim

inating native structures from a set of decoys, it can be used as a component of 

an energy function for the refinement of protein structures. At some part of the 

structure assembly or fold recognition pipeline, the SP-NN-solvpaimdist method 

can be used to evaluate the native-like property of candidate structures, as part of 

the process to create a more directed search in the 3D fold space.

•  In Section 2.3.7.1, it is mentioned that the S combination of network results is 

defined as 4 <  k <  10. Different boundaries of the S combination can be tried to 

see if better results can be obtained. The perturbed distance measure mentioned 

in Section 2.3.1.2 can also be modified to use a variety of standard deviation 

values other than o= lk.

•  In Section 3.2.1, the UniRef50 sequence database is used. In future, it might be 

interesting to use the UniRef70 or UniRef90 databases, where sequences are at 

most 70% or 90% similar respectively, in the Homologue Threading methods to 

see how the results obtained might differ.



Appendix A

Native Residue Pair Distance 

Distributions (NRPDs)

ALA-ALA a t separation  k=6 P R O -P R O  a t separation  k=6
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ASP-GLU a t separation k -6 ARG-LYS at separation  k=6

ASP-LYS at separation k=6 A R G -A SP a t separation  k=6

z  20

S E R -S E R  a t separation  k=6 THR-THR at separation  k=6

Figure A.l :  Histograms of native pairwise distances o f different types of residues pairs 

at k=6

Figure A .l shows the native distance distributions o f residue pairs o f different 

types, at separation k=6, derived from the training dataset in Table D. 1. These different 

types include hydrophobic residue pairs (ALA-ALA, PRO-PRO), similarly charged 

residue pairs (ASP-GLU, ARG-LYS), opposite charged residue pairs (ASP-LYS, ARG- 

ASP) and polar residue pairs (SER-SER, THR-THR).



Appendix B

Native and Decoy Residue Pair 

Distance Distributions (NRPDs and 

DRPDs)
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Pairwise D istances in 0.5A bins

Figure B.l: Histograms of native and reversed decoy pairwise distances o f different 

types o f residue pairs at k=6 (A)

This appendix shows the decoy residue pair distance distributions (DRPDs) ob

tained by reversing the sequence and threading the reversed sequence to the native 

structure (Section 2.3.1.2). The individual plots shown in Figures B .l and B.2 are one- 

to-one correspondences to the plots in Figure A .l in Appendix A.
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Figure B.2: Histograms o f native and reversed decoy pairwise distances o f different 

types of residue pairs at k=6 (B)
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Neural Network Plots of the Native 

and Decoy Residue Pair Distributions 

of Distances (NRPDs and DRPDs)

■  Native 
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 NN Output
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i .
ARG-LYS at separation  k=6

5 10 15
Pairwise D istances in 0.5A bins

Figure C.1: Neural network plots of the native and decoy histograms of different types 

of residue pairs at k=6 (A)

This appendix shows the plots obtained from the k=6 neural network after it has 

been trained with the training dataset in Table D. 1. Figures C. 1 and C.2 show the neural 

network plots o f the native and reversed decoy distance distributions o f different types 

o f residue pairs at separation k=6. These plots correspond to the NRPDs and DRPDs
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shown in Figures B.l and B.2 respectively.
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Figure C.2: Neural network plots o f the native and decoy histograms o f different types 

of residue pairs at k=6 (B)



Appendix D

Training, Validation and Preliminary 

Test Datasets

This chapter gives a listing of the training dataset, validation dataset and preliminary 

test dataset of protein domains, which are mentioned in Section 2.3.1.

Table D.l shows the set of 285 protein domains used in training; Table D.2 shows 

the set of 95 protein domains used in validation during neural network training, and 

Table D.3 shows the set of 95 protein domains used in preliminary testing.

Training Dataset: Protein{:Chain}{:Domain Boundaries}

la6q:297-368 llok:A letx:A lnj4:A:263-355

lako llqp:A lew4:A lnls

layl:228-540 lltz:A leyq:A lnzi:A:l-l 17

layo:A lmln:A leyv:A lo08:A

lbx4:A lmf7:A lf60:A:241-334 lolx:A

lbyq:A lmgp:A lg61:A loi7:A: 122-288

lc5k:A:35-162 lmn8:A lgs9:A lqnf:205-475

lc97:A:2-528 lmv8:A:203-300 lgso:A:-2-103 lqre:A

lcip:A:61-181 lnf9:A lhbn:A:2-269 lqtn:A

lcuk: 156-203 lnvm:A:291-341 lhx0:A:404-496 lwho
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Training Dataset (cont’d)

ld8c:A lo98:A:77-310 lilw :A 2pth

lejx:A looO:A liom:A 2uag:A:298-437

levl:A:533-642 lorv: A:39-508 lj3a:A 3grs:364-478

lf46:A lp3d:A: 107-321 ljat: A 4eug:A

lfye:A lqhp:A:577-686 ljhf:A:73-198 16pk

lg81:A:327-409 lqna:A:17-l 15 ljkx:A lbkr:A

lgdn:A lrl6:A:7-81 lk3x:A:125-213 lc8z:A

lgpj:A:303-404 ltfe lk3y:A:81-222 lcsO:B:2-152

lh4a:X:l-85 4ubp:B lk7k:A ldg6:A

lheu:A: 164-339 1 af7:11-91 lkbl:A:377-509 ldi6:A

lhpl:A:363-550 laie lkmt:A ldmh:A

lhqk:A lbd8 llam:l-159 ldqe:A

1 ir 1: S lcqm:A lld8:A lduv:G: 1-150

lkbO:A: 1-573 ldl2:A lml5:A:2-95 ldw9:A:87-156

lkqp:A ldto:A lme4:A ldy5:A

118a:A:701-886 le39:A:360-505 lme8:A:2-101 le58:A

118b:A le4c:P lmg4:A leaz:A

lldg: 164-329 lekr:A lmoo:A lez3:A

llkk:A lelk:A lmuw:A lf8n:A:6-149

llqt:A:2-108 lexm:A:313-405 lmvl:A lfdr: 101-248

lmlg:A:132-190 lfwx:A:8-451 ln55:A lfsg:A

lm26:A lgmi:A ln60:B:7-146 lfx2:A

lmj4:A lgs5:A ln61 :C: 1-177 lg8m:A:4-200

1 n 1 b: A:271 -598 1 gtk: A:220-313 ln8k:A: 1-163 lgkm:A

ln31:A lhf8:A lnm8:A:9-385 lgmx:A

ln62:A:82-163 lhlr:A:311-907 lo26:A lgot:G

lns5:A lhql:A lofd:A: 1240-1507 lgqz:A: 1-130

lnxj:A lijy:A loht:A lgvo:A

lo e l: A: 1-159 lix9:A: 1-90 lor7:A:-l-l 11 lh05:A
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Training Dataset (cont’d)

lp5v:A:7-147 liz5:A:2-120 loxO:A:-5-251 lh3n:A:226-417

lqhv:A ljos:A lqcz:A lhb6:A

lqqf:A lk0r:A: 184-262 lqh4:A: 103-381 li2t:A

lqsa:A: 1-450 lkhb:A: 10-259 lqnx:A li4j:A

lrss lkhd:A: 12-80 ld0c:A likt:A

ltig lkp8:A:2-136 ldd3:A:l-57 lixb:A:91-205

lyge: 150-839 lkrh: A: 106-205 1 djO:A:7-114 lixh

2tps:A lkwm:A:lA-95A ldow:A lj6z:A:4-146

7odc:A:44-283 lkyp:A ldqi:A ljke:A

lawq:A 116p:A le6i:A lk4i:A

lbdO:A:2-l 1 lmix:A: 195-308 lei5:A:336-417 lk6d:A

lbxy:A lmla: 198-307 lf86:A lknl.A

lbyi ln5u:A:2-196 lf9y:A 112h:A

lchd lnp7:A: 1-204 lfhu:A:l-99 115o:A

lcxq:A lo8b:A: 199-218 llm4:A

ld5t:A:292-388 loew:A lfmt:A:207-314 lm6y:A:l 15-215

legw:A lp5u: A: 148-234 lg7s:A:329-459 lm9n:A:201-593

lerz:A lqop:A lgkp:A:2-54 lmgt:A:89-169

lftr: A: 1-148 lwhi lgxr:A lnkp:A

lgpr lxxa:A lhxk:A:31-411 lnpk

lgxu:A 2ilk li9c:A lpcf:A

lh l6:A 2sns liu7:A:212-628 lqqq:A

lh4x:A 2spc:A lj8b:A lsei:A

lhqs:A 3nul ljp3:A luro:A

lhs6:A: 1-208 8ruc:A:9-147 ljsd: A 2aop: 149-345

lhz4:A la77:209-316 ljw9:B 4uag:A:l-93

ljid:A la8o lk 8y:B la8d:248-452

lk4g:A lcld:A:l-148 lkek:A:416-668 lb8z:A

lkj9: A: 113-318 lcrz.A: 141-409 lkpf lbkf



Training Dataset (cont’d)

lkql:A lczp:A lkul:A lchm:A:2-156

lkqf:A:34-850 ldci:A lmc2:A lkwf:A

ldfir.P lmfm:A llb3:A ldl5:A:214-317

lmwx:A: 139-327

Table D. 1: Training Dataset of 285 proteins



Validation Dataset: Protein}: Chain} {:Domain Boundaries}

ld8h:A ljfl: A: 1-115 Ibgf lnxu:A

ldce:A:242-350 ljhg:A leul:A:626-780 lo04:A

ldi2:A lji7:A leuw:A lo6v:A:33-416

ldtj:A lk2y:X:5-154 lf41:A:389-548 lobo:A

le0t:A:70-167 lklx:A lf5n:A:284-583 lon2:A:63-136

le85:A 113k: A:8-91 lf71:A lopd

le8c:A:3-103 llb6:A lgoi:A:447-498 lqh5:A

leaq:A llc5:A lgwy:A lqlm:A

lefl:C lmrj lhwl:A:79-230 lsox:A:94-343

lewf:A:l-217 lo0w:A:-l-167 lhw5:A:l-137 lzfj:A:95-158

lfOj:A lolz:A li40:A 2mhr

lfeh:A:210-574 lo6s:B li4m:A 2pvb:A

lfyf:A:242-532 logw:A lj09:A:306-468 3sil

lg6s:A loil:A:33-135 ljz8: A:731-1023 laol

lg8t:A lqcs: A: 86-201 lk7i:A:259-479 lb6a: 110-374

lgz8:A lqnt:A:6-91 lkmv:A lby2

lifr:A ltld:A lku3:A lc96:A:529-754

lijq:A:377-642 1 wpo: A 113p:A ldhn

liq4:A lal2:A llfw:A: 187-382 1 dlj: A:295-402

liqy:A:9-96 la3a:A llsh:A:285-620 ldqa:A:587-703

litx:A:338-409 laop:81-145 lmlh:A:51-131 ldzf:A:5-143

liu8:A lb8o:A lnm2:A:134-195 le2w:A:l-168

liwl:A lbdo lnte:A lekj:A

ljcl: A 1 bfd:2-181 lnwa:A

Table D.2: Validation Dataset of 95 proteins
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Preliminary Test Dataset: Protein}: Chain} {:Domain Boundaries}

leye:A lks2:A: 127-198 lbm8 lkjq:A:319-392

lfcy:A llm5:A ld3v:A lkwn:A

lfkm:A:249-442 llpl:A ldk8:A 1 lOi: A

lg8e:A lls l : A: 1 -88 ldmg:A 1131: A:2-169

lgci lm5w:A ldoz:A lluc: A

lgk8:A: 150-475 lm9x:C lfma:E llyv:A

lgwu:A lmmg: 34-79 lfpo:A:l-76 lm22:A

lh8e:A:380-510 lmoq lg87:A:457-614 lm4j:A

lhdh:A lmwp:A lgte:A:2-183 lmky:A:359-439

lhxn ln08:A lgxj:A lmro: A:270-549

lilq:A ln63:C: 178-287 lh2w:A: 1-430 lmzg:A

lj98:A lnox lh7m:A lo7n:A: 155-448

ljbe:A lnzO:A lhty:A:412-522 loac:A:5-90

ljfb:A lo7j:A lhzt:A losp:0

ljgl:A lobd:A lioO:A lqdd:A

ljhd:A: 1-173 lpin:A:6-39 liv3:A lqhd:A: 1-148

ljz7:A:220-333 lqjb:A liwO:A lvhh

lk20:A lslu:A lj96:A lvps:A

lk5n: A: 182-276 luaq:A lj9j:A lwer

lk92:A: 189-444 luca:A ljf8:A 2bop:A

lkg2:A luxy:201-342 IjlO: A 2nac:A: 1-147

lkgs:A: 124-225 2sic:I lk3w:A:l-124 31zt

lko7:A:l-129 la9x:A:403-555 lk5c:A 3seb: 122-238

lkr4:A laxn lkid

Table D.3: Preliminary Test Dataset of 95 proteins



Appendix E

Histograms of mean neural 

network scores of the proteins in the 

Baker Decoy dataset

This appendix, as mentioned in Section 2.4.2.1, gives the histograms of the mean neu

ral network scores at separation lc=4 for the Baker decoys as listed in Table 2.5.

Mean neural network scores for native and decoy structures for separation k-4

1r69 tutg
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Imzm
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5.46 0.48 0.5 0.52 0.54 0.56 0.46 0.48 0.5 0.52 0.54 0.56

Mean neural network scores for separation k-4

Figure E. 1: Mean neural network scores for separation k=4 for the Baker decoy dataset

(A)
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Mean neural network scores for native and decoy structures for separation k-4
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Figure E.2: Mean neural network scores for separation k=4  for the Baker decoy dataset 

(B)

Mean neural network scores for native and decoy structures for separation k-4
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Figure E.3: Mean neural network scores for separation k- 4 for the Baker decoy dataset 

(C)
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Mean neural network scores tor native ano decoy structures for separation k-4
Spti 1msi
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Mean neural network scores tor separation k-4

Figure E.4: Mean neural network scores for separation k=4 for the Baker decoy dataset 

(D)
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Histograms of mean neural network 

scores for all separations for protein 

lr69 in the Baker decoy dataset

This appendix chapter, as mentioned in Section 2.4.2.1, gives the histograms o f the 

mean neural network scores for all sequence separations k=4 to 22, and k >  22, for the 

Jr69  protein in the Baker decoy dataset.

Mean neural network scores for native and decoy structures for protein 1 r69

Mean neural network scores for protein 1 r69

Figure F. 1: Mean neural network scores for separation k=4  to 7 for structures of protein

lr 6 9
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Mean neural network scores tor native and decoy structures for protein 1 r69
k-9
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Figure F.2: Mean neural network scores for separation k=8 to 11 for structures o f pro

tein lr 6 9

Mean neural network scores tor native and decoy structures for protein 1 r69
k-12 k—13
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Figure F.3: Mean neural network scores for separation k= 12 to 15 for structures of

protein lr 6 9
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Figure F.4: Mean neural network scores for separation k=  16 to 19 for structures of  

protein lr6 9

Mean neural network scores for native and decoy structures for protein 1 r69
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Figure F.5: Mean neural network scores for separation k=20 to 22, and k >  22, for

structures of protein lr 6 9



Appendix G

3D Scatter plots of native and 

simulated decoy training instances 

with additional solvent accessibility 

values

This appendix, as mentioned in Section 2.5.2, gives the 3D scatter plots of the native 

and simulate decoy training instances of various types of residue pairs at separation 

k=6. Figure G.l shows the scatter plots of hydrophobic ALA-ALA residue pairs.

Figure G.2 shows the scatter plots of oppositely charged ASP-GLU residue pairs.

Figure G.3 shows the scatter plots of similarly charged ASP-LYS residue pairs.

Figure G.4 shows the scatter plots of polar SER-SER residue pairs.
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Scatter plot ot ALA-ALA native and simulated decoy training instances at k-6

O native
O simulated decoy

Relative Solv. Acc. of Residue 2 Relative Solv. Acc. of Residue 1

Figure G. 1: Distribution of input training instances, with additional solvent accessibil

ity information, of ALA-ALA at k=6

Scatter plot of ASP-GLU native and simulated decoy training instances at k-6
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Figure G.2: Distribution of input training instances, with additional solvent accessibil

ity information, o f ASP-GLU at k=6
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Scatter plot of ASP-LYS native and simulated decoy training instances at k-6
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Figure G.3: Distribution of input training instances, with additional solvent accessibil

ity information, of ASP-LYS at k=6

Scatter plot of SER-SER native and simulated decoy training instances at k-6
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Figure G.4: Distribution of input training instances, with additional solvent accessibil

ity information, o f SER-SER at k=6
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